
HAL Id: tel-04763449
https://theses.hal.science/tel-04763449v1

Submitted on 2 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of Adapted Training Game Activities : a
Model-Driven Engineering Design and Implementation

Framework
Bérénice Lemoine

To cite this version:
Bérénice Lemoine. Generation of Adapted Training Game Activities : a Model-Driven Engineering
Design and Implementation Framework. Technology for Human Learning. Le Mans Université, 2024.
English. �NNT : 2024LEMA1013�. �tel-04763449�

https://theses.hal.science/tel-04763449v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

DE

LE MANS UNIVERSITÉ
SOUS LE SEAU DE

LA COMUE ANGERS – LE MANS

ÉCOLE DOCTORALE NO 641
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Bérénice LEMOINE
Generation of Adapted Training Game Activities: a Model-Driven
Engineering Design and Implementation Framework

Thèse présentée et soutenue à LAVAL, le 27/09/2024
Unité de recherche : Laboratoire d’Informatique de l’Université du Mans (LIUM)
Thèse No : 2024LEMA1013

Rapporteurs avant soutenance :

Sophie DUPUY-CHESSA Professeure, Université Grenoble-Alpes
Karim SEHABA Maitre de conférence et HDR, Université Lumière Lyon 2

Composition du Jury :

Président : Marianne HUCHARD Professeure, Université de Montpellier
Examinateurs : Sophie DUPUY-CHESSA Professeure, Université Grenoble-Alpes

Karim SEHABA Maitre de conférences et HDR, Université Lumière Lyon 2
Amel YESSAD Maitresse de conférences, Sorbonne Université
Marianne HUCHARD Professeure, Université de Montpellier

Dir. de thèse : Sébastien GEORGE Professeur, Le Mans Université
Encadrant : Pierre LAFORCADE Maitre de conférences, Le Mans Université

ACKNOWLEDGEMENT

Je tiens à exprimer ma profonde reconnaissance à toutes les personnes ayant contribué,
de près ou de loin, à la réalisation de mes travaux de recherche. Votre soutien, votre bonne
humeur, votre aide et votre intérêt pour ma recherche ont décuplé ma motivation et ont
créé un environnement propice à la finalisation de cette thèse.

Tout d’abord, je souhaite exprimer ma gratitude envers les personnes qui m’ont en-
couragé à entreprendre cette thèse. Parmi ces personnes, je tiens particulièrement à re-
mercier Professeur Violaine Prince. Sa gentillesse, son soutien, ses conseils et la confiance
qu’elle m’a accordée, même lorsque je doutais de moi, m’ont permis d’aller aussi loin. Je
souhaite également remercier Professeur Marianne Huchard, qui a été mon enseignante,
mon encadrante de stage, et qui est aujourd’hui l’examinatrice de mes travaux. Sa bi-
enveillance et ses conseils m’ont encouragé à poursuivre cette thèse. La confiance et les
encouragements de ma famille m’ont également guidé vers cette réalisation, mais leurs
remerciements viendront plus tard ! ⌣

J’adresse également mes remerciements à mon comité de suivi, Amel Yessad et Christo-
phe Desprès, pour leurs précieux retours tout au long de cette thèse, qui ont permis
d’améliorer et d’approfondir mes travaux. Un grand merci à l’ensemble des membres de
mon jury, plus précisément aux deux rapporteurs, Sophie Dupuy-Chessa et Karim Sehaba,
et aux deux examinatrices, Amel Yessad et Marianne Huchard.

J’ai eu la chance de bénéficier d’un encadrement sans faille tout au long de cette
thèse. Merci Sébastien pour tes conseils avisés, ta bienveillance et tes remarques toujours
constructives. Je suis certain que tous tes doctorants s’accorderaient pour dire que tu
es un excellent directeur de thèse. Pierre, je ne suis pas sûre d’avoir les mots pour ex-
primer toute ma gratitude à ton égard. Merci pour tout ! Merci de m’avoir guidée dans
l’approfondissement de la recherche et dans sa conduite. Merci de m’avoir soutenue tout
au long de cette thèse, malgré mon caractère bien trempé. Ta gentillesse, ton humour
(quelque peu particulier ⌣), et nos discussions ont été essentielles pour mieux me com-
prendre et ont grandement contribué à mon développement personnel.

Un grand merci à l’ensemble de mes collègues au CERIUM2 dont la bonne humeur a
créé une ambiance agréable tout au long de la thèse : Ibtissem, Sebastian, Hamza, Albane,

3

Vincent, Nail, Valériane, Mamoudou, Manith, Jordi, Dalal, Jean, Mohamed, Wassim,
Amine. Je n’oublie pas non plus nos stagiaires de passage, qu’ils soient informaticiens
ou biologistes : Maysa, Billy, Clément, Théo, Valentin, Martin, Alkhali, Rova, et Lucie.
Plus particulièrement, un grand merci à Ibtissem, Sebastian et Hamza. Votre présence
et nos rires durant la première année de thèse ont rendu cette expérience inoubliable.
Sebastian, mon Sebinou, on a commencé nos thèses ensemble et on les aura terminées
ensemble (à quelques jours/semaines près). Un binôme parfait ! Je retiendrai avec vous
tous nos blagues, nos chants, nos danses, nos sorties et nos déplacements. Merci d’avoir
partagé ces moments mémorables qui ont enrichi cette expérience.

Je tiens à remercier mes amis du sud : Anaïs, Sélène, Anthony, Thomas, Lisa, Marine,
Fanny. Vous m’avez toujours soutenue et encouragée. Sans nos voyages, rires, jeux, appels
vidéos, mon quotidien aurait été bien moins intéressant. Plus particulièrement, merci à
Antho, Sésé, Thomas, Fanny pour notre petit voyage à Châteauroux l’année dernière, qui
m’a permis d’être avec vous. Docteur Anaïs, un grand merci d’être là au quotidien et pour
tous les moments passés à Caen pendant ta thèse, qui ont rendu la distance plus facile à
gérer.

Enfin, ces remerciements ne sauraient être complets sans une pensée pour ma famille
et mes proches, qui sont là au quotidien pour me soutenir, m’encourager et croire en moi.
Merci à mes grand-parents, mon oncle et ma tante, mes cousins (Tristan et Tanguy), ma
maman, mon beau-père et ses enfants (Paula et Maxime). Paula, un grand merci pour
tout le temps que tu as passé avec moi, nos appels ont rendu la distance beaucoup moins
pesante. Maman, je ne te remercierais jamais assez pour ton soutien, tes encouragements,
ton amour, tes relectures de mes manuscrits et articles en français. Merci pour tout ! Je
vous aime ♥

Un grand merci à toutes les personnes dont les noms n’apparaissent pas dans ces
quelques lignes, et qui m’ont soutenu sur le plan social, émotionnel et à bien d’autres
égards.

Enfin, ce travail n’aurait pas été possible sans l’aide financière des collectivités locales
mayennaise qui m’a permis de me consacrer sereinement à ces travaux de thèse, et pour
laquelle je suis très reconnaissante.

4

TABLE OF CONTENTS

List of Figures 9

List of Tables 13

Acronyms 15

1 Introduction 17
1.1 Research Context . 17

1.1.1 Research Laboratory . 17
1.1.2 AdapTABLES Project . 18

1.2 Research Problem . 19
1.3 Thesis Structure . 22

I Research Background Towards Adaptation and Games 25

2 Adaptation in TEL 27
2.1 Definitions . 28
2.2 Characterisation of Adaptation . 30
2.3 Existing Work . 32

2.3.1 Adaptation in TEL . 32
2.3.2 Adaptation in Educational Games 33
2.3.3 Approaches Guiding Adaptation . 34

2.4 Synthesis & Discussion . 34

3 Games & Content Generation 37
3.1 Definition of Procedural Content Generation 38
3.2 Games & Serious Games Design . 39
3.3 Existing Work . 40

3.3.1 Content Generation in Video Games 40
3.3.2 Content Generation in TEL . 42

3.4 Synthesis & Discussion . 46

4 Research Issue 49
4.1 Research Questions . 50
4.2 Positioning . 52

4.2.1 Roguelite Game Genre . 52
4.2.2 Adaptations & Variety . 54

5

TABLE OF CONTENTS

4.2.3 Model-Driven Engineering . 55
4.3 Research Method & Evaluation . 56

II Design and Implementation Framework of Generators 59

5 Design Framework of Activity Generators 61
5.1 General Overview . 61
5.2 Definition: Game Activity for DK Training 63
5.3 Declarative Knowledge Training Elements 65

5.3.1 Training Path . 66
5.3.2 Training Task Types . 67
5.3.3 Training Tasks Parameters . 67

5.4 Roguelite-oriented Game Elements . 68
5.4.1 Analysis method for Roguelite Design 69
5.4.2 Design Choices for Activity Generation 70
5.4.3 Gameplay Categories . 72

5.5 Synthesis . 74

6 Mapping Game and Educational Elements 77
6.1 Existing Work . 78

6.1.1 Relations Between Dimensions . 78
6.1.2 Methods to Define Relations Between Dimensions 79
6.1.3 Synthesis . 80

6.2 Mapping Approach Development . 80
6.2.1 Identification of the Pivot . 81
6.2.2 Mapping Task Types onto Gameplay Categories 84

6.3 A Systematic Mapping Approach . 88
6.3.1 Proposed Mapping Approach . 88
6.3.2 Relations Between Task Types and Gameplay Categories 90
6.3.3 Evaluation of the Relations . 90

6.4 Synthesis . 92

7 Conceptual Design Approach 93
7.1 Conceptual Models for Activity Generation 94

7.1.1 Domain Model: Training and Knowledge 95
7.1.2 Game Model . 97
7.1.3 Activity Model . 99
7.1.4 Learner-Player Model . 100
7.1.5 Relation Model . 102
7.1.6 Synthesis & Discussion . 103

7.2 Mapping Questioned Facts with Game Elements 104
7.2.1 Generic Modelling of Questions about Facts 105

6

TABLE OF CONTENTS

7.2.2 Modelling Gameplays Descriptions 107
7.2.3 Generic Generation of Varied Task-oriented Gameplays 108

7.3 Synthesis . 111

8 Software Infrastructure 113
8.1 Model-Driven Engineering Foundations . 113

8.1.1 Conceptual Models to Computerised Metamodels 114
8.1.2 Models as Inputs and Outputs of Generation 118

8.2 Activity Generation Algorithm . 119
8.2.1 Algorithm for Generating Training Game Activities 119
8.2.2 Algorithm for Generating Questions about Facts 122

8.3 Extension Rules . 123
8.4 Synthesis . 125

III Application & Evaluation 127

9 Extensions of the Framework 129
9.1 Generator for Multiplication Tables Training 130
9.2 Generator for History-Geography Facts Training 134
9.3 Generator for Judo Facts Training . 137
9.4 Generator for Solar System Facts Training 141
9.5 Discussion . 144

10 Tests and Validation of the Framework 147
10.1 Framework Properties Evaluation through Tests 148

10.1.1 Learner Adaptation of the Generated Activities 149
10.1.2 Player Adaptation of the Generated Activities 152
10.1.3 Variety of the Generated Activities 153

10.2 Validation of Static Properties of Models 156
10.3 Framework Evaluation with an Engineer 157
10.4 Use of a Generator in Ecological Conditions 160
10.5 Synthesis . 161

11 Conclusion 163
11.1 Synthesis . 163

11.1.1 Contributions to TEL Research Domain 165
11.1.2 Limitations . 166

11.2 Perspectives . 166

Bibliography 171

A Analysis of Existing Games for Multiplication Tables Training 191

7

TABLE OF CONTENTS

B Gameplay Mock-Ups Evaluation Questionnaire 194

C Algorithm for Generic Generation of Task-oriented Gameplays 237

D XMI to XML Code Transformation in ETL 239

E Guidelines for Extending the Framework 244

F JUnit Test Method Example 266

G Model Validation Source Code (EVL) 268

H Framework Usability Evaluation Questionnaire 272

8

LIST OF FIGURES

1.1 Usage view in AdapTABLES. 18
1.2 Research problem illustration . 21
1.3 Outline of the manuscript . 23

2.1 Spectrum of adaptation in computer systems of Wilson and Scott (2017) . . 29
2.2 Tripartite structure of adaptive instruction of Vandewaetere et al. (2011) . . 30
2.3 High level illustration of the adaptation process of a system 31

3.1 General illustration of the content generation process 38
3.2 MDA framework order of influence (Hunicke et al. 2004) 39
3.3 Scenario generator architecture (GOALS) of Sehaba and Hussaan (2013) . . . 44
3.4 The 3x3 metamodel-based architecture of Laforcade and Laghouaouta (2018) 45

4.1 General position of our research problem 50
4.2 Examples of dungeons maps and rooms from existing commercial Roguelites 53
4.3 MDE levels of abstraction (models, metamodels, meta-metamodels) (Bram-

billa et al. 2012) . 56
4.4 Our research method . 57

5.1 Coarse-grained components of a training game activity generator 62
5.2 Design Framework Overview . 63
5.3 Levels of activity, as defined in activity theory (Carvalho et al. 2015) 64
5.4 Description of the training structure . 66
5.5 AdapTABLES game flow . 70
5.6 Example of mock-ups by gameplay categories 73
5.7 Illustration of the levels of proposed activities from activity theory 74
5.8 Overview of exchanges made with experts to specify training and gameplays

elements (in orange : exchanges described in Chapter 6, in blue : exchanges
described in Chapter 9) . 75

6.1 Illustration of the educational-game dimensions mapping research question . 78
6.2 General idea to map task types onto gameplay categories 81
6.3 Mapping between task types and exercises illustration 85
6.4 Division of gameplay categories illustration ((S) = Single, (M) = Multiple) 86
6.5 Mapping between task types and gameplay categories illustration 88
6.6 Proposed Mapping Approach . 89
6.7 Conditional relations between task types and gameplay categories 90
6.8 Examples of possible solutions . 91

9

LIST OF FIGURES

7.1 Interconnected conceptual models involved in activity generation 94
7.2 Conceptual domain model describing knowledge and training path 95
7.3 Conceptual game model . 97
7.4 Conceptual activity/dungeon model . 100
7.5 Conceptual learner-player model . 101
7.6 Transformation process of raw facts into questioned facts 101
7.7 Conceptual relation (between task types and gameplay categories) model . 102
7.8 Illustration of questioned facts to game elements mapping problem 103
7.9 General idea behind the concept of generic questioned facts 104
7.10 Conceptual modelling of generic questioned facts 105
7.11 Examples of questions about facts in generic form 106
7.12 Focus and detail of the game conceptual model 107
7.13 Gameplays with structures (orange dashed borders) per fact (up-left) /

per proposals (up-right) / per statement (bottom-left) / per visualisation
(bottom-right) . 108

7.14 Example of generated positioned elements from a questioned fact, game
elements and a gameplay description . 109

7.15 Examples of generated gameplays, based on the same questioned facts but
different gameplay descriptions . 110

8.1 Interconnected models conform to metamodels involved in activity generation114
8.2 Knowledge metamodel . 115
8.3 Training metamodel . 115
8.4 Game metamodel . 116
8.5 Learner-player metamodel . 116
8.6 Relation metamodel . 117
8.7 Activity metamodel (to be generated) . 117
8.8 Tree-based EMF model view of models with properties on the selected node 118
8.9 Principle of extension for questions on facts generations 119
8.10 Activity generation algorithm steps . 120
8.11 Step-by-step example of the generation algorithm. Puzzle pieces colours cor-

respond to Figure 8.1 and puzzle pieces with borders present data modified
or created by the algorithm . 121

8.12 Structure of the template method design pattern (Shvets 2018) 122
8.13 Design framework and generators components overview 125

9.1 Overview of the evaluation of the framework through proof-of-concept . . . 129
9.2 Extension (in blue) of the metamodels for multiplication tables 130
9.3 Tree-based EMF views of mathematic models 131
9.4 Examples of gameplays for multiplication tables training tasks interpreted

by the game engine . 133
9.5 Extension (in green) of the metamodels for history-geography facts 135
9.6 Tree-based EMF views of history-geography models 136

10

LIST OF FIGURES

9.7 Examples of gameplays for history-geography facts training tasks inter-
preted by the game engine . 137

9.8 Extension (in cyan) of the metamodels for judo facts 138
9.9 Tree-based EMF views of judo models . 139
9.10 Examples of gameplays for judo facts training tasks interpreted by the game

engine . 141
9.11 Extension (in violet) of the metamodels for solar system facts 141
9.12 Tree-based EMF views of solar system models 142
9.13 Examples of gameplays for solar system facts training tasks interpreted by

the game engine . 143

10.1 Overview of the overall evaluation of the framework 148
10.2 Training path and learner’s progress used for testing the objective/level pair

selection . 149
10.3 Training paths and learner-player’s progress used for testing the allocation

of the tasks . 151
10.4 Player’s game preferences for testing based on the equipments unlocking

abilities used in our game engine . 153
10.5 Maps of four generated dungeons for the same objective/level pair and

learner-player . 154
10.6 Example of two variants of the same gameplay 155
10.7 An example of model validation rule written in EVL that verifies whether the

facts associated to an objective belong to the knowledge model associated
to the path . 156

10.8 Experimentation of the framework with an engineer 158
10.9 Spanish metamodel created by an engineer familiar with the framework . . 159
10.10 Spanish knowledge model created by an engineer familiar with the framework159
10.11 Use of the AdapTABLES in ecological conditions 160

11

LIST OF TABLES

2.1 Key concepts for characterising the adaptation of a TEL system 32
2.2 First characterisation of the adaptation of our system 35

3.1 Comparative table of different generation works in TEL (= educational
dimension, � = game dimension) . 47

4.1 Final characterisation of the adaptation of our system 55

5.1 Parameters for multiplication tables . 68
5.2 Grid for the Design Needs Analysis of educational Roguelite games 69
5.3 Design choices for AdapTABLES . 71

6.1 Exercises by quiz format (✓ present; ✗ absent; | present but incomplete) . 83
6.2 Characterisation of the exercises . 84
6.3 Characterisation of the task types . 85
6.4 Characterisation of the gameplay categories ((S) = Single, (M) = Multiple) 87

8.1 Summary of the creation and use of the models required for activity gener-
ation (é = not modified, Ë = modified, − = can be modified, but should
not be) . 124

A.1 Analysis of existing games for Multiplication Table training 191

13

ACRONYMS

AHS Adaptive Hypermedia Systems.
. .
DK Declarative Knowledge.
DNB Diplôme National du Brevet des Collèges.
. .
EMF Eclipse Modeling Framework.
ETL Epsilon Transformation Language.
EVL Epsilon Validation Language.
. .
HCI Human Computer Interaction.
. .
IEIAH Ingénierie des Environnements Informatiques pour l’Apprentissage Humain.
ITS Intelligent Tutoring Systems.
. .
LIUM Laboratoire d’Informatique de l’Université du Mans.
LST Language and Speech Technology.
. .
MDE Model-Driven Engineering.
. .
PCG Procedural Content Generation.
. .
TEL Technology-Enhanced Learning.
. .
UML Unified Modeling Language.
. .
XMI XML Metadata Interchange.
XML Extensible Markup Language.

15

Chapter 1

INTRODUCTION

Contents
1.1 Research Context . 17

1.1.1 Research Laboratory . 17
1.1.2 AdapTABLES Project . 18

1.2 Research Problem . 19
1.3 Thesis Structure . 22

This PhD thesis is a contribution to Technology-Enhanced Learning by means of
Model-Driven Engineering. This chapter presents our research context, outlines the

research problem tackled over the last three years, and details this manuscript structure.

1.1 Research Context
The following section presents our research context by describing the research labora-

tory, where our research has been carried out, and the AdapTABLES project which served
as a case study and an experimental ground for this thesis.

1.1.1 Research Laboratory
This research has been conducted within the IEIAH team (Ingénierie des Environ-

nements Informatiques pour l’Apprentissage Humain) of the LIUM laboratory (Labora-
toire d’Informatique de l’Université du Mans). The LIUM 1 is a computer science labora-
tory with two major research themes, which are Technology-Enhanced Learning (TEL)
and Language and Speech Technology (LST). The IEIAH team main objective concerns
the elaboration of a scientific basis for the development and engineering of TEL systems.
This objective structures the team’s actions, which are organised around three axes:
• Design, Operationalisation, and Adaptation of Pedagogical Situations: a

main focus is on the design of TEL systems that integrates teachers and educators
in the process.
• Modelling Observation and Analysing Traces: this axis focuses on analysing

learning situations based on users’ traces (i.e., teachers or learners) in TEL systems.
• Advanced and Collaborative Interactions for Learning: this axis addresses

advanced interactions for learning using technologies such as interactive tablets,
mixed reality or tangible interfaces.

1. https://lium.univ-lemans.fr/

17

https://lium.univ-lemans.fr/

Part , Chapter 1 – Introduction

This PhD falls within the first axis as it addresses the design of a framework aimed at
the generation of adapted training activities. This work is connected to the AdapTABLES
project presented below.

1.1.2 AdapTABLES Project
The AdapTABLES project 2 is a research project led by Pierre Laforcade. The main

educational objective is to design and develop an educational game for the long-term
acquisition of multiplication tables. The practice of multiplication tables is intended to
complement classroom learning (from the teacher’s viewpoint): learning the tables, ap-
plying them to problem-solving and generalising them are beyond the scope of the educa-
tional game. The second objective concerns the design of a web-app (i.e., authoring tool)
enabling teachers to specify needs and monitor each learner’s progress.

In this project, mathematics experts (i.e., 8 teachers from 2nd to 6th grade and a
didactician) as well as two game designers are involved as stakeholders in the design
process of the educational game. These experts participate in the definition of needs and
the validation of proposals. The project is based on an iterative prototyping approach.

This project provides a research context for the creation of adapted game activities
(i.e., precise and detailed descriptions of the task that the learner-player has to perform,
in terms of objectives, instructions, resources and criteria for success). This project served
as a case study (i.e., ground for expressing and developing needs) and an experimental
ground (i.e., validating proposals) for this thesis. Figure 1.1 presents the usage view in
AdapTABLES (i.e., learners interact with the educational game while teachers interact with
the web-app).

Figure 1.1 – Usage view in AdapTABLES.

2. https://projets-lium.univ-lemans.fr/adaptables/

18

https://projets-lium.univ-lemans.fr/adaptables/

1.2. Research Problem

1.2 Research Problem
Declarative Knowledge (DK) is one of the required knowledge to perform a task.

Anderson and Lebiere (2014) defined it as the knowledge of “things we are aware we
know and can usually describe to others”. DK consists of factual information such as
multiplication tables, historical dates, or geographical data. Repetition is necessary to
encourage the retention 3, and generalisation of DK (Kim et al. 2013).

In cognitive psychology, Test-Enhanced Learning represents the idea that the process
of remembering concepts or facts (i.e., retrieving them from memory) increases their long-
term retention. Retrieval Practice is a strategy of Test-Enhanced Learning, consisting of
repeated recalls of what has been learned, usually involving low-stakes and no-stakes
writing prompts, quizzes, flashcards, etc. This strategy has been proven to significantly
improve long-term retention (Brame and Biel 2015; Roediger and Pyc 2012). Furthermore,
evidence suggests that various test formats enhance learning (i.e., the benefits are not
linked to a specific strategy) (Brame and Biel 2015). Therefore, DK training can be seen
as a form of retrieval practice that entails repeatedly asking learners various questions
about facts to foster their long-term retention.

Repetition can easily become boring for learners (Smith 1981). Lately, the design and
use of educational games has become a common practice to make this kind of activ-
ity more attractive (Codish and Ravid 2015). Serious game can be defined as “(digital)
games used for purposes other than mere entertainment” (Susi et al. 2007). Educational
games 4 are serious games with an educational purpose (i.e., learning, training/practice).
More precisely, Li et al. (2024) defined digital educational games as “interactive activi-
ties, facilitated by electronic devices, designed with an educational purpose”. Additionally,
these digital games have been proven to improve learners’ motivation and engagement in
comparison to traditional learning settings (ibid.). Consequently, the use of digital games
for DK training seems relevant.

However, research has shown that learner-players can quickly feel bored by educational
games that offer repetitive activities with challenges that are not tailored to their skills
and knowledge (Streicher and Smeddinck 2016). Such feelings could potentially lead to
the drop-out of the task, thereby negatively impacting learning. Therefore, to reduce
boredom, repetitive game activities must be adapted to learner-players. Moreover, most
digital educational games are not perceived as real video games, mainly because of their
lack of gameplay (i.e., game elements are masked by educational aspects) (Kiili 2005;
Prensky 2005). Gameplay can be defined as “the fun things that the player gets to decided,
control, and do” (Prensky 2005). Therefore, digital educational games must provide varied
activities, in terms of gameplays, to be seen as real video games.

Many existing online education games are designed to train DK (e.g., multiplication
table, geographical data). Within the AdapTABLES project, several educational games (i.e.,

3. The ability to store or retain information in the memory over a certain period of time. Whereas
memorisation refers to the process by which information is intentionally stored in memory.

4. In the literature, the term learning games can also be found to describe games having a learning
purpose.

19

Part , Chapter 1 – Introduction

computer/online and phone/tablet applications) for training multiplication tables have
been found on Google and Play Store. Twenty-two games have been tested to assess their
gameplay and possible educational and gaming adaptations. Appendix A presents a table
describing the analysis of these twenty-two games.

These games are often designed to merely present questions for learner-players to
answer, accompanied by game mechanics such as time pressure, rewards, scores and cur-
rencies. A few exceptions introduce more advanced gameplay elements and interactions,
such as platform game mechanics where players control an avatar that must jump to make
choices. Educational choices are often limited to selecting tables to work on or selecting a
difficulty level (i.e., easy, medium, difficult). The difficulty levels 5 mainly have an impact
on the response time allowed or the tables to be worked on. Additionally, game choices
concerns elements that do not impact the training activities.

1. Educational settings are mostly reduced to the choice of table(s)
(11

22 only have this setting, 16
22 have at least this setting);

2. Few games (7
22) offer to choose between 2 or 3 difficulty levels,

which can impact the response time allowed, or the tables worked
on in the activity. However, these levels may have different meanings
that are not clearly explained.

3. Only a few games propose to change some game settings (10
22).

Some settings are only cosmetic features that do not impact the
core activity (e.g., changing the avatar), others (5

22) such as the
difficulty level or the number of players do impact the core activity.

4. Few games (7
22) offer data persistence. The data stored differs

between games. Some games store badges, money earned or items
purchased. Others, divided into levels, save the current level. But
none of them give access to a detailed summary of the progress
(e.g., past mistakes, seen tables) or the learners’ knowledge.

Multiplication training games analysis observations

Although the analysed existing digital games lack these characteristics, educational
games aimed at DK training should provide activities 6 that are: 1) varied in terms of
questions and gameplays, and 2) adapted to learner-players to reduce the feeling of bore-
dom. However, creating game activities requires game design skills (i.e., designing game

5. Adapting the game using difficulty levels can be seen as a means of asking players to classify
themselves within a predefined low-resolution stereotype which may not be appealing to players who do
not how to choose or do not identify with any (Lopes and Bidarra 2011a).

6. Broadly defined here as game situations targeting a training objective.

20

1.2. Research Problem

situations) that teachers may not possess. Additionally, designing a variety of activities in-
volves building several versions of every activity for each learner. This is a time-consuming
and demanding task that teachers can not realise manually.

Repeatedly providing learner-players with varied and adapted
game activities which are questioning facts.

Definition: DK Training through Digital Games

Generation or procedural generation is a technique for automatic content creation (e.g.,
game level, story, dialogue) using structured data and rules by means of algorithms based
on pseudo-randomness. This technique is widely used in role-playing games, particularly
to design varied game levels. Well-known games such as Minecraft, Diablo, Rogue Legacy,
Hades, and The Binding of Isaac are based on this principle. Generating content describing
a formalised training game activity is a possible solution to offer varied and adapted
activities. However, generation has rarely been addressed in TEL (Bezza et al. 2013).

Our work focuses on research in engineering for the design and development of activity
generators for DK training. It consists of an exploratory research aiming at better char-
acterising these generators (research object) and proposing models, tools and techniques
to facilitate their design and implementation. Designing such generators is a complex
task that cannot be reduced to a mere computer engineering problem (Tchounikine et al.
2009), since their specification and implementation require several experts: educational
game developers (i.e., design choices, use of technologies), didactic domain experts (i.e.,
facts to be worked on, how to work on them, adaptations choices) and video game experts
(i.e., game knowledge, game design...). More precisely, our general question is: How to
guide the design and implementation of activity generators for Declarative
Knowledge training? Figure 1.2 illustrates our research problem.

Figure 1.2 – Research problem illustration

In order to address our question, it is necessary to examine the design of game and
training activities, the alignment required to build training game activities and the spec-
ification of requirements for automating this design. Accordingly, a state-of-the-art on

21

Part , Chapter 1 – Introduction

game and serious game design, on the adaptation of a system in TEL, and on content
generation in video games and in TEL has been realised.

Our resulting proposal is an extensible framework (i.e., software infrastructure) based
on Model-Driven Engineering principles (Brambilla et al. 2012) that guides the design
and implementation of domain specific (i.e., didactic domain) game activity generators.
Model-Driven Engineering (MDE) is a research domain supporting an active use of models
during the entire software development process, enabling the automated generation of the
final application. The use of MDE to support the specification of the elements required
to drive the generation of learning game scenarios adapted to learners has already been
successfully demonstrated (Laforcade and Laghouaouta 2018). Additionally, MDE has also
been used efficiently in the field of Human Computer Interaction (HCI) for the generation
of user interfaces (Sottet et al. 2007).

1.3 Thesis Structure
As depicted in Figure 1.3, this manuscript is structured in three parts (excluding

Introduction and Conclusion): Part I – Research Background Towards Adaptation and
Games, Part II – Design and Implementation Framework of Generators, as well as Part III
– Application & Evaluation.

Part I is structured in three chapters. This part describes the research background.
Chapter 2 presents and characterises adaptation in TEL. Chapter 3 presents a state-of-
the-art on game content generation in TEL. Chapter 4 clearly defines our research issue
and positions our work in regard to the observations made from the literature.

Part II is structured in four chapters. This part presents our contribution: an ex-
tensible framework, based on a Model-Driven Engineering approach, for the design and
implementation of generators of Roguelite-oriented and adapted game activities for DK
training. Chapter 5 introduces the framework and its components. Chapter 6 presents the
issue of mapping games and educational elements that has arisen during the design of
activities, as well as our proposed solution. Chapter 7 describes the conceptual aspects of
the framework (i.e., conceptual models, algorithm). Chapter 8 presents the computerised
aspects of the framework (i.e., computerised models, technical aspects of the algorithms).

Part III is structured in two chapters. This part presents the usage and evaluation of
our framework. Chapter 9 describes a proof-of-concept of our framework by presenting
several didactic domain extensions (i.e., creation of activity generators for several didactic
domains using the framework). Chapter 10 presents tests and experiments realised to
evaluate the framework.

In conclusion, the work carried out, and the contributions made are synthesised, and
several perspectives for future work are proposed.

22

1.3. Thesis Structure

Chapter 1
Introduction

Part I
Research Background Towards Adaptation and Games

Chapter 2
Adaptation in TEL

Chapter 3
Games & Content Generation

Chapter 4
Research Issue

Part II
Design and Implementation Framework of Generators

Chapter 5
Design Framework of Activity Generators.

Chapter 6
Mapping Game and Educational Elements

Chapter 7
Conceptual Design Approach

Chapter 8
Software Infrastructure

Part III
Application & Evaluation

Chapter 9
Extensions of the Framework

Chapter 10
Tests and Validation of the Framework

Chapter 11
Conclusion

Figure 1.3 – Outline of the manuscript

23

Part I

Research Background Towards
Adaptation and Games

25

Chapter 2

ADAPTATION IN TEL

Contents
2.1 Definitions . 28
2.2 Characterisation of Adaptation 30
2.3 Existing Work . 32

2.3.1 Adaptation in TEL . 32
2.3.2 Adaptation in Educational Games 33
2.3.3 Approaches Guiding Adaptation 34

2.4 Synthesis & Discussion . 34

Everybody is a genius. But if you judge a fish by its ability to climb a tree,
it will live its whole life believing that it is stupid.

— Anonymous a

a. Famous quote that perfectly illustrates the importance to consider individual needs as everyone is different.

Long before the rise of digital learning, teachers and researchers paid a great interest
in tailoring learning activities to learners’ needs. A key reason is that providing each

learner with an experience that meets their needs at all times was considered the ultimate
goal (Plass and Pawar 2020). Such individualised instruction have been demonstrated as
beneficial compared to the one-size-fits-all approaches (Vandewaetere et al. 2011).

Recently, our digital era, with powerful computers and the World Wide Web, has
given rise to specific types of adaptive learning systems such as Intelligent Tutoring Sys-
tems (ITS) or Adaptive Hypermedia Systems (AHS) (Wilson and Scott 2017). ITS are
computer-based systems that imitate human tutors (i.e., “intelligent” tutor) and dynam-
ically provide tailored instructions or feedbacks to learners. AHS are web-based envi-
ronments that can provide user-adapted elements (Brusilovsky 1998). When correctly
designed, these systems have been proven to be highly effective for learning (Fletcher
1999; Wilson and Scott 2017).

For many years, video games and educational games have become increasingly popular
in the research community. Therefore, researchers are expressing great interest in adapt-
ing educational games to learner-players (Göbel and Wendel 2016; Sajjadi et al. 2022).
Numerous works suggest that educational games are effective learning tools (De Freitas
2018). In addition, educational games have been proven to improve motivation (Li et al.
2024). However, some researchers argue that a lack of adaptation could lead to a loss of
motivation, predictability, or non-replayability (Lopes and Bidarra 2011b).

27

Part I, Chapter 2 – Adaptation in TEL

This chapter aims at characterising adaptation in TEL and to present an initial po-
sitioning of our work in terms of adaptation. First, it defines adaptation in Technology-
Enhanced Learning. Then, this chapter suggests a way for characterising the adaptation
of TEL systems. Next, it discusses existing work on adaptation (i.e., How? What? On
what basis?) and how to guide adaptation. Finally, it summarises the requirements for
system adaptation and presents a first positioning of the adaptation of our system.

2.1 Definitions
Broadly, adapting a system is the action that consists of tailoring it, in part or in full,

to one or more users. Adaptation is a research issue addressed in various fields such as
educational sciences, computer science, HCI or TEL. In the TEL literature, adaptation
can be found under a wide range of terms such as adaptability, adaptivity, personalisation,
customisation, individualisation, and so on. This variety of terms can be an obstacle to the
progress of research on adaptation 1, as there is no consensus on the definitions (Shemshack
and Spector 2020).

Streicher and Smeddinck (2016) define adaptability as “the fact that a system is not
fixed, but can be changed (to the needs of users, to changing environmental contexts, etc.;
changes are usually understood to be performed manually)”. Whereas Plass and Pawar
(2020) state that adaptable systems must “respond to the diagnosis of specific learner
variables and corresponding needs of a learner by providing the learner with individual-
ized options and choices for how to proceed, putting the control of the learning in the
individual’s hands”.

Guettat et al. (2010) state that customising Interactive Learning Environments (ILE)
“requires consideration of several specific items related to the learning process. They must
also include the characteristics of users (learners or tutors), the tasks or the problems of the
ILE”. While Streicher and Smeddinck (2016) define customisation as “the act of changing
a system to the needs of a user group or individual user (manually or automatically; may
can be done by the group itself or by the user him- or herself, but may also be done by
third parties; often related to the appearance or content of the given system)”.

Bakkes et al. (2012) define personalised games as “a game that utilises player models
for the purpose of tailoring the game experience to the individual player”. While Streicher
and Smeddinck (2016) define personalisation as “the act of changing a system to the needs
of a specific individual user (often automatic but does not have to be, i.e., can be under-
stood as a specific form of customization with a focus on individuality; personalization
is also often related to appearance or content)”. Moreover, Ismail and Belkhouche (2018)
define personalised systems as “systems that tailor learning resources accesses within the
software environment to a user model”.

Sajjadi et al. (2022) characterise individualisation as “tailoring the learning game to

1. In the field of HCI, adaptation also called plasticity can be implemented through adaptable, adap-
tive or mixed approaches. However, there is a lack of definition on how to implement adaptation (i.e.,
components required) (Miraz et al. 2021).

28

2.1. Definitions

the individual’s needs, state, abilities, and preferences”. While Ćurčić et al. (2018) state
that individualisation through computer software “provides the pupil with the opportunity
to become aware of learning goals, to master the strategies of studying, recognize the
achieved goals and estimate the potentials for new accomplishments”.

Plass and Pawar (2020) define adaptivity as “the ability of a learning system to di-
agnose a range of learner variables, and to accommodate a learners’ specific needs by
making appropriate adjustments to the learner’s experience with the goal of enhancing
learning outcomes”. Whereas Streicher and Smeddinck (2016) define adaptivity as “the
fact that a system is not fixed, but dynamically changes over time (to adjust to the needs
of users or an individual user, or to adjust to changing environmental contexts, etc.; typi-
cally happens automatically; often related to settings and parameters present in the given
system)”.

Observably, all the definitions are quite similar. Sometimes, terms are even defined
on the basis of others, for example, the U.S. Department of Education defined personal-
isation as encompassing individualisation (Education 2010). When clearly specified, the
differences among these definitions concerns: how adaptation is performed (e.g., manually,
automatically), what data is used to adapt (e.g., users’ characteristics, tasks’ character-
istics), and what content is to be adapted (e.g., appearance, content, environment).

Figure 2.1 – Spectrum of adaptation in computer systems of Wilson and Scott (2017)

29

Part I, Chapter 2 – Adaptation in TEL

An interesting vision is provided by Oppermann and Rashev (1997), who considers
adaptation as a spectrum ranging from adaptability (i.e., “systems that allow the user to
change certain system parameters and adapt their behaviour accordingly”) to adaptivity
(i.e., “systems that adapt to the users automatically based on the system’s assumptions
about user needs”). Wilson and Scott (2017) built on Oppermann and Rashev (1997)’s
work by softening the opposition between adaptability and adaptivity, viewing each term
as two areas of the spectrum rather than two extremes (see Figure 2.1). Their vision seems
more consistent with existing work and the nuances found in the definitions of the TEL
literature 2.

2.2 Characterisation of Adaptation
Adaptation can be implemented in several ways. Additionally, it can be aimed at one

or more targets (e.g., game preferences, learning content, difficulty). Therefore, adaptive
systems (i.e., systems that adapt to the users) are often characterised, see Figure 2.2, by
three concepts (Vandewaetere et al. 2011):
• the target, i.e., what is adapted?
• the source, i.e., what does it adapt to?
• the pathways, i.e., how to translate source into target?

Figure 2.2 – Tripartite structure of adaptive instruction of Vandewaetere et al. (2011)

2. Note that although the HCI literature distinguishes three categories of adaptation, namely adapt-
ability, adaptability and mixed approaches (Miraz et al. 2021), given that a mixed approach can be
implemented in many ways, it is a mean to consider adaptation as a spectrum.

30

2.2. Characterisation of Adaptation

The sources of adaptation are modelled data such as player and learner profiles, pref-
erences, pedagogical strategies, user traces, etc. Sources may be directly collected from
experts or users by filling in questionnaires, providing a “profile” estimated to be close
to the player (e.g., Hexad (Tondello et al. 2016), BrainHex (Nacke et al. 2014)) or the
learner (e.g., Big Five Factor Model (Goldberg 1992)), or they can be extracted from user
traces of the system. Source information can rely on one or several implicit dimensions
such as didactic, pedagogy, game, cognition, etc. Accordingly, the system must take many
source information into account. Each dimension adds a different adaptation objective:
improving learning, motivating the player, motivating the learner, and so on. Several el-
ements can be the targets of adaptation (i.e., objects targeted by adaptation), such as
the content (e.g., activities, pedagogical resources), the presentation 3 (e.g., feedbacks pro-
vided, HCI, UI 4, HUD 5, sounds), the navigation (e.g., ordering resources = scenarios).
Finally, various methods exist to adapt sources to targets such as generation, selection,
recommendation, parameterisation, assembling 6. Figure 2.3 describes the main elements
characterising the adaptation process of a TEL system.

Figure 2.3 – High level illustration of the adaptation process of a system

In addition to these three concepts, adaptation should be characterised by its automa-
tion level (e.g., manual, automated): Is the target adaptation process performed strictly
by humans? Do some parts of the process depend on human intervention, while others
are computerised? Is the process completely automated (i.e., carried out entirely by a
computer system)? A final key element to characterise a system’s adaptation is the mo-
ment when the adaptation is performed/required. Are the targets previously adapted to
the sources (e.g., recommendation of activity sequences based on learner’s characteris-
tics)? Are the targets adapted “at-runtime” (i.e., targets are adapting while the users
interact with the system)? Are the targets previously adapted to the sources but “adap-
tive” in-between sessions (e.g., learning game activities are provided to learner-players
each time considering previous results)? Table 2.1 presents an overview of the required
concepts for characterising the adaptation of a TEL system. Using several concepts to
characterise adaptation is not foreign to TEL, and has already been applied by Sehaba

3. The presentation is often the target in the field of HCI.
4. User Interface
5. Head Up Display
6. These methods can be implemented at different levels: strategical, tactical, operational.

31

Part I, Chapter 2 – Adaptation in TEL

(2014) who characterises his work on adaptation through multiple criteria: why adapt?
What to adapt? Who adapts? When to adapt? What to adapt to? How to adapt?

examples
sources User profile | User behaviour | Experts strategies
targets Content | Instructions | Feedbacks | Presentation
pathways Generation | Selection | Recommendation | Assembling
automation level Manual | Semi-automated | Automated
moment Previously adapted | Adapted during runtime

Table 2.1 – Key concepts for characterising the adaptation of a TEL system

2.3 Existing Work
Numerous works have addressed adaptation in TEL, either to offer adaptive (i.e.,

adaptable, personalised, individualised, etc.) systems (e.g., educational games, interfaces,
gamified systems) or to assist in the adaptation process (e.g., authoring tools, methods,
approaches guiding the design of adaptive systems).

2.3.1 Adaptation in TEL
Many studies propose methods or tools to recommend ordered sequences of pedagog-

ical content adapted to learners. Klašnja-Milićević et al. (2011) (pedagogical adaptation)
proposes a recommendation module (pathway) which, based on a learner model including
their knowledge and learning style (sources), automatically (automation level) provides
an ordered sequence of activities (target) to the learners once they are logged in (mo-
ment). The learner can modify the activities order but not the activities themselves.
Lefevre et al. (2012) (educational 7 adaptation) propose the PERSUA2 model used to re-
commend (pathway) sequences of activities (target) adapted to learners on the basis of the
learner’s profile, the teacher’s strategies and the context of use (sources). At each request
(moment), a fixed sequence of activities is automatically created from the input data
(automation level). Sablayrolles et al. (2022) (pedagogical adaptation) propose a recom-
mendation approach (pathway) of ordered sequence of relevant resources (target) based on
a learner’s competency profile, a mastery level, a learning objective, a competency frame-
work modelled by experts and a set of constraints (sources). As with PERSUA2, at each
request (moment) a fixed sequence of activities is automatically created from the input
data (automation level). Pham et al. (2016) (pedagogical & visual adaptations) propose
PACARD (Personalise Adaptive CARD-based interface) a card-based system that selects
(pathway) the intervals between cards reviews (card sequencing) and their presentation

7. Adaptation considering pedagogical and didactic elements to adapt.

32

2.3. Existing Work

(target, i.e., interface objects containing educational content and with which users inter-
act) on the basis of learner performance (i.e., recorded in databases), learning strategies
(i.e., spaced repetition and forgetting curve) and interface preferences (e.g., how many
cards, which type per session) (sources). Every session (moment), a new sequence of card
is automatically provided (automation level).

Further work focuses on the adaptation of gamification systems 8 in order to improve
motivation. Gamification can be defined as the integration of game elements into learning
environments to encourage learners’ motivation (Deterding et al. 2011). As an exam-
ple, Monterrat et al. (2014) (gaming adaptation) present an adaptive gamification system
that can be plugged into learning environments. This system recommends (pathway) game
elements (target, e.g., edges, chat, rewards) using a player model (source) including in-
formation on the interactions, the environment (i.e., school/ work/personal, device used,
group size), and the user (e.g., age, gender). Each time the learning environment is used
(moment), game elements are automatically recommended to the learner and the player
model is updated (automation level).

2.3.2 Adaptation in Educational Games
Some studies have focused on designing or helping in the design of adapted game

content. Marne and Labat (2014) (gaming adaptation) propose an authoring tool en-
abling teachers (pathway) to “manually” design (automation level) learning game sce-
narios (target) that adapt according to players’ answers/interactions. Scenarios are built
from activities whose objectives and prerequisites (i.e., input/output states) are prede-
fined (sources). Once created, scenarios (moment) can be exported in XML format and
interpreted by compatible games. Soflano et al. (2015) (pedagogical adaptation) propose
an adaptive conversation system between players and Non-Player Characters (NPCs) us-
ing learner-players’ learning style (source) to select (pathway) the presentation (i.e., text
or image/diagram) of task instructions (target). Two systems have been implemented.
One system where the learning style is predefined beforehand (moment), resulting in the
instructions being set automatically (automation level). Another system where players
can change the presentation of the instructions (i.e., learning styles) during execution
(moment, automation level).

Further research has proposed systems to select or recommend game content tailored
to users. Natkin et al. (2007) (gaming adaptation) propose a quest recommendation sys-
tem (pathway) for MUG Systems (Multi-player Ubiquitous Game). Based on a user model
(source), a set of quests (target) is proposed to the player each time a level is requested
(moment). Based on the choices made and a trace analysis, the user model is modified, and
the suggested quests are automatically refined (automation level). Bontchev et al. (2021)
(educational & gaming adaptations) present a student modelling approach applied to the

8. Educational game design entails the joint creation of game and learning content, whereas gamifica-
tion involves adding a layer of game elements to existing learning content/environments. For this reason,
our choice has been to consider gamification independently of educational games.

33

Part I, Chapter 2 – Adaptation in TEL

adaptation of learning game content. Their proposal have been implemented in educa-
tional mazes containing four types of mini-games, namely question, searching, arranging,
and action games. At each game session (moment), the puzzle types and complexity, type
and content of the learning material (target) are dynamically selected (pathway, automa-
tion level) according to the three-part student model (source, i.e., composed of player’s
characteristics, learner’s characteristics, and user’s characteristics) concerned.

2.3.3 Approaches Guiding Adaptation
Some studies have focused on proposing approaches that are sufficiently generic to

guide adaptation, or models that can take several dimensions into account when recom-
mending adapted content. Monterrat et al. (2017) propose MAGAM (Multi-Aspect Generic
Adaptation Model), a multi-aspect activity recommendation model (i.e., the ability to
consider several dimensions) based on three entities: user-learners, pedagogical activities
and properties linking users and activities (i.e., represented in the form of matrices). As a
result, the system provides a recommendation matrix describing how well each activity is
adapted to each learner. Roepke et al. (2021) provide a modular, component-based archi-
tecture for implementing custom pipelines for educational games in anti-phishing training.
Their definition of a pipeline for adapting learning games is a three-step process: data col-
lection, content generation, content delivery. These pipelines are intended to “precede a
game and provide adaptations to gameplay or the configuration of a game”. Although the
concept of the pipeline is only applied in the context of anti-phishing games, it seems
broad enough to be reused in the general design of other games. Ismail and Belkhouche
(2018) propose a reusable architecture for the design of personalised learning software
systems, broken down into four units: the learner unit which stores learner data, the
knowledge unit which stores learning resources, the personalisation unit which matches
the learner model to the learning resources and the presentation unit which represents
the software environment. These works propose generic enough guidelines to be followed
in the high-level design of any adaptive learning system.

2.4 Synthesis & Discussion
This chapter presented the various terms and definitions of adaptation present in the

literature. Since adaptation can be considered as a spectrum, what is important is not
the term used, but the way in which adaptation is characterised. What is adapted?
What sources are used to adapt? How are the targets adapted to the sources? At what
moment? Is the process automatised? Etc.

Additionally, an observation based on existing work is that sources are modelled data
either supplied by humans or collected from interactions between humans and systems.
Accordingly, source modelling is a requirement to adapt a system.

Another observation is that few works seem to adapt on several dimensions
simultaneously (Bontchev et al. 2021; Monterrat et al. 2017; Pham et al. 2016). In

34

2.4. Synthesis & Discussion

the context of educational games, adaptation seems to either focus on game adaptation
(i.e., narration, quests, game elements) or educational adaptation (i.e., activities, order,
sequences) but rarely considers both (Bontchev et al. 2021; Monterrat et al. 2017). How-
ever, adapting activities according to learners is recognised as a way of improving learning.
Furthermore, adapting to players helps motivate and make the tasks more engaging. Some
research even stated that the “impact of gameplay, in terms of engagement and learning,
depends on players’ individual differences (i.e., gaming proficiency, personality, prefer-
ences, and emotional state)” (Abdul Jabbar and Felicia 2015). It would therefore seem
relevant to consider adaptation from both an educational and a gaming dimension.

Finally, most researches are oriented towards recommending or selecting
adapted content to user and not building content that is adapted to the users (e.g.,
composing an activity like a product in a software product line, procedurally generating
an activity). Our interest lies in automatically (automation level) generating (path-
way) adapted training 9 game content (target). To that extent, information about
the learner-player and the training are (sources) required to generate adapted content. In
our context, adaptation is realised during the generation process, which produce content
that is adapted to learner-players. Table 2.2 summarises the first characterisation of our
adaptation using the five criteria previously identified (i.e., sources, targets, pathways,
automation level, and moment).

sources Learner-Player and Training data
targets Training game content
pathways Procedural generation
automation level Generator automatically provides adapted content
moment Each time the generator is called

Table 2.2 – First characterisation of the adaptation of our system

In order to better position our work, it is necessary to examine existing works in terms
of generation. Accordingly, the next chapter addresses content generation in video games
and in TEL.

9. As mentioned in the introduction, training refers to the action of providing learner-players with
repeated but varied and adapted game activities which question facts (i.e., declarative knowledge).

35

Chapter 3

GAMES & CONTENT GENERATION

Contents
3.1 Definition of Procedural Content Generation 38
3.2 Games & Serious Games Design 39
3.3 Existing Work . 40

3.3.1 Content Generation in Video Games 40
3.3.2 Content Generation in TEL . 42

3.4 Synthesis & Discussion . 46

Play is our brain’s favorite way of learning things.
— Diane Ackerman

Nowadays, video games are increasingly present in our lives, as they entertain hun-
dreds of millions of players around the world (Hendrikx et al. 2013). A video game

can be defined as “an interactive application, entering into interaction with a player”
(Djaouti et al. 2007). Designing video games is a complex task (Junior and Silva 2021).
For educational games, this is especially true as it requires finding a balance between
achieving player engagement and meeting learning outcomes (Hall et al. 2014). As a re-
sult, researchers have attempted to guide the design and analysis of games by developing
dedicated methods (Junior and Silva 2021).

Often, the ability of video games to present engaging content is taken for granted.
While manual content production is already expensive and unscalable, demand for new
and tailored content continues to grow (Hendrikx et al. 2013). Therefore, any technology
that could ease the burden of content creation and facilitate tailoring content to players
would be warmly welcomed by game and serious game designers (Yannakakis and Togelius
2011). An existing solution, is the automatic content creation using algorithms. Several
famous commercial games such as The Binding of Issac or Hades use that principle to
automatically build different levels each time.

This chapter aims to position our work in terms of generation in relation to existing
work. First, procedural content generation is introduced and defined in our context. Then,
existing methods for game design are presented, since creating game content is an integral
part of game design. Next, a state-of-the-art on existing work on generation of adapted
content in games and in TEL is done. Finally, a discussion about the observations made
from the literature is realised.

37

Part I, Chapter 3 – Games & Content Generation

3.1 Definition of Procedural Content Generation
Born in the 80s, Procedural Content Generation (PCG) is a common method used

in video game which “refers to the automatic creation of contents, performed using al-
gorithms and/or heuristics” (Ripamonti et al. 2017). PCG can be exploited to produce
different contents such as levels, maps, game rules, textures, stories, items, quests, mu-
sic, weapons, vehicles, characters (Shaker et al. 2016). More precisely, in games, content
“refers to all aspects of a game that affect gameplay but are not nonplayer character
behavior or the game engine itself” (Yannakakis and Togelius 2011).

Figure 3.1 – General illustration of the content generation process

Traditional PCG methods 1 are computer procedures or algorithms often coupled with
randomness 2 that uses structured data (i.e., machine-readable information such as game
elements available) as input to create/produce content. In order to tailor the generated
content to the players, data about them needs to be provided to the algorithm (Browne
et al. 2014). Player data can be collected before the game (i.e., to generate new content
for the next game), or during the game itself (i.e., to tailor content on the fly in the
current game) (ibid.). The same principle applies for tailoring the generated content to
any user: user data (e.g., personal information, knowledge, preferences, environment) must
be collected before or during the activity. Figure 3.1 illustrates the generation process.

PCG has two main advantages: 1) it reduces the development time for new content,
and 2) it increases randomness of content (Ripamonti et al. 2017), thereby increasing the
variety of content provided to the users. However, designing a PCG algorithm is a complex
task, especially since the generated content must be playable/achievable, e.g., completing
a generated level, climbing a generated staircase, or winning a generated game should

1. PCG methods have been classified into three categories: traditional methods, search-based methods
and machine learning methods. In this manuscript only the first one (i.e., traditional) is addressed.

2. In a stochastic approach, PCG uses randomness to vary the generated content compared to a
deterministic approach where, for the same input data, the content created is identical (i.e., regenerated).

38

3.2. Games & Serious Games Design

be possible (Shaker et al. 2016). In this manuscript, procedural content generation is
abbreviated by the term generation.

3.2 Games & Serious Games Design
Although designing generators of game content, such as activities or levels, does

not require the actual design and development of games (i.e., generators can be
seen as independent software components, see Chapter 5), creating such content does
involve making upstream game design choices (e.g., a game level cannot be gener-
ated without knowing what its composition should be: is it a racetrack? Is it a road with
obstacles to avoid?). Therefore, it is necessary to pay attention to game design when it
comes to generating game content.

Numerous models, methods, frameworks and approaches have been developed to guide
the design and analysis of the possibilities and limitations offered by games and serious
games (Carvalho et al. 2015; Junior and Silva 2021). As an example, the MDA framework,
introduced by Hunicke et al. (2004), has been among the most influential and frequently
used mainly for game analysis (Junior and Silva 2021). MDA proposes to divide games
into three elements, see Figure 3.2, that influences each other: Mechanics, Dynamics,
and Aesthetics. Mechanics describes the game components. Dynamics describes the game
mechanics behaviour at runtime. Aesthetics describes the desired emotional reactions for
players when they interact with the game. Furthermore, MDA has been redefined by
Junior and Silva (ibid.) to make it more useful from a game designer perspective, since it
is not in use in the game industry to help the game design work.

Figure 3.2 – MDA framework order of influence (Hunicke et al. 2004)

Another example is GOM (Game Object Model) version I and II proposed by Amory
et al. (1999) and Amory (2007). GOM is an object-oriented model which considers that
serious games are composed of objects described through concrete or abstract interfaces.
Educational elements are linked to abstract interfaces, whereas games elements are linked
to concrete interfaces. Several other work addresses educational games analysis and de-
sign. Kiili (2005) proposes a model based on experiential learning theory, flow theory
(Nakamura and Csikszentmihalyi 2009) and game design that stresses the importance of
immediate feedback, clear goals and challenges matching player’s skill levels. De Freitas
and Jarvis (2006) propose a four-dimensional (i.e., context, representation, learner, peda-
gogy) framework. Yusoff et al. (2009) propose a conceptual framework to assist developers
in ensuring the effectiveness of learning in a serious game. Barbosa et al. (2014) propose

39

Part I, Chapter 3 – Games & Content Generation

a method for designing and developing serious games that facilitates the integration of
educational content into games by using the concept of a learning mechanism that must
be included in the game (i.e., in the storytelling or gameplay). Winn (2009) proposes a
framework extending MDA to add the educational dimension to game design. Marne et al.
(2012) present a conceptual framework based on six facets (i.e., pedagogical objectives,
condition of use, decorum, problems and progression, interactions with the simulation,
domain simulation) that aims at allowing everybody concerned of the game design pro-
cess to speak the same language. Carvalho et al. (2015) propose a conceptual model in
order to better understand the relations between game elements and educational goals
of the game. An interesting aspect of research into educational game design and analysis
concerns the alignment between educational and game content. Chapter 6 addresses this
aspect in more detail.

However, most of these works are theoretical and therefore difficult to translate into
the design process (Junior and Silva 2021), as they mainly focus on high-level aspects
and requirements and do not provide an understanding of how these requirements can
be satisfied in practice (Carvalho et al. 2015). In addition, when these studies are not
aimed at high-level design, they are focused on game design analysis (Junior and Silva
2021). Moreover, despite adaptation being a major research interest and despite many
video games being based on a generation principle, to the best of our knowledge, none of
this work addresses the concepts of generation and adaptation.

3.3 Existing Work
Although content generation has mainly been addressed in the context of video games,

some studies have focused on content generation in TEL. This section presents the different
angles from which generation has been tackled in video games and in TEL.

3.3.1 Content Generation in Video Games
In video games, content generation has been tackled from two main angles: non-

adapted generation (i.e., provide new algorithms for generating game content) and player
adapted generation (i.e., provide new methods for generating game content tailored to
players’ model/characteristics/preferences/etc. to improve their experience).

Non-adapted generation. Several studies addressed game content generation through
the use of genetic algorithms. Khalifa et al. (2016) propose General Video Game Level
Generation (GVG-LG) a framework to help level generation and provide a benchmark for
level generation. The framework is developed in Java and supports a Java Interface that
allows different users to create their own level generators. Games are described through
objects called GameDescription using the Video Game Description Language (VGDL).
Three level generators have been implemented: Random (i.e., the algorithm places de-
fined sprites at random empty positions, then surrounds the borders with solid tiles),

40

3.3. Existing Work

Constructive (i.e., the procedure uses the GameDescription object to design better lev-
els), and Search-Based (i.e., the algorithm is based on the Feasible Infeasible 2 Population
Genetic Algorithm). Soares De Lima et al. (2019) propose a procedural generation archi-
tecture based on the use of genetic algorithms to create quests (i.e., linear sequences of
events or tasks that the player must complete, e.g., attack(zombie, anne, johnhome),
go(john, johnhome, village)). The architecture is composed of a Domain database
which contains information about all the elements available in the game world (e.g., john
is a character), all the properties and relationships that exist in the game world (e.g., john
is alive, anditode1 is an antidote), the set of semantic integrity constraints (e.g., is in-
fected, has), the set of possible events (i.e., to maintain consistency with previous quests)
and a parameter for managing difficulty. Pereira et al. (2021) propose a PCG method
based on the use of constrained evolutionary algorithms that evolve a population of ran-
domly generated dungeon maps filled with locked-door missions. Dungeons and missions
are modelled in the form of trees (i.e., rooms = nodes) comprising 3 types of room: nor-
mal rooms (i.e., nothing special inside), key rooms (i.e., contain a key) and locked rooms
(i.e., the access path to their parent is blocked). The method aims at matching the level
and mission characteristics (i.e., number of rooms, keys, locked doors, and level linearity)
expected by the game designer.

Player adapted generation. Several works propose methods for content generation
adapted to players in order to improve their game experience. Lopes and Bidarra (2011b)
propose a semantics-based procedural game world generation framework that adapts
gameplay according to experience, player and content utility models during the game
(e.g., between each room, at each street). Gameplays are modelled using semantics, i.e.,
“declarative modeling approach that embeds the world and its objects with all information
beyond their geometry” (ibid.). Experience and player models capture skills (e.g., shooting
proficiency), preferences (e.g., items used, actions taken) and styles (e.g., explore, achieve)
while the content utility model captures the association of player/experience features with
relevant content. The framework uses case-based reasoning to encode the valid combina-
tions between the content and the gameplay experiences. Oliveira and Magalhaes (2017)
propose a PCG method that can be used by game designers to steer the generation pro-
cess in order to automatically propose a more personalized and context-aware experience
to each player. The method has been applied to generate tailored items, using a player
model (i.e., including characteristics/personality), a context model (e.g., location, device,
current season) and a game model (i.e., preferences and actions of a specific player), each
time the player defeats a wave of monsters.

Some studies have proposed methods or tools to guide the high-level design of content
generators which take player adaptation into account. Yannakakis and Togelius (2011)
propose a generic framework to link player experience with procedural content generation
called Experience-Driven Procedural Content Generation (EDPCG). The framework has
been defined based on existing research in the literature, and defines player experience
as the “synthesis of affective patterns elicited and cognitive processes generated during

41

Part I, Chapter 3 – Games & Content Generation

gameplay” (Yannakakis and Togelius 2011). The proposed work is composed of four main
components: Content generator (i.e., “The generator searches through content space for
content that optimizes the experience for the player according to the acquired model”),
Content Representation (i.e., “Content is represented accordingly to maximize efficacy,
performance, and robustness of the generator”), Content quality (i.e., “The quality of
the generated content is assessed and linked to the modeled experience of the player”),
and Player Experience Model (i.e., “Player experience is modeled as a function of game
content and player (the player is characterized by her playing style, and her cognitive and
affective responses to gameplay stimuli)”). This framework guides the high-level design of
generators (e.g., presents three types of player experience model: subjective, objective, or
gameplay-based, with their advantage/disadvantages to choose from).

Other works addressed the generation of content tailored to types of players. Dormans
and Bakkes (2011) proposes a framework for the design of action-adventure game levels
based on the use of generative grammars, i.e., “a generative grammar typically consists of
an alphabet and a set of rules”. Therefore, the alphabet consists of every element available
to build game spaces and missions, whereas rules describes how to compose them. The
game space and missions generated are adapted upstream according to player types (e.g.,
the dungeon structure is altered to add a portion specific to a player type) to personalise
the game experience.

Some interesting studies investigate human behaviour to categorise content into cat-
egories 3. Fujihira et al. (2022) investigated player’s behavioural tendencies when playing
mazes, i.e., directions chosen by the players at branch points in the maze with the aim
to extract the probability of choosing a path. Then, they used these results to build a
prediction model simulating human players in order to defined mazes difficulty based on
human perspective. Finally, they automatically generated mazes using a digging method
and classified them into difficulty levels using the number of steps (i.e., predicted number
of steps minus the shortest number of steps).

3.3.2 Content Generation in TEL
Despite being little discussed in TEL (Bezza et al. 2013), generation has been ap-

proached from three perspectives: non-adapted (i.e., provide new algorithms for gener-
ating learning or learning game content), learner adapted (i.e., provide new methods for
generating game content tailored to players’ model/skills/knowledge/etc. to improve their
learning), and learner-player adapted (i.e., provide new methods for generating game con-
tent tailored to learner-players’ model/characteristics/skills/knowledge/preferences/etc.
to improve their motivation and learning).

Non-adapted generation. Some researches have addressed the generation of exercises
(also called exercisers). Holohan et al. (2006) propose OntAWare a system that leverages

3. Such approaches can be seen as a form of reverse engineering, wherein human behaviour is analysed
and reproduced to classify the generated content. Once classified, players can benefit from tailored content.

42

3.3. Existing Work

ontologies for the generation of e-learning exercise problems on the subject domain of
relational databases (i.e., the exercises consist of writing SQL queries). The user must
import the relation schema ontology and populate the ontology with particular schema
instance information (e.g., table and column names) then, on demand, the generator
randomly creates queries that are converted into an English form (i.e., problems presented
to learners).

Other studies have dealt with the generation of narrative learning scenarios. Sina et
al. (2014) propose ScenarioGen, a general “fill and adjust” semi-automatic method for
generating textual content about everyday activities through combining computer science
techniques with the crowd. ScenarioGen generates coherent new scenarios by replacing
content details within an original scenario. It is composed of three main components:
MaxSat a maximal satisfiability solver which identifies the places where modifications
are required, KAR a K-nearest neighbour Activity Replacement which selects the most
appropriate activity for a new scenario, and SNACS Social Narrative Adaptation using
Crowdsourcing which adjusts the activity by adding rich detail. They apply the method
in a serious game called VirtualSuspect which allows repeated practice sessions using
different types of investigation techniques for different cases of property felonies for law
enforcement training.

Some studies have focused on the generation of learning paths. Diwan et al. (2019)
propose a generic model for generating learning pathway based on open-sources resources.
More precisely, they address the lack of standardisation and metadata in open learning
resources (i.e., the search for genericness) by proposing various methods for calculating
learning pathways (i.e., comparing learning resources and integrating resources of a given
subject into a logical learning space). The model has two main components: a Greedy
Generator (i.e., generates a learning path using a learning goal and a resource as a starting
point) and a Validator (i.e., provides feedback to the generator and improves the pathway
it produces).

Learner adapted generation. Numerous studies have tackled the generation of learn-
ing paths adapted to the learner from existing resources 4. Vassileva (1995) proposes an
approach for dynamic courseware generation which generates a course plan with a given
objective. This work uses a set of task hierarchies, teaching methods, and a learner model
to dynamically decide how to best execute the plan for the learner according to a set
of teaching rules (i.e., adapted in real time based on learners’ interactions). Melis et al.
(2001) present ActiveMath a web-based ITS for mathematics that dynamically generates,
when explicitly asked, interactive courses adapted to a learner model. Generation is re-
alised in three incremental steps: retrieval of the concepts and learning resources required
to achieve the learning goals from a knowledge base, arrangement of the concepts and
learning resources retrieved based on learner’s prior knowledge, and linearisation of the
concepts and learning resources (i.e., represented as a graph). Sehaba and Hussaan (2013)

4. Several studies exist in Courseware generators (i.e., a course is generated in a single go before being
presented to the learner) and sequencers (i.e., the best activity/resource is selected at any moment).

43

Part I, Chapter 3 – Games & Content Generation

propose GOALS a generic (i.e., domain independent) approach, see Figure 3.3, for the gen-
eration of scenarios (i.e., “series of activities in the form of educational games helping the
learner to achieve one or more learning objectives”) in educational games. Several models
define this approach: the domain model, which models domain concepts and their relation-
ships; the learner model, which models learners’ personal information, motivation, skills
and interactions; the presentation model, which describes the structure of the scenarios;
and the serious game model, which combines game resources with pedagogical resources.
Adaptation knowledge is modelled using a rule-based system. The scenario generation
process is broken down into several incremental steps: 1) selection of domain concepts
and creation of the conceptual scenario, 2) selection of learner-adapted pedagogical re-
sources based on the conceptual scenario, followed by creation of the pedagogical scenario
according to the presentation model, 3) selection of game resources based on the needs of
the pedagogical scenario for the creation of the game scenario.

Figure 3.3 – Scenario generator architecture (GOALS) of Sehaba and Hussaan (2013)

Carpentier and Lourdeaux (2014) propose an approach based on the Zone of Proximal
Development (ZPD) to dynamically generate learning situations adapted to learners’ pro-
files (i.e., their abilities and pedagogical needs) in virtual environments. The approach is
part of a framework based on three models: the domain model (i.e., the static description
of the world, its elements and their relationships), the activity model (i.e., the hierarchical

44

3.3. Existing Work

structure of the observed activity), the causality model (i.e., the expression of the relevant
causal chains occurring in the environment).

Some work address the generation of learning scenarios and activities. Laforcade and
Laghouaouta (2018) propose 3x3, see Figure 3.4, a generic MDE-based architecture for
game scenario (i.e., “ordered sequence of scenes including precise descriptions of each scene
components and locations”) 5 generation adapted to learners’ individual needs based on
the general architecture of Sehaba and Hussaan (2013). Like Sehaba and Hussaan (ibid.),
the generation process is decomposed into three-incremental steps: objective scenario gen-
eration, structural scenario generation, and feature scenario generation. The proposed ar-
chitecture, see Figure 3.4, captures the domain elements required for generation in three
inter-related parts of a metamodel that must be specified in models: the profile model
(input) describing the learner profile, the game description model (input) describing each
element of the game, the scenario model (output) encompassing the three generated sce-
narios (objective, structural, feature). The proposed work is a very general specification
method whose metamodels and models are produced during its application. The method
has been implemented within the serious educational game Escape It!, which aims at
developing visual skills for autistic children.

Figure 3.4 – The 3x3 metamodel-based architecture of Laforcade and Laghouaouta (2018)

Learner-Player adapted generation. One study proposed to generate learning sce-
narios, based on existing resources, adapted to the learner and the player. Callies (2016)
proposes an architecture for real-time generation of learning scenarios (i.e., sequences of

5. Compared to Sehaba and Hussaan (2013), the scenarios in this work are composed of scenes that are
built (i.e., components are chosen and positioned) by the generator instead of using predefined activities.

45

Part I, Chapter 3 – Games & Content Generation

predefined activities) adapted to learner-players (i.e., adapted feedbacks, non-player char-
acter behaviour, and learning context) in serious simulation games which was implemented
in a called Game of Homes. The architecture is composed of three main components: a
learner-player model that allows the estimation of knowledge and skills relative to learn-
ing and skills relative to gameplay; an adaptation module that selects the sequences of
activities, to achieve a goal, for a learner-player; and a control module that executes the
scenario generated by the adaptation module (i.e., it modifies in real time, non player
character behaviour, change the simulation parameters, etc.) and requires new scenarios
when the scenario is no more adapted to the player’s current knowledge.

3.4 Synthesis & Discussion
This chapter presented procedural content generation as well as its application in video

games and in TEL. Although the design of procedural generation methods is complex, it
enables the automatic production of varied and adapted content (i.e., simplifying work
for designers).

Accordingly, several research contributions focus on the generation of adapted or non-
adapted content. Among these works, some have proposed so-called generic approaches
which can be defined as: the ability of the generator “to be independent of a particular
application domain, and therefore able to be used in several domains and several seri-
ous games” (Sehaba and Hussaan 2013). In this definition, genericness encompasses the
educational dimension (i.e., independence from the didactic domain) and the game dimen-
sion (i.e., independence from a specific game genre). The existing generic works propose
general design approaches for generators. However, as some of the approaches presented
are outside the context of games, the genericness characteristic only refers to their inde-
pendence from the didactic domain. Having such high-level approaches is beneficial for
guiding the general design of generators for any didactic domain and any game genre.
However, the main disadvantage of being generic on both the game dimension and the
educational dimension is that it does not deliver a software infrastructure for generator
design and therefore prevents any reuse of structured input data (i.e., generator
sources) from one didactic domain to another.

Even though adapting the generated content to the player is a common practice in the
context of video games, the majority of work in TEL deals with the generation of con-
tent adapted to the learner. To the best of our knowledge, only one work deals with
adapting the content generated to learner-players (Callies 2016). Additionally, al-
though generation of game space and missions (i.e., level with activities/tasks) is common
in video games, in TEL, generation mainly concerns learning or learning game
scenarios (i.e., sequences of pre-existing activities) and not the design of activities
that learners or learner-players will have to carry out. As far as we know, only one work
addresses the generation of learning games activities in TEL (Laforcade and Laghouaouta
2018). Table 3.1 summarises and compares the generation approaches in TEL.

46

3.4. Synthesis & Discussion

Generic
Approach

Learner
adapted

Player
adapted

Generated
content

Holohan et al. (2006) é é é
e-learning exercises

on relational
databases

Sina et al. (2014) é é
textual game

scenarios

Diwan et al. (2019) é é

learning paths
based on existing

open-sources
resources

Vassileva (1995) Ë é
learning paths

based on existing
resources

Melis et al. (2001) é Ë é
learning paths

based on existing
maths resources

Sehaba and Hussaan
(2013) � Ë é

learning game
scenarios based on
existing resources

Carpentier and
Lourdeaux (2014) Ë é

virtual learning
situations

Laforcade and
Laghouaouta (2018) � Ë é

learning game
scenarios + tasks
to be carried out

by users

Callies (2016) � Ë Ë
learning game

scenarios based on
existing resources

Table 3.1 – Comparative table of different generation works in TEL (= educational
dimension, � = game dimension)

Additionally, an important observation is that in a model-based approach, the struc-
ture of the content to be produced is modelled such as the presentation model for Sehaba
and Hussaan (2013), the scenario model for Laforcade and Laghouaouta (2018), or the ac-
tivity model for Carpentier and Lourdeaux (2014). Specifically, it can be observed that to
generate adapted content for educational games, it is necessary to provide various sources:
• information about the game, i.e., description of the elements available and the pro-

gression of the game (e.g., Callies (2016), Laforcade and Laghouaouta (2018), and
Sehaba and Hussaan (2013));
• information about the structure of the content to be produced, i.e., elements that

47

Part I, Chapter 3 – Games & Content Generation

constitute the content (e.g., Sehaba and Hussaan (2013) Carpentier and Lourdeaux
(2014) and Laforcade and Laghouaouta (2018);
• information about the didactic domain, i.e., knowledge, how to work on it (e.g., Car-

pentier and Lourdeaux (2014), Laforcade and Laghouaouta (2018), Melis et al.
(2001), and Sehaba and Hussaan (2013);
• information about the learner, i.e., knowledge, skills, progress/results (e.g., Callies

(2016), Laforcade and Laghouaouta (2018), Melis et al. (2001), and Sehaba and
Hussaan (2013);
• information about the player such as preferences or profile, progress (e.g., Callies

(2016)).
Our interest lies in proposing a generic approach, on the educational dimension,

for the generation of educational game activities adapted to learner-players (i.e.,
game level and task to be carried out by learner-players). The main idea is to be domain-
independent and to be able to reuse data from one domain to another (i.e., propose a
generic generation algorithm). Next chapter details our research issue and delimits our
research perimeter.

48

Chapter 4

RESEARCH ISSUE

Contents
4.1 Research Questions . 50
4.2 Positioning . 52

4.2.1 Roguelite Game Genre . 52
4.2.2 Adaptations & Variety . 54
4.2.3 Model-Driven Engineering . 55

4.3 Research Method & Evaluation 56

Research is what I’m doing when I don’t know what I am doing.
— Wernher von Braun

Previous chapters have highlighted several observations. First, although generating
video game content often targets missions to be carried out by players, in TEL,

generation is more often oriented towards organising the activities to be carried out rather
than designing them.

Second, adaptation is rarely tackled simultaneously from an educational and a gaming
perspective. In the context of generation, this observation is even more significant, as only
one work proposes to adapt to the player and the learner.

Third, an essential observation relates to the use of structured data sources, such as
models or ontologies, in research dealing with generation and adaptation. Specifically, to
generate adapted content for educational games, it is necessary to provide various sources
presenting information about the game, the didactic domain, the structure of the content,
and the learner-player.

Lastly, though most TEL generation works propose generic approaches that can be
applied to different didactic domains or video game genres, these works do not allow the
direct reuse of some of the elements designed for one generator to another.

Building on these observations, our interest lies in the generation of activities, namely
activities to be undertaken by learners and not a sequencing of pre-existing activities,
in the context of video games for declarative knowledge training. Figure 4.1 positions
our work in relation to adaptation, generation and games. More precisely, our research
problem is the following:

49

Part I, Chapter 4 – Research Issue

How to guide the design and implementation of generators of
learner-player adapted and varied game activities for

declarative knowledge training?

Research problem

This is a TEL systems engineering research problem (Tchounikine et al. 2009)
seeking the exploration of solutions for the generation of adapted and varied activities.
This chapter aims to define our research questions, in relation to our research problem,
based on the previously made observations, as well as define the scope and research
method of this PhD thesis. First, this chapter presents the research questions arising from
our research problem. Next, it outlines the scope of our work by presenting our proposal
for tackling the research questions, and describing its perimeter (i.e., Roguelite game
genre, targeted adaptations, Model-Driven Engineering). Finally, it describes the research
and evaluation methods.

Figure 4.1 – General position of our research problem

4.1 Research Questions
A key advantage of focusing on declarative knowledge in general is the possibility of

proposing models, algorithms and tools that can be reused beyond a specific didactic
domain. Consequently, our first research question is as follows:

50

4.1. Research Questions

How to propose an approach sufficiently generic to consider
declarative knowledge independently of a specific didactic
domain?

Research question 1 (RQ1)

Furthermore, generation requires modelling the structure of the content to be pro-
duced. Therefore, it is necessary to define what is a game activity for declarative knowl-
edge training that is varied and adapted to the learner-player. Consequently, our second
question is as follows:

What is a learner-player adapted and varied game training activity?

Research question 2 (RQ2)

From this question, the following sub-questions are drawn:

Which educational and game elements constitute these activities?

How to combine the game and educational elements coherently? a

a. Relates to the problem of educational and game dimensions alignment.

As the generation requires several sources to produce the targeted activities, it is
necessary to structure the sources (i.e., information about the game, the didactic domain,
the learner-player) and their relationships in order to pilot the generation process. That
leads us to our third question:

How to structure the required data and their relations in order to
drive the generation of coherent activities?

Research question 3 (RQ3)

Finally, these structured data have then to be computerised to enable their use in the
generation process. To this extent, the data required, their relationships and the structure
of the activities to be produced must be specified at a granularity level understandable
by computers. Accordingly, our last question is as follows:

How to specify every information required for generation to enable
computer interpretation for the development of activity generators?

Research question 4 (RQ4)

51

Part I, Chapter 4 – Research Issue

4.2 Positioning
In order to address our problem and research questions, our proposal is an exten-

sible framework for the design and implementation of generators of adapted
and varied activities for declarative knowledge training. This framework is broken
down into two parts: a conceptual framework (i.e., theoretical part describing all the gen-
eration features, e.g., conceptual models and algorithms) (Lemoine and Laforcade 2023a)
and a software infrastructure (Lemoine et al. 2023c) that can be extended to different
didactic domains (i.e., construction tool guiding the design of generators). This software
infrastructure captures every element that is common to different didactic domains. Fur-
thermore, the extension mechanism guides the insertion of specific elements for a given
didactic domain. This infrastructure is addressed through a Model-Driven Engineering
approach (Brambilla et al. 2012).

Game activities have structures that are entirely dependent on the game genre tar-
geted. As examples, let’s consider two activities, one involving solving a puzzle and another
involving exploring a world. Both activities are designed differently as a puzzle is built
around a problem to be solved (e.g., Professor Layton), whereas an exploration activ-
ity requires the design of a world (i.e., a virtual exploration zone) and an avatar (i.e., a
character) who will roam and perform actions in the world (e.g., Minecraft).

Accordingly, a game genre must be chosen to enable the generation of activities. More-
over, to propose a software architecture extensible to different didactic domains, the chosen
game genre must have different characteristics that enable them to satisfy the required
conditions for declarative knowledge training, namely they must:

➔ encourage repetition (i.e., DK training requires repeated sessions);
➔ encourage variety (i.e., DK training requires several diverse and adapted activities);
➔ provide a sense of progression (i.e., training aims at knowledge acquisition).
Note that in order to provide a software infrastructure (i.e., low-level design) allowing

the reuse of data/algorithms between different didactic domains, the genericness of the
game dimension had to be discarded. Selecting different genres for different domains would
require a similar approach, where elements of the game dimension are also abstracted and
extended. Additionally, having both dimensions extensible would probably exponentially
increase the complexity of extending the work. Therefore, our choice has been to disregard
the genericness of the game dimension.

4.2.1 Roguelite Game Genre
Originating from the groundbreaking game Rogue (Toy et al. 1980), Roguelike and

Roguelite video game genres have experienced a significant surge in popularity over the
last decade. Rogue is a turn-based dungeon crawler that pioneered procedural generation
by automatically generating levels of dungeons for players to explore, fight enemies, collect
items, and progress. Rogue’s infinite replayability has been a huge draw and has been em-
ulated many times over, a recent example is the commercial game Diablo (Blizzard) (Yan-
nakakis and Togelius 2011). In both Roguelike and Roguelite genres, a dungeon often

52

4.2. Positioning

represent “a set of interconnected rooms containing different challenges” (Pereira et al.
2021). Figure 4.2 displays examples of dungeons maps and rooms from commercial games.

(a) Rogue generated dungeon (b) The Binding Of Isaac generated room

Figure 4.2 – Examples of dungeons maps and rooms from existing commercial Roguelites

According to the Berlin Interpretation (Harris 2020) 1, there are eight key factors that
characterise Roguelikes , including:
• randomised generation: levels and their elements (e.g., foes/objects locations, en-

vironmental conditions) are usually built using procedural generation with semi-
randomness to avoid unwinnable situations. Randomness offers an element of sur-
prise and unpredictability, requiring players to adapt their strategies on the fly.
• permanent death: each time the avatar dies, any progress achieved is lost and players

have to start all over again (i.e., no progress is carried over between runs).
Although many Roguelike games respect these eight key aspects, some games deviate
from certain elements. Hence, Roguelites have emerged as a means to differentiate such
games from traditional Roguelikes .

Roguelites introduce macro-level objectives by allowing players to keep some items
or upgrades between attempts. This system of persistent progression allows players to
progressively become stronger over time, increasing their chances of success in subsequent
runs. Well-known commercial Roguelites (e.g., Hades, Enter the Gungeon, The Binding
of Isaac, Rogue Legacy, Children of Morta, Dead Cells) provide diverse, gameplays, lores,
features, and permanent elements (e.g., weapons, currencies, upgrades, characters) that
contribute to achieve cross-run objectives. For some games, collectible resources can persist
in-between deaths and be used to unlock permanent upgrades.

Failure is an integral part of Roguelites . Players are often confronted with new
mechanics, traps, enemies and bosses that require learning skills. As a result, players
often fail and die several times before completing a play through. Despite repeated failures,
Roguelites generally offer quick restarts, allowing players to rapidly re-play. Each new
game helps players understand the underlying game mechanics better, enabling them

1. It is a popular interpretation of “What a Roguelike is” that has been created at the International
Roguelike Development Conference of 2008.

53

Part I, Chapter 4 – Research Issue

to progress further. Additionally, replayability is another integral aspect of Roguelites
as each run offers a distinct experience. Due to the changing nature of the levels and
encounters, Roguelite games have a high replay value, as no two runs are identical.
Moreover, many Roguelites have a replay value that goes beyond just completing the
game, e.g., a new game+ mode like in Rogue Legacy or a scenario requiring repeated
defeats of the final boss like in Hades or Dead Cells.

As Roguelites are mainly characterised by procedural dungeon generation with
pseudo-randomness providing a variety of content, permanent death providing repeti-
tive game sessions, and limited detention of unlockable items (e.g., characters, items,
powerups) providing persistent progression, they meet the requirements of declarative
knowledge training. Accordingly, our framework aims to guide the design and de-
velopment of generators of dungeon 2 levels for Roguelite -oriented games for
declarative knowledge training.

4.2.2 Adaptations & Variety
As aforementioned, adaptation and variety of activities are required in order to reduce

the feeling of boredom caused by repetitive training. Since adaptation is rarely addressed
from an educational and gaming perspective conjointly, the adaptation of levels generated
aims to consider information about learners, their training, and players. More precisely,
our aim is to adapt according to three viewpoints:
• the learner, by taking into account their level of knowledge, results, and progress;
• the teacher, by considering their training strategy for learners and their pedagogi-

cal/didactic choices;
• the player, by considering their game preferences.

According to Plass and Pawar (2020), games can be adapted to different types of vari-
ables. In our context, the adaptation targeted focuses on two cognitive variables (i.e.,
the learner’s knowledge level/progression and the teacher’s strategy/choices) as well as
a motivational variable (i.e., the player’s personal interests given as game preferences).
Therefore, adapting to the educational dimension involves considering various aspects
such as the types of facts encountered, how they are questioned, their number, their or-
der according to the learner’s level, their previous results and the training established by
the teacher. Roguelites often include a purchase/activation mechanism enabling play-
ers to make choices that may or may not influence the generation of game levels. Game
preferences are then expressed in the form of purchasable and activatable items, which
affect the game situations presented. These preferences allow players to bypass game sit-
uations 3 they dislike by deactivating items, or to simplify the game by deactivating or
not purchasing them. Table 4.1 summarises the characterisation of our adaptation.

2. Note that considering Roguelites through dungeons (i.e., set of interconnected rooms) is a design
choice, another form such as caves could have been made.

3. Importantly, some game situations must be independent of the purchasable/activatable items (i.e.,
default game situations) to ensure that game situations are available in all circumstances.

54

4.2. Positioning

In order to generate varied activities, our approach consists of modelling educational
and game elements, provided as input to the generator, with a certain degree of variabil-
ity. The general idea is to allow the generation algorithm to pseudo-randomly select, to
preserve the coherence of the activities, several training and game elements to increase
variety. For example, questions on facts are modelled to ensure that bad proposals are
selected at each generation. Our approach to modelling information is based on model-
driven engineering.

sources
Learner’s knowledge/results/progress

Player’s preferences
Teacher’s training strategy for learners

targets Training game activities for Roguelite-oriented games
pathways Procedural generation
automation level Generator automatically provides adapted content
moment Each time the generator is called

Table 4.1 – Final characterisation of the adaptation of our system

4.2.3 Model-Driven Engineering
Model-Driven Engineering is a form of generative engineering based on the use of

models to design all or part of a computer application in order to facilitate its development.
Models are abstractions of objects linked to a specific business domain that are sufficiently
exhaustive and explicit for understanding the domain being modelled. MDE is structured
around four principles:
• capitalisation, i.e., models must be reusable;
• abstraction, i.e., models must capture the complexity of a system and exclude un-

necessary details;
• modelling, i.e., models must be productive, in other words they must enable at least

some of the final software code to be generated;
• separation of concerns, i.e., models must capture different concerns, aspects, view-

points.
Model transformation is a central operation in MDE, consisting of the “production of

a set of target models from a set of source models, according to a transformation defini-
tion” (Sottet et al. 2007). A procedural content generation process based on MDE can thus
be considered as a set of model transformations taking models as input and producing
models as output, until executable artefacts are obtained. An entity called a metamodel
is used to enable these models to be designed and manipulated in a computerised con-
text. A metamodel is an abstraction of the modelling language (i.e., syntax, grammar and
semantics) of models, i.e., each model is considered as “conforming to” the metamodel.
Additionally, to describe the structure of metamodels, the concept of meta-metamodel

55

Part I, Chapter 4 – Research Issue

exists. Meta-metamodels are recursive, meaning that they are conforming to themselves
(i.e., they are self-describing). Figure 4.3 presents MDE levels of abstractions from the
real-world to meta-metamodels.

Figure 4.3 – MDE levels of abstraction (models, metamodels, meta-metamodels) (Bram-
billa et al. 2012)

Hence, MDE is a vast research field offering both a theoretical foundation (e.g.,
models/metamodels/languages, model transformation/composition/verification) to sup-
port specification needs and techniques and tools (e.g., ecosystems exploiting formalisms
such as Ecore or Epsilon) to support implementation needs. However, meta-modelling is a
subjective (i.e., there are several ways of specifying/modelling information) and complex
activity that requires specific skills for creating and managing models as well as checking
their accuracy in relation to the reality they intended to represent.

4.3 Research Method & Evaluation
Our proposal has been developed as part of an exploratory study centred on an itera-

tive design from an initial case study, i.e., multiplication tables. This exploratory research
involved a user group and the participation of domain and game experts. Therefore, this is
an inductive method from which results obtained, in relation to the AdapTABLES project,
are generalised and re-evaluated in the context of multiplication tables, but also in two
other domains. Since the context of multiplication tables does not involve questioning
declarative knowledge on pictures (e.g., legend on a map), another domain has then been
used as an initial domain to consider these needs: history-geography facts that are re-
quired for the Diplôme National du Brevet des Collèges (DNB) a French exam taken in
9th grade.

56

4.3. Research Method & Evaluation

Figure 4.4 illustrates our research method. First, information has been gathered from
experts in order to identify training and game elements as well as adaptation needs for
training (i.e., adaptation to be considered from the teacher’s perspective). Second, this
information has been abstracted and generalised in order to be specified through mod-
els/metamodels and to define the generation algorithm (i.e., formalisation of the frame-
work). Next, each component specified has been implemented, along with directives for
extending the framework (= software infrastructure). Finally, our proposal has been ap-
plied and evaluated through the creation of several extensions: extension to the initial
didactic domains and to another domain (i.e., judo facts). Furthermore, software verifi-
cation (i.e., testing and model validation) as well as experimentation with an engineer
have been conducted. The purpose of this experimentation was to have an independent
(i.e., outside our research) engineer create an extension of the framework to another do-
main (i.e., solar system facts). Our method is not linear, and the process going from data
collection to formalisation to development has been subject to many back and forth.

Figure 4.4 – Our research method

57

Part I, Chapter 4 – Research Issue

Now that our work has been positioned, the next part will present our contribution
and the different sub-contributions developed to build the framework.

58

Part II

Design and Implementation
Framework of Activity Generators

Oriented Roguelite for Declarative Knowledge Training

59

Chapter 5

DESIGN FRAMEWORK OF ACTIVITY
GENERATORS

Contents
5.1 General Overview . 61
5.2 Definition: Game Activity for DK Training 63
5.3 Declarative Knowledge Training Elements 65

5.3.1 Training Path . 66
5.3.2 Training Task Types . 67
5.3.3 Training Tasks Parameters . 67

5.4 Roguelite-oriented Game Elements 68
5.4.1 Analysis method for Roguelite Design 69
5.4.2 Design Choices for Activity Generation 70
5.4.3 Gameplay Categories . 72

5.5 Synthesis . 74

In order to address our research issue, our proposal is to provide a framework (i.e.,
conceptual and software infrastructure) to guide the design and implementation of

generators of Roguelite oriented game activities for declarative knowledge training. To
address our first research question (i.e., “How to propose an approach sufficiently generic
to consider declarative knowledge independently of a specific didactic domain?”), our
aim is to make the framework extensible to different didactic domains (i.e., reuse of
code/models). To design such a framework, the first step consists of answering our second
research question by defining what is a game activity for declarative knowledge training
and what are its elements.

This chapter aims at presenting an overview of the framework, defining game activities
for declarative knowledge training, and specifying elements composing them. First, we
provide an overview of the proposed framework. Next, we define activities and present
their components. Finally, we introduce the problem of aligning the game and training
elements.

5.1 General Overview
The proposed framework is a conceptual (Lemoine and Laforcade 2023a) and software

infrastructure (Lemoine et al. 2023c) encompassing models and tools to formalise and

61

Part II, Chapter 5 – Design Framework of Activity Generators

guide the implementation 1 of varied and adapted game activity generators. The produced
generators can be considered as components of a declarative knowledge training game of
the Roguelite genre. Such generators create a new training activity on each request, i.e., a
detailed text description of a dungeon for a given learner-player. Then, these descriptions
have to be interpreted by a game engine to provide playable game levels to learner-players.

From an MDE standpoint, the generation algorithm can be perceived as performing
a model transformation. Therefore, the produced generators require a model as input
conforming to each input metamodel of the framework (i.e., concrete data, e.g., knowledge
to work on, game elements available, results/progress of the learner-player) and produce
a model as output also conforming to a metamodel. These generators, see Figure 5.1, are
composed of the source code corresponding to the metamodels of the framework, enabling
them to interpret and use the data contained in the models.

Figure 5.1 – Coarse-grained components of a training game activity generator

The conceptual approach of the framework enables to structure all necessary informa-
tion for the generation through conceptual models (see Chapter 8) whereas the software
infrastructure, implemented using an MDE approach (see Chapter 9), provides a tool to
guide generators design through the reuse of a maximum of elements (i.e., models/meta-
models and source code). Therefore, the software infrastructure is composed of generic
components that must be extended to specific didactic domains according to extension
rules. Generic components include models, metamodels and an algorithm to generate
adapted and varied activities using these models.

However, some elements cannot be processed or generated independently of the didac-
tic domain. In particular, handling facts (i.e., declarative knowledge) and the creation of
questions about these facts is domain-specific, hence the need for extension. Figure 5.2
presents an overview of the components of our framework. More specifically, the frame-
work is broken down into two parts: “generic” components comprising models, metamod-
els and source code for activity generation, and “domain-specific” components comprising
an extension of models, metamodels to domain-specific knowledge and source code for
generation of questions about facts. As described in Figure 5.2, the framework allows
the production of domain specific generator that can be used as software component in
educational Roguelite games. These generators use learner-players profiles to produce
adapted activities that must be interpreted by the game player or game engine, which

1. Implementation is used to refer to software programming. Moreover, generators are components
designed to be used by other software. Hence, our target audience for the framework is software engineers.

62

5.2. Definition: Game Activity for DK Training

then have to update the profiles according to learner-players’ results.

Figure 5.2 – Design Framework Overview

According to our research questions, this framework must aim at declarative knowledge
training that is non-specific to a didactic domain. Furthermore, the produced generators
must provide varied and adapted activities according to three viewpoints: the teacher,
the learner and the player. As a result, our framework and the generators it produces are
founded on the respect of five properties (i.e., two related to the framework [FPi], three
related to the generators [GPi]):

FP1 possibility of expressing different didactic domains;
FP2 possibility of expressing teachers’ views on individual learners’ training.

GP1 activities generated must be adapted to the learner’s level and results in
their training path;

GP2 activities generated must be adapted to the player’s game preferences;
GP3 activities generated must be varied in terms of both education and game.

5.2 Definition: Game Activity for DK Training
Activity, according to activity theory 2, can be defined as “a purposeful interaction

between subject and object, in a process in which mutual transformations are accom-
plished” (Carvalho et al. 2015) and happens simultaneously at three levels, see Figure 5.3.
An activity is realised by a series of actions and directed by a motive, i.e., the object that
the subject wants or needs to reach. Each action is composed of a series of operations and

2. Theory that aims at understanding and explaining human behaviour in complex activity contexts,
based on the research of Russian psychologists such as Lev Vygotsky and Alexis Leontiev.

63

Part II, Chapter 5 – Design Framework of Activity Generators

is directed by a goal (i.e., object to attain) 3. Operations are low-level units performed
according to given conditions.

Figure 5.3 – Levels of activity, as defined in activity theory (Carvalho et al. 2015)

Following the definition of activity in activity theory, a game activity for declara-
tive knowledge training is a dungeon which consists of a set of interconnected rooms
in which training takes place. These activities are directed by two motives: an educational
motive, e.g., “training on multiplication table 2”, and a game motive, i.e., “Find the exit
to the dungeon” 4. Each room of the dungeons is composed of game and/or training opera-
tions (e.g., open a chest, complete a missing fact) and has a goal either: answer a question
or avoid traps.

So now that our understanding of a game activity for training is established, our
questions are: How is training through game actually carried out? What elements are in
the dungeons rooms? Combining fun and educational elements to design activities is not
easy (Kiili 2005; Prensky 2005) as both kinds of elements need to be designed conjointly
to avoid a game imbalance (i.e., not enough learning or too much, thereby removing the
fun aspect). As a result, Prensky (2005) proposed a three-step process to create digital
game-based learning: “(1) Find or create a game with great gameplay that will engage our
audience, (2) Find the learning activities and techniques that will teach what is required
(doing each with the other in mind), and then (3) successfully blend the two”. A similar
process can be used to design training game activities that will be generated.

Accordingly, the next sections present the elements of our context defined from this
process: 1) the training elements defined and abstracted/generalised from exchanges with
experts, particularly experts in mathematics; and 2) the design choices 5 in terms of game
elements, and abstraction made from exchanges with game designers.

3. Subject are usually aware of their goals, but may not be aware of their motive.
4. Other game motives could be considered, but in our current work, only this motive is.
5. As mentioned in Chapter 3, the design of a game content generator requires choices to be made in

terms of game design.

64

5.3. Declarative Knowledge Training Elements

5.3 Declarative Knowledge Training Elements
A first exploratory study has been carried out, in the context of the AdapTABLES

project, with the members of the user group presented in (Laforcade et al. 2022) 6. This
study aimed to define the teacher’s perspective on:
• how to train on multiplication tables;
• the adaptations to be considered for multiplication tables training (i.e., sources and

targets);
• how to implement the adaptations.

As a result of this study an initial structure for describing training, called training
path had been defined. Additional informal exchanges with 4 members of the user group
highlighted the different ways of training learners on multiplication tables (i.e., possible
exercises). These complementary collective exchanges resulted in the definition of five
types of training tasks for maths, namely:
• completion 1, i.e., complete an incomplete multiplication fact having one missing

element either the result, the multiplicand or the table (e.g., 3 × ? = 15, 3×5 = ?).
• completion 2, i.e., complete an incomplete multiplication fact two missing ele-

ments either the (result – multiplicand) pair, the (result – table) pair, or the (table
– multiplicand) pair (e.g., ? × ? = 15 with a set of given choices [3, 6, 5, 10], ? ×
5 = ? or 3 × ? = ? also with sets of given choices 7).
• reconstruction, i.e., correctly replace the multiplicand, table and result of a

multiplication (e.g., ? × ? = ? with a set of given choices [3, 6, 5, 10, 15]6).
• identification, i.e., identify if multiplications are correct or incorrect (e.g., 3×5 =

15, true or false?);
• (non-)membership identification, i.e., identify elements that are or not results

or a given table (e.g., [3, 5, 9, 12, 14, 21] which are results of the table 3?).
Furthermore, individual discussions to identify possible training exercises have been

carried out with two history-geography teachers and an analysis of exercises proposed
to the Brevet National des Collèges on history-geography facts, enabled us to define six
training tasks for history-geography facts, namely:
• association 8, i.e., associate two items of a historical fact together either the

(event – date/period) pair, the (event – picture) pair, or the (date/period – pic-
ture) pair (e.g., “World War II happened between ? and ?”, with a set of given
choices [1939, 1914, 1945, 1918]).
• legending a map 9, i.e., complete the legend of a map (i.e., a fact is a symbol and

a description text of the map) having one missing element either the symbol or the

6. This study has been carried out before the beginning of this thesis.
7. Incorrect choices must be selected wisely to avoid other correct combinations.
8. When several facts are questioned at once, incorrect proposals are usually those of the other facts.
9. When several facts are questioned simultaneously, every proposal is correct and must be placed at

the right location on the map (i.e., it is the positions chosen by the learner that evaluate their answers).
Moreover, some or all of the elements may be missing.

65

Part II, Chapter 5 – Design Framework of Activity Generators

description text.
• identification 10, i.e., identify if historical facts are correct or incorrect. (e.g.,

“World War II happened between 1914-1918”, true or false?);
• timeline, i.e., complete the timeline having several missing historical facts.
• name and locate10, i.e., complete a map having several missing elements (e.g.,

cities, regions, countries).
• Membership Identification, i.e., identify elements that share or not a given

property (e.g., [France, Switzerland, England, Spain] which are country of the
European Union?, [Paris, Nancy, Bordeaux, Avignon] which are urban areas of
France?).

Additionally, these exchanges have also been used to discuss and approve the training
structure, as there were no disagreements with the concept of training path.

From this work, an observation had been that some tasks appear to be similar in both
domains. Therefore, in a perspective of genericness, an abstraction of the training tasks
from the two domains resulted in the definition of four generic task types 11.

5.3.1 Training Path

Figure 5.4 – Description of the training structure

A training path, see Figure 5.4 12, is represented by a set of objectives ordered by
prerequisite relationships. An objective is composed of a description such as “Training on
the multiplication table of 2”, the set of knowledge to work on (e.g., raw facts of the table
of 2), and is broken down into progressive levels of difficulty. Prerequisites are conditional
relations between an objective O1 and a level of an objective O2. These conditions consist
of the percent of facts encountered (i.e., facts that have been questioned/presented to
the learners) and a percent of achievement to reach. Therefore, an objective is considered

10. Note that, as for legending a map, it is the positions chosen by the learners that impact the
correctness of their answers.

11. Please note that although our abstraction is based on two domains, we kept in mind facts and
questions that may come from other domains, e.g., facts about the solar system.

12. All levels have tasks. However, to avoid cluttering up the illustration, it is not depicted here.

66

5.3. Declarative Knowledge Training Elements

eligible when the conditions of its prerequisites are met (i.e., an objective without pre-
requisites is by default eligible). Each level and prerequisites have two main objectives:
1) allow working on new objectives even if the previous one has not been finished, but
a sufficient level of training has been reached, and 2) allow defining more difficult/ad-
vanced training levels that are not mandatory to progress. In order for objectives to be
unlocked/available, conditions of prerequisites must be reached by learner-players. Each
level is itself broken down into training tasks (e.g., “Level 1: Completion 1 with search for
the result, Identification by choice of the correct facts”). A task is defined by its type and
parameters. The achievements of the levels are considered from both a percent of encoun-
tered facts and a percent of achievement to reach. This reduces the training time needed
to achieve a level in cases where the set of facts to be questioned would be substantial.

5.3.2 Training Task Types
Drawing on the tasks defined for different domains, initially three generic types of

task have been specified (i.e., independent of a specific didactic domain): Completion,
Identification, and Membership Identification. Following an initial iteration of our work,
presented in Chapter 6, carried out using mathematics training tasks, a lack of task for
ordering facts (e.g., ordering the planets according to their distance from the sun, ordering
the stages of meiosis in chronological order) emerged. Since the abstraction using the
history-geography tasks was not sufficient to cover this particular need, an additional
task type was added to cover this possibility for other domains (i.e., order). Our generic
types of task do not claim to be exhaustive, only to cover a variety of possible question
forms for declarative knowledge training. Below are our four generic task types:

1. Completion: complete a fact that having one or several missing elements (e.g.,
complete 3 × ? = 15, reconstitute ? × ? = ? using elements in [3, 6, 5, 10, 15],
complete World War II happened between ? – ?);

2. Order: order facts based on a given heuristic (e.g., chronologically order: World
War II, Storming of the Bastille, Treaty of Rome, order starting from the closest to
the sun: Mars, Earth, Jupiter, Neptune);

3. Identification: attest of the validity or invalidity of one or several facts (e.g., true
or false: 3× 5 = 15?, Did World War I happen between 1915–1919?);

4. Membership Identification: identify elements that share or not a given property
(e.g., [3, 5, 9, 12, 14, 21] which are results of the table 3? [France, Spain, England,
Switzerland, Italy] which are part of the European Union?);

5.3.3 Training Tasks Parameters
Tasks and task types are described by parameters. In particular, task types are de-

scribed by their response modality (i.e., choice from a set of proposals or direct input
awaited), the maximum time allowed to answer, and the number of consecutive successful
answers. In order to avoid correct answers by chance (i.e., random success), teachers have

67

Part II, Chapter 5 – Design Framework of Activity Generators

proposed to validate the retention of a fact by considering several consecutive successes for
a same question related to a task. Consecutive successes do not mean that a same ques-
tion is interrogated twice in a row in a same activity, but that the success for successive
appearances of a same question over multiple activities is considered (e.g., if 3 consecutive
successes are required and the learner succeeded twice on a question but missed the third
time, their number of consecutive successful answers is reset to 0).

However, domain-dependent tasks, i.e., subtasks of generic task types, have parameters
specific to the didactic domain concerned. Let’s take as an example the Completion 1
task, defined for multiplication tables as completing an incomplete fact that has one
missing element (e.g., 3 × ? = 15, 15 = ?× 5, 3× 5 = ?). Several parameters are domain-
dependent in this example:
• the missing element;
• the position of the result or equal symbol;
• the multiplier interval;
• the position of the multiplicand.

Several of these parameters (i.e., result and multiplicand position, multiplier interval)
enable the construction of various forms of facts (i.e., multiplication tables can be built
differently). In this case, the parameters are common to every task of a level. As a result,
such parameters are directly associated to the level and not to the tasks (i.e., to avoid
repetition). Table 5.1 presents the possible parameters for multiplication tables.

Parameter Possible Values Some Examples

Multiplicand Position Left ∨ Right 1× 2, 1× 3, 1× 4.. ∨
2× 1, 3× 1, 4× 1..

Result Position Left ∨ Right 1× 2 = 2 ∨ 2 = 1× 2
Multiplier Interval Integer Min/Max in [1, 12] 13 [1, 5] ∨ [5, 10] ∨ [1, 12]

Missing Element Result ∨ Multiplicand ∨ Operand 1 × ? = 2 ∨ ?× 2 = 2
∨ 1× 2 = ?

Response Modality Choice between proposals ∨ Input [2, 3, 4, 5]
Consecutive Answers Positive integer 1 ∨ 2 ∨ 3
Max Response Time Time in seconds (integer) 10s ∨ 30s

Table 5.1 – Parameters for multiplication tables

5.4 Roguelite-oriented Game Elements
Although generation is independent of a game, in the way that generators can be

seen as independent software components, the design of game activities to be generated
requires making game design choices. More precisely, generation requires knowledge of the
elements of the game that impact it (i.e., generation choices depend on these elements). As
a result, in the context of the AdapTABLES project, an interest had been expressed in the
design of educational Roguelites games, particularly by studying existing Roguelites

68

5.4. Roguelite-oriented Game Elements

(i.e., testing existing games, watching gamers reviews of game mechanics). This work not
only highlighted the fundamental questions that must be addressed for the design of an
educational Roguelite game, but also guided the definition of our design choices.

Nonetheless, these questions focus on the overall design of educational Roguelite
games, but as Prensky (2005) stated “Although learning games can fail as real games
in many ways, the failure happens mostly commonly in their lack of gameplay—the fun
things that the player gets to decide, control, and do”. Therefore, in a second phase, our
interest had been focused on the design of gameplays for declarative knowledge training.
For this purpose, informal interviews with two game designers led us to define gameplay
mock-ups. An abstraction of these gameplays resulted in the creation of our concept called
gameplay categories.

5.4.1 Analysis method for Roguelite Design
To design educational Roguelites games, both the educational and gaming dimen-

sions must be equally considered (i.e., none should be neglected). Our analysis and design
of a game, in the context of the AdapTABLES project, led us to the conception of a method
for the analysis of design needs for educational Roguelites. This method provides a means
of specifying needs according to both dimensions through specific criteria (Lemoine et al.
2023a; 2024c).

Educational GameCriteria Dimension Dimension
What elements are generated?
When are these elements generated?Generation Based on what criteria are they generated? (i.e.,
sources of generation)
Under what circumstances can the avatar be
injured or die?
What are the consequences of being injured or
killed?Death/Hurt

Where can the avatar sustain injuries or be killed?
Which elements exhibit variation?

Variety
How do these elements vary? (i.e., are the
variations triggered by player action? Are they
random? Is it a combination of both? Are they
guided by heuristics?)

Progress What is preserved or carried over between each
death? (i.e., which elements?)
What factors contribute to increasing or decreasing
the difficulty?

Difficulty How is the difficulty progression designed? (i.e., if
multiple elements affect the difficulty, what is the
sequence in which they occur?)

Table 5.2 – Grid for the Design Needs Analysis of educational Roguelite games

69

Part II, Chapter 5 – Design Framework of Activity Generators

To design a Roguelite, the initial step involves specifying the game mechanics. As
previously indicated, the three main mechanics of Roguelites are: generation, perma-
nent death, and progression. Therefore, specifying these mechanics involves defining how
the game world is generated (e.g., what is generated and how), when permanent death
occurs, and how progression works (e.g., which elements are carried over). Additionally,
because the generation mechanism is stochastic, within this context, it encompasses spec-
ifying elements that vary. Moreover, in games, as in learning, an essential concept is the
progression of difficulty as it is crucial to define how difficulty increases and when. As a
result, we have identified these five main mechanics (Generation, Death/Hurt, Vari-
ety, Progress, and Difficulty) as criteria for analysing the needs that must be specified
from both dimensions. Each criterion consists of a series of questions that relates to the
same mechanism. Each question should be answered in order to clarify the design needs
of the game. Table 5.2 presents a structure to complete for the needs analysis. Each row
represents a criterion and is divided into X sub-rows (i.e., one sub-row per question).
Each column represents a dimension (i.e., one for the game, another for the educational
dimension). Columns can be merged if both dimensions have common information.

5.4.2 Design Choices for Activity Generation
In order to design a Roguelite for multiplication tables training, our analysis frame-

work has been applied to define the game design choices. As a reminder, the AdapTABLES
project is centred around a prototyping design method, i.e., an iterative process that in-
volves creating a game step by step (i.e., adding features gradually). The idea is to use
the framework to design the various prototypes.

A first iteration allowed the design of a first prototype in which the game flow, see
Figure 5.5, is viewed as a series of game sessions (i.e., a temporal session beginning when
the player starts the game and ends when he stops it). A run is a succession of successfully
completed game levels of increasing difficulty that ends once the end of the game has been
reached or the avatar has died. A game level is a dungeon level.

Figure 5.5 – AdapTABLES game flow

This first prototype included three gameplay variants for a single completion task
(Lemoine et al. (2023a) and Lemoine et al. (2024c) detail the analysis). On the basis of
the feedbacks gathered from tests under ecological conditions, a second analysis had been
conducted. Table 5.3 summarises the design choices after the second application of the
analysis framework.

70

5.4. Roguelite-oriented Game Elements

Educational GameCriteria Perspective Perspective

Q1: What? One task and one or several questioned Dungeon structure + roomsfacts per room-with-question
Q2: When? When a new game level is requiredGeneration
Q3: Based All tasks set-up Previous level number and state

Current progress among possible facts Equipped itemson? Task parameters have priority on activated game elements if conflict

Q4: When? Incorrect answers or time out Being touched by foes, falling
into holes

Q5: What? Injuring causes heart lost, no more hearts causes deathDeath/Hurt

Q6: Where? Question rooms Only rooms with no question

Q7: What? Facts Different types of rooms, types of
gameplays, types of elements

Variety
Q8: How? Progress and past results Based on the available equipments,

gameplays, elements,
and in relation to the tasks ⇐⇒ gameplays mappings

Q9: What? Success or failure on met Coins collected during successfulProgress questioned facts game levels + purchased items

Q10: What? Questioned facts Dungeon level length
+ cursesDifficulty

Q11: How? In relation with the task parameters According to previous level number
related to the objective/level and state

Table 5.3 – Design choices for AdapTABLES

The design choices from this second analysis that are important for generation are
highlighted below:
• Generated dungeons contain rooms with questions and rooms with traps. This sep-

aration aims to allow learners not to be disturbed or injured (i.e., their avatar) by
“fun” game elements (i.e., that do not have a training purposes) while answering
questions about facts. The teachers mentioned that the game perspective should
not or the least possible hinder the training.
◦ Rooms with questions are related to a training task found in the learner-player’s

training path.
◦ Rooms without questions are “fun” rooms with only game elements such as

enemies and traps.
• Since Roguelites are often based on a purchase/activation mechanism, the selection

of gameplays is adapted according to the purchased items (i.e., player preferences)
made and activated. Hence, any gameplay type that is not appreciated can be de-
activated (i.e., unless it’s a default gameplay) by deactivating the corresponding
purchased item.
• Training difficulty should increase as the learner progresses through their training

path, i.e., a dungeon trains the learner on an objective/level pair of their path.
However, a dungeon targeting a pair objective 2/level 1 can be followed by a pair
objective 1/level 3. These levels are not necessarily considered as having an increase
in difficulty by learners since different knowledge are worked on, it is therefore very

71

Part II, Chapter 5 – Design Framework of Activity Generators

subjective and context-dependent. By contrast, game difficulty increases in a run
by gradually increasing the number of dungeon rooms with and without questions
(e.g., starting at 5, then 7, then 9, and so on).
• Curses are regularly encountered in Roguelites, e.g., dark level, labyrinthine dun-

geon, one life only. This means that the progression of the game is structured around
different minimum thresholds, whereby each threshold unlocks curses that may or
may not occur over the course of the generated dungeon levels. For instance, consid-
ering thresholds every three dungeon levels, the generation of level #10 may involve
a maximum of three curses or, with a little luck, none.

These design choices have an impact on the generation. Even though they have been
made as part of the project, we consider them for the generation of any declarative knowl-
edge training activities independently of a didactic domain (i.e., for the framework) since
these choices are not specific to mathematics or multiplication tables training. Although
our inspiration came from mechanics found in Roguelites and advice provided by game
designers, these choices are subjective and other choices could have been made. Evaluat-
ing these design choices is out of the scope of this PhD thesis, but it is a relevant future
perspective for the AdapTABLES project.

5.4.3 Gameplay Categories
Reflecting on Prensky (2005)’s statement, the design phase led us to focus on gameplay

design. Our aim is to offer a wide variety of gameplays for each type of training task. Hence,
the previously given definition of gameplay, fun things that can be controlled, decided, and
done by players (ibid.), can be refined to: descriptions of contextualised actions that
players can perform to interact with the environment, through their avatar,
in order to answer questions.

First, a collective discussion had been held with four teachers and a didacticien about
some gameplay ideas from which a constraint emerged: the gameplays must be simple, i.e.,
interactions to answer have to be quick, to avoid interfering with training. Then, informal
interviews were conducted with two game designers to gather ideas for the design of
gameplay mock-ups. An observation could be made from these mock-ups: some gameplays
seemed to belong to the same category, e.g., breaking a pot or opening a chest bearing
an answer are similar ways of selecting an object. That observation is consistent with the
game classification proposed by Djaouti et al. (2008), which consists of describing games
in terms of gameplay bricks (i.e., categories of actions that can be performed within
the games). Consequently, further reflection resulted in the definition of five gameplay
categories, see Figure 5.6, in the context of Roguelite training games:

1. Select: select (e.g., touch, kill, break, open) objects having an answer, through
avatar actions;

2. Move: correctly place objects at specific locations through avatar actions;
3. Orient: orient objects (e.g., rotate), through avatar actions, towards an answer;
4. Position: move the avatar to the necessary positions to choose or type answers;

72

5.4. Roguelite-oriented Game Elements

5. Direct Response: no action is required through the avatar, learners directly type
down their answer by using an input device (e.g., keyboard).

Like the task type, these categories do not claim to be exhaustive, only to provide a
variety of gameplays.

(a) Select example (b) Move example

(c) Orient example (d) Position example

(e) Direct Response

Figure 5.6 – Example of mock-ups by gameplay categories

73

Part II, Chapter 5 – Design Framework of Activity Generators

5.5 Synthesis

In summary, the proposed activities consist of a set of interconnected rooms (i.e., linear
or labyrinthine), whose game objective is to find the exit and whose training objective is
related to the learner’s training path (i.e., a path defined by a teacher). A room is associ-
ated with a gameplay that aims purely at entertainment (i.e., avoiding enemies/traps) or
education (i.e., answering a question that matches a training task). These gameplays are
implemented as game elements with which players interact through an avatar. Figure 5.7
shows the structure of our activities as defined in Figure 5.3.

Figure 5.7 – Illustration of the levels of proposed activities from activity theory

Our training game activities propose task oriented gameplays. The task types and
gameplay categories involved have been defined based on exchanges with experts (i.e.,
teachers, didactic experts, game designers) and do not claim to be exhaustive. Figure 5.8
describes the interactions with experts involved in specifying the training and the game-
plays. Gameplay categories have been defined to offer a wide variety of possible game
interaction to answer questions, while task types have been designed to meet the training
needs which have been expressed by our experts. As a result, these task types could be
refined according to other didactic domains or other experts’ viewpoints, and the game
categories proposed could probably be extended.

74

5.5. Synthesis

Figure 5.8 – Overview of exchanges made with experts to specify training and gameplays
elements (in orange : exchanges described in Chapter 6, in blue : exchanges described in
Chapter 9)

Now that the activities and their elements are clearly defined, the third step of Prensky
(2005)’s process consists of successfully blending educational and game elements together
to build the activities. Accordingly, our question is as follows: How to coherently associate
the gameplay categories and task types to drive activity generation? The following chapter
addresses this issue.

75

Chapter 6

MAPPING GAME AND EDUCATIONAL
ELEMENTS

Contents
6.1 Existing Work . 78

6.1.1 Relations Between Dimensions 78
6.1.2 Methods to Define Relations Between Dimensions 79
6.1.3 Synthesis . 80

6.2 Mapping Approach Development 80
6.2.1 Identification of the Pivot . 81
6.2.2 Mapping Task Types onto Gameplay Categories 84

6.3 A Systematic Mapping Approach 88
6.3.1 Proposed Mapping Approach 88
6.3.2 Relations Between Task Types and Gameplay Categories . . . 90
6.3.3 Evaluation of the Relations . 90

6.4 Synthesis . 92

As a result of the ever-growing interest in game-based learning, a new research topic
has recently emerged regarding the alignment of educational and game elements

to ensure a balance and coherence in the content delivered. Although such an alignment
is necessary for good educational game design, it is a complex task (Kiili 2005; Prensky
2005) that requires to be addressed from a transdisciplinary perspective. Notably, because
multiple context-dependent variables (i.e., didactic domain, targeted knowledge or game
genre) must be considered.

Previously, Chapter 5 defined the game activities for declarative knowledge training
and their components. These activities are dungeons composed of rooms with gameplays
designed to answer training task-oriented questions. To ensure variety in terms of game
elements within an activity, it is necessary to identify the gameplays (i.e., or at least
a set of gameplays) that are suitable for each training task. Indeed, knowledge about
these relationships is essential at the design phase to guide the identification of practical
gameplays for each specific task, and at the runtime to control the generation process.

Consequently, the question is the following: how to determine and specify the re-
lationships between task types and gameplay categories necessary to automat-
ically create activities? Figure 6.1 illustrate the research question. Our assumption is
that answering that question at a higher level of abstraction (i.e., task types and abstract
gameplays) may enable the reuse of the relationships in various declarative knowledge
contexts.

77

Part II, Chapter 6 – Mapping Game and Educational Elements

Figure 6.1 – Illustration of the educational-game dimensions mapping research question

This chapter aims at presenting existing works on educational and game alignment 1

and introduce our solution to specify machine-readable relations to map our task types
and gameplays categories coherently. First, we provide an overview on the existing works
on educational-game alignment (i.e., definition of relations between element and methods
to specify relations). Next, we present the proposed method based on the use of numerical
questionnaires/quizzes as a pivot point (Lemoine et al. 2023b; 2024b) 2.

6.1 Existing Work
The alignment of educational and gaming dimensions has been tackled from two an-

gles in the literature: 1) proposition/definition of relationships between gaming and ed-
ucational elements, and 2) proposition of methods for specifying relationships between
educational and gaming elements for analysis or design purposes.

6.1.1 Relations Between Dimensions
Numerous works have identified relationships between various educational and game

elements. A pioneer is Prensky (2005) who proposes relations between game styles (e.g.,
action, role-play, adventure, flashcards, detective games), knowledge to be learned (e.g.,

1. Alignment can be seen as ensuring that the overall design of a game supports the educational
objectives. Mapping generally is more about the specific links between gameplay and learning objectives.
Mapping can be seen as a “low-level alignment” that contributes to the overall alignment.

2. Lemoine et al. (2024b) is an extended version of Lemoine et al. (2023b) and present a complete
version of our mapping approach. Thus, some sections of this chapter are exact extracts of this article.

78

6.1. Existing Work

facts, skills, judgement, behaviour) and learning activities (e.g., questions, coaching, im-
itation, observation). Rapeepisarn et al. (2008) extend Prensky (2005)’s work by linking
already defined relations to Chong et al. (2005)’s learning styles (i.e., activists, reflec-
tors, theorists, and pragmatists). Similar work has been developed by Dondi and Moretti
(2007), who propose to link knowledge types and learning objectives to high-level game
features (e.g., content engine, evaluation engine, chance) that the game should possess,
as well as game types (e.g., puzzle, quiz, action, driving) and the number of players
(e.g., one, many, one vs PC) expected. Khenissi et al. (2016) define relations between
four Felder-Silverman learning styles dimensions (i.e., sequential, global, sensing, intu-
itive) and four game genres (i.e., game based on puzzle, god games, casual games, games
based on simulation). Likewise, Jafari and Abdollahzade (2019) propose relations be-
tween Felder-Silverman learning styles dimensions (i.e., sequential, global, intuitive, vi-
sual) and three game genres (i.e., puzzle games, god games, simulation games). Sherry
(2010) identifies relations between eight game genres (i.e., shooters, action/fantasy/role-
playing, sports/sims, puzzle, quiz) and the six levels of Bloom (1956)’s taxonomy. Based on
a literature review, Lameras et al. (2017) associate learning attributes (e.g., information
transmission, collaborative, discussion and argumentation) with game attributes (e.g.,
task description, role-playing, nested dialogues), learning outcomes (e.g., remembering,
understanding, applying), feedback/assessment (e.g., progress, affect, formative and/or
summative) and teacher roles (e.g., player, motivator, facilitator). Some more context-
dependent approaches have been developed such as the one proposed by Kanaan et al.
(2022) which defines relations between competencies of the PIAF competency Framework
(i.e., classification of competencies related to the development of computational thinking
in basic education, established in 2021) and context-dependant gameplay features (e.g.,
enable library, select the appropriate exit, select wrong blocks).

6.1.2 Methods to Define Relations Between Dimensions
Some works have proposed frameworks to specify relations between the education and

game dimensions for existing game analysis. Degens et al. (2015) propose a 3-dimensional
model for analysing relations to identify discrepancies between game, learning, and users
from three view points: Learning vs User (i.e., determine the discrepancies between user
properties and learning goals), Game vs User (i.e., determine the discrepancies between
game mechanics and user properties), Game vs Learning (i.e., determine discrepancies
between game mechanics and learning goals).

Other works have proposed frameworks to specify relations between the education
and game dimensions for helping the design of new games. Hall et al. (2014) propose a
framework 3 to guide the designer in specifying the transition from learning content to
core-gameplay. Their framework is composed of five categories (i.e., goal, choice, action,
rules, feedback) in which a series of questions need to be answered from a real-world and

3. In this section, the term framework, used by the authors, refers to:“structured method that helps
to systematically organize and analyse data, theories, concepts, and ideas”.

79

Part II, Chapter 6 – Mapping Game and Educational Elements

a game-world perspective to guarantee game and education content alignment. For the
design of a game for learning programming, Debabi and Champagnat (2017) propose an
approach to associate categories of programming concepts with game missions based on a
modelling approach. Missions are modelled according to the categories they cover (i.e., a
percentage is associated to each category covered). Using a Trace-Based Subjective logic
algorithm, the categories of concepts to work on are selected for a learner, then a TF-IDF
algorithm is used to select the mission best suited to the player. However, this low-level
mapping is strictly context-dependent and cannot be reapplied to other contexts.

Finally, some works have proposed frameworks to specify relations between the ed-
ucation and game dimensions for game analysis and design. Gosper and McNeill (2012)
propose a theoretical framework called MAPLET having a bidirectional representation of the
learning environment (i.e., horizontal dimension consists of the alignment principles, verti-
cal dimension consists of learners’ intellectual maturity). This framework allows matching
aims (and learning outcomes), processes, learner expertise and game genre based on pre-
defined relations. Lim et al. (2013) propose the LM-GM Framework that uses a concept
called Serious Game Mechanics to support the transition between learning mechanics/ob-
jectives (e.g., guidance, participation, observation) to game mechanics (e.g., orientation,
collaboration, exploration). These mechanics are high-level concepts because they can
have many practical in-game implementations.

6.1.3 Synthesis
Although works which define relations between educational and game concepts/ele-

ments are very useful for the alignment during the general design of a game, due to the
high-level concepts that they link, they do not provide guidance for the mapping of ele-
ments during the creation of an educational game activity. Additionally, existing methods
to guide the definition of relations are either based on high-level concepts that can have
many implementations or strictly context-dependent approach that cannot be directly
reused (i.e., do not allow the definition of machine-readable relations). Therefore, these
methods are more oriented towards analysing existing games or assisting in the high-level
design of games, rather than specifying relations for low-level design purposes.

As a result, to answer our research question, our proposal consists of a systematic
method to guide the specification of machine-readable relationships describ-
ing the conditions under which gameplay categories are compatible with task
types (Lemoine et al. 2023b; 2024b). The following sections describe: 1) how the mapping
method was developed and 2) the resulting method for mapping gameplay categories and
task types, as well as the resulting relationships.

6.2 Mapping Approach Development
Declarative knowledge training and assessment are commonly performed through ques-

tionnaires and quizzes. Compared to paper quizzes, digital quizzes feature user interac-

80

6.2. Mapping Approach Development

tions that are closer to the ones found in basic training games (e.g., a multiplication table
training game in which correct answers make an avatar run faster or jump onto higher
platforms). Accordingly, using exercise types from numerical questionnaire formats as a
pivot point seems promising, especially since using existing material can reduce subjec-
tivity. Figure 6.2 illustrates the general idea of the proposed mapping approach.

Figure 6.2 – General idea to map task types onto gameplay categories

Elaborating our approach required several stages, beginning with an analysis of ques-
tionnaire/quizzes design formats to define the types of existing exercises (i.e., pivot, see
step 1 in Figure 6.2). From there, the following questions were raised: 1) How to draw a
parallel between the types of tasks and the exercises identified? and 2) How to draw a
parallel between the gameplay categories and the exercises identified? Since interactions
offered by quiz exercises are closer to game interactions and each concept (i.e., task types,
gameplay categories and exercises) is already characterised by its response modality (e.g.,
entering an answer, choosing between several proposals), our idea is to use exercise types
in order to identify criteria and parameters to specify each concept and ease the identifi-
cation of mappings (see step 2 in Figure 6.2). Then, the values of the parameters of task
types and gameplay categories are compared to identify matches (see step 3 in Figure 6.2).

This section presents how the mapping approach has been developed, whereas the
next section presents the proposed mapping approach, and the resulting relations between
dimension in our context (i.e., application of the mapping approach to the defined task
types and gameplay categories presented in Chapter 5).

6.2.1 Identification of the Pivot
Foremost, in order to extract existing types of exercise, six tools allowing the creation

of digital questionnaires/quizzes, extracted for the most part from Learning Management
Systems (LMS), have been analysed:
• the eponymous and proprietary format from the itsLearning (#1) LMS;
• GIFT (#2) a mark-up language for describing tests that is used within the Moodle

LMS;

81

Part II, Chapter 6 – Mapping Game and Educational Elements

• Performance Matters Assessment and Analytics (#3) format associated with the
PowerSchool LMS;
• NetQuizzPro (#4) a software allowing the creation of questionnaires;
• QTI (Question & Test Interoperability specification) (#5) from the IMS global

learning consortium that defines a standard format to exchange and store assessment
content;
• Tactileo – Maskott (#6) format associated with the French pedagogical platform of

the same name.
Our analysis mainly consisted of finding the different possibilities (i.e., form of ques-

tions possible and their parameters) offered by the exercises of the formats. A comparison
of the found possibilities led to the definition of twelve different types of exercises useful
for declarative knowledge (i.e., only exercises for which result verification can be auto-
mated). Exercises from different formats having an identical type of statement, number
of desired answers and for which the interaction to answer was similar, have been merged
to create a single type of exercise. Moreover, even though some formats combine several
exercises into one (e.g., itsLearning merges multiple choice and answers), our choice is to
consider them independently. Additionally, having intruders (i.e., elements that should
not be associated) had been requested by domain experts, but none of the “Associate”
type exercises analysed from the formats offered this possibility. Consequently, in our
definition it has been considered as a possibility. The exercise types defined are as follows:

✏ Alternative: choosing one answer between 2 options;
✏ Multiple choice: choosing one answer between X (i.e., X ⩾ 2) options;
✏ Multiple responses: choosing Y (i.e., zero or more) answers between X (i.e., X ⩾ 2)

options;
✏ Short answer : enter the correct answer. Multiple form of answers can be accepted,

e.g., for example, How much is 3 times 5? as two possible answers, which are 15
and fifteen;

✏ Fill-in-the-blanks: enter for each gap of a text the wanted “short” answer;
✏ Fill-in-the-blanks choices: choose for each gap of a text the correct answer from a

list. Each gap can have an associated list of options, or one list can be associated
to all gaps;

✏ Reconstruction: reassemble each significant element of an information;
✏ Associate–Group: associate elements from a list or multiple lists together. The as-

sociation can be done by pairs, or not. The elements can be associated with zero to
several other ones;

✏ Order : replace a set of information in the correct order (i.e., following a heuristic);
✏ Graphic choice: point or locate X (i.e., X ⩾ 1) elements on a picture.
✏ Graphic identification: write the correct label for each area-to-complete of a picture;
✏ Graphic association: associate the correct labels to X areas of a picture.

82

6.2. Mapping Approach Development

As a reminder, these types of exercises aim to deal with declarative knowledge in general.
As a result, some exercises offer a more visual approach that could be useful in the context
of geographical facts, for example. Table 6.1 presents an overview of which format provides
which exercises. It is worth mentioning that none of the formats provides every possible
form of exercise.

itsLearning GIFT PMAA NetQuizzPro QTI Tactileo
Alternative ✓ | | ✗ ✗ ✗

Multiple Choice ✓ ✓ ✓ ✓ ✓ ✓

Multiple Resp. ✓ ✓ ✓ ✓ ✓ ✓

Short Answer ✗ ✓ ✓ ✗ ✓ ✓

Fill-in ✓ | ✓ ✓ ✗ ✓

Fill-in Choice ✓ | ✗ ✓ ✓ ✓

Reconstruction ✗ ✗ ✗ ✓ ✗ ✗

Association | | | | | |
Order ✓ ✗ ✓ ✓ ✓ ✓

G. Choice | ✗ | ✗ ✓ |
G. Identification ✗ ✗ ✗ ✓ ✗ ✗

G. Association ✗ ✗ ✗ | ✓ ✓

Table 6.1 – Exercises by quiz format (✓ present; ✗ absent; | present but incomplete)

Exercises can be characterised by several parameters, see Table 6.2, namely: their in-
teractions, their response modality (i.e., input or choice), their statement type (i.e., format
of the question asked), the number of answers desired, and the number of propositions
presented (i.e., if the response modality is “Choice”). From our analysis, six types of
interaction have been identified:
• Select Y From X (i.e., the learner must select Y answers from a set of X values);
• Y (Select 1 from X1 to XY) (i.e, the learner must make a selection of one answer

from each set of proposals);
• a variant is Y (Select 1 from X) (i.e, the learner must select Y answers, one by one,

from a set of proposals);
• Write X (i.e., the learner has to enter X answers);
• Order X (i.e., the learner must order X elements correctly);
• Point X or Locate X (i.e., the learner must point X elements on a picture or locate

them);
• Match Y with X 1-to-1 or Match Y with X (i.e., the learner must associate elements

from Y with those from X by pairs or not).
Furthermore, three types of statements have been found: 1) classic statement (i.e., text
question that can be supported by an image), 2) graphical statement (i.e., classic state-
ment accompanied by a graphical element with which interactions are required to answer)
and 3) fill-in-the-blank statement (i.e., classic statement with embedded fill-in areas).

83

Part II, Chapter 6 – Mapping Game and Educational Elements

Number Statement Response Number Number
of Facts Types Modality Answers of Choices Interactions

Alternative 1 Classic Choice 1 2 Select 1 from 2
Multiple Choice 1 Classic Choice 1 2 to ∞ Select 1 from X
Multiple Resp. 1 Classic Choice 0 to ∞ 2 to ∞ Select Y from X
Short Answer 1 Classic Input 1 0 Write 1
Fill-in 1 Fill-in Input 1 to ∞ 0 Write Y

Fill-in Choice 1 Fill-in Choice 1 to ∞ 2 to ∞ Y (Select 1 from X)
Y (Select 1 from X1 to XY)

Reconstruction 1 Fill-in Choice 2 to ∞ 2 to ∞ Match Y with X 1-to-1

Association 2 to ∞ Classic Choice 2 to ∞ 4 to ∞ Match Y with X 1-to-1
Match Y with X

Order 2 to ∞ Classic Choice 1 to ∞ 2 to ∞ Order YFill-in
G. Choice 1 to ∞ Graphic Choice 1 to ∞ 2 to ∞ Point Y or Locate Y
G. Identification 1 to ∞ Graphic Input 1 to ∞ 0 Write Y
G. Association 1 to ∞ Graphic Choice 1 to ∞ 1 to ∞ Match Y with X 1-to-1

Table 6.2 – Characterisation of the exercises

6.2.2 Mapping Task Types onto Gameplay Categories
After specifying the pivot, the remaining questions are: How to map 1) task types

onto exercises and 2) gameplay categories onto exercises? The main idea consists of using
the parameters characterising each concept (i.e., task types, gameplay categories, and
exercises) to match them up.

Task Types to Exercises

Like exercises, task types can be characterised by several parameters: the number of
facts targeted by the task (i.e., the number of questions about facts asked simultaneously,
e.g., an identification task may simultaneously present several questions about different
facts), the types of statements allowed for such a task, the response modalities, the number
of desired responses, and the number of propositions presented (i.e., when the response
modality for a concrete task of this type is “Choice”). As an example, Identification
task type is defined as follows: 1 to ∞ facts can be targeted, only classic statements are
allowed, both response modalities can be used (i.e., input and choice), the number of
desired answers is equal to the number of facts targeted, and at least 2 propositions must
be presented when the modality is “Choice” (i.e., true/false).

Assigning values to parameters is not an easy task. Let’s take T1, a task consisting of
completing a fact having two missing elements, such as ? × ? = 12 (i.e., number of facts
= 1 and number of expected answers = 2). Initially, it would seem possible to perform
T1 using the Input response modality. However, presenting a statement in the context of
declarative knowledge, such as “? × ? = 12”, does not give enough information about the
fact to work with, i.e., is the answer expected 3 × 4 or 6 × 2. As another example, for
a T1-like task, depending on how choices are displayed, it is possible to have to choose

84

6.2. Mapping Approach Development

one or two answers. If the set of proposals represents numbers, such as [3, 5, 7, 4], two
answers must be chosen. However, if each proposal represents a multiplication (without
the result), such as [3× 4; 4× 5; 6× 3], a single answer is required. Table 6.3 presents the
task types characterisation. Thus, except for the interactions parameter, task types and
exercises are characterised by the same parameters.

Number of Statement Response Number of Number of
Facts Types Modalities Answers Choices

Completion
1

Input 1 0
Choice 2 to ∞Classic
Choice ∞ 2 to ∞

2 to ∞

Graphic
Input Nb Facts 0Fill-in
Choice ⩾ Nb Facts 2 to ∞

Order 2 to ∞ Classic Choice Nb Facts Nb FactsFill-in

Identification 1 to ∞ Classic Input Nb Facts 0
Choice 2 to ∞

Membership 1 to ∞ Classic Input 2 to ∞ 0
Identification Graphic Choice 2 to ∞

Table 6.3 – Characterisation of the task types

Consequently, the mapping between task types and exercises consists of comparing the
values of their common parameters. For example, Identification is mapped onto Short
answer because of the specification of Short answer, i.e., {number of facts = 1; type of
statement = classic; modality = input; number of desired answers = 1}, is a possible
configuration of a concrete task of the type Identification (i.e., the parameter values are
included into those of the type Identification). This gives questions such as “Did World
War II happened between 1914-1918?” and “Is 2 × 5 equal to 12?”. Figure 6.3 illustrates
this example.

Figure 6.3 – Mapping between task types and exercises illustration

85

Part II, Chapter 6 – Mapping Game and Educational Elements

Additionally, Completion is mapped to Fill-in-the-blanks choices exercise specified
as {number of facts = 1; type of statement = fill-in; modality = choice; number of desired
answers = [1−∞]; number of choices = [2−∞]}. This gives questions such as “ times
5 equals 15”.

Gameplay Categories to Exercises

Each category represents similar gameplays in terms of the actions to be performed,
such as opening the right chest, choosing the right pot, crossing the right bridge, which
belong to the Select category. Consequently, the common parameters of these gameplays
(e.g., number of facts queried, number of possible answers) are those of the category itself.

After analysis, these categories have been characterised using the following parameters:
the interactions, the response modality (i.e., input or choice), the statement type (i.e.,
format of the question asked), the number of facts targeted, the number of answers desired,
and the number of propositions presented (i.e., if the response modality is “Choice”).
These parameters are similar to those used for the exercises, and represent a minimal and
relevant set of parameters to discriminate the different categories and gameplays. As an
example, the Select category is characterised as follows: 1 to many facts can be targeted,
both classic and fill-in statement types are allowed, choice is the only possible response
modality, 1 to many answers can be desired, and two interactions (i.e., Select Y from X,
and Y (Select 1 from X1 to XY)) are possible.

Figure 6.4 – Division of gameplay categories illustration ((S) = Single, (M) = Multiple)

However, during the characterisation phase (i.e., association of values to parameters),
it became apparent that the possible interactions and the statement type changed de-
pending on whether one or more responses were desired. Therefore, in order to simplify
the mappings, each category allowing one or more possible responses have been divided
into two sub-categories: single (i.e., only one possible response) and multiple (i.e., from
two to several possible responses). Figure 6.4 illustrates the division of the Move cate-

86

6.2. Mapping Approach Development

gory into Move(S) and Move(M). As a result, our five categories have been cut down
into nine categories. Table 6.4 presents the characterisation of these gameplay categories.
Afterwards, the mappings consisted of directly comparing the values of the parameters.

Number Statement Response Number Number of
of Facts Types Modality Answers Choices Interactions

Select (s) 1
Classic

Choice 1 2 to ∞Graphic Select 1 from X

Fill-in Point 1 or Locate 1

Select (m) 1 to ∞
Classic

Choice 2 to ∞ 2 to ∞
Select Y from X

Graphic Point Y or Locate Y
Fill-in Y (Select 1 from X1 to XY)

Move (s) 1
Classic

Choice 1 2 to ∞
Select 1 from X

Graphic Point 1 or Locate 1
Fill-in Match 1 with 1

Move (m) 1 to ∞ Choice 2 to ∞ 2 to ∞

Match Y with X
Point Y or Locate YClassic

Select Y from XGraphic
Y (Select 1 from X1 to XY)Fill-in

Order X

Orient (s) 1 Classic Choice 1 2 to ∞ Select 1 from XFill-in

Orient (m) 1 to ∞ Classic Choice 2 to ∞ 2 to ∞ Y (Select 1 from X1 to XY)
Fill-in Y (Select 1 from X)

Position (s) 1
Fill-in Input

1
0 Write 1

Classic Select 1 from X
Graphic Choice 2 to ∞ Point 1 or Locate 1

Position (m) 1 Graphic Input 2 to ∞ 0 Write Y
Direct Resp. 1 Classic Input 1 0 Write 1

Table 6.4 – Characterisation of the gameplay categories ((S) = Single, (M) = Multiple)

Task Types to Gameplay Categories

On this basis, all the necessary information has been gathered to answer our main
question: Which type of task is suitable for which gameplay category? And under which
conditions? Accordingly, as a last step, the task types and categories have been compared
according to their parameter values (i.e., comparing Table 6.3 with Table 6.4). Figure 6.5
illustrates this mapping through an example. Throughout this process, it was observed
that four parameters represented the conditions of the mappings according to their values:
the type of statement, the number of facts targeted, the number of expected responses
and the response modality. As a result, the relations obtained are 6-tuplets composed as
follows: (<task type>, [<statement type1>, <statement type2>, . . .], <number of facts>,
<number of expected answers>, <response modality>, [<category1>, <category2>, . . .]).

87

Part II, Chapter 6 – Mapping Game and Educational Elements

Figure 6.5 – Mapping between task types and gameplay categories illustration

As a conclusion, this section presented the process followed to map task types for
declarative knowledge training onto gameplay categories for the Roguelite game genre.
Instead of only displaying the relations identified, our intention has been to propose an
approach that allows us to reproduce our approach and extend the results to other types of
tasks or categories of gameplays that may be identified in other contexts. In the following
section, the methods and relations obtained are presented.

6.3 A Systematic Mapping Approach
The previously presented work resulted in two contributions: 1) an approach for map-

ping designers’ own task types to their own game categories, and 2) mappings between
our task types and our gameplay categories.

6.3.1 Proposed Mapping Approach
The proposed mapping approach is a two to five-steps approach, illustrated in Fig-

ure 6.6. It is composed of two initial steps:
1. abstraction of the concrete tasks using the types of tasks presented (e.g., a task

“associate the right date with the historical event” becomes complete a fact with a
missing element) or by creating new task types;

2. association of the gameplay to one of the categories presented or to a new gameplay
category.

At this point, there are four possible states: new task types and categories have been
created, only new task types have been created, only new game categories have been
created, or nothing has been created. According to the state, the instructions below must
be followed:

88

6.3. A Systematic Mapping Approach

1. If new task types and new gameplay categories were created:
(a) Characterise the task types using the six parameters defined above (i.e., number

of facts, types of statements, response modalities, number of desired responses,
number of propositions, and interactions). In a sub-step, map task types and
quiz exercises (see Table 6.2) to define the values of the interactions parameter.

(b) Characterise the gameplay categories using the same parameters.
(c) Finally, compare both tables (i.e., characterisation) through their values. As

a reminder, the values of the Statement Type, Number of Facts, Number of
Answers, and Response Modality parameters are possible conditions of the re-
lations.

2. If only new task types were created, then realise step 1a and step 1c.
3. If only new gameplay categories were created, then realise steps 1b and 1c.
4. If no new elements have been created, the work is already done, see Figure 6.7.

Figure 6.6 – Proposed Mapping Approach

Let’s take as example a task type T1 characterised as {number of facts = 1; type of
statement = classic; modality = input or choice; number of desired answers = 1}, and
a gameplay category C1 = {number of facts = [1 −∞]; type of statement = classic or
fill-in; modality = choice; number of desired answers = [1 −∞]}. In this case, only one
relationship would result: (T1, Classic, 1, 1, Choice, C1).

89

Part II, Chapter 6 – Mapping Game and Educational Elements

6.3.2 Relations Between Task Types and Gameplay Categories
As a result, several conditional relations have been defined between our task types

and gameplay categories. Figure 6.7 presents these relations. For example, the task type
Order has a unique relationship: (Order, [Classic, Fill-in], [2 – ∞], Nb Facts, Choice,
[Move (m)]). Whereas, the task type Identification has four relationships, including:
(Identification, Classic, 1, Nb Facts, Input, [Position (s), Direct Response]) and
(Identification, Classic, [2 –∞], Nb Facts, Choice, [Select (m), Move (m), Orient
(m)])

Figure 6.7 – Conditional relations between task types and gameplay categories

6.3.3 Evaluation of the Relations
In order to gather feedback on the gameplay mock-ups (i.e., identify relevant gameplays

and game elements), members of the user group, from the AdapTABLES project, have
been invited to participate in a survey outlining possible gameplays for each type of
mathematical training tasks. The survey has also been an opportunity to validate some
mappings, i.e., the relations for which gameplay categories have a mock-up compatible
with a task. Appendix B presents the original survey questions.

Since the survey has been conducted in the context of multiplication tables training,
none of the relations related to the completion of several facts, the ordering of facts, or
having a condition with a Graphic type of statement have been evaluated, as the math-
ematics training tasks do not cover them. Nevertheless, for all other relations, gameplay
mock-ups had been defined for each category and task type.

In the survey, the experts were shown an image of a gameplay for a specific training

90

6.3. A Systematic Mapping Approach

task. A description of the gameplay specifying its category and how it functions has been
provided to give an understanding of how the player interacts with the game elements
to answer the question. Finally, the experts had to assess the relevance of the gameplay
to the task by answering a question “Do you find this gameplay relevant? yes or no”, in
addition, a comment box allowed them to detail their answers. Let’s take the example
of a gameplay which consists of selecting the right jar among several having proposals
(i.e., Select with Choice) to answer a textual question of the type “3 × ? = 15” (i.e.,
Completion 1 of the generic type Completion). If this gameplay is validated by the
survey, then so is the relationship (Completion, Classic, 1, 1, Choice, Select).

According to the results, the mappings seemed relevant. Negative comments had
been about didactic issues or a lack of precision. For example, gameplays that asked
players to place objects on the correct answer (i.e., category Move) have been rejected
because the selected answer remained hidden by the object, which can have an impact on
learners’ thinking. This is a cognitive issue, unrelated to the game mechanism, which can
be corrected by displaying the value above the object or by displaying the chosen value
within the question, in the right place and with a different colour. Figure 6.8 illustrates
both solutions: the statue pushed on the left tile hides the associated ‘5’ value, but 1) the
value appears on top of the statue, 2) the value appears now in purple inside the room’s
statement.

Figure 6.8 – Examples of possible solutions

Another main issue had been that the gameplay mock-ups for the Orient category
relied (at the time) on an object lantern where the avatar had to orient the light towards
the answer. This gameplay received mixed reviews because of the lack of cognitive meaning
of the object (i.e., light is emitted in every direction). In order to reach a satisfactory set of
gameplays, within the AdapTABLES project we held a focus group in which disagreements
about the gameplays had been discussed and solutions to the problems observed have
been proposed (e.g., using statues rather than lanterns).

91

Part II, Chapter 6 – Mapping Game and Educational Elements

6.4 Synthesis
In a previous chapter, a definition of declarative knowledge game training activities

(i.e., dungeons) and descriptions of the elements that constitute these activities (i.e., train-
ing task-oriented gameplays) have been provided. In this chapter, the challenge related
to the alignment of educational and game elements has been addressed, by proposing a
systematic method for mapping training task types with gameplay categories using exer-
cises from numerical quiz formats as the pivot. This work has enabled the definition of
machine-readable relations between our task types and gameplay categories. These rela-
tions are necessary to generate coherent game activities, since some gameplays are not
compatible with some tasks. For example, a gameplay consisting of orienting statues is
irrelevant for a task consisting of chronologically ordering events, whereas a gameplay con-
sisting of opening chests is consistent with a task consisting of completing a fact having
one missing element.

However, our proposed approach relies on the use of specific parameters, which char-
acterise the different concepts (e.g., type of statement, number of desired answers), to
map the concepts. These parameters are subjective in that they represent the minimum
set of parameters necessary to represent each concept in our opinion. Therefore, these
parameters can be debated from different viewpoints. Moreover, not all the relations have
been evaluated, but only the ones required for multiplication tables training.

At this point, all the elements, and their relations, required for generation are defined.
Therefore, the next step consists of looking into the modelling of these elements in order
to drive the generation process. The following chapter presents the conceptual aspects of
our design and implementation framework, describing the various interconnected models
involved in the generation.

92

Chapter 7

CONCEPTUAL DESIGN APPROACH

Contents
7.1 Conceptual Models for Activity Generation 94

7.1.1 Domain Model: Training and Knowledge 95
7.1.2 Game Model . 97
7.1.3 Activity Model . 99
7.1.4 Learner-Player Model . 100
7.1.5 Relation Model . 102
7.1.6 Synthesis & Discussion . 103

7.2 Mapping Questioned Facts with Game Elements 104
7.2.1 Generic Modelling of Questions about Facts 105
7.2.2 Modelling Gameplays Descriptions 107
7.2.3 Generic Generation of Varied Task-oriented Gameplays 108

7.3 Synthesis . 111

The automatic creation of varied and adapted activities requires structuring all the
previously defined information to allow its use by the activity generation algorithm.

Therefore, to answer the third research question, i.e., How to structure the required data
and their relations in order to drive the generation of coherent activities?, our proposal
consists of a set of conceptual models required to generate Roguelite-oriented game activ-
ities for declarative knowledge training (Lemoine and Laforcade 2023a; b).

Based on an observation related to structured data sources used in research to deal
with generation and adaptation (see Chapter 3), it is necessary to provide various models
providing information about:
• the game (i.e., description of the elements available and the progression of the game);
• the structure of the content to be produced (i.e., elements that constitute the con-

tent);
• the didactic domain (i.e., knowledge, how to work on it);
• the learner (i.e., knowledge, skills, progress/results);
• the player (e.g., preferences or profile, progress).
Additionally, given the objective of genericness for the framework, the conceptual

models proposed have been defined to be generic, i.e., to consider educational elements at
a level of abstraction that allows an independence of the framework of any specific didactic
domain. As a result, some conceptual models include extension points, i.e., portions of
the models that must be extended according to the targeted didactic domain in order
to specify domain-specific information such as the raw facts or the concrete tasks of the
didactic domain and their parameters.

93

Part II, Chapter 7 – Conceptual Design Approach

This chapter aims at introducing each of the conceptual models involved in the gen-
eration process, how they are constructed and their relationships, as well as a modelling
approach (i.e., included in the conceptual models) for the domain-independent mapping
of questions about facts onto gameplays, in order to generate varied gameplays at an im-
plementation level. First, we provide a detailed description of each conceptual model one
by one. Next, we present the need for a generic way of modelling questions about facts.
Finally, we introduce our proposal for generating varied training task oriented gameplays
for declarative knowledge based on a generic modelling of questioned fact.

7.1 Conceptual Models for Activity Generation
In this section six interconnected conceptual models involved in the generation process

are presented, namely: the knowledge, the training, the learner-player, the relationships,
the game, and the activity models.

Figure 7.1 – Interconnected conceptual models involved in activity generation

Since the aim is to generate activities, these conceptual models only include the
required elements for generation. In the following section, the domain model will
be presented as a composite of the knowledge and training models. Figure 7.1 provides
an overview of these conceptual models and their relations. The Activity Model to be
generated targets a learner-player and is composed of game elements, some of which

94

7.1. Conceptual Models for Activity Generation

are specifically dedicated to the display of training content. The Learner-Player Model
presents the progress in the training of the learner, and the preferences and progress in the
game of the player. Therefore, this model is related to the Game Model and the Training
Model. The Training Model itself is linked to the knowledge it addresses 1. Finally, the
Relation Model links the training and game elements by specifying relations 2.

7.1.1 Domain Model: Training and Knowledge
The first necessary conceptual model to drive generation is the domain model, which

structures the knowledge and training path. Figure 7.2 presents the domain conceptual
model, yellow concepts are related to the knowledge (i.e., knowledge conceptual model)
and orange concepts are related to the training (i.e., training conceptual model).

As previously described, training paths (i.e., TrainingPath) are composed of objectives
(i.e., Objective), which in turn are composed of levels (i.e., Level), and levels are themselves
composed of tasks (i.e., Task). An objective refers to the set of knowledge (i.e., SetOfFacts)
containing the facts it intends to work on, such as the multiplications of a table, a list of
historical dates, or descriptions of the planets of the solar system. A set of facts can be
composed of a visualisation (i.e., Visualisation) that is common to all the facts described
by the set, i.e., a map (e.g., a set of facts describing the regions of France can be associated
with a map of France, in which case each fact is assigned a position on the map).

Figure 7.2 – Conceptual domain model describing knowledge and training path

Facts within this conceptual model (i.e., Fact) represent raw knowledge. Facts can be
textual (e.g., 3 × 5 = 15) or graphic (i.e., a fact associated with one or more positions
on a visualisation, e.g., “Position of Paris on a map of France”) and can have a visual
representation, i.e., Picture (e.g., the historical date representing the fall of the Berlin Wall
can be associated with a picture of the population destroying it). From a pedagogical
strategy standpoint, in some cases, using incorrect answers predefined by the teacher,

1. In the literature, both these models are often known as the Domain Model (see Chapter 3).
2. Relations are often directly implemented in the code, and rarely made explicit through a dedicated

model. Our choice has been to made it explicit.

95

Part II, Chapter 7 – Conceptual Design Approach

rather than randomly generated incorrect choices can be favourable, e.g., in the case
of multiplication using the sum of the elements as an incorrect proposal. Accordingly,
facts can be associated to wrong answers (i.e., IncorrectData) allowing the specification of
possible incorrect proposals. Since this knowledge differs according to didactic domains,
the concept of fact and wrong data are abstract (i.e., they are therefore extension points).

Furthermore, an objective can be conditioned by prerequisite relationships to levels of
other objectives. More precisely, it means that a learner can only start an objective once
the prerequisite is satisfied, i.e., the percentage of questions encountered by the learner
and the percentage of the learner’s success to the questions satisfy the prerequisite.

Like previously mentioned, some parameters can be linked to the construction of facts
when they have several forms (e.g., the position of the equal for multiplication tables, the
position of the multiplicand 1 × 1, 1 × 2... or 1 × 1, 2 × 1...). In this case, all the tasks
of a level are parameterised the same way. Consequently, these parameters are directly
associated to the levels. Since these parameters are specific to the didactic domain, the
concept of level is abstract (i.e., it is an extension point).

Finally, a task is defined by its type (i.e., type corresponding to one of our four generic
training task types) and is composed of the three parameters previously mentioned: the
response modality (i.e., modality either choice or input), the maximum response time
allowed (i.e., maxTime), and the number of consecutive successful answers to each question
expected (i.e., nbConsecutiveAnswers which is the success validation criteria of facts).

In order to enable the generation process, some parameters must be added. In par-
ticular, for the algorithm to be in the capacity of computing the number of times a task
must be present in the activity, a parameter specifying the percentage of appearance (i.e.,
%appearence) of the task has been added. This parameter allows teachers to prioritise one
task over another depending on their training strategy. For example, for learners having
difficulty with multiplying, a teacher might favour a Completion 1 task over a Comple-
tion 2 task, and vice versa for learners with an aptitude for multiplication. Note that the
sum of the percentages of appearance of all the tasks at the same level must equal 100.
Another parameter has been added to allow selection of the gameplay category according
to the type of statement of the relations (defined in Chapter 6): a boolean indicating if
the task is graphic (i.e., graphic meaning that the task is based on questions with visuali-
sations). Moreover, another parameter is a boolean describing if the validation of answers
is automatic or realised manually by learners (i.e., manualValidation). This parameter
is necessary to select a gameplay having compatible elements, i.e., a manual validation
requires a button or a switch to validate answers, this element must be specified in game-
plays to be generated. Furthermore, this parameter is also necessary from a pedagogical
standpoint, as manual validation allows for correction and self-reflection on the given
answer, but it costs time in a game context.

Finally, although certain parameters are common to all tasks, others are specific to
the domain and related to a specific type of task (e.g., the type of element researched
for in a completion task). Accordingly, the concept of task (i.e., Task) is abstract (i.e.,
another extension point).

96

7.1. Conceptual Models for Activity Generation

7.1.2 Game Model
The second conceptual model required is the game model, which describes the struc-

ture of the game elements available for activity generation. Figure 7.3 presents the game
conceptual model.

As previously described, the training is carried out through task oriented gameplays
(i.e., Gameplay). Gameplay consists of the set of game elements with which players in-
teract or which provide them with in-game information. One of our design choices has
been to have two types of gameplays: question gameplay (i.e., QuestionGP), and trap
gameplays (i.e., NoQuestionGP) only describing situations involving traps or enemies to
avoid in order to preserve the essence of Roguelites.

Figure 7.3 – Conceptual game model

Each question gameplay is associated to a category (i.e., cat) for declarative knowledge
training through Roguelite (i.e., EGPCategory), as defined in Chapter 5, that represents
different means of answering questions about facts (e.g., moving a jar on an answer,
opening a chest having an answer, orienting a statue towards an answer, pushing a block on
an answer). As previously mentioned, when a training task requires a manual validation,
specific gameplays disposing of a manual validation system have to be used. In order to
differentiate between manual versus automatic validation gameplays, question gameplays
have a parameter stating whether they provide manual validation. Moreover, question
gameplays can be specially designed for a specific task type (e.g., presence of display
true/false for identification tasks). Therefore, they can have a parameter restricting their
availability to a specific type of task.

Having such a variety of gameplays (i.e., different categories and the possibility of
modelling different gameplays per category and different trap gameplays) enables greater
variability from the algorithm in choosing game elements to construct the activity. How-
ever, while a static definition of gameplays in terms of specific game elements provides a
certain level of variety, it also introduces two limitations:

1. it is time-consuming, i.e., gameplays must be described one by one according to the
game elements available;

97

Part II, Chapter 7 – Conceptual Design Approach

2. it is static, i.e., the addition of a new game element implies the need to specify new
gameplays for that element.

Consequently, in order to increase the variability of the proposed gameplays, our pro-
posal is to define the gameplays and element types (i.e., ElementType), which can be
used to build instances of these gameplays, through abilities. Abilities define the be-
haviour of game elements (i.e., the way in which the player avatar can interact with the
game element). As an example, a block can be pushed (pushable), a pot can be moved
(movable), a bridge can be crossed (crossable), and so on. Hence, several types of ele-
ment can be defined with the same ability, e.g., a cube and a jar can be moved (movable).
Thanks to this modelling, it is possible to define for example a gameplay of movable
elements, but generate playable gameplays (i.e. an actual description of the gameplay
which is going to be played) with different types of movable elements (e.g., the same
description of gameplay can produce instances with jars and with cubes). Gameplays are
then described by components 3 (i.e., AComponent) that rely on a specific ability rather
than a specific game element. This creates gameplay variability as the ability is known,
but the actual game elements will be selected by the generation algorithm (i.e., the same
game element is chosen for the same ability required in a gameplay definition). Moreover,
gameplays can specify an expected size of game elements, limiting the choice of a game
element type by the algorithm to those having the correct ability and size (e.g., only small
movable elements). There are two components types:
• simple components, i.e., elements not composed of other components (e.g., chest,

jars or enemies);
• structure components, i.e., elements composed of other components (e.g., compo-

nents describing blocks to be pushed on specific tiles: structure = [block, tile]).
Once again, to provide more variety, one of our choices has been to model different

types of rooms (i.e., RoomType) for the dungeons, which describe their access (e.g., north,
south, north-east) as well as all the possible positions for game elements. These descrip-
tions provide some flexibility to the algorithm in selecting from a number of room type
variants and in organising the rooms (i.e., positioning the game elements) differently at
each generation.

As mentioned previously, the design choices for generation include a mechanic for pur-
chasing/activating items. Basically, the idea is for items (i.e., EquipmentType) to be able
to lock/unlock some abilities, and therefore enable players to define preferences in terms
of gameplay within a game. Such a design choice ensures that players’ game preferences
are not purely aesthetic as the selection of gameplays, during generation, depends on the
items purchased and activated.

Furthermore, to generate game activities, it is necessary to know how the game pro-
gresses so that the difficulty can be increased as players progress through the game. Like
most of the Roguelites, progress is based on a difficulty level approach. Game levels have

3. Gameplays are described by means of components, since this is a conceptual description of the
gameplays and not a description of their implementation in the activities. The concrete gameplay elements
of activities are called PositionedElement in Figure 7.4.

98

7.1. Conceptual Models for Activity Generation

an initial number of rooms with and without question (i.e., initNbQRoom and initNbT-
Room). Based on the players’ game level and incremental factors (i.e., incrementQRoom
and incrementTRoom) these numbers are incremented:
• number question rooms = initNbQRoom+(incrementQRoom × player’s game level).
• number trap rooms = initNbTRoom + (incrementTRoom × player’s game level).
Moreover, many Roguelites feature a curse mechanism which appears once players

have reached a specific game level. As an example, from level eight, dark level curse is
unlocked, players then have to answer questions with a limited beam of light illuminating
them (i.e., simulation of a torch). As a result, game levels greater than or equal to eight
may be in the dark purely at random. Our decision has also been to keep this mechanism.
In our case, four curses have been considered: dark level (i.e., the level is in the dark),
labyrinthine (i.e., the dungeons are not linear 4), one life (i.e., the player has only one life
to finish the entire dungeon), out of time (i.e., the player must finish the level within a
given time). However, it is important to note that certain curses could be problematic
from a training standpoint (e.g., a dark level makes it difficult to read the questions and
therefore increases the response time and the risk of failure). Consequently, adding curses
is optional and should be discussed with teachers or configurable by teachers.

7.1.3 Activity Model
The third conceptual model involved in the generation process is the activity model,

which describes the structure of the activities that must be produced. As defined in
Chapter 5, an activity is a dungeon (i.e., Dungeon) which is described by the learner-
player it is generated for (i.e., lp), the objective and level of the training path targeted (i.e.,
objective/level), the curses it includes (i.e., curses such as labyrinthine or dark dungeon),
and it is composed of rooms (i.e., Room) including two specific rooms: the entry (i.e.,
starting point of the dungeon) and the exit (i.e., ending point of the dungeon). It is
important to note that from a generator standpoint, three out of four of our chosen curses
only are declared information included in the generated dungeon that have to be handled
by the game engine (e.g., dark mode, one life, out of time). However, the labyrinthine
curse has an effect on the generation algorithm, as the structure of the dungeon changes
based on the presence of this curse.

Furthermore, each room is described by the type of room (i.e., type) and gameplay (i.e.,
gameplay) it implements, as well as its accesses to other rooms (i.e., otherRoomsAccesses,
its neighbours). In the case of a question gameplay, the room is also described by the
training task (i.e., task) and the facts it questions (i.e., QuestionedFact which are built
from this task). Questioned facts represent questions about facts accompanied by a set of
proposals (i.e., correct and incorrect) or a set of expected answers (i.e., depending on the

4. Linear does not mean that the rooms always have one and the same direction (e.g., always towards
the north), but means that they have a single exit, different from the entrance, that can be, for example,
north, east or south. The exit is chosen by the generation algorithm in a pseudo-random way to maintain
the consistency with the previous rooms.

99

Part II, Chapter 7 – Conceptual Design Approach

Figure 7.4 – Conceptual activity/dungeon model

response modality of the task from which they are built). Taking the example of two tasks,
T1 and T2. T1 consists of choosing from a set of proposals the answer that matches the
result of the multiplication for each fact. Based on the parameters of T1, the questioned
facts are constructed to produce, for instance, questions such as 2 × 6 = ? with a set of
proposals like {8, 12, 14}. T2 consists of choosing from a set of proposals the possible
results of a given table. Based on the parameters of T2, the constructed questioned facts
would yield questions such as “Which are results of the table of 3?” and a set of proposals
like {3, 5, 7, 9, 12}.

Moreover, according to the room type and gameplay, each room will possess different
positioned game elements (i.e., PositionedElement). A positioned element is a game ele-
ment with a type (i.e.,GPElementType) which has the ability specified in the description
of the selected gameplay, and to which a position of the room type has been assigned.
These elements have different parameters depending on their type of gameplay (i.e., with
or without a question). In particular, if they represent one part of a question about a fact
(e.g., proposal, statement), the elements can have one or more display values (i.e., Display
which can either be text values or pictures described by their identifier) and a verifica-
tion parameter (i.e., isAnswerElement, e.g., a boolean describing whether the proposal is
correct or incorrect).

7.1.4 Learner-Player Model
The fourth conceptual model required is the learner-player model, which describes the

learner’s progress, the player’s progress and their preferences. In order to keep track of
a learner’s progress in their training path (defined by the teacher), their results on the
questioned facts for each task of an objective/level pair must be registered. This recording
can be used to calculate the number of questioned facts encountered/worked on and the
percentage of success for each task and level.

First, a learner-player is described by an identifier, its training path that is defined in
the training model because it can be shared among several learners (i.e., depending on the
teachers viewpoint), and its current game level (i.e., currectGameLevel) in order for the
algorithm to generate a dungeon according to the correct game difficulty (i.e., if the last
successful dungeon was level 8, then the next generated dungeon should be level 9). Fur-
thermore, in order to adapt to the player, their game preferences (i.e., GamePreference)

100

7.1. Conceptual Models for Activity Generation

Figure 7.5 – Conceptual learner-player model

have to be recorded. Therefore, learner-player are associated to a set of preferences de-
scribing for each item if they are bought and activated. Moreover, to adapt to the learner,
their training results (i.e., TrainingResult) for a task of a level of an objective of their
training path must be stored.

The previous models referred to raw facts and questioned facts (i.e., questions on raw
facts). Questioned facts have, in the case of the choice modality, the right and wrong pro-
posals. However, according to our discussions with the experts, it seems more interesting
from a didactic standpoint to constantly vary the incorrect proposals. Additionnaly, it
is necessary to be able to compare the results they have obtained for a given question
in order to evaluate weither a fact is considered achieved. However, if the results are
recorded on the basis of the facts questioned, the comparison will be irrelevant, since the
incorrect proposals of the questioned facts vary at each generation. Two questioned facts
for the same raw fact will therefore be considered as distinct. Furthermore, by recording
the results on the basis of the raw facts, the information about the type of question asked
is lost. As a result, in order to compare learners’ results on a given fact, it is necessary to
have a common base that does not vary (i.e., preservation of the question format, without
the elements that vary).

Figure 7.6 – Transformation process of raw facts into questioned facts

To this end, our proposal is a two-stage transformation process. First, questionable
facts are constructed on the basis of the raw facts present in the knowledge model and in
accordance with the context related triplet (objective – level – task). A questionable fact
(i.e., QuestionableFact) represents a question about a fact without incorrect proposals.
These facts are used to store learners’ results (i.e., Result) in the learner-player model
(e.g., response times, answers given). Second, questioned facts are built on the basis of
questionable facts (i.e., questionable facts with incorrect proposals). Figure 7.6 illustrates
this transformation process. Questionable facts are built up from domain-specific tasks.

101

Part II, Chapter 7 – Conceptual Design Approach

Therefore, the concept of questionable fact is abstract, since these questions on facts have
a domain-dependent form. Consequently, the generation of questionable and questioned
facts is necessarily domain-dependent.

7.1.5 Relation Model
The fifth and final conceptual model required is the relations model, which describes

conditional relations between task types and gameplays categories. Previously, we have
proposed a systematic method for defining machine-interpretable relationships between
training task types and gameplay categories, as well as relationships between our task
types and categories. In order to be used by the generation algorithm to correctly select
a gameplay, these relationships need to be specified.

Figure 7.7 – Conceptual relation (between task types and gameplay categories) model

In the literature, the definition of explicit relationships between the educational and
game dimensions is addressed at a general design level (e.g., Gosper (2011) and Lim et al.
(2013)) rather than at an algorithmic level. As a result, the relationships are directly taken
into account in the design of the game activity specific to a didactic domain (e.g., Debabi
and Champagnat (2017)). However, modelling these relations at an algorithm level allows:

1. modularity, i.e., possibility of modifying the relations without modifying the source
code of the generator;

2. extensibility, i.e., adding a task type (resp., gameplay) does not require adding any
code, only new relations between the new task type (resp., gameplay category) and
existing gameplay categories (resp., task types) to the existing “instance” of the
conceptual model.

Therefore, the relation conceptual model is “fixed”, meaning that it is intended to be
“instantiated” just once. It represents the structure of the relations (i.e., Relation) between
tasks and categories from Figure 6.7, that are conditioned by four parameters: the type
of statement (i.e., type), the number of questioned facts (i.e., nbFacts), the number of
expected answers (i.e., nbExpectedAnswers), and the response modality (i.e., modality).

On the basis of these relations, for a given domain-dependent task, the main steps
performed by the algorithm for selecting a compatible gameplay are as follows:

102

7.1. Conceptual Models for Activity Generation

1. get the associated task type of the targeted task;
2. collect every relation from the relation model related to this task type;
3. restrict the collected relations to those whose associated condition is satisfied

(compare the statement, number of facts, number of expected answers, and
response modality values of the condition and the original task);

4. collect the gameplay categories of the remaining relations;
5. restrict the gameplays of the previously collected categories, according to their

specific parameters (i.e., verify that the validation criteria are compatible and
that the gameplay is not restrained to another type of task);

6. randomly select a gameplay from the remaining set.

7.1.6 Synthesis & Discussion
In this modelling, despite the use of task types and gameplays categories connected

through the relation conceptual model, gameplay generation remains domain dependent
because modifications of the generation algorithm are required according to the different
forms of facts. Initially, it would seem that modelling questioned facts must be performed
dependently of the domain, since questions on facts have different shapes (e.g., “Which are
the results of table 3? {3, 5, 9, 13}”, “3× ? = 15”). Moreover, gameplays also have different
structures and elements based on their categories and layout (e.g., some game elements
have only one choice, others several, some are simple, others are composite). Consequently,
it would preliminarily seem that mapping questioned facts with game elements must
be performed specifically for each task/gameplay pair. Therefore, our question is the
following: How can questioned facts (i.e., from the activity conceptual model) be defined
domain-independently in order to be used generically in the generation of game elements
corresponding to gameplays descriptions ? Figure 7.8 illustrates this question.

Figure 7.8 – Illustration of questioned facts to game elements mapping problem

103

Part II, Chapter 7 – Conceptual Design Approach

Our proposal consists of a generic modelling of questioned facts, and an addition of
parameters to the gameplay components of the game conceptual model. These parame-
ters enable the association of the different parameters of the facts questioned with the
gameplay components (e.g., a component can be specified to display the propositions of
a questioned fact), in order to build elements that are positioned in the dungeon rooms.
The advantage of having a generic modelling of questioned facts is that it allows using
them and their parameters to instantiate concrete gameplays independently of any di-
dactic domain (i.e., generic representation of questioned facts that can be manipulated
as such). However, generating questions about facts (i.e., build the questions and their
generic representation) remains domain-dependent, since the construction of questionable
facts and the instantiation of questioned facts are specific to the didactic domain targeted.
Therefore, the general idea is that the questioned facts would be viewed as parametrisable
concepts and the questionable facts, constructed according to the domain, would be used
to correctly instantiate the parameters of the questioned facts. Figure 7.9 illustrates the
principle behind this idea. The purple concepts represent the domain-dependent source
code that creates the questionable facts and instantiates their generic form using the ‘re-
quired interfaces’ of the generic format, blue concept, for the proposed questioned facts
(i.e., by implementing the methods required according to the specific task and the form
of questions it produces).

Figure 7.9 – General idea behind the concept of generic questioned facts

7.2 Mapping Questioned Facts with Game Elements
This section presents a generic way to model questions about facts, a focus on the

game conceptual model to specify required parameters to drive a domain-independent
generation of task-oriented gameplays, as well as a possible generic algorithm for task
oriented gameplay generation. The approach has been presented in Lemoine and Laforcade
(2023b), therefore some passages in the next sections are taken from this article.

104

7.2. Mapping Questioned Facts with Game Elements

7.2.1 Generic Modelling of Questions about Facts
In order to generically (i.e., independently of any didactic domain) generate gameplays

(i.e., set of positioned elements in dungeon rooms) that question facts, questioned facts
must have a generic form. Our main idea consists of modelling these questioned facts as a
concept with several possible parameters. Even though, the form of question about facts
varies according to the training tasks, the elements composing them can be handled in a
generic way. Let’s consider the four following training tasks:
• T1 involves choosing an answer, from a set of proposals, to find the result of a

multiplication.
• T2 involves choosing from a set of proposals the possible results of a given multipli-

cation table.
• T3 involves naming 10 French urban areas on a map.
• T4 involves typing the answer of the result of a multiplication table.
Based on the parameters of each task (i.e., T1, T2, T3, T4) respectively, the algorithm

would produce questions about facts such as:
T1) “2 × 6 = ?” with a set of proposals like 14 (incorrect), 8 (incorrect), 12 (correct).
T2) “Which are results of table 5?” with a set of proposals such as 13 (incorrect), 25

(correct), 8 (incorrect), 15 (correct), 10 (correct).
T3) “Name 10 urban areas” with a map of France where cities are marked using points

and a set of accepted/possible solutions and their position on the map, for example.
T4) “2 × 6 = ?” and would expect the solution 12.

Even though the questions are different, these questions on facts have common com-
ponents. Every question is composed of a textual question. Moreover, depending on the
answer modality (i.e., choice or input) they either have a set of proposals (i.e., visual
or textual) or a set of expected/possible solutions (i.e., it can be composed of a single
expected solution, or multiple accepted solutions). Additionally, some questions can be
accompanied by a visualisation.

Figure 7.10 – Conceptual modelling of generic questioned facts

As depicted in Figure 7.10, questioned facts are concepts having parameters that must

105

Part II, Chapter 7 – Conceptual Design Approach

be instantiated if necessary. The first parameter is the question, i.e., a text describing the
question to be asked (i.e., QuestionParam). The second parameter is the proposals, i.e.,
list of possible choices (i.e., ProposalParam) when the response modality is choice. These
proposals are described by a value (i.e., text describing the proposal, it can also be the
identifier of a picture), a boolean expressing whether it is a picture or not (i.e., isPicture),
a boolean expressing whether it is a correct or incorrect proposal (i.e., isCorrect), i.e., this
is necessary to access learners’ answers. Additionally, a proposal can have a position (i.e.,
Position) on a visualisation (e.g., map). The third parameter is the solutions, i.e., list of
possible or expected answers (i.e., SolutionParam) when the response modality is input.
Like for the proposals, these solutions are described by a value, a boolean expressing if it
is a picture or not, and they can have a position on a visualisation. Moreover, a questioned
fact refers to the questionable facts it is built on (i.e., originalFacts) and can refer to a
visualisation. Furthermore, from an automation standpoint, it is necessary to know the
number of expected answers (i.e., numberOfAnswers, e.g., for a question such as “3 ×
? = ?”, two answers are expected) to declare whether a learner has entirely answered a
question or not. Figure 7.11 describes our examples of questioned facts for T1, T2, T3,
and T4 where only the necessary parameters have been instantiated.

Figure 7.11 – Examples of questions about facts in generic form

106

7.2. Mapping Questioned Facts with Game Elements

7.2.2 Modelling Gameplays Descriptions

Due to the context of declarative knowledge training, gameplays are task-oriented,
which means that their components have an intention, i.e., they represent parts of ques-
tioned facts such as a statement or a proposal. As shown in Figure 7.13, structures (i.e.,
composite components) can be instantiated for each questioned fact in a room (i.e., is-
PerFact meaning it possesses simple components displaying the statement and every
proposal), for each proposal of a questioned fact (i.e., isPerProposal meaning it possesses
simple components displaying the proposals and another game element), for a visual-
isation (i.e., isPerVisualisation meaning it possesses simple components expecting the
proposals/answers and a component for displaying the visualisation), or the statement of
a questioned fact (i.e., isPerStatement meaning it displays the statement of a fact with an-
swer areas such as fill-in statements, it possesses simple text components and other game
elements). Whereas simple components can be instantiated to represent statements (i.e.,
isPerStatement), proposals (i.e., isPerProposal), or input areas (i.e., isPerInput which
allows the declaration of input elements expecting specific input answers). These com-
ponents parameters are necessary to the algorithm in order to correctly instantiate the
positioned elements corresponding to the gameplay, as they enable it to know which parts
of questioned facts must be associated to which components.

Figure 7.12 – Focus and detail of the game conceptual model

Furthermore, some simple components can describe decoration elements or answer ar-
eas (e.g., tiles where the player must place elements). These elements can have a default
display (i.e., defaultDisplay, e.g., specific decoration text) or specify a default necessary
quantity (i.e., quantity) that depends on the expected number of answers. As previously
discussed, game elements are described according to their size. Hence, abilities can be
represented by different sized elements. Therefore, gameplay components can specify an
expected size in order for the generation algorithm to maintain consistency when instan-
tiating a gameplay.

107

Part II, Chapter 7 – Conceptual Design Approach

Figure 7.13 – Gameplays with structures (orange dashed borders) per fact (up-left) / per
proposals (up-right) / per statement (bottom-left) / per visualisation (bottom-right)

7.2.3 Generic Generation of Varied Task-oriented Gameplays
The generation algorithm is based on the previously described modelling approach and

consists in associating the values of the instantiated parameters of the generic questioned
facts with the game elements according to their intention. Therefore, for a gameplay G and
a questioned fact QF , the algorithm consists in scanning the components of G 5 and, for
each component to build positioned elements according to the values of the instantiated
parameters of QF and the properties of the component type. For example, for a simple
component with isPerProposal set to true, a positioned element will be created for each
element in the list of proposals of QF . More precisely, to generate varied task-oriented
gameplays for a given task, the algorithm consists of the following steps:

1. selecting a compatible gameplay, based on the steps defined in Section 7.1.5;
2. recursively scanning each component of the gameplay (i.e., to also consider com-

ponents of structures) and for each component:
(a) finding a game element with the right size and ability;
(b) selecting an available position of the room type to place the element;
(c) creating the corresponding positioned elements by correctly linking ques-

tioned facts parameters values to positioned elements parameter values
based on components parameters values (e.g., if a movable component
is for proposals, then the positioned elements with movable ability will

5. For structure components, a recursive call is made to build its own components.

108

7.2. Mapping Questioned Facts with Game Elements

display the proposals of the questioned fact);
(d) adding the built positioned elements to the room.

Appendix C presents the main structure of the generation algorithm.
Let’s consider a first example, involving gameplay G1 in which the player answers

by orienting an object. G1 is described by two simple components, one with the in-
tention of carrying the proposals (i.e., defined as such {isPerProposal=true, isPerState-
ment=false, isPerInput= false, ability=rotable}), another with the intention of dis-
playing the statement of the questioned fact (i.e., defined as such {isPerProposal=false,
isPerStatement=true, isPerInput= false, ability=displayable}). From this description,
gameplays comprising a positioned element carrying the proposals of a questioned fact
and an element displaying its question could be generated. Figure 7.15a presents a possible
generated gameplay for G1 and a questioned fact QF1, defined as follows {question=“2
× 9 = ?”, proposals=[20 (incorrect), 18 (correct), 16 (incorrect)], numberOfAnswers=1}.

Figure 7.14 – Example of generated positioned elements from a questioned fact, game
elements and a gameplay description

109

Part II, Chapter 7 – Conceptual Design Approach

Let’s now consider a rather more complex example describing a gameplay G2 of blocks
to be pushed, for the proposals of a questioned fact. G2 is described using a simple compo-
nent for displaying the statement and a structure comprising two simple components (i.e.,
a pushable component for proposals and a detector component of pushable compo-
nent). Based on the description of G2 and the questioned fact QF1, Figure 7.14 illustrates
an example of possible instantiations of positioned elements. That specific instantiation
results in the generated gameplay shown in Figure 7.15b.

As a final example, consider a gameplay G3 that consists of catching (i.e., touching)
an object. G3 is described by two simple components, one having the ability catchable
for the proposals of the questioned fact (i.e., defined as such {isPerProposal=true, isPer-
Statement=false, isPerInput=false, ability=catchable}), the other having the ability
displayable for the question of the questioned fact (i.e., defined as such {isPerPro-
posal=false, isPerStatement=true, isPerInput=false, ability=displayable}). Let’s sup-
pose three game elements are available, a rabbit with the ability catchable, a cow with
the ability catchable and a display with the ability displayable. The algorithm will
create a game element of the display type with the value “2 × 9 = ?” and three elements,
one for each proposal, of either the cow or rabbit type (see Figures 7.15c and 7.15d).

(a) rotable instantiated gameplay (b) pushable instantiated gameplay

(c) catchable instantiated gameplay (d) catchable instantiated gameplay

Figure 7.15 – Examples of generated gameplays, based on the same questioned facts but
different gameplay descriptions

Therefore, the variety of gameplays according to the tasks depends on: the number of
gameplay descriptions available, the number of gameplay categories compatible with the
training task, and the number of game elements defined with the same ability.

110

7.3. Synthesis

7.3 Synthesis
In summary, this chapter has presented the conceptual design approach involved in the

proposed framework for the design and implementation of generators of adapted and var-
ied activities. Drawing on a generic modelling of the questioned facts (i.e., representation
of the questions about facts present in the conceptual model of the activity), this approach
enables the generation of varied gameplays independently of any didactic domain.

However, it is important to note that this conceptual modelling is based on several
justified but subjective game design choices (i.e., the Roguelite game genre with an eco-
nomic game mechanic allowing the purchase of items having an impact on the selection
of gameplays). Therefore, modifying this specific context would require to re-specify and
re-design the game (meta-)model and possibly the gameplay categories, thereby requiring
to re-specify and re-design the relationships between the task types and gameplay cat-
egories. Nevertheless, such a change in context and its consideration in the approach is
beyond the scope of this thesis.

In order to adopt this conceptual modelling approach and support the implementation
of generators, we have developed a software infrastructure based on Model-Driven Engi-
neering principles, encompassing the various concepts previously presented. The following
chapter details this software infrastructure.

111

Chapter 8

SOFTWARE INFRASTRUCTURE

Contents
8.1 Model-Driven Engineering Foundations 113

8.1.1 Conceptual Models to Computerised Metamodels 114
8.1.2 Models as Inputs and Outputs of Generation 118

8.2 Activity Generation Algorithm 119
8.2.1 Algorithm for Generating Training Game Activities 119
8.2.2 Algorithm for Generating Questions about Facts 122

8.3 Extension Rules . 123
8.4 Synthesis . 125

Now that all the requirements have been defined for the design of generators of adapted
and varied game activities for declarative knowledge training, the next step consists

in considering how to implement these generators. More specifically, our focus is about
answering the fourth research question: How to specify every information required for
generation to enable computer interpretation for the development of activity generators?

The main idea is to offer a tool that facilitates the implementation of generators,
mainly for engineers/developers, in particular by making it possible to reuse existing
code and data. Our proposal consists of an extensible software infrastructure (i.e., a
framework in the sense of software engineering), based on the principles of Model-Driven
Engineering, providing a generation algorithm, models, and metamodels that limit the
extension to the addition of elements related to the targeted didactic domain (Lemoine
et al. 2024a).

This chapter aims to present the various components of this infrastructure and how its
extension to a didactic domain can be achieved. First, we present the MDE foundations
upon which the infrastructure is based by introducing a translation of the conceptual
models, presented in Chapter 7, into machine-interpretable metamodels and models. Then,
we describe the activity generation algorithm (i.e., generic) and the question about facts
algorithm (i.e., extension). Finally, we introduce the rules for extending the framework.

8.1 Model-Driven Engineering Foundations
In order to enable the use of information by the generation algorithm, this information

must be specified in a machine-interpretable format. By using Model-Driven Engineering,
in particular model and metamodel concepts, such information can be specified in order
to be used (i.e., generation of the code related to the metamodel concepts) and interpreted

113

Part II, Chapter 8 – Software Infrastructure

by the generation algorithm. Accordingly, our conceptual models, presented in Chapter 7,
have been translated into metamodels using the Eclipse Modeling Framework (EMF)
plug-in (Steinberg et al. 2009). On the basis of these metamodels, models conforming
to them can be created to detail the concrete elements to use for generation. Physically,
metamodels are XML files. The EMF tooling provides a visual representation close to UML
(Unified Modeling Language) class diagram notation. This representation is used in our
approach for its human readability. Figure 8.1 illustrates this approach.

Figure 8.1 – Interconnected models conform to metamodels involved in activity generation

8.1.1 Conceptual Models to Computerised Metamodels
The various interconnected metamodels are computerised representations in ecore for-

mat (i.e., a format defining the concepts that can be manipulated in EMF) of the con-
ceptual models previously identified. The metamodels define the structure of the different
data (i.e., input and output) involved in the generation process, and enable the automatic
generation of the code associated to the concepts that are modelled (i.e., productivity of
the models provided by the MDE approach). It should be noted that modelling and meta-
modelling are subjective activities since they depend on the modeller’s interpretation of
the domain and the conventions and styles they are accustomed to (e.g., specific naming
of elements, structure and appearance of the metamodels). This section presents each of
the metamodels involved in the framework.

114

8.1. Model-Driven Engineering Foundations

First, Figure 8.2 depicts the knowledge metamodel, which represents the yellow por-
tion of the domain conceptual model (see Figure 7.2) and describes the structure of the
knowledge of the domain, i.e., knowledge is composed of sets of facts having possible pa-
rameters (e.g., they can belong to a visualisation, have an image as visual representation).

Figure 8.2 – Knowledge metamodel

Then, Figure 8.3 displays the training metamodel, which represents the orange por-
tion of the domain conceptual model (see Figure 7.2) and outlines the structure of the
training paths defined by the teachers in terms of objectives with prerequisites, levels with
completion criteria, training tasks having four subtypes corresponding to the four task
types and associated to a response modality 1.

Figure 8.3 – Training metamodel

1. Note that there are two types of choice response modality: MultipleChoice which allows expressing
the total number of choices and the number of bad choices expected, and DynamicMultipleChoice that
only allows expressing the number of bad choices. This is purely strategic to facilitate the specification
of models for the tasks where the number of good answers can automatically be computed.

115

Part II, Chapter 8 – Software Infrastructure

Next, Figure 8.4 depicts the game metamodel, which represents the game conceptual
model (see Figure 7.3) and details the structure of the game progression, the different
gameplays, the different types of game elements (i.e., gameplay elements and equipments),
the types of rooms, the abilities, and the curses.

Figure 8.4 – Game metamodel

To continue, Figure 8.5 displays the learner-player metamodel, which represents the
learner-player conceptual model (see Figure 7.5) and outlines the structure of the learner-
player’s progress in training (i.e., results per task for each objective/level pair) and in the
game (i.e., game level reached), as well as the structure of their game preferences (i.e.,
equipment purchased and activated/deactivated).

Figure 8.5 – Learner-player metamodel

116

8.1. Model-Driven Engineering Foundations

In addition, Figure 8.6 depicts the relation metamodel, which represents the relation
conceptual model (see Figure 7.7) and details the structure of the conditional relations
between training task types and gameplay categories that have been defined in Chapter 6.

Figure 8.6 – Relation metamodel

Finally, Figure 8.7 displays the activity metamodel, which represents the activity con-
ceptual model (see Figure 7.4), and describes the structure of the training game activities
for declarative knowledge, i.e., dungeons which are composed of rooms having accesses
to others rooms, positioned elements 2, and questioned facts. Every time an activity is
demanded, a model conforming to the activity metamodel has to be generated.

Figure 8.7 – Activity metamodel (to be generated)

2. Two subtypes of positioned elements have been included: one for structure components that can
create an inner position (i.e., assigned to each element of the structure) and another for structure compo-
nents intended to display a visualisation that references the visualisation and can create inner positions
(i.e., each of the positions of the visualisation).

117

Part II, Chapter 8 – Software Infrastructure

8.1.2 Models as Inputs and Outputs of Generation
Concrete data on a given didactic domain or on the game are described through

models. Models are conforming to metamodels and are represented as XMI (XML Metadata
Interchange) files. The generation algorithm requires several models as input and builds
a model as output. The required input models are:
• The knowledge model which describes the raw facts to work on, such as multiplica-

tion tables, judo techniques and historical dates.
• The training model which describes the different training paths. Note that the knowl-

edge and training models and metamodels depend on the didactic domain targeted.
• The game model which describes all the concrete game elements available to the

generator, i.e., describes the different abilities available (e.g., pushable, movable,
rotable), the different gameplays (see Section 7.2.2), the different room types, the
game progression, the different curses (e.g., labyrinthine, only one life, dark mode),
the types of elements (e.g., jars, blocks, statues), the equipments (e.g., power belt
unlocking the ability to push objects).
• The learner-player model which describes results, progress, and preferences of a

learner-player. Hence, a model conforming to the learner-player metamodel must
be created for each learner-player. These models have to be automatically updated
after each completed game level to allow the generation algorithm to take into
account new results (i.e., updates must be performed by the game → independent
component of the framework, see Figure 5.2).
• The relation model 3 which describes the relations presented in Figure 6.7.

(a) Extract of the relation model (b) Extract of our game model

Figure 8.8 – Tree-based EMF model view of models with properties on the selected node

3. Note that the relation model should not be modified or remade, as relations are not supposed to
change unless new task types or gameplay categories have been created (or in case of disapproval of our
approach). Therefore, this model has already been created.

118

8.2. Activity Generation Algorithm

Figure 8.8 presents examples of tree-views of the relation and game XMI models.
As a result, generation automatically produces an activity model describing a dungeon

for an objective/level pair of the training path of a learner-player based on the information
provided in the input models.

8.2 Activity Generation Algorithm
The core idea behind the activity generation algorithm is to capture as many com-

mon elements as possible, and only add the code necessary for the elements related to
the didactic domain, in particular, the creation of questionable facts and the methods for
instantiating questioned facts within the generation algorithm. Figure 8.9 illustrates this
idea. The following subsections present the different steps of the activity generation algo-
rithm and specify the extension mechanism used to enable the creation of questionable
facts and the associated methods.

Figure 8.9 – Principle of extension for questions on facts generations

8.2.1 Algorithm for Generating Training Game Activities
The activity generation algorithm has been developed in Java and consists of a pro-

cedural algorithm decomposed of several incremental steps (similar to Laforcade and

119

Part II, Chapter 8 – Software Infrastructure

Laghouaouta (2018) and Sehaba and Hussaan (2013)). As depicted in Figure 8.10, the
algorithm is divided into four parts that are broken down into nine steps:
P1) selection of all dungeon elements (i.e., steps one to six);
P2) creation of the structure of the dungeon (i.e., step seven);
P3) instantiation of the elements of the dungeon (i.e., step eight);
P4) transformation of the dungeon (i.e., step nine).

Figure 8.10 – Activity generation algorithm steps

The algorithm works as described below. First, it computes the number of trap rooms
and question rooms. Then, it selects an eligible objective/level pair from the learner’s
training path based on their previous results and progress. An objective/level pair is
considered eligible as soon as their prerequisites are satisfied (i.e., the learner’s results
meet the conditions of the prerequisites). In our current proposal, an objective/level pair
is randomly selected from the set of eligible ones. However, strategies to choose this pair,
defined by teachers or experts for example, could be implemented as proposed by Melero
et al. (2016) 4.

Next, for each question room of the future dungeon, tasks are chosen by the algorithm
based on the selected level (i.e., levels are described by a set of training tasks to complete).
These tasks are selected based on their percentage of appearance and learners’ progress in
their training path. Once a task has been completed, it no longer appears in the dungeons,
and its percentage of appearance is distributed proportionally to the other tasks.

To continue, if the objective/level pair had never been selected before, its related ques-
tionable facts are generated. Next, according to the previously selected tasks, the required
number of questioned facts for the dungeon are generated based on these questionable
facts. Note that the questioned/questionable fact generation methods called by the ac-
tivity algorithm are specific to the didactic domain (see Section 8.2.2 for more details on
questioned/questionable fact generation).

4. Note that for each random choice regarding educational content, a predefined strategy or heuristic
could be implemented.

120

8.2. Activity Generation Algorithm

After that, a gameplay (i.e., trap or question) is selected for each room (i.e., except
for entry and exit rooms) as well as compatible game elements. As a reminder, since
player’s preferences consists of bought and activate/deactivate items that unlocks abilities
which describes gameplays, selected gameplays are restricted based on players’ preferences.
Finally, the curses in the dungeon are selected based on the learner’s current game level
and the game progression defined, with a probability of one out of two.

The generation of the structures of the dungeons is based on the principle of Grid-
Based Dungeon Generator, i.e., space is divided into cells into which rooms can be placed.
However, our approach differs in that two types of room are managed (small = 1 square
cell and large = 4 square cells), creating a need to handle overlapping rooms. Large rooms
are necessary to deal with tasks requiring large visualisations such as maps. For linear
dungeon generation, the algorithm is based on a principle of backtrack in order to avoid
dead-ends due to room types not having all possible accesses (i.e., north, south, east, west,
north-east, etc.) making generation impossible. No such problem arises for labyrinthine
dungeon generation, as each room is eligible at each iteration.

Figure 8.11 – Step-by-step example of the generation algorithm. Puzzle pieces colours
correspond to Figure 8.1 and puzzle pieces with borders present data modified or created
by the algorithm

Then, the next step consists in initialising the content of the dungeon in terms of game

121

Part II, Chapter 8 – Software Infrastructure

elements based on every previously made choices. The aim is to correctly instantiate the
elements selected for each room of the dungeon according to the gameplays and facts
questioned. To this end, the values of the game elements (e.g., texts to be displayed,
proposals carried by the objects) are defined in order to allow the questioning of a specific
fact by associating the parameters of the facts being questioned with those described in
the gameplays (see Section 7.2.3).

Figure 8.11 presents a step-by-step example of the algorithm. Finally, an operational
step (not presented in Figure 8.11) consists of transforming the XMI model of the dungeon
into an XML file. The main benefits of this transformation are to remove references to other
XMI models/files (i.e., to flatten the model) and to make the system more portable. (i.e.,
many plugins interpret XML, but not XMI). This transformation is performed using the
Epsilon Transformation Language (ETL), see transformation source code in Appendix D.

8.2.2 Algorithm for Generating Questions about Facts
As previously explained, raw facts have parameters that depend on the didactic domain

targeted. For example, a fact representing a multiplication can be modelled as a class
containing three integers x (operand), y (operand) and res (result). Whereas, an historical
date would be modelled by a class containing a string (event) and a date or period
(integers). Furthermore, questionable facts (i.e., intermediate form of question about facts
present in the learner’s model) are also domain-dependent since only questioned facts (i.e.,
question about facts present in the activity model) have a generic form.

Figure 8.12 – Structure of the template method design pattern (Shvets 2018)

122

8.3. Extension Rules

Note that it would be possible to make a transition directly from the raw facts to the
questioned facts, but it would involve an additional challenge to understand the generic
form of the questions. Using this intermediate form allows the definition of your own
object to manipulate (i.e., questionable fact), which makes it easier to create methods
for instantiating the questioned facts, since you are handling an object that you have
modelled.

As a result, questionable fact generation algorithms and the methods allowing activity
generators to instantiate questioned facts must be implemented during the extension of
the framework. In order to guide this extension, the fact generation algorithm of the
framework follows a design pattern called template method (see Figure 8.12) which allows
for a domain-independent main part and domain-dependent extensions.

In the main part (i.e., corresponding to the AbstractClass in Figure 8.12), the skele-
ton of the generation code is captured, i.e., all the invariants relative to generation. By
contrast, the extensions (i.e., corresponding to the ConcreteClass(es) in Figure 8.12) fo-
cus on the implementation of the methods used for the creation of the questionable facts
and the instantiation of the parameters of the questioned facts (i.e., only the necessary
methods are implemented depending on the task and the questionable fact concerned).
Consequently, for each type of questionable fact (i.e., one for each training task of the
didactic domain), a concrete class of the abstract main class is created.

8.3 Extension Rules
In order to build a domain-specific activity generator, the framework must be extended

at different levels, in particular: metamodels have to be specified to declare domain-
specific parameters, accordingly models have to be designed to describe domain-related
information and the code for generating questions about the facts has to be developed.

Regarding the metamodels introduced, extension points (i.e., areas that must be ex-
tended in order to build a generator) are represented as abstract classes that do not
already have concrete subclasses. Three metamodels are targeted by this extension: the
knowledge metamodel, the training metamodel and the learner-player metamodel. Raw
facts, wrong data, levels, training tasks, and questionable facts have different structures/-
parameters depending on the didactic domain targeted. For instance, the method for
building tables (operand × table or table × operand) depends solely on the mathematics
discipline. Moreover, in a completion task (e.g., finding the historical date, or the result of
a multiplication), the element to be sought depends on the domain (e.g., result, operand
or table for multiplication, or event or date for history). Therefore, these elements have
to be modelled according to the domain.

Moreover, as questionable facts are domain-dependent, the same applies to their gen-
eration (see the previous section). Finally, to be able to generate activities, a model
conforming with each metamodel has to be created: a knowledge model describing the
raw facts, a game model describing the game elements available to the generator, a rela-
tions model enabling the generator to maintain the coherence of the activities, a training

123

Part II, Chapter 8 – Software Infrastructure

model describing the training path and a learner-player model. The learner-player model
requires only minimal information: identifier, training path, and creation of empty pro-
gressions (i.e., game and training), since this model must be updated according to the
learner-player’s results in the game. In addition, certain models are defined by default in
the framework, such as the relation model and a version of a game model 5, and are there-
fore reusable. Table 8.1 summarises for each model: who creates it, when it is created, if
it is modified, when it is modified and by whom.

Model Who
creates it?

When is it
created?

Is it
modified?

When is it
modified?

Who
modifies

it?

Knowledge
model

Engineer
based on

experts input

When
developing

the generator
−

When errors
are present Engineer

Training
model

Teachers
through

authoring
tools or
engineer
based on

experts input

When
developing

the generator
Ë

When creat-
ing/modify-
ing/remov-

ing a
training path

Teachers
or engineer

Learner-
Player
model

Engineer
based on

experts input
(only basic

information)

When
developing

the generator
Ë

Each time
the player

completes a
dungeon

The game

Game
model Engineer

When
developing

the generator
Ë

When
adding new

game
elements

Engineer

Relation
model Engineer

When
developing

the generator
−

In case of
disagreement

or errors
Engineer

Activity
model

Generation
algorithm

When the
generator is

running
é

Table 8.1 – Summary of the creation and use of the models required for activity generation
(é = not modified, Ë = modified, − = can be modified, but should not be)

5. A game engine has been developed to interpret and deliver playable dungeons, thus a game model
related to this engine (i.e., the elements available to the engine) is provided in the framework.

124

8.4. Synthesis

In conclusion, extending the framework in order to design a domain-specific activity
generator entails three main steps:

1. Extending the metamodels according to the targeted domain at the level of:
(a) the raw facts (i.e., AbstractFact)
(b) the questionable facts (i.e., AQuestionableFact)
(c) the levels (i.e., Level)
(d) the tasks (i.e., CompletionTask, IdentificationTask, MembershipTask, Ordering-

Task)
2. Specifying models that conform to the metamodels (i.e., XMI files):

(a) a knowledge model
(b) a training model describing a training path
(c) a learner-player model (i.e., with minimal information)
(d) a game model (optional, possibility of using the default one)
(e) a relations model (optional, possibility of using the default one)

3. Implementing the generators of questions about facts for each task specific to the
didactic domain by following the template provided.

Appendix E presents a step-by-step guide for extending the framework.

8.4 Synthesis
In this chapter, the final aspect of our contribution has been presented: an extensible

software infrastructure, implemented in Java, allowing the implementation of Roguelite
oriented generators of varied game activities adapted to learner-players for declarative
knowledge training. This infrastructure encompasses the conceptual approach presented
in Chapter 7, which is based on the elements and methods presented in Chapters 5 and 6.

Figure 8.13 – Design framework and generators components overview

125

Part III

Application & Evaluation

127

Chapter 9

EXTENSIONS OF THE FRAMEWORK

Contents
9.1 Generator for Multiplication Tables Training 130
9.2 Generator for History-Geography Facts Training 134
9.3 Generator for Judo Facts Training 137
9.4 Generator for Solar System Facts Training 141
9.5 Discussion . 144

Since the proposed framework is founded on a conceptual approach integrated within
a software architecture that is resting on various previously defined properties (see

Section 5.1), its assessment relies on verifying that these properties are respected. There-
fore, the objective is not to evaluate the learning effect provided, especially
since the research object is activity generators and not educational games 1,
but rather the ability to produce generators that respect various constraints.

Underpinning the framework are two key properties: (FP1) possibility of expressing
different didactic domains, and (FP2) possibility of expressing teachers’ views on individ-
ual learners’ training (see Section 5.1). Assessing FP1 requires a focus on the ability of the
framework to be extended to different didactic domains. To that end, the framework has
to be extended to at least two different didactic domains, such as multiplication tables
and history-geography facts. Assessing FP2 involves highlighting the ability to specify
different training paths proposed by different teachers. This involves modelling at least
two training paths proposed by two different teachers. It should be noted that to evaluate
FP2, variations in the didactic domain are not relevant as the creation of training paths
is similar across domains, therefore the domain has no influence on the ability to model
different training paths.

Figure 9.1 – Overview of the evaluation of the framework through proof-of-concept

1. Generators produce activities that have to be interpreted by another software component, the game
engine, and cannot be directly played by players.

129

Part III, Chapter 9 – Extensions of the Framework

This chapter aims to evaluate these two properties by presenting different applica-
tions of the framework (see Figure 9.1). First, we present an extension to the context of
AdapTABLES (i.e., multiplication tables). Then, we depict an extension to the context of
history-geography facts required for the Diplôme National du Brevet des Collèges (i.e.,
French exam taken in 9th grade). Next, we present an extension for judo facts, i.e., tech-
niques and referees gestures. Then, an extension for two training tasks for solar system
facts is presented. Finally, a discussion about the framework is provided.

9.1 Generator for Multiplication Tables Training
As part of the exploratory study conducted within the AdapTABLES project, five train-

ing tasks for multiplication tables have been defined with mathematics experts (see Sec-
tion 5.3): completion 1, completion 2, reconstruction, identification, mem-
bership identification. The study has also enabled us to specify different parameters
for building questions about facts (i.e., multiplication can be questioned in different ways),
such as the method for building tables with the “operand × table or table × operand”,
the position of the equal symbol “on the left or on the right”, the min/max range of
multiplications questioned (i.e., a teacher may only want to work on the table of three
from 1 to 5: 3 × 1, 3 × 2, 3 × 3, 3 × 4, 3 × 5).

Figure 9.2 – Extension (in blue) of the metamodels for multiplication tables

Once the specificities of the domain have been defined, we followed the rules of the ex-

130

9.1. Generator for Multiplication Tables Training

tension guide (see Appendix E) to design and implement a dedicated generator. First, the
necessary metamodel elements have been specified (see Figure 9.2), namely:
• a raw fact type that represents multiplications (i.e., MTFact) composed of three

integers: the table, the operand and the result.
• the five task types (i.e., MTCompletion1, MTCompletion2, MTReconstruction, MT-

Membership, MTIdentification) being subclasses of the generic types (i.e., Comple-
tionTask, MembershipIDTask, IdentificationTask).
• a level (i.e., present in the training paths) composed of the different building pa-

rameters (e.g., resultPositionSetup corresponding to the position of the equal) of the
questions on the facts (i.e., MTLevel).
• for each task, a specific type of questionable fact (i.e., subclasses of Questionable-

Fact) has been created. Usually, one or more questionable facts are constructed
from a single raw fact, depending on the table construction parameters. However,
in the case of the membership identification task type (i.e., identifying the results of
a table), questionable facts are built from several raw facts, depending on the task
settings (i.e., expected number of choices).

(a) Mathematics knowledge model (b) Mathematics training model

Figure 9.3 – Tree-based EMF views of mathematic models

Then, we specified the knowledge model (see Figure 9.3a) and developed the fact ques-
tion generators for each of the five tasks by following the “template method”. Listing 9.1
presents an extract of the implemented code by displaying the method required to instan-
tiate the questionable facts for the reconstruction task (i.e., MTQFReconstruction).

131

Part III, Chapter 9 – Extensions of the Framework

Moreover, we specified training paths with two teachers, one from CE1 (2nd grade)
and one from CE2 (3rd grade), in order to model different groups of learner levels in their
respective classrooms. Both training paths have been modelled as shown in Figure 9.3b.

Listing 9.1 – Example of generateQuestionableFactsOf implementation fot the re-
construction task

1 @Override
2 protected Set < AQuestionableFact > generateQuestionableFactsOf (ATask task , AbstractFact

fact) {
3 if(fact instanceof MTFact) {
4 MTFact mF = (MTFact) fact;
5 int min = ((MTLevel) dungeonElements . getChosenLevel ()). getMinInterval ();
6 int max = ((MTLevel) dungeonElements . getChosenLevel ()). getMaxInterval ();
7 if(min <= mF. getOp () && mF. getOp () <= max){
8 Set < AQuestionableFact > qfs = new HashSet < >();
9 TableBuild build = ((MTLevel) dungeonElements . getChosenLevel ()). getBuildSetup

();
10 ResultPosition equalPos = ((MTLevel) dungeonElements . getChosenLevel ()).

getResultPositionSetup ();
11 if(build . equals (TableBuild .MIX)) {
12 if(equalPos . equals (ResultPosition .MIX)) {
13 qfs.add(buildQF (mF , ResultPosition .LEFT , TableBuild . OPERAND_TABLE));
14 qfs.add(buildQF (mF , ResultPosition .RIGHT , TableBuild . OPERAND_TABLE));
15 qfs.add(buildQF (mF , ResultPosition .LEFT , TableBuild . TABLE_OPERAND));
16 qfs.add(buildQF (mF , ResultPosition .RIGHT , TableBuild . TABLE_OPERAND));
17 } else {
18 qfs.add(buildQF (mF , equalPos , TableBuild . TABLE_OPERAND));
19 qfs.add(buildQF (mF , equalPos , TableBuild . OPERAND_TABLE));
20 }
21 } else {
22 if(equalPos . equals (ResultPosition .MIX)) {
23 qfs.add(buildQF (mF , ResultPosition .LEFT , build));
24 qfs.add(buildQF (mF , ResultPosition .RIGHT , build));
25 } else {
26 qfs.add(buildQF (mF , equalPos , build));
27 qfs.add(buildQF (mF , equalPos , build));
28 }
29 }
30 return qfs;
31 }
32 }
33 return new HashSet < >();
34 }
35
36 private MTQFRebuild buildQF (MTFact fact , ResultPosition resPos , TableBuild build) {
37 MTQFRebuild qf = new MTQFRebuildImpl ();
38 qf. setID (taskID +"-QAFACT "+ factsCounter); factsCounter ++;
39 if(build . equals (TableBuild . OPERAND_TABLE)) {
40 qf. setSoluceLeft (fact. getOp ());
41 qf. setSoluceRight (fact. getTable ());
42 }else {
43 qf. setSoluceRight (fact. getOp ());
44 qf. setSoluceLeft (fact. getTable ());
45 }
46 qf. setSoluceRes (fact. getRes ());
47 qf. setResultOnRight (resPos . equals (ResultPosition . RIGHT));
48 qf. getFacts ().add(fact);
49 return qf;
50 }

132

9.1. Generator for Multiplication Tables Training

As part of the AdapTABLES project, a game engine has been developed, using the Unity
game engine and employing C# scripts, to interpret game levels (i.e., activities/depart-
ments) as 2D representations. This game engine allows:

1) the translation and interpretation of XML generated in playable dungeons;
2) the visualisation of the dungeon structure (i.e., maps);
3) to play the game levels.

Figure 9.4 displays screenshots of dungeon rooms presenting an example of gameplay for
each multiplication tables training task. The generator has been implemented with French
prompts/proposals, therefore, texts present in the screenshots are in French.

(a) Completion 1 (b) Completion 2

(c) Reconstruction (d) Identification

(e) Membership Identification

Figure 9.4 – Examples of gameplays for multiplication tables training tasks interpreted
by the game engine

133

Part III, Chapter 9 – Extensions of the Framework

9.2 Generator for History-Geography Facts Training
The Diplôme National du Brevet des Collèges (DNB) is an exam taken at the end of

the 9th Grade in France, and certifies that learners have mastered the common base of
knowledge, skills and culture defined by the government. In the context of history and
geography, a number of declarative knowledge items, known as repères, are required to
support higher learning levels (e.g., understanding, application, analysis of Bloom (1956)’s
taxonomy) in these didactic domains 2.

Discussions with two history-geography teachers and an examination of previous exam
papers (i.e., the questions asked on these repères) have led to the identification of six
training tasks: association, legending a map, identification, timeline, name
and locate, membership identification.

Similarly to mathematics, once the tasks and their parameters have been defined, we
followed the rules of the extension guide (see Appendix E) to design and implement a
dedicated generator. First, the necessary metamodel elements have been specified (see
Figure 9.5), namely:
• three types of raw facts:

◦ a type representing historical events (i.e., HistoryFact) composed of a string
corresponding to the event, a time (i.e., Time corresponding to a date or a
period that have a position on a timeline), and a possible visual representation
(e.g., image of people destroying Berlin’s Wall to represent its fall).
◦ a type representing map legends (GeographyLegendFact) composed of a text

and a visual representation (i.e., symbol) both having a position on a map.
◦ a type representing geographical elements on maps (GeographyFact) composed

of a type representing the type of elements targeted (e.g., cities, countries,
regions, etc.), a string representing the corresponding value, a category (i.e.,
members of European Union, France regions), and a position on a map.

• the six task types (i.e., LocateOnAMap, GeographyMembership, HistoryIdentifica-
tion, HistoricalEventAssociation, LegendAMap, HistoricalChronology 3) being sub-
classes of the generic types.
• a level without any specific parameters (i.e., HGLevel).
• like for mathematics, a specific type of questionable fact (i.e., subclasses of Ques-

tionableFact for textual questions or AVisualizationQuestionableFact for questions
based on a Visualization) has been created for each task.

Then, we specified the knowledge model (see Figure 9.6a) representing the principal
repères and developed the fact question generators for each of the six tasks by following
the “template method”. Listing 9.2 presents an extract of the implemented code by dis-
playing the method required to instantiate the questionable facts for the legend task
(i.e., LegendQuestionableFact).

2. The common reference proposed by the government for history-geography is available at
https://www.education.gouv.fr/bo/13/Hebdo42/MENE1327027N.htm.

3. Note that timeline is named HistoricalChronology in the model.

134

https://www.education.gouv.fr/bo/13/Hebdo42/MENE1327027N.htm

9.2. Generator for History-Geography Facts Training

Figure 9.5 – Extension (in green) of the metamodels for history-geography facts

Additionally, a training path composed of a single objective/level pair targeting every
fact and proposing every task has been modelled to test the generator (see Figure 9.6b).

135

Part III, Chapter 9 – Extensions of the Framework

However, due to a lack of time to exchange, no training path has been developed with
teachers. This would be an interesting and relevant perspective.

(a) History-geography knowledge model (b) History-geography training model

Figure 9.6 – Tree-based EMF views of history-geography models

Listing 9.2 – Example of generateQuestionableFactsOf implementation for the legend
task

1 @Override
2 protected Set < AQuestionableFact > generateQuestionableFactsOf (ATask task , AbstractFact

fact) {
3 Set < AQuestionableFact > questionableFacts = new HashSet < >();
4 if(fact instanceof GeographyLegendFact && fact. getBelongsToVisualization () != null) {
5 questionableFacts .add(buildQF ((LegendAMap) task , (GeographyLegendFact) fact));
6 }
7 return questionableFacts ;
8 }
9

10 private AQuestionableFact buildQF (LegendAMap task , GeographyLegendFact fact) {
11 AVisualizationQuestionableFact qf = new LegendQuestionableFactImpl ();
12 qf. setID (taskID +"-QAFACT "+ factsCounter); factsCounter ++;
13 qf. setVisualization (fact. getBelongsToVisualization ());
14 if(task. getMissing (). equals (ELegendTarget . SYMBOL)) {
15 qf. getVisualizationSolutions ().add(buildVisualizationSolution (fact.

getRepresentation (). getID () , fact. getSymbolPosition () , true));
16 } else {
17 qf. getVisualizationSolutions ().add(buildVisualizationSolution (fact. getLegend ().

getText () , fact. getLegend (). getPosition () , false));
18 }
19 qf. getFacts ().add(fact);

136

9.3. Generator for Judo Facts Training

20 return qf;
21 }

Finally, the game engine has been completed to add objects called prefabs allowing the
interpretation of pictures/images such as maps. Therefore, Figure 9.7 displays interpreted
dungeon rooms presenting examples of gameplay for each history-geography training task.

(a) Association (b) Legending a map

(c) Identification (d) Timeline

(e) Name and Locate (f) Membership Identification

Figure 9.7 – Examples of gameplays for history-geography facts training tasks interpreted
by the game engine

9.3 Generator for Judo Facts Training
Judo is a Japanese martial art created in 1882 by Jigorō Kanō. The progression is

achieved by learning and mastering techniques specific to each level. The judokas evolve

137

Part III, Chapter 9 – Extensions of the Framework

through a system of coloured belts (i.e., white, yellow, orange, green, blue, brown, black)
whereby each belt represents a level of skill and knowledge acquired. Obviously, the skills
to be acquired cannot be taught through our approach, as they are know-how. However,
the knowledge to be acquired is declarative: naming/identifying techniques and knowing
refereeing gestures (i.e., essential for any fighter). Accordingly, our proposal is to extend
the framework to provide training for the knowledge required in judo.

Figure 9.8 – Extension (in cyan) of the metamodels for judo facts

On the basis of the needs for knowledge in the context of judo, we have identified three
training tasks:
• technique identification, i.e., associate two items of a judo technique together

from name of technique, representative image, description 4 (e.g., “Hiza-Guruma is
?”, with a set of picture proposals corresponding to judo techniques).
• refereeing gestures identification, i.e., complete the two missing elements

of a fact composed of the referee’s announcement, the meaning of his announcement
and the associated gesture (e.g., “HAJIME – ? – ?” with a set of proposals like [start
of the fight, image “hand-alongside-body”]). Usually, this task involves interrogat-
ing several facts simultaneously, and none of the questioned facts have “incorrect
choices”, as these choices are those of the other questioned facts.
• technique classification, i.e., identify the techniques belonging to a specific cat-

egory such as sacrifice or immobilisation (e.g., [O-soto-gari, Uki-waza, Hiza-guruma]
“Which are Ashi-waza (legs) techniques?”).

4. A description is often given by instructors to describe the techniques, e.g., Ippon-seoi-nage: shoulder
throw from one side.

138

9.3. Generator for Judo Facts Training

Like before, once the tasks have been defined, we followed the rules of the exten-
sion guide (see Appendix E) to design and implement a dedicated generator. First, the
necessary metamodel elements have been specified (see Figure 9.8), namely:
• two types of raw facts:

◦ a type representing judo technique composed of three strings and an image:
the name, the description, the category, and a visual representation of the
technique (i.e., JudoTechniqueFact).
◦ a type representing judo referee gestures composed of two strings and an image:

the name, the description, and a visual representation of the gesture (i.e.,
JudoGestureFact).

• the three task types (i.e., IdentifyTechnique, IdentifyArbitrationGesture, Classi-
fyTechnique) being subclasses of the generic types.
• a level without any specific parameters (i.e., JudoLevel).
• a specific type of questionable fact (i.e., subclasses of QuestionableFact) has been

created for each task.

(a) Judo knowledge model (b) Judo training model

Figure 9.9 – Tree-based EMF views of judo models

Then, we specified the knowledge model (see Figure 9.9a) representing the principal
judo techniques grouped according to the colour of the belt (i.e., gradual learning depend-
ing on the colour of the belt in judo) and developed the fact question generators for each
of the three tasks. Additionally, since the training path is usually the same for all learners,
our approach has been to model a single training path consisting of one objective for each

139

Part III, Chapter 9 – Extensions of the Framework

coloured belt (see Figure 9.9b) and one for referee gestures. Each objective has a single
level whose prerequisite is the level of the lower belt (e.g., the yellow belt objective has
as its prerequisite the level of the white belt objective), i.e., except the referee gesture
objective which does not have any prerequisites. Finally, each level has three tasks: two
technique identification tasks (i.e., one in which the description must be associated to the
name, and the other in which the corresponding image must be associated to the name),
and a classification task. However, the objective regarding referee gestures only has a
single referee gestures identification task. Obviously, other paths can be created, but this
path allows us to carry out tests and serves mainly as a proof-of-concept.

Then, the extension for generating questions about facts for each of the tasks has been
implemented by following the “template method”. Listing 9.3 presents an extract of the
implemented code by displaying the method required to instantiate the questionable facts
for the technique classification task (i.e., JudoQuestionableClassifyFact).

Listing 9.3 – Example of generateQuestionableFactsOf implementation for the tech-
nique classification task

1 @Override
2 protected AQuestionableFact generateQuestionableFactOf (ATask task , List < AbstractFact >

facts) {
3 JudoQuestionableClassifyFact qf = new JudoQuestionableClassifyFactImpl ();
4 qf. setID (taskID +"-QAFACT "+ factsCounter); factsCounter ++;
5 qf. setCategory (((JudoTechniqueFact) facts .get (0)). getCategory ());
6 for (AbstractFact judofact : facts) {
7 qf. getTechniques ().add (((JudoTechniqueFact) judofact). getName ());
8 qf. getFacts ().add(judofact);
9 }

10 return (AQuestionableFact) qf;
11 }

Finally, the game engine has been completed to add objects called prefabs allowing
the interpretation of images, i.e., techniques and gestures. Figure 9.10 displays interpreted
dungeon rooms presenting examples of gameplay for each history-geography training task.

(a) technique identification (b) refereeing gestures identification

140

9.4. Generator for Solar System Facts Training

(c) technique classification

Figure 9.10 – Examples of gameplays for judo facts training tasks interpreted by the game
engine

9.4 Generator for Solar System Facts Training
In the next chapter, an experiment involving the extension of the framework by an

external engineer is presented (see Chapter 10). In order to guarantee the feasibility of
the instructions provided to the engineer, we have extended beforehand the framework to
the solar system domain. This extension has been chosen as a test case for the experiment
with the engineer.

The solar system is a system formed by eight planets, including the Earth, orbiting
around a star, the Sun. Planets are characterised by their distance from the sun and their
orbit (i.e., the curved trajectory formed as it moves through space). Many characteristics
could be explored in this domain, but our modelling focuses solely on these two.

Figure 9.11 – Extension (in violet) of the metamodels for solar system facts

141

Part III, Chapter 9 – Extensions of the Framework

For the experiment, our decision has been to only define two training tasks to limit
the time required for extending the framework. These two tasks are the following:
• order planets, i.e., order planets according to their distance from the sun (e.g.,

[Mars, Mercure, Jupiter, Saturn] “Order from closest to farthest from the sun.”).
• identify planets, i.e., fill-in the map of orbits by positioning the planets (e.g., a

map of the orbits in which the planets must be correctly positioned).
These tasks, to be implemented, have been strategically chosen to cover the definition
of a subclass of ordering task (i.e., OrderingTask), which was not covered by the other
implemented domains, and a graphical task in order to impose the creation of two different
types of questionable facts (i.e., AQuestionableFact and AVisualizationQuestionableFact).

As before, the rules of the extension guide (see Appendix E) have been followed to
design and implement a dedicated generator. First, the necessary metamodel elements
have been specified (see Figure 9.8), namely:
• a single type of raw facts representing planets of the solar system composed of a

String, a long integer, and the position on a map of its orbit (i.e., SolarSystem-
Planet).
• both task types (i.e., IdentifyPlanets, OrderPlanets) being subclasses of the generic

types (i.e., CompletionTask, OrderingTask).
• a level without any specific parameters (i.e., SolarSystemLevel).
• a specific type of questionable fact (i.e., subclasses of QuestionableFact or AVisual-

izationQuestionableFact) has been created for each task.

(a) Solar System knowledge model (b) Solar System training model

Figure 9.12 – Tree-based EMF views of solar system models

142

9.4. Generator for Solar System Facts Training

Then, we specified the knowledge model (see Figure 9.12a) representing the planets and
developed the fact question generators for both tasks by following the “template method”.
Listing 9.4 presents an extract of the implemented code by displaying the method required
to instantiate the questionable facts for the order planets task (i.e., QFOrderPlanets).

Additionally, a training path composed of a single objective/level pair proposing an
OrderPlanets task and two IdentifyPlanets tasks (i.e., one with input, the other with
choice) has been modelled to test the generator (see Figure 9.12b).
Listing 9.4 – Example of generateQuestionableFactsOf implementation for the order
planets task

1 @Override
2 protected AQuestionableFact generateQuestionableFactOf (ATask task , List < AbstractFact >

facts) {
3 QFOrderPlanets qf = new QFOrderPlanetsImpl ();
4 qf. setID (taskID +"-QAFACT "+ factsCounter); factsCounter ++; int i = 1;
5 for(SolarSystemPlanet fact: orderFactsAscendingly (facts)) {
6 PlanetOrder solution = new PlanetOrderImpl ();
7 solution . setPlanet (fact. getName ());
8 solution . setOrder (i); i++;
9 qf. getSolutions ().add(solution);

10 qf. getFacts ().add(fact);
11 }
12 return qf;
13 }
14
15 private List < SolarSystemPlanet > orderFactsAscendingly (List < AbstractFact > facts) {
16 List < SolarSystemPlanet > sfacts = new ArrayList < >();
17 for(AbstractFact fact: facts) {
18 sfacts .add ((SolarSystemPlanet) fact);
19 }
20 Collections .sort(sfacts , (o1 , o2) ->
21 (((Long) o1. getSunDistance ()). compareTo ((Long) o2. getSunDistance ())));
22 return sfacts ;
23 }

Finally, the game engine has been completed to add prefabs allowing the interpretation
of pictures, i.e., map of orbits. Figure 9.13 displays interpreted dungeon rooms presenting
examples of gameplay for each solar system training task.

(a) identify planets (b) order planets

Figure 9.13 – Examples of gameplays for solar system facts training tasks interpreted by
the game engine

143

Part III, Chapter 9 – Extensions of the Framework

9.5 Discussion

Throughout this section, various extensions/applications of the framework to several
didactic domains have been presented. These extensions represent proofs-of-concepts, of
the genericness of the general approach and the tool that implements it, i.e., in particular
thanks to the use of MDE, which guarantees the conformity and the coherence between
the conceptual and software approaches. In addition, the training models defined with
mathematics teachers provide a means to evaluate the ability to consider different teachers’
viewpoints on training for different learners.

Even though the process of creating extensions has been simplified and reduced to
the design and implementation of elements related to the didactic domain, it still requires
considerable skills, particularly in the capacity to understand and get to grips the existing
elements in order to exploit them. Part of the difficulty is inherent to the MDE context,
which requires an understanding of the principle and interest of metamodels and models:
what they represent in the environment/what they are used for and how they are used/how
to use them. Another difficulty lies in the ability to grasp the concepts captured in the
existing models/metamodels in order to manipulate, extend or use them (e.g., type of
training task, abstract/raw fact, questionable fact). Even though the extension guide
attempts to reduce this complexity, it cannot completely remove it.

Another observation concerns the close relationship between the raw facts and the
types of training task. Indeed, in the case where several forms of raw facts are modelled
(i.e., history-geography, judo), it can be noticed that each type of raw fact corresponds to
one or more specific tasks. In our examples, there is a correlation between the form of the
facts and the way in which they are questioned. This information has an impact on the
modelling of training paths, since an objective questioning a specific task must therefore
target facts that are compatible with that task, otherwise no questions can be generated
for that task. As an example, the geography legend facts are typically related to the
task of legending a map and no other. Since this constraint (i.e., each objective contains
the facts corresponding to the tasks present in their levels) depends on the didactic domain
and its modelling, it cannot be verified by the algorithm. However, it would be possible
to verify this constraint through model validation rules defined specifically in relation to
the didactic domain, i.e., possibility of adding them after creating an extension.

Furthermore, through these different extensions, it is possible to observe that some
elements are specified exactly the same way, e.g., the mathematics completion 1 task (i.e.,
MTCompletion1) and the solar system planets identification task (i.e., IdentifyPlanets).
Therefore, it seems possible to factorise some elements in order to define an additional
layer of abstraction. More precisely, subclasses of our task types (e.g. CompletionTask)
could be defined to represent different variants of our generic classes. For example, a
subclass of CompletionTask could be created to represent tasks where only one element
is missing. Hence, MTCompletion1 and IdentifyPlanets would extend this subclass.

A further discussion point regards the current generation algorithm. The latter is based
on certain random pedagogical choices, e.g., selection of the objective/level to work on.

144

9.5. Discussion

An interesting improvement would be to implement a sort of “template-method” design
pattern for specifying pedagogical strategies, as defined by Melero et al. (2016). This
would allow the teacher’s viewpoint on training to be considered further.

Finally, declarative knowledge is theoretical knowledge stated in the form of declara-
tions or propositions including facts, rules, laws, etc. Facts are objective/verifiable infor-
mation considered as basic knowledge. In our context, the term fact has been used in-
terchangeably with declarative knowledge. However, in retrospect, this view seems rather
simplistic, as the proposed model allows declarative knowledge to be considered in a
broader sense. Indeed, it would be possible to model sentences to present definitions (e.g.,
two strings of characters, one for the word, the other for the definition) or laws (e.g., two
strings of characters, a number of laws, and a text) or even to model verbs to be conju-
gated and question them through sentences. Accordingly, it appears that using the term
fact is reductive and that another term would have been more appropriate to describe the
knowledge being used.

This chapter has presented several extensions of the framework that represent proof-
of-concepts of the properties of the framework. The following chapter will describe the
tests carried out to evaluate the properties associated to the generators produced by the
framework.

145

Chapter 10

TESTS AND VALIDATION OF THE
FRAMEWORK

Contents
10.1 Framework Properties Evaluation through Tests 148

10.1.1 Learner Adaptation of the Generated Activities 149
10.1.2 Player Adaptation of the Generated Activities 152
10.1.3 Variety of the Generated Activities 153

10.2 Validation of Static Properties of Models 156
10.3 Framework Evaluation with an Engineer 157
10.4 Use of a Generator in Ecological Conditions 160
10.5 Synthesis . 161

In the previous chapter, the ability of the framework to produce generators for different
didactic domains (i.e., genericness) and to consider the teacher’s viewpoint on train-

ing by allowing the definition of training paths supplied by different teachers have been
evaluated. As already mentioned, the aim of the evaluation is to verify the ability of the
framework to produce generators respecting specific constraints.

The produced generators are underpinned by three previously defined properties (see
Section 5.1):

GP1) generated activities must be adapted to the learner’s level and results in their
training path;
GP2) generated activities must be adapted to the player’s game preferences;
GP3) generated activities must be varied in terms of both education and game
elements.

The assessment of these properties entails verifying that the generated activities are
consistent with the training path and the learner’s progress in this path, that game prefer-
ences are respected (i.e., items purchased/activated) and that there is a variety of elements
in the dungeon rooms.

In addition, other test methods can be used to evaluate the framework, such as:
• model validation, i.e., testing that the models satisfy the semantic constraints not

captured in the metamodels;
• experimentation with engineers, unfamiliar with the framework, aiming at the cre-

ation of an extension of the framework;
• proof-of-concept involving the use of generators in games under ecological condi-

tions.
Although the design choices linked to the game (i.e., purchase/activation approach)

147

Part III, Chapter 10 – Tests and Validation of the Framework

or the effective retention of learners could be evaluated, this evaluation requires the de-
velopment of a game (i.e., interface linking the player to the generated activities). As the
design of concrete games are not our research object, such evaluation is outside the
scope of this thesis.

Figure 10.1 – Overview of the overall evaluation of the framework

This chapter aims to present the evaluation of the properties of the produced gener-
ators, as well as deepening the evaluation of the framework (see Figure 10.1). First, we
present the system tests implemented for the three properties of the generators. Then, we
describe the model validation rules implemented to verify the input models supplied to
the generators. Next, we detail an experiment carried out with an engineer to extend the
framework. Finally, we present a game for multiplication tables training, used in ecological
conditions.

10.1 Framework Properties Evaluation through Tests
Generators are designed to be specific to a particular didactic domain. In our context,

the system tests have been performed using the mathematics generator. However, as the
algorithm is generic (i.e., only the generation of questions on facts is domain-specific), the
results can be generalised (e.g., the objective selection algorithm does not change from
one domain to another).

148

10.1. Framework Properties Evaluation through Tests

10.1.1 Learner Adaptation of the Generated Activities
Learner adaptation is based on the respect of the training path defined by their teacher

and on their progress in this path. Evaluating such adaptation involves verifying that
the generated activities are consistent with the predictions that can be deduced from
an analysis of the learner’s training path. Activity consistency is based on two levels of
analysis:

A) the selection of the objective/level pair to work on;
B) the tasks present in the dungeon according to the selected level, the learner’s progress

and the desired percentage of appearance for each task.

A) Selection of the objective/level pair. According to each learner’s training path
and their progress in that path, the generation algorithm must select an objective/level
pair among those eligible (i.e., an objective/level pair whose prerequisites have been
reached). In order to evaluate the objective/level pair selection algorithm, various edge
cases have to be verified, particularly:
• that the objective/level pair selected for the dungeon is eligible;
• that all eligible pairs are selected at least once at some point;
• that none of the ineligible pairs are selected;
• that levels whose percentage of questions about facts encountered and percentage

of successes have been reached are considered ineligible and therefore are never
selected.

Figure 10.2 – Training path and learner’s progress used for testing the objective/level pair
selection

In order to evaluate this aspect of the dungeon generation algorithm, a fictive training
path and a learner-player model which have been defined to implement these edge cases
are illustrated in Figure 10.2 (i.e., in orange the training path, and in green the learner
progress). The proposed training path is composed of four objectives, either having two
or three progressive levels (i.e., Li with i ∈ [1, 3]). Only the third objective (O3) has a

149

Part III, Chapter 10 – Tests and Validation of the Framework

prerequisite that is achieved as the expected percentages of encountered questions about
facts and success have been reached by the learner. Additionally, as the learner reached
the expected percentage of encountered questions about facts and success of O2 − L1,
O4 − L1, O4 − L2, O4 − L3 these levels are ineligible, so is the objective O4. However, for
O1, O3 the first level is eligible whereas for O2 the second level is eligible. Any other level
is considered ineligible.

On the basis of these test models, a test method has been created, in Java using the
JUnit framework 1, for each of the edge cases, namely:
• for one generated dungeon, the objective/level pair selected is eligible (i.e., belongs

to [O1 − L1, O2 − L2, O3 − L1]);
• any eligible objective/level pair (i.e., O1−L1, O2−L2, O3−L1) are selected at least

once over 150 generated dungeons;
• none of the unstarted and ineligible objective/level pairs (i.e., O1 − L2, O2 − L3,

O3 − L2) are selected over 150 generated dungeons;
• O2 − L1, O4 − L1, O4 − L2, O4 − L3 whose percentages of questions about facts

encountered and successes are achieved are considered ineligible, and do not appear
in any dungeons over 150 generations.

B) Task allocation. The generation algorithm must allocate tasks in the dungeons
according to:

1. their percentage of appearance;
2. the number of rooms in the dungeon based on the player’s progress in the game

(i.e., the player’s current game level);
3. the achievement of the task (i.e., a task with a percentage of encountered questions

about facts and success to 100% are considered completed).
For instance, a task with a percentage of appearance of 20%, not achieved by the learner,
must appear in 2 rooms of a dungeon requiring 10 rooms with questions. It should be noted
that when the size of a dungeon and the percentage of appearance of a task are small (e.g.,
five rooms with questions and 5% of appearance), the task may not appear in the dungeon
(i.e, favouritism of the tasks with a higher percentage of appearance). Therefore, testing
should be carried out on two different game levels (i.e., different dungeon sizes): one with
few rooms with questions, another with many. Presently, when a task is completed, the
algorithm distributes its percentage of appearance proportionally to the percentages of
appearance of the remaining tasks, e.g., given T1[50%], T2[20%], T3[20%], T4[10%] where
T1 is completed, then the percentages of appearance the other tasks become T2[40%],
T3[40%], T4[20%].

Depending on the learner’s progress, four edge cases must be tested in order to evaluate
the correct allocation of tasks in the dungeons:
• when the learner has not started the level, progress (i.e., success and encountered

questions about facts) is at 0% for all the tasks of the level;
• when the learner has started the level, but none of the tasks are completed, progress

1. https://junit.org/junit5/

150

https://junit.org/junit5/

10.1. Framework Properties Evaluation through Tests

is greater than 0% but less than 100%;
• when the learner has achieved a single task of the level, progress of that task reaches

100% while the others are below 100%;
• when the learner has completed all but one of the tasks of the level, progress of

these tasks is at 100% except for one.

Figure 10.3 – Training paths and learner-player’s progress used for testing the allocation
of the tasks

In order to evaluate the allocation of the tasks, two training paths for testing have
been defined. The first one consists of five tasks with an identical percentage of appearance
(20%), i.e., none of the tasks predominates over the others. The second consists of six tasks

151

Part III, Chapter 10 – Tests and Validation of the Framework

having different percentages of appearance, i.e., some tasks are predominant. Evaluating
the allocation of tasks on the basis of these two training paths seems sufficient, as it covers
both case scenarios: equal allocation of tasks and unequal allocation of tasks. For both
paths, the four edge cases must be evaluated over two different dungeon sizes. Therefore,
four learner-player models, one for each edge case, have to be created for each training
path. Additionally, the repartition of tasks has to be tested on linear and labyrinthine
dungeons 2. The minimal game level for having labyrinthine dungeons (i.e., in our game
context) is the level 8. Based on our defined game progression, the level 8 provides 12 rooms
with questions. Therefore, tests on labyrinthine dungeons are performed for each learner-
player model at the game level 8 whereas tests for linear dungeons are performed at the
game level 1, which provides 5 rooms with questions. In order to try the task repartition
on bigger dungeon size, tests are performed for both linear and labyrinthine dungeons
at the game level 16, which provides 20 rooms with questions. Therefore, variants of the
four learner-player models (i.e., for both training paths) have to be created considering
different game levels: 1, 8, and 16. Figure 10.3 illustrates both training paths and the
several learner-player models used for testing.

Afterwards, for each edge case, a test method verifying that for each learner-player
model, a generated linear or labyrinthine dungeon has the right number of rooms per task
has been implemented. For instance, in the case of the first training path and the first
learner-player model (i.e., zero progression), and given a linear dungeon (i.e., 5 rooms
with a question), the test verifies that the dungeon contains one room with T1, one with
T2, one with T3, one with T4, and one with T5.

10.1.2 Player Adaptation of the Generated Activities
Similarly to the evaluation of adaptation to the learner, the evaluation of adaptation

to the player consists of verifying that the generated activities are conforming to the de-
ductible predictions from an analysis of the game preferences associated with the player.
In our context, the player’s game preferences are described in terms of purchasable and ac-
tivatable equipments. These equipments unlock abilities and therefore new gameplays. A
player can activate/deactivate an equipment item, thus locking/unlocking the associated
abilities and gameplays. Naturally, default gameplays are defined and cannot be deacti-
vated, otherwise the activities could not be correctly generated (i.e., no gameplay can be
found for a given task because all the compatible gameplays have been deactivated).

Several edge cases need to be tested in order to evaluate the adaptation of activities
according to the player’s game preferences:
• the learner-player has made no purchase, therefore none of the gameplays featuring

an ability locked by an equipment are present in the dungeons (i.e., only those with
default abilities such as movable);
• the learner-player has purchased and activated all possible equipments, therefore all

the abilities locked by an equipment must appear at least once in a dungeon (i.e., a

2. A specific parameter for tests can be used to force the generation of labyrinthine dungeons.

152

10.1. Framework Properties Evaluation through Tests

minimum of one gameplay featuring each ability);
• the learner-player has purchased and activated some equipments, the abilities asso-

ciated with these equipments appear at least once in a dungeon (i.e., a minimum of
one gameplay featuring each ability) while the others never appear;
• the learner-player has purchased but not activated all possible equipments, none of

the gameplays containing an equipment-locked ability are present in the dungeons
(i.e., only those with default abilities such as movable).

In order to evaluate the adaptation of activities to players, these edge cases have
been simulated in learner-player models featuring different game preferences. Figure 10.4
shows the four learner-player game preferences models, and the game model in terms of
equipments locking abilities used for testing. The game model (i.e., equipment and abili-
ties) used is the one specified for the game engine allowing the interpretation of dungeons.
Seven abilities are available, locked by six equipments. Learner-player preferences describe
the purchase/activation of equipments.

Figure 10.4 – Player’s game preferences for testing based on the equipments unlocking
abilities used in our game engine

For each edge case (i.e., each learner-player model with the preferences illustrated
in Figure 10.4), a test method has been created to ensure that for up to 100 generated
dungeons, the conditions are always met. Similarly to the evaluation of the adaptation to
learners, these test methods have been implemented in Java using the JUnit5 framework.

10.1.3 Variety of the Generated Activities
Dungeon variety is based on both the training and the game content. Many aspects

of dungeons can be varied (e.g., general shape of dungeons, questions, elements and their
position, shape of rooms, gameplays). In our context, the variety in terms of training
depends on the path defined by the teacher. However, the evaluation of the compliance
of the generated activities with the training paths has already been presented in Sec-

153

Part III, Chapter 10 – Tests and Validation of the Framework

tion 10.1. As a result, our main interest lies in the variety of activities in terms of: A) the
structure/layout of the dungeons and B) the elements contained in the dungeons.

A) Structure/layout of dungeons. Roguelite uses procedural generation to build
dungeons that are unique, i.e., the arrangement of the rooms and the positions of the
objects are organised differently each time. The game engine developed as part of the
AdapTABLES project, besides allowing the interpretation and play of generated dungeons,
provides a map-based visualisation of these dungeons without requiring any exploration.
Maps display each room in a different colour depending on the task to be performed,
and small lines indicate access between rooms (i.e., to differentiate between linear and
labyrinthine dungeons). Accordingly, an initial evaluation consisted of a manual verifica-
tion of the layout of the dungeons using the map-visualisation offered by the game engine.
More precisely, the idea was to generate several dungeons for the same game level and
the same learner-player and to compare their maps. Figure 10.5 displays four maps of
generated dungeons (i.e., three labyrinthine dungeons and a linear dungeon) for the same
objective/level and the same learner-player (i.e., with unchanged progression). It can be
observed that these dungeons have different structures and are differently distributed.

Figure 10.5 – Maps of four generated dungeons for the same objective/level pair and
learner-player

B) Elements of the dungeons. The elements of the dungeons can vary at different
levels:

1. the gameplays selected for each task;
2. the elements selected for each gameplay;
3. the selected room types (i.e., RoomType);
4. the position of the elements in the rooms;

154

10.1. Framework Properties Evaluation through Tests

5. the questions and the wrong choice of questions about facts.
First, the variety of room types and element positions depends on the modelling done

in the game model (i.e., RoomType specification, the more room type variants are created,
the more variety there is). Second, the variety of questions depends on the training path
specified by the teacher. Regarding the variety of wrong choices for the questioned facts, it
depends on the targeted didactic domain since the method created to generate these wrong
choices is part of the extension (i.e., it can also depend on the “WrongData” modelled
in the knowledge model). Furthermore, the variety of gameplays selected for each task
depends on two factors:

1. the variety of gameplays described in the game model;

2. the purchases (i.e., game preferences) made by the player.

For each of the abilities (i.e., default and lockable abilities), different gameplays and
gameplay variants have been defined (e.g., a variant of pushing elements to the right
is pushing elements to the left) so that each task appears with at least two different
gameplays or two gameplay variants. This aspect (i.e., selection of at least two different
gameplays for each task out of 100 dungeon generations) has been evaluated for:
• a learner-player having made no purchases;
• a learner-player having purchased and activated everything.
Finally, the variety of elements for each gameplay mainly depends on the variety

of game elements described in the game model. For example, let’s take an ability called
catchable for which there are two associated game elements: a rabbit and a cow. In this
case, the gameplay related to the ability catchable should appear in dungeons (i.e., not
necessarily the same dungeon) with both game elements different (see Figure 10.6). This
aspect has been formally evaluated by means of a test method, that has been implemented
using the Junit5 framework (see Appendix F), verifying that for each ability having several
compatible game elements (i.e., in the game model), each of these game elements is selected
at least once after an undefined number of dungeon generations.

Figure 10.6 – Example of two variants of the same gameplay

155

Part III, Chapter 10 – Tests and Validation of the Framework

10.2 Validation of Static Properties of Models
A further step in verifying the framework involved to validate the models used by the

generators. Although a great deal of information is captured by the metamodels, they do
not capture all the semantic properties required for a given domain. For instance, in our
current training model (see Figure 8.3) nothing prevents the definition of an objective
whose prerequisite is its own level. This makes no semantic sense. The validation of static
properties of models is a semiformal method for the automatic verification of models,
which consists of defining a set of constraints and validating or not the models according
to these constraints. In order to guarantee the correct semantics of the (generic) models
supplied as input to the generators, we have defined a set of semantic constraints on the
models using Epsilon Validation Language (EVL).

In our context, the validation of static properties applies mainly to the two following
models: the training model (i.e., provided as input to the generator) and the activity
model (i.e., provided as output of the generator). Other models are not targeted, as we
did not find any semantic constraints not captured. For the training model, the following
rules have been implemented:
• the facts of an objective belong to the knowledge associated with the training path

(Figure 10.7 illustrates this rule in EVL);
• the level (i.e., requiredLevel) of a prerequisite of an objective O, is not a level of the

objective O;
• the percentages of success and encountered questions about facts (i.e., successPer-

cent and encountersPercent) of the prerequisites and completion criteria have values
between 0 and 100);
• the percentages of success and encountered questions about facts of the prerequisites

must be less than or equal to the percentages for the completion criteria (i.e., else
it is not achievable);
• the number of bad choices chosen in a multiple choice response modality is inferior

to the total number of choices.

Figure 10.7 – An example of model validation rule written in EVL that verifies whether
the facts associated to an objective belong to the knowledge model associated to the path

156

10.3. Framework Evaluation with an Engineer

For the dungeon model, the following rules have been implemented:
• the chosen objective belongs to the learner-player path;
• the chosen level belongs to the chosen objective;
• each task present in the dungeon rooms belongs to the chosen level;
• the position of the elements of the room belongs to the room type of the room or

to a composite element.
Appendix G present the full EVL source code that implements the semantic constraints

for both the training model and the activity model. The validation of models has not been
automated, therefore it must be run manually by an engineer when necessary. However,
the execution of the model validation code did not indicate any problems on the tested
models.

10.3 Framework Evaluation with an Engineer
Another step to evaluate the framework consisted of conducting an experiment with

an engineer (see Figure 10.8). This experiment had two main objectives:
1. evaluating the usability of the framework, i.e., can the framework be extended by

an engineer not involved in the project?
2. improving the clarity of the provided guidelines, i.e., are the guidelines self-sufficient

for creating an extension.
For the experiment, the engineer had to extend the framework to the solar system

domain presented in Section 9.4 by creating the necessary components (i.e., metamodel,
models, generators of questions about facts). Several resources were available:
• a printed and numerical version of the extension guidelines document;
• an MDE expert answering their questions and guiding the uses of the EMF plugin,

as the engineer had zero notions of MDE;
• a document presenting the specification of the raw fact (i.e., planets) and solar

system training task to implement.
Since an engineer is not an expert in didactic or pedagogy, our choice has been to provide
the specification of data related to the didactic domain to the engineer. The experiment
has been realised over a day and a half. Encountered problems with the guidelines or
incomprehension have been discussed directly.

Once the extension had been realised, the engineer had to answer a short questionnaire
presented in Appendix H. The questionnaire is composed of:
• three general questions regarding the difficulty of extension, MDE, and the extension

guide, namely:
◦ did you find the guide self-sufficient to allow the extension of the framework?
◦ do you think that a strong expertise in MDE is required for extending the

framework?
◦ on a scale from really easy to very hard, how do you estimate the difficulty of

extending the framework?
• a grid asking to evaluate, on a scale from really easy to very hard, every step of

157

Part III, Chapter 10 – Tests and Validation of the Framework

the extension (i.e., comprehension of the instructions/domain/framework, creations
of the metamodels, models, generators of questions about facts, integration of the
created to the existing one, debugging).
• a comment box.

Figure 10.8 – Experimentation of the framework with an engineer

Overall, the engineer found the extension to be well guided and quite easy to realise.
Moreover, the engineer considered that a strong expertise in MDE is not required for
extending the framework. Therefore, it would appear that the only requirement is the
ability to manipulate the EMF framework and understand the basic mechanism of a
model being an ‘instance’ of a metamodel. In addition, some necessary clarifications and
improvements for the extension guidelines have been highlighted during the experiment,
notably for the creation of generators of questions about facts and the debugging (i.e.,
understanding and correcting the errors created from the added code) parts. The engineer
had trouble understanding how the generators of questions about facts work and what they
did. There are two probable reasons for that: 1) the short amount of time for discovering
the framework (i.e., the experiment lasted over a day and a half only), and 2) the lack of
diagrams explaining the functioning of the components (i.e., main code and extensions).
In order to improve that aspect, a diagram has been added to the extension guidelines.
Furthermore, the debugging part has been considered quite hard by the engineer. In order
to reduce the difficulty for this part, several possible “common” errors and their solutions
or possibles solutions have been identified and added to the extension guidelines (i.e.,
errors we made as well as the ones made during the experiment by the expert).

Note that although the extension, particularly in terms of the metamodel produced by
the engineer, is similar to our modelling (see Section 9.4), some differences are noticeable,
such as the different names used and the choice of certain types of element, e.g. in our
case, the distance to the sun is represented as a Long, but the engineer has chosen to
represent it as a Float. This demonstrates that modelling is an activity that involves a
level of subjectivity.

158

10.3. Framework Evaluation with an Engineer

Additionally, an extension has been realised by a researcher and engineer familiar with
the framework and MDE in less formal conditions. The expert specified a completion task
for a different domain: Spanish. The task consisted of completing sentences with verbs
conjugated in the present subjunctive in Spanish. Then the expert modelled the task by
following the guide and asking me questions in case there was any problem. Figures 10.9
and 10.10 present the metamodel and knowledge model created.

Figure 10.9 – Spanish metamodel created by an engineer familiar with the framework

Figure 10.10 – Spanish knowledge model created by an engineer familiar with the frame-
work

159

Part III, Chapter 10 – Tests and Validation of the Framework

In conclusion, the proposed framework has been extended by two engineers, one ex-
ternal to the research work and one internal. The external engineer followed the extension
guide to implement a generator for the solar system domain that had previously been
implemented in order to verify the feasibility of the requested task. The internal engineer
extended the framework to a previously unimplemented and undefined domain, Span-
ish verbs. Overall, the extension mechanism has been deemed as moderately complex,
particularly regarding the comprehension of the framework in the broader sense.

10.4 Use of a Generator in Ecological Conditions
In the context of AdapTABLES, an educational game for training on multiplication

tables has been developed. This game uses the mathematics generator (see Section 9.1)
produced by our framework 3. This game has been used at The Science Festival 2023,
known as “la fête de la science” in France, which is an annual event aimed at promoting
scientific knowledge and discovery among the public. Additionally, it has also been used in
ecological conditions with a classroom of 11 students of the 2nd grade (see Figure 10.11).
The objective was to collect informal feedbacks and gather potential bugs or issues about
the game or the generator.

Figure 10.11 – Use of the AdapTABLES in ecological conditions

It is important to note that the design of a game is not necessary for the evaluation of
a generator, and that these tests have been carried out as part of the project. However,
these tests are particularly interesting as they have highlighted a problem of pedagogical
alignment related to the response time given to the learner-players. Depending on the
gameplay, this time should be adjusted. For this purpose, experiments could be carried
out with learners. Learners should be classified according to their gaming experience.

3. Data exchanges are done through a REST API.

160

10.5. Synthesis

If they are used to playing games, manipulating a computer or a controller, this could
explain a faster response time than people who are not used to manipulating computer
tools. As a result, gameplays could be proposed to them and their response times recorded.
Then, a formula (e.g., the average of the members of a regular/non-regular player group)
would determine the response time to be associated with each specific gameplay. Finally,
a parameter could be added to the learner model to adapt these times to them.

10.5 Synthesis
In conclusion, the tests have been carried out using the generator dedicated to multi-

plication tables. However, the use of a domain-specific generator has not invalidated the
validation of the properties, since the algorithm for selecting an objective/level pair of a
training path or for allocating tasks is independent of the targeted didactic domain, i.e.,
the creation of an extension by adding domain-specific tasks does not influence in the way
in which the level of an objective is selected or the way in which tasks are distributed in
a dungeon. Furthermore, the evaluation of the variety of elements in the dungeons is also
validated despite the unique use of the mathematics generator, since the algorithm for
generating the dungeons (i.e., training tasks translated into gameplays) is also generic. It
should be noted that in order to use another generator, all the learner tests would have to
be rewritten, whereas those for the player would be reusable with learner-player models
having a training path related to the correct didactic domain. Moreover, it is important
to note that the tests regarding adaptation to player preferences are based on the de-
sign choices made (i.e., purchase/activation mechanism) and that any other choice would
require other tests.

161

Chapter 11

CONCLUSION

Contents
11.1 Synthesis . 163

11.1.1 Contributions to TEL Research Domain 165
11.1.2 Limitations . 166

11.2 Perspectives . 166

This last chapter provides an overview of the work accomplished during this PhD
thesis, as well as its limitations. Then, several more or less coarse-grained perspectives
related to this work are introduced.

11.1 Synthesis
The research presented in this thesis falls within the field of TEL (Technology-Enhanced

Learning). More precisely, it presents an exploratory work that addresses a research in
engineering problem by attempting to characterise and guide the design of activity gener-
ators adapted to learner-players in the context of training games. Due to the shortcomings
observed in the state of the art (see Chapters 2 and 3), our interest has been focused on
two objectives: 1) to propose an approach that abstracts as many elements as possible to
provide reusable elements for the creation of one domain-specific generator to another,
and 2) to take into account the adaptation of both the educational and game dimensions.
Activity generation is a wide subject, therefore to reduce the scope of our research our
focus has been on declarative knowledge training. Therefore, our interest has been on
how to guide the design and implementation of generators of learner-player
adapted and varied game activities for declarative knowledge training (i.e.,
research problem, see Chapter 4).

Declarative knowledge training requires repetition for its retention, and variety to
reduce the boredom caused by repetition. In order to create game activities for training
purposes, game design choices have to be made, such as selecting a compatible game
genre. Roguelite are often dungeon-like games that provide repetition, variety, and a
sense of progress. As a means of satisfying the training requirements, Roguelite has been
shown to be a suitable game genre based on a repetitive mechanic that offers varied and
generated game levels. Accordingly, the scope of our research has been narrowed down to
the generation of declarative knowledge training activities in the context of Roguelite
games (see Chapter 4).

To answer our first research question – How to propose an approach sufficiently

163

generic to consider declarative knowledge independently of a specific didactic
domain? – our proposal consisted in modelling concepts at a higher level of abstraction
(e.g., categories of gameplays, types of tasks) in order to provide (see Section 5.1):

1. an algorithm for generating activities that is independent of any didactic domain,
i.e., the main part of the code does not have to be modified when changing the
didactic domain.

2. an extension mechanism allowing the specification of domain-specific data that will
be used, through generic concepts, by the algorithm.

Regarding our second research question – What is a learner-player adapted and
varied game training activity? Which educational and game elements constitute these
activities? How to combine the game and educational elements coherently? – our proposal
has been to use activity theory to define the structure of our training game activities
(see Chapter 5). Then, each training and game element composing an activity has been
specified at a fine-grained level (see Chapter 5). Additionally, a bi-dimensional analysis
framework guiding the specification of Roguelite games for educational purposes has
been developed (Lemoine et al. 2023a; 2024c), in the context of the AdapTABLES project,
which helped us in making the game design choices required for the generators (see Sec-
tion 5.4.1). Finally, a relatively well-known research question in serious games design,
that is also present when designing serious games activities, is the problem of alignment
between game and educational elements. In order to tackle this problem, our proposal
is a systematic method based on the use of numerical questionnaire formats as a pivot
for specifying machine-readable relationships between training task types and gameplay
categories (see Chapter 6) (Lemoine et al. 2023b; 2024b).

To answer our third question – How to structure the required data and their
relations in order to drive the generation of coherent activities? – our pro-
posal consists of a conceptual modelling approach (Lemoine and Laforcade 2023a). Six
interconnected models are at the centre of our solution (i.e., the knowledge model, the
training model, the game model, the relation model, the learner-player model, and the
activity model). These models have been created and thought to be extensible, i.e., use
of abstract concepts that can be extended, though the addition of sub-concepts, to do-
main specific information in order to be generically manipulated by the algorithm (see
Chapter 7). Because of our genericness need, the mapping problem addressed before also
appeared at a lower level: between questions about facts and gameplay elements. In order
to solve that issue, our proposal is a generic modelling of questions about facts and a
set of parameters in the game model (i.e., in the description of gameplays) (Lemoine and
Laforcade 2023b), allowing the creation of a generic algorithm to instantiate task-oriented
gameplays (see Section 7.2).

Finally, regarding our last research question – How to specify every information
required for generation to enable computer interpretation for the development
of activity generators? – our proposal consists in using EMF to develop a tool (i.e.,
framework) embedding our conceptual approach that guides and facilitates the creation
of activity generators (Lemoine et al. 2023c; 2024d). This framework includes metamodels

164

(i.e., computerised version of our conceptual models), an activity generation algorithm,
and an extension mechanism allowing the specification of domain specific information (see
Chapter 8).

11.1.1 Contributions to TEL Research Domain

Regarding the knowledge produced, this PhD thesis has enabled the definition of a
design approach of activity generators, in particular for declarative knowledge training, by
characterising the necessary requirements of a generator. Therefore, this is a contribution
to the field of research in engineering of TEL systems. Several general insights can be
drawn from this research.

First, the creation of activities requires the selection of a game genre com-
patible with the type of knowledge and the didactic and pedagogical intention targeted.

Second, for declarative knowledge training as defined in this thesis, Roguelite
is a theoretically compatible genre because it offers mechanisms that favour training
needs: repetition, variety, and progression.

Furthermore, it is possible to take into account adaptations on several di-
mensions for the generation of activities through the separation of concerns
(i.e., approach induced by our MDE context). However, it is important to note that some
dimensions may have a slight priority than others, e.g., favouring the training over the
game dimension in the event of conflict. As a result, although the concerns are viewed
independently, they should not be thought of entirely autonomously.

Moreover, the main knowledge provided by this thesis is that the automatic cre-
ation of activities (i.e., generation) for declarative knowledge training can be
achieved through a “generic” approach since it is possible to propose a domain-
independent algorithm for generating activities based on an extension mechanism that
only provides the knowledge related to the targeted didactic domain. Additionally, this
extension mechanism makes it possible to reduce the effort and guide the
specification of the specifics of the didactic domain under consideration. In partic-
ular, by defining educational and game concepts in a generic way, and by specifying the
relationships that unite them through a machine-readable model (or other relationships).

Additionally, activity generation can be seen as a model transformation having
several models as inputs and a single model as output, as defined in MDE.

Furthermore, MDE is particularly well suited to the specification, manipu-
lation and generation of data because of its principles (i.e., abstraction, mod-
elling/productivity of models, separation of concerns). It is also well suited to the
creation of a generic approach, as one of its principles regards the reusability of
models (i.e., capitalisation).

Finally, the EMF framework provides a useful theoretical and practical frame-
work for the creation of research prototypes, limiting the amount of code required
to develop such generators.

165

11.1.2 Limitations
The research conducted throughout this thesis has several limitations.
First, the scope of our research can be seen as the initial limitation of our work,

since our contributions are limited to the training of declarative knowledge in the context
of Roguelite games. Changing the context would require rethinking, redesigning and
redeveloping every component, however the process (i.e., choosing a genre, defining the
learning path, abstracting game and learning elements, mapping the elements) could
probably be followed.

Second, the evaluation of the framework has only been performed by a single engineer
independent of our research. In order to improve the extension guidelines and evaluate
the usability of the framework, different extensions should be realised by several engineers
unfamiliar with the research work.

Third, our proposed framework is based on justified and argued design choices, however
these choices have not been evaluated with players. Therefore, in order to evaluate those
choices, the use of the game developed in the AdapTABLES could be a possibility.

Fourth, our proposal only relies on player’s game preferences (i.e., activation/deac-
tivation of bought items) to adapt the activity by restricting the available gameplays.
However, multiple type of data (e.g., players’ expressions, players’ actions/traces, infor-
mation that players provided) can be used to generate adapted content that improves
players’ experience (Yannakakis and Togelius 2011).

Fifth, the software infrastructure provided in the framework is based on the use of EMF
(i.e., an eclipse framework providing tools for MDE use). However, our approach and the
use of a dedicated framework demand a minimum of knowledge and expertise in MDE and
(meta-)modelling. Additionally, modelling and meta-modelling are subjective activities
since they depend on the modeller’s interpretation of the domain and the conventions and
styles they are accustomed to. Therefore, another modeller could and probably would have
modelled the concepts differently. Furthermore, the models and their embedded concepts
are influenced by the experts with whom they have been developed. As a result, exchanges
with other didactic domain experts could lead to variations in the proposed models.

Finally, our work specified task types and gameplay categories that do not claim to
be exhaustive. Even though the proposed concepts have been sufficient for the domains
tested, there is no guarantee that they will be sufficient for other domains. However,
it should be noted that in the mapping approach (see Chapter 6), our task types have
been sufficient to establish a relationship with each exercise extracted from the numerical
questionnaire formats. Furthermore, each task type has at least one associated gameplay
category (otherwise the approach would not work). Therefore, this can be seen as the first
step in assessing the coverage of training task types and gameplay categories.

11.2 Perspectives
The research work carried out throughout this PhD thesis opens numerous prospects.

166

Additional experimentations. Several experiments should be carried out to deepen
the validation already accomplished. First, the experiment with a single engineer should
be reproduced with different engineers that are unfamiliar with the framework. The ex-
perimentation realised aimed to extend the framework to the domain of solar system
facts and covered two training tasks (i.e., ordering and graphical completion). As a re-
sult, an experiment with more in-depth instructions, targeting all types of task, should
be conducted.

Furthermore, although the design choices have been justified and argued, they have
not been evaluated, in particular the purchase/activation mechanism for game preferences.
An interesting experiment using the game developed in the context of the AdapTABLES
project would be to evaluate the design choices with players. For example, the time taken
to execute a gameplay actions differs according to the actions to be performed: moving a
pot takes longer than opening a chest. As a result, an analysis of the time taken to execute
gameplays needs to be conducted to ensure that the educational and game alignment
is fine-tuned. For example, the players could be confronted with the same gameplays
and depending on their level of knowledge and mastery of computer equipments (e.g.,
keyboard, joystick, etc.), their completion time on each equipment would be extracted to
define several mean values. These mean values could be used to adapt the time allocated
to each gameplay of the activity according to the players’ level of knowledge and mastery
of computer equipments.

Additional adaptations. Currently, the generation algorithm is based on the use
of randomness to select the objective/level pair to train on in a dungeon. An interest-
ing prospect would be to define and implement different pedagogical strategies for their
selection, in the sense of Melero et al. (2016), which teachers could select. For example,
the selection of an objective/level to train on could be done by always selecting the same
eligible pair for the same run, i.e., during a run, all the dungeons played would allow
training on the same objective/level, whereas currently, any eligible pair is selected each
time. From this perspective, the following question needs to be addressed: Which are the
pedagogical strategies, and how can they be implemented? In order to tackle that ques-
tion, it is necessary to look at the literature to see if strategies exist and to exchange with
teachers in order to define different training strategies. Therefore, the aim would be to
define and characterise different strategies so that they can later be implemented. These
strategies would be selectable by the teacher in the training path of each learner, and
thus changeable at any time. From a coding perspective, these ’strategies’ could be seen
as heuristics that may or may not be applied.

At the beginning of this PhD thesis, our aim had also been to propose feedback adapted
to the training situation (i.e., type of question) and to the learner’s level, i.e., taking into
account the error made or previous errors. Feedback can be defined as “information about
the gap between the actual level and the reference level of a system parameter which is
used to alter the gap in some way” (Ramaprasad 1983). Feedback is intended to reinforce
knowledge, but also to guide learners in correcting their mistakes (Bimba et al. 2017).
Shute (2008) has produced a thorough review of feedback forms and classified them by

167

increasing degree of complexity. In the context of declarative knowledge training using
Roguelite, we have identified four types of feedback that appear to be relevant: Verifica-
tion, Try again, Response contingent, and Topic contingent. Verification (i.e., “knowledge
of the results”) informs the learner of the correctness of their answer. Try again informs
the learner of an incorrect answer and allows one or more further attempts. Response
contingent describes the reasons why the correct answer is correct or the incorrect answer
is incorrect, e.g., Which is the capital of France: Paris or Berlin? Possible feedback (af-
ter answer): Berlin is in Germany, so it cannot be the French capital. Topic contingent
presents information relative to content, e.g., “As a reminder, 3 × 5 = 5 × 3, this is the
commutativity principle” or “As a reminder, 3×5 = 5+5+5 = 3+3+3+3+3”. Therefore,
an interesting prospect might be to determine the appropriate feedback for each learner.
Adaptive feedback that considers prior knowledge, learning progress, and learning prefer-
ences has been shown to be effective within learning environments (Bimba et al. 2017).
For example, hints could be provided for learners that are considered in difficulty (i.e.,
determined by an analysis of learners’ previous results, for example), such as giving an
answer, giving information about the answer or removing incorrect suggestions. There-
fore, the generator would have to manage this new adaptation mechanism and provide
adapted feedback based on the question by using information on the learner.

Tooling. The training path is an interesting structure because it is quite modular.
However, many parameters need to be set by the engineer to specify a training path. As
a result, the creation of training paths is tedious and complex. To reduce the complexity
of this task, two solutions are possible:

1. develop authoring tools to make it easier to specify training paths. Under the
AdapTABLES project, an editor/dashboard has been developed. This tool enables
the creation of training paths for mathematics, as well as allows the visualization of
any learners’ progress.

2. automatically generate training paths.
The second item is more complex but also more interesting because, as in the case of
activity generation, generating training paths removes this task from the hands of the
teachers and engineers that have to model them. Generating learning paths has been
the subject of several research works (see Chapter 3). Accordingly, one approach may be
to define constraints and elements (e.g., knowledge to be worked on, level of difficulty,
methods for working on it) to be provided by the teacher, in order to enable the program
to generate training paths adapted to the learners. However, an additional difficulty with
this problem is that of genericness. Specifying the parameters is great, but is it possible to
have parameters that are independent of the didactic domains in order to offer a generic
path generation? One possible solution would be to base the generators on a generic
algorithm that takes into account a “path template” depending on the didactic domain
in order to configure the right elements accordingly.

Modification of the context. Activity generation has received very little attention
in TEL (Bezza et al. 2013). Our interest has focused on generating activities for declar-
ative knowledge while proposing a generic approach. Therefore, the next most logical

168

question is: is it possible to generate activities for other types of knowledge (e.g., proce-
dural knowledge) (Gorman 2002) while proposing a generic approach? In order to answer
this question, the first step is to study the targeted knowledge and the learning objec-
tive (Bloom 1956) (i.e., remembering, understanding, applying, etc.). This should result
in the identification of the requirements relating to this learning objective for this targeted
knowledge (e.g., training on declarative knowledge requires repetition and variety). Then,
a game genre that meets these needs has to be chosen.

Our interest has focused on Roguelite games. However, this type of game might not
be motivating for everyone. In the context of declarative knowledge, the game genre tar-
get must provide repetition, variety, progression, and it should be based on generation
(i.e., because of our research interest). Other game genres such as survival games (e.g.,
Minecraft) that are based on core gameplay loops revolving around gathering resources,
building, and surviving with generated worlds and dynamic environment could provide
the required elements for declarative knowledge training. A focus group or other rele-
vant qualitative methods with game designers could be performed to identify the other
possible game genres for declarative knowledge training. As a result, an interesting per-
spective would be to change the game model and the generator code to take into account
other game genres. Changing the game genre requires modelling the new genre, defining
new gameplay categories for that genre, matching the types of training tasks to the new
gameplay categories (i.e., by following the proposed approach, see Chapter 6), possibly
modifying the player adaptation mechanism, and probably rewriting the whole generation
algorithm.

Although time-consuming to design, generation is a powerful process that can be used
to build adapted and varied content. TEL research should focus more on the generation
of pedagogical/learning activities and not just on the structuring of existing resources.
Generating adapted and varied content facilitates the work of teachers, who need to build
different activities according to the specific needs of learners.

Genericness of the game dimension. Our work has focused on just one game
genre, Roguelite. However, since everyone is different, this genre is not necessarily ap-
preciated by everybody. Furthermore, if several game genres are identified as compatible
with declarative knowledge training, an interesting perspective would be to study their
common features. Defining common features could possibly allow specifying, modelling
and implementing the game dimension in a generic way. By doing so, it would avoid hav-
ing to modify many of the components when changing game genres. However, having a
generic modelling of the game dimension requires abstracting the game concepts to cover
several game genres. If this abstraction is feasible, it would be possible to consider an
extension mechanism such as the one already implemented for didactic domains. In this
mechanism, the common parts of the generation algorithm would be shared and functions
would allow the implementation of the variations.

169

BIBLIOGRAPHY

References for Chapter 1
Anderson John R and Lebiere Christian J (2014), The atomic components of thought,

Psychology Press, isbn: 978-0-8058-2817-7.
Bezza Assma, Balla Amar, and Marir Farhi (Sept. 2013), “An approach for personalizing

learning content in e-learning systems: A review”, en, in: 2013 Second International
Conference on E-Learning and E-Technologies in Education (ICEEE), Lodz, Poland:
IEEE, pp. 218–223, isbn: 978-1-4673-5093-8, doi: 10.1109/ICeLeTE.2013.6644377,
url: http://ieeexplore.ieee.org/document/6644377/ (visited on 05/30/2023).

Brambilla Marco, Cabot Jordi, and Wimmer Manuel (2012), Model-driven software engi-
neering in practice, en, Synthesis lectures on software engineering 1, San Rafael, Calif.:
Morgan & Claypool, isbn: 978-1-60845-882-0, doi: 10.2200/S00441ED1V01Y201208
SWE001.

Brame Cynthia J. and Biel Rachel (June 2015), “Test-Enhanced Learning: The Potential
for Testing to Promote Greater Learning in Undergraduate Science Courses”, en, in:
CBE—Life Sciences Education 14.2, issn: 1931-7913, doi: 10.1187/cbe.14-11-02
08, url: https://www.lifescied.org/doi/10.1187/cbe.14-11-0208 (visited on
12/02/2022).

Codish D. and Ravid G. (Nov. 2015), “Detecting playfulness in educational gamification
through behavior patterns”, en, in: IBM Journal of Research and Development 59.6,
pp. 1–14, issn: 0018-8646, 0018-8646, doi: 10.1147/JRD.2015.2459651, url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7330105 (visited
on 10/25/2021).

Kiili Kristian (2005), “Digital game-based learning: Towards an experiential gaming model”,
in: The Internet and Higher Education 8.1, pp. 13–24, issn: 1096-7516, doi: https:
//doi.org/10.1016/j.iheduc.2004.12.001, url: https://www.sciencedirect.
com/science/article/pii/S1096751604000776.

Kim Jong W., Ritter Frank E., and Koubek Richard J. (Jan. 2013), “An integrated theory
for improved skill acquisition and retention in the three stages of learning”, en, in:
Theoretical Issues in Ergonomics Science 14.1, pp. 22–37, issn: 1463-922X, 1464-536X,
doi: 10.1080/1464536X.2011.573008, url: http://www.tandfonline.com/doi/
abs/10.1080/1464536X.2011.573008 (visited on 03/17/2022).

Laforcade Pierre and Laghouaouta Youness (2018), “Generation of Adapted Learning
Game Scenarios: A Model-Driven Engineering Approach”, in: Computer Supported
Education - 10th International Conference, CSEDU 2018, Funchal, Madeira, Portugal,
March 15-17, 2018, Revised Selected Papers, ed. by Bruce M. McLaren, Rob Reilly,
Susan Zvacek, and James Uhomoibhi, vol. 1022, Communications in Computer and

171

https://doi.org/10.1109/ICeLeTE.2013.6644377
http://ieeexplore.ieee.org/document/6644377/
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1187/cbe.14-11-0208
https://doi.org/10.1187/cbe.14-11-0208
https://www.lifescied.org/doi/10.1187/cbe.14-11-0208
https://doi.org/10.1147/JRD.2015.2459651
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7330105
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7330105
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://doi.org/10.1080/1464536X.2011.573008
http://www.tandfonline.com/doi/abs/10.1080/1464536X.2011.573008
http://www.tandfonline.com/doi/abs/10.1080/1464536X.2011.573008

Information Science, Springer, pp. 95–116, doi: 10.1007/978-3-030-21151-6_6,
url: https://doi.org/10.1007/978-3-030-21151-6%5C_6.

Li Youling, Chen Di, and Deng Xinxia (Jan. 2024), “The impact of digital educational
games on student’s motivation for learning: The mediating effect of learning engage-
ment and the moderating effect of the digital environment”, en, in: PLOS ONE 19.1,
ed. by José Gutiérrez-Pérez, e0294350, issn: 1932-6203, doi: 10.1371/journal.pone.
0294350, url: https://dx.plos.org/10.1371/journal.pone.0294350 (visited on
03/04/2024).

Lopes Ricardo and Bidarra Rafael (Nov. 2011a), “A semantic generation framework for
enabling adaptive game worlds”, en, in: Proceedings of the 8th International Confer-
ence on Advances in Computer Entertainment Technology, Lisbon Portugal: ACM,
pp. 1–8, isbn: 978-1-4503-0827-4, doi: 10.1145/2071423.2071431, url: https:
//dl.acm.org/doi/10.1145/2071423.2071431 (visited on 03/08/2024).

Prensky Marc (2005), “Computer games and learning: Digital game-based learning”, in:
Handbook of computer game studies 18.2005, pp. 97–122.

Roediger Henry L. and Pyc Mary A. (Dec. 2012), “Inexpensive techniques to improve
education: Applying cognitive psychology to enhance educational practice.”, en, in:
Journal of Applied Research in Memory and Cognition 1.4, pp. 242–248, issn: 2211-
369X, 2211-3681, doi: 10.1016/j.jarmac.2012.09.002, url: http://doi.apa.
org/getdoi.cfm?doi=10.1016/j.jarmac.2012.09.002 (visited on 12/05/2022).

Smith Richard P (1981), “Boredom: A review”, in: Human factors 23.3, Publisher: SAGE
Publications Sage CA: Los Angeles, CA, pp. 329–340, doi: 10.1177/0018720881023
00308.

Sottet Jean-Sébastien, Ganneau Vincent, Calvary Gaëlle, Coutaz Joëlle, Demeure Alexan-
dre, Favre Jean-Marie, and Demumieux Rachel (2007), “Model-Driven Adaptation for
Plastic User Interfaces”, en, in: Human-Computer Interaction – INTERACT 2007,
ed. by Cécilia Baranauskas, Philippe Palanque, Julio Abascal, and Simone Diniz Jun-
queira Barbosa, vol. 4662, Series Title: Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 397–410, isbn: 978-3-540-74794-9, doi: 1
0.1007/978-3-540-74796-3_38, url: http://link.springer.com/10.1007/978
-3-540-74796-3_38 (visited on 04/03/2024).

Streicher Alexander and Smeddinck Jan D. (2016), “Personalized and Adaptive Serious
Games”, en, in: Entertainment Computing and Serious Games, ed. by Ralf Dörner,
Stefan Göbel, Michael Kickmeier-Rust, Maic Masuch, and Katharina Zweig, vol. 9970,
Series Title: Lecture Notes in Computer Science, Cham: Springer International Pub-
lishing, pp. 332–377, isbn: 978-3-319-46151-9, doi: 10.1007/978-3-319-46152-6_1
4, url: http://link.springer.com/10.1007/978-3-319-46152-6_14 (visited on
09/17/2021).

Susi Tarja, Johannesson Mikael, and Backlund Per (2007), “Serious games: An overview”,
in: Institutionen för kommunikation och information, Skövde, Publisher: Institutionen
för kommunikation och information.

172

https://doi.org/10.1007/978-3-030-21151-6_6
https://doi.org/10.1007/978-3-030-21151-6%5C_6
https://doi.org/10.1371/journal.pone.0294350
https://doi.org/10.1371/journal.pone.0294350
https://dx.plos.org/10.1371/journal.pone.0294350
https://doi.org/10.1145/2071423.2071431
https://dl.acm.org/doi/10.1145/2071423.2071431
https://dl.acm.org/doi/10.1145/2071423.2071431
https://doi.org/10.1016/j.jarmac.2012.09.002
http://doi.apa.org/getdoi.cfm?doi=10.1016/j.jarmac.2012.09.002
http://doi.apa.org/getdoi.cfm?doi=10.1016/j.jarmac.2012.09.002
https://doi.org/10.1177/001872088102300308
https://doi.org/10.1177/001872088102300308
https://doi.org/10.1007/978-3-540-74796-3_38
https://doi.org/10.1007/978-3-540-74796-3_38
http://link.springer.com/10.1007/978-3-540-74796-3_38
http://link.springer.com/10.1007/978-3-540-74796-3_38
https://doi.org/10.1007/978-3-319-46152-6_14
https://doi.org/10.1007/978-3-319-46152-6_14
http://link.springer.com/10.1007/978-3-319-46152-6_14

Tchounikine Pierre, Mørch Anders I., and Bannon Liam J. (2009), “A Computer Sci-
ence Perspective on Technology-Enhanced Learning Research”, en, in: Technology-
Enhanced Learning, Dordrecht: Springer Netherlands, pp. 275–288, doi: 10.1007/97
8-1-4020-9827-7_16, url: http://link.springer.com/10.1007/978-1-4020-98
27-7_16 (visited on 03/02/2022).

References for Chapter 2
Abdul Jabbar Azita Iliya and Felicia Patrick (Mar. 2015), “Gameplay engagement and

learning in game-based learning: A systematic review”, in: Review of Educational
Research 85, doi: 10.3102/0034654315577210.

Bakkes Sander, Tan Chek Tien, and Pisan Yusuf (July 2012), “Personalised gaming:
a motivation and overview of literature”, en, in: Proceedings of The 8th Australasian
Conference on Interactive Entertainment: Playing the System, Auckland New Zealand:
ACM, pp. 1–10, isbn: 978-1-4503-1410-7, doi: 10 . 1145 / 2336727 . 2336731, url:
https://dl.acm.org/doi/10.1145/2336727.2336731 (visited on 05/30/2023).

Bontchev Boyan Paskalev, Terzieva Valentina, and Paunova-Hubenova Elena (May 2021),
“Personalization of serious games for learning”, en, in: Interactive Technology and
Smart Education 18.1, pp. 50–68, issn: 1741-5659, 1741-5659, doi: 10.1108/ITSE-0
5-2020-0069, url: https://www.emerald.com/insight/content/doi/10.1108
/ITSE-05-2020-0069/full/html (visited on 04/21/2022).

Brusilovsky Peter (1998), “Methods and Techniques of Adaptive Hypermedia”, en, in:
Adaptive Hypertext and Hypermedia, ed. by Peter Brusilovsky, Alfred Kobsa, and
Julita Vassileva, Dordrecht: Springer Netherlands, pp. 1–43, isbn: 978-90-481-4944-
5, doi: 10.1007/978-94-017-0617-9_1, url: http://link.springer.com/10.100
7/978-94-017-0617-9_1 (visited on 03/27/2024).

Ćurčić Milenko, Milinković Dragica, and Radivojević Dragana (July 2018), “Educational
Computer Software in the Function of Integrating and Individualization in Teaching of
Mathematics and Knowledge of Nature”, en, in: EURASIA Journal of Mathematics,
Science and Technology Education 14.12, issn: 13058223, doi: 10.29333/ejmste/93
808, url: https://www.ejmste.com/article/educational-computer-software-
in-the-function-of-integrating-and-individualization-in-teaching-of-55
71 (visited on 02/20/2024).

De Freitas Sara (2018), “Are games effective learning tools? A review of educational
games”, in: Journal of Educational Technology & Society 21.2, Publisher: JSTOR,
pp. 74–84, url: http://www.jstor.org/stable/26388380.

Deterding Sebastian, Dixon Dan, Khaled Rilla, and Nacke Lennart (Sept. 2011), “From
game design elements to gamefulness: defining "gamification"”, en, in: Proceedings
of the 15th International Academic MindTrek Conference: Envisioning Future Media
Environments, Tampere Finland: ACM, pp. 9–15, isbn: 978-1-4503-0816-8, doi: 10.1
145/2181037.2181040, url: https://dl.acm.org/doi/10.1145/2181037.2181040
(visited on 02/28/2024).

173

https://doi.org/10.1007/978-1-4020-9827-7_16
https://doi.org/10.1007/978-1-4020-9827-7_16
http://link.springer.com/10.1007/978-1-4020-9827-7_16
http://link.springer.com/10.1007/978-1-4020-9827-7_16
https://doi.org/10.3102/0034654315577210
https://doi.org/10.1145/2336727.2336731
https://dl.acm.org/doi/10.1145/2336727.2336731
https://doi.org/10.1108/ITSE-05-2020-0069
https://doi.org/10.1108/ITSE-05-2020-0069
https://www.emerald.com/insight/content/doi/10.1108/ITSE-05-2020-0069/full/html
https://www.emerald.com/insight/content/doi/10.1108/ITSE-05-2020-0069/full/html
https://doi.org/10.1007/978-94-017-0617-9_1
http://link.springer.com/10.1007/978-94-017-0617-9_1
http://link.springer.com/10.1007/978-94-017-0617-9_1
https://doi.org/10.29333/ejmste/93808
https://doi.org/10.29333/ejmste/93808
https://www.ejmste.com/article/educational-computer-software-in-the-function-of-integrating-and-individualization-in-teaching-of-5571
https://www.ejmste.com/article/educational-computer-software-in-the-function-of-integrating-and-individualization-in-teaching-of-5571
https://www.ejmste.com/article/educational-computer-software-in-the-function-of-integrating-and-individualization-in-teaching-of-5571
http://www.jstor.org/stable/26388380
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1145/2181037.2181040
https://dl.acm.org/doi/10.1145/2181037.2181040

Education United States Department of (2010), Transforming American education: Learn-
ing powered by technology.

Fletcher J Dexter (1999), “Intelligent tutoring systems: then and now”, in: NASA con-
ference publication, NASA, pp. 83–104.

Göbel Stefan and Wendel Viktor (2016), “Personalization and Adaptation”, en, in: Serious
Games, ed. by Ralf Dörner, Stefan Göbel, Wolfgang Effelsberg, and Josef Wiemeyer,
Cham: Springer International Publishing, pp. 161–210, doi: 10.1007/978-3-319-4
0612-1_7, url: http://link.springer.com/10.1007/978-3-319-40612-1_7
(visited on 03/25/2021).

Goldberg Lewis R (1992), “The development of markers for the Big-Five factor structure.”,
in: Psychological assessment 4.1, Publisher: American Psychological Association, p. 26,
doi: 10.1037/1040-3590.4.1.26.

Guettat Belhassen, Chorfi Henda, and Jemni Mohamed (Jan. 2010), “Customized Learn-
ing Environment Based on Heterogeneous Traces”, en, in: 2010 International Con-
ference on e-Education, e-Business, e-Management and e-Learning, Sanya: IEEE,
pp. 193–197, doi: 10 . 1109 / IC4E . 2010 . 74, url: https : / / ieeexplore . ieee .
org/document/5432420/ (visited on 02/21/2024).

Ismail Heba and Belkhouche Boumediene (Nov. 2018), “A Reusable Software Architecture
for Personalized Learning Systems”, en, in: 2018 International Conference on Innova-
tions in Information Technology (IIT), Al Ain: IEEE, pp. 105–110, isbn: 978-1-5386-
6673-9, doi: 10.1109/INNOVATIONS.2018.8605997, url: https://ieeexplore.
ieee.org/document/8605997/ (visited on 05/27/2023).

Klašnja-Milićević Aleksandra, Vesin Boban, Ivanović Mirjana, and Budimac Zoran (Apr.
2011), “E-Learning personalization based on hybrid recommendation strategy and
learning style identification”, en, in: Computers & Education 56.3, pp. 885–899, issn:
03601315, doi: 10.1016/j.compedu.2010.11.001, url: https://linkinghub.
elsevier.com/retrieve/pii/S0360131510003222 (visited on 02/26/2024).

Lefevre Marie, Jean-Daubias Stéphanie, and Guin Nathalie (2012), “An approach for
unified personalization of learning”, in: International workshop on personalization ap-
proaches in learning environments (PALE)-Conference user modeling, adaptation, and
personalization, pp. 5–10.

Li Youling, Chen Di, and Deng Xinxia (Jan. 2024), “The impact of digital educational
games on student’s motivation for learning: The mediating effect of learning engage-
ment and the moderating effect of the digital environment”, en, in: PLOS ONE 19.1,
ed. by José Gutiérrez-Pérez, e0294350, issn: 1932-6203, doi: 10.1371/journal.pone.
0294350, url: https://dx.plos.org/10.1371/journal.pone.0294350 (visited on
03/04/2024).

Lopes Ricardo and Bidarra Rafael (June 2011b), “Adaptivity Challenges in Games and
Simulations: A Survey”, en, in: IEEE Transactions on Computational Intelligence and
AI in Games 3.2, pp. 85–99, issn: 1943-068X, 1943-0698, doi: 10.1109/TCIAIG.20
11.2152841, url: http://ieeexplore.ieee.org/document/5765665/ (visited on
03/08/2021).

174

https://doi.org/10.1007/978-3-319-40612-1_7
https://doi.org/10.1007/978-3-319-40612-1_7
http://link.springer.com/10.1007/978-3-319-40612-1_7
https://doi.org/10.1037/1040-3590.4.1.26
https://doi.org/10.1109/IC4E.2010.74
https://ieeexplore.ieee.org/document/5432420/
https://ieeexplore.ieee.org/document/5432420/
https://doi.org/10.1109/INNOVATIONS.2018.8605997
https://ieeexplore.ieee.org/document/8605997/
https://ieeexplore.ieee.org/document/8605997/
https://doi.org/10.1016/j.compedu.2010.11.001
https://linkinghub.elsevier.com/retrieve/pii/S0360131510003222
https://linkinghub.elsevier.com/retrieve/pii/S0360131510003222
https://doi.org/10.1371/journal.pone.0294350
https://doi.org/10.1371/journal.pone.0294350
https://dx.plos.org/10.1371/journal.pone.0294350
https://doi.org/10.1109/TCIAIG.2011.2152841
https://doi.org/10.1109/TCIAIG.2011.2152841
http://ieeexplore.ieee.org/document/5765665/

Marne Bertrand and Labat Jean Marc (2014), “Model and authoring tool to help teachers
adapt serious games to their educational contexts”, en, in: International Journal of
Learning Technology 9.2, p. 161, issn: 1477-8386, 1741-8119, doi: 10.1504/IJLT.20
14.064491, url: http://www.inderscience.com/link.php?id=64491 (visited on
02/27/2024).

Miraz Mahdi H., Ali Maaruf, and Excell Peter S. (May 2021), “Adaptive user interfaces
and universal usability through plasticity of user interface design”, en, in: Computer
Science Review 40, p. 100363, issn: 15740137, doi: 10.1016/j.cosrev.2021.1003
63, url: https://linkinghub.elsevier.com/retrieve/pii/S1574013721000034
(visited on 04/05/2024).

Monterrat Baptiste, Lavoué Elise, and George Sébastien (2014), “Motivation for learning:
Adaptive gamification for web-based learning environments”, in: Proceedings of the
6th International Conference on Computer Supported Education, Barcelona, Spain:
SCITEPRESS - Science, pp. 117–125, doi: 10.5220/0004848101170125, url: http:
//www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/000484810117
0125 (visited on 02/26/2024).

Monterrat Baptiste, Yessad Amel, Bouchet François, Lavoué Elise, and Luengo Vanda
(2017), “MAGAM: A Multi-Aspect Generic Adaptation Model for Learning Environ-
ments”, en, in: Data Driven Approaches in Digital Education, vol. 10474, Series Title:
Lecture Notes in Computer Science, Cham: Springer International Publishing, pp. 139–
152, doi: 10.1007/978-3-319-66610-5_11, url: http://link.springer.com/10
.1007/978-3-319-66610-5_11 (visited on 03/31/2022).

Nacke Lennart E., Bateman Chris, and Mandryk Regan L. (2014), “BrainHex: A neu-
robiological gamer typology survey”, in: Entertainment Computing 5.1, pp. 55–62,
issn: 1875-9521, doi: https://doi.org/10.1016/j.entcom.2013.06.002, url:
https://www.sciencedirect.com/science/article/pii/S1875952113000086.

Natkin Stéphane, Yan Chen, Jumpertz Sylvie, and Marquet Bernard (2007), “Creat-
ing Multiplayer Ubiquitous Games using an adaptive narration model based on a
user’s model”, in: Proceedings of the 2007 DiGRA International Conference: Situated
Play, DiGRA 2007, Tokyo, Japan, September 24-28, 2007, ed. by Akira Baba, Digi-
tal Games Research Association, url: http://www.digra.org/digital-library/
publications/creating-multiplayer-ubiquitous-games-using-an-adaptive-
narration-model-based-on-a-users-model/.

Oppermann Reinhard and Rashev Rossen (1997), “Adaptability and adaptivity in learning
systems”, in: Knowledge transfer 2, Publisher: Citeseer, pp. 173–179.

Pham Xuan-Lam, Chen Gwo-Dong, Nguyen Thi-Huyen, and Hwang Wu-Yuin (July 2016),
“Card-based design combined with spaced repetition: A new interface for display-
ing learning elements and improving active recall”, en, in: Computers & Education
98, pp. 142–156, issn: 03601315, doi: 10.1016/j.compedu.2016.03.014, url:
https://linkinghub.elsevier.com/retrieve/pii/S036013151630077X (visited
on 12/16/2022).

175

https://doi.org/10.1504/IJLT.2014.064491
https://doi.org/10.1504/IJLT.2014.064491
http://www.inderscience.com/link.php?id=64491
https://doi.org/10.1016/j.cosrev.2021.100363
https://doi.org/10.1016/j.cosrev.2021.100363
https://linkinghub.elsevier.com/retrieve/pii/S1574013721000034
https://doi.org/10.5220/0004848101170125
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004848101170125
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004848101170125
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004848101170125
https://doi.org/10.1007/978-3-319-66610-5_11
http://link.springer.com/10.1007/978-3-319-66610-5_11
http://link.springer.com/10.1007/978-3-319-66610-5_11
https://doi.org/https://doi.org/10.1016/j.entcom.2013.06.002
https://www.sciencedirect.com/science/article/pii/S1875952113000086
http://www.digra.org/digital-library/publications/creating-multiplayer-ubiquitous-games-using-an-adaptive-narration-model-based-on-a-users-model/
http://www.digra.org/digital-library/publications/creating-multiplayer-ubiquitous-games-using-an-adaptive-narration-model-based-on-a-users-model/
http://www.digra.org/digital-library/publications/creating-multiplayer-ubiquitous-games-using-an-adaptive-narration-model-based-on-a-users-model/
https://doi.org/10.1016/j.compedu.2016.03.014
https://linkinghub.elsevier.com/retrieve/pii/S036013151630077X

Plass Jan L. and Pawar Shashank (July 2020), “Toward a taxonomy of adaptivity for
learning”, en, in: Journal of Research on Technology in Education 52.3, pp. 275–300,
issn: 1539-1523, 1945-0818, doi: 10.1080/15391523.2020.1719943, url: https:
//www.tandfonline.com/doi/full/10.1080/15391523.2020.1719943 (visited on
09/06/2022).

Roepke Rene, Drury Vincent, Schroeder Ulrik, and Meyer Ulrike (2021), “A modular
architecture for personalized learning content in anti-phishing learning games”, in:
Software engineering (satellite events), doi: 10.18154/RWTH-2021-02420.

Sablayrolles Louis, Lefevre Marie, Guin Nathalie, and Broisin Julien (2022), “Design and
evaluation of a competency-based recommendation process”, in: Intelligent tutoring
systems, ed. by Scott Crossley and Elvira Popescu, Cham: Springer International Pub-
lishing, pp. 148–160, isbn: 978-3-031-09680-8, doi: 10.1007/978-3-031-09680-8_1
4.

Sajjadi Pejman, Ewais Ahmed, and De Troyer Olga (Mar. 2022), “Individualization in
serious games: A systematic review of the literature on the aspects of the players to
adapt to”, en, in: Entertainment Computing 41, p. 100468, issn: 18759521, doi: 10.1
016/j.entcom.2021.100468, url: https://linkinghub.elsevier.com/retrieve/
pii/S1875952121000653 (visited on 02/13/2024).

Sehaba Karim (2014), “Adaptation dynamique des Environnements Informatiques pour
l’Apprentissage Humain”, Habilitation à Diriger des Recherches (non publié), Lyon,
France.

Shemshack Atikah and Spector Jonathan Michael (Dec. 2020), “A systematic litera-
ture review of personalized learning terms”, en, in: Smart Learning Environments
7.1, p. 33, issn: 2196-7091, doi: 10 . 1186 / s40561 - 020 - 00140 - 9, url: https :
/ / slejournal . springeropen . com / articles / 10 . 1186 / s40561 - 020 - 00140 - 9
(visited on 02/21/2024).

Soflano Mario, Connolly Thomas M., and Hainey Thomas (Aug. 2015), “An application
of adaptive games-based learning based on learning style to teach SQL”, en, in: Com-
puters & Education 86, pp. 192–211, issn: 03601315, doi: 10.1016/j.compedu.2015
.03.015, url: https://linkinghub.elsevier.com/retrieve/pii/S036013151500
0937 (visited on 02/26/2024).

Streicher Alexander and Smeddinck Jan D. (2016), “Personalized and Adaptive Serious
Games”, en, in: Entertainment Computing and Serious Games, ed. by Ralf Dörner,
Stefan Göbel, Michael Kickmeier-Rust, Maic Masuch, and Katharina Zweig, vol. 9970,
Series Title: Lecture Notes in Computer Science, Cham: Springer International Pub-
lishing, pp. 332–377, isbn: 978-3-319-46151-9, doi: 10.1007/978-3-319-46152-6_1
4, url: http://link.springer.com/10.1007/978-3-319-46152-6_14 (visited on
09/17/2021).

Tondello Gustavo F., Wehbe Rina R., Diamond Lisa, Busch Marc, Marczewski Andrzej,
and Nacke Lennart E. (Oct. 2016), “The Gamification User Types Hexad Scale”, en,
in: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in
Play, Austin Texas USA: ACM, pp. 229–243, isbn: 978-1-4503-4456-2, doi: 10.114

176

https://doi.org/10.1080/15391523.2020.1719943
https://www.tandfonline.com/doi/full/10.1080/15391523.2020.1719943
https://www.tandfonline.com/doi/full/10.1080/15391523.2020.1719943
https://doi.org/10.18154/RWTH-2021-02420
https://doi.org/10.1007/978-3-031-09680-8_14
https://doi.org/10.1007/978-3-031-09680-8_14
https://doi.org/10.1016/j.entcom.2021.100468
https://doi.org/10.1016/j.entcom.2021.100468
https://linkinghub.elsevier.com/retrieve/pii/S1875952121000653
https://linkinghub.elsevier.com/retrieve/pii/S1875952121000653
https://doi.org/10.1186/s40561-020-00140-9
https://slejournal.springeropen.com/articles/10.1186/s40561-020-00140-9
https://slejournal.springeropen.com/articles/10.1186/s40561-020-00140-9
https://doi.org/10.1016/j.compedu.2015.03.015
https://doi.org/10.1016/j.compedu.2015.03.015
https://linkinghub.elsevier.com/retrieve/pii/S0360131515000937
https://linkinghub.elsevier.com/retrieve/pii/S0360131515000937
https://doi.org/10.1007/978-3-319-46152-6_14
https://doi.org/10.1007/978-3-319-46152-6_14
http://link.springer.com/10.1007/978-3-319-46152-6_14
https://doi.org/10.1145/2967934.2968082
https://doi.org/10.1145/2967934.2968082
https://doi.org/10.1145/2967934.2968082

5/2967934.2968082, url: https://dl.acm.org/doi/10.1145/2967934.2968082
(visited on 07/09/2022).

Vandewaetere Mieke, Desmet Piet, and Clarebout Geraldine (Jan. 2011), “The contribu-
tion of learner characteristics in the development of computer-based adaptive learn-
ing environments”, en, in: Computers in Human Behavior 27.1, pp. 118–130, issn:
07475632, doi: 10.1016/j.chb.2010.07.038, url: https://linkinghub.elsevier.
com/retrieve/pii/S0747563210002347 (visited on 03/23/2022).

Wilson Chunyu and Scott Bernard (Jan. 2017), “Adaptive systems in education: a review
and conceptual unification”, en, in: The International Journal of Information and
Learning Technology 34.1, pp. 2–19, issn: 2056-4880, doi: 10.1108/IJILT-09-2016
-0040, url: https://www.emerald.com/insight/content/doi/10.1108/IJILT-09
-2016-0040/full/html (visited on 09/17/2021).

References for Chapter 3
Amory Alan (Jan. 2007), “Game object model version II: a theoretical framework for

educational game development”, en, in: Educational Technology Research and Devel-
opment 55.1, pp. 51–77, issn: 1042-1629, 1556-6501, doi: 10.1007/s11423-006-900
1-x, url: http://link.springer.com/10.1007/s11423-006-9001-x (visited on
01/28/2022).

Amory Alan, Naicker Kevin, Vincent Jacky, and Adams Claudia (Oct. 1999), “The
use of computer games as an educational tool: identification of appropriate game
types and game elements”, en, in: British Journal of Educational Technology 30.4,
pp. 311–321, issn: 0007-1013, 1467-8535, doi: 10.1111/1467- 8535.00121, url:
https://onlinelibrary.wiley.com/doi/10.1111/1467-8535.00121 (visited on
09/20/2022).

Barbosa André F. S., Pereira Pedro N. M., Dias João A. F. F., and Silva Frutuoso G. M.
(2014), “A New Methodology of Design and Development of Serious Games”, en, in:
International Journal of Computer Games Technology 2014, pp. 1–8, issn: 1687-7047,
1687-7055, doi: 10.1155/2014/817167, url: http://www.hindawi.com/journals/
ijcgt/2014/817167/ (visited on 01/28/2022).

Bezza Assma, Balla Amar, and Marir Farhi (Sept. 2013), “An approach for personalizing
learning content in e-learning systems: A review”, en, in: 2013 Second International
Conference on E-Learning and E-Technologies in Education (ICEEE), Lodz, Poland:
IEEE, pp. 218–223, isbn: 978-1-4673-5093-8, doi: 10.1109/ICeLeTE.2013.6644377,
url: http://ieeexplore.ieee.org/document/6644377/ (visited on 05/30/2023).

Browne Cameron, Colton Simon, Cook Michael, Gow Jeremy, and Baumgarten Robin
(Mar. 2014), “Toward the Adaptive Generation of Bespoke Game Content”, en, in:
Handbook of Digital Games, ed. by Marios C. Angelides and Harry Agius, 1st ed.,
Wiley, pp. 15–61, isbn: 978-1-118-79644-3, doi: 10.1002/9781118796443.ch1, url:
https://onlinelibrary.wiley.com/doi/10.1002/9781118796443.ch1 (visited on
03/08/2024).

177

https://doi.org/10.1145/2967934.2968082
https://doi.org/10.1145/2967934.2968082
https://doi.org/10.1145/2967934.2968082
https://doi.org/10.1145/2967934.2968082
https://dl.acm.org/doi/10.1145/2967934.2968082
https://doi.org/10.1016/j.chb.2010.07.038
https://linkinghub.elsevier.com/retrieve/pii/S0747563210002347
https://linkinghub.elsevier.com/retrieve/pii/S0747563210002347
https://doi.org/10.1108/IJILT-09-2016-0040
https://doi.org/10.1108/IJILT-09-2016-0040
https://www.emerald.com/insight/content/doi/10.1108/IJILT-09-2016-0040/full/html
https://www.emerald.com/insight/content/doi/10.1108/IJILT-09-2016-0040/full/html
https://doi.org/10.1007/s11423-006-9001-x
https://doi.org/10.1007/s11423-006-9001-x
http://link.springer.com/10.1007/s11423-006-9001-x
https://doi.org/10.1111/1467-8535.00121
https://onlinelibrary.wiley.com/doi/10.1111/1467-8535.00121
https://doi.org/10.1155/2014/817167
http://www.hindawi.com/journals/ijcgt/2014/817167/
http://www.hindawi.com/journals/ijcgt/2014/817167/
https://doi.org/10.1109/ICeLeTE.2013.6644377
http://ieeexplore.ieee.org/document/6644377/
https://doi.org/10.1002/9781118796443.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9781118796443.ch1

Callies Sophie (2016), “Architecture de génération automatique de scénarios pédagogiques
de jeux sérieux éducatifs.”, fr, in: Publisher: Unpublished, doi: 10.13140/RG.2.2.3
5521.76647, url: http://rgdoi.net/10.13140/RG.2.2.35521.76647 (visited on
03/03/2021).

Carpentier Kevin and Lourdeaux Domitile (2014), “Generation of Learning Situations
According to the Learner’s Profile Within a Virtual Environment”, en, in: Agents
and Artificial Intelligence, ed. by Joaquim Filipe and Ana Fred, vol. 449, Series Title:
Communications in Computer and Information Science, Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 245–260, isbn: 978-3-662-44439-9, doi: 10.1007/978-3-662-4
4440-5_15, url: http://link.springer.com/10.1007/978-3-662-44440-5_15
(visited on 03/08/2021).

Carvalho Maira B., Bellotti Francesco, Berta Riccardo, De Gloria Alessandro, Sedano
Carolina Islas, Hauge Jannicke Baalsrud, Hu Jun, and Rauterberg Matthias (Sept.
2015), “An activity theory-based model for serious games analysis and conceptual
design”, en, in: Computers & Education 87, pp. 166–181, issn: 03601315, doi: 10.10
16/j.compedu.2015.03.023, url: https://linkinghub.elsevier.com/retrieve/
pii/S0360131515001050 (visited on 09/17/2021).

De Freitas Sara and Jarvis Steve (Jan. 2006), “A Framework for developing serious games
to meet learner needs”, en, in: Interservice/Industry Training, Simulation & Education
Conference, I/ITSEC, url: https://researchportal.murdoch.edu.au/esploro/
outputs/conferencePaper/A-framework-for-developing-serious-games/99100
5544482907891.

Diwan Chaitali, Srinivasa Srinath, and Ram Prasad (2019), “Automatic Generation of
Coherent Learning Pathways for Open Educational Resources”, en, in: Transforming
Learning with Meaningful Technologies, ed. by Maren Scheffel, Julien Broisin, Viktoria
Pammer-Schindler, Andri Ioannou, and Jan Schneider, vol. 11722, Series Title: Lecture
Notes in Computer Science, Cham: Springer International Publishing, pp. 321–334,
isbn: 978-3-030-29735-0, doi: 10.1007/978-3-030-29736-7_24, url: http://link.
springer.com/10.1007/978-3-030-29736-7_24 (visited on 11/30/2021).

Djaouti Damien, Alvarez Julian, Jessel Jean-Pierre, Methel Gilles, and Molinier P (2007),
“Towards a classification of video games”, in: Artificial and ambient intelligence con-
vention (artificial societies for ambient intelligence).

Dormans Joris and Bakkes Sander (2011), “Generating Missions and Spaces for Adaptable
Play Experiences”, in: IEEE Transactions on Computational Intelligence and AI in
Games 3.3, pp. 216–228, doi: 10.1109/TCIAIG.2011.2149523.

Fujihira Keita, Hsueh Chu-Hsuan, and Ikeda Kokolo (2022), “Procedural Maze Generation
Considering Difficulty from Human Players’ Perspectives”, in: Advances in Computer
Games, Springer, pp. 165–175, doi: 10.1007/978-3-031-11488-5_15, url: https:
//link.springer.com/chapter/10.1007/978-3-031-11488-5_15.

Hall Joshua V., Wyeth Peta A., and Johnson Daniel (Oct. 2014), “Instructional objectives
to core-gameplay: a serious game design technique”, en, in: Proceedings of the first
ACM SIGCHI annual symposium on Computer-human interaction in play, Toronto

178

https://doi.org/10.13140/RG.2.2.35521.76647
https://doi.org/10.13140/RG.2.2.35521.76647
http://rgdoi.net/10.13140/RG.2.2.35521.76647
https://doi.org/10.1007/978-3-662-44440-5_15
https://doi.org/10.1007/978-3-662-44440-5_15
http://link.springer.com/10.1007/978-3-662-44440-5_15
https://doi.org/10.1016/j.compedu.2015.03.023
https://doi.org/10.1016/j.compedu.2015.03.023
https://linkinghub.elsevier.com/retrieve/pii/S0360131515001050
https://linkinghub.elsevier.com/retrieve/pii/S0360131515001050
https://researchportal.murdoch.edu.au/esploro/outputs/conferencePaper/A-framework-for-developing-serious-games/991005544482907891
https://researchportal.murdoch.edu.au/esploro/outputs/conferencePaper/A-framework-for-developing-serious-games/991005544482907891
https://researchportal.murdoch.edu.au/esploro/outputs/conferencePaper/A-framework-for-developing-serious-games/991005544482907891
https://doi.org/10.1007/978-3-030-29736-7_24
http://link.springer.com/10.1007/978-3-030-29736-7_24
http://link.springer.com/10.1007/978-3-030-29736-7_24
https://doi.org/10.1109/TCIAIG.2011.2149523
https://doi.org/10.1007/978-3-031-11488-5_15
https://link.springer.com/chapter/10.1007/978-3-031-11488-5_15
https://link.springer.com/chapter/10.1007/978-3-031-11488-5_15

Ontario Canada: ACM, pp. 121–130, isbn: 978-1-4503-3014-5, doi: 10.1145/265853
7.2658696, url: https://dl.acm.org/doi/10.1145/2658537.2658696 (visited on
12/15/2021).

Hendrikx Mark, Meijer Sebastiaan, Van Der Velden Joeri, and Iosup Alexandru (Feb.
2013), “Procedural content generation for games: A survey”, in: ACM Trans. Mul-
timedia Comput. Commun. Appl. 9.1, Number of pages: 22 Place: New York, NY,
USA Publisher: Association for Computing Machinery tex.articleno: 1 tex.issue_date:
February 2013, issn: 1551-6857, doi: 10.1145/2422956.2422957, url: https://
doi.org/10.1145/2422956.2422957.

Holohan E., Melia M., McMullen D., and Pahl C. (2006), “The Generation of E-Learning
Exercise Problems from Subject Ontologies”, en, in: Sixth IEEE International Con-
ference on Advanced Learning Technologies (ICALT’06), Kerkrade, The Netherlands:
IEEE, pp. 967–969, isbn: 978-0-7695-2632-4, doi: 10.1109/ICALT.2006.1652605,
url: http://ieeexplore.ieee.org/document/1652605/ (visited on 05/30/2023).

Hunicke Robin, LeBlanc Marc, and Zubek Robert (2004), “MDA: A formal approach to
game design and game research”, in: Proceedings of the AAAI workshop on challenges
in game AI, vol. 4, Number: 1 tex.organization: San Jose, CA.

Junior Rogério and Silva Frutuoso (Sept. 2021), “Redefining the MDA Framework—The
Pursuit of a Game Design Ontology”, en, in: Information 12.10, issn: 2078-2489, doi:
10.3390/info12100395, url: https://www.mdpi.com/2078- 2489/12/10/395
(visited on 01/21/2022).

Khalifa Ahmed, Perez-Liebana Diego, Lucas Simon M., and Togelius Julian (July 2016),
“General Video Game Level Generation”, en, in: Proceedings of the Genetic and Evo-
lutionary Computation Conference 2016, Denver Colorado USA: ACM, pp. 253–259,
isbn: 978-1-4503-4206-3, doi: 10.1145/2908812.2908920, url: https://dl.acm.
org/doi/10.1145/2908812.2908920 (visited on 03/21/2024).

Kiili Kristian (2005), “Digital game-based learning: Towards an experiential gaming model”,
in: The Internet and Higher Education 8.1, pp. 13–24, issn: 1096-7516, doi: https:
//doi.org/10.1016/j.iheduc.2004.12.001, url: https://www.sciencedirect.
com/science/article/pii/S1096751604000776.

Laforcade Pierre and Laghouaouta Youness (2018), “Generation of Adapted Learning
Game Scenarios: A Model-Driven Engineering Approach”, in: Computer Supported
Education - 10th International Conference, CSEDU 2018, Funchal, Madeira, Portugal,
March 15-17, 2018, Revised Selected Papers, ed. by Bruce M. McLaren, Rob Reilly,
Susan Zvacek, and James Uhomoibhi, vol. 1022, Communications in Computer and
Information Science, Springer, pp. 95–116, doi: 10.1007/978-3-030-21151-6_6,
url: https://doi.org/10.1007/978-3-030-21151-6%5C_6.

Lopes Ricardo and Bidarra Rafael (June 2011b), “Adaptivity Challenges in Games and
Simulations: A Survey”, en, in: IEEE Transactions on Computational Intelligence and
AI in Games 3.2, pp. 85–99, issn: 1943-068X, 1943-0698, doi: 10.1109/TCIAIG.20
11.2152841, url: http://ieeexplore.ieee.org/document/5765665/ (visited on
03/08/2021).

179

https://doi.org/10.1145/2658537.2658696
https://doi.org/10.1145/2658537.2658696
https://dl.acm.org/doi/10.1145/2658537.2658696
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1109/ICALT.2006.1652605
http://ieeexplore.ieee.org/document/1652605/
https://doi.org/10.3390/info12100395
https://www.mdpi.com/2078-2489/12/10/395
https://doi.org/10.1145/2908812.2908920
https://dl.acm.org/doi/10.1145/2908812.2908920
https://dl.acm.org/doi/10.1145/2908812.2908920
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://doi.org/10.1007/978-3-030-21151-6_6
https://doi.org/10.1007/978-3-030-21151-6%5C_6
https://doi.org/10.1109/TCIAIG.2011.2152841
https://doi.org/10.1109/TCIAIG.2011.2152841
http://ieeexplore.ieee.org/document/5765665/

Marne Bertrand, Wisdom John, Huynh-Kim-Bang Benjamin, and Labat Jean-Marc (2012),
“The Six Facets of Serious Game Design: A Methodology Enhanced by Our Design
Pattern Library”, en, in: 21st Century Learning for 21st Century Skills, ed. by David
Hutchison et al., vol. 7563, Series Title: Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 208–221, isbn: 978-3-642-33262-3, doi: 1
0.1007/978-3-642-33263-0_17, url: http://link.springer.com/10.1007/978
-3-642-33263-0_17 (visited on 01/28/2022).

Melis Erica, Andres Eric, Budenbender Jochen, Frischauf Adrian, Goduadze George, Lib-
brecht Paul, Pollet Martin, and Ullrich Carsten (2001), “ActiveMath: A generic and
adaptive web-based learning environment”, in: International Journal of Artificial Intel-
ligence in Education 12, Publisher: Springer tex.hal_id: hal-00197329 tex.hal_version:
v1, pp. 385–407, url: https://telearn.hal.science/hal-00197329.

Nakamura Jeanne and Csikszentmihalyi Mihaly (2009), “Flow theory and research”, in:
Handbook of positive psychology 195, p. 206.

Oliveira Sergio and Magalhaes Luis (Oct. 2017), “Adaptive content generation for games”,
en, in: 2017 24º Encontro Português de Computação Gráfica e Interação (EPCGI),
Guimaraes: IEEE, pp. 1–8, isbn: 978-1-5386-2080-9, doi: 10.1109/EPCGI.2017.
8124303, url: http : / / ieeexplore . ieee . org / document / 8124303/ (visited on
03/08/2024).

Pereira Leonardo Tortoro, Prado Paulo Victor De Souza, Lopes Rafael Miranda, and
Toledo Claudio Fabiano Motta (Oct. 2021), “Procedural generation of dungeons’ maps
and locked-door missions through an evolutionary algorithm validated with players”,
en, in: Expert Systems with Applications 180, p. 115009, issn: 09574174, doi: 10.101
6/j.eswa.2021.115009, url: https://linkinghub.elsevier.com/retrieve/pii/
S0957417421004504 (visited on 03/19/2024).

Ripamonti Laura Anna, Mannalà Mattia, Gadia Davide, and Maggiorini Dario (Feb.
2017), “Procedural content generation for platformers: designing and testing FUN
PLEdGE”, en, in: Multimedia Tools and Applications 76.4, pp. 5001–5050, issn: 1380-
7501, 1573-7721, doi: 10.1007/s11042-016-3636-3, url: http://link.springer.
com/10.1007/s11042-016-3636-3 (visited on 03/08/2024).

Sehaba Karim and Hussaan Aarij Mahmood (Sept. 2013), “GOALS: Generator of adaptive
learning scenarios”, in: International Journal of Learning Technology, 3rd ser. 8, Pub-
lisher: Inderscience, pp. 224–245, issn: 1477-8386, 1741-8119, doi: 10.1504/IJLT.20
13.057061, url: https://hal.science/hal-01339255 (visited on 03/31/2022).

Shaker Noor, Togelius Julian, and Nelson Mark J. (2016), Procedural Content Genera-
tion in Games, en, Computational Synthesis and Creative Systems, Cham: Springer
International Publishing, doi: 10.1007/978-3-319-42716-4, url: http://link.
springer.com/10.1007/978-3-319-42716-4 (visited on 03/08/2024).

Sina Sigal, Rosenfeld Avi, and Kraus Sarit (Jan. 2014), “Generating content for scenario-
based serious-games using crowdsourcing”, in: Proceedings of the National Conference
on Artificial Intelligence 1, pp. 522–529, doi: 10.1609/aaai.v28i1.8790.

180

https://doi.org/10.1007/978-3-642-33263-0_17
https://doi.org/10.1007/978-3-642-33263-0_17
http://link.springer.com/10.1007/978-3-642-33263-0_17
http://link.springer.com/10.1007/978-3-642-33263-0_17
https://telearn.hal.science/hal-00197329
https://doi.org/10.1109/EPCGI.2017.8124303
https://doi.org/10.1109/EPCGI.2017.8124303
http://ieeexplore.ieee.org/document/8124303/
https://doi.org/10.1016/j.eswa.2021.115009
https://doi.org/10.1016/j.eswa.2021.115009
https://linkinghub.elsevier.com/retrieve/pii/S0957417421004504
https://linkinghub.elsevier.com/retrieve/pii/S0957417421004504
https://doi.org/10.1007/s11042-016-3636-3
http://link.springer.com/10.1007/s11042-016-3636-3
http://link.springer.com/10.1007/s11042-016-3636-3
https://doi.org/10.1504/IJLT.2013.057061
https://doi.org/10.1504/IJLT.2013.057061
https://hal.science/hal-01339255
https://doi.org/10.1007/978-3-319-42716-4
http://link.springer.com/10.1007/978-3-319-42716-4
http://link.springer.com/10.1007/978-3-319-42716-4
https://doi.org/10.1609/aaai.v28i1.8790

Soares De Lima Edirlei, Feijo Bruno, and Furtado Antonio L. (Oct. 2019), “Procedural
Generation of Quests for Games Using Genetic Algorithms and Automated Planning”,
en, in: 2019 18th Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames), Rio de Janeiro, Brazil: IEEE, pp. 144–153, isbn: 978-1-72814-637-9, doi:
10.1109/SBGames.2019.00028, url: https://ieeexplore.ieee.org/document/89
24855/ (visited on 03/19/2024).

Vassileva Julita (1995), “Dynamic courseware generation: at the cross point of CAL, ITS
and authoring”, in: Proceedings of ICCE, vol. 95, pp. 290–297.

Winn B.M. (2009), Handbook of Research on Effective Electronic Gaming in Education:
en, ed. by Richard E. Ferdig, IGI Global, isbn: 978-1-59904-808-6, doi: 10.4018/978
-1-59904-808-6, url: http://services.igi-global.com/resolvedoi/resolve.
aspx?doi=10.4018/978-1-59904-808-6 (visited on 01/28/2022).

Yannakakis G. N. and Togelius J. (July 2011), “Experience-Driven Procedural Content
Generation”, en, in: IEEE Transactions on Affective Computing 2.3, pp. 147–161,
issn: 1949-3045, doi: 10.1109/T-AFFC.2011.6, url: http://ieeexplore.ieee.
org/document/5740836/ (visited on 03/08/2024).

Yusoff Amri, Crowder Richard, Gilbert Lester, and Wills Gary (July 2009), “A Conceptual
Framework for Serious Games”, en, in: 2009 Ninth IEEE International Conference
on Advanced Learning Technologies, Riga, Latvia: IEEE, pp. 21–23, doi: 10.1109
/ICALT.2009.19, url: http://ieeexplore.ieee.org/document/5194153/ (visited
on 01/28/2022).

References for Chapter 4
Brambilla Marco, Cabot Jordi, and Wimmer Manuel (2012), Model-driven software engi-

neering in practice, en, Synthesis lectures on software engineering 1, San Rafael, Calif.:
Morgan & Claypool, isbn: 978-1-60845-882-0, doi: 10.2200/S00441ED1V01Y201208
SWE001.

Harris John (Sept. 2020), “The Berlin Interpretation”, in: Exploring Roguelike Games,
CRC Press, pp. 37–43, doi: 10.1201/9781003053576-9, url: https://doi.org/10
.1201%2F9781003053576-9.

Lemoine Bérénice and Laforcade Pierre (2023a), “Generator of personalised training
games activities: A conceptual design approach”, in: Games and learning alliance
- 12th international conference, GALA 2023, dublin, ireland, november 29 - december
1, 2023, proceedings, ed. by Pierpaolo Dondio, Mariana Rocha, Attracta Brennan, Avo
Schönbohm, Francesca de Rosa, Antti Koskinen, and Francesco Bellotti, vol. 14475,
Lecture notes in computer science, Springer, pp. 321–331, doi: 10.1007/978-3-031
-49065-1_31, url: https://doi.org/10.1007/978-3-031-49065-1_31.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (June 2023c), “Un framework
de conception pour des générateurs d’activités de jeu variées et adaptées”, in: 11ème
conférence sur les environnements informatiques pour l’Apprentissage humain, Brest,
France, pp. 88–99, url: https://hal.science/hal-04152004.

181

https://doi.org/10.1109/SBGames.2019.00028
https://ieeexplore.ieee.org/document/8924855/
https://ieeexplore.ieee.org/document/8924855/
https://doi.org/10.4018/978-1-59904-808-6
https://doi.org/10.4018/978-1-59904-808-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-808-6
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-808-6
https://doi.org/10.1109/T-AFFC.2011.6
http://ieeexplore.ieee.org/document/5740836/
http://ieeexplore.ieee.org/document/5740836/
https://doi.org/10.1109/ICALT.2009.19
https://doi.org/10.1109/ICALT.2009.19
http://ieeexplore.ieee.org/document/5194153/
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1201/9781003053576-9
https://doi.org/10.1201%2F9781003053576-9
https://doi.org/10.1201%2F9781003053576-9
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://hal.science/hal-04152004

Pereira Leonardo Tortoro, Prado Paulo Victor De Souza, Lopes Rafael Miranda, and
Toledo Claudio Fabiano Motta (Oct. 2021), “Procedural generation of dungeons’ maps
and locked-door missions through an evolutionary algorithm validated with players”,
en, in: Expert Systems with Applications 180, p. 115009, issn: 09574174, doi: 10.101
6/j.eswa.2021.115009, url: https://linkinghub.elsevier.com/retrieve/pii/
S0957417421004504 (visited on 03/19/2024).

Plass Jan L. and Pawar Shashank (July 2020), “Toward a taxonomy of adaptivity for
learning”, en, in: Journal of Research on Technology in Education 52.3, pp. 275–300,
issn: 1539-1523, 1945-0818, doi: 10.1080/15391523.2020.1719943, url: https:
//www.tandfonline.com/doi/full/10.1080/15391523.2020.1719943 (visited on
09/06/2022).

Sottet Jean-Sébastien, Ganneau Vincent, Calvary Gaëlle, Coutaz Joëlle, Demeure Alexan-
dre, Favre Jean-Marie, and Demumieux Rachel (2007), “Model-Driven Adaptation for
Plastic User Interfaces”, en, in: Human-Computer Interaction – INTERACT 2007,
ed. by Cécilia Baranauskas, Philippe Palanque, Julio Abascal, and Simone Diniz Jun-
queira Barbosa, vol. 4662, Series Title: Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 397–410, isbn: 978-3-540-74794-9, doi: 1
0.1007/978-3-540-74796-3_38, url: http://link.springer.com/10.1007/978
-3-540-74796-3_38 (visited on 04/03/2024).

Tchounikine Pierre, Mørch Anders I., and Bannon Liam J. (2009), “A Computer Sci-
ence Perspective on Technology-Enhanced Learning Research”, en, in: Technology-
Enhanced Learning, Dordrecht: Springer Netherlands, pp. 275–288, doi: 10.1007/97
8-1-4020-9827-7_16, url: http://link.springer.com/10.1007/978-1-4020-98
27-7_16 (visited on 03/02/2022).

Toy Michael, Wichman Glenn, Arnold Ken, and Lane Jon (1980), Rogue.
Yannakakis G. N. and Togelius J. (July 2011), “Experience-Driven Procedural Content

Generation”, en, in: IEEE Transactions on Affective Computing 2.3, pp. 147–161,
issn: 1949-3045, doi: 10.1109/T-AFFC.2011.6, url: http://ieeexplore.ieee.
org/document/5740836/ (visited on 03/08/2024).

References for Chapter 5
Carvalho Maira B., Bellotti Francesco, Berta Riccardo, De Gloria Alessandro, Sedano

Carolina Islas, Hauge Jannicke Baalsrud, Hu Jun, and Rauterberg Matthias (Sept.
2015), “An activity theory-based model for serious games analysis and conceptual
design”, en, in: Computers & Education 87, pp. 166–181, issn: 03601315, doi: 10.10
16/j.compedu.2015.03.023, url: https://linkinghub.elsevier.com/retrieve/
pii/S0360131515001050 (visited on 09/17/2021).

Djaouti Damien, Alvarez Julian, Jessel Jean-Pierre, Methel Gilles, and Molinier Pierre
(2008), “A Gameplay Definition through Videogame Classification”, en, in: Interna-
tional Journal of Computer Games Technology, pp. 1–7, issn: 1687-7047, 1687-7055,

182

https://doi.org/10.1016/j.eswa.2021.115009
https://doi.org/10.1016/j.eswa.2021.115009
https://linkinghub.elsevier.com/retrieve/pii/S0957417421004504
https://linkinghub.elsevier.com/retrieve/pii/S0957417421004504
https://doi.org/10.1080/15391523.2020.1719943
https://www.tandfonline.com/doi/full/10.1080/15391523.2020.1719943
https://www.tandfonline.com/doi/full/10.1080/15391523.2020.1719943
https://doi.org/10.1007/978-3-540-74796-3_38
https://doi.org/10.1007/978-3-540-74796-3_38
http://link.springer.com/10.1007/978-3-540-74796-3_38
http://link.springer.com/10.1007/978-3-540-74796-3_38
https://doi.org/10.1007/978-1-4020-9827-7_16
https://doi.org/10.1007/978-1-4020-9827-7_16
http://link.springer.com/10.1007/978-1-4020-9827-7_16
http://link.springer.com/10.1007/978-1-4020-9827-7_16
https://doi.org/10.1109/T-AFFC.2011.6
http://ieeexplore.ieee.org/document/5740836/
http://ieeexplore.ieee.org/document/5740836/
https://doi.org/10.1016/j.compedu.2015.03.023
https://doi.org/10.1016/j.compedu.2015.03.023
https://linkinghub.elsevier.com/retrieve/pii/S0360131515001050
https://linkinghub.elsevier.com/retrieve/pii/S0360131515001050

doi: 10.1155/2008/470350, url: http://www.hindawi.com/journals/ijcgt/2008
/470350/ (visited on 07/11/2022).

Kiili Kristian (2005), “Digital game-based learning: Towards an experiential gaming model”,
in: The Internet and Higher Education 8.1, pp. 13–24, issn: 1096-7516, doi: https:
//doi.org/10.1016/j.iheduc.2004.12.001, url: https://www.sciencedirect.
com/science/article/pii/S1096751604000776.

Laforcade Pierre, Mottier Emeric, Jolivet Sébastien, and Lemoine Bérénice (Apr. 2022),
“Expressing adaptations to take into account in generator-based exercisers: an ex-
ploratory study about multiplication facts”, in: 14th International Conference on
Computer Supported Education, France, pp. 242–249, doi: 10.5220/001103310000
3182, url: https://hal.archives-ouvertes.fr/hal-03711643.

Lemoine Bérénice and Laforcade Pierre (2023a), “Generator of personalised training
games activities: A conceptual design approach”, in: Games and learning alliance
- 12th international conference, GALA 2023, dublin, ireland, november 29 - december
1, 2023, proceedings, ed. by Pierpaolo Dondio, Mariana Rocha, Attracta Brennan, Avo
Schönbohm, Francesca de Rosa, Antti Koskinen, and Francesco Bellotti, vol. 14475,
Lecture notes in computer science, Springer, pp. 321–331, doi: 10.1007/978-3-031
-49065-1_31, url: https://doi.org/10.1007/978-3-031-49065-1_31.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2023a), “An analysis frame-
work for designing declarative knowledge training games using roguelite genre”, in:
Proceedings of the 15th international conference on computer supported education,
CSEDU 2023, volume 2, prague, czech republic, april 21-23, ed. by Jelena Jovanovic,
Irene-Angelica Chounta, James Uhomoibhi, and Bruce M. McLaren, SCITEPRESS,
pp. 276–287, doi: 10.5220/0011840200003470, url: https://doi.org/10.5220/00
11840200003470.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (June 2023c), “Un framework
de conception pour des générateurs d’activités de jeu variées et adaptées”, in: 11ème
conférence sur les environnements informatiques pour l’Apprentissage humain, Brest,
France, pp. 88–99, url: https://hal.science/hal-04152004.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2024c), “Designing declarative
knowledge training games: An analysis framework based on the roguelite genre”, in:
Computer supported education, ed. by Bruce M. McLaren, James Uhomoibhi, Jelena
Jovanovic, and Irene-Angelica Chounta, Cham: Springer Nature Switzerland, pp. 69–
92, isbn: 978-3-031-53656-4.

Prensky Marc (2005), “Computer games and learning: Digital game-based learning”, in:
Handbook of computer game studies 18.2005, pp. 97–122.

References for Chapter 6
Bloom Benjamin Samuel (1956), “Taxonomy of educational objectives: The classification

of educational goals”, in: Cognitive domain, Publisher: Longman.

183

https://doi.org/10.1155/2008/470350
http://www.hindawi.com/journals/ijcgt/2008/470350/
http://www.hindawi.com/journals/ijcgt/2008/470350/
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://doi.org/10.5220/0011033100003182
https://doi.org/10.5220/0011033100003182
https://hal.archives-ouvertes.fr/hal-03711643
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.5220/0011840200003470
https://doi.org/10.5220/0011840200003470
https://doi.org/10.5220/0011840200003470
https://hal.science/hal-04152004

Chong Y, Wong M, and Thomson Fredrik E (2005), “The impact of learning styles on
the effectiveness of digital games in education”, in: Proceedings of the Symposium on
Information Technology in Education, KDU College, Patailing Java, Malaysia.

Debabi Wassila and Champagnat Ronan (2017), “Towards architecture for pedagogical
and game scenarios adaptation in serious games”, in: International association for
development of the information society (IADIS) conference on E-learning, pp. 63–70.

Degens Nick, Bril Ivo, and Braad Eelco (2015), “A three-dimensional model for educa-
tional game analysis & design”, en, in: Foundations of Digital Games 2015.

Dondi Claudio and Moretti Michela (May 2007), “A methodological proposal for learning
games selection and quality assessment”, en, in: British Journal of Educational Tech-
nology 38.3, pp. 502–512, issn: 0007-1013, 1467-8535, doi: 10.1111/j.1467-8535.2
007.00713.x, url: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-853
5.2007.00713.x (visited on 03/16/2022).

Gosper Maree and McNeill Margot (2012), “Implementing game-based learning: The
MAPLET framework as a guide to learner-centred design and assessment”, English,
in: Assessment in Game-Based Learning, United States: Springer, Springer Nature,
pp. 217–233, isbn: 978-1-4614-3545-7, doi: 10.1007/978-1-4614-3546-4_12.

Hall Joshua V., Wyeth Peta A., and Johnson Daniel (Oct. 2014), “Instructional objectives
to core-gameplay: a serious game design technique”, en, in: Proceedings of the first
ACM SIGCHI annual symposium on Computer-human interaction in play, Toronto
Ontario Canada: ACM, pp. 121–130, isbn: 978-1-4503-3014-5, doi: 10.1145/265853
7.2658696, url: https://dl.acm.org/doi/10.1145/2658537.2658696 (visited on
12/15/2021).

Jafari Seyed Mohammadbagher and Abdollahzade Zahra (Sept. 2019), “Investigating the
relationship between learning style and game type in the game-based learning envi-
ronment”, en, in: Education and Information Technologies 24.5, pp. 2841–2862, issn:
1360-2357, 1573-7608, doi: 10.1007/s10639- 019- 09898- z, url: http://link.
springer.com/10.1007/s10639-019-09898-z (visited on 01/29/2023).

Kanaan Malak, Maillos Sébastien, and Muratet Mathieu (Sept. 2022), “Toward a learning
game on Computational Thinking Driven by Competencies”, en, in: European Confer-
ence on Games Based Learning 16.1, pp. 288–296, issn: 2049-100X, 2049-0992, doi:
10.34190/ecgbl.16.1.537, url: https://papers.academic-conferences.org/
index.php/ecgbl/article/view/537 (visited on 02/02/2023).

Khenissi Mohamed Ali, Essalmi Fathi, Jemni Mohamed, Kinshuk, Graf Sabine, and Chen
Nian-Shing (Oct. 2016), “Relationship between learning styles and genres of games”,
en, in: Computers & Education 101, pp. 1–14, issn: 03601315, doi: 10.1016/j.
compedu.2016.05.005, url: https://linkinghub.elsevier.com/retrieve/pii/
S0360131516301154 (visited on 01/29/2023).

Kiili Kristian (2005), “Digital game-based learning: Towards an experiential gaming model”,
in: The Internet and Higher Education 8.1, pp. 13–24, issn: 1096-7516, doi: https:
//doi.org/10.1016/j.iheduc.2004.12.001, url: https://www.sciencedirect.
com/science/article/pii/S1096751604000776.

184

https://doi.org/10.1111/j.1467-8535.2007.00713.x
https://doi.org/10.1111/j.1467-8535.2007.00713.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8535.2007.00713.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-8535.2007.00713.x
https://doi.org/10.1007/978-1-4614-3546-4_12
https://doi.org/10.1145/2658537.2658696
https://doi.org/10.1145/2658537.2658696
https://dl.acm.org/doi/10.1145/2658537.2658696
https://doi.org/10.1007/s10639-019-09898-z
http://link.springer.com/10.1007/s10639-019-09898-z
http://link.springer.com/10.1007/s10639-019-09898-z
https://doi.org/10.34190/ecgbl.16.1.537
https://papers.academic-conferences.org/index.php/ecgbl/article/view/537
https://papers.academic-conferences.org/index.php/ecgbl/article/view/537
https://doi.org/10.1016/j.compedu.2016.05.005
https://doi.org/10.1016/j.compedu.2016.05.005
https://linkinghub.elsevier.com/retrieve/pii/S0360131516301154
https://linkinghub.elsevier.com/retrieve/pii/S0360131516301154
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://doi.org/https://doi.org/10.1016/j.iheduc.2004.12.001
https://www.sciencedirect.com/science/article/pii/S1096751604000776
https://www.sciencedirect.com/science/article/pii/S1096751604000776

Lameras Petros, Arnab Sylvester, Dunwell Ian, Stewart Craig, Clarke Samantha, and
Petridis Panagiotis (June 2017), “Essential features of serious games design in higher
education: Linking learning attributes to game mechanics: Essential features of serious
games design”, en, in: British Journal of Educational Technology 48.4, pp. 972–994,
issn: 00071013, doi: 10.1111/bjet.12467, url: https://onlinelibrary.wiley.
com/doi/10.1111/bjet.12467 (visited on 02/20/2023).

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2023b), “Mapping task types
and gameplay categories in the context of declarative knowledge training”, in: Proceed-
ings of the 15th international conference on computer supported education, CSEDU
2023, volume 2, prague, czech republic, april 21-23, ed. by Jelena Jovanovic, Irene-
Angelica Chounta, James Uhomoibhi, and Bruce M. McLaren, SCITEPRESS, pp. 264–
275, doi: 10.5220/0011840100003470, url: https://doi.org/10.5220/001184010
0003470.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2024b), “An approach for
mapping declarative knowledge training task types to gameplay categories”, in: Com-
puter supported education, ed. by Bruce M. McLaren, James Uhomoibhi, Jelena Jo-
vanovic, and Irene-Angelica Chounta, Cham: Springer Nature Switzerland, pp. 47–68,
isbn: 978-3-031-53656-4.

Lim Theodore, Carvalho Maira B, Bellotti Francesco, Arnab Sylvester, de Freitas Sara,
Louchart Sandy, Suttie Neil, Berta Riccardo, and Gloria Alessandro De (2013), “The
LM-GM framework for Serious Games Analysis”, en, in: Pittsburgh: University of
Pittsburgh.

Prensky Marc (2005), “Computer games and learning: Digital game-based learning”, in:
Handbook of computer game studies 18.2005, pp. 97–122.

Rapeepisarn Kowit, Wong Kok Wai, Fung Chun Che, and Khine Myint Swe (2008), “The
Relationship between Game Genres, Learning Techniques and Learning Styles in Ed-
ucational Computer Games”, en, in: Technologies for E-Learning and Digital Enter-
tainment, vol. 5093, Springer Berlin Heidelberg, pp. 497–508, isbn: 978-3-540-69734-3,
doi: 10.1007/978-3-540-69736-7_53, url: http://link.springer.com/10.1007
/978-3-540-69736-7_53 (visited on 09/23/2022).

Sherry John L (2010), “Matching computer game genres to educational outcomes”, in:
Teaching and Learning with Technology, Routledge, pp. 234–246.

References for Chapter 7
Debabi Wassila and Champagnat Ronan (2017), “Towards architecture for pedagogical

and game scenarios adaptation in serious games”, in: International association for
development of the information society (IADIS) conference on E-learning, pp. 63–70.

Gosper Maree (2011), “MAPLET–A Framework for Matching Aims, Processes, Learner
Expertise and Technologies”, in: Multiple perspectives on problem solving and learning
in the digital age, Springer, pp. 23–36.

185

https://doi.org/10.1111/bjet.12467
https://onlinelibrary.wiley.com/doi/10.1111/bjet.12467
https://onlinelibrary.wiley.com/doi/10.1111/bjet.12467
https://doi.org/10.5220/0011840100003470
https://doi.org/10.5220/0011840100003470
https://doi.org/10.5220/0011840100003470
https://doi.org/10.1007/978-3-540-69736-7_53
http://link.springer.com/10.1007/978-3-540-69736-7_53
http://link.springer.com/10.1007/978-3-540-69736-7_53

Lemoine Bérénice and Laforcade Pierre (2023a), “Generator of personalised training
games activities: A conceptual design approach”, in: Games and learning alliance
- 12th international conference, GALA 2023, dublin, ireland, november 29 - december
1, 2023, proceedings, ed. by Pierpaolo Dondio, Mariana Rocha, Attracta Brennan, Avo
Schönbohm, Francesca de Rosa, Antti Koskinen, and Francesco Bellotti, vol. 14475,
Lecture notes in computer science, Springer, pp. 321–331, doi: 10.1007/978-3-031
-49065-1_31, url: https://doi.org/10.1007/978-3-031-49065-1_31.

Lemoine Bérénice and Laforcade Pierre (2023b), “Mapping facts to concrete game el-
ements for generation purposes: A conceptual approach”, in: Games and learning
alliance - 12th international conference, GALA 2023, dublin, ireland, november 29
- december 1, 2023, proceedings, ed. by Pierpaolo Dondio, Mariana Rocha, Attracta
Brennan, Avo Schönbohm, Francesca de Rosa, Antti Koskinen, and Francesco Bellotti,
vol. 14475, Lecture notes in computer science, Springer, pp. 342–352, doi: 10.1007/9
78-3-031-49065-1_33, url: https://doi.org/10.1007/978-3-031-49065-1_33.

Lim Theodore, Carvalho Maira B, Bellotti Francesco, Arnab Sylvester, de Freitas Sara,
Louchart Sandy, Suttie Neil, Berta Riccardo, and Gloria Alessandro De (2013), “The
LM-GM framework for Serious Games Analysis”, en, in: Pittsburgh: University of
Pittsburgh.

References for Chapter 8
Laforcade Pierre and Laghouaouta Youness (2018), “Generation of Adapted Learning

Game Scenarios: A Model-Driven Engineering Approach”, in: Computer Supported
Education - 10th International Conference, CSEDU 2018, Funchal, Madeira, Portugal,
March 15-17, 2018, Revised Selected Papers, ed. by Bruce M. McLaren, Rob Reilly,
Susan Zvacek, and James Uhomoibhi, vol. 1022, Communications in Computer and
Information Science, Springer, pp. 95–116, doi: 10.1007/978-3-030-21151-6_6,
url: https://doi.org/10.1007/978-3-030-21151-6%5C_6.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2024a), “A framework for
generators of varied and adapted training game activities”, in: Technology enhanced
learning for inclusive and equitable quality education, ed. by Rafael Ferreira Mello,
Nikol Rummel, Ioana Jivet, Gerti Pishtari, and José A. Ruipérez Valiente, Cham:
Springer Nature Switzerland, pp. 237–252, isbn: 978-3-031-72315-5.

Melero Javier, El-Kechai Naima, Yessad Amel, and Labat Jean-Marc (2016), “Adapting
learning paths in serious games: an approach based on teachers’ requirements”, in:
Computer supported education - 7th international conference, CSEDU 2015, lisbon,
portugal, may 23-25, 2015, revised selected papers, vol. 583, Communications in com-
puter and information science, Springer, pp. 376–394, doi: 10.1007/978-3-319-295
85-5_22, url: https://hal.sorbonne-universite.fr/hal-01303795.

Sehaba Karim and Hussaan Aarij Mahmood (Sept. 2013), “GOALS: Generator of adaptive
learning scenarios”, in: International Journal of Learning Technology, 3rd ser. 8, Pub-

186

https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_33
https://doi.org/10.1007/978-3-031-49065-1_33
https://doi.org/10.1007/978-3-031-49065-1_33
https://doi.org/10.1007/978-3-030-21151-6_6
https://doi.org/10.1007/978-3-030-21151-6%5C_6
https://doi.org/10.1007/978-3-319-29585-5_22
https://doi.org/10.1007/978-3-319-29585-5_22
https://hal.sorbonne-universite.fr/hal-01303795

lisher: Inderscience, pp. 224–245, issn: 1477-8386, 1741-8119, doi: 10.1504/IJLT.20
13.057061, url: https://hal.science/hal-01339255 (visited on 03/31/2022).

Shvets Alexander (2018), Dive Into Design Patterns, Refactoring.Guru, url: https :
//refactoring.guru/design-patterns/template-method.

Steinberg David, Budinsky Frank, Paternostro Marcelo, and Merks Ed (2009), EMF:
Eclipse modeling framework 2.0, 2nd ed., Addison-Wesley Professional, isbn: 0-321-
33188-5.

References for Chapter 9
Bloom Benjamin Samuel (1956), “Taxonomy of educational objectives: The classification

of educational goals”, in: Cognitive domain, Publisher: Longman.
Melero Javier, El-Kechai Naima, Yessad Amel, and Labat Jean-Marc (2016), “Adapting

learning paths in serious games: an approach based on teachers’ requirements”, in:
Computer supported education - 7th international conference, CSEDU 2015, lisbon,
portugal, may 23-25, 2015, revised selected papers, vol. 583, Communications in com-
puter and information science, Springer, pp. 376–394, doi: 10.1007/978-3-319-295
85-5_22, url: https://hal.sorbonne-universite.fr/hal-01303795.

References for Chapter 11
Bezza Assma, Balla Amar, and Marir Farhi (Sept. 2013), “An approach for personalizing

learning content in e-learning systems: A review”, en, in: 2013 Second International
Conference on E-Learning and E-Technologies in Education (ICEEE), Lodz, Poland:
IEEE, pp. 218–223, isbn: 978-1-4673-5093-8, doi: 10.1109/ICeLeTE.2013.6644377,
url: http://ieeexplore.ieee.org/document/6644377/ (visited on 05/30/2023).

Bimba Andrew Thomas, Idris Norisma, Al-Hunaiyyan Ahmed, Mahmud Rohana Binti,
and Shuib Nor Liyana Bt Mohd (Oct. 2017), “Adaptive feedback in computer-based
learning environments: a review”, en, in: Adaptive Behavior 25.5, pp. 217–234, issn:
1059-7123, 1741-2633, doi: 10.1177/1059712317727590, url: http://journals.
sagepub.com/doi/10.1177/1059712317727590 (visited on 06/28/2024).

Bloom Benjamin Samuel (1956), “Taxonomy of educational objectives: The classification
of educational goals”, in: Cognitive domain, Publisher: Longman.

Gorman Michael E (2002), “Types of Knowledge and Their Roles in Technology Transfer”,
en, in: doi: https://doi.org/10.1023/A:1015672119590.

Lemoine Bérénice and Laforcade Pierre (2023a), “Generator of personalised training
games activities: A conceptual design approach”, in: Games and learning alliance
- 12th international conference, GALA 2023, dublin, ireland, november 29 - december
1, 2023, proceedings, ed. by Pierpaolo Dondio, Mariana Rocha, Attracta Brennan, Avo
Schönbohm, Francesca de Rosa, Antti Koskinen, and Francesco Bellotti, vol. 14475,

187

https://doi.org/10.1504/IJLT.2013.057061
https://doi.org/10.1504/IJLT.2013.057061
https://hal.science/hal-01339255
https://refactoring.guru/design-patterns/template-method
https://refactoring.guru/design-patterns/template-method
https://doi.org/10.1007/978-3-319-29585-5_22
https://doi.org/10.1007/978-3-319-29585-5_22
https://hal.sorbonne-universite.fr/hal-01303795
https://doi.org/10.1109/ICeLeTE.2013.6644377
http://ieeexplore.ieee.org/document/6644377/
https://doi.org/10.1177/1059712317727590
http://journals.sagepub.com/doi/10.1177/1059712317727590
http://journals.sagepub.com/doi/10.1177/1059712317727590
https://doi.org/https://doi.org/10.1023/A:1015672119590

Lecture notes in computer science, Springer, pp. 321–331, doi: 10.1007/978-3-031
-49065-1_31, url: https://doi.org/10.1007/978-3-031-49065-1_31.

Lemoine Bérénice and Laforcade Pierre (2023b), “Mapping facts to concrete game el-
ements for generation purposes: A conceptual approach”, in: Games and learning
alliance - 12th international conference, GALA 2023, dublin, ireland, november 29
- december 1, 2023, proceedings, ed. by Pierpaolo Dondio, Mariana Rocha, Attracta
Brennan, Avo Schönbohm, Francesca de Rosa, Antti Koskinen, and Francesco Bellotti,
vol. 14475, Lecture notes in computer science, Springer, pp. 342–352, doi: 10.1007/9
78-3-031-49065-1_33, url: https://doi.org/10.1007/978-3-031-49065-1_33.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2023a), “An analysis frame-
work for designing declarative knowledge training games using roguelite genre”, in:
Proceedings of the 15th international conference on computer supported education,
CSEDU 2023, volume 2, prague, czech republic, april 21-23, ed. by Jelena Jovanovic,
Irene-Angelica Chounta, James Uhomoibhi, and Bruce M. McLaren, SCITEPRESS,
pp. 276–287, doi: 10.5220/0011840200003470, url: https://doi.org/10.5220/00
11840200003470.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2023b), “Mapping task types
and gameplay categories in the context of declarative knowledge training”, in: Proceed-
ings of the 15th international conference on computer supported education, CSEDU
2023, volume 2, prague, czech republic, april 21-23, ed. by Jelena Jovanovic, Irene-
Angelica Chounta, James Uhomoibhi, and Bruce M. McLaren, SCITEPRESS, pp. 264–
275, doi: 10.5220/0011840100003470, url: https://doi.org/10.5220/001184010
0003470.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (June 2023c), “Un framework
de conception pour des générateurs d’activités de jeu variées et adaptées”, in: 11ème
conférence sur les environnements informatiques pour l’Apprentissage humain, Brest,
France, pp. 88–99, url: https://hal.science/hal-04152004.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2024b), “An approach for
mapping declarative knowledge training task types to gameplay categories”, in: Com-
puter supported education, ed. by Bruce M. McLaren, James Uhomoibhi, Jelena Jo-
vanovic, and Irene-Angelica Chounta, Cham: Springer Nature Switzerland, pp. 47–68,
isbn: 978-3-031-53656-4.

Lemoine Bérénice, Laforcade Pierre, and George Sébastien (2024c), “Designing declarative
knowledge training games: An analysis framework based on the roguelite genre”, in:
Computer supported education, ed. by Bruce M. McLaren, James Uhomoibhi, Jelena
Jovanovic, and Irene-Angelica Chounta, Cham: Springer Nature Switzerland, pp. 69–
92, isbn: 978-3-031-53656-4.

Lemoine Bérénice, Laforcade Pierre, and George Sebastien (Sept. 2024d), “A Framework
for Generators of Varied and Adapted Training Game Activities”, en, in: Nineteenth
European Conference on Technology Enhanced Learning ECTEL 2024, to be pubished,
Lecture Notes in Computer Science.

188

https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_31
https://doi.org/10.1007/978-3-031-49065-1_33
https://doi.org/10.1007/978-3-031-49065-1_33
https://doi.org/10.1007/978-3-031-49065-1_33
https://doi.org/10.5220/0011840200003470
https://doi.org/10.5220/0011840200003470
https://doi.org/10.5220/0011840200003470
https://doi.org/10.5220/0011840100003470
https://doi.org/10.5220/0011840100003470
https://doi.org/10.5220/0011840100003470
https://hal.science/hal-04152004

Melero Javier, El-Kechai Naima, Yessad Amel, and Labat Jean-Marc (2016), “Adapting
learning paths in serious games: an approach based on teachers’ requirements”, in:
Computer supported education - 7th international conference, CSEDU 2015, lisbon,
portugal, may 23-25, 2015, revised selected papers, vol. 583, Communications in com-
puter and information science, Springer, pp. 376–394, doi: 10.1007/978-3-319-295
85-5_22, url: https://hal.sorbonne-universite.fr/hal-01303795.

Ramaprasad Arkalgud (Jan. 1983), “On the definition of feedback”, in: Behavioral Science
28, pp. 4–13, doi: 10.1002/bs.3830280103.

Shute Valerie J. (Mar. 2008), “Focus on Formative Feedback”, en, in: Review of Educa-
tional Research 78.1, pp. 153–189, issn: 0034-6543, 1935-1046, doi: 10.3102/0034654
307313795, url: http://journals.sagepub.com/doi/10.3102/0034654307313795
(visited on 02/23/2022).

Yannakakis G. N. and Togelius J. (July 2011), “Experience-Driven Procedural Content
Generation”, en, in: IEEE Transactions on Affective Computing 2.3, pp. 147–161,
issn: 1949-3045, doi: 10.1109/T-AFFC.2011.6, url: http://ieeexplore.ieee.
org/document/5740836/ (visited on 03/08/2024).

189

https://doi.org/10.1007/978-3-319-29585-5_22
https://doi.org/10.1007/978-3-319-29585-5_22
https://hal.sorbonne-universite.fr/hal-01303795
https://doi.org/10.1002/bs.3830280103
https://doi.org/10.3102/0034654307313795
https://doi.org/10.3102/0034654307313795
http://journals.sagepub.com/doi/10.3102/0034654307313795
https://doi.org/10.1109/T-AFFC.2011.6
http://ieeexplore.ieee.org/document/5740836/
http://ieeexplore.ieee.org/document/5740836/

Appendix A

ANALYSIS OF EXISTING GAMES FOR
MULTIPLICATION TABLES TRAINING

Table A.1: Analysis of existing games for Multiplication Table training

Computer
Online
source

Friends &
Figo

Destroy (keyboard +
click) boxes in a
limited time with the
correct answers

Tables from 1 to 12 Yes

Computer
Online
source

Figo’s
Factory

Move (keyboard) to
collect gifts with
questions and place
(keyboard + click)
them in the boxes with
the correct answer

Tables from 1 to 12 Avatar No

Computer
Online
source

My Smart
Horse /
Rally v10

Choose (click) the
correct answer
between the 4
proposals and avoid
obstacles by jumping
(click)

Tables from 1 to 12

Avatar & Vehicle,
Buyable objects,
Game Mode
(Training,
Competition vs
PCs)

Yes

Computer
Online
source

Happy
Burger

Click on the correct
burger ingredients
based on clients
commands (questions)

Tables from 1 to 12 No

Computer
Online
source

Calculs
Sous-Marin

Reconstruction of the
question and
answering between 3
proposals by moving
and catching
(keyboard) the
bubulles

Difficulty (Easy, Hard) Avatar’s vehicle No

Computer
Online
source

Course de
multiplica-
tion

Choose (click) the
correct answer
between the 4
proposals and avoid
obstacles by jumping
(click)

Tables from 1 to 12
Game Mode
(Training,
Competition vs
PCs)

Yes

Computer
Online
source

Chat de
multiplica-
tion

Jump (click) on the
platform with the
correct answer
between the 4
proposals

No

Platform Name Description Education Settings Game Settings Persistence

Continued on next page

191

https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr

Table A.1: Analysis of existing games for Multiplication Table training (Continued)

Computer
Online
source

Les chiffres
plongeurs

Reconstruction of the
question and
answering between 3
proposals by moving
and catching
(keyboard) the
bubulles

Tables from 1 to 10 No

Computer
Online
source

Jeu de
mémoire

A memory game but
with multiplication
and results on the
hidden side of the
cards

Tables from 1 to 12 Game Mode (1-2
players) No

Computer
Online
source

Jeu de tir
Shoot (click) on the
target with the correct
answer between 4
proposals

Tables from 1 to 10 No

Computer
Online
source

Spuq
ballons

Shoot (click) on the
balloon with the
correct answer (lot of
balloons present)

Tables from 1 to 12,
Difficulty (Easy, Hard) No

Computer
Online
source

Sauve les
animaux

Jump (click at the
right time) on the
platform with the
correct answer
between the 4
proposals

Tables from 1 to 12,
Difficulty (Easy, Hard) Avatar Yes

Computer
Online
source

Spuq
Enter the correct
answer by clicking
(virtual numpad)

Table from 1 to 12
(only one), Difficulty
(Easy, Hard)

No

Computer
Online
source

Logiciel
Educatif.fr

Enter (click) the
correct answers using
the keyboard for the
horse to move and win

Tables from 2 to 12 No

Computer
Online
source

iEducat!f
Choose (click) the
correct answer
between 4 proposals

Tables from 1 to 12
(One only) No

Computer
Online
source

Course aux
tables de
multiplica-
tion

Move the car by
choosing (click) the
correct answer
between 100 proposals

Table from 1 to 10
(one or all), Difficulty
(Discovery, Hard,
Expert, Time
Competition)

No

Computer
Online
source

Speedy
Calculo

Engage the lever
(click) to get the
question, Determine
the correct question
between 4 proposals
and choose (click) the
correct answer
between 4 proposals

Level (Primary
Graduation Levels in
France)

No

Computer
Online
source

Multiplica-
tion 4 in a
Row

Choose (click) the
correct answer
between 4 proposals to
place a pawn (Power 4
Board Game)

1 or 2 players No

Platform Name Description Education Settings Game Settings Persistence

Continued on next page

192

https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.tablesdemultiplication.fr
https://www.logicieleducatif.fr/math/calcul/tablesmultiplication.php
https://jeux.ieducatif.fr/jeu-educatif/jeux-ce2/les-tables-de-multiplication-188/
https://classedeflorent.fr/accueil/jeux/mathematiques/table/index.php
https://www.lumni.fr/jeu/speedy-calculo
https://www.multiplication.com/games/play/multiplication-4-row

Table A.1: Analysis of existing games for Multiplication Table training (Continued)

Learn Mul-
tiplication
Table -
Times
Table Game

Enter the correct
answer to win money

Time limit, Difficulty,
Question type
(A × B = ? ∨ A ×
? = C)

Buyable objects Yes

Phone /
Tablet

Application

Le château
des multi-
plications

Destroy the bricks
with the correct
answer on the way to
win money (Mario
type)

Table from 1 to 11
(only one),
Multiplicand Position
(Left ⊕ Right)

Difficulty (Easy,
Medium, Hard) No

Multiplica-
tion

Choose (click) on the
right answer between 4
proposals multiple
times for the avatar to
keep going

Table from 1 to 10 or
12 Buyable objects Yes

Platform Name Description Education Settings Game Settings Persistence

193

Appendix B

GAMEPLAY MOCK-UPS EVALUATION
QUESTIONNAIRE

This questionnaire has been used to evaluate gameplay mock-ups for training tasks
involving multiplication tables. The questionnaire is in French and presents gameplay
mock-ups for each of the training tasks, as well as a description of how the gameplay is
intended to work.

194

Complétion à 1 élément manquant

Dans cette première section nous vous demandons d'évaluer des propositions de gameplays pour de la

complétion à 1 élément manquant, exemples de question : 3 × 5 = ?,

3 × ? = 15, ? × 5 = 15, ? = 3 × 5, 15= ? × 5 ou encore 15 = 3 × ?.

Évaluation de gameplays
Ce questionnaire a pour objectif d'évaluer la pertinence de gameplay (= fonctionnalité du jeu) vis-à-vis des 6

types de tâches définies avec vous :

• complétion de faits à 1 élément manquant (e.g., 3×? = 15) ;

• complétion de faits à 2 éléments manquants (e.g., 3×? = ?) ;

• reconstitution de faits (e.g., ?×? = ?) ;

• validation de faits (e.g., 3×5=15, vrai ou faux ?) ;

• vérification d'appartenance (e.g., Quels éléments parmi [3, 5, 9, 12, 15, 17, 23] ne sont pas des

résultats de la table de 3 ?).

Ce questionnaire devrait prendre environ 20 min.

Les différents gameplays imaginés pour réaliser ces six tâches ont été maquettés.

Nous allons vous présenter ces maquettes une à une en vous les expliquant afin que vous compreniez en quoi

le gameplay consistera.

ATTENTION. Les consignes (en bas des maquettes), les énoncés (faits complets ou incomplets visibles dans

la salle), le nombre d'éléments présents ne sont que fictifs et ne doivent pas faire l'objet de votre attention

même si vous les trouvez mal formulés ou qu'il y a trop d'éléments. Nous attendons de vous un avis sur les

actions que l'élève devra accomplir pour répondre (exemple : toucher l'élément portant la réponse qu'il

choisit).

Nous vous remercions par avance de toute participation qui nous permet de faire avancer notre recherche.

* Indique une question obligatoire

1.

Une seule réponse possible.

OUI

NON

2.

Les quatre images présentées sont quatre variations d'un même gameplay qui consiste à

sélectionner l'objet portant la bonne réponse.

En cas de bonne réponse, la porte de sortie s'ouvre, sinon le joueur perd une vie (ou meurt et doit

recommencer s'il n'avait plus de vie).

Dans les deux images du haut, la sélection s'effectue par ouverture du coffre et cassage du pot

respectivement. En bas à gauche, la sélection s'effectue par toucher (toucher la porte). Enfin, en bas

à droite, la sélection s'effectue par le passage à travers le bon pont.

Trouvez-vous ces quatre variantes de gameplays pertinentes ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

3.

Une seule réponse possible.

OUI

NON

4.

L'image présentée représente un gameplay de sélection unique d'une réponse.

Ici, un seul objet possède l'ensemble des choix possibles.

Le joueur doit orienter la lumière vers la bonne réponse puis s'éloigner de l'élément pour que la

réponse soit "verrouillée" (la consigne en bas va être améliorée⇒ NE JUGEZ PAS LES
CONSIGNES SVP).

Si la réponse choisie est correcte, la porte s'ouvre, sinon le joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

5.

Une seule réponse possible.

OUI

NON

6.

L'image présente le même gameplay qu'à la question précédente sauf que cette fois-ci, la

vérification du choix s'effectue par action du joueur sur le levier.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

7. L'image ci-dessous présente deux gameplays de positionnement de l'avatar sur la bonne réponse.

L'avatar doit donc se positionner sur le lieu.

Dans le premier cas, la réponse est validée lorsque l'avatar s'arrête de bouger sans attente.

Dans le second, la validation s'effectue après un arrêt complet de l'avatar pendant un léger délai (le

temps n'est pas encore défini et sera réfléchi et modifié après des tests).

Comme les précédents, si la réponse est correcte, la porte s'ouvre, sinon le joueur perd une vie.

Trouvez-vous ces gameplays pertinents ?

*

Une seule réponse possible.

OUI

NON

8. (Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

9.

Une seule réponse possible.

OUI

NON

10.

L'image présente trois gameplays de déplacement d'un objet.

Dans le premier, le joueur doit déplacer le pot pour le positionner sur la bonne dalle

Dans le second, le joueur doit pousser la bonne statue vers la bonne dalle (déplacement vertical des

statues).

Dans le troisième, le joueur doit positionner le pot sur la bonne réponse de l'image (120 choix, nous

pourrions aller jusqu'à 144-150 pour prendre en compte jusqu'à 12×12).

Dans les trois cas, la réponse est validée et la porte de sortie s'ouvre lorsque la bonne réponse

détecte la présence de la statue ou du pot. En cas d'erreur, le joueur perd une vie.

Trouvez-vous ces gameplays pertinents ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

11.

Une seule réponse possible.

OUI

L'image présente deux gameplays de déplacement.

Le premier consiste à déplacer le bon pot sur la dalle rose, le second à déplacer le bon pot sur la

dalle grise (partie de la réponse manquante).

Dans les deux cas, la porte s'ouvre lorsque la dalle détecte la présence du pot avec la bonne

réponse.

En cas d'erreur de détection d'un mauvais pot, le joueur perd une vie.

Trouvez-vous ces gameplay pertinents ?

*

NON

12.

13.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de sélection d'un objet.

Ici, le joueur doit tuer l'ennemi portant la bonne réponse.

Certains ennemis ne possèdent pas de numéro et sont juste présents pour la difficulté du jeu.

Comme pour les précédents, la porte s'ouvre si le bon ennemi a été tué. En cas d'erreur, le joueur

perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

14.

15.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de position & saisie.

Le joueur doit se placer sur la dalle puis saisir avec un périphérique (ex : clavier) la réponse

attendue.

Comme pour les précédents, la porte s'ouvre, la bonne réponse a été saisie. En cas d'erreur, le

joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

16.

17.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente des gameplays de saisie.

Le joueur doit simplement saisir la bonne réponse à l'aide d'un périphérique (ex : clavier).

Dans certains cas, il peut y avoir des ennemis à éviter en plus.

Comme pour les précédents, la porte s'ouvre si la bonne réponse a été saisie. En cas d'erreur, le

joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

18.

Complétion à 2 éléments manquants

Dans cette seconde section nous vous demandons

d'évaluer des propositions de gameplays pour de la complétion à 2

éléments manquants, exemples de question : 3 × ? = ?, ? × ? = 15, ? × 5 = ?, ? = ? × 5, ? = 3 × ? ou encore 15 =

? × ?.

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

19.

Une seule réponse possible.

OUI

NON

20.

L'image présente trois gameplays de type sélection de multiples objets.

Dans chacun, le joueur doit sélectionner les bonnes réponses.

La porte s'ouvre lorsque l'ensemble des bonnes réponses ont été données. En cas d'erreur, le

joueur perd une vie.

Trouvez-vous ces gameplays pertinents ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

21.

Une seule réponse possible.

OUI

NON

22.

L'image présente trois gameplays de type sélection unique d'objet.

Pour chacun, le joueur doit sélectionner la bonne réponse.

Chaque réponse présente les deux valeurs manquantes : x * y (nous pourrions imaginer d'autres

représentations ex : [x, y]).

La porte s'ouvre lorsque la bonne réponse a été donnée. En cas d'erreur, le joueur perd une vie.

Trouvez-vous ces gameplays pertinents ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

23.

Une seule réponse possible.

OUI

NON

24.

L'image présente un gameplay de sélection multiple.

Le joueur doit choisir, pour chaque image de l'énoncé (image de pot, coffre), l'élément physique

(pot, coffre) correspondant.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

25.

Une seule réponse possible.

OUI

NON

26.

L'image présente un gameplay de sélection multiple.

Le joueur doit orienter chaque lumière sur la bonne position.

La validation se fait lorsque l'avatar s'éloigne des deux éléments.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

27.

Une seule réponse possible.

OUI

NON

28.

L'image présente un gameplay de déplacement.

Le joueur doit positionner un pot sur chaque bonne réponse.

Si les deux bonnes réponses sont sélectionnées, la porte s'ouvre.

Lorsque le joueur place un pot sur une mauvaise réponse, il perd une vie.

(il ne sera pas proposé d'autres combinaison gagnante que celle attendue)

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

29.

Une seule réponse possible.

OUI

NON

30.

L'image présente un gameplay de déplacement multiple.

Le joueur doit placer les bons pots sur les dalles dans l'ordre (= dalle de gauche→ "?" de gauche

et inversement).

Lorsque les deux dalles contiennent un pot, les valeurs sont vérifiées. Si le résultat est faux, le

joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

31.

Une seule réponse possible.

OUI

NON

32.

L'image présente un gameplay de positionnement de l'avatar.

Si la réponse est la bonne la porte s'ouvre, sinon le joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

33.

Une seule réponse possible.

OUI

NON

Reconstitution

Dans cette troisième section nous vous demandons

d'évaluer des propositions de gameplays pour de la reconstitution de faits, exemple de question : ? × ? = ?.

L'image présente un gameplay d'orientation.

Pour chaque lumière, le joueur doit orienter cette dernière vers la bonne réponse.

La validation s'effectue une fois que l'avatar s'est éloigné et que chaque lumière est orientée vers

un nombre.

Si les trois réponses sont bonnes, la porte s'ouvre, sinon le joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

34.

35.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente le même gameplay.

La différence est au niveau de la validation de la réponse qui s'effectue ici par action de l'avatar

(activation du levier après l'orientation des 3 lumières).

L'ouverture de la porte s'effectue si la réponse validée est correcte sinon le joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

36.

37.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de déplacement multiple.

Le joueur dépose un pot dans chaque zone (carré gris) de la question.

Après le dépôt des 3 pots, si le résultat est faux, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

38.

39.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de sélection multiple.

En fonction de chaque type d'élément manquant (statue carrée, tonneau, statue), le joueur doit

toucher l'élément de chaque type correspondant (la valeur s'affiche au-dessus de la position dans

la question).

À la fin des 3 sélections, si le résultat est faux, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

40.

41.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente le même gameplay que juste avant.

La nuance est que le joueur doit valider la réponse en actionnant le levier. Puis, si le résultat (des

sélections) est faux, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

42.

Validation de faits

Dans cette quatrième section nous vous demandons

d'évaluer des propositions de gameplays pour de la validation de faits, exemple de question : 3 × 5 = 15, vrai

ou faux ?

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

43.

Une seule réponse possible.

OUI

NON

44.

L'image présente quatre gameplays de sélection unique.

Le joueur doit choisir (en ouvrant, cassant, touchant ou passant par) la bonne réponse.

Si la réponse est fausse, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ces gameplays pertinents ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

45.

Une seule réponse possible.

OUI

NON

46.

L'image présente un gameplay de sélection unique.

Le joueur doit tuer l'ennemi portant la bonne réponse.

Certain ennemi sont présents uniquement pour la difficulté de jeu et ne portent pas de choix.

Si l'ennemi tué porte la mauvaise réponse, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

47.

Une seule réponse possible.

OUI

NON

48.

L'image présente un gameplay de positionnement unique.

Le joueur doit se positionner sur la dalle portant la bonne réponse.

S'il choisit la mauvaise dalle, il perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

49.

Une seule réponse possible.

OUI

NON

50.

L'image présente deux gameplays de déplacement unique.

Le joueur doit déplacer un objet sur la dalle portant la bonne réponse.

Si la mauvaise dalle détecte un objet, le joueur perd une vie. Si la dalle portant la bonne réponse

détecte un objet (pot, statue) la porte s'ouvre.

Trouvez-vous ces gameplays pertinents ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

51.

Une seule réponse possible.

OUI

NON

L'image présente deux gameplays de sélection multiple.

Le joueur doit sélectionner (en ouvrant, en cassant) les objets portant une réponse valide.

En cas de mauvaise sélection, le joueur perd une vie.

Lorsque tous les bons éléments ont été sélectionnés, la porte s'ouvre.

Trouvez-vous ces gameplays pertinents ?

*

52.

53.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de déplacement multiple.

Le joueur doit pousser du bon côté chaque pot.

Lorsque tous les pots ont été poussés, les résultats sont vérifiés. En cas d'erreur, le joueur perd une

vie.

Si tous les résultats sont bons, la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

54.

55.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente le même gameplay qu'avant.

La nuance est que le joueur doit valider sa réponse en actionnant le levier pour lancer la

vérification de la réponse (et donc la possible ouverture de la porte).

Trouvez-vous ce gameplay pertinent ?

*

56.

57.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de déplacement multiple.

Le joueur doit pousser un pot sur les bonnes réponses uniquement.

Lorsque toutes les bonnes réponses auront un pot, la porte s'ouvrira.

Si un pot est poussé vers une mauvaise réponse, le joueur perd une vie.

Trouvez-vous ce gameplay pertinent ?

*

58.

59.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente le même gameplay qu'à la question précédente.

Cependant, dans ce cas si, le joueur doit valider sa réponse après avoir déposé les pots.

La vérification n'a lieu qu'après que l'avatar ait actionné le levier.

En cas d'erreur, le joueur perd

Si le résultat est faux, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

60.

61.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente un gameplay de multiple orientations.

Le joueur doit orienter les lumières sur la bonne réponse puis s'éloigner.

À chaque erreur (après chaque orientation), si la réponse est fausse, le joueur perd une vie.

Lorsque toutes les lumières sont correctement orientées, la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

62.

63.

Une seule réponse possible.

OUI

NON

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

L'image présente le même gameplay qu'à la question précédente.

Ici la validation des résultats se fait en même temps après que le joueur ait actionné le levier.

En cas d'erreur, le joueur perd une vie. La porte s'ouvre lorsque toutes les lumières sont orientées

correctement.

Trouvez-vous ce gameplay pertinent ?

*

64.

Validation d'appartenance

Dans cette dernière section nous vous demandons

d'évaluer des propositions de gameplays pour de la validation de faits, exemple de question : parmi [3, 6, 8, 12,

13, 17, 21] lesquels sont des résultats de la table de 3 ?

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

65.

Une seule réponse possible.

OUI

NON

66.

L'image présente trois gameplays de sélection multiples.

Le joueur doit sélectionner (en tuant, en cassant, en ouvrant) les bonnes ou mauvaises réponses

selon l'énoncé.

Une fois les réponses attendues sélectionnées, la porte s'ouvre.

Lorsque le joueur commet une erreur, il perd une vie.

Trouvez-vous ces gameplays pertinents ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

67.

Une seule réponse possible.

OUI

NON

68.

L'image présente un gameplay de multiple orientations.

Le joueur doit orienter le bouton vers une réponse correcte puis valider à l'aide du levier, puis

répéter pour une autre réponse correcte.

Tous les résultats doivent être trouvés (multiples validations).

En cas d'erreur, le joueur perd une vie. Quand tous les résultats ont été trouvés, la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

69.

Une seule réponse possible.

OUI

NON

70.

L'image présente un gameplay de multiple orientation.

Le joueur doit orienter les lumières vers les bonnes réponses puis s'éloigner des lumières.

Après chaque orientation, si la réponse donnée est fausse, il perd une vie.

Lorsque toutes les lumières sont correctement orientées, la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

71.

Une seule réponse possible.

OUI

NON

72.

L'image présente le même gameplay qu'à la question précédente.

Cependant, ici la vérification a lieu par action du joueur (levier) et la vérification se fait après

avoir orienté toutes les lumières.

Si une erreur est présente lors de la vérification, le joueur perd une vie, sinon la porte s'ouvre.

Trouvez-vous ce gameplay pertinent ?

*

(Suite question précédente) Précisez votre réponse (surtout en cas de réponse négative).

73.

74.

75.

Des idées ?

Il est possible qu'à la lecture des ces propositions vous ayez eu des idées de variations non présentes ou de

nouveaux gameplays. Nous vous proposons de les préciser ci-après et/ou de dessiner vos idées et de nous les

partager.

Conclusion

Au cas où nous ayons besoin d'approfondir vos réponses, nous vous demandons de saisir votre nom/prénom et

votre adresse mail.

Ces informations seront supprimées à la fin de l'analyse des données ou après vous avoir recontactés.

Ce contenu n'est ni rédigé, ni cautionné par Google.

Auriez-vous des idées de gameplays possibles ? Si oui, décrivez-les ici.

Votre nom et prénom

Votre adresse mail *

Appendix C

ALGORITHM FOR GENERIC GENERATION
OF TASK-ORIENTED GAMEPLAYS

237

Algorithm 1: GeneratePositionedElementsOfARoom (simplified)
1 Function createRoomElements(gameplay, facts, room, roomType):
2 for AComponent component: gameplay.getComponents() do
3 room.element.addAll(buildComponentElements(component, facts, [], roomType));

4 Function buildComponentElements(component, facts, listElements, roomType):
5 gameE ← findElementType(component.getAbility(), component.getSize());
6 position ← // get possible position from roomtype;
7 if component is Structure then
8 structure ← buildElement(component, facts, gameE, position);
9 listElements.add(structure);

10 for AComponent aComponent: component.getComponents() do
11 return buildComponentElements(aComponent, facts, listElements,

structure.newPosition());

12 else
13 return listElements.add(buildElement(component, facts, gameE, position));

14 Function buildElement(component, facts, gameElement, position):
15 listPositionedElement ← [];
16 if component is Structure then
17 if component.isPerFact then
18 for QuestionedFact qf: facts do
19 positionedElem1 ← // new positioned element displaying statement;
20 for ProposalParam proposal: qf.proposals do
21 positionedElem2 ← // new positioned element displaying proposal;
22 listPositionedElement.add(positionedElem2);
23 listPositionedElement.add(positionedElem1);

24 /* Only works for one fact questioned at a time*/
25 if component.isPerProposal then
26 for ProposalParam proposal: facts.get(0) do
27 positionedElem1 ← // new positioned element displaying proposal;
28 ositionedElem2 ← // new positioned element displaying element (e.g., tiles);
29 listpositionedElem.add(positionedElem1, positionedElem2);

30 else
31 if component.isPerProposal then
32 for QuestionedFact qf: facts do
33 for ProposalParam proposal: qf.proposals do
34 positionedElem ← // new positioned element displaying proposal;
35 listPositionedElement.add(positionedElem);

36 ...
37 else
38 positionedElem ← // new positioned element (e.g., ennemies, traps);
39 listPositionedElement.add(positionedElem);

40 return listPositionedElement;

238

Appendix D

XMI TO XML CODE TRANSFORMATION
IN ETL

1 pre {
2 " Running ETL". println ();
3 var cpt = 1;
4 }
5

6 rule Dungeon2Dungeon
7 transform dIn: IN! Dungeon
8 to dOut: OUT! Dungeon {
9 " Dungeon created ". println ();

10 dOut. entryRoom = "Room[" + dIn.entry.x + "/" + dIn.entry.
y + "]";

11 // dOut. exitRoom = "Room ["+ dIn.exit.x + "/" + dIn.exit.y
+ "]";

12 dOut. objectiveID = dIn. learningobjective .id;
13 dOut. levelID = dIn.level.id;
14 dOut. gameLevelID = dIn. learnerPlayer . progression .

playerProgress . currentLevel ;
15

16 if(dIn. curses . isDefined ()) {
17 dIn. curses . println ();
18 dOut. curses = "[";
19 for (curse in dIn. curses) {
20 curse.name. println ();
21 dOut. curses = dOut. curses + "\"" + curse.name + "

\"" + ",";
22 dOut. curses . println ();
23 }
24 dOut. curses = dOut. curses + "]";
25 }
26

27 // ROOMS
28 var rooms: new OUT!Rooms;
29 dOut.rooms = rooms;
30 dOut.rooms.room ::= dIn.rooms;
31 }
32

33 rule Room2Room

239

34 transform roomIn : IN!Room
35 to roomOut : OUT!Room {
36 "\tRoom created ". println ();
37 roomOut .x = roomIn .x;
38 roomOut .y = roomIn .y;
39 roomOut .id = "Room[" + roomIn .x + "/" + roomIn .y + "]";
40 roomOut . roomTypeName = roomIn . roomtype .name;
41

42 if(roomIn .task. isDefined ()){
43 roomOut . idTask = roomIn .task.id;
44 roomOut .time = roomIn .task. maxTime ;
45 }
46

47 roomOut . correctnessToReach = roomIn . nbExpectedAnswers +"";
48

49 if (roomIn . roomtype . isTypeOf (SmallRoomType)) {
50 //"\ tsmall ". println ();
51 roomOut .size = OUT! RoomType #SMALL;
52 } else {
53 //"\ tlarge ". println ();
54 roomOut .size = OUT! RoomType #LARGE;
55 }
56

57 if(not roomIn . questionedFacts . isEmpty ()){
58 var facts: new OUT!Facts;
59 for (fact in roomIn . questionedFacts) {
60 var factOUT : new OUT!Fact;
61 factOUT .id = fact. questionablefact .id;
62 if(fact. question . instanceOf (QuestionParam)){
63 factOUT . complete = fact. question . completeFact

;
64 }
65 if(fact. correctnessToReach . isDefined ()){
66 factOUT . correctnessToReach = fact.

correctnessToReach .value.value;
67 }
68

69 if(fact. factCorrectness . isDefined ()){
70 factOUT . correctness = fact. factCorrectness .

value.value+"";
71 }
72 facts.fact.add(factOUT);
73 }
74

75 roomOut .facts = facts;

240

76 "\t\t\ tFacts created ". println ();
77 // roomOut .facts.facts ::= roomIn . questionedFacts ;
78 }
79

80 if(roomIn . gameplay . isDefined ()){
81 if(roomIn . gameplay . prompt . isDefined ()){
82 roomOut . prompt = roomIn . gameplay . prompt . prompt ;
83 }
84 roomOut . gameplayWithUndo = roomIn . gameplay . undoable ;
85 }
86

87 if(not roomIn . positionedElement . isEmpty ()){
88 var allelements : new OUT! Elements ;
89 roomOut . elements = allelements ;
90 roomOut . elements . element ::= roomIn . positionedElement

;
91 }
92

93 // ROOM ACCESSES
94 var accesses : new OUT! RoomAccesses ;
95 roomOut . roomaccesses = accesses ;
96 roomOut . roomaccesses . roomaccess ::= roomIn . roomaccess ;
97 }
98

99 rule Structures2Elements
100 transform element : IN! PositionedStructureElement
101 to elementOut : OUT! Element {
102 //"\t\t\ tStrucutres creation ". println ();
103

104 elementOut .id = element .id;
105 elementOut .pos = element . position .id;
106 elementOut .type = element . elementType .type;
107

108 if(element . acceptedFacts . isDefined ()){
109 for (soluce in element . acceptedFacts) {
110 elementOut . acceptedFacts += soluce .value.value + ";";
111 }
112 }
113 }
114

115 rule MapStructures2Elements
116 transform element : IN! PositionedVisualizationElement
117 to elementOut : OUT! Element {
118 //"\t\t\ tStrucutres creation ". println ();
119

241

120 elementOut .id = element .id;
121 elementOut .pos = element . position .id;
122 elementOut .type = element . elementType .type;
123

124 if(element . visualization . isDefined ()){
125 elementOut . visualisation = element . visualization .id;
126 }
127 }
128

129 rule Elements2Elements
130 transform element : IN! PositionedElement
131 to elementOut : OUT! Element {
132 //"\t\t\ tElements creation ". println ();
133

134 elementOut .id = element .id;
135

136 elementOut .type = element . elementType .type;
137 if(element . displays . isDefined ()){
138 if(element . displays .size () == 1){
139 elementOut . displayValue = element . displays .get (0).

value.value + "";
140 elementOut . interactive = element . displays .get (0).

interactive ;
141 elementOut . isImageDisplay = element . displays .get (0).

imageDisplay ;
142 }
143 if(element . displays .size () > 1){
144 for (display in element . displays) {
145 elementOut . interactive = display . interactive ;
146 if(display . correctness .value.value ==

ECorrectness # CORRECT){
147 elementOut . displayValue = elementOut .

displayValue + "[" + display .value.value +
"];";

148 } else {
149 elementOut . displayValue = elementOut .

displayValue + display .value.value + ";";
150 }
151 }
152 elementOut . isImageDisplay = element . displays .get (0).

imageDisplay ;
153 }
154 }
155

156 if(element . correctness . isDefined ()){

242

157 elementOut . correctness = element . correctness .value.value.
getName ();

158 }
159

160 if(element . expectedAnswer . isDefined ()){
161 for (answer in element . expectedAnswer) {
162 elementOut . correctAnswer = answer .value.value + ";";
163 }
164

165 }
166

167 if(element . elementType . ability . isDefined () and not(element .
elementType . ability .name == " DISPLAY ")){

168 elementOut . ability = element . elementType . ability .name+"";
169 }
170

171 elementOut .pos = element . position .id;
172

173 if(element .fact. isDefined ()){
174 elementOut . idFact = element .fact. questionablefact .id;
175 }
176

177 if(element . acceptedFacts . isDefined ()){
178 for (soluce in element . acceptedFacts) {
179 elementOut . acceptedFacts += soluce .value.value + ";";
180 }
181 }
182 }
183

184 rule RoomAccess2RoomAccess
185 transform access : IN! RoomAccess
186 to accessOut : OUT! RoomAccess {
187 "\t\ tRoomAccess created ". println ();
188 accessOut . direction = "" + access . direction ;
189 accessOut .id = "a" + cpt ++;
190 accessOut . accessRef = access . otherroomaccess . equivalent ()

.id;
191 }
192

193 post{
194 "done". println ();
195 }

243

Appendix E

GUIDELINES FOR EXTENDING THE
FRAMEWORK

This appendix presents a step-by-step guide for extending the framework. First, it
guides the specification of domain specific training tasks. Then, it outlines how to meta-
model concepts (e.g., facts, questionable facts, tasks). Finally, it guides the implemen-
tation of extensions (i.e., generators of questionable facts and methods for instantiating
questioned facts).

244

Framework Extension Guidelines
Updated 30 April, 2024

Our framework is a software infrastructure to guide the design and implementation of activity
generator of Roguelite-oriented activities for declarative knowledge training. This is a step-by-
step guide to help engineers extend our framework to specific didactic domains.

Our framework is based on the use of Model-Driven Engineering (MDE). It is implemented in Java
and uses the Eclipse Modeling Framework (EMF) plugin. Hence, a robust understanding of both
Java and EMF is highly recommended.

PREAMBLE: ROGUELITE & DECLARATIVE KNOWLEDGE
In our context, the produced generators provide Roguelite activities aimed at training declarative
knowledge. Declarative knowledge training is specified through training path (cf. Figure 1) that
explain teachers’ or experts’ vision on the progression of training. A training path consists of a
set of objectives (e.g., “Training on the multiplication table of 2”) ordered by prerequisite rela-
tionships. Each objective targets a set of facts to work on (i.e., targeted knowledge) and is broken
down into progressive levels, which are themselves broken down into training tasks.

Figure 1: Training Path

Roguelite activities for declarative knowledge training are dungeons, i.e., interconnected rooms
where an avatar explores and answers questions through task-oriented gameplays. For example,
the avatar has to rotate a statue to answer 3 × 5 = ? or push a block to say if 3 × 5 = 12 is true
or false or break pots to select the results of the table 3 between {3, 5, 9, 12, 14, 17}.

STEP 1 DIDACTIC DOMAIN: GENERAL SPECIFICATIONS
The initial step in extending the framework involves studying the didactic domain in order to:
1) define training tasks, 2) specifying tasks’ parameters/attributes, and 3) outlining the domain’s
facts. Indeed, we address facts last because the modelling of facts will take on a different form
based on the tasks intended to be accomplished. This initial phase is the most challenging,
crucial, and least guided as it heavily relies on the specific targeted domain.

1

SUB-STEP 1.1 TRAINING TASK DEFINITION
Our framework propose 4 training task types:

1. completion consists in completing facts having missing elements (e.g., ? × ? = 12)
2. identification consists in identifying whether facts are true or false

(e.g., 3 × 5 = 12 ?)
3. membership identification consists in identifying elements that share a given property (e.g.,

{3, 6, 7, 5, 9} select results of the multiplication table 3)
4. ordering consists in ordering facts using a heuristic (e.g., {Mars,Earth, Jupiter,Neptune}

order starting from the closest to the sun)

In order to create your extension, you need to build subtypes of these tasks specific to your tar-
geted didactic domain. completion and membership identification can be graphic tasks. Graphic
tasks are tasks that require visual representation to answer (e.g., maps, pictures to legend). It
is important to note that graphic tasks are quite similar independently of their type. The main
difference lies in the fact that a completion question rest on one raw fact, while a membership
question rest on multiple raw facts simultaneously. Consequently, in a room of a dungeon only
one question of a membership task can be asked while multiple questions of a completion task
can be asked (warning: number of question ̸= number of expected answers).

For each task type, different questions need to be answered:

• completion
– Is it a graphic task?
– How many elements are missing? (e.g., one, two, three, every element of a fact)
– Which elements are missing? (e.g., in a historical date, is it the event or the date?)
– What is the shape of a question on a fact? The questions must replace missing ele-

ments by question marks, e.g., 3 × 5 = ? or World War II happened between ? - ? or
place the dates on the timeline (that contains the question marks or input areas).

– How many facts are questioned at the same time?
– Does the learner have to write down the answer? (i.e., only if the task is graphic or the

number of fact questioned = 1 and number of missing elements = 1)
Else, how many bad propositions/choices are proposed to the learner?

• membership identification
– Is it a graphic task?
– What is the property concerned? (e.g., result of multiplication tables, categories of judo

techniques, regions/cities)
– Does the learner identify the elements that have the property or those that do not

have it? (i.e., usually they identify the ones that have the given property, however in
some cases it can be interesting to switch it)

– What is the shape of a question on a fact? For example, results of table 3 with choices
such as 3, 5, 6, 8, 9 or Figure 2

Figure 2: France Regions

2

– Does the learner have to write down the answer ?
Else, how many propositions/choices are provided to the learner? How many bad
choices?

– How many answers are expected? (i.e., usually every correct answers, but not always)
• identification

– What is the shape of a question on a fact? Here questions are representation of facts,
it is the propositions [true/false] that will explicitly express the question,
e.g., 3 × 5 = 15.

– How to build fake fact? Which element to replace in the fact by a fake one?
It is important to note that this task can be realised through an input response modal-
ity. However, we advise using a multiple choice modality for this particular task in our
context (i.e., more gameplays ⇒ more variety).

– How many facts are questioned at the same time?
• ordering

– What elements must be ordered?
– Using which order?
– How many elements must be ordered?
– How many facts must be ordered?

Regardless of the types, tasks share common attributes:

• The task’s apparition percentage in a dungeon. Depending on the teacher’s perspective,
certain tasks may be favoured over others based on this percentage. However, the total
percentage of all tasks at the same level (see Figure 1) must sum up to 100%.

• Is the answer’s validation automatic or done by the learner? In some cases, the teacher may
want the learner to validate their response rather than it being automatic, especially when
multiple responses are required for a single fact (e.g., completing a fact with two missing
elements).

• The maximum expected response time per question in seconds.
• The number of consecutive successes expected per fact. After how many consecutive suc-

cesses is a fact considered mastered? This is required to progress in the training path.

(a) Completion task

3

(b) Membership Identifcation task

(c) Identifcation task

(d) Ordering task

Figure 3: Generic task minimal required parameters to specify.

SUB-STEP 1.2 DOMAIN SPECIFIC PROPERTIES
In order to build questions on facts, some domains (i.e., most domain do not) require specific
parameters. For example, multiplication tables can be built in many ways such as: equal sign
on the left or right, operand × table or table × operand. These parameters can be taken into

4

account at the “level” level and considered during the questioned facts’ generation.

SUB-STEP 1.3 FACTS & QUESTIONABLE FACTS DEFINITION
Now, raw facts must be designed based on the tasks defined. Think like an object-oriented de-
veloper, what composes your raw facts? For example, for multiplication tables a fact is a mul-
tiplication, i.e., three integers: the table, the operand, and the result. In another example, judo
facts presenting technique are described by three strings and an image: a name, a description,
and a category, and a visual representation of the technique. Whereas, judo facts presenting
referee gestures are described by two strings and an image: a name, a description, and a visual
representation of the gesture. Figure 4 presents these facts specifications. Note that fact such as
cities on a map are at least characterized by: the type of element (e.g., city, region, county), the
value (e.g., Paris, New York, Rome), the corresponding map, and their position on the map.

Figure 4: Raw facts’ specification examples.

In our work, questionable facts represents facts in their question form (i.e., question with their
good propositions only). For each task, questionable facts have a different shape. What is the
questionable fact shape for your tasks? For example, for multiplication tables, one task consists
in completing a fact that has one missing element (i.e., either the table, the operand, or the result).
For multiplication tables, the equal position can be on the left or the right. Therefore, question-
able fact for this task have five attributes: “left operand”, “right operand”, “result”, “soluce”, and
“resultOnRight’. The generator (to be developed subsequently) will instantiate these attributes
based on task parameters. This process ensures that the missing element is set to -1, the other
elements are assigned the correct values from the given fact, “soluce” is set to the value of the
missing element, and “resultOnRight” is set to true or false based on task parameters. Another
example, for multiplication tables, one task consists in identifying results of a given table (i.e.,
membership identification). For this task, one questionable fact is build based on multiple raw
facts (i.e., it is the same for the Ordering task but different from other tasks), and two attributes
are required: a set of good results, and the table (i.e., common property). In our context, bad
propositions/choices of questioned facts (i.e., questions about facts present in dungeons) are
computed by the algorithm. If you want to use metamodels to model bad propositions, you can.
However, it is not guided, nor described in this tutorial. Figure 5 presents these two examples of
questionable facts’ specification.

Figure 5: Questionable facts’ specification examples.

Questionable facts for graphic tasks (e.g., map to legend, map to complete) require a set of good
results (i.e., position on the map/visualization and associated value which can be images or texts)

5

and the type of elements targeted. Positions and map or visualizations are elements dealt with
that do not need to be extended.

STEP 2 METAMODELS EXTENSION
Now these specifications must be computerized by extending the generic metamodels. The file
to modify is: Generator > model > generator.ecore. Our best advice to extend the framework is to
create a new representation (see Figure 6): mathExtension, judoExtension, historyGeoExtension
are exemples you can refer to.

Figure 6: Create new representation.

SUB-STEP 2.1 TASKS CREATION

Figure 7: Tasks’ metamodel to extend.

Each task previously specified must be translated into a metamodel concept, i.e., a subclass of
each existing task. As it can be observed, most attribute previously mentioned are already mod-
elled (e.g., apparition percentage, number of facts questioned). However, what is missing are
elements depending on the specific didactic domains which must be added.

A Completion sub-task must declare attributes (warning: with exactly this typography):

• nbMissingElements of type EInt with the number of missing element for this type of
sub-task as default value ;

• checkOnLearnerAction of type EBoolean with default value true or false (i.e., true is
validation is done by learner action).

By default, getNbExpectedAnswers of MembershipIDTask return the number of good choices
(from multiple choice answer modality). However, if the number of expected answers differs from
the number of possible choices, the task must declare the attribute nbExpectedAnswers of
type EInt.

When Completion and Membership sub-tasks are graphic, they must declare an attribute graphic
Task of type EBoolean at true. Figures 8, 9 present examples of extension.

6

Figure 8: Extension Example.

Figure 9: Extension Example 2.

SUB-STEP 2.2 LEVEL CREATION
Create a subclass of the class Level, add your domain specific parameters (if you have some).
Figure 10 shows an example of extension of level with parameters and one without.

Figure 10: Level extension examples.

SUB-STEP 2.3 RAW FACTS CREATION
As you defined them in section SUB-STEP 1.3, create subclasses of AbstractFact (see Figure 11) to
model your raw facts. Figure 12 presents examples of raw facts’ extension. The first one describes
multiplication facts, the second describes cities with a position on a map, the lasts describes
judo techniques and arbitration gestures as previously presented. Note that references from

7

AbstractFact to VisualizationPosition are not part of the generic metamodel, as multiple po-
sitions on visualizations may be required by a fact for specific elements. For example, a fact
for the “Legend a map” task requires a position for the symbol and one for the text, which you
need to be able to identify independently (e.g., dedicated getter with dedicated name). In a sim-
ple list, this would be more difficult. Therefore, references to positions on visualizations (i.e.,
VisualizationPosition) needs to be added (c.f., GeographyFact attribute in Figure 12).

Figure 11: Raw facts’ metamodel to extend.

Figure 12: Raw facts’ extension examples.

SUB-STEP 2.4 QUESTIONABLE FACTS CREATION

Figure 13: Questionable facts’ metamodel to extend.

As you defined them in section SUB-STEP 1.3, you need to create subclasses of Questionable-
Fact to model your textual questionable facts and AVisualizationQuestionableFact to model your
graphical questionable facts (e.g., map facts), see Figure 13.

AVisualizationQuestionableFact contains a reference to the visualization targeted (e.g.,
map) and a set of VisualizationPosition. VisualizationPosition are composed of an

8

attribute value (i.e., string), an image (i.e., boolean) describing whether the value is an image,
and a reference position to the position of the value on the map. Therefore, AVisualization
QuestionableFact usually only requires an extra attribute for Membership task classifica-
tion (see Figure 14). Note that for AVisualizationQuestionableFact, nothing must be
added to deal with visualisation (e.g., map) and their position. The existing generic concepts
(i.e., Visualization and VisualizationPosition) must be used!

Figure 14: Questionable facts’ extension examples.

Figure 14 shows examples of extensiosn of questionable facts. As a reminder, these facts are a
form of domain-dependant “question on raw fact” with the set of good propositions (when the
modality of the associated task is Multiple Choice).

SUB-STEP 2.5 MODEL CODE GENERATION & METHODS IMPLEMENTATION
Now you need to generate the code associated to the metamodels you created. To do that, right-
click (anywhere on your class diagram) > generate > model code.

After generating model code, eclipse losses references to other projects (it’s magical! #). There-
fore, you need to update the build path of the project. To that extent, right-click on the root of
the project > Build Path > Configure Build Path (see Figure 15). Then, in the Project tab, click on
Classpath > choose the TransformationFlattener project > Ok > Apply and Close (see Figure 16).
This procedure needs to be done each time you regenerate your model code.

Figure 15: Configure build path step one.

Now, in the generated code, two methods of the questionable facts that inherit from Question-
ableFact must be implemented:

• getCompleteFact that give a textual representation of the complete questioned fact with
solutions ; For order task, solutions must be ordered from left to right! To that extent a

9

Figure 16: Configure build path step two.

template of sorting method is proposed (note that your questionable fact should have a
set of solutions containing an order=integer).

• getQuestionableFact that give a textual representation of the questioned fact with “?”
if there are missing elements.

For example, Ordering task for historical dates gives questions such as “Chronologically order”, i.e.,
getQuestionableFact(). It also gives complete questions (i.e., question + answers) such as
“Chronologically order : World War I, Treaty of Rome, Fall of Berlin Wall”, i.e., getCompleteFact(),
see Listing 1.

Listing 1: QuestionableFact Methods Implementation Example 1
1 public class OrderQuestionableFactImpl extends QuestionableFactImpl

implements OrderQuestionableFact
2 {
3 @Override
4 public String getQuestionableFact() {
5 return "Ordonner chronologiquement";
6 }
7

8 @Override
9 public String getCompleteFact() {

10 String fact = getQuestionableFact() + " : ";
11 int i = 0;
12 orderEvents();
13 for (HGOrderSolution sol : solutions) {
14 fact += sol.getEvent();
15 if(i < getSolutions().size() - 1) {
16 fact += " - ";
17 }
18 i++;
19 }
20 return fact;
21 }
22

23 "Warning! Simpler solutions exists but they create errors with EMF
pluggin.

24 In comments is put the elements that must be modify to corresond to your
own code in the text below.

25 * HGOrderSolution = type of Questionable fact "

10

26 private void orderEvents() {
27 Collections.sort(solutions, new Comparator</*HGOrderSolution*/>() {
28 public int compare(/*HGOrderSolution*/ o1, /*HGOrderSolution*/ o2

) {
29 return o1.getOrder() - o2.getOrder();
30 }
31 });
32 }
33 }

As another example, Listing 2 present an example for a completion task where the complete fact
can have a shape such as 2 × 3 = 6, 6 = 2 × 3, etc. and the questionable fact can have for shape:
2 × ? = 6, 6 = 2 × ?, etc.

Listing 2: QuestionableFact Methods Implementation Example 2
1 public class MTQFCompletion1Impl extends QuestionableFactImpl implements

MTQFCompletion1
2 {
3 @Override
4 public String getQuestionableFact() {
5 String left = getLeftOperand() == -1 ? "?" : getLeftOperand() + "";
6 String right = getRightOperand() == -1 ? "?" : getRightOperand() +"";
7 String res = getResult() == -1 ? "?" : getResult() + "";
8

9 if (resultOnRight) {
10 return left + " x " + right + " = " + res;
11 } else {
12 return res + " = " + left + " x " + right;
13 }
14 }
15

16 @Override
17 public String getCompleteFact() {
18 String left = getLeftOperand() == -1 ? getSoluce() + "" :

getLeftOperand() + "";
19 String right = getRightOperand() == -1 ? getSoluce() + "" :

getRightOperand() + "";
20 String res = getResult() == -1 ? getSoluce() + "" : getResult() + "";
21

22 if (resultOnRight) {
23 return left + " x " + right + " = " + res;
24 } else {
25 return res + " = " + left + " x " + right;
26 }
27 }
28 }

SUB-STEP 2.6 CREATE MODELS
Now you need to create several models, at least: the knowledge model and a learner-player
model. To that extent, you need to create a dynamic instance from the root object concerned by
the model. First, for the knowledge model, use the root concept Knowledge (see Figure 17) and
for the learner-player model use LearnerPlayer.

11

Figure 17: Create a model.

Give a name to the XMI file (e.g., “MultiplicationFacts”, “JudoFacts”) and place it in the repertory
inputmodels. Now, you can instantiate elements in the “tree-view” provided. Figure 18 gives an
example of knowledge model.

Figure 18: Knowledge Model Example.

Since models can be linked (i.e., some models use concepts of other models), you can load a
model inside another one by doing: right-click (anywhere in the tree-view) > Load Resource... >
(browse the concerned model).

After creating a knowledge model, you need to create a learner player (i.e., same mechanism).
However, learner-player models must be placed in the sub-repertory inputmodels > learner-
Players.

Your final generator will need: a knowledge model, a learner-player model, a “learning domain”
model (i.e., a model that contains training paths with the path of the learner) a game-model and
a relation model. The learning domain already exists, its name is LearningDomain.xmi, and can
simply be modified by adding your own path. You can also create a new one, however, it needs
to be named LearningDomain.xmi.

In order to modify LearningDomain.xmi, you need to open the file, that looks as presented in Fig-
ure 19. First, you need to load your knowledge model previously created (using Load Resource...).
Then, right-click on the root of the tree-view Learning Domain > New Child > Learning Path.
Then, on the created child, add your objectives, levels, and tasks and specify their properties.
Once created, please remember to add the created learning path to the model of your pre-
viously created learners (Load Resource ⇒ LearningDomain.xmi and specify learner-player
parameter named LeaningPath)

12

Figure 19: LearningDomain.xmi file.

Finally, the two last models (i.e., game and relations) are optional (default ones are proposed),
however the first three are required.

STEP 3 QUESTIONABLE FACT GENERATORS

Figure 20: Principle of extension for questions on facts generations (template method pattern)

Questions on facts are built based on level and tasks parameters. Therefore, for each task cre-
ated, an extension of the existing code must be made to deal with the corresponding questions on
facts. The generation algorithm of questions about facts is based on a “template-method” design
pattern, meaning that depending on the type of the task (i.e., Completion, Ordering, Identification,
Membership Identification) a set of specific methods will have to be correctly implemented. The
main idea of using such an approach is to provide a generic algorithm for gameplay generation,

13

as questions on facts have a generic representation (i.e., black box), and extension guides the
instantiation of these generic form of questions by specifying your previously specified ques-
tionable facts and predefined methods. Figure 20 illustrate the principle.

First step, you need to create a class that extends FactGeneratorTemplate for each one of
your tasks.

It is important to note that visual representations (maps, images) are dealt through their ID (i.e.,
string representations) throughout the entire process.

Some methods must be implemented independently of the task type, such as:

• protected int correctnessToReach(AQuestionableFact fact) which returns
the number of expected answers per fact ;

1 @Override // LocateOnAMap
2 protected int correctnessToReach(AQuestionableFact fact) {
3 return ((AVisualizationQuestionableFact) fact).

getVisualizationSolutions().size();
4 }
5

6 @Override // MTCompletion1
7 protected int correctnessToReach(AQuestionableFact fact) {
8 return 1;
9 }

• protected boolean isQuestionInteractive() which return true if the question
has interactive elements such as question marks that are replaced by their corresponding
elements when a choice is made, else false ;

1 @Override // LocateOnAMap
2 protected boolean isQuestionInteractive() {
3 return false;
4 }
5 @Override // MTCompletion1
6 protected boolean isQuestionInteractive() {
7 return true;
8 }

• List<Soluce> getListOfGoodSolutions(AQuestionableFact qFact)which re-
turn the list of good solutions of a fact. Soluce is an object that can describe a proposition
(value, position if it is on a map, if it is an image) ;

1 @Override // LocateOnAMap
2 protected List<Soluce> getListOfGoodSolutions(AQuestionableFact qFact) {
3 List<Soluce> solutions = new ArrayList<>();
4 for (VisualizationSolution prop : ((AVisualizationQuestionableFact)

qFact).getVisualizationSolutions()) {
5 solutions.add(new Soluce(prop.getValue(),prop.

getVisualizationPosition()));
6 }
7 return solutions;
8 }
9

10 @Override // MTCompletion1
11 protected List<Soluce> getListOfGoodSolutions(AQuestionableFact qFact) {
12 List<Soluce> solutions = new ArrayList<>();
13 solutions.add(new Soluce(((MTQFCompletion1) qFact).getSoluce()+""));
14 return solutions;

14

15 }

• protected Map<ECorrectness, List<Soluce» getListOfPropositions(ATask
task, AQuestionableFact qFact) which return a map with good and bad proposi-
tions of a fact. The following listing presents a template structure for this method.

1 @Override
2 protected Map<ECorrectness, List<Soluce>> getListOfPropositions(ATask

task, AQuestionableFact qFact) throws
BadSolutionGenerationException {

3 Map<ECorrectness, List<Soluce>> propositions = new HashMap<>();
4 List<Soluce> goodSoluces = getListOfGoodSolutions(qFact);
5 List<Soluce> badSoluces = new ArrayList<>();
6

7 // compute bad soluce as you wish
8

9 propositions.put(ECorrectness.CORRECT, goodSoluces);
10 propositions.put(ECorrectness.INCORRECT, badSoluces);
11

12 return propositions;
13 }

The constructor of the classes require at least one parameter of type DungeonElements and
must call the parent constructor:

1 public HGFactGeneratorLocate(DungeonElements dungeonElements) {
2 super(dungeonElements);
3 }

In you want to use the raw facts to build bad choices, you can add another attribute in the
constructor of type ModelsManager:

1 public HGFactGeneratorAssociation(ModelsManager modelsManager,
DungeonElements dungeonElements) {

2 super(modelsManager, dungeonElements);
3 }

You can access the SetOfFacts (i.e., group of raw facts) through:
modelsManager.getKnowledgeModel().getKnowledgefacts().

Now, depending based on the type of task, different methods must be implemented (for the
others you can keep the Auto-generated versions).

SUB-STEP 3.1 QFACT GENERATOR FOR COMPLETION / IDENTIFICATION
One additional method must be implemented for these task to generate fact:
protected Set<AQuestionableFact> generateQuestionableFactsOf(ATask task,
AbstractFact fact). This method build from one raw fact all questionable facts associated
to the raw fact based on the task parameters. As an example, for a fact 3 × 5 = 15 for an identifi-
cation task with multiple choice, this method will build two questionable facts: 3 × 5 = 15 (true)
and 3× 5 = 12 (false). Another example, for a completion task (i.e., result is missing, with multiple
choice, equal on the right and left, construction is table × operand) and a fact 3 × 5 = 15, this
method will return: 3 × 5 = ?, ? = 3 × 5. Listing 3 presents an example of implementation of this
method.

15

Listing 3: Example of generateQuestionableFactsOf implementation
1 @Override
2 protected Set<AQuestionableFact> generateQuestionableFactsOf(ATask task,

AbstractFact fact) {
3 if(fact instanceof MTFact) {
4 MTCompletion1 taskC = (MTCompletion1) task; // Task parameters
5 MTFact factC = (MTFact) fact;
6 int min=((MTLevel)dungeonElements.getChosenLevel()).getMinInterval();
7 int max=((MTLevel)dungeonElements.getChosenLevel()).getMaxInterval();
8 if(min <= factC.getOp() && factC.getOp() <= max){
9 Set<AQuestionableFact> qfs = new HashSet<>();

10 TableBuild build = ((MTLevel) dungeonElements.getChosenLevel()).
getBuildSetup();

11 ResultPosition equalPos = ((MTLevel) dungeonElements.
getChosenLevel()).getResultPositionSetup();

12 for (ESingleTarget target : taskC.getTargets()) { // Questionable
facts creation

13 if(build.equals(TableBuild.MIX)) {
14 if(equalPos.equals(ResultPosition.MIX)) {
15 qfs.add(buildQF(factC, ResultPosition.LEFT,

TableBuild.OPERAND_TABLE, target));
16 qfs.add(buildQF(factC, ResultPosition.RIGHT,

TableBuild.OPERAND_TABLE, target));
17 ...
18 }
19 } else {
20 ...
21 }
22 }
23 return qfs;
24 }
25 }
26 return new HashSet<>();
27 }
28

29 private MTQFCompletion1 buildQF(MTFact fact, ResultPosition resPos,
TableBuild build, ESingleTarget target) {

30 MTQFCompletion1 qf = new MTQFCompletion1Impl();
31 qf.setID(taskID+"-QAFACT"+factsCounter); factsCounter++; // MANDATORY
32 if(build.equals(TableBuild.OPERAND_TABLE)) {
33 qf.setLeftOperand(fact.getOp());
34 qf.setRightOperand(fact.getTable());
35 }else {
36 qf.setRightOperand(fact.getOp());
37 qf.setLeftOperand(fact.getTable());
38 }
39 qf.setResult(fact.getRes());
40 qf.setResultOnRight(resPos.equals(ResultPosition.RIGHT));
41
42 return qf;
43 }

For every type of task, when you instantiate your questionable facts, this line:
qf.setID(taskID+"-QAFACT"+factsCounter); factsCounter++ is mandatory.

16

SUB-STEP 3.2 QFACT GENERATOR FOR MEMBERSHIP / ORDER
As previously mentioned, compared to completion and identification, questionable facts for mem-
bership and order task are built from multiple raw facts. Therefore, the method to override in
order to create questionable facts is: protected AQuestionableFact
generateQuestionableFactOf(ATask task, List<AbstractFact> facts). Same as
before, this method instantiates questionable facts based on task parameters (most of the time
only one questionable fact is created) from a set of raw facts. Listing 4 presents an example of
implementation of this method.

Listing 4: Example of generateQuestionableFactsOf implementation
1 @Override
2 protected AQuestionableFact generateQuestionableFactOf(ATask task, List<

AbstractFact> facts) {
3 MapQuestionableFact qf = new MapQuestionableFactImpl();
4 qf.setID(taskID+"-QAFACT"+factsCounter); factsCounter++;
5 qf.setVisualization(facts.get(0).getBelongsToVisualization());
6 qf.setType(((GeographyFact) facts.get(0)).getType());
7 for (AbstractFact fact : facts) {
8 VisualizationSolution soluce = new VisualizationSolutionImpl();
9 soluce.setValue(((GeographyFact) fact).getValue());

10 soluce.setVisualizationPosition(((GeographyFact) fact).getPosition())
;

11 qf.getVisualizationSolutions().add(soluce);
12 }
13

14 if(task.getNbExpectedAnswers() == facts.size()) {
15 qf.setConsigne("Donner l'ensemble des reponses");
16 } else {
17 qf.setConsigne("Donner "+task.getNbExpectedAnswers()+" reponses");
18 }
19 return (AQuestionableFact) qf;
20 }

In addition, there can be conditions on the facts (e.g., type of facts targeted, specific facts at-
tributes). In order to specify these conditions, you must implement the method: protected
boolean conditionForMembershipOrOrderTaskOnFacts(AbstractFact fact).
This method can also be used for Order task. The following listing presents examples of this
method for order and membership facts generator:

1 @Override // Membership
2 protected boolean conditionForMembershipOrOrderTaskOnFacts(AbstractFact fact)

{
3 int min = ((MTLevel) dungeonElements.getChosenLevel()).getMinInterval();
4 int max = ((MTLevel) dungeonElements.getChosenLevel()).getMaxInterval();
5 return fact instanceof MTFact && min <= (((MTFact) fact).getRes()/((

MTFact) fact).getTable()) && (((MTFact) fact).getRes()/((MTFact) fact)
.getTable()) <= max;

6 }
7 @Override // Order
8 protected boolean conditionForMembershipOrOrderTaskOnFacts(AbstractFact fact)

{
9 return fact instanceof HistoryFact;

10 }

17

For membership tasks, it is possible to sort the group of facts selected for the generation of ques-
tions about facts (e.g., multiplication table 1 is not interesting for membership makes no sense
because every integer is a result of the table 1). To define the condition to sort the SetOfFacts, you
must implement the method: protected boolean conditionForMembershipTaskOnSetOfFacts(
SetOfFacts setoffact). An example of implementation:

1 @Override
2 protected boolean conditionForMembershipTaskOnSetOfFacts(SetOfFacts setoffact

) {
3 return !setoffact.getName().equals("1");
4 }

Finally, one last method for membership task is: protected
String getMembershipPropertyOfAFact(AbstractFact fact). This method returns
the value of the “property” targeted by the task (e.g., the table for multiplication tables, the cat-
egory for judo techniques). The following listing presents examples of implementations:

1 @Override // Property = Table
2 protected String getMembershipPropertyOfAFact(AbstractFact fact) {
3 return ((MTFact) fact).getTable()+"";
4 }
5 @Override // Property = ID of the map they belong to
6 protected String getMembershipPropertyOfAFact(AbstractFact fact) {
7 return fact.getBelongsToVisualization().getID();
8 }

SUB-STEP 3.3 CONSIDER MULTIPLE SOLUTIONS (OPTIONAL)
In case you must deal (i.e., accept multiple solutions for one fact), you need to define through
strings these solutions by overriding this method:
protected List<String> factSolutionsToString(AQuestionableFact qFact).

When solutions contains images, the images are replaced by their IDs in the strings representing
the solutions. For example, multiplication are commutative and have two solutions. Therefore,
this method was overridden to consider both solutions every time:

Listing 5: Example for a Completion 2 task for multiplication table training.
1 @Override
2 protected List<String> factSolutionsToString(AQuestionableFact qFact) {
3 List<String> solutions = new ArrayList<>();
4 MTQFCompletion2 qfact = (MTQFCompletion2) qFact;
5 if(qfact.isResultOnRight()) {
6 solutions.add(qfact.getSoluceLeft() + " x " + qfact.getSoluceRight()

+ " = " + qfact.getSoluceRes());
7 solutions.add(qfact.getSoluceRight() + " x " + qfact.getSoluceLeft()

+ " = " + qfact.getSoluceRes());
8 } else {
9 solutions.add(qfact.getSoluceRes() + " = " + qfact.getSoluceLeft() +

" x " + qfact.getSoluceRight());
10 solutions.add(qfact.getSoluceRes() + " = " + qfact.getSoluceRight() +

" x " + qfact.getSoluceLeft());
11 }
12 return solutions;
13 }

18

SUB-STEP 3.4 SORT FACTS CHOSEN (OPTIONAL)
Sometimes you might want to sort facts in order for them to never appear together in the same
room (e.g., historical date that shares the same date). In order to define your own heuristic, you
need to override this method: protected List<AQuestionableFact>
removeUnEligibleFactsBasedOnPreviouslySelectedFact(
List<QuestionedFact> previousFacts, List<AQuestionableFact> facts).

This method gives you the previously selected facts add let you choose the fact that are still
available in any way you wish. However, be careful to not be too restrictive, or the algorithm
might not find any facts to generate any activity. Here is an example, that removes facts for which
the solution (i.e., position on the chronological map) is equal:

Listing 6: Example for a Completion 2 task for multiplication table training.
1 @Override
2 protected List<AQuestionableFact>

removeUnEligibleFactsBasedOnPreviouslySelectedFact(List<QuestionedFact>
previousFacts, List<AQuestionableFact> facts) {

3 List<AQuestionableFact> eligible = new ArrayList<>();
4 for(AQuestionableFact qfact: facts) {
5 boolean conditionValide = true;
6 for(QuestionedFact fact: previousFacts) {
7 AVisualizationQuestionableFact prevF = (

AVisualizationQuestionableFact) fact.getQuestionablefact();
8 AVisualizationQuestionableFact newF = (

AVisualizationQuestionableFact) qfact;
9 for(VisualizationSolution sol1 : prevF.getVisualizationSolutions

()) {
10 for(VisualizationSolution sol2 : newF.

getVisualizationSolutions()) {
11 if(sol1.getValue().equals(sol2.getValue())) {
12 conditionValide = false;
13 }
14 }
15 }
16 }
17 if(conditionValide) {
18 eligible.add(qfact);
19 }
20 }
21 return eligible;
22 }

STEP 4 FACTGENERATOR.JAVA EXTENSION
Next step consists in creating the link between our generator and your created question about
facts generators. To that extent, you need to complete the class FactGenerator.java present
in the package factgenerator_template.

First step, you need to create a method using this signature: private static
FactGeneratorTemplate getCorrect<domain>FactsGenerators(ModelsManager
modelsManager, DungeonElements dungeonElements, ATask task). This method re-
turns the correct instance of question about facts generator for a given task of your didactic
domain. The following listing presents an example:

19

Listing 7: Example for a Completion 2 task for multiplication table training.
1 private static FactGeneratorTemplate getCorrectJudoFactsGenerators(

ModelsManager modelsManager, DungeonElements dungeonElements, ATask task)
{

2 FactGeneratorTemplate factGenerator;
3 switch(task.getType()) {
4 case COMPLETE:
5 if(task instanceof IdentifyTechnique) {
6 factGenerator = new JudoFactGeneratorIdentifyTechnique(

modelsManager, dungeonElements);
7 } else {
8 factGenerator = new JudoFactGeneratorIdentifyArbitration(

dungeonElements);
9 }

10 break;
11 default:
12 factGenerator = new JudoFactGeneratorClassifyTechnique(modelsManager,

dungeonElements);
13 break;
14 }
15 return factGenerator;
16 }

Second, you need to call this method in generateQuestionableFactsByTask and
generateQuestionedFact by following the already existing convention!

STEP 5 CALL YOUR KNOWLEDGE MODEL
Next step consists in giving the instruction to the generator to call the correct knowledge model
when running. Therefore, in the class ModelsManager.java present in the package managers
add a line such as: didacticDomainFileNames.put(DidacticDomain.< YOUR DOMAIN
>, < YOUR KNOWLEDGE FILE NAME >);. This line must be added in between the static
tag, such as:

Listing 8: Example for a Completion 2 task for multiplication table training.
1 static {
2 didacticDomainFileNames.put(DidacticDomain.MATHEMATICS, "

MultiplicationTables.xmi");
3 didacticDomainFileNames.put(DidacticDomain.HISTORY_GEOGRAPHY, "

HistoryGeographyFacts.xmi");
4 didacticDomainFileNames.put(DidacticDomain.JUDO, "JudoFacts.xmi");
5 }

STEP 6 NAME YOUR DOMAIN & UPDATE TRANSFORMATION
Now, you need to name your domain. First, in the enumeration DidacticDomain.java in
the package structures add a name for your domain. Then, in the class ALGAGenerator.java
in the package generators change the variable DOMAIN to the value of your didactic domain
name. Additionally, change the value of FICTIF01 by the ID of the learner you want to generate
a dungeon for in the line generator = new ALGAGenerator("FICTIF01"); of the same
class.

20

Listing 9: Extract of the main method of the generator.
1

2 public static DidacticDomain DOMAIN = DidacticDomain.MATHEMATICS;
3

4 public static void main(String[] args) {
5 for(int i = 0; i < 1; i++) {
6 ALGAGenerator generator;
7 try {
8 generator = new ALGAGenerator("FICTIF01");
9 generator.generate();

10 generator.printDungeon();
11 generator.saveDungeon("DungeonGen.xmi");
12
13 }
14 }

Last step, you need to update the model generator.ecore used by the transformation project.
Copy-paste the generator.ecore of the Generator project, in the model repertory of the Trans-
formation project.

STEP 7 DEBUGGING & VERIFICATIONS
In case it does not work correctly, the first step is to verify that the questionable fast are correctly
generated. To that extent, check in your learner-player models in the repertory inputmodels >
learnerplayers in Progression > LearnerProgress > CurrentObjectiveLevel > Results > ResultsBy-
Tasks > {the tasks in question} that the questionable facts are presents and that their parameters
are correctly instantiated. In the console, go to the beginning and check for any mistake indication
that may come from the added code you implemented.

Debugging leads, if your questionable facts are not correctly generated (i.e., not present or in-
complete in your learner-player model):

• check your XMI models for any mistake: Did you correctly associate a learning path to your
learner-player? Does all of your task have a response modality? Are your identifier of
path/objective/levels/tasks unique? (i.e., do not simply use O1 for objective 1, our recom-
mendation is to use a convention such as PATHID+Oi for objectives, PATHID+OBJECTIVEID+Li
for levels and so on)

• verify that you implement every method required for your task type: one missing methods
breaks the operation of the entire code.

• check your metamodels: Did you use a reference instead of a composition? Reference point
to object created in other models, while composition implies that the elements are part of
your current model. Therefore, using a reference instead of a composition can create errors.

• if you cannot locate the problem, our proposal is to create another path and adding each
task by each task to locate which code fails.

Please remember that each time you generate questionable facts, if they are partially created (i.e.,
they have errors you want to correct), you must manually delete them from the model, otherwise
they will not be regenerated!

Else, please contact us!

And if everything works, then it is done! Congratulations!

21

Appendix F

JUNIT TEST METHOD EXAMPLE

1 class GameElementsVarietyTest {
2

3 private ALGAGenerator generator ;
4

5 @BeforeEach
6 void initDataSet () throws NonExistantLearnerPlayerException ,

ContextNotFoundException {
7 generator = new ALGAGenerator (DidacticDomain . MATHEMATICS ,

true , " LPGPELEM ", " Contexts .xmi", " GAMEPLAY_TEST ");
8 }
9

10 @Test
11 void verifyGameElementByAbilitiesAreAllSelectedOnce () {
12 Map <String , List < ElementType >> map =

abilities2ElementTypes (abilities ());
13 for(String s: map. keySet ()) {
14 System .out. println (s+" : "+map.get(s));
15 }
16 while (! map. isEmpty ()) {
17 Dungeon dungeon = generator . generate ();
18 for(Room room: dungeon . getRooms ()) {
19 map = removeElements (map , room);
20 }
21 }
22 }
23

24 private Map <String , List < ElementType >> removeElements (Map <
String , List < ElementType >> map , Room room) {

25 for(PositionedElement elem: room. getPositionedElement ())
{

26 if(! elem. getDisplays (). isEmpty () && !(elem.
getElementType () instanceof Structure)) {

27 if(map. containsKey (elem. getElementType ().
getAbility (). getName ())) {

28 map.get(elem. getElementType (). getAbility ().
getName ()). remove (elem. getElementType ());

29 if(map.get(elem. getElementType (). getAbility ()
. getName ()). isEmpty ()) {

266

30 map. remove (elem. getElementType ().
getAbility (). getName ());

31 }
32 }
33 }
34 }
35 for (String key: map. keySet ()) {
36 if(map.get(key). isEmpty ()) {
37 map. remove (key);
38 }
39 }
40 return map;
41 }
42

43 private List <String > abilities () {
44 List <String > abilities = new ArrayList <>();
45 for(Ability ability : generator . getModelsManager ().

getGameDescriptionModel (). getAbilities (). getAbilities ()
) {

46 abilities .add(ability . getName ());
47 }
48 return abilities ;
49 }
50

51 private Map <String , List < ElementType >> abilities2ElementTypes
(List <String > abilities) {

52 Map <String , List < ElementType >> map = new HashMap <>();
53 for(ElementType elem: generator . getModelsManager ().

getGameDescriptionModel (). getElements (). getElementTypes
(). getElements ()) {

54 if(elem. getNbDisplays () > 0 && !(elem instanceof
StatementElementType)) {

55 List < ElementType > types = new ArrayList <>();
56 types.add(elem);
57 if(map. containsKey (elem. getAbility (). getName ()))

{
58 types. addAll (map.get(elem. getAbility ().

getName ()));
59 }
60 map.put(elem. getAbility (). getName () , types);
61 }
62 }
63 return map;
64 }
65 }

267

Appendix G

MODEL VALIDATION SOURCE CODE
(EVL)

1 context LearningDomain ! LearningPath {
2 /*
3 Checks if every SetOfFacts of an Objective , belongs to the

corresponding Knowledge of the objective ’s path.
4 */
5 constraint objectiveFactsBelongsToPathKnowledge {
6 check {
7 return self. objectives . forAll (obj |
8 obj. setoffacts . forAll (facts |
9 self. knowledge . knowledgefacts . contains (facts)));

10 }
11 message {
12 return " SetOfFacts does not belong to the correct

knowledge ";
13 }
14 }
15 }
16

17 context LearningDomain ! Objective {
18 /*
19 Checks if every required level of an Objective ’s Prerequisite

, is not a level of the actual objective .
20 */
21 constraint objectivePrerequisiteLevelsAreNotObjectiveLevels {
22 check {
23 return self. prerequisites . forAll (prereq |
24 not self. levels . contains (prereq . requiredLevel));
25 }
26 message {
27 return " Prerequisite of an objective references a

level the objective ";
28 }
29 }
30 }
31

32 context LearningDomain ! CompletionCriteria {
33 /*

268

34 Checks if every CompletionCriteria percentages are valid (
over 0 and under 100).

35 */
36 constraint completionCriteriaAreOver0AndUnder100 {
37 check {
38 return (self. successPercent >= 0 and self.

successPercent <= 100) and
39 (self. encountersPercent >= 0 and self.

encountersPercent <= 100);
40 }
41 message {
42 return " Completion critera of a level has an non

valid percentage (superior to 100 or inferior to 0)
";

43 }
44 }
45 }
46

47 context LearningDomain ! Prerequisite {
48 /*
49 Checks if every Prerequisite percentages are valid (over 0

and under 100).
50 */
51 constraint prerequisitesPercentageAreOver0AndUnder100 {
52 check {
53 return (self. successPercent >= 0 and self.

successPercent <= 100) and
54 (self. encountersPercent >= 0 and self.

encountersPercent <= 100);
55 }
56 message {
57 return " Prerequisite has an non valid percentage (

superior to 100 or inferior to 0)";
58 }
59 }
60 /*
61 Checks if every prerequistes are unlockable : its percentages

are inferior or equals to its requiredLevel percentages
62 */
63 constraint prerequisiteAreUnlockable {
64 check {
65 return (self. successPercent <= self. requiredLevel .

completionCriteria . successPercent) and
66 (self. encountersPercent <= self. requiredLevel .

completionCriteria . encountersPercent);

269

67 }
68 message {
69 return " Prerequisite is not achievable (percentages

are superior to those of the level completion
criteria)";

70 }
71 }
72 }
73

74 context LearningDomain ! MultipleChoice {
75 /*
76 Checks that multiple choice have a coherent number of bad

choices based on the total number of choices
77 */
78 constraint nbOfBadChoicesAreInferiorToNumberOfChoices {
79 check {
80 return self. nbChoices > self. nbBadChoices ;
81 }
82 message {
83 return " MultipleChoice should have a number of

choices superior (>) to the number of bad choices ."
;

84 }
85 }
86 }
87

88 context DungeonGen ! Dungeon {
89 /*
90 Checks that the objective belongs to the learner - player path
91 */
92 constraint objectiveBelongsToLearnerPath {
93 check {
94 return self. learnerPlayer . learningpath . objectives .

contains (self. learningobjective);
95 }
96 message {
97 return " Dungeon objective does not belong to learner

training path.";
98 }
99 }

100 /*
101 Checks that the level belongs to the chosen objective
102 */
103 constraint levelBelongsToObjective {
104 check {

270

105 return self. learningobjective . levels . contains (self.
level);

106 }
107 message {
108 return " Dungeon level does not belong to the chosen

objective .";
109 }
110 }
111 /*
112 Checks that the tasks belongs to the chosen level
113 */
114 constraint tasksBelongsToLevel {
115 check {
116 return self.rooms. forAll (room | room.task == null or

self.level.tasks. contains (room.task));
117 }
118 message {
119 return " Dungeon tasks does not belong to the chosen

level.";
120 }
121 }
122 }
123

124 context DungeonGen !Room {
125 /*
126 Checks that the position of elements belongs to the room

types of to structures
127 */
128 constraint elementsPositionBelongsToRoomTypeOrStructure {
129 check {
130 return self. positionedElement . forAll (pe |
131 self. roomtype . elementPositions . contains (pe. position)

or pe. position .ID. contains ("id/"));
132 }
133 message {
134 return " Elements positions does not belong to the

chosen roomtype or structures presents in the room.
";

135 }
136 }
137 }

271

Appendix H

FRAMEWORK USABILITY EVALUATION
QUESTIONNAIRE

272

XP Ingénieur
Questionnaire

1. Avez-vous trouvé le guide suffisamment complet pour permettre d'étendre

le framework ?

☐ oui

☐ non

2. Pensez-vous qu’une forte expérience en Ingénierie Dirigée par les Modèles

pour réussir à étendre le framework ?

☐ oui

☐ non

3. Estimez la difficulté à réaliser l’extension :

😄 Très facile

😊 Assez facile

😶 Ni trop facile, ni trop dur

😕 Un peu trop dur

🙁 Vraiment trop dur

1

Empty Questionnaire

273

4. Estimer la difficulté de manière détaillée :

Étapes Très
facile

Assez
Facile

Ni trop
facile, ni
trop dur

Un peu
trop dur

Vraiment
trop dur

Compréhension
des consignes

😄 😊 😶 😕 🙁

Compréhension
du domaine
didactique

😄 😊 😶 😕 🙁

Compréhension
du
fonctionnement
du framework
(parcours
d’entrainement…)

😄 😊 😶 😕 🙁

Extension des
méta-modèles

😄 😊 😶 😕 🙁

Extension des
modèles

😄 😊 😶 😕 🙁

Conception du
code des
générateurs de
faits par tâche

😄 😊 😶 😕 🙁

Intégration du
code des
générateurs de
faits dans le code
du générateur

😄 😊 😶 😕 🙁

Débogage 😄 😊 😶 😕 🙁

2

274

5. Commentaires, précisions, autres :

3

275

Engineer Answers to the Questionnaire

276

277

278

Title: Generation of Adapted Training Game Activities: a Model-Driven Engineering Design
and Implementation Framework

Keywords: Procedural Generation – Adaptation – Modelling – Training – Declarative Knowl-

edge – Model-Driven Engineering

Abstract: Procedural generation is a method
widely used in video games to deliver var-
ied content tailored to players. However, this
method is rarely used in the field of Tech-
nology Enhanced Learning (TEL). In this
PhD thesis, our focus is on the genera-
tion of game activities for declarative knowl-
edge training (i.e., factual information such as
laws and multiplication tables). In this con-
text, it is necessary to provide learners with
varied and adapted activities to avoid task
drop-out caused by boredom. The scope of
this thesis covers three angles of adaptation:
the teacher’s perspective on training, learner-
players progression and players preferences.

This PhD work falls within the field of engi-
neering research of TEL systems. The aim is
to characterise the generation of activities and
to propose a “generic” approach, i.e., indepen-
dent of any specific didactic domain. Thus, the
aim is to be able to reuse generation elements
for different domains. This thesis is based on
the AdapTABLES research project, which pro-
vides an initial ground of study and experi-
mentation. The aim of this project is to de-
sign and develop a multiplication table training
game. The research contribution (i.e., study
and design methods) was developed in this
context, but was also generalised and evalu-
ated in other contexts.

First, we identified a game genre compat-
ible with declarative knowledge training: the
Roguelite. In this game genre, the activities

or game levels are procedurally generated and
incorporate a high degree of variability. Repe-
tition is encouraged by a “permanent death”
mechanism. Then, we: 1) characterised and
specified the generation by analysing the dif-
ferent adaptation needs (i.e., teacher, learner-
player) and 2) proposed a framework (i.e.,
conceptual framework and software infrastruc-
ture) based on the principles of Model-Driven
Eengineering to design and implement gen-
erators for declarative knowledge training in
the context of Roguelite oriented games. The
generators designed are independent soft-
ware components producing levels (i.e., dun-
geons) in XML format that can be interpreted
by an educational game.

Three generators have been designed us-
ing the framework: one for multiplication train-
ing, a second for history and geography facts
(i.e., required for the Diplôme National du
Brevet des Collèges, a French exam taken in
9th grade) training, and a third for judo facts
training. The multiplication tables generator is
currently being used in an educational game
designed as part of the AdapTABLES project.
The framework and its components have been
validated using system tests and semantic
constraints validation of models, as well as
experimentation with an engineer to assess
the usability of the framework. Moreover, the
game developed for the AdapTABLES project
and the associated generator were used sev-
eral times in ecological conditions.

Titre : Génération d’activités de jeux d’entrainement adaptées : un framework de conception
et d’implémentation fondé sur l’ingénierie dirigée par les modèles

Mot clés : Génération Procédurale – Adaptation – Modélisation – Entrainement – Connais-

sances Déclaratives – Ingénierie Dirigée par les Modèles

Résumé : Ce travail de thèse s’inscrit dans
une perspective informatique du domaine de
recherche de l’ingénierie des EIAH (Environ-
nements Informatiques pour l’Apprentissage
Humain) dont les contributions visent à soute-
nir et à guider la conception pluridisciplinaire
d’EIAH et des environnements supports asso-
ciés. La recherche a montré que la mémorisa-
tion à court et long termes de connaissances
déclaratives (e.g., lois, faits, règles) nécessite
de la répétition. Cependant, celle-ci devient
rapidement ennuyeuse pour les apprenants.
Il a également été montré que proposer des
activités de jeux répétitives et non adaptées
aux apprenant-joueurs provoque un sentiment
d’ennui. En conséquence, le contexte de la ré-
tention à long termes de connaissances dé-
claratives nécessite de proposer aux appre-
nants des activités d’entrainement variées et
adaptées pour éviter l’abandon des tâches
causé par l’ennui.

La génération procédurale est une mé-
thode très utilisée dans les jeux vidéo pour
proposer du contenu varié et adapté aux
joueurs. Elle s’appuie généralement sur un
ensemble de données structurées et d’un en-
semble de règles définies au travers d’algo-
rithmes. Cependant, cette méthode est peu
utilisée dans le domaine des EIAH. Dans
cette thèse, nous nous intéressons à la gé-
nération d’activités de jeu pour l’entrainement
aux connaissances déclaratives (i.e., informa-
tions factuelles telles que les lois, les tables
de multiplication). L’adaptation est une théma-
tique très large qui peut viser différents as-
pects, dimensions et objectifs. Vis-à-vis du
contexte de cette thèse, trois angles d’adap-
tations, paraissant les plus pertinents, ont été

abordés : le point de vue de l’enseignant sur
l’entrainement de chaque apprenant, la pro-
gression de l’apprenant-joueur vis-à-vis des
connaissances à travailler et les préférences
de joueurs en termes de gameplays (i.e., élé-
ments « amusants » qui peuvent être contrô-
lés, décidés et réalisés par le joueur).

La thèse s’appuie sur le projet de re-
cherche AdapTABLES qui lui fournit un premier
terrain d’étude et d’expérimentation. Ce projet
vise la conception et le développement d’un
jeu d’entrainement aux tables de multiplica-
tion. La contribution de recherche (i.e., étude
et moyens de conception) a été élaborée dans
ce contexte mais a été généralisée et éva-
luée également dans d’autres contextes (i.e.,
repères d’histoire-géographie du brevet des
collèges, connaissances théoriques de judo).
La problématique identifiée concerne la faci-
litation de la conception de générateurs d’ac-
tivités de jeu adaptées et variées, destinées
à l’entrainement aux connaissances déclara-
tives. Plusieurs questions de recherche en dé-
coulent : comment proposer une approche
suffisamment générique pour considérer les
connaissances déclaratives indépendamment
d’un domaine didactique spécifique ? Qu’est-
ce qu’une activité d’entrainement de jeu adap-
tée et variée? De quels éléments éducatifs et
de quels éléments de jeu sont composées ces
activités? Comment associer les éléments de
jeu et les éléments éducatifs de manière co-
hérente? Comment structurer ces éléments et
leurs relations pour guider la génération d’ac-
tivités cohérentes? Comment spécifier ces in-
formations informatiquement pour développer
des générateurs d’activités ?

L’objectif est de caractériser la génération

d’activités et de proposer une approche « gé-
nérique », c’est-à-dire indépendante d’un do-
maine didactique spécifique, pour guider la
conception de générateurs d’activités d’en-
trainement aux connaissances déclaratives.
Ainsi, l’idée consiste à permettre la réutili-
sation des éléments de génération pour dif-
férents domaines didactiques. Sachant que
la structure d’une activité change en fonc-
tion du genre de jeu visé, nous avons tout
d’abord identifié un genre de jeu théori-
quement compatible avec l’entrainement aux
connaissances déclaratives : le Roguelite.
Dans ce genre de jeu, les activités ou niveaux
de jeu sont générés procéduralement et in-
tègrent une grande variabilité. La répétition est
favorisée par une mécanique de mort perma-
nente nécessitant de recommencer le jeu du
début mais certains éléments de jeu peuvent
être conservés pour faciliter les parties sui-
vantes.

Dans notre contexte nous définissons
donc un générateur d’activité de jeu de type
Roguelite pour l’entrainement aux connais-
sances déclaratives comme un composant lo-
giciel (i.e., élément constitutif du jeu d’en-
trainement) dont l’algorithme permet de
construire des activités variées à partir de
trois types d’informations fournies en entrée :
des informations sur l’entrainement et les
connaissances visées, des informations sur
le jeu et des informations sur l’apprenant-
joueur concerné. Ces composants logiciels
produisent en sortie des descriptions dé-
taillées d’activités (i.e., niveaux de donjon)
adaptées aux apprenants-joueurs.

Nous proposons un framework de concep-
tion et d’implémentation de générateurs d’ac-
tivités adaptées et variées pour l’entraine-
ment aux connaissances déclaratives à tra-
vers des jeux de type Roguelite. L’origina-
lité de cette proposition et de ce positionne-
ment est d’aborder l’adaptation en prenant
en compte simultanément les dimensions de
jeu et d’entrainement (i.e., apprentissage). De
plus, le framework est un outil (i.e., infra-
structure logicielle) disposant d’un mécanisme
d’extension permettant de prendre en compte
de nombreux domaines didactiques.

Notre proposition s’inscrit dans le contexte

d’une approche d’Ingénierie Dirigée par les
Modèles (IDM) qui est fondée sur la notion
de modèle (i.e., abstraction d’un système se-
lon un point de vue) et repose sur quatre
principes : la capitalisation (i.e., les modèles
doivent être réutilisables), l’abstraction (i.e.,
les modèles doivent être indépendants des
technologies), la modélisation (i.e., les mo-
dèles doivent adopter une vision productive,
c’est-à-dire permettre la génération de code
final du logiciel), et la séparation des pré-
occupations. La transformation de modèles
est une opération centrale en IDM qui per-
met la génération automatique de modèles
cibles à partir de modèles sources. Pour
permettre ces transformations, les modèles
doivent être conformes à des méta-modèles
qui définissent la structure et les règles que
doivent respecter les modèles. Les principes
de l’IDM, ainsi que les différents outils permet-
tant de soutenir son utilisation, font de l’IDM
une approche très intéressante dans notre
contexte.

Afin de construire le framework, nous
avons dans un premier temps caractérisé et
spécifié la génération en analysant les diffé-
rents besoins d’adaptation (i.e., enseignant,
apprenant-joueur). Pour cela, un ensemble de
modèles conceptuels interreliés représentant
les différents concepts nécessaires à la géné-
ration a été proposé (i.e., cadre conceptuel).
Ces différents modèles conceptuels sont fon-
dés sur une abstraction des concepts permet-
tant la mise en place d’un mécanisme d’exten-
sion aux différents domaines didactiques (i.e.,
généricité) mais également l’explicitation des
relations entre les éléments ludiques et édu-
catifs. Pour cette modélisation, les éléments
d’entrainements et de jeu ont été abstrait de
manière non exhaustive en types de tâche
d’entrainement et en catégories de gameplays
pour les Roguelites. À partir de ces concepts,
la création d’une activité repose sur la bonne
association des tâches et des gameplays. En
conséquence, nous avons proposé une mé-
thode systématique permettant de définir des
relations entre type de tâche d’entrainement
et catégorie de gameplays fondée sur l’utilisa-
tion d’un pivot défini à partir des exercices de
questionnaires numériques.

282

Ce framework est composé d’un cadre
conceptuel et d’une infrastructure logicielle ex-
tensible à des domaines didactiques spéci-
fiques. Le cadre conceptuel s’appuie sur dif-
férents modèles. Tout d’abord le modèle du
domaine capturant le parcours d’entrainement
et les connaissances déclaratives, puis le mo-
dèle du jeu décrivant l’ensemble des élé-
ments, gameplays et objets de jeu néces-
saires pour l’élaboration d’une grande variété
de donjons. Ensuite, le modèle de l’apprenant-
joueur permet de conserver toutes les pro-
gressions et résultats de chaque apprenant
et joueur. Le modèle de relations entre les
éléments de jeu et d’entrainement capture
les informations clés qui permettront d’assu-
rer la correspondance des faits à question-
ner en gameplays et éléments concrets de
jeu permettant de questionner dans le jeu
les connaissances. Enfin, le modèle de l’ac-
tivité décrit l’ensemble des données structu-
rées composant le donjon généré. Ce modèle
est le seul à être généré. L’infrastructure logi-
cielle capture l’ensemble des éléments com-
muns pour tout domaine didactique tels que
décrits dans le cadre conceptuel. Elle pro-
pose également le mécanisme d’extension qui
guide l’ajout des éléments spécifiques à un
domaine didactique visé. L’avantage d’une ap-
proche extensible est de faciliter l’implémen-
tation de générateurs d’activités, par des in-
génieurs ou développeurs, en limitant le déve-
loppement nécessaire aux informations reliés
aux connaissances déclaratives du domaine
didactique. Ce framework propose un algo-
rithme, des modèles, et méta-modèles déjà
existants à étendre et qui seront donc réuti-
lisés pour spécifier un générateur d’activités.
Il se base sur un ensemble de métamodèles
et modèles informatisés à l’aide du framework
de modélisation d’Eclipse (EMF) et propose un
mécanisme d’extension fondé sur le patron de
conception template method. Les générateurs

conçus à l’aide du framework sont des com-
posants logiciels indépendants produisant des
niveaux (i.e., donjons) au format XML, pouvant
être interprétés par un jeu éducatif. Le fra-
mework et les générateurs produits par ce
dernier doivent respecter certaines propriétés.
Ainsi le framework doit permettre d’exprimer
différents domaines didactiques et d’exprimer
la vision des enseignants sur l’entrainement
des apprenants individuellement. En ce qui
concerne les générateurs, les activités géné-
rées doivent être 1) adaptées au niveau et ré-
sultats de l’apprenant dans son parcours d’en-
trainement, 2) adaptées aux préférences de
jeu du joueur, 3) variées sur le plan éducatif
et de jeu.

Afin d’évaluer la généricité et l’extensibi-
lité du framework, trois générateurs ont été
conçus à partir du framework : l’un pour
l’entrainement aux multiplications, un second
pour l’entrainement aux repères d’histoire-
géographie au programme du brevet des col-
lège et un troisième pour l’entrainement aux
faits de judo (i.e., connaissances théorique
nécessaire au passage de grade). Le géné-
rateur des tables de multiplication est actuel-
lement utilisé dans un jeu d’apprentissage
conçu dans le cadre du projet AdapTABLES.
Plus précisément, à chaque demande d’un
nouveau niveau, le jeu envoie une requête au
générateur, qui lui renvoie un niveau généré
adapté à l’apprenant-joueur concerné. Le fra-
mework et ses composants ont également été
validés à partir de tests systèmes à l’aide du
framework JUnit 4, de validation de proprié-
tés statiques sur les modèles, mais aussi au
travers d’une expérimentation avec un ingé-
nieur afin d’évaluer l’utilisabilité du framework
et de son guide d’extension que nous avons
également proposé. De plus, le jeu développé
pour le projet AdapTABLES et le générateur as-
socié ont été utilisés plusieurs fois en condi-
tions écologiques.

283

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Research Context
	Research Laboratory
	AdapTABLES Project

	Research Problem
	Thesis Structure

	I Research Background Towards Adaptation and Games
	Adaptation in TEL
	Definitions
	Characterisation of Adaptation
	Existing Work
	Adaptation in TEL
	Adaptation in Educational Games
	Approaches Guiding Adaptation

	Synthesis & Discussion

	Games & Content Generation
	Definition of Procedural Content Generation
	Games & Serious Games Design
	Existing Work
	Content Generation in Video Games
	Content Generation in TEL

	Synthesis & Discussion

	Research Issue
	Research Questions
	Positioning
	Roguelite Game Genre
	Adaptations & Variety
	Model-Driven Engineering

	Research Method & Evaluation

	II Design and Implementation Framework of Generators
	Design Framework of Activity Generators
	General Overview
	Definition: Game Activity for DK Training
	Declarative Knowledge Training Elements
	Training Path
	Training Task Types
	Training Tasks Parameters

	Roguelite-oriented Game Elements
	Analysis method for Roguelite Design
	Design Choices for Activity Generation
	Gameplay Categories

	Synthesis

	Mapping Game and Educational Elements
	Existing Work
	Relations Between Dimensions
	Methods to Define Relations Between Dimensions
	Synthesis

	Mapping Approach Development
	Identification of the Pivot
	Mapping Task Types onto Gameplay Categories

	A Systematic Mapping Approach
	Proposed Mapping Approach
	Relations Between Task Types and Gameplay Categories
	Evaluation of the Relations

	Synthesis

	Conceptual Design Approach
	Conceptual Models for Activity Generation
	Domain Model: Training and Knowledge
	Game Model
	Activity Model
	Learner-Player Model
	Relation Model
	Synthesis & Discussion

	Mapping Questioned Facts with Game Elements
	Generic Modelling of Questions about Facts
	Modelling Gameplays Descriptions
	Generic Generation of Varied Task-oriented Gameplays

	Synthesis

	Software Infrastructure
	Model-Driven Engineering Foundations
	Conceptual Models to Computerised Metamodels
	Models as Inputs and Outputs of Generation

	Activity Generation Algorithm
	Algorithm for Generating Training Game Activities
	Algorithm for Generating Questions about Facts

	Extension Rules
	Synthesis

	III Application & Evaluation
	Extensions of the Framework
	Generator for Multiplication Tables Training
	Generator for History-Geography Facts Training
	Generator for Judo Facts Training
	Generator for Solar System Facts Training
	Discussion

	Tests and Validation of the Framework
	Framework Properties Evaluation through Tests
	Learner Adaptation of the Generated Activities
	Player Adaptation of the Generated Activities
	Variety of the Generated Activities

	Validation of Static Properties of Models
	Framework Evaluation with an Engineer
	Use of a Generator in Ecological Conditions
	Synthesis

	Conclusion
	Synthesis
	Contributions to TEL Research Domain
	Limitations

	Perspectives

	Bibliography
	Analysis of Existing Games for Multiplication Tables Training
	Gameplay Mock-Ups Evaluation Questionnaire
	Algorithm for Generic Generation of Task-oriented Gameplays
	XMI to XML Code Transformation in ETL
	Guidelines for Extending the Framework
	JUnit Test Method Example
	Model Validation Source Code (EVL)
	Framework Usability Evaluation Questionnaire

