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ABSTRACT

STuDY OF DNA METHYLATION MODIFICATIONS: FROM DYNAMICS DURING THE DEDIFFER-
ENTIATION INTO BREAST CANCER STEM CELLS, TO THE DEVELOPMENT OF THE R-BASED
TooL ABSP, ANALYSIS OF BISULFITE SEQUENCING PCR

Cancer stem cells (CSCs) form a tumoral subpopulation characterized by self-renewal abilities,
pluripotency, therapeutic resistance mechanisms, and tumor initiation capacities, and are therefore a
major cause of cancer recurrence after treatments. Moreover, the non-cancer stem cells (non-CSCs)
are able to dedifferentiate into CSCs, in response to stress, especially to antitumor treatments such
as radiotherapy, thus reinforcing the therapeutic resistance of cancer. In addition, epigenetic marks
such as DNA methylation are known to contribute to the regulation of stemness properties and could
be involved in the reacquisition of a CSC phenotype.

To evaluate DNA methylation modifications occurring throughout the radio-induced dediffer-
entiation of non-CSCs into CSCs in the breast cancer model, a Reduced Representation Bisulfite
Sequencing (RRBS) analysis of the different tumor subpopulations was carried out. The analysis
of RRBS data led to the identification of over 2,000 Differentially Methylated Regions (DMRs) un-
dergoing methylation changes from non-CSC to radio-induced CSC. Among them, 35 present a
methylation profile across the populations consistent with a potential contribution to radio-induced
dedifferentiation. Five regions, associated with the FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B
genes, were selected for further validation. Genes regulated by these methylation changes could
serve as new therapeutic targets to specifically inhibit the non-CSC to CSC phenotypic switch and
prevent the enrichment in CSCs, reducing the risk of cancer relapse.

To validate identified methylation differences, the Bisulfite Sequencing PCR (BSP) method was
chosen as it is the most convenient and accessible technique to quantify locus-specific methylation
levels. Due to a lack of efficient tools to analyze BSP results from both approaches (direct-BSP and
cloning-BSP), the ABSP R-based tool, standing for Analysis of Bisulfite Sequencing PCR, was devel-
oped. This tool provides a complete, automated, and user-friendly workflow to compute methylation
percentages and compare methylation differences between samples. ABSP is available for down-
load, along with associated data, at https:/github.com/ABSP-methylation-tool/ABSP. Altogether, this
work highlights the importance of DNA methylation within CSC plasticity and the room for tools to
improve its analysis.

KEYWORDS: breast cancer, radiotherapy, cancer stem cells, DNA methylation, bisulfite sequencing, R language
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RESUME

ETUDE DES MODIFICATIONS DE METHYLATION DE LADN : DES DYNAMIQUES AU COURS
DE LA DEDIFFERENCIATION EN CELLULES SOUCHES CANCEREUSES DE SEIN, AU DEVE-
LOPPEMENT DE L'OUTIL ABSP, Analysis of Bisulfite Sequencing PCR, sous R

Les Cellules Souches Cancéreuses (CSC) forment une sous-population tumorale caractéri-
sée par des capacités d’auto-renouvellement, de pluripotence, d'initiation tumorale et présentent une
résistance thérapeutique accrue. Elles sont donc une cause majeure de récidive du cancer. De plus,
les cellules cancéreuses non-souches sont capables de se dédifférencier en CSC en réponse a un
stress, notamment aux traitements anticancéreux comme la radiothérapie, renforgant ainsi la résis-
tance thérapeutique de la tumeur. Nous avons fait I'hypothése que les marques épigénétiques telles
que la méthylation de I’ADN, connues comme contribuant a la régulation des propriétés souches,
seraient impliquées dans la réacquisition d’un phénotype CSC.

Afin d’évaluer les modifications de méthylation de I’ADN au cours de la dédifférenciation radio-
induite des cellules non-CSC en CSC dans le modeéle de cancer du sein, une analyse de Reduced
Representation Bisulfite Sequencing (RRBS) des différentes sous-populations tumorales a été réa-
lisée. Cette analyse a permis d’identifier plus de 2 000 régions différentiellement méthylées (DMR)
subissant des changements de méthylation entre les états non-CSC et CSC radio-induit. Nous avons
retenu 35 DMR présentant un profil de méthylation cohérent avec une potentielle contribution a la
dédifférenciation radio-induite. Cing d’entre elles, associées aux génes FSCN1, CHRNA6, CDH?7,
CD9 et PRKAR1B, ont été sélectionnées pour validation complémentaire. Les génes régulés par
ces changements de méthylation pourraient servir de nouvelles cibles thérapeutiques afin d’inhiber
spécifiquement la conversion phénotypique de non-CSC a CSC et prévenir un enrichissement de la
tumeur en CSC, réduisant ainsi le risque de rechute du cancer.

Pour valider les différences de méthylation observées en RRBS, la méthode de Bisulfite Se-
quencing PCR (BSP) a été choisie pour son accessibilité et son efficacité a quantifier les niveaux
de méthylation d’un locus spécifique. En raison de I'absence d’outils a ce jour permettant d’analyser
efficacement et de maniére automatisée les résultats de BSP, provenant des deux approches de
BSP (direct-BSP et cloning-BSP), nous avons donc fait le choix de développer sous R un nouvel
outil, ABSP pour Analysis of Bisulfite Sequencing PCR. ABSP fournit une analyse compléte, auto-
matisée et accessible pour calculer les pourcentages de méthylation et comparer les différences de
méthylation entre échantillons. ABSP et ses données associées sont téléchargeables a I'adresse
https:/github.com/ABSP-methylation-tool/ABSP. Ainsi, ce travail a mis en lumiere I'importance de la
méthylation de I’ADN dans la plasticité du phénotype souche cancéreux et le potentiel d’amélioration
des outils d’analyse.

MOTS CLES : cancer du sein, radiothérapie, cellules souches cancéreuses, méthylation de 'ADN, séquengage

bisulfite, langage R
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SYNTHESE

ETUDE DES MODIFICATIONS DE METHYLATION DE LADN : DES DYNAMIQUES AU
COURS DE LA DEDIFFERENCIATION EN CELLULES SOUCHES CANCEREUSES DE
SEIN, AU DEVELOPPEMENT DE L'OUTIL ABSP, Analysis of Bisulfite Sequencing
PCR, sous R

1 CONTEXTE
CELLULES SOUCHES CANCEREUSES ET PLASTICITE PHENOTYPIQUE

Ces derniéres années, le modele stochastique d’organisation tumorale a été remplacé par
un modele alternatif basé sur I'organisation hiérarchique des cellules tumorales, faisant émerger le
concept de cellules souches cancéreuses (CSC). Les CSC constituent une sous-population tumorale
caractérisée par une résistance accrue aux thérapies, une capacité a s’autorenouveler et a regénérer
une nouvelle tumeur, ce qui en fait donc une cause majeure des rechutes de cancers. De plus, il a
été montré que des traitements anti-cancéreux comme la radiothérapie, induisait la dédifférenciation
de cellules non-CSC en CSC dans le cancer du sein, ce qui conduit a un enrichissement en cellules
résistantes au sein de la tumeur. Il est donc indispensable de développer de nouvelles approches
permettant de prévenir la dédifférenciation afin de sensibiliser les tumeurs aux thérapies. Lors de
cette conversion phénotypique, des changements transcriptomiques sont observés, tels que la réex-
pression des facteurs de pluripotence OCT4, SOX2 et NANOG. Ces modifications de programmes
géniques pourraient donc étre régulés par des mécanismes épigénétiques, comme la méthylation de

I’ADN, pour permettre la réacquisition de propriétés de cellules souches.

METHYLATION DE UADN ET BISULFITE SEQUENCING PCR (BSP)

La méthylation de I’ADN est le processus épigénétique le plus étudié chez les mammiféres. Ce
mécanisme se traduit par I'ajout d’'un groupement méthyle sur des cytosines suivies d’'une guanine,
nommeés sites CpG. La méthylation de ’ADN participe a la modulation I'architecture de la chromatine,
notamment par la présence de régions denses en CpG, appelées CpG islands, ce qui permet la

régulation de I'expression de génes.

Diverses méthodes permettent de quantifier la méthylation de 'ADN. Parmi elles, le traitement
de I'ADN au bisulfite convertit les cytosines (C) non méthylées en uraciles (U), alors que les cyto-
sines méthylées (mC) restent cytosines (mC). Par amplification PCR, les uraciles (U) sont remplacés
par des thymines (T), car tout deux complémentaires a I'adénine (A). Ainsi, aprés séquencage, la
comparaison de la séquence convertie au bisulfite avec la séquence génomique originale permet de

distinguer les statuts de méthylation de chaque site CpG. Pour un site CpG donné, la détection d’'une




base C correspond donc au statut méthylé et d’'une base T au statut non méthylé. Cette méthode
permet donc de quantifier les pourcentages de méthylation d’une région spécifique au sein d'un
mélange de molécules d’ADN. Cette technique est quantitative, accessible et offre un large spectre
d'utilisation : de I'approche préliminaire a la validation de résultats obtenus a I'échelle du génome
(RRBS/WGBS) en passant par I'analyse d’un grand nombre d’échantillons différents comme pour
des études de cohortes. Deux types de BSP peuvent étre distingués en fonction 'ADN séquencé,
nommeés direct-BSP et cloning-BSP. (1) Dans la cas d’une approche direct-BSP, le séquencage de
'ensemble des amplicons permet une estimation semi-quantificative du pourcentage de méthylation
d’un CpG dans la population totale des ADN. (2) Dans la cas d’une approche cloning-BSP, le clonage
des amplicons de PCR et le séquencgage de clones individuels permet d’obtenir le statut de méthy-
lation d’un CpG d’'une molécule d’ADN (provenant d’'un unique clone). Le pourcentage au sein de la

population a chaque position est quantifié en calculant le ratio de clones méthylés et non-méthylés.

Actuellement, il n’existe qu’un seul outil permettant de calculer les niveaux de méthylation
a partir de données de direct-BSP, appelé ESME (Epigenetic Sequencing Methylation analysis) et
développé en 2004 par Lewin et al. (2004). Celui-ci nécessite un systeme d’exploitation Linux, ce qui
n’est pas idéal pour une utilisation par des biologistes. Il est également limité uniquement au calcul

de pourcentages de méthylation de données de direct-BSP, sans visualisation ou analyse statistique.

2 OBJECTIFS
IMPLICATION DE LA METHYLATION DE UADN DANS LA DEDIFFERENCIATION RADIO-INDUITE EN CSC
Dans une premiére partie, ce projet a pour but de déterminer I'implication des enzymes épi-
génétiques tels que les ADN méthyltransférases dans la dédifférenciation radio-induite de cellules
non-CSC en CSC et d'identifier de potentiels nouveaux acteurs participant a ce processus. Nous
avons émis I'hypothese que des changements de méthylation de 'ADN intervenaient au cours de
ce processus afin de modifier I'expression de certains genes clés nécessaires a la réacquisition
de propriétés de cellule souche. De ce fait, une analyse globale de changements de niveaux de
méthylation de I’ADN permettrait d’identifier de nouveaux génes et mécanismes impliqués dans la
conversion phénotypique de non-CSC a CSC. A long terme, la validation de ces nouvelles cibles
permettrait ainsi de pouvoir prévenir la dédifférenciation en CSC, pour réduire I'enrichissement de la
tumeur en CSC plus résistantes aprés radiothérapie, afin de radiosensibiliser les tumeurs et diminuer

le risque de rechute.

DEVELOPPER UN OUTIL POUR ANALYSER LES DONNEES DE BSP EFFICACEMENT ET DE MANIERE
AUTOMATISEE

Dans une deuxiéme partie, I'objectif est de développer un outil capable d’analyser a la fois des
données de direct-BSP et de cloning-BSP, de maniere automatisée et accessible aux chercheurs
en biologie, et de maniére compléte, des données brutes jusqu’a I'analyse comparative, afin de

déterminer les différences significatives de méthylation entre plusieurs groupes d’échantillons.



3 METHODE

Pour connaitre la contribution des enzymes épigénétiques dans la dédifférenciation radio-
induite, I'expression des enzymes DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3, KDM6A, KDM6B,
et EZH2 a été mesurée au cours du temps aprées radiothérapie dans les cellules de cancer de sein
SUM159PT. Ensuite, la contribution des ADN méthyltransférases DNMT1 et DNMT3B dans la dédif-

férenciation radio-induite a été évaluée a I'aide d’'une inhibition par siRNA.

Afin d’identifier les changements de méthylation de 'ADN au niveau global, une analyse de
reduced representation bisulfite sequencing (RRBS) a été menée sur différentes populations. En
effet, les cellules SUM159PT ont été triées une premiere fois pour isoler les population CSC et non-
CSC. La population de non-CSC a ensuite été irradiée pour induire leur dédifférenciation. Enfin, les
cellules irradiées ont de nouveau été triées 5 jours apres irradiation pour isoler les CSC induites
(iCSC) et les non-CSC irradiées (inon-CSC). La comparaison des données de méthylation entre ces
différentes populations a ensuite été réalisée par analyse bioinformatique sous R afin d’identifier des

régions différentiellement méthylées (DMR).

Loutil ABSP a été développé sous le langage de programmation R, avec I'environnement
de développement RStudio. Il intégre une application shiny qui s’ouvre sur un navigateur web et
fait intervenir des scripts R markdown permettant de générer des rapports d’analyse sous format
HTML. ABSP est divisé en deux analyses, I'une calcule les pourcentages de méthylation de chaque
échantillon unique, l'autre regroupe tous les échantillons pour réaliser une analyse comparative et

déterminer les différences de méthylation statistiquement significatives.

4 RESULTATS

4.1 DYNAMIQUES DE METHYLATION DE UADN AU COURS DE LA DEDIFFERENCIATION RADIO-
INDUITE

IMPLICATION DES ENZYMES EPIGENETIQUES DANS LA DEDIFFERENCIATION RADIO-INDUITE
Lanalyse de I'expression des enzymes DNMT1, DNMT3A, DNMT3B, TET1, TET2, TETS3,
KDM6A, KDM6B, et EZH2 apres irradiation n’a pas permis de révéler des changements d’expres-
sion significatifs de ces enzymes, et donc leur implication dans la dédifférenciation n’a pas peu étre
démontré. En effet, une approche globale de mesure d’expression a certains temps déterminés apres
irradiation ne permettait pas de voir des changements d’expression transitoires liés aux évenements
de dédifférenciation rares (<5% de CSC induites 5 jours apreés irradiation), asynchrones et étalés

dans le temps.

La transfection des cellules avec les siRNA a aboli 'augmentation du pourcentage de CSC
apres radiothérapie, a la fois dans la condition contrdle transfectée avec un siRNA contrOle et dans
les conditions transfectées avec les siRNA ciblant DNMT1 et DNMT3B. Ces résultats indiquent que
la transfection en elle-méme est responsable de la diminution de la dédifférenciation. Ainsi, la partici-

pation de ces enzymes dans ce processus de conversion phénotypique n’a pas pu étre déterminée.




IDENTIFICATION DE REGIONS DIFFERENTIELLEMENT METHYLEES

Lanalyse des données de RRBS sur les populations CSC, non-CSC, iCSC, et inon-CSC a per-
mis I'identification de 2596 régions différentiellement méthylées au cours de la dédifférenciation. Ces
régions ont été filtrées pour ne garder que celles ayant un profil de méthylation correspondant a une
régulation de la méthylation au cours de la dédifférenciation. 35 régions filtrées ont donc été identi-
fiées comme potentiellement impliquées dans cette conversion d'un état non-CSC a CSC. Parmi ces
35 régions, 5 ont été retenues pour étre validées a I'aide d’'une méthode plus spécifique et précise,
par exemple par BSP. (1) Une région CpG island de 328 pb hypométhylée dans les CSC comparé
aux non-CSC est localisée & 1370 pb en amont du géne FSCN1. (2) Un segment de méthylation
long de 17431 pb hyperméthylé est situé dans le géne CHRNAG. (3) Un segment hyperméthylé de
51 pb est également situé dans le géne CDH7. (4) La région autour du site d’initiation de la transcrip-
tion (TSS) du géne CD9 est identifiée comme hypométhylée dans les CSC. (5) Et enfin, une région
de 1000 pb hypométhylée est localisée a 8833 pb en aval du géne PRKAR1B. Ces différences de
méthylation doivent maintenant étre validées et corrélées a des changements d’expression de leur

genes associés.

4.2 ABSP : "ANALYSIS OF BISULFITE SEQUENCING PCR"

- _b%p_

FONCTIONNEMENT EN BREF DE LOUTIL ABSP

Pour chaque échantillon, I'application utilise en données d’entrée : les parameétres de I'ex-
périence (nom de la séquence, condition, date, etc.), un fichier FASTA de la séquence d’ADN gé-
nomique de la région d’intérét, et les deux fichiers ABIF (.ab1) de séquengage, un pour chaque
direction. Une premiére analyse permet de contréler la qualité des séquengages et de calculer les
pourcentages de méthylation. Ces données sont ensuite récupérées pour une seconde analyse grou-
pée de tous les échantillons. Cette derniére génére des graphiques de visualisation (Lollipop style
plots) et compare les conditions entre elles par tests statistiques. Tous les résultats sont a la fois
enregistrés dans les dossiers de I'application et compilés dans un rapport HTML pour parcourir tout

le processus d’analyse.

APPORTS DE LOUTIL ABSP

Lanalyse des résultats de séquencage d’ADN convertis au bisulfite est longue et fastidieuse,
c’est pourquoi de nombreux outils ont été développés. Ce nouvel outil ABSP présente de nombreux
avantages par rapport aux outils existants : (1) son processus d’analyse est complet, il propose en
plus de I'estimation des pourcentages de méthylation, une visualisation des données et une analyse
statistique pour déterminer les différences de méthylation entre plusieurs groupes d’échantillons, (2)

son utilisation est completement automatisée pour I'utilisateur, de I'importation des données jusqu’a



la génération des graphiques et des comparaisons statistiques, (3) il prend en charge I'analyse des
deux types de BSP, direct-BSP et cloning-BSP, et enfin (4) I'utilisation du langage de programmation

libre R permet une trés grande accessibilité, adaptabilité et évolutivité.

Loutil ABSP, ainsi que son manuel d’utilisation, exemples et données tests sont disponibles

au téléchargement sur GitHub a I'adresse https://github.com/ABSP-methylation-tool/ABSP.
CONCLUSION

Gréace a une analyse globale de la méthylation de 'ADN, ce projet a permis d’amorcer I'iden-
tification de nouveaux acteurs intervenant dans le processus de dédifférenciation radio-induite de
cellules non-CSC en CSC. Les différences de méthylation pourront ensuite étre validées et corrélées
a des changements transcriptomiques afin d’identifier des génes potentiellement impliqués dans ce
changement de phénotype. Enfin, I'étude plus poussée de ces génes et de leur réle dans la dédif-
férenciation radio-induite pourrait aboutir au développement de nouvelles solutions thérapeutiques

pour prévenir I'enrichissement en CSC et ainsi radiosensibiliser les tumeurs.

Le programme ABSP apporte donc une nouvelle procédure d’analyse automatisée pour aider
les biologistes a interpréter leurs résultats de BSP. En fournissant une solution clé en main pour
analyser ces données, ABSP facilite ainsi 'accés a I'étude de la méthylation de 'ADN de régions
d’intéréts. En effet, la technique de BSP étant trés abordable, couplée a une analyse des résultats
par ABSP, elle permet d’obtenir rapidement une réponse quant aux niveaux de méthylation d’'une

région spécifique de 'ADN.

Ainsi, ce travail a mis en lumiére I'importance de la méthylation de 'ADN dans la plasticité du

phénotype souche cancéreux et le potentiel d’'amélioration des outils d’analyse.



https://github.com/ABSP-methylation-tool/ABSP
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STATE OF THE ART

1.1 CANCER AND RESISTANCE TO THERAPIES

This section aims to provide a brief overview of anti-cancer therapies and causes of ther-
apeutic resistance, to understand the challenge of targeting cancer stem cells to diminish cancer

recurrence.

1.1.1 INDICATORS AND STATISTICS

WORLDWIDE

In 2020, 19.3 million new cases of cancer and 10.0 million deaths have been reported world-
wide by the GLOBOSCAN project (Figure 1) (Sung et al., 2021). The 5-year prevalence, meaning
the number of people alive within 5 years after a cancer diagnosis, is estimated to be 50.6 million

people.

The three most commonly diagnosed cancers are female breast cancer (11.7%), lung cancer
(11.4%), and colorectal cancer (10.0%), and the ones leading to the most deaths are lung cancer

(18%), colorectal cancer (9.4%) and liver cancer (8.3%) (Figure 2).

Breast cancer is the most diagnosed cancer worldwide, representing 2.26 million new cases in
2020, 11.7% of all cancer diagnosed for both sexes, and 24.5% of all cancers diagnosed in women. It
caused 685,000 deaths worldwide in 2020, 6.9% of all cancer deaths for both sexes, and 15.5% of all
cancer deaths. Breast cancer is therefore the first cause of cancer mortality for women. The 5-year
prevalence is estimated at 7.79 million, which is 17.7% of all cancers for both sexes, and 33.7% of
all cancers for women, meaning that one-third of the women alive within 5 years after the cancer
diagnosis, have been diagnosed with breast cancer (Sung et al., 2021). Further details, specific to

breast cancer, are given in chapter 3 “Breast cancer and breast cancer stem cells” at page 87.

It is estimated that one-quarter of men and one-fifth of women worldwide develop cancer
during their lifetime and that one-eighth of men and one-eleventh of women worldwide die from
cancer. The incidence is predicted to increase to 30.2 million new cases in 2040, almost 50% more

than in 2020 (Global Cancer Observatory website).

IN FRANCE

In France, 382,000 new cases of cancer and 157,400 deaths have been reported in 2018. The
prevalence for 2017 is estimated at 3.8 million people alive who have been diagnosed with cancer in

France.

The three most commonly diagnosed cancers in France are female breast cancer (15.3%),
male prostate cancer (13.2%), and lung cancer (8.1%), and the ones leading to the most deaths are
the lung cancer (21%), colorectal cancer (10.9%) and female breast cancer (7.7%), in 2018 (The

French National Cancer Institute (INCa) website; Panorama des cancers en France, 2021).

With 58,500 new cases and 12,100 deaths in France in 2018, the breast cancer is also the
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FIGURE 1 MAPS OF INCIDENCE AND MORTALITY RATES FOR ALL CANCERS IN 2020.
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A. Map of estimated

incidence rates in 2020, for all cancers, both sexes, and all ages (ASR = age-standardized rate). B. Map
of estimated mortality rates in 2020, for all cancers, both sexes, and all ages (ASR = age-standardized rate).
Graph and data from GLOBOSCAN 2020, international agency for research on cancer (IARC), world health

organization (WHO), available at the Cancer Today - Global Cancer Observatory website.




STATE OF THE ART

Estimated number of new cases in 2020, worldwide, both sexes, all ages
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FIGURE 2 ESTIMATED NEW CASES AND DEATHS BY CANCER SITES IN 2020.  A. Estimated number of new
cases (incidence) in 2020, worldwide, for both sexes and all ages.  B. Estimated number of deaths (mortality)
in 2020, worldwide, for both sexes and all ages.  Graph and data from GLOBOSCAN 2020, IARC, WHO,
available at the Cancer Today - Global Cancer Observatory website.
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most diagnosed cancer (15.3% for both sexes, 33% for women) and the first cause of cancer mortality
for women (17.8%) in France (The French National Cancer Institute (INCa) website; Panorama des
cancers en France, 2021). Further details, specific to breast cancer, are given in chapter 3 “Breast

cancer and breast cancer stem cells” at page 87.

1.1.2 THERAPIES AGAINST CANCER

Several therapeutic protocols exist to treat different types of cancers, including chemotherapy,
radiation therapy (or radiotherapy), surgery, immunotherapy, targeted therapy, and hormone therapy
(National Cancer Institute (US) website). These treatments can be used in combination to be as
effective as possible. The neoadjuvant therapy is the one administrated before the main treatment,
intending to reduce the tumor size beforehand to maximize the main therapy’s effectiveness. The
main treatment is therefore called adjuvant therapy. The choice of treatments depends on the cancer
site and specific biomarkers found in the cancer cells. Here is presented a brief overview of ther-
apy principles, with a focus on radiotherapy. Details on therapies used to treat breast cancers are

presented in section 3.2.5 “Therapies” at page 99.

RADIOTHERAPY

Radiation therapy, or radiotherapy, is a local treatment using ionizing radiations as a physical
agent to destroy cancer cells. The radiation used is called ionizing because it induces the formation of
ions (electrically charged particles) by detaching orbital electrons from atoms. lonizing radiations can
have an electromagnetic form, such as high-energy photons, or a particulate form, such as electrons,
protons, neutrons, ions, or a particles. These particles have sufficient kinetic energy to ionize atoms
by collision as they penetrate matter (Dunne-Daly, 1999; Gieringer et al., 2011; Winiecki, 2020). Gray
(Gy) is the basic unit of radiation absorbed dose, corresponding to the amount of energy absorbed

per unit mass.

Brachytherapy (also known as internal radiotherapy or Curiethérapie) and radioimmunother-
apy utilize radionuclides (radioisotopes) as source of radiation in the form of a (two protons and two
neutrons) particles and P particles (positrons or electrons) or y-rays. In brachytherapy, the thera-
peutic radionuclides is place on the skin surface (superficial) or is injected into the body (intracavitary,
intraluminal, intravascular or interstitial) to be directly in contact with the tumor, therefore reducing nor-
mal tissue exposure to radiations (Chargari et al., 2019; Tanderup et al., 2017). Radioimmunother-
apy uses radiolabeled antibodies consisting of an antibody specific to a tumor-associated antigen
coupled with a radionuclide, to deliver the ionizing radiation to the target cancer cells (Larson et al.,
2015; Pouget et al., 2011).

External beam radiotherapy (EBRT) is the most common form of radiotherapy, it utilizes
beams of particles such as protons, neutrons, or electrons created by linear accelerators (linac),

producing high-energy photons known as X-rays, that are directed at the tumour from outside the
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body. Hence, different types of external beam radiotherapy exist, including electron beam therapy
(electron beams) and proton therapy (proton beams) (Gieringer et al., 2011; Hawley, 2013; Winiecki,
2020).

Fractionation is the administration of repeated daily low doses of radiation over an extended
period of time within a course of treatment, so that a high dose is given to the tumor, while ideally
sparing normal tissue. A fractionated treatment is biologically less effective than a single radiation

dose but minimize the damage applied to normal surrounding tissues (Falk, 2009; Hogle, 2006).

The biologic effects of fractionated radiation therapy on a tissue, either normal or malignant,
relies on four principles, known as the four “Rs” of radiobiology (Falk, 2009; Hogle, 2006; Pajonk
et al., 2010; Withers, 1975):

o Repair (or recovery): the sublethal damage applied to cells is repaired depending on the cell type
and radiation dose-rate.

¢ Redistribution (or reassortment): cells have different sensitivity to radiations depending on their
cell cycle phase. Maximum effect from radiation occur just before and during cell division (G2
and M phases). Thus, the surviving tumoral population after radiation exposure is non-uniformly
distributed through the cell cycle and reach the mitotic phase as the next dose is given, which
increases the treatment effectiveness.

¢ Repopulation (or regeneration): cells respond to depopulation by regeneration through cell divi-
sions between fractions, but the repopulation rate differ between normal and cancer cells. Normal
cells can go through cell division to repopulate the tissue and prevent further damage, while tu-
mor cells accumulate radiation effects and the one that succeeded in that succeeded in dividing
within the course of the treatment are usually incapable of surviving. Fractionation reduces normal
tissue damage while optimizing the killing of tumor cells.

e Reoxygenation: as well-oxygenated cells are more radiosensitive than cells in a low oxygen
environment (hypoxia) as within the tumor mass, the fractionated treatment allows the tumor to

shrink, causing cells to become more oxygenated and thus less radioresistant.

Additionally, the intrinsic radiosensivity of cells as well as the reactivation of anti-tumor immune re-

sponse also modulate the biological effect of radiotherapy (Boustani et al., 2019).

After penetrating the tissue, radiations begin to ionize surrounding molecules, destroying them

by breaking down chemical bounds between atoms.

Radiations generate reactive oxygen species (ROS) (superoxide anion O, hydroxyl radi-
cals "OH and hydrogen peroxide H,O,) by the radiolysis of water from the microenvironment and they
are highly reactive entities toxic for cells. Moreover, radiations induce the production of endogenous
ROS in mitochondria. Excessive intracellular ROS levels disrupt the redox system balance caus-
ing oxidative stress by reacting with biological molecules (proteins, lipids, nucleic acids) (Kim et al.,
2019b; Renschler, 2004).
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The DNA molecules are damaged by direct ionization or by the oxidative stress caused by
ROS levels increase, inducing base oxidation, apurinic or apyrimidinic sites, single-strand breaks and
double-strand breaks. So, in response to radiations, DNA damage repair mechanisms are activated
to maintain DNA fidelity and the cell cycle is arrested to allow time for repair. Errors in the DNA repair
lead to accumulation of mutations, while persistence of too much DNA damage induces cell death
mechanisms such as apoptosis or mitotic catastrophe. Cells can also enter into a senescent state,
corresponding to a stable irreversible state outside of the cell cycle (GO phase) (Baskar et al., 2012;
Kim et al., 2019b).

In addition, the radiation treatment have non-targeted effects on unirradiated cells, in-
cluding genomic instability perpetuation in the descendants of irradiated cells, bystander effects (re-
gional effects, e.g. release of signaling molecules or extracellular vesicles affecting unirradiated cells)
and abscopal effects (distant effects, e.g. radiation-induced immune response affecting unirradiated
metastases) (Bright and Kadhim, 2018; Wang et al., 2015a).

OTHER THERAPIES

Chemotherapy is the use of drugs as a systemic treatment to kill cancer cells based on their
highly proliferative phenotype. This way, chemotherapy aims to slow or stop tumor growth to reduce
its size and associated symptoms. Several types of cytotoxic agents exist, targeting various pro-
cesses associated with cell cycle checkpoints, DNA replication, and DNA damage, to prevent cell
division and ultimately result in cell death by apoptosis. As examples: anti-metabolites are structural
analogs of purines or pyrimidines and interfere with the biosynthesis of nucleic acids by substituting
for normal bases; alkylating agents induce the alkylation of DNA bases and thereby damage the
DNA,; cross-linking agents bind covalently between two strands of DNA to create DNA cross-linking,
impairing processes such as replication or transcription; anti-tubulin agents impair the mitotic spindle
formation and block cell division; and topoisomerase inhibitors suppress the topoisomerase activity
that loosens the DNA supercoiling during replication and transcription and thus, impair these essen-
tial processes (Nussbaumer et al., 2011; Parnell and Woll, 2005). As chemotherapeutic drugs are
toxic to all dividing cells present in the organism, it causes side effects (e.g. hair loss, digestive sys-
tem disregulation) as this toxicity impacts normal cells as well, and it is, therefore, a major limit to
the use of these drugs. Hence, the balance between high efficiency and reduced toxicity is found by

modulating protocols, by adding recovery periods for instance.

Surgery, or resection, consists in removing the tumor or a part of it from the body by a surgical
procedure. Immunotherapy aims to assist the immune system in the anti-tumor response, to over-
come cancer cells immunosuppressive capacities. Targeted therapy consists in targeting specific
proteins or molecular pathways that are necessary for tumor growth by using specific inhibitors such
as small-molecule drugs or antibodies for example. Hormone therapy is used on cancers depending

on hormones to grow, such as prostate or breast cancer. It aims to slow tumor growth by blocking
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hormone-associated mechanisms or pathways.

1.1.3 RESISTANCE TO THERAPIES

The major limitation to therapy effectiveness is the cancer resistance to treatment. The resis-
tance to therapy can be defined as a therapeutic failure, it happens when the cancer is no longer
responding to the therapy and the tumor starts to grow again. Consequently, it causes the recur-
rence of tumors and ultimately, relapse or death. As the incidence of cancers increases, it raises the
necessity to continuously improve treatments to fight against cancer (Hanahan and Weinberg, 2000;
Longley and Johnston, 2005; Sporn, 1996).

A cancer therapy includes three factors: the therapy, the targeted cancer cell population, and
the host environment. Therefore, the therapeutic resistance results from a combination of factors,
at several levels, varying over time. Therapeutic resistance is not only limited to the intrinsic
and acquired duality of resistance properties at the tumor cell and tumor microenvironment levels as
often described (Alfarouk et al., 2015; Vasan et al., 2019). The intrinsic resistance refers to the innate
capacities of the tumor to resist a treatment before the therapy. The acquired resistance describes
the gradual acquisition by the tumor of new ways to resist the therapy, resulting in a gradual reduction
of the therapy effectiveness (Wang et al., 2019b). Hence, the resistance is multi-level and multi-
factorial as it is the result of several overlapping factors including, the pharmacological properties of
the therapy, intrinsic and acquired resistant phenotypes of cancer cells, and extrinsic environmental
factors (Alfarouk et al., 2015). Accordingly, the cancer resistance to therapy is not only a matter of
cellular resistant phenotypes. All of the tumor cells do not have to be qualified as resistant for the
tumor to resist therapy and start regrowing, only the survival and expansion of some resistant cells
may be responsible for it, in a particular environment and with specific treatment properties. Here is

presented an overview of resistance to therapies occurring at different levels.

First, for systemic treatments using drugs, such as chemotherapy or targeted therapy, at the
macroscopic level or systemic level, the pharmacokinetics: absorption, distribution, metabolism,
and excretion (ADME) of the drug by the organism, are involved in the resistance as these parameters
impact the effectiveness of the drug to reach tumor cells, reduce their proliferation and kill them (lzar
et al., 2013; O’Connor, 2007).

Additionally, at a mesoscopic level or regional level, the tumor-host interactions and the
physics of the tumor site have also a role in drug resistance. The vascular morphology and the
intratumoral blood flow have a direct consequence on the drug intratumoral delivery and the potential
stagnation sites of drugs (Alfarouk et al., 2015; Minchinton and Tannock, 2006; Salnikov et al., 2003).
And, by alteration of the intratumoral blood flow, cancer cells can reduce their exposure to drugs
to create a favorable hypoxic environment (low oxygen levels) for their proliferation (Minchinton and
Tannock, 2006; Vasan et al., 2019). Also, the drug will not reach the tumor population when this one is

located in specific protected areas, such as the central nervous system protected by the blood-brain
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barrier (Osswald et al., 2016; Puhalla et al., 2015). In the case of radiotherapy treatment, the radiation
of cancer cells, as well as non-cancer cells, affects intercellular communication, immune system’s
anti-tumoral activities, and thereby the tumor microenvironment. The radiation treatment triggers the
relapse of extracellular factors, which has immunosuppressive effects, by suppressing immune cell
activation for example, and pro-tumorigenic effects, through the enhancement of DNA repair capacity
for example (Ashrafizadeh et al., 2020). Immune cells within the tumor microenvironment, such as
tumor-associated macrophages (TAMs) or regulatory T cells (Tregs), are also particularly affecting
the response to immunotherapy treatments. For example, the loss of T cell function or the diminution
of T cell recognition are mechanisms that can lead to acquired resistance to immunotherapeutic
drugs (Sharma et al., 2017).

Lastly, at the microscopic level or local level, resistance to therapy comes from the tumor
cells themselves, through innate or acquired properties. These resistance properties are thereby
caused by cellular level changes, differing from normal cells, but also differing among the cancer
cells, resulting in a heterogeneous population in terms of therapy response. Indeed, tumor cells
have differences in cellular morphologies, gene expression, signaling pathway activities, epigenetic
patterns, motility, metabolism, proliferation, and metastatic potential, as a result of genetic variations
and environmental factors (Dagogo-Jack and Shaw, 2018; Haider et al., 2020). The genetic variety
is due to genomic instability, meaning an increased mutation rate, and chromosomal instability and
rearrangements, meaning the gain or loss of the whole chromosome (aneuploidy) or structural aber-
rations. Genomic instability is mainly caused by a high division rate with DNA replication defects and
important DNA damage with impaired repair mechanisms (Lengauer et al., 1998; Sansregret et al.,
2018; Stephens et al.,, 2011). This instability gives rise to gene mutations and gene amplification

affecting the cell phenotype, which varies among the tumor population.

By conferring advantages regarding survival and proliferation, some genomic alterations are
selectively preserved and lead to the expansion of specific competitive clones (McGranahan and
Swanton, 2017). This evolution model is called the clonal evolution model of tumor cell populations
and was first described by Nowell (1976). As therapies induce genomic instability in cancer cells,
they enhance the selection of clones with resistant properties. Thereby, under selective therapeutic
pressure can emerge new adaptive responses in tumor cells driving toward resistance (Vasan et al.,
2019).

1.1.4 CANCER STEM CELLS DRIVING THE CANCER RESISTANCE

Within the tumor heterogeneity, one particular subpopulation has been described and char-
acterized as a major contributor to cancer resistance: the so called cancer stem cells (CSCs). This
subpopulation have been reported to contribute to therapeutic resistance in several cancer models,
such as leukemia (Viale et al., 2009), glioblastoma (Eramo et al., 2006), pancreatic cancer (Her-
mann et al., 2007) and breast cancer (Chuthapisith et al., 2010). The concept of CSC will be further
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developed within the next sections.

Interestingly, the pre-existent CSCs, by having higher resistance properties, are selected upon
treatment. Due to their intrinsic properties (tumor initiation, self-renewal abilities and differentiation
potential), CSCs can give rise to an heterogeneous population of cancer cells (Najafi et al., 2018).
This CSC-driven tumor progression contributes to therapeutic failure and cancer relapse (Frank et
al., 2010; Phi et al., 2018). Indeed, many studies have reported that a high proportion of CSCs is

correlated with poor prognosis (Ginestier et al., 2007; Mertins, 2014).

Altogether, it raises the necessity to target both the tumor bulk and the CSC population to
reduce the tumor resistance and disease progression in patients. Therefore, finding new therapeutic

solutions to target CSCs is now a major challenge in the field of cancer resistance research.

Cancers represent 19.3 million new cases and 10 million death in 2020 worldwide. Sev-
eral therapies exist to treat cancers, such as surgery, chemotherapy, radiotherapy, and
immunotherapy.

The major limitation to therapy effectiveness is resistance to treatments. It drives therapeu-
tic failure as tumor cells no longer responds to the treatment and starts to progress again.
The mortality caused by cancer is widely attributed to the therapeutic resistance and to the
formation of new tumors in distant sites.

A response to therapy depend on three compounds: the therapy, the cancer cells, and
the host environment. Thereby, the therapeutic resistance is the result of several factors
including, the pharmacological properties of the therapy, intrinsic and acquired phenotypes
of cancer cells, and extrinsic environmental factors, operating at several levels, systemic,
regional, and local levels.

A subpopulation of cells, cancer stem cells, drives the cancer resistance to therapies.
By having more efficient resistance mechanisms, differentiation, and self-renewal abilities,
these cells can regenerate the bulk of cancer cells and regrow the tumor upon treatment.
Hence, it raises the necessity to study them to find new insights and new therapeutic solu-
tions to fight against cancer resistance.

1.2 TUMOR DEVELOPMENT MODELS
1.2.1 STOCHASTIC (CLONAL EVOLUTION) MODEL

Historically, the tumor development was described as following a clonal evolution model, or
stochastic model, in which the tumor cell heterogeneity is explained by various clones originating
from a succession of different mutations or epigenetic alterations (Figure 3) (Nowell, 1976; Rich,
2016; Torres et al., 2007). This evolution model follows a Darwinian process, whereby the clones
having a selective advantage becomes dominant ones, participating in the tumor progression. The

resistance to treatments is therefore explained by the selection of the more resistant clones under
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FIGURE 3 REPRESENTATION OF THE THREE DEVELOPMENT MODELS. The stochastic model (or clonal
evolution model) postulates that genomic or epigenetic alterations lead to tumor formation as clones are equipo-
tent, they all possess the tumorigenic potential to initiate the tumor formation and are responsible for its het-
erogeneity.  The hierarchical model (or CSC model) postulates that a subpopulation called cancer stem
cell (CSC) holds alone the potential for tumor initiation and regeneration of a heterogeneous tumor population,
through self-renewal and differentiation.  The plasticity model postulates expand the hierarchical/CSC model
by postulating that cancer cells lacking tumorigenic potential can dedifferentiate into CSC and acquire the asso-
ciated stem-like properties. Figure adapted from Dick (2008); Fulawka et al. (2014); Gimple et al. (2019); Rich
(2016); Thomas et al. (2019).

the therapeutic pressure. In this model, all the cells are equipotent, meaning all of them to have the

potential to regenerate a tumor.

1.2.2 HIERARCHICAL (CSC) MODEL

The hierarchical model, or CSC model, proposes a hierarchic organization of tumor cells, with
the CSC population at the top, similarly to the normal tissue organization (Figure 3) (Bonnet and
Dick, 1997; Rich, 2016). As this population is able to self-renew and differentiate to regenerate an
heterogeneous population of cancer cells, these cells are therefore considered responsible for tumor
progression and heterogeneity. Indeed, the CSCs alone can regenerate the entire tumor with all
of primary tumor diversity (Al-Hajj et al., 2003; Dick, 2008). Thereby, coupled with their intrinsic
resistance mechanisms, these cells are designated as a major cause of resistance to therapies and

metastasis formation (Bandhavkar, 2016; Najafi ef al., 2019).

The stochastic and hierarchical models are not mutually exclusive, both could co-exist within

the tumor and explain its heterogeneity, especially since CSCs can be seen as a mix of clones
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whereby the clonal selection can be applied (Shipitsin and Polyak, 2008).

1.2.3 PLASTICITY MODEL

The plasticity model extends the CSC model, by adding a reversibility of the stem-like state
(Figure 3) (Michor and Polyak, 2010; Plaks et al., 2015; Rich, 2016). Indeed, it has been described
that differentiated cancer cells, or cancer non-stem cells (non-CSCs), can reacquire stem cells prop-
erties in several cancer models (Chaffer et al., 2011; Debeb et al., 2012; Lagadec et al., 2012;
Schwitalla et al., 2013; Yang et al., 2012). As cancer cells are more plastic than normal cells, this
model describes the CSC phenotype as a transitory state, comparable with the EMT process. In-
trinsic tumor factors or stimuli from the microenvironment can influence the shift between states of
cancer cells and induce the reacquisition of stem cell characteristics. The CSCs differentiate into
transit-amplifying cells, or progenitors (direct progeny of CSCs), mildly pluripotent, proliferative and
lacking self-renewal ability, that can revert to a CSC state (Aponte and Caicedo, 2017; Nassar and
Blanpain, 2016). The stemness hierarchy remains in this model as progenitor cells cannot regen-
erate the full tumor heterogeneity, but it is less rigid as cells can change state and move up in the
hierarchy towards CSCs, instead of just going down towards differentiation. Further explanations on
plasticity and dedifferentiation of cancer cells are given in chapter 2 “Plasticity and dedifferentiation

into cancer stem cells” at page 65.

1.2.4 UNIFIED MODEL

These three models are not exclusive but complementary as they all participate in increasing
the tumor diversity and they can be gathered in a unifying model, as proposed by Michor and Polyak
(2010) (Figure 4). Indeed, inside the CSC compartment, CSCs can evolve by acquiring additional
genetic mutations and can be clonally selected under environmental pressure, participating in cancer

progression and resistance to therapies.

The accumulation of mutations in CSCs are perpetuated due to their self-renewal ability and
transmitted through differentiation to transit-amplifying cells. These cells give rise to non-CSC that
are also subjected to genetic alteration events, but they cannot persist as they are not able to self-
renew unless they reacquire self-renewal abilities through dedifferentiation and rejoin the CSC pool
(Michor and Polyak, 2010). This model supports the theory of the CSC phenotype as a transient
state whereby accumulated mutations conferring a selective advantage persist and are spread in

more differentiated cells (Figure 4).
1.3 CONCEPT OF CANCER STEM CELLS

1.3.1 DISCOVERY AND DEFINITION

In adult tissues, normal stem cells (SCs) are responsible for tissue maintenance and regener-

ation, thanks to their self-renewal ability and capacity to differentiate into multiple cell lineage required
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FIGURE 4 UNIFIED MODEL OF TUMOR DEVELOPMENT AND DIVERSITY.  This model proposes to combine
the three models of tumor development: stochastic (clonal evolution), hierarchical (CSC), and plasticity models.
The CSC pool accumulates genetic mutations, participating in increasing the diversity of tumor cells and in the
tumor progression. These mutations persist through the self-renewal of the CSC population and are transmitted
to transit-amplifying cells through differentiation. These cells become non-CSC cells and also accumulate muta-
tions that cannot persist unless the cell reacquires self-renewal abilities by rejoining the CSC population through
dedifferentiation. Figure adapted from Michor and Polyak (2010).

for a specific organ (Blanpain and Fuchs, 2014). This implies a hierarchical organization of tissues,
that has been particularly described in the hematopoietic tissue (Eaves, 2015). Based on this model,
Bonnet and Dick (1997) applied this concept to human acute myeloid leukemia (AML). They already
demonstrated that leukemia cells had different capacities to propagate leukemia when transplanted
into immunodeficient mice (Lapidot ef al., 1994). They found that the leukemia-initiating fraction of
cancer cells possess specific cell surface markers, described as the CD34*/CD38" cells. This popu-
lation, called leukemia stem cells (LSCs), or CSCs, have similar properties of normal SCs. Indeed,
they express genes similar to those expressed by hematopoietic stem cells (HSCs), they are able
to self-renew and can regrow an heterogeneous cancer population by regeneration of different cell
lineages. It was thereby established that similarly to normal tissues, tumors can be organized in
a hierarchical model (Bonnet and Dick, 1997). Later on, the presence of CSCs was demonstrated
in several other cancer models, including breast cancer (Al-Hajj et al., 2003), glioma (Singh et al.,

2004), colorectal cancer (O’Brien et al., 2007) and pancreatic cancer (Li et al., 2007a).

By definition, cancer stem cells (CSCs) are cancer cells capable to produce more CSCs as
well as to differentiate into cancer cells, enabling the regeneration of an heterogeneous tumor. That’s

why CSCs are also called tumor-initiating cells (TICs) (Clarke et al., 2006b), which could be confusing
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regarding the cell of origin of the tumor.

1.3.2 ORIGIN OF CANCER STEM CELLS

As the CSCs are driving the tumor initiation and progression, it raises the question of their
origin at the point of tumor initiation. Two hypothesis remains, either the CSCs come from normal

differentiated cells or adult tissue SCs (Figure 5).
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FIGURE 5 THE ORIGIN OF CANCER STEM CELLS AT TUMOR INITIATION.  Adult stem cells, progenitors, or
differentiated cells can be transformed by an accumulation of mutations and initiate the tumor development. For
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progenitors and differentiated cells to be the cell of origin of the tumor, they must reacquire stemness properties
such as self-renewal through a dedifferentiation process, to generate the heterogeneity of tumor cells. The type
and aggressiveness of the tumor vary depending on the cell of origin. Figure adapted from Walcher et al. (2020).

First, it was hypothesized that CSCs were coming from the transformation of an adult SC,
in which oncogenes are overexpressed and tumor suppressors inactivated, promoting uncontrolled
growth of the cells, and initiating the tumor development (details in section 3.2.2 “Tumorigenesis” at
page 92) (Hanahan and Weinberg, 2011; Sutherland and Visvader, 2015). As the SCs already have
unlimited growth potential, only a few genetic changes would be required for their transformation,
giving a tumor-initiating cell with stemness properties (Walcher et al., 2020). However, studies have
demonstrated, by the lineage tracing of cancer cells, that tumors can also originate from differentiated
cells or progenitor cells (Blanpain, 2013; Mu et al., 2015; Oikawa, 2016; Perekatt et al., 2018).
The plasticity of transformed cells is enough for their dedifferentiation through the re-acquisition of
stemness characteristics, induced by the accumulation of mutations and/or environmental factors
(Figure 5). Additionally, it has been shown that the cell of origin influence the type, aggressiveness,
and prognosis of the tumor (details in section 3.2.4 “Heterogeneity and classifications” at page 94 for

breast cancer) (Blanpain, 2013; Visvader, 2011).
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1.3.3 STEMNESS PROPERTIES

The normal SCs possess several distinct characteristics, also called stemness properties,
which mainly consists in self-renewing while also generating differentiated cells. In cancers, by pos-
sessing self-renewal and differentiation abilities, CSCs are able to drive the growth of a heterogenous
tumor while maintaining their pool. Interestingly, this process happens during tumor progression, af-
ter treatments or while driving the formation of heterogeneous metastases at distant sites (Figure 6)
(Lytle et al., 2018).

A Cancer stem cell @ B % @ Cancer stem cell
Primary tumor e
/ \ \ Progenitor cell
Symmetric division \

/ \ m Cancer cells
@ @ Cancer stem cell
/ o\

Asymmetric division

/o ¢
Secondary tumor (0]
Progenitor cell ( 3

FIGURE 6 DEFINING FEATURES OF CANCER STEM CELLS. A. The self-renewal of CSCs is the ability to gen-
erate daughter cells with stemness characteristics. A CSC can undergo a symmetric division, giving two CSCs,
or an asymmetric division, giving one CSC and one progenitor cell without stemness features and committed to
a differentiation process. B. A CSC can regenerate a heterogeneous tumor population, which is possible due
to their self-renewal and generation of differentiated cells abilities. Figure adapted from Fulawka ef al. (2014).

SELF-RENEWAL

Self-renewal is the ability for cells to proliferate while maintaining a pool of cells with the same
characteristics indefinitely. A cell division is described as symmetric when the cellular components
are equally distributed and two identical daughter cells are produced. It’s described as asymmetric
when cellular components are unequally distributed, giving two different daughter cells, one possess-
ing the same characteristics as the initial cell while the other is more differentiated (Figure 6A) (Fuchs
and Chen, 2013).

The self-renewal ability along with the asymmetrical cell division are key features of normal
stem cells for tissue homeostasis and regeneration over time (Urban and Cheung, 2021). In tis-
sues, the self-renewal of stem cells is highly regulated, as self-renewal impairment weakens tissue
regeneration, while the over-activation of self-renewal can lead to cell transformation and tumor de-
velopment. Additionally, a fine balance between symmetric and asymmetric divisions, often spatially

regulated within the tissue, allow the maintenance of the stem cells pool (Fuchs and Chen, 2013).

Similar to normal stem cells, CSCs are capable of both symmetric and asymmetric division to




STATE OF THE ART

perpetuate themselves within a fast growing tumor (Lytle et al., 2018; Schillert et al., 2013).

POTENTIALITY

The potentiality is the capacity of unspecialized cells to differentiate into specialized cells along
lineages. Different types of potentiality have been defined in normal stem cells depending on the
range of lineages a cell can differentiate into: totipotency, pluripotency, multipotency, bipotency, and

unipotency (Figure 7) (O’Connor and Crystal, 2006).
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FIGURE 7 POTENTIALITY OF NORMAL STEM CELLS. After fertilization, the diploid zygote cell is totipotent
and initiates a series of cell divisions to form the embryo. At the blastocyst stage, embryonic stem cells (ESCs)
derived the inner cell mass can differentiate into all cell types of the three primary germ layers, endoderm,
mesoderm, and ectoderm, they are pluripotent. In the fetus and later in the adult, the somatic stem cells (SSCs)
can differentiate into various cell types depending on their organ of origin, they are multipotent. When SSCs are
able to differentiate into two lineages or one lineage, they are called bipotent or unipotent, respectively. Figure
adapted from O’Connor and Crystal (2006).

First, the zygote formed after the fertilization is defined as totipotent as it corresponds to
the original cell that will create all cells of the organism. Then, embryonic stem cells (ESCs) are
pluripotent as they can differentiate into all cell types of the three primary germ layers, endoderm
(gastrointestinal tract, lungs), mesoderm (bones, muscles, blood), and ectoderm (epidermis, nervous
system). Finally, in the fetus and adult, the SSCs are more specialized and can differentiate into cell
types of the tissue in which they reside, that's why they are called after their organ of residencies,
such as mammary stem cells (MaSCs) or hematopoietic stem cells (HSCs). These cells can be

either multipotent if they can differentiate into multiple lineages, bipotent if they can differentiate into
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two lineages, or unipotent if they can differentiate into only one lineage (O’Connor and Crystal, 2006).
The unipotency can be also associated with progenitors (direct daughter cells of stem cells) that are

not fully differentiated and can still differentiate further in one lineage (Rodrigues et al., 2019).

The potentiality of SSCs to differentiate into one or several lineages is essential for tissue
homeostasis and regeneration. As tissues present different regeneration needs, the proliferation rate
of stem cells depends on their tissue residency environment. In rapidly renewing tissues, such as
the skin or the intestine, most stem cells proliferate continuously whereas, in low turnover tissues,
such as muscles or the nervous system, stem cells are mostly in a quiescent state, meaning a non-
proliferative state that can be reversed upon appropriate stimuli (Urban and Cheung, 2021). Hence,

not all SSCs are quiescent but quiescence is still a key feature of stem cells.

Similarly to SSCs, CSCs express pluripotency genes coding for transcription factors involved

in the maintenance of the stem cell state.

1.3.4 REGULATION OF STEMNESS

PLURIPOTENCY FACTORS

Several genes have been reported as essential for the maintenance of the pluripotent state
of normal stem cells, as well as in CSCs: octamer-binding transcription factor 4 (OCT4) (also
named pit-oct-unc class 5 homeobox 1 (POU5F1)), sex determining region Y-box (SOX) 2 and
NANOG are the three main ones (Boyer et al., 2005; Liu et al., 2013a).

These pluripotency-associated genes code for master transcription factors regulating numer-
ous gene programs, they are forming the core of the pluripotency gene regulatory network (PGRN),
a cascade of regulatory events that maintain the self-renewal ability, the pluripotency state, and pre-
vent the differentiation of the cell. The pluripotency factors act in complex, OCT4 and SOX2 form
heterodimers while NANOG form homodimers, that bind to specific DNA consensus sites and have
been found to co-occupy hundreds of potential regulatory elements in the genome, including other
pluripotency factors genes such as kruppel like factor 4 (KLF4) and LIN28 (Li and Belmonte, 2017; Li
and Belmonte, 2018). This OCT4-SOX2-NANOG occupancy has been found notably on enhancers
associated with the regulation of self-renewal and differentiation. In addition, the OCT4/SOX2 com-
plex also regulates the NANOG gene, which acts as a safeguard to repress the pro-differentiation
signals (Rodda et al., 2005). Other pluripotency factors, such as KLF4, C-MYC, and LIN28, have

also been reported to be involved in the maintenance of a pluripotent state.

In ESCs, OCT4, SOX2, and NANOG function as differentiation repressors of the three germ
layers (endoderm, mesoderm, ectoderm) lineages (Thomson et al., 2011). The artificial reexpression
of pluripotency factors leads to the reprogramming of somatic cells into an ES-like state by reestab-
lishing their pluripotent state, these cells are called induced pluripotent stem (iPS) cells (Takahashi
et al., 2007; Takahashi and Yamanaka, 2006; Theunissen et al., 2011; Yu et al., 2007b).
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In cancers, the overexpression of pluripotency factors is correlated with tumor aggressiveness
and serves as CSC markers (Ben-Porath et al., 2008; Chiou et al., 2010; Chiou et al., 2008).

SIGNALING PATHWAYS

A cross-talk of several signaling pathways, such as Wnt/3-catenin, Notch and Hedgehog
(Hh) pathways, regulates the self-renewal and the maintenance of pluripotency, participating in the
regulation of stemness by the microenvironment in both normal and cancer stem cells (Ajani et al.,

2015; Liu et al., 2013b; Matsui, 2016; Yang et al., 2020a).

The Wnt/B-catenin pathway can be conducted in two different ways, as a canonical pathway
operating, through the B-catenin, involved in cell fate determination or as a non-canonical pathway,
B-catenin independent, participating in cell movement and tissue polarity control. In absence of a
Whnt signal, the B-catenin binds the GSK3-AXIN-APC destruction complex, composed of glycogen
synthase kinase 3 (GSK3), Axin, and adenomatosis polyposis coli (APC), which leads to its ubiquiti-
nation and subsequent degradation by the proteasome. In presence of the Wnt signal, Wnt ligands
bind to the Frizzled family receptors and LRP5/LRP6 co-receptors causing a cascade of signaling
interactions resulting in the disruption of the GSK3-AXIN-APC destruction complex. The B-catenin
molecules translocate and accumulate into the nucleus, where they form a complex with T cell fac-
tor/lymphoid enhancer factor (TCF/LEF) family transcription factors and co-activators, leading to the
transcription of target genes (Katoh and Katoh, 2007; Pohl et al., 2017). Hence, the Wnt/B-catenin
pathway contributes to stem cell maintenance, embryonic development, and tissue homeostasis (Mo-
hammed et al., 2016).

In cancer, the Wnt signaling has been associated with tumorigenesis, tumor progression, and
therapy resistance, its over-activation is correlated with a poor prognosis and increased recurrence
(Holland et al., 2013; Katoh, 2017; Mohammed et al., 2016; Yang et al., 2015). Its activation promotes
the self-renewal capacity of CSCs, in several cancer models such as leukemia and prostate cancer
(Bisson and Prowse, 2009; Kawaguchi-lhara et al., 2008). It was also reported that Wnt signals
orient the asymmetric division of CSCs by maintaining the stem-like state of one daughter cell while

the other acquires differentiation features (Habib et al., 2013)

The Notch pathway depends on physical interactions between adjacent cells to be activated.
The ligand binding to the Notch receptor triggers the cleavage of the Notch extracellular domain
(NECD) and the transmembrane domain, releasing the Notch intracellular domain (NICD). This NICD
domain translocates to the nucleus and forms a transcriptional complex with DNA binding proteins
and co-activators to induce the transcription of Notch target genes (Hori et al.,, 2013). The Notch
pathway contributes to the cell fate determination of normal stem cells during the development by
maintaining a balance between pluripotency and differentiation (Bigas and Porcheri, 2018). In cancer,
the Notch pathway is activated in CSCs and participates in the disease progression and resistance

to treatments (Bolds et al., 2008; Giuli et al., 2021). In breast cancer, the radiotherapy treatment
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induces the Notch signaling activation and the enrichment in CSCs (Lagadec et al., 2013).

The Hedgehog (Hh) pathway is activated when the Hh ligands bind the patched (PTC) -
smoothened (SMO) receptor complex, inducing a signaling cascade up to the activation of the glioma-
associated oncogene (GLI) family of transcription factors, to trigger the expression of Hh target genes.
Non-canonical signaling of Hh, ligation- and receptor-independent, have also been described (Car-
ballo et al., 2018). Target genes of the Hh signaling are involved in proliferation, differentiation, and
survival, and includes the NANOG gene (Coni et al., 2013). Thus, the Hh signaling regulates the
self-renewal and pluripotency of stem cells and is important for embryogenesis, tissue homeostasis,
and repair (Petrova and Joyner, 2014). In cancer, it also participates in the CSCs pool maintenance

and in their resistance to treatment (Clement et al., 2007; Liang et al., 2021; Tanaka et al., 2009).

Other signaling pathways implicated in the embryonic development and the tissue homeosta-
sis, such as the Janus-activated kinase (JAK) / sighal transducer and activator of transcription
(STAT) 3 pathway or the tumor growth factor p (TGF-$) pathway, have also been reported to reg-
ulate stemness properties of CSCs by promoting their self-renewal (Jin, 2020; Sakaki-Yumoto et al.,
2013).

EPIGENETICS

Epigenetic mechanisms regulate the gene transcription within the cell, without altering the
DNA sequence but only by changing the accessibility of genetic loci to transcriptional machinery
through chromatin remodeling. Several types of epigenetic modifications are reported: nucleosome
remodeling, histone variants, histone post-translational modifications (PTMs), DNA methylation, and

non-coding RNAs.

Through these different mechanisms, the expression of genes linked to the CSC-associated
pathways (e.g. Wnt, Notch, Hh) and pluripotency factors (e.g. OCT4, SOX2, NANOG) is finely

regulated in both normal and cancer stem cells (Figure 8).

The nucleosomes are complexes of eight histone proteins: histones H2A, H2B, H3, and H4,
each in dimers. The DNA molecule wraps around the nucleosome (147 bp) to form the basic unit
of the chromatin (Clapier and Cairns, 2009). The accessibility of promoters to transcription factors
depends on the conformation and the presence or absence of nucleosomes. Chromatin remodeling
complexes, also called remodelers, can remove, slide, or restructure nucleosomes to modify the
target site exposition to the transcription machinery (Jiang and Pugh, 2009; Morgan et al., 2020).
These remodelers, such as the switch/sucrose non-fermenting (SWI/SNF) complex, participate in
the pluripotent state and self-renewal maintenance in ESCs and leukemia CSCs (Figure 8A) (Gao et
al., 2008; Shi et al., 2013).

Incorporation of histone variants within the nucleosome core, like macroH2A1, H2A.Z, or

H3.3, can also induce chromatin conformation changes by altering the structure and stability of nu-
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FIGURE 8 EPIGENETIC REGULATION OF CANCER STEM CELLS. Several epigenetic mechanism regulate the
stemness-associated genes expression in CSCs.  (A) Nucleosome remodelling and remodelers complexes.
(B) Changes in histone variant deposition.  (C) Histone post-translational modification and histone modifiers.
(D) DNMT-mediated DNA methylation and TET-mediated DNA demethylation. ~ (E) Changes in non-coding
RNAs expression levels. Figure from French and Pauklin (2021).

cleosomes. The mobility of the core histones and histone variants have been associated with stem
cell properties including pluripotency (Boskovi¢ et al., 2014; Santenard and Torres-Padilla, 2009;
Turinetto and Giachino, 2015). In CSCs, changes in histones variants macroH2A1 and H3.3 levels
have been linked to the maintenance of their self-renewal capacity (Figure 8B) (Gallo et al., 2015;
Park et al., 2016; Re et al., 2018).

Histone post-translational modifications, such as methylation or acetylation of lysine residues
at histones tails for example, affect gene expression by altering the chromatin state (euchromatin,
active state, and heterochromatin, repressive state) and the ability of protein complexes to bind to
target loci. For instance, the presence of histone H3 lysine 4 trimethylation (H3K4me3) at promoters
is generally correlated to gene transcription activation, while the histone H3 lysine 27 trimethyla-
tion (H3K27me3) and histone H2A lysine 119 monoubiquitination (H2AK119Ub1), established by the
polycomb repressive complex (PRC) 1 and 2, are associated with gene silencing. Distinct histone

modification landscapes are found between differentiated cells and ESCs, pluripotent cells present
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more euchromatin and less heterochromatin (Hawkins et al., 2010). Histone modifying enzymes,
acetylase, methylase, or demethylases, are therefore crucial for the regulation of pluripotency and
cell identity (Figure 8C) (Boland et al., 2014). The two repressive complexes PRC1 and PRC2 and
in particular their respective catalytic subunits BMI1 and enhancer of zeste homolog 2 (EZH2) are
required for pluripotency of both normal and cancer stem cells in several models (Cruz-Molina et al.,
2017; Liu et al., 2006b; Proctor et al., 2013; Vlerken et al., 2013; Wen et al., 2021).

DNA methylation participates to the regulation of genes programs associated with stemness
features (Figure 8D). Further details on DNA methylation principles can be found in chapter 4 “DNA
methylation: principles and methodology” at page 105. First, the promoter region of the NANOG
pluripotency factor genes have been found hypomethylated in CSCs (Wang et al., 2013c). Several
studies have reported a stem cell DNA methylation signature in CSCs (Helou et al., 2014; Lee et al.,
2015). Then, the up-regulation of DNA methyltransferases (DNMTSs), responsible for establishment
and maintenance of DNA methylation, is correlated with increased tumorigenic capacities of CSCs
while demethylating agent treatment is correlated with a decrease of them (Liu et al., 2014; Tian et
al., 2012; Tsai et al., 2012). The treatment with DNMT inhibitors also leads to re-sensitization of
ovarian cancer cells to chemotherapy agents (Wang et al., 2014b). Lastly, the importance of TET-
mediated demethylation for the pluripotency state maintenance of ESCs and its establishment in iPS

cells was also reported (Costa et al., 2013; Gao et al., 2013; Olariu et al., 2016).

Finally, several long non-coding RNAs (IncRNAs) and micro RNAs (miRNAs), have also
been reported to modulate pluripotency and self-renewal associated genes (Figure 8E). For instance,
the expression of the IncRNA H19 is correlated with the expression of OCT4 and SOX2 pluripotency
factors and with increased tumorigenic capacities of CSCs (Roy et al., 2015). Additionally, H19 along
with the let-7 miRNA family also regulates the LIN28 pluripotency factor expression, involved in the
promotion of CSCs symmetric division and thereby self-renewal (Albino et al., 2016; Lecerf et al.,
2020). Many other miRNAs have been described as involved in the regulation of CSCs stemness
characteristics, such as the miR-200, miR-21, miR-22, and miR-183 families (Shimono et al., 2015).

NICHE

CSCs reside in distinct regions within the tumor, called the CSCs niches, consisting in spe-
cialized environments that maintain their stemness properties while protecting them from therapeutic
agents and immune system (Plaks et al.,, 2015). This environment has specific physicochemical
properties and is composed of stromal cells, immune cells, endothelial cells all releasing extracellu-

lar matrix (ECM) molecules, inflammatory factors and growth factors.

Different key components are forming the CSC niche. First, CSCs can interact with stromal
cell through cell-to-cell communication (Melzer et al., 2017). Either by the release of extracellular
factors (e.g. cytokines such as interleukin (IL)-6 and IL-8 and growth factors such as the TGF-

B) for a paracrine action or by juxtacrine interactions (e.g. Notch receptor, Ephrin receptors), the
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stromal cells, such as cancer-associated fibroblasts (CAFs) or TAMs, can activate signaling pathways

associated to stemness (Essex et al., 2019; Lu et al., 2014a; Nair et al., 2017).

The spatial organization of the extracellular matrix (ECM) components (proteins, glycopro-
teins, proteoglycans, and polysaccharides) has a determinant role in the CSC niche. The ECM acts
as a physical barrier blocking drugs, provides anchorage for CSCs, and its remodeling by matrix
metalloproteinases facilitates the diffusion of extracellular factors and enhances stemness properties
(Lu et al., 2012). The anchorage provided by the ECM in the CSC niche is required for the mainte-
nance of cell polarity, regulating the symmetrical and asymmetrical divisions of CSCs, thus the ECM

is essential for the self-renewal and differentiation of stem cells (Yamashita and Fuller, 2008).

Another major feature of the CSC niche is its oxygen levels, determined by the tumor vascu-
larization. CSCs can reside both in a hypoxic region (reduced oxygen levels) promoting their survival
and self-renewal, or in a perivascular area, facilitating their dissemination through blood vessels
(Plaks et al.,, 2015). Hypoxia induces increased levels of the hypoxia-inducible factor (HIF) family
of transcription factors, and HIF-1a have been described as involved in the CSC pool maintenance,

enrichment, and resistance to therapies (Carnero and Lleonart, 2016; Rainho et al., 2021).

Altogether, the stemness properties of CSCs are the result of an interconnected regulation, in-
volving pluripotency transcription factors as master regulators, signaling pathways, epigenetic control

of the chromatin and microenvironment interactions.

A cancer stem cell (CSC) is defined as a tumor initiating cell, capable of regenerating a
heterogeneous tumor, thanks to two main features: self-renewal capacity and pluripotency
(Figure 6 and Figure 7).

The CSC at tumor initiation can originate from either the transformation a normal stem cell
that already possesses stemness features or from the transformation and dedifferentiation
of differentiated normal cell (Figure 5).

A fine regulation of self-renewal and pluripotency is established in CSCs, and involved a
cross-talk of multi-levels mechanisms.

The tumoral microenvironnment within the CSC niche, epigenetic mechanisms (Figure 8),
pluripotency-associated signaling pathways and pluripotency-associated transcription fac-
tors are altogether inter-operating the stemness properties of CSCs.

1.4 RESISTANCE MECHANISMS OF CANCER STEM CELLS

Several interconnected mechanisms have been associated with CSC resistance to therapies,
especially to chemotherapy and radiotherapy (Figure 9) (Garcia-Mayea et al., 2019; Li et al., 2021;
Najafi et al., 2019; Prieto-Vila et al., 2017; Zhou et al., 2021).
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First, the previously described stemness features: self-renewal ability, associated signaling
pathway and transcription factors, as well as the CSC niche promotes the maintenance of CSC upon
treatments. For example, the Wnt/B-catenin pathway up-regulates the production of ATP-binding
cassette (ABC) transporters (Chau ef al., 2013; Milosevic et al., 2020). These ABC transporters
(e.g. ABCB1, ABCG2, ABCBS5) are drug efflux pumps responsible for the elimination of cytotoxic
agents including chemotherapeutic drugs and are highly expressed in CSCs (Begicevic and Falasca,
2017; DeGorter et al., 2012). Additionally, a protective autophagy machinery can be over-activated
in CSCs to minimize the cellular exposure to stress such as chemotherapeutic agents or radiotherapy
induced ROS (Nazio et al., 2019). CSCs can also present an increased aldehyde dehydrogenase
(ALDH) activity, which participates in the drug detoxification through the oxidation of aldehydes
to carboxylic acids, leading to the reduction of ROS levels and thus preventing ROS-induced DNA
damage (Raha et al., 2014; Zanoni et al., 2022). To decrease the oxidative stress due to intracel-
lular ROS levels, CSCs can increase the expression of antioxidant machinery components, such as
the superoxide dismutase or the glutathione reductase, in the different subcellular compartments to
scavenge ROS (Das and Roychoudhury, 2014). They generally possess enhanced DNA repair mech-
anisms to counterbalance the damage inflicted to DNA by ROS (Schulz et al., 2019; Skvortsov et al.,
2015). Moreover, some CSCs have the capacity to switch their metabolism, between glycolysis and
oxidative phosphorylation (OXPHOS), which participates in the modulation of the oxidative stress. As
the mitochondrial oxidative phosphorylation is an important source of ROS, the up-regulation of gly-
colysis coupled with OXPHOS decrease is called the Warburg effect and helps maintain the redox
(reduction-oxidation) balance upon treatments (Daniel et al., 2021; Movahed et al., 2019). In addition,
CSCs can be resistant to oxidative stress by being located within a hypoxic niche triggering high
levels of HIF factors and enhanced ROS detoxification mechanisms (Kabakov and Yakimova, 2021).
Furthermore, CSCs can have increased survival mechanisms, such as an efficient anti-apoptotic
system, an high telomerase activity and enhanced DNA damage repair mechanisms, such as the
base excision repair (BER) (Liu et al., 2006a; Makki et al., 2015; Skvortsov et al., 2015; Wesbuer et
al., 2010). Finally, as CSCs in a quiescent state have a reduced DNA replication velocity, and are
therefore less sensitive to replicative stress, induced by radiations or chemotherapy drugs, creating
DNA damage (Carruthers et al., 2018; Skvortsova et al., 2015).

1.5 THERAPEUTIC TARGETING OF CANCER STEM CELLS
1.5.1 CSC MARKERS

The first step to study CSCs and develop therapeutics against them is to properly discrimi-
nate them from the rest of the cancer cell population. To do so, specific markers have been found
expressed depending on the cancer model and cell lines. Additionally to the expression of the pluripo-
tency factors (e.g. OCT4, SOX2, NANOG, KLF4...), cell surface proteins, named cluster of differen-
tiation (CD), are widely used to identify CSCs. For example, the CD133" cells and CD44*/CD24-
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FIGURE 9 RESISTANCE MECHANISMS OF CANCER STEM CELLS. Numerous interdependent mechanisms
and actors are involved in the increased resistance of CSCs, such as stemness-associated signaling pathways,
hypoxic niche, drug efflux, increased survivability, oxidative stress control, or being in a quiescent state. ABC=
ATP-binding cassette; ALDH= aldehyde dehydrogenase; CAFs= cancer-associated fibroblasts; CSC= can-
cer stem cell; OXPHOS= oxidative phosphorylation; ROS= reactive oxygen species; TAMs= tumor-associated
macrophages.

cells have been characterized as the CSC population in glioblastoma and breast cancer respectively.
Other CSC-specific mechanisms such as high ALDH activity (ALDH*), high drug efflux (Hoechst side
population), or low proteasome activity (C-terminal degron of murine ornithine decarboxylase (cODC)
fusion protein) are also used in different cancer models, including breast cancer. As the use of one
marker is not sufficient to identify the CSC population, they need to be combined and confirmed with
functional tests such as sphere-forming capacity (SFC) tests to reveal their self-renewal capacities
or in vivo tumorigenicity tests to evaluate their tumorigenic potential. Detailed information about CSC

markers used in breast cancer are given in section 3.3.1 “Markers and isolation” at page 101.

1.5.2 STRATEGY

Innovative strategies have been designed, combining both conventional therapies with novel
therapies that do not aim to shrink the tumor but to eliminate the CSCs which are known to sus-

tain the long-term tumor growth (Figure 10A and B) (Batlle and Clevers, 2017; Eun et al., 2017).
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Thereby, new therapeutic agents are developed to radio-sensitize or chemo-sensitize tumors, by
targeting stemness regulators and other resistance mechanisms specific to CSCs, CSC-specific sig-

naling pathways, or the CSC microenvironment.
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FIGURE 10 THERAPEUTIC STRATEGY MODELS.  A. The conventional therapies are unable to eliminate
CSCs, which cause tumor regrowth and cancer relapse.  B. A combined therapy, including a conventional
treatment and a targeted treatment against CSCs, is used to deplete specifically this population, leading to
tumor shrinkage and increasing the probability of a long-term remission.  C. The major limitation of the previous
model is the plasticity of cancer cells and notably their capacity to dedifferentiate back into a CSC state.
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1.5.3 APPROACHES

Many approaches to target CSCs have been considered. Among them, first, chemical- or
antibody-dependent inhibition of the Wnt/B-catenin, Notch, and Hedgehog signaling pathways is the
most direct one (Clara et al., 2020; Yang et al., 2020b).

For instance, the Notch pathways can be inhibited using y-secretase inhibitors (GSls). These
inhibitors are the oldest and largest class of agents that target Notch signaling by blocking the cleav-
age of the Notch intracellular domain (NICD). However, they generally cause off-tumor effects on the
gastrointestinal system, as they impair the proliferation of crypt progenitors and induce their differen-

tiation, and affect the generation of lymphocytes, yet they remain effective (Andersson and Lendahl,
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2014; Es et al., 2005). One of these inhibitors, the PF-03084014, is being tested in several clinical
trials, notably one on advanced-stage triple-negative breast cancer (TNBC) in combination with the
docetaxel chemotherapeutic agent (NCT01876251, phase 1) (Locatelli et al., 2016).

As another example, smoothened (SMO) antagonists can be used as treatments to inhibit the
Hedgehog pathway. For instance, the glasdegib is actually in test on acute myeloid leukemia (AML)
(NCT01546038, Phase Il and NCT03416179, Phase Ill) (Cortes et al., 2019; Cortes ef al., 2018).

A multitude of other inhibitors have also been tested: inhibitors of epigenetic modifying drugs,
such as histone deacetylase (HDAC) inhibitors or DNMT inhibitors (Toh et al., 2017), inhibitors of
ABC transporters in combination with chemotherapeutic agents (Hou et al., 2013), inhibitors of the
ALDH activity in combination with chemotherapeutic agents or radiations (Kim et al., 2013a), or
even inhibitors of the DNA damage response in combination with radiotherapy, such as inhibitors of
checkpoint kinases 1 and 2 (Chk1 and Chk2) (Bao et al., 2006).

Another approach, called differentiation therapy, aims to induce the differentiation of CSCs
to be able to eliminate them in combination with conventional therapies. For example, the retinoic
acid, a derivative of vitamin A, binds to its receptor the retinoic acid receptor (RAR) which triggers its
transcriptional activity on differentiation genes. Its pharmaceutical form named all-trans retinoic acid

(ATRA) is being tested in several clinical trials on several cancer models (Jin ef al., 2017; Thé, 2018)

Furthermore, immunotherapy approaches have also been developed, including the use of
antibody-drug conjugates (ADCs), bispecific antibodies, and chimeric antigen receptor T (CAR-T)
cells. First, the anti-CSC ADCs are specific antibodies targeting a CSC surface marker conjugated
with a cytotoxic drug, with an anti-mitotic activity or DNA damage-inducing capacity to specifically
eliminate CSCs (Chalouni and Doll, 2018; Marcucci et al., 2019). Then, immunotherapy using bis-
pecific T cell engager (BiTE) antibodies, antibodies recognizing two antigens, aims to facilitate the
action of immune cells against CSCs. Indeed, one antigen is a CSC marker (e.g. anti-CD133), to
target CSCs, and the other (e.g. anti-CD3) serves to recruit immune cells such as T cells (Dai et al.,
2021; Huang et al., 2013a). Lastly, CAR-T cells are T cells transfected with chimeric antigen receptor
targeting CSC-specific antigens (e.g. CD133, ALDH, CD44) to induce a T cell action directed against
CSCs (Alhabbab, 2020; Masoumi et al., 2021).

1.5.4 LIMITATIONS

Although these therapeutic approaches relying on CSCs depletion are promising, they come

with some limitations.

First, the tumor heterogeneity is applied to the CSC population as well. CSC markers are not
expressed at the same time by all CSCs, and the use of a single CSC marker is not sufficient to
properly segregate all CSCs from tumor cells (Eun et al., 2017; Huang et al., 2013b; Zheng et al.,
2018).
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Second, the CSC location in niches within the tumor is important for their sensitivity to drugs.
Different CSC states, as proliferative or quiescent, reside in different niches (perivascular or hypoxic
niches), making them differently exposed and thereby differently sensitive to the same drug (Marcucci
and Corti, 2012; Plaks et al., 2015).

Third, concerning the targeting of signaling pathways activated in CSCs, the abrogation of only
one of them could be insufficient as cross-talks and compensatory mechanisms have been described
(Jaeger et al., 2017; Sun et al., 2016).

Fourth, as CSCs and normal stem cells share the same stemness-related overexpressed
genes and overactivated pathways, in this case the CSC-specific therapies may also induce signif-
icant toxicity in normal tissue stem cells. The solution would be to find CSC-specific therapeutic
solutions that are not critical for their non-tumorigenic counterparts to lower the risk of side effects
(Diehn et al., 2009).

Last, as explained in section 1.2 “Tumor development models” at page 46, tumor cells are
plastic and non-CSCs can dedifferentiate into CSCs. Therefore, the depletion of CSCs within the
tumor might not be enough for a long-term tumor regression as new CSCs can arise from differ-
entiated cancer cells (Figure 10C) (Das et al., 2020; Gupta et al., 2019; Sanaa, 2022). Moreover,
the phenotypic plasticity and capacity of tumor cells to interconvert between a differentiated state
and a stem-like state represent a substantial difference compared to normal stem cells, which are
almost organized in a unidirectional model where differentiated cells generally cannot convert back
to a stem-like state, except when forcing the expression of pluripotent markers to process in vitro
reprogramming into iPS cells (Hanahan, 2022). Accordingly, targeting the cancer plasticity, es-
pecially dedifferentiation mechanisms, might be the key to overcoming the cancer resistance

to therapies and reducing the risk of cancer recurrence.
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Numerous resistance mechanisms can be upregulated in CSCs, such as drug efflux, oxida-
tive stress modulation, protective autophagy, anti-apoptotic system, DNA damage repair, or
metabolic plasticity (Figure 9).

As CSCs sustain the tumor’s long-term growth, therapeutic strategies have been devel-
oped to eliminate CSCs and sensitize the tumor to therapies, by combining a conventional
therapy with a CSC-specific therapy (Figure 10B).

The CSC-specific therapies can target CSC-related markers, features, resistance mech-
anisms, or microenvironment using several approaches such as signaling pathways in-
hibitors, epigenetic modifying enzymes inhibitors, drug efflux pumps inhibitors, treatment
inducing CSC differentiation, or immunotherapy approaches (e.g. ADC, BiTE, CAR-T cells).

Although these approaches are promising, the main limitation to the CSC-specific targeting
is their plasticity. Indeed, new CSC can arise from the dedifferentiation of bulk cancer
cells, which makes the CSCs complete depletion impossible and cause cancer recurrence
(Figure 10C). In addition, as one major difference compared to normal cells is the plasticity
of cancer cells and their capacity to interconvert between CSC and non-CSC states, the
dedifferentiation mechanisms involved should be cancer-specific. Accordingly, targeting the
dedifferentiation mechanisms might provide an even more effective therapeutic solution to
overcome cancer resistance.
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2.1 PHENOTYPIC PLASTICITY
2.1.1 DEFINITIONS

The plasticity is the ability for a cell to reversibly assume different cellular phenotypes also
referred to as identities or states. These changes of phenotypes are carried out throughout repro-
gramming events. Consequently, the CSC plasticity is the ability to switch between the CSC and

non-CSC states.

Three types of reprogramming events can occur within the CSC plasticity: (1) differentia-
tion, from a pluripotent state towards a differentiated one, (2) dedifferentiation, from a differentiated
state towards a pluripotent one, also called reprogramming, and (3) transdifferentiation, from a
differentiated state in one lineage to another lineage, also called direct reprogramming (Figure 11)
(Eguizabal et al., 2013; Hanahan, 2022; Yamada et al., 2014).
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FIGURE 11 PLASTICITY AND REPROGRAMMING EVENTS. CSC= cancer stem cell; ESC= embronic stem
cell; iPSC= induced pluripotent stem cell; non-CSC= cancer non-stem cell; SSC= somatic stem cell.
(Granados et al., 2020; Hanahan, 2022; Yamada et al., 2014)

In normal cells, the reprogramming term is used to designate the resetting of epigenetic
marks during early embryogenesis and germ cell formation allowing the reexpression of gene pro-
grams associated with pluripotency, enabling the cell to acquire a stem cell phenotype (Xavier et al.,
2019; Zeng and Chen, 2019).

The artificial reprogramming to a pluripotent state was first discovered in vitro by forcing the
reexpression of the four transcription factors OCT4, SOX2, C-MYC, and KLF4 (Takahashi et al., 2007;
Takahashi and Yamanaka, 2006). In this context, the reprogrammed cells with stemness properties

are called induced pluripotent stem (iPS) cells.

Additionally, the direct reprogramming term has been used to describe the cell phenotype
conversion from one lineage into another, without undergoing an intermediate pluripotent state, also

called transdifferentiation (Wang et al., 2021).

The reprogramming toward pluripotency, or dedifferentiation, is an unusual event in normal
cells, which have been described mainly for tissue repair purposes, as they are unidirectionally or-

ganized toward terminal differentiation. In cancer, cells are more plastic as they are able to dediffer-
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entiate back to a stem state with pluripotency and self-renewal features enabling tumor growth. This
unlocking of phenotypic plasticity has been added to the hallmarks of cancer in 2022 by Hanahan, as
described in Figure 12, completing the established ones from 2000 and 2011 (Hanahan and Wein-
berg, 2000; Hanahan and Weinberg, 2011). Hanahan (2022) describes four reprogramming types of

events within this phenotypic plasticity: differentiation, dedifferentiation, blocked differentiation, and

transdifferentiation.
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FIGURE 12 NEW ADDITION TO HALLMARKS OF CANCER: UNLOCKING PHENOTYPIC PLASTICITY. A. Hall-
marks of cancer.  B. Unlocking phenotypic plasticity hallmark. Figure from Hanahan (2022)

In cancer cells, the dedifferentiation, also called reprogramming, retrodifferentiation, or
non-CSC-to-CSC conversion, is the reverse process of differentiation, in which the differentiated

cells (non-CSCs) with specialized functions become more undifferentiated and gain the self-renewal
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ability and a pluripotent state (CSCs) (Cabillic and Corlu, 2016; Marjanovic et al., 2013).

The transdifferentiation have been described in cancer cells as they can dynamically inter-
convert their phenotypes and exhibit different lineage characteristics, without going through a pluripo-

tent state in between (Yuan et al., 2019).

The blocked differentiation describes the incompletely differentiated progenitors, that cannot

go further in the differentiation to maintain a high proliferation (Hanahan, 2022).

2.1.2 CSC PLASTICITY AND EMT

The epithelial-to-mesenchymal transition (EMT) is defined as a reversible phenotypic switch
from an epithelial state to a mesenchymal state. The cancer cell loses its epithelial characteris-
tics, such as cell junctions and apical-basal polarity, and gains mesenchymal characteristics such
as an elongated morphology, migration, and invasion capacities. Thus, the cell can migrate through
surrounding tissues to blood vessels, disseminate and colonize a secondary site by forming a new
tumor, called metastasis, while undergoing the reverse process, the mesenchymal-to-epithelial tran-
sition (MET) (Kalluri and Weinberg, 2009; Yilmaz and Christofori, 2009).

The EMT is mediated by a set of EMT-inducing transcription factors (EMT-TFs) which are
divided into three main families of proteins, the Snail family transcriptional repressor (SNAI) family
(e.g. SNAI1 and SNAI2, also known as Snail and Slug), the zinc finger E-box binding homeobox
(ZEB) family (e.g. ZEB1 and ZEB2) and the Twist family BHLH transcription factor (TWIST) family
(e.g. TWIST1 and TWIST2) (Craene and Berx, 2013).

As both the EMT process and the CSC state involve phenotypic plasticity and are held respon-
sible for the metastatic process, they have been intricately linked (Polyak and Weinberg, 2009; Scheel
and Weinberg, 2012). Several studies have observed that cells undergoing EMT acquire stemness
properties (Mani et al., 2008; Masui et al., 2014; Morel et al., 2008; Rhim et al., 2012; Shuang et al.,
2014; Talati et al., 2015; Xie et al., 2011. For instance, in breast cancer cells, the induction of EMT,
by EMT-TFs or cytokines, led to increased tumorigenic properties and expression of CSC markers
(Mani et al., 2008; Morel et al., 2008; Xie et al., 2011). It has been described that ZEB1 promotes the
EMT as well as SOX2 and KLF4 pluripotency factors, and is required for stemness and tumorigenic
capacities (Krebs et al., 2017; Wellner et al.,, 2009). Hence, the activation of the EMT program is

associated with the acquisition of stem-like characteristics.

Although publications often depict the EMT program as the dedifferentiation of cancer cells,
where non-CSCs are associated with epithelial features (epithelial/non-CSC state) and CSCs with
mesenchymal features (mesenchymal/CSC state), the link between CSC plasticity and EMT is more
complex (Junk et al, 2013; Smigiel et al., 2017; Smigiel et al., 2018). In fact, during the EMT
process, in between the initial epithelial state and the terminal mesenchymal state, the cell undergoes

a variety of intermediate steps corresponding to hybrid epithelial/mesenchymal (E/M) phenotypes
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2020; Silva-Diz et al., 2018)

(Figure 13) (Gupta et al., 2019; Jolly et al., 2018). These hybrid cells that have undergone a partial
EMT exhibit stem cell properties, and are thereby less differentiated than those on either end of the
EMT spectrum (Bierie et al., 2017; Fanelli et al., 2020; Silva-Diz et al., 2018; Thankamony et al.,
2020). Pastushenko et al. (2018) demonstrate the presence of multiple EMT stages that constitute
different tumor subpopulations, with different transcriptional and epigenetic signatures, and different
invasiveness and metastatic capacities. Kroger et al. (2019) found that the tumorigenic capacity of
breast cancer cells was maintained by the hybrid E/M phenotype of the CD104*/CD44"9" cells, and
lost when they become highly mesenchymal. They identified the canonical Wnt signaling pathway
as a key mediator of this hybrid state, activated by the EMT-TFs, but replaced by the non-canonical
pathway when the cell acquires the ZEB1-driven mesenchymal phenotype (Kréger et al., 2019).
Consequently, multiple CSC states can exist within the EMT spectrum, characterized by epithelial
and mesenchymal features. Liu et al. (2013c) found epithelial-like breast CSCs, proliferative CSCs
with a high ALDH activity, and mesenchymal-like breast CSCs, relatively quiescent CSCs mediating
tumor invasion in blood vessels, and suggest that the CSCs can transit back-and-forth between those

states depending on tumor microenvironment signals (Liu et al., 2013c).

To conclude, the EMT program participates in the generation of CSCs, mediated by the tumor

microenvironment, especially upon treatment, thus it contributes to the CSC pool expansion and
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resistance to therapies. It is not clearly stated in the literature whether or not the EMT should be
considered as a dedifferentiation or transdifferentiation process. Furthermore, the acquisition and
loss of differentiated features during the EMT involve CSC plasticity mechanisms allowing the cell to
access different cellular identities by going through a hybrid E/M plastic intermediate CSC state in
between. Above all, this interconnection between the epithelial-mesenchymal plasticity and the CSC
plasticity supports the very dynamic and transitory change of states of cancer cells, which drives the

cancer development, metastasis formation, and resistance to therapies.

The cancer stem cell (CSC) plasticity is the ability for a cell to switch between the CSC
and non-CSC phenotypes. Different phenotypic reprogramming events can occur: the dif-
ferentiation, the dedifferentiation (or reprogramming), and the transdifferentiation (or direct
reprogramming).

The epithelial-to-mesenchymal transition (EMT) also involves a phenotypic plasticity as it is
characterized by a conversion from a epithelial phenotype to a mesenchymal one. During
the EMT process, the cell undergo a variety of intermediate steps, referred to as hybrid E/M
phenotypes.

Interestingly, hybrid E/M cells are less differentiated than those on either end of the EMT
spectrum, as they exhibit stem cell properties. Combined with the CSC plasticity, it indicates
that multiple CSC states can exist within the EMT spectrum, and that the EMT process is
intricately linked with the emergence of cells presenting a CSC phenotype.

2.2 INDUCTION OF DEDIFFERENTIATION

The dedifferentiation of non-CSC into CSC is a phenotypic switch from a differentiated state to
a stem-like state of cancer cells. This process leads to the de novo generation of CSCs, participating
in the CSC pool maintenance or expansion. It was demonstrated that the dedifferentiation events
occur spontaneously within the tumor, but can also be induced by several extrinsic or intrinsic factors,
especially following anti-cancerous treatments, in hypoxic areas of the tumor, or upon stimuli from
other cells within the tumor. The Table 1 lists studies reporting for the conversion of non-CSC into

CSC in different models, with different inducers.

To distinguish the dedifferentiation events from self-renewal of CSCs through cell division of
pre-existing ones, the key in dedifferentiation experiments is either to tag the CSC and non-CSC
to track phenotypic switches, or to deplete the population in CSCs beforehand, so the observed
proportion of CSCs can only come from the reprogramming of non-CSCs. Yet, one limit of this
experimental strategy resides in the difficulty to fully discriminate the CSC population as no CSC
marker alone is sufficient. In the case of fluorescence-activated cell sorting (FACS) sorting, the
purified non-CSC population might contain residual CSCs. However, the self-renewal of a few CSCs

wouldn’t be sufficient to explain the increased proportion of CSCs.
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TABLE 1 - First page

INDUCER TYPE OF EXPERIMENTAL CcsC REGULATORY REFERENCE
CANCER MODEL MARKERS MECHANISMS
USED UNCOVERED
Spontaneous Breast cancer Transformed CD44+ Chaffer et al.,
human mammary 2011
epithelial cells
Spontaneous Colon cancer SW620 cell line CD133* Yang et al.,
Breast cancer MCF-7 cell line CD44* CD24 2012
Chemotherapy Hepatocellular HepG2 and Huh7 Hoechst side Hu et al.,
(carboplatin) carcinoma cell lines population 2012
Chemotherapy Glioblastoma Cell lines : U251, CD133+ Hypoxia Auffinger et
(temozolomide) us7, A172 CD15* involvement al., 2014
PDX lines :
GBM43, GBMS,
GBM26
Chemotherapy Glioblastoma Cell lines : U251 CD133* HIF-1a and HIF- Lee et al,
(temozolomide) and U87 SOX2-p-RFP* 2a involvement 2016a
PDX lines : OCT4-p-RFP*
GBM43 and NANOG-p-
GBM6 RFP*
Chemotherapy Breast cancer Patient tumors CD44* CD24 NF-xB-dependent  Saha et al.,
(5-fluorouracil, and MCF-7 cell IL6 inflammatory 2016
doxorubicin, cy- line feedback loop
clophosphamide) activation
Radiotherapy Hepatocellular HepG2 and Huh7 Hoechst side SOX2 and OCT4 Ghisolfi et al.,
(2, 4 Gy) carcinoma cell lines population requirement 2012
Radiotherapy Breast cancer SUM159PT, ALDH* CD44* Re-expression of Lagadec et
(4, 8 Gy) MCF-7 and T47D CD24 andlow  OCT4, SOX2, al., 2012
cell lines proteasome NANOG, and
activity KLF4, Notch
signaling
activation
Radiotherapy Breast cancer MDA-MB-231, ALDH* NF-xB signaling Wang et al.,
(fractionated SUM149, activation 2014a
3.75 Gy/day x 5 UACC-812 and
days) 4T1 (mouse) cell
lines
Radiotherapy Breast cancer SUM159PT and ALDH* IL6-JAK2-STAT3 Arnold et al.,
(8 Gy) MDA-MB-231 cell signaling 2020b
lines activation
Radiotherapy Glioblastoma Primary human Low Akt signaling Bhat et al.,
(8 Gy) glioblastoma cell proteasome activation 2020
lines and PDX activity
Radiotherapy Pancreatic PaTu8988 cell CD133+ HMGB1-TLR2 Zhang et al.,
(2, 4,8,10, and cancer line, tumor interaction 2019
20 Gy) specimens and regulating the
PDX YAP/HIF-
1o signaling
HDAC inhibitors Breast cancer SUM159PT and ALDH* Wnt/B-catenin Debeb et al.,
(Valproic acid) MDA-MB-231 cell signaling 2012
lines activation
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TABLE 1 - Second page

INDUCER TYPE OF EXPERIMENTAL CcsC REGULATORY REFERENCE
CANCER MODEL MARKERS MECHANISMS
USED UNCOVERED
Hypoxia Glioblastoma T4121 cell line, CD133+ HIF- Heddleston
brain tumor 2o involvement et al., 2009
patient specimens
and human
glioblastoma
xenografts
Hypoxia Pancreatic Panc-1 and CD133* HIF- Zhu et al.,
cancer BxPC-3 cell lines 1o involvement 2013
Hypoxia Glioblastoma GL261 cell line CD133+ Wang et al.,
Hepatocellular HepG2 cell line CD15* 2017d
carcinoma A549 cell line NESTIN*
Lung cancer
Hypoxia Glioblastoma GL261 and U87 CD133* HIF- Wang et al.,
cell lines CD15* 1o involvement 2017c
NESTIN*
Fibroblast- Colorectal HT-29 and SW620 CD133* Fibroblast- Hu et al.,
derived cancer cell lines ALDH* secreted 2019b
extracellular exosomal Wnts
vesicles coupled activate
with Wnt/B-catenin
chemotherapy signaling
(5-fluorouracil or
oxaliplatin)
CSC-derived Glioblastoma WJ1, WJ2, U251 wWJ2 Sun et al.,
exosomes and U87 cell lines glioblastoma 2020
CSC cell line
TABLE 1 MAIN STUDIES REPORTING THE DEDIFFERENTIATION OF NON-CSCs INTO CSCs.  ALDH-= alde-
hyde dehydrogenase; = CAF= cancer-associated fibroblast; CD= cluster of differentiation; Gy= Gray;
HDAC-= histone deacetylase; HIF= hypoxia-inducible factor; HMGB1= high-mobility group box 1; IL6=
interleukin 6; JAK2= Janus-activated kinase 2; OCT4= octamer-binding transcription factor 4; PDX=

STAT3-= signal transducer and activator
YAP= Yes1 associated transcriptional regulator.

patient-derived xenograft; SOX2= sex determining region Y-box 2,

of transcription 3;  TLR2= Toll-like receptor 2;

2.2.1 SPONTANEOUS DEDIFFERENTIATION

The conversion between non-stem state and stem state is a process occurring spontaneously
within the tumor. Indeed, Chaffer et al. (2011) demonstrated by FACS isolation of transformed cells
that both the non-stem fraction and the CSC fraction of cells can give rise to one another in vitro.
The conversion of non-CSCs into CSCs also occurs in vivo, as the generated tumors after mice
injection presented a significant proportion (16%) of CSCs after 8-10 weeks, and it also highlights the
importance of tumor microenvironment in the arising of CSC. Another study on colon cancer cells and
breast cancer cells revealed the acquisition of stem cell markers and the appearance of new CSCs,
in the CSC depleted population (Yang et al., 2012). The non-CSC fraction and the CSC fraction
were purified and, after separated cultures of both populations, they exposed an inter-conversion

equilibrium whereby both compartments can convert to one another until an intrinsic balance is found
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with a CSC proportion stabilized around the CSC proportion of the unsorted population.

Several studies have shown that, after cell sorting or tagging of non-CSC population, they can
convert into CSC without any inducer (Auffinger et al., 2014; Debeb et al., 2012). In a mixed popula-
tion, the GFP-tagged non-CSCs give rise to around 1 to 2% of CSCs (CD133* CD15* cells) without
induction in the glioblastoma model, demonstrating a basal dedifferentiation process occurring spon-

taneously to restore an equilibrium proportion of CSC (Auffinger et al., 2014).

Moreover, the dedifferentiation events and the state equilibrium between the CSC and non-
CSC subpopulation have been confirmed by mathematical models of cancer kinetics to apprehend
the population dynamics (Butner et al., 2022; Gupta et al., 2011; Jilkine, 2019; Zapperi and Porta,
2012).

2.2.2 THERAPY-INDUCED DEDIFFERENTIATION

The resistance to therapy has been associated with an increase of the CSC proportion in
several tumor models (Abubaker et al., 2013; Lagadec et al., 2010; Lee et al., 2011; Lu et al., 2015;
Murata et al., 2019; Wang et al., 2013a). To explain the CSC expansion upon treatments, Auffinger
et al. (2014) postulated three scenarios co-occurring upon treatment: (1) selection of CSCs over
non-CSCs due to their high resistance to therapies, (2) expansion of the CSC pool caused by a
shift from asymmetric division towards symmetric division, and finally (3) dedifferentiation of non-
CSCs, resulting in the generation of non-pre-existing CSCs. The two first scenarios are describing a
CSCs enrichment from pre-existing CSC, while in the third scenario CSC arises de novo, and their
co-occurrence upon treatment is confirmed by kinetic modelizations (Gao et al., 2014). Hence, the
treatment-induced dedifferentiation and underlying mechanisms have been particularly investigated
(Chen et al., 2017c; Li et al., 2016).

CHEMOTHERAPY-INDUCED DEDIFFERENTIATION

In hepatocellular carcinoma, Hu and Fu (2012) treated the sorted non-CSC population with
carboplatin, and maintained them in stem cell media and ultra-low attachment plates. The treated
non-CSCs showed an increase in self-renewal capacities, sphere formation, and expression of SOX2

and OCT4, compared to untreated ones.

In glioblastoma, Auffinger et al. (2014) investigated the formation of new CSCs from non-
CSCs upon temozolomide treatment. In the sorted and GFP-tagged non-CSC pool of cells, around
5% of them expressed stemness markers 8 days after temozolomide treatment, which is significantly
higher than in the untreated control. In vivo, the non-CSC population previously treated with temo-
zolomide was able to form tumors in mice which presented an increase of cells expressing CSC
markers compared to the untreated control. Interestingly, after temozolomide exposure, they found
increased levels of HIF-1a and HIF-2a in the newly formed CSCs, and more intratumoral hypoxic

areas in xenografts, matching the hypoxia and HIFs mediated maintenance of stemness, but also
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highlighting their regulatory role in the temozolomide-induced dedifferentiation of non-CSC into CSC
in the glioblastoma. This role was further confirmed by Lee et al. (2016a), through real-time imaging
of glioblastoma cell lines and PDX lines treated with temozolomide, using glioblastoma CSC-specific
promoter-based reporter systems. They reported an increased rate of phenotypic switches from non-
CSCs to CSCs at the single-cell level after temozolomide exposure, alongside an increased expres-
sion of both HIF-1ae and HIF-2a . As the knockdown of HIFs expression reduced the temozolomide-
induced non-CSC-to-CSC conversion, it indicates that HIFs have a crucial role in the dedifferentiation

of glioblastoma cancer cells.

In breast cancer, although the purified non-CSC population failed to convert into CSCs upon
chemotherapy, in a mixed population of CSCs and non-CSCs, the tagged non-CSCs were able to
dedifferentiate into CSCs after chemotherapy (Saha et al., 2016). Hence, it highlights the require-
ment for pre-existing CSCs to drive the CSC pool expansion through non-CSC dedifferentiation, after
chemotherapy exposure. Indeed, the chemotherapy treatment, composed of 5-fluorouracil, doxoru-
bicin, and cyclophosphamide, triggers a positive inflammatory feedback loop in pre-existing CSCs
promoting the non-CSC-to-CSC conversion. This loop relies on the NF-xB-dependent IL-6 activation
(lliopoulos et al., 2011; Saha et al., 2016).

RADIOTHERAPY-INDUCED DEDIFFERENTIATION

In breast cancer, several studies have demonstrated that CSCs can arise de novo from the
sorted non-CSC population after irradiation (Arnold et al., 2020b; Bhat et al., 2020; Bidan et al.,
2019; Lagadec et al., 2012; Wang et al., 2014a). The non-CSC population irradiated at 8 Gy has a
higher CSC percentage compared to the non-irradiated control 5 days post-irradiation (Arnold et al.,
2020b; Bhat et al., 2020; Bidan et al., 2019; Lagadec et al., 2012). Interestingly, in a mixed population
of tagged non-CSCs and CSCs, the generation of CSCs through radio-induced dedifferentiation of
non-CSCs is diminished, indicating a control of the pre-existing CSCs over the CSC pool expansion
(Lagadec et al., 2012). Additionally, the inhibition of Notch signaling (Lagadec et al., 2012), NF-xB
signaling (Wang et al., 2014a), or STAT3 signaling (Arnold ef al., 2020b), reduced the emergence of
new CSCs.

In pancreatic cancer, Zhang et al. (2019) found that radio-induced cell death promotes the
dedifferentiation of non-CSCs into CSCs. The 7-days co-culture of sorted non-CSCs with lethally
irradiated cells (20 Gy) induced a significant increase of CSCs and expression of stemness markers,
compared to the co-culture with non-irradiated control cells (0 Gy). Furthermore, they observed that
among the damage associated molecular patterns (DAMPs) released by dying cells following radio-
therapy, the high-mobility group box 1 (HMGB1) binds to the Toll-like receptor 2 (TLR2) receptor of
non-CSCs and activates the Yes1 associated transcriptional regulator (YAP)/HIF-1a signaling, medi-
ating the dedifferentiation. The inhibition of these regulators individually reduces the dedifferentiation

of pancreatic cancer cells and their tumorigenic capacities in vivo (Zhang et al., 2019).
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In hepatocellular carcinoma, the isolated non-CSC population irradiated at 2 or 4 Gy doses
showed increased self-renewal and sphere formation capacities after 14 days post-irradiation of cul-
ture in stem cell media, indicating the dedifferentiation of cells (Ghisolfi et al., 2012). And, in glioblas-
toma, the non-CSC population was also able to dedifferentiate after radiotherapy, but not when the

Akt signaling was inhibited by a trifluoperazine treatment (Bhat ef al., 2020).

HDAC INHIBITORS INDUCED DEDIFFERENTIATION

Histone deacetylase (HDAC) inhibitors, such as valproic acid (VPA), trichostatin A (TSA), and
suberoylanilide hydroxamic acid (SAHA) also known as Vorinostat, are used as anticancerous agents
as they cause histone hyperacetylation, leading to chromatin remodeling, and thus have growth-
inhibitory effects on cancer cells (Wawruszak et al., 2019; Zhang et al., 2017a). In addition, numerous
studies used HDAC inhibitors as differentiating agents to specifically target CSCs (Alvarez et al.,
2015; Botrugno et al., 2009; Dvorakova and Vanek, 2016; Lin et al., 2018).

However, some studies also demonstrated the opposite effect of HDAC inhibitors, stimulating
the dedifferentiation of cancer cells by activating stemness-related pathways. Besides, VPA is known
to enhance self-renewal and expansion of hematopoietic stem cells (HSCs) (Bug et al., 2005; Felice
et al., 2005; Young et al., 2004).

In breast cancer, VPA was found to selectively radio-sensitize differentiated cells while protect-
ing mammospheres cultures from radiations and promoting their self-renewal (Debeb et al., 2010),
while TSA and SAHA induce the expression of stem cell and EMT markers in prostate cancer cells
(Kong et al., 2012).

More interestingly, Debeb et al. (2012) demonstrated that HDAC inhibitors induce the ded-
ifferentiation of breast cancer cells. The sorted non-CSC population treated for 7 days with either
VPA, TSA, or SAHA showed increased proportions of CSCs and increased tumorigenic capacities in
vivo compared to the non-treated population. Moreover, they reported an up-regulation of the Wnt/B-
catenin signaling pathway and its inhibition abolished the HDAC inhibitors-induced over-expansion of
CSCs.

2.2.3 FORCED REEXPRESSION OF PLURIPOTENCY FACTORS

Lastly, the induced overexpression of pluripotency factors has been shown to increase the
stem-like properties of cells from different cancer types (Chiou ef al., 2010; Herreros-Villanueva et
al., 2013; Yin et al., 2015). Although no studies describe a dedifferentiation process using popula-
tions depleted in CSCs or tagged cells to observe phenotypic conversions, several ones describe
populations acquiring stem cell properties induced by pluripotency factors re-expression (Fujiwara
et al., 2020; Oshima et al., 2014; Suva et al., 2014). For instance, the retrovirus-mediated forced
expression of OCT4, SOX2, and KLF4 in colon cancer cells or osteosarcoma cells gives rise to a

population of cells with a stem-like phenotype (Fujiwara et al., 2020; Oshima et al., 2014). Induced
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expression of OCT4, NANOG and SOX2 in glioblastoma cells lead to the dedifferentiation into CSCs,
along with the activation of Notch and Wnt/p-catenin pathways (Olmez et al., 2015). So, in the same
way, as somatic cells can be reprogrammed in iPS cells, differentiated cancer cells can also be re-

programmed to acquire a stem-like phenotype through the forced expression of pluripotency factors.

The dedifferentiation of non-CSCs into CSCs can be spontaneous or induced by several
extrinsic or intrinsic factors, leading to the resurgence of the CSC population.

Within the tumor cell population, it exists an inter-conversion equilibrium whereby the CSC
and non-CSC compartments can convert to one another, without any inducers, until an
intrinsic balance is reached at a stabilized proportion of CSCs.

The CSC enrichment following therapies is in part caused by the non-CSCs conversion
to CSCs, induced by the therapeutic stress, such as chemotherapeutic agents, radiations,
and HDAC inhibitors treatments.

2.3 REGULATION OF DEDIFFERENTIATION

An overview of the reported regulatory mechanisms and mediators participating in the non-
CSC-to-CSC conversion is displayed in Figure 14.

2.3.1 HYPOXIA

The hypoxic environment, which is strongly associated with the CSC niche, has also been
reported as promoting the CSC plasticity (Figure 14) (Lee et al., 2016b; Wijaya, 2019).

First, the chemotherapy-induced hypoxia in glioblastoma causes non-CSCs dedifferentiation
events as mentioned previously in section 2.2.2 “Chemotherapy-induced dedifferentiation” at page 73
(Auffinger et al., 2014; Lee et al., 2016a). Indeed, the temozolomide treatment induces more intra-
tumoral hypoxic areas and promotes the conversion of non-CSCs to CSCs, with high levels of HIF-
1a and HIF-2a, a conversion which is impaired when HIFs are inhibited (Auffinger et al., 2014; Lee
et al., 2016a).

Then, outside of the chemotherapy exposure context, an hypoxic environment and hypoxia-
inducible factors (HIFs) are known to induce an enrichment in CSCs in several models including
breast cancer (Helczynska et al., 2003; Louie et al., 2010; Schwab et al., 2012; Semenza, 2016a,;
Semenza, 2016b; Xie et al., 2016) and glioblastoma (Bar et al., 2010; Bonnin et al., 2017; Hashimoto
etal.,, 2011; Soeda et al., 2009). Indeed, HIFs contributes to CSC induction and maintenance via the
glucose metabolism regulation to maintain the redox homeostasis under hypoxic conditions, and via
the signaling pathways activation, including Notch, leading to the expression of pluripotency genes
(Gustafsson et al., 2005; Qiang et al., 2011; Semenza, 2016a; Semenza, 2016b).
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The hypoxia-mediated CSCs expansion also involves the dedifferentiation of non-CSCs. Hed-
dleston et al. (2009) have demonstrated the promotion of the non-CSC-to-CSC conversion of glioblas-
toma cells under hypoxic conditions. The sorted non-CSC population form more and larger neuro-
spheres under hypoxia compared to normoxia. Therefore, hypoxia confers self-renewal capacities to
non-CSCs as they are able to form spheres, and maintains the self-renewal of newly formed CSCs,
which leads to larger sphere formation. In addition, the expression of pluripotency factors and HIF-

2a is increased in non-CSCs cultured in hypoxic conditions (Heddleston et al., 2009).

The hypoxia-induced dedifferentiation was also reported in pancreatic cancer (Mu et al., 2021;

Zhu et al., 2013). The intermittent hypoxic environment exposure of non-CSCs was able to induce
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self-renewal capacities and high levels of HIF-1a., light chain 3-11 (LC3-II), and Beclin RNAs and pro-
teins, which are involved in autophagy. The knock-down of HIF-1a abolished the hypoxia-induced
expression of LC3-1l and Beclin, meaning that HIF-1a is required for hypoxia-induced autophagy in
CSCs. And, the inhibition of both HIF-1a and autophagy reduced the hypoxia-induced CSC percent-
age, indicating that the HIF-1a-mediated autophagy triggered by intermittent hypoxia contributes to
the non-CSC dedifferentiation into CSC in pancreatic cancer (Zhu et al., 2013).

The dedifferentiation of non-CSC populations from glioblastoma, hepatocellular carcinoma,
and lung cancer cell lines under hypoxia were studied by Wang et al. (2017d). The non-CSC popula-
tions cultured in hypoxic conditions showed significantly higher proportions of CSCs and formed more
spheres than those cultured in normoxic conditions, for the three cell lines. Hence, they demonstrated
a hypoxia-induced formation of new CSCs from non-CSCs occurring in glioblastoma, hepatocellular
carcinoma, and lung cancer. Moreover, immunofluorescence analysis of hypoxia-derived glioblas-
toma spheres revealed a high expression of the stem cell markers SOX2, OCT4, KLF4, NANOG,
LIN28, CD133, CD15, and NESTIN. The culture of these spheres in a stem cell medium confirmed
their self-renewal ability and extensive proliferation, while culured in a differentiation medium, they
showed adherent growth and morphology changes indicating their capability to perform asymmetric
division. Furthermore, Wang et al. (2017c) found a high expression of HIF-1a in the hypoxia-treated
neurospheres as well as in tumor samples from mice raised in hypoxia. The silencing of HIF-1a re-
duced the neurosphere formation rate and the CSC proportion in the hypoxia-treated non-CSC pop-
ulation, and impaired the tumorigenic capacities of cells as tumors in mice grew smaller compared
to the control group (Wang et al., 2017c). Then, Wang et al. (2022) confirmed that the HIF-1a/HIF-
20-SOX2 network induced the dedifferentiation of glioblastoma non-CSCs into CSCs under hypoxic

conditions.
2.3.2 EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) mediate the intercellular communication by transmitting a molec-
ular content composed of several proteins, lipids, and nucleic acids. Additional details about EVs are

given in Appendix 2 “Extracellular vesicles and dedifferentiation into cancer stem cells” at page 319.

The radio-induced EVs and chemo-induced EVs promote stem cell characteristics, amplifying
the therapeutic resistance (Chung et al., 2021; Kyjacova et al., 2015; Meldolesi, 2022; Ramakrishnan
et al., 2020; Shen et al., 2019; Yang et al., 2021). Following radiotherapy, secreted EVs participate
in the radiation-induced bystander effect, meaning that even unirradiated cells can be affected by
radiotherapy effects through the uptake of EVs derived from irradiated neighboring ones (Jabbari et
al., 2020; Jella et al., 2014; Szatmari et al., 2017; Xu et al., 2016). Moreover, the radiation treatment
induces changes in the secreted EVs quantity and content, which can confer radiation resistance
properties to recipient cells (Al-Mayah et al., 2012; Jelonek et al., 2016; Mutschelknaus et al., 2016).

For instance, in hepatocellular carcinoma, exosomes released by CSCs induces the expression of
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NANOG in non-CSCs and enhance their drug resistance (Huang et al., 2021).

Additionally, EVs derived from stromal cells also participate in the promotion of stem cell fea-
tures and in the radio- or chemo-resistance of cancer cells. CAFs-derived EVs contribute to the main-
tenance and expansion of colorectal cancer CSCs through activation of stemness related pathways,
such as the Wnt/B-catenin signaling or TGF-B signaling, mediated by the EV-transported miRNAs
(e.g. miR-92a-3p) or IncRNAs (e.g. H19) (Conigliaro et al., 2015; Hu et al., 2019a; Hu et al., 2015;
Liu et al., 2020b; Ren et al., 2018). In breast cancer, EVs from stromal cells containing three miR-
NAs (miR-21, miR-378e, and miR-143) increase mammospheres formation and promote the EMT
and stemness phenotypes (Donnarumma et al., 2017), and they can activate the STAT1 and Notch

signaling promoting stemness and resistance to therapy (Boelens et al., 2014).

The interconversion between CSCs and non-CSCs is mediated by EVs (Figure 14). Indeed,
in their cargo, stemness regulatory molecules can induce a phenotypic switch of recipient cells, to
maintain the balance between CSC and non-CSC populations or expand the CSC pool in response

to therapy for instance (Sun et al., 2018; Xu et al., 2018).

First, to study the effect of CSC-derived exosomes on non-CSCs, Sun et al. (2020) used three
glioblastoma non-CSC cell lines treated with exosomes from a CSC-like cell line cultured in a stem
cell medium and showing high expression of CSC markers. Although the CSC and non-CSC popula-
tions were not purified using CSC markers, they reported an increase in tumorigenicity in the treated
cells and enrichment of CSC-derived exosomes in Notch1 proteins. As the inhibition of Notch1 de-
creased the stemness features induced by CSC-exosomes in non-CSC cell lines, it revealed that the

Notch signaling contributes to the exosome-mediated enhanced stemness of glioblastoma cells.

In colorectal cancer, Hu et al. (2019b) demonstrated the induced dedifferentiation of puri-
fied non-CSCs by CAFs-derived EVs during chemotherapy treatment. The non-CSC population
treated with fibroblast-derived conditioned media showed higher sphere formation and higher CSC
percentage upon chemotherapy treatment. Furthermore, the fibroblast-derived exosomes coupled
with chemotherapy-induced more sphere generation in the non-CSC population compared to control
cells, while the exosome-depleted conditioned media treatment-induced less sphere generation, in-
dicating that the dedifferentiation is mediated by exosomes. They also found the presence of several
Whnt ligands in the fibroblast-secreted vesicles, activating the Wnt/B-catenin pathway in recipient cells.
Overexpression of WNT3A in CAFs revealed that CAFs-derived EVs increase the nuclear -catenin

levels in treated non-CSCs and enhance their tumorigenicity in vivo.

2.3.3 INFLAMMATION AND SECRETED MOLECULES

Cytokines and other molecules that are secreted by a tumor or stromal cells act as paracrine
communication between cells, activating signaling pathways related to stemness to promote the ac-

quisition of a stem phenotype in non-CSCs (Figure 14) (Das et al., 2020; Wijaya, 2019).
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Pro-inflammatory mediators such as tumor necrosis factor o (TNFa) and IL-6 have been re-
ported to induce the dedifferentiation toward a CSC state. Indeed, the IL-6 is known to induce an
enrichment in CSCs through the non-CSC-to-CSC conversion in several cancer models including
lung cancer, breast cancer (Arnold et al., 2020b; Korkaya et al., 2012; Liu ef al., 2014; Rodrigues et
al., 2018; Saha et al., 2016; Vaziri et al., 2021).

On one hand, to initiate the reacquisition of stem cell features such as the reexpression of
CSC markers and self-renewal capacities, the IL-6 inflammatory signal activates the NF-kB signaling
(Korkaya et al., 2012; Schwitalla et al., 2013; Wang et al., 2014a). lliopoulos et al. (2009) highlighted
the IL-6/NF-xB signaling regulates the LIN28 expression via the STAT3 transcription factor activity.
Then, lliopoulos et al. (2011) reported that the IL-6 secretion mediates the balance between the CSC
and non-CSC phenotypes within the breast cancer cell population. These results were confirmed
by Saha et al. (2016) as they demonstrated the chemo-induced activation of the IL-6/NF-xB loop

contributes to the non-CSC-to-CSC conversion in breast cancer.

On the other hand, the IL-6 signal has been found to trigger the activation of the JAK/STAT
signaling, also mediating the acquisition of stem cell properties (Jin, 2020). In breast cancer, the
secreted IL-6 activates the JAK1-STAT3 signal transduction pathway in non-CSCs, up-regulating the
OCT4 expression and triggering the non-CSCs conversion into CSCs (Kim et al., 2013b). The IL-
6 also activates the JAK2-STAT3 signaling to induce the non-CSCs dedifferentiation (Arnold et al.,
2020a; Liu et al., 2014).

The TNFa produced by T-cells have been reported to promote the dedifferentiation of melanoma
cells (Landsberg et al., 2012).

The TGF-B secreted in the tumor microenvironment by stromal or cancer cells is also in-
volved in the dedifferentiation of osteosarcoma, lung cancer, breast cancer, and colorectal cancer
cells (Andriani et al., 2016; Chaffer et al., 2013; Nakano et al., 2018; Zhang et al., 2013a. The
hypoxia-induced secretion of TGF-B1 participates in the acquisition of stemness characteristics in
osteosarcoma non-CSCs (Zhang et al.,, 2013a). The TGF-f stimulation induces the TWIST1 and
ZEB1 expression leading to the conversion of non-CSC into CSCs, in colorectal and breast cancer
respectively (Chaffer et al., 2013; Nakano et al., 2018). Lastly, the sorted non-CSC population of

lung cancer cells showed an increase in CSCs after TGF-B1 treatment (Andriani et al., 2016).

Finally, secreted chemokines, or chemotactic cytokines (C-X-C motif chemokine ligand (CXCL)
and C-C motif chemokine ligand (CCL)), can also activate these previously mentioned signaling path-
ways such as the JAK/STAT one, or others such as the phosphatidylinositol 3-kinase (PI3K)/Akt one,
which are also implicated in the CSC state (Chang et al., 2013; Hernandez-Vargas et al., 2011; Ko-
rkaya et al., 2009). In particular, CXCL12, also known as stromal cell-derived factor-1 (SDF-1), and
its C-X-C motif chemokine receptors (CXCRs) 4 and 7 (CXCR4 and CXCR7) have been associated
with CSC enrichment (Dubrovska et al., 2012; Kong et al., 2016; Tang et al., 2016; Zhang et al.,
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2013b). Additionally, previous work in the laboratory revealed that the CXCL1 and CCL5 chemokines
were highly secreted after irradiation of SUM159PT breast cancer cells, and their inhibition or the
neutralization of their receptors combined with radiotherapy resulted in decreased tumorigenic ca-
pacities (Bailleul, 2018).

2.3.4 EPIGENETICS

The reversibility of epigenetic modifications enables the phenotypic plasticity of cancer cells.
Indeed, interactions of the cell with environmental factors generate epigenetic modifications that re-
sult in changes in gene expression in response to the stimuli (Hass et al., 2020). Hence, the reex-
pression of pluripotency factors and self-renewal related genes can be unlocked through epigenetic
changes and contribute to the phenotypic switch toward the stem cell state (Figure 14) (French and
Pauklin, 2021; Markopoulos et al., 2019; Mufoz et al., 2012; Poli et al., 2018; Safa et al., 2015;
Wainwright and Scaffidi, 2017).

NON-CODING RNAS

As previously stated, numerous miRNAs are found to be involved in the acquisition of a stem
cell phenotype, via their transportation in EVs or through the activation of signaling pathways regu-

lating miRNAs expression, and IncRNAs also participate in the induction of the stem cell state.

The IncRNA H19 along with the let-7 miRNAs have a role in the stem cell phenotype induction
as they are known to be pluripotency regulators (Albino et al., 2016; Jiang et al., 2016; Lecerf et
al., 2020; Ma et al., 2021; Peter, 2009; Ren et al., 2018). H19 is overexpressed in CSCs and
regulates with the let-7 family of miRNAs the expression of the pluripotency factor LIN28. Indeed,
the H19 negatively regulates the let-7 miRNAs, which are negative regulators of the LIN28 gene.
This negative feedback loop leading to the expression of LIN28 is a marker of pluripotency involved
in the CSC maintenance and expansion, while the let-7 miRNAs, negative regulators of this loop,
are associated with a differentiated phenotype (Albino et al., 2016; Cai et al., 2013; Yang et al.,
2010; Yu et al., 2007a). Guo et al. (2019) have reported that the let-7/LIN28 axis is involved in the
generation of breast CSCs. Especially since the let-7/LIN28 axis involves the IL6 and the NF-xB
signaling, known regulators of the dedifferentiation, both H19 and let-7 miRNAs may participate in

the non-CSC-to-CSC conversion (lliopoulos et al., 2009; lliopoulos et al., 2011).

Many other miRNAs are involved in the acquisition of stemness, including the miR-200 family.
The miR-200 family of miRNAs is widely known to regulate the EMT via the ZEB family transcription
factor negative feedback loop (Andriani et al., 2016; Cano and Nieto, 2008; Korpal et al., 2008). Yet,
they have also been described as mediating the stem cell phenotype (Peter, 2009; Wellner et al.,
2009). For instance, the miR-200a negatively regulates the CSC state in pancreatic and liver can-
cer(Lu et al., 2014b; Wang et al., 2015b), and the miR-200c in breast cancer (Feng et al., 2015b;

Liu et al.,, 2018a; Shimono et al., 2009). The miR-200b downregulates the generation and mainte-
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nance of CSC via the inhibition of Suz12 (a component of the PRC2 complex), inducing the loss of
the H3K27me3-mediated repression of the E-cadherin gene (CDH1) in breast cancer (lliopoulos et
al., 2010). Additionally, Lim et al. (2013) found that miR-200s are involved in the plasticity between
non-stem and stem-like phenotypes in immortalized mammary cells and that their loci have different
DNA methylation and histones modification profiles between the two phenotypes. Indeed, the re-
pressive methylated state of the miR-200 loci is maintained by the miR-22-mediated inhibition of TET
demethylase in breast CSCs (Song et al., 2013b). Finally, Chaffer et al. (2013) demonstrated that the
miR-200 regulation of ZEB1 plays a key role in the non-CSC-to-CSC conversion in breast cancer, as

the miR-200 inhibition severely impairs their dedifferentiation rate.

Lastly, lincRNA-ROR is a IncRNA known to be involved in the reprogramming into iPS cells,
and in the CSC phenotype in glioblastoma and pancreatic cancer (Feng et al., 2015a; Fu et al.,
2017; Loewer et al., 2010; Zhan et al., 2016). And, the miR-21 is also a well-known regulator of both
EMT and CSC phenotype and could participate in the dedifferentiation (Han et al., 2012a; Han et al.,
2012b; Ni et al., 2018; Sekar et al., 2016).

DNA METHYLATION

The induced reprogramming of somatic cells into iPS cells is accompanied by a reset of epi-
genetic marks, especially by global DNA demethylation (Bhutani et al., 2009; Costa et al., 2013;
Gao et al., 2013; He et al., 2017; Park et al., 2020). The presence of DNA methylation at gene
promoter is generally associated with its transcriptional repression. Details about DNA methylation
and epigenetic reprogramming are given in chapter 4 “DNA methylation: principles and methodology”
at page 105. The involvement of ten-eleven translocation (TET) 1 in the global DNA demethylation
during the establishment of a stem-like pluripotent state indicates that TET enzymes may be also im-
plicated in the generation of CSCs, through the epigenetic reactivation of previously silenced genes
(Costa et al., 2013; French and Pauklin, 2021; Gao et al., 2013; Olariu et al., 2016; Stricker and
Pollard, 2014). Globally, the CSCs have different DNA methylation signatures compared to non-
CSC, demonstrating the importance of DNA methylation changes to enable the phenotypic plasticity
between the non-CSC and CSC states (Helou et al., 2014; Lee et al., 2015). The DNA methylation-
associated enzymes are therefore required to apply the DNA methylation changes occurring through
the phenotypic switch, but their role remains mostly unclear. In general, DNMT1 has been found to
promote the formation of CSCs (Liu et al., 2014; Pathania et al., 2015; Zagorac et al., 2016), and
DNMT3B has been reported as suppressed by the miR-221, associated with stemness in breast

cancer (Roscigno et al., 2015).

The DNA methylation or demethylation of specific loci contributes to phenotypic changes. For
instance, the promoter of NANOG is found hypomethylated in hepatocellular carcinoma and liver
cancer CSCs (Liu et al., 2020c; Wang et al., 2013c). In liver cancer, Liu et al. (2020c) reported dif-

ferences in DNA methylation at the NANOG gene promoter and DNMT1 expression levels, between
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non-CSCs and CSCs. They found that the miR-135a downregulates the DNMT1 expression, reduc-
ing the DNA methylation of the NANOG promoter and resulting in the SMYD4-mediated activation
of its transcription, to enable the acquisition of stem cell properties and dedifferentiation into CSCs.
The promoter of the CD133 gene, a CSC marker commonly used in different cancer models, is found
differentially methylated in CSCs in several cancers, such as breast cancer, glioblastoma, hepatocel-
lular carcinoma, and ovarian cancer (Baba et al., 2009; Kagara et al., 2012; Yi et al., 2008; You et al.,
2010). Several genes are found regulated by DNA methylation in CSCs, including the GATA6 gene,
a transcription factor associated to differentiation and found hypermethylated in glioblastoma CSCs,
and SOX9 gene promoting self-renewal via the asymmetrical-to-symmetrical cell division switch and
found hypomethylated in pancreatic ductal adenocarcinoma CSC (Lee et al., 2015; Liu et al., 2016;
Sun et al., 2013; Sun and Yan, 2020). These data suggest that the methylation level of specific lo-
calization might be more important in the determination of the cell phenotype than the global DNA
pattern (French and Pauklin, 2021).

HISTONE MODIFICATIONS

The histone post-translational modifications (PTMs) such as methylation or acetylation of ly-
sine residues at their tails, contribute to the establishment of the chromatin state and subsequent
gene transcription or gene silencing. Several enzymes, including histone methylase (HMT) and hi-
stone deacetylase (HDAC) along with key co-factors, can modify the histones marks, resulting in
chromatin condensation or decondensation and thus changes in gene expression. In general, the
acetylation of histones is correlated with transcriptional activity, as well as for the H3K4me3 mark,

while the H3K27me3 is associated to gene silencing.

The presence of two different histone marks with opposing effects at the same localization is
called bivalency or poised chromatin. This bivalency is found generally at promoter regions of genes
important for the development. Indeed, the presence of both activating or silencing marks, such
as H3K4me3-H3K27me3 marks, keep the gene silenced but allow its rapid transcriptional activation
upon cell fate commitment (Bapat, 2013; Bernstein et al., 2006; Easwaran et al., 2014). As the
interconversion between CSC and non-CSC states depends on the capacity to activate or repress
transcriptional programs, the poised chromatin may have a central role in the CSC plasticity (Chaffer
et al., 2013; Suva et al., 2013; Wainwright and Scaffidi, 2017).

In acute myeloid leukemia (AML) and glioblastoma, the CSCs and non-CSCs have different
histone modifications profiles (Rheinbay et al., 2013; Yamazaki et al., 2012). The bivalency of pro-
moters in AML CSCs is lost when they differentiate into progenitors, meaning that the reverse process
could contribute to the dedifferentiation of CSCs (Yamazaki et al., 2012). In particular, Chaffer et al.
(2013) found that the promoter of the ZEB1 gene, which mediates the dedifferentiation of breast can-
cer cells, exhibits bivalent chromatin patterns (H3K4me3 and H3K27me3 marks) in non-CSCs but

only activation marks in CSCs (H3K4me3 and H3K79me2 marks). Hence, it indicates that the loss of
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repressive marks at bivalent promoters can enable the reexpression of stemness-related genes for

the cell to transit to a CSC phenotype.

To modify the histones marks through the phenotypic switches, the activity of histones modify-
ing enzymes is required. The involvement of histone acetylation in the non-CSC-to-CSC conversion
was demonstrated by Debeb et al. (2012) as HDAC inhibitors treatment induced the dedifferentia-
tion of breast CSCs through the up-regulation of the Wnt/B-catenin pathway, as explained in section
2.2.2 "HDAC inhibitors induced dedifferentiation” at page 75. In lung cancer, Saijo et al. (2016)
showed that oxidative stress induces the repression of the HDACS8. Thus, the presence of histone
acetylation modifications at the HOX5A and SOX2 promoters enables the SOX2 expression via the
HOX5A transcription activity and leads to the acquisition of a stem cell phenotype in lung cancer
cells. Hence, it also explains the generation of CSCs after HDAC inhibitors exposure as it triggers
the expression of HOX5A and SOX2.

The polycomb repressive complexes (PRC) 1 and 2 (responsible for H2AK119Ub1 and H3K27me3

marks) are strongly linked to the maintenance of pluripotency in several cancers (Abdouh et al.,
2009; Gorodetska et al., 2019; Orzan et al., 2011; Proctor et al., 2013; Safa et al., 2015; Suva et
al., 2009; Vlerken et al., 2013; Wen et al., 2015). EZH2, the catalytic component of PRC2 mediating
the H3K27me3, participates in the CSC plasticity in glioblastoma through the regulation of NANOG,
WNT1, and BMP5 genes and is also known to regulate the expression of the GATA6 gene, coding
for transcription factor associated to cell lineage decision and differentiation, in several cancer types
(Natsume et al., 2013; Patil et al., 2020; Tan et al., 2019; Zang et al., 2020). Altogether, the activity

of these histone modifiers could play a key role in the dedifferentiation of non-CSCs into CSCs.
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The non-CSC-to-CSC conversion is regulated at several levels by different machineries and
mediators, from the microenvironment composition and signals to the modulation of gene
transcription by epigenetic mechanisms.

An hypoxic environment, caused by chemotherapy or radiotherapy for example, leads to
the emergence of CSCs in the non-CSC population through increased levels of hypoxia-
inducible factors (HIFs), in several cancer models, especially in glioblastoma.

The intercellular communication via extracellular vesicles (EVs) also participates in the ac-
quisition of a CSC phenotype. In the context of a radiotherapy treatment, EVs contribute
to the radiation-induced bystander effect, affecting the phenotype of unirradiated recipient
cells. Further information linking EVs and dedifferentiation is available in Appendix 2 “Ex-
tracellular vesicles and dedifferentiation into cancer stem cells” at page 319.

Secreted pro-inflammatory factors (e.g. TNFa, interleukins, cytokines) can activate sig-
naling pathways (e.g. NF-«xB, JAK/STAT), inducing the dedifferentiation of non-CSCs into
CSCs.

Epigenetic mechanisms, non-coding RNAs, DNA methylation, and histones post-
translational modifications, contributes as well to the phenotypic conversion. For instance,
TET enzymes and the global DNA demethylation may be involved in the epigenetic re-
programming enabling the acquisition of stem cell features. Additionally, the bivalent (or
poised) chromatin, characterized by the presence of opposing epigenetic marks at the
same loci, can have a central role in the interconversion between the CSC and non-CSC
states, as the lost of the repressive marks would rapidly enable the reexpression of key
genes, allowing the reacquisition of stem cell properties.
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3.1 THE MAMMARY GLAND
3.1.1 DESCRIPTION

The breast is a mammalian organ that has the function of maternal milk secretion after child-
birth to feed the newborn. It is an exocrine mammary tubuloalveolar gland surrounded by fatty and
connective tissue (Figure 15). Its structure is supported by the pectoral muscles, and its integrity is
ensured by a connective tissue composed of the fibroglandular ridges of Duret and Cooper’s liga-

ments.

From 15 to 25 irregular lobes compose the mammary gland, connected to a milk duct for
milk transportation to the nipple. The milk duct gradually branches out into interlobular ducts, each
leading to a lobule composed of numerous acini. An acinus is composed of a lumen surrounded by
lactocytic epithelial cells that secrete milk, overlaid by myoepithelial cells. The acini are connected to

the intralobular duct, which joins the interlobular duct (Figure 15). The myoepithelial cell contraction
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during lactation allows the ejection of milk towards ducts (Hassiotou and Geddes, 2013; Pinamonti
etal., 2017).

Chest wall Normal lobule
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FIGURE 15 ANATOMY OF THE FEMALE MAMMARY GLAND. Representation of a sagittal section of the mam-
mary gland in women. The mammary gland is composed of glandular and adipose, or fatty, tissues, supported
by ligaments. A ductal system drains the secretory tissue to store and transport milk to the nipple during lacta-
tion. The glandular tissue is composed of 15-25 lobes that comprise 20-40 lobules containing 10—100 acini in
which the milk is produced. Figure adapted from the Medical And Scientific lllustration, Breast, Terese Winslow
LLC website, © Terese Winslow LLC for the National Cancer Institute.

The mammary epithelium develops at puberty in women under hormonal stimulation. During
gestation, high concentrations of progesterone, estrogen, and placental lactogenic hormone activate
cellular proliferation, through the growth factors production, leading to extensive branching of the
ductal tree, and acini differentiation in preparation for milk production. After childbirth, modification
of the hormone balance between progesterone and prolactin induces milk secretion. Finally, at the
cessation of lactation, the mammary gland progressively involutes to return to its pre-pregnant state
via epithelial and myoepithelial cells apoptosis and proteinase-driven tissue remodeling (Fu et al.,
2014).

The morphological and functional unit of the breast called the terminal duct lobular unit
(TDLU) is the structure formed by an extralobular terminal duct and a lobule (acini connected to the
intralobular duct). Histologically, the TDLU is composed of two main cell types: an inner luminal layer
of cylindrical or cubic glandular epithelial cells also called ductal or alveolar luminal cells, and an
outer basal layer composed of myoepithelial cells (Figure 16) (Fu et al., 2020; Pinamonti et al., 2017,
Visvader, 2009).
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FIGURE 16 STRUCTURE AND CELL TYPE COMPOSITION OF THE MAMMARY GLAND. Representation of the
mammary gland ductal structure and cell type composition. Two types of luminal cells are found depending on
their localization, ductal ones in ducts and alveolar ones in alveoli (acini). Figure from Fu et al. (2020).

3.1.2 MAMMARY STEM CELLS

The breast development during puberty and regeneration through successive cycles of preg-
nancy suggested repopulation and renewal capacities provided by tissue-resident adult stem cells.
The presence of stem cells within the mammary gland has been first implied by DeOme et al. (1959)
as the transplantation of breast tissue fragments are able to reform ductal outgrowths resembling the
normal mammary epithelial tree, and was supported later by the work of Daniel ef al. (1968) demon-
strating their self-renewal capacity through serial transplantation. However, mammary stem cells
(MaSCs) were identified and isolated for the first time by Shackleton et al. (2006). They demonstrated
that a single MaSC can regenerate an entire structure of the mammary gland upon transplantation.
This repopulating activity into different mammary cell subtypes demonstrates their multidifferentiative

and self-renewal capabilities and thus, they are characterized as stem cells.

Several markers are used for their isolation, in mice the Lin"CD24*CD29"9" (Lin= lineage,
CD29= integrin B1) cells are generally referred to murine MaSCs (Fu et al., 2020; Shackleton et al.,
2006). The isolation of human MaSCs in several studies relies on several combinations of markers to
define the population, such as Lin"CD49f*EpCAM~°" (CD49f= integrin a6, EpCAM= epithelial cell
adhesion molecule), CD24M"CD49f"S"DNERM" (DNER= delta/notch like EGF repeat containing)
and CD10*EpCAM~ (CD10= membrane metalloendopeptidase) (Bachelard-Cascales et al., 2010;
Fu et al., 2020; Pece et al., 2010; Shehata et al., 2012).

Hence, the mammary epithelium is organized hierarchically with stem cells and progen-
itors giving rise to luminal and myoepithelial lineages, which is necessary for the mammary gland

development during puberty and gestation, and for the tissue homeostasis (Figure 17) (Fu et al.,
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2020; Visvader, 2009). The MaSCs are qualified as multipotent or bipotent stem cells, as they differ-
entiate into the two primary epithelial cell lineages, luminal and myoepithelial, but the luminal lineage
can be further subdivided into the ductal and alveolar sublineages. Indeed, a subset of cycling ER+
progenitors produces luminal ER+ cells to line the ducts. Yet, through transplantation and lineage
tracing studies, controversy remains about whether or not there is an intermediate bipotent progen-
itor state between the MaSCs and luminal/basal unipotent progenitors in the adult (Fu et al., 2020;
Keymeulen et al., 2011; Rios et al., 2014; Visvader, 2009).

ER*/PR* Ductal
progenitor luminal

Luminal >
progenitor
Mtammalhy @ ER"/PR- ,lAIve_oIaIr Secretory
stem ce progenitor umina

0 = 0@
progenitor
\ Myoepithelial

FIGURE 17 MAMMARY EPITHELIAL DIFFERENTIATION HIERARCHY. The mammary epithelium is organized
in a hierarchy, the multipotent/bipotent MaSCs give rise to unipotent luminal and basal progenitors. The luminal
lineage is subdivided into two sublineages, the ductal luminal one and the alveolar luminal one. Under hormonal
stimuli at the end of pregnancy, the alveolar luminal cells can further differentiate to secrete milk. The basal
progenitors give rise to myoepithelial cells forming the contractile tissue necessary for milk expulsion. Figure
adapted from Fu et al. (2020).

3.2 BREAST CANCER

3.2.1 INDICATORS AND STATISTICS

WORLDWIDE

In 2020, 2.26 million new cases of breast cancer and 685,000 deaths due to breast cancer
have been reported worldwide by the GLOBOSCAN project (Sung et al., 2021). Breast cancer is
the most diagnosed cancer as it represents 11.7% of all diagnosed cancers, for both sexes (Fig-
ure 2A). It is the fourth cause of cancer mortality as it causes 6.9% of all cancer deaths, for both
sexes (Figure 2B). The 5-year prevalence, meaning the number of people alive within 5 years after a
breast cancer diagnosis, is estimated at 7.79 million (17.7% of all cancers, for both sexes). It is esti-

mated that nearly 30% of patients with breast cancer, who became disease-free after being treated,
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Estimated number of new cases in 2020, worldwide, females, all ages

Breast
2 261 419 (24.5%)

Other cancers

3489 618 (37.8%)
Colorectum
865 630 (9.4%)
Stomach
369 580 (4%)
Corpus uteri Lung
417 367 (4.5%) 770 828 (8.4%)

Thyroid Cervix uteri
448 915 (4.9%) 604 127 (6.5%)

Total : 9 227 484

International Agency for Research on Cancer

Data source: Globocan 2020
Graph production: Global Cancer @)5’%’3"‘.}3&'&
Observatory (httpi//gco.arc.fr)

Estimated number of deaths in 2020, worldwide, females, all ages

Breast
684 996 (15.5%)

Other cancers

1637 669 (37%)
Lung
607 465 (13.7%)
Colorectum
419 536 (9.5%)
Pancreas Cervix uteri
219 163 (4.9%) 341 831 (7.7%)

Liver Stomach
252 658 (5.7%) 266 005 (6%)

Total : 4 429 323

International Agency for Research on Cancer

Data source: Globocan 2020
Graph production: Global Cancer @mmm

Observatory (http://gco.arc.fr)

FIGURE 18 ESTIMATED NEW CASES AND DEATHS BY CANCER SITES FOR WOMEN IN 2020. A. Estimated
number of new cases (incidence) in 2020, worldwide, for women and all ages.  B. Estimated number of deaths
(mortality) in 2020, worldwide, for women and all ages.  Graph and data from GLOBOSCAN 2020, IARC,
WHO, available at the Cancer Today - Global Cancer Observatory website.
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experience disease recurrence (Colleoni et al., 2016).

For women, breast cancer is the most diagnosed cancer, representing 24.5% of all new cancer
cases (Figure 18A), and the first cause of cancer mortality, causing 15.5% of all cancer deaths
(Figure 18B). As the estimated 5-year prevalence of breast cancer among women represent 33.7%
of all cancers, it means that one-third of the women alive within 5 years after the cancer diagnosis

have been diagnosed with breast cancer.

IN FRANCE

In France, 58,500 new cases of breast cancer and 12,100 deaths due to breast cancer have
been reported in 2018. The prevalence for 2017 is estimated at 913,089 people alive who have been

diagnosed with cancer in France.

For women, breast cancer is also the most diagnosed cancer in France, representing 33% of
all new cancer cases, and the first cause of cancer mortality, causing 17.8% of all cancers death,
in 2018 (The French National Cancer Institute (INCa) website; Panorama des cancers en France,
2021).

3.2.2 TUMORIGENESIS

Cancer is a disease characterized by the presence of abnormal cells proliferating excessively
and anarchically, uncoordinated with other tissues, and unresponsive to physiological regulatory
mechanisms. The transition of a normal cell to a neoplastic cell able to from malignant tumors
requires the acquisition of functional capabilities, defined and named as the “Hallmarks of Cancer”
by Hanahan and Weinberg in 2000, 2011, and 2022 (Figure 12A). Indeed, the initial six hallmarks
were complemented twice with emerging hallmarks and enabling characteristics that facilitate the

acquisition of hallmark capacities.

Hallmarks of cancer:

e Sustaining proliferative signaling (2000)
e Evading growth suppressors (2000)

e Resisting cell death (2000)

e Enabling replicative immortality (2000)

¢ Inducing or accessing vasculature (2000)
e Activating invasion & metastasis (2000)
e Deregulating cellular metabolism (2011)
e Avoiding immune destruction (2011)

e Unlocking phenotypic plasticity (2022)
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Enabling characteristics:

e Genome instability & mutation (2011)

e Tumor-promoting inflammation (2011)

Nonmutational epigenetic reprogramming (2022)

Polymorphic microbiomes (2022)

Senescent cells (functionally important cell type, 2022)

Thus, the emergence of breast cancer is due to the acquisition of pro-tumor characteristics,
or hallmarks, in luminal or myoepithelial cells, caused by genomic instability, epigenetic changes,
and tumor microenvironment (Hanahan and Weinberg, 2011; Karsli-Ceppioglu et al., 2014; Lee and
Muller, 2010). Genetic alterations are DNA sequence modifications such as point mutations, am-
plification of the gene copy number, deletions, or chromosomal rearrangements, while epigenetic
alterations modify the gene expression without DNA sequence changes. Additionally, the tumor
microenvironment influence both genetic and epigenetic instability but also promotes tumorigenic
signaling pathways enabling the tumor progression (Hanahan and Coussens, 2012; Hanahan and
Weinberg, 2011).

Genes undergoing expression changes that cause the acquisition of hallmarks capacities are
named oncogenes, promoting tumor growth, and tumor suppressor genes, inactivated as they

repress tumor growth.

On one hand, the most overexpressed oncogenes in breast cancer are ERBB2 — commonly
referred to as the human epidermal growth factor receptor 2 (HER2) —, MYC, and cyclin D1 (CCND1)
(Lee and Muller, 2010; Osborne et al., 2004). The HER2 gene is amplified and overexpressed
in 20%-30% of invasive breast cancer, it encodes a transmembrane tyrosine kinase growth factor
receptor that promotes proliferation, angiogenesis, cell motility, metastases, and resistance to apop-
tosis, via the activation of several pathways (mitogen-activated protein kinase (MAPK) signaling and
PI3K/Akt signaling) (Slamon et al., 1987; Vijver et al., 1988; Yarden and Sliwkowski, 2001). The MYC
gene encodes a nuclear phosphoprotein that participates in gene transcription regulation and is am-
plified and overexpressed in 15%-25% of breast cancers. MYC is associated with poor prognosis,
aggressive clinical features, and resistance to chemotherapy, as it controls proliferation, differenti-
ation, metabolism, apoptosis, stress pathways, and mechanisms of drug resistance (Fallah et al.,
2017; Varley et al., 1987; Xu et al., 2010). The CCND1 gene encodes the cyclin D1 protein which
regulates the cell cycle through temporal coordination of cell division events, and it is overexpressed
in 40%-50% of breast tumors and amplified in 10%-20% of cases (Roy and Thompson, 2006; Steeg
and Zhou, 1998).

On the other hand, the loss of function of tumor suppressor genes is effective when both alleles
are inactivated, thus it requires two genetic hits (Knudson, 2001). Hence, an hereditary transmitted

mutation of one allele confers a genetic predisposition for cancer. The most known breast cancer
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predisposition genes are breast cancer genes (BRCAs) 1 and 2 (BRCA1 and BRCA2), involved in the
DNA damage response and DNA repair (Roy ef al., 2012). Mutations in either BRCA1 or BRCA2 are
responsible for 80% of hereditary breast cancer cases (5-10% of breast cancer cases are inherited)
(Godet and Gilkes, 2017; Rosen et al., 2003). The silencing of BRCA1 can also be caused by
epigenetic modifications such as its promoter hypermethylation (Pang et al., 2012; Yamashita et al.,
2015). Additionally, the most-studied tumor suppressor gene P53 (or TP53) is found to be mutated

in 20%-30% of breast carcinomas (Bertheau et al., 2013; Hollstein et al., 1991).

3.2.3 TUMORAL PROGRESSION

Within the mammary terminal duct lobular unit, cancer cells can arise from either the lobular
(acini) or the ductal epithelium. Lobular carcinomas are less prevalent than ductal ones as they ac-
count for only 4%-10% of breast lesions biopsies (Donaldson et al., 2018). The Figure 19 represents
the stages of breast carcinoma progression from the ductal epithelium. The different stages of breast

lesions are classified depending on their morphology and histology, based on biopsies, as followed:

e Hyperplasia (H) is characterized as an overgrowth of cells in the duct (ductal hyperplasia) or
lobule (lobular hyperplasia) and remains benign.

e Atypical hyperplasia (AH) is characterized as an accumulation of monomorphic cells forming
unusual architecturally complex patterns and is a high-risk benign lesion that can evolve in can-
cer (Hartmann et al., 2015). Two types are distinguished, atypical ductal hyperplasia (ADH) and
atypical lobular hyperplasia (ALH). The differentiation of atypical hyperplasia from low-grade car-
cinoma in situ rests on the absence of all the features of carcinoma in situ (Page and Rogers,
1992; Pinder and Ellis, 2003).

e Carcinoma in situ (CIS) is characterized as a more extensive accumulation of abnormal cells
filling the entire lumen with no evidence of invasion across the basement membrane and is stage
0 of breast cancer (Gorringe and Fox, 2017; Pinder et al., 2010; Tower et al., 2019). Two types
are distinguished, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS).

¢ Invasive carcinoma (IC) is characterized by cancer cells breaking through the basement mem-
brane and invading the surrounding stroma (Gannon et al., 2014). Two types are distinguished,
invasive ductal carcinoma (IDC) and invasive lobular carcinoma invasive lobular carcinoma (ILC).

o Metastatic breast cancer is characterized by the formation of distant tumors, named metastases.
To form a metastasis, the cancer cells must enter the vasculature by intravasation, survive in the
absence of adhesion, exit the blood system by extravasation, and regrow a new tumor in a different
microenvironment (Vargo-Gogola and Rosen, 2007; Veer and Weigelt, 2003; Weigelt et al., 2005).
The preferential metastatic sites for breast cancer are the bone (65.1%), lung (31.4%), liver (26%),

and brain (8.8%) (percentages from Chen et al., 2017b).

3.2.4 HETEROGENEITY AND CLASSIFICATIONS
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FIGURE 19 BREAST CANCER PROGRESSION. Representation of breast cancer progression stages. Atyp-
ical ductal hyperplasia (ADH) (or atypical lobular hyperplasia, ALH) and ductal carcinoma in situ (DCIS) (or
lobular carcinoma in situ, LCIS) are pre-invasive lesions where cancer cells are confined in the duct. ADH
progresses to DCIS at the complete filling of the mammary duct with cancer cells. The carcinoma becomes
invasive (invasive ductal carcinoma, IDC, or invasive lobular carcinoma, ILC) when the myoepithelium and base-
ment membrane are breached, allowing cancer cells to escape beyond the mammary duct confinement. The
intravasation of cancer cells in the bloodstream followed by extravasation in a distant site lead to the formation
of a distant metastasis. Created with BioRender.com

HISTOLOGICAL CLASSIFICATION

As previously detailed, breast cancers are classified based on histological and morphological
criteria from biopsies, that distinguish breast cancer based on morphological and architectural fea-
tures that define invasiveness and aggressiveness of the lesion. Two types of breast cancers are
distinguished depending if the cancer cells have broken through the basement membrane or not:

carcinoma in situ (CIS) and invasive carcinoma (IC).

The CIS is subdivided depending on the epithelium of origin, giving ductal carcinoma in situ
(DCIS) and lobular carcinoma in situ (LCIS). The DCIS is further subdivided into 5 subgroups
based on their different architectures: the comedo, cribriform, micropapillary, papillary, and solid, and
can be sub-classified into 3 grades, low, intermediate, and high, depending on the lesion size and

the presence of specific morphological features (Makki, 2015; Malhotra et al., 2010).

Invasive carcinomas are also subdivided depending on the epithelium of origin, into inva-
sive ductal carcinoma (IDC) (85%—95%) or invasive lobular carcinoma (ILC) (5%—15%). Several
types of IDC and ILC have been defined depending on their morphology and architecture. IDC
subtypes: no specific type (40%-75% of all invasive carcinomas), tubular carcinoma, invasive crib-
riform carcinoma, mucinous carcinoma, medullary carcinoma, invasive papillary carcinoma, invasive
micropapillary carcinoma, apocrine carcinoma, neuroendocrine tumor, metaplastic carcinoma, lipid-
rich carcinoma, secretory carcinoma, oncocytic carcinoma, adenoid cystic carcinoma, and acinic
cell carcinoma. ILC subtypes: classic type, pleomorphic lobular carcinoma, histiocytoid carcinoma,

signet ring carcinoma, and tubulolobular carcinoma (Makki, 2015).
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HISTOLOGICAL GRADES

The Nottingham grade (or score) system is a histological grading of breast tumors based on
their differentiation degree. It was originally developed by Bloom and Richardson (1957), and mod-
ified by Elston and Ellis (1991) from the hospital of Nottingham. Scores from 1 to 3 are determined
based on tubules (group of cells forming a ring-like structure) proportions, nuclear pleomorphism
(non-uniformity of nucleus shapes and sizes), and mitotic rate (number of mitotic figures per area)
(Table 2) (Elston and Ellis, 1991). The addition of these scores gives the histological grade of the
tumor from I to lll, which serves for prognosis and clinical outcome prediction. A total score between
3 and 5 gives a low grade of |, the tumor is well differentiated with low proliferation. A total score of 6
or 7 gives an intermediate grade of Il, the tumor is moderately differentiated. And, a total score of 8

or 9 gives a high grade of lll, the tumor is poorly differentiated and tumor cells are highly proliferative.

HISTOLOGICAL FEATURES SCORE =1 SCORE =2 SCORE =3
Tubules Majority (> 75%) Moderate (10-75%) Low (< 10%)

. Small regular and Moderate increase in I
Nuclear pleomorphism uniform size and variability Strong variability
Mitoses humber per area* 0-9 10-19 >20

TABLE 2 HISTOLOGICAL GRADING SYSTEM OF BREAST CANCER.  * 10 fields at the tumor periphery, number
thresholds depends on the microscope/objective used (Elston and Ellis, 1991).

CLINICAL CLASSIFICATION

The Tumor-Node-Metastasis (TNM) classification is an anatomic classification of mammary
tumors based on macroscopic features and tumor invasive capacity. The combination of 3 parame-
ters: (T) the primitive tumor size, (N) the localization and invasion degree of lymph nodes, and (M) the
presence of metastasis, determines the clinical stages from 0 to IV, which help clinicians to predict

the cancer prognosis and evolution to adapt therapies (Table 3) (Brierley et al., 2016).

BIOMARKERS

Three main biomarkers are commonly used to characterized mammary tumors: the estrogen
receptor (ER), the progesterone receptor (PR) and the human epidermal growth factor recep-
tor 2 (HER2) (also known as ERBB2). The ER- and PR-receptor statuses are considered positives
when > 10% of tumor cells show ER- and PR-specific staining by immunohistochemistry (IHC) (Al-
lison et al., 2020; Dooijeweert et al., 2019). For the HER2-receptor status, the HER2-staining by
IHC is translated into a score depending on the stained cells percentage and staining intensity, and
confirmed by in situ hybridization (ISH) when ambiguous (Franchet et al., 2021; Xu et al., 2019).

Hence, three main subgroups of breast carcinomas can be distinguished:

o Hormone receptor-positive (HR*) breast cancers express ER or PR or both and are thereby
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STAGE T - TUMOR N - NoDE M - METASTASIS  DESCRIPTION
0 Tis NO MO Carcinoma in situ
| T1 NO MO Tumor < 2 cm
lIA T1 N1 MO Tumor < 2 cm with minor node invasion
T2 NO Tumor 2-5 cm without node invasion
B T2 N1 MO Tumor 2-5 cm with minor node invasion
T3 NO Tumor size > 5 cm without node invasion
T N2 Tumor < 2 cm with moderate node invasion
A T2 N2 MO Tumor 2-5 cm with moderate node invasion
T3 N1/2 Tumor size > 5 cm with minor node invasion
Tumor of any size with direct extension to
B T4 NO/1/2 MO chest wall or skin with up to moderate node
invasion
nc Any T N3 MO Important node invasion
v Any T Any N M1 Distant metastases

TABLE 3 CLINICAL STAGES OF BREAST CANCER BASED ON THE TNM CLASSIFICATION.

sensitive to hormone therapy. The ER is expressed in 80% of breast cancers, and PR in 60-70%

of breast cancers (Turashvili and Brogi, 2017).

¢ HER2-positive (HER2*) breast cancers present a gene amplification or overexpression of HER2

and are thereby sensitive to HER2 targeting therapies. They account for 15 to 20% of breast

cancers.

o Triple-negative breast cancers (TNBC) are negative for these three markers, they are more ag-

gressive than the other groups and insensitive to either hormone therapy or HER2-directed ther-

apies. They account for 10 to 20% of breast cancers. Moreover, the TNBCs is a heterogeneous

group that has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2),

mesenchymal (M), mesenchymal stem-like (MSL), immunomodulatory (IM), and luminal androgen

receptor (LAR) (Wang et al., 2019a).

Other biomarkers can be used to further characterize breast carcinomas, including the androgen re-

ceptor (AR), the epidermal growth factor receptor (EGFR), p53, or Ki-67 (Silva et al., 2019; Turashvili
and Brogi, 2017).

MOLECULAR CLASSIFICATION

To better perceive the heterogeneity of breast cancers and improve tumor behavior prediction

and associated therapies, breast carcinomas can also be classified by molecular patterns. Estab-

lished by Perou et al. (2000), the molecular classification divides breast carcinomas into subtypes

based on gene expression profiles similarities using the microarray technology. Hence, 4 subgroups

have been defined by Perou et al. (2000): luminal, HER2-enriched, normal-like, and basal-like.
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The luminal subtype, reflecting the expression pattern of a luminal cell of origin, was then
divided into two subgroups: luminal A and luminal B, each having a distinct expression profile
(Serlie et al.,, 2001). The existence of the normal-like subtype, characterized by a strong similarity
with the normal mammary epithelial cells, is controversial as it is considered an artifact caused by the
contamination with normal epithelial cells in the microarray analyses, thus it is now removed (Weigelt
et al., 2010b; Yersal and Barutca, 2014). Other subgroups have been defined over the years: the
claudin-low subtype, introduced by Herschkowitz et al. (2007), is characterized by low expression of
genes related to tight junctions, including claudins; and the molecular apocrine subtype, introduced
by Farmer et al. (2005), is characterized by the expression of androgen receptor without expression
of the ER and PR.

Summary of the different molecular subtypes (Makki, 2015; Weigelt et al., 2010a; Yersal and
Barutca, 2014):

e Luminal A subtype reflects the luminal origin of cancer and accounts for a majority of breast
cancers (40-60%). Luminal A tumors express the luminal epithelial cytokeratins 8 and 18, ER
and/or PR but not HER2. They have a low histological grade, relatively low proliferation, and a
good prognosis.

o Luminal B subtype is also reflecting the luminal origin of cancer, and is characterized by a more
aggressive phenotype, higher proliferation and higher histological grade (intermediate) than lumi-
nal A. Tumors are ER and/or PR -positive and approximately 30% of them are HER2-positive.

e Molecular apocrine is a rare subtype (less than 4% of all breast cancers) characterized by the
overexpression of AR. Tumors are negatives for ER/PR and can be either HER2-positive or HER2-
negative. Hence the HER2-negative apocrine tumors are triple-negative. They have an interme-
diate histological grade and a poor prognosis but a better one than other triple-negative breast
carcinomas (Arciero et al., 2020).

o HER2-enriched subtype is characterized by definition by a strong expression of HER2 and ER/PR
is usually negative. HER2 positivity confers more aggressiveness, tumors are highly proliferative,
have a high histological grade and a poor prognosis, but are sensitive to HER2-directed therapies.

o Basal-like subtype reflects the basal origin of cancer, as tumors express high levels of basal
myoepithelial markers. Tumors are triple-negative for ER, PR, and HER2. They have a high
histological grade, aggressive clinical behavior, and a high rate of metastasis.

¢ Claudin-low subtype is characterized by low expression of genes related to tight junctions and
cell-cell adhesion, including claudins 3, 4, 7, occludin, and E-cadherin. Tumors are triple-negative
for ER, PR, and HER2, and are highly expressing epithelial to mesenchymal transition genes and
stemness related genes. They are highly proliferative, have a high histological grade, and have

poor clinical outcomes.

Altogether, the different classifications are complementary and in constant evolution, a sum-

mary of the main breast cancer subgroups commonly referred to, with associated features, is rep-
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resented in Figure 20. The use of the different classifications, histological, clinical, and molecular is

necessary to homogenize and improve therapeutic decision-making.

. . . TNBC
Luminal A Luminal B HER2-enriched , _
Basal-like Claudin-low
Luminal/

PHENOTYPE  Epithelial Mesenchymal

-like -like
PROGNOSIS Good _ Poor
en ) )
P ° ° ) )
) o )
PROLIFERATION A4
FREQUENCY 40-60% 10-30% 15-20% 10-20%

FIGURE 20 BREAST CANCER MAIN SUBGROUPS CHARACTERISTICS.  The four main subgroups (or sub-
types) of breast cancer along with their main characteristics: associated phenotype, prognosis, biomarkers
expression (plus or minus), proliferation level (high or low), and estimated frequency (Dai et al., 2015; Eroles et
al., 2012; Kumar et al., 2015; Niklaus et al., 2021; Parise and Caggiano, 2014; Weigelt et al., 2010a).

3.2.5 THERAPIES

Different therapies are used to treat breast cancers: surgery, radiotherapy, chemotherapy,
hormone therapy, and targeted therapies. The therapeutic choice depends on the cancer subtype,
the degree of lymph nodes invasion, the expression of specific biomarkers such as the hormone

receptors or HER2, the presence of metastases, and patient age and condition.

In the case of a non-metastatic breast cancer diagnosis, the surgery is systematically per-
formed (Figure 21). The surgery can be partial (tumorectomy, removal of the tumor) or total (mastec-
tomy, removal of the mammary gland) depending on the tumor size, and some adjacent lymph nodes

can also be surgically removed.

A chemotherapeutic treatment can be delivered to reduce the tumor size prior to surgery
(neoadjuvant therapy) or after surgery (adjuvant therapy) (Leon-Ferre et al., 2021; Spring et al.,
2022). Common chemotherapeutic drugs are anthracyclins (doxorubicin, epirubicin), cyclophos-
phamides, and taxanes (paclitaxel), generally used in combination (e.g. doxorubicin and cyclophos-
phamide followed by paclitaxel (Esposito et al., 2014; Lee and Nan, 2012; Nufez et al., 2016).
Anthracyclins impair the DNA structure, preventing DNA replication and causing apoptosis, while tax-
anes suppress the microtubule formation, blocking the cell division and leading to apoptosis (Conte
et al., 2000; Nabholtz and Gligorov, 2005).

Coupled with the neoadjuvant or adjuvant chemotherapy, the anti-HER2 therapy is used
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FIGURE 21 SCHEME OF CONVENTIONAL THERAPEUTIC CARE TO TREAT NON-METASTATIC BREAST CANCER.

against HER2-enriched breast cancers and is either composed of a monoclonal anti-HER2 antibody
(trastuzumab, pertuzumab) or a tyrosine kinase inhibitor (lapatinib) (Escriva-de-Romani et al., 2018;
Wouerstlein and Harbeck, 2017).

The radiotherapy is a regional treatment essential to reduce the risk of relapse of breast can-
cers after surgery (Clarke et al., 2006a). The radiotherapy treatment can be directly delivered during
surgery for high precision irradiation of the targeted area, it is called intraoperative radiotherapy (Pilar
et al., 2017; Vaidya et al., 2004). Then, after surgery, the conventional postoperative radiotherapy
protocol is used in a fractionated deliverance of a total of 50 Gy, split into 25 fractions of 2 Gy delivered
over 5 weeks (5 fractions per week) (Saksornchai et al., 2021; Speers and Pierce, 2016). However,
moderate hypofractionated and ultra-hypofractionated radiotherapy protocols have emerged due to
the radiotherapy precision improvements allowing to deliver of higher doses to the tumor while limiting
the dose received by surrounding normal tissues, and they are more convenient in terms of patient
compliance and cost. Moderate hypofractionation uses fewer but higher dose fractions, commonly 40
Gy in 15 fractions over 3 weeks (e.g. the START trial, Bentzen et al., 2008a; Bentzen et al., 2008b;
Haviland et al., 2013) while ultra-hypofractionation uses even higher doses per fraction, commonly
26 Gy in 5 fractions over 1 week (e.g. the FAST-Forward trial, Brunt et al., 2016; Brunt et al., 2020;
Brunt et al., 2021) (Kim et al., 2021; Saksornchai et al., 2021; Postoperative radiotherapy for breast

cancer: hypofractionation RCR consensus statements, 2021).

The hormone therapy is used to treat hormone-dependent tumors such as the luminal A
and B subtypes expressing the ER and PR. Selective estrogen receptor modulators (SERM) are ER
ligands acting like estrogens in some tissues but blocking their action in others. The SERM-induced
conformational changes of the estrogen receptor (ER) change its interactions with coactivators or
corepressors and subsequently initiate or suppress the transcription of the ER target genes (Lewis
and Jordan, 2005; Shelly et al., 2008). Tamoxifen is a SERM that has been clinically used for the

last 40 years to treat ER-positive breast cancers, but the acquisition of tamoxifen resistance (tumors
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becoming hormone-independent) remains a major challenge to improving breast cancer treatment

efficacy (Ali et al., 2016; Chang, 2012).

3.3 BREAST CANCER STEM CELLS
3.3.1 MARKERS AND ISOLATION

The study of CSCs requires markers to identify, quantify, and isolate them. Markers used
for breast CSCs are similar to those used for normal stem cells but are not universal either between
tumors or within the same tumor. Thereby, depending on the cell line or model studied, some markers
are more fitted than others. This CSC phenotype heterogeneity thus requires the use of several
markers completed with functional validation of their stem cell capacities, such as their self-renewal

ability.

SURFACE MARKERS

The expression of surface markers is one of the first means used to identify CSCs (Bonnet
and Dick, 1997). In breast cancers, several markers can be used to isolate the CSC population.
The most common combination of markers used is a high expression of CD44 coupled with a low
expression of CD24. The CD44"9"/CD247°" population was one of the first to be found with stem
cell characteristics (Al-Hajj et al., 2003).

CD44 is a membrane glycoprotein and functions as a hyaluronic acid receptor involved in
the regulation of cell migration, adhesion, proliferation, and survival while CD24 is a surface protein

involved in cell adhesion (Orian-Rousseau, 2015).

The CD44"9h/CD24°% |abeling identifies a tumorigenic cell population capable of regenerat-
ing a heterogeneous population, by forming mammospheres in vitro or tumors in vivo (Al-Hajj et al.,
2003; Ponti et al., 2006). However, this combination of markers is not usable for all breast cancer
subtypes and lineages, and the proportions of CD44"9"/CD24°" cells vary between different cell
lines. Indeed, these markers are adequate for the luminal subtypes, but not for the basal one as the
majority of cells are CD44"9"/CD247°% (nearly 100% for the MDA-MB-231 cell line) (Fillmore and

Kuperwasser, 2008; Stuelten et al., 2010). Yet, this labeling is still widely used in the literature.

CD44 and CD24 are also used as prognosis biomarkers for breast cancers. The CD44*/CD24"
phenotype predicts a poor clinical outcome in TNBC but can be considered a favorable prognostic in
hormone receptor-positive breast cancers (Ahmed et al., 2012; Giatromanolaki et al., 2011; Kim et
al., 2011; Wang et al., 2017a).

Additionally, the CD133 transmembrane protein is a CSC marker in several cancers (e.g. in
glioblastoma), and used in combination with other markers in breast cancers for CSC population
identification (Croker et al., 2008; Joseph et al., 2019; Mansour and Atwa, 2015).
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ENZYMATIC ACTIVITY

The aldehyde dehydrogenase (ALDH) is an enzyme responsible for the oxidation of aldehydes
into carboxylic acids and is involved in the oxidative metabolism of retinol into retinoic acid. The
ALDH activity is higher in MaSCs and mammary CSCs and is associated with poor prognosis and
resistance to treatment (Croker et al., 2008; Ginestier et al., 2007; Tanei et al., 2009). Hence, the
Aldefluor test has been developed to identify normal and cancerous stem cells based on the ALDH
enzymatic activity detection (Ginestier et al., 2007). This test relies on a non-fluorescent substrate,

which becomes fluorescent when cleaved by ALDH enzymes.

ALDH*Mg" cells are characterized by increased tumorigenicity as well as self-renewal and
differentiation capabilities. In addition, the ALDH inhibition sensitizes ALDH"9"/CD44* CSCs to
chemotherapy and radiation therapy (Croker and Allan, 2011). In breast CSCs, the high ALDH
activity is mainly due to the ALDH1A1 and ALDH1A3 isoforms (Marcato et al.,, 2011a; Marcato et
al., 2011b). The expression of a fluorescent protein under the control of the ALDH1A1 promoter has
been used as a CSC reporter system, allowing the live tracking of breast CSCs (Bidan et al., 2019).
The ALDH activity is also used to detect CSCs in other cancer types such as bladder and cervical
cancers (Xu et al., 2015).

SIDE POPULATION

The excluded population, or “side population”, is based on the high activity of efflux pumps of
the ABC transporter family, which are over-represented at the membrane of normal and cancer stem
cells (Britton et al., 2012). It can be identified by flow cytometry using a fluorescent vital dye exclusion
test such as Hoechst 33342 or Rhodamine 123. These membrane transporters are notably involved
in the efflux of chemotherapeutic drugs by CSCs and are thus associated with chemoresistance (Wu
and Alman, 2008; Zhou et al., 2001). However, the side population consists of a CSC-enriched pop-
ulation, and not all CSCs can be identified by the ability to exclude vital dyes (Behbod and Vivanco,
2015; Britton et al., 2012; Golebiewska et al., 2011). This demonstrates the requirement for marker

combinations to isolate CSCs.

Low PROTEASOME ACTIVITY

Several cellular functions are regulated by the proteasome, such as DNA repair mechanisms
and cell cycle regulations. CSCs have been shown to have low proteasome activity in several can-
cer models, including breast cancer (Vlashi ef al., 2009). Hence, the use of a proteasome activity
reporter allows for the detection and isolation of a CSC-enriched population (Viashi et al., 2013;
Vlashi et al., 2014). A reporter system used in breast cancer consists in the stable expression of
a fusion fluorescent protein, composed of the C-terminal degron of murine ornithine decarboxylase
(cODC) and a fluorescent protein ZsGreen, which is specifically degraded by the proteasome, thus,

an accumulation of fluorescence reveals a low proteasomal activity (Hoyt et al., 2005).
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3.3.2 FUNCTIONAL TESTS

In addition to the expression of specific markers, functional tests have also been developed
and are recognized as essential tests to define a stem cell population: the SFC in vitro test and the

tumorigenicity in vivo test.

SPHERE FORMING CAPACITY IN VITRO ASSAY

The sphere-forming capacity (SFC) test is based on the ability of stem cells to grow in the ab-
sence of anchorage. The cells are seeded in small quantities in a specific sphere-forming medium,
enriched in growth factors and without serum, and under non-adherent culture conditions. The num-
ber of spheres formed is quantified to estimate the percentage of sphere formation (Dontu et al.,
2003; Lombardo et al., 2015). The sphere culture allows for the selection of both CSCs and progeni-
tors in the first step. Then, spheres can be cultivated over several generations to eliminate progenitor

cells, as the sphere-forming CSCs have the ability to self-renew over generations.

TUMORIGENICITY IN VIVO ASSAY

The tumorigenicity test is based on the self-renewal, differentiation, and tumor-initiating ca-
pacities of CSCs. A prospective cell population is injected into mice in limited numbers of cells. The
presence or absence of tumor development defines the stemness of the tested population, or at least
its enrichment in CSCs, as only CSCs should be able to regenerate a tumor. Important features
observed are the abilities of these cells to form tumors in series, revealing their self-renewal capacity,
and to reproduce the heterogeneity of the initial tumor, revealing their differentiation capacity (O’'Brien
etal., 2010). This technique remains the best method for characterizing tumor-initiating cells and also
allows for the study of cell differentiation capacity by examining the heterogeneity of newly formed

tumors. (Visvader and Lindeman, 2008).
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Above 2 millions of new breast cancers cases are diagnoses each year. It is the most
diagnosed cancer worldwide, and the first cause of cancer mortality for women.

Breast tumors are heterogeneous, hence several classifications relying on different param-
eters, histological, clinical and molecular ones, have been established to improve clinical
outcome predictions and therapeutic decisions.

Breast cancers can be divided into four main subtypes based on their molecular patterns:
luminal A, luminal B, HER2-enriched and TNBC, or defined by their biomarker expression
profiles as ER/PR-positive, HER2-positive, and triple-negative.

Breast CSCs can be identified by several markers such as surface markers
(CD44Migh/CD247°%) enzymatic activity (ALDH"9"), exclusion of vital dye by efflux pumps
(Hoechst side population), or low proteasome activity. In addition, to confirm their stem cell
properties, functional tests must be performed such as the sphere-forming capacity (SFC)
in vitro assay and the tumorigenicity in vivo assay.
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4.1 DNA METHYLATION
4.1.1 PRINCIPLE

DNA methylation is characterized by the presence of an additional methyl group at the 5’
position of cytosine residues (Figure 22). The 5-methylcytosine (5mC) is a stable and heritable

alteration that does not involve modifications of the DNA sequence itself, and has a regulatory role
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on gene expression, thereby it is classified as an epigenetic mark.

, NH, NH, OH
SAM SAH
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@) N O N 0) N
H H H
Cytosine 5-Methylcytosine 5-Hydroxymethylcytosine

FIGURE 22 METHYLATION OF CYTOSINE IN DNA. The DNA methyltransferases (DNMTs) convert cytosine
to 5-methylcytosine by adding a methyl group, donated from S-adenosylmethionine (SAM) molecules. The
oxidation of 5-methylcytosine by the TET family of enzymes generate 5-hydroxymethylcytosine. SAH = S-
adenosylhomocysteine. Figure from Greer and McCombe (2012).

In vertebrates, the cytosine methylation mainly occurs at CG dinucleotides, cytosine followed
by guanine, called CpG (cytosine-phosphate-guanine) sites. But, non-CpG methylation has also
been found in stem cells (Lister et al., 2009; Ziller et al., 2011). In plants, the cytosine methylation
occurs in several contexts: CG, CHG (C followed by a non-G followed by a G), and CHH (C followed
by two non-Gs) (Chan et al., 2005; Lister et al., 2008; Zhang et al., 2006).

The human genome contains ~29 millions of cytosine-phosphate-guanines (CpGs) and 60%
to 80% of them are methylated (Kim and Costello, 2017; Lister et al., 2009; Tost, 2010). In total,
the 5-methylcytosines represent ~1% of all bases of the human genome (Ehrlich et al., 1982; Tost,
2010).

The CpG sites can be clustered into regions named CpG islands (CGls), which are regions
of high CG density. Approximately 7% of CpGs are located in CGls (Deaton and Bird, 2011). Several
definitions of a CGl exist and differ due to a few variations of parameters, but in general, a CpG island
corresponds to a 200 or 500 bp minimum sized region with a GC content higher than 50% and an
observed versus expected ratio higher than 0.6 for the occurrence of CpG sites (Gardiner-Garden
and Frommer, 1987). These islands extent is generally from 0.5 to 3 kb, and are estimated to be
~30,000 in the human genome, accounting for ~2% of the genome (Cross and Bird, 1995; Tost,
2010).

4.1.2 ESTABLISHMENT, MAINTENANCE, AND REMOVAL

For DNA methylation patterns to be established, maintained or erased, the mammalian DNA
methyltransferase (DNMT) family of enzymes catalyze the transfer of a methyl group from S-
adenosylmethionine (SAM) to cytosine, while the ten-eleven translocation (TET) family proteins
catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) (Figure 22)
(Chen and Riggs, 2011; Ginno et al., 2020; Jones and Liang, 2009; Meng et al., 2015).
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FIGURE 23 REPRESENTATION OF DNA METHYLATION STATES WITH ENZYMES INVOLVED.

MAINTENANCE OF DNA METHYLATION

DNA methylation motifs are transmitted through DNA replication with high fidelity. During repli-

cation, the template strand is still methylated while the newly synthesized strand lacks 5-methylcytosines,

the DNA is hemimethylated (Figure 23). Among the DNMT family of enzymes, the DNMT1 restores
the symmetrical DNA methylation, as it has a strong preference for hemimethylated CpG sites, by
coping the pre-existing methylation patterns to the new strand (Chen and Li, 2004; Chen and Riggs,
2011; Pradhan et al., 1999). The DNMT1-mediated DNA methylation maintenance involve the ubiqui-
tin like with PHD and ring finger domains 1 (UHRF1) protein for recognition of hemimethylated DNA.
Indeed, by binding to hemimethylated sites, the hemimethylated DNA-binding protein UHRF1 helps
recruiting DNMT1 to DNA replication foci to methylate cytosines of the newly synthesized strand
(Bostick et al., 2007; Bronner et al., 2019).

DE NOvO DNA METHYLATION

To establish new methylation patterns, de novo methylation on unmethylated CpG sites is
required. The DNMT3A and DNMT3B are methyltransferases active on unmethylated DNA and re-
sponsible for the establishment of methylation motifs during early development (Figure 23) (Edwards
etal., 2017). These two enzymes have no preference for hemimethylated DNA, though they can also

participate in the maintenance of DNA methylation (Chen and Riggs, 2011; Okano et al., 1999).

The activity of DNMT3A and DNMT3B can be enhanced by the DNMTS3L protein, which does
not have a methyltransferase activity itself, by direct interaction and complex formation to stimulate
de novo DNA methylation (Chen et al., 2005; Jia et al., 2007; Suetake et al., 2004).

The establishment of new DNA methylation is strongly linked to histones post-translational
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modifications epigenetic marks. The DNMT3A and DNMT3B can be recruited by proteins asso-
ciated with histone marks such as G9A, the histone methyltransferase responsible for histone H3
lysine 9 (H3K9) mono- and dimethylation (Epsztejn-Litman et al., 2008). And, for example, de novo
methylation is associated with the PRC2 (polycomb repressive complex 2) activity (Viré et al., 2005).
PRC2 is responsible for the H3K27me3, a repressive mark of transcriptional activity. Also, de novo
methylation is associated with the histone deacetylase (HDAC) activity and the lysine demethylase
(KDM)1 activity which induces the histone H3 lysine 4 (H3K4) demethylation (Dobosy and Selker,
2001; Wang et al., 2009a). Both H3K4me3 and histone acetylation (HAc) are marks associated with

transcriptional activation, therefore their removal is associated with transcriptional repression.

REMOVAL OF DNA METHYLATION

The erasure of DNA methylation patterns can be passive, through the absence of DNA methy-
lation maintenance during DNA replication, or active through enzymatic reaction mediated by TET
enzymes (Figure 23) (Chen and Riggs, 2011). The TET proteins, composed of TET1, TET2 and
TETS3 proteins, can oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC).

Then, the 5-hydroxymethylcytosine (5hmC) can be converted to 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC) by TET enzymes. 5-carboxylcytosine (5caC) is then considered as a
defective base and is excised by base excision repair (BER) pathways via the thymine-DNA glycosy-
lase (TDG), completing the DNA demethylation process (He et al., 2011; lto et al., 2011; Shen et al.,
2013).

4.1.3 ROLE OF DNA METHYLATION

Although approximately 7% of CpG sites are located in CGils, these are prevalent in gene
promoters (Deaton and Bird, 2011). Approximately 70% of the gene promoters have a high CpG
concentrations (Saxonov et al., 2006). And, their hypermethylation is frequently associated with
transcriptional repression (Figure 23) (Lande-Diner et al., 2007). Moreover, the distal regulatory
elements such as enhancers or silencers, capable of binding transcription regulation factors, are
also subjected to DNA methylation; thereby, intergenic DNA methylation also contributes to the gene

expression regulation (Li et al., 2018a; Schubeler, 2015).

Methylated cytosines can interact with specific proteins, triggering alterations of the chromatin
structure, affecting the transcription rate of the genes nearby (Jones and Takai, 2001; Moore et al.,
2013; Schubeler, 2015). Proteins containing an methyl-CpG-binding domain (MBD), such as MBD1,
MBD2, and MeCP2, can interact with methylated cytosines and recruit proteins, transcription re-
pression factors, or chromatin modifiers including HDAC, all driving to repression of the transcription
(Baubec et al., 2013; Klose and Bird, 2006; Nan et al., 1998).

Jones and Takai (2001) explain that the methylation of cytosines can serve as an efficient

and heritable silencing mechanism without relying on DNA-protein interactions. Indeed, the DNA



4. DNA METHYLATION: PRINCIPLES AND METHODOLOGY

methylation profile conveys information on gene regulation from parent cell to daughter cells through
cellular replication, without alteration of the DNA sequence. It provides an additional layer of informa-
tion enabling the establishment of epigenetic marks, according to Mitchell et al. (2016). In this way,
the DNA methylation maintains gene regulatory programs and function as a cellular memory (Kim
and Costello, 2017; Shipony et al., 2014). The DNA methylation is notably required for the expres-
sion regulation of imprinted genes — genes that show differential expression between the parental
alleles in diploid cells — as well as for the X chromosome inactivation (Barlow and Bartolomei, 2014;
SanMiguel and Bartolomei, 2018).

The DNA methylation, along with the cellular epigenome, safeguards the cellular differentia-
tion, identity, and diversity, critical features required for a normal development, where pluripotent cells
differentiate into a variety of cell types (Kim and Costello, 2017; Okano et al., 1999).

4.1.4 DNA METHYLATION AND EPIGENETIC REPROGRAMMING

The study of embryonic stem cells (ESCs) provided many insights on the role of DNA methy-
lation in early development and cell differentiation. A wave of global resetting of DNA methylation
occurs in the early embryo and determines the establishment of the methylation patterns (Edwards
et al., 2017; Lienert et al., 2011; Smith and Meissner, 2013). The CGls located in promoters of
many genes necessary for development are found hypomethylated in ESCs, while the CGls in inter-
genic regions are frequently subjected to DNA methylation during development, suggesting potential
regulatory functions (lllingworth et al., 2010). The hypomethylation of promoter-associated CGls sug-
gests the exclusion of DNA methyltransferases and transcription factor binding to initiate transcription

of genes required for development (Brandeis et al., 1994).

Several studies have shown the presence of specific regions or elements, such as transcrip-
tion factors binding sites, contributing to DNA methylation states, particularly for the maintenance of
unmethylated CGls at promoters in ESCs, and for their differentiation (Brandeis et al., 1994; Dickson
et al.,, 2010; Lienert et al., 2011). Genes required for the pluripotency of ESCs, such as NANOG and
OCT4 (POUS5F1), switch from an unmethylated state associated with active transcription to a methy-
lated state, associated with their transcriptional repression upon differentiation (Deb-Rinker et al.,
2005; Yeo et al., 2007). Additionally, DNA methylation and histones modifications have been shown
to inter-operate to establish specific chromatin conformations, through context-dependent cross-talk
and addition of mutually exclusive marks or co-regulatory marks (Cedar and Bergman, 2009). These

epigenetic marks determine the lineage commitment of cells during development.

Once the DNA methylation patterns and the chromatin structures modulating the DNA acces-
sibility are established during development, the cell-type-specific gene expression programs are sta-
bilized. The expression of stem-specific or lineage-unrelated genes is prevented by the epigenome,
thus preserving the cell phenotype and its inheritance (Mohn et al., 2008). However, the epige-

netic reprogramming through global DNA demethylation — through single-stranded DNA breaks and
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BER — is also required for the germ line formation (primordial germ cells, PGCs), to erase the ge-
nomic imprint and to return cells to a pluripotent state (Reik, 2007). Thereby, as explained above,
there are two waves of epigenetic reprogramming in the mammalian life cycle, one during the early
embryogenesis, establishing the expression patterns in cells for proper development of the organ-
ism, and the other for the germ line formation, resetting the epigenome in preparation for the future
offspring (Xavier et al., 2019; Zeng and Chen, 2019).

Artificially induced reprogramming of somatic cells into stem-like cells has been possible by
the reexpression of four transcription factors — OCT4, SOX2, C-MYC, and KLF4 — giving rise to iPS
cells (Takahashi et al., 2007; Takahashi and Yamanaka, 2006). Along with the acquisition of stem
cell properties, global DNA methylation profiles changes have been observed; the profiles are similar
to those in ESCs, despite residual methylation signatures from the original donor state of the iPS cell
(Kim et al., 2010; Nishino and Umezawa, 2016). While most of the DNA methylation changes are
towards the hypermethylation of CpG sites in iPS cells, for a limited number of genes associated with
stemness, such as OCT4 and NANOG, their promoters lose their DNA methylation marks (Olariu et
al., 2016; Takahashi et al., 2007; Takahashi and Yamanaka, 2006).

4.1.5 DNA METHYLATION IN CANCER

The cancer cells and normal stem cells present DNA methylation differences. In general,
a decrease of CpG methylation is observed in tumor cells, but both hypo- and hypermethylation
events have been reported. Indeed, tumor suppressor genes are silenced by DNA methylation dur-
ing tumorigenesis while proto-oncogene are upregulated by removal of DNA methylation (Baylin and
Jones, 2016; Kulis and Esteller, 2010). For example the promoter of the tumor suppressor gene
BRCAT1 gene is generally hypermethylated in breast cancers (Esteller et al., 2000). Hanahan (2022)
integrated in the hallmarks of cancer the “nonmutational epigenetic reprogramming” hallmark, de-
fined as a genome reprogramming exclusively caused by epigenetically regulated changes in gene
expression, meaning that mutations are not always required for cancer development and progression
(Darwiche, 2020; Huang, 2012; Nam et al., 2021). For example, hypoxia-induced TET-mediated
epigenetic changes could drive the initiation of tumorigenesis if the cell-of-origin resides in a hypoxic
area (Hanahan, 2022; Michealraj et al., 2020; Thienpont et al., 2016). Hence, DNA methylation

changes participates in cancer initiation and progression.

The DNA methylation patterns of cancer cells can serve as biomarkers for diagnosis. Indeed,
the measurements of DNA methylation associated to genes, such as bone morphogenetic protein
(BMP) 3, TWIST1, or Og-methylguanine-DNA methyltransferase (MGMT) coding for a repair protein,

are used in biomarker assays (Caccese et al., 2022; Kessel et al., 2016; Koch et al., 2018).

To force the reexpression of genes with an hypermethylated promoter in cancer cells, espe-
cially genes required for the cancer cell survival, demethylation agents have been used as therapeutic
agents in AML (Dombret et al., 2015; He et al., 2014; Wongtrakoongate, 2015). The 5-azacytidine
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(also known as 5-aza-CR, azacitidine or Vidaza) and 5-aza-2’-deoxycytidine (also known as 5-aza-
CdR, decitabine or Dacogen) agents are two nucleoside analogs of the cytosine base. They are
incorporated during DNA replication and, as the binding of DNMTs to these analogs by covalent in-
teraction is irreversible, it triggers the DNMTs excision from DNA and its subsequent degradation by
the proteasome, resulting in DNMT depletion and methylation inhibition after several rounds of DNA
synthesis (Ghoshal et al., 2005; Mehdipour et al., 2020).

4.1.6 DNA METHYLATION AND STEMNESS

DNA methylation regulates the self-renewal and pluripotency of both normal and cancer stem
cells. First, in normal cells, NANOG and OCT4 genes are regulated by DNA methylation throughout
the differentiation (Fouse et al., 2008; Hattori et al., 2007; Li et al., 2007b).

Indeed, Deb-Rinker et al. (2005) have reported an increase in DNA methylation at the NANOG
upstream region during the retinoic acid-induced differentiation of NT2 cells, which is correlated with
a decrease in NANOG expression (pluripotent cell line) into neurons. Similarly, Li et al. (2007b)
observed an hypermethylation of OCT4 and NANOG promoter regions upon retinoic-acid-induced
differentiation of ESC. At day 0, the OCT4 promoter is methylated at 0% and the NANOG promoter
at 7.6%, however, after 3 days of induced differentiation, the OCT4 promoter methylation increased
up to 22.4% and the NANOG promoter up to 59.7%. Additionally they highlighted the involvement
of de novo methylation by DNMT3A and DNMT3B as the knock-down of these two genes abol-
ished the differentiation-induced hypermethylation of both promoter regions of OCT4 and NANOG.
Indeed, after 3 days, the OCT4 and NANOG promoter methylation levels are 4.7% and 17.2% in
DNMT3A knockdown cells, 3.6% and 10.1% in DNMT3B knockdown cells, and 0% and 3% in the
double-knockdown cells, respectively (Li et al., 2007b). During ESC differentiation, the orphan nu-
clear receptor germ cell nuclear factor (GCNF) binds to the OCT4 upstream region and recruits MBD
proteins and DNMT3A, resulting in hypermethylation and repression of OCT4 (Gu et al., 2005; Gu
et al, 2011; Wang et al., 2016). Furthermore, the DNA methylation status of NANOG and OCT4
promoters have been correlated with their expression levels throughout the differentiation of ESC
(Hattori et al., 2007; Wang et al., 2009b). In addition, the epigenetic regulation of OCT4 and NANOG
also involve histones modifications and chromatin remodeling (Fouse et al., 2008; Hattori et al., 2007;
Kashyap et al., 2009; Topalovic et al., 2017). In cancer stem cells, the promoter region of NANOG
have also been found hypomethylated (Liu et al., 2020c; Wang et al., 2013c). Indeed, Wang et al.
(2013c) observed lower methylation levels of the NANOG promoter in CSCs compared to non-CSCs
(42% and 89% respectively), correlated to an upregulation of its expression in hepatocellular carci-

noma.

Aside from pluripotency factors promoters, stem cells exhibit a different methylation profile
than differentiated cells, both in normal and cancer cells (Bibikova et al., 2006; Bock et al., 2012;
Helou et al., 2014; Lee et al., 2015; Meissner et al., 2008; Yu et al.,, 2020). Bock et al. (2012)
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describe DNA methylation patterns as a fingerprint of the cell phenotype which includes the pluripo-
tent state. The CSC-specific methylation patterns have been studied in several models, including
esophageal cancer, glioblastoma and breast cancer, in which several DMRs between non-CSCs and
CSCs are identified (Helou et al., 2014; Lee et al., 2015; Li et al., 2018b; Yu et al., 2020). By a whole-
genome bisulfite sequencing (WGBS) comparative analysis between breast CSCs and non-CSCs
(MDA-MB-231 cell line), Li et al. (2018b) identified 8,007 genes associated with an hypermethylated
promoter and 6,175 genes associated with an hypomethylated promoter. The gene ontology enrich-
ment analysis revealed association with cell development processes and cell—cell signaling. Addi-
tionally, the integrative co-analysis of the transcriptome, methylome and histone modifications high-
lighted 23 genes, including 8 downregulated tumor suppressor genes, with a consistent regulation
from both promoter DNA methylation and histone modification at transcription start site (TSS) cor-
related with transcriptomic expression. The PTPN14, WWC1, NOS1AP, OBSCN, FAM189B, FHLS3,
ROBO1, ARHGAP10, ARAP1, FRS3, NAV2, MAPK13, MTMR3, RERE, and AC093838.4 genes
are found hypermethylated and downregulated, and the PKN2, CRCP, TMEM71, PPTC7, R3HDM1,
CDC42EP3, SLC6A3, and PTPRN2 are found hypomethylated and upregulated in CSCs (Li et al.,
2018b).

4.1.7 EFFECTS OF RADIATIONS ON DNA METHYLATION

The radiation exposure, either a single dose or fractionated doses, induces DNA methylation
changes in cancer cells (Antwih et al., 2013; Bae et al., 2015; Danielsson et al., 2020; Kuhmann et al.,
2011; Miousse et al., 2017). For instance, Antwih et al. (2013) irradiated MDA-MB-231 breast cancer
cells at 2 or 6 Gy and analyzed DNA methylation differences from 1 to 72 hours post-irradiation, using
the lllumina Infinium 450K methylation profiling array. They observed differentially methylated genes
associated with cell cycle regulation, DNA repair mechanisms and apoptosis pathways, indicating the
involvement of DNA methylation in the cellular response to irradiation. Notably, the IGF1R (tyrosine
kinase receptor), KRAS (GTPase, oncogene) and HDAC4 (histone deacetylase) genes were found
differentially methylated after 6 Gy irradiation. Another study, Kuhmann et al. (2011), used a fraction-
ated radiation treatment on MCF7 breast cancer cells (5x2 Gy per week, for a total of 10 Gy and
20 Gy) and identified differentially methylated genes by methyl-CpG immunoprecipitation followed by
CGl microarray. From this analysis, they selected 15 CGils differentially methylated for further vali-
dation by MassARRAY, and confirmed a methylation increase at the ADAMTS9 (metallopeptidase)
promoter, FOXC1 (transcription factor) gene, and intragenic CGl in the TRAPPCO (trafficking protein),

and a methylation decrease at the AMIGOS (adhesion molecule) promoter.

Moreover, the irradiation affects gene expression, that may include DNMTs in specific model
and context (Miousse et al., 2017). Mice exposed to radiations showed decreased expression of DN-
MTs associated to a general decrease of DNA methylation in hematopoeitic tissues (Miousse et al.,
2014; Pogribny et al., 2005). In the MDA-MB-231 breast cancer cell line, Antwih et al. (2013) reported
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a gradual decrease of the DNMT1 protein levels in the 72h after 6 Gy irradiation. In nasopharyngeal
carcinoma, Wu et al. (2020) found DNMT3B expression upregulated after exposure to radiations,
mRNA and protein levels increasing gradually within the 48h following irradiation, while DNMT1 and
DNMTA expressions were not consistently affected. They highlighted the role of DNMT3B in the

radioresistance of these cells through methylation of genes coding for p53 and p21.

Furthermore, the radiation-induced DNA methylation changes have been associated to DNA
repair mechanisms and genomic instability (Antwih et al., 2013; Armstrong et al., 2012; Kaup et al.,
2006; Sutton et al., 2019). Sutton et al. (2019) observed that prostate cancer cells with different
responses to DNA damage have also distinctive DNA methylomes. Indeed, the resistant cells gen-
erally exhibited higher levels of DNA methylation, but it does not influence their susceptibility to DNA
damage or the rate of short-term repair. Armstrong et al. (2012) found that global methylation levels
do not determine the radiosensitivity of mouse ESCs. However they reported the involvement of DN-
MTs in the radiation-induced genomic instability, especially DNMT1, which is recruited to DNA repair
sites, as its knock-down increased the mutation rate, potentially due to the absence of methylation at

specific regions, hindering the DNA repair mechanisms (Armstrong et al., 2012).

Finally, DNMT inhibitors have been used in combination with radiotherapy to radiosensitize
tumors by potentiating the radiations cytotoxic effects (Gravina et al., 2010). As the cytosine analogs
forms covalently bound DNA-protein complexes with DNMTs, it may be more difficult to repair prox-
imal DNA damage, thus increasing the cytotoxicity (Ferguson et al., 1997; Juttermann et al., 1994;
Kim et al., 2012). In addition, DNMT inhibitors have been shown to synchronize cancer cells pref-
erentially in the G1 or G2/M phase of the cell cycle, which are the most radiosensitive phases (Qiu
et al.,, 2009). Plus, the DNMT inhibitors modulates gene expression and signaling pathways, such
as NF-«xB signaling and apoptosis signaling, that also potentiate the cytotoxic effect of radiotherapy
(Khong et al., 2008; Peitzsch et al., 2016; Zhu et al., 2018).




STATE OF THE ART

114

The DNA methylation consists of the addition of a methyl group to cytosines, located at
CpG sites (CG dinucleotides) in vertebrates.

The methylation and demethylation dynamics are represented in Figure 23. The DNA
methyltransferase (DNMT) family of enzymes are responsible for DNA methylation and the
ten-eleven translocation (TET) family of enzymes for demethylation.

Regions rich in CpG are called CpG island (CGl) and are preferentially found at promoter
loci. Their hypermethylation is generally associated with transcriptional repression.

As DNA methylation marks are heritable through cellular divisions, it serves as an epige-
netic memory, transmitting the regulation of gene expression programs without alteration of
the DNA sequence, critical to maintaining the cell identity.

Epigenetic reprogramming events, involving demethylation and remethylation of DNA, oc-
cur in the early embryo and during the germ line formation, to establish the DNA methylation
patterns regulating gene expression programs necessary for the development.

In cancer, aberrant DNA methylation patterns can be found, such as hypermethylation of
tumor suppressor genes and hypomethylation of proto-oncogenes.

The stem state identity of cells involves a DNA methylation regulation in both normal and
cancer cells. Indeed, in addition to the pluripotency factors expression epigenetic regula-
tion, DNA methylation signatures of stemness have been identified in normal and cancer
cells.

4.2 OVERVIEW OF METHODS TO STUDY DNA METHYLATION

A plethora of methods to study DNA methylation have been developed over the years and can
be classified either by (1) their principle (the way to discriminate 5-methylcytosine (5mC): by bisulfite
conversion, by restriction enzyme digestion, by affinity binding, or by a combination of them), () their
methodology (experimental techniques used: polymerase chain reaction (PCR), Sanger sequencing,
microarray, next-generation sequencing (NGS)...), (3) their resolution (global methylation levels to
single CpG sites) or (4) their coverage (region-specific, array or wide profiling). A non-exhaustive

classified list is presented in Table 4.

Here, a classification of DNA methylation study techniques is proposed, divided in three major
groups: (1) bisulfite-based assays, (2) restriction enzyme digestion-based assays and (3) affinity
enrichment-based assays (Khodadadi et al., 2021; Laird, 2010; Rauluseviciute et al., 2019) (Table 4).
Following this classification, the most known ones are described briefly below (Chatterjee et al., 2017;
Khodadadi et al., 2021; Li and Tollefsbol, 2020; Rauluseviciute et al., 2019; Soozangar et al., 2018).
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4.2.1 BISULFITE-BASED ASSAYS

The sodium bisulfite treatment of DNA converts unmethylated cytosines into uracils, while
methylcytosines are not affected. During DNA amplification, uracils are replaced by thymines, and
thereby, the cytosine methylation status can be revealed by the presence of either a cytosine (methy-
lated) or thymine (unmethylated) at its position. The major limitation of the bisulfite treatment is its
conversion efficiency, as a not complete one causes bias in results. Although, many commercialized
kits for bisulfite conversion are available and ensure a minimum of 99% conversion efficacy in most
cases (Hernandez et al., 2013; Leontiou et al., 2015). Further details on the bisulfite conversion are

provided in section 4.4.1.1 “Bisulfite conversion” at page 125.

REGION-SPECIFIC ANALYSIS

Techniques to estimate methylation of a specific locus generally use PCR to amplify the region

of interest.

The bisulfite sequencing PCR (BSP) is considered as the gold standard assay to map and
quantify region-specific methylation since the 2000s. It consists of converting the DNA with bisul-
fite, amplifying a region of interest by PCR, and sequencing either the PCR products directly or
sequencing several individually cloned PCR products, by Sanger sequencing, to quantify the C/T
polymorphisms (Frommer et al., 1992). A complete and detailed description of its principle, process,

design, limits, and bias can be found in section 4.4 “Bisulfite sequencing PCR (BSP)” at page 123.

Developed by Herman et al. (1996), the methylation-specific PCR (MSP) assay is based on
specific primers for unmethylated and methylated DNA. The bisulfite converted DNA region is ampli-
fied in two PCR reactions using two sets of primers containing both CpG in their sequence but each
one with different methylation status. One primer pair contains unmethylated CpG (TG dinucleotides)
while the other one contains methylated CpG (CG dinucleotides) in the sequence. The qualitative
comparison of the two amplification reactions, by visualization of PCR products on a gel, reveals the
relative proportion of methylated DNA compared to unmethylated DNA. Derived from this method, the
MethylQuant technique and the sensitive melting analysis after real-time - methylation-specific
PCR (SMART-MSP) technique provide quantitative measurements of methylation proportions using
the fluorescence-based real-time PCR (Kristensen et al., 2008; Thomassin et al., 2004). MSP is
rapid and accessible, but is not very sensitive as small differences between two samples cannot be
measured, and only the methylation proportion of a few CpG sites, the ones covered by primers, is

measured.

The combined bisulfite restriction analysis (COBRA) assay combines both the bisulfite
conversion of DNA and restriction enzyme digestion of PCR products to estimate the degree of
methylation at specific loci (Xiong and Laird, 1997). After PCR amplification of the bisulfite converted

DNA region of interest, PCR products are digested with specific restriction enzymes (BstUIl: CG|CG,
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TABLE 4 LIST OF TECHNIQUES TO EVALUATE DNA METHYLATION. (Dahl and Guldberg, 2003; Dhingra et al.,
2014; Laird, 2010; Mansego et al., 2013)  5mC ELISA= 5-methylcytosine Enzyme-Linked Immunosorbent Assay (Deobagkar
etal., 1986); AIMS= Amplification of Inter-Methylated Sites (Frigola et al., 2002);  Alu/LINE-1 assay: Alu and LINE-1 repet-
itive DNA elements assay (Yang et al., 2004); BC-seq= Bisulfite conversion Capture - sequencing (Hodges et al., 2009);
BiMP= Bisulfite Methylation Profiling (Reinders et al., 2008);  BSP= Bisulfite Sequencing PCR (Frommer et al., 1992);
BSPP= Bisulfite Padlock Probes (Deng et al., 2009); CHARM= Comprehensive High-throughput Arrays for Relative Methy-
lation (Irizarry et al., 2008); Chloroacetaldehyde assay: 5mC fluorescent assay (Oakeley, 1999); COBRA= Combined
Bisulfite Restriction Analysis (Xiong and Laird, 1997); DMH= Differential Methylation Hybridization (Huang et al., 1999);
DREAM-= Digital Restriction Enzyme Analysis of Methylation (Jelinek et al., 2009); EpiTYPER MassARRAY: MALDI-TOF
mass spectrometry-based bisulfite sequencing (Ehrich et al., 2005); GoldenGate: lllumina GoldenGate technology applied
to methylation profiling (Bibikova and Fan, 2009); HELP= Hpall tiny fragment Enrichment by Ligation-mediated PCR (Khu-
lan et al., 2006); HELP-seq= Hpall-tiny fragment Enrichment by Ligation-mediated PCR - sequencing (Oda et al., 2009);
HPCE-= High-Performance Capillary Electrophoresis (Fraga et al., 2002); HPLC= High-Performance Liquid Chromatography
(Kuo et al., 1980); Infinium: lllumina Infinium technology applied to methylation profiling (Bibikova et al., 2009); LC-MS=
Liquid Chromatography - Mass Spectrometry (Friso et al., 2002); LUMA= Luminometric Methylation Assay (Karimi et al.,
2006); MCA-RDA= Methylated CpG island Amplification with Representational Difference Analysis (Toyota et al., 1999);
MCAM= Methylated CpG island Amplification Microarray (Estécio et al., 2007); MeDIP-chip= Methylated DNA Immuno-
precipitation - chip (Zhang et al., 2006); MeDIP-PCR= Methylated DNA Immunoprecipitation (or mDIP= methylated DNA
Immunoprecipitation, or mCIP= methylcytosine Immunoprecipitation) - PCR (Weber et al., 2005); MeDIP-seq= Methylated
DNA Immunoprecipitation - sequencing (Down et al., 2008); Methyl-seq: Methyl-sensitive restriction enzyme - sequenc-
ing (Brunner et al., 2009); MethylCap-seq: Methyl-DNA binding domain (MBD) capture - sequencing (Brinkman et al.,
2010); MethyLight: Methylation-specific fluorescent-based real-time PCR (Eads et al., 2000); MethylQuant: Discrim-
inative primers based real-time PCR (Thomassin et al., 2004) MethylScope: methylation-dependent restriction enzyme
microarray (Ordway et al., 2006); MethylScreen: methylation-sensitive and methylation-dependent restriction enzyme PCR
(Holemon et al., 2007); MIRA= Methylated CpG Island Recovery Assay (Rauch and Pfeifer, 2005); MIRA-chip= Methy-
lated CpG Island Recovery Assay - chip (Rauch et al., 2007); MIRA-seq= Methylated CpG Island Recovery Assay - se-
quencing (Choi et al., 2010); MMASS= Microarray-based Methylation Assessment of Single Samples (lbrahim et al., 2006);
MRE-seq= Methylation-sensitive Restriction Enzyme - sequencing (Maunakea et al., 2010); MREBS= Methylation-sensitive
Restriction Enzyme Sequencing (Bonora et al., 2019); MS-AP-PCR= Methylation-Sensitive Arbitrarily Primed PCR (Gon-
zalgo et al., 1997); MS-DGGE= Methylation-Specific - Denaturing Gradient Gel Electrophoresis (Aggerholm et al., 1999);
MS-DHPLC= Methylation-Specific - Denaturing High Performance Liquid Chromatography (Baumer et al, 2001); MS-
FLAG= Methylation-Specific - Fluorescent Amplicon Generation (Bonanno et al., 2007); MS-HRM= Methylation-Sensitive
- High Resolution Melting (Wojdacz and Dobrovic, 2007); MS-MCA= Methylation-Specific - Melting Curve Analysis (Worm
et al., 2001);  MS-MLPA= Methylation-Specific - Multiplex Ligation-dependent Probe Amplification (Nygren et al., 2005);
MS-RDA= Methylation-Sensitive - Representational Difference Analysis (Ushijima et al., 1997); MS-SNuPE= Methylation-
Sensitive - Single Nucleotide Primer Extension (Gonzalgo and Jones, 1997); MS-SSCA= Methylation-Sensitive - Single-
Strand Conformation Analysis (Maekawa et al., 1999); MSCC= Methylation Sensitive Cut Counting (Ball et al., 2009);
MSO= Methylation-Specific Oligonucleotide microarray (Gitan et al., 2002); MSP= Methylation-Specific PCR (Herman et
al., 1996); MSRE-PCR= Methylation-Sensitive Restriction Enzyme - PCR (Singer-Sam et al., 1990); oxBS-seq= ox-
idative Bisulfite - sequencing (Booth et al., 2012); Pyrosequencing (PyroMeth): bisulfite conversion and pyrosequenc-
ing (Uhlmann et al., 2002); RLGS= Restriction Landmark Genomic Scanning (Costello et al., 2000); RRBS= Reduced
Representation Bisulfite Sequencing (Meissner et al., 2005); SMART-MSP= Sensitive Melting Analysis after Real Time -
Methylation-Specific PCR (Kristensen et al., 2008); TLC= Thin-Layer Chromatography (Schmitt et al., 1997); WGBS=
Whole Genome Bisulfite Sequencing (or BS-seq, or WGSBS) (Cokus et al., 2008).
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Tagl: T/CGA), cutting specifically CG dinucleotides which are present only at originally methylated
sites. The gel electrophoresis of digested products allows the determination of the target sequence
methylation level. The main limit of this technique is the use of restriction enzymes with specific

sequences narrowing the investigation to specific CpG sites.

The MethyLight assay relies on the Tagman technology for real-time PCR amplification by
combining methylation-specific priming and methylation-specific fluorescent probing (Eads et al.,
2000). Several experimental designs can be found for MethyLight experiments, but the most common
one consists of an methylation-independent amplification using two primers and a dual-labeled fluo-
rogenic probe specific to methylated DNA, containing a 5’ fluorescent reporter dye and a 3’ quencher
dye. When the probe is annealed to methylated DNA, the exonuclease activity of the Tag DNA
polymerase cleaves the probe which releases its 5’ reporter fluorescence. Therefore, the fluores-
cence signal is proportional to the quantity of PCR products from the originally methylated DNA. This
method is quantitative and highly sensitive but is expensive, compared to BSP for example, as it
requires expensive hybridization probes, and is not reliable to detect heterogeneous methylation on
the target sequence (Chatterjee et al., 2017; Dahl and Guldberg, 2003).

The pyrosequencing of PCR products from bisulfite converted DNA can be also used to find
differential methylation of a specific region. This technique was first used by Uhimann ef al. (2002)
and is also called PyroMeth. Pyrosequencing is a real-time sequencing-by-synthesis technology,
based on the luminescence detection from the released pyrophosphate (PPi) on nucleotide incor-
poration into the complementary strand. Therefore, it is used to evaluate the proportions of C/T
polymorphisms at CpG sites (Colella et al., 2003). The pyrosequencing has a high resolution, is
quantitative, and does not require cloning as PCR products are directly analyzed, thereby it is a ma-
jor alternative to BSP. However, it is limited to short sequences, around 150 bp, so the methylation
of only a few CpG sites can be quantified. Additionally, pyrosequencing is not expensive but does

require access to a pyrosequencer, which can be a limitation for laboratories (Reed et al., 2010).

Among those described bisulfite-based region-specific techniques, only BSP and pyrose-
quencing can provide a full methylation profile over several CpG sites with a single-nucleotide res-
olution, while the others quantify the global methylation level of the sequence composed of several

CpG sites.

ARRAY-BASED ANALYSIS

Array-based assays use a fixed number of probes, placed on a multiplexed chip, for high-

throughput screening of specific loci across the genome.

GoldenGate and Infinium are microarray-based sequencing techniques developed by lllu-
mina, originally developed for single nucleotide polymorphisms (SNPs) genotyping at specific loci

and they were adapted to specifically detect the C/T polymorphisms at selected CpG sites for methy-
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lation profiling.

Several bisulfite-based microarray-based DNA methylation profiling assays have been com-
mercialized by lllumina such as the “GoldenGate Assay For Methylation” (1.5k array targets), “Hu-
manMethylation27 BeadChip” (27k array targets), “Infinium HumanMethylation450 BeadChip” (450k
array targets), and the “Infinium MethylationEPIC BeadChip” (850k array targets).

The GoldenGate technology applied to methylation profiling is a microbead-based array plat-
form and is based on the specific extension and ligation of correctly hybridized probes on the bisulfite-
converted DNA (Bibikova and Fan, 2009). For each CpG site, two sets of two probes are used con-
taining: (1) a locus-specific oligo (LSO) that hybridizes the target regions and (2) an allele-specific
oligo (ASO) that specifically binds with either the methylated allele or the unmethylated one. The
allele-specific extension occurs only from the ASO to the LSO and their ligation results in a PCR
template. Moreover, the LSO is composed of three parts: (1) a target-specific sequence, (2) a unique
address sequence, and (3) another universal primer sequence, and the ASO is composed of two
parts: (1) a target/allele-specific sequence and (2) a universal primer sequence (two different primer
sequences, one for each allele, matching two fluorescently labeled primers). With these universal
primers, allele-specific amplification can be carried out. And, the address sequence allows the la-
beled products hybridization to its complementary probes, coating universal microarray beads, for
allele- and target-specific fluorescence reading (Bibikova and Fan, 2009). The standard panel “Gold-
engate Methylation Cancer Panel I” spans 1,505 CpG sites from 807 genes (GoldenGate® Assay for
Methylation and BeadArrayTM Technology, 2010).

The Infinium is another microarray technology applied to methylation profiling (Bibikova et
al., 2009). Thousands of silica microbeads are placed on the surface of the array and each bead is
coated with multiple copies of a 50 bp probe targeting a specific locus. The genomic DNA fragments
hybridize with their complementary probes. Then, during the single-base extension step, one of four
labeled terminating nucleotides — dideoxynucleotide triphosphates (ddNTPs) — is incorporated. The
A and T bases are labeled with 2,4-dinitrophenol (DNP) and the C and G bases with biotin. Next,
anti-DNP antibodies and streptavidin labeled molecules specifically bind to the labeled probes to
amplify the signal for imaging and fluorescence reading. Two types of the Infinium assay exist,
I and Il. The Infinium | assay requires two beads per CpG site, one with a probe specific to the
methylated sequence and one with a probe specific to the unmethylated sequence. The single-
base extension and incorporation of a labeled nucleotide is allele-specific, thereby the presence of a
fluorescence signal reveals the methylation state. The Infinium Il assay utilizes only one bead with an
allele-independent probe. The methylation state is directly determined by the type of fluorescence of
the incorporated base as C/T and A/G bases have different labels (lllumina Methylation BeadChips

Achieve Breadth of Coverage Using 2 Infinium Chemistries, 2015).




STATE OF THE ART

120

WIDE PROFILING (NGS-BASED) ANALYSIS

The NGS, or second-generation sequencing, consists of the simultaneous sequencing of bil-
lions of DNA fragments, giving billions of individual reads that are gathered in contigs — contiguous
pieces of the genome — and aligned to the reference genome by bioinformatic analysis. As the
bases are sequenced multiples times in several individual reads, it provides a high-depth analysis
and thereby highly accurate data (Behjati and Tarpey, 2013; Slatko et al., 2018). The most known
NGS technologies are lllumina and lon Torrent. Its use allows a much higher scale genome analysis
compared to Sanger sequencing or arrays with a limited number of targets, but as a downside, it
is quite expensive and requires a much more complex bioinformatic analysis to interpret the large

amount of data generated.

The whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite
sequencing (RRBS) are the most known bisulfite sequencing (BS-seq) assays, based on NGS
after bisulfite conversion of genomic DNA, to analyze genome-wide methylation profiles on a single
nucleotide level. The WGBS is basically a whole-genome sequencing on bisulfite converted DNA and
therefore consists of the sequencing of the entire genome, while the RRBS aims to sequence only
CG-enriched regions (Cokus et al., 2008; Meissner et al., 2005). To do so, an additional step of DNA
fragments size separation (40-220 bp) is performed after digestion by the Mspl enzyme (C]CGG,
methylation independent) (Meissner et al., 2008). This technique was developed to overcome the
WGBS main limitations, as fewer reads are sequenced it is less expensive and generates fewer data,
but still keeps the most interesting regions to analyze (Kurdyukov and Bullock, 2016). The RRBS
generally covers around 10% of all CpGs (~2-3 millions of CpG sites) and around 85% of all CGls
(~23,000 CGils), in the human genome (Smith et al., 2009).

A more recent method, called methylation-sensitive restriction enzyme bisulfite sequenc-
ing (MREBS) follows the same principle as RRBS, as it combines methylation sensitive restriction
enzyme (MSRE) digestion and bisulfite sequencing (addition of a bisulfite conversion step to MRE-
seq, methylation-sensitive restriction enzyme sequencing), but expands the CpG coverage (Bonora
etal., 2019).

The MREBS protocol uses three methylation-specific restriction enzymes, Hpall (C/CGG),
HinP11 (G|{CGC), and Acil (C{CGC) to cleave unmethylated CpG sites in parallel and a size sepa-
ration of fragments (50-300 bp) step as RRBS. Moreover, the addition of a bisulfite conversion step
allows the determination of methylation levels of the other CpG sites outside the enzyme restriction
sites. Thereby, this assay combines the reduced representation towards hypomethylated regions by
using MSRE digestion and measurement of adjacent CpG methylation levels by using bisulfite con-
version. Several models of methylation analysis using MREBS data have been tested by Bonora et
al. (2019) to improve both coverage and accuracy. Compared to RRBS and WGBS, MREBS provides
a higher coverage of CpG sites than RRBS (~60% of CpG sites) approaching the WGBS coverage
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(~75% of CpG sites) while keeping the benefit of a reduced cost compared to WGBS.

4.2.2 ENZYME DIGESTION-BASED ASSAYS

Several assays of DNA methylation quantification are based on the ability of restriction en-
zymes to cut DNA in a methylation-dependent manner. These MSRE are isoschizomers of restric-
tion endonucleases with a different sensitivity to methylcytosines, as an example both Hpall and Mspl
cleave C/CGG sites, Mspl can cleave it indifferently of the methylated state of the second cytosine,
while Hpall can not cleave it when methylated. Major drawbacks of the use of MSRE are the cleavage

site limitation and incomplete digestion leading to a bias towards the methylated state (Laird, 2010).

REGION-SPECIFIC ANALYSIS

The most straightforward technique to evaluate CpG methylation using MSRE is the MSRE-
PCR (Singer-Sam et al., 1990). It consists of the methylation-specific enzymatic digestion of DNA
and PCR amplification of the remaining DNA fragments. Thereby, the absence of PCR products
reveals the unmethylation of the target sequence while the presence of them reveals its methylation.
In the case of several restriction sites in the target sequence, only one unmethylated site recognized
and cleaved by the enzyme is enough to consider the sequence unmethylated. The MSRE-PCR
gives an estimation of methylation over several CpG sites and therefore is comparable to the MSP,

COBRA, or MethyLight bisulfite-based assays in terms of resolution (Melnikov et al., 2005).

Several other assays using MSRE coupled with other technologies have also been developed.
To describe another example, the MethylScreen technique uses both MSRE recognizing only un-
methylated sites and methylation-dependent restriction enzyme (MDRE) recognizing only methylated
sites (McrBC, site: two half-sites RmC within a distance of 40-3,000 bp, cutting between the two half-
sites in the proximity of one), coupled with fluorescence-based real-time PCR to quantify methylation
(Holemon et al., 2007).

ARRAY-BASED ANALYSIS

The MSRE-associated discrimination of methylated and unmethylated sites can also be com-
bined with microarray analysis. The Hpall tiny fragment enrichment by ligation-mediated PCR
(HELP) assay is based on the comparison of Hpall (C/CGG, unmethylated) and Mspl (C/CGG,
methylation insensitive) digested DNA fragments. Using random priming, fragments derived from
both Hpall or Mspl digestions are labeled with a different fluorophore each and then cohybridized to
a microarray. The ligation-mediated PCR and fluorescence detection allow to get the Hpall or Mspl
representations and the calculation of Hpall/Mspl log ratios gives an estimation of hypomethylated

and hypermethylated loci (Khulan et al., 2006).

The MethylScope assay is an extension of the MethylScreen assay, also using MDRE (McrBC)

digestion associated with microarray analysis (Ordway et al., 2006).
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WIDE PROFILING (NGS-BASED) ANALYSIS

Several assays have been adapted to incorporate an NGS analysis for genome-scale methy-
lation analysis. The MSRE-PCR gave the MRE-seq, consisting in MSRE digestion followed by se-
quencing (Maunakea et al., 2010). And, the HELP has been extended to HELP-seq, following the

same principle but using NGS instead of a microarray analysis (Oda et al., 2009).

4.2.3 AFFINITY ENRICHMENT-BASED ASSAYS

The affinity enrichment of methylated regions is based on 5mC antibodies or methyl-binding
proteins (Laird, 2010). Two main techniques have been developed, the methylated DNA immuno-
precipitation (MeDIP) (or mDIP= methylated DNA immunoprecipitation, or mCIP= methylcytosine
immunoprecipitation) and the methylated CpG island recovery assay (MIRA). The MeDIP is a
DNA purification technique by immunoprecipitation using an antibody specific to 5mC (Weber et
al., 2005). The MIRA technique relies on the enrichment of methylated DNA regions using methyl-
binding proteins, such as methyl-CpG-binding protein 2 (MeCP2), methyl-CpG-binding domain pro-
tein 2 (MBD2), or methyl-CpG-binding domain protein 3 like 1 (MBD3L1) (Choi et al., 2010; Rauch
and Pfeifer, 2005).

Both MeDIP and MIRA principles can be used followed by (1) PCR amplification: MeDIP /
MeDIP-PCR and MIRA, (2) microarray: MeDIP-chip and MIRA-chip, or (3) NGS: MeDIP-seq and
MIRA-seq, depending on the desired scale of purified methylated DNA fragments detection (Choi
et al., 2010; Down et al., 2008; Rauch and Pfeifer, 2005; Rauch et al., 2007; Weber et al., 2005;
Zhang et al., 2006). The affinity enrichment-based assays do not rely on either bisulfite conversion

or restriction sites, but can not provide single-CpG resolution methylation profiles.
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A plethora of methods to evaluate the CpG methylation have been developed over the
years, a non-exhaustive classified list is presented in Table 4.

The DNA methylation assays can be classified into three major groups depending on
the principle used to discriminate 5mC: (1) bisulfite-based assays, (2) enzyme digestion-
based assays and (3) affinity enrichment-based assays. Another classification based on
their coverage can also be proposed: (1) global measurement of DNA methylation, (2) the
region-specific assessment of methylation, (3) array-based analysis and (4) wide profiling
or genome-scale analysis.

The bisulfite-based techniques discriminate methylated cytosines based on their ability to
be unaffected by the sodium bisulfite treatment which converts unmethylated ones into
uracils.

The enzyme-based techniques discriminate methylated cytosines based on the sensitivity
of restriction enzyme towards methylated restriction sites, unrecognized sites that can not
be cleaved when methylated.

The affinity-based techniques discriminate methylated cytosines using either 5mC antibod-
ies for methylated DNA immunoprecipitation or methyl-binding proteins for methylated re-
gions enrichment.

4.3 BISULFITE SEQUENCING PCR (BSP)

Historically, the deamination of cytosines by sodium bisulfite was described in the 1970s (Hay-
atsu et al., 1970; Shapiro et al., 1973; Shapiro et al., 1970; Wang et al., 1980) and with the emergence
and commercialization of region-specific genomic sequencing technique in the 1980s (Church and
Gilbert, 1984; Sanger et al., 1977; Smith et al., 1985; Smith et al., 1986), the combination of both
gives rise to a novel method to study DNA methylation in a specific genomic region, called Bisulfite
Genomic Sequencing. This method was used for the first time in the 1990s by Frommer et al. (1992)
to identify and map 5-methylcytosines (5mC) in genomic DNA. The process consists of a DNA bisul-
fite conversion, polymerase chain reaction (PCR) amplification of a target region, and sequencing
of either PCR products to get an average of the molecules population or individual clones to map
methylation status within a single DNA molecule (Clark et al., 1994; Frommer et al., 1992; Rein et
al., 1998; Yuanxiang et al., 1997). Then, the technique was improved to quantify the methylation of
cytosines in a population of DNA molecules (Lewin et al., 2004; Paul and Clark, 1996; Suzuki et al.,
2000).

This method was called for the first time bisulfite sequencing PCR (BSP) in opposition to
methylation-specific PCR (MSP) in Li and Dahiya (2002), the publication introducing the MethPrimer
program to design primers for bisulfite-based PCR methods. Although, in some publications, it can
be still referred to as bisulfite genomic sequencing, or even bisulfite sequencing, but it must not be

mistaken for bisulfite sequencing techniques using NGS sequencing (Li and Tollefsbol, 2011; Lizardi
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et al., 2016). The bisulfite sequencing PCR (BSP) name describes the three main steps of the
technique : (1) the bisulfite conversion, (2) the PCR amplification, and (3) the sequencing of either
amplicons or clones (Figure 24). This way, it can be distinguished from other techniques such as

MSP, bisulfite pyrosequencing, or WGBS.

BISULFITE PCR SEQUENCING
Direct-BSP
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FIGURE 24 BISULFITE SEQUENCING PCR (BSP) EXPERIMENTAL PRINCIPLE.

The BSP technique was a gold standard method to estimate methylation of a specific locus
in the 2000s-2010s, mainly due to the standardization and commercialization of bisulfite kits and the
growing accessibility of Sanger sequencing (Hernandez et al., 2013; Leontiou et al., 2015; Li and
Tollefsbol, 2011; Lizardi et al., 2016). Despite the development of bisulfite pyrosequencing, which
provides a quantitative measurement of DNA methylation without the cloning requirement, the BSP
technique remains more accessible since bisulfite pyrosequencing requires a pyrosequencer (Reed
et al., 2010).

Nowadays, a plethora of methods are used to study DNA methylation depending on experi-
ment requisites (Kurdyukov and Bullock, 2016; Pajares et al., 2021), but BSP is still widely used for
region-specific studies (Akika et al., 2017), for example as a first approach for large studies because
of its cost-effectiveness compared to NGS based techniques (Ismail et al., 2020; Liu ef al., 2021b;
Moschny et al., 2020) or for locus-specific confirmation of WGBS or RRBS results (Fan et al., 2020;
Zhang et al., 2017b; Zhu et al., 2019).

4.4.1 EXPERIMENTAL PROCESS

The BSP experimental process is composed of three main steps : bisulfite conversion, poly-

merase chain reaction (PCR), and sequencing (Figure 24). For its last step, two alternative ap-
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proaches for sequencing exist depending on the addition or not of a cloning step before sequencing,
called respectively cloning-BSP or direct-BSP. This variation within the process will result in different

analysis strategies (see section 4.4.3 “Analysis strategy and tools” at page 130).

BISULFITE CONVERSION

The first key step of BSP is the bisulfite conversion of the extracted DNA molecules by
a sodium bisulfite treatment. The sodium bisulfite NaHSO5; comes from the dilution of sodium
metabisulfite Na,S,05 in water. It is composed of bisulfite HSO5; and sodium Na*® and can medi-
ate the deamination reaction of cytosine nucleotides to form uracil nucleotides. This reaction was
first described by Hayatsu et al. (1970). As depicted in Figure 25, the bisulfite conversion of cytosine

into uracil proceeds in 3 steps (Hatakeyama et al., 2013; Hayatsu et al., 1970):

1. Sulfonation at the C6 position of the cytosine residue: cytosine [C] to cytosine sulfonate [C—SO3].

2. Hydrolytic deamination at the C4 position: cytosine sulfonate [C—SOg] to uracil sulfonate [U—SO3].

3. Alkaline desulfonation: uracil sulfonate [U—SO3] to uracil [U].

1 2 3
NH: @ NH: (2 o (3 o
NZ HSO3 NZ H:0 HN OH HN
J\ | OH J\ ' ; J\ | HSOs J\ |
0" ™N 0" ™N $0s NHs O N SOs S o Y
H H H H
Cytosine Cytosine Uracil Uracil
sulfonate sulfonate

FIGURE 25 BISULFITE-MEDIATED DEAMINATION OF CYTOSINE. (1) Sulfonation of the cytosine to cytosine
sulfonate.  (2) Hydrolytic deamination of the cytosine sulfonate to uracil sulfonate.  (3) Alkaline desulfonation
of the uracil sulfonate to uracil. Figure from Hatakeyama et al. (2013).

When the deamination of cytosine by bisulfite was described in the 1970s, the 5-methylcytosine
was considered a minor constituent of DNA, and the role of cytosine methylation was not yet estab-
lished (Hayatsu et al., 1970). But, it was already known that the bisulfite deamination of cytosines
and 5-methylcytosines have different rates: the 5-methylcytosine deamination by bisulfite treatment
is much slower than for cytosine. As the technology and knowledge advance, Frommer et al. (1992)
were the first to use this difference as a way to determine the localization of 5-methylcytosines, as
cytosines are converted to uracils while 5-methylcytosines are not, thus it creates a difference in the

DNA sequence.

Before the sodium bisulfite treatment, as cytosine residues have to be exposed to bisulfite, the
DNA must be fully denatured, in the single strand state. After the conversion of cytosines, uracils on
one strand cannot pair with guanines on the opposite strand, therefore the two converted strands are

no longer complementary and must remain single-stranded until use.

The bisulfite reaction has two major limitations. First, the conditions of the reaction have to
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be monitored to evaluate the conversion efficiency. As explained further below, in section “Bisulfite
conversion efficiency” at page 139, if the conversion is incomplete some cytosines remain unaffected
and if the treatment is incubated for too long, the bisulfite can start to deaminate 5-methylcytosines
(Hayatsu, 2008a; Hayatsu, 2008b). Secondly, the bisulfite treatment causes strand breakage in
DNA due to the formation of the SO5™ radical (Hayatsu and Miller, 1972). This radical-mediated
degradation of DNA is reduced by the addition of hydroquinone, a radical scavenger, in the bisulfite

treatment.

POLYMERASE CHAIN REACTION (PCR)

The second step of BSP is to selectively amplify the targeted DNA region to get enough
material for cloning or sequencing. As routinely performed in laboratories, the DNA is amplified by

polymerase chain reaction (PCR).

The PCR is based on the hybridization of oligonucleotides, complementary to the targeted
region, which serves as primers for the polymerase to regenerate the complementary strand, and
therefore it produces a new copy of the DNA fragment. Briefly, a PCR is classically composed
of 25 to 50 cycles of 3 steps : (1) DNA denaturation, temperature around 95°C, (2) Annealing of
primers on their specific DNA complementary sequence, temperature around 50-65°C depending on
primer melting temperature (T,,) and (3) Elongation for the new DNA strand to be synthesized by the
DNA polymerase, temperature for optimum DNA polymerase activity generally at 72°C (Green and
Sambrook, 2019b).

In the context of bisulfite-treated DNA amplification, many limitations come from the modifi-
cations of DNA by bisulfite (single-strand DNA with no more complementary strand, loss of base
heterogeneity due to the T redundancy, DNA degradation...) that need to be taken into considera-
tion for primer design, a crucial step to ensure a specific, efficient and unbiased amplification. As
bisulfite-converted DNA strands are no longer complementary, the PCR primers have to be designed
using one of those two templates. Therefore, for the same DNA sequence, sequencing results will be
different depending on the chosen amplified strand, so it needs to be included in the analytic process
(Figure 24). Primer design guidelines for BSP are depicted in Appendix 1 “Primer design for bisul-
fite sequencing PCR” at page 305 and the potential PCR biased amplification in BSP experiments
is explained in section “PCR bias’: unequal amplification of methylated and unmethylated DNA” at

page 142.

The two major limitations, which are (1) primer specificity issues due to reduced heterogeneity
and (2) low DNA material due to degradation by bisulfite treatment, can be partly resolved by adjusting
the PCR protocol.
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FIGURE 26 SCHEMATIC REPRESENTATION OF TOUCHDOWN AND NESTED PCR PROTOCOLS. These two PCR
protocols are used in BSP experiments to improve the yield and specificity of the PCR reaction.  A. In touch-
down PCR protocols, the specific amplicon is highly amplified and becomes predominant so when the annealing
temperature (Ta) decreases, the specificity also decreases, but the predominant template out-compete the non-
specific ones. The T, annotated a, b and ¢ are generally comprised between 50°C and 65°C, and spaced by 1
to 5°C. The number of cycles, duration of steps, temperatures for denaturation/elongation/annealing, and range
of T, are varying depending on the chosen protocol, reagents, polymerase, primers Tr,, and region of interest.
The first steps and last steps of the PCR program outside the cycle steps are not represented.  B. For nested
PCR protocols, two rounds of PCR are performed with two different primer pairs, an outer one in red and an
inner one in green. The first amplicon @ is used as a template to amplify the second one @ By using two
rounds of amplification it increases the yield of the PCR product, and by using two sets of primers it increases
the specificity towards the targeted region.
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Touchdown PCR

The touchdown PCR (TD-PCR) is frequently used as PCR protocol for BSP and relies on a
progressive decrease of the annealing temperature (T,) over the cycles during the PCR reaction (Li
and Tollefsbol, 2011; McDonald and Kay, 1997; Nagane et al., 2000; Shen et al., 2007). This pro-
tocol ensures both high specificity and a strong yield of the desired PCR product (Figure 26A). The
hybridization of primers starts in the first cycles above the optimal annealing temperature to guaran-
tee the strong specificity towards the targeted region as only perfect primer-template hybrids can be
formed. Then, as the cycling program advances, the annealing temperature drops progressively to
increase the yield of amplification but it does not lead to non-specific products amplification because
the predominant specific products out-compete the non-specific ones thanks to the stringent initial
cycles (Green and Sambrook, 2018; Hecker and Roux, 1996; Korbie and Mattick, 2008; Roux, 2009).

Nested PCR

Another possible and complementary PCR protocol used for BSP that can improve the yield
of the PCR product and reduce non-specific amplification is the nested PCR (Ashapkin et al., 2020;
Chen et al., 2017a; Grunau et al., 2001; Li and Tollefsbol, 2011; Lizardi et al., 2016; McDonald and
Kay, 1997; Olek et al., 1996). The nested PCR protocol involves two sequential amplification using
two different pairs of primers, an outer one and an inner one (Figure 26B). The first amplification
produces an amplicon between the outer primers which serves as a template for the second ampli-
fication using the inner primers. The double amplification step increases the yield of the amplicon
and the use of two distinct sets of primers for the same targeted region improves the specificity of the
fragment produced (Green and Sambrook, 2019a; Haff, 1994; Roux, 2009).

CLONING (OPTIONAL)

In the case of cloning-BSP, PCR products are inserted in a plasmid and amplified in trans-
formed bacteria. Bacterial clones are selected, and individually amplified before plasmid extraction.
As a competent bacteria assimilate a single plasmid molecule during transformation, all of the plas-
mids of an individual clone possess a unique sequence of the PCR product inserted. This way, the
cloning of PCR products from bisulfite-converted DNA reveals the CpG methylation statuses of a

single initial DNA molecule from the sample.

Generally in publications, 5 to 10 clones are sequenced, revealing the methylation status of
5 to 10 initial DNA molecules, which seems to be considered a good compromise between the rep-
resentativeness of results and the cost and time investment (Li and Tollefsbol, 2011; Lizardi et al.,
2016). Yet, this approach is appropriate when differences are really important, but some publications
state the necessity to have more clones, around 50 to 100 clones, to obtain a statistically significant
estimation of the methylation proportion with good precision and prone the sequencing of PCR prod-

ucts directly for a better representation despite potential additional bias (Muhlisch et al., 2007; Paul
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and Clark, 1996; Rohde et al., 2010; Voss et al., 1998).

SEQUENCING

The Sanger sequencing technique was conceived by Sanger et al. in 1977 and since then it is
widely used to decipher the base sequence of a specific and single DNA molecule. This technology
has been improved and automated over the years and nowadays, and despite the emergence of the
NGS technology, it remains the most accessible method to determine a DNA sequence (Slatko et al.,
2011; Valencia et al., 2013).
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The automated Sanger sequencing relies on a chain-termination PCR to amplify a specific
DNA fragment, by incorporating either normal nucleotides (ANTPs) or fluorescently labeled terminat-
ing modified nucleotides (ddNTPs) that stops the fragment synthesis (Figure 27). As the polymer-
ization progresses, amplicons at every possible length are synthesized and labeled with a specific
fluorescence depending on the last nucleotide. The migration by capillary electrophoresis (CE) sep-

arates fragments depending on their sizes, resulting in a string of fluorescence signals.

The automated sequencer reads these four fluorescence signals and generates an electro-
pherogram, visible as a chromatogram, which is a four-dye trace saved as an ABIF (Applied Biosys-
tems, Inc. Format) format file with the .ab1 extension or as an SCF (Staden Chromatogram Files or

Sequence Chromatogram File) format file with the .scf extension (Applied Biosystems Genetic Anal-
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ysis Data File Format, 2006; Dear and Staden, 1992). And finally, the base caller program assigns
bases corresponding to each primary chromatogram peak to get the resulting sequence, saved as a

FASTA format file with the .fasta extension (Hyman et al., 2010; Pearson and Lipman, 1988).

Two types of BSP approach exists depending on the template sequenced: (1) direct-BSP if
the PCR products are directly sequenced and (2) cloning-BSP if the PCR products are first cloned in

vectors before the sequencing of individual clones (Chatterjee et al., 2017).

The bisulfite sequencing PCR (BSP) is a technique to assess DNA methylation levels of
a specific region of interest and is composed of three steps: (1) the bisulfite conversion of
DNA, (2) the PCR amplification of the target region, and (3) the sequencing of either the
PCR products directly or PCR products individualized in clones (Figure 24).

A sodium bisulfite treatment converts unmethylated cytosines into uracils, while methylated
ones remain cytosines. Thereby, after PCR amplification the original unmethylated cytosine
is revealed by the T base while the unmethylated one by a C base (Figure 25).

Two types of BSP experiment exist: the direct-BSP one and cloning-BSP one. The first one
consists in directly sequencing the mix of PCR products, while the second one consists in
cloning the PCR products before individual clones are sequenced.

Information and guidelines about primer design for BSP experiments are provided in Ap-
pendix 1 “Primer design for bisulfite sequencing PCR” at page 305.

4.4.2 ANALYSIS STRATEGY AND TOOLS

The two BSP approaches, direct-BSP and cloning-BSP, differ in their analytic process. In-
deed, the CpG methylation percentage calculation is not the same either it is based on direct-BSP or
cloning-BSP data (Figure 28).

Although PCR products were cloned in the first publications describing the BSP experiment, in
Frommer et al. (1992) and Clark et al. (1994), they mentioned an alternative way by directly sequenc-
ing the PCR products. Later on, the quantification of DNA methylation using the direct-BSP method
was demonstrated by Lewin et al. (2004) and it led to its utilization in numerous studies afterward.
These two methods were described in several literature reviews such as: Chatterjee et al., 2017;
Hernandez et al., 2013; Martisova et al., 2021; Mikeska et al., 2010; Pajares et al., 2021 as well as
in several protocols such as: Ashapkin et al. (2020); Li and Tollefsbol (2011); Lizardi et al. (2016);
Zhang et al. (2009).

CLONING-BSP: cLONING OF PCR PRODUCTS AND SEQUENCING OF INDIVIDUAL CLONES PLASMIDS

The cloning-BSP is based on the random separation of unique DNA molecules, with different

methylation patterns, in different clones, as a representation of the methylation diversity in the total
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DNA population. Thereby, the sequencing of several clones provides an estimation of methylated
cytosine proportions per CpG site. For each CpG, the number of clones for which a C base (or
G for reverse sequencing) is found, over the total of clones sequenced assesses the proportion of
methylated cytosines in the original DNA mix (Figure 28). As mentioned previously, in the literature
it seems to be admitted that 10 clones are sufficient to reveal 10% differences in methylation, even
if several publications recommend having more clones to increase the sensitivity (Muhlisch et al.,
2007; Paul and Clark, 1996; Rohde et al., 2010; Voss et al., 1998).

Over the years, several methods have been developed and used to facilitate the analysis
of clone methylation status from cloning-BSP. Initially, the results of clone sequencing were man-
ually analyzed by retrieving, on the sequencing gel, the base corresponding to the CpG positions
for each clone (Clark et al., 1994; Frommer et al., 1992; Paul and Clark, 1996; Stirzaker et al.,
1997). Then, in 2000, Grunau et al. developed a software, called MethTools, able to align the se-
quences of clones with the original reference sequence, to deduce cytosine methylation patterns
and generate graphical outputs, available on both Linux and Mac operating systems. Later, a new
version has been released as a web server available online, named MethTools 2.0 (available at
http://methdb.univ-perp.fr/methtools/MethTools2_submit.ntml). This new version has the same pur-
pose of analyzing cloning-BSP data, and requires as an input the genomic and subclones sequences
in a fasta file. In 2001, Anbazhagan et al. published a spreadsheet-based program — a Microsoft Ex-
cel file with a built-in program — to identify CpG island (CGl) and to facilitate the calculation of DNA

methylation percentages from cloning-BSP data.

More advanced software were then developed, to align, visualize and quantify CpG methy-
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lation from subclones sequences, including quality control features, graphical outputs and statistics
(Figure 29):

e BiQ Analyzer (https://big-analyzer.bioinf.mpi-inf.mpg.de/, Bock et al., 2005)

o QUMA (Quantification tool for Methylation Analysis) (http://quma.cdb.riken.jp/,
Kumaki et al., 2008)

o BISMA (Bisulfite Sequencing DNA Methylation Analysis) (http://services.ibc.uni-stuttgart.de/BDPC/
BISMA/, Rohde et al., 2010)

Feature QUMA BiQ BISMA
Analyzer
. The software is freely available v v v
Requirements R
Installation free usage v - v
and . .
f Analysis of unique sequences v v v
eatures . o
Analysis of repetitive sequences - - v
Uploading of sequencing files in text format v v v
Uploading of ABI sequencing files - - v
Data Assistance in sequence direction detection v v v
processing | Highly automated data processing algorithm v - v
and Automatic detection of sequence direction v - v
analysis Automatic vector removal v - v
High speed of data processing and analysis v - v
Improved CpG site detection accuracy - - v
Sequence identity measurement v v v
Conversion rate measurement v v v
Quality Detection of insertions/deletions v - v
control Filtering N-sites at cytosine positions during ) B v
features analysis
Basic detection of clonal molecules - v v
Improved detection of clonal molecules - - v
Oytput of an annotated multiple sequence v v v
alignment
Statistics CpG site average report requires a minimum ) ) v
and number of clones for data processing
. Sequence sorting according to methylation in
presentation v - v
all output files
Direct web presentation of final results - v v
Compatibility with BDPC compilation software - v 4

FIGURE 29 COMPARISON OF FEATURES BETWEEN THE THREE TOOLS ANALYZING CLONING-BSP DATA:
QUMA, B1Q ANALYZER, AND BISMA. Figure from Rohde et al. (2010), introducing the BISMA software.

Additionally, specifically for plants models, the software CyMATE and Kismeth has been de-
veloped to analyze cloning-BSP data, as in plants, cytosines methylation is not limited to CpG, as
cytosines can be methylated in several contexts (CG, CHG, and CHH, with H meaning non-G) (Grunt-
man et al., 2008; Hetzl et al., 2007).

The most recent one, BISMA, is the only program to accept .ab1 sequencing files as input, but
they are only used to extract the DNA sequence from it. Therefore, all of these tools are specifically
designed to analyze the methylation statuses of subclones. They base their analysis process on the
base-called sequence obtained from the sequencing run, indicating either a C base or a T base and

determining the cytosine methylation statuses at a single-molecule resolution.
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DIRECT-BSP: DIRECT SEQUENCING OF PCR PRODUCTS

As all PCR products are directly sequenced in the direct-BSP method, it means that a mix
of DNA molecules with different methylation statuses at CpG positions are being sequenced simul-
taneously (Figure 30) (Jiang et al., 2010; Lewin et al., 2004; Mybdhanen et al., 1994; Parrish et al.,
2012; Paul and Clark, 1996). Hence, in the sequencing trace, two signals can co-exist at the cytosine
position, the one from the base corresponding to the methylated state of the CpG site (C when using
a forward primer, G when using a reverse primer) and the one from the base corresponding to the
unmethylated state of the CpG site (T when using a forward primer, A when using a reverse primer)
(Figure 28 and Figure 30).

The direct-BSP analysis approach is based on the assumption that the signal intensity of
the base associated fluorescent dye, detected during sequencing, is proportional to the number of
DNA molecules containing this residue, and that signal intensities can be compared between the
four bases. It means that the relative quantities of nucleotides within a DNA mix can be estimated
using the maximum signal intensity values and that, by comparing them, they reveal the proportion

of nucleotides in the DNA pool, for a given position.

Accordingly, the signal intensities for each base, given as electropherogram peak heights,
are utilized to compute their proportion in the sequenced DNA molecule mix (Jiang et al., 2010;
Parrish et al., 2012). The values for peak heights can be retrieved through free software that can
open chromatogram files to view traces, such as 4 Peaks (only for Mac operating systems, https:
/Inucleobytes.com/4peaks/) or Chromas (http://technelysium.com.au/wp/chromas/). The methylation
percentage is calculated based on the following formulas of signals ratios, in which the nucleotide

letter refers to the peak height value of the base associated fluorescent signal (Figure 30):

. Lo peak height of C
Methylation percentage (forward sequencing) = 5eak height of C + peak height of T x 100
Methylation percentage (reverse sequencing) = peak height of G 100

peak height of G + peak height of A .

However, this assumption has limitations. Firstly, the incorporation efficiencies of the labeled
terminator nucleotides (ddNTPs) can be different from one another. Thus, the proportionality between
signal intensities and relative quantities might be biased. Secondly, as each ddNTP is linked to a
different fluorochrome, the comparison of different fluorescence signals can also introduce bias in
the calculation of proportions between nucleotides. That's why some publications qualify the direct-
BSP approach as non-quantitative or semi-quantitative, and that the cloning-BSP approach is often
preferred (Chatterjee et al., 2017; Chhibber and Schroeder, 2008; Mikeska et al., 2010; Parker et al.,
1995).

Compared to cloning-BSP, the direct-BSP approach presents the advantage of reducing the

experiment duration as it skips the cloning step and avoids the multiplication of subclones sequencing
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costs (Chatterjee et al., 2017; Martisova et al., 2021; Pajares et al., 2021). It is therefore particularly
useful for the assessment of DNA methylation in studies with numerous samples, such as cohorts
of patients for example (Liu et al., 2021b; Moschny et al., 2020; Schiele et al., 2021). Additionally,
it is relevant to sequence PCR products to get preliminary results before committing to the cloning
steps. Thereby, even in cloning-BSP studies, the direct-BSP approach can be performed to obtain

preliminary or complementary results (Martisova et al., 2021).

CpG site FIGURE 30 METHOD OF METHYLATION
G T C G T Original sequence
LEVEL CALCULATION BASED ON SEQUENCING

G T T G T Bisulfite modified sequence (unmethylated strands)
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g 750 respectively to the unmethylated and methy-
§ Calculating % cytosine methylation (mC): lated state of the cytosine. So these two
\ % mC=[C/(C+T)]*100
% mC = [190 / (190 + 859)] * 100 chromatogram peaks are compared to evaluate
\ %mC = 18.11 the proportion of methylation. The values of
o] . .
| ‘ | peak height G = 190 peak heights are used to compute the ratio of
| /\ signals for the methylated (C) state over the
0 ‘
2 3

1 4/‘ 5 total of the methylated (C) and unmethylated

S iti .
equence postion (T) states. In the example, as the peak height of

the methylated state signal represents 18.11%
of the total signals, the methylation level of the
CpG is estimated at 18.11%. For the reverse
sequencing data, as the sequence corresponds
to the reverse complement, methylation levels
are determined using the signals of adenine
for the unmethylated state and guanine for the
unmethylated state. Figure from Parrish et al.
(2012).

Historically, the direct sequencing of bisulfite converted PCR products to assess CpG methy-
lation was first done by Mydhanen et al. (1994) and aimed to improve the BSP technique described
by Frommer et al. (1992) beforehand. The direct sequencing of amplicons was performed by an
automated sequencer with fluorescently labeled primers to determine the CpG methylation status, or
for partial methylation to approximately estimate the degree of methylation, with an accuracy of 25%,

by visually comparing the chromatogram peaks.

The first use of electropherogram peaks comparison in a quantitative and reproducible manner
was realized by Kwok et al. (1994). This method was used to quantify the single nucleotide polymor-
phisms (SNPs) in a DNA pool, to estimate the allele frequencies, based on the peak heights of the

chromatogram traces. Although it was done manually in this publication, this analytic method for sin-
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gle nucleotide polymorphisms (SNPs) quantification was then automated by Qiu et al. (2003) using a
similar methodology. And by comparing their method with the pyrosequencing method, they showed

that it was more accurate, sensitive and reproducible than pyrosequencing for SNPs quantification.

As the presence of two peaks at CpG positions can be interpreted as SNPs, this method can
be applied to cytosine methylation calculation for direct-BSP. Hence, this methodology was first ap-
plied to PCR products coming from bisulfite-converted DNA, by Paul and Clark (1996) to quantify
cytosine methylation by an automated genomic sequencing approach, specifically developed for this
purpose. Paul and Clark considered that cloning-BSP requires 50 to 100 individual clones to have
an accurate estimation of cytosine methylation, so they favored the direct sequencing approach.
However, they also estimated that using the peak height from dye-labeled ddNTP signals was not
quantitative enough for an analytic process. So, to still quantify the C signal relative to the T signal
from direct sequencing, they used another strategy, which consists in performing the C and T se-
quencing in separate reactions with the same fluorescent dye to minimize the spectral differences
of dyes. And they developed the GENESCAN program to analyze these sequencing results for the

relative quantification of C and T signals based on the peak heights of signals.

In the early 2000s, in the context of The Human Epigenome Project by the Human Epigenome
Consortium (2003), the direct-BSP approach was selected to estimate methylation percentages of
high throughput data at a reasonable cost. Hence, it raised the need to have an effective way to
compute the percentages based on the sequencing trace data files. The solution was provided by
Lewin et al. (2004) with the development of an algorithm, called ESME for Epigenetic Sequencing
Methylation analysis software (Figure 31A) (https://www.epigenome.org/index.php?page=download,
Lewin et al., 2004). This algorithm aims to compute the CpG methylation levels from the four-dye

electropherogram trace file results from the sequencing of PCR products.

As described in the workflow in Figure 31A, the algorithm performs several steps of data pro-
cessing with quality control steps in between. The first step, called entropy-based clipping, aims to
correct base callers artifacts, occurring at the end of the sequencing for example. In this method,
they used the area under the trace as the signal intensity value to represent the proportion of the
base. The called sequence is aligned with a genomic reference sequence bisulfite converted. Ad-
ditionally to the common four bases, they used the lower case letter t to represent thymines derived
from converted cytosines outside a CpG context which can be matched with either C or T bases
(Figure 31B). To remove low-quality results, the flanking regions are clipped to get a remaining inner
part containing fewer alignment errors. Then, a step of trace correction aims to correct the potential
detection of the mixed C and T signals as distinct positions if there is a small offset between the two
peaks. Signals are normalized to compensate for overscaled cytosine traces, as they explain it might
be due to the cytosine low frequency compared to other bases. Finally, bisulfite conversion rates can
be estimated using the t base positions and methylation percentages are calculated, with the use of

the global conversion rate to compensate for incomplete conversions. Based on several experimental
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FIGURE 31 THE EPIGENETIC SEQUENCING METHYLATION ANALYSIS SOFTWARE (ESME) TO EVALUATE
METHYLATION FROM SEQUENCING TRACE FILES.  A. Workflow of the ESME algorithm. Quality control (QC)
steps are performed between each data processing step. The analysis is aborted if the length of the good quality
sequence (determined by the clipping) is below the threshold (50 bases by default) or if the bisulfite conversion
rates are below the threshold (65% by default).  B. Normalization step of the ESME algorithm. The trace
file obtained after direct-BSP is represented (a) before and (b) after the signal normalization. The first line of
nucleotides represents the sequence found by the base caller (Y for C/T) and the second line represents the
reference sequence, in which t denotes genomic cytosines outside a CpG context, thereby converted into T. The
normalization of signals at cytosine positions outside CpG context (1) is needed for evaluation of the bisulfite
conversion rate, while the normalization of signals at cytosines position in CpG sites (C) is needed for evaluation
of the CpG methylation level. Intensities of the bases are calculated as the area under the trace curve that
belongs to the base position. Figures from Lewin ef al. (2004).

data, they demonstrated that their algorithm can detect methylation differences with a 20% accuracy

and can be applied to high-throughput methylation data.

Currently, it appears that ESME is the only tool available for the calculation of methylation
levels of CpG based on sequencing trace files for direct-BSP. The majority of recent studies using
ESME for direct-BSP analysis are studies on patient samples, from a dozen to hundreds of samples,
for which the cloning-BSP approach is nearly impossible due to the high cost and time investment.
As examples, ESME is used in the following recent studies: Heseding et al. (2022); Ismail et al.
(2020); Liu et al. (2021b); Moschny et al. (2020); Schiele et al. (2021); Velasquez et al. (2021).

Besides providing a solution to analyze direct-BSP data, above all Lewin et al. (2004) demonstrated
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the feasibility of a robust methylation levels quantification, with an accuracy estimated at 20%.

The utilization of ESME is nonetheless limited due to several issues. The software have been
created in 2004 and seems to not have been updated since 2011, and thereby it may not be up-to-
date with the evolution and constant improvement of technologies such as sequencing devices, base
caller programs, or commercialized bisulfite conversion kits with high conversion efficiencies. For
example, the normalization of peaks to compensate for overscaled cytosine signals does not appear
to be necessary anymore and might introduce more bias instead of reducing it (Methylation Analysis
by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems, 2007). Simi-
larly, the compensation for incomplete bisulfite conversion is not relevant nowadays with the variety
of ready-to-use bisulfite conversion kits available with efficiencies >99% (Hernandez et al., 2013).
Especially since several studies validated the robustness of results obtained from the manual calcu-
lation of methylation percentages using chromatogram peak height ratios without normalization nor

bisulfite conversion compensation (Jiang et al., 2010; Parrish et al., 2012).

Yet, the major problem regarding the use of ESME is its accessibility. Available only on Linux
operating systems, with a not user-friendly interface, the user needs a high enough proficiency on
Linux to install it and run it. Thus, it restricts its use to accustomed users of Linux and might discour-
age biology researchers (Akika et al., 2017). Moreover, as it is a 32-bit software, it has to be installed
on a 32-bit Linux operating system, yet the widely-used Ubuntu operating system is not available for

download in a 32-bit version anymore.

As the purpose of ESME was to map CpG methylation levels along the genome, the analysis
does not go beyond the calculation of methylation percentages. Indeed, as BSP experiments gener-
ally aim to find statistically significant DNA methylation differences between conditions, it requires a
visual comparison of results and statistical tests. Thereby, the analysis of results using ESME has to

be complemented, in most cases, with other tools.

For visualization of methylation data, a web tool has been developed by Mallona et al. (2014),
Methylation plotter, which is implemented as an R shiny app. This tool, accessible on any web
browser, provides a dynamic visualization of methylation data by generating a variety of plots, as
well as some statistic features (Figure 32) (http://maplab.imppc.org/methylation_plotter/, Mallona et
al., 2014). Data from both cloning-BSP and direct-BSP methods can be used as inputs as CpG
methylation proportions are represented as a grey color gradient from 0 to 1 (Figure 32A and 32C).
Several studies have used Methylation plotter to display their direct-BSP results, such as Forn et al.
(2015); Gil et al. (2022); Ismail et al. (2020); Martin et al. (2020).

Nowadays, even if ESME is still used in several studies, the manual calculation of methylation
percentages based on peak height was demonstrated to be an accurate method and is the most
convenient one to analyze results from direct-BSP experiments (Jiang et al., 2010; Martisova et
al., 2021; Muhlisch et al., 2007; Parrish et al., 2012). This manual analytic process of direct-BSP
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data is quite time-consuming, as it depends on the amount of sample and CpG sites per sample,
thus, its automatization could increase its efficiency, reduce errors and refine the quality control over

sequencing data (Parrish et al., 2012).
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FIGURE 32 VISUALIZATION OF METHYLATION DATA USING THE METHYLATION PLOTTER WEB TOOL. A.
Lollipop-like plot, samples are sorted by-group. The normal tissues (N) and tumor tissues (T) present visually
different methylation patterns.  B. Heatmap and its associated dendrogram to display the unsupervised hierar-
chical clustering of samples, the color corresponds to the different user-provided groups.  C. Methylation profile
plot summarizing the methylation data of groups. An asterisk (*) symbol above the x-axis of CpG sites indicates
a statistical difference between groups for the CpG position, according to the non-parametric test Kruskal-Wallis.
D. Boxplots illustrating the methylation mean and quartiles of each group. Figure adapted from Mallona et al.
(2014).
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The cloning-BSP approach reveals the methylation status of cytosines, by eitheraCora T
base, of unique clones. As each clone derives from a unique PCR product, the sequencing
of several clones gives can give an estimation of the CpG methylation proportions in the
original DNA pool.

Several tools have been developed to analyze cloning-BSP results, using the sequence
as input, such as MethTools 2.0 (Grunau et al., 2000), BiQ Analyzer (Bock et al., 2005),
QUMA (Kumaki et al., 2008) and BISMA (Rohde et al., 2010) (Figure 29).

In the direct-BSP approach, as a mix of PCR products with different methylation statuses
is sequenced, both C and T signals can be measured at cytosine positions. Thus, its
analysis relies on the proportionality between the base quantity in the mix of DNA se-
quenced and its signal intensity on the electropherogram. The methylation percentage
can be calculated using the peak height retrieved from the chromatogram: Methylation
percentage=C/(C+T) x100.

The only tool able to analyze direct-BSP results is ESME (Epigenetic Sequencing Methy-
lation analysis software) but it suffers from accessibility issues (Figure 31A) (Lewin et al.,
2004).

The manual calculation of methylation percentage remains the most convenient way to
analyze direct-BSP data.

Visualization of methylation data from direct-BSP or cloning-BSP can be achieved by using
the web-tool Methylation plotter (Mallona et al., 2014).

4.4.4 ARTIFACTS

BISULFITE CONVERSION EFFICIENCY

The most critical artifact to examine during BSP experiments is the conversion efficiency of the
bisulfite treatment. When for some unmethylated cytosines the deamination reaction by bisulfite fails,
the conversion is described as incomplete. As the methylation percentage determination is based
on the relative quantity of either C or T at the CpG site, the incomplete conversion of unmethylated
cytosines causes an over-estimation of the C relative quantity and therefore causes methylation
levels over-estimation (Genereux et al., 2008; Harrison et al., 1998; Olova et al., 2018; Poucke et al.,
2017). In Warnecke et al. (2002), the authors reported that, in addition to the commonly described
sporadic non-conversion of cytosines, incomplete conversion can also be sequence-specific. They
explain that, as the conversion depends on denaturation — or melting — of the DNA molecule,
the fragments requiring a higher temperature to melt, such as GC-rich sequences, might be more

resistant to conversion.

The bisulfite conversion efficiency can be quantified by calculating the ratio of remaining un-
converted C over T at each native non-CpG cytosines position, only if cytosine methylation outside a

CpG context is considered rare enough to be negligible, which is the case in mammalian genomes
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(Arand et al., 2012; Guo et al., 2014; Laurent et al., 2010; Leontiou et al., 2015). Yet, the most reliable
way to evaluate the completeness of conversion is to use unmethylated DNA as a control in bisulfite
conversion experiments (Olova et al., 2018). If needed, the conversion efficiency can be improved
by altering some parameters like the duration of bisulfite treatment or denaturation temperatures for
a given bisulfite concentration (Grunau et al., 2001; Hayatsu et al., 2004). But, for several years now,
most of the commercially available kits have been developed and tested to ensure high conversion
efficiencies, over 99% in general (Hernandez et al., 2013; Leontiou et al., 2015). Plus, the presence
of non-CpGs cytosines converted to thymines in the primer sequences is also a prerequisite to se-
lectively amplify converted DNA molecules and lower this potential artifact (see Appendix 1 “Primer

design for bisulfite sequencing PCR” at page 305).

Although the incomplete conversion of DNA is the most described artifact, the inverse artifact
also exists and it is called over-conversion of bisulfite. It results from the inappropriate deamination
of 5-methylcytosines, thus misinterpreted as unmethylated, which causes methylation levels under-
estimation (Genereux et al., 2008; Olova et al., 2018). Yet, the detection of over-conversion by

bisulfite is not well reported in the literature.

PCR FIDELITY

The polymerase used for PCR can be a source of bias in the quantification of methylation
because of errors introduced during the polymerization (Eckert and Kunkel, 1991; Potapov and Ong,
2017). Indeed, the base substitution at the cytosine position of a CpG site can create a bias in the

calculation of the CpG methylation percentage.

For cloning-BSP, if the nucleotide added by the polymerase is a C instead of a T (C>T or G>A
in opposite strand polymerization) or a T instead of a C (T>C or A>G in opposite strand polymer-
ization) at the CpG position, it changes the methylation status of the CpG. In Poucke et al. (2017),
the authors tried to theoretically evaluate the importance of PCR fidelity as a bias in methylation
status determination. Based on the theoretical error rate of the Tag polymerase, the hypothetical
amplification of a 400 bp product containing 40 CpGs for 40 cycles results in an error at 1 CpG
per 90 amplicons, which they consider as being 20-fold lesser than the errors introduced by bisulfite

incomplete conversion.

For direct-BSP, same as for cloning-BSP, the methylation status can be biased by C>T or T>C
(G>A or A>G in opposite strand polymerization) errors as it can shift the methylation percentage in
both directions to an over- or under-estimation of methylation. But, the other errors C>A, C>G, T>G,
T>A (G>T, G>C, A>C, A>T in opposite strand polymerization) have also a — lesser — impact on the
methylation by removing a methylation status information in the total of C+T used in the calculation

of the methylation percentage.

Finally, errors introduction in the polymerization can only be reduced by using high fidelity poly-
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merase whereas bisulfite conversion-related bias can be strongly reduced by improving experimental
conditions. Moreover, PCR fidelity-associated bias seems to be negligible compared to bisulfite con-

version bias in the estimation of methylation percentages (Poucke et al., 2017).

BASE MISALIGNMENT IN SEQUENCING RESULT

DNA methylation quantification can also be biased by the misalignment of nucleotides during
the Sanger sequencing. The two causes of misaligned base signals are polymerase slippage and

mobility difference between unmethylated and methylated fragments.

The presence of long repeats of identical nucleotides, generally of eight or more nucleotides
(corresponding to the number of bases in the Tag DNA polymerase active site (Eom et al., 1996)),
or short motifs repeats (motif up to four bases in general) in the amplicon sequence can induce the
polymerase slippage during PCR amplification (Levinson and Gutman, 1987). During extension of a
repetitive motif, the slipped-strand mispairing occurs when the polymerase stalls, dissociates from the
double-stranded DNA complex and reassociates at another position, one or more repeats ahead or
behind the initial point of dissociation. It results in the insertion or deletion of one or more units of the
repetitive motif in the newly formed DNA and therefore, the products from PCR can contain amplicons
differing from the original template (Sehn, 2015; Shinde et al., 2003). These mutations introduced in
some of the amplicons are therefore causing the detection of a mix of base signals at a given position
in the Sanger sequencing result (Fazekas et al., 2010; Parrish et al., 2012; Methylation Analysis
by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems, 2007). Due
to its T redundancy (non-CpG cytosines converted to thymines), bisulfite-treated DNA is prone to
polymerase slippage, so it raises the necessity to check for repetitive bases or matifs in the targeted

sequence.

The other source of misaligned bases is due to the molecular weight difference between C
and T bases. In samples with a mixed methylation state, there is a mix of molecules whose content
differs by the presence of C or T at CpG sites. Therefore, the cumulative difference in molecular
weight between the DNA templates leads to migration differences during capillary electrophoresis of
Sanger sequencing. As differences in C and T accumulates between the different forms of templates,
gradually they no longer co-migrate and signals tend to split. For longer fragments, the n—1 base sig-
nal of one template can overlap with the n base signal from another template, resulting in an incorrect
estimation of methylation levels (Boyd et al., 2006; Boyd et al., 2007; Rakyan et al., 2004). As it is
more susceptible to generate bias for longer fragments, limiting the amplicon length is therefore rec-
ommended, and limiting the number of CpG sites as well (Rakyan et al., 2004; Methylation Analysis

by Bisulfite Sequencing: Chemistry, Products and Protocols from Applied Biosystems, 2007).
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“PCR BIAS”: UNEQUAL AMPLIFICATION OF METHYLATED AND UNMETHYLATED DNA

The methylation-independent PCR (MIP) is based on an equal amplification of the methylated
and unmethylated DNA molecules. Indeed, theoretically, as primers do not contain CpG sites, they

can anneal to both methylated and unmethylated DNA molecules.

However, it was first described by Stirzaker et al. (1997) that this theory is not completely true
and that PCR introduces bias. The authors were studying the DNA methylation of a CpG islands
located in the retinoblastoma gene (Rb) promoter, in leukocyte DNA from patients. They analyzed
the methylation of both top and bottom strands, using MIP primers to amplify bisulfite-treated DNA,
and PCR products were directly sequenced or cloned before sequencing. By analyzing both strands,
they revealed a preferential amplification of low methylated templates for the top strand sequence
and not for the bottom strand sequence in some patient samples. The authors suspected that these
results were due to a PCR bias, a difference in amplification efficiencies towards unmethylated DNA,
and point out the necessity to test primers on mixed DNA populations with accurate quantification as

control.
Temperature melting difference and biased amplification

Then, the same authors in Warnecke et al. (1997) first hypothesized that this amplification bias
can be due to a higher GC content of methylated DNA, thus impacting the T, of the DNA molecule,
causing the formation of secondary structures and resulting in reduced amplification efficiency, com-
pared to unmethylated T-rich DNA with a lower GC content. This hypothesis then was supported by
Voss et al. (1998) as the addition of betaine within the PCR reaction, a reagent known to improve
amplification of GC-rich DNA forming secondary structures, partially improves the amplification effi-
ciency of methylated DNA (Aird et al., 2011; Green and Sambrook, 2019c; Henke et al., 1997; Rees
etal., 1993).

This preferential amplification towards unmethylated DNA was then described by several other
publications (Guldberg et al., 2002; Moskalev et al., 2011; Rein et al., 1998; Shen et al., 2007; Voss
et al., 1998; Warnecke et al., 2002; Wojdacz and Hansen, 2006). Though Rubatino et al. (2015)
reported an unusual PCR bias towards methylated DNA when amplifying highly methylated regions

such as imprinted regions.

DNA melting — or denaturation — is the conversion of double-stranded DNA to single-stranded
DNA, also referred to as helix-to-coil transition, which can be achieved by raising the temperature or
by denaturing agents. The midpoint temperature at which half of the DNA strands are in the single
strand state is called the melting temperature (T,). The T, depends on three main factors: the length
of the DNA molecule, its base composition, and the ionic strength of the solution (salt concentration).
And two main forces maintain the double-stranded conformation of DNA, base pairing: hydrogen
bonds between complementary pairs, A:T and G:C, on opposite complementary strands; and base

stacking: interactions between neighboring base pairs (Gotoh, 1983; Vologodskii ef al., 1984). Be-
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cause there are 2 hydrogen bonds between an A:T pair and 3 hydrogen bond between a G:C pair,
they differ in stability, and G:C pairs requires more energy to be broken. Moreover, base stacking
interactions are more stable for CG-rich DNA polymers (Vologodskii et al., 1984; Yakovchuk et al.,
2006). In other words, the melting of DNA is directly linked to the GC content of the DNA molecule.
CG-rich DNA needs a higher temperature to disrupt pair bonds and base stacking interactions for

strands to be separated.

In the case of bisulfite-treated DNA, the fully methylated molecule and the unmethylated
molecule only differ by their GC content (Figure 33A). The methylated molecule contains C at CpG
sites whereas the unmethylated one contains T, and in the opposite strand, G and A respectively.
Therefore, the T, of the methylated DNA is higher than the T, of the unmethylated DNA (Figure 33B).

This difference can be seen by melting profiles analysis and used to discriminate methylated
and unmethylated DNA by methylation-sensitive high resolution melting (MS-HRM). The MS-HRM
method can estimate methylation by comparing melting profiles of bisulfite-converted PCR prod-
ucts. Melting profiles are obtained by monitoring the fluorescence changes of dyes intercalated
in the double-stranded DNA upon increasing temperatures. As temperature raises, DNA duplexes
melt, and fluorescence declines (Wojdacz and Dobrovic, 2007). When analyzing PCR products from
bisulfite-treated DNA, the unmethylated DNA melting curve is found different from the methylated
DNA melting curve, and in the case of heterogeneous methylated DNA, the melting curve is between
those previous two (Figure 33C). By converting the melting curves into melting peaks, as the Tp
corresponds to temperature at the maximum peak height, deferentially methylated products have
therefore different melting peaks (Figure 33D) (Guldberg et al., 2002; Wojdacz and Dobrovic, 2007;
Wojdacz and Hansen, 2006).

In consequence, we can extrapolate that the more there are CpG sites in the PCR product, the
more GC content difference is high, the more T, difference between its methylated and unmethylated
sequences will be higher. Based on that assumption it can be suggested that reducing as possible
the Tr, difference by minimizing the amount of CpG sites in PCR products for BSP, to lessen the over-

amplification of unmethylated DNA, even though it is not indicated as a guideline in the literature.

Several attempts to modify the melting behavior of DNA during PCR by altering PCR con-
ditions or using additives did not succeed in completely solving this PCR bias (Voss et al., 1998;
Warnecke et al., 1997).

Reversal of bias by addition of CpG site in primers

To reverse the over-amplification of unmethylated DNA, Wojdacz and Hansen (2006) submit-
ted the use of primers containing one CpG site in their priming site for MIP. The aim was not to
eliminate the bias towards unmethylated DNA but to add another one towards methylated DNA, to
counterbalance it, by increasing the selectivity of binding towards methylated DNA molecules. They

achieved to reverse the biased amplification with this method, as the expected methylation propor-




STATE OF THE ART

144

A B 71
Unmethylated DNA Methylated DNA -
Low GC content High GC content o
o 70 A
—TG—TG— —CG—CG— 2
ds| [t v |as| ] loo]|l] ©
) —AC—AC— —GC—GC— 3 69 A
5 £
© 2
g —TG6—TG— 2 68 4
g ss %
= —AC—AC— =
—CG—CG— 67 T T T T T
ss 0 1 2 3 4 5 6
—GC—GC— Number of methylated cytosines
100
C 100 Unmethylated D Unmethylated
Methylated Methylated
o 80 - 80 -
8 Mixed methylated Mixed methylated
3
g 60 - "5 60 -
o ~
=] L
T 40 T 40
o
(]
N
T 20 - 20 -
£
o
Z o — ~— — 0 =l — —
80 805 81 815 82 825 83 835 84 81 82 83 84 85 86 87 88 89
Temperature (°C) Temperature (°C)

FIGURE 33 MELTING DIFFERENCES BETWEEN UNMETHYLATED AND METHYLATED BISULFITE CONVERTED
DNA. A. After bisulfite conversion, unmethylated cytosines are transformed in uracil and substituted by
thymines during PCR whereas methylated cytosines remain cytosines. Therefore, methylated and unmethylated
DNA templates differ in thermal stability due to their different contents of G:C base pairs. ds: double-stranded
DNA and ss: single-stranded DNA.  B. This theoretical graph shows the relationship between Tr, and CpG site
number. Adapted from Guldberg et al. (2002), it represents Tm values, calculated in silico, for an 85 bp domain
of a PCR product converted to bisulfite containing, on its 6 CpG sites, from 0 to 6 methylated cytosines. For the
ones containing from 1 to 5 methylated cytosines, values represent the averages of the six possible combina-
tions. C. This theoretical graph represents melting curves of unmethylated, methylated, and mixed methylated
(or heterogeneously methylated) forms of a bisulfite-converted PCR product.  D. This theoretical graph repre-
sents melting peaks of unmethylated, methylated, and mixed methylated (or heterogeneously methylated) forms
of a bisulfite-converted PCR product. The melting curves can be converted to melting peaks by plotting the neg-
ative derivative of fluorescence over temperature (-dF/dT) versus temperature. Figure adapted from Guldberg
et al. (2002) and Wojdacz and Dobrovic (2007).

tions were correctly recovered using melting curve assays. Later, the same authors in Wojdacz et
al. (2009) compared the use of free-CpG primers and primers including CpG for their ability to pro-
portionally amplify bisulfite-converted DNA in known proportions of methylation, by MS-HRM. They
found by adjusting the T, that primers with at least one CpG site led to the detection of the expected

methylation levels.

The annealing temperature (T,) is a key parameter during PCR and its optimization is pro-

posed to correct the over-amplification bias. The authors explained that the reversal of this bias
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depends on the annealing temperature : at low T,, primers can bind equally on both methylated or
unmethylated templates, thus permitting PCR bias due to differences in efficiencies during the elon-
gation step, but as the T, is increasing, the primers containing a CpG site can anneal preferably to
the methylated template, thus allowing a higher amplification efficiency and the reversal of the bias
(Wojdacz et al., 2009).

Reduction of bias by optimizing annealing temperature

Additionally, in Shen et al. (2007), bisulfite pyrosequencing was used to assess PCR bias to-
wards amplification of unmethylated DNA and the effect of the T, on this bias. Most of the primers
used contained CpG sites with Y or R bases instead of C/T and G/A bases. By using a mix of un-
methylated DNA and methylated DNA in known proportions they were able to confirm a preferential
amplification of unmethylated DNA for all of the primer pairs tested, and to overcome or, at least
reduce, this bias by increasing the T, for most of the primer pairs. They could not decipher the rela-
tionship between T, and biased amplification of bisulfite-treated DNA depending on its methylation,
yet their theory is that raising the T, can be sufficient to melt secondary structures of GC-rich DNA
and improve its amplification. As the annealing temperature is known to impact the primer affinity to
its binding site, it raises the question if the increase of T, is, rather than melting secondary structures,
enhancing the binding affinity of the primer form with the higher T, (sequence with a C at the CpG
site: higher GC content) compared to the primer form with the lower T, (sequence with a T at CpG
site: lower GC content), thus enhancing its annealing on the methylated template, which could ex-
plain the bias reduction (Further details in Appendix 1 “Primer design for bisulfite sequencing PCR”
at page 305). Yet, the CpG-free primers used by Shen et al. (2007) also displayed a biased amplifi-
cation towards unmethylated DNA which could not be completely solved by increasing the annealing

temperature.
Controversy

This method of bias compensation by increasing the selectivity of primers towards methylated
DNA is subjected to controversy. In Moskalev et al. (2011) the authors found that, for some loci, the
presence of a CG dinucleotide in the primer-annealing site can over-compensate the unmethylated
DNA over-amplification, leading to the inverse bias towards an over-amplification of methylated DNA.
So, instead of trying to optimize PCR to solve bias, they approached the issue by correcting bias
afterward on results. Based on curve fitting and using calibration data, they were able to apply

correction factors on the results regression curves to correct the methylation percentages estimation.

To find answers to the effect of the presence of CpG sites in the primer annealing sequence
on the biased PCR amplification, the authors of Candiloro et al. (2017) tested each primer de-
sign solution by varying the cytosine of the CpG site and tested different T,. For the two same
primer pairs, they used C-containing primers (methylated), C/T(Y)-containing primers, A/C/G/T(N)-

containing primers, inosine(l)-containing primers, mismatch(A)-containing primers, and abasic(-)-
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containing primers. First, the results from C-containing primers overestimated the DNA methyla-
tion for all tested T,, and this biased amplification towards methylated DNA was enhanced at higher
Ta. This finding confirms the over-compensation of PCR bias when the selectivity for methylated
DNA is increased by the presence of CpG sites in the primers found by Moskalev et al. (2011).
Inosine-containing primers showed similar results. For the C/T(Y)-containing primers (G/A(R) in re-
verse primer) DNA methylation is also overestimated but less than with the previous ones, and the
increase of T, also enhance the bias, which coincides with the results found by Shen et al. (2007).
The same results were found for the A/C/G/T(N)-containing primers, except for the lowest T, tested,
the DNA methylation estimation was quite accurate. Mismatch-containing primers underestimated
DNA methylation and PCR amplification was not efficient. The most accurate estimation of DNA
methylation was found using the abasic-containing primers, for only one of the two regions tested as
they were not able to amplify the other region using the abasic-containing primers, probably because
the abasic site was close to the 3’ end of the reverse primer which may interfere with the polymerase

priming and activity.

So, in conclusion, it confirmed the over-compensation of PCR bias towards methylated DNA
by using primers with CpG sites, whether C-containing primers or C/T(Y)-containing primers, which
contradicts the model of primer design proposed by Wojdacz and Hansen (2006). However, most
studies agreed that the bias amplification during PCR is region dependant and both models can be

relevant depending on the studied region.

Finally, all of the studies emphasized the importance of testing each primer pair to ensure the
PCR effectiveness and unbiased results, as well as optimizing the annealing temperature for each
primer pair. They recommend performing a gradient of annealing temperature and using a mix of
DNA in known proportions of methylation, such as 50:50, as a control to check for the equal am-
plification of both methylated and unmethylated templates. Therefore, as bisulfite sequencing PCR
relies on PCR amplification of heterogeneously methylated DNA, one key step in the experimental

process is to carefully check for PCR bias.
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Incomplete conversion of bisulfite can bias the methylation levels estimation. Unmethy-
lated DNA control and calculation of the conversion rate based on non-CpG cytosines are
essentials to check for conversion artifacts.

Errors in DNA polymerization, to a lesser extent, can also bias the methylation quantifica-
tion.

The misalignment of bases in sequencing results can be due to (1) polymerase slippage at
repetitive bases or motifs by inducing insertion/deletions mutations and (2) gradual migra-
tion separation between methylated and unmethylated derived PCR products because of
molecular weight difference between C and T bases.

A PCR bias causing the unequal amplification of methylated and unmethylated DNA has
been widely reported. Most of the time the bias is towards unmethylated DNA due to its
lower GC content and thus its lower melting temperature (Tr,) (Figure 33).

Some attempts to reverse this amplification bias, by including CpG sites in the primer se-
quences and/or by increasing the annealing temperature (Ta), have been successful for
some regions but could also over-compensate the bias towards over-amplification of methy-
lated DNA instead.

Incorporating DNA controls with known methylation levels in BSP experiments is essential
to check for PCR amplification bias, and optimizing of the T, for each primer pair can help
resolve this bias.
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OBJECTIVES

The cancer stem cells (CSCs) are major contributors to the therapeutic resistance of cancers
and an important cause of cancer relapse. Therefore, this project aims to find new solutions to reduce
the emergence of CSCs in response to radiotherapy, which leads to the resurgence of the highly
resistant CSC population within the tumor. As the cancer non-stem cells (non-CSCs) dedifferentiation
into CSCs contributes to the tumor enrichment in CSCs, the inhibition of this phenotypic conversion

would radiosensitize tumors and reduce the risk of cancer relapse.

As the acquisition of a stemness phenotype includes the acquisition of self-renewal capacity
and pluripotency, it involves changes in the gene expression programs. Hence, we hypothesize that
an epigenetic regulation of key genes may regulate the radio-induced dedifferentiation of non-CSCs
into CSCs.

In a first part, to get insights into the epigenetic mechanisms involved in the non-CSC-to-CSC
conversion, the first objective was to determine the implication of epigenetic modifying enzymes in
this process. As modulation of their expression following radiotherapy would indicate their potential
participation in this change of phenotype, their expression levels were monitored after radiation ex-
posure. And, to determine the requirement of DNA methyliransferases (DNMTs) enzymes in this

process, an inhibition approach was carried out.

Then, genomic regions undergoing methylation from the non-CSC state to the radio-induced
CSC state may affect the expression of genes. Therefore, the identification of methylation differences
between those phenotypes would allow the discovery of new mechanisms or regulators involved in
CSC plasticity. These genes regulated by DNA methylation could be new potential therapeutic targets
to specifically inhibit the non-CSC-to-CSC phenotypic switch.

In a second part, the study of DNA methylation levels at specific genomic regions using bisul-
fite sequencing PCR (BSP) experiments is restrained by an exhaustive analytic process and a lack of
efficient tools. Hence, the project aims to provide a new tool capable to handle both direct-BSP and
cloning-BSP data, in an automated and accessible way, to help researchers interpret BSP results.
Analysis of Bisulfite Sequencing PCR (ABSP) was therefore developed as a ready-to-use solution to

facilitate the evaluation of methylation differences in a region of interest.
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1.1 CELL LINES AND CULTURE CONDITIONS

The SUM159PT triple-negative breast cancer cell line (Asterand) was used and its character-
istics are depicted in Table 5. This cell line was cultivated in the culture medium described in Table 6.
The Ham’s F-12 Nutrient Mixture (F-12), the Non-Essential Amino Acids (NEAA), the HEPES buffer,
the penicillin and streptomycin are provided by Gibco; the Fetal Bovine Serum (FBS) by HyClone;
the insulin and hydrocortisone by Sigma-Aldrich; and the ZellShield by Biovalley.

SUM159PT
Supplier Asterand
Molecular type Triple negative
Morphology Epithelial
Tumor type Anaplastic carcinoma
Sampling origin Primary tumor

TABLE 5 CHARACTERISTICS OF THE SUM159PT BREAST CANCER CELL LINE.

Cells are maintained in culture in a humid atmosphere at 37 °C containing 5% of CO,. Before
confluence, cells are detached from the Petri dish with trypsin/0,25% EDTA (Gibco), and a portion is

reseeded in a new Petri dish. The culture maintenance does not exceed a dozen of seeding.
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SUM159PT
Base medium F-12
FBS 5%
Insulin 5 pg/mL
Hydrocortison 1 pg/mL
HEPES 10 nM
ZellShield 1%

TABLE 6 COMPONENTS OF THE SUM159PT CELL LINE CULTURE MEDIUM.

1.2 IRRADIATION

Cells are seeded the day before irradiation at an approximated density of 5,500 cells/cm?.
Cells are irradiated as a monolayer at room temperature in the Oscar Lambret Center of Lille. A 20
MV photon beam is delivered by a Clinac 23EX particle accelerator (Varian) with a dose rate of 2.63
Gy/min. The X- and Y-collimator field is set at 40 cm x 40 cm to irradiate simultaneously up to 16
(4x4) Petri dishes of 10 cm diameter. An 8 Gy dose is delivered at once during a 3,04 minutes lasting

run.
1.3 ALDH ACTIVITY STAINING

The high aldehyde dehydrogenase (ALDH) activity of CSCs enables their distinction from the
rest of the population using the Aldefluor kit (Stem Cell Technologies) (Ginestier et al., 2007). The
Aldefluor kit is used based on the supplier's recommendations. Cells are detached from the mono-
layer Petri dish and resuspended in the provided Aldefluor assay buffer at a cell density between
5 x 10% and 10 x 10° cells per mL. The reactivated Aldefluor reagent, is added to the cell suspension
(5 pL per mL), and cells are incubated for 30 minutes at 37 °C into obscurity. Controls used are (1) un-
stained cells incubated in Aldefluor assay buffer only to assess cell autofluorescence and (2) stained
cells incubated in presence of both Aldefluor reagent and diethylaminobenzaldehyde (DEAB) ALDH
inhibitor to define the ALDH"9" population threshold.

1.4 FLOW CYTOMETRY

The fluorescence of cells stained with the Aldefluor kit is analyzed using either the CyAn
ADP flow cytometer (Beckman Coulter) or the CytoFLEX S flow cytometer (Beckman Coulter) at
the Biolmaging Center Lille (BICel) platform, located in the IRCL (/nstitut pour la Recherche sur le
Cancer de Lille) Institute. The ALDH"" population fluorescence intensity threshold is set based on
the negative control incubated with an inhibitor of the ALDH activity, the diethylaminobenzaldehyde
(DEAB), as it contains only ALDH"°" cells. ALDH"9" cells (CSCs) correspond to the cells with a higher

fluorescence intensity than the maximum fluorescence intensity of 99.9% of the negative control



1. CELL CULTURE AND CANCER STEM CELLS POPULATION STUDY

population. The cytometry fluorescence data are then analyzed using the FlowJo software (v10.8.1)

(BD Biosciences).

1.5 FLUORESCENCE-ACTIVATED CELL SORTING (FACS)

The cells stained using the Aldefluor kit are sorted by FACS using either the BD FACSAria™ I
cell sorter (BD Biosciences) or the SH800S cell sorter (Sony) at the Biolmaging Center Lille (BICelL)
platform, located in the IRCL (Institut pour la Recherche sur le Cancer de Lille) Institute. Based on
ALDH activity, the ALDH'*" and ALDH"9" populations are isolated. The sorted ALDH" population
corresponds to 30% of the cell population with the lowest fluorescence intensity. The sorted ALDH"9"
population (CSCs) corresponds to the cells with a higher fluorescence intensity than the maximum
fluorescence intensity of 99.9% of the negative control population. During sorting, cells are kept in

the Aldefluor assay buffer at 4°C, and sorted cells are retrieved in culture medium at 4°C.

1.6 SPHERE FORMING CAPACITY

The sphere-forming capacity (SFC) assay is a functional assay to estimate the proportion of
cells with stem-like capacities. The culture medium used for sphere culture is a DMEM/F-12 (Dul-
becco’s Modified Eagle Medium/Nutrient Mixture F-12) medium (Gibco) supplemented with 0.4%
Bovine Serum Albumin (BSA) (Sigma-Aldrich), 2% B-27 supplement (Gibco), 5 pg/mL of insulin
(Sigma-Aldrich), 4 pg/mL of heparin (Sigma-Aldrich), 20 ng/mL of Epidermal Growth Factor (EGF)
and Fibroblast Growth Factor (FGF) (Sigma-Aldrich). Cells are seeded in low-attachment surface
96-well plates, from 1024 cells to 1 cell in several wells, with 200 pL of sphere medium per well. The
number of formed spheres is measured 8 days later using a phase-contrast microscope. The ratios
of the formed sphere over the number of seeded cells in the different dilutions give the estimation of
sphere-forming cell proportion. To assess the SFC on several generations, cells are maintained in
sphere media in low-attachment surface flasks at a density of 10,000 cells/mL for 10 days per gen-
eration. After each generation, cells are dissociated using accutase (Invitrogen) and then reseeded
in flasks to get the next generation or in 96-well plates to perform the SFC assay of the current

generation.
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2.1 SIRNA TRANSFECTION

The SUM159PT cells are transfected with siRNAs using the INTERFERin reagent (Polyplus)
and the recommended protocol. Cells are seeded one day before to obtain cell confluency of around
50% for transfection. The cell medium is replaced by a fresh medium. The siRNAs are mixed with
INTERFERIin and cell medium for a quantity of approximately 2.2 pmoles of siRNAs per 200,000
cells. The siRNA sequences used are listed in Table 7. The mix is agitated and incubated for 10
minutes at room temperature before being added to the cell culture. Protein and mRNA relative

quantities are measured 48 hours after transfection.

SIRNA NAME SEQUENCE FORWARD SEQUENCE REVERSE REFERENCE
sictrl : : Eurogented)
SIDNMT1 #1 5-CACUGGUUCUGCGCUGGGATT-3 5-UCCCAGCGCAGAACCAGUGTT-3' Fan et al., 2016
SIDNMT1 #2 5-GGAAGUGAAUGGACGUCUATT-3 5-UAGACGUCCAUUCACUUCCCG-3' Viepe et al,
siDNMT3B #1 5-GAUCAAGCUCGCGACUCUCTT-3 5-GAGAGUCGCGAGCUUGAUCTT-3 Fan et al., 2016
siDNMT3B #2 5-GCUCUUACCUUACCAUCGATT-3' 5-UCGAUGGUAAGGUAAGAGCTG-3’ V‘Sg%fé a,

TABLE 7 LIST OF SIRNAsS.

2.2 RNA LEVELS

RNA EXTRACTION

The RNA is extracted using the RNeasy kit (Qiagen) following the manufacturer’s recommen-

dations. A DNase | treatment during extraction is applied to eliminate genomic DNA. RNA concen-
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trations are evaluated by measuring the absorbance at 260 nm by spectrophotometry. RNA samples

are stored at -80°C.

REVERSE TRANSCRIPTION

The cDNA synthesis is performed using the SuperScript Ill (Invitrogen) reverse transcriptase
(RT). As recommended by the manufacturer, RNA and random primers are first incubated for 5
minutes at 65°C for random primers hybridization, and then the complete reaction mix goes through
the reverse transcription steps: 10 minutes at 25°C, 50 minutes at 50°C, and 5 minutes at 80°C.
Negative control samples, containing no cDNA, are generated with the same process, except that

the reverse transcriptase is not added to the mixture, making the cDNA synthesis impossible.

QPCR

The quantitative polymerase chain reaction (PCR) is performed using the synthesized cDNA,
specific primers, and SyBR Green master mix (Qiagen) containing the SyBR Green, the Taq poly-
merase, deoxynucleotides (ANTP), and MgCl,. The specific primers used are listed in Table 8, and all
of them are synthesized by Eurogentec. The polymerase chain reaction is performed by the CFX96
real-time system (Biorad) thermocycler. It starts with a denaturation step for 10 minutes at 95°C and
is followed by 40 cycles of 3 steps: denaturation (30 seconds at 95°C), hybridization (30 seconds at
the defined hybridization temperature), and elongation (1 minute at 72°C). The fluorescence mea-
surement is realized at the end of each cycle and the melting curve of the product is generated at
the end of the PCR. The optimal hybridization temperature of a primer pair is determined beforehand
by evaluating the amplification efficacy at different temperatures. For most of the primer pairs, the

optimal hybridization temperature is 59°C or 60°C.

TARGET GENE FORWARD SEQUENCE REVERSE SEQUENCE

B2M 5-TCGCGCTACTCTCTCTTT-3’ 5-CAAGTCTGAATGCTCCACTT-3’
RPLPO 5-GCGACCTGGAAGTCCAACTA-3' 5-TGTCTGCTCCCACAATGAAG-3’
DNMT1 5-TATCCGAGGAGGGCTACCTGGC-3’ 5-TGGGGCTAGGTGAAGGTTCAGGC-3
DNMT3A 5-TATTGATGAGCGCACAAGAGAGC-3’ 5-GGGTGTTCCAGGGTAACATTGAG-3’
DNMT3B 5-TTGAATATGAAGCCCCCAAG-3’ 5-TGATATTCCCCTCGTGCTTC-3
TET1 5-ATACAATGGGCACCCTACCG-3’ 5-GGGCTTGGGCTTCTACCAAA-3’
TET2 5-GCTGACAAACTCTACTCGG-3 5-CTTCTGGCAAACTTACATCC-3'
TET3 5-CCCAAAGAGGAAGAAGTG-3’ 5-GCAGTCAATCGCTATTTC-3’
KDM6A 5-ATGAATCCTGCAACCAGCCT-3' 5-TGACTGAGGCCTAATACAGGT-3'
KDM6B 5-CTCACCGCCTATCAGTACCA-3’ 5-GGCACGATGGATTTGACGTT-3’
EZH2 5-CCCTGACCTCTGTCTTACTTGTGGA-3 5-ACGTCAGATGGTGCCAGCAATA-3’

TABLE 8 LIST OF SPECIFIC PRIMERS FOR RT-aPCR.
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RESULTS ANALYSIS

Housekeeping genes such as B2M (beta-2 microglobulin) and RPLPO (Ribosomal Protein
Lateral Stalk Subunit P0) are used as reference genes. The expression level fold change calculation
is based on the Ct (cycle threshold, cycle at which the fluorescence detected is above the threshold)
of each reaction, is normalized using the reference genes, and is relative to the control condition. As
each reaction is performed in three replicates, the used Ct value corresponds to the mean of Ct from
the three technical replicates. The ACt represents the difference between the target gene Ct and
the reference gene Ct. The AACt represents the difference between the test condition ACt and the

control condition ACt. Therefore, the relative expression fold change corresponds to 244,

2.3 PROTEIN LEVELS

PROTEIN EXTRACTION

First, for the total protein extraction, cell lysis is performed by the addition of lysis buffer on
cells (150 pL for a 100 mm Petri dish) for 10 minutes at 4°C. The lysis buffer composition is available
in Table 9, the NaF, NagVO,, Protein Inhibitor Cocktail (Roche), and phenylmethylsulfonyl fluoride
(PMSF) are added right before the lysis. Petri dishes are scraped and the cell lysate is retrieved
and centrifuged at 19,000 g for 10 minutes at 4°C. The supernatant containing the protein fraction is
stored at -80°C.

COMPONENT LysiS BUFFER
HEPES pH 7.5 40 mM
NaCl 120 mM
EDTA pH 8.0 1 mM
NaPPi 10 mM
NaF 50 mM
NazVO, 50 mM
Triton X-100 1%
SDS 0.1%
PMSF 1mM
glycerol 10%
Protease inhibitor cocktail 1%

TABLE 9 LySIS BUFFER COMPOSITION FOR TOTAL PROTEIN EXTRACTION.

The cytoplasmic and nuclear protein fractions are isolated using two buffers: a hypotonic one
and a hypertonic one. Compositions of the buffers are shown in Table 10. The Protease Inhibitor

Cocktail (PIC) (Roche) is added to the required volume of buffer right before the lysis. The cell lysis
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starts by adding the hypotonic buffer to adherent cells for 5 minutes at 4°C. Then the samples are
placed in microtubes and incubated on a vertical rotating device at 30 rpm (rotation per minute) for
17 minutes at 4°C. After the addition of 2% of non-ionic and non-denaturing detergent Nonidet P-
40 (Sigma-Aldrich), the samples are centrifuged at 12,000 g for 5 minutes at 4°C. The supernatant
enriched in cytoplasmic proteins is retrieved and stored at -80°C. The pellet is resuspended with the
hypertonic buffer and placed once again on a vertical rotating device at 30 rpm for 30 minutes at 4 °C.
These samples are then centrifuged at 19,000 g for 10 minutes at 4°C and the supernatant enriched

in nuclear proteins is retrieved and stored at -80°C.

COMPONENT HYPOTONIC BUFFER HYPERTONIC BUFFER
pH 7.8 7.8

HEPES 10 mM 50 mM

KClI 10 mM 50 mM

MgCl, 2mM -

NaCl - 300 mM

EDTA 10 mM 10 mM

DTT 3 mM 3 mM
Glycerol - 10%
Protease inhibitor cocktail 2% 1%

TABLE 10 HYPOTONIC AND HYPERTONIC BUFFERS COMPOSITION FOR CYTOPLASMIC AND NUCLEAR PRO-
TEIN EXTRACTION.

Concentrations in proteins are evaluated by a bicinchoninic acid (BCA) assay (Sigma-Aldrich).
After the reaction, the absorbance at 560 nm is measured by spectrophotometry, and concentrations
are calculated based on the proportional correlation between absorbance and concentration, using

a standard of known concentration.

WESTERN BLOT

Protein extracts are diluted with their corresponding buffer to get equivalent concentrations
between each sample. Then, Laemmli buffer, containing SDS and B-mercaptoethanol, is added to

the protein extracts for denaturation, for 10 minutes at 95°C under stirring.

Proteins are then separated by gel electrophoresis (SDS-PAGE) in a Mini-PROTEAN Tetra cell
(Bio-Rad), using a Bis-Tris 4 to 12% gel (NuPage, Invitrogen) and a MOPS SDS Running Buffer (Nu-
Page, Invitrogen), for 30 minutes at 80 V followed by 1 hour 30 minutes at 120 V, at room temperature.
Once separated on the gel, proteins are transferred on a polyvinylidene difluoride (PVDF) membrane

(Millipore), using a transfer buffer containing 15% of methanol, for 1 hour and 15 minutes at 105 V, at
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4°C. Membranes are saturated by incubation in tris-buffered saline (TBS) buffer supplemented with

0.1% of Tween 20 and 5% of bovine serum albumin (BSA) for 1 hour at room temperature.

TARGET PROTEIN SUPPLIER REFERENCE SPECIE DILUTION
DNMT1 Abcam #ab13537 Mouse 1:1000
DNMT3A Abcam #ab2850 Rabbit 1:1000
DNMT3B Abcam #ab2851 Rabbit 1:1000
Lamin B1 Santa Cruz Biotechnology #sc-20682 Rabbit 1:500
Mouse IgG Jackson ImmunoResearch #115-035-003 Goat 1:5000
Rabbit IgG Jackson ImmunoResearch #711-035-152 Donkey 1:5000

TABLE 11 LIST OF ANTIBODIES USED FOR WESTERN BLOT.

Membranes are then incubated with primary antibodies diluted in the saturation buffer overnight
at 4°C. The list of used antibodies is displayed in Table 11. After incubation, five washes of the mem-
branes are carried out using TBS buffer 0.1 % Tween 20, for 7 minutes each, under stirring and
at room temperature. Then, the membranes are incubated with secondary horseradish peroxidase
(HRP)-conjugated antibodies (Table 11), diluted in TBS buffer 0.1 % Tween 20, for 1 hour and 30
minutes under stirring and at room temperature. Another round of five washes is carried out. Fi-
nally, specific proteins bound to the membranes are revealed by the HRP chemoluminescence with
the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Scientific) accordingly to the
supplier’s indications. The numerical images of the membrane are taken using the Fuijifilm LAS-4000
Imager. Quantifications of signal intensities of specific bands are computed with the Imaged soft-

ware. Actin and lamin B1 proteins are used as loading controls and therefore signal intensities are

normalized to these controls.




MATERIAL AND METHODS

162



3

DNA METHYLATION STUDY

= CHAPTER CONTENTS

3.1 REDUCED REPRESENTATION BISULFITE SEQUENCING (RRBS) . .. ... ... 163

3.2 BISULFITE SEQUENCING PCR(BSP) . . . . . . . ... . . . ... 164

~ Back to Table of Contents

3.1 REDUCED REPRESENTATION BISULFITE SEQUENCING (RRBS)

GENomic DNA EXTRACTION

Genomic DNA is extracted using the DNeasy Blood & Tissue kit (Qiagen) and its protocol
recommendations. During this experimental protocol, DNA is treated with proteinase K (Qiagen)
and ribonuclease A (RNase A) (Sigma-Aldrich). The sample quality is checked by electrophore-
sis migration using a 0.8% agarose gel. DNA concentrations are obtained by fluorimetry analysis
with the Qubit dsDNA HS Assay Kit (Invitrogen) and using the EnSpire Multimode Plate Reader
(PerkinElmer). The optimized excitation (478 nm) and emission (526 nm) wavelengths and a stan-

dard of known concentrations are used to evaluate the DNA sample concentrations.

RRBS PROCEDURE

The RRBS procedure was carried out by the DNA Methylation profiling Service from Diagen-
ode (Seraing, Belgium). Beforehand, the possible degradation of DNA samples is assessed using
the Fragment Analyzer with the DNF-487 Standard Sensitivity or DNF-488 High Sensitivity genomic
DNA Analysis Kit (Advanced Analytical). Then, 100 ng of genomic DNA per sample is used to pre-
pare the libraries with the Premium RRBS Kit (Diagenode Cat # C02030033, Veillard et al., 2016)
(Figure 34).

First, the DNA is digested with the Mspl enzyme (C{CGG, methylation independent) to obtain
DNA fragments with CpG sites at each extremity (Figure 34). Adaptator sequences are ligated to the
fragments to allow their size selection (40 to 220 bp) using the Agencourt AMPure XP beads (Beck-
man Coulter) required to get a high coverage of regions rich in CpG sites. DNA samples are again
controlled for concentration and degradation (Qubit dsDNA HS Assay Kit, Thermo Fisher Scientific,

and High Sensitivity DNA chip, 2100 Bioanalyzer, Agilent) and pooled. The bisulfite conversion is
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FIGURE 34 REDUCED REPRESENTATION BISULFITE SEQUENCING (RRBS) WORKFLOW. Figure from the
Premium RRBS kit manual website.

then carried out on the pooled samples to convert unmethylated cytosines into uracils. DNA sam-
ples are amplified by PCR and cleaned up to constitute the library ready to be sequenced. So they
are finally sequenced by a 50 bp single-read sequencing (SR50) on the HiSeg3000 sequencer (lllu-
mina). Unmethylated and methylated DNA controls serve as controls to check the bisulfite conversion

efficiency.

3.2 BISULFITE SEQUENCING PCR (BSP)



3. DNA METHYLATION STUDY

BISULFITE CONVERSION

Two DNA samples, high-methylated and low-methylated human genomic DNA (80-8061-HGHM5
and 80-8062-HGUMS from EpigenDx), are treated with sodium bisulfite. 1.4 ug of each DNA sample
is mixed with 0.3 M of NaOH and incubated at 50°C for 20 min. Then, DNA solutions are treated with
a 2.5 M of sodium bisulfite / 125 mM of hydroquinone pH 5.0 solution, at 70°C for 3 h.

The single-stranded bisulfite converted DNA is then cleaned up using the NucleoSpin Gel and
PCR Clean-up kit (Macherey-Nagel) following the manufacturer’s instructions and converted DNA

samples are stored at -80°C before PCR amplification.

PCR

A touchdown PCR protocol is used to amplify regions of interest from bisulfite-converted
DNA. The composition of each PCR reaction is given in Table 12, and the PCR buffer composition
in Table 13. The touchdown PCR protocol is composed of 50 cycles of: 20 s at 95°C, 30 s at the
annealing temperature, and 2 min at 72°C. The annealing temperature varies from 60°C for 10 cycles,
to 59°C, 58°C, 57°C, and 56°C for 1 cycle each, and 55°C for 36 cycles.

COMPONENT PCR REACTION
PCR buffer 10X 1.5 L
MgCl, 500 mM 1.2l
dNTP 10 mM 0.075 L
Tag DNA polymerase re-combinant 5 U/uL (Invitrogen) 0.1 puL
Forward primer 5 uM 0.5 uL
Reverse primer 5 uM 0.5 uL
Bisulfite-converted DNA sample 1L

H,O 10.125 pL
Total : 15 uL

TABLE 12 PCR REACTION COMPOSITION FOR BISULFITE SEQUENCING PCR.

COMPONENT PCR BUFFER
Tris pH 8.8 670 mM
(NH,4)2SO, 160 mM
B-mercaptoethanol 100 mM
Bovine serum albumin (NEB) 1 mg/mL

TABLE 13 PCR BUFFER COMPOSITION FOR BISULFITE SEQUENCING PCR.
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An upstream promoter region of the CDH1 gene is amplified using the PCR primers in Ta-
ble 14. These primers are composed of a sequence-specific to the region of interest and of a standard
primer sequence at the 5’ end, T3 or BGH Reverse primer sequence (underlined in Table 14). The
addition of standard sequencing primers to the extremities of the amplicon increases the sequencing

efficiency, especially since the beginning is generally not correctly sequenced.

NAME SEQUENCE LENGTH APPLICATION
CDH1 Forward 5-AATTAACCCTCACTAAAGGGTTTAGTAATTTTAGGTTAGAGGGTTAT-3’ 47 bp PCR
CDH1 Reverse 5-TAGAAGGCACAGTCGAGGAAACTCACAAATACTTTACAATTCC-3’ 43 bp PCR

T3 5-AATTAACCCTCACTAAAGGG-3’ 20 bp Sequencing
BGH Reverse 5-TAGAAGGCACAGTCGAGG-3' 18 bp Sequencing

TABLE 14 PRIMERS USED FOR BISULFITE SEQUENCING PCR.

The amplified region is located on the plus strand at coordinates chr16:68771007-68771227
(reference human genome hg19) (221 bp) and covers 17 CpG sites. With the addition of 5’ tails — T3
(20 bp) and BGH Reverse (18 bp) — to primers, the total length of the amplicon is 259 bp. Following

PCR, amplicon are analyzed by gel electrophoresis migration to validate their correct length.

Amplicon sequence (bisulfite converted sequence with CpG sites considered as methylated,
highlighted in yellow, and location of standard primers T3 and BGH Reverse underlined):
5-AATTAACCCTCACTAAAGGGTTTAGTAATTTTAGGTTAGAGGGTTATCGCGTTTATGCGAGGTCG
GGTGGGCGGGTCGTTAGTTTCGTTTTGGGGAGGGGTTCGCGTTGTTGATTGGTTGTGGTCGGT
AGGTGAATTTTTAGTTAATTAGCGGTACGGGGGGCGGTGTTTTCGGGGTTTATTTGGTTGTAGTTA
CGTATTTTTTTTTAGTGGCGTCGGAATTGTAAAGTATTTGTGAGTTTCCTCGACTGTGCCTTCTA-3

SEQUENCING

Amplicons are directly sequenced (direct-BSP) in both directions using the standard sequenc-
ing primers T3 and BGH Reverse for forward and reverse directions respectively (Table 14). Sanger
sequencing runs are carried out by the LightRun Sanger sequencing service at Eurofins Genomics,
Germany. Three replicates of sequencing runs have been performed to allow statistical analysis.
The Applied Biosystems, inc. format (ABIF) (.ab1) sequencing files are used to process the analysis
using the ABSP tool.
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4.1 DIFFERENTIALLY METHYLATED REGIONS (DMRS) IDENTIFICATION FROM REDUCED

REPRESENTATION BISULFITE SEQUENCING (RRBS) DATA
4.1.1 TOOLS AND SOFTWARE

The R programming language is used for the analysis of RRBS data (https://www.r-project.
org/, R: A Language and Environment for Statistical Computing, version 4.2.0, R core Team, Vienna,
Austria, 2022), along with the RStudio development environment for R (https://www.rstudio.com/,
RStudio: Integrated Development for R., version 2022.02.2+485, RStudio Team, PBC, Boston, MA,
2022).

The IGV (Integrative Genomics Viewer) (version 2.4.19) is used in the process of analyz-
ing RRBS data to visualize methylation data on the hg19 human genome (Robinson et al., 2020;
Robinson et al., 2017; Robinson et al., 2011; Thorvaldsdéttir et al., 2013).

Pathways enrichment analysis is performed on the Enrichr enrichment analysis tool (htips:
//maayanlab.cloud/Enrichr/, Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021), and based on
the WikiPathways Human 2021 pathways database (Martens et al., 2020; Slenter et al., 2018). The
combined score for each pathway is determined using the p-values from Fisher’s exact test and odds

ratio.
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4.1.2 ® PACKAGES

e BiocManager 1.30.18 - Morgan M
(2022).
Bioconductor Project Package Repos-

_BiocManager: Access the

itory . R package version 1.30.18,
https://CRAN.R-project.org/package=
BiocManager.

e biomaRt 2.52.0 - Durinck S, Spellman
PT, Birney E, Huber W (2009). Mapping
identifiers for the integration of genomic
datasets with the R/Bioconductor pack-
age biomaRt. Nature Protocols 4, 1184-
1191. doi:10.1038/nprot.2009.97 hitps:
//doi.org/10.1038/nprot.2009.97, https:/
www.nature.com/articles/nprot.2009.97.

e BSgenome 1.64.0 - Pagés H (2022).
_BSgenome: Software infrastructure for
efficient representation of full genomes
and their SNPs_.
sion 1.64.0,
packages/BSgenome.

R package ver-
https://bioconductor.org/

e bsseq 1.32.0 - Hansen KD, Lang-
mead B, Irizarry RA (2012). "BSmooth:
from whole genome bisulfite sequenc-
ing reads to differentially methy-
lated regions." _Genome Biology ,
*13*(10), R83.  doi:10.1186/gb-2012-
13-10-r83 https://doi.org/10.1186/
gb-2012-13-10-r83.

e ChIPpeakAnno 3.30.1 - Zhu L, Gazin C,
Lawson N, Pages H, Lin S, Lapointe D,
Green M (2010). "ChlPpeakAnno: a Bio-
conductor package to annotate ChlP-seq
and ChlIP-chip data." _BMC Bioinformat-
ics_, *11*(1), 237. ISSN 1471-2105,
doi:10.1186/1471-2105-11-237  https:/
doi.org/10.1186/1471-2105-11-237, http:
/lwww.biomedcentral.com/1471-2105/
11/237.

e dplyr 1.0.9 - Wickham H, Francois R,
Henry L, Miller K (2022). _dplyr: A
Grammar of Data Manipulation_. R
package version 1.0.9, https://CRAN.
R-project.org/package=dplyr.

e DT 0.23 - Xie Y, Cheng J, Tan X (2022).
_DT: A Wrapper of the JavaScript Li-
brary ’DataTables’_.
sion 0.23, https://CRAN.R-project.org/
package=DT.

R package ver-

e ensembldb 2.20.2 - Rainer J, Gatto
L, Weichenberger CX (2019). "en-

sembldb:
ate and use Ensembl-based an-

an R package to cre-

notation resources."  _Bioinformat-
ics_. doi:10.1093/bioinformatics/btz031
https://doi.org/10.1093/bioinformatics/
btz031, https://academic.oup.com/
bioinformatics/advance-article/doi/10.

1093/bioinformatics/btz031/5301311.

genomation 1.28.0 - Akalin A, Franke
V, Vlahovicek K, Mason C, Schubeler
D (2014).

summarize, annotate and Vvisualize

"genomation: a toolkit to

genomic intervals." _Bioinformatics_.
doi:10.1093/bioinformatics/btu775 https:
//doi.org/10.1093/bioinformatics/btu775,
http://bicinformatics.oxfordjournals.org/
content/early/2014/12/04/bioinformatics.
btu775.long.

GenomicFeatures 1.48.3 - Lawrence
M, Huber W, Pagés H, Aboyoun P,
Carlson M, Gentleman R, Morgan M,
Carey V (2013). "Software for Comput-
ing and Annotating Genomic Ranges."
_PLoS Computational Biology_, *9*.
doi:10.1371/journal.pcbi.1003118 hitps:
//doi.org/10.1371/journal.pcbi.1003118,
http://www.ploscompbiol.org/article/
info%3Ad0i%2F10.1371%2Fjournal.
pcbi.1003118.

GenomicRanges 1.48.0 - Lawrence
M, Huber W, Pagés H, Aboyoun P,
Carlson M, Gentleman R, Morgan M,
Carey V (2013). "Software for Comput-
ing and Annotating Genomic Ranges."
_PLoS Computational Biology_, *9*.
doi:10.1371/journal.pcbi.1003118 https:
//doi.org/10.1371/journal.pcbi.1003118,
http://www.ploscompbiol.org/article/
info%3Adoi%2F10.1371%2Fjournal.
pcbi.1003118.

ggplot2 3.3.6 - Wickham H (2016).
_ggplot2: Elegant Graphics for Data
Analysis_. Springer-Verlag New
York. ISBN  978-3-319-24277-4,
https://ggplot2.tidyverse.org.

Gviz 1.40.1 - Hahne F, Ivanek R (2016).
"Statistical Genomics: Methods and
Protocols." In Mathé E, Davis S (eds.),
chapter Visualizing Genomic Data Us-
ing Gviz and Bioconductor, 335-351.

For the analysis of RRBS data, different R packages are used. The main ones are listed below:

Springer New York, New York, NY. ISBN
978-1-4939-3578-9, doi:10.1007/978-1-
4939-3578-9_16 https://doi.org/10.1007/
978-1-4939-3578-9_16, http://dx.doi.
org/10.1007/978-1-4939-3578-9_16.
knitr 1.39 - Xie Y (2022). _knitr: A
General-Purpose Package for Dynamic
Report Generation in R_. R package ver-
sion 1.39, https:/yihui.org/knitr/.
matrixStats 0.62.0 - Bengtsson H
(2022).
Apply to Rows and Columns of Ma-

_matrixStats: Functions that
trices (and to Vectors)_. R package
version 0.62.0, https://CRAN.R-project.
org/package=matrixStats.

methylKit 1.22.0 - Akalin A, Kormaks-
son M, Li S, Garrett-Bakelman FE,
Figueroa ME, Melnick A, Mason CE
(2012). rhethylKit: a comprehensive R
package for the analysis of genome-wide
DNA methylation profiles...Genome Biol-
ogy_, *13*(10), R87. doi:10.1186/gb-
2012-13-10-r87 https://doi.org/10.
1186/gb-2012-13-10-r87, https://
genomebiology.biomedcentral.com/
articles/10.1186/gb-2012-13-10-r87.
openxlsx 4.2.5 - Schauberger P, Walker
A (2021).
and Edit xIsx Files_. R package ver-
sion 4.2.5, https://CRAN.R-project.org/
package=openxIsx.

_openxlsx: Read, Write

png 0.1.7 - Urbanek S (2013). _png:
Read and write PNG images._. R
package version 0.1-7, https://CRAN.
R-project.org/package=png.

readr 2.1.2 - Wickham H, Hester J, Bryan
J (2022). _readr: Read Rectangular Text
Data_. R package version 2.1.2, https:
/ICRAN.R-project.org/package=readr.
rlist 0.4.6.2 - Ren K (2021). _rlist: A
Toolbox for Non-Tabular Data Manipula-
tion_. R package version 0.4.6.2, https:
//ICRAN.R-project.org/package=rlist.
rmarkdown 2.14 - Allaire J, Xie Y,
McPherson J, Luraschi J, Ushey K,
Atkins A, Wickham H, Cheng J, Chang
W, lannone R (2022). _rmarkdown: Dy-
namic Documents for R_. R package
version 2.14, https:/github.com/rstudio/

rmarkdown.
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e Rsamtools 2.12.0 - Morgan M, Pages H,
Obenchain V, Hayden N (2022). _Rsam-
tools: Binary alignment (BAM), FASTA,
variant call (BCF), and tabix file im-
port_. R package version 2.12.0, https:
/Ibioconductor.org/packages/Rsamtools.

e tidyverse 1.3.1 - Wickham H, Aver-
ick M, Bryan J, Chang W, McGowan
LD, Frangois R, Grolemund G, Hayes
A, Henry L, Hester J, Kuhn M, Ped-
ersen TL, Miller E, Bache SM, Miiller
K, Ooms J, Robinson D, Seidel DP,

Spinu V, Takahashi K, Vaughan D, Wilke
C, Woo K, Yutani H (2019). "Wel-
come to the tidyverse." _Journal of
Open Source Software_, *4*(43), 1686.
doi:10.21105/joss.01686 hitps://doi.org/
10.21105/joss.01686.

4.2 DEVELOPMENT OF ANALYSIS OF BISULFITE SEQUENCING PCR (ABSP)
4.2.1 TOOLS AND SOFTWARE

The R programming language is used to code the ABSP tool (R: A Language and Envi-
ronment for Statistical Computing, version 4.2.0, R core Team, Vienna, Austria, 2022), along with
the RStudio development environment for R (RStudio: Integrated Development for R., version
2022.02.2+485, RStudio Team, PBC, Boston, MA, 2022).

The IGV (Integrative Genomics Viewer) (version 2.4.19) is used during the development of
ABSP to visualize regions on the hg19 human genome, retrieve coordinates and genomic sequences
(Robinson et al., 2020; Robinson et al., 2017; Robinson et al., 2011; Thorvaldsdottir et al., 2013).

The BSP primers are designed using the MethPrimer program (https://www.urogene.org/
methprimer/, Li, 2007; Li and Dahiya, 2002), completed with a search for unintended PCR prod-
ucts using the “Primer search, ePCR” from the BiSearch tool (http://bisearch.enzim.hu/, Aranyi and
Tusnady, 2007; Aranyi et al., 2006; Tusnady et al., 2005).

For the visualization of methylation data, the Methylation plotter web tool R source code
is used as a reference to build the plot generation functions (http://maplab.imppc.org/methylation_
plotter/, Mallona et al., 2014).

4.2.2 ® PACKAGES

The complete list of used R packages is available in the ABSP user guide in Appendix 3 “ABSP user

guide” at page 338. The main ones are listed below:

e arrangements 1.1.9 - Lai R (2020). _ar- e BSgenome 1.64.0 - Pages H (2022). alization_. R package version 1.0.9,

rangements: Fast Generators and ltera-
tors for Permutations, Combinations, In-

teger
e BiocManager 1.30.17 - Morgan M
(2022). _BiocManager: Access the

Bioconductor Project Package Repos-
itory_. R package version 1.30.17,
https://CRAN.R-project.org/package=

BiocManager.

e Biostrings 2.64.0 - Pages H, Aboy-
oun P, Gentleman R, DebRoy S (2022).
_Biostrings: Efficient manipulation of bi-

ological

_BSgenome: Software infrastructure for
efficient representation of full genomes
and their SNPs_.
sion 1.64.0,
packages/BSgenome.

R package ver-
https://bioconductor.org/

e compareGroups 4.5.1 - Subirana |,
Sanz H, Vila J (2014). "Building Bivariate
Tables:
for R." _Journal of Statistical Software_,
*57%(12), 1-16. https://www.jstatsoft.org/
v57/i12/.

The compareGroups Package

e DiagrammeR 1.0.9 - lannone R (2022).
_DiagrammeR: Graph/Network Visu-

https://CRAN.R-project.org/package=
DiagrammeR.

dplyr 1.0.9 - Wickham H, Frangois R,
Henry L, Miller K (2022).
Grammar of Data Manipulation_. R
https://CRAN.
R-project.org/package=dplyr.

_dplyr: A

package version 1.0.9,

formattable 0.2.1 - Ren K, Russell K
(2021).
table’ Data Structures_. R package ver-
sion 0.2.1, https://CRAN.R-project.org/
package=formattable.

_formattable: Create 'Format-

e GenomelnfoDb 1.32.1 - Arora S, Mor-
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gan M, Carlson M, Pages H (2022).
_GenomelnfoDb:  Utilities for manip-
ulating chromosome names, includ-
ing modifying them to follow a par-
ticular naming style_. R package
version 1.32.1, https://bioconductor.org/

packages/GenomelnfoDb.

GenomicRanges 1.48.0 - Lawrence
M, Huber W, Pagés H, Aboyoun P,
Carlson M, Gentleman R, Morgan M,
Carey V (2013). "Software for Comput-
ing and Annotating Genomic Ranges."
_PLoS Computational Biology_, *9*.
doi:10.1371/journal.pcbi.1003118 https:
//doi.org/10.1371/journal.pcbi.1003118,
http://www.ploscompbiol.org/article/
info%3Ad0i%2F10.1371%2Fjournal.
pcbi.1003118.

ggdendro 0.1.23 - de Vries A, Rip-
ley BD (2022).
ate Dendrograms and Tree Diagrams

_ggdendro:  Cre-

Using ’ggplot2’_. R package ver-
sion 0.1.23, https://CRAN.R-project.org/
package=ggdendro.

ggplot2 3.3.6 - Wickham H (2016).

_ggplot2: Elegant Graphics for Data
Analysis_. Springer-Verlag New
York. ISBN  978-3-319-24277-4,

https://ggplot2.tidyverse.org.
ggpubr 0.4.0 - Kassambara A (2020).

_ggpubr:
Ready Plots_. R package version 0.4.0,

‘ggplot2’ Based Publication

https://CRAN.R-project.org/package=
ggpubr.

Gviz 1.40.1 - Hahne F, Ivanek R (2016).
"Statistical Genomics: Methods and
Protocols." In Mathé E, Davis S (eds.),
chapter Visualizing Genomic Data Us-
ing Gviz and Bioconductor, 335-351.
Springer New York, New York, NY. ISBN
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1.1 INVOLVEMENT OF EPIGENETIC-ASSOCIATED ENZYMES IN RADIO-INDUCED DED-
IFFERENTIATION

Upon and following radiotherapy treatment, some breast non-CSCs are able to dedifferentiate
into CSCs as they acquire stem cell properties (Arnold et al., 2020b; Bidan et al., 2019; Lagadec et
al., 2012). As previously described, epigenetic mechanisms are involved in this process as they can
modify gene transcription programs toward stemness-related genes expression (French and Pauklin,
2021; Zagorac et al., 2016). Hence, we hypothesize that, to remove or establish new epigenetic
marks, the activity of epigenetic-associated enzymes must be required and contributes to the non-

CSC-to-CSC phenotypic switch after ionizing radiation exposure.

1.1.1 EXPRESSION OF EPIGENETIC-ASSOCIATED ENZYMES AFTER IRRADIATION

The first element that can indicate the participation of epigenetic modifying enzymes through-

out the radio-induced dedifferentiation is to evaluate their expression following radiotherapy. Indeed,
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FIGURE 35 EXPRESSION LEVELS OF THE EPIGENETIC-ASSOCIATED ENZYMES FOLLOWING IRRADIATION.
A. SUM159PT cells were irradiated at 8 Gy and the mRNA levels of DNMT1, DNMT3A, DNMT3B, TET1,
TET2, TET3, KDM6A, KDM6B, and EZH2 were measured every day up to 5 days post-irradiation. For DNMT1,
DNMT3A, DNMT3B, TET1, TET2, TET3, n=1 and for KDM6A, KDM6B, EZH2, n=3. Error bars represent means
+ standard error of the mean.  B. ALDH®¥ SUM159PT cells were isolated by FACS reseed and irradiated at
8 Gy 24 hours later. mRNA levels of DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3, KDM6A, KDM6B, and
EZH2 were measured 1 hour, 3 hours, 6 hours, and 12 hours after irradiation (n=1).

an increase in their expression could be correlated with enhanced recruitment to apply epigenetic

modifications, to alter the transcription of gene programs.

To cover different types of epigenetic marks such as DNA methylation and histones PTM,
either towards the transcription activation or silencing, | chose nine key enzymes to study: DNMT1,
DNMT3A, DNMT3B, TET1, TET2, TET3, KDM6A, KDM6B, and EZH2. Indeed, the DNA methyltrans-
ferases (DNMTs) are responsible for the maintenance and establishment of DNA methylation marks
on cytosines while TET enzymes are involved in active DNA demethylation (Ginno et al., 2020; Kim
and Costello, 2017). EZH2 is the PRC2 subunit that catalyzes the methylation of the lysine 27 on hi-
stone H3 to set H3K27me3 repressive marks, while KDM6A (also known as UTX) and KDM6B (also
known as JMJD3) are two lysine demethylases (KDMs) that remove H3K27me3 marks (Pediconi et
al., 2019).

To assess the effect of radiotherapy treatments on these epigenetic enzymatic activities, |
measured their expression through time (every 24 hours) in SUM159PT breast cancer cells after
irradiation at 8 Gy (Figure 35). The effect of an 8 Gy radiation treatment applied to this cell line
was already assessed in the laboratory and is known to induce an enrichment in CSCs, with a
peak at 5 days post-irradiation (Bidan et al., 2019; Lagadec et al., 2012). Therefore, the first assay,
presented in Figure 35A, aimed to estimate mMRNA levels once a day during 5 days post-irradiation.
For DNMT3A, a small increase in mRNA levels can be observed but only at day 3 (D3). A slight
increase of TET1 and TET2 expression (1.5-1.8 fold compared to D0) can be observed 3 days (D3)
and 4 days (D4) after irradiation at 8 Gy, which is 4 to 5 times higher than in the unirradiated cells. It's
worth to notice that these differences at D3 and D4 in expression are transitory and not maintained
up to 5 days after irradiation (D5). Concerning KDM6A, KDM6B, and EZH2, no significant difference
was observed between the irradiated and unirradiated cells among three independent experiments.
Taken together, as no significant differences in epigenetic enzyme expression were detected between
irradiated and unirradiated cells, no conclusion on their involvement on dedifferentiation can be drawn

from this experimental approach.

As modifications of expression following irradiation can occur earlier on the first day, | chose
to assess their mRNA levels in the first 12 hours post-irradiation. Additionally, to observe the effect of

the phenotypic switch from non-CSCs to CSCs instead of CSC pool repopulation by self-renewal and
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symmetric division upregulation, especially since they might require different expression changes, the
population was depleted in CSCs before irradiation. The ALDH'" population was isolated by FACS
the day before the radiation treatment and mRNAs were extracted at Oh, 1h, 3h, 6h and 12h post-
irradiation (Figure 35B). No evidence of expression changes was observed after the first experiment,
and as the dedifferentiation occurs within the non-CSC population in non-synchronized manner along

the 5 days after irradiation, we decided to not push further this short term study.

Furthermore, two possible explanations can support the absence of expression differences
observed after irradiation: (1) as the radio-induced dedifferentiation rate is low, no more than 5%
of CSCs are induced in general, the evaluation of changes in the global population does not allow
the observation of modifications associated with these rare events, and (2) the modulation of their
activity, possibly involved in the dedifferentiation, could depend on co-activators rather than on their
expression. Indeed, the action of these enzymes may involve other regulators to modulate their

recruitment at specific genomic loci to enable the phenotypic switch toward a stem state.

In conclusion, the approach of analyzing expression changes in the global popula-
tion does not allow the identification of fine expression regulation of DNMTs, TETs, KDM6A,
KDM6B, and EZH2 enzymes in a specific subpopulation undergoing phenotypic changes after

radiation exposure.

1.1.2 ROLE OF THE DNMT ENZYMES IN RADIO-INDUCED DEDIFFERENTIATION

The previous results indicate that the expression of DNMTs enzymes is not upregulated follow-
ing radiotherapy, but their activity may be involved in the phenotypic conversion. To know if DNMTs
enzymes are required for the dedifferentiation of non-CSCs into CSCs, their inhibition by small inter-

fering RNA (siRNA) during the radio-induced dedifferentiation was carried out.

First, two siRNAs targeting DNMT1 and DNMT3B were tested, named siDNMT1 #1 and #2
and siDNMT3B #1 and #2. Both siRNAs were able to inhibit the two enzymes at RNA and protein
levels 48 hours after transfection (Figure 36). As siDNMT1 #2 and siDNMT3B #2 seem to be the
most efficient ones, they were chosen for the following experiments. Four different siRNAs targeting
DNMT3A were tested but failed to inhibit the enzyme, so the study of DNMT3A has not been possible.

To evaluate the importance of DNMT1 and DNMT3B epigenetic modifying activities in the
reacquisition of stem cell properties, they were inhibited by the previously validated siRNAs before
the radio-induction of dedifferentiation in the non-CSC population. As described in Figure 37A, the
ALDH"" cells (non-CSCs) are isolated by FACS and treated with the siRNAs 18 hours after being
reseeded. Then, 6 hours after siRNA transfection, cells are irradiated at 8 Gy. Induction of dediffer-
entiation toward a stem cell phenotype was evaluated 5 days later by quantifying ALDH* cells (CSCs)
by flow cytometry measurement and sphere-forming capacity (SFC) tests. A negative control is used

to define the ALDH™* population for each sample, in which stained cells are incubated with DEAB, an
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FIGURE 36 INHIBITION OF DNMT1 AND DNMT3B BY SIRNA INTERFERENCE.  A. The mRNA expression
levels of DNMT1 and DNMT3B in SUM159PT cells were measured 48 hours after siRNA transfection (n=3).
The control condition corresponds to untransfected cells. Assessment of the inhibition is confirmed by compar-
ing siDNMT1/3B conditions with the respective siCtrl condition. * Student’s T-test p-value < 0.05. Error bars
represent means + standard error of the mean.  B. The DNMT1 and DNMTS3B inhibition is confirmed at the
protein level using nuclear extracts collected 48 hours after siRNA transfection. The lamin B1 protein is used
as a loading control. The same results were obtained in three independent experiments.  C. Quantification of
band intensities from the above blots results. Ratios of the DNMT1/3B band intensities over the lamin B1 band
intensities are represented as a bar chart.

ALDH inhibitor (Figure 37A and B).

First, dot plots of analyzed cells from one of the four experiments are displayed in Figure 37B.
The cell population is distributed in terms of their Aldefluor intensity, reporting for the ALDH activity,
and size (side scatter). In the control untransfected population, a shift toward higher Aldefluor inten-
sities is visible in the irradiated population compared to the unirradiated one, corresponding to an
increase of the CSC population in response to radiations. However, in all the transfected conditions,
siCtrl, sibNMT1, and siDNMT3B, no shift in the irradiated population is observed, meaning that in

these cells the irradiation did not induce an increased dedifferentiation of non-CSCs.
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FIGURE 37 EFFECT OF DNMT1 AND DNMT3B INHIBITION ON THE DEDIFFERENTIATION OF NON-CSCs
INTO CSCs. A. Experimental protocol to assess the dedifferentiation of non-CSCs. The SUM159PT ALDH" "
cells (non-CSCs) are sorted by FACS, treated the next day with siRNAs 18 hours later and with radiations 6
hours later. The generation of induced ALDH* (iCSCs) is evaluated 5 days after irradiation. ~ B. Cytometry
analysis of non-CSCs SUM159PT cells stained with Aldefluor after siRNA transfection and irradiation. The gate
and its associated percentage represent the ALDH* (CSC/iCSC) population.  C. Percentage of ALDH" cells
induced by irradiation in the control (n=4).  D. Ratios of irradiated cells CSC percentages over unirradiated cells
CSC percentages from the above cytometry data (n=4).  E. Percentages of sphere-forming unit estimated by
sphere-forming capacity (SFC) assay, after one generation (n=4), two generations (n=3, n=1 for siDNMT3B),
and three generations (n=3, n=1 for sibDNMT3B). F. Ratios of irradiated cells sphere forming unit percentages
over unirradiated cells sphere forming unit percentages from the above SFC assay data. Error bars represent
means =+ standard error of the mean.
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Means of four independent experiments are exposed in Figure 37C, in which no significant
differences using the Student’s T-test was observed. In the control, the non-CSC population restores
after 5 days an average of 1.34% + 0.53 of CSCs without induction, and after radiation exposure,
it regenerates an average of 3.56% + 0.96 of CSCs. These data indicate an increased generation
of CSCs induced by irradiation even if the difference is not statistically significant (p=0.104) due to
important variability among the four replicates. Nonetheless, while we can see a drastic reduction of
the CSC induction from 3.56% + 0.96 in the irradiated control cells to 0.94% + 0.21 and 0.65% + 0.15
in irradiated siDNMT1 and siDNMT3B conditions respectively, no induction has been also observed
in the siCtrl condition (0.91% =+ 0.20) after irradiation. It indicates that the suppression of the radio-
induced dedifferentiation is due to the siRNA transfection protocol and is not linked to the inhibition
of DNMT1 or DNMT3B. In Figure 37D the difference in CSC percentages between unirradiated cells
and irradiated cells is displayed as averages of the 8 Gy over 0 Gy ratios per replicate, which also

highlights the increase of CSCs in control cells but not in transfected cells.

CSC proportions were also estimated by a functional SFC test with three generations of sphere
formation (Figure 37E and F). Cells are maintained in sphere media to allow the formation of spheres
for 10 days before being dissociated to form a new generation of spheres. At each generation, the
number of spheres is measured and reveals the proportion of cells able to self-renew. Consistent
with previous lab results, an important mortality in the irradiated conditions causes a reduced sphere
formation at the first generation, but it stabilizes at the second and third ones. However, a slight
increase in sphere forming unit proportions after irradiation in control cells is observed at the second
generation but not in the third one. And altogether, in every transfected conditions at every genera-
tion, no significant difference in CSC proportions is observed, which is consistent with the previous

cytometry results, suggesting that the transfection protocol prevents the induction of CSCs.

Furthermore, the combination of FACS sorting followed by siRNA transfection and irradiation
caused an important loss of cell viability in cells. Even though different transfection protocols were
tested (INTERFERIn, Lipofectamine, and nanoparticles), all of the transfected cells had considerably
lower viability than the control untransfected cells. Thus, the siRNA transfection, even with a control
siRNA without any specific target, is sufficient to drastically reduce the cell viability, which can explain

differences between control and siCtrl conditions in terms of CSC radio-induced regeneration.

As the transfection itself seemed to abolish the radio-induced increase of CSCs, prob-
ably due to cell viability issues, the contribution of DNMT enzymes in the non-CSC-to-CSC
conversion could not have been assessed by the siRNA inhibition approach used, and would

require an alternative approach.
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The expression analysis of the global population after radiotherapy treatment did not re-
veal significant expression changes of the epigenetic modifying enzymes DNMTs, TETs,
KDM6A, KDM6B, and EZH2.

The approach consisting in a global assessment of expression differences at a few time
points after irradiation could not reveal transitory expression changes related to rare, asyn-
chronous, and spread over time dedifferentiation events.

As the radio-induced increase of CSC observed in control cells is not reproduced in trans-
fected cells, including cells transfected with a control siRNA, it means that the transfection
itself impacts the radio-induced regeneration of CSCs.

Hence, the effect of the siRNA-mediated DNMT1 and DNMT3B inhibition on the radio-
induced dedifferentiation could not have been assessed. An alternative approach is re-
quired to further evaluate the contribution of these enzymes in the phenotypic conversion
from non-CSCs to CSCs.

1.2 GLOBAL ANALYSIS OF DNA METHYLATION CHANGES DURING RADIO-INDUCED
DEDIFFERENTIATION

The reduced representation bisulfite sequencing (RRBS) approach was chosen to assess
methylation marks profiles before and after irradiation in the subpopulations in question, to deter-
mine methylation modifications occurring during the radio-induced dedifferentiation of non-CSCs into
CSCs. The RRBS method allows for the computation of cytosine methylation percentages on a re-
duced fraction of the genome, enriched in CpG sites and representative of the genome methylome.
The aim is to identify differentially methylated regions that might be involved in the acquisition of a

stem-like phenotype.

1.2.1 STRATEGY AND SAMPLE PREPARATION

CSC and non-CSC subpopulations of SUM159PT breast cancer cells were collected after a
first FACS sorting based on the ALDH activity (Figure 38). The non-CSC population is reseeded and
irradiated at 8 Gy the next day to induce the dedifferentiation of cells into CSCs. Five days later, the
population is sorted once again to isolate the induced CSC population by irradiation, named iCSC,
and the irradiated non-CSC population, named inon-CSC. iCSC cells underwent a radio-induced
dedifferentiation event while the inon-CSC ones did not after radiation exposure. As seen previously,
the SUM159PT cell line is relatively rich in CSCs, with a basal CSC percentage of around 1 to 2%,
and the irradiation treatment of non-CSCs generates 2.5 to 5% of iCSCs after 5 days (Figure 37A

and C, Figure 38, and data not shown).

DNA from the four collected subpopulations, CSC, non-CSC, iCSC and inon-CSC, in two

replicates each, was extracted and sent to Diagenode for the RRBS analysis, consisting in Mspl
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FIGURE 38 EXPERIMENTAL RADIO-INDUCTION OF DEDIFFERENTIATION AND SUBPOPULATION ISOLATION
FOR RRBS ANALYSIS. Two rounds of cell sorting based on ALDH activity are performed to isolate four
SUM159PT subpopulations: CSC, non-CSC, iCSC, and inon-CSC populations. The CSC and non-CSC sam-
ples are collected after a first sorting. The isolated non-CSC population is reseeded and then irradiated at 8
Gy 24 hours later. The irradiated non-CSC population is sorted 5 days post-irradiation to isolate induced CSCs
(iCSCs) and irradiated non-CSCs (inon-CSCs).

enzymatic digestion (C|CGG, methylation independent), bisulfite treatment, and next-generation se-
quencing (NGS). Reads aligned on the genome resulting from the sequencing were then analyzed

to identify methylation differences between those subpopulations.

1.2.2 FIRST ANALYSIS OF REDUCED REPRESENTATION BISULFITE SEQUENCING DATA

The analysis of RRBS data aims to identify differentially methylated regions (DMRs) between
the different analyzed subpopulations to highlight potential key methylation changes contributing to

the phenotypic switch into CSC after radiotherapy.

A first analysis of RRBS results was performed with the help of the bioinformatic service
platform Bilille (PLBS - UMS 2014 - US 41, Lille, France) for DMRs identification. This analysis
was carried out using the R software and relies mainly on the methylKit R package developed

specifically to analyze RRBS data (Akalin ef al., 2012).

This analysis consists in first subdividing the genome into 1,000 bp tiles (i.e. chr1:1-1,000;
chr1:1,001-2,000; chr1:2,001-3,000;...) to calculate the differential of methylation based on methyla-

tion percentages of CpG sites within each tile.

DMRs are generated by comparing methylation levels of subpopulations two by two. For a
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1,000 bp region to be considered differentially methylated, the methylation difference must be
> 25% (absolute value, > 25% for hypermethylated ones, and < -25% for hypomethylated ones)
between those two populations with a g-value < 0.01 for statistical significance. The method used to
calculate the differential methylation and its associated significance relies on a Bayesian hierarchical
model, based on the beta-binomial distribution, which is provided by the methylKit R package,
but developed originally within the DSS R package (Feng ef al., 2022; Feng et al., 2014; Feng and
Wu, 2019). Indeed, as methylation proportions are comprised between 0 and 1 (0% and 100%
methylated) their distribution follows a beta distribution among replicates, with a binomial distribution

captured by the sequencing within each sample (Feng et al., 2014).

Once methylation differences between subpopulations have been found, the goal is to find
the ones potentially implicated in the dedifferentiation of non-CSCs into iCSCs (Figure 39). The
direct comparison of non-CSC vs iCSC populations is not sufficient. Indeed, it includes methylation

modifications due to irradiation which are not necessarily related to the stem cell phenotype.

¢ DMRs between non-CSC vs CSC constitute the base pool of DMRs used for the analysis
(Figure 39 and Figure 40A, in yellow). These DMRs corresponds to CSC-specific methylation
differences that may be involved in the stemness phenotype. The regulation of these regions by
DNA methylation could be linked to pluripotency or differentiated features.

¢ DMRs between CSC vs iCSC are excluded (Figure 39 and Figure 40A, in pink). The exclusion
of differences between CSC and iCSC populations (the two CSC populations) allows to keep from
the base DMRs pool the ones that are methylated back in the same way after dedifferentiation,
meaning that in the CSC to non-CSC to iCSC phenotypic path, these regions underwent methy-
lation changes both from CSC to non-CSC and from non-CSC to iCSC, their methylation status is
restored in iCSCs similarly to CSCs.

¢ DMRs between non-CSC vs inon-CSC are excluded (Figure 39 and Figure 40A, in blue). The
methylation differences between non-CSC and inon-CSC populations (the two non-CSC popula-
tions) were not sufficient to induce the phenotypic switch into iCSC, they underwent methylation
changes in response to irradiation that did not lead to the acquisition of an iCSC state. Therefore,

only the regions with consistent methylation from non-CSC to inon-CSC populations are kept.
From the four subpopulations, the three pairwise comparisons generates DMRs:

e non-CSC vs CSC: 1,340 DMRs (Figure 39 and Figure 40A, in yellow)
e CSC vsiCSC: 969 DMRs (Figure 39 and Figure 40A, in pink)
e non-CSC vs inon-CSC: 833 DMRs (Figure 39 and Figure 40A, in blue)

As displayed in Figure 40A, from the 1,340 DMRs obtained comparing non-CSC vs CSC, 159
also different between CSC and iCSC are excluded, 65 also different between non-CSC and inon-
CSC are excluded, and 5 different in the three pairwise comparisons are excluded as well. Hence, a

list of 1,112 sorted DMRs potentially involved in the radio-induced dedifferentiation is retrieved,
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FIGURE 39 SCHEMATIC REPRESENTATION OF THE METHYLATION PROFILE OF A DMR POTENTIALLY IN-
VOLVED IN DEDIFFERENTIATION. Hypothetical methylation profile of a region that could be involved in radio-
induced dedifferentiation through the DNA methylation regulation of its associated gene. This DMR is hy-
pomethylated in CSCs compared to non-CSCs, and no differences are found between the two CSC states
and the two non-CSC states. The reverse pattern can be applied to hypermethylated DMRs in CSCs compared
to non-CSCs.

containing 681 hypomethylated DMRs and 431 hypermethylated DMRs (in CSCs compared to non-
CSCs).

The next objective is to find the most relevant DMRs for a more precise region-specific valida-
tion of methylation percentages. To refine this DMR list, | retrieved the closest gene of each DMR,
within a maximal distance of 10 kb. From the 1,112 DMRs, 596 are within the 10 kb range of 558
unique genes, 332 hypomethylated ones, and 264 hypermethylated ones. The pathway analysis of
this list of genes revealed several genes from the Ephrin receptor signaling (e.g. EFNB1, EPHA2,
EPHB2), TGF-§ signaling (e.g. BMP2, BMP4, BMP7, MAP2K2, MAPK13, RUNX3, TGFB3) and
STAT3 signaling (e.g IGF1R, IL17RB, IL4R, MAP2K2, MAP3K9, MAPK13, NTRK3), known to be
involved in the stem cell phenotype and resistance to radiotherapy of breast cancer cells (Bhatia et
al., 2018; Huang et al., 2017; Lucero et al., 2020; Yadav and Shankar, 2019; Yang et al., 2013).

Additionally, DMRs positions were cross-referenced with the CpG island (CGl) database (UCSC),

and from the list of 1,112 DMRs, 63 are found overlapping a CGl. From the previously cited genes,
only the DMR associated with the BMP4 gene overlaps a CGl.

As these DMRs were found as differentially methylated between non-CSC and CSC popula-
tions, there is a potential correlation between these identified methylation changes and their closest
gene expression in non-CSC vs CSC populations.
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1. DNA METHYLATION CHANGES THROUGHOUT THE RADIO-INDUCED DEDIFFERENTIATION

To test the functional role of these methylation differences, 5 DMRs were selected, close to
these 5 genes: EPHB2, RUNX3, MAPK13, TGFB3, and BMP2, based on the previous pathway

analysis associated to literature study.

Among them, the RUNXS3 promoter is known to be frequently hypermethylated in mammary
tumors (Lau et al., 2006; Liu et al., 2018b; Lu et al., 2016; Song et al., 2016). RUNXS is regulated
by the TGF-B, its gene code for a tumor suppressor, and its expression is correlated to stem cell
differentiation and reduction of stem cell properties (Kim et al., 2019a; Kulkarni et al., 2018; Lee et
al., 2010; Liu et al., 2020a; Nishina et al., 2011; Wang et al., 2017¢e). The DMR found around its TSS
containing one CpG site covered in all samples, is hypomethylated in CSCs compared to non-CSCs,

which is inconsistent with the literature, but could be due to the poor coverage of the region.

Methylation percentages of CpG sites contained in these 5 DMRs are represented along the
genome in Figure 41A and their methylation profiles across subpopulations in Figure 41B. The methy-
lation profiles of DMR#21-EPHB2 and DMR#22-RUNX3 show a higher similarity in methylation lev-
els between non-CSC and iCSC populations than between non-CSC and inon-CSC populations,
while the methylation profiles of DMR#324—-MAPK13, DMR#742-TGFB3 and DMR#967-BMP2 show
a no difference between inon-CSC and iCSC populations (high standard deviations) despite having
a significant methylation difference between non-CSC and CSC populations. Thereby, their pro-
file does not exactly match the desired pattern of DMRs undergoing methylation changes during
radio-induced dedifferentiation as displayed in Figure 39, and the analysis and selection of relevant
methylation profiles should be taken into consideration further in the RRBS data analysis. However,
as they all present an important methylation difference between non-CSC and CSC, this methylation

difference could be correlated with gene expression changes.

To assess the correlation between methylation differences and expression, the CSC and
non-CSC populations were sorted based on their ALDH activity and the expression of these 5
genes was analyzed by RT-gPCR. For those 5 DMRs, no significant expression differences were
found between the two subpopulations (Figure 41C). EPHB2 and MAPK13 expressions seem to be
up-regulated in CSCs compared to non-CSCs, which is inconsistent with hypermethylated DMRs
found inside these two genes (EPHB2 gene locus: chr1:23,037,330-23,241,823 and DMR#21 locus:
chr1:23,176,001-23,177,000; MAPK13 gene locus: chr6:36,098,260-36,112,301 and DMR#324 lo-
cus: chr6:36,101,001-36,102,000). Hence, there is no correlation between the expression of these

genes and the identified differential methylation, so the validation of these DMRs was not pursued.
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FIGURE 41 METHYLATION PROFILES OF DMRS ASSOCIATED WITH EPHB2, RUNX3, MAPK13, TGFB3, AND BMP2 GENES AND EXPRESSION CORRELATION.
Methylation plots of DMRs close to EPHB2, RUNX3, MAPK13, TGFB3, and BMP2 genes. From top to bottom: chromosome localization; genomic axis; genome data
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1. DNA METHYLATION CHANGES THROUGHOUT THE RADIO-INDUCED DEDIFFERENTIATION

Additionally to a lack of functional significance on gene expression for the 5 DMRs tested,
this first analysis came with some limitations. Except for the DMR#21 associated with EPHB2, the
differential methylation of these 5 DMRs was calculated based on 1 or 2 CpG sites. Differential
methylation on 1 or 2 CpG sites does not exclude a functional role in the gene expression regu-
lation, but it reduces the probability to demonstrate both significant methylation differences by an
afterward region-specific validation and significant correlation with gene expression. Thus, the ab-
sence of a minimum CpG number per region to compute the differential methylation need to be taken
into account for the selection of DMRs to validate. Methylation profiles of the 5 selected DMRs did
not exactly match the hypothetical pattern of regions that present a CSC-specific methylation level,
restored after the conversion from non-CSC to iCSC, but not changing between non-CSC and inon-
CSC. Therefore, the sorting based on the three pairwise comparisons allows a pre-sorting of regions

potentially involved in dedifferentiation but is not sufficient for the selection of the most relevant ones.

In conclusion, this first analysis provided an initial insight into the CpG methylation
data obtained by the RRBS analysis, alongside proficiency in sequencing analysis method-
ology and R programming, as well as parameters and adjustments to overcome the afore-
mentioned limitations. Therefore, this analysis was a first step in the identification of regions
regulated by DNA methylation during the dedifferentiation of non-CSCs into iCSCs, which is

pursued in a second analysis.

1.2.3 SECOND ANALYSIS OF REDUCED REPRESENTATION BISULFITE SEQUENCING DATA

Using the knowledge provided by the first analysis, | developed a second analysis to go further
and find more relevant regions potentially implicated in the radio-induced dedifferentiation, analysis

also based on the methylKit R package.

The identification of differential methylation at promoter regions and CGls was not reasonably
possible with the use of tile regions as it does not allow the study of specific annotated loci. Hence, the
analysis of specific genomic features could also be incorporated into the analysis of these methylation
data. As indicated in the workflow from Figure 40, the first main modification in the analysis is
the enlargement of the region scope on which the differential methylation is computed. Indeed,
additionally to the 1,000 bp tiles subset, new region subsets are incorporated in the analysis: 200 bp

tiles, regions surrounding the TSS, CGl regions, and identified methylation segment regions.

To identify new candidates, the filtering based on the methylation profile should be prioritized
over the functional relevance of associated genes. Thereby, in this analysis, the identification and
selection of regions regulated by DNA methylation changes throughout the dedifferentiation rely more

on their methylation profile across subpopulations than in the previous one.

The detailed workflow of the analysis is presented in Figure 42, panel 1. The localization of

code listings on the workflow (in red, on the sides) helps situating which step they refer to. The circled
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o > methRaw[[1]]

methylRaw object with 2441224 rows

g > methRaw_filtered[[1]]
methylRaw object with 2438749 rows

chr start  end strand coverage numCs numTs chr start  end strand coverage
1 chrl 10497 10497 + 74 73 1 1 chrl 10497 10497 + 74
2 chrl 10525 10525 + 7373 0 2 chrl 10525 10525 + 73
3 chrl 10542 10542 + 74 71 3 3 chrl 10542 10542 + 74
4 chrl 19249 19249 - 10 8 2 4 chrl 19249 19249 - 10
5 chrl 19274 19274 - 10 10 0 5 chrl 19274 19274 - 10
6 chrl 133165 133165 + 35 8 27 6 chrl 133165 133165 + 35

id: CsC_1

» meth_unite.methylBase

sample.id: CSC_1

methylBase object with 808802 rows

numCs numTs
73

1

73 0
71 3
8 2
10 0
8 27

chr start end strand coveragel numCsl numTsl coverage2 numCs2 numTs2 coverage3 numCs3 numTs3 coverage4 numCs4 numTsé
1 chrl 10497 10497 + 74 73 58 2 43 43 62 60 2
2 chrl 10525 10525 + 73 73 0 58 54 4 43 43 0 62 62 0
3 chrl 10542 10542 + 74 71 3 56 56 0 43 43 0 62 62 0
4 chrl 133165 133165 + 35 8 27 13 1 12 39 7 32 43 14 29
5 chrl 133180 133180 + 80 20 60 25 5 20 85 10 7 68 12 56
6 chrl 133217 133217 + 45 1 44 12 6 6 48 2 46 26 1 25
coverage5 numCs5 numTsS5 coverageb numCs6é numTs6 coverage? numCs7 numTs7 coverage8 numCs8 numTs8
1 55 54 1 43 43 0 91 91 35 35
2 55 52 3 43 42 1 91 90 1 35 34 1
3 55 55 0 43 40 3 90 89 1 34 32 2
4 40 21 19 37 18 19 35 4 31 45 7 38
5 78 17 61 76 7 69 68 11 57 59 3 56
6 38 8 30 39 0 39 33 3 30 14 2 12
sample.ids: €SC_1 €SC_2 i€SC_1 CSC_2 inon_CSC_1 inon_CSC_2 non_CSC_1 non_CSC_2
0 > head(meth_perc.data)
chr start end strand €sc_1 Csc_2 icsc_1 iCSC_2 inon_CSC_1 inon_CSC_2 non_CSC_1 non_CSC_2 CpG_ID
1 chrl 10497 10497 + 98.648649 96.551724 100.000000 96.774194  98.18182 100.000000 100.000000 100.000000 1
2 chrl 10525 10525 + 100.000000 93.103448 100.000000 100.000000 94.54545 97.674419 98.901099 97.142857 2
3 chrl 10542 10542 + 95.945946 100.000000 100.000000 100.000000 100.00000 93.023256 98.888889 94.117647 3
4 chrl 133165 133165 + 22.857143  7.692308 17.948718 32.558140 52.50000 48.648649 11.428571 15.555556 4
5 chrl 133180 133180 + 25.000000 20.000000 11.764706 17.647059 21.79487 9.210526 16.176471 5.084746 5
6 chrl 133217 133217 + 2.222222 50.000000 4.166667  3.846154 21.05263 0.000000 9.090909 14.285714 6

> tiles_1000_unite

methylBase object with 222961 rows

chr start end strand coveragel numCsl numTsl coverage? numCs2 numTs2 coverage3 numCs3 numTs3 coveraged numCs4 numTsd
chrl 10001 11000 = 221 217 4 172 166 6 129 129 0 186 184 2
chrl 133001 134000 = 160 29 131 50 12 38 172 19 153 137 27 110
chrl 136001 137000 = 211 137 74 150 80 70 95 64 31 354 193 161
chrl 237001 238000 = 52 0 52 41 3 38 25 0 25 35 0 35
chrl 567001 568000 = 56 50 6 38 29 9 51 31 20 54 32 22
chrl 662001 663000 = 293 201 92 189 124 65 168 103 65 273 177 96

coverage5 numCs5 nustS

165 16l 129 125 4 272 270 2 104 101 3
156 46 110 152 25 127 136 18 118 118 12 106
362 244 118 234 124 110 366 213 153 298 185 113
37 1 36 60 0 60 60 2 58 32 0 32
81 61 20 51 35 16 70 48 22 45 33 12
348 245 103 161 101 60 348 240 108 382 259 123

sample.ids: C5C_1 €5C_2 iCSC_1 iCSC_2 inon_CSC_1 inon_CSC_2 non_CSC_1 non_CSC_2

> tiles_1000_comp[[1]]

methylBase object with 222961 rows

chr start end strand coveragel numCsl numTsl coverage2 numCs2 numTs2 coverage3 numCs3 numTs3 coverage4 numCs4 numTs4
1 chrl 10001 11000 272 270 2 1 101 3 221 217 4 172 166 6
2 chrl 133001 134000 136 18 118 118 12 106 160 29 131 50 12 38
3 chrl 136001 137000 = 366 213 153 298 185 113 211 137 74 150 80 70
4 chrl 237001 238000 = 60 2 58 32 0 32 52 0 52 41 3 38
5 chrl 567001 568000 = 70 48 22 45 33 12 56 50 6 38 29 9
6 chrl 662001 663000 = 348 240 108 382 259 123 293 201 92 189 124 65
sample.ids: non_CSC_1 non_CSC_2 CSC_1 CSC_2
0 > head(tiles_1000_DMR[[1]1)
chr start end strand pvalue qvalue meth.diff
196 chrl 1121001 1122000 * 0.00008865899530 0.00910107688 -27.78286
342 chrl 1357001 1358000 * 0.00000109658269 0.00036552474 34.30625
611 chrl 2008001 2009000 * 0.00008536194373 0.00890438734 25.44409
649 chrl 2077001 2078000 * 0.00006757387090 0.00758576397 26.08714
844 chrl 2431001 2432000 * 0.00000006908827 0.00004084557 -35.67255
1187 chrl 3182001 3183000 * 0.00000869102409 0.00172925178 -33.67548
0 > head(as.data. frame(List_DMR))
chr  start end strand DMR_ID meth.diff.nCSC_CSC qvalue.nCSC_CSC meth.diff.CcSC_icsC qvalue.CSC_icsC meth.diff.nCSC_inCSC gvalue.nCSC_inCsC
1 chrl 1121001 1122000 * T1000_0001 -27.78286 0.0091010769 22.48620 6462908 -11.564588 0.30523215
2 chrl 1357001 1358000 * T1000_0002 34.30625 0.0003655247 -9.33508 0.37587868 13.958201 0.48062690
3 chrl 2008001 2009000 * T1000_0003 25.44409 0.0089043873 4.56260 0.36947888 18.428571 0.01664819
4 chrl 2077001 2078000 * T1000_0004 26.08714 0.0075857640 -24.80231 0.03092331 10.384918 0.32746239
5 chrl 5747001 5748000 * T1000_0005 31.66759 0.0022264312 -15.96301 0.06800002 5.343862 0.63071329
6 chrl 7581001 7582000 * T1000_0006 42.39510 0.0008984276 -19.18803 0.03000634 21.345209 0.19111565
meth.diff.nC5C_iCSC qvalue.nCSC_iCSC n_CpG C5C_1 CSC_2  iCSC_1  i€SC_2 inon_CSC_1 inon_CSC_2 non_CSC_1 non_CSC_2  avg CSC sd_CS5C avg_non_C5C
1 -5.296662 3.214257e-01 NA  6.666667 20.40816 23.21429 51.21951 39.36170 24.13793 40.54054 53.03030 13.53741 9.716705 46.785422
2 24.971170 7.026027e-02 NA 82.666667 74.24242 80.95238 36.36364 77.77778  27.50000 48.10127 36.58537 78.45455 5.956839 42.343316
3 30.006689 8.127574e-07 3 53.591160 38.93130 52.97619 50.76923 39.76378 42.10526 21.12676 23.17073 46.26123 10.366088  22.148746
4 1.284830 4.329494e-01 1 75.490196 85.00000 63.63636 37.93103 57.37705 69.44444 53.98773 50.00000 80.24510 6.724447  51.993865
5 15.704573 1.836654e-02 1 37.500000 53.06122 24.00000 34.24658 23.57724 2.00000 13.46154 0.00000 45.28061 11.003447 6.730769
6 23.207071 3.648804e-02 1 100.000000 100.00000 79.16667 80.00000 78.94737 76.47059 46.15385 70.58824 100.00000 0.000000 58.371041
sd_non_CSC avg_iCsC sd_iCSC avg_inon_CSC sd_inon_CSC closest.gene closest.gene.ensemb1ID chr.gene start.gene end.gene strand.gene distance.to.gene
1 8.831596 37.21690 19.8026856 31.74982  10.764832 TTLL10 ENSGO0000162571 chri 1109264 1133315 + 0
2 8.142971 58.65801 31.5290037 52.63889  35.551758 RP4-758118.7 ENSG00000225905 chri 1355625 1358071 + 0
3 1.445306 51.87271 1.5605562 40.93452 1.655679 PRKCZ ENSGO0000067 606 chri 1981909 2116834 + 0
4 2.819751 50.78370 18.1764126 63.41075 8.532937 ENSGO0000067 606 chrl 1981909 2116834 + 0
5  9.518745 29.12329 7.2454229 12.78862  15.257410 rP11- 154H17 1 ENSG00000236948 chrl 5647428 5728355 - 18645
6 17.277722 79.58333 0.5892557 77.70898 1.751348 CAMTAL ENSG00000171735 chrl 6845384 7829766 + 0

FIGURE 42 Panel 2. Caption next page.
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FIGURE 42 RRBS ANALYSIS WORKFLOW AND DATA PROCESSING. Panel 1. Workflow of the RRBS data
analysis. Circled numbers refer to objects resulting from the corresponding steps displayed in panel 2. Localiza-
tion of code listings is highlighted in red. Annotated functions come from the methylKit R package. Panel 2.
Associated data objects resulting from the numbered steps of the workflow. (1) and (2) corresponds respectively
to raw and filtered CpG sites read counts (C/T) from the CSC 1 sample only. @ and @ corresponds respectively
to CpG sites read counts and CpG sites methylation percentages from the 8 samples. (5) corresponds to 1,000
bp tiles read counts covered in all samples. @ corresponds to 1,000 bp tiles read counts in non-CSCs and
CSCs samples, and (7) to differential methylation values (with p- and g- values) computed between those two
populations. corresponds to the sorted list of 2,596 DMRs with all associated data: methylation differences
and g-values, number of CpG sites covered in all samples, methylation percentages in each sample, methylation
means per subpopulation with standard deviation and closest genes related information.

numbers from the Figure 42, panel 1 are linked to the ones in Figure 42, panel 2 showing the first

rows of objects resulting from each numbered step.

The raw RRBS data as read alignment BAM (.bam) files are first imported in R for the 8
samples: CSC 1, CSC 2, iCSC 1, iCSC 2, inon-CSC 1, inon-CSC 2, non-CSC 1 and non-CSC 2,
and read counts for cytosines and thymines associated to CpG contexts are retrieved (Code listing 1,
Figure 42, panel 2 (2)). These read counts per CpG sites coordinates are then filtered based on
their coverage: CpG sites covered by less than 10 reads in at least one sample are removed, as
well as the ones with a coverage superior of the 99.9™ percentile, meaning that CpG sites with an
aberrantly high coverage value in at least one sample are removed. The first cutoff on minimum read
is necessary for statistical robustness, and the second one on high coverage is used to eliminate
PCR bias effects (Code listing 1 and Figure 42, panel 2 (2)). For example, in the CSC 1 sample, the
maximum coverage value for a CpG site is 204,275 reads while the 99.9" of coverage values is 377

reads.

Then, methylation percentages per CpG sites are computed based on C and T read counts
per CpG. First, data of each sample are merged in one object to restrict the list of CpG to the
ones covered in all the 8 samples (Code listing 1 and Figure 42, panel 2 (3) and (4)). Additionally,
methylation percentages are also computed for all CpG sites of each sample. These CpG methylation
percentage data are used to calculate the number of CpG sites per DMR, and for the methylation

track display along the genome on methylation plots.

The Table 15 summarizes CpG-associated data obtained in the 8 samples, the number of CpG
sites covered per sample, mean of CpG coverage in reads, and mean of methylation percentages, in
raw data, filtered data, and united data (CpG sites covered in every sample). The average number
of CpG covered before filtering is 2,234,252 + 263,552 CpG sites and after filtering is 2,231,988 +
263,288 CpG sites per sample. 808,802 CpG sites were covered in all 8 samples, corresponding to

approximately 36% of the total of filtered CpG sites covered per sample (Table 15).

To compute the differential methylation on regions and identify DMRs, the genome must be
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170~ """ {r Toad alignments, eval=F} =
171 # Load Bismark RRBS alignment sorted bam

172 aln.files <- as.list(list.files(path = "./alignment", pattern = "*sorted.bam$",

17 all.files = F,

174 full.names = T, recursive = F,

17 ignore.case = F, include.dirs = F))

176

177 # Get methylation percentage from sorted Bismark alignments

178 methrRaw <- suppressMessages(

17 processBismarkATn(

180 location = aln.files,

181 sample.id=Tist("csc_1", "csc_2", "icsc_1", "4iCsCc_2", "inon_CSC_1", "inon_CSC_2", "non_€SC_1", "non_CSC_2"),
182 read. context="CpG",

183 save.context = c("CpG","CHG","CHH"),

184 treatment=c(0,0,1,1,2,2,3,3)))

185

186 save(methRaw, file="./data R/methRaw.RData")

187~ °°°

196~ """ {r ALL : filter by coverage, eval=F} =
197 methRaw_filtered <- filterByCoverage(methRaw,lo.count=10,lo.perc=NULL, hi.count=NULL ,hi.perc=99.9)

198

199 # Remove controls using the chromosome names
200~ for (i in 1:8) {
201 methRaw_filtered[[i]] <- methRaw_filtered[[i]][methRaw_filtered[[i]]1[["chr"]] %in% chr_levels]

202- 1

203

204 save(methRaw_filtered,file="./data R/methRaw_filtered.RData")

205~ °°°

222~ """ {r CpG : methylation percentages all samples, cache=T, results="hide"} =

223 # Unite methylRawList and methylRawListDB objects that only bases with coverage from all samples are retained.
224 meth_unite.methylBase <- suppressMessages(methylKit: :unite(methRaw_filtered, destrand=TRUE))

225 # Transform methylBase object in dataframe

226 meth_unite.data <- getData(meth_unite.methylBase)

227

228 # Matrix with percent methylation values per base/region across all samples, row names would be base/region identifiers
229 meth_perc <- as.data.frame(percMethylation(meth_unite.methylBase, rowids = T))

230

231 # Assemble dataframes

232 meth_perc.data <- cbind(meth_unite.datal,1:4],meth_perc)

233

234 # order by chromosomes levels

235 meth_perc.data <- meth_perc.datalorder(factor(meth_perc.data$chr, levels=chr_levels)),]

236

237 # Add CpG ID

238 meth_perc.data <- mutate(meth_perc.data, CpG_ID=row_number())

239- "7

241~ """ {r CpG : methylation percentages individual samples, cache=T, results="hide'} x>
242 # Get all CpG sites methylation percentages (not only the ones covered in all samples)

243 # Function

244 - getPerc <- function(methylRaw.obj){

245 x=getData(methylRaw.obj)

246 x <- mutate(x, perc=100 * numCs/(numCs + numTs))
247 colnames (x) [8] <- methylRaw.obj@sample.id

248 return(x[,c(1,2,3,4,8)])

249- 1

250 # Apply function to get CpG methylation percentages of all samples individually
251 meth_perc.all <- Tist()

252~ for (i in 1l:Tlength(methRaw_filtered)) {

253 meth_perc.all[[i]] <- getPerc(methRaw_filtered[[i]])

254~ }

255+ °°°

CODE LISTING 1 GENERATING CPG METHYLATION PERCENTAGES FROM READ COUNTS.

subdivided into defined regions. Additionally to the previous 1,000 bp tiles subset, new region subsets

are incorporated in this new analysis:

e 1,000 bp tiles: The genome is tiled into 1,000 bp non-overlapping bins, i.e. chr1:1-1,000;
chr1:1,001-2,000; chr1:2,001-3,000 (same as in the first analysis).

e 200 bp tiles: The genome is tiled into 200 bp non-overlapping bins, i.e. chr1:1-200; chr1:201-400;
chr1:401-600.

¢ Regions surrounding gene transcription start sites (TSSs): TSSs coordinates on hg19 human
genome were retrieved from the BioMart database (biomaRt R package), regions from 500 bp
upstream to 500 bp downstream (1001 bp long), corresponding to promoter and beginning of
gene body, were used.

e CpG islands regions: Coordinates of CGl were retrieved from the UCSC database.

¢ Methylation segments: Segments of 10 to 100 adjacent CpG with similar methylation levels.




RESULTS

Raw CpG data Filtered CpG data United CpG data
Sample Numbgr of CpG  Coverage Methylation Numbgr of CpG  Coverage Methylation Numbgr of CpG  Coverage Methylation
sites mean (reads) mean (%) sites mean (reads) mean (%) sites mean (reads) mean (%)
CsC1 2,441,224 24.83 41.38 2,438,749 23.50 41.38 808,802 40.98 43.71
CsC 2 1,931,696 21.85 41.96 1,929,744 20.64 41.95 808,802 31.38 43.78
iCSC 1 2,170,344 2211 39.95 2,168,134 20.89 39.94 808,802 33.34 43.10
iCSC 2 2,316,296 23.82 40.54 2,313,947 22.54 40.53 808,802 38.19 43.15
inon-CSC 1 2,258,601 22.40 43.10 2,256,313 21.17 43.10 808,802 34.33 43.07
inon-CSC 2 1,915,478 20.29 42.83 1,913,635 19.13 42.83 808,802 27.99 42.98
non-CSC 1 2,711,453 26.14 42.35 2,708,720 2477 42.34 808,802 45.84 43.04
non-CSC 2 2,128,926 22.31 41.92 2,126,765 21.06 41.91 808,802 33.36 43.22

TABLE 15 SUMMARY STATISTICS OF CPG NUMBERS, COVERAGE, AND METHYLATION PERCENTAGES IN ALL
SAMPLES THROUGHOUT THE ANALYSIS OF RRBS DATA.

To generate methylation segments, each sample methylation data is segmented based on
methylation profiles using the methSeg() function from the methylKit R package, relying on a
segmentation algorithm provided by the fastseg R package (Code listing 2) (Klambauer et al.,
2012). Here the minimum of CpG sites per segment is set to 10. The algorithm incorporates also
clustering of segments into 4 groups based on the mean methylation value of each segment. The
Figure 43 illustrates the segmentation results for the CSC 1 sample, similar results are obtained for
all the samples. Coordinates of identified segments in each sample are then used to aggregate the
read counts within their coordinates, to allow the calculation of their differential methylation between

subpopulations.

951~ """ {r SEG : Get segments with methSeg, results='hide", cache=T} =
952 # Get segments localizations with CpG with similar methylation, from each samples

953 methSeg_list <- GRangesList()

954 methSeg_summary_plots <- list()

955 methSeg_proportion_plots <- Tist()

956~ for (i in 1:8) {

957 ## Methylation segmentation

958 filename <- paste0("./images/methseg_summary_",sample_names[i],".png")

959

960 png(filename=filename, width=1000, height=800)

961 methSeg_sample <- methSeg(methRaw_filtered[[i]], minSeg=10, G=1:4, maxInt=100)

962 # minSeg represents the minimal length of segment, meaning the minimal number of CpG in the segment (see fastseg())
963 # maxInt representes the maximal length of the Tleft and the right segment, meaning the maximum number of CpG in the

segment (see fastseg())
964 dev.off()

965

966 methseg_list[[i]] <- methSeg_sample
967

968 methSeg_summary_plots[[i]] <- filename
969

970 ## Plot of segments methylation proportion
971 filename <- paste0("./images/methSeg proportion_",sample_names[i],".png")

972

973 png(filename=,

974 width=800, height=400)

975 plot(methSeg_Tlist[[i]]Sseg.mean,

976 logl0(width(methseg_list[[i]11)),pch=20,
977 col=scales: :alpha(methSegplot_colors[as.numeric(methSeg_list[[i]]$seg.group)], 0.2),
978 ylab="1og10(length)",

979 x1ab="Methylation proportion")

980 dev.off()

981

982  methSeg_proportion_plots[[i]l] <- filename
983 - }

984~ "

CODE LISTING 2 GENERATING METHYLATION PROFILE SEGMENTS IN EACH SAMPLE.

For CpG islands regions, the UCSC CpG islands database on the hg19 assembly was used,
in which a CGl is defined by a GC content > 50%, an observed vs expected ratio higher than 0.6 for

the occurrence of CpG sites, and a length greater than 200 bp.

The all process of DMR identification is illustrated on the 1,000 bp tiles subset in the Code list-

194
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FIGURE 43 METHY-
LATION SEGMENTATION
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ing 3. First, read counts for Cs and Ts are aggregated into corresponding coordinates of subset
regions, and regions covered in each sample are kept to calculate each sample’s methylation per-
centages (Code listing 3 and Figure 42, panel 2 (5)). Then, read counts are reorganized in pairwise
comparisons of subpopulations and differential methylation of each region is calculated for each

comparison (Code listing 3 and Figure 42, panel 2 (6) and (7).

The calculation of differential methylation and its associated significance is processed by
the calculateDiffMethDSS() function from the methylKit R package which come originally from
the DSS R package (Feng et al., 2022; Feng et al., 2014; Feng and Wu, 2019). The calculation
method relies on a beta-binomial model which is the most used model for methylation analysis (Feng
et al., 2014). The regions that have a significant differential methylation > 25% (absolute value, >
25% for hypermethylated ones, and < -25% for hypomethylated ones), with a g-value < 0.01, are

considered as differentially methylated between two populations and are referred as DMRs.

In the same way as the first analysis, DMRs are sorted to identify the ones potentially involved
in the non-CSC radio-induced dedifferentiation into iCSC (Figure 39). DMRs between both CSC
states or both non-CSC states are excluded from the CSC-specific DMR pool (significant methylation
difference > 25% between non-CSC and CSC, but < 25% between both CSC states and both non-
CSC states). The sorting of DMRs is carried out on the 5 different regions subsets independently,
and results in 5 lists of DMRs: 1,112 DMRs for 1,000 bp tiles, 1,251 DMRs for 200 bp tiles, 109 DMRs
surrounding TSS, 21 CGls and 103 methylation segments, for a total of 2,596 DMRs identified as
having a potential role during the radio-induced phenotypic plasticity from the non-CSC state
to the CSC state (Figure 44).
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Venn diagram of DMR sorting for 1000 bp tiles regions Venn diagram of DMR sorting for 200 bp tiles regions
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FIGURE 44 VENN DIAGRAMS OF DMR SORTING. Identified DMRs by comparing non-CSC vs CSC, CSC

vs iCSC, and non-CSC vs inon-CSC, from the (A) 1,000 bp tiles regions, (B) 200 bp tiles regions, (C) regions
surrounding TSS, (D) CpG island regions and (E) methylation segments regions.
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254« "7 {r 1000 tiles : UNITE, cache=T, results="hide"} =

255 # sSummarizes methy]ated/unmethy]ated base counts over tilling windows accross genome. This function can be used when
differential methylated analysis is preferable to tilling windows instead of base pairs.

256 tiles_1000 <- tileMethylCounts(methrRaw_filtered, win.size=1000, step.size=1000)

257 |

258 tiles_1000_unite <- suppressMessages(methylKit::unite(tiles_1000, destrand=TRUE)) #methylBase object

259

260 tiles_1000_perc <- as.data.frame(percMethylation(tiles_1000_unite, rowids = T)) #percentage methylation in matrix

261

262 write.csv(tiles_1000_perc , file="./data comparative/percMeth_tiles_1000.csv", row.names = T, quote=F)

263~ "7

268+ """ {r 1000 tiles : SUBSET, cache=T, results="hide'} =
269 # Subset samples in new objects for each comparison

270 tiles_1000_comp <- 1ist()

271~ for (i in 1:6) {

272 tiles_1000_comp[[il] <- reorganize(tiles_1000_unite, sample.ids=sample_comp[[il],treatment=c(0,0,1,1))

2= |

274+

60~ """ {r mehtylation differential function, include=F} = !
61
62 - MethDiff <- function(x, region){

64 # Methylation differential calculation
65 my.diff <- calculateDiffMethDSS(x, adjust="SLIM")
66 my.diff.data <- getData(my.diff)

68 # Get DMR : meth diff > 25% & gvalue <
69 topDiff <- getData(getMethylDiff(my. dﬂcf d1fference = 25, qvalue = 0.01, type = "all"))

70
71 # save file
72 x_name <- paste(sub('_[A_]*$', "', x@sample.ids[1]),"vs",sub('_[A_]*%", "', xﬁsamp'le ids[3]), sepf' ")

73 write.csv(topDiff,file=paste0("./data comparative/", x_name, "_diff_meth_", region,"_25p_q_0_01l.csv"), row.names:F,quote:F)

75 return(topDiff)

76~ }

77 -

280~ "~ "{r 1000 tiles : METH DIFF, cache=T, results="hide'} 3

281 # Use MethDiff function created to save meth tiles Fw'les and return the filtered tiles (difference 25 and q value 0. 01)
282 t1'|es_1000 DMR <- list()

283~ for (i in 1:6) {

284 : tiles_1000_t DVIR[ i]]l <- MethDiff(tiles_1000_comp[[i]],region="tiles_1000")

285- 1

309~ """ {r 1000 tiles : SORT, cache=T} z
310 # GRanges objects

311 tiles_1000_DMR_GR <- GRangesList()

312~ for (3 in 1:6) {

313 tiles_1000_DMR_GR[[i1]] <- GRanges(tiles_1000_DMR[[i]])

314- 1}

315

316 # Find overlaps between 1 and 2, 1 and 3

317 ovlaps_1000_1_ 2 <- findoverlaps(tiles_1000_DMR_GR[[1]], tiles_1000_DMR_GR[[2]1)

318 ovlaps_1000_1_3 <- findoverlaps(tiles_1000_DMR_GR[[1]], tiles_1000_DMR_GR[[3]1)

319 # Get all ID of overlapping regions with 1

320 ovlaps_1000_all <- c(ovlaps_1000_1_2Gfrom, ovlaps_1000_1_3@from)

321 rm(ovlaps_1000_1_2,ovlaps_1000_1_3)

322

323 # Remove overlapping regions

324 tiles_1000_DMR_sorted <- tiles_1000_DMR[[1]][-ovlaps_1000_all,]

325

326 # Add DMR ID

327 tiles_1000_DMR_sorted <- mutate(tiles_1000_DMR_sorted, DMR_ID = paste0("T1000_",str_pad(row_number(),4,pad="0")))
328 tiles_1000_DMR_sorted_GR <- GRanges(tiles_1000_DMR_sorted)

329

330 datatable(tiles_1000_DMR_sorted,extensions ='FixedColumns',options=1ist(scrollX=TRUE,fixedColumns=TRUE))
3. 0

CODE LISTING 3 IDENTIFYING DMRS FROM THE 1,000 BP TILES SUBSET.

1.2.4 IDENTIFIED DIFFERENTIALLY METHYLATED REGIONS (DMRS)

Lists of DMRs from the 5 subsets regions are merged to a total of 2,596 DMRs identified as
potentially involved in the radio-induced differentiation of breast cancer cells. 1,574 are hypermethy-
lated in CSCs compared to non-CSCs and 1,022 hypomethylated. The coordinates of these regions
may overlap, especially for regions surrounding TSS as several TSSs can be annotated for a same
gene, and tiles of 200 bp or 1,000 bp can overlap each other or overlap other region subsets. By
reducing the list of DMRs to overlapping coordinates, the 2,596 DMRs match 1,916 unique regions

in terms of coordinates.

To gather DMR associated data, the same process applied for the DMR identification is

applied to the 2,596 identified regions (Code listing 4). To get methylation levels of these regions, read
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counts are united for all samples at these region coordinates to compute methylation percentages
per sample and methylation mean + standard deviation per subpopulation. Differential methylation
for the different pairwise comparisons is also generated based on united read counts per region. In
addition, based on previously generated CpG methylation data, the number of CpG sites that are
covered in all samples per DMR is added and serves as a robustness indicator for the differential
methylation calculated. Finally, the closest gene to each DMR is identified, and its coordinates and
distance to DMRs information are also added (Code listing 4 and Figure 42, panel 2 (8)). The 2,596

DMRs are associated with 1,749 unique closest genes.

Among the identified DMRs, 21 CGls are found differentially methylated. In particular, a
hypomethylated CGl is found within the gene body of the BEST4, BSN, LEMD2, FBXO39, and CDH4
genes, and 1,370 bp upstream of the FSCN1 gene, while a hypermethylated CGl is found within the
gene body of the SNRPN, OCA2, NMRK2, GGTLC1, and VWFP1 genes.

Moreover, 109 regions surrounding TSS of 81 genes (several TSSs per gene) are found
differentially methylated. For instance, the RBP7, RUNX3, VPS26A, CD9, TRAPPC2L, FBXO39,
APOC1, MORC2, and TOM1 genes present a hypomethylation around their TSS, while the PCD-
HGA1, MPZL3, GRAMD1B, MIR7-3HG, and RETN genes have a region surrounding their TSS hy-
permethylated.

From DMR coordinates, all the genes within the 2,000 bp range of a DMR are identified,
giving a total of 1,424 genes. By comparing this list with the lists of 209 genes annotated in the “stem
cell population maintenance” gene ontology (GO:0019827), 11 genes are identified: BMP7, FANCC,
MED12, NR2E1, PRDM16, SFRP1, STAG2, STAT3, WNT7A, WNT9B, and ZHX2. Among them,
FANCC, NR2E1, SFRP1, STAG2, STAT3, and WNT7A are associated with at least one hypomethy-
lated DMR and BMP7, MED12, PRDM16, STAG2, WNT9B, and ZHX2 are associated with at least
one hypermethylated DMR (in CSCs compared to non-CSCs).

From the list of 1,424 genes in the 2 kb range of DMRs, the ones with at least one hypomethy-
lated and one hypermethylated DMR within the 2 kb range are excluded, leaving a total of 1,374
genes with a consistent differential methylation in the case of several proximal DMRs. This list is sep-
arated into two subsets, the ones associated with at least one hypomethylated DMR (602 genes) and
the ones associated with at least one hypermethylated DMR (780 genes) to carry out the pathway
enrichment analysis (Table 16). We can notice the Hedgehog pathway in the top enriched path-
ways, containing the DHH, ARNTL, and GLI2 genes associated, each one with a hypomethylated
DMR in CSCs.

As seen previously with the first analysis, the methylation profile of DMRs across subpopula-
tions is a key feature to find regions undergoing coherent methylation changes throughout dediffer-
entiation. So, to find the most susceptible ones to participate in the dedifferentiation process, DMRs
are selected based on their methylation profiles. As illustrated in Figure 45, in addition to the
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1152~ " {r GENERATE METHYLATION DATA ON DMR POSITIONS}
1153 # Assemble all DMR subsets :
1154 List_DMR <- rbind(tiles_1000_DMR_sorted,

1155 tiles_200_DMR_sorted,
1156 surroundTSS_DMR_sorted,
1157 CGIregions_DMR_sorted,
1158 SEGregions_DMR_sorted)

1159 # Manage columns
1160 List_DMR <- List_DMR[,c("chr", K “"start","end","strand", " "DMR_ID","meth.diff", "qvalue™)]
1161 colnames(List_DMR)[6:7] <- c("meth.diff.nCSC_CSC", "qvalue.nCSC_CSC™)

1163 # Create Genomic Ranges object from DMRs localizations
1164 List_DMR_GR <- GRanges (List_DMR)

1166 # Subset filtered methylation data into DMR localizations
1167 DMR_regions <- regionCounts(methRaw_filtered,List_DMR_GR)

1169 # Unite methylation data covered in all samples
1170 DMR_regions_unite <- suppressMessages(methylKit::unite(DVMR_regions, destrand=TRUE))
1171 DMR_regions_unite.data <- getData(DVR_regions_unite)

1174~ """ {r GET DIFFERENTIAL METHYLATION}

1175 # Reorganize by samp"le compansons

1176 ## sample comparison 2 : CSC vs iCSC

1177 DMLcomﬁu 2 <- reorganize(DMR_regions_unite, sample.ids=sample_comp[[2]],treatment=c(0,0,1,1))
1178 ## sample comparison 3 : non-CSC vs inon-CSC

1179 DMR_com[iu 3 <- reorganize(DMR_regions_unite, sample.ids=sample_comp[[3]],treatment=c(0,0,1,1))
1180 ## sample comparison 4 : non-CSC vs iCSC

1181 DMR_comp_4 <- reorganize(DMR_regions_unite, sample.ids=sample_comp[[4]],treatment=c(0,0,1,1))

1183 # cCalculate differential methylation for all comparisons

1184 DMR_comp_2 <- getData(calculateDiffMethDSS(DMR_comp_2, adjust="SLIM"))
1185 DMR_comp_3 <- getData(calculateDiffMethDSS(DMR_comp_3, adjust="SLIM"))
1186 DMR_comp_4 <- getData(calculateDiffMethDSS(DMR_comp_4, adjust="SLIM"))

1188 # Rename columns

1189 colnames (DMR_comp_2)[c(6,7)] <- c("qvalue.CSC_iCsC”,"meth.diff.CSC_iCsC")
1190 colnames(DMR_comp_3)[c(6,7)] <- c("gvalue.nCSC_inCSC", "meth.diff.nCSC_inCsC™)
1191 colnames(DMR_comp_4)[c(6,7)] <- c("gvalue.nCsC_icsC”, "meth.diff.ncsc_-icsc")

1194~ """ {r GET METHYLATION PERCENTAGES}

1195 # Compute methylation percentages on regions corresponding to DMRs

1196 DMR_regions_perc <- as.data.frame(percMethylation(DMR_regions_unite, rowids = T))
1197 DMR_regions_perc <- cbind(DMR_regions_unite.datal,c(1:4)],DMR_regions_perc)

1199 # Compute methylation percentages means and SD
1200 DMR_regions_perc <- DMR_regions_perc %%
1201 mutate(avg_CSC = rowMeans(DMR_regions_percl,c("csc 1","csc_2" )] na.rm=T),

1202 5d_CSC = rowsds (as. matr'lx(DMR_reg'lons_perc[ c("csc_1 SC_2")1),na.rm=T),

1203 avg_non_CSC = rovMeans(I:MlLreg'lons_perc[ c("non_csc_1", non _CSC_2")]1,na.rm=T),

1204 sd_non_CSC = rowSds (as.matrix{DMR_ regmns_perc[ c("non_Csc_1", "non CSC _2")1),na.rm=T),
1205 avg_iCSC = rowMeans (DMR_regions_perc[,c("iCsC_1","iC5C_2")],na. rm_T)

1206 sd_iCSC = rowSds (as.matrix(DMR_regions_perc/, c( 1CSC 1", "'ICSC 2")1),na.rm=T),

1207 avg_inon_CSC = rowMeans (DMR_regions_perc[,c("inon_CSC_1","inon_CSC_2")7,na.rm=T),

1208 sd_inon_CSC = rodes(as.matrix(DMlLregions_perc[,c("‘inon_CSC_l","inon_CSC_Z")]),na.rm:T))
1209~ °°°

1211~ " {r ASSOCIATE CpG DATA TO DMR}

1212 # CpG data as GRanges object

1213 meth_perc_GR <- GRanges(meth_perc.data)

1214 # Find overlaps between sorted DMR and CpGs

1215 ovlaps_CpG <- findoverlaps(meth_perc_GR, List_DMR_GR)

1216 # Keep only CpG overlapping with a DMR

1217 CpG_in_DMR <- meth_perc.data[ovlaps_CpGafrom, ]

1218 # Add DMR_ID column to CpG data

1219 CpG_in_DMR <- mutate(CpG_in_DMR, DMR_ID = deframe(List_DMR[ovlaps_CpG@to,"DMR_ID"]))

1221 # Get number of CpG

1222 nCpG_in_DMR <- CpG_in_DMR %>%
1223 group_by (DMR_ID) %>%

1224 summarise(n_CpG = n())

1227~ " "{r JOIN ALL ASSOCIATED DMR DATA}

1228 # Differential methylation

1229 List DMR <- left_join(List DVR,DMR_comp_2[,c(1,2,3,4,7,6)],by=c("'chr","start","end", "strand"))
1230 List_DMR <- left_join(List_DMR,DMR_comp_3[,c(1,2,3,4,7,6)],by=c("chr"”,"start","end", "strand"))
1231 List_DMR <- left_join(List_DMR,DMR_comp_4[,c(1,2,3,4,7,6)],by=c(" chr" "start","end","strand"))

1233  # Number of CpG
1234 List_DMR <- 'Ieft_Jom(Ust_DMR, nCpG_in_DMR, by=c("DMR_ID"))

1236 # Mmethyaltion percentages
1237 List_DMR <- left_join(List_DMR, DMR_regions_perc, by=c("chr","start","end","strand"))

1239 # Closest gene
1240 List_DMR <- List_DMR %%
1241 mutate(closest.gene = genes_data[nearest(List_DMR_GR,genes_data_GR), "external_gene_name"],

1242 closest.gene.ensemb1ID = genes_data[nearest(List_DMR_GR,genes_data_GR), “ensembl_gene_id"],

1243 chr.gene = genes_data[nearest(List_DMR_GR,genes_data_GR), "chr"],

1244 start.gene = genes_data[nearest(L*ist_DMR_GR,genes_datLGR) "start"],

1245 end.gene = genes_data[nearest(List_DMR_GR,genes_data_GR), end"]

1246 strand.gene = genes_data[nearest(List_DMR_GR,genes_ data_GR) stra.nd"]

1247 distance. to.gene = distanceToNearest(List_DMR_GR,genes_data_GR)@elementMetadataGlistData[["distance"]])
1248 -

CODE LISTING 4 ASSOCIATING DMRS WITH THEIR RELATED DATA.
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# Term Overlap P-value Odds Ratio Combined Score Genes associated to hypomethylated DMRs in CSCs
1 FTO Obesity Variant Mechanism 2/8 0.022 10.77 40.90 FTO; PRDM16

2 Role of Osx and miRNAs in tooth development 3/15 0.009 8.09 37.74 NOTCHS3; ALPL; BMP7

3 Hedgehog Signaling Pathway Netpath 3/16 0.011 7.47 33.45 DHH; ARNTL; GLI2

4 miRNA targets in ECM and membrane receptors 3/22 0.027 511 18.39 COL5A1; COL4A1; COL5A2

5 PKC-gamma calcium signaling pathway in ataxia 3/22 0.027 5.11 18.39 PLCB4; TRPC3; ATP2B2

6 MET in type 1 papillary renal cell carcinoma 6/59 0.008 3.67 17.53 ALK; MAP2K2; PTPN11; ETS1; CRKL; PAK4

7 Development of ureteric collection system 5/47 0.013 3.86 16.72 BMP4; FRAS1; GFRA1; CELSR1; GLI2

8 Somatic sex determination 2114 0.065 5.39 14.73 NR5A1; DHH

9 Differentiation of white and brown adipocyte 3/25 0.038 4.41 14.40 BMP4; PRDM16; BMP7

10 Nuclear receptors 4/38 0.027 3.81 13.80 NR5A1; RXRA; NR1H2; PGR

# Term Overlap P-value Odds Ratio Combined Score Genes associated to hypermethylated DMRs in CSCs
1 The alternative pathway of fetal androgen synthesis 311 0.008 9.27 45.11 POR; HSD17B3; HSD17B6

2 Globo Sphingolipid Metabolism 4121 0.008 5.82 28.05 STBGALNAC1; ST6GAL1; GCNT1; ABO

3 Development and heterogeneity of the ILC family 5/32 0.007 4.59 22.45 IL33; BCL11B; TBX21; ID2; RORA

4 Cell Differentiation - Index expanded 3/19 0.036 4.63 15.41 MYOD1; ID2; STAT3

5 Vitamin D-sensitive calcium signaling in depression 5/41 0.021 3.44 13.30 GGTLC1; KCNQ2; ITPR1; ATP2B3; SLC8A1

6 Splicing factor NOVA regulated synaptic proteins 5/42 0.023 3.34 12.62 NTNG1; CHL1; KCNQ2; PRKCZ; NEO1

7  Cell Differentiation - Index 2113 0.089 4.49 10.85 MYOD1; STAT3

8 Development of pulmonary dendritic cells and macrophage subse ~ 2/13 0.089 4.49 10.85 ID2; STAT3

9 Pathways Regulating Hippo Signaling 9/98 0.014 251 10.66 PDGFRB; NTRK2; PRKCH; GNAL; FLT1; FLT3; GNAS; PRKCZ; CDH7
10 TCA Cycle Nutrient Utilization and Invasiveness of Ovarian Cance 1/5 0.180 6.17 10.56 STAT3

TABLE 16 PATHWAYS ENRICHMENT IN GENES ASSOCIATED WITH IDENTIFIED DMRS. The top 10 enriched
pathways (sorted by combined score, computed based on p-value and odds ratio) in genes within the 2 kb range
of identified DMRs, either hypomethylated ones (top table) or hypermethylated ones (bottom table) (WikiPath-
ways Human 2021 database).

previously used 3 pairwise comparisons, a fourth one is also taken into account: non-CSC vs iCSC,
corresponding directly to methylation changes occurring during dedifferentiation. Hence, DMRs that
present a methylation profile close to the hypothetical, one represented in Figure 45 (for hypomethy-
lated DMRs, reverse profile for hypermethylated ones), are selected thanks to these filters: differential
methylation between non-CSC and CSC > 25%, differential methylation between non-CSC and iCSC
> 25%, a differential between CSC and iCSC < 10% and a differential between non-CSC and inon-
CSC < 10%. Compared to the previously identified DMRs that were sorted only based on differential
methylation greater or lower than 25% (non-CSC vs CSC > 25% while differences between the two
CSC or two non-CSC states < 25%), selected DMRs with these additional parameters have a methy-
lation profile that fits the hypothetical one, meaning they have greater probabilities to be involved in
phenotypic switches from non-CSCs to iCSCs.

In addition, to add robustness to differential methylation values, only the DMRs containing at
least 3 CpG sites covered in all samples are kept to select DMRs for validation (Figure 42, panel 1).
Indeed, as previously seen in the first analysis, filtering DMRs based on a minimal number of CpG
sites should help to find significant methylation differences in afterward region-specific validation, as

well as significant correlation with associated gene expression.

From the 2,596 identified DMRs, 35 DMRs are selected based on their dedifferentiation-
associated methylation profile and with a sufficient number of CpG sites covered in all samples.
The list of these 35 selected DMRs, associated with 23 unique genes, along with their methylation
levels and differences are displayed in Table 17. Among them, one CGl differentially methylated is

selected, located at 1,370 bp upstream of the FSCN1 gene, and one DMR surrounding a TSS is
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FIGURE 45 FILTERING DMRS BASED ON THEIR METHYLATION PROFILES INDICATING POTENTIAL INVOLVE-
MENT IN DEDIFFERENTIATION. Hypothetical methylation profile of a region that could be involved in radio-induced
dedifferentiation through the DNA methylation regulation of its associated gene. This DMR is hypomethylated
in CSCs compared to non-CSCs as well as in iCSCs compared to non-CSCs, and no differences are found
between the two CSC states and the two non-CSC states. The reverse pattern can be applied to DMRs hyper-
methylated in CSCs compared to non-CSCs. To select DMRs matching this methylation profile pattern, they are
filtered based on the differential methylation between subpopulations (absolute values), differences need to be
greater than 25%, and similarities are defined by less than 10% methylation difference.

selected, associated with the CD9 gene. CpG methylation levels and methylation profiles of 5 of
these DMRs, associated with fascin actin-bundling protein 1 (FSCN1), cholinergic receptor nicotinic
alpha 6 subunit (CHRNAG), cadherin 7 (CDH7), CD9, and protein kinase CAMP-dependent type |
regulatory subunit beta (PRKAR1B) genes are available in Figure 46.

In conclusion, a list of 35 DMRs, including 5 particularly interesting ones, have been
identified and need to be further validated. The use of a region-specific DNA methylation
quantification technique is required to confirm methylation differences across the four stud-
ied subpopulations. Additionally, the correlation of these methylation differences with the
expression changes of associated genes should also be assessed.

As the logical continuation of this methylation study was to validate methylation differences of
DMRs, the bisulfite sequencing PCR (BSP) approach with the direct sequencing of PCR products
(direct-BSP) was chosen to quantify region-specific methylation levels. After a first test, the lack of a
practical tool to analyze direct-BSP data led to the development of a new analysis tool, described in

the next chapter.
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# DMR ID Chr. Start End Length | CpG Cs'ger::t};y:éion non-;:nse:nmztg)gation iCShfe:\:t;y;i:ion inon-ﬁz;}nm:tgg)lation C!I,oesnzst Dis;z::lcee to
1 T1000_0078 chr1 237235001 237236000 1000 3 11.62 £5.40 4241 £10.73 11.56 +11.38 39.92 +5.22 RYR2 0

2 T1000_0179 chr3 71478001 71479000 1000 4 38.95 +0.05 67.92 +2.22 42.00 £0.09 7272 +7.04 FOXP1 0

3 T1000_0260 chr5 3001001 3002000 1000 3 63.41 +2.64 31.24 +2.19 57.94 +3.22 33.83 +0.25 RP11-3507.1 33258
4 T1000_0293 chr5 149978001 | 149979000 1000 4 31.94 +593 56.73 +6.12 19.70 +7.39 57.23 +6.01 SYNPO 1641
5 T1000_0322 chré 29831001 29832000 1000 3 55.59 +0.72 28.34 +6.41 55.71 +2.90 39.28 +7.61 MICF 10732
6 T1000_0360 chré 162294001 | 162295000 1000 3 2364 +5.14 67.80 +4.04 29.29 +3.07 61.57 +£6.73 PARK2 0

7 T1000_0368 chré 169249001 | 169250000 1000 3 19.69 +4.00 55.59 +4.19 22.37 +0.59 60.71 +13.13 RP3-495K2.3 112704
8 T1000_0372 chr7 579001 580000 1000 8 23.03 +10.72 57.16 +5.73 25.87 +2.89 53.08 +1.24 PRKAR1B 8833
9 T1000_0373 chr7 996001 997000 1000 4 28.82 +7.18 56.16 +3.04 30.58 +6.09 55.11 +2.88 COX19 0
10 | T1000_0638 chr11 118133001 | 118134000 1000 3 82.41 +3.12 49.62 +11.07 80.71 +2.95 59.19 +27.14 MPZL2 0
11| T1000_0777 chr15 77889001 77890000 1000 3] 78.82 +8.61 4517 +4.21 82.95 +11.25 42.48 +18.49 RP11-307C19.2 0
12 T1000_0830 chr16 81481001 81482000 1000 3 2715 +7.15 55.54 +4.04 2459 +4.64 49.05 +£13.12 CMIP 0
13 T1000_0912 chr18 76725001 76726000 1000 7 49.11 £4.30 2295 £0.35 50.22 +0.49 25.37 £1.59 RP11-849119.1 10554
14 T1000_0970 chr20 19908001 19909000 1000 3 48.93 +£6.35 83.26 +10.06 41.84 +14.17 88.78 +11.83 RIN2 0
15 T1000_0986 chr20 38764001 38765000 1000 7 48.03 +£8.43 21.38 +3.63 47.68 +2.96 28.06 *13.51 RP1-191L6.2 9002
16 T1000_1078 chrX 56830001 56831000 1000 3 29.80 +0.49 61.74 +8.43 26.09 £7.15 65.60 *15.52 RP11-622K12.1 0
17 T200_0322 chrs 3001201 3001400 200 3 63.41 +2.64 31.24 £2.19 57.94 +£3.22 33.83 +0.25 RP11-3507.1 33458
18 T200_0431 chré 169249001 169249200 200 3 19.69 +4.00 55.59 +4.19 22.37 £0.59 60.71 +£13.13 RP3-495K2.3 113504
19 T200_0439 chr7 579201 579400 200 7 29.72 +8.97 66.15 +5.99 35.35 +8.31 64.83 +3.76 PRKAR1B 9433
20 T200_0448 chr7 5647801 5648000 200 3 33.71 +15.53 69.11 +3.07 40.54 +3.98 72.92 +15.99 FSCN1 1514
21 T200_0612 chr9 136529401 | 136529600 200 3 32.92 +8.08 55.68 +0.48 30.68 +0.39 4410 +14.68 SARDH 0
22 T200_0794 chr12 133613401 133613600 200 3 32.19 +13.03 74.47 +9.69 32.54 +423 69.11 +10.98 RP11-38618.6 0
23 T200_0871 chr15 77889801 77890000 200 3 78.82 +8.61 4517 +4.21 82.95 +11.25 4248 +18.49 RP11-307C19.2 0
24 T200_0937 chr16 81481001 81481200 200 3 2715 +7.15 55.54 +4.04 25.39 +3.50 49.05 +13.12 CMIP 0
25 T200_1030 chr19 1094001 1094200 200 & 46.69 +6.49 78.97 +7.24 49.62 +9.16 73.03 +2.51 POLR2E 0
26 T200_1089 chr20 19908801 19909000 200 3 48.93 +6.35 81.60 +7.71 41.84 +14.17 84.87 +16.68 RIN2 0
27 T200_1099 chr20 38764401 38764600 200 7 48.03 +8.43 21.38 +3.63 47.68 +2.96 28.06 +13.51 RP1-191L6.2 9402
28 T200_1205 chrX 56830001 56830200 200 3 29.80 +0.49 61.74 +8.43 26.09 £7.15 65.60 *15.52 RP11-622K12.1 0
29 STSS_0055 chr12 6308381 6309381 1001 5 6.79 +3.25 46.68 +£6.75 11.96 +£7.60 41.42 +£34.77 CD9 0
30 CGIR_0005 chr7 5647657 5647984 328 8 27.42 +5.09 61.42 +5.63 3423 +2.28 65.66 *10.70 FSCN1 1370
31 SEGR_0019 chr3 71478053 71478253 201 4 38.45 +0.75 67.49 +0.86 37.10 £0.57 71.68 +5.56 FOXP1 0
32 SEGR_0020 chr3 71478053 71478274 222 4 38.95 +0.05 67.92 +2.22 42.00 £0.09 7272 +7.04 FOXP1 0
33 SEGR_0021 chr3 71478171 71478274 104 3 38.95 +0.05 71.32 +0.44 43.56 +2.29 76.58 +1.59 FOXP1 0
34 SEGR_0040 chr8 42623718 42641148 17431 5 48.23 +£3.28 17.00 +2.13 45.94 £3.73 18.48 +£5.35 CHRNAG6 0
35 | SEGR_0087 chr18 63418129 63418179 51 5 89.22 +4.96 55.95 +7.55 80.41 +4.40 63.21 £595 CDH7 0

TABLE 17 Panel 1. Caption in following pages.
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# DMR ID Chr. Start End Length | CpG Diflfl.ol\r:l-e(::.c ve cf:-:value Di:f.orlcl-ecti.c ve iC:f’ e Diff. ;Setch\'ls iCSCq-value I;T;-CMSe?hvs inon::f:ue c;":n‘:St Dis;ael:lcee ©
1 T1000_0078 chr1 237235001 | 237236000 1000 3 -26.41 3.63E-03 -25.54 4.79E-03 0.87 5.70E-01 1.48 7.20E-01 RYR2 0

2 T1000_0179 chr3 71478001 71479000 1000 4 -28.49 1.20E-04 -25.41 1.28E-05 3.09 4.18E-01 4.93 4.94E-01 FOXP1 0

3 T1000_0260 chrb 3001001 3002000 1000 3 32.04 4.55E-05 26.80 5.01E-05 -5.24 3.26E-01 2.98 6.09E-01 RP11-3507.1 33258
4 T1000_0293 chrb 149978001 | 149979000 1000 4 -25.25 3.24E-04 -34.22 3.29E-07 -8.97 1.48E-01 1.24 7.20E-01 SYNPO 1641
5 T1000_0322 chré 29831001 29832000 1000 3 25.58 4.30E-03 25.39 2.23E-04 -0.19 6.02E-01 8.73 3.51E-01 MICF 10732
6 T1000_0360 chré 162294001 | 162295000 1000 3 -43.61 9.52E-07 -37.96 1.82E-08 5.65 3.55E-01 -4.46 5.35E-01 PARK2 0

7 T1000_0368 chré 169249001 | 169250000 1000 3 -35.51 2.28E-07 -33.04 2.47E-06 247 4.64E-01 4.08 6.40E-01 RP3-495K2.3 112704
8 T1000_0372 chr7 579001 580000 1000 8 -31.23 6.15E-04 -30.40 7.29E-09 0.82 5.67E-01 -3.54 5.31E-01 PRKAR1B 8833
9 T1000_0373 chr7 996001 997000 1000 4 -26.19 5.26E-04 -25.85 3.54E-05 0.34 5.94E-01 -1.47 6.99E-01 COX19 0
10 | T1000_0638 chr11 118133001 | 118134000 1000 3 33.53 6.22E-04 31.96 5.81E-05 -1.57 5.06E-01 8.97 5.59E-01 MPZL2 0
11 | T1000_0777 chr15 77889001 77890000 1000 3 35.86 1.61E-03 40.76 2.05E-05 4.90 3.93E-01 -2.89 7.06E-01 RP11-307C19.2 0
12 | T1000_0830 chr16 81481001 81482000 1000 3 -27.89 1.68E-03 -32.29 2.80E-06 -4.41 3.63E-01 -7.80 4.63E-01 CMIP 0
13 | T1000_0912 chr18 76725001 76726000 1000 7 26.22 2.43E-05 27.01 4.82E-07 0.79 5.58E-01 2.35 6.08E-01 RP11-849119.1 10554
14 | T1000_0970 chr20 19908001 19909000 1000 3 -35.41 2.06E-04 -42.11 1.26E-05 -6.70 3.53E-01 0.73 7.55E-01 RIN2 0
15 | T1000_0986 chr20 38764001 38765000 1000 7 26.51 5.88E-04 25.22 1.23E-06 -1.29 5.36E-01 5.84 5.10E-01 RP1-191L6.2 9002
16 | T1000_1078 chrxX 56830001 56831000 1000 3 -29.74 1.21E-04 -34.53 1.01E-06 -4.79 3.08E-01 3.83 6.55E-01 RP11-622K12.1 0
17 T200_0322 chrb 3001201 3001400 200 3 32.04 6.69E-05 26.80 5.01E-05 -5.24 3.26E-01 2.98 6.09E-01 RP11-3507.1 33458
18 T200_0431 chré 169249001 | 169249200 200 3 -35.51 5.22E-07 -33.04 2.47E-06 247 4.64E-01 4.08 6.40E-01 RP3-495K2.3 113504
19 T200_0439 chr7 579201 579400 200 7 -33.44 5.32E-05 -29.31 1.64E-05 4.13 3.99E-01 -1.03 7.20E-01 PRKAR1B 9433
20 T200_0448 chr7 5647801 5648000 200 3 -33.85 4.55E-03 -28.12 2.32E-06 5.73 3.65E-01 3.64 6.46E-01 FSCN1 1514
21 T200_0612 chr9 136529401 | 136529600 200 3 -25.77 6.31E-03 -25.04 5.53E-05 0.74 5.71E-01 -9.34 4.14E-01 SARDH 0
22 T200_0794 chr12 133613401 | 133613600 200 3 -35.48 5.77E-03 -39.32 5.38E-08 -3.84 4.33E-01 -2.71 6.77E-01 RP11-38618.6 0
23 T200_0871 chr15 77889801 77890000 200 3 35.86 2.82E-03 40.76 2.05E-05 4.90 3.93E-01 -2.89 7.06E-01 RP11-307C19.2 0
24 T200_0937 chr16 81481001 81481200 200 3 -27.89 2.78E-03 -30.94 1.03E-05 -3.05 4.40E-01 -7.80 4.63E-01 CMIP 0
25 T200_1030 chr19 1094001 1094200 200 3 -30.30 6.46E-03 -28.80 1.60E-03 1.50 5.52E-01 -4.41 5.57E-01 POLR2E 0
26 T200_1089 chr20 19908801 19909000 200 3 -32.52 7.87E-04 -39.22 2.56E-05 -6.70 3.53E-01 -0.61 7.62E-01 RIN2 0
27 T200_1099 chr20 38764401 38764600 200 7 26.51 1.15E-03 25.22 1.23E-06 -1.29 5.36E-01 5.84 5.10E-01 RP1-191L6.2 9402
28 T200_1205 chrX 56830001 56830200 200 3 -29.74 2.39E-04 -34.53 1.01E-06 -4.79 3.08E-01 3.83 6.55E-01 RP11-622K12.1 0
29 | STSS_0055 chr12 6308381 6309381 1001 5 -40.10 4.91E-11 -34.48 8.13E-07 5.62 2.31E-01 -5.31 6.74E-01 CD9 0
30 CGIR_0005 chr7 5647657 5647984 328 8 -34.23 1.02E-09 -27.18 8.03E-07 7.05 1.56E-01 4.14 5.77E-01 FSCN1 1370
31 | SEGR_0019 chr3 71478053 71478253 201 4 -29.13 2.52E-04 -30.00 3.45E-07 -0.88 5.59E-01 3.87 5.51E-01 FOXP1 0
32 | SEGR_0020 chr3 71478053 71478274 222 4 -28.49 3.35E-04 -25.41 1.28E-05 3.09 4.18E-01 4.93 4.94E-01 FOXP1 0
33 [ SEGR_0021 chr3 71478171 71478274 104 3 -32.22 1.77E-05 -27.23 4.23E-06 4.99 3.10E-01 5.43 4.24E-01 FOXP1 0
34 | SEGR_0040 chr8 42623718 42641148 17431 5 30.19 6.96E-09 28.19 7.57E-10 -2.00 4.44E-01 0.75 7.30E-01 CHRNA6 0
35 | SEGR_0087 chr18 63418129 63418179 51 5 32.21 2.55E-06 25.43 5.83E-05 -6.78 1.71E-01 9.54 2.84E-01 CDH7 0

TABLE 17 Panel 2. Caption next page.
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TABLE 17 LIST OF FILTERED DIFFERENTIALLY METHYLATED REGIONS. The 35 differentially methylated re-
gions (DMRs) are listed with the following related data: identifier (DMR ID), coordinates (chromosome, start and
end positions), length (bp), number of CpG covered, average methylation percentage (%) + standard deviation
in CSC, non-CSC, iCSC and inon-CSC populations (panel 1), differential methylation with g-value for non-CSC
vs CSC, non-CSC vs iCSC, CSC vs iCSC, and non-CSC vs inon-CSC pairwise comparisons (%) (panel 2),
closest gene and distance to the closest gene (bp). A differential methylation > 0 corresponds to hypomethy-
lation (red) and a differential methylation < 0 corresponds to hypermethylation (green).  Chr.= chromosome;
Diff. Meth.= differential methylation; SD= standard deviation.

The differential methylation analysis of 1,000 bp tiles, 200 bp tiles, regions surrounding
transcription start sites (TSSs), CpG island (CGl) regions, and methylation segment regions
highlighted 2,596 differentially methylated regions (DMRs) that could undergo methylation
changes related to the dedifferentiation of non-CSCs into iCSCs.

By cross-referencing genes within the 2 kb range of these 2,596 DMRs with genes linked
to “stem cell population maintenance” gene ontology, the FANCC, NR2E1, SFRP1, STAG2,
STAT3, and WNT7A genes are found associated with at least one hypomethylated DMR
(in CSCs compared to non-CSCs) and the BMP7, MED12, PRDM16, STAG2, WNT9B,
and ZHX2 genes are found associated with at least one hypermethylated DMR (in CSCs
compared to non-CSCs).

By filtering the 2,596 DMRs based on methylation profiles across subpopulations and mini-
mal number of CpG sites covered in all samples, 35 DMRs associated to 23 unique genes,
including the FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B genes, are identified as re-
gions that are likely to undergo methylation changes during dedifferentiation and could
participates in the phenotypic switch regulation.
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FIGURE 46 METHYLATION PROFILES OF DMRs ASSOCIATED WITH FSCN1, CHRNA6, CDH7, CD9, AND PRKAR1B GENES.  A. Methylation plots of DMRs close
to FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B genes. From top to bottom: chromosome localization; genomic axis; genome data track displaying transcripts along the
genome; CpG islands track displaying CGls along the genome; CG track displaying positions of CpG sites; CSC 1, CSC 2, non-CSC 1, non-CSC 2, iCSC 1 and iCSC 2
tracks displaying CpG methylation percentages histograms; DMR track displaying positions of identified DMRs, hypomethylated ones in CSCs compared to non-CSCs in
red, and hypermethylated ones in CSCs compared to non-CSCs in green.  B. Methylation profiles plots of DMRs close to FSCN1, CHRNA6, CDH7, CD9, and PRKAR1B
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Abstract

Motivation: Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic
development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and
compare CpG methylation levels of a specific region of interest, the most accessible technique is the
Bisulfite Sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all
approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing
of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and
prone to error task.

Results: Here, we implement a new R-based tool, called ABSP for Analysis of Bisulfite Sequencing PCR,
providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing
trace files (.ab7) as input to compute and compare CpG methylation percentages. It is fully automated and
includes a user-friendly interface as a built-in R shiny app, quality control steps, and generates publication-
ready graphics.

Availability and implementation: The ABSP tool and associated data are available on GitHub at

OXFORD

https://github.com/ABSP-methylation-tool/ABSP.
Contact: chann.lagadec@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aside from transcription factor regulations, gene expression can also
be activated or repressed by epigenetic modifications directly on
nucleotides (DNA methylation) or histones (methylation, acetylation...).
In vertebrates, epigenetic regulation is essential to regulate genomic
imprinting, X chromosome inactivation, development regulation, cell
differentiation, and genome integrity preservation. DNA methylation can
affect cytosine and adenine but mostly occurs on a cytosine followed

by a guanine (CpG site). The effect of these modifications on gene
transcription has been observed when several grouped CpG within a DNA
region, so-called CpG islands, are modified altogether (Greenberg and
Bourc’his, 2019; Jones, 2012). Specific enzymes, DNA methyltransferases
(DNMT1, DNMT3A, and DNMT3B), transfer a methyl group (CHz) from
S-Adenosyl methionine (SAM) on the C5 position of the pyrimidine ring,
converting cytosine (C) into 5-methylcytosine (SmC).

Among other methods, the Bisulfite Sequencing PCR (BSP) is the
most accessible and conventional method to evaluate methylation levels
at single CpG resolution in a mix of DNA molecules (Clark ef al., 1994;

© The Author 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Frommer et al., 1992). Even if broad methods have been developed to
study DNA methylation, the BSP technique has the benefit of a great
sensitivity at a very low cost, compared to other methods using Next
Generation Sequencing (NGS) technologies, more sensitive but costly. The
BSP assay is thereby the most suited one to quantify DNA methylation
of a specific region when large-scale NGS methods are not necessary,
especially to get rapid preliminary results, or to validate methylation data
from screening experiments such as Reduced Representation Bisulfite
Sequencing (RRBS) at specific loci (Chen et al., 2022; Dehdari et al.,
2022; Pajares et al., 2021).

DNA methylation estimation methods using bisulfite conversion are
based on the selective deamination of cytosine residues by sodium bisulfite
treatment, transforming cytosines into uracils whereas 5-methylcytosines
are not affected and remain cytosines (Frommer ez al., 1992; Hayatsu et al.,
1970). Subsequently, the Polymerase Chain Reaction (PCR) regenerates
thymines instead of unmethylated cytosines, as both are complementary
to adenines, while 5-methylcytosines remain cytosines. Therefore, the
original methylated cytosines are distinguishable from the unmethylated
ones through Sanger sequencing.

Two approaches to BSP have been described in the literature: direct-
BSP and cloning-BSP (Chatterjee et al., 2017). The direct-BSP approach
consists in sequencing PCR products directly after PCR amplification of
bisulfite-converted DNA. As a mix of DNA molecules with different CpG
methylation statuses is being sequenced simultaneously, the quantification
of CpG methylation can be assessed in the same way as the quantification
of a Single Nucleotide Polymorphism (SNP) (Qiu et al., 2003). Thereby,
from the chromatogram trace file, the peak heights ratio of cytosine
and thymine signals are used to determine the proportion of methylated
cytosines compared to unmethylated ones at CpG sites (Fig. 1) (Jiang et al.,
2010; Lewin et al., 2004; Parrish et al., 2012).

In the cloning-BSP approach, PCR products are cloned in vectors and
used to transform bacteria. Amplified vectors from individual colonies are
extracted for sequencing. Hence, the sequencing of a unique clone, reveals
the methylation status of each CpG site of a single PCR product (Li and
Tollefsbol, 2011). In the literature, about 10 clones are usually sequenced
to get an estimation of the CpG methylation levels of a DNA population
with 10% to 20% accuracy (Chen et al., 2022; Li and Tollefsbol, 2011).

In terms of analysis, tools have been developed to analyze cloning-
BSP results, exclusively relying on the base-called sequence from
the sequencing. For instance, MethTools 2.0, BiQ Analyzer, QUMA
(Quantification tool for Methylation Analysis), and BISMA (Bisulfite
Sequencing DNA Methylation Analysis) can be cited (Bock et al., 2005;
Grunau et al., 2000; Kumaki et al., 2008; Rohde et al., 2010). These tools
have been designed to process cloning-BSP data and cannot analyze direct-
BSP results as they were not conceived to use the four-dye signal intensity
values from chromatograms as an input to interpret the results. Indeed,
they determine the methylation statuses of CpG sites of each clone and
then calculate the ratio between methylated and unmethylated clones to
estimate CpG methylation proportions in the biological sample.

The cloning-BSP approach is mostly used since the direct-BSP
one is generally considered less quantitative, due to differences in
labeled terminator nucleotides (ddNTPs) incorporation efficiencies and
differences in signal relative intensities between the four dyes (Chhibber
and Schroeder, 2008; Mikeska et al., 2010). Yet, studies claim that 10
clones are not sufficient to obtain a statistically significant estimation
of DNA methylation levels and prone to the direct sequencing of PCR
products (Miihlisch et al., 2007; Paul and Clark, 1996; Voss et al.,
1998). Besides, direct-BSP is efficient and avoids the multiplication
of subclones sequencing costs; it is therefore particularly useful for
methylation quantification studies with many samples such as cohorts, or
for validation of potential targets identified through screening experiments
(Moschny et al., 2020; Schiele et al., 2021).

In the context of The Human Epigenome Project by the Human
Epigenome Consortium (2003), the direct-BSP approach was selected to
map the CpG methylation levels along the genome for high throughput and
cost-effectiveness reasons. Consequently, in 2004, Lewin et al. developed
an algorithm called ESME (Epigenetic Sequencing Methylation analysis
software), to estimate methylation levels from the four-dye chromatogram
trace files. However, the software is not up-to-date with the current
BSP technology and suffers from accessibility issues as its installation
and operation require qualified expertise in a Linux operating system
(Akika et al., 2017). So, nowadays, the most convenient way to analyze
direct-BSP data still consists in manually retrieving the peak heights to
compute methylation percentages of CpG sites, which is time-consuming
(dependant on the number of samples and CpG sites per sample), repetitive,
prone to errors, and does not include valuable quality control over
sequencing data (Jiang et al., 2010; Martisova et al., 2021; Parrish et al.,
2012).

Additionally, a step further is required for better visualization and
comparison of methylation differences. Once methylation levels are
obtained, some graphical visualization of methylation data can be
generated, by using a web-based tool called Methylation plotter for
example, as well as comparative statistics (Mallona et al., 2014).

Existing tools are not sufficient to provide a full analytic process of
BSP results, especially for direct-BSP experiments, in the context of
preliminary data or large studies for which the cloning is not appropriate.
As it is relevant to sequence the PCR products to estimate methylation
percentages before committing to the cloning step, the choice was to apply
the same method for both direct-BSP and cloning-BSP results to ensure
continuity in the analytic process. By using our new tool ABSP, both
approaches of BSP can be analyzed to generate methylation visualization
plots and comparative statistics, in an automated and controlled manner,
from the Applied Biosystems, Inc. Format (ABIF) sequencing files (.ab1).

2 Approach

For direct-BSP, ratios of the peak heights of the two co-existing C
and T signals at CpG positions are used to evaluate the proportion of
methylated cytosines (Fig. 1) (Jiang et al., 2010; Lewin et al., 2004;
Parrish et al., 2012). The same method can be applied to analyze the
subclones sequencings: as the ratio of signal peak heights can either be
around 0% or 100%, its calculation reveals the CpG methylation status of
individual DNA molecules. Therefore, PCR replicates or clone analysis
can give statistical meanings of the degree of methylation among the
samples (Fig. 1).

To fully analyze the BSP experiments, 2 main steps are required
(Fig. 2). First, the CpG methylation levels of each sample have to be
estimated using replicates or clones. In our ABSP-developed process, this
step is called individual analysis. Next, the grouped analysis can be run
to compare methylation levels between groups and to find methylation
differences.

As presented in Figure 2, each sequencing run of a unique PCR product
or a unique clone vector is defined by a combination of information used to
track, group, and compare the sample methylation data: (1) the sequence
amplified by PCR (unique primer pair used for the BSP experiment), (2)
the collection, which describes a separation of samples above groups, it
means that samples from different collections cannot be compared (e.g.
cell lines or organs), (3) the group, which is the experimental condition to
compare (e.g. treatment a or b), and (4) the replicate number for direct-
BSP (repetition identifier) or the clone number for cloning-BSP (clone
identifier).

Additionally, sequencing reads from both directions can be provided
for each unique DNA sample, using a forward and reverse primer, to
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Fig. 1. Analysis strategy differences between the two Bisulfite Sequencing PCR
approaches, direct-BSP and cloning-BSP. As the direct-BSP method consists in sequencing
the mix of PCR products, the methylation calculation based on chromatogram C/T peak
heights gives directly an estimation of the CpG methylation level, that can be replicated for
statistical significance determination. In the cloning-BSP method, as the CpG methylation
status in each clone is revealed by the chromatogram peak heights as well, the sequencing
of several clones gives an estimation of the CpG methylation proportion.

maximize the sequence coverage and increase data robustness as both
sequencing reads can overlap.

3 Methods
3.1 General structure

Each one of the two main parts of ABSP, the individual and grouped
analyses, corresponds to an R markdown script (using the markdown R
package), thereby generating two different types of analysis reports, one
specific for individual sample results and the other for grouped samples
analysis results. These two analyses can be launched through a shiny app,
in which the individual analysis tab and the grouped analysis tab serve
to enter the input parameters, required for report rendering (using the
knitr R package). Once the inputs are filled and the analysis is launched,
the corresponding script processes the analysis, exports several output
files, and produces the analysis report as an HTML file (.itml extension),
summarizing all the results and serving as a record of them. An additional
tab called multiple analyses serves to launch several analyses, individual
ones, grouped ones, or both, in one click, using filled tables (.xlsx or .csv
files) as input entries.

3.2 Individual analysis

The individual analysis aims to compute the CpG methylation percentages
from the chromatogram trace files of each individual sample at each CpG
site, using the signal peak height values.

Replicates Repli Repli
or Clones or Clones or Clones

Group 2 Group 1 Group 2

i
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files files files files

Individual Individual Individual
Analysis Analysis Analysis

Methylation M on l Methylation l Methylation
data file data file data file data file

[ | | |

Individual
Analysis

-

'

Grouped Analysis

Visualization of methylation

Genomic plots

Comparative statistics between groups
Boxplots Methylation profile plots

OUTPUT

Lollipop-style plots Dendrograms

Descriptive statistics tables T tests tables
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Fig. 2. General workflow of ABSP. The analysis is divided into two main steps: the
individual analysis and grouped analysis. The first one serves to control the sequencing
quality and compute methylation levels for each individual sample, whereas the second
one gathers all sample methylation results to generate visualization plots and process
comparative statistics between groups.

Input required

Three inputs are required to proceed through the analysis: (1) the sample
combination of information, to affiliate the methylation results to the
correct sample (Fig. 2), (2) the genomic reference sequence, its genomic
coordinates, and the strand amplified during PCR (as the bisulfite converts
cytosines into uracils, the two DNA strands are no longer complementary,
only one can be amplified with a unique set of primers), which have to be
provided in a FASTA file (.fasta extension), and (3) the chromatogram trace
files in ABIF format (.abl extension) of the sequencing reads in forward
and reverse directions. In Figure 3, the sequencing results are numbered
#1 and #2, as the direction must not be specified and will be automatically
determined during the analysis.

Processing the reference DNA

First, the CpG positions are retrieved from the reference DNA, and their
coordinates are found by correlating positions and reference coordinates
(Fig. 3, Find CpG coordinates frame). Matches for CG dinucleotides in
both plus and minus strands give the start and end positions of each CpG.
CpG coordinates are calculated using the start and end coordinates of the
reference sequence and CpG positions on the reference sequence (e.g. CpG
site at positions 100-101 on plus strand: cytosine coordinate = seq_start +
position - 1 =6,000 + 100 - 1 = 6,099).

In Figure 3, the second line of process panels represents BSP
experiment steps reproduced in silico during the analysis. The theoretical
bisulfite conversion of the reference DNA is realized using the amplified
strand sequence (Fig. 3, Bisulfite Conversion frame). As the PCR
regenerates the opposite strand of the DNA template, both sequences
are retrieved (Fig. 3, PCR Amplification frame): (1) sequence from the
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Fig. 3. Detailed workflow of the individual analysis step. To illustrate the process, an arbitrary reference sequence of 1000 bp was chosen, with genomic coordinates between 6,000 and

6,999 and a CpG site at positions 100-101 on the plus strand. Other numbers, such as aligned sequences borders, were also arbitrarily chosen for example purposes.

amplified strand, or sense strand as it will serve as the template for the
sequencing in the forward direction (upper strand in Fig. 3), and (2) the
sequence from the opposite strand, or antisense strand as it will serve as
the template for the sequencing in the reverse direction (lower strand in
Fig. 3) (Fig. 3, Sequencing frame).

Trimming of sequencing results

As the extremities of the sequencing reads are prone to off-scale signals and
errors, these inaccurate parts must be removed. To determine the correct
positions where the sequencing read should be trimmed, 2 parameters are
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used: the base calling error probability and the signal peak height (Fig. 3,
Sequencing trimming frame).

The first trimming method is based on the base calling Phred quality
scores, to remove parts susceptible to having base calling errors. This step
is performed by the sangeranalyseR R package, using the modified Mott’s
trimming algorithm (M1 method) with a base calling error probability (P)
default cutoff of 0.001%, equivalent to a Phred quality score (@) of 30
(Q = —10 x log((P)) (Chao et al., 2021).

Based on the peak height values from the chromatogram, the second
way of trimming aims to remove extremities where signals are mixed. For
each base, the ratio of the primary peak height signal over the total of all
signals peak height is calculated using the following formula: if peak >
{peak 4, peak, peak, }, primary peak ratio = peak, / (peak 5 +peaky +
peak¢; + peak). A base position is considered as "non-mixed" if the
primary peak ratio is above the threshold, set by default to 0.75. Then,
all the possible trimmed sequences are obtained by selecting the longest
sequence for which the boundaries are of n (n from 3 to 15) consecutive
non-mixed positions. Among those trimmed sequences, the one with a
percentage of non-mixed positions above the threshold (default is 75%)
with the minimum of consecutive non-mixed positions at boundaries is
kept.

Finally, the overlap between both sequences, from the quality score
trimming and the mixed base peak trimming, gives the final trimmed
sequence used for the following steps. If one of the trimming methods
fails or if the final trimmed sequence parameters are below thresholds
(length, average Phred score, and percentage of non-mixed positions,
Fig. 3, Sequencing trimming frame), the sequencing will not be used to
compute methylation percentages.

Alig ts of trimmed
sequences

To correlate nucleotide positions on the sequencing reads with CpG
positions on the template DNA, the alignment of sequences is performed
(local pair-wise alignment). In cloning-BSP experiments, sequencing
primers are often chosen on the vector backbone. As PCR products can

be inserted in either direction, it is crucial to determine the direction of

ing reads with template DNA

4

the sequencing within the analytic process. Trimmed sequences are first
aligned with both sense and antisense sequences of the converted template
DNA. The longest alignment is considered the correct template (Fig. 3,
Alignments frame).

Knowing the positions of the first nucleotide on template DNA
(Subject, S) and sequencing read (Pattern, P), respectively SstartF/PstartF
for forward sequencing, and SstartR/FstartR for the reverse sequencing,
a direct correlation is used to find cytosine positions on the trimmed
sequencing results. So, as an example, on the forward strand, if the cytosine
is at the position 100 on the template (S), the SstartF = 30 and the PstartF
=22, cytosine position = cytosine position on template - SstartF + PstartF
=100-30+22=92.

The maximum aligned sequence corresponds to the sequence covered
by at least one of the sequencing reads, and its coordinates are
determined by the correlation of genomic coordinates and aligned positions
(alg_coord_start and alg_coord_end).

Quality control of the aligned sequencing results

To check the concordance between the template DNA and the sequencing
results, the aligned sequences are controlled through several steps: (1) gap
positions determination, (2) C positions matching for bisulfite conversion
rate calculation, (3) retrieval of peak height values for each C position
outside CpG sites, (4) bisulfite conversion rate calculation, and (5)
validation of the sequencing quality.

As the retrieval of peak height values for methylation calculation is
based on the start positions of aligned sequences, the presence of a gap,
insertion, or deletion in either the template DNA or the sequencing result,
causes a position shift that needs to be corrected for the CpG position
matching step. The most important criteria to validate the quality of a
sequencing result is the bisulfite conversion efficacy. To assess its efficacy,
the bisulfite conversion rate is computed for each cytosine position outside
CpG sites and the average rate on the sequence must be higher than the
provided threshold (default is 0.9). First, C positions have to be retrieved
based on the alignments, with the same method as explained above, by
matching the positions of aligned sequences. Then, the peak height values
of each base at these positions are used to calculate the bisulfite conversion
rates with the following formula, for the forward sequence: bisulfite
conversion rate = peak- / (peak -, + peak) and for the reverse sequence:
bisulfite conversion rate = peak 4 /(peaks + peak ,). Finally, the
alignments and quality control steps provide the aligned sequence length,
identity percentage, mismatches positions, insertion/deletion positions,
and the average bisulfite conversion rate (Fig. 4B). For a sequencing result
to be considered as correct, the length, identity percentage, and average
bisulfite conversion rate have to be higher than the defined thresholds, set
to 30 bp, 75%, and 0.9 respectively by default.

Methylation calculation

The methylation percentage of each CpG site is calculated using the peak
height values corresponding to the intensity of the dye signal, with the
following formula: methylation percentage = peak / (peak - + peak) x
100 or = peak¢, /(peak; + peak ) x 100 for the forward and reverse
sequencing results respectively (Figs. 4C and D).

Outputs

The main output result of the individual analysis is the methylation data
table, used as input for the grouped analysis afterward. To visualize the
methylation levels of the analyzed sample, a plot displaying the genomic
sequence, the CpG positions, and the methylation levels as a grey gradient
is produced (Supplementary Fig. S1). This genomic plot can serve as
a control of the coordinates, as CpG site coordinates must match the
sequence colors of CG dinucleotides.

3.3 Grouped analysis

Methylation data from individual analysis

As input, the methylation data files saved by the previous individual
analyses are automatically retrieved based on the selected folder and
sequence name. Methylation data from all samples are processed and
gathered.

For each individual clone, the methylation percentages found based on
signal peak ratios are converted into methylation statuses. By default, for
each CpG, a methylation level between 0% and 20% is considered as an
unmethylated status and a methylation level between 80% and 100% as a
methylated one. Partial methylation, between 20% and 80%, is considered
defective and is annotated as not available. For one clone, if the number of
partially methylated CpGs is important (above 20% by default) the clone is
considered as a potential mix of clones and therefore all of its methylation
data is annotated as not available.

Generation of plots to visualize methylation levels

To generate visualization plots, several plot parameters are required: (1)
the label type for CpG positions (CpG coordinates, CpG numbers, or
none), (2) the collection separation, whether or not samples from different
collections have to be displayed on the same plot, (3) the group order for
display, and (4) the sample ordering on the ordinate axis (as it is, by groups,
by methylation levels, or by clusters).
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To represent CpG methylation levels, the lollipop-style plots are largely
used in the literature. They illustrate CpG levels as circles with methylation
levels either as a black and white scale for clone methylation status or as a
grey gradient for methylation level (Figs. 4E and G). Most plots generated
by ABSP were built using the functions of the Methylation plotter tool as
areference (Mallona et al., 2014).

As for the individual analysis, methylation levels are also pictured
by genomic plots, displaying the genomic sequence, CpG positions, and
CpG methylation of samples as a grey-scale heatmap along the sequence
(Supplementary Fig. S2).

Comparative statistics

As the purpose of the BSP experiment is to compare results from different
conditions over methylation levels, several outputs are generated: tables
with the two-by-two comparisons of groups with Student’s T-test p-values,
boxplots representing the methylation means of each CpG, and boxplots
with the means of all CpG analyzed gathered with Student’s T-test p-values
as well (Figs. 4H and I, Supplementary Fig. S3), and finally methylation
profile plots displaying the methylation levels as line plots along the
sequence with Kruskal-Wallis p-values per CpG, to identify the sites with
significant differences among the groups (Fig. 4F) (Mallona et al., 2014).

4 Application

Both high-methylated and low-methylated human genomic DNA (80-
8061-HGHMS and 80-8062-HGUMS from EpigenDx) were treated with
sodium bisulfite and cleaned up. An upstream promoter region of the
CDHI gene, covering 17 CpG sites was amplified through a touchdown
PCR protocol using specific primers, 5° tailed with standard primers T3
or BGH Reverse. The 259 bp long amplicons were directly sequenced in
both directions, in triplicates to allow statistical analysis (for additional
details on the method, see the Supplementary Materials).

Sequencing results were processed and analyzed using the ABSP
workflow described for direct-BSP analysis. Essential results from the
individual analysis and grouped analysis reports are respectively displayed
in Figure 4 top and bottom panels.

The CG #8 from the high-methylated DNA #3 sample is displayed to
illustrate the analysis process and outputs (Fig. 4). After alignment with
the reference sequence and validation of both sequencing results through
quality control (Fig. 4B), the peak height values corresponding to each base
at the CG #8 cytosines positions are retrieved (Fig. 4C). The C and T peak
heights are used to compute the methylation percentage from the forward
sequencing, and the A and G peak heights from the reverse sequencing,
as displayed in Figure 4C. After combining methylation results from
both sequencing reads, the average methylation percentage and standard
deviation are computed and these data will be used in the grouped analysis
(Fig. 4D). For the CG #8 illustrated in Figure 4, the sequencing analysis
reveals methylation of 71.13% for the forward result and 82.65% for the
reverse, given an average methylation of 76.89% (Figs. 4C and D). As
CG position numbers are determined based on the reference DNA in
the individual analysis and are then reset in the grouped analysis, the
previously described CG #8 corresponds now to the CpG site #4 covered
by at least one of the sequencing.

As the grouped analysis aims to facilitate the interpretation of
methylation data from all samples, several graphics are generated. First, in
the lollipop-style plot displaying methylation of all samples, the difference
between the low-methylated and high-methylated samples is clearly visible
thanks to the grey scale (Fig. 4E). In addition, missing points, inconsistent
methylation levels between replicates or clones, and methylation patterns
can be easily found on this type of plot. In the high-methylated DNA #3
sample, it is particularly noticeable that the CpG site #4 has a slightly

lower methylation level (76.89%) compared to the 2 other high-methylated
DNA replicates (Fig. 4E, green circle). For unknown reasons, the forward
sequencing reads were not clean enough and failed to pass the trimming
and/or quality control steps for 5 out of 6 samples, explaining the missing
data points, covered neither by the forward sequencing read nor by the
beginning of the reverse sequencing read. For a robust comparison of
methylation between groups, the methylation profile plotindicates the CpG
sites for which the difference in methylation level is significant among
groups, which is the case here for all the CpG covered in the 2 groups
(Fig. 4F). Additionally, the lollipop-style plot displaying the methylation
means of groups provides less information but gives an efficient overview
of methylation differences between groups (Fig. 4G).

To complement the comparative analysis, boxplots of each CpG site
and the boxplot of means of CpG methylation, indicate the distribution of
methylation among the groups as well as the significance of methylation
differences between groups two-by-two (Figs. 4H and I). The CpG site #4
has a methylation percentage of 0.47% (&= 0.81%) in low-methylated DNA
and 81.44% (£ 3.96%) in high-methylated DNA, with a statistical p-
value of 0.00051. Also, the mean methylation rate of the sequence CpG
is 1.43% (% 1.87%) in low-methylated DNA and 95,54% (& 0.67%) in
high-methylated DNA, with a statistical p-value of 2.34¢"%, confirming
the difference of methylation of the analyzed sequences. All the data
associated with this example (inputs, reports, outputs) are provided along
with the ABSP files, available at https://github.com/ABSP-methylation-
tool/ABSP.

5 Discussion

For this work, we developed a modern and useful tool to analyze
both direct and cloning approaches of BSP. As ESME software is
the reference for such studies, we compared results obtained from
ESME to ABSP, and found several differences. First, ESME performs
a normalization of cytosines signals as it assumes that the less frequent
base signals are overscaled by the basecaller (example of ESME results
in Supplementary Fig. S4) (Lewin et al., 2004). However, ESME was
developed in the early stages of the BSP technology, and nowadays
basecallers have been improved and do not exaggerate the missing
base, its normalization step is therefore no longer required and may
introduce biases in methylation percentages calculated (Methylation
Analysis by Bisulfite Sequencing: Chemistry, Products and Protocols
from Applied Biosystems, 2007, https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/cms_039258.pdf). Hence, ABSP does not apply any
changes to the peak height values retrieved from chromatogram trace data,
as performed in other studies (Jiang et al., 2010; Parrish et al., 2012)
(comparison of ESME and ABSP results in Supplementary Tab. S1).

Also, ABSP provides several key advantages compared to ESME.
The main added values of ABSP is a built-in comparative analysis
step, including methylation data visualization, with ready-to-publish
graphics, and statistical tests, to help researchers answer the experimental
hypothesis. Moreover, by being able to process both direct-BSP and
cloning-BSP data, ABSP provides an analysis continuity, from preliminary
data by direct-BSP up to validation by cloning-BSP. In terms of
accessibility, as only R and RStudio are required, ABSP can operate
on every operating system supporting both software (Windows, Linux,
macOS). More importantly, the full automation of the analysis and the
user-friendly interface makes ABSP accessible to users without expert<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>