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ABSTRACT

STUDY OF DNA METHYLATION MODIFICATIONS: FROM DYNAMICS DURING THE DEDIFFER-
ENTIATION INTO BREAST CANCER STEM CELLS, TO THE DEVELOPMENT OF THE R-BASED

TOOL ABSP, ANALYSIS OF BISULFITE SEQUENCING PCR

Cancer stem cells (CSCs) form a tumoral subpopulation characterized by self-renewal abilities,

pluripotency, therapeutic resistance mechanisms, and tumor initiation capacities, and are therefore a

major cause of cancer recurrence after treatments. Moreover, the non-cancer stem cells (non-CSCs)

are able to dedifferentiate into CSCs, in response to stress, especially to antitumor treatments such

as radiotherapy, thus reinforcing the therapeutic resistance of cancer. In addition, epigenetic marks

such as DNA methylation are known to contribute to the regulation of stemness properties and could

be involved in the reacquisition of a CSC phenotype.

To evaluate DNA methylation modifications occurring throughout the radio-induced dediffer-

entiation of non-CSCs into CSCs in the breast cancer model, a Reduced Representation Bisulfite

Sequencing (RRBS) analysis of the different tumor subpopulations was carried out. The analysis

of RRBS data led to the identification of over 2,000 Differentially Methylated Regions (DMRs) un-

dergoing methylation changes from non-CSC to radio-induced CSC. Among them, 35 present a

methylation profile across the populations consistent with a potential contribution to radio-induced

dedifferentiation. Five regions, associated with the FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B

genes, were selected for further validation. Genes regulated by these methylation changes could

serve as new therapeutic targets to specifically inhibit the non-CSC to CSC phenotypic switch and

prevent the enrichment in CSCs, reducing the risk of cancer relapse.

To validate identified methylation differences, the Bisulfite Sequencing PCR (BSP) method was

chosen as it is the most convenient and accessible technique to quantify locus-specific methylation

levels. Due to a lack of efficient tools to analyze BSP results from both approaches (direct-BSP and

cloning-BSP), the ABSP R-based tool, standing for Analysis of Bisulfite Sequencing PCR, was devel-

oped. This tool provides a complete, automated, and user-friendly workflow to compute methylation

percentages and compare methylation differences between samples. ABSP is available for down-

load, along with associated data, at https://github.com/ABSP-methylation-tool/ABSP. Altogether, this

work highlights the importance of DNA methylation within CSC plasticity and the room for tools to

improve its analysis.

KEYWORDS: breast cancer, radiotherapy, cancer stem cells, DNA methylation, bisulfite sequencing, R language
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RÉSUMÉ

ÉTUDE DES MODIFICATIONS DE MÉTHYLATION DE L’ADN : DES DYNAMIQUES AU COURS

DE LA DÉDIFFÉRENCIATION EN CELLULES SOUCHES CANCÉREUSES DE SEIN, AU DÉVE-
LOPPEMENT DE L’OUTIL ABSP, Analysis of Bisulfite Sequencing PCR, SOUS R

Les Cellules Souches Cancéreuses (CSC) forment une sous-population tumorale caractéri-

sée par des capacités d’auto-renouvellement, de pluripotence, d’initiation tumorale et présentent une

résistance thérapeutique accrue. Elles sont donc une cause majeure de récidive du cancer. De plus,

les cellules cancéreuses non-souches sont capables de se dédifférencier en CSC en réponse à un

stress, notamment aux traitements anticancéreux comme la radiothérapie, renforçant ainsi la résis-

tance thérapeutique de la tumeur. Nous avons fait l’hypothèse que les marques épigénétiques telles

que la méthylation de l’ADN, connues comme contribuant à la régulation des propriétés souches,

seraient impliquées dans la réacquisition d’un phénotype CSC.

Afin d’évaluer les modifications de méthylation de l’ADN au cours de la dédifférenciation radio-

induite des cellules non-CSC en CSC dans le modèle de cancer du sein, une analyse de Reduced

Representation Bisulfite Sequencing (RRBS) des différentes sous-populations tumorales a été réa-

lisée. Cette analyse a permis d’identifier plus de 2 000 régions différentiellement méthylées (DMR)

subissant des changements de méthylation entre les états non-CSC et CSC radio-induit. Nous avons

retenu 35 DMR présentant un profil de méthylation cohérent avec une potentielle contribution à la

dédifférenciation radio-induite. Cinq d’entre elles, associées aux gènes FSCN1, CHRNA6, CDH7,

CD9 et PRKAR1B, ont été sélectionnées pour validation complémentaire. Les gènes régulés par

ces changements de méthylation pourraient servir de nouvelles cibles thérapeutiques afin d’inhiber

spécifiquement la conversion phénotypique de non-CSC à CSC et prévenir un enrichissement de la

tumeur en CSC, réduisant ainsi le risque de rechute du cancer.

Pour valider les différences de méthylation observées en RRBS, la méthode de Bisulfite Se-

quencing PCR (BSP) a été choisie pour son accessibilité et son efficacité à quantifier les niveaux

de méthylation d’un locus spécifique. En raison de l’absence d’outils à ce jour permettant d’analyser

efficacement et de manière automatisée les résultats de BSP, provenant des deux approches de

BSP (direct-BSP et cloning-BSP), nous avons donc fait le choix de développer sous R un nouvel

outil, ABSP pour Analysis of Bisulfite Sequencing PCR. ABSP fournit une analyse complète, auto-

matisée et accessible pour calculer les pourcentages de méthylation et comparer les différences de

méthylation entre échantillons. ABSP et ses données associées sont téléchargeables à l’adresse

https://github.com/ABSP-methylation-tool/ABSP. Ainsi, ce travail a mis en lumière l’importance de la

méthylation de l’ADN dans la plasticité du phénotype souche cancéreux et le potentiel d’amélioration

des outils d’analyse.

MOTS CLÉS : cancer du sein, radiothérapie, cellules souches cancéreuses, méthylation de l’ADN, séquençage

bisulfite, langage R

7

https://github.com/ABSP-methylation-tool/ABSP


Analyse complète
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SYNTHÈSE

ÉTUDE DES MODIFICATIONS DE MÉTHYLATION DE L’ADN : DES DYNAMIQUES AU

COURS DE LA DÉDIFFÉRENCIATION EN CELLULES SOUCHES CANCÉREUSES DE

SEIN, AU DÉVELOPPEMENT DE L’OUTIL ABSP, Analysis of Bisulfite Sequencing
PCR, SOUS R

1 CONTEXTE

CELLULES SOUCHES CANCÉREUSES ET PLASTICITÉ PHÉNOTYPIQUE

Ces dernières années, le modèle stochastique d’organisation tumorale a été remplacé par

un modèle alternatif basé sur l’organisation hiérarchique des cellules tumorales, faisant émerger le

concept de cellules souches cancéreuses (CSC). Les CSC constituent une sous-population tumorale

caractérisée par une résistance accrue aux thérapies, une capacité à s’autorenouveler et à regénérer

une nouvelle tumeur, ce qui en fait donc une cause majeure des rechutes de cancers. De plus, il a

été montré que des traitements anti-cancéreux comme la radiothérapie, induisait la dédifférenciation

de cellules non-CSC en CSC dans le cancer du sein, ce qui conduit à un enrichissement en cellules

résistantes au sein de la tumeur. Il est donc indispensable de développer de nouvelles approches

permettant de prévenir la dédifférenciation afin de sensibiliser les tumeurs aux thérapies. Lors de

cette conversion phénotypique, des changements transcriptomiques sont observés, tels que la réex-

pression des facteurs de pluripotence OCT4, SOX2 et NANOG. Ces modifications de programmes

géniques pourraient donc être régulés par des mécanismes épigénétiques, comme la méthylation de

l’ADN, pour permettre la réacquisition de propriétés de cellules souches.

MÉTHYLATION DE L’ADN ET BISULFITE SEQUENCING PCR (BSP)

La méthylation de l’ADN est le processus épigénétique le plus étudié chez les mammifères. Ce

mécanisme se traduit par l’ajout d’un groupement méthyle sur des cytosines suivies d’une guanine,

nommés sites CpG. La méthylation de l’ADN participe à la modulation l’architecture de la chromatine,

notamment par la présence de régions denses en CpG, appelées CpG islands, ce qui permet la

régulation de l’expression de gènes.

Diverses méthodes permettent de quantifier la méthylation de l’ADN. Parmi elles, le traitement

de l’ADN au bisulfite convertit les cytosines (C) non méthylées en uraciles (U), alors que les cyto-

sines méthylées (mC) restent cytosines (mC). Par amplification PCR, les uraciles (U) sont remplacés

par des thymines (T), car tout deux complémentaires à l’adénine (A). Ainsi, après séquençage, la

comparaison de la séquence convertie au bisulfite avec la séquence génomique originale permet de

distinguer les statuts de méthylation de chaque site CpG. Pour un site CpG donné, la détection d’une
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base C correspond donc au statut méthylé et d’une base T au statut non méthylé. Cette méthode

permet donc de quantifier les pourcentages de méthylation d’une région spécifique au sein d’un

mélange de molécules d’ADN. Cette technique est quantitative, accessible et offre un large spectre

d’utilisation : de l’approche préliminaire à la validation de résultats obtenus à l’échelle du génome

(RRBS/WGBS) en passant par l’analyse d’un grand nombre d’échantillons différents comme pour

des études de cohortes. Deux types de BSP peuvent être distingués en fonction l’ADN séquencé,

nommés direct-BSP et cloning-BSP. 1 Dans la cas d’une approche direct-BSP, le séquençage de

l’ensemble des amplicons permet une estimation semi-quantificative du pourcentage de méthylation

d’un CpG dans la population totale des ADN. 2 Dans la cas d’une approche cloning-BSP, le clonage

des amplicons de PCR et le séquençage de clones individuels permet d’obtenir le statut de méthy-

lation d’un CpG d’une molécule d’ADN (provenant d’un unique clone). Le pourcentage au sein de la

population à chaque position est quantifié en calculant le ratio de clones méthylés et non-méthylés.

Actuellement, il n’existe qu’un seul outil permettant de calculer les niveaux de méthylation

à partir de données de direct-BSP, appelé ESME (Epigenetic Sequencing Methylation analysis) et

développé en 2004 par Lewin et al. (2004). Celui-ci nécessite un système d’exploitation Linux, ce qui

n’est pas idéal pour une utilisation par des biologistes. Il est également limité uniquement au calcul

de pourcentages de méthylation de données de direct-BSP, sans visualisation ou analyse statistique.

2 OBJECTIFS

IMPLICATION DE LA MÉTHYLATION DE L’ADN DANS LA DÉDIFFÉRENCIATION RADIO-INDUITE EN CSC

Dans une première partie, ce projet a pour but de déterminer l’implication des enzymes épi-

génétiques tels que les ADN méthyltransférases dans la dédifférenciation radio-induite de cellules

non-CSC en CSC et d’identifier de potentiels nouveaux acteurs participant à ce processus. Nous

avons émis l’hypothèse que des changements de méthylation de l’ADN intervenaient au cours de

ce processus afin de modifier l’expression de certains gènes clés nécessaires à la réacquisition

de propriétés de cellule souche. De ce fait, une analyse globale de changements de niveaux de

méthylation de l’ADN permettrait d’identifier de nouveaux gènes et mécanismes impliqués dans la

conversion phénotypique de non-CSC à CSC. A long terme, la validation de ces nouvelles cibles

permettrait ainsi de pouvoir prévenir la dédifférenciation en CSC, pour réduire l’enrichissement de la

tumeur en CSC plus résistantes après radiothérapie, afin de radiosensibiliser les tumeurs et diminuer

le risque de rechute.

DÉVELOPPER UN OUTIL POUR ANALYSER LES DONNÉES DE BSP EFFICACEMENT ET DE MANIÈRE
AUTOMATISÉE

Dans une deuxième partie, l’objectif est de développer un outil capable d’analyser à la fois des

données de direct-BSP et de cloning-BSP, de manière automatisée et accessible aux chercheurs

en biologie, et de manière complète, des données brutes jusqu’à l’analyse comparative, afin de

déterminer les différences significatives de méthylation entre plusieurs groupes d’échantillons.
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3 MÉTHODE

Pour connaître la contribution des enzymes épigénétiques dans la dédifférenciation radio-

induite, l’expression des enzymes DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3, KDM6A, KDM6B,

et EZH2 a été mesurée au cours du temps après radiothérapie dans les cellules de cancer de sein

SUM159PT. Ensuite, la contribution des ADN méthyltransférases DNMT1 et DNMT3B dans la dédif-

férenciation radio-induite a été évaluée à l’aide d’une inhibition par siRNA.

Afin d’identifier les changements de méthylation de l’ADN au niveau global, une analyse de

reduced representation bisulfite sequencing (RRBS) a été menée sur différentes populations. En

effet, les cellules SUM159PT ont été triées une première fois pour isoler les population CSC et non-

CSC. La population de non-CSC a ensuite été irradiée pour induire leur dédifférenciation. Enfin, les

cellules irradiées ont de nouveau été triées 5 jours après irradiation pour isoler les CSC induites

(iCSC) et les non-CSC irradiées (inon-CSC). La comparaison des données de méthylation entre ces

différentes populations a ensuite été réalisée par analyse bioinformatique sous R afin d’identifier des

régions différentiellement méthylées (DMR).

L’outil ABSP a été développé sous le langage de programmation R, avec l’environnement

de développement RStudio. Il intègre une application shiny qui s’ouvre sur un navigateur web et

fait intervenir des scripts R markdown permettant de générer des rapports d’analyse sous format

HTML. ABSP est divisé en deux analyses, l’une calcule les pourcentages de méthylation de chaque

échantillon unique, l’autre regroupe tous les échantillons pour réaliser une analyse comparative et

déterminer les différences de méthylation statistiquement significatives.

4 RÉSULTATS

4.1 DYNAMIQUES DE MÉTHYLATION DE L’ADN AU COURS DE LA DÉDIFFÉRENCIATION RADIO-
INDUITE

IMPLICATION DES ENZYMES ÉPIGÉNÉTIQUES DANS LA DÉDIFFÉRENCIATION RADIO-INDUITE

L’analyse de l’expression des enzymes DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3,

KDM6A, KDM6B, et EZH2 après irradiation n’a pas permis de révéler des changements d’expres-

sion significatifs de ces enzymes, et donc leur implication dans la dédifférenciation n’a pas peu être

démontré. En effet, une approche globale de mesure d’expression à certains temps déterminés après

irradiation ne permettait pas de voir des changements d’expression transitoires liés aux évènements

de dédifférenciation rares (<5% de CSC induites 5 jours après irradiation), asynchrones et étalés

dans le temps.

La transfection des cellules avec les siRNA a aboli l’augmentation du pourcentage de CSC

après radiothérapie, à la fois dans la condition contrôle transfectée avec un siRNA contrôle et dans

les conditions transfectées avec les siRNA ciblant DNMT1 et DNMT3B. Ces résultats indiquent que

la transfection en elle-même est responsable de la diminution de la dédifférenciation. Ainsi, la partici-

pation de ces enzymes dans ce processus de conversion phénotypique n’a pas pu être déterminée.
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IDENTIFICATION DE RÉGIONS DIFFÉRENTIELLEMENT MÉTHYLÉES

L’analyse des données de RRBS sur les populations CSC, non-CSC, iCSC, et inon-CSC a per-

mis l’identification de 2596 régions différentiellement méthylées au cours de la dédifférenciation. Ces

régions ont été filtrées pour ne garder que celles ayant un profil de méthylation correspondant à une

régulation de la méthylation au cours de la dédifférenciation. 35 régions filtrées ont donc été identi-

fiées comme potentiellement impliquées dans cette conversion d’un état non-CSC à CSC. Parmi ces

35 régions, 5 ont été retenues pour être validées à l’aide d’une méthode plus spécifique et précise,

par exemple par BSP. 1 Une région CpG island de 328 pb hypométhylée dans les CSC comparé

aux non-CSC est localisée à 1370 pb en amont du gène FSCN1. 2 Un segment de méthylation

long de 17431 pb hyperméthylé est situé dans le gène CHRNA6. 3 Un segment hyperméthylé de

51 pb est également situé dans le gène CDH7. 4 La région autour du site d’initiation de la transcrip-

tion (TSS) du gène CD9 est identifiée comme hypométhylée dans les CSC. 5 Et enfin, une région

de 1000 pb hypométhylée est localisée à 8833 pb en aval du gène PRKAR1B. Ces différences de

méthylation doivent maintenant être validées et corrélées à des changements d’expression de leur

gènes associés.

4.2 ABSP : "ANALYSIS OF BISULFITE SEQUENCING PCR"

FONCTIONNEMENT EN BREF DE L’OUTIL ABSP

Pour chaque échantillon, l’application utilise en données d’entrée : les paramètres de l’ex-

périence (nom de la séquence, condition, date, etc.), un fichier FASTA de la séquence d’ADN gé-

nomique de la région d’intérêt, et les deux fichiers ABIF (.ab1) de séquençage, un pour chaque

direction. Une première analyse permet de contrôler la qualité des séquençages et de calculer les

pourcentages de méthylation. Ces données sont ensuite récupérées pour une seconde analyse grou-

pée de tous les échantillons. Cette dernière génère des graphiques de visualisation (Lollipop style

plots) et compare les conditions entre elles par tests statistiques. Tous les résultats sont à la fois

enregistrés dans les dossiers de l’application et compilés dans un rapport HTML pour parcourir tout

le processus d’analyse.

APPORTS DE L’OUTIL ABSP

L’analyse des résultats de séquençage d’ADN convertis au bisulfite est longue et fastidieuse,

c’est pourquoi de nombreux outils ont été développés. Ce nouvel outil ABSP présente de nombreux

avantages par rapport aux outils existants : 1 son processus d’analyse est complet, il propose en

plus de l’estimation des pourcentages de méthylation, une visualisation des données et une analyse

statistique pour déterminer les différences de méthylation entre plusieurs groupes d’échantillons, 2

son utilisation est complètement automatisée pour l’utilisateur, de l’importation des données jusqu’à
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la génération des graphiques et des comparaisons statistiques, 3 il prend en charge l’analyse des

deux types de BSP, direct-BSP et cloning-BSP, et enfin 4 l’utilisation du langage de programmation

libre R permet une très grande accessibilité, adaptabilité et évolutivité.

L’outil ABSP, ainsi que son manuel d’utilisation, exemples et données tests sont disponibles

au téléchargement sur GitHub à l’adresse https://github.com/ABSP-methylation-tool/ABSP.

CONCLUSION

Grâce à une analyse globale de la méthylation de l’ADN, ce projet a permis d’amorcer l’iden-

tification de nouveaux acteurs intervenant dans le processus de dédifférenciation radio-induite de

cellules non-CSC en CSC. Les différences de méthylation pourront ensuite être validées et corrélées

à des changements transcriptomiques afin d’identifier des gènes potentiellement impliqués dans ce

changement de phénotype. Enfin, l’étude plus poussée de ces gènes et de leur rôle dans la dédif-

férenciation radio-induite pourrait aboutir au développement de nouvelles solutions thérapeutiques

pour prévenir l’enrichissement en CSC et ainsi radiosensibiliser les tumeurs.

Le programme ABSP apporte donc une nouvelle procédure d’analyse automatisée pour aider

les biologistes à interpréter leurs résultats de BSP. En fournissant une solution clé en main pour

analyser ces données, ABSP facilite ainsi l’accès à l’étude de la méthylation de l’ADN de régions

d’intérêts. En effet, la technique de BSP étant très abordable, couplée à une analyse des résultats

par ABSP, elle permet d’obtenir rapidement une réponse quant aux niveaux de méthylation d’une

région spécifique de l’ADN.

Ainsi, ce travail a mis en lumière l’importance de la méthylation de l’ADN dans la plasticité du

phénotype souche cancéreux et le potentiel d’amélioration des outils d’analyse.
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1.1 CANCER AND RESISTANCE TO THERAPIES

This section aims to provide a brief overview of anti-cancer therapies and causes of ther-

apeutic resistance, to understand the challenge of targeting cancer stem cells to diminish cancer

recurrence.

1.1.1 INDICATORS AND STATISTICS

WORLDWIDE

In 2020, 19.3 million new cases of cancer and 10.0 million deaths have been reported world-

wide by the GLOBOSCAN project (Figure 1) (Sung et al., 2021). The 5-year prevalence, meaning

the number of people alive within 5 years after a cancer diagnosis, is estimated to be 50.6 million

people.

The three most commonly diagnosed cancers are female breast cancer (11.7%), lung cancer

(11.4%), and colorectal cancer (10.0%), and the ones leading to the most deaths are lung cancer

(18%), colorectal cancer (9.4%) and liver cancer (8.3%) (Figure 2).

Breast cancer is the most diagnosed cancer worldwide, representing 2.26 million new cases in

2020, 11.7% of all cancer diagnosed for both sexes, and 24.5% of all cancers diagnosed in women. It

caused 685,000 deaths worldwide in 2020, 6.9% of all cancer deaths for both sexes, and 15.5% of all

cancer deaths. Breast cancer is therefore the first cause of cancer mortality for women. The 5-year

prevalence is estimated at 7.79 million, which is 17.7% of all cancers for both sexes, and 33.7% of

all cancers for women, meaning that one-third of the women alive within 5 years after the cancer

diagnosis, have been diagnosed with breast cancer (Sung et al., 2021). Further details, specific to

breast cancer, are given in chapter 3 “Breast cancer and breast cancer stem cells” at page 87.

It is estimated that one-quarter of men and one-fifth of women worldwide develop cancer

during their lifetime and that one-eighth of men and one-eleventh of women worldwide die from

cancer. The incidence is predicted to increase to 30.2 million new cases in 2040, almost 50% more

than in 2020 (Global Cancer Observatory website).

IN FRANCE

In France, 382,000 new cases of cancer and 157,400 deaths have been reported in 2018. The

prevalence for 2017 is estimated at 3.8 million people alive who have been diagnosed with cancer in

France.

The three most commonly diagnosed cancers in France are female breast cancer (15.3%),

male prostate cancer (13.2%), and lung cancer (8.1%), and the ones leading to the most deaths are

the lung cancer (21%), colorectal cancer (10.9%) and female breast cancer (7.7%), in 2018 (The

French National Cancer Institute (INCa) website; Panorama des cancers en France, 2021).

With 58,500 new cases and 12,100 deaths in France in 2018, the breast cancer is also the
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FIGURE 1 MAPS OF INCIDENCE AND MORTALITY RATES FOR ALL CANCERS IN 2020. A. Map of estimated

incidence rates in 2020, for all cancers, both sexes, and all ages (ASR = age-standardized rate). B. Map

of estimated mortality rates in 2020, for all cancers, both sexes, and all ages (ASR = age-standardized rate).

Graph and data from GLOBOSCAN 2020, international agency for research on cancer (IARC), world health

organization (WHO), available at the Cancer Today - Global Cancer Observatory website.
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FIGURE 2 ESTIMATED NEW CASES AND DEATHS BY CANCER SITES IN 2020. A. Estimated number of new

cases (incidence) in 2020, worldwide, for both sexes and all ages. B. Estimated number of deaths (mortality)

in 2020, worldwide, for both sexes and all ages. Graph and data from GLOBOSCAN 2020, IARC, WHO,

available at the Cancer Today - Global Cancer Observatory website.
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most diagnosed cancer (15.3% for both sexes, 33% for women) and the first cause of cancer mortality

for women (17.8%) in France (The French National Cancer Institute (INCa) website; Panorama des

cancers en France, 2021). Further details, specific to breast cancer, are given in chapter 3 “Breast

cancer and breast cancer stem cells” at page 87.

1.1.2 THERAPIES AGAINST CANCER

Several therapeutic protocols exist to treat different types of cancers, including chemotherapy,

radiation therapy (or radiotherapy), surgery, immunotherapy, targeted therapy, and hormone therapy

(National Cancer Institute (US) website). These treatments can be used in combination to be as

effective as possible. The neoadjuvant therapy is the one administrated before the main treatment,

intending to reduce the tumor size beforehand to maximize the main therapy’s effectiveness. The

main treatment is therefore called adjuvant therapy. The choice of treatments depends on the cancer

site and specific biomarkers found in the cancer cells. Here is presented a brief overview of ther-

apy principles, with a focus on radiotherapy. Details on therapies used to treat breast cancers are

presented in section 3.2.5 “Therapies” at page 99.

RADIOTHERAPY

Radiation therapy, or radiotherapy, is a local treatment using ionizing radiations as a physical

agent to destroy cancer cells. The radiation used is called ionizing because it induces the formation of

ions (electrically charged particles) by detaching orbital electrons from atoms. Ionizing radiations can

have an electromagnetic form, such as high-energy photons, or a particulate form, such as electrons,

protons, neutrons, ions, or α particles. These particles have sufficient kinetic energy to ionize atoms

by collision as they penetrate matter (Dunne-Daly, 1999; Gieringer et al., 2011; Winiecki, 2020). Gray

(Gy) is the basic unit of radiation absorbed dose, corresponding to the amount of energy absorbed

per unit mass.

Brachytherapy (also known as internal radiotherapy or Curiethérapie) and radioimmunother-

apy utilize radionuclides (radioisotopes) as source of radiation in the form of α (two protons and two

neutrons) particles and β particles (positrons or electrons) or γ-rays. In brachytherapy, the thera-

peutic radionuclides is place on the skin surface (superficial) or is injected into the body (intracavitary,

intraluminal, intravascular or interstitial) to be directly in contact with the tumor, therefore reducing nor-

mal tissue exposure to radiations (Chargari et al., 2019; Tanderup et al., 2017). Radioimmunother-

apy uses radiolabeled antibodies consisting of an antibody specific to a tumor-associated antigen

coupled with a radionuclide, to deliver the ionizing radiation to the target cancer cells (Larson et al.,

2015; Pouget et al., 2011).

External beam radiotherapy (EBRT) is the most common form of radiotherapy, it utilizes

beams of particles such as protons, neutrons, or electrons created by linear accelerators (linac),

producing high-energy photons known as X-rays, that are directed at the tumour from outside the
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body. Hence, different types of external beam radiotherapy exist, including electron beam therapy

(electron beams) and proton therapy (proton beams) (Gieringer et al., 2011; Hawley, 2013; Winiecki,

2020).

Fractionation is the administration of repeated daily low doses of radiation over an extended

period of time within a course of treatment, so that a high dose is given to the tumor, while ideally

sparing normal tissue. A fractionated treatment is biologically less effective than a single radiation

dose but minimize the damage applied to normal surrounding tissues (Falk, 2009; Hogle, 2006).

The biologic effects of fractionated radiation therapy on a tissue, either normal or malignant,

relies on four principles, known as the four “Rs” of radiobiology (Falk, 2009; Hogle, 2006; Pajonk

et al., 2010; Withers, 1975):

• Repair (or recovery): the sublethal damage applied to cells is repaired depending on the cell type

and radiation dose-rate.

• Redistribution (or reassortment): cells have different sensitivity to radiations depending on their

cell cycle phase. Maximum effect from radiation occur just before and during cell division (G2

and M phases). Thus, the surviving tumoral population after radiation exposure is non-uniformly

distributed through the cell cycle and reach the mitotic phase as the next dose is given, which

increases the treatment effectiveness.

• Repopulation (or regeneration): cells respond to depopulation by regeneration through cell divi-

sions between fractions, but the repopulation rate differ between normal and cancer cells. Normal

cells can go through cell division to repopulate the tissue and prevent further damage, while tu-

mor cells accumulate radiation effects and the one that succeeded in that succeeded in dividing

within the course of the treatment are usually incapable of surviving. Fractionation reduces normal

tissue damage while optimizing the killing of tumor cells.

• Reoxygenation: as well-oxygenated cells are more radiosensitive than cells in a low oxygen

environment (hypoxia) as within the tumor mass, the fractionated treatment allows the tumor to

shrink, causing cells to become more oxygenated and thus less radioresistant.

Additionally, the intrinsic radiosensivity of cells as well as the reactivation of anti-tumor immune re-

sponse also modulate the biological effect of radiotherapy (Boustani et al., 2019).

After penetrating the tissue, radiations begin to ionize surrounding molecules, destroying them

by breaking down chemical bounds between atoms.

Radiations generate reactive oxygen species (ROS) (superoxide anion O –
2 , hydroxyl radi-

cals OH and hydrogen peroxide H2O2) by the radiolysis of water from the microenvironment and they

are highly reactive entities toxic for cells. Moreover, radiations induce the production of endogenous

ROS in mitochondria. Excessive intracellular ROS levels disrupt the redox system balance caus-

ing oxidative stress by reacting with biological molecules (proteins, lipids, nucleic acids) (Kim et al.,

2019b; Renschler, 2004).
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The DNA molecules are damaged by direct ionization or by the oxidative stress caused by

ROS levels increase, inducing base oxidation, apurinic or apyrimidinic sites, single-strand breaks and

double-strand breaks. So, in response to radiations, DNA damage repair mechanisms are activated

to maintain DNA fidelity and the cell cycle is arrested to allow time for repair. Errors in the DNA repair

lead to accumulation of mutations, while persistence of too much DNA damage induces cell death

mechanisms such as apoptosis or mitotic catastrophe. Cells can also enter into a senescent state,

corresponding to a stable irreversible state outside of the cell cycle (G0 phase) (Baskar et al., 2012;

Kim et al., 2019b).

In addition, the radiation treatment have non-targeted effects on unirradiated cells, in-

cluding genomic instability perpetuation in the descendants of irradiated cells, bystander effects (re-

gional effects, e.g. release of signaling molecules or extracellular vesicles affecting unirradiated cells)

and abscopal effects (distant effects, e.g. radiation-induced immune response affecting unirradiated

metastases) (Bright and Kadhim, 2018; Wang et al., 2015a).

OTHER THERAPIES

Chemotherapy is the use of drugs as a systemic treatment to kill cancer cells based on their

highly proliferative phenotype. This way, chemotherapy aims to slow or stop tumor growth to reduce

its size and associated symptoms. Several types of cytotoxic agents exist, targeting various pro-

cesses associated with cell cycle checkpoints, DNA replication, and DNA damage, to prevent cell

division and ultimately result in cell death by apoptosis. As examples: anti-metabolites are structural

analogs of purines or pyrimidines and interfere with the biosynthesis of nucleic acids by substituting

for normal bases; alkylating agents induce the alkylation of DNA bases and thereby damage the

DNA; cross-linking agents bind covalently between two strands of DNA to create DNA cross-linking,

impairing processes such as replication or transcription; anti-tubulin agents impair the mitotic spindle

formation and block cell division; and topoisomerase inhibitors suppress the topoisomerase activity

that loosens the DNA supercoiling during replication and transcription and thus, impair these essen-

tial processes (Nussbaumer et al., 2011; Parnell and Woll, 2005). As chemotherapeutic drugs are

toxic to all dividing cells present in the organism, it causes side effects (e.g. hair loss, digestive sys-

tem disregulation) as this toxicity impacts normal cells as well, and it is, therefore, a major limit to

the use of these drugs. Hence, the balance between high efficiency and reduced toxicity is found by

modulating protocols, by adding recovery periods for instance.

Surgery, or resection, consists in removing the tumor or a part of it from the body by a surgical

procedure. Immunotherapy aims to assist the immune system in the anti-tumor response, to over-

come cancer cells immunosuppressive capacities. Targeted therapy consists in targeting specific

proteins or molecular pathways that are necessary for tumor growth by using specific inhibitors such

as small-molecule drugs or antibodies for example. Hormone therapy is used on cancers depending

on hormones to grow, such as prostate or breast cancer. It aims to slow tumor growth by blocking
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hormone-associated mechanisms or pathways.

1.1.3 RESISTANCE TO THERAPIES

The major limitation to therapy effectiveness is the cancer resistance to treatment. The resis-

tance to therapy can be defined as a therapeutic failure, it happens when the cancer is no longer

responding to the therapy and the tumor starts to grow again. Consequently, it causes the recur-

rence of tumors and ultimately, relapse or death. As the incidence of cancers increases, it raises the

necessity to continuously improve treatments to fight against cancer (Hanahan and Weinberg, 2000;

Longley and Johnston, 2005; Sporn, 1996).

A cancer therapy includes three factors: the therapy, the targeted cancer cell population, and

the host environment. Therefore, the therapeutic resistance results from a combination of factors,

at several levels, varying over time. Therapeutic resistance is not only limited to the intrinsic

and acquired duality of resistance properties at the tumor cell and tumor microenvironment levels as

often described (Alfarouk et al., 2015; Vasan et al., 2019). The intrinsic resistance refers to the innate

capacities of the tumor to resist a treatment before the therapy. The acquired resistance describes

the gradual acquisition by the tumor of new ways to resist the therapy, resulting in a gradual reduction

of the therapy effectiveness (Wang et al., 2019b). Hence, the resistance is multi-level and multi-

factorial as it is the result of several overlapping factors including, the pharmacological properties of

the therapy, intrinsic and acquired resistant phenotypes of cancer cells, and extrinsic environmental

factors (Alfarouk et al., 2015). Accordingly, the cancer resistance to therapy is not only a matter of

cellular resistant phenotypes. All of the tumor cells do not have to be qualified as resistant for the

tumor to resist therapy and start regrowing, only the survival and expansion of some resistant cells

may be responsible for it, in a particular environment and with specific treatment properties. Here is

presented an overview of resistance to therapies occurring at different levels.

First, for systemic treatments using drugs, such as chemotherapy or targeted therapy, at the

macroscopic level or systemic level, the pharmacokinetics: absorption, distribution, metabolism,

and excretion (ADME) of the drug by the organism, are involved in the resistance as these parameters

impact the effectiveness of the drug to reach tumor cells, reduce their proliferation and kill them (Izar

et al., 2013; O’Connor, 2007).

Additionally, at a mesoscopic level or regional level, the tumor-host interactions and the

physics of the tumor site have also a role in drug resistance. The vascular morphology and the

intratumoral blood flow have a direct consequence on the drug intratumoral delivery and the potential

stagnation sites of drugs (Alfarouk et al., 2015; Minchinton and Tannock, 2006; Salnikov et al., 2003).

And, by alteration of the intratumoral blood flow, cancer cells can reduce their exposure to drugs

to create a favorable hypoxic environment (low oxygen levels) for their proliferation (Minchinton and

Tannock, 2006; Vasan et al., 2019). Also, the drug will not reach the tumor population when this one is

located in specific protected areas, such as the central nervous system protected by the blood-brain
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barrier (Osswald et al., 2016; Puhalla et al., 2015). In the case of radiotherapy treatment, the radiation

of cancer cells, as well as non-cancer cells, affects intercellular communication, immune system’s

anti-tumoral activities, and thereby the tumor microenvironment. The radiation treatment triggers the

relapse of extracellular factors, which has immunosuppressive effects, by suppressing immune cell

activation for example, and pro-tumorigenic effects, through the enhancement of DNA repair capacity

for example (Ashrafizadeh et al., 2020). Immune cells within the tumor microenvironment, such as

tumor-associated macrophages (TAMs) or regulatory T cells (Tregs), are also particularly affecting

the response to immunotherapy treatments. For example, the loss of T cell function or the diminution

of T cell recognition are mechanisms that can lead to acquired resistance to immunotherapeutic

drugs (Sharma et al., 2017).

Lastly, at the microscopic level or local level, resistance to therapy comes from the tumor

cells themselves, through innate or acquired properties. These resistance properties are thereby

caused by cellular level changes, differing from normal cells, but also differing among the cancer

cells, resulting in a heterogeneous population in terms of therapy response. Indeed, tumor cells

have differences in cellular morphologies, gene expression, signaling pathway activities, epigenetic

patterns, motility, metabolism, proliferation, and metastatic potential, as a result of genetic variations

and environmental factors (Dagogo-Jack and Shaw, 2018; Haider et al., 2020). The genetic variety

is due to genomic instability, meaning an increased mutation rate, and chromosomal instability and

rearrangements, meaning the gain or loss of the whole chromosome (aneuploidy) or structural aber-

rations. Genomic instability is mainly caused by a high division rate with DNA replication defects and

important DNA damage with impaired repair mechanisms (Lengauer et al., 1998; Sansregret et al.,

2018; Stephens et al., 2011). This instability gives rise to gene mutations and gene amplification

affecting the cell phenotype, which varies among the tumor population.

By conferring advantages regarding survival and proliferation, some genomic alterations are

selectively preserved and lead to the expansion of specific competitive clones (McGranahan and

Swanton, 2017). This evolution model is called the clonal evolution model of tumor cell populations

and was first described by Nowell (1976). As therapies induce genomic instability in cancer cells,

they enhance the selection of clones with resistant properties. Thereby, under selective therapeutic

pressure can emerge new adaptive responses in tumor cells driving toward resistance (Vasan et al.,

2019).

1.1.4 CANCER STEM CELLS DRIVING THE CANCER RESISTANCE

Within the tumor heterogeneity, one particular subpopulation has been described and char-

acterized as a major contributor to cancer resistance: the so called cancer stem cells (CSCs). This

subpopulation have been reported to contribute to therapeutic resistance in several cancer models,

such as leukemia (Viale et al., 2009), glioblastoma (Eramo et al., 2006), pancreatic cancer (Her-

mann et al., 2007) and breast cancer (Chuthapisith et al., 2010). The concept of CSC will be further
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developed within the next sections.

Interestingly, the pre-existent CSCs, by having higher resistance properties, are selected upon

treatment. Due to their intrinsic properties (tumor initiation, self-renewal abilities and differentiation

potential), CSCs can give rise to an heterogeneous population of cancer cells (Najafi et al., 2018).

This CSC-driven tumor progression contributes to therapeutic failure and cancer relapse (Frank et

al., 2010; Phi et al., 2018). Indeed, many studies have reported that a high proportion of CSCs is

correlated with poor prognosis (Ginestier et al., 2007; Mertins, 2014).

Altogether, it raises the necessity to target both the tumor bulk and the CSC population to

reduce the tumor resistance and disease progression in patients. Therefore, finding new therapeutic

solutions to target CSCs is now a major challenge in the field of cancer resistance research.

[ KEY POINTS

å Cancers represent 19.3 million new cases and 10 million death in 2020 worldwide. Sev-
eral therapies exist to treat cancers, such as surgery, chemotherapy, radiotherapy, and
immunotherapy.

å The major limitation to therapy effectiveness is resistance to treatments. It drives therapeu-
tic failure as tumor cells no longer responds to the treatment and starts to progress again.
The mortality caused by cancer is widely attributed to the therapeutic resistance and to the
formation of new tumors in distant sites.

å A response to therapy depend on three compounds: the therapy, the cancer cells, and
the host environment. Thereby, the therapeutic resistance is the result of several factors
including, the pharmacological properties of the therapy, intrinsic and acquired phenotypes
of cancer cells, and extrinsic environmental factors, operating at several levels, systemic,
regional, and local levels.

å A subpopulation of cells, cancer stem cells, drives the cancer resistance to therapies.
By having more efficient resistance mechanisms, differentiation, and self-renewal abilities,
these cells can regenerate the bulk of cancer cells and regrow the tumor upon treatment.
Hence, it raises the necessity to study them to find new insights and new therapeutic solu-
tions to fight against cancer resistance.

� Back to Table of Contents

1.2 TUMOR DEVELOPMENT MODELS

1.2.1 STOCHASTIC (CLONAL EVOLUTION) MODEL

Historically, the tumor development was described as following a clonal evolution model, or

stochastic model, in which the tumor cell heterogeneity is explained by various clones originating

from a succession of different mutations or epigenetic alterations (Figure 3) (Nowell, 1976; Rich,

2016; Torres et al., 2007). This evolution model follows a Darwinian process, whereby the clones

having a selective advantage becomes dominant ones, participating in the tumor progression. The

resistance to treatments is therefore explained by the selection of the more resistant clones under
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Heterogeneous tumor

Stochastic model Hierarchical model Plasticity model
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FIGURE 3 REPRESENTATION OF THE THREE DEVELOPMENT MODELS. The stochastic model (or clonal

evolution model) postulates that genomic or epigenetic alterations lead to tumor formation as clones are equipo-

tent, they all possess the tumorigenic potential to initiate the tumor formation and are responsible for its het-

erogeneity. The hierarchical model (or CSC model) postulates that a subpopulation called cancer stem

cell (CSC) holds alone the potential for tumor initiation and regeneration of a heterogeneous tumor population,

through self-renewal and differentiation. The plasticity model postulates expand the hierarchical/CSC model

by postulating that cancer cells lacking tumorigenic potential can dedifferentiate into CSC and acquire the asso-

ciated stem-like properties. Figure adapted from Dick (2008); Fulawka et al. (2014); Gimple et al. (2019); Rich

(2016); Thomas et al. (2019).

the therapeutic pressure. In this model, all the cells are equipotent, meaning all of them to have the

potential to regenerate a tumor.

1.2.2 HIERARCHICAL (CSC) MODEL

The hierarchical model, or CSC model, proposes a hierarchic organization of tumor cells, with

the CSC population at the top, similarly to the normal tissue organization (Figure 3) (Bonnet and

Dick, 1997; Rich, 2016). As this population is able to self-renew and differentiate to regenerate an

heterogeneous population of cancer cells, these cells are therefore considered responsible for tumor

progression and heterogeneity. Indeed, the CSCs alone can regenerate the entire tumor with all

of primary tumor diversity (Al-Hajj et al., 2003; Dick, 2008). Thereby, coupled with their intrinsic

resistance mechanisms, these cells are designated as a major cause of resistance to therapies and

metastasis formation (Bandhavkar, 2016; Najafi et al., 2019).

The stochastic and hierarchical models are not mutually exclusive, both could co-exist within

the tumor and explain its heterogeneity, especially since CSCs can be seen as a mix of clones
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whereby the clonal selection can be applied (Shipitsin and Polyak, 2008).

1.2.3 PLASTICITY MODEL

The plasticity model extends the CSC model, by adding a reversibility of the stem-like state

(Figure 3) (Michor and Polyak, 2010; Plaks et al., 2015; Rich, 2016). Indeed, it has been described

that differentiated cancer cells, or cancer non-stem cells (non-CSCs), can reacquire stem cells prop-

erties in several cancer models (Chaffer et al., 2011; Debeb et al., 2012; Lagadec et al., 2012;

Schwitalla et al., 2013; Yang et al., 2012). As cancer cells are more plastic than normal cells, this

model describes the CSC phenotype as a transitory state, comparable with the EMT process. In-

trinsic tumor factors or stimuli from the microenvironment can influence the shift between states of

cancer cells and induce the reacquisition of stem cell characteristics. The CSCs differentiate into

transit-amplifying cells, or progenitors (direct progeny of CSCs), mildly pluripotent, proliferative and

lacking self-renewal ability, that can revert to a CSC state (Aponte and Caicedo, 2017; Nassar and

Blanpain, 2016). The stemness hierarchy remains in this model as progenitor cells cannot regen-

erate the full tumor heterogeneity, but it is less rigid as cells can change state and move up in the

hierarchy towards CSCs, instead of just going down towards differentiation. Further explanations on

plasticity and dedifferentiation of cancer cells are given in chapter 2 “Plasticity and dedifferentiation

into cancer stem cells” at page 65.

1.2.4 UNIFIED MODEL

These three models are not exclusive but complementary as they all participate in increasing

the tumor diversity and they can be gathered in a unifying model, as proposed by Michor and Polyak

(2010) (Figure 4). Indeed, inside the CSC compartment, CSCs can evolve by acquiring additional

genetic mutations and can be clonally selected under environmental pressure, participating in cancer

progression and resistance to therapies.

The accumulation of mutations in CSCs are perpetuated due to their self-renewal ability and

transmitted through differentiation to transit-amplifying cells. These cells give rise to non-CSC that

are also subjected to genetic alteration events, but they cannot persist as they are not able to self-

renew unless they reacquire self-renewal abilities through dedifferentiation and rejoin the CSC pool

(Michor and Polyak, 2010). This model supports the theory of the CSC phenotype as a transient

state whereby accumulated mutations conferring a selective advantage persist and are spread in

more differentiated cells (Figure 4).

1.3 CONCEPT OF CANCER STEM CELLS

1.3.1 DISCOVERY AND DEFINITION

In adult tissues, normal stem cells (SCs) are responsible for tissue maintenance and regener-

ation, thanks to their self-renewal ability and capacity to differentiate into multiple cell lineage required
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Differentiated cell

FIGURE 4 UNIFIED MODEL OF TUMOR DEVELOPMENT AND DIVERSITY. This model proposes to combine

the three models of tumor development: stochastic (clonal evolution), hierarchical (CSC), and plasticity models.

The CSC pool accumulates genetic mutations, participating in increasing the diversity of tumor cells and in the

tumor progression. These mutations persist through the self-renewal of the CSC population and are transmitted

to transit-amplifying cells through differentiation. These cells become non-CSC cells and also accumulate muta-

tions that cannot persist unless the cell reacquires self-renewal abilities by rejoining the CSC population through

dedifferentiation. Figure adapted from Michor and Polyak (2010).

for a specific organ (Blanpain and Fuchs, 2014). This implies a hierarchical organization of tissues,

that has been particularly described in the hematopoietic tissue (Eaves, 2015). Based on this model,

Bonnet and Dick (1997) applied this concept to human acute myeloid leukemia (AML). They already

demonstrated that leukemia cells had different capacities to propagate leukemia when transplanted

into immunodeficient mice (Lapidot et al., 1994). They found that the leukemia-initiating fraction of

cancer cells possess specific cell surface markers, described as the CD34+/CD38- cells. This popu-

lation, called leukemia stem cells (LSCs), or CSCs, have similar properties of normal SCs. Indeed,

they express genes similar to those expressed by hematopoietic stem cells (HSCs), they are able

to self-renew and can regrow an heterogeneous cancer population by regeneration of different cell

lineages. It was thereby established that similarly to normal tissues, tumors can be organized in

a hierarchical model (Bonnet and Dick, 1997). Later on, the presence of CSCs was demonstrated

in several other cancer models, including breast cancer (Al-Hajj et al., 2003), glioma (Singh et al.,

2004), colorectal cancer (O’Brien et al., 2007) and pancreatic cancer (Li et al., 2007a).

By definition, cancer stem cells (CSCs) are cancer cells capable to produce more CSCs as

well as to differentiate into cancer cells, enabling the regeneration of an heterogeneous tumor. That’s

why CSCs are also called tumor-initiating cells (TICs) (Clarke et al., 2006b), which could be confusing
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regarding the cell of origin of the tumor.

1.3.2 ORIGIN OF CANCER STEM CELLS

As the CSCs are driving the tumor initiation and progression, it raises the question of their

origin at the point of tumor initiation. Two hypothesis remains, either the CSCs come from normal

differentiated cells or adult tissue SCs (Figure 5).

Stemness

Differentiated cell

Stem cell

Normal cells

Tumor cells

Proliferation

Cancer stem cell

Cancer cells

Progenitor cancer cell

Mutation accumulation 
leading to transformation

Progenitor cell

Self-renewal ability

Differentiation

Dedifferentiation

Heterogeneous tumor

FIGURE 5 THE ORIGIN OF CANCER STEM CELLS AT TUMOR INITIATION. Adult stem cells, progenitors, or

differentiated cells can be transformed by an accumulation of mutations and initiate the tumor development. For

progenitors and differentiated cells to be the cell of origin of the tumor, they must reacquire stemness properties

such as self-renewal through a dedifferentiation process, to generate the heterogeneity of tumor cells. The type

and aggressiveness of the tumor vary depending on the cell of origin. Figure adapted from Walcher et al. (2020).

First, it was hypothesized that CSCs were coming from the transformation of an adult SC,

in which oncogenes are overexpressed and tumor suppressors inactivated, promoting uncontrolled

growth of the cells, and initiating the tumor development (details in section 3.2.2 “Tumorigenesis” at

page 92) (Hanahan and Weinberg, 2011; Sutherland and Visvader, 2015). As the SCs already have

unlimited growth potential, only a few genetic changes would be required for their transformation,

giving a tumor-initiating cell with stemness properties (Walcher et al., 2020). However, studies have

demonstrated, by the lineage tracing of cancer cells, that tumors can also originate from differentiated

cells or progenitor cells (Blanpain, 2013; Mu et al., 2015; Oikawa, 2016; Perekatt et al., 2018).

The plasticity of transformed cells is enough for their dedifferentiation through the re-acquisition of

stemness characteristics, induced by the accumulation of mutations and/or environmental factors

(Figure 5). Additionally, it has been shown that the cell of origin influence the type, aggressiveness,

and prognosis of the tumor (details in section 3.2.4 “Heterogeneity and classifications” at page 94 for

breast cancer) (Blanpain, 2013; Visvader, 2011).
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1.3.3 STEMNESS PROPERTIES

The normal SCs possess several distinct characteristics, also called stemness properties,

which mainly consists in self-renewing while also generating differentiated cells. In cancers, by pos-

sessing self-renewal and differentiation abilities, CSCs are able to drive the growth of a heterogenous

tumor while maintaining their pool. Interestingly, this process happens during tumor progression, af-

ter treatments or while driving the formation of heterogeneous metastases at distant sites (Figure 6)

(Lytle et al., 2018).

Cancer stem cell

Progenitor cell

Symmetric division

Asymmetric division

Cancer stem cell

Cancer cells

Progenitor cell

Cancer stem cell

Primary tumor

Secondary tumor

A B

FIGURE 6 DEFINING FEATURES OF CANCER STEM CELLS. A. The self-renewal of CSCs is the ability to gen-

erate daughter cells with stemness characteristics. A CSC can undergo a symmetric division, giving two CSCs,

or an asymmetric division, giving one CSC and one progenitor cell without stemness features and committed to

a differentiation process. B. A CSC can regenerate a heterogeneous tumor population, which is possible due

to their self-renewal and generation of differentiated cells abilities. Figure adapted from Fulawka et al. (2014).

SELF-RENEWAL

Self-renewal is the ability for cells to proliferate while maintaining a pool of cells with the same

characteristics indefinitely. A cell division is described as symmetric when the cellular components

are equally distributed and two identical daughter cells are produced. It’s described as asymmetric

when cellular components are unequally distributed, giving two different daughter cells, one possess-

ing the same characteristics as the initial cell while the other is more differentiated (Figure 6A) (Fuchs

and Chen, 2013).

The self-renewal ability along with the asymmetrical cell division are key features of normal

stem cells for tissue homeostasis and regeneration over time (Urbán and Cheung, 2021). In tis-

sues, the self-renewal of stem cells is highly regulated, as self-renewal impairment weakens tissue

regeneration, while the over-activation of self-renewal can lead to cell transformation and tumor de-

velopment. Additionally, a fine balance between symmetric and asymmetric divisions, often spatially

regulated within the tissue, allow the maintenance of the stem cells pool (Fuchs and Chen, 2013).

Similar to normal stem cells, CSCs are capable of both symmetric and asymmetric division to
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perpetuate themselves within a fast growing tumor (Lytle et al., 2018; Schillert et al., 2013).

POTENTIALITY

The potentiality is the capacity of unspecialized cells to differentiate into specialized cells along

lineages. Different types of potentiality have been defined in normal stem cells depending on the

range of lineages a cell can differentiate into: totipotency, pluripotency, multipotency, bipotency, and

unipotency (Figure 7) (O’Connor and Crystal, 2006).

Totipotency Pluripotency Multipotency - Bipotency - Unipotency

Zygote Embryonic stem cells Somatic stem cells

FIGURE 7 POTENTIALITY OF NORMAL STEM CELLS. After fertilization, the diploid zygote cell is totipotent

and initiates a series of cell divisions to form the embryo. At the blastocyst stage, embryonic stem cells (ESCs)

derived the inner cell mass can differentiate into all cell types of the three primary germ layers, endoderm,

mesoderm, and ectoderm, they are pluripotent. In the fetus and later in the adult, the somatic stem cells (SSCs)

can differentiate into various cell types depending on their organ of origin, they are multipotent. When SSCs are

able to differentiate into two lineages or one lineage, they are called bipotent or unipotent, respectively. Figure

adapted from O’Connor and Crystal (2006).

First, the zygote formed after the fertilization is defined as totipotent as it corresponds to

the original cell that will create all cells of the organism. Then, embryonic stem cells (ESCs) are

pluripotent as they can differentiate into all cell types of the three primary germ layers, endoderm

(gastrointestinal tract, lungs), mesoderm (bones, muscles, blood), and ectoderm (epidermis, nervous

system). Finally, in the fetus and adult, the SSCs are more specialized and can differentiate into cell

types of the tissue in which they reside, that’s why they are called after their organ of residencies,

such as mammary stem cells (MaSCs) or hematopoietic stem cells (HSCs). These cells can be

either multipotent if they can differentiate into multiple lineages, bipotent if they can differentiate into
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two lineages, or unipotent if they can differentiate into only one lineage (O’Connor and Crystal, 2006).

The unipotency can be also associated with progenitors (direct daughter cells of stem cells) that are

not fully differentiated and can still differentiate further in one lineage (Rodrigues et al., 2019).

The potentiality of SSCs to differentiate into one or several lineages is essential for tissue

homeostasis and regeneration. As tissues present different regeneration needs, the proliferation rate

of stem cells depends on their tissue residency environment. In rapidly renewing tissues, such as

the skin or the intestine, most stem cells proliferate continuously whereas, in low turnover tissues,

such as muscles or the nervous system, stem cells are mostly in a quiescent state, meaning a non-

proliferative state that can be reversed upon appropriate stimuli (Urbán and Cheung, 2021). Hence,

not all SSCs are quiescent but quiescence is still a key feature of stem cells.

Similarly to SSCs, CSCs express pluripotency genes coding for transcription factors involved

in the maintenance of the stem cell state.

1.3.4 REGULATION OF STEMNESS

PLURIPOTENCY FACTORS

Several genes have been reported as essential for the maintenance of the pluripotent state

of normal stem cells, as well as in CSCs: octamer-binding transcription factor 4 (OCT4) (also

named pit-oct-unc class 5 homeobox 1 (POU5F1)), sex determining region Y-box (SOX) 2 and

NANOG are the three main ones (Boyer et al., 2005; Liu et al., 2013a).

These pluripotency-associated genes code for master transcription factors regulating numer-

ous gene programs, they are forming the core of the pluripotency gene regulatory network (PGRN),

a cascade of regulatory events that maintain the self-renewal ability, the pluripotency state, and pre-

vent the differentiation of the cell. The pluripotency factors act in complex, OCT4 and SOX2 form

heterodimers while NANOG form homodimers, that bind to specific DNA consensus sites and have

been found to co-occupy hundreds of potential regulatory elements in the genome, including other

pluripotency factors genes such as kruppel like factor 4 (KLF4) and LIN28 (Li and Belmonte, 2017; Li

and Belmonte, 2018). This OCT4–SOX2–NANOG occupancy has been found notably on enhancers

associated with the regulation of self-renewal and differentiation. In addition, the OCT4/SOX2 com-

plex also regulates the NANOG gene, which acts as a safeguard to repress the pro-differentiation

signals (Rodda et al., 2005). Other pluripotency factors, such as KLF4, C-MYC, and LIN28, have

also been reported to be involved in the maintenance of a pluripotent state.

In ESCs, OCT4, SOX2, and NANOG function as differentiation repressors of the three germ

layers (endoderm, mesoderm, ectoderm) lineages (Thomson et al., 2011). The artificial reexpression

of pluripotency factors leads to the reprogramming of somatic cells into an ES-like state by reestab-

lishing their pluripotent state, these cells are called induced pluripotent stem (iPS) cells (Takahashi

et al., 2007; Takahashi and Yamanaka, 2006; Theunissen et al., 2011; Yu et al., 2007b).
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In cancers, the overexpression of pluripotency factors is correlated with tumor aggressiveness

and serves as CSC markers (Ben-Porath et al., 2008; Chiou et al., 2010; Chiou et al., 2008).

SIGNALING PATHWAYS

A cross-talk of several signaling pathways, such as Wnt/β-catenin, Notch and Hedgehog

(Hh) pathways, regulates the self-renewal and the maintenance of pluripotency, participating in the

regulation of stemness by the microenvironment in both normal and cancer stem cells (Ajani et al.,

2015; Liu et al., 2013b; Matsui, 2016; Yang et al., 2020a).

The Wnt/β-catenin pathway can be conducted in two different ways, as a canonical pathway

operating, through the β-catenin, involved in cell fate determination or as a non-canonical pathway,

β-catenin independent, participating in cell movement and tissue polarity control. In absence of a

Wnt signal, the β-catenin binds the GSK3-AXIN-APC destruction complex, composed of glycogen

synthase kinase 3 (GSK3), Axin, and adenomatosis polyposis coli (APC), which leads to its ubiquiti-

nation and subsequent degradation by the proteasome. In presence of the Wnt signal, Wnt ligands

bind to the Frizzled family receptors and LRP5/LRP6 co-receptors causing a cascade of signaling

interactions resulting in the disruption of the GSK3-AXIN-APC destruction complex. The β-catenin

molecules translocate and accumulate into the nucleus, where they form a complex with T cell fac-

tor/lymphoid enhancer factor (TCF/LEF) family transcription factors and co-activators, leading to the

transcription of target genes (Katoh and Katoh, 2007; Pohl et al., 2017). Hence, the Wnt/β-catenin

pathway contributes to stem cell maintenance, embryonic development, and tissue homeostasis (Mo-

hammed et al., 2016).

In cancer, the Wnt signaling has been associated with tumorigenesis, tumor progression, and

therapy resistance, its over-activation is correlated with a poor prognosis and increased recurrence

(Holland et al., 2013; Katoh, 2017; Mohammed et al., 2016; Yang et al., 2015). Its activation promotes

the self-renewal capacity of CSCs, in several cancer models such as leukemia and prostate cancer

(Bisson and Prowse, 2009; Kawaguchi-Ihara et al., 2008). It was also reported that Wnt signals

orient the asymmetric division of CSCs by maintaining the stem-like state of one daughter cell while

the other acquires differentiation features (Habib et al., 2013)

The Notch pathway depends on physical interactions between adjacent cells to be activated.

The ligand binding to the Notch receptor triggers the cleavage of the Notch extracellular domain

(NECD) and the transmembrane domain, releasing the Notch intracellular domain (NICD). This NICD

domain translocates to the nucleus and forms a transcriptional complex with DNA binding proteins

and co-activators to induce the transcription of Notch target genes (Hori et al., 2013). The Notch

pathway contributes to the cell fate determination of normal stem cells during the development by

maintaining a balance between pluripotency and differentiation (Bigas and Porcheri, 2018). In cancer,

the Notch pathway is activated in CSCs and participates in the disease progression and resistance

to treatments (Bolós et al., 2008; Giuli et al., 2021). In breast cancer, the radiotherapy treatment
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induces the Notch signaling activation and the enrichment in CSCs (Lagadec et al., 2013).

The Hedgehog (Hh) pathway is activated when the Hh ligands bind the patched (PTC) -

smoothened (SMO) receptor complex, inducing a signaling cascade up to the activation of the glioma-

associated oncogene (GLI) family of transcription factors, to trigger the expression of Hh target genes.

Non-canonical signaling of Hh, ligation- and receptor-independent, have also been described (Car-

ballo et al., 2018). Target genes of the Hh signaling are involved in proliferation, differentiation, and

survival, and includes the NANOG gene (Coni et al., 2013). Thus, the Hh signaling regulates the

self-renewal and pluripotency of stem cells and is important for embryogenesis, tissue homeostasis,

and repair (Petrova and Joyner, 2014). In cancer, it also participates in the CSCs pool maintenance

and in their resistance to treatment (Clement et al., 2007; Liang et al., 2021; Tanaka et al., 2009).

Other signaling pathways implicated in the embryonic development and the tissue homeosta-

sis, such as the Janus-activated kinase (JAK) / signal transducer and activator of transcription

(STAT) 3 pathway or the tumor growth factor β (TGF-β) pathway, have also been reported to reg-

ulate stemness properties of CSCs by promoting their self-renewal (Jin, 2020; Sakaki-Yumoto et al.,

2013).

EPIGENETICS

Epigenetic mechanisms regulate the gene transcription within the cell, without altering the

DNA sequence but only by changing the accessibility of genetic loci to transcriptional machinery

through chromatin remodeling. Several types of epigenetic modifications are reported: nucleosome

remodeling, histone variants, histone post-translational modifications (PTMs), DNA methylation, and

non-coding RNAs.

Through these different mechanisms, the expression of genes linked to the CSC-associated

pathways (e.g. Wnt, Notch, Hh) and pluripotency factors (e.g. OCT4, SOX2, NANOG) is finely

regulated in both normal and cancer stem cells (Figure 8).

The nucleosomes are complexes of eight histone proteins: histones H2A, H2B, H3, and H4,

each in dimers. The DNA molecule wraps around the nucleosome (147 bp) to form the basic unit

of the chromatin (Clapier and Cairns, 2009). The accessibility of promoters to transcription factors

depends on the conformation and the presence or absence of nucleosomes. Chromatin remodeling

complexes, also called remodelers, can remove, slide, or restructure nucleosomes to modify the

target site exposition to the transcription machinery (Jiang and Pugh, 2009; Morgan et al., 2020).

These remodelers, such as the switch/sucrose non-fermenting (SWI/SNF) complex, participate in

the pluripotent state and self-renewal maintenance in ESCs and leukemia CSCs (Figure 8A) (Gao et

al., 2008; Shi et al., 2013).

Incorporation of histone variants within the nucleosome core, like macroH2A1, H2A.Z, or

H3.3, can also induce chromatin conformation changes by altering the structure and stability of nu-
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of CSCs supports the notion that a heterogeneous cancer arises from

a single cell atop a cellular hierarchy. This also suggests that cancer

arises from a cell with stem-like properties, as the cell-of-origin would

require the asymmetric division to initiate and maintain tumour

growth. Furthermore, the existing properties and long lifespan of a

stem cell make it more likely than a differentiated cell to acquire a

tumourigenic phenotype.7 Recent evidence supports the premise that

cancer arises from the deregulation of existing stem cell populations.

In an organ-wide study, Zhu et al induced oncogenic mutations specif-

ically in CD133+ cells in the mouse. Tumours only arose in those

organs where CD133 was proven to have generative capacity, that is,

was an effective marker of a normal stem cell population (the liver,

small intestine and stomach but not brain, kidney or pancreas). Fur-

thermore, liver injury increased CD133+ cells and tumourigenic

potential after transformation, thus indicating environmental factors

can converge with genetic mutations to increase cancer incidence.8

Another study showed that deregulation of existing cell populations

preceded tumour formation in an inflammatory model of bowel can-

cer. Chronic inflammation disrupted homeostasis in the large intestine

so that the paneth cells de-differentiated to a stem-like population

from which tumours could arise.9 These two studies are both exam-

ples of cancer arising from stem cells, be that an existing stem cell

pool or one generated by extrinsic factors. CSC plasticity also persists

during tumour growth as both stem and nonstem-like populations are

capable of inter or intraconversion in response to extrinsic sig-

nals.10-12 This de novo generation of the CSC phenotype has obvious

implications for therapeutic strategies, however, the molecular mecha-

nisms involved are poorly understood. Creation of CSCs by definition

requires a reversible but heritable process (asymmetric division),

which strongly suggests a role for epigenetic regulation and there is

mounting evidence in support of this, not least the importance of epi-

genetics in induced pluripotency.

Epigenetics refers to a number of mechanisms that control the

reversible regulation of gene expression by changing the chromosome

without altering the DNA sequence: DNA can be altered epigeneti-

cally by methylation and demethylation of CpG nucleotides. Epige-

netic changes in the overall structure of chromatin occur through at

least three interrelated mechanisms: posttranslational modifications

of histones, ATP-dependent chromatin remodelling and the incorpora-

tion (or replacement) of specialised histone variants into chromatin.

Finally, noncoding RNA can interact with transcriptional processes to

alter gene expression. In addition to 2D processes, epigenetic regula-

tion can also involve higher-order chromatin organisation including

promoter-enhancer interactions, regulatory DNA loops and 3D chro-

matin localisation in the cell nucleus (Figure 1).

As these epigenetic mechanisms are important mediators of cel-

lular identity, we will explore how the restructuring of such epige-

netic barriers reinforces the stem-like state in both normal cells and

cancer, and their relevance to tumour initiation (Figure 2). Further-

more, we will discuss how the epigenetic regulation of CSCs opens

up novel opportunities for cancer detection and therapeutic

intervention.

F IGURE 1 Epigenetic regulation of
cancer stem cells. A variety of epigenetic
mechanisms have been implicated in the
generation of CSCs including changes in
(A) nucleosome remodelling and
associated complexes (eg, mutations in
SWI/SNF). B, Histone variant deposition
including higher H2A.Z and lower
macroH2A. C, Histone modifications, in
particular, bivalent histone marks
D. Hypomethylation mediated by TET
proteins E Altered expression of
noncoding RNAs for example, high Lin28,
low let-7 [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 8 EPIGENETIC REGULATION OF CANCER STEM CELLS. Several epigenetic mechanism regulate the

stemness-associated genes expression in CSCs. (A) Nucleosome remodelling and remodelers complexes.

(B) Changes in histone variant deposition. (C) Histone post-translational modification and histone modifiers.

(D) DNMT-mediated DNA methylation and TET-mediated DNA demethylation. (E) Changes in non-coding

RNAs expression levels. Figure from French and Pauklin (2021).

cleosomes. The mobility of the core histones and histone variants have been associated with stem

cell properties including pluripotency (Bošković et al., 2014; Santenard and Torres-Padilla, 2009;

Turinetto and Giachino, 2015). In CSCs, changes in histones variants macroH2A1 and H3.3 levels

have been linked to the maintenance of their self-renewal capacity (Figure 8B) (Gallo et al., 2015;

Park et al., 2016; Re et al., 2018).

Histone post-translational modifications, such as methylation or acetylation of lysine residues

at histones tails for example, affect gene expression by altering the chromatin state (euchromatin,

active state, and heterochromatin, repressive state) and the ability of protein complexes to bind to

target loci. For instance, the presence of histone H3 lysine 4 trimethylation (H3K4me3) at promoters

is generally correlated to gene transcription activation, while the histone H3 lysine 27 trimethyla-

tion (H3K27me3) and histone H2A lysine 119 monoubiquitination (H2AK119Ub1), established by the

polycomb repressive complex (PRC) 1 and 2, are associated with gene silencing. Distinct histone

modification landscapes are found between differentiated cells and ESCs, pluripotent cells present
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more euchromatin and less heterochromatin (Hawkins et al., 2010). Histone modifying enzymes,

acetylase, methylase, or demethylases, are therefore crucial for the regulation of pluripotency and

cell identity (Figure 8C) (Boland et al., 2014). The two repressive complexes PRC1 and PRC2 and

in particular their respective catalytic subunits BMI1 and enhancer of zeste homolog 2 (EZH2) are

required for pluripotency of both normal and cancer stem cells in several models (Cruz-Molina et al.,

2017; Liu et al., 2006b; Proctor et al., 2013; Vlerken et al., 2013; Wen et al., 2021).

DNA methylation participates to the regulation of genes programs associated with stemness

features (Figure 8D). Further details on DNA methylation principles can be found in chapter 4 “DNA

methylation: principles and methodology” at page 105. First, the promoter region of the NANOG

pluripotency factor genes have been found hypomethylated in CSCs (Wang et al., 2013c). Several

studies have reported a stem cell DNA methylation signature in CSCs (Helou et al., 2014; Lee et al.,

2015). Then, the up-regulation of DNA methyltransferases (DNMTs), responsible for establishment

and maintenance of DNA methylation, is correlated with increased tumorigenic capacities of CSCs

while demethylating agent treatment is correlated with a decrease of them (Liu et al., 2014; Tian et

al., 2012; Tsai et al., 2012). The treatment with DNMT inhibitors also leads to re-sensitization of

ovarian cancer cells to chemotherapy agents (Wang et al., 2014b). Lastly, the importance of TET-

mediated demethylation for the pluripotency state maintenance of ESCs and its establishment in iPS

cells was also reported (Costa et al., 2013; Gao et al., 2013; Olariu et al., 2016).

Finally, several long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs), have also

been reported to modulate pluripotency and self-renewal associated genes (Figure 8E). For instance,

the expression of the lncRNA H19 is correlated with the expression of OCT4 and SOX2 pluripotency

factors and with increased tumorigenic capacities of CSCs (Roy et al., 2015). Additionally, H19 along

with the let-7 miRNA family also regulates the LIN28 pluripotency factor expression, involved in the

promotion of CSCs symmetric division and thereby self-renewal (Albino et al., 2016; Lecerf et al.,

2020). Many other miRNAs have been described as involved in the regulation of CSCs stemness

characteristics, such as the miR-200, miR-21, miR-22, and miR-183 families (Shimono et al., 2015).

NICHE

CSCs reside in distinct regions within the tumor, called the CSCs niches, consisting in spe-

cialized environments that maintain their stemness properties while protecting them from therapeutic

agents and immune system (Plaks et al., 2015). This environment has specific physicochemical

properties and is composed of stromal cells, immune cells, endothelial cells all releasing extracellu-

lar matrix (ECM) molecules, inflammatory factors and growth factors.

Different key components are forming the CSC niche. First, CSCs can interact with stromal

cell through cell-to-cell communication (Melzer et al., 2017). Either by the release of extracellular

factors (e.g. cytokines such as interleukin (IL)-6 and IL-8 and growth factors such as the TGF-

β) for a paracrine action or by juxtacrine interactions (e.g. Notch receptor, Ephrin receptors), the
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stromal cells, such as cancer-associated fibroblasts (CAFs) or TAMs, can activate signaling pathways

associated to stemness (Essex et al., 2019; Lu et al., 2014a; Nair et al., 2017).

The spatial organization of the extracellular matrix (ECM) components (proteins, glycopro-

teins, proteoglycans, and polysaccharides) has a determinant role in the CSC niche. The ECM acts

as a physical barrier blocking drugs, provides anchorage for CSCs, and its remodeling by matrix

metalloproteinases facilitates the diffusion of extracellular factors and enhances stemness properties

(Lu et al., 2012). The anchorage provided by the ECM in the CSC niche is required for the mainte-

nance of cell polarity, regulating the symmetrical and asymmetrical divisions of CSCs, thus the ECM

is essential for the self-renewal and differentiation of stem cells (Yamashita and Fuller, 2008).

Another major feature of the CSC niche is its oxygen levels, determined by the tumor vascu-

larization. CSCs can reside both in a hypoxic region (reduced oxygen levels) promoting their survival

and self-renewal, or in a perivascular area, facilitating their dissemination through blood vessels

(Plaks et al., 2015). Hypoxia induces increased levels of the hypoxia-inducible factor (HIF) family

of transcription factors, and HIF-1α have been described as involved in the CSC pool maintenance,

enrichment, and resistance to therapies (Carnero and Lleonart, 2016; Rainho et al., 2021).

Altogether, the stemness properties of CSCs are the result of an interconnected regulation, in-

volving pluripotency transcription factors as master regulators, signaling pathways, epigenetic control

of the chromatin and microenvironment interactions.

[ KEY POINTS

å A cancer stem cell (CSC) is defined as a tumor initiating cell, capable of regenerating a
heterogeneous tumor, thanks to two main features: self-renewal capacity and pluripotency
(Figure 6 and Figure 7).

å The CSC at tumor initiation can originate from either the transformation a normal stem cell
that already possesses stemness features or from the transformation and dedifferentiation
of differentiated normal cell (Figure 5).

å A fine regulation of self-renewal and pluripotency is established in CSCs, and involved a
cross-talk of multi-levels mechanisms.

å The tumoral microenvironnment within the CSC niche, epigenetic mechanisms (Figure 8),
pluripotency-associated signaling pathways and pluripotency-associated transcription fac-
tors are altogether inter-operating the stemness properties of CSCs.

� Back to Table of Contents

1.4 RESISTANCE MECHANISMS OF CANCER STEM CELLS

Several interconnected mechanisms have been associated with CSC resistance to therapies,

especially to chemotherapy and radiotherapy (Figure 9) (Garcia-Mayea et al., 2019; Li et al., 2021;

Najafi et al., 2019; Prieto-Vila et al., 2017; Zhou et al., 2021).
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First, the previously described stemness features: self-renewal ability, associated signaling

pathway and transcription factors, as well as the CSC niche promotes the maintenance of CSC upon

treatments. For example, the Wnt/β-catenin pathway up-regulates the production of ATP-binding

cassette (ABC) transporters (Chau et al., 2013; Milosevic et al., 2020). These ABC transporters

(e.g. ABCB1, ABCG2, ABCB5) are drug efflux pumps responsible for the elimination of cytotoxic

agents including chemotherapeutic drugs and are highly expressed in CSCs (Begicevic and Falasca,

2017; DeGorter et al., 2012). Additionally, a protective autophagy machinery can be over-activated

in CSCs to minimize the cellular exposure to stress such as chemotherapeutic agents or radiotherapy

induced ROS (Nazio et al., 2019). CSCs can also present an increased aldehyde dehydrogenase

(ALDH) activity, which participates in the drug detoxification through the oxidation of aldehydes

to carboxylic acids, leading to the reduction of ROS levels and thus preventing ROS-induced DNA

damage (Raha et al., 2014; Zanoni et al., 2022). To decrease the oxidative stress due to intracel-

lular ROS levels, CSCs can increase the expression of antioxidant machinery components, such as

the superoxide dismutase or the glutathione reductase, in the different subcellular compartments to

scavenge ROS (Das and Roychoudhury, 2014). They generally possess enhanced DNA repair mech-

anisms to counterbalance the damage inflicted to DNA by ROS (Schulz et al., 2019; Skvortsov et al.,

2015). Moreover, some CSCs have the capacity to switch their metabolism, between glycolysis and

oxidative phosphorylation (OXPHOS), which participates in the modulation of the oxidative stress. As

the mitochondrial oxidative phosphorylation is an important source of ROS, the up-regulation of gly-

colysis coupled with OXPHOS decrease is called the Warburg effect and helps maintain the redox

(reduction-oxidation) balance upon treatments (Daniel et al., 2021; Movahed et al., 2019). In addition,

CSCs can be resistant to oxidative stress by being located within a hypoxic niche triggering high

levels of HIF factors and enhanced ROS detoxification mechanisms (Kabakov and Yakimova, 2021).

Furthermore, CSCs can have increased survival mechanisms, such as an efficient anti-apoptotic

system, an high telomerase activity and enhanced DNA damage repair mechanisms, such as the

base excision repair (BER) (Liu et al., 2006a; Makki et al., 2015; Skvortsov et al., 2015; Wesbuer et

al., 2010). Finally, as CSCs in a quiescent state have a reduced DNA replication velocity, and are

therefore less sensitive to replicative stress, induced by radiations or chemotherapy drugs, creating

DNA damage (Carruthers et al., 2018; Skvortsova et al., 2015).

1.5 THERAPEUTIC TARGETING OF CANCER STEM CELLS

1.5.1 CSC MARKERS

The first step to study CSCs and develop therapeutics against them is to properly discrimi-

nate them from the rest of the cancer cell population. To do so, specific markers have been found

expressed depending on the cancer model and cell lines. Additionally to the expression of the pluripo-

tency factors (e.g. OCT4, SOX2, NANOG, KLF4...), cell surface proteins, named cluster of differen-

tiation (CD), are widely used to identify CSCs. For example, the CD133+ cells and CD44+/CD24-

59



STATE OF THE ART

Drug export and 
detoxification

High expression of ABC 
transporters for drug efflux

High ALDH activity

Protective autophagy 
machinery

High survival

Efficient anti-apoptotic system

Enhanced DNA damage repair

High telomerase activity

Quiescence

Low division rate

Oxidative stress 
modulation

Decreased ROS levels

High ALDH activity

Metabolic plasticity
(OXPHOS  Glycolysis)

Stemness features

Signaling pathways 
(Wnt/β-catenin, Hedgehog)

Self-renewal

CSC niche

Hypoxia

Extracellular matrix and factors

Cancer-associated cells 
(CAFs, TAMs)

RESISTANCE 
TO 

THERAPIES

FIGURE 9 RESISTANCE MECHANISMS OF CANCER STEM CELLS. Numerous interdependent mechanisms

and actors are involved in the increased resistance of CSCs, such as stemness-associated signaling pathways,

hypoxic niche, drug efflux, increased survivability, oxidative stress control, or being in a quiescent state. ABC=

ATP-binding cassette; ALDH= aldehyde dehydrogenase; CAFs= cancer-associated fibroblasts; CSC= can-

cer stem cell; OXPHOS= oxidative phosphorylation; ROS= reactive oxygen species; TAMs= tumor-associated

macrophages.

cells have been characterized as the CSC population in glioblastoma and breast cancer respectively.

Other CSC-specific mechanisms such as high ALDH activity (ALDH+), high drug efflux (Hoechst side

population), or low proteasome activity (C-terminal degron of murine ornithine decarboxylase (cODC)

fusion protein) are also used in different cancer models, including breast cancer. As the use of one

marker is not sufficient to identify the CSC population, they need to be combined and confirmed with

functional tests such as sphere-forming capacity (SFC) tests to reveal their self-renewal capacities

or in vivo tumorigenicity tests to evaluate their tumorigenic potential. Detailed information about CSC

markers used in breast cancer are given in section 3.3.1 “Markers and isolation” at page 101.

1.5.2 STRATEGY

Innovative strategies have been designed, combining both conventional therapies with novel

therapies that do not aim to shrink the tumor but to eliminate the CSCs which are known to sus-

tain the long-term tumor growth (Figure 10A and B) (Batlle and Clevers, 2017; Eun et al., 2017).
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Thereby, new therapeutic agents are developed to radio-sensitize or chemo-sensitize tumors, by

targeting stemness regulators and other resistance mechanisms specific to CSCs, CSC-specific sig-

naling pathways, or the CSC microenvironment.

Conventional 
therapy

A

Reccurent tumor

Long-term remisssion

Tumor regrowth
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Conventional 
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+
CSC targeting 
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Tumor regression
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FIGURE 10 THERAPEUTIC STRATEGY MODELS. A. The conventional therapies are unable to eliminate

CSCs, which cause tumor regrowth and cancer relapse. B. A combined therapy, including a conventional

treatment and a targeted treatment against CSCs, is used to deplete specifically this population, leading to

tumor shrinkage and increasing the probability of a long-term remission. C. The major limitation of the previous

model is the plasticity of cancer cells and notably their capacity to dedifferentiate back into a CSC state.

1.5.3 APPROACHES

Many approaches to target CSCs have been considered. Among them, first, chemical- or

antibody-dependent inhibition of the Wnt/β-catenin, Notch, and Hedgehog signaling pathways is the

most direct one (Clara et al., 2020; Yang et al., 2020b).

For instance, the Notch pathways can be inhibited using γ-secretase inhibitors (GSIs). These

inhibitors are the oldest and largest class of agents that target Notch signaling by blocking the cleav-

age of the Notch intracellular domain (NICD). However, they generally cause off-tumor effects on the

gastrointestinal system, as they impair the proliferation of crypt progenitors and induce their differen-

tiation, and affect the generation of lymphocytes, yet they remain effective (Andersson and Lendahl,
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2014; Es et al., 2005). One of these inhibitors, the PF-03084014, is being tested in several clinical

trials, notably one on advanced-stage triple-negative breast cancer (TNBC) in combination with the

docetaxel chemotherapeutic agent (NCT01876251, phase I) (Locatelli et al., 2016).

As another example, smoothened (SMO) antagonists can be used as treatments to inhibit the

Hedgehog pathway. For instance, the glasdegib is actually in test on acute myeloid leukemia (AML)

(NCT01546038, Phase II and NCT03416179, Phase III) (Cortes et al., 2019; Cortes et al., 2018).

A multitude of other inhibitors have also been tested: inhibitors of epigenetic modifying drugs,

such as histone deacetylase (HDAC) inhibitors or DNMT inhibitors (Toh et al., 2017), inhibitors of

ABC transporters in combination with chemotherapeutic agents (Hou et al., 2013), inhibitors of the

ALDH activity in combination with chemotherapeutic agents or radiations (Kim et al., 2013a), or

even inhibitors of the DNA damage response in combination with radiotherapy, such as inhibitors of

checkpoint kinases 1 and 2 (Chk1 and Chk2) (Bao et al., 2006).

Another approach, called differentiation therapy, aims to induce the differentiation of CSCs

to be able to eliminate them in combination with conventional therapies. For example, the retinoic

acid, a derivative of vitamin A, binds to its receptor the retinoic acid receptor (RAR) which triggers its

transcriptional activity on differentiation genes. Its pharmaceutical form named all-trans retinoic acid

(ATRA) is being tested in several clinical trials on several cancer models (Jin et al., 2017; Thé, 2018)

Furthermore, immunotherapy approaches have also been developed, including the use of

antibody-drug conjugates (ADCs), bispecific antibodies, and chimeric antigen receptor T (CAR-T)

cells. First, the anti-CSC ADCs are specific antibodies targeting a CSC surface marker conjugated

with a cytotoxic drug, with an anti-mitotic activity or DNA damage-inducing capacity to specifically

eliminate CSCs (Chalouni and Doll, 2018; Marcucci et al., 2019). Then, immunotherapy using bis-

pecific T cell engager (BiTE) antibodies, antibodies recognizing two antigens, aims to facilitate the

action of immune cells against CSCs. Indeed, one antigen is a CSC marker (e.g. anti-CD133), to

target CSCs, and the other (e.g. anti-CD3) serves to recruit immune cells such as T cells (Dai et al.,

2021; Huang et al., 2013a). Lastly, CAR-T cells are T cells transfected with chimeric antigen receptor

targeting CSC-specific antigens (e.g. CD133, ALDH, CD44) to induce a T cell action directed against

CSCs (Alhabbab, 2020; Masoumi et al., 2021).

1.5.4 LIMITATIONS

Although these therapeutic approaches relying on CSCs depletion are promising, they come

with some limitations.

First, the tumor heterogeneity is applied to the CSC population as well. CSC markers are not

expressed at the same time by all CSCs, and the use of a single CSC marker is not sufficient to

properly segregate all CSCs from tumor cells (Eun et al., 2017; Huang et al., 2013b; Zheng et al.,

2018).
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Second, the CSC location in niches within the tumor is important for their sensitivity to drugs.

Different CSC states, as proliferative or quiescent, reside in different niches (perivascular or hypoxic

niches), making them differently exposed and thereby differently sensitive to the same drug (Marcucci

and Corti, 2012; Plaks et al., 2015).

Third, concerning the targeting of signaling pathways activated in CSCs, the abrogation of only

one of them could be insufficient as cross-talks and compensatory mechanisms have been described

(Jaeger et al., 2017; Sun et al., 2016).

Fourth, as CSCs and normal stem cells share the same stemness-related overexpressed

genes and overactivated pathways, in this case the CSC-specific therapies may also induce signif-

icant toxicity in normal tissue stem cells. The solution would be to find CSC-specific therapeutic

solutions that are not critical for their non-tumorigenic counterparts to lower the risk of side effects

(Diehn et al., 2009).

Last, as explained in section 1.2 “Tumor development models” at page 46, tumor cells are

plastic and non-CSCs can dedifferentiate into CSCs. Therefore, the depletion of CSCs within the

tumor might not be enough for a long-term tumor regression as new CSCs can arise from differ-

entiated cancer cells (Figure 10C) (Das et al., 2020; Gupta et al., 2019; Sanaa, 2022). Moreover,

the phenotypic plasticity and capacity of tumor cells to interconvert between a differentiated state

and a stem-like state represent a substantial difference compared to normal stem cells, which are

almost organized in a unidirectional model where differentiated cells generally cannot convert back

to a stem-like state, except when forcing the expression of pluripotent markers to process in vitro

reprogramming into iPS cells (Hanahan, 2022). Accordingly, targeting the cancer plasticity, es-

pecially dedifferentiation mechanisms, might be the key to overcoming the cancer resistance

to therapies and reducing the risk of cancer recurrence.
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[ KEY POINTS

å Numerous resistance mechanisms can be upregulated in CSCs, such as drug efflux, oxida-
tive stress modulation, protective autophagy, anti-apoptotic system, DNA damage repair, or
metabolic plasticity (Figure 9).

å As CSCs sustain the tumor’s long-term growth, therapeutic strategies have been devel-
oped to eliminate CSCs and sensitize the tumor to therapies, by combining a conventional
therapy with a CSC-specific therapy (Figure 10B).

å The CSC-specific therapies can target CSC-related markers, features, resistance mech-
anisms, or microenvironment using several approaches such as signaling pathways in-
hibitors, epigenetic modifying enzymes inhibitors, drug efflux pumps inhibitors, treatment
inducing CSC differentiation, or immunotherapy approaches (e.g. ADC, BiTE, CAR-T cells).

å Although these approaches are promising, the main limitation to the CSC-specific targeting
is their plasticity. Indeed, new CSC can arise from the dedifferentiation of bulk cancer
cells, which makes the CSCs complete depletion impossible and cause cancer recurrence
(Figure 10C). In addition, as one major difference compared to normal cells is the plasticity
of cancer cells and their capacity to interconvert between CSC and non-CSC states, the
dedifferentiation mechanisms involved should be cancer-specific. Accordingly, targeting the
dedifferentiation mechanisms might provide an even more effective therapeutic solution to
overcome cancer resistance.

� Back to Table of Contents
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2.1 PHENOTYPIC PLASTICITY

2.1.1 DEFINITIONS

The plasticity is the ability for a cell to reversibly assume different cellular phenotypes also

referred to as identities or states. These changes of phenotypes are carried out throughout repro-

gramming events. Consequently, the CSC plasticity is the ability to switch between the CSC and

non-CSC states.

Three types of reprogramming events can occur within the CSC plasticity: 1 differentia-

tion, from a pluripotent state towards a differentiated one, 2 dedifferentiation, from a differentiated

state towards a pluripotent one, also called reprogramming, and 3 transdifferentiation, from a

differentiated state in one lineage to another lineage, also called direct reprogramming (Figure 11)

(Eguizabal et al., 2013; Hanahan, 2022; Yamada et al., 2014).
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FIGURE 11 PLASTICITY AND REPROGRAMMING EVENTS. CSC= cancer stem cell; ESC= embronic stem

cell; iPSC= induced pluripotent stem cell; non-CSC= cancer non-stem cell; SSC= somatic stem cell.

(Granados et al., 2020; Hanahan, 2022; Yamada et al., 2014)

In normal cells, the reprogramming term is used to designate the resetting of epigenetic

marks during early embryogenesis and germ cell formation allowing the reexpression of gene pro-

grams associated with pluripotency, enabling the cell to acquire a stem cell phenotype (Xavier et al.,

2019; Zeng and Chen, 2019).

The artificial reprogramming to a pluripotent state was first discovered in vitro by forcing the

reexpression of the four transcription factors OCT4, SOX2, C-MYC, and KLF4 (Takahashi et al., 2007;

Takahashi and Yamanaka, 2006). In this context, the reprogrammed cells with stemness properties

are called induced pluripotent stem (iPS) cells.

Additionally, the direct reprogramming term has been used to describe the cell phenotype

conversion from one lineage into another, without undergoing an intermediate pluripotent state, also

called transdifferentiation (Wang et al., 2021).

The reprogramming toward pluripotency, or dedifferentiation, is an unusual event in normal

cells, which have been described mainly for tissue repair purposes, as they are unidirectionally or-

ganized toward terminal differentiation. In cancer, cells are more plastic as they are able to dediffer-
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entiate back to a stem state with pluripotency and self-renewal features enabling tumor growth. This

unlocking of phenotypic plasticity has been added to the hallmarks of cancer in 2022 by Hanahan, as

described in Figure 12, completing the established ones from 2000 and 2011 (Hanahan and Wein-

berg, 2000; Hanahan and Weinberg, 2011). Hanahan (2022) describes four reprogramming types of

events within this phenotypic plasticity: differentiation, dedifferentiation, blocked differentiation, and

transdifferentiation.

A

B

FIGURE 12 NEW ADDITION TO HALLMARKS OF CANCER: UNLOCKING PHENOTYPIC PLASTICITY. A. Hall-

marks of cancer. B. Unlocking phenotypic plasticity hallmark. Figure from Hanahan (2022)

In cancer cells, the dedifferentiation, also called reprogramming, retrodifferentiation, or

non-CSC-to-CSC conversion, is the reverse process of differentiation, in which the differentiated

cells (non-CSCs) with specialized functions become more undifferentiated and gain the self-renewal
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ability and a pluripotent state (CSCs) (Cabillic and Corlu, 2016; Marjanovic et al., 2013).

The transdifferentiation have been described in cancer cells as they can dynamically inter-

convert their phenotypes and exhibit different lineage characteristics, without going through a pluripo-

tent state in between (Yuan et al., 2019).

The blocked differentiation describes the incompletely differentiated progenitors, that cannot

go further in the differentiation to maintain a high proliferation (Hanahan, 2022).

2.1.2 CSC PLASTICITY AND EMT

The epithelial-to-mesenchymal transition (EMT) is defined as a reversible phenotypic switch

from an epithelial state to a mesenchymal state. The cancer cell loses its epithelial characteris-

tics, such as cell junctions and apical-basal polarity, and gains mesenchymal characteristics such

as an elongated morphology, migration, and invasion capacities. Thus, the cell can migrate through

surrounding tissues to blood vessels, disseminate and colonize a secondary site by forming a new

tumor, called metastasis, while undergoing the reverse process, the mesenchymal-to-epithelial tran-

sition (MET) (Kalluri and Weinberg, 2009; Yilmaz and Christofori, 2009).

The EMT is mediated by a set of EMT-inducing transcription factors (EMT-TFs) which are

divided into three main families of proteins, the Snail family transcriptional repressor (SNAI) family

(e.g. SNAI1 and SNAI2, also known as Snail and Slug), the zinc finger E-box binding homeobox

(ZEB) family (e.g. ZEB1 and ZEB2) and the Twist family BHLH transcription factor (TWIST) family

(e.g. TWIST1 and TWIST2) (Craene and Berx, 2013).

As both the EMT process and the CSC state involve phenotypic plasticity and are held respon-

sible for the metastatic process, they have been intricately linked (Polyak and Weinberg, 2009; Scheel

and Weinberg, 2012). Several studies have observed that cells undergoing EMT acquire stemness

properties (Mani et al., 2008; Masui et al., 2014; Morel et al., 2008; Rhim et al., 2012; Shuang et al.,

2014; Talati et al., 2015; Xie et al., 2011. For instance, in breast cancer cells, the induction of EMT,

by EMT-TFs or cytokines, led to increased tumorigenic properties and expression of CSC markers

(Mani et al., 2008; Morel et al., 2008; Xie et al., 2011). It has been described that ZEB1 promotes the

EMT as well as SOX2 and KLF4 pluripotency factors, and is required for stemness and tumorigenic

capacities (Krebs et al., 2017; Wellner et al., 2009). Hence, the activation of the EMT program is

associated with the acquisition of stem-like characteristics.

Although publications often depict the EMT program as the dedifferentiation of cancer cells,

where non-CSCs are associated with epithelial features (epithelial/non-CSC state) and CSCs with

mesenchymal features (mesenchymal/CSC state), the link between CSC plasticity and EMT is more

complex (Junk et al., 2013; Smigiel et al., 2017; Smigiel et al., 2018). In fact, during the EMT

process, in between the initial epithelial state and the terminal mesenchymal state, the cell undergoes

a variety of intermediate steps corresponding to hybrid epithelial/mesenchymal (E/M) phenotypes
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2020; Silva-Diz et al., 2018)

(Figure 13) (Gupta et al., 2019; Jolly et al., 2018). These hybrid cells that have undergone a partial

EMT exhibit stem cell properties, and are thereby less differentiated than those on either end of the

EMT spectrum (Bierie et al., 2017; Fanelli et al., 2020; Silva-Diz et al., 2018; Thankamony et al.,

2020). Pastushenko et al. (2018) demonstrate the presence of multiple EMT stages that constitute

different tumor subpopulations, with different transcriptional and epigenetic signatures, and different

invasiveness and metastatic capacities. Kröger et al. (2019) found that the tumorigenic capacity of

breast cancer cells was maintained by the hybrid E/M phenotype of the CD104+/CD44high cells, and

lost when they become highly mesenchymal. They identified the canonical Wnt signaling pathway

as a key mediator of this hybrid state, activated by the EMT-TFs, but replaced by the non-canonical

pathway when the cell acquires the ZEB1-driven mesenchymal phenotype (Kröger et al., 2019).

Consequently, multiple CSC states can exist within the EMT spectrum, characterized by epithelial

and mesenchymal features. Liu et al. (2013c) found epithelial-like breast CSCs, proliferative CSCs

with a high ALDH activity, and mesenchymal-like breast CSCs, relatively quiescent CSCs mediating

tumor invasion in blood vessels, and suggest that the CSCs can transit back-and-forth between those

states depending on tumor microenvironment signals (Liu et al., 2013c).

To conclude, the EMT program participates in the generation of CSCs, mediated by the tumor

microenvironment, especially upon treatment, thus it contributes to the CSC pool expansion and
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resistance to therapies. It is not clearly stated in the literature whether or not the EMT should be

considered as a dedifferentiation or transdifferentiation process. Furthermore, the acquisition and

loss of differentiated features during the EMT involve CSC plasticity mechanisms allowing the cell to

access different cellular identities by going through a hybrid E/M plastic intermediate CSC state in

between. Above all, this interconnection between the epithelial-mesenchymal plasticity and the CSC

plasticity supports the very dynamic and transitory change of states of cancer cells, which drives the

cancer development, metastasis formation, and resistance to therapies.

[ KEY POINTS

å The cancer stem cell (CSC) plasticity is the ability for a cell to switch between the CSC
and non-CSC phenotypes. Different phenotypic reprogramming events can occur: the dif-
ferentiation, the dedifferentiation (or reprogramming), and the transdifferentiation (or direct
reprogramming).

å The epithelial-to-mesenchymal transition (EMT) also involves a phenotypic plasticity as it is
characterized by a conversion from a epithelial phenotype to a mesenchymal one. During
the EMT process, the cell undergo a variety of intermediate steps, referred to as hybrid E/M
phenotypes.

å Interestingly, hybrid E/M cells are less differentiated than those on either end of the EMT
spectrum, as they exhibit stem cell properties. Combined with the CSC plasticity, it indicates
that multiple CSC states can exist within the EMT spectrum, and that the EMT process is
intricately linked with the emergence of cells presenting a CSC phenotype.

� Back to Table of Contents

2.2 INDUCTION OF DEDIFFERENTIATION

The dedifferentiation of non-CSC into CSC is a phenotypic switch from a differentiated state to

a stem-like state of cancer cells. This process leads to the de novo generation of CSCs, participating

in the CSC pool maintenance or expansion. It was demonstrated that the dedifferentiation events

occur spontaneously within the tumor, but can also be induced by several extrinsic or intrinsic factors,

especially following anti-cancerous treatments, in hypoxic areas of the tumor, or upon stimuli from

other cells within the tumor. The Table 1 lists studies reporting for the conversion of non-CSC into

CSC in different models, with different inducers.

To distinguish the dedifferentiation events from self-renewal of CSCs through cell division of

pre-existing ones, the key in dedifferentiation experiments is either to tag the CSC and non-CSC

to track phenotypic switches, or to deplete the population in CSCs beforehand, so the observed

proportion of CSCs can only come from the reprogramming of non-CSCs. Yet, one limit of this

experimental strategy resides in the difficulty to fully discriminate the CSC population as no CSC

marker alone is sufficient. In the case of fluorescence-activated cell sorting (FACS) sorting, the

purified non-CSC population might contain residual CSCs. However, the self-renewal of a few CSCs

wouldn’t be sufficient to explain the increased proportion of CSCs.
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TABLE 1 - First page

INDUCER TYPE OF
CANCER

EXPERIMENTAL
MODEL

CSC
MARKERS
USED

REGULATORY
MECHANISMS
UNCOVERED

REFERENCE

Spontaneous Breast cancer Transformed
human mammary
epithelial cells

CD44+ Chaffer et al.,
2011

Spontaneous Colon cancer
Breast cancer

SW620 cell line
MCF-7 cell line

CD133+

CD44+ CD24-
Yang et al.,
2012

Chemotherapy
(carboplatin)

Hepatocellular
carcinoma

HepG2 and Huh7
cell lines

Hoechst side
population

Hu et al.,
2012

Chemotherapy
(temozolomide)

Glioblastoma Cell lines : U251,
U87, A172
PDX lines :
GBM43, GBM6,
GBM26

CD133+

CD15+
Hypoxia
involvement

Auffinger et
al., 2014

Chemotherapy
(temozolomide)

Glioblastoma Cell lines : U251
and U87
PDX lines :
GBM43 and
GBM6

CD133+

SOX2-p-RFP+

OCT4-p-RFP+

NANOG-p-
RFP+

HIF-1α and HIF-
2α involvement

Lee et al.,
2016a

Chemotherapy
(5-fluorouracil,
doxorubicin, cy-
clophosphamide)

Breast cancer Patient tumors
and MCF-7 cell
line

CD44+ CD24- NF-κB-dependent
IL6 inflammatory
feedback loop
activation

Saha et al.,
2016

Radiotherapy
(2, 4 Gy)

Hepatocellular
carcinoma

HepG2 and Huh7
cell lines

Hoechst side
population

SOX2 and OCT4
requirement

Ghisolfi et al.,
2012

Radiotherapy
(4, 8 Gy)

Breast cancer SUM159PT,
MCF-7 and T47D
cell lines

ALDH+ CD44+

CD24- and low
proteasome
activity

Re-expression of
OCT4, SOX2,
NANOG, and
KLF4, Notch
signaling
activation

Lagadec et
al., 2012

Radiotherapy
(fractionated
3.75 Gy/day × 5
days)

Breast cancer MDA-MB-231,
SUM149,
UACC-812 and
4T1 (mouse) cell
lines

ALDH+ NF-κB signaling
activation

Wang et al.,
2014a

Radiotherapy
(8 Gy)

Breast cancer SUM159PT and
MDA-MB-231 cell
lines

ALDH+ IL6-JAK2-STAT3
signaling
activation

Arnold et al.,
2020b

Radiotherapy
(8 Gy)

Glioblastoma Primary human
glioblastoma cell
lines and PDX

Low
proteasome
activity

Akt signaling
activation

Bhat et al.,
2020

Radiotherapy
(2, 4, 8, 10, and
20 Gy)

Pancreatic
cancer

PaTu8988 cell
line, tumor
specimens and
PDX

CD133+ HMGB1-TLR2
interaction
regulating the
YAP/HIF-
1α signaling

Zhang et al.,
2019

HDAC inhibitors
(Valproic acid)

Breast cancer SUM159PT and
MDA-MB-231 cell
lines

ALDH+ Wnt/β-catenin
signaling
activation

Debeb et al.,
2012
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TABLE 1 - Second page

INDUCER TYPE OF
CANCER

EXPERIMENTAL
MODEL

CSC
MARKERS
USED

REGULATORY
MECHANISMS
UNCOVERED

REFERENCE

Hypoxia Glioblastoma T4121 cell line,
brain tumor
patient specimens
and human
glioblastoma
xenografts

CD133+ HIF-
2α involvement

Heddleston
et al., 2009

Hypoxia Pancreatic
cancer

Panc-1 and
BxPC-3 cell lines

CD133+ HIF-
1α involvement

Zhu et al.,
2013

Hypoxia Glioblastoma
Hepatocellular
carcinoma
Lung cancer

GL261 cell line
HepG2 cell line
A549 cell line

CD133+

CD15+

NESTIN+

Wang et al.,
2017d

Hypoxia Glioblastoma GL261 and U87
cell lines

CD133+

CD15+

NESTIN+

HIF-
1α involvement

Wang et al.,
2017c

Fibroblast-
derived
extracellular
vesicles coupled
with
chemotherapy
(5-fluorouracil or
oxaliplatin)

Colorectal
cancer

HT-29 and SW620
cell lines

CD133+

ALDH+
Fibroblast-
secreted
exosomal Wnts
activate
Wnt/β-catenin
signaling

Hu et al.,
2019b

CSC-derived
exosomes

Glioblastoma WJ1, WJ2, U251
and U87 cell lines

WJ2
glioblastoma
CSC cell line

Sun et al.,
2020

TABLE 1 MAIN STUDIES REPORTING THE DEDIFFERENTIATION OF NON-CSCS INTO CSCS. ALDH= alde-

hyde dehydrogenase; CAF= cancer-associated fibroblast; CD= cluster of differentiation; Gy= Gray;

HDAC= histone deacetylase; HIF= hypoxia-inducible factor; HMGB1= high-mobility group box 1; IL6=

interleukin 6; JAK2= Janus-activated kinase 2; OCT4= octamer-binding transcription factor 4; PDX=

patient-derived xenograft; SOX2= sex determining region Y-box 2, STAT3= signal transducer and activator

of transcription 3; TLR2= Toll-like receptor 2; YAP= Yes1 associated transcriptional regulator.

2.2.1 SPONTANEOUS DEDIFFERENTIATION

The conversion between non-stem state and stem state is a process occurring spontaneously

within the tumor. Indeed, Chaffer et al. (2011) demonstrated by FACS isolation of transformed cells

that both the non-stem fraction and the CSC fraction of cells can give rise to one another in vitro.

The conversion of non-CSCs into CSCs also occurs in vivo, as the generated tumors after mice

injection presented a significant proportion (16%) of CSCs after 8-10 weeks, and it also highlights the

importance of tumor microenvironment in the arising of CSC. Another study on colon cancer cells and

breast cancer cells revealed the acquisition of stem cell markers and the appearance of new CSCs,

in the CSC depleted population (Yang et al., 2012). The non-CSC fraction and the CSC fraction

were purified and, after separated cultures of both populations, they exposed an inter-conversion

equilibrium whereby both compartments can convert to one another until an intrinsic balance is found
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with a CSC proportion stabilized around the CSC proportion of the unsorted population.

Several studies have shown that, after cell sorting or tagging of non-CSC population, they can

convert into CSC without any inducer (Auffinger et al., 2014; Debeb et al., 2012). In a mixed popula-

tion, the GFP-tagged non-CSCs give rise to around 1 to 2% of CSCs (CD133+ CD15+ cells) without

induction in the glioblastoma model, demonstrating a basal dedifferentiation process occurring spon-

taneously to restore an equilibrium proportion of CSC (Auffinger et al., 2014).

Moreover, the dedifferentiation events and the state equilibrium between the CSC and non-

CSC subpopulation have been confirmed by mathematical models of cancer kinetics to apprehend

the population dynamics (Butner et al., 2022; Gupta et al., 2011; Jilkine, 2019; Zapperi and Porta,

2012).

2.2.2 THERAPY-INDUCED DEDIFFERENTIATION

The resistance to therapy has been associated with an increase of the CSC proportion in

several tumor models (Abubaker et al., 2013; Lagadec et al., 2010; Lee et al., 2011; Lu et al., 2015;

Murata et al., 2019; Wang et al., 2013a). To explain the CSC expansion upon treatments, Auffinger

et al. (2014) postulated three scenarios co-occurring upon treatment: 1 selection of CSCs over

non-CSCs due to their high resistance to therapies, 2 expansion of the CSC pool caused by a

shift from asymmetric division towards symmetric division, and finally 3 dedifferentiation of non-

CSCs, resulting in the generation of non-pre-existing CSCs. The two first scenarios are describing a

CSCs enrichment from pre-existing CSC, while in the third scenario CSC arises de novo, and their

co-occurrence upon treatment is confirmed by kinetic modelizations (Gao et al., 2014). Hence, the

treatment-induced dedifferentiation and underlying mechanisms have been particularly investigated

(Chen et al., 2017c; Li et al., 2016).

CHEMOTHERAPY-INDUCED DEDIFFERENTIATION

In hepatocellular carcinoma, Hu and Fu (2012) treated the sorted non-CSC population with

carboplatin, and maintained them in stem cell media and ultra-low attachment plates. The treated

non-CSCs showed an increase in self-renewal capacities, sphere formation, and expression of SOX2

and OCT4, compared to untreated ones.

In glioblastoma, Auffinger et al. (2014) investigated the formation of new CSCs from non-

CSCs upon temozolomide treatment. In the sorted and GFP-tagged non-CSC pool of cells, around

5% of them expressed stemness markers 8 days after temozolomide treatment, which is significantly

higher than in the untreated control. In vivo, the non-CSC population previously treated with temo-

zolomide was able to form tumors in mice which presented an increase of cells expressing CSC

markers compared to the untreated control. Interestingly, after temozolomide exposure, they found

increased levels of HIF-1α and HIF-2α in the newly formed CSCs, and more intratumoral hypoxic

areas in xenografts, matching the hypoxia and HIFs mediated maintenance of stemness, but also
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highlighting their regulatory role in the temozolomide-induced dedifferentiation of non-CSC into CSC

in the glioblastoma. This role was further confirmed by Lee et al. (2016a), through real-time imaging

of glioblastoma cell lines and PDX lines treated with temozolomide, using glioblastoma CSC-specific

promoter-based reporter systems. They reported an increased rate of phenotypic switches from non-

CSCs to CSCs at the single-cell level after temozolomide exposure, alongside an increased expres-

sion of both HIF-1α and HIF-2α . As the knockdown of HIFs expression reduced the temozolomide-

induced non-CSC-to-CSC conversion, it indicates that HIFs have a crucial role in the dedifferentiation

of glioblastoma cancer cells.

In breast cancer, although the purified non-CSC population failed to convert into CSCs upon

chemotherapy, in a mixed population of CSCs and non-CSCs, the tagged non-CSCs were able to

dedifferentiate into CSCs after chemotherapy (Saha et al., 2016). Hence, it highlights the require-

ment for pre-existing CSCs to drive the CSC pool expansion through non-CSC dedifferentiation, after

chemotherapy exposure. Indeed, the chemotherapy treatment, composed of 5-fluorouracil, doxoru-

bicin, and cyclophosphamide, triggers a positive inflammatory feedback loop in pre-existing CSCs

promoting the non-CSC-to-CSC conversion. This loop relies on the NF-κB-dependent IL-6 activation

(Iliopoulos et al., 2011; Saha et al., 2016).

RADIOTHERAPY-INDUCED DEDIFFERENTIATION

In breast cancer, several studies have demonstrated that CSCs can arise de novo from the

sorted non-CSC population after irradiation (Arnold et al., 2020b; Bhat et al., 2020; Bidan et al.,

2019; Lagadec et al., 2012; Wang et al., 2014a). The non-CSC population irradiated at 8 Gy has a

higher CSC percentage compared to the non-irradiated control 5 days post-irradiation (Arnold et al.,

2020b; Bhat et al., 2020; Bidan et al., 2019; Lagadec et al., 2012). Interestingly, in a mixed population

of tagged non-CSCs and CSCs, the generation of CSCs through radio-induced dedifferentiation of

non-CSCs is diminished, indicating a control of the pre-existing CSCs over the CSC pool expansion

(Lagadec et al., 2012). Additionally, the inhibition of Notch signaling (Lagadec et al., 2012), NF-κB

signaling (Wang et al., 2014a), or STAT3 signaling (Arnold et al., 2020b), reduced the emergence of

new CSCs.

In pancreatic cancer, Zhang et al. (2019) found that radio-induced cell death promotes the

dedifferentiation of non-CSCs into CSCs. The 7-days co-culture of sorted non-CSCs with lethally

irradiated cells (20 Gy) induced a significant increase of CSCs and expression of stemness markers,

compared to the co-culture with non-irradiated control cells (0 Gy). Furthermore, they observed that

among the damage associated molecular patterns (DAMPs) released by dying cells following radio-

therapy, the high-mobility group box 1 (HMGB1) binds to the Toll-like receptor 2 (TLR2) receptor of

non-CSCs and activates the Yes1 associated transcriptional regulator (YAP)/HIF-1α signaling, medi-

ating the dedifferentiation. The inhibition of these regulators individually reduces the dedifferentiation

of pancreatic cancer cells and their tumorigenic capacities in vivo (Zhang et al., 2019).
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In hepatocellular carcinoma, the isolated non-CSC population irradiated at 2 or 4 Gy doses

showed increased self-renewal and sphere formation capacities after 14 days post-irradiation of cul-

ture in stem cell media, indicating the dedifferentiation of cells (Ghisolfi et al., 2012). And, in glioblas-

toma, the non-CSC population was also able to dedifferentiate after radiotherapy, but not when the

Akt signaling was inhibited by a trifluoperazine treatment (Bhat et al., 2020).

HDAC INHIBITORS INDUCED DEDIFFERENTIATION

Histone deacetylase (HDAC) inhibitors, such as valproic acid (VPA), trichostatin A (TSA), and

suberoylanilide hydroxamic acid (SAHA) also known as Vorinostat, are used as anticancerous agents

as they cause histone hyperacetylation, leading to chromatin remodeling, and thus have growth-

inhibitory effects on cancer cells (Wawruszak et al., 2019; Zhang et al., 2017a). In addition, numerous

studies used HDAC inhibitors as differentiating agents to specifically target CSCs (Alvarez et al.,

2015; Botrugno et al., 2009; Dvorakova and Vanek, 2016; Lin et al., 2018).

However, some studies also demonstrated the opposite effect of HDAC inhibitors, stimulating

the dedifferentiation of cancer cells by activating stemness-related pathways. Besides, VPA is known

to enhance self-renewal and expansion of hematopoietic stem cells (HSCs) (Bug et al., 2005; Felice

et al., 2005; Young et al., 2004).

In breast cancer, VPA was found to selectively radio-sensitize differentiated cells while protect-

ing mammospheres cultures from radiations and promoting their self-renewal (Debeb et al., 2010),

while TSA and SAHA induce the expression of stem cell and EMT markers in prostate cancer cells

(Kong et al., 2012).

More interestingly, Debeb et al. (2012) demonstrated that HDAC inhibitors induce the ded-

ifferentiation of breast cancer cells. The sorted non-CSC population treated for 7 days with either

VPA, TSA, or SAHA showed increased proportions of CSCs and increased tumorigenic capacities in

vivo compared to the non-treated population. Moreover, they reported an up-regulation of the Wnt/β-

catenin signaling pathway and its inhibition abolished the HDAC inhibitors-induced over-expansion of

CSCs.

2.2.3 FORCED REEXPRESSION OF PLURIPOTENCY FACTORS

Lastly, the induced overexpression of pluripotency factors has been shown to increase the

stem-like properties of cells from different cancer types (Chiou et al., 2010; Herreros-Villanueva et

al., 2013; Yin et al., 2015). Although no studies describe a dedifferentiation process using popula-

tions depleted in CSCs or tagged cells to observe phenotypic conversions, several ones describe

populations acquiring stem cell properties induced by pluripotency factors re-expression (Fujiwara

et al., 2020; Oshima et al., 2014; Suvà et al., 2014). For instance, the retrovirus-mediated forced

expression of OCT4, SOX2, and KLF4 in colon cancer cells or osteosarcoma cells gives rise to a

population of cells with a stem-like phenotype (Fujiwara et al., 2020; Oshima et al., 2014). Induced
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expression of OCT4, NANOG and SOX2 in glioblastoma cells lead to the dedifferentiation into CSCs,

along with the activation of Notch and Wnt/β-catenin pathways (Olmez et al., 2015). So, in the same

way, as somatic cells can be reprogrammed in iPS cells, differentiated cancer cells can also be re-

programmed to acquire a stem-like phenotype through the forced expression of pluripotency factors.

[ KEY POINTS

å The dedifferentiation of non-CSCs into CSCs can be spontaneous or induced by several
extrinsic or intrinsic factors, leading to the resurgence of the CSC population.

å Within the tumor cell population, it exists an inter-conversion equilibrium whereby the CSC
and non-CSC compartments can convert to one another, without any inducers, until an
intrinsic balance is reached at a stabilized proportion of CSCs.

å The CSC enrichment following therapies is in part caused by the non-CSCs conversion
to CSCs, induced by the therapeutic stress, such as chemotherapeutic agents, radiations,
and HDAC inhibitors treatments.

� Back to Table of Contents

2.3 REGULATION OF DEDIFFERENTIATION

An overview of the reported regulatory mechanisms and mediators participating in the non-

CSC-to-CSC conversion is displayed in Figure 14.

2.3.1 HYPOXIA

The hypoxic environment, which is strongly associated with the CSC niche, has also been

reported as promoting the CSC plasticity (Figure 14) (Lee et al., 2016b; Wijaya, 2019).

First, the chemotherapy-induced hypoxia in glioblastoma causes non-CSCs dedifferentiation

events as mentioned previously in section 2.2.2 “Chemotherapy-induced dedifferentiation” at page 73

(Auffinger et al., 2014; Lee et al., 2016a). Indeed, the temozolomide treatment induces more intra-

tumoral hypoxic areas and promotes the conversion of non-CSCs to CSCs, with high levels of HIF-

1α and HIF-2α, a conversion which is impaired when HIFs are inhibited (Auffinger et al., 2014; Lee

et al., 2016a).

Then, outside of the chemotherapy exposure context, an hypoxic environment and hypoxia-

inducible factors (HIFs) are known to induce an enrichment in CSCs in several models including

breast cancer (Helczynska et al., 2003; Louie et al., 2010; Schwab et al., 2012; Semenza, 2016a;

Semenza, 2016b; Xie et al., 2016) and glioblastoma (Bar et al., 2010; Bonnin et al., 2017; Hashimoto

et al., 2011; Soeda et al., 2009). Indeed, HIFs contributes to CSC induction and maintenance via the

glucose metabolism regulation to maintain the redox homeostasis under hypoxic conditions, and via

the signaling pathways activation, including Notch, leading to the expression of pluripotency genes

(Gustafsson et al., 2005; Qiang et al., 2011; Semenza, 2016a; Semenza, 2016b).
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FIGURE 14 REGULATORS AND MECHANISMS INVOLVED IN THE DEDIFFERENTIATION OF NON-CSCS INTO

CSCS Regulatory mechanisms and principal mediators involved in the phenotypic switch from the non-CSC

state into the CSC state. ALDH= aldehyde dehydrogenase; CAF= cancer-associated fibroblast; CSC= cancer

stem cell; CXCL= C-X-C motif chemokine ligand; DNMT= DNA methytransferase; EV= extracellular vesi-

cles; HDAC= histone deacetylase; HIF= hypoxia-inducible factor; IL= interleukin; LC3-II= light chain

3-II; lncRNA= long non coding RNA; miRNA= microRNA; non-CSC= cancer non-stem cell; PRC=

polycomb repressive complex; ROS= reactive oxygen species; STAT= signal transducer and activator of

transcription; TAM= tumor-associated macrophage; TET= ten-eleven translocation; TGF= tumor growth

factor; TNF= tumor necrosis factor; ZEB= zinc finger E-box binding homeobox.

The hypoxia-mediated CSCs expansion also involves the dedifferentiation of non-CSCs. Hed-

dleston et al. (2009) have demonstrated the promotion of the non-CSC-to-CSC conversion of glioblas-

toma cells under hypoxic conditions. The sorted non-CSC population form more and larger neuro-

spheres under hypoxia compared to normoxia. Therefore, hypoxia confers self-renewal capacities to

non-CSCs as they are able to form spheres, and maintains the self-renewal of newly formed CSCs,

which leads to larger sphere formation. In addition, the expression of pluripotency factors and HIF-

2α is increased in non-CSCs cultured in hypoxic conditions (Heddleston et al., 2009).

The hypoxia-induced dedifferentiation was also reported in pancreatic cancer (Mu et al., 2021;

Zhu et al., 2013). The intermittent hypoxic environment exposure of non-CSCs was able to induce
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self-renewal capacities and high levels of HIF-1α, light chain 3-II (LC3-II), and Beclin RNAs and pro-

teins, which are involved in autophagy. The knock-down of HIF-1α abolished the hypoxia-induced

expression of LC3-II and Beclin, meaning that HIF-1α is required for hypoxia-induced autophagy in

CSCs. And, the inhibition of both HIF-1α and autophagy reduced the hypoxia-induced CSC percent-

age, indicating that the HIF-1α-mediated autophagy triggered by intermittent hypoxia contributes to

the non-CSC dedifferentiation into CSC in pancreatic cancer (Zhu et al., 2013).

The dedifferentiation of non-CSC populations from glioblastoma, hepatocellular carcinoma,

and lung cancer cell lines under hypoxia were studied by Wang et al. (2017d). The non-CSC popula-

tions cultured in hypoxic conditions showed significantly higher proportions of CSCs and formed more

spheres than those cultured in normoxic conditions, for the three cell lines. Hence, they demonstrated

a hypoxia-induced formation of new CSCs from non-CSCs occurring in glioblastoma, hepatocellular

carcinoma, and lung cancer. Moreover, immunofluorescence analysis of hypoxia-derived glioblas-

toma spheres revealed a high expression of the stem cell markers SOX2, OCT4, KLF4, NANOG,

LIN28, CD133, CD15, and NESTIN. The culture of these spheres in a stem cell medium confirmed

their self-renewal ability and extensive proliferation, while culured in a differentiation medium, they

showed adherent growth and morphology changes indicating their capability to perform asymmetric

division. Furthermore, Wang et al. (2017c) found a high expression of HIF-1α in the hypoxia-treated

neurospheres as well as in tumor samples from mice raised in hypoxia. The silencing of HIF-1α re-

duced the neurosphere formation rate and the CSC proportion in the hypoxia-treated non-CSC pop-

ulation, and impaired the tumorigenic capacities of cells as tumors in mice grew smaller compared

to the control group (Wang et al., 2017c). Then, Wang et al. (2022) confirmed that the HIF-1α/HIF-

2α-SOX2 network induced the dedifferentiation of glioblastoma non-CSCs into CSCs under hypoxic

conditions.

2.3.2 EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) mediate the intercellular communication by transmitting a molec-

ular content composed of several proteins, lipids, and nucleic acids. Additional details about EVs are

given in Appendix 2 “Extracellular vesicles and dedifferentiation into cancer stem cells” at page 319.

The radio-induced EVs and chemo-induced EVs promote stem cell characteristics, amplifying

the therapeutic resistance (Chung et al., 2021; Kyjacova et al., 2015; Meldolesi, 2022; Ramakrishnan

et al., 2020; Shen et al., 2019; Yang et al., 2021). Following radiotherapy, secreted EVs participate

in the radiation-induced bystander effect, meaning that even unirradiated cells can be affected by

radiotherapy effects through the uptake of EVs derived from irradiated neighboring ones (Jabbari et

al., 2020; Jella et al., 2014; Szatmári et al., 2017; Xu et al., 2016). Moreover, the radiation treatment

induces changes in the secreted EVs quantity and content, which can confer radiation resistance

properties to recipient cells (Al-Mayah et al., 2012; Jelonek et al., 2016; Mutschelknaus et al., 2016).

For instance, in hepatocellular carcinoma, exosomes released by CSCs induces the expression of
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NANOG in non-CSCs and enhance their drug resistance (Huang et al., 2021).

Additionally, EVs derived from stromal cells also participate in the promotion of stem cell fea-

tures and in the radio- or chemo-resistance of cancer cells. CAFs-derived EVs contribute to the main-

tenance and expansion of colorectal cancer CSCs through activation of stemness related pathways,

such as the Wnt/β-catenin signaling or TGF-β signaling, mediated by the EV-transported miRNAs

(e.g. miR-92a-3p) or lncRNAs (e.g. H19) (Conigliaro et al., 2015; Hu et al., 2019a; Hu et al., 2015;

Liu et al., 2020b; Ren et al., 2018). In breast cancer, EVs from stromal cells containing three miR-

NAs (miR-21, miR-378e, and miR-143) increase mammospheres formation and promote the EMT

and stemness phenotypes (Donnarumma et al., 2017), and they can activate the STAT1 and Notch

signaling promoting stemness and resistance to therapy (Boelens et al., 2014).

The interconversion between CSCs and non-CSCs is mediated by EVs (Figure 14). Indeed,

in their cargo, stemness regulatory molecules can induce a phenotypic switch of recipient cells, to

maintain the balance between CSC and non-CSC populations or expand the CSC pool in response

to therapy for instance (Sun et al., 2018; Xu et al., 2018).

First, to study the effect of CSC-derived exosomes on non-CSCs, Sun et al. (2020) used three

glioblastoma non-CSC cell lines treated with exosomes from a CSC-like cell line cultured in a stem

cell medium and showing high expression of CSC markers. Although the CSC and non-CSC popula-

tions were not purified using CSC markers, they reported an increase in tumorigenicity in the treated

cells and enrichment of CSC-derived exosomes in Notch1 proteins. As the inhibition of Notch1 de-

creased the stemness features induced by CSC-exosomes in non-CSC cell lines, it revealed that the

Notch signaling contributes to the exosome-mediated enhanced stemness of glioblastoma cells.

In colorectal cancer, Hu et al. (2019b) demonstrated the induced dedifferentiation of puri-

fied non-CSCs by CAFs-derived EVs during chemotherapy treatment. The non-CSC population

treated with fibroblast-derived conditioned media showed higher sphere formation and higher CSC

percentage upon chemotherapy treatment. Furthermore, the fibroblast-derived exosomes coupled

with chemotherapy-induced more sphere generation in the non-CSC population compared to control

cells, while the exosome-depleted conditioned media treatment-induced less sphere generation, in-

dicating that the dedifferentiation is mediated by exosomes. They also found the presence of several

Wnt ligands in the fibroblast-secreted vesicles, activating the Wnt/β-catenin pathway in recipient cells.

Overexpression of WNT3A in CAFs revealed that CAFs-derived EVs increase the nuclear β-catenin

levels in treated non-CSCs and enhance their tumorigenicity in vivo.

2.3.3 INFLAMMATION AND SECRETED MOLECULES

Cytokines and other molecules that are secreted by a tumor or stromal cells act as paracrine

communication between cells, activating signaling pathways related to stemness to promote the ac-

quisition of a stem phenotype in non-CSCs (Figure 14) (Das et al., 2020; Wijaya, 2019).
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Pro-inflammatory mediators such as tumor necrosis factor α (TNFα) and IL-6 have been re-

ported to induce the dedifferentiation toward a CSC state. Indeed, the IL-6 is known to induce an

enrichment in CSCs through the non-CSC-to-CSC conversion in several cancer models including

lung cancer, breast cancer (Arnold et al., 2020b; Korkaya et al., 2012; Liu et al., 2014; Rodrigues et

al., 2018; Saha et al., 2016; Vaziri et al., 2021).

On one hand, to initiate the reacquisition of stem cell features such as the reexpression of

CSC markers and self-renewal capacities, the IL-6 inflammatory signal activates the NF-κB signaling

(Korkaya et al., 2012; Schwitalla et al., 2013; Wang et al., 2014a). Iliopoulos et al. (2009) highlighted

the IL-6/NF-κB signaling regulates the LIN28 expression via the STAT3 transcription factor activity.

Then, Iliopoulos et al. (2011) reported that the IL-6 secretion mediates the balance between the CSC

and non-CSC phenotypes within the breast cancer cell population. These results were confirmed

by Saha et al. (2016) as they demonstrated the chemo-induced activation of the IL-6/NF-κB loop

contributes to the non-CSC-to-CSC conversion in breast cancer.

On the other hand, the IL-6 signal has been found to trigger the activation of the JAK/STAT

signaling, also mediating the acquisition of stem cell properties (Jin, 2020). In breast cancer, the

secreted IL-6 activates the JAK1-STAT3 signal transduction pathway in non-CSCs, up-regulating the

OCT4 expression and triggering the non-CSCs conversion into CSCs (Kim et al., 2013b). The IL-

6 also activates the JAK2-STAT3 signaling to induce the non-CSCs dedifferentiation (Arnold et al.,

2020a; Liu et al., 2014).

The TNFα produced by T-cells have been reported to promote the dedifferentiation of melanoma

cells (Landsberg et al., 2012).

The TGF-β secreted in the tumor microenvironment by stromal or cancer cells is also in-

volved in the dedifferentiation of osteosarcoma, lung cancer, breast cancer, and colorectal cancer

cells (Andriani et al., 2016; Chaffer et al., 2013; Nakano et al., 2018; Zhang et al., 2013a. The

hypoxia-induced secretion of TGF-β1 participates in the acquisition of stemness characteristics in

osteosarcoma non-CSCs (Zhang et al., 2013a). The TGF-β stimulation induces the TWIST1 and

ZEB1 expression leading to the conversion of non-CSC into CSCs, in colorectal and breast cancer

respectively (Chaffer et al., 2013; Nakano et al., 2018). Lastly, the sorted non-CSC population of

lung cancer cells showed an increase in CSCs after TGF-β1 treatment (Andriani et al., 2016).

Finally, secreted chemokines, or chemotactic cytokines (C-X-C motif chemokine ligand (CXCL)

and C-C motif chemokine ligand (CCL)), can also activate these previously mentioned signaling path-

ways such as the JAK/STAT one, or others such as the phosphatidylinositol 3-kinase (PI3K)/Akt one,

which are also implicated in the CSC state (Chang et al., 2013; Hernández-Vargas et al., 2011; Ko-

rkaya et al., 2009). In particular, CXCL12, also known as stromal cell-derived factor-1 (SDF-1), and

its C-X-C motif chemokine receptors (CXCRs) 4 and 7 (CXCR4 and CXCR7) have been associated

with CSC enrichment (Dubrovska et al., 2012; Kong et al., 2016; Tang et al., 2016; Zhang et al.,
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2013b). Additionally, previous work in the laboratory revealed that the CXCL1 and CCL5 chemokines

were highly secreted after irradiation of SUM159PT breast cancer cells, and their inhibition or the

neutralization of their receptors combined with radiotherapy resulted in decreased tumorigenic ca-

pacities (Bailleul, 2018).

2.3.4 EPIGENETICS

The reversibility of epigenetic modifications enables the phenotypic plasticity of cancer cells.

Indeed, interactions of the cell with environmental factors generate epigenetic modifications that re-

sult in changes in gene expression in response to the stimuli (Hass et al., 2020). Hence, the reex-

pression of pluripotency factors and self-renewal related genes can be unlocked through epigenetic

changes and contribute to the phenotypic switch toward the stem cell state (Figure 14) (French and

Pauklin, 2021; Markopoulos et al., 2019; Muñoz et al., 2012; Poli et al., 2018; Safa et al., 2015;

Wainwright and Scaffidi, 2017).

NON-CODING RNAS

As previously stated, numerous miRNAs are found to be involved in the acquisition of a stem

cell phenotype, via their transportation in EVs or through the activation of signaling pathways regu-

lating miRNAs expression, and lncRNAs also participate in the induction of the stem cell state.

The lncRNA H19 along with the let-7 miRNAs have a role in the stem cell phenotype induction

as they are known to be pluripotency regulators (Albino et al., 2016; Jiang et al., 2016; Lecerf et

al., 2020; Ma et al., 2021; Peter, 2009; Ren et al., 2018). H19 is overexpressed in CSCs and

regulates with the let-7 family of miRNAs the expression of the pluripotency factor LIN28. Indeed,

the H19 negatively regulates the let-7 miRNAs, which are negative regulators of the LIN28 gene.

This negative feedback loop leading to the expression of LIN28 is a marker of pluripotency involved

in the CSC maintenance and expansion, while the let-7 miRNAs, negative regulators of this loop,

are associated with a differentiated phenotype (Albino et al., 2016; Cai et al., 2013; Yang et al.,

2010; Yu et al., 2007a). Guo et al. (2019) have reported that the let-7/LIN28 axis is involved in the

generation of breast CSCs. Especially since the let-7/LIN28 axis involves the IL6 and the NF-κB

signaling, known regulators of the dedifferentiation, both H19 and let-7 miRNAs may participate in

the non-CSC-to-CSC conversion (Iliopoulos et al., 2009; Iliopoulos et al., 2011).

Many other miRNAs are involved in the acquisition of stemness, including the miR-200 family.

The miR-200 family of miRNAs is widely known to regulate the EMT via the ZEB family transcription

factor negative feedback loop (Andriani et al., 2016; Cano and Nieto, 2008; Korpal et al., 2008). Yet,

they have also been described as mediating the stem cell phenotype (Peter, 2009; Wellner et al.,

2009). For instance, the miR-200a negatively regulates the CSC state in pancreatic and liver can-

cer(Lu et al., 2014b; Wang et al., 2015b), and the miR-200c in breast cancer (Feng et al., 2015b;

Liu et al., 2018a; Shimono et al., 2009). The miR-200b downregulates the generation and mainte-
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nance of CSC via the inhibition of Suz12 (a component of the PRC2 complex), inducing the loss of

the H3K27me3-mediated repression of the E-cadherin gene (CDH1) in breast cancer (Iliopoulos et

al., 2010). Additionally, Lim et al. (2013) found that miR-200s are involved in the plasticity between

non-stem and stem-like phenotypes in immortalized mammary cells and that their loci have different

DNA methylation and histones modification profiles between the two phenotypes. Indeed, the re-

pressive methylated state of the miR-200 loci is maintained by the miR-22-mediated inhibition of TET

demethylase in breast CSCs (Song et al., 2013b). Finally, Chaffer et al. (2013) demonstrated that the

miR-200 regulation of ZEB1 plays a key role in the non-CSC-to-CSC conversion in breast cancer, as

the miR-200 inhibition severely impairs their dedifferentiation rate.

Lastly, lincRNA-ROR is a lncRNA known to be involved in the reprogramming into iPS cells,

and in the CSC phenotype in glioblastoma and pancreatic cancer (Feng et al., 2015a; Fu et al.,

2017; Loewer et al., 2010; Zhan et al., 2016). And, the miR-21 is also a well-known regulator of both

EMT and CSC phenotype and could participate in the dedifferentiation (Han et al., 2012a; Han et al.,

2012b; Ni et al., 2018; Sekar et al., 2016).

DNA METHYLATION

The induced reprogramming of somatic cells into iPS cells is accompanied by a reset of epi-

genetic marks, especially by global DNA demethylation (Bhutani et al., 2009; Costa et al., 2013;

Gao et al., 2013; He et al., 2017; Park et al., 2020). The presence of DNA methylation at gene

promoter is generally associated with its transcriptional repression. Details about DNA methylation

and epigenetic reprogramming are given in chapter 4 “DNA methylation: principles and methodology”

at page 105. The involvement of ten-eleven translocation (TET) 1 in the global DNA demethylation

during the establishment of a stem-like pluripotent state indicates that TET enzymes may be also im-

plicated in the generation of CSCs, through the epigenetic reactivation of previously silenced genes

(Costa et al., 2013; French and Pauklin, 2021; Gao et al., 2013; Olariu et al., 2016; Stricker and

Pollard, 2014). Globally, the CSCs have different DNA methylation signatures compared to non-

CSC, demonstrating the importance of DNA methylation changes to enable the phenotypic plasticity

between the non-CSC and CSC states (Helou et al., 2014; Lee et al., 2015). The DNA methylation-

associated enzymes are therefore required to apply the DNA methylation changes occurring through

the phenotypic switch, but their role remains mostly unclear. In general, DNMT1 has been found to

promote the formation of CSCs (Liu et al., 2014; Pathania et al., 2015; Zagorac et al., 2016), and

DNMT3B has been reported as suppressed by the miR-221, associated with stemness in breast

cancer (Roscigno et al., 2015).

The DNA methylation or demethylation of specific loci contributes to phenotypic changes. For

instance, the promoter of NANOG is found hypomethylated in hepatocellular carcinoma and liver

cancer CSCs (Liu et al., 2020c; Wang et al., 2013c). In liver cancer, Liu et al. (2020c) reported dif-

ferences in DNA methylation at the NANOG gene promoter and DNMT1 expression levels, between
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non-CSCs and CSCs. They found that the miR-135a downregulates the DNMT1 expression, reduc-

ing the DNA methylation of the NANOG promoter and resulting in the SMYD4-mediated activation

of its transcription, to enable the acquisition of stem cell properties and dedifferentiation into CSCs.

The promoter of the CD133 gene, a CSC marker commonly used in different cancer models, is found

differentially methylated in CSCs in several cancers, such as breast cancer, glioblastoma, hepatocel-

lular carcinoma, and ovarian cancer (Baba et al., 2009; Kagara et al., 2012; Yi et al., 2008; You et al.,

2010). Several genes are found regulated by DNA methylation in CSCs, including the GATA6 gene,

a transcription factor associated to differentiation and found hypermethylated in glioblastoma CSCs,

and SOX9 gene promoting self-renewal via the asymmetrical-to-symmetrical cell division switch and

found hypomethylated in pancreatic ductal adenocarcinoma CSC (Lee et al., 2015; Liu et al., 2016;

Sun et al., 2013; Sun and Yan, 2020). These data suggest that the methylation level of specific lo-

calization might be more important in the determination of the cell phenotype than the global DNA

pattern (French and Pauklin, 2021).

HISTONE MODIFICATIONS

The histone post-translational modifications (PTMs) such as methylation or acetylation of ly-

sine residues at their tails, contribute to the establishment of the chromatin state and subsequent

gene transcription or gene silencing. Several enzymes, including histone methylase (HMT) and hi-

stone deacetylase (HDAC) along with key co-factors, can modify the histones marks, resulting in

chromatin condensation or decondensation and thus changes in gene expression. In general, the

acetylation of histones is correlated with transcriptional activity, as well as for the H3K4me3 mark,

while the H3K27me3 is associated to gene silencing.

The presence of two different histone marks with opposing effects at the same localization is

called bivalency or poised chromatin. This bivalency is found generally at promoter regions of genes

important for the development. Indeed, the presence of both activating or silencing marks, such

as H3K4me3-H3K27me3 marks, keep the gene silenced but allow its rapid transcriptional activation

upon cell fate commitment (Bapat, 2013; Bernstein et al., 2006; Easwaran et al., 2014). As the

interconversion between CSC and non-CSC states depends on the capacity to activate or repress

transcriptional programs, the poised chromatin may have a central role in the CSC plasticity (Chaffer

et al., 2013; Suvà et al., 2013; Wainwright and Scaffidi, 2017).

In acute myeloid leukemia (AML) and glioblastoma, the CSCs and non-CSCs have different

histone modifications profiles (Rheinbay et al., 2013; Yamazaki et al., 2012). The bivalency of pro-

moters in AML CSCs is lost when they differentiate into progenitors, meaning that the reverse process

could contribute to the dedifferentiation of CSCs (Yamazaki et al., 2012). In particular, Chaffer et al.

(2013) found that the promoter of the ZEB1 gene, which mediates the dedifferentiation of breast can-

cer cells, exhibits bivalent chromatin patterns (H3K4me3 and H3K27me3 marks) in non-CSCs but

only activation marks in CSCs (H3K4me3 and H3K79me2 marks). Hence, it indicates that the loss of
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repressive marks at bivalent promoters can enable the reexpression of stemness-related genes for

the cell to transit to a CSC phenotype.

To modify the histones marks through the phenotypic switches, the activity of histones modify-

ing enzymes is required. The involvement of histone acetylation in the non-CSC-to-CSC conversion

was demonstrated by Debeb et al. (2012) as HDAC inhibitors treatment induced the dedifferentia-

tion of breast CSCs through the up-regulation of the Wnt/β-catenin pathway, as explained in section

2.2.2 “HDAC inhibitors induced dedifferentiation” at page 75. In lung cancer, Saijo et al. (2016)

showed that oxidative stress induces the repression of the HDAC8. Thus, the presence of histone

acetylation modifications at the HOX5A and SOX2 promoters enables the SOX2 expression via the

HOX5A transcription activity and leads to the acquisition of a stem cell phenotype in lung cancer

cells. Hence, it also explains the generation of CSCs after HDAC inhibitors exposure as it triggers

the expression of HOX5A and SOX2.

The polycomb repressive complexes (PRC) 1 and 2 (responsible for H2AK119Ub1 and H3K27me3

marks) are strongly linked to the maintenance of pluripotency in several cancers (Abdouh et al.,

2009; Gorodetska et al., 2019; Orzan et al., 2011; Proctor et al., 2013; Safa et al., 2015; Suvà et

al., 2009; Vlerken et al., 2013; Wen et al., 2015). EZH2, the catalytic component of PRC2 mediating

the H3K27me3, participates in the CSC plasticity in glioblastoma through the regulation of NANOG,

WNT1, and BMP5 genes and is also known to regulate the expression of the GATA6 gene, coding

for transcription factor associated to cell lineage decision and differentiation, in several cancer types

(Natsume et al., 2013; Patil et al., 2020; Tan et al., 2019; Zang et al., 2020). Altogether, the activity

of these histone modifiers could play a key role in the dedifferentiation of non-CSCs into CSCs.
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[ KEY POINTS

å The non-CSC-to-CSC conversion is regulated at several levels by different machineries and
mediators, from the microenvironment composition and signals to the modulation of gene
transcription by epigenetic mechanisms.

å An hypoxic environment, caused by chemotherapy or radiotherapy for example, leads to
the emergence of CSCs in the non-CSC population through increased levels of hypoxia-
inducible factors (HIFs), in several cancer models, especially in glioblastoma.

å The intercellular communication via extracellular vesicles (EVs) also participates in the ac-
quisition of a CSC phenotype. In the context of a radiotherapy treatment, EVs contribute
to the radiation-induced bystander effect, affecting the phenotype of unirradiated recipient
cells. Further information linking EVs and dedifferentiation is available in Appendix 2 “Ex-
tracellular vesicles and dedifferentiation into cancer stem cells” at page 319.

å Secreted pro-inflammatory factors (e.g. TNFα, interleukins, cytokines) can activate sig-
naling pathways (e.g. NF-κB, JAK/STAT), inducing the dedifferentiation of non-CSCs into
CSCs.

å Epigenetic mechanisms, non-coding RNAs, DNA methylation, and histones post-
translational modifications, contributes as well to the phenotypic conversion. For instance,
TET enzymes and the global DNA demethylation may be involved in the epigenetic re-
programming enabling the acquisition of stem cell features. Additionally, the bivalent (or
poised) chromatin, characterized by the presence of opposing epigenetic marks at the
same loci, can have a central role in the interconversion between the CSC and non-CSC
states, as the lost of the repressive marks would rapidly enable the reexpression of key
genes, allowing the reacquisition of stem cell properties.

� Back to Table of Contents
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3.1 THE MAMMARY GLAND

3.1.1 DESCRIPTION

The breast is a mammalian organ that has the function of maternal milk secretion after child-

birth to feed the newborn. It is an exocrine mammary tubuloalveolar gland surrounded by fatty and

connective tissue (Figure 15). Its structure is supported by the pectoral muscles, and its integrity is

ensured by a connective tissue composed of the fibroglandular ridges of Duret and Cooper’s liga-

ments.

From 15 to 25 irregular lobes compose the mammary gland, connected to a milk duct for

milk transportation to the nipple. The milk duct gradually branches out into interlobular ducts, each

leading to a lobule composed of numerous acini. An acinus is composed of a lumen surrounded by

lactocytic epithelial cells that secrete milk, overlaid by myoepithelial cells. The acini are connected to

the intralobular duct, which joins the interlobular duct (Figure 15). The myoepithelial cell contraction
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during lactation allows the ejection of milk towards ducts (Hassiotou and Geddes, 2013; Pinamonti

et al., 2017).

Acinus

FIGURE 15 ANATOMY OF THE FEMALE MAMMARY GLAND. Representation of a sagittal section of the mam-

mary gland in women. The mammary gland is composed of glandular and adipose, or fatty, tissues, supported

by ligaments. A ductal system drains the secretory tissue to store and transport milk to the nipple during lacta-

tion. The glandular tissue is composed of 15-25 lobes that comprise 20-40 lobules containing 10–100 acini in

which the milk is produced. Figure adapted from the Medical And Scientific Illustration, Breast, Terese Winslow

LLC website, © Terese Winslow LLC for the National Cancer Institute.

The mammary epithelium develops at puberty in women under hormonal stimulation. During

gestation, high concentrations of progesterone, estrogen, and placental lactogenic hormone activate

cellular proliferation, through the growth factors production, leading to extensive branching of the

ductal tree, and acini differentiation in preparation for milk production. After childbirth, modification

of the hormone balance between progesterone and prolactin induces milk secretion. Finally, at the

cessation of lactation, the mammary gland progressively involutes to return to its pre-pregnant state

via epithelial and myoepithelial cells apoptosis and proteinase-driven tissue remodeling (Fu et al.,

2014).

The morphological and functional unit of the breast called the terminal duct lobular unit

(TDLU) is the structure formed by an extralobular terminal duct and a lobule (acini connected to the

intralobular duct). Histologically, the TDLU is composed of two main cell types: an inner luminal layer

of cylindrical or cubic glandular epithelial cells also called ductal or alveolar luminal cells, and an

outer basal layer composed of myoepithelial cells (Figure 16) (Fu et al., 2020; Pinamonti et al., 2017;

Visvader, 2009).
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FIGURE 16 STRUCTURE AND CELL TYPE COMPOSITION OF THE MAMMARY GLAND. Representation of the

mammary gland ductal structure and cell type composition. Two types of luminal cells are found depending on

their localization, ductal ones in ducts and alveolar ones in alveoli (acini). Figure from Fu et al. (2020).

3.1.2 MAMMARY STEM CELLS

The breast development during puberty and regeneration through successive cycles of preg-

nancy suggested repopulation and renewal capacities provided by tissue-resident adult stem cells.

The presence of stem cells within the mammary gland has been first implied by DeOme et al. (1959)

as the transplantation of breast tissue fragments are able to reform ductal outgrowths resembling the

normal mammary epithelial tree, and was supported later by the work of Daniel et al. (1968) demon-

strating their self-renewal capacity through serial transplantation. However, mammary stem cells

(MaSCs) were identified and isolated for the first time by Shackleton et al. (2006). They demonstrated

that a single MaSC can regenerate an entire structure of the mammary gland upon transplantation.

This repopulating activity into different mammary cell subtypes demonstrates their multidifferentiative

and self-renewal capabilities and thus, they are characterized as stem cells.

Several markers are used for their isolation, in mice the Lin–CD24+CD29high (Lin= lineage,

CD29= integrin β1) cells are generally referred to murine MaSCs (Fu et al., 2020; Shackleton et al.,

2006). The isolation of human MaSCs in several studies relies on several combinations of markers to

define the population, such as Lin–CD49f+EpCAM–/low (CD49f= integrin α6, EpCAM= epithelial cell

adhesion molecule), CD24highCD49fhighDNERhigh (DNER= delta/notch like EGF repeat containing)

and CD10+EpCAM– (CD10= membrane metalloendopeptidase) (Bachelard-Cascales et al., 2010;

Fu et al., 2020; Pece et al., 2010; Shehata et al., 2012).

Hence, the mammary epithelium is organized hierarchically with stem cells and progen-

itors giving rise to luminal and myoepithelial lineages, which is necessary for the mammary gland

development during puberty and gestation, and for the tissue homeostasis (Figure 17) (Fu et al.,
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2020; Visvader, 2009). The MaSCs are qualified as multipotent or bipotent stem cells, as they differ-

entiate into the two primary epithelial cell lineages, luminal and myoepithelial, but the luminal lineage

can be further subdivided into the ductal and alveolar sublineages. Indeed, a subset of cycling ER+

progenitors produces luminal ER+ cells to line the ducts. Yet, through transplantation and lineage

tracing studies, controversy remains about whether or not there is an intermediate bipotent progen-

itor state between the MaSCs and luminal/basal unipotent progenitors in the adult (Fu et al., 2020;

Keymeulen et al., 2011; Rios et al., 2014; Visvader, 2009).

Mammary
stem cell

Luminal 
progenitor

Basal 
progenitor

ER+/PR+

progenitor

ER-/PR-

progenitor

Ductal 
luminal

Alveolar 
luminal

Secretory

Myoepithelial

FIGURE 17 MAMMARY EPITHELIAL DIFFERENTIATION HIERARCHY. The mammary epithelium is organized

in a hierarchy, the multipotent/bipotent MaSCs give rise to unipotent luminal and basal progenitors. The luminal

lineage is subdivided into two sublineages, the ductal luminal one and the alveolar luminal one. Under hormonal

stimuli at the end of pregnancy, the alveolar luminal cells can further differentiate to secrete milk. The basal

progenitors give rise to myoepithelial cells forming the contractile tissue necessary for milk expulsion. Figure

adapted from Fu et al. (2020).

3.2 BREAST CANCER

3.2.1 INDICATORS AND STATISTICS

WORLDWIDE

In 2020, 2.26 million new cases of breast cancer and 685,000 deaths due to breast cancer

have been reported worldwide by the GLOBOSCAN project (Sung et al., 2021). Breast cancer is

the most diagnosed cancer as it represents 11.7% of all diagnosed cancers, for both sexes (Fig-

ure 2A). It is the fourth cause of cancer mortality as it causes 6.9% of all cancer deaths, for both

sexes (Figure 2B). The 5-year prevalence, meaning the number of people alive within 5 years after a

breast cancer diagnosis, is estimated at 7.79 million (17.7% of all cancers, for both sexes). It is esti-

mated that nearly 30% of patients with breast cancer, who became disease-free after being treated,
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A

Estimated number of new cases in 2020, worldwide, females, all ages

Breast
2 261 419 (24.5%)

Colorectum
865 630 (9.4%)

Lung
770 828 (8.4%)

Cervix uteri
604 127 (6.5%)

Thyroid
448 915 (4.9%)

Corpus uteri
417 367 (4.5%)

Stomach
369 580 (4%)

Other cancers
3 489 618 (37.8%)

Total : 9 227 484
Data source: Globocan 2020
Graph production: Global Cancer
Observatory (http://gco.iarc.fr)

 

B

Estimated number of deaths in 2020, worldwide, females, all ages

Breast
684 996 (15.5%)

Lung
607 465 (13.7%)

Colorectum
419 536 (9.5%)

Cervix uteri
341 831 (7.7%)

Stomach
266 005 (6%)

Liver
252 658 (5.7%)

Pancreas
219 163 (4.9%)

Other cancers
1 637 669 (37%)

Total : 4 429 323
Data source: Globocan 2020
Graph production: Global Cancer
Observatory (http://gco.iarc.fr)

 

FIGURE 18 ESTIMATED NEW CASES AND DEATHS BY CANCER SITES FOR WOMEN IN 2020. A. Estimated

number of new cases (incidence) in 2020, worldwide, for women and all ages. B. Estimated number of deaths

(mortality) in 2020, worldwide, for women and all ages. Graph and data from GLOBOSCAN 2020, IARC,

WHO, available at the Cancer Today - Global Cancer Observatory website.

91



STATE OF THE ART

experience disease recurrence (Colleoni et al., 2016).

For women, breast cancer is the most diagnosed cancer, representing 24.5% of all new cancer

cases (Figure 18A), and the first cause of cancer mortality, causing 15.5% of all cancer deaths

(Figure 18B). As the estimated 5-year prevalence of breast cancer among women represent 33.7%

of all cancers, it means that one-third of the women alive within 5 years after the cancer diagnosis

have been diagnosed with breast cancer.

IN FRANCE

In France, 58,500 new cases of breast cancer and 12,100 deaths due to breast cancer have

been reported in 2018. The prevalence for 2017 is estimated at 913,089 people alive who have been

diagnosed with cancer in France.

For women, breast cancer is also the most diagnosed cancer in France, representing 33% of

all new cancer cases, and the first cause of cancer mortality, causing 17.8% of all cancers death,

in 2018 (The French National Cancer Institute (INCa) website; Panorama des cancers en France,

2021).

3.2.2 TUMORIGENESIS

Cancer is a disease characterized by the presence of abnormal cells proliferating excessively

and anarchically, uncoordinated with other tissues, and unresponsive to physiological regulatory

mechanisms. The transition of a normal cell to a neoplastic cell able to from malignant tumors

requires the acquisition of functional capabilities, defined and named as the “Hallmarks of Cancer”

by Hanahan and Weinberg in 2000, 2011, and 2022 (Figure 12A). Indeed, the initial six hallmarks

were complemented twice with emerging hallmarks and enabling characteristics that facilitate the

acquisition of hallmark capacities.

Hallmarks of cancer:

• Sustaining proliferative signaling (2000)

• Evading growth suppressors (2000)

• Resisting cell death (2000)

• Enabling replicative immortality (2000)

• Inducing or accessing vasculature (2000)

• Activating invasion & metastasis (2000)

• Deregulating cellular metabolism (2011)

• Avoiding immune destruction (2011)

• Unlocking phenotypic plasticity (2022)
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Enabling characteristics:

• Genome instability & mutation (2011)

• Tumor-promoting inflammation (2011)

• Nonmutational epigenetic reprogramming (2022)

• Polymorphic microbiomes (2022)

• Senescent cells (functionally important cell type, 2022)

Thus, the emergence of breast cancer is due to the acquisition of pro-tumor characteristics,

or hallmarks, in luminal or myoepithelial cells, caused by genomic instability, epigenetic changes,

and tumor microenvironment (Hanahan and Weinberg, 2011; Karsli-Ceppioglu et al., 2014; Lee and

Muller, 2010). Genetic alterations are DNA sequence modifications such as point mutations, am-

plification of the gene copy number, deletions, or chromosomal rearrangements, while epigenetic

alterations modify the gene expression without DNA sequence changes. Additionally, the tumor

microenvironment influence both genetic and epigenetic instability but also promotes tumorigenic

signaling pathways enabling the tumor progression (Hanahan and Coussens, 2012; Hanahan and

Weinberg, 2011).

Genes undergoing expression changes that cause the acquisition of hallmarks capacities are

named oncogenes, promoting tumor growth, and tumor suppressor genes, inactivated as they

repress tumor growth.

On one hand, the most overexpressed oncogenes in breast cancer are ERBB2 — commonly

referred to as the human epidermal growth factor receptor 2 (HER2) —, MYC, and cyclin D1 (CCND1)

(Lee and Muller, 2010; Osborne et al., 2004). The HER2 gene is amplified and overexpressed

in 20%-30% of invasive breast cancer, it encodes a transmembrane tyrosine kinase growth factor

receptor that promotes proliferation, angiogenesis, cell motility, metastases, and resistance to apop-

tosis, via the activation of several pathways (mitogen-activated protein kinase (MAPK) signaling and

PI3K/Akt signaling) (Slamon et al., 1987; Vijver et al., 1988; Yarden and Sliwkowski, 2001). The MYC

gene encodes a nuclear phosphoprotein that participates in gene transcription regulation and is am-

plified and overexpressed in 15%-25% of breast cancers. MYC is associated with poor prognosis,

aggressive clinical features, and resistance to chemotherapy, as it controls proliferation, differenti-

ation, metabolism, apoptosis, stress pathways, and mechanisms of drug resistance (Fallah et al.,

2017; Varley et al., 1987; Xu et al., 2010). The CCND1 gene encodes the cyclin D1 protein which

regulates the cell cycle through temporal coordination of cell division events, and it is overexpressed

in 40%-50% of breast tumors and amplified in 10%-20% of cases (Roy and Thompson, 2006; Steeg

and Zhou, 1998).

On the other hand, the loss of function of tumor suppressor genes is effective when both alleles

are inactivated, thus it requires two genetic hits (Knudson, 2001). Hence, an hereditary transmitted

mutation of one allele confers a genetic predisposition for cancer. The most known breast cancer
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predisposition genes are breast cancer genes (BRCAs) 1 and 2 (BRCA1 and BRCA2), involved in the

DNA damage response and DNA repair (Roy et al., 2012). Mutations in either BRCA1 or BRCA2 are

responsible for 80% of hereditary breast cancer cases (5-10% of breast cancer cases are inherited)

(Godet and Gilkes, 2017; Rosen et al., 2003). The silencing of BRCA1 can also be caused by

epigenetic modifications such as its promoter hypermethylation (Pang et al., 2012; Yamashita et al.,

2015). Additionally, the most-studied tumor suppressor gene P53 (or TP53) is found to be mutated

in 20%-30% of breast carcinomas (Bertheau et al., 2013; Hollstein et al., 1991).

3.2.3 TUMORAL PROGRESSION

Within the mammary terminal duct lobular unit, cancer cells can arise from either the lobular

(acini) or the ductal epithelium. Lobular carcinomas are less prevalent than ductal ones as they ac-

count for only 4%-10% of breast lesions biopsies (Donaldson et al., 2018). The Figure 19 represents

the stages of breast carcinoma progression from the ductal epithelium. The different stages of breast

lesions are classified depending on their morphology and histology, based on biopsies, as followed:

• Hyperplasia (H) is characterized as an overgrowth of cells in the duct (ductal hyperplasia) or

lobule (lobular hyperplasia) and remains benign.

• Atypical hyperplasia (AH) is characterized as an accumulation of monomorphic cells forming

unusual architecturally complex patterns and is a high-risk benign lesion that can evolve in can-

cer (Hartmann et al., 2015). Two types are distinguished, atypical ductal hyperplasia (ADH) and

atypical lobular hyperplasia (ALH). The differentiation of atypical hyperplasia from low-grade car-

cinoma in situ rests on the absence of all the features of carcinoma in situ (Page and Rogers,

1992; Pinder and Ellis, 2003).

• Carcinoma in situ (CIS) is characterized as a more extensive accumulation of abnormal cells

filling the entire lumen with no evidence of invasion across the basement membrane and is stage

0 of breast cancer (Gorringe and Fox, 2017; Pinder et al., 2010; Tower et al., 2019). Two types

are distinguished, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS).

• Invasive carcinoma (IC) is characterized by cancer cells breaking through the basement mem-

brane and invading the surrounding stroma (Gannon et al., 2014). Two types are distinguished,

invasive ductal carcinoma (IDC) and invasive lobular carcinoma invasive lobular carcinoma (ILC).

• Metastatic breast cancer is characterized by the formation of distant tumors, named metastases.

To form a metastasis, the cancer cells must enter the vasculature by intravasation, survive in the

absence of adhesion, exit the blood system by extravasation, and regrow a new tumor in a different

microenvironment (Vargo-Gogola and Rosen, 2007; Veer and Weigelt, 2003; Weigelt et al., 2005).

The preferential metastatic sites for breast cancer are the bone (65.1%), lung (31.4%), liver (26%),

and brain (8.8%) (percentages from Chen et al., 2017b).

3.2.4 HETEROGENEITY AND CLASSIFICATIONS
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FIGURE 19 BREAST CANCER PROGRESSION. Representation of breast cancer progression stages. Atyp-

ical ductal hyperplasia (ADH) (or atypical lobular hyperplasia, ALH) and ductal carcinoma in situ (DCIS) (or

lobular carcinoma in situ, LCIS) are pre-invasive lesions where cancer cells are confined in the duct. ADH

progresses to DCIS at the complete filling of the mammary duct with cancer cells. The carcinoma becomes

invasive (invasive ductal carcinoma, IDC, or invasive lobular carcinoma, ILC) when the myoepithelium and base-

ment membrane are breached, allowing cancer cells to escape beyond the mammary duct confinement. The

intravasation of cancer cells in the bloodstream followed by extravasation in a distant site lead to the formation

of a distant metastasis. Created with BioRender.com

HISTOLOGICAL CLASSIFICATION

As previously detailed, breast cancers are classified based on histological and morphological

criteria from biopsies, that distinguish breast cancer based on morphological and architectural fea-

tures that define invasiveness and aggressiveness of the lesion. Two types of breast cancers are

distinguished depending if the cancer cells have broken through the basement membrane or not:

carcinoma in situ (CIS) and invasive carcinoma (IC).

The CIS is subdivided depending on the epithelium of origin, giving ductal carcinoma in situ

(DCIS) and lobular carcinoma in situ (LCIS). The DCIS is further subdivided into 5 subgroups

based on their different architectures: the comedo, cribriform, micropapillary, papillary, and solid, and

can be sub-classified into 3 grades, low, intermediate, and high, depending on the lesion size and

the presence of specific morphological features (Makki, 2015; Malhotra et al., 2010).

Invasive carcinomas are also subdivided depending on the epithelium of origin, into inva-

sive ductal carcinoma (IDC) (85%–95%) or invasive lobular carcinoma (ILC) (5%–15%). Several

types of IDC and ILC have been defined depending on their morphology and architecture. IDC

subtypes: no specific type (40%-75% of all invasive carcinomas), tubular carcinoma, invasive crib-

riform carcinoma, mucinous carcinoma, medullary carcinoma, invasive papillary carcinoma, invasive

micropapillary carcinoma, apocrine carcinoma, neuroendocrine tumor, metaplastic carcinoma, lipid-

rich carcinoma, secretory carcinoma, oncocytic carcinoma, adenoid cystic carcinoma, and acinic

cell carcinoma. ILC subtypes: classic type, pleomorphic lobular carcinoma, histiocytoid carcinoma,

signet ring carcinoma, and tubulolobular carcinoma (Makki, 2015).
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HISTOLOGICAL GRADES

The Nottingham grade (or score) system is a histological grading of breast tumors based on

their differentiation degree. It was originally developed by Bloom and Richardson (1957), and mod-

ified by Elston and Ellis (1991) from the hospital of Nottingham. Scores from 1 to 3 are determined

based on tubules (group of cells forming a ring-like structure) proportions, nuclear pleomorphism

(non-uniformity of nucleus shapes and sizes), and mitotic rate (number of mitotic figures per area)

(Table 2) (Elston and Ellis, 1991). The addition of these scores gives the histological grade of the

tumor from I to III, which serves for prognosis and clinical outcome prediction. A total score between

3 and 5 gives a low grade of I, the tumor is well differentiated with low proliferation. A total score of 6

or 7 gives an intermediate grade of II, the tumor is moderately differentiated. And, a total score of 8

or 9 gives a high grade of III, the tumor is poorly differentiated and tumor cells are highly proliferative.

HISTOLOGICAL FEATURES SCORE = 1 SCORE = 2 SCORE = 3

Tubules Majority (> 75%) Moderate (10-75%) Low (< 10%)

Nuclear pleomorphism Small regular and
uniform

Moderate increase in
size and variability Strong variability

Mitoses number per area* 0-9 10-19 >20

TABLE 2 HISTOLOGICAL GRADING SYSTEM OF BREAST CANCER. * 10 fields at the tumor periphery, number

thresholds depends on the microscope/objective used (Elston and Ellis, 1991).

CLINICAL CLASSIFICATION

The Tumor-Node-Metastasis (TNM) classification is an anatomic classification of mammary

tumors based on macroscopic features and tumor invasive capacity. The combination of 3 parame-

ters: T the primitive tumor size, N the localization and invasion degree of lymph nodes, and M the

presence of metastasis, determines the clinical stages from 0 to IV, which help clinicians to predict

the cancer prognosis and evolution to adapt therapies (Table 3) (Brierley et al., 2016).

BIOMARKERS

Three main biomarkers are commonly used to characterized mammary tumors: the estrogen

receptor (ER), the progesterone receptor (PR) and the human epidermal growth factor recep-

tor 2 (HER2) (also known as ERBB2). The ER- and PR-receptor statuses are considered positives

when ≥ 10% of tumor cells show ER- and PR-specific staining by immunohistochemistry (IHC) (Al-

lison et al., 2020; Dooijeweert et al., 2019). For the HER2-receptor status, the HER2-staining by

IHC is translated into a score depending on the stained cells percentage and staining intensity, and

confirmed by in situ hybridization (ISH) when ambiguous (Franchet et al., 2021; Xu et al., 2019).

Hence, three main subgroups of breast carcinomas can be distinguished:

• Hormone receptor-positive (HR+) breast cancers express ER or PR or both and are thereby
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STAGE T - TUMOR N - NODE M - METASTASIS DESCRIPTION

0 Tis N0 M0 Carcinoma in situ

I T1 N0 M0 Tumor < 2 cm

IIA T1
T2

N1
N0 M0 Tumor < 2 cm with minor node invasion

Tumor 2-5 cm without node invasion

IIB T2
T3

N1
N0 M0 Tumor 2-5 cm with minor node invasion

Tumor size > 5 cm without node invasion

IIIA
T1
T2
T3

N2
N2
N1/2

M0
Tumor < 2 cm with moderate node invasion
Tumor 2-5 cm with moderate node invasion
Tumor size > 5 cm with minor node invasion

IIIB T4 N0/1/2 M0
Tumor of any size with direct extension to
chest wall or skin with up to moderate node
invasion

IIIC Any T N3 M0 Important node invasion

IV Any T Any N M1 Distant metastases

TABLE 3 CLINICAL STAGES OF BREAST CANCER BASED ON THE TNM CLASSIFICATION.

sensitive to hormone therapy. The ER is expressed in 80% of breast cancers, and PR in 60-70%

of breast cancers (Turashvili and Brogi, 2017).

• HER2-positive (HER2+) breast cancers present a gene amplification or overexpression of HER2

and are thereby sensitive to HER2 targeting therapies. They account for 15 to 20% of breast

cancers.

• Triple-negative breast cancers (TNBC) are negative for these three markers, they are more ag-

gressive than the other groups and insensitive to either hormone therapy or HER2-directed ther-

apies. They account for 10 to 20% of breast cancers. Moreover, the TNBCs is a heterogeneous

group that has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2),

mesenchymal (M), mesenchymal stem-like (MSL), immunomodulatory (IM), and luminal androgen

receptor (LAR) (Wang et al., 2019a).

Other biomarkers can be used to further characterize breast carcinomas, including the androgen re-

ceptor (AR), the epidermal growth factor receptor (EGFR), p53, or Ki-67 (Silva et al., 2019; Turashvili

and Brogi, 2017).

MOLECULAR CLASSIFICATION

To better perceive the heterogeneity of breast cancers and improve tumor behavior prediction

and associated therapies, breast carcinomas can also be classified by molecular patterns. Estab-

lished by Perou et al. (2000), the molecular classification divides breast carcinomas into subtypes

based on gene expression profiles similarities using the microarray technology. Hence, 4 subgroups

have been defined by Perou et al. (2000): luminal, HER2-enriched, normal-like, and basal-like.

97



STATE OF THE ART

The luminal subtype, reflecting the expression pattern of a luminal cell of origin, was then

divided into two subgroups: luminal A and luminal B, each having a distinct expression profile

(Sørlie et al., 2001). The existence of the normal-like subtype, characterized by a strong similarity

with the normal mammary epithelial cells, is controversial as it is considered an artifact caused by the

contamination with normal epithelial cells in the microarray analyses, thus it is now removed (Weigelt

et al., 2010b; Yersal and Barutca, 2014). Other subgroups have been defined over the years: the

claudin-low subtype, introduced by Herschkowitz et al. (2007), is characterized by low expression of

genes related to tight junctions, including claudins; and the molecular apocrine subtype, introduced

by Farmer et al. (2005), is characterized by the expression of androgen receptor without expression

of the ER and PR.

Summary of the different molecular subtypes (Makki, 2015; Weigelt et al., 2010a; Yersal and

Barutca, 2014):

• Luminal A subtype reflects the luminal origin of cancer and accounts for a majority of breast

cancers (40-60%). Luminal A tumors express the luminal epithelial cytokeratins 8 and 18, ER

and/or PR but not HER2. They have a low histological grade, relatively low proliferation, and a

good prognosis.

• Luminal B subtype is also reflecting the luminal origin of cancer, and is characterized by a more

aggressive phenotype, higher proliferation and higher histological grade (intermediate) than lumi-

nal A. Tumors are ER and/or PR -positive and approximately 30% of them are HER2-positive.

• Molecular apocrine is a rare subtype (less than 4% of all breast cancers) characterized by the

overexpression of AR. Tumors are negatives for ER/PR and can be either HER2-positive or HER2-

negative. Hence the HER2-negative apocrine tumors are triple-negative. They have an interme-

diate histological grade and a poor prognosis but a better one than other triple-negative breast

carcinomas (Arciero et al., 2020).

• HER2-enriched subtype is characterized by definition by a strong expression of HER2 and ER/PR

is usually negative. HER2 positivity confers more aggressiveness, tumors are highly proliferative,

have a high histological grade and a poor prognosis, but are sensitive to HER2-directed therapies.

• Basal-like subtype reflects the basal origin of cancer, as tumors express high levels of basal

myoepithelial markers. Tumors are triple-negative for ER, PR, and HER2. They have a high

histological grade, aggressive clinical behavior, and a high rate of metastasis.

• Claudin-low subtype is characterized by low expression of genes related to tight junctions and

cell-cell adhesion, including claudins 3, 4, 7, occludin, and E-cadherin. Tumors are triple-negative

for ER, PR, and HER2, and are highly expressing epithelial to mesenchymal transition genes and

stemness related genes. They are highly proliferative, have a high histological grade, and have

poor clinical outcomes.

Altogether, the different classifications are complementary and in constant evolution, a sum-

mary of the main breast cancer subgroups commonly referred to, with associated features, is rep-
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resented in Figure 20. The use of the different classifications, histological, clinical, and molecular is

necessary to homogenize and improve therapeutic decision-making.

PROLIFERATION

FREQUENCY

PHENOTYPE

PROGNOSIS

ER

PR

HER2

Mesenchymal
-like

Luminal/
Epithelial

-like

Good Poor

40-60% 10-30% 15-20% 10-20%

TNBC
HER2-enrichedLuminal BLuminal A

Basal-like Claudin-low

FIGURE 20 BREAST CANCER MAIN SUBGROUPS CHARACTERISTICS. The four main subgroups (or sub-

types) of breast cancer along with their main characteristics: associated phenotype, prognosis, biomarkers

expression (plus or minus), proliferation level (high or low), and estimated frequency (Dai et al., 2015; Eroles et

al., 2012; Kumar et al., 2015; Niklaus et al., 2021; Parise and Caggiano, 2014; Weigelt et al., 2010a).

3.2.5 THERAPIES

Different therapies are used to treat breast cancers: surgery, radiotherapy, chemotherapy,

hormone therapy, and targeted therapies. The therapeutic choice depends on the cancer subtype,

the degree of lymph nodes invasion, the expression of specific biomarkers such as the hormone

receptors or HER2, the presence of metastases, and patient age and condition.

In the case of a non-metastatic breast cancer diagnosis, the surgery is systematically per-

formed (Figure 21). The surgery can be partial (tumorectomy, removal of the tumor) or total (mastec-

tomy, removal of the mammary gland) depending on the tumor size, and some adjacent lymph nodes

can also be surgically removed.

A chemotherapeutic treatment can be delivered to reduce the tumor size prior to surgery

(neoadjuvant therapy) or after surgery (adjuvant therapy) (Leon-Ferre et al., 2021; Spring et al.,

2022). Common chemotherapeutic drugs are anthracyclins (doxorubicin, epirubicin), cyclophos-

phamides, and taxanes (paclitaxel), generally used in combination (e.g. doxorubicin and cyclophos-

phamide followed by paclitaxel (Esposito et al., 2014; Lee and Nan, 2012; Núñez et al., 2016).

Anthracyclins impair the DNA structure, preventing DNA replication and causing apoptosis, while tax-

anes suppress the microtubule formation, blocking the cell division and leading to apoptosis (Conte

et al., 2000; Nabholtz and Gligorov, 2005).

Coupled with the neoadjuvant or adjuvant chemotherapy, the anti-HER2 therapy is used
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BREAST CANCER DIAGNOSIS

RADIOTHERAPY

SURGERY

HORMONE THERAPY

HER2 TARGETED THERAPY±

±

±

CHEMOTHERAPY

HER2 TARGETED THERAPY±
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SURGERY
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±

±

FIGURE 21 SCHEME OF CONVENTIONAL THERAPEUTIC CARE TO TREAT NON-METASTATIC BREAST CANCER.

against HER2-enriched breast cancers and is either composed of a monoclonal anti-HER2 antibody

(trastuzumab, pertuzumab) or a tyrosine kinase inhibitor (lapatinib) (Escrivá-de-Romaní et al., 2018;

Wuerstlein and Harbeck, 2017).

The radiotherapy is a regional treatment essential to reduce the risk of relapse of breast can-

cers after surgery (Clarke et al., 2006a). The radiotherapy treatment can be directly delivered during

surgery for high precision irradiation of the targeted area, it is called intraoperative radiotherapy (Pilar

et al., 2017; Vaidya et al., 2004). Then, after surgery, the conventional postoperative radiotherapy

protocol is used in a fractionated deliverance of a total of 50 Gy, split into 25 fractions of 2 Gy delivered

over 5 weeks (5 fractions per week) (Saksornchai et al., 2021; Speers and Pierce, 2016). However,

moderate hypofractionated and ultra-hypofractionated radiotherapy protocols have emerged due to

the radiotherapy precision improvements allowing to deliver of higher doses to the tumor while limiting

the dose received by surrounding normal tissues, and they are more convenient in terms of patient

compliance and cost. Moderate hypofractionation uses fewer but higher dose fractions, commonly 40

Gy in 15 fractions over 3 weeks (e.g. the START trial, Bentzen et al., 2008a; Bentzen et al., 2008b;

Haviland et al., 2013) while ultra-hypofractionation uses even higher doses per fraction, commonly

26 Gy in 5 fractions over 1 week (e.g. the FAST-Forward trial, Brunt et al., 2016; Brunt et al., 2020;

Brunt et al., 2021) (Kim et al., 2021; Saksornchai et al., 2021; Postoperative radiotherapy for breast

cancer: hypofractionation RCR consensus statements, 2021).

The hormone therapy is used to treat hormone-dependent tumors such as the luminal A

and B subtypes expressing the ER and PR. Selective estrogen receptor modulators (SERM) are ER

ligands acting like estrogens in some tissues but blocking their action in others. The SERM-induced

conformational changes of the estrogen receptor (ER) change its interactions with coactivators or

corepressors and subsequently initiate or suppress the transcription of the ER target genes (Lewis

and Jordan, 2005; Shelly et al., 2008). Tamoxifen is a SERM that has been clinically used for the

last 40 years to treat ER-positive breast cancers, but the acquisition of tamoxifen resistance (tumors
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becoming hormone-independent) remains a major challenge to improving breast cancer treatment

efficacy (Ali et al., 2016; Chang, 2012).

3.3 BREAST CANCER STEM CELLS

3.3.1 MARKERS AND ISOLATION

The study of CSCs requires markers to identify, quantify, and isolate them. Markers used

for breast CSCs are similar to those used for normal stem cells but are not universal either between

tumors or within the same tumor. Thereby, depending on the cell line or model studied, some markers

are more fitted than others. This CSC phenotype heterogeneity thus requires the use of several

markers completed with functional validation of their stem cell capacities, such as their self-renewal

ability.

SURFACE MARKERS

The expression of surface markers is one of the first means used to identify CSCs (Bonnet

and Dick, 1997). In breast cancers, several markers can be used to isolate the CSC population.

The most common combination of markers used is a high expression of CD44 coupled with a low

expression of CD24. The CD44high/CD24-/low population was one of the first to be found with stem

cell characteristics (Al-Hajj et al., 2003).

CD44 is a membrane glycoprotein and functions as a hyaluronic acid receptor involved in

the regulation of cell migration, adhesion, proliferation, and survival while CD24 is a surface protein

involved in cell adhesion (Orian-Rousseau, 2015).

The CD44high/CD24-/low labeling identifies a tumorigenic cell population capable of regenerat-

ing a heterogeneous population, by forming mammospheres in vitro or tumors in vivo (Al-Hajj et al.,

2003; Ponti et al., 2006). However, this combination of markers is not usable for all breast cancer

subtypes and lineages, and the proportions of CD44high/CD24-/low cells vary between different cell

lines. Indeed, these markers are adequate for the luminal subtypes, but not for the basal one as the

majority of cells are CD44high/CD24-/low (nearly 100% for the MDA-MB-231 cell line) (Fillmore and

Kuperwasser, 2008; Stuelten et al., 2010). Yet, this labeling is still widely used in the literature.

CD44 and CD24 are also used as prognosis biomarkers for breast cancers. The CD44+/CD24-

phenotype predicts a poor clinical outcome in TNBC but can be considered a favorable prognostic in

hormone receptor-positive breast cancers (Ahmed et al., 2012; Giatromanolaki et al., 2011; Kim et

al., 2011; Wang et al., 2017a).

Additionally, the CD133 transmembrane protein is a CSC marker in several cancers (e.g. in

glioblastoma), and used in combination with other markers in breast cancers for CSC population

identification (Croker et al., 2008; Joseph et al., 2019; Mansour and Atwa, 2015).
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ENZYMATIC ACTIVITY

The aldehyde dehydrogenase (ALDH) is an enzyme responsible for the oxidation of aldehydes

into carboxylic acids and is involved in the oxidative metabolism of retinol into retinoic acid. The

ALDH activity is higher in MaSCs and mammary CSCs and is associated with poor prognosis and

resistance to treatment (Croker et al., 2008; Ginestier et al., 2007; Tanei et al., 2009). Hence, the

Aldefluor test has been developed to identify normal and cancerous stem cells based on the ALDH

enzymatic activity detection (Ginestier et al., 2007). This test relies on a non-fluorescent substrate,

which becomes fluorescent when cleaved by ALDH enzymes.

ALDH+/high cells are characterized by increased tumorigenicity as well as self-renewal and

differentiation capabilities. In addition, the ALDH inhibition sensitizes ALDHhigh/CD44+ CSCs to

chemotherapy and radiation therapy (Croker and Allan, 2011). In breast CSCs, the high ALDH

activity is mainly due to the ALDH1A1 and ALDH1A3 isoforms (Marcato et al., 2011a; Marcato et

al., 2011b). The expression of a fluorescent protein under the control of the ALDH1A1 promoter has

been used as a CSC reporter system, allowing the live tracking of breast CSCs (Bidan et al., 2019).

The ALDH activity is also used to detect CSCs in other cancer types such as bladder and cervical

cancers (Xu et al., 2015).

SIDE POPULATION

The excluded population, or “side population”, is based on the high activity of efflux pumps of

the ABC transporter family, which are over-represented at the membrane of normal and cancer stem

cells (Britton et al., 2012). It can be identified by flow cytometry using a fluorescent vital dye exclusion

test such as Hoechst 33342 or Rhodamine 123. These membrane transporters are notably involved

in the efflux of chemotherapeutic drugs by CSCs and are thus associated with chemoresistance (Wu

and Alman, 2008; Zhou et al., 2001). However, the side population consists of a CSC-enriched pop-

ulation, and not all CSCs can be identified by the ability to exclude vital dyes (Behbod and Vivanco,

2015; Britton et al., 2012; Golebiewska et al., 2011). This demonstrates the requirement for marker

combinations to isolate CSCs.

LOW PROTEASOME ACTIVITY

Several cellular functions are regulated by the proteasome, such as DNA repair mechanisms

and cell cycle regulations. CSCs have been shown to have low proteasome activity in several can-

cer models, including breast cancer (Vlashi et al., 2009). Hence, the use of a proteasome activity

reporter allows for the detection and isolation of a CSC-enriched population (Vlashi et al., 2013;

Vlashi et al., 2014). A reporter system used in breast cancer consists in the stable expression of

a fusion fluorescent protein, composed of the C-terminal degron of murine ornithine decarboxylase

(cODC) and a fluorescent protein ZsGreen, which is specifically degraded by the proteasome, thus,

an accumulation of fluorescence reveals a low proteasomal activity (Hoyt et al., 2005).
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3.3.2 FUNCTIONAL TESTS

In addition to the expression of specific markers, functional tests have also been developed

and are recognized as essential tests to define a stem cell population: the SFC in vitro test and the

tumorigenicity in vivo test.

SPHERE FORMING CAPACITY IN VITRO ASSAY

The sphere-forming capacity (SFC) test is based on the ability of stem cells to grow in the ab-

sence of anchorage. The cells are seeded in small quantities in a specific sphere-forming medium,

enriched in growth factors and without serum, and under non-adherent culture conditions. The num-

ber of spheres formed is quantified to estimate the percentage of sphere formation (Dontu et al.,

2003; Lombardo et al., 2015). The sphere culture allows for the selection of both CSCs and progeni-

tors in the first step. Then, spheres can be cultivated over several generations to eliminate progenitor

cells, as the sphere-forming CSCs have the ability to self-renew over generations.

TUMORIGENICITY IN VIVO ASSAY

The tumorigenicity test is based on the self-renewal, differentiation, and tumor-initiating ca-

pacities of CSCs. A prospective cell population is injected into mice in limited numbers of cells. The

presence or absence of tumor development defines the stemness of the tested population, or at least

its enrichment in CSCs, as only CSCs should be able to regenerate a tumor. Important features

observed are the abilities of these cells to form tumors in series, revealing their self-renewal capacity,

and to reproduce the heterogeneity of the initial tumor, revealing their differentiation capacity (O’Brien

et al., 2010). This technique remains the best method for characterizing tumor-initiating cells and also

allows for the study of cell differentiation capacity by examining the heterogeneity of newly formed

tumors. (Visvader and Lindeman, 2008).
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[ KEY POINTS

å Above 2 millions of new breast cancers cases are diagnoses each year. It is the most
diagnosed cancer worldwide, and the first cause of cancer mortality for women.

å Breast tumors are heterogeneous, hence several classifications relying on different param-
eters, histological, clinical and molecular ones, have been established to improve clinical
outcome predictions and therapeutic decisions.

å Breast cancers can be divided into four main subtypes based on their molecular patterns:
luminal A, luminal B, HER2-enriched and TNBC, or defined by their biomarker expression
profiles as ER/PR-positive, HER2-positive, and triple-negative.

å Breast CSCs can be identified by several markers such as surface markers
(CD44high/CD24-/low), enzymatic activity (ALDHhigh), exclusion of vital dye by efflux pumps
(Hoechst side population), or low proteasome activity. In addition, to confirm their stem cell
properties, functional tests must be performed such as the sphere-forming capacity (SFC)
in vitro assay and the tumorigenicity in vivo assay.
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4.1 DNA METHYLATION

4.1.1 PRINCIPLE

DNA methylation is characterized by the presence of an additional methyl group at the 5’

position of cytosine residues (Figure 22). The 5-methylcytosine (5mC) is a stable and heritable

alteration that does not involve modifications of the DNA sequence itself, and has a regulatory role
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on gene expression, thereby it is classified as an epigenetic mark.

Biologics: Targets and Therapy 2012:6

the term "epigenetics” was applied to a specific chemical 

modification, namely DNA methylation, that could affect 

the inheritance of gene activities without any changes in 

DNA base sequences.5 Subsequently, the epigenetic label has 

also been applied to many histone modifications and other 

chromatin modifications that regulate transcription and/or 

replication,6,7 including gene silencing and X-inactivation, 

and to the regulatory actions of noncoding RNAs.8 Some 

investigators have argued that histone modifications per 

se are not epigenetic,9 as they have not been conclusively 

demonstrated to be self-propagating (heritable); however, 

as specific histone modifications can induce DNA methyla-

tion events,10,11 and DNA methylation events affect histone 

acetylation and histone methylation, there is an indirect heri-

tability to these events.12 More recently, several authors have 

attempted to clarify the definition of epigenetics to encompass 

all that it has come to mean;13,14 in this paper we will take a 

fairly broad definition of "epigenetics” as modifications that 

do not involve DNA base changes, that play a central role in 

controlling tissue and signal-specific gene expression, and 

that are responsible for the determination of gene expression 

profiles of tissues and cellular subsets.

Epigenetic modifications
Epigenetic modifications act by changing the way that 

DNA and histones interact in the nucleus, thereby allowing 

or preventing access by transcription factors and RNA 

polymerases, and regulating gene expression. Understanding 

the processes by which the epigenetic modifications result 

in a specific outcome is a very topical area of research, but 

there are still some large gaps in the specifics of how some 

of these modifications exert their effects.

DNA methylation
DNA methylation is an important epigenetic modification 

and is of great interest to autoimmunity, as treatment with 

the DNA methylation inhibitor 5-azacytidine is sufficient 

to induce autoimmune disease in experimental animals.15,16 

In mammals, DNA methylation typically involves the 

attachment of a methyl group to cytosine moieties in CpG 

dinucleotides (Figure 2) and occurs at ∼70%–80% of CpG 

sites throughout the genome.17 Methylated cytosine can be 

deaminated to thymine, either spontaneously or via enzymatic 
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Figure 2 Methylation of cytosines in DNA. 
Notes: in the presence of DNA methyl-transferases (DNMTs), methyl groups 
donated from S-adenosylmethionine (SAM) convert cytosine to 5-methylcytosine. 
5-hydroxymethylcytosine can be generated by oxidation of 5-methylcytosine, via the 
action of the ten-eleven translocation (TET) family of enzymes. 
Abbreviation: SAH, S-adenosylhomocysteine.

Histone tail
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(accessible
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Figure 1 (A) Cartoon derived from the crystal structure (Protein Data Bank iD: 1aoi298) of the histone octamer (H2A, blue; H2B, purple; H3, green; H4, orange) surrounded 
by 1.65 turns of DNA (∼147 base pair fragment). (B) in compacted chromatin, genes (represented in pink) are inaccessible and inactive, with hypermethylation of their 
promoter regions ( ), and there are few posttranslational modifications to the histones. Epigenetic modifications in the form of demethylation of gene promoter region, 
posttranslational modification of the histones ( ), or swapping of histone subunits ( ), lead to opening up of the chromatin. The gene is then accessible to transcription factors 
and RNA polymerase.
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FIGURE 22 METHYLATION OF CYTOSINE IN DNA. The DNA methyltransferases (DNMTs) convert cytosine

to 5-methylcytosine by adding a methyl group, donated from S-adenosylmethionine (SAM) molecules. The

oxidation of 5-methylcytosine by the TET family of enzymes generate 5-hydroxymethylcytosine. SAH = S-

adenosylhomocysteine. Figure from Greer and McCombe (2012).

In vertebrates, the cytosine methylation mainly occurs at CG dinucleotides, cytosine followed

by guanine, called CpG (cytosine-phosphate-guanine) sites. But, non-CpG methylation has also

been found in stem cells (Lister et al., 2009; Ziller et al., 2011). In plants, the cytosine methylation

occurs in several contexts: CG, CHG (C followed by a non-G followed by a G), and CHH (C followed

by two non-Gs) (Chan et al., 2005; Lister et al., 2008; Zhang et al., 2006).

The human genome contains ∼29 millions of cytosine-phosphate-guanines (CpGs) and 60%

to 80% of them are methylated (Kim and Costello, 2017; Lister et al., 2009; Tost, 2010). In total,

the 5-methylcytosines represent ∼1% of all bases of the human genome (Ehrlich et al., 1982; Tost,

2010).

The CpG sites can be clustered into regions named CpG islands (CGIs), which are regions

of high CG density. Approximately 7% of CpGs are located in CGIs (Deaton and Bird, 2011). Several

definitions of a CGI exist and differ due to a few variations of parameters, but in general, a CpG island

corresponds to a 200 or 500 bp minimum sized region with a GC content higher than 50% and an

observed versus expected ratio higher than 0.6 for the occurrence of CpG sites (Gardiner-Garden

and Frommer, 1987). These islands extent is generally from 0.5 to 3 kb, and are estimated to be

∼30,000 in the human genome, accounting for ∼2% of the genome (Cross and Bird, 1995; Tost,

2010).

4.1.2 ESTABLISHMENT, MAINTENANCE, AND REMOVAL

For DNA methylation patterns to be established, maintained or erased, the mammalian DNA

methyltransferase (DNMT) family of enzymes catalyze the transfer of a methyl group from S-

adenosylmethionine (SAM) to cytosine, while the ten-eleven translocation (TET) family proteins

catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) (Figure 22)

(Chen and Riggs, 2011; Ginno et al., 2020; Jones and Liang, 2009; Meng et al., 2015).
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FIGURE 23 REPRESENTATION OF DNA METHYLATION STATES WITH ENZYMES INVOLVED.

MAINTENANCE OF DNA METHYLATION

DNA methylation motifs are transmitted through DNA replication with high fidelity. During repli-

cation, the template strand is still methylated while the newly synthesized strand lacks 5-methylcytosines,

the DNA is hemimethylated (Figure 23). Among the DNMT family of enzymes, the DNMT1 restores

the symmetrical DNA methylation, as it has a strong preference for hemimethylated CpG sites, by

coping the pre-existing methylation patterns to the new strand (Chen and Li, 2004; Chen and Riggs,

2011; Pradhan et al., 1999). The DNMT1-mediated DNA methylation maintenance involve the ubiqui-

tin like with PHD and ring finger domains 1 (UHRF1) protein for recognition of hemimethylated DNA.

Indeed, by binding to hemimethylated sites, the hemimethylated DNA-binding protein UHRF1 helps

recruiting DNMT1 to DNA replication foci to methylate cytosines of the newly synthesized strand

(Bostick et al., 2007; Bronner et al., 2019).

DE NOVO DNA METHYLATION

To establish new methylation patterns, de novo methylation on unmethylated CpG sites is

required. The DNMT3A and DNMT3B are methyltransferases active on unmethylated DNA and re-

sponsible for the establishment of methylation motifs during early development (Figure 23) (Edwards

et al., 2017). These two enzymes have no preference for hemimethylated DNA, though they can also

participate in the maintenance of DNA methylation (Chen and Riggs, 2011; Okano et al., 1999).

The activity of DNMT3A and DNMT3B can be enhanced by the DNMT3L protein, which does

not have a methyltransferase activity itself, by direct interaction and complex formation to stimulate

de novo DNA methylation (Chen et al., 2005; Jia et al., 2007; Suetake et al., 2004).

The establishment of new DNA methylation is strongly linked to histones post-translational
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modifications epigenetic marks. The DNMT3A and DNMT3B can be recruited by proteins asso-

ciated with histone marks such as G9A, the histone methyltransferase responsible for histone H3

lysine 9 (H3K9) mono- and dimethylation (Epsztejn-Litman et al., 2008). And, for example, de novo

methylation is associated with the PRC2 (polycomb repressive complex 2) activity (Viré et al., 2005).

PRC2 is responsible for the H3K27me3, a repressive mark of transcriptional activity. Also, de novo

methylation is associated with the histone deacetylase (HDAC) activity and the lysine demethylase

(KDM)1 activity which induces the histone H3 lysine 4 (H3K4) demethylation (Dobosy and Selker,

2001; Wang et al., 2009a). Both H3K4me3 and histone acetylation (HAc) are marks associated with

transcriptional activation, therefore their removal is associated with transcriptional repression.

REMOVAL OF DNA METHYLATION

The erasure of DNA methylation patterns can be passive, through the absence of DNA methy-

lation maintenance during DNA replication, or active through enzymatic reaction mediated by TET

enzymes (Figure 23) (Chen and Riggs, 2011). The TET proteins, composed of TET1, TET2 and

TET3 proteins, can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC).

Then, the 5-hydroxymethylcytosine (5hmC) can be converted to 5-formylcytosine (5fC) and

5-carboxylcytosine (5caC) by TET enzymes. 5-carboxylcytosine (5caC) is then considered as a

defective base and is excised by base excision repair (BER) pathways via the thymine-DNA glycosy-

lase (TDG), completing the DNA demethylation process (He et al., 2011; Ito et al., 2011; Shen et al.,

2013).

4.1.3 ROLE OF DNA METHYLATION

Although approximately 7% of CpG sites are located in CGIs, these are prevalent in gene

promoters (Deaton and Bird, 2011). Approximately 70% of the gene promoters have a high CpG

concentrations (Saxonov et al., 2006). And, their hypermethylation is frequently associated with

transcriptional repression (Figure 23) (Lande-Diner et al., 2007). Moreover, the distal regulatory

elements such as enhancers or silencers, capable of binding transcription regulation factors, are

also subjected to DNA methylation; thereby, intergenic DNA methylation also contributes to the gene

expression regulation (Li et al., 2018a; Schübeler, 2015).

Methylated cytosines can interact with specific proteins, triggering alterations of the chromatin

structure, affecting the transcription rate of the genes nearby (Jones and Takai, 2001; Moore et al.,

2013; Schübeler, 2015). Proteins containing an methyl-CpG-binding domain (MBD), such as MBD1,

MBD2, and MeCP2, can interact with methylated cytosines and recruit proteins, transcription re-

pression factors, or chromatin modifiers including HDAC, all driving to repression of the transcription

(Baubec et al., 2013; Klose and Bird, 2006; Nan et al., 1998).

Jones and Takai (2001) explain that the methylation of cytosines can serve as an efficient

and heritable silencing mechanism without relying on DNA-protein interactions. Indeed, the DNA
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methylation profile conveys information on gene regulation from parent cell to daughter cells through

cellular replication, without alteration of the DNA sequence. It provides an additional layer of informa-

tion enabling the establishment of epigenetic marks, according to Mitchell et al. (2016). In this way,

the DNA methylation maintains gene regulatory programs and function as a cellular memory (Kim

and Costello, 2017; Shipony et al., 2014). The DNA methylation is notably required for the expres-

sion regulation of imprinted genes — genes that show differential expression between the parental

alleles in diploid cells — as well as for the X chromosome inactivation (Barlow and Bartolomei, 2014;

SanMiguel and Bartolomei, 2018).

The DNA methylation, along with the cellular epigenome, safeguards the cellular differentia-

tion, identity, and diversity, critical features required for a normal development, where pluripotent cells

differentiate into a variety of cell types (Kim and Costello, 2017; Okano et al., 1999).

4.1.4 DNA METHYLATION AND EPIGENETIC REPROGRAMMING

The study of embryonic stem cells (ESCs) provided many insights on the role of DNA methy-

lation in early development and cell differentiation. A wave of global resetting of DNA methylation

occurs in the early embryo and determines the establishment of the methylation patterns (Edwards

et al., 2017; Lienert et al., 2011; Smith and Meissner, 2013). The CGIs located in promoters of

many genes necessary for development are found hypomethylated in ESCs, while the CGIs in inter-

genic regions are frequently subjected to DNA methylation during development, suggesting potential

regulatory functions (Illingworth et al., 2010). The hypomethylation of promoter-associated CGIs sug-

gests the exclusion of DNA methyltransferases and transcription factor binding to initiate transcription

of genes required for development (Brandeis et al., 1994).

Several studies have shown the presence of specific regions or elements, such as transcrip-

tion factors binding sites, contributing to DNA methylation states, particularly for the maintenance of

unmethylated CGIs at promoters in ESCs, and for their differentiation (Brandeis et al., 1994; Dickson

et al., 2010; Lienert et al., 2011). Genes required for the pluripotency of ESCs, such as NANOG and

OCT4 (POU5F1), switch from an unmethylated state associated with active transcription to a methy-

lated state, associated with their transcriptional repression upon differentiation (Deb-Rinker et al.,

2005; Yeo et al., 2007). Additionally, DNA methylation and histones modifications have been shown

to inter-operate to establish specific chromatin conformations, through context-dependent cross-talk

and addition of mutually exclusive marks or co-regulatory marks (Cedar and Bergman, 2009). These

epigenetic marks determine the lineage commitment of cells during development.

Once the DNA methylation patterns and the chromatin structures modulating the DNA acces-

sibility are established during development, the cell-type-specific gene expression programs are sta-

bilized. The expression of stem-specific or lineage-unrelated genes is prevented by the epigenome,

thus preserving the cell phenotype and its inheritance (Mohn et al., 2008). However, the epige-

netic reprogramming through global DNA demethylation — through single-stranded DNA breaks and
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BER — is also required for the germ line formation (primordial germ cells, PGCs), to erase the ge-

nomic imprint and to return cells to a pluripotent state (Reik, 2007). Thereby, as explained above,

there are two waves of epigenetic reprogramming in the mammalian life cycle, one during the early

embryogenesis, establishing the expression patterns in cells for proper development of the organ-

ism, and the other for the germ line formation, resetting the epigenome in preparation for the future

offspring (Xavier et al., 2019; Zeng and Chen, 2019).

Artificially induced reprogramming of somatic cells into stem-like cells has been possible by

the reexpression of four transcription factors — OCT4, SOX2, C-MYC, and KLF4 — giving rise to iPS

cells (Takahashi et al., 2007; Takahashi and Yamanaka, 2006). Along with the acquisition of stem

cell properties, global DNA methylation profiles changes have been observed; the profiles are similar

to those in ESCs, despite residual methylation signatures from the original donor state of the iPS cell

(Kim et al., 2010; Nishino and Umezawa, 2016). While most of the DNA methylation changes are

towards the hypermethylation of CpG sites in iPS cells, for a limited number of genes associated with

stemness, such as OCT4 and NANOG, their promoters lose their DNA methylation marks (Olariu et

al., 2016; Takahashi et al., 2007; Takahashi and Yamanaka, 2006).

4.1.5 DNA METHYLATION IN CANCER

The cancer cells and normal stem cells present DNA methylation differences. In general,

a decrease of CpG methylation is observed in tumor cells, but both hypo- and hypermethylation

events have been reported. Indeed, tumor suppressor genes are silenced by DNA methylation dur-

ing tumorigenesis while proto-oncogene are upregulated by removal of DNA methylation (Baylin and

Jones, 2016; Kulis and Esteller, 2010). For example the promoter of the tumor suppressor gene

BRCA1 gene is generally hypermethylated in breast cancers (Esteller et al., 2000). Hanahan (2022)

integrated in the hallmarks of cancer the “nonmutational epigenetic reprogramming” hallmark, de-

fined as a genome reprogramming exclusively caused by epigenetically regulated changes in gene

expression, meaning that mutations are not always required for cancer development and progression

(Darwiche, 2020; Huang, 2012; Nam et al., 2021). For example, hypoxia-induced TET-mediated

epigenetic changes could drive the initiation of tumorigenesis if the cell-of-origin resides in a hypoxic

area (Hanahan, 2022; Michealraj et al., 2020; Thienpont et al., 2016). Hence, DNA methylation

changes participates in cancer initiation and progression.

The DNA methylation patterns of cancer cells can serve as biomarkers for diagnosis. Indeed,

the measurements of DNA methylation associated to genes, such as bone morphogenetic protein

(BMP) 3, TWIST1, or O6-methylguanine-DNA methyltransferase (MGMT) coding for a repair protein,

are used in biomarker assays (Caccese et al., 2022; Kessel et al., 2016; Koch et al., 2018).

To force the reexpression of genes with an hypermethylated promoter in cancer cells, espe-

cially genes required for the cancer cell survival, demethylation agents have been used as therapeutic

agents in AML (Dombret et al., 2015; He et al., 2014; Wongtrakoongate, 2015). The 5-azacytidine
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(also known as 5-aza-CR, azacitidine or Vidaza) and 5-aza-2’-deoxycytidine (also known as 5-aza-

CdR, decitabine or Dacogen) agents are two nucleoside analogs of the cytosine base. They are

incorporated during DNA replication and, as the binding of DNMTs to these analogs by covalent in-

teraction is irreversible, it triggers the DNMTs excision from DNA and its subsequent degradation by

the proteasome, resulting in DNMT depletion and methylation inhibition after several rounds of DNA

synthesis (Ghoshal et al., 2005; Mehdipour et al., 2020).

4.1.6 DNA METHYLATION AND STEMNESS

DNA methylation regulates the self-renewal and pluripotency of both normal and cancer stem

cells. First, in normal cells, NANOG and OCT4 genes are regulated by DNA methylation throughout

the differentiation (Fouse et al., 2008; Hattori et al., 2007; Li et al., 2007b).

Indeed, Deb-Rinker et al. (2005) have reported an increase in DNA methylation at the NANOG

upstream region during the retinoic acid-induced differentiation of NT2 cells, which is correlated with

a decrease in NANOG expression (pluripotent cell line) into neurons. Similarly, Li et al. (2007b)

observed an hypermethylation of OCT4 and NANOG promoter regions upon retinoic-acid-induced

differentiation of ESC. At day 0, the OCT4 promoter is methylated at 0% and the NANOG promoter

at 7.6%, however, after 3 days of induced differentiation, the OCT4 promoter methylation increased

up to 22.4% and the NANOG promoter up to 59.7%. Additionally they highlighted the involvement

of de novo methylation by DNMT3A and DNMT3B as the knock-down of these two genes abol-

ished the differentiation-induced hypermethylation of both promoter regions of OCT4 and NANOG.

Indeed, after 3 days, the OCT4 and NANOG promoter methylation levels are 4.7% and 17.2% in

DNMT3A knockdown cells, 3.6% and 10.1% in DNMT3B knockdown cells, and 0% and 3% in the

double-knockdown cells, respectively (Li et al., 2007b). During ESC differentiation, the orphan nu-

clear receptor germ cell nuclear factor (GCNF) binds to the OCT4 upstream region and recruits MBD

proteins and DNMT3A, resulting in hypermethylation and repression of OCT4 (Gu et al., 2005; Gu

et al., 2011; Wang et al., 2016). Furthermore, the DNA methylation status of NANOG and OCT4

promoters have been correlated with their expression levels throughout the differentiation of ESC

(Hattori et al., 2007; Wang et al., 2009b). In addition, the epigenetic regulation of OCT4 and NANOG

also involve histones modifications and chromatin remodeling (Fouse et al., 2008; Hattori et al., 2007;

Kashyap et al., 2009; Topalovic et al., 2017). In cancer stem cells, the promoter region of NANOG

have also been found hypomethylated (Liu et al., 2020c; Wang et al., 2013c). Indeed, Wang et al.

(2013c) observed lower methylation levels of the NANOG promoter in CSCs compared to non-CSCs

(42% and 89% respectively), correlated to an upregulation of its expression in hepatocellular carci-

noma.

Aside from pluripotency factors promoters, stem cells exhibit a different methylation profile

than differentiated cells, both in normal and cancer cells (Bibikova et al., 2006; Bock et al., 2012;

Helou et al., 2014; Lee et al., 2015; Meissner et al., 2008; Yu et al., 2020). Bock et al. (2012)
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describe DNA methylation patterns as a fingerprint of the cell phenotype which includes the pluripo-

tent state. The CSC-specific methylation patterns have been studied in several models, including

esophageal cancer, glioblastoma and breast cancer, in which several DMRs between non-CSCs and

CSCs are identified (Helou et al., 2014; Lee et al., 2015; Li et al., 2018b; Yu et al., 2020). By a whole-

genome bisulfite sequencing (WGBS) comparative analysis between breast CSCs and non-CSCs

(MDA-MB-231 cell line), Li et al. (2018b) identified 8,007 genes associated with an hypermethylated

promoter and 6,175 genes associated with an hypomethylated promoter. The gene ontology enrich-

ment analysis revealed association with cell development processes and cell–cell signaling. Addi-

tionally, the integrative co-analysis of the transcriptome, methylome and histone modifications high-

lighted 23 genes, including 8 downregulated tumor suppressor genes, with a consistent regulation

from both promoter DNA methylation and histone modification at transcription start site (TSS) cor-

related with transcriptomic expression. The PTPN14, WWC1, NOS1AP, OBSCN, FAM189B, FHL3,

ROBO1, ARHGAP10, ARAP1, FRS3, NAV2, MAPK13, MTMR3, RERE, and AC093838.4 genes

are found hypermethylated and downregulated, and the PKN2, CRCP, TMEM71, PPTC7, R3HDM1,

CDC42EP3, SLC6A3, and PTPRN2 are found hypomethylated and upregulated in CSCs (Li et al.,

2018b).

4.1.7 EFFECTS OF RADIATIONS ON DNA METHYLATION

The radiation exposure, either a single dose or fractionated doses, induces DNA methylation

changes in cancer cells (Antwih et al., 2013; Bae et al., 2015; Danielsson et al., 2020; Kuhmann et al.,

2011; Miousse et al., 2017). For instance, Antwih et al. (2013) irradiated MDA-MB-231 breast cancer

cells at 2 or 6 Gy and analyzed DNA methylation differences from 1 to 72 hours post-irradiation, using

the Illumina Infinium 450K methylation profiling array. They observed differentially methylated genes

associated with cell cycle regulation, DNA repair mechanisms and apoptosis pathways, indicating the

involvement of DNA methylation in the cellular response to irradiation. Notably, the IGF1R (tyrosine

kinase receptor), KRAS (GTPase, oncogene) and HDAC4 (histone deacetylase) genes were found

differentially methylated after 6 Gy irradiation. Another study, Kuhmann et al. (2011), used a fraction-

ated radiation treatment on MCF7 breast cancer cells (5×2 Gy per week, for a total of 10 Gy and

20 Gy) and identified differentially methylated genes by methyl-CpG immunoprecipitation followed by

CGI microarray. From this analysis, they selected 15 CGIs differentially methylated for further vali-

dation by MassARRAY, and confirmed a methylation increase at the ADAMTS9 (metallopeptidase)

promoter, FOXC1 (transcription factor) gene, and intragenic CGI in the TRAPPC9 (trafficking protein),

and a methylation decrease at the AMIGO3 (adhesion molecule) promoter.

Moreover, the irradiation affects gene expression, that may include DNMTs in specific model

and context (Miousse et al., 2017). Mice exposed to radiations showed decreased expression of DN-

MTs associated to a general decrease of DNA methylation in hematopoeitic tissues (Miousse et al.,

2014; Pogribny et al., 2005). In the MDA-MB-231 breast cancer cell line, Antwih et al. (2013) reported
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a gradual decrease of the DNMT1 protein levels in the 72h after 6 Gy irradiation. In nasopharyngeal

carcinoma, Wu et al. (2020) found DNMT3B expression upregulated after exposure to radiations,

mRNA and protein levels increasing gradually within the 48h following irradiation, while DNMT1 and

DNMTA expressions were not consistently affected. They highlighted the role of DNMT3B in the

radioresistance of these cells through methylation of genes coding for p53 and p21.

Furthermore, the radiation-induced DNA methylation changes have been associated to DNA

repair mechanisms and genomic instability (Antwih et al., 2013; Armstrong et al., 2012; Kaup et al.,

2006; Sutton et al., 2019). Sutton et al. (2019) observed that prostate cancer cells with different

responses to DNA damage have also distinctive DNA methylomes. Indeed, the resistant cells gen-

erally exhibited higher levels of DNA methylation, but it does not influence their susceptibility to DNA

damage or the rate of short-term repair. Armstrong et al. (2012) found that global methylation levels

do not determine the radiosensitivity of mouse ESCs. However they reported the involvement of DN-

MTs in the radiation-induced genomic instability, especially DNMT1, which is recruited to DNA repair

sites, as its knock-down increased the mutation rate, potentially due to the absence of methylation at

specific regions, hindering the DNA repair mechanisms (Armstrong et al., 2012).

Finally, DNMT inhibitors have been used in combination with radiotherapy to radiosensitize

tumors by potentiating the radiations cytotoxic effects (Gravina et al., 2010). As the cytosine analogs

forms covalently bound DNA-protein complexes with DNMTs, it may be more difficult to repair prox-

imal DNA damage, thus increasing the cytotoxicity (Ferguson et al., 1997; Jüttermann et al., 1994;

Kim et al., 2012). In addition, DNMT inhibitors have been shown to synchronize cancer cells pref-

erentially in the G1 or G2/M phase of the cell cycle, which are the most radiosensitive phases (Qiu

et al., 2009). Plus, the DNMT inhibitors modulates gene expression and signaling pathways, such

as NF-κB signaling and apoptosis signaling, that also potentiate the cytotoxic effect of radiotherapy

(Khong et al., 2008; Peitzsch et al., 2016; Zhu et al., 2018).
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[ KEY POINTS

å The DNA methylation consists of the addition of a methyl group to cytosines, located at
CpG sites (CG dinucleotides) in vertebrates.

å The methylation and demethylation dynamics are represented in Figure 23. The DNA
methyltransferase (DNMT) family of enzymes are responsible for DNA methylation and the
ten-eleven translocation (TET) family of enzymes for demethylation.

å Regions rich in CpG are called CpG island (CGI) and are preferentially found at promoter
loci. Their hypermethylation is generally associated with transcriptional repression.

å As DNA methylation marks are heritable through cellular divisions, it serves as an epige-
netic memory, transmitting the regulation of gene expression programs without alteration of
the DNA sequence, critical to maintaining the cell identity.

å Epigenetic reprogramming events, involving demethylation and remethylation of DNA, oc-
cur in the early embryo and during the germ line formation, to establish the DNA methylation
patterns regulating gene expression programs necessary for the development.

å In cancer, aberrant DNA methylation patterns can be found, such as hypermethylation of
tumor suppressor genes and hypomethylation of proto-oncogenes.

å The stem state identity of cells involves a DNA methylation regulation in both normal and
cancer cells. Indeed, in addition to the pluripotency factors expression epigenetic regula-
tion, DNA methylation signatures of stemness have been identified in normal and cancer
cells.

� Back to Table of Contents

4.2 OVERVIEW OF METHODS TO STUDY DNA METHYLATION

A plethora of methods to study DNA methylation have been developed over the years and can

be classified either by 1 their principle (the way to discriminate 5-methylcytosine (5mC): by bisulfite

conversion, by restriction enzyme digestion, by affinity binding, or by a combination of them), 2 their

methodology (experimental techniques used: polymerase chain reaction (PCR), Sanger sequencing,

microarray, next-generation sequencing (NGS)...), 3 their resolution (global methylation levels to

single CpG sites) or 4 their coverage (region-specific, array or wide profiling). A non-exhaustive

classified list is presented in Table 4.

Here, a classification of DNA methylation study techniques is proposed, divided in three major

groups: 1 bisulfite-based assays, 2 restriction enzyme digestion-based assays and 3 affinity

enrichment-based assays (Khodadadi et al., 2021; Laird, 2010; Rauluseviciute et al., 2019) (Table 4).

Following this classification, the most known ones are described briefly below (Chatterjee et al., 2017;

Khodadadi et al., 2021; Li and Tollefsbol, 2020; Rauluseviciute et al., 2019; Soozangar et al., 2018).
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4.2.1 BISULFITE-BASED ASSAYS

The sodium bisulfite treatment of DNA converts unmethylated cytosines into uracils, while

methylcytosines are not affected. During DNA amplification, uracils are replaced by thymines, and

thereby, the cytosine methylation status can be revealed by the presence of either a cytosine (methy-

lated) or thymine (unmethylated) at its position. The major limitation of the bisulfite treatment is its

conversion efficiency, as a not complete one causes bias in results. Although, many commercialized

kits for bisulfite conversion are available and ensure a minimum of 99% conversion efficacy in most

cases (Hernandez et al., 2013; Leontiou et al., 2015). Further details on the bisulfite conversion are

provided in section 4.4.1.1 “Bisulfite conversion” at page 125.

REGION-SPECIFIC ANALYSIS

Techniques to estimate methylation of a specific locus generally use PCR to amplify the region

of interest.

The bisulfite sequencing PCR (BSP) is considered as the gold standard assay to map and

quantify region-specific methylation since the 2000s. It consists of converting the DNA with bisul-

fite, amplifying a region of interest by PCR, and sequencing either the PCR products directly or

sequencing several individually cloned PCR products, by Sanger sequencing, to quantify the C/T

polymorphisms (Frommer et al., 1992). A complete and detailed description of its principle, process,

design, limits, and bias can be found in section 4.4 “Bisulfite sequencing PCR (BSP)” at page 123.

Developed by Herman et al. (1996), the methylation-specific PCR (MSP) assay is based on

specific primers for unmethylated and methylated DNA. The bisulfite converted DNA region is ampli-

fied in two PCR reactions using two sets of primers containing both CpG in their sequence but each

one with different methylation status. One primer pair contains unmethylated CpG (TG dinucleotides)

while the other one contains methylated CpG (CG dinucleotides) in the sequence. The qualitative

comparison of the two amplification reactions, by visualization of PCR products on a gel, reveals the

relative proportion of methylated DNA compared to unmethylated DNA. Derived from this method, the

MethylQuant technique and the sensitive melting analysis after real-time - methylation-specific

PCR (SMART-MSP) technique provide quantitative measurements of methylation proportions using

the fluorescence-based real-time PCR (Kristensen et al., 2008; Thomassin et al., 2004). MSP is

rapid and accessible, but is not very sensitive as small differences between two samples cannot be

measured, and only the methylation proportion of a few CpG sites, the ones covered by primers, is

measured.

The combined bisulfite restriction analysis (COBRA) assay combines both the bisulfite

conversion of DNA and restriction enzyme digestion of PCR products to estimate the degree of

methylation at specific loci (Xiong and Laird, 1997). After PCR amplification of the bisulfite converted

DNA region of interest, PCR products are digested with specific restriction enzymes (BstUI: CG↓CG,
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GLOBAL
MEASUREMENT OF
DNA METHYLATION

REGION-SPECIFIC
ANALYSIS

ARRAY-BASED
ANALYSIS

WIDE PROFILING
ANALYSIS

BISULFITE
CONVERSION • Alu/LINE-1

assay
• Chloroacet-

aldehyde
assay

• BSP
• MSP
• MS-SNuPE
• COBRA
• MS-DGGE
• MS-SSCA
• MethylLight
• MS-MCA
• MS-DHPLC
• Pyrosequencing

(PyroMeth)
• MethylQuant
• EpiTYPER

MassARRAY
• MS-HRM
• MS-FLAG
• SMART-MSP

• MSO
• BiMP
• GoldenGate
• Infinium

• RRBS
• WGBS
• BC-seq
• BSPP
• oxBS-seq
• MREBS

ENZYME
DIGESTION • HPLC

• TLC
• HPCE
• LC-MS
• LUMA

• MSRE-PCR
• MS-AP-PCR
• MS-RDA
• MCA-RDA
• AIMS
• MS-MLPA
• MethylScreen

• DMH
• RLGS
• MCAM
• HELP
• MethylScope
• MMASS
• CHARM

• Methyl–seq
• DREAM
• HELP-seq
• MSCC
• MRE-seq

AFFINITY
ENRICHMENT • 5mC ELISA

• MeDIP-PCR
• MIRA

• MeDIP-chip
• MIRA-chip

• MeDIP-seq
• MIRA-seq
• MethylCap-seq
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TABLE 4 LIST OF TECHNIQUES TO EVALUATE DNA METHYLATION. (Dahl and Guldberg, 2003; Dhingra et al.,
2014; Laird, 2010; Mansego et al., 2013) 5mC ELISA= 5-methylcytosine Enzyme-Linked Immunosorbent Assay (Deobagkar
et al., 1986); AIMS= Amplification of Inter-Methylated Sites (Frigola et al., 2002); Alu/LINE-1 assay: Alu and LINE-1 repet-
itive DNA elements assay (Yang et al., 2004); BC-seq= Bisulfite conversion Capture - sequencing (Hodges et al., 2009);
BiMP= Bisulfite Methylation Profiling (Reinders et al., 2008); BSP= Bisulfite Sequencing PCR (Frommer et al., 1992);
BSPP= Bisulfite Padlock Probes (Deng et al., 2009); CHARM= Comprehensive High-throughput Arrays for Relative Methy-
lation (Irizarry et al., 2008); Chloroacetaldehyde assay: 5mC fluorescent assay (Oakeley, 1999); COBRA= Combined
Bisulfite Restriction Analysis (Xiong and Laird, 1997); DMH= Differential Methylation Hybridization (Huang et al., 1999);
DREAM= Digital Restriction Enzyme Analysis of Methylation (Jelinek et al., 2009); EpiTYPER MassARRAY: MALDI-TOF
mass spectrometry-based bisulfite sequencing (Ehrich et al., 2005); GoldenGate: Illumina GoldenGate technology applied
to methylation profiling (Bibikova and Fan, 2009); HELP= HpaII tiny fragment Enrichment by Ligation-mediated PCR (Khu-
lan et al., 2006); HELP-seq= HpaII-tiny fragment Enrichment by Ligation-mediated PCR - sequencing (Oda et al., 2009);
HPCE= High-Performance Capillary Electrophoresis (Fraga et al., 2002); HPLC= High-Performance Liquid Chromatography
(Kuo et al., 1980); Infinium: Illumina Infinium technology applied to methylation profiling (Bibikova et al., 2009); LC-MS=
Liquid Chromatography - Mass Spectrometry (Friso et al., 2002); LUMA= Luminometric Methylation Assay (Karimi et al.,
2006); MCA-RDA= Methylated CpG island Amplification with Representational Difference Analysis (Toyota et al., 1999);
MCAM= Methylated CpG island Amplification Microarray (Estécio et al., 2007); MeDIP-chip= Methylated DNA Immuno-
precipitation - chip (Zhang et al., 2006); MeDIP-PCR= Methylated DNA Immunoprecipitation (or mDIP= methylated DNA
Immunoprecipitation, or mCIP= methylcytosine Immunoprecipitation) - PCR (Weber et al., 2005); MeDIP-seq= Methylated
DNA Immunoprecipitation - sequencing (Down et al., 2008); Methyl–seq: Methyl-sensitive restriction enzyme - sequenc-
ing (Brunner et al., 2009); MethylCap-seq: Methyl-DNA binding domain (MBD) capture - sequencing (Brinkman et al.,
2010); MethyLight: Methylation-specific fluorescent-based real-time PCR (Eads et al., 2000); MethylQuant: Discrim-
inative primers based real-time PCR (Thomassin et al., 2004) MethylScope: methylation-dependent restriction enzyme
microarray (Ordway et al., 2006); MethylScreen: methylation-sensitive and methylation-dependent restriction enzyme PCR
(Holemon et al., 2007); MIRA= Methylated CpG Island Recovery Assay (Rauch and Pfeifer, 2005); MIRA-chip= Methy-
lated CpG Island Recovery Assay - chip (Rauch et al., 2007); MIRA-seq= Methylated CpG Island Recovery Assay - se-
quencing (Choi et al., 2010); MMASS= Microarray-based Methylation Assessment of Single Samples (Ibrahim et al., 2006);
MRE-seq= Methylation-sensitive Restriction Enzyme - sequencing (Maunakea et al., 2010); MREBS= Methylation-sensitive
Restriction Enzyme Sequencing (Bonora et al., 2019); MS-AP-PCR= Methylation-Sensitive Arbitrarily Primed PCR (Gon-
zalgo et al., 1997); MS-DGGE= Methylation-Specific - Denaturing Gradient Gel Electrophoresis (Aggerholm et al., 1999);
MS-DHPLC= Methylation-Specific - Denaturing High Performance Liquid Chromatography (Baumer et al., 2001); MS-
FLAG= Methylation-Specific - Fluorescent Amplicon Generation (Bonanno et al., 2007); MS-HRM= Methylation-Sensitive
- High Resolution Melting (Wojdacz and Dobrovic, 2007); MS-MCA= Methylation-Specific - Melting Curve Analysis (Worm
et al., 2001); MS-MLPA= Methylation-Specific - Multiplex Ligation-dependent Probe Amplification (Nygren et al., 2005);
MS-RDA= Methylation-Sensitive - Representational Difference Analysis (Ushijima et al., 1997); MS-SNuPE= Methylation-
Sensitive - Single Nucleotide Primer Extension (Gonzalgo and Jones, 1997); MS-SSCA= Methylation-Sensitive - Single-
Strand Conformation Analysis (Maekawa et al., 1999); MSCC= Methylation Sensitive Cut Counting (Ball et al., 2009);
MSO= Methylation-Specific Oligonucleotide microarray (Gitan et al., 2002); MSP= Methylation-Specific PCR (Herman et
al., 1996); MSRE-PCR= Methylation-Sensitive Restriction Enzyme - PCR (Singer-Sam et al., 1990); oxBS-seq= ox-
idative Bisulfite - sequencing (Booth et al., 2012); Pyrosequencing (PyroMeth): bisulfite conversion and pyrosequenc-
ing (Uhlmann et al., 2002); RLGS= Restriction Landmark Genomic Scanning (Costello et al., 2000); RRBS= Reduced
Representation Bisulfite Sequencing (Meissner et al., 2005); SMART-MSP= Sensitive Melting Analysis after Real Time -
Methylation-Specific PCR (Kristensen et al., 2008); TLC= Thin-Layer Chromatography (Schmitt et al., 1997); WGBS=
Whole Genome Bisulfite Sequencing (or BS-seq, or WGSBS) (Cokus et al., 2008).
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TaqI: T↓CGA), cutting specifically CG dinucleotides which are present only at originally methylated

sites. The gel electrophoresis of digested products allows the determination of the target sequence

methylation level. The main limit of this technique is the use of restriction enzymes with specific

sequences narrowing the investigation to specific CpG sites.

The MethyLight assay relies on the Taqman technology for real-time PCR amplification by

combining methylation-specific priming and methylation-specific fluorescent probing (Eads et al.,

2000). Several experimental designs can be found for MethyLight experiments, but the most common

one consists of an methylation-independent amplification using two primers and a dual-labeled fluo-

rogenic probe specific to methylated DNA, containing a 5’ fluorescent reporter dye and a 3’ quencher

dye. When the probe is annealed to methylated DNA, the exonuclease activity of the Taq DNA

polymerase cleaves the probe which releases its 5’ reporter fluorescence. Therefore, the fluores-

cence signal is proportional to the quantity of PCR products from the originally methylated DNA. This

method is quantitative and highly sensitive but is expensive, compared to BSP for example, as it

requires expensive hybridization probes, and is not reliable to detect heterogeneous methylation on

the target sequence (Chatterjee et al., 2017; Dahl and Guldberg, 2003).

The pyrosequencing of PCR products from bisulfite converted DNA can be also used to find

differential methylation of a specific region. This technique was first used by Uhlmann et al. (2002)

and is also called PyroMeth. Pyrosequencing is a real-time sequencing-by-synthesis technology,

based on the luminescence detection from the released pyrophosphate (PPi) on nucleotide incor-

poration into the complementary strand. Therefore, it is used to evaluate the proportions of C/T

polymorphisms at CpG sites (Colella et al., 2003). The pyrosequencing has a high resolution, is

quantitative, and does not require cloning as PCR products are directly analyzed, thereby it is a ma-

jor alternative to BSP. However, it is limited to short sequences, around 150 bp, so the methylation

of only a few CpG sites can be quantified. Additionally, pyrosequencing is not expensive but does

require access to a pyrosequencer, which can be a limitation for laboratories (Reed et al., 2010).

Among those described bisulfite-based region-specific techniques, only BSP and pyrose-

quencing can provide a full methylation profile over several CpG sites with a single-nucleotide res-

olution, while the others quantify the global methylation level of the sequence composed of several

CpG sites.

ARRAY-BASED ANALYSIS

Array-based assays use a fixed number of probes, placed on a multiplexed chip, for high-

throughput screening of specific loci across the genome.

GoldenGate and Infinium are microarray-based sequencing techniques developed by Illu-

mina, originally developed for single nucleotide polymorphisms (SNPs) genotyping at specific loci

and they were adapted to specifically detect the C/T polymorphisms at selected CpG sites for methy-

118



4. DNA METHYLATION: PRINCIPLES AND METHODOLOGY

lation profiling.

Several bisulfite-based microarray-based DNA methylation profiling assays have been com-

mercialized by Illumina such as the “GoldenGate Assay For Methylation” (1.5k array targets), “Hu-

manMethylation27 BeadChip” (27k array targets), “Infinium HumanMethylation450 BeadChip” (450k

array targets), and the “Infinium MethylationEPIC BeadChip” (850k array targets).

The GoldenGate technology applied to methylation profiling is a microbead-based array plat-

form and is based on the specific extension and ligation of correctly hybridized probes on the bisulfite-

converted DNA (Bibikova and Fan, 2009). For each CpG site, two sets of two probes are used con-

taining: 1 a locus-specific oligo (LSO) that hybridizes the target regions and 2 an allele-specific

oligo (ASO) that specifically binds with either the methylated allele or the unmethylated one. The

allele-specific extension occurs only from the ASO to the LSO and their ligation results in a PCR

template. Moreover, the LSO is composed of three parts: 1 a target-specific sequence, 2 a unique

address sequence, and 3 another universal primer sequence, and the ASO is composed of two

parts: 1 a target/allele-specific sequence and 2 a universal primer sequence (two different primer

sequences, one for each allele, matching two fluorescently labeled primers). With these universal

primers, allele-specific amplification can be carried out. And, the address sequence allows the la-

beled products hybridization to its complementary probes, coating universal microarray beads, for

allele- and target-specific fluorescence reading (Bibikova and Fan, 2009). The standard panel “Gold-

engate Methylation Cancer Panel I” spans 1,505 CpG sites from 807 genes (GoldenGate® Assay for

Methylation and BeadArrayTM Technology, 2010).

The Infinium is another microarray technology applied to methylation profiling (Bibikova et

al., 2009). Thousands of silica microbeads are placed on the surface of the array and each bead is

coated with multiple copies of a 50 bp probe targeting a specific locus. The genomic DNA fragments

hybridize with their complementary probes. Then, during the single-base extension step, one of four

labeled terminating nucleotides — dideoxynucleotide triphosphates (ddNTPs) — is incorporated. The

A and T bases are labeled with 2,4-dinitrophenol (DNP) and the C and G bases with biotin. Next,

anti-DNP antibodies and streptavidin labeled molecules specifically bind to the labeled probes to

amplify the signal for imaging and fluorescence reading. Two types of the Infinium assay exist,

I and II. The Infinium I assay requires two beads per CpG site, one with a probe specific to the

methylated sequence and one with a probe specific to the unmethylated sequence. The single-

base extension and incorporation of a labeled nucleotide is allele-specific, thereby the presence of a

fluorescence signal reveals the methylation state. The Infinium II assay utilizes only one bead with an

allele-independent probe. The methylation state is directly determined by the type of fluorescence of

the incorporated base as C/T and A/G bases have different labels (Illumina Methylation BeadChips

Achieve Breadth of Coverage Using 2 Infinium Chemistries, 2015).

119



STATE OF THE ART

WIDE PROFILING (NGS-BASED) ANALYSIS

The NGS, or second-generation sequencing, consists of the simultaneous sequencing of bil-

lions of DNA fragments, giving billions of individual reads that are gathered in contigs — contiguous

pieces of the genome — and aligned to the reference genome by bioinformatic analysis. As the

bases are sequenced multiples times in several individual reads, it provides a high-depth analysis

and thereby highly accurate data (Behjati and Tarpey, 2013; Slatko et al., 2018). The most known

NGS technologies are Illumina and Ion Torrent. Its use allows a much higher scale genome analysis

compared to Sanger sequencing or arrays with a limited number of targets, but as a downside, it

is quite expensive and requires a much more complex bioinformatic analysis to interpret the large

amount of data generated.

The whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite

sequencing (RRBS) are the most known bisulfite sequencing (BS-seq) assays, based on NGS

after bisulfite conversion of genomic DNA, to analyze genome-wide methylation profiles on a single

nucleotide level. The WGBS is basically a whole-genome sequencing on bisulfite converted DNA and

therefore consists of the sequencing of the entire genome, while the RRBS aims to sequence only

CG-enriched regions (Cokus et al., 2008; Meissner et al., 2005). To do so, an additional step of DNA

fragments size separation (40-220 bp) is performed after digestion by the MspI enzyme (C↓CGG,

methylation independent) (Meissner et al., 2008). This technique was developed to overcome the

WGBS main limitations, as fewer reads are sequenced it is less expensive and generates fewer data,

but still keeps the most interesting regions to analyze (Kurdyukov and Bullock, 2016). The RRBS

generally covers around 10% of all CpGs (∼2-3 millions of CpG sites) and around 85% of all CGIs

(∼23,000 CGIs), in the human genome (Smith et al., 2009).

A more recent method, called methylation-sensitive restriction enzyme bisulfite sequenc-

ing (MREBS) follows the same principle as RRBS, as it combines methylation sensitive restriction

enzyme (MSRE) digestion and bisulfite sequencing (addition of a bisulfite conversion step to MRE-

seq, methylation-sensitive restriction enzyme sequencing), but expands the CpG coverage (Bonora

et al., 2019).

The MREBS protocol uses three methylation-specific restriction enzymes, HpaII (C↓CGG),

HinP1I (G↓CGC), and AciI (C↓CGC) to cleave unmethylated CpG sites in parallel and a size sepa-

ration of fragments (50-300 bp) step as RRBS. Moreover, the addition of a bisulfite conversion step

allows the determination of methylation levels of the other CpG sites outside the enzyme restriction

sites. Thereby, this assay combines the reduced representation towards hypomethylated regions by

using MSRE digestion and measurement of adjacent CpG methylation levels by using bisulfite con-

version. Several models of methylation analysis using MREBS data have been tested by Bonora et

al. (2019) to improve both coverage and accuracy. Compared to RRBS and WGBS, MREBS provides

a higher coverage of CpG sites than RRBS (∼60% of CpG sites) approaching the WGBS coverage
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(∼75% of CpG sites) while keeping the benefit of a reduced cost compared to WGBS.

4.2.2 ENZYME DIGESTION-BASED ASSAYS

Several assays of DNA methylation quantification are based on the ability of restriction en-

zymes to cut DNA in a methylation-dependent manner. These MSRE are isoschizomers of restric-

tion endonucleases with a different sensitivity to methylcytosines, as an example both HpaII and MspI

cleave C↓CGG sites, MspI can cleave it indifferently of the methylated state of the second cytosine,

while HpaII can not cleave it when methylated. Major drawbacks of the use of MSRE are the cleavage

site limitation and incomplete digestion leading to a bias towards the methylated state (Laird, 2010).

REGION-SPECIFIC ANALYSIS

The most straightforward technique to evaluate CpG methylation using MSRE is the MSRE-

PCR (Singer-Sam et al., 1990). It consists of the methylation-specific enzymatic digestion of DNA

and PCR amplification of the remaining DNA fragments. Thereby, the absence of PCR products

reveals the unmethylation of the target sequence while the presence of them reveals its methylation.

In the case of several restriction sites in the target sequence, only one unmethylated site recognized

and cleaved by the enzyme is enough to consider the sequence unmethylated. The MSRE-PCR

gives an estimation of methylation over several CpG sites and therefore is comparable to the MSP,

COBRA, or MethyLight bisulfite-based assays in terms of resolution (Melnikov et al., 2005).

Several other assays using MSRE coupled with other technologies have also been developed.

To describe another example, the MethylScreen technique uses both MSRE recognizing only un-

methylated sites and methylation-dependent restriction enzyme (MDRE) recognizing only methylated

sites (McrBC, site: two half-sites RmC within a distance of 40-3,000 bp, cutting between the two half-

sites in the proximity of one), coupled with fluorescence-based real-time PCR to quantify methylation

(Holemon et al., 2007).

ARRAY-BASED ANALYSIS

The MSRE-associated discrimination of methylated and unmethylated sites can also be com-

bined with microarray analysis. The HpaII tiny fragment enrichment by ligation-mediated PCR

(HELP) assay is based on the comparison of HpaII (C↓CGG, unmethylated) and MspI (C↓CGG,

methylation insensitive) digested DNA fragments. Using random priming, fragments derived from

both HpaII or MspI digestions are labeled with a different fluorophore each and then cohybridized to

a microarray. The ligation-mediated PCR and fluorescence detection allow to get the HpaII or MspI

representations and the calculation of HpaII/MspI log ratios gives an estimation of hypomethylated

and hypermethylated loci (Khulan et al., 2006).

The MethylScope assay is an extension of the MethylScreen assay, also using MDRE (McrBC)

digestion associated with microarray analysis (Ordway et al., 2006).
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WIDE PROFILING (NGS-BASED) ANALYSIS

Several assays have been adapted to incorporate an NGS analysis for genome-scale methy-

lation analysis. The MSRE-PCR gave the MRE-seq, consisting in MSRE digestion followed by se-

quencing (Maunakea et al., 2010). And, the HELP has been extended to HELP-seq, following the

same principle but using NGS instead of a microarray analysis (Oda et al., 2009).

4.2.3 AFFINITY ENRICHMENT-BASED ASSAYS

The affinity enrichment of methylated regions is based on 5mC antibodies or methyl-binding

proteins (Laird, 2010). Two main techniques have been developed, the methylated DNA immuno-

precipitation (MeDIP) (or mDIP= methylated DNA immunoprecipitation, or mCIP= methylcytosine

immunoprecipitation) and the methylated CpG island recovery assay (MIRA). The MeDIP is a

DNA purification technique by immunoprecipitation using an antibody specific to 5mC (Weber et

al., 2005). The MIRA technique relies on the enrichment of methylated DNA regions using methyl-

binding proteins, such as methyl-CpG-binding protein 2 (MeCP2), methyl-CpG-binding domain pro-

tein 2 (MBD2), or methyl-CpG-binding domain protein 3 like 1 (MBD3L1) (Choi et al., 2010; Rauch

and Pfeifer, 2005).

Both MeDIP and MIRA principles can be used followed by 1 PCR amplification: MeDIP /

MeDIP-PCR and MIRA, 2 microarray: MeDIP-chip and MIRA-chip, or 3 NGS: MeDIP-seq and

MIRA-seq, depending on the desired scale of purified methylated DNA fragments detection (Choi

et al., 2010; Down et al., 2008; Rauch and Pfeifer, 2005; Rauch et al., 2007; Weber et al., 2005;

Zhang et al., 2006). The affinity enrichment-based assays do not rely on either bisulfite conversion

or restriction sites, but can not provide single-CpG resolution methylation profiles.
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[ KEY POINTS

å A plethora of methods to evaluate the CpG methylation have been developed over the
years, a non-exhaustive classified list is presented in Table 4.

å The DNA methylation assays can be classified into three major groups depending on
the principle used to discriminate 5mC: 1 bisulfite-based assays, 2 enzyme digestion-
based assays and 3 affinity enrichment-based assays. Another classification based on
their coverage can also be proposed: 1 global measurement of DNA methylation, 2 the
region-specific assessment of methylation, 3 array-based analysis and 4 wide profiling
or genome-scale analysis.

å The bisulfite-based techniques discriminate methylated cytosines based on their ability to
be unaffected by the sodium bisulfite treatment which converts unmethylated ones into
uracils.

å The enzyme-based techniques discriminate methylated cytosines based on the sensitivity
of restriction enzyme towards methylated restriction sites, unrecognized sites that can not
be cleaved when methylated.

å The affinity-based techniques discriminate methylated cytosines using either 5mC antibod-
ies for methylated DNA immunoprecipitation or methyl-binding proteins for methylated re-
gions enrichment.

� Back to Table of Contents

4.3 BISULFITE SEQUENCING PCR (BSP)

Historically, the deamination of cytosines by sodium bisulfite was described in the 1970s (Hay-

atsu et al., 1970; Shapiro et al., 1973; Shapiro et al., 1970; Wang et al., 1980) and with the emergence

and commercialization of region-specific genomic sequencing technique in the 1980s (Church and

Gilbert, 1984; Sanger et al., 1977; Smith et al., 1985; Smith et al., 1986), the combination of both

gives rise to a novel method to study DNA methylation in a specific genomic region, called Bisulfite

Genomic Sequencing. This method was used for the first time in the 1990s by Frommer et al. (1992)

to identify and map 5-methylcytosines (5mC) in genomic DNA. The process consists of a DNA bisul-

fite conversion, polymerase chain reaction (PCR) amplification of a target region, and sequencing

of either PCR products to get an average of the molecules population or individual clones to map

methylation status within a single DNA molecule (Clark et al., 1994; Frommer et al., 1992; Rein et

al., 1998; Yuanxiang et al., 1997). Then, the technique was improved to quantify the methylation of

cytosines in a population of DNA molecules (Lewin et al., 2004; Paul and Clark, 1996; Suzuki et al.,

2000).

This method was called for the first time bisulfite sequencing PCR (BSP) in opposition to

methylation-specific PCR (MSP) in Li and Dahiya (2002), the publication introducing the MethPrimer

program to design primers for bisulfite-based PCR methods. Although, in some publications, it can

be still referred to as bisulfite genomic sequencing, or even bisulfite sequencing, but it must not be

mistaken for bisulfite sequencing techniques using NGS sequencing (Li and Tollefsbol, 2011; Lizardi
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et al., 2016). The bisulfite sequencing PCR (BSP) name describes the three main steps of the

technique : 1 the bisulfite conversion, 2 the PCR amplification, and 3 the sequencing of either

amplicons or clones (Figure 24). This way, it can be distinguished from other techniques such as

MSP, bisulfite pyrosequencing, or WGBS.
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FIGURE 24 BISULFITE SEQUENCING PCR (BSP) EXPERIMENTAL PRINCIPLE.

The BSP technique was a gold standard method to estimate methylation of a specific locus

in the 2000s-2010s, mainly due to the standardization and commercialization of bisulfite kits and the

growing accessibility of Sanger sequencing (Hernandez et al., 2013; Leontiou et al., 2015; Li and

Tollefsbol, 2011; Lizardi et al., 2016). Despite the development of bisulfite pyrosequencing, which

provides a quantitative measurement of DNA methylation without the cloning requirement, the BSP

technique remains more accessible since bisulfite pyrosequencing requires a pyrosequencer (Reed

et al., 2010).

Nowadays, a plethora of methods are used to study DNA methylation depending on experi-

ment requisites (Kurdyukov and Bullock, 2016; Pajares et al., 2021), but BSP is still widely used for

region-specific studies (Akika et al., 2017), for example as a first approach for large studies because

of its cost-effectiveness compared to NGS based techniques (Ismail et al., 2020; Liu et al., 2021b;

Moschny et al., 2020) or for locus-specific confirmation of WGBS or RRBS results (Fan et al., 2020;

Zhang et al., 2017b; Zhu et al., 2019).

4.4.1 EXPERIMENTAL PROCESS

The BSP experimental process is composed of three main steps : bisulfite conversion, poly-

merase chain reaction (PCR), and sequencing (Figure 24). For its last step, two alternative ap-
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proaches for sequencing exist depending on the addition or not of a cloning step before sequencing,

called respectively cloning-BSP or direct-BSP. This variation within the process will result in different

analysis strategies (see section 4.4.3 “Analysis strategy and tools” at page 130).

BISULFITE CONVERSION

The first key step of BSP is the bisulfite conversion of the extracted DNA molecules by

a sodium bisulfite treatment. The sodium bisulfite NaHSO3 comes from the dilution of sodium

metabisulfite Na2S2O5 in water. It is composed of bisulfite HSO –
3 and sodium Na+ and can medi-

ate the deamination reaction of cytosine nucleotides to form uracil nucleotides. This reaction was

first described by Hayatsu et al. (1970). As depicted in Figure 25, the bisulfite conversion of cytosine

into uracil proceeds in 3 steps (Hatakeyama et al., 2013; Hayatsu et al., 1970):

1. Sulfonation at the C6 position of the cytosine residue: cytosine [C] to cytosine sulfonate [C SO –
3 ].

2. Hydrolytic deamination at the C4 position: cytosine sulfonate [C SO –
3 ] to uracil sulfonate [U SO –

3 ].

3. Alkaline desulfonation: uracil sulfonate [U SO –
3 ] to uracil [U].

FIGURE 25 BISULFITE-MEDIATED DEAMINATION OF CYTOSINE. (1) Sulfonation of the cytosine to cytosine

sulfonate. (2) Hydrolytic deamination of the cytosine sulfonate to uracil sulfonate. (3) Alkaline desulfonation

of the uracil sulfonate to uracil. Figure from Hatakeyama et al. (2013).

When the deamination of cytosine by bisulfite was described in the 1970s, the 5-methylcytosine

was considered a minor constituent of DNA, and the role of cytosine methylation was not yet estab-

lished (Hayatsu et al., 1970). But, it was already known that the bisulfite deamination of cytosines

and 5-methylcytosines have different rates: the 5-methylcytosine deamination by bisulfite treatment

is much slower than for cytosine. As the technology and knowledge advance, Frommer et al. (1992)

were the first to use this difference as a way to determine the localization of 5-methylcytosines, as

cytosines are converted to uracils while 5-methylcytosines are not, thus it creates a difference in the

DNA sequence.

Before the sodium bisulfite treatment, as cytosine residues have to be exposed to bisulfite, the

DNA must be fully denatured, in the single strand state. After the conversion of cytosines, uracils on

one strand cannot pair with guanines on the opposite strand, therefore the two converted strands are

no longer complementary and must remain single-stranded until use.

The bisulfite reaction has two major limitations. First, the conditions of the reaction have to
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be monitored to evaluate the conversion efficiency. As explained further below, in section “Bisulfite

conversion efficiency” at page 139, if the conversion is incomplete some cytosines remain unaffected

and if the treatment is incubated for too long, the bisulfite can start to deaminate 5-methylcytosines

(Hayatsu, 2008a; Hayatsu, 2008b). Secondly, the bisulfite treatment causes strand breakage in

DNA due to the formation of the SO –
3 radical (Hayatsu and Miller, 1972). This radical-mediated

degradation of DNA is reduced by the addition of hydroquinone, a radical scavenger, in the bisulfite

treatment.

POLYMERASE CHAIN REACTION (PCR)

The second step of BSP is to selectively amplify the targeted DNA region to get enough

material for cloning or sequencing. As routinely performed in laboratories, the DNA is amplified by

polymerase chain reaction (PCR).

The PCR is based on the hybridization of oligonucleotides, complementary to the targeted

region, which serves as primers for the polymerase to regenerate the complementary strand, and

therefore it produces a new copy of the DNA fragment. Briefly, a PCR is classically composed

of 25 to 50 cycles of 3 steps : 1 DNA denaturation, temperature around 95°C, 2 Annealing of

primers on their specific DNA complementary sequence, temperature around 50-65°C depending on

primer melting temperature (Tm) and 3 Elongation for the new DNA strand to be synthesized by the

DNA polymerase, temperature for optimum DNA polymerase activity generally at 72°C (Green and

Sambrook, 2019b).

In the context of bisulfite-treated DNA amplification, many limitations come from the modifi-

cations of DNA by bisulfite (single-strand DNA with no more complementary strand, loss of base

heterogeneity due to the T redundancy, DNA degradation...) that need to be taken into considera-

tion for primer design, a crucial step to ensure a specific, efficient and unbiased amplification. As

bisulfite-converted DNA strands are no longer complementary, the PCR primers have to be designed

using one of those two templates. Therefore, for the same DNA sequence, sequencing results will be

different depending on the chosen amplified strand, so it needs to be included in the analytic process

(Figure 24). Primer design guidelines for BSP are depicted in Appendix 1 “Primer design for bisul-

fite sequencing PCR” at page 305 and the potential PCR biased amplification in BSP experiments

is explained in section “‘PCR bias’: unequal amplification of methylated and unmethylated DNA” at

page 142.

The two major limitations, which are 1 primer specificity issues due to reduced heterogeneity

and 2 low DNA material due to degradation by bisulfite treatment, can be partly resolved by adjusting

the PCR protocol.
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FIGURE 26 SCHEMATIC REPRESENTATION OF TOUCHDOWN AND NESTED PCR PROTOCOLS. These two PCR

protocols are used in BSP experiments to improve the yield and specificity of the PCR reaction. A. In touch-

down PCR protocols, the specific amplicon is highly amplified and becomes predominant so when the annealing

temperature (Ta) decreases, the specificity also decreases, but the predominant template out-compete the non-

specific ones. The Ta annotated a, b and c are generally comprised between 50°C and 65°C, and spaced by 1

to 5°C. The number of cycles, duration of steps, temperatures for denaturation/elongation/annealing, and range

of Ta are varying depending on the chosen protocol, reagents, polymerase, primers Tm, and region of interest.

The first steps and last steps of the PCR program outside the cycle steps are not represented. B. For nested

PCR protocols, two rounds of PCR are performed with two different primer pairs, an outer one in red and an

inner one in green. The first amplicon 1 is used as a template to amplify the second one 2 . By using two

rounds of amplification it increases the yield of the PCR product, and by using two sets of primers it increases

the specificity towards the targeted region.
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Touchdown PCR

The touchdown PCR (TD-PCR) is frequently used as PCR protocol for BSP and relies on a

progressive decrease of the annealing temperature (Ta) over the cycles during the PCR reaction (Li

and Tollefsbol, 2011; McDonald and Kay, 1997; Nagane et al., 2000; Shen et al., 2007). This pro-

tocol ensures both high specificity and a strong yield of the desired PCR product (Figure 26A). The

hybridization of primers starts in the first cycles above the optimal annealing temperature to guaran-

tee the strong specificity towards the targeted region as only perfect primer-template hybrids can be

formed. Then, as the cycling program advances, the annealing temperature drops progressively to

increase the yield of amplification but it does not lead to non-specific products amplification because

the predominant specific products out-compete the non-specific ones thanks to the stringent initial

cycles (Green and Sambrook, 2018; Hecker and Roux, 1996; Korbie and Mattick, 2008; Roux, 2009).

Nested PCR

Another possible and complementary PCR protocol used for BSP that can improve the yield

of the PCR product and reduce non-specific amplification is the nested PCR (Ashapkin et al., 2020;

Chen et al., 2017a; Grunau et al., 2001; Li and Tollefsbol, 2011; Lizardi et al., 2016; McDonald and

Kay, 1997; Olek et al., 1996). The nested PCR protocol involves two sequential amplification using

two different pairs of primers, an outer one and an inner one (Figure 26B). The first amplification

produces an amplicon between the outer primers which serves as a template for the second ampli-

fication using the inner primers. The double amplification step increases the yield of the amplicon

and the use of two distinct sets of primers for the same targeted region improves the specificity of the

fragment produced (Green and Sambrook, 2019a; Haff, 1994; Roux, 2009).

CLONING (OPTIONAL)

In the case of cloning-BSP, PCR products are inserted in a plasmid and amplified in trans-

formed bacteria. Bacterial clones are selected, and individually amplified before plasmid extraction.

As a competent bacteria assimilate a single plasmid molecule during transformation, all of the plas-

mids of an individual clone possess a unique sequence of the PCR product inserted. This way, the

cloning of PCR products from bisulfite-converted DNA reveals the CpG methylation statuses of a

single initial DNA molecule from the sample.

Generally in publications, 5 to 10 clones are sequenced, revealing the methylation status of

5 to 10 initial DNA molecules, which seems to be considered a good compromise between the rep-

resentativeness of results and the cost and time investment (Li and Tollefsbol, 2011; Lizardi et al.,

2016). Yet, this approach is appropriate when differences are really important, but some publications

state the necessity to have more clones, around 50 to 100 clones, to obtain a statistically significant

estimation of the methylation proportion with good precision and prone the sequencing of PCR prod-

ucts directly for a better representation despite potential additional bias (Mühlisch et al., 2007; Paul
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and Clark, 1996; Rohde et al., 2010; Voss et al., 1998).

SEQUENCING

The Sanger sequencing technique was conceived by Sanger et al. in 1977 and since then it is

widely used to decipher the base sequence of a specific and single DNA molecule. This technology

has been improved and automated over the years and nowadays, and despite the emergence of the

NGS technology, it remains the most accessible method to determine a DNA sequence (Slatko et al.,

2011; Valencia et al., 2013).
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PRINCIPLE. The DNA molecule is amplified by chain-

termination PCR. The polymerase can incorporate

normal nucleotides (deoxynucleotide triphosphates

(dNTPs), in grey) or dye-labelled modified nucleotides

(ddNTPs, colored). The incorporation of a ddNTP by

the DNA polymerase stops DNA synthesis. As the

DNA polymerase synthesizes DNA only from 5’ to 3’,

the PCR results in a multitude of fragments, varying in

length and labeled with the terminal ddNTP dye. The

DNA fragments are size separated by capillary gel

electrophoresis. By reading the gel from the smallest

fragment to the longest fragment, the fluorescence of

the bands reveals the DNA sequence. The result of

the gel reading can be seen as a four-dye trace plot-

ted in a chromatogram, where each peak of the fluo-

rescence signal corresponds to a specific nucleotide.

The automated Sanger sequencing relies on a chain-termination PCR to amplify a specific

DNA fragment, by incorporating either normal nucleotides (dNTPs) or fluorescently labeled terminat-

ing modified nucleotides (ddNTPs) that stops the fragment synthesis (Figure 27). As the polymer-

ization progresses, amplicons at every possible length are synthesized and labeled with a specific

fluorescence depending on the last nucleotide. The migration by capillary electrophoresis (CE) sep-

arates fragments depending on their sizes, resulting in a string of fluorescence signals.

The automated sequencer reads these four fluorescence signals and generates an electro-

pherogram, visible as a chromatogram, which is a four-dye trace saved as an ABIF (Applied Biosys-

tems, Inc. Format) format file with the .ab1 extension or as an SCF (Staden Chromatogram Files or

Sequence Chromatogram File) format file with the .scf extension (Applied Biosystems Genetic Anal-

129



STATE OF THE ART

ysis Data File Format, 2006; Dear and Staden, 1992). And finally, the base caller program assigns

bases corresponding to each primary chromatogram peak to get the resulting sequence, saved as a

FASTA format file with the .fasta extension (Hyman et al., 2010; Pearson and Lipman, 1988).

Two types of BSP approach exists depending on the template sequenced: 1 direct-BSP if

the PCR products are directly sequenced and 2 cloning-BSP if the PCR products are first cloned in

vectors before the sequencing of individual clones (Chatterjee et al., 2017).

[ KEY POINTS

å The bisulfite sequencing PCR (BSP) is a technique to assess DNA methylation levels of
a specific region of interest and is composed of three steps: 1 the bisulfite conversion of
DNA, 2 the PCR amplification of the target region, and (3) the sequencing of either the
PCR products directly or PCR products individualized in clones (Figure 24).

å A sodium bisulfite treatment converts unmethylated cytosines into uracils, while methylated
ones remain cytosines. Thereby, after PCR amplification the original unmethylated cytosine
is revealed by the T base while the unmethylated one by a C base (Figure 25).

å Two types of BSP experiment exist: the direct-BSP one and cloning-BSP one. The first one
consists in directly sequencing the mix of PCR products, while the second one consists in
cloning the PCR products before individual clones are sequenced.

å Information and guidelines about primer design for BSP experiments are provided in Ap-
pendix 1 “Primer design for bisulfite sequencing PCR” at page 305.

� Back to Table of Contents

4.4.2 ANALYSIS STRATEGY AND TOOLS

The two BSP approaches, direct-BSP and cloning-BSP, differ in their analytic process. In-

deed, the CpG methylation percentage calculation is not the same either it is based on direct-BSP or

cloning-BSP data (Figure 28).

Although PCR products were cloned in the first publications describing the BSP experiment, in

Frommer et al. (1992) and Clark et al. (1994), they mentioned an alternative way by directly sequenc-

ing the PCR products. Later on, the quantification of DNA methylation using the direct-BSP method

was demonstrated by Lewin et al. (2004) and it led to its utilization in numerous studies afterward.

These two methods were described in several literature reviews such as: Chatterjee et al., 2017;

Hernandez et al., 2013; Martisova et al., 2021; Mikeska et al., 2010; Pajares et al., 2021 as well as

in several protocols such as: Ashapkin et al. (2020); Li and Tollefsbol (2011); Lizardi et al. (2016);

Zhang et al. (2009).

CLONING-BSP: CLONING OF PCR PRODUCTS AND SEQUENCING OF INDIVIDUAL CLONES PLASMIDS

The cloning-BSP is based on the random separation of unique DNA molecules, with different

methylation patterns, in different clones, as a representation of the methylation diversity in the total
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DNA population. Thereby, the sequencing of several clones provides an estimation of methylated

cytosine proportions per CpG site. For each CpG, the number of clones for which a C base (or

G for reverse sequencing) is found, over the total of clones sequenced assesses the proportion of

methylated cytosines in the original DNA mix (Figure 28). As mentioned previously, in the literature

it seems to be admitted that 10 clones are sufficient to reveal 10% differences in methylation, even

if several publications recommend having more clones to increase the sensitivity (Mühlisch et al.,

2007; Paul and Clark, 1996; Rohde et al., 2010; Voss et al., 1998).

Over the years, several methods have been developed and used to facilitate the analysis

of clone methylation status from cloning-BSP. Initially, the results of clone sequencing were man-

ually analyzed by retrieving, on the sequencing gel, the base corresponding to the CpG positions

for each clone (Clark et al., 1994; Frommer et al., 1992; Paul and Clark, 1996; Stirzaker et al.,

1997). Then, in 2000, Grunau et al. developed a software, called MethTools, able to align the se-

quences of clones with the original reference sequence, to deduce cytosine methylation patterns

and generate graphical outputs, available on both Linux and Mac operating systems. Later, a new

version has been released as a web server available online, named MethTools 2.0 (available at

http://methdb.univ-perp.fr/methtools/MethTools2_submit.html). This new version has the same pur-

pose of analyzing cloning-BSP data, and requires as an input the genomic and subclones sequences

in a fasta file. In 2001, Anbazhagan et al. published a spreadsheet-based program – a Microsoft Ex-

cel file with a built-in program – to identify CpG island (CGI) and to facilitate the calculation of DNA

methylation percentages from cloning-BSP data.

More advanced software were then developed, to align, visualize and quantify CpG methy-
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lation from subclones sequences, including quality control features, graphical outputs and statistics

(Figure 29):

• BiQ Analyzer (https://biq-analyzer.bioinf.mpi-inf.mpg.de/, Bock et al., 2005)

• QUMA (Quantification tool for Methylation Analysis) (http://quma.cdb.riken.jp/,

Kumaki et al., 2008)

• BISMA (Bisulfite Sequencing DNA Methylation Analysis) (http://services.ibc.uni-stuttgart.de/BDPC/

BISMA/, Rohde et al., 2010)

cytosine patterns, which do not have conversion artifacts.
More stringent filtering as implemented in the BiQ Analy-
zer inappropriately removes valid methylation patterns
(Suppl. Text S7). BISMA ignores N-sites during filtering
of clonal sequences, which is not implemented in the BiQ
Analyzer (Additional file 1: Suppl. Text S8). Therefore, the
filtering routine of the BiQ Analyzer leads to preferential
analysis of sequences with conversion artifacts and bad
sequencing data quality. This is critical when analyzing
highly methylated or unmethylated regions.
To illustrate the functionality of the improved filtering

for clonal sequences, we isolated DNA from mouse tail
tip, converted it with sodium bisulfite and amplified a
part of the Xist promoter from a female animal (Figure
3C). In females, the Xist promoter is methylated on the
active X-chromosome, while unmethylated on the other

Figure 6 Average analysis time necessary to process and
analyze the example datasets with the BiQ Analyzer, QUMA
and BISMA programs. The bars indicate the lowest and the
highest analysis time which was measured.

Figure 5 Comparison of important features of three different programs for analysis of bisulfite sequencing data in a CpG context.

Rohde et al. BMC Bioinformatics 2010, 11:230
http://www.biomedcentral.com/1471-2105/11/230

Page 9 of 12

FIGURE 29 COMPARISON OF FEATURES BETWEEN THE THREE TOOLS ANALYZING CLONING-BSP DATA:

QUMA, BIQ ANALYZER, AND BISMA. Figure from Rohde et al. (2010), introducing the BISMA software.

Additionally, specifically for plants models, the software CyMATE and Kismeth has been de-

veloped to analyze cloning-BSP data, as in plants, cytosines methylation is not limited to CpG, as

cytosines can be methylated in several contexts (CG, CHG, and CHH, with H meaning non-G) (Grunt-

man et al., 2008; Hetzl et al., 2007).

The most recent one, BISMA, is the only program to accept .ab1 sequencing files as input, but

they are only used to extract the DNA sequence from it. Therefore, all of these tools are specifically

designed to analyze the methylation statuses of subclones. They base their analysis process on the

base-called sequence obtained from the sequencing run, indicating either a C base or a T base and

determining the cytosine methylation statuses at a single-molecule resolution.
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DIRECT-BSP: DIRECT SEQUENCING OF PCR PRODUCTS

As all PCR products are directly sequenced in the direct-BSP method, it means that a mix

of DNA molecules with different methylation statuses at CpG positions are being sequenced simul-

taneously (Figure 30) (Jiang et al., 2010; Lewin et al., 2004; Myöhänen et al., 1994; Parrish et al.,

2012; Paul and Clark, 1996). Hence, in the sequencing trace, two signals can co-exist at the cytosine

position, the one from the base corresponding to the methylated state of the CpG site (C when using

a forward primer, G when using a reverse primer) and the one from the base corresponding to the

unmethylated state of the CpG site (T when using a forward primer, A when using a reverse primer)

(Figure 28 and Figure 30).

The direct-BSP analysis approach is based on the assumption that the signal intensity of

the base associated fluorescent dye, detected during sequencing, is proportional to the number of

DNA molecules containing this residue, and that signal intensities can be compared between the

four bases. It means that the relative quantities of nucleotides within a DNA mix can be estimated

using the maximum signal intensity values and that, by comparing them, they reveal the proportion

of nucleotides in the DNA pool, for a given position.

Accordingly, the signal intensities for each base, given as electropherogram peak heights,

are utilized to compute their proportion in the sequenced DNA molecule mix (Jiang et al., 2010;

Parrish et al., 2012). The values for peak heights can be retrieved through free software that can

open chromatogram files to view traces, such as 4 Peaks (only for Mac operating systems, https:

//nucleobytes.com/4peaks/) or Chromas (http://technelysium.com.au/wp/chromas/). The methylation

percentage is calculated based on the following formulas of signals ratios, in which the nucleotide

letter refers to the peak height value of the base associated fluorescent signal (Figure 30):

Methylation percentage (forward sequencing) =
peak height of C

peak height of C + peak height of T
× 100

Methylation percentage (reverse sequencing) =
peak height of G

peak height of G + peak height of A
× 100

However, this assumption has limitations. Firstly, the incorporation efficiencies of the labeled

terminator nucleotides (ddNTPs) can be different from one another. Thus, the proportionality between

signal intensities and relative quantities might be biased. Secondly, as each ddNTP is linked to a

different fluorochrome, the comparison of different fluorescence signals can also introduce bias in

the calculation of proportions between nucleotides. That’s why some publications qualify the direct-

BSP approach as non-quantitative or semi-quantitative, and that the cloning-BSP approach is often

preferred (Chatterjee et al., 2017; Chhibber and Schroeder, 2008; Mikeska et al., 2010; Parker et al.,

1995).

Compared to cloning-BSP, the direct-BSP approach presents the advantage of reducing the

experiment duration as it skips the cloning step and avoids the multiplication of subclones sequencing
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costs (Chatterjee et al., 2017; Martisova et al., 2021; Pajares et al., 2021). It is therefore particularly

useful for the assessment of DNA methylation in studies with numerous samples, such as cohorts

of patients for example (Liu et al., 2021b; Moschny et al., 2020; Schiele et al., 2021). Additionally,

it is relevant to sequence PCR products to get preliminary results before committing to the cloning

steps. Thereby, even in cloning-BSP studies, the direct-BSP approach can be performed to obtain

preliminary or complementary results (Martisova et al., 2021).

Figure 2.
An example of how to perform data analysis of a single CpG site with use of the forward
primer for sequencing. Chromatogram peaks for thymine (representing unmethylated
cytosines that were converted to uracil during bisulfite treatment) and cytosine (representing
methylated cytosines that were spared during bisulfite treatment) are compared to determine
the average level of methylation for each site within a given sample. The same analysis
should be applied when using the reverse primers for sequencing except methylation levels
will be derived using the ratio of adenine (unmethylated) to guanine (methylated) instead of
thymine and cytosine.

Parrish et al. Page 13
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FIGURE 30 METHOD OF METHYLATION

LEVEL CALCULATION BASED ON SEQUENCING

CHROMATOGRAM FILE FOR DIRECT-BSP. The

figure represents an example of methylation

level calculation at a single CpG site from the

forward sequencing data. At the CpG position,

there are two signals detected, one for both

the thymine and cytosine bases, corresponding

respectively to the unmethylated and methy-

lated state of the cytosine. So these two

chromatogram peaks are compared to evaluate

the proportion of methylation. The values of

peak heights are used to compute the ratio of

signals for the methylated (C) state over the

total of the methylated (C) and unmethylated

(T) states. In the example, as the peak height of

the methylated state signal represents 18.11%

of the total signals, the methylation level of the

CpG is estimated at 18.11%. For the reverse

sequencing data, as the sequence corresponds

to the reverse complement, methylation levels

are determined using the signals of adenine

for the unmethylated state and guanine for the

unmethylated state. Figure from Parrish et al.

(2012).

Historically, the direct sequencing of bisulfite converted PCR products to assess CpG methy-

lation was first done by Myöhänen et al. (1994) and aimed to improve the BSP technique described

by Frommer et al. (1992) beforehand. The direct sequencing of amplicons was performed by an

automated sequencer with fluorescently labeled primers to determine the CpG methylation status, or

for partial methylation to approximately estimate the degree of methylation, with an accuracy of 25%,

by visually comparing the chromatogram peaks.

The first use of electropherogram peaks comparison in a quantitative and reproducible manner

was realized by Kwok et al. (1994). This method was used to quantify the single nucleotide polymor-

phisms (SNPs) in a DNA pool, to estimate the allele frequencies, based on the peak heights of the

chromatogram traces. Although it was done manually in this publication, this analytic method for sin-
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gle nucleotide polymorphisms (SNPs) quantification was then automated by Qiu et al. (2003) using a

similar methodology. And by comparing their method with the pyrosequencing method, they showed

that it was more accurate, sensitive and reproducible than pyrosequencing for SNPs quantification.

As the presence of two peaks at CpG positions can be interpreted as SNPs, this method can

be applied to cytosine methylation calculation for direct-BSP. Hence, this methodology was first ap-

plied to PCR products coming from bisulfite-converted DNA, by Paul and Clark (1996) to quantify

cytosine methylation by an automated genomic sequencing approach, specifically developed for this

purpose. Paul and Clark considered that cloning-BSP requires 50 to 100 individual clones to have

an accurate estimation of cytosine methylation, so they favored the direct sequencing approach.

However, they also estimated that using the peak height from dye-labeled ddNTP signals was not

quantitative enough for an analytic process. So, to still quantify the C signal relative to the T signal

from direct sequencing, they used another strategy, which consists in performing the C and T se-

quencing in separate reactions with the same fluorescent dye to minimize the spectral differences

of dyes. And they developed the GENESCAN program to analyze these sequencing results for the

relative quantification of C and T signals based on the peak heights of signals.

In the early 2000s, in the context of The Human Epigenome Project by the Human Epigenome

Consortium (2003), the direct-BSP approach was selected to estimate methylation percentages of

high throughput data at a reasonable cost. Hence, it raised the need to have an effective way to

compute the percentages based on the sequencing trace data files. The solution was provided by

Lewin et al. (2004) with the development of an algorithm, called ESME for Epigenetic Sequencing

Methylation analysis software (Figure 31A) (https://www.epigenome.org/index.php?page=download,

Lewin et al., 2004). This algorithm aims to compute the CpG methylation levels from the four-dye

electropherogram trace file results from the sequencing of PCR products.

As described in the workflow in Figure 31A, the algorithm performs several steps of data pro-

cessing with quality control steps in between. The first step, called entropy-based clipping, aims to

correct base callers artifacts, occurring at the end of the sequencing for example. In this method,

they used the area under the trace as the signal intensity value to represent the proportion of the

base. The called sequence is aligned with a genomic reference sequence bisulfite converted. Ad-

ditionally to the common four bases, they used the lower case letter t to represent thymines derived

from converted cytosines outside a CpG context which can be matched with either C or T bases

(Figure 31B). To remove low-quality results, the flanking regions are clipped to get a remaining inner

part containing fewer alignment errors. Then, a step of trace correction aims to correct the potential

detection of the mixed C and T signals as distinct positions if there is a small offset between the two

peaks. Signals are normalized to compensate for overscaled cytosine traces, as they explain it might

be due to the cytosine low frequency compared to other bases. Finally, bisulfite conversion rates can

be estimated using the t base positions and methylation percentages are calculated, with the use of

the global conversion rate to compensate for incomplete conversions. Based on several experimental
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at a certain CpG requires quantification of the proportion of
the methylated templates at the investigated CpG. This pro-
portion is referred to as the methylation rate of the CpG.
After the bisulfite conversion and the PCR, the methylation
rate at a CpG can be determined by assessing the propor-
tion of remaining cytosine relative to the thymine. This can
be done, e.g. by hybridization to oligomer probes on DNA
chips (Adorjan et al., 2002) or by DNA sequencing (Frommer
et al., 1992). Commonly used sequencing methods include
the sequencing of a representative number of subclones of
the PCR product or direct PCR sequencing by running inde-
pendent sequencing reactions for cytosine and thymine using
the same dye in different lanes of a sequencing gel (Paul
and Clark, 1996). These sequencing methods are expensive
and labor intensive. In the Human Epigenome Project, direct
PCR sequencing on standard sequencing machines is used to
achieve the required throughput in a cost effective way. This
technology produces four-dye electropherogram data. The
possibility to use such data for quantitative analyses of base
compositions within pooled DNA was recently demonstrated
for one single nucleotide polymorphism (SNP) (Qiu et al.,
2003). The same principle is used here for the measurement
of methylation in bisulfite-treated DNA product.

Quantitative analysis by direct sequencing of the PCR
products from bisulfite-treated DNA implicates several novel
challenges: poor signal quality compared to genomic sequen-
cing, overscaled cytosine signals and basecaller artifacts. In
combination with the overscaled signals incomplete bisulfite
conversion, which is a general problem of all bisulfite-based
methylation detection methods, influences signal proportions
in the trace significantly. It was therefore necessary to develop
a specific algorithm that allows the use of four-dye sequencing
trace files to gain quantitative methylation information. This
newly developed data analysis method allows the use of estab-
lished high-throughput sequencing technology for methyl-
ation studies. In this paper, we first present the algorithms
used for methylation rate estimations based on trace file data
originating from direct sequencing of the PCR products from
bisulfite-treated DNA. We then assess the two main steps of
our algorithm with real data from two experiments and show
that they improve the accuracy of the methylation estima-
tion. Finally, we provide a single example based on data from
the Human Epigenome Project pilot study to demonstrate the
scientific use of the algorithms with real tissue samples.

ALGORITHM
The algorithm we present uses four-dye electropherogram
data preprocessed by the base caller of the sequencing
machine manufacturer, e.g. Applied Biosystems ‘.abi’ files
or the well-described ‘.scf’ files (Dear and Staden, 1992).
The data processing includes the following steps: (i) entropy-
based clipping, (ii) signal detection, (iii) alignment, (iv) trace
correction, (v) alignment-based clipping, (vi) signal normal-
ization, (vii) compensation of incomplete conversion and

Fig. 1. Flow chart of all data processing steps of the methylation
estimation algorithm. Detailed description of the single steps is given
in the text. Between all data processing steps quality control (QC)
is performed. The analysis of a single trace file is aborted if the file
itself is corrupted or if the genomic reference sequence is missing or
if the length of good quality sequence, as determined by the clipping
procedure, is below a certain threshold (default is 50 bases) or if the
bisulfite conversion rates are below a minimum threshold (default
is 65%).

(viii) methylation estimation (Fig. 1). A scheme of the data
and the influence of the algorithmic steps (ii), (iii), (iv) and
(vi) is given in Figure 2. Here, we present the algorithms for
forward sequencing that aims at the estimation of the propor-
tion of cytosine to thymine at the positions of interest. Traces
that originate from reverse sequencing and show guanine and
adenine signals at corresponding positions can be analyzed
by the same algorithm building the reverse complement of
the trace files.

(i) Entropy-based clipping: We observed that base callers
often generate reads that contain long stretches of called bases
with up-scaled background signals after the end of an amp-
lificate. These artifacts are detected by using the normalized
Shannon entropy

H = −
∑

b∈{A,C,G,T }

(
Sb∑

B∈{A,C,G,T } SB

log4
Sb∑

B∈{A,C,G,T } SB

)

(1)
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Fig. 2. Schematic representation of a trace file electropherogram
obtained by bisulfite PCR sequencing (a) before and (b) after sig-
nal normalization. The upper sequences below the trace curves in
(a) represent the sequence called by the standard basecaller and in
(b) the peak mixture represented using IUPAC code (Y denotes C

and/or T ). The sequences at the bottom show the aligned reference
sequence whereby t are genomic cytosine positions that are not in
CpG context, and expected to be unmethylated and therefore com-
pletely convertible. Trace curves are shown for all the four bases. For
every base position in the reference sequence four base intensities
B int; B ∈ {A, C, G, T } are calculated as the area under the trace curve
segment that belongs to the base position (only Cint and T int shown in
a)). Normalized base intensities for cytosine (Cnorm

b ; b ∈ {t , T , C})
and thymine (T norm

b ) seen in (b) are used to estimate the bisulfite
conversion rate (base intensities at t positions) and the methylation
rate at each CpG (base intensities at C positions).

0 ≤ H ≤ 1 of the four trace curves Sb, b ∈ {A, C, G, T }
in a sliding window of 200 data points. Flanking sequence
stretches with an entropy larger than 0.8 are removed.

(ii) Signal detection: For each base position in the
trace file, we compute corresponding intensities B int; B ∈
{A, C, G, T } that estimate the base proportions in the molecu-
lar mixture. As an appropriate measure we have chosen the
areas under the trace corresponding to the respective base for
each position in the sequence. By default, the trace segment
between neighboring local minima is used for the signal area
estimation. If no local minima are present, then the boundar-
ies of the trace segment are estimated as the midpoint between
two neighboring inflection points.

(iii) Alignment: The base intensities estimated in the
previous step are then mapped to an underlying refer-
ence sequence, available as genomic sequence from database
sources and bisulfite converted in silico. The a priori availab-
ility of the genomic sequence is a prerequisite for our applic-
ation. To describe an expected bisulfite converted reference
sequence, the commonly used genomic alphabet (A,C,G,T ) is
extended by one letter, the lower case t , to distinguish a thym-
ine derived from uracil by bisulfite conversion from a thymine
that was present already in the genomic sequence. Cytosines
in a CpG context in the reference sequence correspond to pos-
itions where we want to quantify unknown methylation, and
are therefore still denoted by C. For the sake of clarity in
the notation, these positions should be distinguishable from
t , where the sequenced DNA is never methylated and there-
fore, expected to have a complete conversion by the bisulfite
treatment. We use the Smith–Waterman algorithm (Smith and

Waterman, 1981; Barton, 1993) for optimal local alignments
allowing for gaps to align the called sequence of the trace file
with the a priori known reference sequence. Alignment of t

and C in the reference with C or T in the trace are treated as
matches.

The bisulfite-treated DNA contains long stretches of T sig-
nal. In some cases, this is misinterpreted by base callers by
inserting too many T s into the called sequence. Accounting
for this special situation, we have introduced an additional
type of gap cost to guarantee proper mapping of CpGs. Assign-
ing costs for gaps between C and G in the reference sequence
forces the alignment of CpGs as one functional block to avoid
their mismapping. An example of this is given below: general
costs for all gaps (g) are −19 and higher than costs for mis-
matches (−9) (Barton, 1993). For gaps inserted between C and
G in the reference sequence special additional gap costs(sg)
of −20 raise the total costs to −39, a punishment outnumbered
only by two gaps (−40) which in most cases leads to CpGs
treated as one unit that cannot be split, just misaligned.

trace ATTTTTTTGA ATTTTTTTGA
reference ATTTTTC-GA ATTTTT-CGA

cost(g+sg)=-39 cost(g)=-19

(iv) Trace correction: Standard base callers expect one
homogeneous DNA population to be sequenced, there-
fore some of them occasionally interpret mixed C and T
base intensities at a single position of the reference sequence
as two adjacent bases, mostly if there is a small offset of one or
two data points between C and T signals. In contrast to stand-
ard sequencing, in our experiments we expect signal mixtures
from different DNA populations. It follows that the separa-
tion of overlaying intensities belonging to one position into
two bases by the base caller has to be corrected. We identify
the separated base intensities by searching adjacent T and C
positions in the called sequence from which one is aligned
with t or C and the other is introducing a gap into the ref-
erence sequence. These base pairs in the called sequence are
then fused into a single base.

(v) Alignment-based clipping: The quality of trace files
from PCR product sequencing, especially of amplificates from
bisulfite-treated template containing different molecule pop-
ulations, is lower than sequences from a homogeneous clone
template. Alignment quality as a natural measure to assess
sequencing quality is used to identify areas of poor qual-
ity. Flanking regions of the sequence are clipped such that
the remaining inner part has <10% alignment error to the
reference sequence.

(vi) Signal normalization: We found that cytosine trace
curves often are overscaled in direct bisulfite sequencing
traces1. Base proportion calculation based on trace curves
with different baseline intensities would lead to misleading

1We speculate that this overscaling is a result of the standard basecaller
software compensating for the low frequency of C signals.
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FIGURE 31 THE EPIGENETIC SEQUENCING METHYLATION ANALYSIS SOFTWARE (ESME) TO EVALUATE

METHYLATION FROM SEQUENCING TRACE FILES. A. Workflow of the ESME algorithm. Quality control (QC)

steps are performed between each data processing step. The analysis is aborted if the length of the good quality

sequence (determined by the clipping) is below the threshold (50 bases by default) or if the bisulfite conversion

rates are below the threshold (65% by default). B. Normalization step of the ESME algorithm. The trace

file obtained after direct-BSP is represented (a) before and (b) after the signal normalization. The first line of

nucleotides represents the sequence found by the base caller (Y for C/T) and the second line represents the

reference sequence, in which t denotes genomic cytosines outside a CpG context, thereby converted into T. The

normalization of signals at cytosine positions outside CpG context (t) is needed for evaluation of the bisulfite

conversion rate, while the normalization of signals at cytosines position in CpG sites (C) is needed for evaluation

of the CpG methylation level. Intensities of the bases are calculated as the area under the trace curve that

belongs to the base position. Figures from Lewin et al. (2004).

data, they demonstrated that their algorithm can detect methylation differences with a 20% accuracy

and can be applied to high-throughput methylation data.

Currently, it appears that ESME is the only tool available for the calculation of methylation

levels of CpG based on sequencing trace files for direct-BSP. The majority of recent studies using

ESME for direct-BSP analysis are studies on patient samples, from a dozen to hundreds of samples,

for which the cloning-BSP approach is nearly impossible due to the high cost and time investment.

As examples, ESME is used in the following recent studies: Heseding et al. (2022); Ismail et al.

(2020); Liu et al. (2021b); Moschny et al. (2020); Schiele et al. (2021); Velásquez et al. (2021).

Besides providing a solution to analyze direct-BSP data, above all Lewin et al. (2004) demonstrated
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the feasibility of a robust methylation levels quantification, with an accuracy estimated at 20%.

The utilization of ESME is nonetheless limited due to several issues. The software have been

created in 2004 and seems to not have been updated since 2011, and thereby it may not be up-to-

date with the evolution and constant improvement of technologies such as sequencing devices, base

caller programs, or commercialized bisulfite conversion kits with high conversion efficiencies. For

example, the normalization of peaks to compensate for overscaled cytosine signals does not appear

to be necessary anymore and might introduce more bias instead of reducing it (Methylation Analysis

by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems, 2007). Simi-

larly, the compensation for incomplete bisulfite conversion is not relevant nowadays with the variety

of ready-to-use bisulfite conversion kits available with efficiencies >99% (Hernandez et al., 2013).

Especially since several studies validated the robustness of results obtained from the manual calcu-

lation of methylation percentages using chromatogram peak height ratios without normalization nor

bisulfite conversion compensation (Jiang et al., 2010; Parrish et al., 2012).

Yet, the major problem regarding the use of ESME is its accessibility. Available only on Linux

operating systems, with a not user-friendly interface, the user needs a high enough proficiency on

Linux to install it and run it. Thus, it restricts its use to accustomed users of Linux and might discour-

age biology researchers (Akika et al., 2017). Moreover, as it is a 32-bit software, it has to be installed

on a 32-bit Linux operating system, yet the widely-used Ubuntu operating system is not available for

download in a 32-bit version anymore.

As the purpose of ESME was to map CpG methylation levels along the genome, the analysis

does not go beyond the calculation of methylation percentages. Indeed, as BSP experiments gener-

ally aim to find statistically significant DNA methylation differences between conditions, it requires a

visual comparison of results and statistical tests. Thereby, the analysis of results using ESME has to

be complemented, in most cases, with other tools.

For visualization of methylation data, a web tool has been developed by Mallona et al. (2014),

Methylation plotter, which is implemented as an R shiny app. This tool, accessible on any web

browser, provides a dynamic visualization of methylation data by generating a variety of plots, as

well as some statistic features (Figure 32) (http://maplab.imppc.org/methylation_plotter/, Mallona et

al., 2014). Data from both cloning-BSP and direct-BSP methods can be used as inputs as CpG

methylation proportions are represented as a grey color gradient from 0 to 1 (Figure 32A and 32C).

Several studies have used Methylation plotter to display their direct-BSP results, such as Forn et al.

(2015); Gil et al. (2022); Ismail et al. (2020); Martín et al. (2020).

Nowadays, even if ESME is still used in several studies, the manual calculation of methylation

percentages based on peak height was demonstrated to be an accurate method and is the most

convenient one to analyze results from direct-BSP experiments (Jiang et al., 2010; Martisova et

al., 2021; Mühlisch et al., 2007; Parrish et al., 2012). This manual analytic process of direct-BSP
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data is quite time-consuming, as it depends on the amount of sample and CpG sites per sample,

thus, its automatization could increase its efficiency, reduce errors and refine the quality control over

sequencing data (Parrish et al., 2012).

A B

C
D

FIGURE 32 VISUALIZATION OF METHYLATION DATA USING THE METHYLATION PLOTTER WEB TOOL. A.

Lollipop-like plot, samples are sorted by-group. The normal tissues (N) and tumor tissues (T) present visually

different methylation patterns. B. Heatmap and its associated dendrogram to display the unsupervised hierar-

chical clustering of samples, the color corresponds to the different user-provided groups. C. Methylation profile

plot summarizing the methylation data of groups. An asterisk (*) symbol above the x-axis of CpG sites indicates

a statistical difference between groups for the CpG position, according to the non-parametric test Kruskal-Wallis.

D. Boxplots illustrating the methylation mean and quartiles of each group. Figure adapted from Mallona et al.

(2014).
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[ KEY POINTS

å The cloning-BSP approach reveals the methylation status of cytosines, by either a C or a T
base, of unique clones. As each clone derives from a unique PCR product, the sequencing
of several clones gives can give an estimation of the CpG methylation proportions in the
original DNA pool.

å Several tools have been developed to analyze cloning-BSP results, using the sequence
as input, such as MethTools 2.0 (Grunau et al., 2000), BiQ Analyzer (Bock et al., 2005),
QUMA (Kumaki et al., 2008) and BISMA (Rohde et al., 2010) (Figure 29).

å In the direct-BSP approach, as a mix of PCR products with different methylation statuses
is sequenced, both C and T signals can be measured at cytosine positions. Thus, its
analysis relies on the proportionality between the base quantity in the mix of DNA se-
quenced and its signal intensity on the electropherogram. The methylation percentage
can be calculated using the peak height retrieved from the chromatogram: Methylation
percentage=C/(C+T)×100.

å The only tool able to analyze direct-BSP results is ESME (Epigenetic Sequencing Methy-
lation analysis software) but it suffers from accessibility issues (Figure 31A) (Lewin et al.,
2004).

å The manual calculation of methylation percentage remains the most convenient way to
analyze direct-BSP data.

å Visualization of methylation data from direct-BSP or cloning-BSP can be achieved by using
the web-tool Methylation plotter (Mallona et al., 2014).

� Back to Table of Contents

4.4.4 ARTIFACTS

BISULFITE CONVERSION EFFICIENCY

The most critical artifact to examine during BSP experiments is the conversion efficiency of the

bisulfite treatment. When for some unmethylated cytosines the deamination reaction by bisulfite fails,

the conversion is described as incomplete. As the methylation percentage determination is based

on the relative quantity of either C or T at the CpG site, the incomplete conversion of unmethylated

cytosines causes an over-estimation of the C relative quantity and therefore causes methylation

levels over-estimation (Genereux et al., 2008; Harrison et al., 1998; Olova et al., 2018; Poucke et al.,

2017). In Warnecke et al. (2002), the authors reported that, in addition to the commonly described

sporadic non-conversion of cytosines, incomplete conversion can also be sequence-specific. They

explain that, as the conversion depends on denaturation — or melting — of the DNA molecule,

the fragments requiring a higher temperature to melt, such as GC-rich sequences, might be more

resistant to conversion.

The bisulfite conversion efficiency can be quantified by calculating the ratio of remaining un-

converted C over T at each native non-CpG cytosines position, only if cytosine methylation outside a

CpG context is considered rare enough to be negligible, which is the case in mammalian genomes
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(Arand et al., 2012; Guo et al., 2014; Laurent et al., 2010; Leontiou et al., 2015). Yet, the most reliable

way to evaluate the completeness of conversion is to use unmethylated DNA as a control in bisulfite

conversion experiments (Olova et al., 2018). If needed, the conversion efficiency can be improved

by altering some parameters like the duration of bisulfite treatment or denaturation temperatures for

a given bisulfite concentration (Grunau et al., 2001; Hayatsu et al., 2004). But, for several years now,

most of the commercially available kits have been developed and tested to ensure high conversion

efficiencies, over 99% in general (Hernandez et al., 2013; Leontiou et al., 2015). Plus, the presence

of non-CpGs cytosines converted to thymines in the primer sequences is also a prerequisite to se-

lectively amplify converted DNA molecules and lower this potential artifact (see Appendix 1 “Primer

design for bisulfite sequencing PCR” at page 305).

Although the incomplete conversion of DNA is the most described artifact, the inverse artifact

also exists and it is called over-conversion of bisulfite. It results from the inappropriate deamination

of 5-methylcytosines, thus misinterpreted as unmethylated, which causes methylation levels under-

estimation (Genereux et al., 2008; Olova et al., 2018). Yet, the detection of over-conversion by

bisulfite is not well reported in the literature.

PCR FIDELITY

The polymerase used for PCR can be a source of bias in the quantification of methylation

because of errors introduced during the polymerization (Eckert and Kunkel, 1991; Potapov and Ong,

2017). Indeed, the base substitution at the cytosine position of a CpG site can create a bias in the

calculation of the CpG methylation percentage.

For cloning-BSP, if the nucleotide added by the polymerase is a C instead of a T (C>T or G>A

in opposite strand polymerization) or a T instead of a C (T>C or A>G in opposite strand polymer-

ization) at the CpG position, it changes the methylation status of the CpG. In Poucke et al. (2017),

the authors tried to theoretically evaluate the importance of PCR fidelity as a bias in methylation

status determination. Based on the theoretical error rate of the Taq polymerase, the hypothetical

amplification of a 400 bp product containing 40 CpGs for 40 cycles results in an error at 1 CpG

per 90 amplicons, which they consider as being 20-fold lesser than the errors introduced by bisulfite

incomplete conversion.

For direct-BSP, same as for cloning-BSP, the methylation status can be biased by C>T or T>C

(G>A or A>G in opposite strand polymerization) errors as it can shift the methylation percentage in

both directions to an over- or under-estimation of methylation. But, the other errors C>A, C>G, T>G,

T>A (G>T, G>C, A>C, A>T in opposite strand polymerization) have also a — lesser — impact on the

methylation by removing a methylation status information in the total of C+T used in the calculation

of the methylation percentage.

Finally, errors introduction in the polymerization can only be reduced by using high fidelity poly-
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merase whereas bisulfite conversion-related bias can be strongly reduced by improving experimental

conditions. Moreover, PCR fidelity-associated bias seems to be negligible compared to bisulfite con-

version bias in the estimation of methylation percentages (Poucke et al., 2017).

BASE MISALIGNMENT IN SEQUENCING RESULT

DNA methylation quantification can also be biased by the misalignment of nucleotides during

the Sanger sequencing. The two causes of misaligned base signals are polymerase slippage and

mobility difference between unmethylated and methylated fragments.

The presence of long repeats of identical nucleotides, generally of eight or more nucleotides

(corresponding to the number of bases in the Taq DNA polymerase active site (Eom et al., 1996)),

or short motifs repeats (motif up to four bases in general) in the amplicon sequence can induce the

polymerase slippage during PCR amplification (Levinson and Gutman, 1987). During extension of a

repetitive motif, the slipped-strand mispairing occurs when the polymerase stalls, dissociates from the

double-stranded DNA complex and reassociates at another position, one or more repeats ahead or

behind the initial point of dissociation. It results in the insertion or deletion of one or more units of the

repetitive motif in the newly formed DNA and therefore, the products from PCR can contain amplicons

differing from the original template (Sehn, 2015; Shinde et al., 2003). These mutations introduced in

some of the amplicons are therefore causing the detection of a mix of base signals at a given position

in the Sanger sequencing result (Fazekas et al., 2010; Parrish et al., 2012; Methylation Analysis

by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems, 2007). Due

to its T redundancy (non-CpG cytosines converted to thymines), bisulfite-treated DNA is prone to

polymerase slippage, so it raises the necessity to check for repetitive bases or motifs in the targeted

sequence.

The other source of misaligned bases is due to the molecular weight difference between C

and T bases. In samples with a mixed methylation state, there is a mix of molecules whose content

differs by the presence of C or T at CpG sites. Therefore, the cumulative difference in molecular

weight between the DNA templates leads to migration differences during capillary electrophoresis of

Sanger sequencing. As differences in C and T accumulates between the different forms of templates,

gradually they no longer co-migrate and signals tend to split. For longer fragments, the n−1 base sig-

nal of one template can overlap with the n base signal from another template, resulting in an incorrect

estimation of methylation levels (Boyd et al., 2006; Boyd et al., 2007; Rakyan et al., 2004). As it is

more susceptible to generate bias for longer fragments, limiting the amplicon length is therefore rec-

ommended, and limiting the number of CpG sites as well (Rakyan et al., 2004; Methylation Analysis

by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems, 2007).
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“PCR BIAS”: UNEQUAL AMPLIFICATION OF METHYLATED AND UNMETHYLATED DNA

The methylation-independent PCR (MIP) is based on an equal amplification of the methylated

and unmethylated DNA molecules. Indeed, theoretically, as primers do not contain CpG sites, they

can anneal to both methylated and unmethylated DNA molecules.

However, it was first described by Stirzaker et al. (1997) that this theory is not completely true

and that PCR introduces bias. The authors were studying the DNA methylation of a CpG islands

located in the retinoblastoma gene (Rb) promoter, in leukocyte DNA from patients. They analyzed

the methylation of both top and bottom strands, using MIP primers to amplify bisulfite-treated DNA,

and PCR products were directly sequenced or cloned before sequencing. By analyzing both strands,

they revealed a preferential amplification of low methylated templates for the top strand sequence

and not for the bottom strand sequence in some patient samples. The authors suspected that these

results were due to a PCR bias, a difference in amplification efficiencies towards unmethylated DNA,

and point out the necessity to test primers on mixed DNA populations with accurate quantification as

control.

Temperature melting difference and biased amplification

Then, the same authors in Warnecke et al. (1997) first hypothesized that this amplification bias

can be due to a higher GC content of methylated DNA, thus impacting the Tm of the DNA molecule,

causing the formation of secondary structures and resulting in reduced amplification efficiency, com-

pared to unmethylated T-rich DNA with a lower GC content. This hypothesis then was supported by

Voss et al. (1998) as the addition of betaine within the PCR reaction, a reagent known to improve

amplification of GC-rich DNA forming secondary structures, partially improves the amplification effi-

ciency of methylated DNA (Aird et al., 2011; Green and Sambrook, 2019c; Henke et al., 1997; Rees

et al., 1993).

This preferential amplification towards unmethylated DNA was then described by several other

publications (Guldberg et al., 2002; Moskalev et al., 2011; Rein et al., 1998; Shen et al., 2007; Voss

et al., 1998; Warnecke et al., 2002; Wojdacz and Hansen, 2006). Though Rubatino et al. (2015)

reported an unusual PCR bias towards methylated DNA when amplifying highly methylated regions

such as imprinted regions.

DNA melting — or denaturation — is the conversion of double-stranded DNA to single-stranded

DNA, also referred to as helix-to-coil transition, which can be achieved by raising the temperature or

by denaturing agents. The midpoint temperature at which half of the DNA strands are in the single

strand state is called the melting temperature (Tm). The Tm depends on three main factors: the length

of the DNA molecule, its base composition, and the ionic strength of the solution (salt concentration).

And two main forces maintain the double-stranded conformation of DNA, base pairing: hydrogen

bonds between complementary pairs, A:T and G:C, on opposite complementary strands; and base

stacking: interactions between neighboring base pairs (Gotoh, 1983; Vologodskii et al., 1984). Be-
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cause there are 2 hydrogen bonds between an A:T pair and 3 hydrogen bond between a G:C pair,

they differ in stability, and G:C pairs requires more energy to be broken. Moreover, base stacking

interactions are more stable for CG-rich DNA polymers (Vologodskii et al., 1984; Yakovchuk et al.,

2006). In other words, the melting of DNA is directly linked to the GC content of the DNA molecule.

CG-rich DNA needs a higher temperature to disrupt pair bonds and base stacking interactions for

strands to be separated.

In the case of bisulfite-treated DNA, the fully methylated molecule and the unmethylated

molecule only differ by their GC content (Figure 33A). The methylated molecule contains C at CpG

sites whereas the unmethylated one contains T, and in the opposite strand, G and A respectively.

Therefore, the Tm of the methylated DNA is higher than the Tm of the unmethylated DNA (Figure 33B).

This difference can be seen by melting profiles analysis and used to discriminate methylated

and unmethylated DNA by methylation-sensitive high resolution melting (MS-HRM). The MS-HRM

method can estimate methylation by comparing melting profiles of bisulfite-converted PCR prod-

ucts. Melting profiles are obtained by monitoring the fluorescence changes of dyes intercalated

in the double-stranded DNA upon increasing temperatures. As temperature raises, DNA duplexes

melt, and fluorescence declines (Wojdacz and Dobrovic, 2007). When analyzing PCR products from

bisulfite-treated DNA, the unmethylated DNA melting curve is found different from the methylated

DNA melting curve, and in the case of heterogeneous methylated DNA, the melting curve is between

those previous two (Figure 33C). By converting the melting curves into melting peaks, as the Tm

corresponds to temperature at the maximum peak height, deferentially methylated products have

therefore different melting peaks (Figure 33D) (Guldberg et al., 2002; Wojdacz and Dobrovic, 2007;

Wojdacz and Hansen, 2006).

In consequence, we can extrapolate that the more there are CpG sites in the PCR product, the

more GC content difference is high, the more Tm difference between its methylated and unmethylated

sequences will be higher. Based on that assumption it can be suggested that reducing as possible

the Tm difference by minimizing the amount of CpG sites in PCR products for BSP, to lessen the over-

amplification of unmethylated DNA, even though it is not indicated as a guideline in the literature.

Several attempts to modify the melting behavior of DNA during PCR by altering PCR con-

ditions or using additives did not succeed in completely solving this PCR bias (Voss et al., 1998;

Warnecke et al., 1997).

Reversal of bias by addition of CpG site in primers

To reverse the over-amplification of unmethylated DNA, Wojdacz and Hansen (2006) submit-

ted the use of primers containing one CpG site in their priming site for MIP. The aim was not to

eliminate the bias towards unmethylated DNA but to add another one towards methylated DNA, to

counterbalance it, by increasing the selectivity of binding towards methylated DNA molecules. They

achieved to reverse the biased amplification with this method, as the expected methylation propor-
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FIGURE 33 MELTING DIFFERENCES BETWEEN UNMETHYLATED AND METHYLATED BISULFITE CONVERTED

DNA. A. After bisulfite conversion, unmethylated cytosines are transformed in uracil and substituted by

thymines during PCR whereas methylated cytosines remain cytosines. Therefore, methylated and unmethylated

DNA templates differ in thermal stability due to their different contents of G:C base pairs. ds: double-stranded

DNA and ss: single-stranded DNA. B. This theoretical graph shows the relationship between Tm and CpG site

number. Adapted from Guldberg et al. (2002), it represents Tm values, calculated in silico, for an 85 bp domain

of a PCR product converted to bisulfite containing, on its 6 CpG sites, from 0 to 6 methylated cytosines. For the

ones containing from 1 to 5 methylated cytosines, values represent the averages of the six possible combina-

tions. C. This theoretical graph represents melting curves of unmethylated, methylated, and mixed methylated

(or heterogeneously methylated) forms of a bisulfite-converted PCR product. D. This theoretical graph repre-

sents melting peaks of unmethylated, methylated, and mixed methylated (or heterogeneously methylated) forms

of a bisulfite-converted PCR product. The melting curves can be converted to melting peaks by plotting the neg-

ative derivative of fluorescence over temperature (-dF/dT) versus temperature. Figure adapted from Guldberg

et al. (2002) and Wojdacz and Dobrovic (2007).

tions were correctly recovered using melting curve assays. Later, the same authors in Wojdacz et

al. (2009) compared the use of free-CpG primers and primers including CpG for their ability to pro-

portionally amplify bisulfite-converted DNA in known proportions of methylation, by MS-HRM. They

found by adjusting the Ta, that primers with at least one CpG site led to the detection of the expected

methylation levels.

The annealing temperature (Ta) is a key parameter during PCR and its optimization is pro-

posed to correct the over-amplification bias. The authors explained that the reversal of this bias
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depends on the annealing temperature : at low Ta, primers can bind equally on both methylated or

unmethylated templates, thus permitting PCR bias due to differences in efficiencies during the elon-

gation step, but as the Ta is increasing, the primers containing a CpG site can anneal preferably to

the methylated template, thus allowing a higher amplification efficiency and the reversal of the bias

(Wojdacz et al., 2009).

Reduction of bias by optimizing annealing temperature

Additionally, in Shen et al. (2007), bisulfite pyrosequencing was used to assess PCR bias to-

wards amplification of unmethylated DNA and the effect of the Ta on this bias. Most of the primers

used contained CpG sites with Y or R bases instead of C/T and G/A bases. By using a mix of un-

methylated DNA and methylated DNA in known proportions they were able to confirm a preferential

amplification of unmethylated DNA for all of the primer pairs tested, and to overcome or, at least

reduce, this bias by increasing the Ta for most of the primer pairs. They could not decipher the rela-

tionship between Ta and biased amplification of bisulfite-treated DNA depending on its methylation,

yet their theory is that raising the Ta can be sufficient to melt secondary structures of GC-rich DNA

and improve its amplification. As the annealing temperature is known to impact the primer affinity to

its binding site, it raises the question if the increase of Ta is, rather than melting secondary structures,

enhancing the binding affinity of the primer form with the higher Tm (sequence with a C at the CpG

site: higher GC content) compared to the primer form with the lower Tm (sequence with a T at CpG

site: lower GC content), thus enhancing its annealing on the methylated template, which could ex-

plain the bias reduction (Further details in Appendix 1 “Primer design for bisulfite sequencing PCR”

at page 305). Yet, the CpG-free primers used by Shen et al. (2007) also displayed a biased amplifi-

cation towards unmethylated DNA which could not be completely solved by increasing the annealing

temperature.

Controversy

This method of bias compensation by increasing the selectivity of primers towards methylated

DNA is subjected to controversy. In Moskalev et al. (2011) the authors found that, for some loci, the

presence of a CG dinucleotide in the primer-annealing site can over-compensate the unmethylated

DNA over-amplification, leading to the inverse bias towards an over-amplification of methylated DNA.

So, instead of trying to optimize PCR to solve bias, they approached the issue by correcting bias

afterward on results. Based on curve fitting and using calibration data, they were able to apply

correction factors on the results regression curves to correct the methylation percentages estimation.

To find answers to the effect of the presence of CpG sites in the primer annealing sequence

on the biased PCR amplification, the authors of Candiloro et al. (2017) tested each primer de-

sign solution by varying the cytosine of the CpG site and tested different Ta. For the two same

primer pairs, they used C-containing primers (methylated), C/T(Y)-containing primers, A/C/G/T(N)-

containing primers, inosine(I)-containing primers, mismatch(A)-containing primers, and abasic(-)-
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containing primers. First, the results from C-containing primers overestimated the DNA methyla-

tion for all tested Ta, and this biased amplification towards methylated DNA was enhanced at higher

Ta. This finding confirms the over-compensation of PCR bias when the selectivity for methylated

DNA is increased by the presence of CpG sites in the primers found by Moskalev et al. (2011).

Inosine-containing primers showed similar results. For the C/T(Y)-containing primers (G/A(R) in re-

verse primer) DNA methylation is also overestimated but less than with the previous ones, and the

increase of Ta also enhance the bias, which coincides with the results found by Shen et al. (2007).

The same results were found for the A/C/G/T(N)-containing primers, except for the lowest Ta tested,

the DNA methylation estimation was quite accurate. Mismatch-containing primers underestimated

DNA methylation and PCR amplification was not efficient. The most accurate estimation of DNA

methylation was found using the abasic-containing primers, for only one of the two regions tested as

they were not able to amplify the other region using the abasic-containing primers, probably because

the abasic site was close to the 3’ end of the reverse primer which may interfere with the polymerase

priming and activity.

So, in conclusion, it confirmed the over-compensation of PCR bias towards methylated DNA

by using primers with CpG sites, whether C-containing primers or C/T(Y)-containing primers, which

contradicts the model of primer design proposed by Wojdacz and Hansen (2006). However, most

studies agreed that the bias amplification during PCR is region dependant and both models can be

relevant depending on the studied region.

Finally, all of the studies emphasized the importance of testing each primer pair to ensure the

PCR effectiveness and unbiased results, as well as optimizing the annealing temperature for each

primer pair. They recommend performing a gradient of annealing temperature and using a mix of

DNA in known proportions of methylation, such as 50:50, as a control to check for the equal am-

plification of both methylated and unmethylated templates. Therefore, as bisulfite sequencing PCR

relies on PCR amplification of heterogeneously methylated DNA, one key step in the experimental

process is to carefully check for PCR bias.
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[ KEY POINTS

å Incomplete conversion of bisulfite can bias the methylation levels estimation. Unmethy-
lated DNA control and calculation of the conversion rate based on non-CpG cytosines are
essentials to check for conversion artifacts.

å Errors in DNA polymerization, to a lesser extent, can also bias the methylation quantifica-
tion.

å The misalignment of bases in sequencing results can be due to 1 polymerase slippage at
repetitive bases or motifs by inducing insertion/deletions mutations and 2 gradual migra-
tion separation between methylated and unmethylated derived PCR products because of
molecular weight difference between C and T bases.

å A PCR bias causing the unequal amplification of methylated and unmethylated DNA has
been widely reported. Most of the time the bias is towards unmethylated DNA due to its
lower GC content and thus its lower melting temperature (Tm) (Figure 33).

å Some attempts to reverse this amplification bias, by including CpG sites in the primer se-
quences and/or by increasing the annealing temperature (Ta), have been successful for
some regions but could also over-compensate the bias towards over-amplification of methy-
lated DNA instead.

å Incorporating DNA controls with known methylation levels in BSP experiments is essential
to check for PCR amplification bias, and optimizing of the Ta for each primer pair can help
resolve this bias.

� Back to Table of Contents
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OBJECTIVES

The cancer stem cells (CSCs) are major contributors to the therapeutic resistance of cancers

and an important cause of cancer relapse. Therefore, this project aims to find new solutions to reduce

the emergence of CSCs in response to radiotherapy, which leads to the resurgence of the highly

resistant CSC population within the tumor. As the cancer non-stem cells (non-CSCs) dedifferentiation

into CSCs contributes to the tumor enrichment in CSCs, the inhibition of this phenotypic conversion

would radiosensitize tumors and reduce the risk of cancer relapse.

As the acquisition of a stemness phenotype includes the acquisition of self-renewal capacity

and pluripotency, it involves changes in the gene expression programs. Hence, we hypothesize that

an epigenetic regulation of key genes may regulate the radio-induced dedifferentiation of non-CSCs

into CSCs.

In a first part, to get insights into the epigenetic mechanisms involved in the non-CSC-to-CSC

conversion, the first objective was to determine the implication of epigenetic modifying enzymes in

this process. As modulation of their expression following radiotherapy would indicate their potential

participation in this change of phenotype, their expression levels were monitored after radiation ex-

posure. And, to determine the requirement of DNA methyltransferases (DNMTs) enzymes in this

process, an inhibition approach was carried out.

Then, genomic regions undergoing methylation from the non-CSC state to the radio-induced

CSC state may affect the expression of genes. Therefore, the identification of methylation differences

between those phenotypes would allow the discovery of new mechanisms or regulators involved in

CSC plasticity. These genes regulated by DNA methylation could be new potential therapeutic targets

to specifically inhibit the non-CSC-to-CSC phenotypic switch.

In a second part, the study of DNA methylation levels at specific genomic regions using bisul-

fite sequencing PCR (BSP) experiments is restrained by an exhaustive analytic process and a lack of

efficient tools. Hence, the project aims to provide a new tool capable to handle both direct-BSP and

cloning-BSP data, in an automated and accessible way, to help researchers interpret BSP results.

Analysis of Bisulfite Sequencing PCR (ABSP) was therefore developed as a ready-to-use solution to

facilitate the evaluation of methylation differences in a region of interest.
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1.1 CELL LINES AND CULTURE CONDITIONS

The SUM159PT triple-negative breast cancer cell line (Asterand) was used and its character-

istics are depicted in Table 5. This cell line was cultivated in the culture medium described in Table 6.

The Ham’s F-12 Nutrient Mixture (F-12), the Non-Essential Amino Acids (NEAA), the HEPES buffer,

the penicillin and streptomycin are provided by Gibco; the Fetal Bovine Serum (FBS) by HyClone;

the insulin and hydrocortisone by Sigma-Aldrich; and the ZellShield by Biovalley.

SUM159PT

Supplier Asterand

Molecular type Triple negative

Morphology Epithelial

Tumor type Anaplastic carcinoma

Sampling origin Primary tumor

TABLE 5 CHARACTERISTICS OF THE SUM159PT BREAST CANCER CELL LINE.

Cells are maintained in culture in a humid atmosphere at 37°C containing 5% of CO2. Before

confluence, cells are detached from the Petri dish with trypsin/0,25% EDTA (Gibco), and a portion is

reseeded in a new Petri dish. The culture maintenance does not exceed a dozen of seeding.
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SUM159PT

Base medium F-12

FBS 5%

Insulin 5 µg/mL

Hydrocortison 1 µg/mL

HEPES 10 nM

ZellShield 1%

TABLE 6 COMPONENTS OF THE SUM159PT CELL LINE CULTURE MEDIUM.

1.2 IRRADIATION

Cells are seeded the day before irradiation at an approximated density of 5,500 cells/cm2.

Cells are irradiated as a monolayer at room temperature in the Oscar Lambret Center of Lille. A 20

MV photon beam is delivered by a Clinac 23EX particle accelerator (Varian) with a dose rate of 2.63

Gy/min. The X- and Y-collimator field is set at 40 cm × 40 cm to irradiate simultaneously up to 16

(4×4) Petri dishes of 10 cm diameter. An 8 Gy dose is delivered at once during a 3,04 minutes lasting

run.

1.3 ALDH ACTIVITY STAINING

The high aldehyde dehydrogenase (ALDH) activity of CSCs enables their distinction from the

rest of the population using the Aldefluor kit (Stem Cell Technologies) (Ginestier et al., 2007). The

Aldefluor kit is used based on the supplier’s recommendations. Cells are detached from the mono-

layer Petri dish and resuspended in the provided Aldefluor assay buffer at a cell density between

5× 106 and 10× 106 cells per mL. The reactivated Aldefluor reagent, is added to the cell suspension

(5 µL per mL), and cells are incubated for 30 minutes at 37°C into obscurity. Controls used are 1 un-

stained cells incubated in Aldefluor assay buffer only to assess cell autofluorescence and 2 stained

cells incubated in presence of both Aldefluor reagent and diethylaminobenzaldehyde (DEAB) ALDH

inhibitor to define the ALDHhigh population threshold.

1.4 FLOW CYTOMETRY

The fluorescence of cells stained with the Aldefluor kit is analyzed using either the CyAn

ADP flow cytometer (Beckman Coulter) or the CytoFLEX S flow cytometer (Beckman Coulter) at

the BioImaging Center Lille (BICeL) platform, located in the IRCL (Institut pour la Recherche sur le

Cancer de Lille) Institute. The ALDHhigh population fluorescence intensity threshold is set based on

the negative control incubated with an inhibitor of the ALDH activity, the diethylaminobenzaldehyde

(DEAB), as it contains only ALDHlow cells. ALDHhigh cells (CSCs) correspond to the cells with a higher

fluorescence intensity than the maximum fluorescence intensity of 99.9% of the negative control
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population. The cytometry fluorescence data are then analyzed using the FlowJo software (v10.8.1)

(BD Biosciences).

1.5 FLUORESCENCE-ACTIVATED CELL SORTING (FACS)

The cells stained using the Aldefluor kit are sorted by FACS using either the BD FACSAria™ III

cell sorter (BD Biosciences) or the SH800S cell sorter (Sony) at the BioImaging Center Lille (BICeL)

platform, located in the IRCL (Institut pour la Recherche sur le Cancer de Lille) Institute. Based on

ALDH activity, the ALDHlow and ALDHhigh populations are isolated. The sorted ALDHlow population

corresponds to 30% of the cell population with the lowest fluorescence intensity. The sorted ALDHhigh

population (CSCs) corresponds to the cells with a higher fluorescence intensity than the maximum

fluorescence intensity of 99.9% of the negative control population. During sorting, cells are kept in

the Aldefluor assay buffer at 4°C, and sorted cells are retrieved in culture medium at 4°C.

1.6 SPHERE FORMING CAPACITY

The sphere-forming capacity (SFC) assay is a functional assay to estimate the proportion of

cells with stem-like capacities. The culture medium used for sphere culture is a DMEM/F-12 (Dul-

becco’s Modified Eagle Medium/Nutrient Mixture F-12) medium (Gibco) supplemented with 0.4%

Bovine Serum Albumin (BSA) (Sigma-Aldrich), 2% B-27 supplement (Gibco), 5 µg/mL of insulin

(Sigma-Aldrich), 4 µg/mL of heparin (Sigma-Aldrich), 20 ng/mL of Epidermal Growth Factor (EGF)

and Fibroblast Growth Factor (FGF) (Sigma-Aldrich). Cells are seeded in low-attachment surface

96-well plates, from 1024 cells to 1 cell in several wells, with 200 µL of sphere medium per well. The

number of formed spheres is measured 8 days later using a phase-contrast microscope. The ratios

of the formed sphere over the number of seeded cells in the different dilutions give the estimation of

sphere-forming cell proportion. To assess the SFC on several generations, cells are maintained in

sphere media in low-attachment surface flasks at a density of 10,000 cells/mL for 10 days per gen-

eration. After each generation, cells are dissociated using accutase (Invitrogen) and then reseeded

in flasks to get the next generation or in 96-well plates to perform the SFC assay of the current

generation.
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2.1 SIRNA TRANSFECTION

The SUM159PT cells are transfected with siRNAs using the INTERFERin reagent (Polyplus)

and the recommended protocol. Cells are seeded one day before to obtain cell confluency of around

50% for transfection. The cell medium is replaced by a fresh medium. The siRNAs are mixed with

INTERFERin and cell medium for a quantity of approximately 2.2 pmoles of siRNAs per 200,000

cells. The siRNA sequences used are listed in Table 7. The mix is agitated and incubated for 10

minutes at room temperature before being added to the cell culture. Protein and mRNA relative

quantities are measured 48 hours after transfection.

SIRNA NAME SEQUENCE FORWARD SEQUENCE REVERSE REFERENCE

siCtrl - - SR-CL000-05
(Eurogentec)

siDNMT1 #1 5’-CACUGGUUCUGCGCUGGGATT-3’ 5’-UCCCAGCGCAGAACCAGUGTT-3’ Fan et al., 2016

siDNMT1 #2 5’-GGAAGUGAAUGGACGUCUATT-3’ 5’-UAGACGUCCAUUCACUUCCCG-3’ Vispé et al.,
2015

siDNMT3B #1 5’-GAUCAAGCUCGCGACUCUCTT-3’ 5’-GAGAGUCGCGAGCUUGAUCTT-3’ Fan et al., 2016

siDNMT3B #2 5’-GCUCUUACCUUACCAUCGATT-3’ 5’-UCGAUGGUAAGGUAAGAGCTG-3’ Vispé et al.,
2015

TABLE 7 LIST OF SIRNAS.

2.2 RNA LEVELS

RNA EXTRACTION

The RNA is extracted using the RNeasy kit (Qiagen) following the manufacturer’s recommen-

dations. A DNase I treatment during extraction is applied to eliminate genomic DNA. RNA concen-

157



MATERIAL AND METHODS

trations are evaluated by measuring the absorbance at 260 nm by spectrophotometry. RNA samples

are stored at -80°C.

REVERSE TRANSCRIPTION

The cDNA synthesis is performed using the SuperScript III (Invitrogen) reverse transcriptase

(RT). As recommended by the manufacturer, RNA and random primers are first incubated for 5

minutes at 65°C for random primers hybridization, and then the complete reaction mix goes through

the reverse transcription steps: 10 minutes at 25°C, 50 minutes at 50°C, and 5 minutes at 80°C.

Negative control samples, containing no cDNA, are generated with the same process, except that

the reverse transcriptase is not added to the mixture, making the cDNA synthesis impossible.

QPCR

The quantitative polymerase chain reaction (PCR) is performed using the synthesized cDNA,

specific primers, and SyBR Green master mix (Qiagen) containing the SyBR Green, the Taq poly-

merase, deoxynucleotides (dNTP), and MgCl2. The specific primers used are listed in Table 8, and all

of them are synthesized by Eurogentec. The polymerase chain reaction is performed by the CFX96

real-time system (Biorad) thermocycler. It starts with a denaturation step for 10 minutes at 95°C and

is followed by 40 cycles of 3 steps: denaturation (30 seconds at 95°C), hybridization (30 seconds at

the defined hybridization temperature), and elongation (1 minute at 72°C). The fluorescence mea-

surement is realized at the end of each cycle and the melting curve of the product is generated at

the end of the PCR. The optimal hybridization temperature of a primer pair is determined beforehand

by evaluating the amplification efficacy at different temperatures. For most of the primer pairs, the

optimal hybridization temperature is 59°C or 60°C.

TARGET GENE FORWARD SEQUENCE REVERSE SEQUENCE

B2M 5’-TCGCGCTACTCTCTCTTT-3’ 5’-CAAGTCTGAATGCTCCACTT-3’

RPLP0 5’-GCGACCTGGAAGTCCAACTA-3’ 5’-TGTCTGCTCCCACAATGAAG-3’

DNMT1 5’-TATCCGAGGAGGGCTACCTGGC-3’ 5’-TGGGGCTAGGTGAAGGTTCAGGC-3’

DNMT3A 5’-TATTGATGAGCGCACAAGAGAGC-3’ 5’-GGGTGTTCCAGGGTAACATTGAG-3’

DNMT3B 5’-TTGAATATGAAGCCCCCAAG-3’ 5’-TGATATTCCCCTCGTGCTTC-3’

TET1 5’-ATACAATGGGCACCCTACCG-3’ 5’-GGGCTTGGGCTTCTACCAAA-3’

TET2 5’-GCTGACAAACTCTACTCGG-3’ 5’-CTTCTGGCAAACTTACATCC-3’

TET3 5’-CCCAAAGAGGAAGAAGTG-3’ 5’-GCAGTCAATCGCTATTTC-3’

KDM6A 5’-ATGAATCCTGCAACCAGCCT-3’ 5’-TGACTGAGGCCTAATACAGGT-3’

KDM6B 5’-CTCACCGCCTATCAGTACCA-3’ 5’-GGCACGATGGATTTGACGTT-3’

EZH2 5’-CCCTGACCTCTGTCTTACTTGTGGA-3’ 5’-ACGTCAGATGGTGCCAGCAATA-3’

TABLE 8 LIST OF SPECIFIC PRIMERS FOR RT-QPCR.
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RESULTS ANALYSIS

Housekeeping genes such as B2M (beta-2 microglobulin) and RPLP0 (Ribosomal Protein

Lateral Stalk Subunit P0) are used as reference genes. The expression level fold change calculation

is based on the Ct (cycle threshold, cycle at which the fluorescence detected is above the threshold)

of each reaction, is normalized using the reference genes, and is relative to the control condition. As

each reaction is performed in three replicates, the used Ct value corresponds to the mean of Ct from

the three technical replicates. The ∆Ct represents the difference between the target gene Ct and

the reference gene Ct. The ∆∆Ct represents the difference between the test condition ∆Ct and the

control condition ∆Ct. Therefore, the relative expression fold change corresponds to 2−∆∆Ct .

2.3 PROTEIN LEVELS

PROTEIN EXTRACTION

First, for the total protein extraction, cell lysis is performed by the addition of lysis buffer on

cells (150 µL for a 100 mm Petri dish) for 10 minutes at 4°C. The lysis buffer composition is available

in Table 9, the NaF, Na3VO4, Protein Inhibitor Cocktail (Roche), and phenylmethylsulfonyl fluoride

(PMSF) are added right before the lysis. Petri dishes are scraped and the cell lysate is retrieved

and centrifuged at 19,000 g for 10 minutes at 4°C. The supernatant containing the protein fraction is

stored at -80°C.

COMPONENT LYSIS BUFFER

HEPES pH 7.5 40 mM

NaCl 120 mM

EDTA pH 8.0 1 mM

NaPPi 10 mM

NaF 50 mM

Na3VO4 50 mM

Triton X-100 1%

SDS 0.1%

PMSF 1 mM

glycerol 10%

Protease inhibitor cocktail 1%

TABLE 9 LYSIS BUFFER COMPOSITION FOR TOTAL PROTEIN EXTRACTION.

The cytoplasmic and nuclear protein fractions are isolated using two buffers: a hypotonic one

and a hypertonic one. Compositions of the buffers are shown in Table 10. The Protease Inhibitor

Cocktail (PIC) (Roche) is added to the required volume of buffer right before the lysis. The cell lysis
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starts by adding the hypotonic buffer to adherent cells for 5 minutes at 4°C. Then the samples are

placed in microtubes and incubated on a vertical rotating device at 30 rpm (rotation per minute) for

17 minutes at 4°C. After the addition of 2% of non-ionic and non-denaturing detergent Nonidet P-

40 (Sigma-Aldrich), the samples are centrifuged at 12,000 g for 5 minutes at 4°C. The supernatant

enriched in cytoplasmic proteins is retrieved and stored at -80°C. The pellet is resuspended with the

hypertonic buffer and placed once again on a vertical rotating device at 30 rpm for 30 minutes at 4°C.

These samples are then centrifuged at 19,000 g for 10 minutes at 4°C and the supernatant enriched

in nuclear proteins is retrieved and stored at -80°C.

COMPONENT HYPOTONIC BUFFER HYPERTONIC BUFFER

pH 7.8 7.8

HEPES 10 mM 50 mM

KCl 10 mM 50 mM

MgCl2 2 mM -

NaCl - 300 mM

EDTA 10 mM 10 mM

DTT 3 mM 3 mM

Glycerol - 10%

Protease inhibitor cocktail 2% 1%

TABLE 10 HYPOTONIC AND HYPERTONIC BUFFERS COMPOSITION FOR CYTOPLASMIC AND NUCLEAR PRO-

TEIN EXTRACTION.

Concentrations in proteins are evaluated by a bicinchoninic acid (BCA) assay (Sigma-Aldrich).

After the reaction, the absorbance at 560 nm is measured by spectrophotometry, and concentrations

are calculated based on the proportional correlation between absorbance and concentration, using

a standard of known concentration.

WESTERN BLOT

Protein extracts are diluted with their corresponding buffer to get equivalent concentrations

between each sample. Then, Laemmli buffer, containing SDS and β-mercaptoethanol, is added to

the protein extracts for denaturation, for 10 minutes at 95°C under stirring.

Proteins are then separated by gel electrophoresis (SDS-PAGE) in a Mini-PROTEAN Tetra cell

(Bio-Rad), using a Bis-Tris 4 to 12% gel (NuPage, Invitrogen) and a MOPS SDS Running Buffer (Nu-

Page, Invitrogen), for 30 minutes at 80 V followed by 1 hour 30 minutes at 120 V, at room temperature.

Once separated on the gel, proteins are transferred on a polyvinylidene difluoride (PVDF) membrane

(Millipore), using a transfer buffer containing 15% of methanol, for 1 hour and 15 minutes at 105 V, at
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4°C. Membranes are saturated by incubation in tris-buffered saline (TBS) buffer supplemented with

0.1% of Tween 20 and 5% of bovine serum albumin (BSA) for 1 hour at room temperature.

TARGET PROTEIN SUPPLIER REFERENCE SPECIE DILUTION

DNMT1 Abcam #ab13537 Mouse 1:1000

DNMT3A Abcam #ab2850 Rabbit 1:1000

DNMT3B Abcam #ab2851 Rabbit 1:1000

Lamin B1 Santa Cruz Biotechnology #sc-20682 Rabbit 1:500

Mouse IgG Jackson ImmunoResearch #115-035-003 Goat 1:5000

Rabbit IgG Jackson ImmunoResearch #711-035-152 Donkey 1:5000

TABLE 11 LIST OF ANTIBODIES USED FOR WESTERN BLOT.

Membranes are then incubated with primary antibodies diluted in the saturation buffer overnight

at 4°C. The list of used antibodies is displayed in Table 11. After incubation, five washes of the mem-

branes are carried out using TBS buffer 0.1 % Tween 20, for 7 minutes each, under stirring and

at room temperature. Then, the membranes are incubated with secondary horseradish peroxidase

(HRP)-conjugated antibodies (Table 11), diluted in TBS buffer 0.1 % Tween 20, for 1 hour and 30

minutes under stirring and at room temperature. Another round of five washes is carried out. Fi-

nally, specific proteins bound to the membranes are revealed by the HRP chemoluminescence with

the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific) accordingly to the

supplier’s indications. The numerical images of the membrane are taken using the Fujifilm LAS-4000

Imager. Quantifications of signal intensities of specific bands are computed with the ImageJ soft-

ware. Actin and lamin B1 proteins are used as loading controls and therefore signal intensities are

normalized to these controls.

161



MATERIAL AND METHODS

162



3
DNA METHYLATION STUDY

< CHAPTER CONTENTS

3.1 REDUCED REPRESENTATION BISULFITE SEQUENCING (RRBS) . . . . . . . . .163

3.2 BISULFITE SEQUENCING PCR (BSP) . . . . . . . . . . . . . . . . . . . . . . . .164

� Back to Table of Contents

3.1 REDUCED REPRESENTATION BISULFITE SEQUENCING (RRBS)

GENOMIC DNA EXTRACTION

Genomic DNA is extracted using the DNeasy Blood & Tissue kit (Qiagen) and its protocol

recommendations. During this experimental protocol, DNA is treated with proteinase K (Qiagen)

and ribonuclease A (RNase A) (Sigma-Aldrich). The sample quality is checked by electrophore-

sis migration using a 0.8% agarose gel. DNA concentrations are obtained by fluorimetry analysis

with the Qubit dsDNA HS Assay Kit (Invitrogen) and using the EnSpire Multimode Plate Reader

(PerkinElmer). The optimized excitation (478 nm) and emission (526 nm) wavelengths and a stan-

dard of known concentrations are used to evaluate the DNA sample concentrations.

RRBS PROCEDURE

The RRBS procedure was carried out by the DNA Methylation profiling Service from Diagen-

ode (Seraing, Belgium). Beforehand, the possible degradation of DNA samples is assessed using

the Fragment Analyzer with the DNF-487 Standard Sensitivity or DNF-488 High Sensitivity genomic

DNA Analysis Kit (Advanced Analytical). Then, 100 ng of genomic DNA per sample is used to pre-

pare the libraries with the Premium RRBS Kit (Diagenode Cat # C02030033, Veillard et al., 2016)

(Figure 34).

First, the DNA is digested with the MspI enzyme (C↓CGG, methylation independent) to obtain

DNA fragments with CpG sites at each extremity (Figure 34). Adaptator sequences are ligated to the

fragments to allow their size selection (40 to 220 bp) using the Agencourt AMPure XP beads (Beck-

man Coulter) required to get a high coverage of regions rich in CpG sites. DNA samples are again

controlled for concentration and degradation (Qubit dsDNA HS Assay Kit, Thermo Fisher Scientific,

and High Sensitivity DNA chip, 2100 Bioanalyzer, Agilent) and pooled. The bisulfite conversion is
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APPLICATION NOTE

tedious, and it unlocks the advantages of genome-scale bisulfite sequencing for any interested laboratory. Key points of the 
optimized RRBS protocol include: (i) superior coverage of 3.5 to 4 million CpGs; (ii) support for allele-specific measurements; 
(iii) robustness toward batch effects; (iv) applicable to any vertebrate species; (v) compatible with low-input samples; and (vi)
feasible for formalin-fixed, paraffin-embedded (FFPE) samples. Due to its versatility and high reproducibility, RRBS is the
technology of choice for accurate genome-scale DNA methylation analysis2, 3.

Workflow 

Diagenode Premium RRBS technology offers a complete solution optimized for DNA methylation mapping in vertebrate 
species. The kit contains reagents for enzymatic digestion, library preparation, bisulfite conversion and amplification and 
is available in two sizes: 24 and 96 reactions. Depending on the species, up to 24 samples can be combined and sequenced 
together, which reduces handling time, reagent consumption and cost per sample. For human, we recommend sequencing 
up to 6 samples per lane on the Illumina HiSeq 2000/2500 platform or up to 12 samples per lane on the HiSeq 3000/4000 and 
on the NextSeq high output configuration.
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Figure 1: Reduced Representation Bisulfite Sequencing (RRBS) Workflow
FIGURE 34 REDUCED REPRESENTATION BISULFITE SEQUENCING (RRBS) WORKFLOW. Figure from the

Premium RRBS kit manual website.

then carried out on the pooled samples to convert unmethylated cytosines into uracils. DNA sam-

ples are amplified by PCR and cleaned up to constitute the library ready to be sequenced. So they

are finally sequenced by a 50 bp single-read sequencing (SR50) on the HiSeq3000 sequencer (Illu-

mina). Unmethylated and methylated DNA controls serve as controls to check the bisulfite conversion

efficiency.

3.2 BISULFITE SEQUENCING PCR (BSP)
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BISULFITE CONVERSION

Two DNA samples, high-methylated and low-methylated human genomic DNA (80-8061-HGHM5

and 80-8062-HGUM5 from EpigenDx), are treated with sodium bisulfite. 1.4 µg of each DNA sample

is mixed with 0.3 M of NaOH and incubated at 50°C for 20 min. Then, DNA solutions are treated with

a 2.5 M of sodium bisulfite / 125 mM of hydroquinone pH 5.0 solution, at 70°C for 3 h.

The single-stranded bisulfite converted DNA is then cleaned up using the NucleoSpin Gel and

PCR Clean-up kit (Macherey-Nagel) following the manufacturer’s instructions and converted DNA

samples are stored at -80°C before PCR amplification.

PCR

A touchdown PCR protocol is used to amplify regions of interest from bisulfite-converted

DNA. The composition of each PCR reaction is given in Table 12, and the PCR buffer composition

in Table 13. The touchdown PCR protocol is composed of 50 cycles of: 20 s at 95°C, 30 s at the

annealing temperature, and 2 min at 72°C. The annealing temperature varies from 60°C for 10 cycles,

to 59°C, 58°C, 57°C, and 56°C for 1 cycle each, and 55°C for 36 cycles.

COMPONENT PCR REACTION

PCR buffer 10X 1.5 µL

MgCl2 500 mM 1.2 µL

dNTP 10 mM 0.075 µL

Taq DNA polymerase re-combinant 5 U/µL (Invitrogen) 0.1 µL

Forward primer 5 µM 0.5 µL

Reverse primer 5 µM 0.5 µL

Bisulfite-converted DNA sample 1 µL

H2O 10.125 µL

Total : 15 µL

TABLE 12 PCR REACTION COMPOSITION FOR BISULFITE SEQUENCING PCR.

COMPONENT PCR BUFFER

Tris pH 8.8 670 mM

(NH4)2SO4 160 mM

β-mercaptoethanol 100 mM

Bovine serum albumin (NEB) 1 mg/mL

TABLE 13 PCR BUFFER COMPOSITION FOR BISULFITE SEQUENCING PCR.
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An upstream promoter region of the CDH1 gene is amplified using the PCR primers in Ta-

ble 14. These primers are composed of a sequence-specific to the region of interest and of a standard

primer sequence at the 5’ end, T3 or BGH Reverse primer sequence (underlined in Table 14). The

addition of standard sequencing primers to the extremities of the amplicon increases the sequencing

efficiency, especially since the beginning is generally not correctly sequenced.

NAME SEQUENCE LENGTH APPLICATION

CDH1 Forward 5’-AATTAACCCTCACTAAAGGGTTTAGTAATTTTAGGTTAGAGGGTTAT-3’ 47 bp PCR

CDH1 Reverse 5’-TAGAAGGCACAGTCGAGGAAACTCACAAATACTTTACAATTCC-3’ 43 bp PCR

T3 5’-AATTAACCCTCACTAAAGGG-3’ 20 bp Sequencing

BGH Reverse 5’-TAGAAGGCACAGTCGAGG-3’ 18 bp Sequencing

TABLE 14 PRIMERS USED FOR BISULFITE SEQUENCING PCR.

The amplified region is located on the plus strand at coordinates chr16:68771007-68771227

(reference human genome hg19) (221 bp) and covers 17 CpG sites. With the addition of 5’ tails — T3

(20 bp) and BGH Reverse (18 bp) — to primers, the total length of the amplicon is 259 bp. Following

PCR, amplicon are analyzed by gel electrophoresis migration to validate their correct length.

Amplicon sequence (bisulfite converted sequence with CpG sites considered as methylated,

highlighted in yellow, and location of standard primers T3 and BGH Reverse underlined):

5’-AATTAACCCTCACTAAAGGGTTTAGTAATTTTAGGTTAGAGGGTTATCGCGTTTATGCGAGGTCG

GGTGGGCGGGTCGTTAGTTTCGTTTTGGGGAGGGGTTCGCGTTGTTGATTGGTTGTGGTCGGT

AGGTGAATTTTTAGTTAATTAGCGGTACGGGGGGCGGTGTTTTCGGGGTTTATTTGGTTGTAGTTA

CGTATTTTTTTTTAGTGGCGTCGGAATTGTAAAGTATTTGTGAGTTTCCTCGACTGTGCCTTCTA-3’

SEQUENCING

Amplicons are directly sequenced (direct-BSP) in both directions using the standard sequenc-

ing primers T3 and BGH Reverse for forward and reverse directions respectively (Table 14). Sanger

sequencing runs are carried out by the LightRun Sanger sequencing service at Eurofins Genomics,

Germany. Three replicates of sequencing runs have been performed to allow statistical analysis.

The Applied Biosystems, inc. format (ABIF) (.ab1) sequencing files are used to process the analysis

using the ABSP tool.
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4.1 DIFFERENTIALLY METHYLATED REGIONS (DMRS) IDENTIFICATION FROM REDUCED

REPRESENTATION BISULFITE SEQUENCING (RRBS) DATA

4.1.1 TOOLS AND SOFTWARE

The R programming language is used for the analysis of RRBS data (https://www.r-project.

org/, R: A Language and Environment for Statistical Computing, version 4.2.0, R core Team, Vienna,

Austria, 2022), along with the RStudio development environment for R (https://www.rstudio.com/,

RStudio: Integrated Development for R., version 2022.02.2+485, RStudio Team, PBC, Boston, MA,

2022).

The IGV (Integrative Genomics Viewer) (version 2.4.19) is used in the process of analyz-

ing RRBS data to visualize methylation data on the hg19 human genome (Robinson et al., 2020;

Robinson et al., 2017; Robinson et al., 2011; Thorvaldsdóttir et al., 2013).

Pathways enrichment analysis is performed on the Enrichr enrichment analysis tool (https:

//maayanlab.cloud/Enrichr/, Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021), and based on

the WikiPathways Human 2021 pathways database (Martens et al., 2020; Slenter et al., 2018). The

combined score for each pathway is determined using the p-values from Fisher’s exact test and odds

ratio.
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4.1.2 @ PACKAGES

For the analysis of RRBS data, different R packages are used. The main ones are listed below:

• BiocManager 1.30.18 - Morgan M

(2022). _BiocManager: Access the

Bioconductor Project Package Repos-

itory_. R package version 1.30.18,

https://CRAN.R-project.org/package=

BiocManager.

• biomaRt 2.52.0 - Durinck S, Spellman

PT, Birney E, Huber W (2009). Mapping

identifiers for the integration of genomic

datasets with the R/Bioconductor pack-

age biomaRt. Nature Protocols 4, 1184-

1191. doi:10.1038/nprot.2009.97 https:

//doi.org/10.1038/nprot.2009.97,https://

www.nature.com/articles/nprot.2009.97.

• BSgenome 1.64.0 - Pagès H (2022).

_BSgenome: Software infrastructure for

efficient representation of full genomes

and their SNPs_. R package ver-

sion 1.64.0, https://bioconductor.org/

packages/BSgenome.

• bsseq 1.32.0 - Hansen KD, Lang-

mead B, Irizarry RA (2012). "BSmooth:

from whole genome bisulfite sequenc-

ing reads to differentially methy-

lated regions." _Genome Biology_,

*13*(10), R83. doi:10.1186/gb-2012-

13-10-r83 https://doi.org/10.1186/

gb-2012-13-10-r83.

• ChIPpeakAnno 3.30.1 - Zhu L, Gazin C,

Lawson N, Pagès H, Lin S, Lapointe D,

Green M (2010). "ChIPpeakAnno: a Bio-

conductor package to annotate ChIP-seq

and ChIP-chip data." _BMC Bioinformat-

ics_, *11*(1), 237. ISSN 1471-2105,

doi:10.1186/1471-2105-11-237 https://

doi.org/10.1186/1471-2105-11-237,http:

//www.biomedcentral.com/1471-2105/

11/237.

• dplyr 1.0.9 - Wickham H, François R,

Henry L, Müller K (2022). _dplyr: A

Grammar of Data Manipulation_. R

package version 1.0.9, https://CRAN.

R-project.org/package=dplyr.

• DT 0.23 - Xie Y, Cheng J, Tan X (2022).

_DT: A Wrapper of the JavaScript Li-

brary ’DataTables’_. R package ver-

sion 0.23, https://CRAN.R-project.org/

package=DT.

• ensembldb 2.20.2 - Rainer J, Gatto

L, Weichenberger CX (2019). "en-

sembldb: an R package to cre-

ate and use Ensembl-based an-

notation resources." _Bioinformat-

ics_. doi:10.1093/bioinformatics/btz031

https://doi.org/10.1093/bioinformatics/

btz031,https://academic.oup.com/

bioinformatics/advance-article/doi/10.

1093/bioinformatics/btz031/5301311.

• genomation 1.28.0 - Akalin A, Franke

V, Vlahovicek K, Mason C, Schubeler

D (2014). "genomation: a toolkit to
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• tidyverse 1.3.1 - Wickham H, Aver-

ick M, Bryan J, Chang W, McGowan
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4.2 DEVELOPMENT OF ANALYSIS OF BISULFITE SEQUENCING PCR (ABSP)

4.2.1 TOOLS AND SOFTWARE

The R programming language is used to code the ABSP tool (R: A Language and Envi-

ronment for Statistical Computing, version 4.2.0, R core Team, Vienna, Austria, 2022), along with

the RStudio development environment for R (RStudio: Integrated Development for R., version

2022.02.2+485, RStudio Team, PBC, Boston, MA, 2022).

The IGV (Integrative Genomics Viewer) (version 2.4.19) is used during the development of

ABSP to visualize regions on the hg19 human genome, retrieve coordinates and genomic sequences

(Robinson et al., 2020; Robinson et al., 2017; Robinson et al., 2011; Thorvaldsdóttir et al., 2013).

The BSP primers are designed using the MethPrimer program (https://www.urogene.org/

methprimer/, Li, 2007; Li and Dahiya, 2002), completed with a search for unintended PCR prod-

ucts using the “Primer search, ePCR” from the BiSearch tool (http://bisearch.enzim.hu/, Arányi and

Tusnády, 2007; Arányi et al., 2006; Tusnády et al., 2005).

For the visualization of methylation data, the Methylation plotter web tool R source code

is used as a reference to build the plot generation functions (http://maplab.imppc.org/methylation_

plotter/, Mallona et al., 2014).

4.2.2 @ PACKAGES

The complete list of used R packages is available in the ABSP user guide in Appendix 3 “ABSP user

guide” at page 338. The main ones are listed below:

• arrangements 1.1.9 - Lai R (2020). _ar-

rangements: Fast Generators and Itera-

tors for Permutations, Combinations, In-

teger

• BiocManager 1.30.17 - Morgan M

(2022). _BiocManager: Access the

Bioconductor Project Package Repos-

itory_. R package version 1.30.17,

https://CRAN.R-project.org/package=

BiocManager.

• Biostrings 2.64.0 - Pagès H, Aboy-

oun P, Gentleman R, DebRoy S (2022).

_Biostrings: Efficient manipulation of bi-

ological

• BSgenome 1.64.0 - Pagès H (2022).

_BSgenome: Software infrastructure for

efficient representation of full genomes

and their SNPs_. R package ver-

sion 1.64.0, https://bioconductor.org/

packages/BSgenome.

• compareGroups 4.5.1 - Subirana I,

Sanz H, Vila J (2014). "Building Bivariate

Tables: The compareGroups Package

for R." _Journal of Statistical Software_,

*57*(12), 1-16. https://www.jstatsoft.org/

v57/i12/.

• DiagrammeR 1.0.9 - Iannone R (2022).

_DiagrammeR: Graph/Network Visu-

alization_. R package version 1.0.9,

https://CRAN.R-project.org/package=

DiagrammeR.

• dplyr 1.0.9 - Wickham H, François R,

Henry L, Müller K (2022). _dplyr: A

Grammar of Data Manipulation_. R

package version 1.0.9, https://CRAN.

R-project.org/package=dplyr.

• formattable 0.2.1 - Ren K, Russell K

(2021). _formattable: Create ’Format-

table’ Data Structures_. R package ver-

sion 0.2.1, https://CRAN.R-project.org/

package=formattable.

• GenomeInfoDb 1.32.1 - Arora S, Mor-
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gan M, Carlson M, Pagès H (2022).

_GenomeInfoDb: Utilities for manip-

ulating chromosome names, includ-

ing modifying them to follow a par-

ticular naming style_. R package

version 1.32.1, https://bioconductor.org/

packages/GenomeInfoDb.

• GenomicRanges 1.48.0 - Lawrence

M, Huber W, Pagès H, Aboyoun P,

Carlson M, Gentleman R, Morgan M,

Carey V (2013). "Software for Comput-

ing and Annotating Genomic Ranges."

_PLoS Computational Biology_, *9*.

doi:10.1371/journal.pcbi.1003118 https:

//doi.org/10.1371/journal.pcbi.1003118,

http://www.ploscompbiol.org/article/

info%3Adoi%2F10.1371%2Fjournal.

pcbi.1003118.

• ggdendro 0.1.23 - de Vries A, Rip-

ley BD (2022). _ggdendro: Cre-

ate Dendrograms and Tree Diagrams

Using ’ggplot2’_. R package ver-

sion 0.1.23, https://CRAN.R-project.org/

package=ggdendro.

• ggplot2 3.3.6 - Wickham H (2016).

_ggplot2: Elegant Graphics for Data

Analysis_. Springer-Verlag New

York. ISBN 978-3-319-24277-4,

https://ggplot2.tidyverse.org.

• ggpubr 0.4.0 - Kassambara A (2020).

_ggpubr: ’ggplot2’ Based Publication

Ready Plots_. R package version 0.4.0,

https://CRAN.R-project.org/package=

ggpubr.

• Gviz 1.40.1 - Hahne F, Ivanek R (2016).

"Statistical Genomics: Methods and

Protocols." In Mathé E, Davis S (eds.),

chapter Visualizing Genomic Data Us-

ing Gviz and Bioconductor, 335-351.

Springer New York, New York, NY. ISBN

978-1-4939-3578-9, doi:10.1007/978-1-

4939-3578-9_16 https://doi.org/10.1007/

978-1-4939-3578-9_16,http://dx.doi.

org/10.1007/978-1-4939-3578-9_16.

• htmltools 0.5.2 - Cheng J, Sievert C,

Schloerke B, Chang W, Xie Y, Allen J

(2021). _htmltools: Tools for HTML_.

R package version 0.5.2, https://CRAN.

R-project.org/package=htmltools.

• htmlwidgets 1.5.4 - Vaidyanathan R, Xie

Y, Allaire J, Cheng J, Sievert C, Rus-

sell K (2021). _htmlwidgets: HTML

Widgets for R_. R package ver-

sion 1.5.4, https://CRAN.R-project.org/

package=htmlwidgets.

• knitr 1.39 - Xie Y (2022). _knitr: A

General-Purpose Package for Dynamic

Report Generation in R_. R package ver-

sion 1.39, https://yihui.org/knitr/.

• openxlsx 4.2.5 - Schauberger P, Walker

A (2021). _openxlsx: Read, Write

and Edit xlsx Files_. R package ver-

sion 4.2.5, https://CRAN.R-project.org/

package=openxlsx.

• pdftools 3.2.0 - Ooms J (2022).

_pdftools: Text Extraction, Render-

ing and Converting of PDF Docu-

ments_. R package version 3.2.0, https:

//CRAN.R-project.org/package=pdftools.

• plotly 4.10.0 - Sievert C (2020). _In-

teractive Web-Based Data Visualization

with R, plotly, and shiny_. Chapman and

Hall/CRC. ISBN 9781138331457, https:

//plotly-r.com.

• png 0.1.7 - Urbanek S (2013). _png:

Read and write PNG images_. R

package version 0.1-7, https://CRAN.

R-project.org/package=png.

• purrr 0.3.4 - Henry L, Wickham H (2020).

_purrr: Functional Programming Tools_.

R package version 0.3.4, https://CRAN.

R-project.org/package=purrr.

• RColorBrewer 1.1.3 - Neuwirth E

(2022). _RColorBrewer: ColorBrewer

Palettes_. R package version 1.1-3,

https://CRAN.R-project.org/package=

RColorBrewer.

• readr 2.1.2 - Wickham H, Hester J, Bryan

J (2022). _readr: Read Rectangular Text

Data_. R package version 2.1.2, https:

//CRAN.R-project.org/package=readr.

• renv 0.15.4 - Ushey K (2022). _renv:

Project Environments_. R package ver-

sion 0.15.4, https://CRAN.R-project.org/

package=renv.

• rlist 0.4.6.2 - Ren K (2021). _rlist: A

Toolbox for Non-Tabular Data Manipula-

tion_. R package version 0.4.6.2, https:

//CRAN.R-project.org/package=rlist.

• rmarkdown 2.14 - Allaire J, Xie Y,

McPherson J, Luraschi J, Ushey K,

Atkins A, Wickham H, Cheng J, Chang

W, Iannone R (2022). _rmarkdown: Dy-

namic Documents for R_. R package

version 2.14, https://github.com/rstudio/

rmarkdown.

• Rmisc 1.5.1 - Hope RM (2022). _Rmisc:

Ryan Miscellaneous_. R package ver-

sion 1.5.1, https://CRAN.R-project.org/

package=Rmisc.

• rstatix 0.7.0 - Kassambara A (2021).

_rstatix: Pipe-Friendly Framework for Ba-

sic Statistical Tests_. R package ver-

sion 0.7.0, https://CRAN.R-project.org/

package=rstatix.

• sangeranalyseR 1.6.1 - Chao K, Bar-

ton K, Palmer S, Lanfear R (2021).

"sangeranalyseR: simple and interactive

analysis of Sanger sequencing data in

R." _Genome Biology and Evolution_.

doi:10.1093/gbe/evab028 https://doi.org/

10.1093/gbe/evab028.

• sangerseqR 1.32.0 - Hill JT, Demarest

BL, Bisgrove BW, Su Y, Smith M,

Yost HJ (2014). "Poly peak parser:

Method and software for identification

of unknown indels using sanger se-

quencing of polymerase chain reaction

products." _Developmental Dynamics_.

doi:10.1002/dvdy.24183. https://doi.org/

10.1002/dvdy.24183..

• shiny 1.7.1 - Chang W, Cheng J, Allaire

J, Sievert C, Schloerke B, Xie Y, Allen J,

McPherson J, Dipert A, Borges B (2021).

_shiny: Web Application Framework for

R_. R package version 1.7.1, https://

CRAN.R-project.org/package=shiny.

• shinythemes 1.2.0 - Chang W (2021).

_shinythemes: Themes for Shiny_. R

package version 1.2.0, https://CRAN.
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1.1 INVOLVEMENT OF EPIGENETIC-ASSOCIATED ENZYMES IN RADIO-INDUCED DED-
IFFERENTIATION

Upon and following radiotherapy treatment, some breast non-CSCs are able to dedifferentiate

into CSCs as they acquire stem cell properties (Arnold et al., 2020b; Bidan et al., 2019; Lagadec et

al., 2012). As previously described, epigenetic mechanisms are involved in this process as they can

modify gene transcription programs toward stemness-related genes expression (French and Pauklin,

2021; Zagorac et al., 2016). Hence, we hypothesize that, to remove or establish new epigenetic

marks, the activity of epigenetic-associated enzymes must be required and contributes to the non-

CSC-to-CSC phenotypic switch after ionizing radiation exposure.

1.1.1 EXPRESSION OF EPIGENETIC-ASSOCIATED ENZYMES AFTER IRRADIATION

The first element that can indicate the participation of epigenetic modifying enzymes through-

out the radio-induced dedifferentiation is to evaluate their expression following radiotherapy. Indeed,
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1. DNA METHYLATION CHANGES THROUGHOUT THE RADIO-INDUCED DEDIFFERENTIATION

FIGURE 35 EXPRESSION LEVELS OF THE EPIGENETIC-ASSOCIATED ENZYMES FOLLOWING IRRADIATION.

A. SUM159PT cells were irradiated at 8 Gy and the mRNA levels of DNMT1, DNMT3A, DNMT3B, TET1,

TET2, TET3, KDM6A, KDM6B, and EZH2 were measured every day up to 5 days post-irradiation. For DNMT1,

DNMT3A, DNMT3B, TET1, TET2, TET3, n=1 and for KDM6A, KDM6B, EZH2, n=3. Error bars represent means

± standard error of the mean. B. ALDHlow SUM159PT cells were isolated by FACS reseed and irradiated at

8 Gy 24 hours later. mRNA levels of DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3, KDM6A, KDM6B, and

EZH2 were measured 1 hour, 3 hours, 6 hours, and 12 hours after irradiation (n=1).

an increase in their expression could be correlated with enhanced recruitment to apply epigenetic

modifications, to alter the transcription of gene programs.

To cover different types of epigenetic marks such as DNA methylation and histones PTM,

either towards the transcription activation or silencing, I chose nine key enzymes to study: DNMT1,

DNMT3A, DNMT3B, TET1, TET2, TET3, KDM6A, KDM6B, and EZH2. Indeed, the DNA methyltrans-

ferases (DNMTs) are responsible for the maintenance and establishment of DNA methylation marks

on cytosines while TET enzymes are involved in active DNA demethylation (Ginno et al., 2020; Kim

and Costello, 2017). EZH2 is the PRC2 subunit that catalyzes the methylation of the lysine 27 on hi-

stone H3 to set H3K27me3 repressive marks, while KDM6A (also known as UTX) and KDM6B (also

known as JMJD3) are two lysine demethylases (KDMs) that remove H3K27me3 marks (Pediconi et

al., 2019).

To assess the effect of radiotherapy treatments on these epigenetic enzymatic activities, I

measured their expression through time (every 24 hours) in SUM159PT breast cancer cells after

irradiation at 8 Gy (Figure 35). The effect of an 8 Gy radiation treatment applied to this cell line

was already assessed in the laboratory and is known to induce an enrichment in CSCs, with a

peak at 5 days post-irradiation (Bidan et al., 2019; Lagadec et al., 2012). Therefore, the first assay,

presented in Figure 35A, aimed to estimate mRNA levels once a day during 5 days post-irradiation.

For DNMT3A, a small increase in mRNA levels can be observed but only at day 3 (D3). A slight

increase of TET1 and TET2 expression (1.5-1.8 fold compared to D0) can be observed 3 days (D3)

and 4 days (D4) after irradiation at 8 Gy, which is 4 to 5 times higher than in the unirradiated cells. It’s

worth to notice that these differences at D3 and D4 in expression are transitory and not maintained

up to 5 days after irradiation (D5). Concerning KDM6A, KDM6B, and EZH2, no significant difference

was observed between the irradiated and unirradiated cells among three independent experiments.

Taken together, as no significant differences in epigenetic enzyme expression were detected between

irradiated and unirradiated cells, no conclusion on their involvement on dedifferentiation can be drawn

from this experimental approach.

As modifications of expression following irradiation can occur earlier on the first day, I chose

to assess their mRNA levels in the first 12 hours post-irradiation. Additionally, to observe the effect of

the phenotypic switch from non-CSCs to CSCs instead of CSC pool repopulation by self-renewal and
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symmetric division upregulation, especially since they might require different expression changes, the

population was depleted in CSCs before irradiation. The ALDHlow population was isolated by FACS

the day before the radiation treatment and mRNAs were extracted at 0h, 1h, 3h, 6h and 12h post-

irradiation (Figure 35B). No evidence of expression changes was observed after the first experiment,

and as the dedifferentiation occurs within the non-CSC population in non-synchronized manner along

the 5 days after irradiation, we decided to not push further this short term study.

Furthermore, two possible explanations can support the absence of expression differences

observed after irradiation: 1 as the radio-induced dedifferentiation rate is low, no more than 5%

of CSCs are induced in general, the evaluation of changes in the global population does not allow

the observation of modifications associated with these rare events, and 2 the modulation of their

activity, possibly involved in the dedifferentiation, could depend on co-activators rather than on their

expression. Indeed, the action of these enzymes may involve other regulators to modulate their

recruitment at specific genomic loci to enable the phenotypic switch toward a stem state.

In conclusion, the approach of analyzing expression changes in the global popula-

tion does not allow the identification of fine expression regulation of DNMTs, TETs, KDM6A,

KDM6B, and EZH2 enzymes in a specific subpopulation undergoing phenotypic changes after

radiation exposure.

1.1.2 ROLE OF THE DNMT ENZYMES IN RADIO-INDUCED DEDIFFERENTIATION

The previous results indicate that the expression of DNMTs enzymes is not upregulated follow-

ing radiotherapy, but their activity may be involved in the phenotypic conversion. To know if DNMTs

enzymes are required for the dedifferentiation of non-CSCs into CSCs, their inhibition by small inter-

fering RNA (siRNA) during the radio-induced dedifferentiation was carried out.

First, two siRNAs targeting DNMT1 and DNMT3B were tested, named siDNMT1 #1 and #2

and siDNMT3B #1 and #2. Both siRNAs were able to inhibit the two enzymes at RNA and protein

levels 48 hours after transfection (Figure 36). As siDNMT1 #2 and siDNMT3B #2 seem to be the

most efficient ones, they were chosen for the following experiments. Four different siRNAs targeting

DNMT3A were tested but failed to inhibit the enzyme, so the study of DNMT3A has not been possible.

To evaluate the importance of DNMT1 and DNMT3B epigenetic modifying activities in the

reacquisition of stem cell properties, they were inhibited by the previously validated siRNAs before

the radio-induction of dedifferentiation in the non-CSC population. As described in Figure 37A, the

ALDHlow cells (non-CSCs) are isolated by FACS and treated with the siRNAs 18 hours after being

reseeded. Then, 6 hours after siRNA transfection, cells are irradiated at 8 Gy. Induction of dediffer-

entiation toward a stem cell phenotype was evaluated 5 days later by quantifying ALDH+ cells (CSCs)

by flow cytometry measurement and sphere-forming capacity (SFC) tests. A negative control is used

to define the ALDH+ population for each sample, in which stained cells are incubated with DEAB, an
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FIGURE 36 INHIBITION OF DNMT1 AND DNMT3B BY SIRNA INTERFERENCE. A. The mRNA expression

levels of DNMT1 and DNMT3B in SUM159PT cells were measured 48 hours after siRNA transfection (n=3).

The control condition corresponds to untransfected cells. Assessment of the inhibition is confirmed by compar-

ing siDNMT1/3B conditions with the respective siCtrl condition. * Student’s T-test p-value ≤ 0.05. Error bars

represent means ± standard error of the mean. B. The DNMT1 and DNMT3B inhibition is confirmed at the

protein level using nuclear extracts collected 48 hours after siRNA transfection. The lamin B1 protein is used

as a loading control. The same results were obtained in three independent experiments. C. Quantification of

band intensities from the above blots results. Ratios of the DNMT1/3B band intensities over the lamin B1 band

intensities are represented as a bar chart.

ALDH inhibitor (Figure 37A and B).

First, dot plots of analyzed cells from one of the four experiments are displayed in Figure 37B.

The cell population is distributed in terms of their Aldefluor intensity, reporting for the ALDH activity,

and size (side scatter). In the control untransfected population, a shift toward higher Aldefluor inten-

sities is visible in the irradiated population compared to the unirradiated one, corresponding to an

increase of the CSC population in response to radiations. However, in all the transfected conditions,

siCtrl, siDNMT1, and siDNMT3B, no shift in the irradiated population is observed, meaning that in

these cells the irradiation did not induce an increased dedifferentiation of non-CSCs.
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FIGURE 37 EFFECT OF DNMT1 AND DNMT3B INHIBITION ON THE DEDIFFERENTIATION OF NON-CSCS

INTO CSCS. A. Experimental protocol to assess the dedifferentiation of non-CSCs. The SUM159PT ALDHlow

cells (non-CSCs) are sorted by FACS, treated the next day with siRNAs 18 hours later and with radiations 6

hours later. The generation of induced ALDH+ (iCSCs) is evaluated 5 days after irradiation. B. Cytometry

analysis of non-CSCs SUM159PT cells stained with Aldefluor after siRNA transfection and irradiation. The gate

and its associated percentage represent the ALDH+ (CSC/iCSC) population. C. Percentage of ALDH+ cells

induced by irradiation in the control (n=4). D. Ratios of irradiated cells CSC percentages over unirradiated cells

CSC percentages from the above cytometry data (n=4). E. Percentages of sphere-forming unit estimated by

sphere-forming capacity (SFC) assay, after one generation (n=4), two generations (n=3, n=1 for siDNMT3B),

and three generations (n=3, n=1 for siDNMT3B). F. Ratios of irradiated cells sphere forming unit percentages

over unirradiated cells sphere forming unit percentages from the above SFC assay data. Error bars represent

means ± standard error of the mean.
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1. DNA METHYLATION CHANGES THROUGHOUT THE RADIO-INDUCED DEDIFFERENTIATION

Means of four independent experiments are exposed in Figure 37C, in which no significant

differences using the Student’s T-test was observed. In the control, the non-CSC population restores

after 5 days an average of 1.34% ± 0.53 of CSCs without induction, and after radiation exposure,

it regenerates an average of 3.56% ± 0.96 of CSCs. These data indicate an increased generation

of CSCs induced by irradiation even if the difference is not statistically significant (p=0.104) due to

important variability among the four replicates. Nonetheless, while we can see a drastic reduction of

the CSC induction from 3.56%± 0.96 in the irradiated control cells to 0.94%± 0.21 and 0.65%± 0.15

in irradiated siDNMT1 and siDNMT3B conditions respectively, no induction has been also observed

in the siCtrl condition (0.91% ± 0.20) after irradiation. It indicates that the suppression of the radio-

induced dedifferentiation is due to the siRNA transfection protocol and is not linked to the inhibition

of DNMT1 or DNMT3B. In Figure 37D the difference in CSC percentages between unirradiated cells

and irradiated cells is displayed as averages of the 8 Gy over 0 Gy ratios per replicate, which also

highlights the increase of CSCs in control cells but not in transfected cells.

CSC proportions were also estimated by a functional SFC test with three generations of sphere

formation (Figure 37E and F). Cells are maintained in sphere media to allow the formation of spheres

for 10 days before being dissociated to form a new generation of spheres. At each generation, the

number of spheres is measured and reveals the proportion of cells able to self-renew. Consistent

with previous lab results, an important mortality in the irradiated conditions causes a reduced sphere

formation at the first generation, but it stabilizes at the second and third ones. However, a slight

increase in sphere forming unit proportions after irradiation in control cells is observed at the second

generation but not in the third one. And altogether, in every transfected conditions at every genera-

tion, no significant difference in CSC proportions is observed, which is consistent with the previous

cytometry results, suggesting that the transfection protocol prevents the induction of CSCs.

Furthermore, the combination of FACS sorting followed by siRNA transfection and irradiation

caused an important loss of cell viability in cells. Even though different transfection protocols were

tested (INTERFERin, Lipofectamine, and nanoparticles), all of the transfected cells had considerably

lower viability than the control untransfected cells. Thus, the siRNA transfection, even with a control

siRNA without any specific target, is sufficient to drastically reduce the cell viability, which can explain

differences between control and siCtrl conditions in terms of CSC radio-induced regeneration.

As the transfection itself seemed to abolish the radio-induced increase of CSCs, prob-

ably due to cell viability issues, the contribution of DNMT enzymes in the non-CSC-to-CSC

conversion could not have been assessed by the siRNA inhibition approach used, and would

require an alternative approach.
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[ KEY POINTS

å The expression analysis of the global population after radiotherapy treatment did not re-
veal significant expression changes of the epigenetic modifying enzymes DNMTs, TETs,
KDM6A, KDM6B, and EZH2.

å The approach consisting in a global assessment of expression differences at a few time
points after irradiation could not reveal transitory expression changes related to rare, asyn-
chronous, and spread over time dedifferentiation events.

å As the radio-induced increase of CSC observed in control cells is not reproduced in trans-
fected cells, including cells transfected with a control siRNA, it means that the transfection
itself impacts the radio-induced regeneration of CSCs.

å Hence, the effect of the siRNA-mediated DNMT1 and DNMT3B inhibition on the radio-
induced dedifferentiation could not have been assessed. An alternative approach is re-
quired to further evaluate the contribution of these enzymes in the phenotypic conversion
from non-CSCs to CSCs.

� Back to Table of Contents

1.2 GLOBAL ANALYSIS OF DNA METHYLATION CHANGES DURING RADIO-INDUCED
DEDIFFERENTIATION

The reduced representation bisulfite sequencing (RRBS) approach was chosen to assess

methylation marks profiles before and after irradiation in the subpopulations in question, to deter-

mine methylation modifications occurring during the radio-induced dedifferentiation of non-CSCs into

CSCs. The RRBS method allows for the computation of cytosine methylation percentages on a re-

duced fraction of the genome, enriched in CpG sites and representative of the genome methylome.

The aim is to identify differentially methylated regions that might be involved in the acquisition of a

stem-like phenotype.

1.2.1 STRATEGY AND SAMPLE PREPARATION

CSC and non-CSC subpopulations of SUM159PT breast cancer cells were collected after a

first FACS sorting based on the ALDH activity (Figure 38). The non-CSC population is reseeded and

irradiated at 8 Gy the next day to induce the dedifferentiation of cells into CSCs. Five days later, the

population is sorted once again to isolate the induced CSC population by irradiation, named iCSC,

and the irradiated non-CSC population, named inon-CSC. iCSC cells underwent a radio-induced

dedifferentiation event while the inon-CSC ones did not after radiation exposure. As seen previously,

the SUM159PT cell line is relatively rich in CSCs, with a basal CSC percentage of around 1 to 2%,

and the irradiation treatment of non-CSCs generates 2.5 to 5% of iCSCs after 5 days (Figure 37A

and C, Figure 38, and data not shown).

DNA from the four collected subpopulations, CSC, non-CSC, iCSC and inon-CSC, in two

replicates each, was extracted and sent to Diagenode for the RRBS analysis, consisting in MspI
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FIGURE 38 EXPERIMENTAL RADIO-INDUCTION OF DEDIFFERENTIATION AND SUBPOPULATION ISOLATION

FOR RRBS ANALYSIS. Two rounds of cell sorting based on ALDH activity are performed to isolate four

SUM159PT subpopulations: CSC, non-CSC, iCSC, and inon-CSC populations. The CSC and non-CSC sam-

ples are collected after a first sorting. The isolated non-CSC population is reseeded and then irradiated at 8

Gy 24 hours later. The irradiated non-CSC population is sorted 5 days post-irradiation to isolate induced CSCs

(iCSCs) and irradiated non-CSCs (inon-CSCs).

enzymatic digestion (C↓CGG, methylation independent), bisulfite treatment, and next-generation se-

quencing (NGS). Reads aligned on the genome resulting from the sequencing were then analyzed

to identify methylation differences between those subpopulations.

1.2.2 FIRST ANALYSIS OF REDUCED REPRESENTATION BISULFITE SEQUENCING DATA

The analysis of RRBS data aims to identify differentially methylated regions (DMRs) between

the different analyzed subpopulations to highlight potential key methylation changes contributing to

the phenotypic switch into CSC after radiotherapy.

A first analysis of RRBS results was performed with the help of the bioinformatic service

platform Bilille (PLBS - UMS 2014 - US 41, Lille, France) for DMRs identification. This analysis

was carried out using the R software and relies mainly on the methylKit R package developed

specifically to analyze RRBS data (Akalin et al., 2012).

This analysis consists in first subdividing the genome into 1,000 bp tiles (i.e. chr1:1-1,000;

chr1:1,001-2,000; chr1:2,001-3,000;...) to calculate the differential of methylation based on methyla-

tion percentages of CpG sites within each tile.

DMRs are generated by comparing methylation levels of subpopulations two by two. For a
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1,000 bp region to be considered differentially methylated, the methylation difference must be

> 25% (absolute value, > 25% for hypermethylated ones, and < -25% for hypomethylated ones)

between those two populations with a q-value < 0.01 for statistical significance. The method used to

calculate the differential methylation and its associated significance relies on a Bayesian hierarchical

model, based on the beta-binomial distribution, which is provided by the methylKit R package,

but developed originally within the DSS R package (Feng et al., 2022; Feng et al., 2014; Feng and

Wu, 2019). Indeed, as methylation proportions are comprised between 0 and 1 (0% and 100%

methylated) their distribution follows a beta distribution among replicates, with a binomial distribution

captured by the sequencing within each sample (Feng et al., 2014).

Once methylation differences between subpopulations have been found, the goal is to find

the ones potentially implicated in the dedifferentiation of non-CSCs into iCSCs (Figure 39). The

direct comparison of non-CSC vs iCSC populations is not sufficient. Indeed, it includes methylation

modifications due to irradiation which are not necessarily related to the stem cell phenotype.

• DMRs between non-CSC vs CSC constitute the base pool of DMRs used for the analysis

(Figure 39 and Figure 40A, in yellow). These DMRs corresponds to CSC-specific methylation

differences that may be involved in the stemness phenotype. The regulation of these regions by

DNA methylation could be linked to pluripotency or differentiated features.

• DMRs between CSC vs iCSC are excluded (Figure 39 and Figure 40A, in pink). The exclusion

of differences between CSC and iCSC populations (the two CSC populations) allows to keep from

the base DMRs pool the ones that are methylated back in the same way after dedifferentiation,

meaning that in the CSC to non-CSC to iCSC phenotypic path, these regions underwent methy-

lation changes both from CSC to non-CSC and from non-CSC to iCSC, their methylation status is

restored in iCSCs similarly to CSCs.

• DMRs between non-CSC vs inon-CSC are excluded (Figure 39 and Figure 40A, in blue). The

methylation differences between non-CSC and inon-CSC populations (the two non-CSC popula-

tions) were not sufficient to induce the phenotypic switch into iCSC, they underwent methylation

changes in response to irradiation that did not lead to the acquisition of an iCSC state. Therefore,

only the regions with consistent methylation from non-CSC to inon-CSC populations are kept.

From the four subpopulations, the three pairwise comparisons generates DMRs:

• non-CSC vs CSC: 1,340 DMRs (Figure 39 and Figure 40A, in yellow)

• CSC vs iCSC: 969 DMRs (Figure 39 and Figure 40A, in pink)

• non-CSC vs inon-CSC: 833 DMRs (Figure 39 and Figure 40A, in blue)

As displayed in Figure 40A, from the 1,340 DMRs obtained comparing non-CSC vs CSC, 159

also different between CSC and iCSC are excluded, 65 also different between non-CSC and inon-

CSC are excluded, and 5 different in the three pairwise comparisons are excluded as well. Hence, a

list of 1,112 sorted DMRs potentially involved in the radio-induced dedifferentiation is retrieved,
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FIGURE 39 SCHEMATIC REPRESENTATION OF THE METHYLATION PROFILE OF A DMR POTENTIALLY IN-

VOLVED IN DEDIFFERENTIATION. Hypothetical methylation profile of a region that could be involved in radio-

induced dedifferentiation through the DNA methylation regulation of its associated gene. This DMR is hy-

pomethylated in CSCs compared to non-CSCs, and no differences are found between the two CSC states

and the two non-CSC states. The reverse pattern can be applied to hypermethylated DMRs in CSCs compared

to non-CSCs.

containing 681 hypomethylated DMRs and 431 hypermethylated DMRs (in CSCs compared to non-

CSCs).

The next objective is to find the most relevant DMRs for a more precise region-specific valida-

tion of methylation percentages. To refine this DMR list, I retrieved the closest gene of each DMR,

within a maximal distance of 10 kb. From the 1,112 DMRs, 596 are within the 10 kb range of 558

unique genes, 332 hypomethylated ones, and 264 hypermethylated ones. The pathway analysis of

this list of genes revealed several genes from the Ephrin receptor signaling (e.g. EFNB1, EPHA2,

EPHB2), TGF-β signaling (e.g. BMP2, BMP4, BMP7, MAP2K2, MAPK13, RUNX3, TGFB3) and

STAT3 signaling (e.g IGF1R, IL17RB, IL4R, MAP2K2, MAP3K9, MAPK13, NTRK3), known to be

involved in the stem cell phenotype and resistance to radiotherapy of breast cancer cells (Bhatia et

al., 2018; Huang et al., 2017; Lucero et al., 2020; Yadav and Shankar, 2019; Yang et al., 2013).

Additionally, DMRs positions were cross-referenced with the CpG island (CGI) database (UCSC),

and from the list of 1,112 DMRs, 63 are found overlapping a CGI. From the previously cited genes,

only the DMR associated with the BMP4 gene overlaps a CGI.

As these DMRs were found as differentially methylated between non-CSC and CSC popula-

tions, there is a potential correlation between these identified methylation changes and their closest

gene expression in non-CSC vs CSC populations.
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FIGURE 40 RRBS ANALYSES DIFFERENCES BETWEEN THE FIRST AND THE SECOND ONE. A. The first analysis of RRBS data was based solely on the 1,000 bp tiles

and limited filtering of the identified DMRs. B. The second analysis realized afterward incorporates the new subset of genomic regions in addition to 1,000 bp tiles: 200

bp tiles, surrounding TSS regions (500 bp upstream and downstream TSS, 1,001 bp long in total), CGI regions, and methylation profile segments. Additionally, further

DMR filtering enables the identification of the most relevant ones.
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To test the functional role of these methylation differences, 5 DMRs were selected, close to

these 5 genes: EPHB2, RUNX3, MAPK13, TGFB3, and BMP2, based on the previous pathway

analysis associated to literature study.

Among them, the RUNX3 promoter is known to be frequently hypermethylated in mammary

tumors (Lau et al., 2006; Liu et al., 2018b; Lu et al., 2016; Song et al., 2016). RUNX3 is regulated

by the TGF-β, its gene code for a tumor suppressor, and its expression is correlated to stem cell

differentiation and reduction of stem cell properties (Kim et al., 2019a; Kulkarni et al., 2018; Lee et

al., 2010; Liu et al., 2020a; Nishina et al., 2011; Wang et al., 2017e). The DMR found around its TSS

containing one CpG site covered in all samples, is hypomethylated in CSCs compared to non-CSCs,

which is inconsistent with the literature, but could be due to the poor coverage of the region.

Methylation percentages of CpG sites contained in these 5 DMRs are represented along the

genome in Figure 41A and their methylation profiles across subpopulations in Figure 41B. The methy-

lation profiles of DMR#21–EPHB2 and DMR#22–RUNX3 show a higher similarity in methylation lev-

els between non-CSC and iCSC populations than between non-CSC and inon-CSC populations,

while the methylation profiles of DMR#324–MAPK13, DMR#742–TGFB3 and DMR#967–BMP2 show

a no difference between inon-CSC and iCSC populations (high standard deviations) despite having

a significant methylation difference between non-CSC and CSC populations. Thereby, their pro-

file does not exactly match the desired pattern of DMRs undergoing methylation changes during

radio-induced dedifferentiation as displayed in Figure 39, and the analysis and selection of relevant

methylation profiles should be taken into consideration further in the RRBS data analysis. However,

as they all present an important methylation difference between non-CSC and CSC, this methylation

difference could be correlated with gene expression changes.

To assess the correlation between methylation differences and expression, the CSC and

non-CSC populations were sorted based on their ALDH activity and the expression of these 5

genes was analyzed by RT-qPCR. For those 5 DMRs, no significant expression differences were

found between the two subpopulations (Figure 41C). EPHB2 and MAPK13 expressions seem to be

up-regulated in CSCs compared to non-CSCs, which is inconsistent with hypermethylated DMRs

found inside these two genes (EPHB2 gene locus: chr1:23,037,330-23,241,823 and DMR#21 locus:

chr1:23,176,001-23,177,000; MAPK13 gene locus: chr6:36,098,260-36,112,301 and DMR#324 lo-

cus: chr6:36,101,001-36,102,000). Hence, there is no correlation between the expression of these

genes and the identified differential methylation, so the validation of these DMRs was not pursued.
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FIGURE 41 Caption in following pages.
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FIGURE 41 METHYLATION PROFILES OF DMRS ASSOCIATED WITH EPHB2, RUNX3, MAPK13, TGFB3, AND BMP2 GENES AND EXPRESSION CORRELATION. A.

Methylation plots of DMRs close to EPHB2, RUNX3, MAPK13, TGFB3, and BMP2 genes. From top to bottom: chromosome localization; genomic axis; genome data

track displaying transcripts along the genome; CpG islands track displaying CGIs along the genome; CG track displaying positions of CpG sites; CSC 1, CSC 2, non-CSC

1, non-CSC 2, iCSC 1 and iCSC 2 tracks displaying CpG methylation percentages histograms; DMR track displaying positions of identified DMRs, hypomethylated ones

in CSCs compared to non-CSCs in red, and hypermethylated ones in CSCs compared to non-CSCs in green. B. Methylation profiles plots of DMRs close to EPHB2,

RUNX3, MAPK13, TGFB3, and BMP2 genes across subpopulations. C. Relative mRNA levels of EPHB2, RUNX3, MAPK13, TGFB3 and BMP2 in non-CSC (ALDH-)

and CSC (ALDH+) populations.
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Additionally to a lack of functional significance on gene expression for the 5 DMRs tested,

this first analysis came with some limitations. Except for the DMR#21 associated with EPHB2, the

differential methylation of these 5 DMRs was calculated based on 1 or 2 CpG sites. Differential

methylation on 1 or 2 CpG sites does not exclude a functional role in the gene expression regu-

lation, but it reduces the probability to demonstrate both significant methylation differences by an

afterward region-specific validation and significant correlation with gene expression. Thus, the ab-

sence of a minimum CpG number per region to compute the differential methylation need to be taken

into account for the selection of DMRs to validate. Methylation profiles of the 5 selected DMRs did

not exactly match the hypothetical pattern of regions that present a CSC-specific methylation level,

restored after the conversion from non-CSC to iCSC, but not changing between non-CSC and inon-

CSC. Therefore, the sorting based on the three pairwise comparisons allows a pre-sorting of regions

potentially involved in dedifferentiation but is not sufficient for the selection of the most relevant ones.

In conclusion, this first analysis provided an initial insight into the CpG methylation

data obtained by the RRBS analysis, alongside proficiency in sequencing analysis method-

ology and R programming, as well as parameters and adjustments to overcome the afore-

mentioned limitations. Therefore, this analysis was a first step in the identification of regions

regulated by DNA methylation during the dedifferentiation of non-CSCs into iCSCs, which is

pursued in a second analysis.

1.2.3 SECOND ANALYSIS OF REDUCED REPRESENTATION BISULFITE SEQUENCING DATA

Using the knowledge provided by the first analysis, I developed a second analysis to go further

and find more relevant regions potentially implicated in the radio-induced dedifferentiation, analysis

also based on the methylKit R package.

The identification of differential methylation at promoter regions and CGIs was not reasonably

possible with the use of tile regions as it does not allow the study of specific annotated loci. Hence, the

analysis of specific genomic features could also be incorporated into the analysis of these methylation

data. As indicated in the workflow from Figure 40, the first main modification in the analysis is

the enlargement of the region scope on which the differential methylation is computed. Indeed,

additionally to the 1,000 bp tiles subset, new region subsets are incorporated in the analysis: 200 bp

tiles, regions surrounding the TSS, CGI regions, and identified methylation segment regions.

To identify new candidates, the filtering based on the methylation profile should be prioritized

over the functional relevance of associated genes. Thereby, in this analysis, the identification and

selection of regions regulated by DNA methylation changes throughout the dedifferentiation rely more

on their methylation profile across subpopulations than in the previous one.

The detailed workflow of the analysis is presented in Figure 42, panel 1. The localization of

code listings on the workflow (in red, on the sides) helps situating which step they refer to. The circled
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FIGURE 42 Panel 2. Caption next page.

191



RESULTS

FIGURE 42 RRBS ANALYSIS WORKFLOW AND DATA PROCESSING. Panel 1. Workflow of the RRBS data

analysis. Circled numbers refer to objects resulting from the corresponding steps displayed in panel 2. Localiza-

tion of code listings is highlighted in red. Annotated functions come from the methylKit R package. Panel 2.

Associated data objects resulting from the numbered steps of the workflow. 1 and 2 corresponds respectively

to raw and filtered CpG sites read counts (C/T) from the CSC 1 sample only. 3 and 4 corresponds respectively

to CpG sites read counts and CpG sites methylation percentages from the 8 samples. 5 corresponds to 1,000

bp tiles read counts covered in all samples. 6 corresponds to 1,000 bp tiles read counts in non-CSCs and

CSCs samples, and 7 to differential methylation values (with p- and q- values) computed between those two

populations. 8 corresponds to the sorted list of 2,596 DMRs with all associated data: methylation differences

and q-values, number of CpG sites covered in all samples, methylation percentages in each sample, methylation

means per subpopulation with standard deviation and closest genes related information.

numbers from the Figure 42, panel 1 are linked to the ones in Figure 42, panel 2 showing the first

rows of objects resulting from each numbered step.

The raw RRBS data as read alignment BAM (.bam) files are first imported in R for the 8

samples: CSC 1, CSC 2, iCSC 1, iCSC 2, inon-CSC 1, inon-CSC 2, non-CSC 1 and non-CSC 2,

and read counts for cytosines and thymines associated to CpG contexts are retrieved (Code listing 1,

Figure 42, panel 2 2 ). These read counts per CpG sites coordinates are then filtered based on

their coverage: CpG sites covered by less than 10 reads in at least one sample are removed, as

well as the ones with a coverage superior of the 99.9th percentile, meaning that CpG sites with an

aberrantly high coverage value in at least one sample are removed. The first cutoff on minimum read

is necessary for statistical robustness, and the second one on high coverage is used to eliminate

PCR bias effects (Code listing 1 and Figure 42, panel 2 2 ). For example, in the CSC 1 sample, the

maximum coverage value for a CpG site is 204,275 reads while the 99.9th of coverage values is 377

reads.

Then, methylation percentages per CpG sites are computed based on C and T read counts

per CpG. First, data of each sample are merged in one object to restrict the list of CpG to the

ones covered in all the 8 samples (Code listing 1 and Figure 42, panel 2 3 and 4 ). Additionally,

methylation percentages are also computed for all CpG sites of each sample. These CpG methylation

percentage data are used to calculate the number of CpG sites per DMR, and for the methylation

track display along the genome on methylation plots.

The Table 15 summarizes CpG-associated data obtained in the 8 samples, the number of CpG

sites covered per sample, mean of CpG coverage in reads, and mean of methylation percentages, in

raw data, filtered data, and united data (CpG sites covered in every sample). The average number

of CpG covered before filtering is 2,234,252 ± 263,552 CpG sites and after filtering is 2,231,988 ±
263,288 CpG sites per sample. 808,802 CpG sites were covered in all 8 samples, corresponding to

approximately 36% of the total of filtered CpG sites covered per sample (Table 15).

To compute the differential methylation on regions and identify DMRs, the genome must be
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CODE LISTING 1 GENERATING CPG METHYLATION PERCENTAGES FROM READ COUNTS.

subdivided into defined regions. Additionally to the previous 1,000 bp tiles subset, new region subsets

are incorporated in this new analysis:

• 1,000 bp tiles: The genome is tiled into 1,000 bp non-overlapping bins, i.e. chr1:1-1,000;

chr1:1,001-2,000; chr1:2,001-3,000 (same as in the first analysis).

• 200 bp tiles: The genome is tiled into 200 bp non-overlapping bins, i.e. chr1:1-200; chr1:201-400;

chr1:401-600.

• Regions surrounding gene transcription start sites (TSSs): TSSs coordinates on hg19 human

genome were retrieved from the BioMart database ( biomaRt R package), regions from 500 bp

upstream to 500 bp downstream (1001 bp long), corresponding to promoter and beginning of

gene body, were used.

• CpG islands regions: Coordinates of CGI were retrieved from the UCSC database.

• Methylation segments: Segments of 10 to 100 adjacent CpG with similar methylation levels.
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Sample
Number of CpG 

sites
Coverage 

mean (reads)
Methylation 
mean (%)

Number of CpG 
sites

Coverage 
mean (reads)

Methylation 
mean (%)

Number of CpG 
sites

Coverage 
mean (reads)

Methylation 
mean (%)

CSC 1 2,441,224 24.83 41.38 2,438,749 23.50 41.38 808,802 40.98 43.71

CSC 2 1,931,696 21.85 41.96 1,929,744 20.64 41.95 808,802 31.38 43.78

iCSC 1 2,170,344 22.11 39.95 2,168,134 20.89 39.94 808,802 33.34 43.10

iCSC 2 2,316,296 23.82 40.54 2,313,947 22.54 40.53 808,802 38.19 43.15

inon-CSC 1 2,258,601 22.40 43.10 2,256,313 21.17 43.10 808,802 34.33 43.07

inon-CSC 2 1,915,478 20.29 42.83 1,913,535 19.13 42.83 808,802 27.99 42.98

non-CSC 1 2,711,453 26.14 42.35 2,708,720 24.77 42.34 808,802 45.84 43.04

non-CSC 2 2,128,926 22.31 41.92 2,126,765 21.06 41.91 808,802 33.36 43.22

Raw CpG data Filtered CpG data United CpG data

TABLE 15 SUMMARY STATISTICS OF CPG NUMBERS, COVERAGE, AND METHYLATION PERCENTAGES IN ALL

SAMPLES THROUGHOUT THE ANALYSIS OF RRBS DATA.

To generate methylation segments, each sample methylation data is segmented based on

methylation profiles using the methSeg() function from the methylKit R package, relying on a

segmentation algorithm provided by the fastseg R package (Code listing 2) (Klambauer et al.,

2012). Here the minimum of CpG sites per segment is set to 10. The algorithm incorporates also

clustering of segments into 4 groups based on the mean methylation value of each segment. The

Figure 43 illustrates the segmentation results for the CSC 1 sample, similar results are obtained for

all the samples. Coordinates of identified segments in each sample are then used to aggregate the

read counts within their coordinates, to allow the calculation of their differential methylation between

subpopulations.

CODE LISTING 2 GENERATING METHYLATION PROFILE SEGMENTS IN EACH SAMPLE.

For CpG islands regions, the UCSC CpG islands database on the hg19 assembly was used,

in which a CGI is defined by a GC content > 50%, an observed vs expected ratio higher than 0.6 for

the occurrence of CpG sites, and a length greater than 200 bp.

The all process of DMR identification is illustrated on the 1,000 bp tiles subset in the Code list-
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ing 3. First, read counts for Cs and Ts are aggregated into corresponding coordinates of subset

regions, and regions covered in each sample are kept to calculate each sample’s methylation per-

centages (Code listing 3 and Figure 42, panel 2 5 ). Then, read counts are reorganized in pairwise

comparisons of subpopulations and differential methylation of each region is calculated for each

comparison (Code listing 3 and Figure 42, panel 2 6 and 7 ).

The calculation of differential methylation and its associated significance is processed by

the calculateDiffMethDSS() function from the methylKit R package which come originally from

the DSS R package (Feng et al., 2022; Feng et al., 2014; Feng and Wu, 2019). The calculation

method relies on a beta-binomial model which is the most used model for methylation analysis (Feng

et al., 2014). The regions that have a significant differential methylation > 25% (absolute value, >

25% for hypermethylated ones, and < -25% for hypomethylated ones), with a q-value < 0.01, are

considered as differentially methylated between two populations and are referred as DMRs.

In the same way as the first analysis, DMRs are sorted to identify the ones potentially involved

in the non-CSC radio-induced dedifferentiation into iCSC (Figure 39). DMRs between both CSC

states or both non-CSC states are excluded from the CSC-specific DMR pool (significant methylation

difference > 25% between non-CSC and CSC, but < 25% between both CSC states and both non-

CSC states). The sorting of DMRs is carried out on the 5 different regions subsets independently,

and results in 5 lists of DMRs: 1,112 DMRs for 1,000 bp tiles, 1,251 DMRs for 200 bp tiles, 109 DMRs

surrounding TSS, 21 CGIs and 103 methylation segments, for a total of 2,596 DMRs identified as

having a potential role during the radio-induced phenotypic plasticity from the non-CSC state

to the CSC state (Figure 44).
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A B

C D

E

FIGURE 44 VENN DIAGRAMS OF DMR SORTING. Identified DMRs by comparing non-CSC vs CSC, CSC

vs iCSC, and non-CSC vs inon-CSC, from the (A) 1,000 bp tiles regions, (B) 200 bp tiles regions, (C) regions

surrounding TSS, (D) CpG island regions and (E) methylation segments regions.
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1. DNA METHYLATION CHANGES THROUGHOUT THE RADIO-INDUCED DEDIFFERENTIATION

CODE LISTING 3 IDENTIFYING DMRS FROM THE 1,000 BP TILES SUBSET.

1.2.4 IDENTIFIED DIFFERENTIALLY METHYLATED REGIONS (DMRS)

Lists of DMRs from the 5 subsets regions are merged to a total of 2,596 DMRs identified as

potentially involved in the radio-induced differentiation of breast cancer cells. 1,574 are hypermethy-

lated in CSCs compared to non-CSCs and 1,022 hypomethylated. The coordinates of these regions

may overlap, especially for regions surrounding TSS as several TSSs can be annotated for a same

gene, and tiles of 200 bp or 1,000 bp can overlap each other or overlap other region subsets. By

reducing the list of DMRs to overlapping coordinates, the 2,596 DMRs match 1,916 unique regions

in terms of coordinates.

To gather DMR associated data, the same process applied for the DMR identification is

applied to the 2,596 identified regions (Code listing 4). To get methylation levels of these regions, read
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counts are united for all samples at these region coordinates to compute methylation percentages

per sample and methylation mean ± standard deviation per subpopulation. Differential methylation

for the different pairwise comparisons is also generated based on united read counts per region. In

addition, based on previously generated CpG methylation data, the number of CpG sites that are

covered in all samples per DMR is added and serves as a robustness indicator for the differential

methylation calculated. Finally, the closest gene to each DMR is identified, and its coordinates and

distance to DMRs information are also added (Code listing 4 and Figure 42, panel 2 8 ). The 2,596

DMRs are associated with 1,749 unique closest genes.

Among the identified DMRs, 21 CGIs are found differentially methylated. In particular, a

hypomethylated CGI is found within the gene body of the BEST4, BSN, LEMD2, FBXO39, and CDH4

genes, and 1,370 bp upstream of the FSCN1 gene, while a hypermethylated CGI is found within the

gene body of the SNRPN, OCA2, NMRK2, GGTLC1, and VWFP1 genes.

Moreover, 109 regions surrounding TSS of 81 genes (several TSSs per gene) are found

differentially methylated. For instance, the RBP7, RUNX3, VPS26A, CD9, TRAPPC2L, FBXO39,

APOC1, MORC2, and TOM1 genes present a hypomethylation around their TSS, while the PCD-

HGA1, MPZL3, GRAMD1B, MIR7-3HG, and RETN genes have a region surrounding their TSS hy-

permethylated.

From DMR coordinates, all the genes within the 2,000 bp range of a DMR are identified,

giving a total of 1,424 genes. By comparing this list with the lists of 209 genes annotated in the “stem

cell population maintenance” gene ontology (GO:0019827), 11 genes are identified: BMP7, FANCC,

MED12, NR2E1, PRDM16, SFRP1, STAG2, STAT3, WNT7A, WNT9B, and ZHX2. Among them,

FANCC, NR2E1, SFRP1, STAG2, STAT3, and WNT7A are associated with at least one hypomethy-

lated DMR and BMP7, MED12, PRDM16, STAG2, WNT9B, and ZHX2 are associated with at least

one hypermethylated DMR (in CSCs compared to non-CSCs).

From the list of 1,424 genes in the 2 kb range of DMRs, the ones with at least one hypomethy-

lated and one hypermethylated DMR within the 2 kb range are excluded, leaving a total of 1,374

genes with a consistent differential methylation in the case of several proximal DMRs. This list is sep-

arated into two subsets, the ones associated with at least one hypomethylated DMR (602 genes) and

the ones associated with at least one hypermethylated DMR (780 genes) to carry out the pathway

enrichment analysis (Table 16). We can notice the Hedgehog pathway in the top enriched path-

ways, containing the DHH, ARNTL, and GLI2 genes associated, each one with a hypomethylated

DMR in CSCs.

As seen previously with the first analysis, the methylation profile of DMRs across subpopula-

tions is a key feature to find regions undergoing coherent methylation changes throughout dediffer-

entiation. So, to find the most susceptible ones to participate in the dedifferentiation process, DMRs

are selected based on their methylation profiles. As illustrated in Figure 45, in addition to the
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CODE LISTING 4 ASSOCIATING DMRS WITH THEIR RELATED DATA.
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# Term Overlap P-value Odds Ratio Combined Score Genes associated to hypomethylated DMRs in CSCs

1 FTO Obesity Variant Mechanism 2/8 0.022 10.77 40.90 FTO; PRDM16

2 Role of Osx and miRNAs in tooth development 3/15 0.009 8.09 37.74 NOTCH3; ALPL; BMP7

3 Hedgehog Signaling Pathway Netpath 3/16 0.011 7.47 33.45 DHH; ARNTL; GLI2

4 miRNA targets in ECM and membrane receptors 3/22 0.027 5.11 18.39 COL5A1; COL4A1; COL5A2

5 PKC-gamma calcium signaling pathway in ataxia 3/22 0.027 5.11 18.39 PLCB4; TRPC3; ATP2B2

6 MET in type 1 papillary renal cell carcinoma 6/59 0.008 3.67 17.53 ALK; MAP2K2; PTPN11; ETS1; CRKL; PAK4

7 Development of ureteric collection system 5/47 0.013 3.86 16.72 BMP4; FRAS1; GFRA1; CELSR1; GLI2

8 Somatic sex determination 2/14 0.065 5.39 14.73 NR5A1; DHH

9 Differentiation of white and brown adipocyte 3/25 0.038 4.41 14.40 BMP4; PRDM16; BMP7

10 Nuclear receptors 4/38 0.027 3.81 13.80 NR5A1; RXRA; NR1H2; PGR

# Term Overlap P-value Odds Ratio Combined Score Genes associated to hypermethylated DMRs in CSCs

1 The alternative pathway of fetal androgen synthesis 3/11 0.008 9.27 45.11 POR; HSD17B3; HSD17B6

2 Globo Sphingolipid Metabolism 4/21 0.008 5.82 28.05 ST6GALNAC1; ST6GAL1; GCNT1; ABO

3 Development and heterogeneity of the ILC family 5/32 0.007 4.59 22.45 IL33; BCL11B; TBX21; ID2; RORA

4 Cell Differentiation - Index expanded 3/19 0.036 4.63 15.41 MYOD1; ID2; STAT3

5 Vitamin D-sensitive calcium signaling in depression 5/41 0.021 3.44 13.30 GGTLC1; KCNQ2; ITPR1; ATP2B3; SLC8A1

6 Splicing factor NOVA regulated synaptic proteins 5/42 0.023 3.34 12.62 NTNG1; CHL1; KCNQ2; PRKCZ; NEO1

7 Cell Differentiation - Index 2/13 0.089 4.49 10.85 MYOD1; STAT3

8 Development of pulmonary dendritic cells and macrophage subsets 2/13 0.089 4.49 10.85 ID2; STAT3

9 Pathways Regulating Hippo Signaling 9/98 0.014 2.51 10.66 PDGFRB; NTRK2; PRKCH; GNAL; FLT1; FLT3; GNAS; PRKCZ; CDH7

10 TCA Cycle Nutrient Utilization and Invasiveness of Ovarian Cancer 1/5 0.180 6.17 10.56 STAT3

TABLE 16 PATHWAYS ENRICHMENT IN GENES ASSOCIATED WITH IDENTIFIED DMRS. The top 10 enriched

pathways (sorted by combined score, computed based on p-value and odds ratio) in genes within the 2 kb range

of identified DMRs, either hypomethylated ones (top table) or hypermethylated ones (bottom table) (WikiPath-

ways Human 2021 database).

previously used 3 pairwise comparisons, a fourth one is also taken into account: non-CSC vs iCSC,

corresponding directly to methylation changes occurring during dedifferentiation. Hence, DMRs that

present a methylation profile close to the hypothetical, one represented in Figure 45 (for hypomethy-

lated DMRs, reverse profile for hypermethylated ones), are selected thanks to these filters: differential

methylation between non-CSC and CSC > 25%, differential methylation between non-CSC and iCSC

> 25%, a differential between CSC and iCSC < 10% and a differential between non-CSC and inon-

CSC < 10%. Compared to the previously identified DMRs that were sorted only based on differential

methylation greater or lower than 25% (non-CSC vs CSC > 25% while differences between the two

CSC or two non-CSC states < 25%), selected DMRs with these additional parameters have a methy-

lation profile that fits the hypothetical one, meaning they have greater probabilities to be involved in

phenotypic switches from non-CSCs to iCSCs.

In addition, to add robustness to differential methylation values, only the DMRs containing at

least 3 CpG sites covered in all samples are kept to select DMRs for validation (Figure 42, panel 1).

Indeed, as previously seen in the first analysis, filtering DMRs based on a minimal number of CpG

sites should help to find significant methylation differences in afterward region-specific validation, as

well as significant correlation with associated gene expression.

From the 2,596 identified DMRs, 35 DMRs are selected based on their dedifferentiation-

associated methylation profile and with a sufficient number of CpG sites covered in all samples.

The list of these 35 selected DMRs, associated with 23 unique genes, along with their methylation

levels and differences are displayed in Table 17. Among them, one CGI differentially methylated is

selected, located at 1,370 bp upstream of the FSCN1 gene, and one DMR surrounding a TSS is
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FIGURE 45 FILTERING DMRS BASED ON THEIR METHYLATION PROFILES INDICATING POTENTIAL INVOLVE-

MENT IN DEDIFFERENTIATION. Hypothetical methylation profile of a region that could be involved in radio-induced

dedifferentiation through the DNA methylation regulation of its associated gene. This DMR is hypomethylated

in CSCs compared to non-CSCs as well as in iCSCs compared to non-CSCs, and no differences are found

between the two CSC states and the two non-CSC states. The reverse pattern can be applied to DMRs hyper-

methylated in CSCs compared to non-CSCs. To select DMRs matching this methylation profile pattern, they are

filtered based on the differential methylation between subpopulations (absolute values), differences need to be

greater than 25%, and similarities are defined by less than 10% methylation difference.

selected, associated with the CD9 gene. CpG methylation levels and methylation profiles of 5 of

these DMRs, associated with fascin actin-bundling protein 1 (FSCN1), cholinergic receptor nicotinic

alpha 6 subunit (CHRNA6), cadherin 7 (CDH7), CD9, and protein kinase CAMP-dependent type I

regulatory subunit beta (PRKAR1B) genes are available in Figure 46.

In conclusion, a list of 35 DMRs, including 5 particularly interesting ones, have been

identified and need to be further validated. The use of a region-specific DNA methylation

quantification technique is required to confirm methylation differences across the four stud-

ied subpopulations. Additionally, the correlation of these methylation differences with the

expression changes of associated genes should also be assessed.

As the logical continuation of this methylation study was to validate methylation differences of

DMRs, the bisulfite sequencing PCR (BSP) approach with the direct sequencing of PCR products

(direct-BSP) was chosen to quantify region-specific methylation levels. After a first test, the lack of a

practical tool to analyze direct-BSP data led to the development of a new analysis tool, described in

the next chapter.
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Mean  ± SD Mean  ± SD Mean  ± SD Mean  ± SD

1 T1000_0078 chr1 237235001 237236000 1000 3 11.62  ± 5.40 42.41  ± 10.73 11.56  ± 11.38 39.92  ± 5.22 RYR2 0

2 T1000_0179 chr3 71478001 71479000 1000 4 38.95  ± 0.05 67.92  ± 2.22 42.00  ± 0.09 72.72  ± 7.04 FOXP1 0

3 T1000_0260 chr5 3001001 3002000 1000 3 63.41  ± 2.64 31.24  ± 2.19 57.94  ± 3.22 33.83  ± 0.25 RP11-35O7.1 33258

4 T1000_0293 chr5 149978001 149979000 1000 4 31.94  ± 5.93 56.73  ± 6.12 19.70  ± 7.39 57.23  ± 6.01 SYNPO 1641

5 T1000_0322 chr6 29831001 29832000 1000 3 55.59  ± 0.72 28.34  ± 6.41 55.71  ± 2.90 39.28  ± 7.61 MICF 10732

6 T1000_0360 chr6 162294001 162295000 1000 3 23.64  ± 5.14 67.80  ± 4.04 29.29  ± 3.07 61.57  ± 6.73 PARK2 0

7 T1000_0368 chr6 169249001 169250000 1000 3 19.69  ± 4.00 55.59  ± 4.19 22.37  ± 0.59 60.71  ± 13.13 RP3-495K2.3 112704

8 T1000_0372 chr7 579001 580000 1000 8 23.03  ± 10.72 57.16  ± 5.73 25.87  ± 2.89 53.08  ± 1.24 PRKAR1B 8833

9 T1000_0373 chr7 996001 997000 1000 4 28.82  ± 7.18 56.16  ± 3.04 30.58  ± 6.09 55.11  ± 2.88 COX19 0

10 T1000_0638 chr11 118133001 118134000 1000 3 82.41  ± 3.12 49.62  ± 11.07 80.71  ± 2.95 59.19  ± 27.14 MPZL2 0

11 T1000_0777 chr15 77889001 77890000 1000 3 78.82  ± 8.61 45.17  ± 4.21 82.95  ± 11.25 42.48  ± 18.49 RP11-307C19.2 0

12 T1000_0830 chr16 81481001 81482000 1000 3 27.15  ± 7.15 55.54  ± 4.04 24.59  ± 4.64 49.05  ± 13.12 CMIP 0

13 T1000_0912 chr18 76725001 76726000 1000 7 49.11  ± 4.30 22.95  ± 0.35 50.22  ± 0.49 25.37  ± 1.59 RP11-849I19.1 10554

14 T1000_0970 chr20 19908001 19909000 1000 3 48.93  ± 6.35 83.26  ± 10.06 41.84  ± 14.17 88.78  ± 11.83 RIN2 0

15 T1000_0986 chr20 38764001 38765000 1000 7 48.03  ± 8.43 21.38  ± 3.63 47.68  ± 2.96 28.06  ± 13.51 RP1-191L6.2 9002

16 T1000_1078 chrX 56830001 56831000 1000 3 29.80  ± 0.49 61.74  ± 8.43 26.09  ± 7.15 65.60  ± 15.52 RP11-622K12.1 0

17 T200_0322 chr5 3001201 3001400 200 3 63.41  ± 2.64 31.24  ± 2.19 57.94  ± 3.22 33.83  ± 0.25 RP11-35O7.1 33458

18 T200_0431 chr6 169249001 169249200 200 3 19.69  ± 4.00 55.59  ± 4.19 22.37  ± 0.59 60.71  ± 13.13 RP3-495K2.3 113504

19 T200_0439 chr7 579201 579400 200 7 29.72  ± 8.97 66.15  ± 5.99 35.35  ± 8.31 64.83  ± 3.76 PRKAR1B 9433

20 T200_0448 chr7 5647801 5648000 200 3 33.71  ± 15.53 69.11  ± 3.07 40.54  ± 3.98 72.92  ± 15.99 FSCN1 1514

21 T200_0612 chr9 136529401 136529600 200 3 32.92  ± 8.08 55.68  ± 0.48 30.68  ± 0.39 44.10  ± 14.68 SARDH 0

22 T200_0794 chr12 133613401 133613600 200 3 32.19  ± 13.03 74.47  ± 9.69 32.54  ± 4.23 69.11  ± 10.98 RP11-386I8.6 0

23 T200_0871 chr15 77889801 77890000 200 3 78.82  ± 8.61 45.17  ± 4.21 82.95  ± 11.25 42.48  ± 18.49 RP11-307C19.2 0

24 T200_0937 chr16 81481001 81481200 200 3 27.15  ± 7.15 55.54  ± 4.04 25.39  ± 3.50 49.05  ± 13.12 CMIP 0

25 T200_1030 chr19 1094001 1094200 200 3 46.69  ± 6.49 78.97  ± 7.24 49.62  ± 9.16 73.03  ± 2.51 POLR2E 0

26 T200_1089 chr20 19908801 19909000 200 3 48.93  ± 6.35 81.60  ± 7.71 41.84  ± 14.17 84.87  ± 16.68 RIN2 0

27 T200_1099 chr20 38764401 38764600 200 7 48.03  ± 8.43 21.38  ± 3.63 47.68  ± 2.96 28.06  ± 13.51 RP1-191L6.2 9402

28 T200_1205 chrX 56830001 56830200 200 3 29.80  ± 0.49 61.74  ± 8.43 26.09  ± 7.15 65.60  ± 15.52 RP11-622K12.1 0

29 STSS_0055 chr12 6308381 6309381 1001 5 6.79  ± 3.25 46.68  ± 6.75 11.96  ± 7.60 41.42  ± 34.77 CD9 0

30 CGIR_0005 chr7 5647657 5647984 328 8 27.42  ± 5.09 61.42  ± 5.63 34.23  ± 2.28 65.66  ± 10.70 FSCN1 1370

31 SEGR_0019 chr3 71478053 71478253 201 4 38.45  ± 0.75 67.49  ± 0.86 37.10  ± 0.57 71.68  ± 5.56 FOXP1 0

32 SEGR_0020 chr3 71478053 71478274 222 4 38.95  ± 0.05 67.92  ± 2.22 42.00  ± 0.09 72.72  ± 7.04 FOXP1 0

33 SEGR_0021 chr3 71478171 71478274 104 3 38.95  ± 0.05 71.32  ± 0.44 43.56  ± 2.29 76.58  ± 1.59 FOXP1 0

34 SEGR_0040 chr8 42623718 42641148 17431 5 48.23  ± 3.28 17.00  ± 2.13 45.94  ± 3.73 18.48  ± 5.35 CHRNA6 0

35 SEGR_0087 chr18 63418129 63418179 51 5 89.22  ± 4.96 55.95  ± 7.55 80.41  ± 4.40 63.21  ± 5.95 CDH7 0

CpG
Closest 

gene
# DMR ID Chr. Start End Length

Distance to 
gene

CSC methylation non-CSC methylation iCSC methylation inon-CSC methylation

TABLE 17 Panel 1. Caption in following pages.
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Diff. Meth. q-value Diff. Meth. q-value Diff. Meth. q-value Diff. Meth. q-value

1 T1000_0078 chr1 237235001 237236000 1000 3 -26.41 3.63E-03 -25.54 4.79E-03 0.87 5.70E-01 1.48 7.20E-01 RYR2 0

2 T1000_0179 chr3 71478001 71479000 1000 4 -28.49 1.20E-04 -25.41 1.28E-05 3.09 4.18E-01 4.93 4.94E-01 FOXP1 0

3 T1000_0260 chr5 3001001 3002000 1000 3 32.04 4.55E-05 26.80 5.01E-05 -5.24 3.26E-01 2.98 6.09E-01 RP11-35O7.1 33258

4 T1000_0293 chr5 149978001 149979000 1000 4 -25.25 3.24E-04 -34.22 3.29E-07 -8.97 1.48E-01 1.24 7.20E-01 SYNPO 1641

5 T1000_0322 chr6 29831001 29832000 1000 3 25.58 4.30E-03 25.39 2.23E-04 -0.19 6.02E-01 8.73 3.51E-01 MICF 10732

6 T1000_0360 chr6 162294001 162295000 1000 3 -43.61 9.52E-07 -37.96 1.82E-08 5.65 3.55E-01 -4.46 5.35E-01 PARK2 0

7 T1000_0368 chr6 169249001 169250000 1000 3 -35.51 2.28E-07 -33.04 2.47E-06 2.47 4.64E-01 4.08 6.40E-01 RP3-495K2.3 112704

8 T1000_0372 chr7 579001 580000 1000 8 -31.23 6.15E-04 -30.40 7.29E-09 0.82 5.67E-01 -3.54 5.31E-01 PRKAR1B 8833

9 T1000_0373 chr7 996001 997000 1000 4 -26.19 5.26E-04 -25.85 3.54E-05 0.34 5.94E-01 -1.47 6.99E-01 COX19 0

10 T1000_0638 chr11 118133001 118134000 1000 3 33.53 6.22E-04 31.96 5.81E-05 -1.57 5.06E-01 8.97 5.59E-01 MPZL2 0

11 T1000_0777 chr15 77889001 77890000 1000 3 35.86 1.61E-03 40.76 2.05E-05 4.90 3.93E-01 -2.89 7.06E-01 RP11-307C19.2 0

12 T1000_0830 chr16 81481001 81482000 1000 3 -27.89 1.68E-03 -32.29 2.80E-06 -4.41 3.63E-01 -7.80 4.63E-01 CMIP 0

13 T1000_0912 chr18 76725001 76726000 1000 7 26.22 2.43E-05 27.01 4.82E-07 0.79 5.58E-01 2.35 6.08E-01 RP11-849I19.1 10554

14 T1000_0970 chr20 19908001 19909000 1000 3 -35.41 2.06E-04 -42.11 1.26E-05 -6.70 3.53E-01 0.73 7.55E-01 RIN2 0

15 T1000_0986 chr20 38764001 38765000 1000 7 26.51 5.88E-04 25.22 1.23E-06 -1.29 5.36E-01 5.84 5.10E-01 RP1-191L6.2 9002

16 T1000_1078 chrX 56830001 56831000 1000 3 -29.74 1.21E-04 -34.53 1.01E-06 -4.79 3.08E-01 3.83 6.55E-01 RP11-622K12.1 0

17 T200_0322 chr5 3001201 3001400 200 3 32.04 6.69E-05 26.80 5.01E-05 -5.24 3.26E-01 2.98 6.09E-01 RP11-35O7.1 33458

18 T200_0431 chr6 169249001 169249200 200 3 -35.51 5.22E-07 -33.04 2.47E-06 2.47 4.64E-01 4.08 6.40E-01 RP3-495K2.3 113504

19 T200_0439 chr7 579201 579400 200 7 -33.44 5.32E-05 -29.31 1.64E-05 4.13 3.99E-01 -1.03 7.20E-01 PRKAR1B 9433

20 T200_0448 chr7 5647801 5648000 200 3 -33.85 4.55E-03 -28.12 2.32E-06 5.73 3.65E-01 3.64 6.46E-01 FSCN1 1514

21 T200_0612 chr9 136529401 136529600 200 3 -25.77 6.31E-03 -25.04 5.53E-05 0.74 5.71E-01 -9.34 4.14E-01 SARDH 0

22 T200_0794 chr12 133613401 133613600 200 3 -35.48 5.77E-03 -39.32 5.38E-08 -3.84 4.33E-01 -2.71 6.77E-01 RP11-386I8.6 0

23 T200_0871 chr15 77889801 77890000 200 3 35.86 2.82E-03 40.76 2.05E-05 4.90 3.93E-01 -2.89 7.06E-01 RP11-307C19.2 0

24 T200_0937 chr16 81481001 81481200 200 3 -27.89 2.78E-03 -30.94 1.03E-05 -3.05 4.40E-01 -7.80 4.63E-01 CMIP 0

25 T200_1030 chr19 1094001 1094200 200 3 -30.30 6.46E-03 -28.80 1.60E-03 1.50 5.52E-01 -4.41 5.57E-01 POLR2E 0

26 T200_1089 chr20 19908801 19909000 200 3 -32.52 7.87E-04 -39.22 2.56E-05 -6.70 3.53E-01 -0.61 7.62E-01 RIN2 0

27 T200_1099 chr20 38764401 38764600 200 7 26.51 1.15E-03 25.22 1.23E-06 -1.29 5.36E-01 5.84 5.10E-01 RP1-191L6.2 9402

28 T200_1205 chrX 56830001 56830200 200 3 -29.74 2.39E-04 -34.53 1.01E-06 -4.79 3.08E-01 3.83 6.55E-01 RP11-622K12.1 0

29 STSS_0055 chr12 6308381 6309381 1001 5 -40.10 4.91E-11 -34.48 8.13E-07 5.62 2.31E-01 -5.31 6.74E-01 CD9 0

30 CGIR_0005 chr7 5647657 5647984 328 8 -34.23 1.02E-09 -27.18 8.03E-07 7.05 1.56E-01 4.14 5.77E-01 FSCN1 1370

31 SEGR_0019 chr3 71478053 71478253 201 4 -29.13 2.52E-04 -30.00 3.45E-07 -0.88 5.59E-01 3.87 5.51E-01 FOXP1 0

32 SEGR_0020 chr3 71478053 71478274 222 4 -28.49 3.35E-04 -25.41 1.28E-05 3.09 4.18E-01 4.93 4.94E-01 FOXP1 0

33 SEGR_0021 chr3 71478171 71478274 104 3 -32.22 1.77E-05 -27.23 4.23E-06 4.99 3.10E-01 5.43 4.24E-01 FOXP1 0

34 SEGR_0040 chr8 42623718 42641148 17431 5 30.19 6.96E-09 28.19 7.57E-10 -2.00 4.44E-01 0.75 7.30E-01 CHRNA6 0

35 SEGR_0087 chr18 63418129 63418179 51 5 32.21 2.55E-06 25.43 5.83E-05 -6.78 1.71E-01 9.54 2.84E-01 CDH7 0

non-CSC vs inon-CSC Closest 
gene

Distance to 
gene

DMR ID Chr. Start End Length# CpG
non-CSC vs CSC non-CSC vs iCSC CSC vs iCSC

TABLE 17 Panel 2. Caption next page.
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RESULTS

TABLE 17 LIST OF FILTERED DIFFERENTIALLY METHYLATED REGIONS. The 35 differentially methylated re-

gions (DMRs) are listed with the following related data: identifier (DMR ID), coordinates (chromosome, start and

end positions), length (bp), number of CpG covered, average methylation percentage (%) ± standard deviation

in CSC, non-CSC, iCSC and inon-CSC populations (panel 1), differential methylation with q-value for non-CSC

vs CSC, non-CSC vs iCSC, CSC vs iCSC, and non-CSC vs inon-CSC pairwise comparisons (%) (panel 2),

closest gene and distance to the closest gene (bp). A differential methylation > 0 corresponds to hypomethy-

lation (red) and a differential methylation < 0 corresponds to hypermethylation (green). Chr.= chromosome;

Diff. Meth.= differential methylation; SD= standard deviation.

[ KEY POINTS

å The differential methylation analysis of 1,000 bp tiles, 200 bp tiles, regions surrounding
transcription start sites (TSSs), CpG island (CGI) regions, and methylation segment regions
highlighted 2,596 differentially methylated regions (DMRs) that could undergo methylation
changes related to the dedifferentiation of non-CSCs into iCSCs.

å By cross-referencing genes within the 2 kb range of these 2,596 DMRs with genes linked
to “stem cell population maintenance” gene ontology, the FANCC, NR2E1, SFRP1, STAG2,
STAT3, and WNT7A genes are found associated with at least one hypomethylated DMR
(in CSCs compared to non-CSCs) and the BMP7, MED12, PRDM16, STAG2, WNT9B,
and ZHX2 genes are found associated with at least one hypermethylated DMR (in CSCs
compared to non-CSCs).

å By filtering the 2,596 DMRs based on methylation profiles across subpopulations and mini-
mal number of CpG sites covered in all samples, 35 DMRs associated to 23 unique genes,
including the FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B genes, are identified as re-
gions that are likely to undergo methylation changes during dedifferentiation and could
participates in the phenotypic switch regulation.

� Back to Table of Contents
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FIGURE 46 METHYLATION PROFILES OF DMRS ASSOCIATED WITH FSCN1, CHRNA6, CDH7, CD9, AND PRKAR1B GENES. A. Methylation plots of DMRs close

to FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B genes. From top to bottom: chromosome localization; genomic axis; genome data track displaying transcripts along the

genome; CpG islands track displaying CGIs along the genome; CG track displaying positions of CpG sites; CSC 1, CSC 2, non-CSC 1, non-CSC 2, iCSC 1 and iCSC 2

tracks displaying CpG methylation percentages histograms; DMR track displaying positions of identified DMRs, hypomethylated ones in CSCs compared to non-CSCs in

red, and hypermethylated ones in CSCs compared to non-CSCs in green. B. Methylation profiles plots of DMRs close to FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B

genes across subpopulations.
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Abstract

Motivation: Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic
development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and
compare CpG methylation levels of a specific region of interest, the most accessible technique is the
Bisulfite Sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all
approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing
of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and
prone to error task.
Results: Here, we implement a new R-based tool, called ABSP for Analysis of Bisulfite Sequencing PCR,
providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing
trace files (.ab1) as input to compute and compare CpG methylation percentages. It is fully automated and
includes a user-friendly interface as a built-in R shiny app, quality control steps, and generates publication-
ready graphics.
Availability and implementation: The ABSP tool and associated data are available on GitHub at
https://github.com/ABSP-methylation-tool/ABSP.
Contact: chann.lagadec@inserm.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Aside from transcription factor regulations, gene expression can also
be activated or repressed by epigenetic modifications directly on
nucleotides (DNA methylation) or histones (methylation, acetylation...).
In vertebrates, epigenetic regulation is essential to regulate genomic
imprinting, X chromosome inactivation, development regulation, cell
differentiation, and genome integrity preservation. DNA methylation can
affect cytosine and adenine but mostly occurs on a cytosine followed

by a guanine (CpG site). The effect of these modifications on gene
transcription has been observed when several grouped CpG within a DNA
region, so-called CpG islands, are modified altogether (Greenberg and
Bourc’his, 2019; Jones, 2012). Specific enzymes, DNA methyltransferases
(DNMT1, DNMT3A, and DNMT3B), transfer a methyl group (CH3) from
S-Adenosyl methionine (SAM) on the C5 position of the pyrimidine ring,
converting cytosine (C) into 5-methylcytosine (5mC).

Among other methods, the Bisulfite Sequencing PCR (BSP) is the
most accessible and conventional method to evaluate methylation levels
at single CpG resolution in a mix of DNA molecules (Clark et al., 1994;

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Frommer et al., 1992). Even if broad methods have been developed to
study DNA methylation, the BSP technique has the benefit of a great
sensitivity at a very low cost, compared to other methods using Next
Generation Sequencing (NGS) technologies, more sensitive but costly. The
BSP assay is thereby the most suited one to quantify DNA methylation
of a specific region when large-scale NGS methods are not necessary,
especially to get rapid preliminary results, or to validate methylation data
from screening experiments such as Reduced Representation Bisulfite
Sequencing (RRBS) at specific loci (Chen et al., 2022; Dehdari et al.,
2022; Pajares et al., 2021).

DNA methylation estimation methods using bisulfite conversion are
based on the selective deamination of cytosine residues by sodium bisulfite
treatment, transforming cytosines into uracils whereas 5-methylcytosines
are not affected and remain cytosines (Frommer et al., 1992; Hayatsu et al.,
1970). Subsequently, the Polymerase Chain Reaction (PCR) regenerates
thymines instead of unmethylated cytosines, as both are complementary
to adenines, while 5-methylcytosines remain cytosines. Therefore, the
original methylated cytosines are distinguishable from the unmethylated
ones through Sanger sequencing.

Two approaches to BSP have been described in the literature: direct-
BSP and cloning-BSP (Chatterjee et al., 2017). The direct-BSP approach
consists in sequencing PCR products directly after PCR amplification of
bisulfite-converted DNA. As a mix of DNA molecules with different CpG
methylation statuses is being sequenced simultaneously, the quantification
of CpG methylation can be assessed in the same way as the quantification
of a Single Nucleotide Polymorphism (SNP) (Qiu et al., 2003). Thereby,
from the chromatogram trace file, the peak heights ratio of cytosine
and thymine signals are used to determine the proportion of methylated
cytosines compared to unmethylated ones at CpG sites (Fig. 1) (Jiang et al.,
2010; Lewin et al., 2004; Parrish et al., 2012).

In the cloning-BSP approach, PCR products are cloned in vectors and
used to transform bacteria. Amplified vectors from individual colonies are
extracted for sequencing. Hence, the sequencing of a unique clone, reveals
the methylation status of each CpG site of a single PCR product (Li and
Tollefsbol, 2011). In the literature, about 10 clones are usually sequenced
to get an estimation of the CpG methylation levels of a DNA population
with 10% to 20% accuracy (Chen et al., 2022; Li and Tollefsbol, 2011).

In terms of analysis, tools have been developed to analyze cloning-
BSP results, exclusively relying on the base-called sequence from
the sequencing. For instance, MethTools 2.0, BiQ Analyzer, QUMA
(Quantification tool for Methylation Analysis), and BISMA (Bisulfite
Sequencing DNA Methylation Analysis) can be cited (Bock et al., 2005;
Grunau et al., 2000; Kumaki et al., 2008; Rohde et al., 2010). These tools
have been designed to process cloning-BSP data and cannot analyze direct-
BSP results as they were not conceived to use the four-dye signal intensity
values from chromatograms as an input to interpret the results. Indeed,
they determine the methylation statuses of CpG sites of each clone and
then calculate the ratio between methylated and unmethylated clones to
estimate CpG methylation proportions in the biological sample.

The cloning-BSP approach is mostly used since the direct-BSP
one is generally considered less quantitative, due to differences in
labeled terminator nucleotides (ddNTPs) incorporation efficiencies and
differences in signal relative intensities between the four dyes (Chhibber
and Schroeder, 2008; Mikeska et al., 2010). Yet, studies claim that 10
clones are not sufficient to obtain a statistically significant estimation
of DNA methylation levels and prone to the direct sequencing of PCR
products (Mühlisch et al., 2007; Paul and Clark, 1996; Voss et al.,
1998). Besides, direct-BSP is efficient and avoids the multiplication
of subclones sequencing costs; it is therefore particularly useful for
methylation quantification studies with many samples such as cohorts, or
for validation of potential targets identified through screening experiments
(Moschny et al., 2020; Schiele et al., 2021).

In the context of The Human Epigenome Project by the Human
Epigenome Consortium (2003), the direct-BSP approach was selected to
map the CpG methylation levels along the genome for high throughput and
cost-effectiveness reasons. Consequently, in 2004, Lewin et al. developed
an algorithm called ESME (Epigenetic Sequencing Methylation analysis
software), to estimate methylation levels from the four-dye chromatogram
trace files. However, the software is not up-to-date with the current
BSP technology and suffers from accessibility issues as its installation
and operation require qualified expertise in a Linux operating system
(Akika et al., 2017). So, nowadays, the most convenient way to analyze
direct-BSP data still consists in manually retrieving the peak heights to
compute methylation percentages of CpG sites, which is time-consuming
(dependant on the number of samples and CpG sites per sample), repetitive,
prone to errors, and does not include valuable quality control over
sequencing data (Jiang et al., 2010; Martisova et al., 2021; Parrish et al.,
2012).

Additionally, a step further is required for better visualization and
comparison of methylation differences. Once methylation levels are
obtained, some graphical visualization of methylation data can be
generated, by using a web-based tool called Methylation plotter for
example, as well as comparative statistics (Mallona et al., 2014).

Existing tools are not sufficient to provide a full analytic process of
BSP results, especially for direct-BSP experiments, in the context of
preliminary data or large studies for which the cloning is not appropriate.
As it is relevant to sequence the PCR products to estimate methylation
percentages before committing to the cloning step, the choice was to apply
the same method for both direct-BSP and cloning-BSP results to ensure
continuity in the analytic process. By using our new tool ABSP, both
approaches of BSP can be analyzed to generate methylation visualization
plots and comparative statistics, in an automated and controlled manner,
from the Applied Biosystems, Inc. Format (ABIF) sequencing files (.ab1).

2 Approach
For direct-BSP, ratios of the peak heights of the two co-existing C
and T signals at CpG positions are used to evaluate the proportion of
methylated cytosines (Fig. 1) (Jiang et al., 2010; Lewin et al., 2004;
Parrish et al., 2012). The same method can be applied to analyze the
subclones sequencings: as the ratio of signal peak heights can either be
around 0% or 100%, its calculation reveals the CpG methylation status of
individual DNA molecules. Therefore, PCR replicates or clone analysis
can give statistical meanings of the degree of methylation among the
samples (Fig. 1).

To fully analyze the BSP experiments, 2 main steps are required
(Fig. 2). First, the CpG methylation levels of each sample have to be
estimated using replicates or clones. In our ABSP-developed process, this
step is called individual analysis. Next, the grouped analysis can be run
to compare methylation levels between groups and to find methylation
differences.

As presented in Figure 2, each sequencing run of a unique PCR product
or a unique clone vector is defined by a combination of information used to
track, group, and compare the sample methylation data: (1) the sequence
amplified by PCR (unique primer pair used for the BSP experiment), (2)
the collection, which describes a separation of samples above groups, it
means that samples from different collections cannot be compared (e.g.
cell lines or organs), (3) the group, which is the experimental condition to
compare (e.g. treatment a or b), and (4) the replicate number for direct-
BSP (repetition identifier) or the clone number for cloning-BSP (clone
identifier).

Additionally, sequencing reads from both directions can be provided
for each unique DNA sample, using a forward and reverse primer, to
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ABSP: Analysis of Bisulfite Sequencing PCR 3

Fig. 1. Analysis strategy differences between the two Bisulfite Sequencing PCR
approaches, direct-BSP and cloning-BSP. As the direct-BSP method consists in sequencing
the mix of PCR products, the methylation calculation based on chromatogram C/T peak
heights gives directly an estimation of the CpG methylation level, that can be replicated for
statistical significance determination. In the cloning-BSP method, as the CpG methylation
status in each clone is revealed by the chromatogram peak heights as well, the sequencing
of several clones gives an estimation of the CpG methylation proportion.

maximize the sequence coverage and increase data robustness as both
sequencing reads can overlap.

3 Methods

3.1 General structure

Each one of the two main parts of ABSP, the individual and grouped
analyses, corresponds to an R markdown script (using the markdown R
package), thereby generating two different types of analysis reports, one
specific for individual sample results and the other for grouped samples
analysis results. These two analyses can be launched through a shiny app,
in which the individual analysis tab and the grouped analysis tab serve
to enter the input parameters, required for report rendering (using the
knitr R package). Once the inputs are filled and the analysis is launched,
the corresponding script processes the analysis, exports several output
files, and produces the analysis report as an HTML file (.html extension),
summarizing all the results and serving as a record of them. An additional
tab called multiple analyses serves to launch several analyses, individual
ones, grouped ones, or both, in one click, using filled tables (.xlsx or .csv
files) as input entries.

3.2 Individual analysis

The individual analysis aims to compute the CpG methylation percentages
from the chromatogram trace files of each individual sample at each CpG
site, using the signal peak height values.

Fig. 2. General workflow of ABSP. The analysis is divided into two main steps: the
individual analysis and grouped analysis. The first one serves to control the sequencing
quality and compute methylation levels for each individual sample, whereas the second
one gathers all sample methylation results to generate visualization plots and process
comparative statistics between groups.

Input required
Three inputs are required to proceed through the analysis: (1) the sample
combination of information, to affiliate the methylation results to the
correct sample (Fig. 2), (2) the genomic reference sequence, its genomic
coordinates, and the strand amplified during PCR (as the bisulfite converts
cytosines into uracils, the two DNA strands are no longer complementary,
only one can be amplified with a unique set of primers), which have to be
provided in a FASTA file (.fasta extension), and (3) the chromatogram trace
files in ABIF format (.ab1 extension) of the sequencing reads in forward
and reverse directions. In Figure 3, the sequencing results are numbered
#1 and #2, as the direction must not be specified and will be automatically
determined during the analysis.

Processing the reference DNA
First, the CpG positions are retrieved from the reference DNA, and their
coordinates are found by correlating positions and reference coordinates
(Fig. 3, Find CpG coordinates frame). Matches for CG dinucleotides in
both plus and minus strands give the start and end positions of each CpG.
CpG coordinates are calculated using the start and end coordinates of the
reference sequence and CpG positions on the reference sequence (e.g. CpG
site at positions 100-101 on plus strand: cytosine coordinate = seq_start +
position - 1 = 6,000 + 100 - 1 = 6,099).

In Figure 3, the second line of process panels represents BSP
experiment steps reproduced in silico during the analysis. The theoretical
bisulfite conversion of the reference DNA is realized using the amplified
strand sequence (Fig. 3, Bisulfite Conversion frame). As the PCR
regenerates the opposite strand of the DNA template, both sequences
are retrieved (Fig. 3, PCR Amplification frame): (1) sequence from the
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Fig. 3. Detailed workflow of the individual analysis step. To illustrate the process, an arbitrary reference sequence of 1000 bp was chosen, with genomic coordinates between 6,000 and
6,999 and a CpG site at positions 100-101 on the plus strand. Other numbers, such as aligned sequences borders, were also arbitrarily chosen for example purposes.

amplified strand, or sense strand as it will serve as the template for the
sequencing in the forward direction (upper strand in Fig. 3), and (2) the
sequence from the opposite strand, or antisense strand as it will serve as
the template for the sequencing in the reverse direction (lower strand in
Fig. 3) (Fig. 3, Sequencing frame).

Trimming of sequencing results
As the extremities of the sequencing reads are prone to off-scale signals and
errors, these inaccurate parts must be removed. To determine the correct
positions where the sequencing read should be trimmed, 2 parameters are
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used: the base calling error probability and the signal peak height (Fig. 3,
Sequencing trimming frame).

The first trimming method is based on the base calling Phred quality
scores, to remove parts susceptible to having base calling errors. This step
is performed by the sangeranalyseR R package, using the modified Mott’s
trimming algorithm (M1 method) with a base calling error probability (P )
default cutoff of 0.001%, equivalent to a Phred quality score (Q) of 30
(Q = −10× log10(P )) (Chao et al., 2021).

Based on the peak height values from the chromatogram, the second
way of trimming aims to remove extremities where signals are mixed. For
each base, the ratio of the primary peak height signal over the total of all
signals peak height is calculated using the following formula: if peakC >

{peakA, peakT , peakG}, primary peak ratio = peakC/(peakA+peakT +

peakG + peakC). A base position is considered as "non-mixed" if the
primary peak ratio is above the threshold, set by default to 0.75. Then,
all the possible trimmed sequences are obtained by selecting the longest
sequence for which the boundaries are of n (n from 3 to 15) consecutive
non-mixed positions. Among those trimmed sequences, the one with a
percentage of non-mixed positions above the threshold (default is 75%)
with the minimum of consecutive non-mixed positions at boundaries is
kept.

Finally, the overlap between both sequences, from the quality score
trimming and the mixed base peak trimming, gives the final trimmed
sequence used for the following steps. If one of the trimming methods
fails or if the final trimmed sequence parameters are below thresholds
(length, average Phred score, and percentage of non-mixed positions,
Fig. 3, Sequencing trimming frame), the sequencing will not be used to
compute methylation percentages.

Alignments of trimmed sequencing reads with template DNA
sequences
To correlate nucleotide positions on the sequencing reads with CpG
positions on the template DNA, the alignment of sequences is performed
(local pair-wise alignment). In cloning-BSP experiments, sequencing
primers are often chosen on the vector backbone. As PCR products can
be inserted in either direction, it is crucial to determine the direction of
the sequencing within the analytic process. Trimmed sequences are first
aligned with both sense and antisense sequences of the converted template
DNA. The longest alignment is considered the correct template (Fig. 3,
Alignments frame).

Knowing the positions of the first nucleotide on template DNA
(Subject, S) and sequencing read (Pattern, P), respectively SstartF/PstartF
for forward sequencing, and SstartR/FstartR for the reverse sequencing,
a direct correlation is used to find cytosine positions on the trimmed
sequencing results. So, as an example, on the forward strand, if the cytosine
is at the position 100 on the template (S), the SstartF = 30 and the PstartF
= 22, cytosine position = cytosine position on template - SstartF + PstartF
= 100 - 30 + 22 = 92.

The maximum aligned sequence corresponds to the sequence covered
by at least one of the sequencing reads, and its coordinates are
determined by the correlation of genomic coordinates and aligned positions
(alg_coord_start and alg_coord_end).

Quality control of the aligned sequencing results
To check the concordance between the template DNA and the sequencing
results, the aligned sequences are controlled through several steps: (1) gap
positions determination, (2) C positions matching for bisulfite conversion
rate calculation, (3) retrieval of peak height values for each C position
outside CpG sites, (4) bisulfite conversion rate calculation, and (5)
validation of the sequencing quality.

As the retrieval of peak height values for methylation calculation is
based on the start positions of aligned sequences, the presence of a gap,
insertion, or deletion in either the template DNA or the sequencing result,
causes a position shift that needs to be corrected for the CpG position
matching step. The most important criteria to validate the quality of a
sequencing result is the bisulfite conversion efficacy. To assess its efficacy,
the bisulfite conversion rate is computed for each cytosine position outside
CpG sites and the average rate on the sequence must be higher than the
provided threshold (default is 0.9). First, C positions have to be retrieved
based on the alignments, with the same method as explained above, by
matching the positions of aligned sequences. Then, the peak height values
of each base at these positions are used to calculate the bisulfite conversion
rates with the following formula, for the forward sequence: bisulfite
conversion rate = peakT /(peakC + peakT ) and for the reverse sequence:
bisulfite conversion rate = peakA/(peakG + peakA). Finally, the
alignments and quality control steps provide the aligned sequence length,
identity percentage, mismatches positions, insertion/deletion positions,
and the average bisulfite conversion rate (Fig. 4B). For a sequencing result
to be considered as correct, the length, identity percentage, and average
bisulfite conversion rate have to be higher than the defined thresholds, set
to 30 bp, 75%, and 0.9 respectively by default.

Methylation calculation
The methylation percentage of each CpG site is calculated using the peak
height values corresponding to the intensity of the dye signal, with the
following formula: methylation percentage = peakC/(peakC +peakT )×
100 or = peakG/(peakG + peakA) × 100 for the forward and reverse
sequencing results respectively (Figs. 4C and D).

Outputs
The main output result of the individual analysis is the methylation data
table, used as input for the grouped analysis afterward. To visualize the
methylation levels of the analyzed sample, a plot displaying the genomic
sequence, the CpG positions, and the methylation levels as a grey gradient
is produced (Supplementary Fig. S1). This genomic plot can serve as
a control of the coordinates, as CpG site coordinates must match the
sequence colors of CG dinucleotides.

3.3 Grouped analysis

Methylation data from individual analysis
As input, the methylation data files saved by the previous individual
analyses are automatically retrieved based on the selected folder and
sequence name. Methylation data from all samples are processed and
gathered.

For each individual clone, the methylation percentages found based on
signal peak ratios are converted into methylation statuses. By default, for
each CpG, a methylation level between 0% and 20% is considered as an
unmethylated status and a methylation level between 80% and 100% as a
methylated one. Partial methylation, between 20% and 80%, is considered
defective and is annotated as not available. For one clone, if the number of
partially methylated CpGs is important (above 20% by default) the clone is
considered as a potential mix of clones and therefore all of its methylation
data is annotated as not available.

Generation of plots to visualize methylation levels
To generate visualization plots, several plot parameters are required: (1)
the label type for CpG positions (CpG coordinates, CpG numbers, or
none), (2) the collection separation, whether or not samples from different
collections have to be displayed on the same plot, (3) the group order for
display, and (4) the sample ordering on the ordinate axis (as it is, by groups,
by methylation levels, or by clusters).
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To represent CpG methylation levels, the lollipop-style plots are largely
used in the literature. They illustrate CpG levels as circles with methylation
levels either as a black and white scale for clone methylation status or as a
grey gradient for methylation level (Figs. 4E and G). Most plots generated
by ABSP were built using the functions of the Methylation plotter tool as
a reference (Mallona et al., 2014).

As for the individual analysis, methylation levels are also pictured
by genomic plots, displaying the genomic sequence, CpG positions, and
CpG methylation of samples as a grey-scale heatmap along the sequence
(Supplementary Fig. S2).

Comparative statistics
As the purpose of the BSP experiment is to compare results from different
conditions over methylation levels, several outputs are generated: tables
with the two-by-two comparisons of groups with Student’s T-test p-values,
boxplots representing the methylation means of each CpG, and boxplots
with the means of all CpG analyzed gathered with Student’s T-test p-values
as well (Figs. 4H and I, Supplementary Fig. S3), and finally methylation
profile plots displaying the methylation levels as line plots along the
sequence with Kruskal-Wallis p-values per CpG, to identify the sites with
significant differences among the groups (Fig. 4F) (Mallona et al., 2014).

4 Application
Both high-methylated and low-methylated human genomic DNA (80-
8061-HGHM5 and 80-8062-HGUM5 from EpigenDx) were treated with
sodium bisulfite and cleaned up. An upstream promoter region of the
CDH1 gene, covering 17 CpG sites was amplified through a touchdown
PCR protocol using specific primers, 5’ tailed with standard primers T3
or BGH Reverse. The 259 bp long amplicons were directly sequenced in
both directions, in triplicates to allow statistical analysis (for additional
details on the method, see the Supplementary Materials).

Sequencing results were processed and analyzed using the ABSP
workflow described for direct-BSP analysis. Essential results from the
individual analysis and grouped analysis reports are respectively displayed
in Figure 4 top and bottom panels.

The CG #8 from the high-methylated DNA #3 sample is displayed to
illustrate the analysis process and outputs (Fig. 4). After alignment with
the reference sequence and validation of both sequencing results through
quality control (Fig. 4B), the peak height values corresponding to each base
at the CG #8 cytosines positions are retrieved (Fig. 4C). The C and T peak
heights are used to compute the methylation percentage from the forward
sequencing, and the A and G peak heights from the reverse sequencing,
as displayed in Figure 4C. After combining methylation results from
both sequencing reads, the average methylation percentage and standard
deviation are computed and these data will be used in the grouped analysis
(Fig. 4D). For the CG #8 illustrated in Figure 4, the sequencing analysis
reveals methylation of 71.13% for the forward result and 82.65% for the
reverse, given an average methylation of 76.89% (Figs. 4C and D). As
CG position numbers are determined based on the reference DNA in
the individual analysis and are then reset in the grouped analysis, the
previously described CG #8 corresponds now to the CpG site #4 covered
by at least one of the sequencing.

As the grouped analysis aims to facilitate the interpretation of
methylation data from all samples, several graphics are generated. First, in
the lollipop-style plot displaying methylation of all samples, the difference
between the low-methylated and high-methylated samples is clearly visible
thanks to the grey scale (Fig. 4E). In addition, missing points, inconsistent
methylation levels between replicates or clones, and methylation patterns
can be easily found on this type of plot. In the high-methylated DNA #3
sample, it is particularly noticeable that the CpG site #4 has a slightly

lower methylation level (76.89%) compared to the 2 other high-methylated
DNA replicates (Fig. 4E, green circle). For unknown reasons, the forward
sequencing reads were not clean enough and failed to pass the trimming
and/or quality control steps for 5 out of 6 samples, explaining the missing
data points, covered neither by the forward sequencing read nor by the
beginning of the reverse sequencing read. For a robust comparison of
methylation between groups, the methylation profile plot indicates the CpG
sites for which the difference in methylation level is significant among
groups, which is the case here for all the CpG covered in the 2 groups
(Fig. 4F). Additionally, the lollipop-style plot displaying the methylation
means of groups provides less information but gives an efficient overview
of methylation differences between groups (Fig. 4G).

To complement the comparative analysis, boxplots of each CpG site
and the boxplot of means of CpG methylation, indicate the distribution of
methylation among the groups as well as the significance of methylation
differences between groups two-by-two (Figs. 4H and I). The CpG site #4
has a methylation percentage of 0.47% (± 0.81%) in low-methylated DNA
and 81.44% (± 3.96%) in high-methylated DNA, with a statistical p-
value of 0.00051. Also, the mean methylation rate of the sequence CpG
is 1.43% (± 1.87%) in low-methylated DNA and 95,54% (± 0.67%) in
high-methylated DNA, with a statistical p-value of 2.34e-05, confirming
the difference of methylation of the analyzed sequences. All the data
associated with this example (inputs, reports, outputs) are provided along
with the ABSP files, available at https://github.com/ABSP-methylation-
tool/ABSP.

5 Discussion
For this work, we developed a modern and useful tool to analyze
both direct and cloning approaches of BSP. As ESME software is
the reference for such studies, we compared results obtained from
ESME to ABSP, and found several differences. First, ESME performs
a normalization of cytosines signals as it assumes that the less frequent
base signals are overscaled by the basecaller (example of ESME results
in Supplementary Fig. S4) (Lewin et al., 2004). However, ESME was
developed in the early stages of the BSP technology, and nowadays
basecallers have been improved and do not exaggerate the missing
base, its normalization step is therefore no longer required and may
introduce biases in methylation percentages calculated (Methylation
Analysis by Bisulfite Sequencing: Chemistry, Products and Protocols
from Applied Biosystems, 2007, https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/cms_039258.pdf). Hence, ABSP does not apply any
changes to the peak height values retrieved from chromatogram trace data,
as performed in other studies (Jiang et al., 2010; Parrish et al., 2012)
(comparison of ESME and ABSP results in Supplementary Tab. S1).

Also, ABSP provides several key advantages compared to ESME.
The main added values of ABSP is a built-in comparative analysis
step, including methylation data visualization, with ready-to-publish
graphics, and statistical tests, to help researchers answer the experimental
hypothesis. Moreover, by being able to process both direct-BSP and
cloning-BSP data, ABSP provides an analysis continuity, from preliminary
data by direct-BSP up to validation by cloning-BSP. In terms of
accessibility, as only R and RStudio are required, ABSP can operate
on every operating system supporting both software (Windows, Linux,
macOS). More importantly, the full automation of the analysis and the
user-friendly interface makes ABSP accessible to users without expertise
in R, such as most of biologists.

Yet, ABSP is still an adaptable tool for R accustomed users, as the code
can be modified to be adapted to experiments or user needs. For example,
minor modifications such as threshold adjustments or plot customization
are possible (help to implement the modifications is included in the user
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Fig. 4. Output results from ABSP analysis. (A) Portions of the trimmed chromatogram traces from forward and reverse sequencing reads of the CDH1 sequence in the high-methylated
DNA sample, replicate #3. The CG #8 is highlighted and corresponds to the 8th CG dinucleotide of the reference sequence. (B) Table of quality control summary after alignments of
trimmed sequencing results with the reference sequence. (C) Tables of the methylation calculation per CpG using peak height values from both chromatogram traces. (D) Table of combined
methylation data from both sequencing results, with the methylation average and standard deviation per CpG. (E) Lollipop-style plot of CpG methylation levels on the CDH1 sequence,
with all the samples displayed and CpG sites placed proportionally to their coordinates. The CG #8 of the high-methylated DNA #3 sample, detailed in the individual analysis panel, is
highlighted in green in the lollipop-style plot and corresponds to the 4th CpG site on the covered sequence. The crosses represent unavailable data for CpG sites not covered by the trimmed
sequencing results in some samples. (F) Methylation profile plot displaying average methylation levels of CpG along the CDH1 sequence in each group as a line plot. Symbols represent
significance levels of Kruskal-Wallis test p-values (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001). (G) Lollipop-style plot of average CpG methylation levels on the CDH1
sequence in each group. (H) Boxplot of the CpG #4 average methylation levels in each group. (I) Boxplot of the methylation percentage means of all CpG positions on the CDH1 sequence
in each group. In boxplots, symbols represent significance levels of Student’s T-test p-values (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).

guide). Other major modifications such as expanding the analysis to
include CHG and CHH sites (H being non-Gs bases), can be developed and
implemented to ABSP code in a future version, to fit it to DNA methylation
study in plant models. Altogether, ABSP provides a new and easy way to
process sequencing data from Bisulfite Sequencing PCR experiments and
help researchers to compare methylation profile for a given sequence.
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2.2 ANALYSIS STRATEGY

The Analysis of Bisulfite Sequencing PCR (ABSP) tool was developed to provide an efficient

and accessible way to analyze sequencing data from both direct-BSP and cloning-BSP experiments.

The currently available tools are limited, therefore ABSP aims to address this shortcoming, to facilitate

the study of CpG methylation levels for researchers.

2.2.1 DIRECT-BSP AND CLONING-BSP APPROACHES

As explained in the publication, direct-BSP and cloning-BSP data differ in terms of CpG methy-

lation information. The CpG methylation level in direct-BSP relies on the ratio of C and T bases fluo-

rescence signal intensities — C and T peak height values — while in cloning-BSP it relies on the ratio

of C and T bases from several clones (Figure 47). To use the same scripts to analyze data from both

approaches, the methylation calculation method used on direct-BSP data is applied to cloning-BSP

data, using the following formula based on peak height values at a unique cytosine position in a CpG

context, for forward and reverse sequencing runs respectively:

Methylation percentage (forward sequencing) =
peak height of C

peak height of C + peak height of T
× 100

Methylation percentage (reverse sequencing) =
peak height of G

peak height of G + peak height of A
× 100

ANALYSIS STRATEGY

Sequencing result Sequencing result

OR

Methylation percentage calculation

Methylation level

C T

C T C T C T

Methylation level

C T

C TC

clone 1replicate 1 replicate 2 replicate n clone 2 clone n

M M M M M M
≈ 100% ≈ 100% ≈ 0%≈ 66% ≈ 66% ≈ 66%

Methylation level of a CpG

Mean

Methylation level of a CpG

Mean
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CpG position CpG position

peak height of C
x100peak height of CM =

peak height of T+

FIGURE 47 ANALYSIS STRATEGY DIF-

FERENCES BETWEEN THE TWO BISUL-

FITE SEQUENCING PCR APPROACHES,

DIRECT-BSP AND CLONING-BSP. As the

direct-BSP method consists in sequenc-

ing the mix of PCR products, the methy-

lation calculation based on chromatogram

C/T peak heights directly gives an estima-

tion of the CpG methylation level, that can

be replicated for statistical significance de-

termination. In the cloning-BSP method,

as the CpG methylation status in each

clone is revealed by the chromatogram

peak heights as well, the sequencing of

several clones gives an estimation of the

CpG methylation proportion.
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Indeed, for cloning-BSP data, it results in methylation levels of around either 0% or 100%, re-

vealing respectively the unmethylated or methylated methylation status of the CpG site. Additionally,

this method allows for the detection of artifacts or mixed clones when CpG sites are found partially

methylated in clones. Then, methylation percentages are still computed using the ratio of methylated

clones over the total number of clones (Figure 47).

For direct-BSP, as the signal intensities ratio directly reveals the ratio of methylated cytosines

over unmethylated ones, data from only one sequencing run is sufficient to get an estimation of the

methylation level. Yet, having several replicates is necessary for the robustness of results, to compute

average methylation levels and to run statistical tests (Figure 47).

2.2.2 GLOBAL WORKFLOW

The ABSP analysis is divided into 2 main steps (Figure 48): 1 the individual analysis that

aims to compute CpG methylation levels in each sample, and 2 the grouped analysis that aims to

group samples for visualization of methylation data and statistical comparisons between groups of

samples to find significant methylation differences.

As illustrated in Figure 48, each sample, corresponding to a unique PCR product or a unique

clone vector, is identified by a combination of information:

1. The sequence amplified by PCR, from a unique primer pair used for the BSP experiment (e.g.

CDH1, CDH1 promoter).

2. The collection (optional), which describes a separation of samples above groups, it means that

samples from different collections cannot be compared (e.g. cell lines, organs).

3. The group, which is the experimental condition to compare (e.g. control, treatment a or b).

4. The replicate number for direct-BSP (repetition identifier) or the clone number for cloning-BSP

(clone identifier).

Lastly, from each sample, the sequencing can be performed in both directions, using a for-

ward and a reverse primer. To maximize the sequence coverage and increase data robustness as

both sequencing reads may overlap, the sequencing files from both directions should be provided.

However, even if it is not recommended, the analysis can be run with only one sequencing file.

Further practical information about steps to launch analyses, lists of input information, lists of

output files, figures of the different plots, folders management, or software license, are all available in

the ABSP user guide provided in Appendix 3 “ABSP user guide” at page 338.

2.3 AUTOMATIZATION AND INTERFACE

This section provides additional information on the structure and interface of ABSP enabling

its automatization, which is not explained in detail within the publication, as well as portions of R code

to highlight the development process.
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FIGURE 48 GENERAL

WORKFLOW OF ABSP.

The analysis is divided

into two main steps: the

1 individual analysis

and 2 grouped analysis.

The first one serves to

control the sequencing

quality and compute

methylation levels for

each individual sample,

whereas the second

one gathers all sam-

ple methylation results

to generate visualiza-

tion plots and process

comparative statistics

between groups.

2.3.1 INSTALLATION AND OPENING

Files of ABSP are available to download on a GitHub repository at https://github.com/ABSP-

methylation-tool/ABSP. As ABSP uses the R programming language, its utilization requires the R

software and the RStudio desktop application, which is a development environment for R. Thus,

ABSP can be run on every operating system supporting both R and Rstudio.

To open ABSP, the user must open the “ABSP Rproject.Rproj” project file in RStudio, followed

by the “app.R” file within the ABSP R project in RStudio. Then the “Run App” button can be pressed

to open the app interface, either in an RStudio window or in the default web browser.

To get the required R packages for ABSP to run, a package installation step is directly pro-

vided at the beginning of the app code to automatically install and load packages within the project.

Therefore, the first time the app is opened takes longer as packages need to be installed.
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FIGURE 49 DETAILED WORKFLOW OF ABSP. The two main scripts of the analysis, the individual analysis

and grouped analysis, can be launched by the manual entry of parameters. To launch multiple analyses at once,

inputs provided as tables can be used to automatically launch both individual and grouped analyses.
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2.3.2 COMPONENTS OF ABSP

The 2 main steps of ABSP, individual and grouped analyses, are processed by 2 distinct R

markdown (RMD) scripts. An RMD script is written in the markdown language (an easy-to-write plain

text format) and contains chunks of embedded R code, using the rmarkdown R package. It can

be knitted to run R code chunks, producing a document with the code results, and converted into

another file format such as hypertext markup language (HTML), thanks to the knitr R package.

A shiny app serves as an interactive web interface running R code, allowing the user to provide

the required input for analyses and to run the RMD scripts. The shiny app consists in a shiny app

function shinyApp(ui, server) that has 2 arguments: the ui object that defines the user interface

(UI) and the server function processed by the app.

Lastly, functions created specifically for ABSP are stored in a separate file of functions and are

called within the RMD script of each analysis.

Hence, these 4 main files constitute the bulk of the ABSP code:

• An RMD script for the individual analysis, named ABSP_individual_analysis.Rmd that carries

out the individual analysis and generates an analysis report in an HTML file. This script is 2,600

lines long and contains 160 chunks of embedded R code.

• An RMD script for the grouped analysis, that carries out the grouped analysis and generates

an analysis report in an HTML file. This script is 1,600 lines long and contains 38 chunks of

embedded R code.

• A shiny app R script, it is a 1,500 lines long R script named app.R, containing the shiny app

function shinyApp(ui, server) along with its the ui and server arguments.

• An R script of functions, which contains a list of 27 created functions, used in the three previous

scripts, over 1,600 lines of code.

2.3.3 APP INTERFACE AND USABILITY

The implemented shiny app provides a user interface, opening in a web browser, aiming to

facilitate the input entry and the launching of analyses for users. It allows users unaccustomed to R

and RStudio to easily run analyses.

The interface contains 4 tabs:

1. A main tab.

2. An individual analysis tab.

3. A grouped analysis tab.

4. A multiple analyses tab.
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FIGURE 50 Panel 1. ABSP app main tab.
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FIGURE 50 Panel 2. ABSP app individual analysis tab.
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FIGURE 50 Panel 3. ABSP app grouped analysis tab.
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FIGURE 50 Panel 4. ABSP app multiple analyses tab.
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2. DEVELOPMENT OF THE ABSP R TOOL FOR REGION-SPECIFIC CPG METHYLATION ANALYSIS

FIGURE 50 ABSP APP INTERFACE. Panel 1. Main tab or home page of the app, it provides key links and

resources for the users. Panel 2. Individual analysis tab, it serves to launch the analysis of a single sample

using two sequencing files, one for each direction, to obtain CpG methylation percentages. On the left, input

information and files must be provided in the dedicated text and file upload boxes. Panel 3. Grouped analysis

tab, it serves to launch the analysis of all sample methylation results after their individual analysis to compare

CpG methylation percentages between groups. On the left, input information must be selected in the selection

boxes. Panel 4. Multiple analyses tab, this tab can be used to launch multiple individual and/or grouped

analyses at once, using pre-filled input tables that must be provided in the upload file boxes.

All the app tabs are displayed in Figure 50. The 1 main tab exposes general information

and resources. The 2 individual analysis and 3 grouped analysis tabs are dedicated to the

launching of the individual analysis and grouped analysis, respectively. They are divided into two

parts, one left panel with input boxes and the “Run analysis” button, and one right panel containing

subtabs that provide all the necessary guidelines to fill input boxes. The 4 multiple analyses tab

aims to launch both individual analyses and grouped analyses through the upload of a pre-filled table

file containing all the analyses inputs. It is also composed of a left input panel and a right panel with

input guidelines. This tab procures a further automated way to run ABSP analyses, more details are

given in section 2.3.6 “Multiple analyses” at page 231.

2.3.4 SCRIPT AUTOMATIZATION

To make the analytic process fully automated, input entries from the shiny app are used as

parameters for the RMD scripts, which can be entirely run in one go to generate all the analysis

results and a full analysis HTML report.

The interface of the shiny app allows the user to specify the desired input parameters and

upload data files, thanks to its UI. This input information is then processed by the shiny app server as

detailed in Code listing 5, to render the RMD analysis scripts. Indeed, when the “Run analysis” button

is pressed ( observeEvent() function), values of each input entry is processed and stored in a list of

parameters ( indiv_params and grouped_params ), and passed down in the rmarkdown::render()

function. This function launches the corresponding RMD script to run and render the HTML (.html)

report file.

In the two RMD analysis scripts, these parameters are declared in the YAML header of the

document as params fields (Code listing 6). When the rendering of the script is triggered through

the shiny app, input entries are assigned to each declared params of the RMD script.

Hence, as illustrated in Code listing 7, params fields are read in the RMD scripts and stored

as objects, allowing the analysis to run with specific parameters.

During the analysis, RMD scripts produce output files such as PNG plots or CSV tables. At

the end of the analysis, each RMD script generates an HTML file that gathers all of the analysis
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results. A few tabs of the individual analysis and grouped analysis reports are illustrated in Figure 51.

Examples of reports are available for download at https://github.com/ABSP-methylation-tool/ABSP

(“examples/reports” folder).

A

B

FIGURE 51 REPORTS GENERATED BY THE INDIVIDUAL AND GROUPED ANALYSES. A. Example of an HTML

report generated by the individual analysis. The upper part contains all the sample information that was inputted

when launching the analysis and the bottom part contains the analysis results divided into 6 main tabs: Ref-

erence DNA sequence, Sequence trimming, Alignments, Quality control, Methylation, and Output data, them-

selves subdivided into multiple tabs. B. Example of an HTML report generated by the grouped analysis.

The upper part contains all the experiment information that was inputted when launching the analysis and the

bottom part contains the analysis results divided into 6 main tabs: Files content, Methylation data, Plots of repli-

cates (or Plots of clones for cloning-BSP experiments), Plots of groups, Statistics, and Output data, themselves

subdivided into multiple tabs.

2.3.5 ERROR HANDLING

An error occurring during the knitting of an RMD script is stopping the analysis without gener-

ating a report file of the analysis. As an example, the first potential error that can cause a knit failure
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A

B

CODE LISTING 5 Caption in following pages.
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C

D

CODE LISTING 5 Caption next page.
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2. DEVELOPMENT OF THE ABSP R TOOL FOR REGION-SPECIFIC CPG METHYLATION ANALYSIS

CODE LISTING 5 APP SCRIPT: RENDERING INDIVIDUAL, GROUPED, AND MULTIPLE ANALYSES. A. Ren-

dering the individual analysis from inputs of the individual analysis tab. B. Rendering the grouped analysis

from inputs of the grouped analysis tab. C. Rendering all individual analyses from the input table of the multiple

analyses tab. D. Rendering all grouped analyses from the input table of the multiple analyses tab.

is the incorrect input of genomic coordinates, not matching the length of the provided reference DNA

sequence (Code listing 8). Indeed, the seq_start and seq_end variables are used in the code and

their difference must correspond to the reference sequence length (as the first nucleotide is always

numbered as 1 and not 0, 1 must be added to the difference in positions to obtain the length). To

handle this error and allow the analysis to properly stop with the generation of a truncated report, the

matching between coordinates and sequence length is checked before the error occurrence. If the

matching is incorrect, the TRUE value is stored in the genocoord object, and induces the next chunks

to be run — as they are conditioned by the eval=genocoord value — which stops the analysis and

generating the truncated HTML report. A list of errors is available in the troubleshooting section of

the ABSP user guide in Appendix 3 “ABSP user guide” at page 338.

2.3.6 MULTIPLE ANALYSES

To push the automatization further, especially when dealing with numerous samples, an addi-

tional tab, named “multiple analyses”, has been added to shorten the process of launching several

analyses at once while optimizing the entry of inputs (Figure 50 panel 4 and Figure 52). Two spread-

sheet documents can be filled with input information required for both the individual analyses and

grouped analyses. Input entries required in the individual analysis and grouped analysis tabs are

therefore transposed as columns of variables to fill within the spreadsheet, with each row corre-

sponding to each sample in the individual analyses document, or to a grouped analysis of a unique

sequence in the grouped analyses document. For files, paths to input files have to be entered within

the corresponding columns. Guidelines and required formats are described within the spreadsheet

documents to help users.

Input tables are then uploaded into the multiple analyses tab to launch individual analyses and

grouped analyses, either both at once or separately. The app script imports the spreadsheet input

tables and uses their data as parameters to launch the successive analyses.

In conclusion, the ABSP tool constitutes a new analytic tool to help researchers in-

terpret results from BSP data. By providing a ready-to-use solution to analyze these data,

ABSP improves access to the study of DNA methylation at target regions. Indeed, as the BSP

technique is affordable and accessible, coupled with a result analysis by ABSP, this workflow

allows to rapidly get an evaluation of methylation levels at a specific DNA region.
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A

B

CODE LISTING 6 PARAMETERS IN YAML HEADERS OF INDIVIDUAL AND GROUPED ANALYSES SCRIPTS. A.

Parameters for the individual analysis. B. Parameters for the grouped analysis.
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A

B

CODE LISTING 7 READING PARAMETERS IN INDIVIDUAL AND GROUPED ANALYSES SCRIPTS. A. Reading

parameters in the individual analysis. B. Reading parameters in the grouped analysis.
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CODE LISTING 8 HANDLING INCORRECT GENOMIC COORDINATES ERROR IN THE INDIVIDUAL ANALYSIS

SCRIPT.

LAUNCH TWO-STEPS ANALYSIS
Seq #2

Manual entry of  
knitr parameters

Reference DNA  
fasta file

Methylation 
data files

Manual entry of  
inputs

Multiple grouped analyses table 

INDIVIDUAL ANALYSIS INPUT

MANUAL INPUT ANALYSISINPUT FILE OUTPUT FILE

Output files
html reports

Individual analysis

Grouped analysis

Output files

html report

GROUPED ANALYSIS INPUT

MULTIPLE ANALYSES INPUT
Reference DNA  

fasta file

Multiple individual analyses table 

Sequencing result  
ab1 files

reportsresults

reportsresults

LAUNCH TWO-STEPS ANALYSIS
LAUNCH MULTIPLE ANALYSESSeq #1

n × Seq

FOLDERSeq #n = Only one sequence can be analyzed n × Seq = Multiple sequence can be analyzed

Manual entry of  
inputs

Individual analysis

FIGURE 52 MULTIPLE WAYS TO LAUNCH THE ABSP ANALYSES.
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[ KEY POINTS

å ABSP provides a complete analytic process, from raw BSP data to comparative analy-
sis. It controls the quality of sequencing data, calculates CpG methylation levels from
each sample, generates publication-ready graphical representations for methylation visu-
alization, and compares groups of samples using statistical tests to determine significant
methylation differences, and helps researchers answer the experimental hypothesis.

å ABSP is fully automated and user-friendly from launch to result interpretation. A built-in
shiny app provides a web interface to guide the user to launch analyses. Output files and
analysis HTML reports are automatically saved in the user’s folders.

å ABSP can analyze both BSP approaches: direct-BSP and cloning-BSP. The workflow de-
veloped to analyze direct-BSP data have been transposed to also analyze cloning-BSP,
providing continuity throughout the analytic process.

å ABSP is accessible and flexible. By being coded in the R programming language, a free
and widely used software, the source code of ABSP is available and can be easily modified
by R accustomed users, to adapt the software to experimental needs.

å ABSP is available for download, along with its user manual and associated example data
at https://github.com/ABSP-methylation-tool/ABSP.

� Back to Table of Contents
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1 IDENTIFICATION OF DNA METHYLATION CHANGES INVOLVED IN RADIO-INDUCED
DEDIFFERENTIATION

The hypothesis is that epigenetic modifications occur following radiation exposure, contributing

to changes in gene transcription programs in response to irradiation, and allowing the reacquisition

of stem cell features in a small subset of cancer cells.

1.1 GLOBAL EXPRESSION ANALYSIS OF EPIGENETIC ENZYMES

As a first step, I decided to get insights into the involvement of epigenetic enzymes in radio-

induced dedifferentiation. Indeed, Antwih et al. (2013) found out that DNMT1 protein levels were grad-

ually decreasing within 72 hours after 6 Gy irradiation, in MDA-MB-231 cells, another breast cancer

cell line. A decrease of the DNMT enzymes expression could result in global DNA hypomethylation,

which is known to be a key feature of ESC epigenetic reprogramming during early embryogenesis,

and thus, could be implicated in cancer cell phenotypic switches in the same way. Additionally, as

epigenetic marks are linked and complementary, histones modifying enzymes, such as KDMs or

EZH2 could also be implicated in resetting the epigenetic landscape of genes related to stemness.

The expression of several epigenetic associated enzymes, DNMT1, DNMT3A, DNMT3B, TET1,

TET2, TET3, KDM6A, KDM6B, and EZH2, was assessed following a radiotherapy treatment both

within 5 days post-irradiation in SUM159PT cells and within the first 12 hours post-irradiation in the

SUM159PT non-CSC (ALDH-) population. This expression analysis was not conclusive as no signif-

icant difference was found between irradiated and unirradiated cells. Yet, these findings do not rule

out the involvement of these enzymes in the radio-induced dedifferentiation process.
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The expression analysis carried out to study the contribution of epigenetic enzymes in the

non-CSC-to-CSC phenotypic switch was not the optimal approach, but the first one to get a glimpse

of expression level variations occurring during this process. Indeed, because less than 5% of CSCs

are generated after irradiation, even if substantial changes in expression occur in these switching

cells, expression levels are still diluted in the total population, making any expression changes nearly

undetectable. This highlights the main technical issues encountered when studying rare cellular

events: it is not possible to isolate cells capable to dedifferentiate from the rest of the cell population,

as we cannot predict which cell will acquire stem cell properties.

To evaluate expression modulations related to these rare phenotypic conversion events, two

main approaches can be used. One approach is to compare the prior and subsequent states, which

is experimentally convenient and accessible but limited by material quantities — with 2.5 to 5% of

induced CSCs, a large number of initial cells and several hours of sorting are required to obtain

limited amounts of cells — however, it does not allow for the study of dynamic changes during the

conversion. The other approach is the single-cell live tracking of these events with fluorescence

reporters to dynamically observe expression modulations throughout the phenotypic conversion, as

well as associated modifications leading to it. However, this approach has numerous limitations

in terms of accessibility and development, and is not always the most suited one, especially for

exploratory studies.

Finally, these epigenetic-associated enzymes may be involved in phenotypic switches not by

expression level changes but by being differentially recruited at specific genomic regions with the

help of co-activators and co-repressors. To evaluate the latter, two approaches can be considered:

the inhibition of these enzymes to assess their contribution to the radio-induced dedifferentiation, and

the identification of regions undergoing changes in their epigenetic landscape.

This project then focused on DNA methyltransferases (DNMTs) and DNA methylation marks

at CpG sites and their involvement in the phenotypic conversion from the non-CSC state to the CSC

state.

1.2 CONTRIBUTION OF DNMTS IN THE RADIO-INDUCED DEDIFFERENTIATION

First, to know if the DNMTs activity is required for cells to convert into CSCs by reacquiring

stem cell properties, an inhibition approach was carried out. The non-CSC population of SUM159PT

cells was transfected with siRNA targeting DNMT1 or DNMT3B and the dedifferentiation was induced

by irradiation. The proportion of new CSCs was measured by both a CSC marker assay using flow

cytometry (ALDH activity) and a functional sphere-forming capacity (SFC) test 5 days post-irradiation.

A limit of this experiment is the siRNA limited time of efficiency. Indeed, siRNAs are efficient

for about 72 hours following transfection, yet the measurement of dedifferentiated CSCs is optimal

after 5 days following irradiation which is also 5 days following the siRNA transfection. Yet, the most
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important feature in the experimental strategy is the inhibition of DNMTs at the time of irradiation

to directly impact the response to radiations and thus it requires to transfect cells before irradiation.

Hence, whenever the dedifferentiation event occurs, if its induction is due to the radiation exposure it

was necessarily impacted by the DNMT inhibition.

The radio-induced increase of CSCs was abolished in cells transfected with siDNMTs, but it

was also abolished in cells transfected with a control siRNA that has no target, indicating that the

transfection itself inhibits the generation of new CSCs from non-CSCs. More importantly, the viability

of siRNA transfected cells was highly impacted, especially as it is included in a series of stressful

steps. Indeed, the combination of FACS sorting followed by irradiation is already affecting the cell

viability, but the addition of a siRNA transfection is even more deleterious for cells. For the siRNA

transfected cells, their cell viability can generally be estimated from 5 to 20%, which is quite lower

than the viability of untransfected cells, estimated at around 40 to 60%. The huge amount of cell

death directly affects the cell density and the cell environment, and thus, their phenotypic response

is greatly impacted as well and could explain the reduced dedifferentiation event rate. In addition,

several other transfection methods (INTERFERin, Lipofectamine, and nanoparticles) were tested but

did not improve the cell viability.

Hence, this experimental design did not allow the observation of unbiased phenotypic conver-

sion events in response to radiation exposure due to the deleterious effect of the siRNA transfection.

No conclusion can be drawn on the involvement of DNMT enzymes in the radio-induced dedifferen-

tiation into CSC.

To pursue in this direction and resolve this limitation, the stable transfection of cells with short

hairpin RNA (shRNA) for example can replace the siRNA transfection step and avoid its associated

deleterious effects during the dedifferentiation experiment. As this experimental design is more te-

dious and time-consuming than the siRNA approach, it was not prioritized in this project.

1.3 ANALYSIS METHOD OF RRBS DATA TO IDENTIFY DIFFERENTIALLY METHYLATED RE-
GIONS

The deciphering of the DNA methylation contribution in the stem-like state reacquisition can be

done through the comparison of CpG sites methylation levels between the non-CSC state and the in-

duced CSC state. To picture methylation changes between these two states, the RRBS method was

chosen, as it is a good compromise between a reduced cost and a genome-scale coverage of CpG

sites, compared to the WGBS method. Indeed, the RRBS technique allows the evaluation of CpG

methylation levels on a reduced representation of the genome, enriched in CpG sites (around 10 % of

the total CpG sites, and 85% of CGI) thanks to enzymatic digestion (MspI, C↓CGG, methylation inde-

pendent), before bisulfite sequencing (Cokus et al., 2008; Meissner et al., 2005; Smith et al., 2009).

The RRBS was therefore carried out on four different subpopulations of SUM159PT cells: CSC, non-

CSC, induced CSC by irradiation (iCSC), and irradiated non-CSC (inon-CSC). Once RRBS data are
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generated, the aim is to identify methylation differences between these subpopulations, which could

reveal regions undergoing methylation changes during radio-induced dedifferentiation. Methylation

modifications at these regions could be linked to transcriptomic changes participating in this phe-

notype conversion. Hence, the identification of methylation changes could lead to the deciphering

of genes and mechanisms implicated in the regeneration of new CSCs and could therefore serve

as potential therapeutic targets to prevent the CSC enrichment following radiotherapy, thus reducing

tumor resistance as well as the risk of recurrence.

RRBS data consists in reading counts of C and T bases at each covered CpG site. Based on

the C and T read counts, the methylation level of a single CpG can be calculated as well as the overall

region methylation level by grouping a set of CpG sites. Hence, to identify differentially methylated

regions (DMRs), the genome has to be subdivided into regions to compute their methylation levels

and compare them between subpopulations. I chose two different types of genome subdivisions: a

subdivision without a priori annotation and a subdivision with a priori annotation. For the first type,

the genome was divided into sliding tiles (or windows) of both 1,000 bp and 200 bp, which is a basic

slicing of the genome without a priori. This tiling genome subdivision is the most common approach

used in studies containing RRBS/WGBS analyses, and sizes generally used are comprised between

2000 bp and 1,000 bp (Kundu et al., 2021; Song et al., 2013a; Wang et al., 2013b). Additionally,

the genome was also subdivided into methylation segments — groups of 10 to 100 adjacent CpG

sites with similar methylation levels — thanks to a segmentation algorithm ( methylkit::methSeg()

function based on the fastseg::fastseg() function), using methylation data from every sample

(Akalin et al., 2012). Then, the second type of regions with a priori annotation, two interesting

genomic annotations were selected: CpG islands (CGIs) on one side and regions surrounding gene

transcription start sites (TSSs) on the other side, located 500 bp upstream and downstream of the

TSS (1,001 bp long in total), corresponding to the promoter region and the beginning of the gene.

It is pertinent to include the beginning of the gene and not only restrict the genome subdivision to

the upstream promoter regions. Indeed, methylation marks on the first exon can also affect the gene

transcription, and it is frequent to observe CGIs covering promoters and overlapping the beginning of

the gene (Brenet et al., 2011; Jones, 2012; Li et al., 2017b; Vavouri and Lehner, 2012). In addition,

Krinner et al. (2014) found out that CpG-rich domains located ∼700 bp downstream of TSSs are

correlated with high transcription levels.

Other annotations could be used as genome subdivisions, such as enhancers (distal cis-

regulatory elements) and CGI shores (regions flanking CGIs, commonly up to 2,000 bp in either

direction). Indeed, studies have demonstrated that methylation levels of enhancers can be strongly

correlated with gene expression (Angeloni and Bogdanovic, 2019; Aran and Hellman, 2013; Hon

et al., 2013). Besides, CGI shores can also undergo methylation alterations correlated with gene

expression (Doi et al., 2009; Irizarry et al., 2009). For instance, the Caveolin-1 expression in luminal

breast cancer is downregulated by shores hypermethylation of the CGI located at the beginning of
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the gene, while in basal-like breast cancer, the shores hypomethylation of this CGI is associated with

gene expression upregulation (Rao et al., 2013). But, even if these annotations were not specifically

investigated during the RRBS data analysis, the tiling subdivision of the genome still allows for a

thorough screening of methylation differences, ensuring that enhancers and CGI shores are covered.

Furthermore, the maximum region length was set to 1,000 bp, as wider regions would result in

the dilution of methylation differences, impairing DMRs identification. Additionally, methylation seg-

mentation is based on the methylation of adjacent CpG sites, independently of the distance between

them. Hence, the number of CpG sites per segment, set from 10 to 100 sites, allows for the inves-

tigation of short to very large regions but is relevant in terms of consecutive CpG sites. Altogether,

the 5 sets of genomic regions examined are complementary in the process of identifying methylation

differences along the genome.

The RRBS analysis was carried out using the R programming language and the methylKit R

package that offers a great parameter flexibility (e.g. coverage, genomic regions, types of statistical

tests) (Akalin et al., 2012). Other tools, either software or R packages, for the analysis of RRBS data

are available, such as BiSeq (Hebestreit et al., 2013), DMRfinder (Gaspar and Hart, 2017), DSS

(Feng et al., 2014), HMM-DM (Yu and Sun, 2016), metilene (Jühling et al., 2016), MethylSig (Park et

al., 2014), and RRBS-Analyzer (Wang et al., 2013b), but the methylKit package seems to be one

of the most used, accessible, and flexible (Li et al., 2018b; Liu et al., 2020d; Wreczycka et al., 2017).

In terms of differential methylation computation, although the methylKit package was used

as a base pipeline for the analysis, the methylation calculation method applied was not the one im-

plemented by methylKit ( methylkit::calculateDiffMeth() function), providing either a logistic

regression test or a Fisher’s exact test. Instead, the differential methylation calculation method ap-

plied comes from the DSS package ( methylkit::calculateDiffMethDSS() function, integrated in

methylKit ) (Feng et al., 2022; Feng et al., 2014; Feng and Wu, 2019). The three methods were

tested on RRBS data and the last one has been selected as it includes biological replicates in the

calculation method. The DSS method assumes that read count data follows a beta-binomial distri-

bution: a beta distribution among replicates, parameterized with dispersion for biological variations

among replicates, and a binomial distribution of methylation proportions based on read counts.

Additionally, on defined regions, differential methylation values are computed based on read

counts — number of C (methylated) reads over the number of C (methylated) + T (unmethylated)

reads from every CpG site on the region — and not based on methylation levels, as read counts

include the sequencing depth information (Feng et al., 2014).

To conclude, the sequencing data obtained from RRBS can be analyzed using different meth-

ods, tools, and parameters, each with its benefits and limitations. Here, the choice to use the

methylKit R package, combined with the DSS differntial methylation calculation method, and the

choice of the different region sets coming from different genome subdivisions, appeared to be the
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most pertinent and accessible ones, and even if they can be further improved, they allowed the

identification of DMRs by the pairwise comparisons of subpopulations.

1.4 DIFFERENTIALLY METHYLATED REGIONS AND ASSOCIATED GENES

The RRBS analysis aims to identify regions undergoing methylation changes between the

non-CSC state and radio-induced CSC state. To do so, differentially methylated regions (DMRs)

from three pairwise comparisons, non-CSC vs CSC, CSC vs iCSC, and non-CSC vs iCSC, are

generated and then sorted to eliminate the irrelevant ones. The pool of CSC-specific DMRs (from

the non-CSC vs CSC comparison) is sorted based on the overlapping with the two other pools of

DMRs. Hence, only regions presenting a differential methylation between non-CSC vs CSC states

(> 25%) but not between the two CSC states (< 25%) and between the two non-CSC states (<

25%) are kept. It means that these regions present a CSC-specific methylation compared to non-

CSCs, which is restored in iCSCs but not in inon-CSCs after irradiation. This sorting resulted in the

identification of 2,596 regions that are likely to undergo methylation changes during the radio-induced

dedifferentiation.

From this list of regions, a filtering is applied based on the differential methylation values from

pairwise subpopulations comparisons, in addition to a minimum threshold of 3 CpG sites covered

in every sample for robustness. Indeed, regions that match the hypothetical methylation profile of

regions undergoing methylation changes specific to the radio-induced dedifferentiation could be im-

plicated in its regulation. This ideal methylation profile is defined by a differential methylation between

CSC vs non-CSC states (> 25%) and non-CSC vs iCSC states (> 25%), but not between CSC vs

iCSC states (< 10%) and non-CSC vs inon-CSC states (< 10%). Hence, these cut-offs applied to

the list of 2,596 regions resulted in the filtering of 35 regions that are even more likely to undergo

methylation changes during the radio-induced dedifferentiation and may be involved in the regulation

of this process.

These 35 differentially methylated regions are associated with 23 unique genes. Among them,

the 1 ryanodine receptor 2 (RYR2), 2 Ras and Rab interactor 2 (RIN2), and 3 forkhead box P1

(FOXP1) genes can be cited as examples. 1 The RYR2 gene is located at chr1:237,205,505-

237,997,288 coordinates and the 1,000 bp hypomethylated identified DMR (T1000_0078) is located

in an intron at chr1:237,235,001-237,236,000 coordinates. RYR2 is a major component of the

Ca +
2 pathway, regulating the Ca +

2 release from the sarcoplasmic reticulum into the cytoplasm (Ding

et al., 2017). In breast cancer, the RYR2 expression was upregulated following EGF-induced EMT

in MDA-MB-468 cells, suggesting that its expression is involved in metastasis formation (Davis et al.,

2013). 2 The RIN2 gene is located at chr20:19,867,165-19,983,101 coordinates and the 200 bp

hypomethylated identified DMR (T200_1089) is located in an intron at chr20:19,908,801-19,909,000

coordinates. RIN2 is a key R-Ras mediator that physically and functionally couples R-Ras and Rab5

GTPases, participating in the endothelial cell adhesion to the extracellular matrix, as well as their
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migration and vascular morphogenesis (Sandri et al., 2012). 3 The FOXP1 gene is located at

chr3:71,003,844-71,633,140 coordinates and is associated with several small hypomethylated DMRs

from methylation segments (SEGR_0019, SEGR_0020, and SEGR_0021), all located within a 1,000

bp hypomethylated DMR (T1000_0179) located in an intron at chr3:71,478,001-71,479,000 coordi-

nates. FOXP1 is a transcription factor known to promote CSC characteristics in ovarian cancer, in

which its overexpression induces the upregulation of ABCG2, OCT4, NANOG, and SOX2 expression

(Choi et al., 2016). Additionally, FOXP1 is pro-oncogenic, promoting breast cancer cell proliferation

and tumor growth, and has been linked to breast cancer stem cell maintenance (Chiang et al., 2017;

Jing et al., 2021). The upregulation of these 3 genes due to hypomethylated intronic regions in CSCs

compared to non-CSCs suggests that they may play a role in the dedifferentiation process through

changes in their methylation landscape.

Before investigating further methylation changes and their associated genes, methylation lev-

els between subpopulations have to be verified by a region-specific method to validate the differences

identified. Hence, a few DMRs have to be selected among the list of 35 DMRs for the validation step.

To select DMRs, one additional parameter was used to further reduce the list: the number of CpG

sites covered in all samples to increase the robustness of methylation differences. Hence, by looking

at the 35 DMRs with at least 5 CpG sites covered in all samples, 9 DMRs were filtered. Among

those 9 DMRs, 5 are associated with interesting genes: 1 fascin actin-bundling protein 1 (FSCN1),

2 cholinergic receptor nicotinic alpha 6 subunit (CHRNA6), 3 cadherin 7 (CDH7), 4 CD9, and 5

protein kinase CAMP-dependent type I regulatory subunit beta (PRKAR1B) genes.

1 The FSCN1 gene is located at chr7:5,632,439-5,646,286 coordinates and its associated hy-

pomethylated DMR corresponds to a 328 bp CGI (CGIR_0005) located at chr7:5,647,657-5,647,984

coordinates, 1,370 bp upstream of the FSCN1 gene. FSCN1 promotes EMT in various cancers, in-

cluding ovarian cancer, squamous cell carcinoma, and lung cancer (Li et al., 2017a; Pan et al., 2017;

Wang et al., 2017b). It is a downstream effector of SNAI2, and its expression is significantly elevated

after the induction of TGF-β expression (Keshamouni et al., 2009; Wang et al., 2017b). In addition,

FSCN1 upregulation has been associated with the promotion of brain metastasis of breast cancer

cells, via the upregulation of SOX2 expression (Xiao et al., 2020).

2 The CHRNA6 gene is located at chr8:42,607,763-42,651,535 coordinates and its as-

sociated hypermethylated DMR corresponds to a 17,431 bp methylation segment (SEGR_0040)

located at chr8:42,623,718-42,641,148 coordinates, and covers mostly an intron of the CHRNA6

gene. CHRNA6 is a subunit of the neuronal nicotinic acetylcholine receptors, that mediate dopamin-

ergic neurotransmission activated by acetylcholine and nicotine; it is therefore associated with to-

bacco carcinogenesis in esophageal squamous cell carcinoma and lung cancer (Song et al., 2015;

Szymanowska-Narloch et al., 2013).

3 The CDH7 gene is located at chr18:63,417,488-63,548,638 coordinates and its associ-

245



DISCUSSION AND PERSPECTIVES

ated hypermethylated DMR corresponds to a 51 bp methylation segment (SEGR_0087) located at

chr18:63,418,129-63,418,179 coordinates, in the first intron of the CDH7 gene and inside a CGI.

CDH7 is part of the cadherin family — calcium-dependent cell-cell adhesion molecules — and has

been associated with the promotion of Hh signaling in neural cells (Kawano et al., 2017).

4 The CD9 gene is located at chr12:6,308,881-6,347,425 coordinates and its associated

hypomethylated DMR corresponds to a 1,001 bp region surrounding its TSS (STSS_0055) located

at chr12:6,308,381-6,309,381 coordinates. CD9 is a transmembrane protein involved in adhesion,

and signal transduction. In breast cancer, CD9 promotes chemoresistance, migration, invasion, and

bone metastasis (Kischel et al., 2012; Rappa et al., 2015; Ullah et al., 2019). Moreover, it promotes

stem cell properties of cancer cells, and as it is overexpressed in CSCs, it can be used as a CSC

marker in leukemia, glioblastoma, and ovarian cancer (Liu et al., 2021c; Nagare et al., 2020; Nishida

et al., 2009; Podergajs et al., 2015; Yamazaki et al., 2011).

5 The PRKAR1B gene is located at chr7:588,834-767,287 coordinates and its associated hy-

pomethylated DMR corresponds to a 1,000 bp region (T1000_0372) located at chr7:579,001-580,000

coordinates, 8,833 bp downstream the PRKAR1B gene. The PRKAR1B gene codes for a regulatory

subunit of the protein kinase A (PKA, cAMP-dependent protein kinase) but also produces a circu-

lar RNA — stable RNA molecule in a closed-loop structure —associated with cancer progression,

migration, and invasion in liver cancer, and osteosarcoma (Feng et al., 2021; Liu et al., 2021a).

These 5 genes could be regulated by DNA methylation changes occurring at the identified dif-

ferentially methylated regions between subpopulations. For the FSCN1 gene, the 1,370 bp upstream

differentially methylated CGI in the promoter region is a promising lead in deciphering the methyla-

tion regulation of FSCN1 expression and its involvement in the CSC plasticity. Same for the CD9

gene, correlations between its increased expression in CSCs and the hypomethylation of the region

surrounding its TSS could be drawn. For the three other genes, as the gene body methylation can

alter gene expression, they can also be regulated by DNA methylation changes and implicated in the

phenotypic switch (Jjingo et al., 2012; Yang et al., 2014).

The identification of methylation differences based on RRBS methylation analysis was used in

this study as the first step to prospect for new genes and mechanisms contributing to the dedifferen-

tiation into CSC. After finding these differences, it is necessary to validate them with a more precise

and region-specific technique for the same populations. For example, the bisulfite sequencing PCR

(BSP) assay is one of the most convenient and accessible method to quantify methylation levels and

validate methylation differences at a specific region. Once methylation differences are confirmed, the

evaluation of the effect of DNA methylation regulation on associated gene expressions can be carried

out. Indeed, the expression analysis of associated genes can be performed to correlate methylation

level changes with expression level changes. Then, the study of the involvement of these validated

genes in the radio-induced dedifferentiation can be done by inhibition or overexpression approaches,
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similar to the one used to study the effect of the DNMTs inhibition on dedifferentiation.

Also, live tracking approaches with fluorescent reporters to monitor target gene expressions

after the induction of dedifferentiation can be carried out to get insights into spatio-temporal dynamics

leading to the reacquisition of stem cell properties. As the radio-induced dedifferentiation is a rare

and asynchronous event, inhibition or overexpression approaches on the entire population at fixed

time points cannot provide information on the sequential order of mechanisms driving the conversion

into CSC. Only single-cell live tracking approaches would enable the detection of events prior to the

phenotypic reprogramming, allowing to distinguish causes from consequences of the change of state.

Lastly, methylation differences can also be correlated with other epigenetic mechanisms, such

as histones post-translational modifications (PTMs), to identify, for example, segments of bivalent

chromatin possibly involved in the rapid phenotypic conversion (Chaffer et al., 2013; Suvà et al.,

2013; Wainwright and Scaffidi, 2017). A chromatin immunoprecipitation sequencing (ChIP-seq) of

H3K4me3 marks, associated with transcriptional activation, and of H3K27me3 marks, associated

with transcriptional repression, has been performed on the same populations. ChIP-seq data still

need to be analyzed and cross-referenced with RRBS data to potentially identify new epigenetically

regulated genes throughout the radio-induced dedifferentiation.

To conclude, this analysis of global methylation resulted in the identification of methylation

changes occurring during the radio-induced phenotypic conversion of non-CSCs into CSCs. These

differences still need to be validated, by BSP assays for example. Then, the correlation between

these validated methylation differences and expression changes, as well as the evaluation of the in-

volvement of these genes in dedifferentiation, will provide new insights into genes and mechanisms

required for the CSC plasticity. Targeting those newly identified candidate genes would prevent the

radio-induced conversion of cells into a stem-like phenotype, reducing the tumor enrichment in highly

resistant CSCs following radiation exposure, and thereby lowering the cancer resistance to radiother-

apy.

2 THE ABSP "ANALYSIS OF BISULFITE SEQUENCING PCR" TOOL: USAGE, LIMITA-
TIONS, AND IMPROVEMENTS

As the project unfolded, methylation differences obtained from RRBS analysis needed to be

validated. Therefore, the BSP technique was chosen as it is one of the most convenient and ac-

cessible way to quantify locus-specific methylation levels. Moreover, the direct-BSP approach was

selected for preliminary validation as it requires fewer sequencing runs and therefore it is less expen-

sive than cloning-BSP to get a first insight. However, difficulties in the analysis of sequencing data to

get methylation percentages emerged after a first test of direct-BSP. Indeed, the ESME (Epigenetic

Sequencing Methylation analysis) software, developed by Lewin et al. (2004), was the only available

tool to compute methylation percentages based on fluorescence intensities from four dye trace se-

quencing data. However, this tool requires proficiency in a Linux operating system for its installation
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and utilization, which is not common for biologists and lacks a user-friendly interface. Additionally, the

ESME software can only calculate methylation levels and does not provide any further functionalities

such as data visualization or comparative analysis. To complement the ESME-mediated direct-BSP

analysis, another tool can be used for data visualization: the Methylation plotter web tool developed

by Mallona et al. (2014). This tool can generate graphical representations of methylation data such

as lollipop-style plots and methylation profile plots but is limited in terms of statistical analysis.

Hence, the aim was to create an analysis workflow combining functionalities of ESME and

Methylation plotter, and even beyond, to analyze direct-BSP data especially, but also cloning-BSP

data for an analytic process continuity between both approaches. Moreover, the emphasis was

placed on the complete procedure automatization to maximize user accessibility and provide a ready-

to-use solution for researchers. Therefore, the Analysis of Bisulfite Sequencing PCR (ABSP) tool was

developed to meet those needs.

In terms of application, studies choosing the direct-BSP approach are currently using the

ESME software, and their common element is the relatively large amount of samples analyzed.

Within the last couple of years, the ESME software have been used in these publications (non-

exhaustive list): Achenbach et al. (2022); Carvalho et al. (2022); Heseding et al. (2022); Liu et al.

(2022); and Chenarani et al. (2021); Hartung et al. (2021); Liu et al. (2021b); Pfisterer et al. (2021);

Schiele et al. (2021); Velásquez et al. (2021). As an example, in Ismail et al. (2020), the authors stud-

ied the methylation of the PTPRG tumor suppressor gene in chronic myeloid leukemia (CML) patients

presenting a high resistance to the imatinib mesylate tyrosine kinase inhibitor treatment. The blood

from 26 CML patients and 6 healthy controls was analyzed by direct-BSP assays to evaluate methy-

lation levels of two genomic regions, covering the promoter (25 CpG sites, 321 bp amplicon) and

intron-1 (26 CpG sites, 218 bp amplicon) of the PTPRG gene (Ismail et al., 2020). The analysis of

sequencing data was carried out by using the ESME software and the Methylation plotter web tool.

This example illustrates the type of application for which the ABSP tool can be effective.

Even if the direct-BSP approach is not as commonly used as the cloning-BSP, and that this

technique can be substituted for more sensitive ones such as pyrosequencing or even targeted bisul-

fite sequencing coupled with NGS, direct-BSP experiments are still frequently used in recent studies.

More importantly, the great accessibility and affordability of the direct-BSP technique is a valuable

asset either to get preliminary results, thus minimizing the time and cost before transitioning to more

advanced expensive assays, or to confirm region-specific results obtained by genome-wide analyses

such as RRBS/WGBS.

Several improvements can still be implemented in the ABSP software to offer additional fea-

tures. First, the development process of ABSP was centered around the methylation at CpG sites for

simplicity and efficiency reasons. Therefore, ABSP is more suited for the study of DNA methylation in

mammals. To investigate DNA methylation in plant models for instance, the CHG and CHH contexts
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have to be considered in addition to the CG (CpG) context (Chan et al., 2005; Lister et al., 2008;

Zhang et al., 2006). The implementation of this feature can be done by adding the search for CHG

and CHH contexts on the reference DNA sequence in the “Find CpG coordinates” step of the individ-

ual analysis. Hence, it would require either a new option in the input panel of the individual analysis

within the interface or a link between the reference genome and the choice of methylation sites, to

automatically unlock CHG and CHH contexts when a plant genome is selected as a reference. Ad-

ditionally, the app and reports contents have to be adjusted to not only mention CpG methylation but

to include the different context possibilities. Such an additional feature could be implemented as part

of a 2.0 version of the ABSP software.

Then, inspired by the Methylation plotter app interface generating interactive plots with a few

plotting options, the same principle could be applied to ABSP within its app. Indeed, the generation

of a report by the grouped analysis is not the most optimized method to create, display and save plots

as it does not offer many parameters to dynamically adjust plots. Indeed, the grouped analysis report

is mainly composed of a list of generated plots with limited fixed options, that are non-editable for the

user after the report generation. Hence, complementary to the current grouped analysis report, a

new tab named “plot generator” could be created to dynamically generate plots of grouped samples

directly within the ABSP app as an interactive dashboard. This “plot generator” tab would increase

readability and would offer more flexibility when it comes to visualizing results, as it would provide

a wide range of options for a customized and dynamic plot generation. In practice, similarly to the

grouped analysis, methylation data files from individual analyses could directly be retrieved through

the app by selecting the corresponding input folder and sequence name. The data grouping step

within the grouped analysis can be transferred into the app, to generate and store the full methylation

data table required as an input to create plots. A few additional parameters and options (e.g. plot

width and height, font sizes, plot title...) could be added within the different plot functions and linked

to input fields within the app to be available for the user. Although the existing data grouping step and

plot functions from the grouped analysis can easily be transferred into the app, the addition of several

parameters coupled with their corresponding input entries in the app is a more tedious process and

would necessarily lead to a major update of ABSP.

To conclude, ABSP provides a complete analytic process of both BSP approaches, it is fully

automated, user-friendly, and flexible, and therefore it facilitates the analysis of BSP experiments for

biologists. The BSP assay paired with its automated analysis by ABSP will definitely help researchers

to rapidly evaluate region-specific DNA methylation levels in order to verify their experimental hypoth-

esis.
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The design of primers is a key step in the experimental conception of BSP assays to ensure a

proper estimation of DNA methylation levels. Selecting primers with the right features is essential for

the PCR’s effectiveness and may prevent or, at least, reduce undesired bias.

1 PRIMER DESIGN SOFTWARE

In the process of designing primers, tools to generate primer pairs, calculate Tm, check for

undesired PCR products, manipulate DNA sequences, find genomic coordinates or visualize primer

and amplicon regions on the genome can be useful, some of them are listed in Table A1.1. All of

these software are only meant to assist researchers in the design of primers to follow, all or most, of

the guidelines described below and summarized in Figure A1.1.

Notably, some software are available to facilitate primer generation for methylation-independent PCR

(MIP), such as:

• MethPrimer (https://www.urogene.org/methprimer/, Li, 2007; Li and Dahiya, 2002)

305

https://www.urogene.org/methprimer/


APPENDIX 1

• BiSearch (http://bisearch.enzim.hu/, Arányi and Tusnády, 2007; Arányi et al., 2006; Tusnády et

al., 2005)

• PRIMEGENS-w3 (http://primegens.org//, Kushwaha et al., 2015)

• PrimerSuite (http://www.primer-suite.com/, Lu et al., 2017)

• Bisprimer (https://www.ibp.cz/local/software/BisPrimer/, Kovacova and Janousek, 2012)

The MethBank (http://bigd.big.ac.cn/methbank/) methylation database website from the Na-

tional Genomics Data Center of the China National Center for Bioinformation, provides a collection

of software tools, called MethTools (http://bigd.big.ac.cn/methbank/methTool/list/), listing all the tools

related to the analysis of DNA methylation (Li et al., 2018; Zou et al., 2015). All the available software

associated to primer design (for MIP/MSP primers for or other DNA methylation assays) can be found

by filtering this database by category. There is a total of 13 primer design software referenced for this

use.

SOFTWARE FUNCTIONALITY WEB LINK REFERENCES

MethTools List of software related to
DNA methylation study

http://bigd.big.ac.cn/
methbank/methTool/list/

Zou et al., 2015
Li et al., 2018

MethPrimer,
MethPrimer 2.0

Primer design and CpG
island prediction

https://www.urogene.org/
methprimer/ Li and Dahiya, 2002

BiSearch
Primer design and in-silico
PCR for unintended PCR
product prediction

http://bisearch.enzim.hu/
Tusnády et al., 2005
Arányi et al., 2006
Arányi and Tusnády, 2007

Integrative
Genomics
Viewer (IGV)

Visualisation on genome,
genomic sequence and
corresponding coordinates
retrieval

https://igv.org/
Thorvaldsdóttir et al., 2013
Robinson et al., 2011
Robinson et al., 2020

BioWord
(Microsoft Office
Word plugin)

Manipulation of DNA
sequences

https:
//erilllab.umbc.edu/bioword-2/ Anzaldi et al., 2012

OligoCalc
Oligonucleotide properties
calculator, Tm calculation for
PCR products

http:
//biotools.nubic.northwestern.
edu/OligoCalc.html

Kibbe, 2007

TABLE A1.1 SOFTWARE THAT AID IN THE PROCESS OF DESIGNING PRIMERS FOR BSP. (Adapted from

Hernandez et al., 2013)

2 GENERAL FEATURES

2.1 DNA TEMPLATE FOR PRIMER DESIGN

The bisulfite treatment transforms cytosines in uracils. As guanines of the opposite strand are

complementary to cytosines, they cannot bond to uracils, thus creating mismatches: DNA strands

are no longer complementary. Thereby, to a have functional primer pair, both primers have to be

complementary to only one of the original strands, called the template strand in Figure A1.1, and the
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regenerated strand complementary to the template strand is referred to as the “virtual” complemen-

tary strand (Tusnády et al., 2005). Both of the original strands can be tested as template strands to

choose the most optimal primer pair (Ashapkin et al., 2020; Poucke et al., 2017; Tost and Gut, 2007).

Indeed, due to the symmetry of CpG motifs and the methyltransferase activity, the methylation status

of every CpG site should be identical on both strands, unless the region of interest is known to be

found hemimethylated. Thus, the BSP technique is not adapted to study hemimethylation of DNA if

only one strand is analyzed.

Due to the substitution of C by T by the bisulfite reaction, the treated DNA presents a high

redundancy of Ts, causing several difficulties for PCR, such as a low amplification efficiency, because

of long T stretches, as well as frequent primer dimer formation and high frequency of unintended PCR

products, because of the bases heterogeneity loss. Therefore, the objective of the primer design

when dealing with bisulfite-treated DNA is to adapt primer features to these specificities to ensure an

efficient PCR amplification (Arányi and Tusnády, 2007; Parrish et al., 2012).

2.2 PRIMERS LENGTH

In bisulfite-converted DNA, theoretically, all unmethylated cytosines are replaced by thymines.

Therefore the DNA sequence is mainly composed of three bases instead of four and the ratio of

bases shift from 25% of each base towards 25% of A, 25% of G, 0% of C, and 50% of T, depending

on the percentage of unconverted methylated cytosines. Because of this loss of diversity in the base

composition, primers designed for bisulfite-treated DNA are not as specific as primers designed for

native DNA.

As explained in Poucke et al. (2017), the estimation of a primer occurrence in a DNA template

can be calculated by the following formula: N×pANa×pGNg ×pCNc ×pTNt , with N being the number

of nucleotides in the template; pA, pG , pC , and pT being the estimated frequencies of respective

nucleotides in the template; and Na, Ng , Nc , and Nt being the numbers of the respective nucleotides

in the primer sequence. In a mammalian genome (∼ 3 × 109 bp, with 25% of each nucleotide), a

native primer of 20 bp (with 25% of each nucleotide, so hypothetically composed of 5 nucleotides

of each base) has an occurrence estimated at 3 × 109 × 0.255 × 0.255 × 0.255 × 0.255 = 0.0027

times, which is considered as highly specific. Whereas, in a bisulfite-treated mammalian genome

(∼ 3× 109 bp, considered with 1% of unconverted methylated cytosines (Tost, 2010), so with 25% of

A, 25% of G, 1% of C, and 49% of T), a bisulfite primer of 20 bp (with 25% of A, 25% of G, 0% of

C, and 50% of T, so hypothetically composed of 5 A, 5 G, and 10 T) has an occurrence estimated at

3× 109 × 0.255 × 0.255 × 0.4910 = 2.28 times, which is not enough to be specific only to the targeted

sequence.

So, to balance the loss of primer specificity when dealing with bisulfite converted DNA, bisulfite

primers for MIP should be longer than native primers, between 25 and 30 bp (Li and Tollefsbol, 2011;

Tost and Gut, 2007). Indeed, in a bisulfite-treated mammalian genome, a bisulfite primer of 25 bp
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(with 25% of A, 25% of G, 0% of C, and 50% of T, so hypothetically composed of 6 A, 6 G, and 13

T) has an occurrence estimated at 3× 109 × 0.256 × 0.256 × 0.4913 = 0, 017 times, which is, in theory,

considered specific enough. For example, the MethPrimer default range for primer size is from 20 to

30 bp with an optimal size being 25 bp, and the BiSearch default range is set from 15 to 35 bp (Li

and Dahiya, 2002; Tusnády et al., 2005).

2.3 AMPLICON LENGTH

The bisulfite treatment causes strand breakage, therefore it is difficult to amplify fragments

longer than 500-600 bp as fewer templates are available (Tanaka and Okamoto, 2007; Warnecke et

al., 2002). Thus, PCR product length should not exceed 400 to 500 bp when designing primers for

bisulfite-treated DNA. In the literature, it is widely recommended to have a PCR product of 200 to 300

bp. For examples, in Warnecke et al. (2002), the authors recommend amplifying a 300 bp fragment,

in Tost and Gut (2007) they recommend an optimal PCR product size of 200 bp and no more than

300 bp, and in Chen et al. (2017b) the recommended amplicon length is 200 bp and at least less

than 500 bp.

3 OTHER FEATURES

3.1 CPG SITES IN PRIMERS

Methylation-independent PCR (MIP) primers should not have any CpG sites in their sequence,

allowing them to bind to DNA templates regardless of their CpG methylation status. But, in some

cases, it is not possible to find a 20 to 30 bp long sequence without CpG sites in the region of interest

(in CpG-rich regions for example) so the presence of a CpG site in a primer sequence is inevitable.

Moreover, the incorporation of a CG dinucleotide in primer sequence was also used in numerous

studies to reverse the PCR preferential amplification of unmethylated DNA, but it was shown that it

can over-correct the bias by enhancing selectivity towards methylated DNA (Candiloro et al., 2017).

For that reason, the inclusion of a CpG site in the primer sequence should be approached with great

caution and only if no other options are available to amplify the region of interest.

If a CpG site is inevitable in primer sequence, only a maximum of one CpG site should be

included and it should be as far as possible from the 3’ end or at least not the last 5 nucleotides at

the 3’ end of primer sequence (Kovacova and Janousek, 2012; Tost and Gut, 2007; Wojdacz and

Hansen, 2006; Wojdacz et al., 2008). In the forward primer, a Y must replace the cytosine, meaning

it can be either C or T, and in the reverse primer, a R must replace the guanine, meaning it can be

either G or A (Candiloro et al., 2017; Chen et al., 2017a; Clark et al., 1994; Poucke et al., 2017;

Shen et al., 2007; Warnecke et al., 2002). As, in this case, two sequences of the same primer exists,

the fully converted one (for unmethylated CpG) and unconverted one (for methylated CpG), to avoid

preferential amplification from one over the other, the Tm difference between these two sequences

must be lower than 2.5°C (further details on primer Tm in the section 3.3 “Primers GC content and
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Tm difference” at page 310) (Kovacova and Janousek, 2012; Tusnády et al., 2005).

3.2 CONVERTED CYTOSINES IN PRIMERS

As the bisulfite reaction converting cytosines into uracils is never fully efficient, to ensure the

specificity of primers towards converted DNA, and not towards unconverted genomic DNA, thymines

(or adenines for reverse sequence) resulting from converted cytosines (outside a CpG context) has to

be included within the primer sequence. Some publications recommend having at least 4 converted

cytosines or that converted cytosines represent a minimum of 25% of all primer bases (Fitzpatrick

et al., 1998; Tost and Gut, 2007). Plus, one converted cytosine should be present in the last 5

bases at the 3’ end of the primer sequence to further increase the specificity towards converted DNA

(Kovacova and Janousek, 2012; Tusnády et al., 2005).

5’

3’

5’ 3’

5’

3’

3’ 5’

Left/Forward primer

25 ± 5 bp

5’ 3’

5’
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No base repeatsA A A A A A A A A A
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FIGURE A1.1 PRIMER DESIGN GUIDELINES FOR BSP. The different features for primer design are illus-

trated using examples.
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3.3 PRIMERS GC CONTENT AND TM DIFFERENCE

Because the bisulfite conversion causes the substitution of C by T in the forward primer and

G by A in the reverse primer, compared to their original, the G+C ratio over A+T bases is severely

reduced, hence it is recommended to choose primers with at least 25% of GC if possible (Fitzpatrick

et al., 1998). The default values for optimal GC content set by MethPrimer and BiSearch are respec-

tively 40% and 30%, and default ranges are respectively 10-80% and 0-60% (Li and Dahiya, 2002;

Tusnády et al., 2005). Additionally, the Tm between the forward and reverse primers sequences

should be as low as possible, for primers to bind equally on their respective templates at the same

annealing temperature during PCR. Indeed, the higher primers Tm differ, the more it increases the

risk of non-binding for the lower Tm primer and non-specific binding of the higher Tm primer (Poucke

et al., 2017). Hence, having primers with a small Tm difference is a crucial parameter to achieve

efficient PCR amplification.

3.4 PRIMERS BASE COMPOSITION AND COMPLEMENTARITY

The primer sequences should not have too long homopolymer strings, in particular long

stretches of T or A as it reduces the stability and the specificity of binding (Fitzpatrick et al., 1998;

Parrish et al., 2012; Warnecke et al., 2002). However, as thymines have a much higher occurrence

in forward primer due to cytosines conversion, repeats of T are quite inevitable but must kept be as

short as possible. As an example, the MethPrimer software sets a maximum of 5 mononucleotides

repeats except for T for which the maximum allowed is 8 (Li and Dahiya, 2002). Moreover, same

as for native primers, to have a correct PCR efficacy primers must not form hairpin structures, have

repetitive motifs or have high complementarity to each other as they may form primer-dimers (Li and

Tollefsbol, 2011; Tost and Gut, 2007; Wojdacz et al., 2008). Thus, the self-complementary score and

the 3’-self complementarity score, used to predict possible secondary structures by self-binding or

primer dimers formation, have to be as low as possible (Rozen and Skaletsky, 2000; Rychlik, 1995).

3.5 PRIMER SPECIFICITY AND UNINTENDED PCR PRODUCTS

The contamination of PCR products by unintended secondary co-amplified sequences should

be avoided as much as possible. Indeed, for cloning-BSP experiments, it leads to incorrect cloned

sequences, and for direct-BSP, to superimposed signals resulting in the inability to estimate methy-

lation levels due to mixed nucleotide detection at the CpG positions. Therefore, primers should not

bind to and amplify other sequences in the bisulfite-converted DNA template.

As explained in section 2.2 “Primers length” at page 307, the T redundancy in converted DNA

causes a loss of primer specificity to the desired region (Arányi and Tusnády, 2007; Parrish et al.,

2012). This issue is partially corrected by the increase of primer length to enhance its specificity but it

still needs to be verified, to choose the primer pair less susceptible to producing contaminating PCR

products.
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Among the software listed by MethTools, the BiSearch software proposes a search tool, called

“Primer search, ePCR”, used for post-design prediction of potential PCR products (Arányi and Tus-

nády, 2007; Arányi et al., 2006; Tusnády et al., 2005). This algorithm performs a similarity search

between primers and converted sequences of the selected genome (both strands and virtual com-

plementary strands) (Ashapkin et al., 2020). On the contrary to Blast searches (Altschul et al., 1990;

Ye et al., 2012), BiSearch does not compute the probability of identity of two sequences, but only

searches if sequences have the same nucleotides stretches, by comparing base by base the primer

sequence (from the 3’ end) to the converted genome sequence. Based on the locations and orien-

tations of the hits, the algorithm finds potential PCR products (< 1,000 bp by default) (Arányi and

Tusnády, 2007; Arányi et al., 2006; Tusnády et al., 2005).

3.6 AMPLICON BASE COMPOSITION: REPEATS, TM DIFFERENCE AND CPG CONTENT

When amplifying bisulfite-converted DNA, several artifacts can be resolved by manipulating

the amplicon base composition.

Firstly, the presence of long mononucleotide repeats such as poly-A and poly-T or short repet-

itive motifs can cause polymerase slippage during PCR (Fazekas et al., 2010; Levinson and Gutman,

1987; Sehn, 2015; Shinde et al., 2003). The polymerase slippage generates mutations in PCR prod-

ucts resulting in a misalignment of base signals in the sequencing result, therefore making it difficult

to estimate methylation. Hence, stretches of eight or more bases in the PCR product should be

avoided, especially for poly-A and poly-T, as well as repetitive short motifs, from one to four bases

(Parrish et al., 2012; Sehn, 2015).

Secondly, the PCR amplification of bisulfite-converted DNA can be biased: it can unequally

amplify the methylated and unmethylated templates, due to their differences in GC content and melt-

ing temperature, as stated in section “‘PCR bias’: unequal amplification of methylated and unmethy-

lated DNA” at page 142 (Guldberg et al., 2002; Moskalev et al., 2011; Rein et al., 1998; Rubatino et

al., 2015; Shen et al., 2007; Voss et al., 1998; Warnecke et al., 1997; Warnecke et al., 2002; Wojdacz

and Hansen, 2006). To limit as much as possible a biased amplification, the Tm difference between

the methylated PCR product and the unmethylated PCR product should be kept as low as possible.

As the difference between those two sequences, unmethylated and fully methylated, resides

only in the CpG sites, with a variable base being either a C or a T, the GC content difference and

associated bias depend on the CpG proportion. Thus, the number of CpG sites should be limited and

should depend on the sequence length. Although many studies are associating the amplification bias

with GC content and Tm difference, there is no mention of reducing the number of CpG, depending

on the PCR product length, to limit this bias, in the literature.

Thirdly, the more CpG in the amplicon, the greater migration differences are between methy-

lated and unmethylated templates during capillary electrophoresis, the higher is the risk of base
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signals misalignment in sequencing results and biased estimation of methylation.

In consequence, the base composition of the amplicon is highly related to potential artifacts

in the methylation quantification due to three main reasons: 1 a high number of CpG in the ampli-

con increases the possibility of a biased PCR amplification towards methylation or unmethylation, 2

an important amount of CpG in a long amplicon favors migration-induced misalignment of bases in

sequencing results causing artifacts in methylation estimation, and 3 GC-rich sequences by con-

taining a high quantity of converted C into T, have a reduced complexity of DNA which diminishes

the prospective sites for specific primers and increases the frequency of T repeats, a cause of poly-

merase slippage and misalignment of bases derived artifacts. Therefore, it is preferable that the

targeted sequence should not be located in GC-rich regions and should have a low CpG content, yet

sufficient enough for the experiment relevance, to ensure a proper methylation estimation. Employing

the BSP approach to study GC-rich regions, such as CpG islands, might be questionable — other

methods might be more suited — and should be done with caution.

3.7 ADDITIONAL SEQUENCES

In several studies, the addition of a standard primer sequence at the 5’ end of bisulfite primers

allows the use of standard primers for sequencing to improve its effectiveness, as by adding cytosines

bases the unbalanced nucleotide ratio is reduced and can lessen a potential cytosine signal over-

scaling (Brisotto et al., 2015). For example, in Voss et al. (1998), Chhibber and Schroeder (2008) and

Brisotto et al. (2015), the authors used bisulfite primers tailed with M13 standard primer sequences.

4 CONCLUSION

To conclude about primer design for a bisulfite sequencing PCR application, it can be ex-

tremely difficult to respect all the reported recommendations in the literature. Some of the guidelines

must sometimes be prioritized, and many possible primer pairs have to be compared and tested to

achieve an unbiased and efficient PCR amplification of bisulfite-converted DNA.
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[ KEY POINTS

å The guidelines for primer design are summarized in Figure A1.1 and associated software
in Table A1.1.

å PCR on bisulfite-treated DNA comes with some issues mainly due to the loss in base
diversity: low efficiency of amplification, diminished primer specificity, frequent undesired
PCR product amplification, and frequent primer dimer formation.

å Even for methylation-independent PCR (MIP), primers can contain one CpG site, as far as
possible from the 3’ end.

å A minimum of converted cytosines must be included in the primer sequence to increase
specificity towards converted DNA.

å Primers are generally around 25 bp long and PCR products around 200-300 bp long.

å Inter-primer melting temperature (Tm) difference and Tm difference between unmethylated
and methylated sequences of PCR products must be as low as possible.

å A check for potential unintended PCR products is necessary to avoid contaminating PCR
products.

� Back to Table of Contents
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1 INTRODUCTION

1.1 EXTRACELLULAR VESICLES COMMUNICATION

Extracellular vesicles (EVs) are secreted by cells and defined as a heterogeneous popula-

tion of cell-derived membrane vesicles. They mediate intercellular communication as they transfer a

molecular cargo encapsulated in a double-layered membrane from one cell to another (Figure A2.1).

Their cargo is composed of several bioactive molecules including proteins, lipids, and nucleic acids

(e.g. mRNAs, miRNAs).

Three main classes of EVs can be distinguished depending on their diameter and biogenesis:

exosomes, microvesicles, and apoptotic bodies (Figure A2.1) (Bebelman et al., 2018; Doyle and
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FIGURE A2.1 EXTRACELLULAR VESICLES COMMUNICATION: BIOGENESIS AND UPTAKE. Exosomes, mi-

crovesicles, and apoptotic bodies are secreted by cells and act as messengers in the extracellular space

transporting molecular cargos to recipient cells that can uptake extracellular vesicles via fusion, endocytosis,

macropinocytosis, and phagocytosis processes. Created with BioRender.com

Wang, 2019). Exosomes have a diameter generally between 30 to 150 nm and are formed in en-

dosomes within the cell. By inward budding of the endosome membrane, intraluminal vesicles (ILVs)

are formed in the multivesicular endosomes (MVEs) also known as multivesicular bodies (MVBs),

that can dock and fuse with the plasma membrane to release the enclosed vesicles, then called ex-

osomes, in the extracellular compartment. Microvesicles are generally ranging from 150 to 1000

nm in diameter and are created by the outward budding of the cell plasma membrane to be released

into the extracellular environment. Apoptotic bodies, or apoptosomes, have a diameter in general

around 500 to 5000 nm even if smaller ones (50-500 nm) can also be found, and originate from dying

cells as the cellular content disintegrates into distinct membrane-enclosed vesicles.

The EVs uptake is first mediated by the surface interaction between vesicles surface ligands

and cell plasma membrane-specific receptors and then the recipient cell can internalize the EVs

through various processes such as membrane fusion, endocytosis, macropinocytosis, and phagocy-

tosis (Figure A2.1). The EVs content is therefore released in the cytoplasm or endosomes and can

regulate many cell signaling pathways.

In cancers, EVs participates in tumor progression, metastasis and therapeutic resistance

(Becker et al., 2016; Li and Nabet, 2019; Maacha et al., 2019; Namee and O’Driscoll, 2018; Scholl

et al., 2020). Indeed, oncogenic and regulatory molecules have been found in EVs cargoes, such as
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epidermal growth factor (EGF) receptors, activating oncogenic pathways in recipient cells and lead-

ing to accelerated growth and tumor progression (Al-Nedawi et al., 2008). They have a role in the

therapeutic resistance as EVs can mediate the sequestration or export of cytotoxic drugs to reduce

their concentration, and activation of survival signaling pathways through intercellular communication

to confer resistance properties to recipient cells (Chapuy et al., 2008; Ifergan et al., 2005; Maacha et

al., 2019; Safaei et al., 2005).

Following radiotherapy, secreted EVs participate in the radiation-induced bystander effect,

meaning that even unirradiated cells can be affected by radiotherapy effects through the uptake of

EVs derived from irradiated neighboring ones (Jabbari et al., 2020; Jella et al., 2014; Szatmári et

al., 2017; Xu et al., 2016). Indeed, EVs can transmit the oxidative stress generated by radiother-

apy in irradiated cells to recipient cells, expanding the ROS-mediated DNA damage to unirradiated

cells. Moreover, the radiation treatment induces changes in the secreted EVs quantity and content,

which can confer radiation resistance properties to recipient cells (Al-Mayah et al., 2012; Jelonek et

al., 2016). The transmission of bystander information via EV communication has been reported to

promote cell survival after radiotherapy (Mutschelknaus et al., 2016).

1.2 EXTRACELLULAR VESICLES AND CANCER STEM CELLS

The EVs produced by CSC themselves have been reported to promote proliferation, migration,

angiogenesis, and metastasis (Andrés et al., 2020; Nawaz, 2017; Su et al., 2021; Wang et al., 2020;

Wang et al., 2019). For example, the miR-19b-3p is transported by CSC-derived exosomes and

promotes the EMT via the repression of phosphatase and tensin homolog (PTEN) expression in the

clear cell renal cell carcinoma (CCRCC) (Wang et al., 2019). In hepatocellular carcinoma, exosomes

released by CSCs induce the expression of NANOG in non-CSCs and enhance their drug resistance

(Huang et al., 2021).

The radio-induced EVs and chemo-induced EVs promote stem cell characteristics, amplifying

the therapeutic resistance (Chung et al., 2021; Kyjacova et al., 2015; Meldolesi, 2022; Ramakrish-

nan et al., 2020; Shen et al., 2019; Yang et al., 2021). For instance, Chung et al. (2021) showed

by using two bladder cancer sub-lines, one with CSC-like properties and the other with a non-CSC

phenotype, that chemo-induced EVs from the non-CSC cell line enhanced the sphere formation and

tumorigenicity of the CSC-like cell line, highlighting the role of EVs from neighboring non-CSCs for

maintenance of stemness characteristics and expansion of the CSCs in response to chemotherapy.

In breast cancer, Shen et al. (2019) observed that chemo-induced EVs enriched in miRNAs promote

the CSC phenotype via the down-regulation of the master transcription factor ONECUT2, which is

generally associated with a differentiated phenotype. Concerning radiation treatments, Ramakrish-

nan et al. (2020) reported in glioblastoma that specific miRNAs can be exported outside the cell by

vesicle encapsulation and released in response to radiotherapy. The release of the miR-603 cause a

derepression of the insulin-like growth factor 1 (IGF1) and its receptor, promoting the CSC state and
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radioresistance of the cell via the up-regulation of DNA repair.

Additionally, EVs derived from stromal cells also participate in the promotion of stem cell fea-

tures and in the radio- or chemo-resistance of cancer cells. CAFs-derived EVs contribute to the

maintenance and expansion of colorectal CSCs through activation of stemness related pathways,

such as the Wnt/β-catenin signaling or TGF-β signaling, mediated by EV-transported miRNAs (e.g.

miR-92a-3p) or lncRNAs (e.g. H19) (Conigliaro et al., 2015; Hu et al., 2019a; Hu et al., 2015; Liu

et al., 2020; Ren et al., 2018). In breast cancer, EVs from stromal cells containing three miRNAs

(miR-21, miR-378e, and miR-143) increase the mammospheres formation and promote the EMT

and stemness phenotypes (Donnarumma et al., 2017), and they can activate the STAT1 and Notch

signaling promoting stemness and resistance to therapy (Boelens et al., 2014). In glioblastoma, The

macrophage-derived EVs uptake by CSCs results in elevated CSC marker expression, promotion of

proneural-to-mesenchymal transition and increased radioresistance (Zhang et al., 2020).

1.3 DEDIFFERENTIATION MEDIATED BY EXTRACELLULAR VESICLES

The interconversion between CSCs and non-CSCs is mediated by EVs. Indeed, in their cargo,

stemness regulatory molecules can induce a phenotypic switch of recipient cells, to maintain the

balance between CSCs and non-CSCs or expand the CSC pool in response to therapy for instance

(Sun et al., 2018; Xu et al., 2018).

First, to study the effect of CSC-derived exosomes on non-CSCs, Sun et al. (2020) used three

glioblastoma non-CSC cell lines (WJ1, U251, and U87) treated with exosomes from a CSC-like cell

line (WJ2) cultured in a stem cell medium and showing high expression of CSC markers. Although

the CSC and non-CSC populations were not purified using CSC markers, they reported an increase

in tumorigenicity in the treated cells and enrichment of CSC-derived exosomes in Notch1 proteins.

As the inhibition of Notch1 decreased the stemness features induced by CSC-exosomes in non-

CSC cell lines, it revealed that the Notch signaling contributes to the exosome-mediated enhanced

stemness of glioblastoma cells.

In colorectal cancer, Hu et al. (2019b) demonstrated the induced dedifferentiation of puri-

fied non-CSCs by CAFs-derived EVs during chemotherapy treatment. The non-CSC population

treated with fibroblast-derived conditioned media showed higher sphere formation and higher CSC

percentage upon chemotherapy treatment. Furthermore, the fibroblast-derived exosomes coupled

with chemotherapy-induced more sphere generation in the non-CSC population compared to con-

trol cells, while the exosome-depleted conditioned media treatment induced less sphere generation,

indicating that the dedifferentiation is mediated by exosomes. They also found the presence of sev-

eral Wnt ligands in the fibroblast-secreted vesicles, activating the Wnt/β-catenin pathway in recipient

cells. The overexpression of Wnt3a in CAFs revealed that CAFs-derived EVs increases the nuclear

β-catenin levels in treated non-CSCs and enhances their tumorigenicity in vivo.
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2 OBJECTIVE

The study presented here aims to know if radio-induced EVs are implicated in the non-CSC-

to-CSC conversion. Indeed, after irradiation, the EVs could transport molecules such as proteins

or mRNA that act as messengers in recipient cells to unlock the phenotypic switch toward a stem

state. We hypothesize here that mRNAs of genes associated with phenotypic conversion, either

with the CSC plasticity or with the EMT, may be carried in the radio-induced EVs to induce the

dedifferentiation of surrounding recipient non-CSCs into CSCs.

3 MATERIAL AND METHODS

This section completes the main material and methods, at page 153, with techniques and

protocols specifically used for the study of the extracellular vesicles involvement in radio-induced

dedifferentiation.

3.1 CELL LINES AND CULTURE CONDITIONS

Additionally to the previously used SUM159PT cells, the MDA-MB-231, MCF7, and T47D

(ATCC) breast cancer cell lines were used to study the extracellular vesicle communication through-

out the radio-induced dedifferentiation of cancer cells. Their main characteristics are depicted in

Table A2.1. These cell lines were cultivated in the culture media described in Table A2.2. The Ham’s

F-12 Nutrient Mixture (F-12), Minimum Essential Medium (MEM), Roswell Park Memorial Institute

1640 medium with GlutaMAX (RPMI GlutaMAX), Non-Essential Amino Acids (NEAA), HEPES buffer,

penicillin, and streptomycin are provided by Gibco; the Fetal Bovine Serum (FBS) by HyClone; the

insulin and hydrocortisone by Sigma-Aldrich and the ZellShield by Biovalley.

SUM159PT MDA-MB-231 MCF7 T47D

Supplier Asterand ATCC ATCC ATCC

Molecular type Triple negative Triple negative Luminal A Luminal A

Morphology Epithelial Epithelial Epithelial Epithelial

Tumor type Anaplastic
carcinoma Adenocarcinoma Adenocarcinoma Ductal carcinoma

Sampling origin Primary tumor Pleural effusion Pleural effusion Pleural effusion

TABLE A2.1 CHARACTERISTICS OF BREAST CANCER CELL LINES.

3.2 EXTRACELLULAR VESICLES ISOLATION

Donor cells are seeded in 8 Petri plates (100 mm diameter) at 150,000 cells per plate one

day before irradiation. Before irradiation, the medium is replaced by an EV-free medium (the fetal

bovine serum is ultracentrifuged to remove EV prior to being added to the medium). The conditioned
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SUM159PT MDA-MB-231 MCF7 T47D

Base medium F-12 MEM MEM RPMI GlutaMAX

FBS 5% 10% 10% 10%

Insulin 5 µg/mL - 10 µg/mL 10 µg/mL

Hydrocortison 1 µg/mL - - -

NEAA - 1% 1% 1%

HEPES 10 nM - - -

Penicillin - - 40 units/mL 40 units/mL

Streptomycin - - 40 µg/mL 40 µg/mL

ZellShield 1% 1% - -

TABLE A2.2 COMPONENTS OF BREAST CANCER CELL LINES CULTURE MEDIA.

medium from the 8 Petri plates (80 mL of medium) of donor cells is collected five days after irradiation.

It is first centrifuged at 500 g for 5 min at 4°C to remove dead cells and at 3,000 g for 20 min at 4°C to

remove apoptotic bodies. The medium is then concentrated using the Amicon Ultra-15 100 kDa tubes

with filters (Millipore) for a > 100 kDa filtration by centrifugation at 4,000 rpm for 40 min at 4°C. The

concentrated medium is ultracentrifuged using the Optima XPN-80 Beckman Coulter ultracentrifuge,

with a 70.1Ti rotor, at 20,000 rpm (approx 30,000 g) for 2h30 at 4°C. The pellet containing the purified

EVs is either resuspended in 100 µL of PBS (phosphate-buffered saline) and stored at 4°C for a

maximum of 2 days before treatment, or resuspended in 200 µL of lysis buffer for RNA extraction.

3.3 EXTRACELLULAR VESICLES TREATMENT

The 100 µL of purified EVs diluted in PBS is used to treat 2 wells of a 6-well plate, each well

seeded with 100,000 recipient cells the day before.

3.4 RNA AND PROTEIN LEVELS

The same protocols described in the main matter were used for RNA and protein levels evalu-

ation using qPCR and Western blot techniques. Primers and antibodies used are listed in Table A2.3

and Table A2.4.

3.5 EXTRACELLULAR VESICLES UPTAKE

Membranes of donor cells (SUM159PT cells) were stained with the Vybrant DiI label from

Invitrogen according to the manufacturer’s instructions before irradiation at 0, 4, or 8 Gy. The cell

medium is collected 5 days after irradiation and centrifuged at 1,000 rpm to remove dead cells.

Sorted ALDH- recipient cells were treated with the conditioned medium containing the unlabelled or

DiI-labelled EVs (half of conditioned medium and half of fresh medium). The DiI-label EVs uptake
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TARGET
GENE

SEQUENCE FORWARD SEQUENCE REVERSE

B2M 5’-TCGCGCTACTCTCTCTTT-3’ 5’-CAAGTCTGAATGCTCCACTT-3’

RPLP0 5’-GCGACCTGGAAGTCCAACTA-3’ 5’-TGTCTGCTCCCACAATGAAG-3’

POU5F1 5’-GAAGGATGTGGTCCGAGTGT-3’ 5’-GTGAAGTGAGGGCTCCCATA-3’

SOX2 5’-AACCCCAAGATGCACACCTC-3’ 5’- CGGGGCCGGTATTTATAATC-3’

NANOG 5’-GTGATTTGTGGGCCTGAAGA-3’ 5’-ACACAGCTGGGTGGAAGAGA-3’

ALDH1A1 5’-GTTGAGCGGGCTAAGTAT-3’ 5’-CCCACTCTCAATGAGGTCAAG-3’

C-MYC 5’-TTGTCTCCGTCGGATTCTCTG-3’ 5’-TCTTCTTGTTCCTCCTCAGAGTCG-3’

KLF4 5’-TACCAAGAGCTCATGCCACC-3’ 5’-GGTGTGCCTTGAGATGGGAA-3’

CD44 5’-AGACATCTACCCCAGCAAC-3’ 5’-CGTTGAGTCCACTTGGCTTTC-3’

CDH1 5’-GTCAGTTCAGACTCCAGCCC-3’ 5’-AAATTCACTCTGCCCAGGACG-3’

VIM 5’-TCTACGAGGAGGAGATGCGG-3’ 5’-GGTCAAGACGTGCCAGAGAC-3’

SNAI1 5’-ACCACTATGCCGCGCTCTT-3’ 5’-GGTCGTAGGGCTGCTGGAA-3’

SNAI2 5’-TGTTGCAGTGAGGGCAAGAA-3’ 5’-GACCCTGGTTGCTTCAAGGA-3’

ZEB1 5’-CTGATTCCCCAGGTGGCATA-3’ 5’-GGGCGGTGTAGAATCAGAGT-3’

TWIST2 5’-CGACGAGATGGACAATAAGATGAC-3’ 5’-CAGGTTTCAGAAGTTACAGACTCG-3’

TABLE A2.3 LIST OF SPECIFIC PRIMERS FOR RT-QPCR.

TARGET PROTEIN SUPPLIER REFERENCE SPECIE DILUTION

Nanog Cell Signaling #3580 Rabbit 1:1000

Oct4 Cell Signaling #2750 Rabbit 1:1000

SOX2 Cell Signaling #2748 Rabbit 1:1000

ALDH1 Abcam #ab52492 Rabbit 1:1000

β-actin Sigma-Aldrich #A2066 Rabbit 1:500

Rabbit IgG Jackson ImmunoResearch #711-035-152 Donkey 1:5000

TABLE A2.4 LIST OF ANTIBODIES USED FOR WESTERN BLOT.

by recipient cells was assessed 5 days later using a fluorescence microscope (Nikon Eclipse Ti, 10X

objective).

4 RESULTS

4.1 EXPERIMENTAL STRATEGY

The Figure A2.2 illustrates the strategy used to study both the radio-induced EV content and

its effect on the dedifferentiation of non-CSCs into CSCs.

First, to characterize the molecular content of radio-induced EVs, donor cells are seeded and
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irradiated the next day at 0 Gy or 8 Gy (Figure A2.2). The conditioned media from donor cells are

collected 5 days later and EVs are purified by ultracentrifugation. The mRNA and protein content of

EVs is analyzed by RT-qPCR and Western blot.

Then, to analyze the generation of CSCs by radio-induced EVs, recipient cells are treated

with the freshly purified EVs from irradiated or unirradiated cells, one day after being seeded (Fig-

ure A2.2). In parallel, untreated control cells are irradiated at 0 Gy or 8 Gy on the same day. The

CSC percentage and mRNA expression of prospective genes is assessed 5 days later.

D0

Seeding of 
donnor cells

+/-
Irradiation

D1 D6

EV Purification

24h 5 days

EV treatment

D0

Seeding of
recipient cells

D1
24h

D6

Analysis of 
recipient cells

5 days

CSC percentage
mRNA expression

Protein & mRNA content

EV characterization

FIGURE A2.2 EXPERIMENTAL STRATEGY TO STUDY THE EFFECT OF IRRADIATION ON EXTRACELLULAR VESI-

CLE COMMUNICATION AND ITS ROLE IN THE DEDIFFERENTIATION OF CANCER CELLS.

4.2 CHARACTERIZATION OF THE RADIO-INDUCED EXTRACELLULAR VESICLES CONTENT

EVs from SUM159PT cells were previously characterized in the laboratory, they express the

HSP90, Flotilin-1, TSG101, and Caveolin-1 EV markers and their production is increased after irra-

diation at 8 Gy (data not shown).

First, mRNA levels of 10 genes associated with stemness or EMT: OCT4, C-MYC, KLF4,

CD44, VIM (vimentin), SNAI1, SNAI2, ZEB and TWIST2, have been measured in SUM159PT and

MDA-MB-231 breast cancer cells and in their secreted EV, after a 0 Gy or 8 Gy radiation treatment

(Figure A2.3A and B). Both in SUM159PT and MDA-MB-231 cells, SNAI1 and SNAI2 genes tend

to be upregulated after radiation exposure (Figure A2.3A). In SUM159PT cells, SNAI1 and SNAI2

mRNA levels are increased 7.48 fold and 4.99 fold after irradiation, respectively. In MDA-MB-231

cells, SNAI1 and SNAI2 mRNA levels are increased by 3.05 ± 1.36 fold and 3.29 ± 1.43 fold after ir-

radiation, respectively. For SUM159PT cells, CD44, SNAI1, and SNAI2 mRNAs tends to be enriched

in the radio-induced EVs, with an increase of 3.22 ± 0.41, 3.73 ± 2.04, and 3.31 ± 0.42 fold after

irradiation, respectively (Figure A2.3B). For MDA-MB-231 cells, C-MYC, SNAI1, and SNAI2 mRNAs

are significantly enriched in the radio-induced EVs, with an increase of 2.58 ± 0.51 (p=0.041), 3.18 ±
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FIGURE A2.3 CHARACTERIZATION OF THE EXTRACELLULAR VESICLE CARGO AFTER RADIOTHERAPY

TREATMENT. A. RNA levels of stemness and EMT associated genes after 0 Gy or 8 Gy irradiation in

SUM159PT (left, n=2 for 0 Gy and n=1 for 8 Gy) and MDA-MB-231 (right, n=3) cell lines. B. RNA levels

of stemness and EMT-associated genes after 0 Gy or 8 Gy irradiation in EVs from the SUM159PT (left, n=2) and

MDA-MB-231 (right, n=5) cell lines. Error bars represent means ± standard error of the mean. * Student’s

T-test p-value ≤ 0.05; ** Student’s T-test p-value ≤ 0.01. C. Protein levels of stemness-associated genes after

0 Gy or 8 Gy irradiation in both SUM159PT cells and their secreted EVs.
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0.44 (p=0.002), and 4.14 ± 1.11 (p=0.034) fold after irradiation, respectively. These results indicate

that SNAI1 and SNAI2 mRNAs are enriched in secreted EVs after radiation exposure, possibly due to

their increased expression, both in SUM159PT and MDA-MB-231 cells. Additionally, C-MYC mRNA

is also enriched in EVs from MDA-MB-231 cells.

Then, protein levels of NANOG, OCT4, ALDH1, and SOX2 were measured both in SUM159PT

cells and EVs (Figure A2.3C). Interestingly, the NANOG protein is enriched in EVs after radiation

exposure. The OCT4 and ALDH1 protein levels are similar in EVs between unirradiated and irradiated

conditions, while in cells, the ALDH1 protein level is higher in unirradiated cells compared to irradiated

ones, which is surprising and inconsistent with the literature (Bidan et al., 2019). The SOX2 protein

levels were too low to be detected both in cells and EVs.

Altogether, these results show that C-MYC, SNAI1, and SNAI2 mRNAs and NANOG proteins

are enriched in radio-induced EVs from breast cancer cells, and this specific cargo could affect the

recipient cells in response to radiotherapy.

4.3 EFFECT OF RADIO-INDUCED EXTRACELLULAR VESICLES ON UNIRRADIATED CELLS

As we previously saw that radio-induced EVs have a specific cargo, it could affect their up-

take by recipient cells following radiations exposure, and an increased uptake could be a cause of

phenotype conversion.

So, a first experiment was conducted to know if the EV uptake of the recipient differs de-

pending if donor cells were irradiated or not (Figure A2.4A). The conditioned medium from irradiated

DiI-labeled donor cells at 0, 4, or 8 Gy was collected and added to the media of unirradiated recipient

sorted non-CSCs (ALDH- cells). The EV uptake is visible by microscopy as the DiI-labeling fluo-

rescence from donor cells is transferred to recipient cells through EVs. Interestingly, the EV uptake

seems slightly increased after the 4 Gy irradiation of donor cells and even more increased after the

8 Gy irradiation of donor cells.

To get insights into the radio-induced EVs contribution to the cell phenotypic plasticity, unirra-

diated cells were treated with EVs from irradiated cells and changes in expression of stemness and

EMT-related genes were evaluated. To mimic the intratumoral heterogeneity, several combinations of

cell lines as donor and recipient cells were tested.

In Figure A2.4B, SUM159PT cells were treated with EVs from SUM159PT cells. As controls,

the non-EV part of the media (filtrate, F) was also assessed. For all the stemness-related genes

tested, OCT4, SOX2, NANOG, ALDH1A1, C-MYC, KLF4, and CD44, none showed a significant

change in expression in the recipient cells between the two EV treated conditions either coming from

irradiated or unirradiated cells.
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FIGURE A2.4 EFFECT OF RADIO-INDUCED EXTRACELLULAR VESICLES ON UNIRRADIATED CELLS GENE EX-

PRESSION AND PERCENTAGE OF CANCER STEM CELLS. A. Fluorescence images of EV uptake differences

between EVs irradiated at 0, 4 or 8 Gy. The donor cell membranes were labeled with DiI before irradiation.

Labeled-EVs were collected 5 days after irradiation and used to treat unirradiated cells. The EV uptake was

assessed by fluorescence microscopy 5 days after the EV treatment. B. Relative mRNA levels of genes as-

sociated with stemness, in SUM159PT cells treated with either 0 or 8 Gy radiations, filtered conditioned media

(filtrate, F) without EVs from irradiated or unirradiated cells, or EVs from irradiated or unirradiated cells (n=2).

C. Relative mRNA levels of genes associated with stemness or EMT, in MCF7 cells treated with either 0 or 8

Gy radiations, or EVs from irradiated or unirradiated SUM159PT cells, or EVs from irradiated or unirradiated

MDA-MB-231 cells (n=3). D. Relative mRNA levels of genes associated with stemness or EMT, in TD47 cells

treated with either 0 or 8 Gy radiations, or EVs from irradiated or unirradiated SUM159PT cells, or EVs from

irradiated or unirradiated MDA-MB-231 cells (n=3). Error bars represent means ± standard error of the mean.

* Student’s T-test p-value ≤ 0.05 E. and F. CSC percentages based on Aldefluor staining (ALDH+ cells) and

CD44/CD24 staining (CD44+/CD24- cells) in TD47 cells treated with either 0 or 8 Gy radiations, EVs from irradi-

ated or unirradiated SUM159PT cells, EVs from irradiated or unirradiated MDA-MB-231 cells, conditioned media

depleted in EVs (supernatant, S) from irradiated or unirradiated SUM159PT cells, conditioned media depleted

in EVs (supernatant, S) from irradiated or unirradiated MDA-MB-231 cells (n=1).

In Figure A2.4C, MCF7 cells were treated with EVs from either SUM159PT or MDA-MB-231

cells. The expression of NANOG is increased after the 8 Gy EV from MDA-MB-231 treatment (1.28

± 0.46 fold) compared to the 0 Gy EV from MDA-MB-231 treatment (0.90 ± 0.42, p=0.021) while

the expression of C-MYC is reduced after the 8 Gy EV from SUM159PT treatment (1.03 ± 0.18)

compared to the 0 Gy EV from SUM159PT treatment (1.27 ± 0.19, p=0.030). Except for these two

genes, no other significant gene expression changes were observed.

In Figure A2.4C, T47D cells were treated with EVs from either SUM159PT or MDA-MB-231

cells but no significant differences in expression levels of these stemness and EMT-associated genes

were found.

Lastly, the effect of the radio-induced EVs on the generation of CSCs was assessed by flow

cytometry using both the CD44+/CD24- population surface markers and the ALDH+ activity marker to

measure the CSC proportion (Figure A2.4E and F). CSC proportions were surprisingly low, even in
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the control conditions 0 Gy and 8 Gy in which a radio-induced increase of CSCs is noticeable. And,

no variations in CSC percentages are observed in EV treatment conditions, so the experiment was

not pursued.

5 CONCLUSION

Although some differences in EV cargoes were found between EVs from irradiated cells and

EVs from unirradiated cells, the radio-induced EVs did not seem to strongly affect the gene ex-

pression programs of recipient cells nor the generation of CSCs. Therefore, these results are not

conclusive about the role of radio-induced EVs in the enrichment in CSCs.

[ KEY POINTS

å Radio-induced EVs have been shown to promote stem cell properties and radioresistance
through the transportation of a specific molecular content between cells (Kyjacova et al.,
2015; Ramakrishnan et al., 2020).

å The EV communication could contribute to the acquisition of stem cell features leading to
the dedifferentiation of non-CSCs into CSCs (Hu et al., 2019b; Sun et al., 2018; Sun et al.,
2020; Xu et al., 2018).

å The characterization of EVs from irradiated SUM159PT cells revealed a specific molecular
cargo enriched in C-MYC, SNAI1, and SNAI2 mRNAs and in NANOG proteins.

å MCF7 cells treated with EVs from irradiated MDA-MB-231 showed an increased expres-
sion of NANOG, while MCF7 cells treated with EVs from irradiated SUM159PT showed a
reduced expression of C-MYC.

å No changes in CSC proportions were found in T47D cells after EV treatments from unirra-
diated or irradiated cells, hence the role of radio-induced EVs in the CSC enrichment could
not have been determined by this approach.

� Back to Table of Contents
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1 General information

1.1 What ABSP does do?

ABSP, standing for "Analysis of Bisulfite Sequencing PCR", is an R-based tool
to analyze CpG methylation profiles using data from Bisulfite Sequencing PCR
(BSP) experiment results. It was developed to help researchers to estimate and
compare methylation percentages of a DNA region studied using BSP experiments.
It provides a complete automated workflow, from trace file sequencing results to
data visualization and statistics.

1.2 What are the advantages of using ABSP?
• A complete workflow. ABSP uses as input the chromatogram trace files as

the sequencing results, and through a two-steps analysis, it (1) computes the
methylation percentages of individual samples after validating the sequencing
quality and (2) gathers the methylation levels from all samples to summarize
methylation data, generate publication-ready figures and perform comparative
statistics to answer to the experiment hypothesis on the DNA methylation
differences between conditions.

• A fully automated process. ABSP uses a shiny app on R to provide a user-
friendly interface. To launch the analytic process the user is guided to provide
the required inputs and can launch the desired analysis with one click. For
each analysis, an HTML report file is generated to visualize the results and
keep a record of them. Additionally, output files, such as tables and figures,
are automatically saved in the corresponding result folders. For an even more
automated use, several analyses can be launched with the help of pre-filled
input tables (spreadsheet document to fill) in the special tab "Multiple analyses",
which is useful for large amounts of samples.

• Analyses of both direct-BSP and cloning-BSP sequencing data. ABSP can
analyze results from both BSP methods. No existing tool is currently able to
analyze both. It allows continuity in the experiment analytic process, as the
direct-BSP approach can be performed before cloning the PCR products to have
preliminary insights on DNA methylation, and then further confirmed/validated
using cloning-BSP.

• Accessible and flexible. ABSP is coded using R, a crossed-platform tool lan-
guage increasingly used in biology research, making it very accessible to any
researchers. Additionally, for researchers accustomed to R coding, as the entire
scripts are provided, ABSP is fully upgradeable. Also, we provide specific guide-
lines to easily modify some features to adapt ABSP to experiment needs, such
as adjusting quality thresholds or changing graphical parameters (see section
3.3 Code modifications at page 42).
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1.3 Bisulfite Sequencing PCR

The Bisulfite Sequencing PCR (BSP) is an experimental technique aiming to esti-
mate methylation levels of CpG sites on a specific DNA region of interest, among
a population of DNA molecules. The method was originally developed by Frommer
et al. in 19921 and Clark et al. in 19942 and was named BSP in opposition to the
methylation-specific PCR (MSP) method by Li et al. in 2002.3

This method is composed of three steps, described in figure 1:

1. A DNA bisulfite conversion
2. A PCR amplification and an optional cloning
3. A sequencing of either PCR products or individual subclones

Figure 1. Bisulfite Sequencing PCR experimental principle.

Two approaches of BSP could be used (Figure 1). The direct-BSP method is charac-
terized by the direct sequencing of PCR products, whereas the cloning-BSP consists
of cloning PCR products within a specific vector and sequencing several individual
clones.

1M Frommer et al. “A genomic sequencing protocol that yields a positive display of 5-
methylcytosine residues in individual DNA strands.” In: Proceedings of the National Academy
of Sciences 89.5 (1992), pp. 1827–1831. ISSN: 0027-8424. DOI: 10.1073/pnas.89.5.1827.

2S J Clark et al. “High sensitivity mapping of methylated cytosines.” In: Nucleic acids research
22.15 (1994), pp. 2990–7. ISSN: 0305-1048. DOI: 10.1093/nar/22.15.2990.

3Long-Cheng Li and Rajvir Dahiya. “MethPrimer: designing primers for methylation PCRs”. In:
Bioinformatics 18.11 (2002), pp. 1427–1431. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/18.
11.1427.
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As described in Figure 2, the analysis strategies of these two sub-methods are
different on some points.

Figure 2. Bisulfite Sequencing PCR analysis strategies for both direct-BSP and cloning-
BSP.

First, in direct-BSP, a mix of DNA molecules with different unknown methylation
statuses are sequenced, thereby, at each CpG site, two base signals can co-exist:
the methylated signal (C) and the unmethylated signal (T). By calculating the
signal ratio, the methylation level of a CpG in the DNA population can directly be
estimated, but for reproducibility and statistical significance purposes, it still needs
to be repeated in several biological replicates to obtain the final methylation level
of a CpG (direct-BSP results are considered less quantitative than cloning-BSP
ones).

Secondly, in cloning-BSP, as each clone represents only one PCR product, the
methylation status of a CpG can be either methylated (C) or unmethylated (T),
thereby only one of these two signals can exist. Accordingly, the signal ratio can
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only give either 0% or 100% ofmethylation (partial methylation is considered biased
results), revealing the methylation status. For each CpG, the proportion of clones
with a methylated status reveals the methylation level of the CpG in the original
DNA population, in general, a minimum of 10 clones is recommended to have a
10% accuracy of the methylation level.

1.4 How does ABSP work?

As a first step, each BSP sequencing result is defined by a combination of experi-
ment information (figure 3):

• Sequence. The sequence identifier refers to a unique amplicon sequence
produced by the BSP experiment, using a unique set of primers. For ex-
ample, if several regions of a gene are analyzed by BSP, as each region
corresponds to a unique amplicon they must have distinct sequence names
(e.g. CDH1promoter and CDH1exon1; CDH1-1, CDH1-2, and CDH1-3). Make sure
the sequence name is strictly identical for all samples of the same sequence.

• Collection. The collection corresponds to a separation of samples above
groups. Samples from different collections can not be compared, even if
they belong to the same group. For example, collections can be different
cell lines, organs, or patients, in which the same groups are compared but
not between the different collections. To compare these types of samples,
consider them as groups. Make sure the collection name is strictly identical
for all samples of the same collection.

• Group. The group corresponds to the condition that will be compared with
other groups/conditions in the grouped analysis. For example, groups can be
the "control" and "treated" conditions. Make sure the group name is strictly
identical for all samples of the same group.

• Replicate. Information has to be provided only when using the direct-BSP
approach. The replicate number refers to the repetition identifier number
of the sequencing. To have robust and reproducible data and to perform
comparative statistics, each sample needs to be sequenced at least three
times (in both directions).

• Clones. Information has to be provided only when using the cloning-BSP
approach. To estimate the methylation levels among the DNA population,
the methylation statuses of several individual clones needs to be sequenced.
The ratio of methylated and unmethylated clones for a CpG position will give
the methylation level estimation.

• Sequencing files. The sequencing read of each sample is performed in both
directions, using a forward primer and a reverse primer.

• Experiment. The term "experiment (data)" refers to the unique combination
of collection, group, and replicate or clone, for a specific sequence, corre-

7

sponding to the sample information for the sequencing read.

Figure 3. Workflow of the ABSP analytic process.

Then, the ABSP analysis is divided into two steps, corresponding to two scripts (R
markdown scripts), as illustrated in the workflow in figure 3.

• Individual analysis. For each individual experiment point, two sequencing
.ab1 files (one from forward direction, one from the reverse direction) are
used as input for the individual analysis. First, the sequencing reads are
trimmed based on quality to get the correct sequence for alignments with the
reference DNA input. Then, results from the alignments go through a quality
control step to check for mismatches, gaps, length of aligned sequences, and
bisulfite conversion rates (calculated on cytosines outside CpG that should
be thymines). If the results are defined as correct, the methylation levels
of CpG can be calculated and visualized on a genomic plot. Several output
files (e.g. chromatograms, sequences, tables) are saved in folders, especially
the methylation data file as a result of the individual sequencing experiment
analyzed.
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• Grouped analysis. All methylation data files from the same sequence are
gathered by the grouped analysis. First, a preprocessing step is performed
to organize data. Then, visualization plots, lollipop-style plots, and genomic
plots (with associated clustering dendrograms) are generated to view methy-
lation data differences. Finally, a statistical analysis is performed, descriptive
statistics tables and Student’s t-test p-values tables are generated, as well as
boxplots with t-test p-values andmethylation profile plots with Kruskal–Wallis
test p-values, to display the significant methylation differences.

For more details, the inputs, processes, and outputs of these two steps, individual
analysis, and grouped analysis, are displayed in the figure 4, where the 3 tabs of
ABSP are represented: "Individual analysis", "Grouped analysis", and "Multiple
analyses".

The two steps, individual analysis and grouped analysis, require the manual entry
of input data in the corresponding tab, and therefore only one analysis can be
launched at the same time (figure 5). An additional tab has been implemented to
launch multiple analyses all at once. This multiple analyses tab can be used to
launch either several individual analyses and/or several grouped analyses at the
same time, by using tables (.xlsx files or .csv files) as input instead of the manual
entry of input for unique analysis.

1.5 License

ABSP, Analysis of Bisulfite Sequencing PCR

Copyright © 2022 by the CANTHER laboratory, France (absp@univ-lille.fr)

Released under the GPL-3 license.

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation, either version 3 of the License, or (at your option) any later version. This
program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see https://www.gnu.org/licenses/.

9

Figure 4. Detailed workflow of the ABSP analytic process.
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Figure 5. Diagram of the possible ways to launch ABSP analyses.

11

2 How to proceed with analysis using ABSP?

2.1 Install ABSP

2.1.1 Software installations and download ABSP files

• Install R: https://www.r-project.org/

• Install RStudio: https://www.rstudio.com/

• Download theABSP zip folder on github: https://github.com/ABSP-methylation-
tool/ABSP and unzip the folder to access files

2.1.2 Content of the ABSP main directory

The main ABSP folder is organized as follows:

– documents folder for documents available to the user

– List of BSgenomes.xlsx file listing the available genomes

– multiple_grouped_parameters_table.xlsx table of inputs to launchmultiple grouped
analyses

– multiple_grouped_parameters_table.ods table of inputs to launchmultiple grouped
analyses

– multiple_individual_analyses_table.xlsx table of inputs to launch multiple indi-
vidual analyses

– multiple_individual_analyses_table.ods table of inputs to launch multiple indi-
vidual analyses

– reports folder for analysis reports

– results folder for analysis results (data, tables, graphics...)

– scripts folder for scripts and associated files required to run analysis

– ABSP_functions.R R script providing the necessary functions for ABSP

– ABSP_grouped_analysis.RMD R markdown script of grouped analysis

– ABSP_individual_analysis.RMD R markdown script of individual analysis

– custom.css CSS script for custom theme settings of the .html report files

– logo.svg ABSP logo vector image

12
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– www folder for files necessary for the shiny app

– ABSP - Analysis.svg diagram of ABSP analysis strategy

– ABSP - BSP.svg diagram of BSP experiment principle

– ABSP - fasta file.png image of a reference sequence .fasta file example

– ABSP - Launch analysis.svg diagram of the different ways to launch ABSP analy-
ses

– ABSP - Workflow simple.svg diagram of the BSP workflow

– custom_app.css CSS script for custom theme settings of the app interface

– logo.svg ABSP logo vector image

– ABSP RProject.Rproj R project file

– ABSP User Guide.pdf reference manual to use ABSP

– app.R shiny app file

For ABSP to function properly, all the aforementioned files must be downloaded
and present in the ABSP main folder with the same structure.

Make sure not to rename, move or delete the provided folders and files. If you want
to reorganize files or folders it is better to copy to other directories than to modify
the files. However, new folders can be added to the ABSP main folder without
causing issues.

2.1.3 Launch the ABSP app with automated package installation

• Open the ABSP Rproject.Rproj file with RStudio.

• Open the app.R file with RStudio.

• Optional: Find the "Run App" button in the upper right corner, click on the
arrow right next to it and select "Run external", to open the app with the default
web browser instead of a RStudio window.

• Click on the "Run App" button to launch the app (Figure 6).

• A pop-up window should appear if the shiny package was not already
installed on your device, click on "Yes" to accept the shiny installation.

• Once this procedure is done, the package installation should start and it
might take a few minutes. Please note that installation on a Linux device can
be quite long (approx. 40 min) compared to Windows/MacOS devices.

• If a message in the console asks to update packages, respond positively to
update all packages.

• Once the app is opened, the packages required for ABSP should be completely
installed, therefore analyses can be carried out from the app interface.

13

Figure 6. RStudio interface to open ABSP app.

2.2 Open ABSP
• Open the ABSP Rproject.Rproj file with RStudio.

• Open the app.R file with RStudio.

• Click on the "Run App" button to launch the app.

To launch the different analyses refer to the following sections below which de-
scribes the individual analysis, grouped analysis, and multiples analyses (Figure 5).

2.3 Update ABSP

Download the latest version of ABSP files on GitHub: https://github.com/ABSP-
methylation-tool/ABSP.

Use the new ABSP main directory (latest version) to open ABSP.

You can use your previous input files, but make sure they are compatible with the
newversion (e.g. themultiple_individual_analyses_table andmultiple_grouped_analyses_table
files templates for multiple launches of analyses might have been changed).

As the R project and app are from the new ABSP main directory (latest version),
the results and reports will be saved in this directory.

2.4 App interface

The implemented shiny app provides a user interface, opening in a web browser,
aiming to facilitate the input entry and the launching of analyses for users.

The interface contains 4 tabs, displayed in Figure 7:

1. A main tab.
2. An individual analysis tab.
3. A grouped analysis tab.
4. A multiple analyses tab.
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Figure 7. ABSP app interface. Panel 1. Main tab or home page of the app, it provides key
links and resources for the users. Panel 2. Individual analysis tab, it serves to launch the
analysis of a single sample using two sequencing files, one for each direction, to obtain
CpG methylation percentages. On the left, input information and files must be provided
in the dedicated text and file upload boxes. Panel 3. Grouped analysis tab, it serves
to launch the analysis of all sample methylation results after their individual analysis to
compare CpG methylation percentages between groups. On the left, input information
must be selected in the selection boxes. Panel 4. Multiple analyses tab, this tab can be
used to launch multiple individual and/or grouped analyses at once, using pre-filled input
tables that must be provided in the upload file boxes.

The main tab exposes general information and resources. The individual analysis
and grouped analysis tabs are dedicated to the launching of the individual analysis
and grouped analysis, respectively. They are divided into two parts, one left panel
with input boxes and the “Run analysis” buttons, and one right panel containing
subtabs that provide all the necessary guidelines to fill the input boxes. Themultiple
analyses tab aims to launch both individual analyses and grouped analyses through
the upload of a pre-filled table file containing all the analyses inputs. It is also
composed of a left input panel and a right panel with input guidelines. This tab
procures a further automated way to run ABSP analyses, more details are given in
section 2.7 Multiple analyses at page 37.

2.5 Individual analysis

2.5.1 Input files requirements

Sequencing result .ab1 files As input, ABSP requires the chromatogram trace
file (.ab1) from the sequencing run (Sanger) using the bisulfite converted DNA
PCR products as templates. It is highly recommended to have both directions
sequenced, by a primer on each side of the PCR product: a forward primer and a
reverse primer. Although, the analysis can be run using only one trace file instead
of both. The directions do not need to be specified as the analysis will determine it
automatically.

Reference DNA sequence and information .fasta file ABSP also requires a .fasta
file containing information about the reference DNA. A .fasta file is composed of a
header and a body. The header must contain both the genomic coordinates of this
sequence and the choice of strand, the one used for primer design, the one that will
be amplified by PCR. Indeed, as both strands are no longer complementary after
bisulfite conversion, the primers have to be designed on only one bisulfite converted
strand as template DNA. The body must contain the nucleotide sequence of the
reference DNA from the plus strand (upper/sense strand) of the genome.

Formats for the .fasta file header:

• The genomic coordinatesmust bewritten in the format chr#:######-######

19

(e.g. chr16:68771087-68771462).

• The choice of strand amplifiedmust be either "primers=plus" or "primers=minus".
If none of these character strings are present in the .fasta file, by default the
plus strand is chosen.

An example of a .fasta file content is depicted in Figure 8. Note that any other
information in the header, such as the sequence name, for example, can be added
without consequences if they do not interfere with the previously described formats.

Figure 8. Example of .fasta file for the reference DNA input required for ABSP individual
analysis.

As a recommendation, to help with the creation of the .fasta file, the IGV (Integrative
Genomics Viewer)4 software can be easily used to navigate the genome and
to get the nucleotide sequence of a specific region, alongside with its genomic
coordinates. After navigating on the genome, the current viewed region can be
added as a region of interest by selecting the "Regions" > "Region Navigator" >
"Add" (Figure 9). In this "Regions of Interest" panel, the added region will appear in
the list of regions, its coordinates can be adjusted and it can be annotated with a
description. By right-clicking on a region from this list, a context menu appears
and two options can be selected, "Copy Sequence" or "Copy Details". The first one
copies to the clipboard the nucleotide sequence of the region, and the second one
copies the genomic coordinates (in the correct format for the .fasta file) as well
as the description associated with the region. Make sure to properly verify the
first and last nucleotides, as there can be a one nucleotide difference between the
coordinates and the actual sequence.

2.5.2 Procedure

In the individual analysis tab, the left panel is to launch analysis, and the right
panel provides entry information.

Experiment information

• Select an existing folder or enter a new folder name. Located in the AB-
SP/results folder, all of the analysis results will be saved in this folder. Having
different folders of results can be used to separate the different analyses by
projects, experiments, or users. Note that the six first letters of the folder
name will appear in the report file name.

4https://software.broadinstitute.org/software/igv/
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Figure 9. IGV (Integrative Genomics Viewer) software window.

• Select an existing sequence folder or enter a new sequence name. The
sequence folder is located in the previously selected folder. All of the analysis
results will be saved in this folder corresponding to the same sequence. Note
that this sequence name will be used in output files (tables, plots...) to refer
to the sequence.

• Enter the collection name. The collection corresponds to a separation of
samples above groups (details in section 1.4 How does ABSP work? at page
7). Make sure the collection name is strictly identical for all samples of the
same collection.

• Enter the group name. The group corresponds to the condition to compare
(details in section 1.4 How does ABSP work? at page 7). Make sure the group
name is strictly identical for all samples of the same group.

• For direct-BSP only: Enter replicate number. In the case of direct sequencing
of PCR products only, the replicate number corresponds to the repetition
identifier of the sample (details in section 1.4 How does ABSP work? at page
7).

• For cloning-BSP only: Enter clone number. In the case of clone sequencing
only, the clone number corresponds to the identifier number of each clone
from the same condition (details in section 1.4 How does ABSP work? at page
7).

21

Reference DNA sequence

• Select the reference genome. It will only be used to display the genomic
sequence in the genomic plot. Make sure to click on the "Pre-install genome"
button if the selected genome is used for the first time. Only a short list of
genomes is displayed in the drop-down list but more genome assemblies are
available. Go to section 3.3 Code modifications at page 42 to get information
on how to add another genome in the drop-down list. The complete list of
available genomes can be found in the "List of BSgenomes.xlsx" file in the
"ABSP/documents" folder.

• Select .fasta file of reference DNA sequence. As described above in the
Input files requirements section, the .fasta file of the reference DNA sequence
needs to be selected from your folders.

2.5.3 Output report

The HTML report file of the analysis is automatically saved in the reports folder in
the ABSP directory.

Header First, in the top panel, the information about the sample experimental
conditions is displayed in a table.

• Folder name
• Sequence name
• Collection
• Group
• Replicate number (for direct-BSP only)
• Cloning number (for cloning-BSP only)
• Date of sequencing #1
• Date of sequencing #2
• Date of analysis
• Prefix of output files

Reference DNA This tab summarizes all the data computed from the reference
DNA sequence .fasta file.

• ReferenceDNAsequenceGeneral information on the sequence (name, strand
used for primer design, length, and genomic coordinates) and genomic se-
quence from plus strand (given by the reference DNA .fasta file) and minus
strand (reverse complement).

• Localization of CG dinucleotides Detection of CpG sites on the reference
DNA (on plus and minus strand) with attribution of the CG number, from 1 to
n on the plus strand.

• Bisulfite converted sequences Sequences of reference DNA after theoretical
bisulfite conversion (CpG sites considered as methylated). The bisulfite
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conversion is performed on the strand used for PCR primer design, as only
this strand is amplified during PCR. The PCR regenerates the opposite strand,
corresponding to the reverse complement of the bisulfite converted DNA
template.

Sequencing trimming This tab summarizes the trimming of sequencing reads
based on quality. Two parameters are used: the Phred quality score of each base
retrieved from the sequencing file, and the mixed base peak ratio.

• Summary In the first tab, the default thresholds used to trim the sequencing
results are displayed.

– Minimum length of the trimmed sequence (default is 30 bp)
– Minimum Phred quality score (default is 30, corresponding to a base-

calling error probability of 0.001%)
– Minimum ratio of primary peak (default is 0.75)
– Minimum percentage of non-mixed positions (default is 75%)

Below the threshold table, the trimming summary for both sequencing reads
is displayed and indicates whether or not the trimming was successful (cor-
rect trimmed sequence quality) or failed (incorrect trimmed sequence qual-
ity).

• Details per sequencing
– Raw sequence The sequence, chromatogram, and data table of the

sequencing results are displayed.
– Quality report The first trimming is based on the base-calling quality as

it uses the Phred quality scores of each base to find the best sequence
to trim. This step is provided by the SangeranalyseR package5,6 . The
thresholds and the results of this quality trimming are displayed.

– Mixed base peak report The second trimming is based on the primary
peak ratio over the other peaks for each position. At each position,
the signal ratio of the primary peak is computed using the peak height
values for each base, with formula: if peakC > {peakA, peakT , peakG}

Primary peak ratio =
peakC

peakA + peakT + peakG + peakC

If the ratio is above the threshold (default is 0.75), the position is con-
sidered non-mixed; if the ratio is below the threshold, the position is
considered mixed. All the possible trimmed sequences are obtained
by selecting the sequence between n (from 3 to 15) consecutive non-
mixed positions. For each one of the possible trimmed sequences, the
percentage of non-mixed positions is calculated. Among those, the
trimmed sequence which is selected corresponds to the one with a

5https://sangeranalyser.readthedocs.io/en/latest/index.html
6Kuan-Hao Chao et al. “sangeranalyseR: simple and interactive analysis of Sanger sequencing

data in R”. in: bioRxiv (2020), p. 2020.05.18.102459. DOI: 10.1101/2020.05.18.102459.
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percentage of non-mixed positions above the threshold (default is 75%)
with the minimum of consecutive non-mixed positions at extremities
(this number is displayed).

– Trimming plot The two previous report steps give two different trimmed
sequences that can be viewed on the trimming plot (Figure 10). The
top panel represents a dot plot of the Phred quality score per position,
values in green are above the threshold and values in red below, in which
the start and end positions of the trimmed sequence are represented
by orange vertical lines. The second panel is also a dot plot but it rep-
resents the primary peak ratio per position, values in green are above
the threshold (considered as non-mixed) and values in red below (con-
sidered as mixed), in which the start and end positions of the trimmed
sequence are represented by cyan vertical lines. In the last panel, the
two trimmed sequences are represented in the same color, orange, and
cyan. The raw sequence is displayed in red. The overlapping of the two
previous trimmed sequences gives the final trimmed sequence, in green,
which is the one kept for the rest of the analysis and corresponds to the
information given in the summary tab and the final trimmed sequence
tab.

– Final trimmed sequence The sequence, chromatogram, and data table
of the final trimmed sequencing results are displayed.
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Figure 10. Example of trimming plot from the output report.
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Alignments In the first two tabs, each sequencing read is aligned with either the
sense sequence (bisulfite converted sequence from the template strand) as if it is
a forward sequencing, or the antisense sequence (reverse complement of bisulfite
converted sequence from the template strand) as if it is a reverse sequencing. The
direction of each sequencing result is determined based on the aligned sequence
length: the alignment which gives the longest aligned sequence is considered the
correct one. If for one sequencing read the aligned sequences are equal between
alignment as forward and as reverse, the direction determination depends on the
other one. The two last tabs display the correct alignments and aligned sequences.

Quality control This tab summarizes the quality of the trimmed sequencing result
aligned with the reference DNA.

• Summary In the first tab, the default thresholds are used to control the quality
of the aligned sequencing result.

– Minimum length of the aligned sequence (default is 30 bp)
– Minimum identity percentage of alignment (default is 75%)
– Minimum of bisulfite conversion rate mean (default is 0.90, correspond-

ing to 90% conversion efficacy)
Below the threshold table, the quality summaries for both sequencing results
are displayed and indicate whether or not the aligned sequencing results have
a sufficient quality (correct) or insufficient (incorrect) relative to thresholds.

• Mismatch positions For both sequencing reads a table indicates the mis-
matched positions and nucleotides, on both the sequencing read and refer-
ence DNA sequence.

• Insertions/deletions For both sequencing reads a table indicates the inser-
tions/deletions (gaps) found in either the sequencing read or the reference
DNA sequence.

• Conversion rates For both sequencing reads a table indicates the bisulfite
conversion rate for each cytosine outside a CpG in the aligned sequence.
The first column corresponds to the identifier number of the cytosine on
the reference DNA sequence, in the second one is displayed its position on
the reference DNA sequence, in the third one its position on the trimmed
sequencing result, and in the fourth its position on the raw sequencing result.
The position matching is obtained thanks to the alignment of sequences. For
each position on the raw sequencing result, the peak height values of signals
are extracted and used to compute the conversion rate, with the following
formulas (for forward and reverse sequencing respectively):

Bisulfite conversion rate =
peakT

peakC + peakT

Bisulfite conversion rate =
peakA

peakG + peakA

For each position a bisulfite conversion is obtained. The mean of rates from
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all positions is indicated in the summary table in the first tab, as well as
standard deviation.

• Maximum aligned sequence The maximum aligned sequence corresponds
to the sequence covered by at least one of the two sequencing results. Its
information such as its length, its coordinates, and its nucleotide sequence
are displayed.

Methylation

• For both sequencing reads, the tables of computed methylation percentages
are displayed. The first column corresponds to the CpG site identifier number
on the reference DNA sequence (list of all CpG sites in the Reference DNA
tab, Localization of CG dinucleotides tab). In the next three columns, its
coordinates are specified. Then, the position of the methylated cytosine (the
C in forward, the G in reverse) is displayed, as well as its position in the raw
and trimmed sequencing results. The position matching is obtained thanks
to the alignment of sequences. For each position on the raw sequencing
result, the peak height values of signals are extracted and used to compute
the methylation percentage, with the following formulas, for forward and
reverse sequencing respectively:

Methylation percentage =
peakC

peakC + peakT
× 100

Methylation percentage =
peakG

peakG + peakA
× 100

• Combined Methylation results from both sequencing results are then com-
bined in a unique table with the calculation of the average methylation and
standard deviation per position.

• Individual methylation plot Finally, a plot is generated to visualize results
relative to the genomic sequence.

Output data

• Directories A diagram of output files directories is displayed (Figure 11).

• Files A list of all the output files with links to local folders is displayed.

• Methylation data file preview The output methylation data file which will be
used as input for the grouped analysis is displayed as a table (The "alg_coord_start"
and "alg_coord_end" columns contain a unique value corresponding to the
start and end coordinates of the maximum aligned sequence for the individ-
ual analysis).

2.5.4 Output files

All the output files are located in the results directory, as depicted by the diagram
in Figure 11.
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Figure 11. Diagram of output directories to locate output files from the individual analysis.
The "folder name" and "sequence name" depend on the input entries when launching the
analysis.

As for the same sequence (same primer set) results from both direct-BSP and
cloning-BSP can be generated, the two types of outputs are separated into two
subfolders: "individual_results_direct" and "individual_results_cloning".

• alignments In subfolders specific to each individual analysis, the .pair files
of the alignments and the .fasta files of the aligned sequence are saved.

• chromatograms In subfolders specific to each individual analysis, the chro-
matograms of raw sequencing reads and the chromatograms of the trimmed
sequencing are saved as .pdf files.

• data It contains all the methylation data .csv files for the grouped analysis.

• plots It contains all the individual methylation plots as well as legends for
plots as .png image files.

• sequences The reference DNA sequences from plus and minus strands and
the bisulfite converted sequence of the template strand are saved as .fasta
files.

• tables In subfolders specific to each individual analysis, the data tables of
raw sequencing results, the data tables of trimmed sequencing results, the
summary table of sequencing trimming, the summary table of quality control,
the bisulfite conversion rates table and the methylation percentages tables
are saved as .csv .png and .xlsx files.
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2.6 Grouped analysis

2.6.1 Procedure

In the grouped analysis tab, the left panel is to launch analysis, and the right panel
provides entry information.

Experiment information

• Select an existing folder. Located in the "ABSP/results" folder, all of the
analysis results will be saved in this folder. Having different folders of results
can be used to separate the different analyses by projects, experiments, or
users. Note that the six first letters of the folder name will appear in the
report file name.

• Select an existing sequence folder. Located in the "ABSP/results/previous
folder" folder, all of the analysis results will be saved in this folder for this
sequence. This sequence name will be used in output files (tables, plots...)
to refer to the sequence.

• Select the reference genome. It will only be used to display the genomic
sequence in the genomic plot. See section 3.3 Codemodifications at page 42
to add another genome in the drop-down list. The complete list of available
genomes can be found in the "List of BSgenomes.xlsx" file in the "ABSP/doc-
uments" folder.

• Select the experiment type. The choice of the experiment can be either
Direct-BSP or Cloning-BSP. The correct experiment type entry is essential to
retrieve the methylation data files either in the "individual_results_direct" or
"individual_results_cloning" folders.

Plot parameters

• Select position labels for plots. The CpG positions on plots can be referred
to by different label types:

– The CpG coordinates label type displays the genomic coordinates of
the CpG site in the format chr#:######-###### (e.g. "chr16:68771230-
68771231").

– The CpG numbers label type displays the CpG site identifier number on
the represented sequence, from 1 to n.

– The None label type displays blank labels, which can be a suitable
alternative in case of extremely close CpG positions as labels may
overlap.

• Choose to separate plots by collections. For lollipop plots, genomic plots,
and boxplots and only for display purposes (it does not affect data). If this
parameter is not ticked (default), all samples from different collections will
be displayed on the same plot. If this parameter is ticked, a plot is generated
by collection, displaying samples from one collection only.

• Indicate the order of groups for display. For this input to work, the folder,
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sequence, and experiment type have to be selected and correct. In this case,
the group names are extracted from methylation data files corresponding
to the previously selected entries. The groups must all be selected, in the
desired order for display.

• Select the types of sample ordering for plots. Four different sample ordering
(ordinate axis ordering) are available for visualization plots, each provides
a specific way of ordering samples on the ordinate axis based on different
parameters. At least one must be selected, up to the four of them.

– As it is arranges samples by alphabetic order of collections. If none or
one collection is present, this order is equivalent to the By groups one.

– By groups arranges samples by the provided group order above.
– By methylation levels arranges samples depending on their methylation

mean.
– By clusters arranges samples depending on the hierarchical clustering

calculated and represented by an associated dendrogram.

2.6.2 Output report

The HTML report .html file of the analysis is automatically saved in the "reports"
folder in the ABSP directory.

Header First, in the top panel, the information about the sample experimental
conditions is displayed in a table.

• Folder name
• Sequence name
• Reference genome
• Type of experiment
• Group order
• Date of analysis

Files content This tab summarizes all the data that have been used for this
analysis.

• Data files content General information about the data is listed: sequence
name, collections, groups, and replicates or clones.

• Data files paths Paths of the methylation files that were found and used for
the analysis are listed.

Methylation data This tab regroups the methylation data in tables from the
retrieved files.

• Methylation data of replicates/clones For each replicate or clone, depend-
ing on the experiment type, the methylation percentages of each CpG site
are displayed in a table, with the mean of all positions and the associated
standard deviation by replicate/clone.
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For clones: Methylation percentages calculated from sequencing results are
converted to 0% or 100% methylation status.

– A CpG site is considered unmethylated (0%) when the methylation per-
centage is between 0% and the defined threshold (default is 20%).

– A CpG site is considered methylated (100%) when the methylation per-
centage is between the defined threshold (default is 80%) and 100%.

– A CpG site partially methylated, with methylation percentage between
20% and 80%, is removed and annotated as NA (Not Available).

– For one clone, if more than a threshold percentage (default is 20%) of
CpG sites are partially methylated, the clone is considered as defective
and all of its CpG sites are annotated as NA (Not Available).

The thresholds can be modified in the script, please refer to section 3.3 Code
modifications at page 42.

• Methylation data of groups For each group, the mean of methylation percent-
ages of each CpG site are displayed in a table, with the mean of all positions
and the associated standard deviation by groups.

Plots of replicates Only for direct-BSP. This tab provides plots to visualize the
methylation data of replicates.
The Lollipop plots (condensed and proportional), the genomic plot, and the cluster
dendrogram plot are as illustrated in Figure 12.

Plots of clones Only for cloning-BSP. This tab provides plots to visualize the
methylation data of clones from each sample in separated plots.
Lollipop plots (condensed and proportional), genomic plot and cluster dendrogram
plot are illustrated in Figure 13.

Plots of groups This tab provides plots to visualize themethylation data of groups
per collection. For each sample, the mean of replicates or clones is calculated per
CpG, and the results are displayed in this tab.
Lollipop plots (condensed and proportional), genomic plot and cluster dendrogram
plot are illustrated in Figure 14.

Statistics This tab aims to compare methylation between groups, to find sta-
tistically significant differences, either by comparing CpG site per CpG site or by
comparing the entire region.

• Descriptive statistics of groups Two tables of methylation data descriptive
statistics are displayed: one for methylation data by CpG positions, and one
for methylation data of all CpG positions for each sample.

• Student’s T test Two tables display T-tests p-values between groups 2 by 2,
one table for methylation data by CpG positions, and one for methylation
data of all CpG positions for each sample.

• Boxplots Boxplots of methylation data with T tests p-values as numbers or
symbols are generated, one plot details data of each CpG position (Figure 15
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Figure 12. Visualization plots of all replicates (direct-BSP). The plots were generated
based on mock methylation data for a test sequence. Three replicates (1, 2, and 3)
per sample are represented on the plots, from two groups (group1 and group2) and two
collections (collection1 and collection2) (sample ordering as it is). The methylation levels
are given as percentages and correspond directly to the methylation output data from the
individual analyses. A. Proportional lollipop plot. B. Condensed lollipop plot. C. Genomic
plot. D. Cluster dendrogram (for sample ordering by clusters).
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Figure 13. Visualization plots of all clones from one sample (cloning-BSP). The plots
were generated based on mock methylation data for a test sequence. Ten clones (from 1
to 10) for the sample "collection1 group1" are represented on the plots (sample ordering
as it is). The methylation status corresponds to the conversion of methylation percent-
ages from the individual analyses into unmethylated (0%) or methylated (100%) (or not
available) methylation statuses. A. Proportional lollipop plot. B. Condensed lollipop plot.
C. Genomic plot. D. Cluster dendrogram (for sample ordering by clusters).
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Figure 14. Visualization plots of groups (means of replicates/clones per sample). The
plots were generated based on mock methylation data for a test sequence. Plots rep-
resent the means of methylation percentages of ten clones per sample and per CpG
position (sample ordering as it is). A. Proportional lollipop plot. B. Condensed lollipop
plot. C. Genomic plot. D. Cluster dendrogram (for sample ordering by clusters).

A for direct-BSP data and Figure 15 D for cloning-BSP), and another one data
from methylation mean of the region (Figure 15 B for direct-BSP data and
Figure 15 E for cloning-BSP).

• Methylation profile plots Methylation profile plots with Kruskal-Wallis tests
p-values are generated for each collection (Figure 15 C and F).

The Methylation plotter7,8 tool served as a base to develop the different types of
plots with different sample ordering.

7http://maplab.imppc.org/methylation_plotter/index.html
8Izaskun Mallona, Anna Díez-Villanueva, and Miguel A Peinado. “Methylation plotter: a web tool

for dynamic visualization of DNA methylation data”. In: Source Code for Biology and Medicine 9.1
(2014). Methylation plotter, p. 11. DOI: 10.1186/1751-0473-9-11.
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Figure 15. Boxplots and methylation profile plots. The plots were generated based
on mock methylation data for a test sequence. A. Boxplots of direct-BSP methylation
results for each CpG site. B. Boxplots of direct-BSP methylation results for means of
all CpG sites. C. Methylation profile plot of direct-BSP methylation results for one of the
two collections. D. Boxplots of cloning-BSP methylation results for each CpG site. As
methylation levels of CpG from clones can only be either 0% or 100% thereby boxes
can’t be drawn, instead, each clone is represented in the plot by a circle. E. Boxplots
of cloning-BSP methylation results for means of all CpG sites. F. Methylation profile plot
of cloning-BSP methylation results for one of the two collections. In boxplots, symbols
represent significance levels of Student’s T-test p-values (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤
0.001, **** p ≤ 0.0001). In methylation profile plots, symbols represent significance levels
of Kruskal-Wallis test p-values (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).

Output data

• Directories A diagram of output files directories is displayed (Figure 16).

• Files A list of all the output files with links to local folders is displayed.

2.6.3 Output files

All the output files are located in the results directory, as depicted by the diagram
in Figure 16.

Figure 16. Diagram of output directories to locate output files from the individual analysis.
The "folder name" and "sequence name" depend on the input entries when launching the
analysis.

As results for the same sequence from both direct-BSP and cloning-BSP can be gen-
erated, the two types of outputs are separated into two subfolders: "grouped_results_direct"
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and "grouped_results_cloning".

• boxplots Boxplots are saved as .png files.

• dendro_plots Cluster dendrograms are saved as .png files.

• genomic_plots Genomic plots are saved as .png files, in subfolders for plots
of replicates/clones and plots of groups.

• lollipop_plots Lollipop plots are saved as .png files, in subfolders for plots of
replicates/clones and plots of groups.

• meth_profile_plots Methylation profile plots are saved as .png files

• tables The methylation data tables, the descriptive statistics tables of posi-
tions or means (means of all positions), and the Student’s T test tables are
saved as .csv and .xlsx files.

2.7 Multiple analyses

As described in the Figure 5, multiple analyses can be launched at the same time
using data tables as input with all the required information. Both individual and
grouped analyses can be launched, at the same time or separately.

2.7.1 Input files requirements

Two files are provided in the "documents" folder. Theymust be filledwith the desired
input entries, all information about how to fill the documents is also indicated within
the documents as notes.

The documents are provided in the .xlsx (Microsoft Excel Open XML Format Spread-
sheet) and .ods (OpenDocument Spreadsheet) formats, but the input file format
must be either .xlsx or .csv (Comma-Separated Values) (.ods files must be con-
verted to one of those formats).

• Experiments data table for individual analyses:
"multiple_individual_analyses_table.xlsx".

– SEQUENCE NAME. The sequence name should be unique and consistent for
each amplicon. It must not contain any special character.

– COLLECTION. The collection refers to a separation of samples above the
groups/conditions. Leave empty if you do not want to indicate a collection.

– GROUP. The group refers to the condition that is to be compared. It must not
contain any special character.

– REPLICATE NUMBER. The replicate number refers to the experiment repetition
identifier. It must be an integer ≥1. Only for direct-BSP experiments, leave
empty otherwise.

– CLONE NUMBER. The clone number refers to the individual clone identifier.
It must be an integer ≥1. Only for cloning-BSP experiments, leave empty
otherwise.
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– GENOME. The genome refers to the reference genome assembly used for
coordinates and plots displaying the genomic sequence. Only a short list of
genomes is displayed in the cells, but you can use another available genome.
Please refer to the provided document: "List of BSgenomes" to get the list of
available genomes assemblies and the correct spelling.

– PATH TO FASTA FILE OF REFERENCE DNA. Path to the .fasta file of the ref-
erence DNA sequence on your computer. On Windows, you can copy the file
path by holding down shift then right-clicking on the file, and selecting "Copy
as path" in the menu. On macOS, you can copy the file path by right-clicking
on the file to display the menu then holding down the option key and selecting
"Copy ... as Pathname".

– DATE SEQUENCING #1. Date of the sequencing result #1 for traceability. The
date format must be YYYY-MM-DD and the cell format must be set to "date".

– PATH TO SEQUENCING FILE #1. Path to sequencing result #1 .ab1 file.
– DATE OF SEQUENCING #2. Date of the sequencing result #2 for traceability.

The date format must be YYYY-MM-DD and the cell format must be set to
"date".

– PATH TO SEQUENCING FILE #2. Path to sequencing result #2 .ab1 file.

• Parameters table for grouped analyses:
"multiple_grouped_analyses_table.xlsx".

– SEQUENCE NAME. The sequence name should be unique and consistent for
each amplicon. It must not contain any special character.

– GENOME. The genome refers to the reference genome assembly used for
coordinates and plots displaying the genomic sequence. Only a short list of
genomes is displayed in the cells, but you can use another available genome.
Please refer to the provided document: "List of BSgenomes" to get the list of
available genomes assemblies and the correct spelling.

– EXPERIMENT TYPE. The experiment type can be either Direct-BSP or Cloning-
BSP.

– CpG POSITION LABEL TYPE. The CpG position label type refers to the displayed
element corresponding to the CpG position on plots.

– SEPARATION OF COLLECTIONS. This parameter refers to the generation of
plots: if FALSE, all samples from all collections will be displayed on the same
plot, and if TRUE, samples will be split into different plots, one plot per collec-
tion.

– LIST OF GROUPS ORDERED. The cell must contain all of the groups within
the experiment in the order you want them to be displayed. Type your groups
separated by commas. It must not contain any special character.

– TYPE OF SAMPLE ORDERING. The type of sample ordering refers to the param-
eter used for ordering samples on plots. Four types of ordering are available:
As it is, By groups, By methylation levels, and By clusters. Multiple ordering
can be chosen by typing the ordering names separated by commas.
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2.7.2 Procedure

• Select an existing folder within the ABSP results folder to locate all of the
analysis results. To create a new folder, select the "Create new folder" entry
and enter the name of the new folder in the text input. Note that the six first
letters will appear in the report file name.

• Select the filled table as input. Both the experiments data table and the
grouped parameters table can be provided at the same time to launch indi-
vidual analyses followed by grouped analyses, or only one of the two tables
can be provided and will launch the corresponding analyses, either individual
analyses or grouped analyses.

• Launch the analyses by clicking on the bottom button "Run analyses".

2.7.3 Output files

The reports and output files of analyses are saved in the reports and results folders,
in the same way as for the manual launch of individual and grouped analyses, see
sections 2.5 Individual analysis at page 19 and 2.6 Grouped analysis at page 29.
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3 Complementary information

3.1 Some recommendations for the BSP experiment

The length of the PCR products should not exceed 350-400 bp, as the bisulfite
treatment causes DNA strand breakages long amplicon can not be properly ampli-
fied, and ABSP plot display for sequences above 400 bp with numerous CpG is not
optimal.

Several tools can be used to design BSP primers, several are listed in theMethtools9

list of tools, such as Methprimer10 to design primers and BiSearch11 to check for
unintended PCR products, on bisulfite-treated DNA.

3.2 Detailed workflow of ABSP individual analysis

In Figure 17, the individual analysis input, steps and outputs are described in more
detail.

9http://bigd.big.ac.cn/methbank/methTool/list/
10https://www.urogene.org/methprimer/
11http://bisearch.enzim.hu/
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Figure 17. Detailed workflow of the individual analysis.
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3.3 Code modifications

3.3.1 List of reference genomes

In the individual analysis and grouped analysis tabs of the app, the drop-down
list to select the reference genome is limited. If your reference genome does not
appear it doesn’t mean that it is not available, and can be manually added. The
complete list of genomes assemblies12 with the correct spelling can be found in
the "List of BSgenomes.xlsx" file in the "ABSP/documents" folder.

Tomodify the displayed drop-down list items, the app.R script has to bemodified. In
the Code listing 1, the "list_genomes" object corresponds to the vector of character
strings listing the displayed reference genome. Any of the other reference genomes
can be added to the list.

Code listing 1. List of reference genomes displayed in the drop-down lists as selectable
inputs for analyses. From the "app.R" script.

14 # Here, to simplify, a short list of genomes is displayed but all BSgenome
can be used

15 # To get the list of all genomes of BSgenome package run : ’BSgenome::
available.genomes()’, more information on genomes at https://genome.
ucsc.edu/cgi-bin/hgGateway

16 # A new genome can be added to the list displayed just below :
17 list_genomes <- c(
18 "BSgenome.Hsapiens.UCSC.hg19", "BSgenome.Hsapiens.UCSC.hg38", "

BSgenome.Mmusculus.UCSC.mm10", "BSgenome.Mmusculus.UCSC.mm39",
19 "BSgenome.Rnorvegicus.UCSC.rn6", "BSgenome.Rnorvegicus.UCSC.rn7", "

BSgenome.Cfamiliaris.UCSC.canFam3", "BSgenome.Mmulatta.UCSC.rheMac8",
20 "BSgenome.Ggallus.UCSC.galGal6" , "BSgenome.Drerio.UCSC.danRer11", "

BSgenome.Celegans.UCSC.ce11", "BSgenome.Dmelanogaster.UCSC.dm6")

To modify the genome name selected by default in the drop-down "Select genome"
list of either the individual or grouped analysis tabs, change the nameof the genome
in the following lines (Code listing 2 and Code listing 3):

Code listing 2. Genome name selected by default in the drop-down list of the individual
analysis tab. From the "app.R" script.

249 selectInput("genomeI",label ="Select genome",choices=list_genomes,selected
="BSgenome.Hsapiens.UCSC.hg19")

3.3.2 Modify the default thresholds

12https://genome.ucsc.edu/cgi-bin/hgGateway
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Code listing 3. Genome name selected by default in the drop-down-list of the grouped
analysis tab. From the "app.R" script.

524 selectInput("genomeG",label ="Select genome",choices=list_genomes,selected
="BSgenome.Hsapiens.UCSC.hg19"),

Individual analysis
The default thresholds used for the individual analysis can be modified (Code list-
ing 4).

Code listing 4. Default thresholds in the individual analysis script. From the
"ABSP_individual_analysis.Rmd" script.

602 ‘‘‘{r Thresholds, include=F}
603

604 # Thresholds
605

606 # Maximum base-calling error probability (value per position):
607 th_quality_error <- 0.001
608 # Minimum phred quality score, logarithmically linked to error probability

(value per position):
609 th_quality_phred <- (-10*log(th_quality_error,10))
610

611 # Minimum ratio of primary peak, corresponding to the primary peak value
over the total of peak value, to consider a position as non-mixed (
value per position):

612 th_mixed_position <- 0.75
613 # Minimum percentage of non-mixed positions in the trimmed sequence to be

considered as non-mixed (value for the total trimmed sequence):
614 th_mixed_perc <- 75 # %
615

616 # Minimum length of trimmed sequences
617 th_min_trim <- 30 # bp
618

619 # Minimum length of aligned sequences
620 th_min_alg <- 30 # bp
621 ‘‘‘

Grouped analysis
The default thresholds used for the grouped analysis, for clones methylation
percentage conversion into methylation status (0% or 100%), can be modified
(Code listing 5).

3.3.3 Modify the plots colors and point shapes

For the grouped analysis, the plot colors and point shape parameters can be
modified. As depicted in Code listing 6, the color of bases can be changed in the
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Code listing 5. Default thresholds in the grouped analysis script. From the
"ABSP_grouped_analysis.Rmd" script.

524 ‘‘‘{r Thresholds, include=F}
525

526 # Thresholds (used for cloning only) :
527

528 # unmethylated clones : methylation between 0% and 20%
529 th_unmethylated_max <- 20
530

531 # methylated clones : methylation between 80% and 100%
532 th_methylated_min <- 80
533

534 # maximum proportion of partial positions allowed : 20% of CpG positions
535 th_partialpos_ratio <- 0.2
536

537 clone_thresholds <- c(th_unmethylated_max, th_methylated_min, th_
partialpos_ratio)

538 ‘‘‘

bases_colors object, the plot colors for each group in the plot_colors object, and
the point shapes for each group in the plot_shapes object.

In the ABSP_grouped_analysis.Rmd script, the code chunk below the one depicted
in the Code listing 6 gives examples of different palette colors and points shapes,
with functions to visualize them.
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Code listing 6. Colors and shapes setting for plots in the grouped analysis script. From
the ABSP_grouped_analysis.Rmd script.

359 ‘‘‘{r colors and shapes settings, include=F}
360 # Colors of sequence track for genomic plots
361 bases_colors <- c(A="#43CD80", T="#D7191C", G="#FDC661", C="#2C7BB6", N="#

7F7F7F")
362

363 # Colors of groups for plots
364 plot_colors <- c("aqua"="#00AFBB",
365 "tangerine"="#FC4E07",
366 "sun"="#E7B800",
367 "berry"="#d30446",
368 "lime"="#90c613",
369 "grape"="#7839de",
370 "flamingo"="#d12a97",
371 "jade"="#00b673",
372 "ink"="#1221ed",
373 "terracotta"="#a93b2c")
374

375 # Shapes of groups for methylation profile plots
376 plot_shapes <- c("round"=19,
377 "square"=15,
378 "triangle"=17,
379 "round_border"=21,
380 "square_border"=22,
381 "triangle_border"=24,
382 "diamond"=18,
383 "small_round"=20,
384 "reverse_triangle_border"=25,
385 "diamond_border"=23)
386 ‘‘‘
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4 Troubleshooting guide

4.1 General

Error Cause Solution

After following the open-
ing procedure (for the first
time) and clicking on the
"Run App" button, the app
interface is not opening.

Package installation failed
or some packages are not
fully installed. Plus, to fi-
nalize some package in-
stallation, R needs to be
restarted.

In the RStuddio console, type
"renv::restore(prompt=F)" and
press enter to run it. The down-
load and installation of pack-
ages should start. Then, in the
top bar, click on "Session" and
"Restart R". Then try to open
the app by clicking on the "Run
app" button. If the problem is
not solved, please contact us
with a description of the issue.

Warning message about
RStudio version in the
RStudio console.
"R graphics engine version
X is not supported by this
version of RStudio. The
Plots tab will be disabled
until a newer version of
RStudio is installed."

The RStudio installed on
the device is not up-to-date.

Download and install the
newest version of RStudio at
https://www.rstudio.com
/products/rstudio/download/.

Prompt message dis-
played in the RStudio con-
sole during the selected
BSgenome installation.
"Do you want to install
from sources the package
which needs compilation?
(Yes/no/cancel)"

The installation of the
BSgenome requires other
packages to be installed.

Type "Yes" in the console
panel and press enter to run
it.
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Warning message when
opening the ABSP about
project configuration andR
version (and the app does
not function).
"This project is configured
to use R version ’X.X.X’,
but ’X.X.X’ is currently being
used."

The R version does not
match the R project config-
uration, the R version is ei-
ther older or newer than the
one used to generate the
ABSP project.

Either download the latest
version of R to match the one
of the project configuration
(https://www.r-project.org/) or
download the latest version of
ABSP to match the R version
(https://github.com/ABSP-
methylation-tool/ABSP). If
the currently available ABSP
version does not match the
currently available R version,
download the corresponding
version of R and contact us,
for us to update ABSP as
soon as possible to match the
current R version.
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4.2 Individual analysis

Error Cause Solution

Analysis report aborted af-
ter the reference DNA step.
Error: Length of reference
DNA sequence does not
match with the provided
genomic coordinates.
Please verify concordance
between the reference DNA
sequence and genomic
coordinates.

The provided reference se-
quence in the fasta file has
not had the same length as
the one calculated based
on genomic coordinates
provided in the fasta file
header. So the sequence
and coordinates might not
match.

Check the reference and its
coordinates. If the IGV (In-
tegrative Genomics Viewer)
software is used to get them,
make sure to properly verify
the first and last nucleotides,
as there can be a one nu-
cleotide difference between
the coordinates and the actual
sequence.

Analysis report aborted af-
ter the sequencing trim-
ming step.
Error: Analysis has been
stopped as none of the se-
quencing results are of suf-
ficient quality to be used.

The provided sequencing
results are not of good
quality, the trimming
step was not able to
find a trimmed sequence
long enough (below length
threshold) and/or with poor
quality (below the quality
score and/or non-mixed
positions thresholds).

Lowering a bit the trimming
thresholds might solve the is-
sue, but if not, no solution can
be provided. The best recom-
mendation is to perform the
sequencing run onemore time.
If the sequencing is not of
good quality again, then there
must be an experimental issue
with BSP samples or sequenc-
ing runs.

Analysis report aborted af-
ter the alignment step.
Error: Analysis has been
stopped as none of the pos-
sible alignments are of suf-
ficient length (< N bp) to be
used.

Even if the sequencing re-
sults were of good quality
and successfully trimmed,
their alignments with the
reference DNA sequence
give too short aligned se-
quences to pursue the anal-
ysis.

Check if the reference DNA
sequence is the correct one.
Check if the sequencing re-
sults passed the trimming
step with values just above
thresholds that might explain
the alignment results. In this
case, lowering some thresh-
olds may solve the issue. If
not, the best option is to pro-
vide new results from a new
sequencing run.
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Analysis report aborted af-
ter the alignment step.
Error: Analysis has been
stopped as sequencing re-
sult direction (forward or re-
verse) could not be found.

This error occurs when
the determined direction
for both sequencing results
happened to be the same,
or when only one sequenc-
ing has been successfully
trimmed and aligned, but
alignments as forward or
reverse have the same
length.

For the first case, the results
might have passed the align-
ment step with values just be-
low thresholds, explaining the
identical length of the aligned
sequence in both directions,
still, the best option should be
to provide new sequencing re-
sults to have better trimmed
and aligned results. For the
second case, lowering a bit
some thresholds might help
the other sequencing to pass
the trimming and alignment
steps, still, the best option
should be to provide new se-
quencing results to have bet-
ter trimmed and aligned re-
sults.

Analysis report aborted af-
ter the alignment step.
Error: Analysis has been
stopped as none of the pro-
vided sequencing reads are
of sufficient quality to be
used.

The provided sequencing
results are not of good
quality, they passed the
trimming step but not
the alignment step. The
aligned sequences were
not long enough (below
length threshold) or di-
rection determination
failed.

Lowering a bit the trimming
and alignment thresholds
might solve the issue, but
if not, no solution can be
provided. The best recom-
mendation is to perform the
sequencing run one more
time. If the sequencing is not
of good quality again, then
theremust be an experimental
issue with BSP samples or
sequencing runs.

Analysis report aborted af-
ter the Quality Control (QC)
step.
Error: Analysis has been
stopped as sequencing re-
sults are defined as incor-
rect by Quality Control. The
analysis can not be per-
formed.

The provided sequencing
results are not of good
quality when compared to
the reference DNA; they
passed the trimming and
alignment steps but the
quality control found the se-
quencing results incorrect:
either the identity percent-
age or the mean bisulfite
conversion rates are below
the threshold.

Lowering a bit the thresholds
might solve the issue, but if
not, no solution can be pro-
vided. The best recommen-
dation is to perform the se-
quencing run one more time.
If the sequencing is not of
good quality again, then there
must be an experimental issue
with BSP samples or sequenc-
ing runs.
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Analysis report aborted af-
ter the Quality Control (QC)
step.
Error: Analysis has been
stopped as no CpG sites
were found covered by se-
quencing results.

Even if the sequencing re-
sults passed the trimming,
alignment, and quality
control steps, the aligned
results are not long enough
and do not cover any CpG
sites on the sequence,
thereby methylation levels
can not be computed.

Lowering a bit the thresholds
might solve the issue to get
longer aligned sequences, but
if not, no solution can be pro-
vided. The best recommen-
dation is to perform the se-
quencing run one more time.
If the sequencing is not of
good quality again, then there
must be an experimental issue
with BSP samples or sequenc-
ing runs.

Analysis failed and no re-
port has been generated

Unexpected error. Please contact us and send us
the error message appearing
in the RStudio console.
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4.3 Grouped analysis

Error Cause Solution

Analysis report aborted af-
ter the header.
Error: No file methylation
data files found. Check in-
puts: folder name and se-
quence name, and check
the ‘data’ directory in the in-
dividual results folder.

No methylation data files
from the individual analy-
sis, corresponding to the in-
put information, were able
to be retrieved.

Check if the individual analy-
ses have already been run, if
the files were not moved to an-
other folder, they should be in
the ‘data’ directory in the indi-
vidual results folder, or if the in-
put information, folder name,
sequence name, and experi-
ment type are correct. If the is-
sue is not solved by these rec-
ommendations, please con-
tact us.

Analysis failed and no re-
port has been generated. Unexpected error.

Please contact us and send us
the error message appearing
in the RStudio console.
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STUDY OF DNA METHYLATION MODIFICATIONS: FROM DYNAMICS DURING THE DEDIFFERENTIATION INTO
BREAST CANCER STEM CELLS, TO THE DEVELOPMENT OF THE R-BASED TOOL ABSP, ANALYSIS OF
BISULFITE SEQUENCING PCR

Cancer stem cells (CSCs) form a tumoral subpopulation characterized by self-renewal abilities, pluripotency, ther-
apeutic resistance mechanisms, and tumor initiation capacities, and are therefore a major cause of cancer recurrence
after treatments. Moreover, the non-cancer stem cells (non-CSCs) are able to dedifferentiate into CSCs, in response to
stress, especially to antitumor treatments such as radiotherapy, thus reinforcing the therapeutic resistance of cancer. In
addition, epigenetic marks such as DNA methylation are known to contribute to the regulation of stemness properties
and could be involved in the reacquisition of a CSC phenotype.

To evaluate DNA methylation modifications occurring throughout the radio-induced dedifferentiation of non-CSCs
into CSCs in the breast cancer model, a Reduced Representation Bisulfite Sequencing (RRBS) analysis of the different
tumor subpopulations was carried out. The analysis of RRBS data led to the identification of over 2,000 Differentially
Methylated Regions (DMRs) undergoing methylation changes from non-CSC to radio-induced CSC. Among them, 35
present a methylation profile across the populations consistent with a potential contribution to radio-induced dediffer-
entiation. Five regions, associated with the FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B genes, were selected for
further validation. Genes regulated by these methylation changes could serve as new therapeutic targets to specifi-
cally inhibit the non-CSC to CSC phenotypic switch and prevent the enrichment in CSCs, reducing the risk of cancer
relapse.

To validate identified methylation differences, the Bisulfite Sequencing PCR (BSP) method was chosen as it is
the most convenient and accessible technique to quantify locus-specific methylation levels. Due to a lack of efficient
tools to analyze BSP results from both approaches (direct-BSP and cloning-BSP), the ABSP R-based tool, standing
for Analysis of Bisulfite Sequencing PCR, was developed. This tool provides a complete, automated, and user-friendly
workflow to compute methylation percentages and compare methylation differences between samples. ABSP is avail-
able for download, along with associated data, at https://github.com/ABSP-methylation-tool/ABSP. Altogether, this work
highlights the importance of DNA methylation within CSC plasticity and the room for tools to improve its analysis.

KEYWORDS: breast cancer, radiotherapy, cancer stem cells, DNA methylation, bisulfite sequencing, R language

ÉTUDE DES MODIFICATIONS DE MÉTHYLATION DE L’ADN : DES DYNAMIQUES AU COURS DE LA DÉDIFFÉ-
RENCIATION EN CELLULES SOUCHES CANCÉREUSES DE SEIN, AU DÉVELOPPEMENT DE L’OUTIL ABSP,
Analysis of Bisulfite Sequencing PCR, SOUS R

Les Cellules Souches Cancéreuses (CSC) forment une sous-population tumorale caractérisée par des capacités
d’auto-renouvellement, de pluripotence, d’initiation tumorale et présentent une résistance thérapeutique accrue. Elles
sont donc une cause majeure de récidive du cancer. De plus, les cellules cancéreuses non-souches sont capables de
se dédifférencier en CSC en réponse à un stress, notamment aux traitements anticancéreux comme la radiothérapie,
renforçant ainsi la résistance thérapeutique de la tumeur. Nous avons fait l’hypothèse que les marques épigénétiques
telles que la méthylation de l’ADN, connues comme contribuant à la régulation des propriétés souches, seraient impli-
quées dans la réacquisition d’un phénotype CSC.

Afin d’évaluer les modifications de méthylation de l’ADN au cours de la dédifférenciation radio-induite des cellules
non-CSC en CSC dans le modèle de cancer du sein, une analyse de Reduced Representation Bisulfite Sequencing
(RRBS) des différentes sous-populations tumorales a été réalisée. Cette analyse a permis d’identifier plus de 2 000
régions différentiellement méthylées (DMR) subissant des changements de méthylation entre les états non-CSC et
CSC radio-induit. Nous avons retenu 35 DMR présentant un profil de méthylation cohérent avec une potentielle contri-
bution à la dédifférenciation radio-induite. Cinq d’entre elles, associées aux gènes FSCN1, CHRNA6, CDH7, CD9 et
PRKAR1B, ont été sélectionnées pour validation complémentaire. Les gènes régulés par ces changements de méthy-
lation pourraient servir de nouvelles cibles thérapeutiques afin d’inhiber spécifiquement la conversion phénotypique de
non-CSC à CSC et prévenir un enrichissement de la tumeur en CSC, réduisant ainsi le risque de rechute du cancer.

Pour valider les différences de méthylation observées en RRBS, la méthode de Bisulfite Sequencing PCR (BSP)
a été choisie pour son accessibilité et son efficacité à quantifier les niveaux de méthylation d’un locus spécifique. En
raison de l’absence d’outils à ce jour permettant d’analyser efficacement et de manière automatisée les résultats de
BSP, provenant des deux approches de BSP (direct-BSP et cloning-BSP), nous avons donc fait le choix de développer
sous R un nouvel outil, ABSP pour Analysis of Bisulfite Sequencing PCR. ABSP fournit une analyse complète, auto-
matisée et accessible pour calculer les pourcentages de méthylation et comparer les différences de méthylation entre
échantillons. ABSP et ses données associées sont téléchargeables à l’adresse https://github.com/ABSP-methylation-
tool/ABSP. Ainsi, ce travail a mis en lumière l’importance de la méthylation de l’ADN dans la plasticité du phénotype
souche cancéreux et le potentiel d’amélioration des outils d’analyse.

MOTS CLÉS : cancer du sein, radiothérapie, cellules souches cancéreuses, méthylation de l’ADN, séquençage bisulfite, langage R
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