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waveguide periodically loaded with Helmholtz resonators [19, 9, 20]. In two dimensions, a

phononic crystal can be obtained by embedding periodic arrays of cylindrical inclusions in

a host medium, like air for instance [21], or a meta-surface made of elastic particles such

as spheres ordered to form granular phononic crystal [9, 22, 23, 10]. In three dimensions,

spherical inclusions enable negative elastic constants in certain frequency ranges [24]. Pe-

riodicity control generally induces the formation of band gaps in metamaterials, frequency

ranges where wave propagation is impossible. All these properties make phononic crystals

useful for applications in vibration insulation, noise reduction, and wave guiding.

Locally-resonant metamaterials also point to a large category of acoustic metamateri-

als [25, 26]. These metamaterials exploit local resonances to achieve high-quality-factor

absorption, the most known example being Helmholtz resonators [27, 28]. They are par-

ticularly useful to target specific frequencies and are still extensively explored to improve

existing efficient structures. The coupling between broadband metamaterials and resonat-

ing designs is nowadays a particularly active field of research, with the use of membranes

and cavities for instance [29, 30].

In this PhD thesis, we focus on a particular class of phononic crystals called flexible

mechanical metamaterials, which offer further avenues for the exploration of wave manip-

ulation and structural reconfiguration thanks to their high deformability.

1.2. Overview of flexible mechanical metamaterials

Flexible mechanical metamaterials (FlexMM) or mechanism-based materials [31] are care-

fully engineered structures that consist of stiff and flexible elements, where the stiff ele-

ments connected by the soft ones can move relatively in a continuous way. These structures

form usually a periodic network of unit cells. Their properties and behaviors are derived

from the geometry of the structure rather than just its intrinsic properties (chemical com-

position, atomic structure...). Each cell can deform, rotate, buckle, fold, and snap in

response to mechanical constraints and is designed so that adjacent cells of the network

can interact, resulting in a desired collective behavior. The microstructural architecture

impacts the global structure with unique and often advanced unconventional properties

such as shape morphing [32, 33, 34, 35], topological protection [36, 37, 38], and nonlinear

responses [39, 7].

In this overview, we present some of these structures, their properties, and applications.

We particularly look at a structure based on the rotating element mechanism.
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Origami-inspired designs can fold and unfold into intricate shapes allowing for the creation

of deployable structures. One pioneer application in space engineering is the Miura-ori

structure, displayed in Fig. 1.3 (a) which is used for the creation of deployable solar panels

based on 2D sheets with predefined crease patterns. The structure can be compactly

stored and expanded to full size in space.

(a) (b)

(c)

Folded Deployed

Folded Deployed

(d)

c d

200 µm

(e)

Figure 1.3: (a) Deploying motions of Miura-ori fold [3]. (b) Stretchable kirigami plate

manufactured in LAUM. (c) Schematic showing the deployment of an origami stent [4]

and (d) Photograph of a stent graft design made from a sheet [5]. (e) Microscale kirigami

patterns in GO-PVA nanocomposites using photolithography [6].

Kirigami-based structures are produced by introducing arrays of cuts or engravings into

thin sheets of material, see Fig. 1.3 (b), and currently participate in the field of wear-

able electronics. For instance, kirigami-type graphene sheets, displayed in Fig. 1.3 (e),

are used to add elasticity in stiff nanocomposites without compromising their electrical

conductance [6], and to make stretchable lithium-ion batteries [40].

In biomedical engineering, origami and kirigami-inspired stents [4, 5], see Fig. 1.3 (c-d), as

well as surgical devices [41] can be minimally invasive during insertion and then expand

to their functional form within the body. Additionally, these structures are utilized in

designing energy-absorbing systems for impact protection [42, 43] such as vehicle crash

box [44] or assistive shoe grips [45], as they efficiently dissipate energy. The combina-

tion of both kirigami and origami-inspired structures makes them suitable for adaptive

architectures and soft robotics [46, 47] sometimes bio-inspired.





1| Introduction 7

behavior of nonlinear wave propagation. In addition to pulse-like waves such as solitary

waves, periodic waves [50, 48] or modulated waves have also been investigated recently in

these systems.

1.3. History of solitary waves, called solitons

Solitary waves, commonly called solitons, have been the subject of numerous theoretical

and experimental studies through many physical domains including hydrodynamics [51]

[52], nonlinear optics [53], plasma physics [54], or mechanics [55].

The first documented observation of a solitary wave was made by the Scottish civil en-

gineer and naval architect, John Scott Russell in 1834. The solitary wave was generated

by

"a boat which was rapidly drawn along a narrow channel by a pair of horses, when the

boat suddenly stopped-not so the mass of water in the channel which it had put in motion;

it accumulated round the prow of the vessel in a state of violent agitation, then suddenly

leaving it behind rolled forward with great velocity, assuming the form of a large solitary

elevation, a rounded, smooth and well-defined heap of water, which continued its course

along the channel apparently without change of form or diminution of speed".

John Scott Russell, Report on Waves 1844 [56]

Based on this observation, wave-tank experiments established several remarkable conclu-

sions on the physical properties of solitary water waves, including a relation between the

velocity of the wave, its amplitude, and the water depth. This work has faced skepticism

due to the lack of mathematical proof and its contradiction with Airy’s nonlinear shallow

water wave theory, which suggested that waves of finite amplitude cannot maintain their

shape while traveling. In 1895, the concept of solitary wave was rehabilitated thanks to the

work of Diederik J. Korteweg and Gustav de Vries [57]. They developed the Korteweg-de

Vries (KdV) equation, which accurately describes the phenomena observed by Russell, in-

cluding the interaction effect between dispersion and nonlinearity of the system. Through

this equation, they identified periodic wave solutions in the shallow water domain known

as cnoïdal waves, which converge to solitary waves in the limit of large wavelengths, see

Fig. 1.5. Research on solitary waves continues in the 1950s with the Fermi-Pasta-Ulam-

Tsingou (FPUT) problem [58]. This problem consists of a numerical study of the energy

equipartition in an anharmonic one-dimensional monoatomic chain of masses. Contrary

to their expectations, the system did not exhibit the expected equipartition of energy,

but instead, the energy was localized recurrently in a certain number of modes, showing
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(a) (b)

Figure 1.5: Representation of a cnoïdal wave (a), and a solitary wave (b) of the KdV

equation.

the emergence of a soliton-like behavior. This paradox and what results from it widely

spread interest in the nonlinear dynamics of lattice systems. From the FPUT problem,

Norman Zabusky and Martin Kruskal’s work in 1965 [59] marked a breakthrough, linking

the theory of solitons previously developed for shallow water waves (continuous media),

to the discrete lattice setting. Through their research, they discovered a new property for

solitary waves, namely that two solitons collide elastically. Their shape and speed are not

disturbed by their collision with other solitary waves. Due to this particle-like property

and as a tribute, they decided to call this kind of solitary wave "soliton".

Examples of this collision are shown in Fig. 1.7 which represents the propagation of

kink-solitons from the sine-Gordon equation which can be used as a simple model for

elementary particles [60, 61]. Kink-soliton solutions of the sine-Gordon equation can be

experimentally observed in the continuous limit of the mechanical lattice systems made up

of pendulums elastically connected by springs [55]. The device displayed in Fig. 1.6 was

the resulting demonstrator of a research project at LAUM for the "biennale du son, Le

Mans Sonore 2022" [62]. A kink (anti-kink) topological soliton propagates by twisting in

the clockwise (counterclockwise) direction. These solitons are called topological solitons

because the structure of the propagation medium is modified after the soliton passes. As

seen in Fig. 1.7, when two kink-solitons approach each other, they repel one another. This

interaction causes them to decelerate as they move towards each other, and accelerate as

they move away from each other. After the collision, the two kinks keep their amplitude

and velocity and undergo a phase shift. Oppositely, a kink and an antikink attract each

other. Depending on the initial velocities and energies, these interactions can lead to

different outcomes such as elastic scattering, breather formation, or annihilation [55].

Elastic scattering means that the kink and antikink re-emerge after colliding with phase

shifts as shown in Fig. 1.7.
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physics [66, 67], and acoustics [68].

1.4. Objectives and chapter sequences

In this PhD, we are interested in the propagation of nonlinear modulated waves in rotat-

ing element-based flexible mechanical metamaterials, see Sec. 1.2.3. Pulse vector solitons

have already been studied and observed in such structures and present a close link with

the nonlinear Klein-Gordon equation: the rotational displacement field is modeled by this

equation in the continuous limit [7, 69]. These studies on pulse vector solitons are the

foundation of our investigation, as they demonstrate a connection between the nonlin-

ear KG equation and the equations of motion of our FlexMM. Additionally, since it is

established that the NLS equation can describe the envelope of a wave propagating in

the nonlinear KG equation [70, 71], we can anticipate observing phenomena specific to

the NLS equation in the FlexMM such as modulation instabilities, bright/dark/breather

solitons, etc., in the weakly nonlinear and dispersive regimes.

This dissertation is motivated by improving the knowledge of the nonlinear mechanical

dynamic properties of FlexMMs, which would increase their potential applications, espe-

cially in discrete devices subject to continuous vibrations. Furthermore, FlexMMs offer

a promising platform for studying new phenomena and investigating extreme events us-

ing continuous, modulated nonlinear waves. This could lead to significant advances in

large-scale reconfiguration for example.

Chap. 2 presents the analytical and numerical methods used in subsequent chapters to

study modulated wave propagation in FlexMMs. We introduce a simplified version of

our FlexMM chain inspired by several works [39, 7, 8, 69], where the equation of mo-

tion reduces to a continuous nonlinear Klein-Gordon (KG) equation in the continuous

limit. Finally, we demonstrate how this equation leads to a nonlinear Schrödinger equa-

tion, which describes the envelope of the wave train. The NLS bright soliton solution is

particularly studied as an example.

In Chap. 3, the main objective is to study the phenomenon of modulational instability

(MI) in nonlinear FlexMM. The study of MI aims to investigate the nonlinear evolution

of modulated plane waves which is essential for comprehending the behavior of contin-

uous waves in these flexible metamaterials. This foundational knowledge is crucial for

advancing practical applications such as vibration damping and energy harvesting, where

periodic signals are commonly encountered. Starting from a discrete, nonlinear, lump

model that accurately describes the dynamics of FlexMMs, we derive an NLS equation

for the slowly varying envelope of waves in the rotational degree of freedom. We then
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analyze the conditions under which modulation instability of plane waves arises due to

random perturbations. Finally, theoretical predictions are compared to numerical sim-

ulations of the full nonlinear lump model demonstrating how the coupling between the

degrees of freedom of the particles and which mechanical parameters of the metamaterial

(see section 3.2) can induce modulation instabilities.

Chap. 4 is dedicated to soliton solutions of the NLS equation: the bright and dark soli-

tons. In the context of FlexMM, they are lattice envelope vector solitons. In Sec. 4.2, we

present the nonlinear discrete lump model which was found to be relevant for describing

the dynamical equations of FlexMMs. In section 4.3, we derive an effective NLS equation

in the semi-discrete approximation for the slowly varying envelope of waves of the rota-

tional degree of freedom (DOF). Using the semi-discrete approximation provides a valid

model for any wavelength of the carrier waves, contrary to the development of Chap. 3.

Sections 4.4 and 4.5 study the existence and dynamics of both bright and dark envelope

vector solitons.

In chapter 5, we investigate the generation of extreme wave events in FlexMMs. We

use the regularization of the gradient catastrophe process developed by A. Tovbis and

M. Bertola for the nonlinear Schrödinger equation. According to this theory, Peregrine

solitons can locally emerge in the semi-classical limit of the NLS equation. Using the

effective NLS (eNLS) equation obtained in chapter 4, we compare the evolution of the

dynamics of the FlexMMs with that of the NLS equation as a function of the initial

conditions used.

Finally, in Chap. 6, the general conclusions and the main perspectives of the presented

work are drawn.
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Wave propagation through nonlinear lattice structures is a very active research topic that

seeks to understand the complex interactions between the nonlinearity and periodicity of

the medium. Rooted in fundamental questions concerning energy localization, solitons,

and lattice vibrations, this field has evolved significantly since its inception, marked by

seminal contributions and a deeper understanding of nonlinear phenomena.

As mentioned in chapter 1 Section I, FlexMMs are most often modeled using the lumped

element approach, simplifying them to a lattice structure. This chapter aims to provide

a clear and informative introduction to the analytical and numerical methods employed

in subsequent chapters for studying modulated wave propagation in FlexMMs. To help

comprehension, we will begin with a simplified problem where the equation of motion is

reduced to a nonlinear Klein-Gordon (KG) equation. This simplified version of the system

is not only a pedagogical model; it has recently been shown that this system can be used

to create active metamaterials for generating and propagating unidirectional dissipative

solitons [72].

First, we introduce a simplified version of the FlexMM we use in the upcoming chapters.

Then, from the equation of motion, we demonstrate the derivation of a nonlinear KG

equation using a continuous approximation model. Finally, we show how this equation

leads to a nonlinear Schrödinger equation which describes the envelope modulated waves.

The propagation of a nonlinear Schrödinger (NLS) bright soliton is chosen as an example

to show the relevance of the derived NLS equation.

2.1. Flexible mechanical metamaterial: pinned rotat-

ing structure

This section introduces the mathematical model employed to depict the motion of our

FlexMM and specifies the approximations used.

2.1.1. Lumped element approach

The structure under study in the following chapter is made of rigid particles (which can

have different shapes), connected to their neighboring particles with soft elastic connec-

tions which are physically modeled by three linear springs: a longitudinal one with stiffness

kl, a shear one with shear stiffness ks, and a bending one with bending stiffness k✓. The

soft and rigid parts can be modeled using the lumped element approach (see Fig. 2.1).

We consider a line of N particles of size 2l periodically arranged, aligned (the static angle

of particles is equal to 0), and pinned. In this case, only rotational motion can occur
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∆ln = [{r3(✓n+1)� r3(0)}� {r1(✓n)� r1(0)}]

=

"

�l cos ✓n+1 � l cos ✓n + 2l

�(�1)n+1l sin ✓n+1 � (�1)nl sin ✓n

#

,
(2.2)

where r1(0) = r3(0) are the static positions of the vectors equal to l in the x direction.

At equilibrium, Eq. (2.2) shows that ∆ln = 0. This is an approximation as in reality, the

elastic links have a length d. For Eq. (2.2) to be valid, the particle extremities must be

close to their neighbors, as presented in these FlexMMs [32]. In Eq. 4.2, the trigonometric

terms model the shear rotation. For the bending rotation, we consider linear elasticity.

As a result, rotational bending strain can be expressed as,

∆✓n = ✓n+1 + ✓n ,

∆✓n−1 = ✓n + ✓n−1 .

(2.3a)

(2.3b)

Combining the expressions of each elastic link elongation derived in Eqs. (2.2-2.3), the

expression for the Hamiltonian of the system can be written,

H =
N
X

n=1

1

2
J ✓̇2n +

N−1
X

n=1

1

2
kk.∆lnk2 +

N−1
X

n=1

1

2
k✓∆✓n

2 , (2.4)

with k = (
p
kl

p
ks).

In this model (cf. Eq. (2.4)), it is considered that the soft elastic connections between

vertices behave physically as follows. The bending moment linearly depends on the relative

angles between two adjacent units, the longitudinal restoring force is proportional to the

elastic elongation along the connector axis, and the shearing force is proportional to the

elastic elongation projected orthogonally on the connector axis. A more general model

could be implemented to include global rotation effects and the geometrical nonlinearity

associated with large rotations. However, this might result in the equations of motion

that are not easily treated analytically as we wish to do so below.

The first sum corresponds to the kinetic energy contribution, where J is the moment of

inertia of the rigid particles. The second one corresponds to the traction/compression

and shear deformations of the soft elastic connections ∆ln. Finally, the third one is the

contribution of the bending deformations of the soft elastic connections.

From the Hamiltonian Eq. (2.4) of the system, it is possible to find the equation governing
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✓n,

J
@2✓n

@t2
= �@H

@✓n
. (2.5)

Only direct neighbors of the nth particle, i.e. n ± 1, influence its dynamics. As a result,

Eq. (2.5) is reduced to,

J
@2✓n

@t2
= �1

2

@kk.∆lnk2
@✓n

� 1

2

@kk.∆ln−1k2
@✓n

� 1

2
k✓∆✓n

2 � 1

2
k✓∆✓n−1

2 . (2.6)

The equation of motion governing the rotation of the pinned chain is finally given by,

J
@2✓n

@t2
=kll

2 sin ✓n (cos ✓n−1 + 2 cos ✓n + cos ✓n+1 + 4)� ksl
2 cos ✓n (sin ✓n−1

�2 sin ✓n + sin ✓n+1)� k✓ (✓n−1 + ✓n + ✓n+1) .

(2.7)

From the previous equation of motion, it can be deduced that the system contains a ge-

ometric nonlinearity, activated by the rotation of the rigid particles on the longitudinal

and transversal axes. With the following normalized variables and parameters: the nor-

malized time T = t
p
kl, an inertial parameter ↵ = l/

p
J , and the stiffness parameters:

K✓ = k✓/(kll
2) and Ks = ks/kl, the equation of motion Eq. (2.7) is written as,

1

↵2

d2✓n
dT 2

=�K✓ (✓n−1 + 2✓n + ✓n+1) +Ks cos ✓n [sin ✓n−1 � 2 sin ✓n + sin ✓n+1]

� sin ✓n [4� cos ✓n−1 � 2 cos ✓n � cos ✓n+1] .

(2.8)

The continuum limit is employed in the next subsection to find analytical solutions to the

equation of motion of the lattice Eq. (2.8).

2.1.2. Continuum limit

Considering lattice waves (cf. Eq. (2.8)) with sufficiently large wavelength compared to

the unit cell distance, i.e. �� a, one can apply the continuum limit. In this case, we can

treat the discrete variable of the position xn as a continuous variable X and derive,

✓(Xn, T ) = ✓n(T ) , Xn =
xn

a
. (2.9)

The rotation of the masse pairs n + 1 and n � 1 is expressed using the following Taylor

expansions,
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✓n±1(T ) = ✓(Xn±1, T ) ⇡ ✓|Xn,T
±

@✓

@X

�

�

�

�

Xn,T

+
1

2

@2✓

@X2

�

�

�

�

Xn,T

,

cos ✓n±1(T ) = cos ✓(Xn±1, T ) ⇡ cos ✓|Xn,T
±
@ cos ✓

@X

�

�

�

�

Xn,T

+
1

2

@2 cos ✓

@X2

�

�

�

�

Xn,T

,

sin ✓n±1(T ) = sin ✓(Xn±1, T ) ⇡ sin ✓|Xn,T
±
@ sin ✓

@X

�

�

�

�

Xn,T

+
1

2

@2 sin ✓

@X2

�

�

�

�

Xn,T

.

(2.10)

Substituting equation (2.10) in (2.8), and keeping terms up to the third order, we find

that the rotational degree of freedom is described by the following nonlinear KG equation,

@2✓

@T 2
= C1

@2✓

@X2
� C2✓ � C3✓

3 . (2.11)

The coefficients C1 = ↵2(Ks � K✓), C2 = 6K✓↵
2 and C3 = 2↵2 depend on the physical

parameters, ↵ the inertial parameter and stiffness parameters Ks and K✓.

2.2. Nonlinear Klein-Gordon equation

2.2.1. Low-amplitude limit, linear KG equation

The low-amplitude regime allows us to determine how waves propagate in lattices un-

der the dispersion effect from the discreteness (periodicity). The dispersion relation, cf.

Eq (2.14), which depends on the physical properties of the medium C1 and C2, establishes

the relation between the angular and spatial !, k frequencies. To find the dispersion rela-

tion, for example in the pinned structure defined in the previous section, it is necessary to

linearize the effective continuous nonlinear KG equation that describes the system. First,

we assume ✓ ⌧ 1. The resulting linear KG equation writes,

@2✓

@T 2
= C1

@2✓

@X2
� C2✓ . (2.12)

2.2.2. Dispersion relation and phase velocity

Within sight of the results of the next chapters, it is instructive to explain the difference

between the KG equation and the simple wave equation regarding the propagation of

pulses. Considering harmonic wave solutions,

✓(x, t) = A cos(kx� !t) = ARe
⇥

ei(kx−!t)
⇤

. (2.13)
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T

TT

Dispersive wave Nondispersive wave

(a) (b)
�(k) = ± C1k

2 + C2 �(k) = ± C1k
2

Klein-Gordon equation (dispersive wave) Wave equation (nondispersive wave)

Figure 2.3: Pulse propagating at wavenumber k = 0 for C1 = 1. In panel (a), C2 = 1 so

the system is dispersive, and the resulting wave oscillates in time with the period ⌧ ⇡ 6.3.

For panel (b), C2 = 0 so the system is nondispersive, and the resulting pulse is split into

two pulses of amplitude A = A0/2 translated with a constant velocity
p
C1 = 1 on the

left and right directions.

In the wave equation, a pulse or a wave pattern initially created with no initial velocity

is split into two parts, each moving at a constant velocity to the right and left directions

without deforming their shape over time, see Fig. 2.3(b). When k = 0 and for a nondis-

persive media (! = 0), there is no temporal oscillation. However, in the dispersive case

described by the Klein-Gordon equation, temporal oscillations are present.

Numerical scheme to solve the KG equation

After deriving and studying the theoretical properties of the KG equation, we can dive

into its numerical integration. Indeed, numerical integrations will have to be performed

in the upcoming sections of this chapter.

The method employed to solve the KG equation consists of using a fourth-order Runge-

Kutta algorithm to integrate the equation over time, while the second spatial derivative

is computed with a centered second-order finite-difference scheme,

@2✓

@X2
=

(✓n+1 � 2✓n + ✓n−1)

∆x2
. (2.17)

The Courant-Friedrichs-Lewy (CFL) (1928) condition must be used to ensure convergence

of the numerical integration scheme [73]. The CFL condition places a limit between the

theoretical velocity c0 of the waves and the discretization along x and t and writes c0 <
∆x

∆t
.

It affirms that the propagation of the information in the numerical scheme should always
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be faster than the velocity of waves inside the theoretical model. The space domain is of

size L = 500, discretized with a ∆x = 0.1 step for a total number of Nx = 5000 lattice

points, and with free boundary conditions at both ends of the domain. The total time of

integration is Tf = 300, with a time step ∆t = 0.05. Here, for the chosen ∆x and ∆t, the

CFL is equals 2.

Similar numerical simulations will be performed in the upcoming sections of this chapter,

in particular on envelope soliton solutions of the nonlinear KG equation.

2.3. Envelope soliton solution of the nonlinear KG

equation

This section aims to study modulated plane waves propagating in the nonlinear KG

equation. First, the theoretical framework of modulated waves will be set. Then, it

will be demonstrated with the help of the multiple-scales method, that the envelope

of a modulated plane wave propagating in the KG equation can be described with an

NLS equation, in the weakly nonlinear regime. Finally, the interaction of two phase-

shifted propagating solitary waves will be studied in the previous NLS equation framework,

completing the set of analytical tools and methods available for the next chapters of this

manuscript.

2.3.1. Modulated waves and group velocity

First, let us define a plane wave modulated by an amplitude A(x, t),

✓(x, t) = A(x, t)ei(k0x−!0t) , (2.18)

where !0 = !(k0) follows the dispersion relation of the medium.

Then, we can express the wave packet in the Fourier k-space. This new representation

shows the superposition of a large number of plane waves with different amplitudes Ã(k),

which compose the wave packet,

✓(x, t) =
1

2⇡

Z +∞

−∞

Ã(k)ei(kx−!(k)t)dk . (2.19)

Considering that the spectra Ã(k) is narrow, the function !(k) can be approximated as

a Taylor series expansion around the central frequency !0 and higher order terms can be
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neglected,

!(k) = !0 + (k � k0)
@!

@k

�

�

�

�

k=k0

+ ... . (2.20)

Eq. (2.20) is substituted into (2.19), obtaining the following result,

✓(x, t) = ei(k0x−!0t)
1

2⇡

Z +∞

−∞

Ã(k)ei(k−k0)(x− ∂ω
∂k

t)dk , (2.21)

which can be written as,

✓(x, t) = A

✓

x� @!(k0)

dk
t

◆

ei(k0x−!0t) . (2.22)

Eq. (2.22) shows that the envelope function propagates with the following group velocity,

vg =
@!

@k
, (2.23)

at the corresponding wavenumber k0, while the carrier moves at the phase velocity defined

in Eq. (2.16).

In the case of a wave modulated by an envelope whose spectrum is continuous, e.g. a

Gaussian function, see Fig. 2.4(a), the frequency content of the modulated plane wave

corresponds to the continuous spectrum of the Gaussian envelope centered on the carrier

wavenumber k0, as displayed in Fig. 2.4(b)

For the linear KG equation Eq. (2.12), the group velocity is,

vg =
C1k

!
. (2.24)

2.3.2. Large amplitude plane wave

As seen in the low-amplitude limit, a linear equation has plane-wave solutions of the form,

✓(x, t) = Aei(k0x−!0t) + A∗e−i(k0x−!0t) . (2.25)

For a relatively large amplitude of the plane wave, as displayed in Fig. 2.5(a), the cu-

bic nonlinearity of the nonlinear KG equation (C3 coefficient) becomes significant (see

Fig. 2.5(d)) and influences the evolution of the plane wave by modulating it, as presented

in panel Fig. 2.5(b). The modulation resulting from the emergence of harmonics, visible

in Fig. 2.5 (e-f), can persist until the original plane wave (see Fig. 2.5 (a)) is split into
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k
0

�

�̃

(a)

(b)

Figure 2.4: (a) Plane wave with a k0 wavenumber, modulated by a Gaussian function.

The black line is the carrier wave and the red dashed line is the envelope. (b) Spatial

spectrum of the modulated wave.

wave packets with properties similar to solitons Fig. 2.5 (c). These coherent structures

are thus composed of a carrier wave modulated by an envelope signal. They are termed

envelope solitons.

In the next section, the multiple scales method [71, 70] will be employed to describe

the evolution of weakly nonlinear envelope waves of the KG equation and predict the

phenomenon observed in Fig. 2.5.

2.3.3. From the KG equation to the NLS equation

As we exhibited in section 2.1, weakly nonlinear long wavelength waves can be effectively

described by the following nonlinear KG equation,

@2✓

@T 2
� C1

@2✓

@X2
+ C2✓ � C3✓

3 = 0 . (2.26)

This equation can be rewritten using two linear operators L̂ and N̂ giving,

L̂[✓]� N̂ [✓3] = 0 , (2.27)
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(a) (c)(b)

(d) (f)(e)

Figure 2.5: Representation of the modulation process of a plane wave, with wavenumber

k0 = 0.63, and corresponding spatial spectra at different times. (a) At t = 500, the plane

wave is not modulated yet. Two pics are visible on the spectrum (d), the first one at

k = k0 = 0.63 (the original plane wave frequency), and the other at k = 3k0 = 1.89,

caused by the cubic nonlinearity of the nonlinear KG equation. (b) At t = 1250, the

plane wave starts to be modulated from the generation of harmonics in the spectrum (e).

(c) At t = 2500, more frequencies are generated around the original carrier frequency k0

(f). The original plane wave is split into wave packets. The red line corresponds to the

envelope A(x, t) of the wave.

where L̂ = @2

@T 2 � C1
@2

@X2 + C2 and N̂ = C3.

We know that a modulated wave can be split into a carrier wave and an envelope. The

carrier wave varies rapidly in space and time, while the envelope has a slower variation.

Hereafter, we treat the fast and slow scales separately to derive an NLS equation that

describes the dynamics of the modulated wave envelope.

Multiple-scales method

The multiple-scales method is an analytical tool used to construct uniformly valid ap-

proximations of the solutions of perturbation problems in which the solutions depend

simultaneously on widely different scales. The original fast-scale X0, T0 is introduced for

the carrier, and the slow-scale X1, T1, X2, T2 is introduced for the envelope description.
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Each time and space scale is an independent variable proportional to a small scale coeffi-

cient ✏n ⌧ 1, where n is the order number. We are looking for weakly nonlinear solutions,

implying that we are only interested in the first order of cubic nonlinearity. It is thus

sufficient to keep variables up to order ✏2,

X = X0 + ✏X1 + ✏2X2 ,

T = T0 + ✏T1 + ✏2T2 .

(2.28a)

(2.28b)

The new independent variables imply the refinement of the differentials of X and T for

the different scales Xi and Ti. Defining the notation Di =
@

@Ti
and similarly DiX = @

@Xi
,

one can write,

@2

@T 2
= (D0 + ✏D1 + ✏2D2 + ...)2 = D2

0 + 2✏D0D1 + ✏2(D2
1 + 2D0D2) + ...

@2

@X2
= (D0X + ✏D1X + ✏2D2X + ...)2 = D2

0X + 2✏D0XD1X + ✏2(D2
1X + 2D0XD2X) + ... .

(2.29)

The differentials of X and T are defined in Eq. (2.29) so that the linear operator (cf. Eq. (2.27))

can be developed up to the second order with the new scales,

L̂ = D2
0 + 2✏D0D1 + ✏2

�

D2
1 + 2D0D2

�

� C1

⇥

D2
0X + 2✏D0XD1X + ✏2

�

D2
1X + 2DX0DX2

�⇤

+ C2 ,

= L̂0 + ✏L̂1 + ✏2L̂2 .

(2.30)

It can then be separated in orders of ✏ as follows,

O(1) : L̂0 = D2
0 � C1D

2
0X + C2 ,

O(✏) : L̂1 = 2(D0D1 � C1D0XD1X) ,

O(✏2) : L̂2 = D2
1 � C1D

2
1X + 2(D0D2 � C1D0XD2X) .

(2.31)

The operator in front of the nonlinear term simply gives N̂ = C3.
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We are looking for a solution ✓ under the form of a perturbative expansion,

✓(X, T ) =
N
X

n=1

✏n✓n(X0, ..., XN , T0, ..., TN) , (2.32)

where the functions ✓n with n = 1, ..., N are functions of the different scales Xn and Tn,

see Eq. (2.28).

The previous developments can be brought together to write the different orders of the

nonlinear Klein-Gordon equation up to the first order of nonlinearity (order ✏3) as follows,

O(✏) : L̂0✓1 = 0 ,

O(✏2) : L̂0✓2 + L̂1✓1 = 0 ,

O(✏3) : L̂0✓3 + L̂1✓2 + L̂2✓1 � N̂ ✓31 = 0 .

(2.33a)

(2.33b)

(2.33c)

The equations will now be solved at each order.

Order ✏, linear KG equation

Eq. (2.33a) at order ✏ is the linear KG equation. Hence, we are looking for a solution

in the form of a modulated plane wave, described by the fast coordinates (X0, T0), and

an envelope that evolves according to slow coordinates (X1, T1, X2, T2). Following the

expression of the linear operator,

✓1 = A(X1, T1, X2, T2)e
i�(X0,T0) + A∗(X1, T1, X2, T2)e

−i�(X0,T0) , (2.34)

with � = kX0 � !T0, and where ⇤ denotes conjugation.

At first order, cf. Eq. (2.33a),

�!2✓1 + C1k
2✓1 + C2✓1 = 0 , (2.35)

we recover the dispersion relation of the linear KG equation (see Eq. 2.14).

Order ✏2, solvability condition

Then, the second order of the equation (Eq. (2.33b)) leads to the following,

L̂0✓2 = 2i!
@A

@T1

ei� + 2iC1k
@A

@X1

ei� + c.c . (2.36)
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Eq. (2.36) is a linear equation with source terms proportional to e±i�. These source terms

will generate secular terms which put the linear operator L̂0 in resonance and blow up

after a long time. The perturbation scheme fails and a solvability condition on A must be

defined to prevent secular terms from occurring. This condition is met when the source

terms of Eq. (2.36) cancel each other out,

@A

@T1

+ vg
@A

@X1

= 0 , (2.37)

and reciprocally for A∗. Due to the removal of the secular term (see Eq. (2.37)), the

second order equation Eq. (2.36) becomes,

L̂0✓2 = 0 . (2.38)

To solve this equation, we choose the trivial solution ✓2 = 0 because the nontrivial solution

would be equivalent to ✓1 due to the joint operator L̂0, see Eq. (2.33a). It will generate

a new unknown amplitude function that can be included in the A field of the plane wave

at ✏ order.

Order ✏3, nonlinear Schrödinger equation

Finally, considering ✓2 = 0, the third-order equation becomes,

L̂0✓3 = �L̂2✓1 + C3✓
3
1 . (2.39)

We observe that the resulting Eq. (2.39) is now nonlinear. As for the previous equation

at order ✏2, on the right-hand side of Eq. (2.39), secular terms arise, proportional to ei�.

First of all L̂2✓1 is secular because ✓1 is resonating with the homogeneous solution but

other resonant terms are present in the nonlinear term C3✓
3
1. ✓1 is a complex function

which can be written as ✓1 = ✓̃1 + ✓̃1
∗

. We note that every equation is symmetric with

regards to the complex conjugate ✓̃1
∗

. Deriving the set of equations for ✓̃1 leads to the

following,

✓31 = ✓̃1
3
+ 3|✓̃1|

2✓̃1 ,

= A3e3i� + 3|A|2Aei� .
(2.40)

Eq. (2.40) exposes that the cubic term of Eq. (2.39) generates a secular term and a

non-secular driving term ei3� 1. Substituting ✓1 from Eq. (2.34) and ✓31 from Eq. (2.40),

1The solution at order ✏
3 is therefore of the type: ✓ = ✏(Aeiσ + c.c) + ✏

3(Be3iσ + c.c) +O(✏4).
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Eq. (2.39) becomes,

L̂0u3 =
�

�D2
1A+ C1D

2
1XA+ 2i!D2A+ 2ikC1D2XA+ 3C3|A

2|A
�

ei� + C3A
3e3i� .

(2.41)

Resonating terms are obtained and a solvability condition can be derived,

�D2
1A+ C1D

2
1XA+ 2i!D2A+ 2ikC1D2XA+ 3C3|A

2|A = 0 . (2.42)

It is possible to simplify the expression of Eq. (2.42) using the variables ⇠n = Xn � vgTn,

⌧n = Tn, i.e., a reference frame moving at the group velocity vg. The differentiation of the

co-moving coordinates ⇠n and ⌧n can be computed for each scale n. This leads to,

@

@Xn

=
@

@⇠n
,

@

@Tn

= �vg
@

@⇠n
+

@

@⌧n
,

@2

@Xn
2 =

@2

@⇠2n
,

@2

@Tn
2 =

@

@⌧n2
� 2vg

@2

@⇠n⌧n
+ v2g

@2

@⇠n
2 .

(2.43)

In the new system of coordinates, the solvability condition cf. Eq.(3.13) becomes,

@A

@⌧1
= 0 , (2.44)

and the nonlinear Schrödinger equation finally appears from Eq. (2.42),

i
@A

@⌧2
+

(C1 � v2g)

2!

@2A

@⇠21
+

3C3

2!
|A2|A = 0 . (2.45)

This equation is useful to describe approximate low amplitude envelope solutions of the

KG equation.
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2.3.4. Bright soliton and collisions

As an example of the usefulness of the above method and the derived NLS equation, this

subsection studies the collision of two bright solitons, which are exact solutions of the NLS

equation and approximate solutions of the nonlinear Klein-Gordon equation with cubic

nonlinearity. Collisions between solitons propagating in the NLS equation are known to

be nearly perfectly elastic, meaning they occur without any change in shape and velocity.

However, as a result of the collision, a shift in position and time occurs [53]. Depending on

the phase shift between the two colliding solitons, they can overlap, resulting in a simple

linear superposition, or repel each other.

The first part of this work presents the procedure to go from the KG to the NLS equation,

assuming plane wave solutions under the small amplitude approximation. By returning

to the (X, T ) scale, the solutions of the NLS equation can be used as envelope solutions

for the nonlinear KG equation.

Single bright soliton

From the previous part, we have found that the envelope of modulated waves propagating

in the KG equation in the weakly nonlinear regime can be described by the NLS equation,

i
@A

@⌧2
+ P

@2A

@⇠21
+Q|A|2A = 0 , (2.46)

where

P =
(C1 � v2g)

2!
and Q =

C3

2!
, (2.47)

are two coefficients which depends on C1, C2 and C3, of the KG equation. As we are

interested in the bright soliton solution, the NLS equation is studied in its focusing case

PQ > 0. Next, starting from the known form of the NLS bright soliton [53] we have,

A(⇠1, ⌧2) = A0sech

"

A0

r

Q

2P
⇠1

#

ei
QA2

0
2

⌧2 , (2.48)

where A is the amplitude and ⇠1, ⌧2 are coordinates defined in the derivation of NLS. A

can also be expressed in the slow coordinates system,

A(X1, T1) = A0sech

"

A0

r

Q

2P
(X1 � vgT1)

#

ei
QA2

0
2

T2 , (2.49)
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leading to the latter approximate solution of the Klein-Gordon equation. At order ✏ we

have,

✓(X, T ) = 2✏A0sech

"

✏A0

r

Q

2P
(X � vgT )

#

cos



kX �
✓

! � ✏2
QA2

0

2

◆

T

�

. (2.50)

The nonlinear KG equation is a second-order partial differential equation. Consequently,

two initial conditions are necessary to initialize the numerical integration scheme: the

position ✓(X, T = 0) and its corresponding velocity ✓̇(X, T = 0). Assuming C1 = C2 = 1

and C3 =
1
2

and A0 = 1. The initial conditions are expressed,

✓(X, 0) = 2✏sech

"

✏

2
p

1� v2g
(X �X0)

#

cos(kX) , (2.51)

and,

✓̇(x, 0) =
✏2vg

q

(1� v2g)
tanh

"

✏

2
p

1� v2g
(X �X0)

#

sech

"

✏

2
p

1� v2g
(X �X0)

#

cos(kX)

+ 2✏

✓

! � ✏2

8!

◆

sech

 

✏

2
p

1� v2g
(X �X0)

!

sin(kX) .

(2.52)

Numerical simulations are carried out based on the numerical scheme introduced in

Sec. 2.2.2. The wavenumber chosen for the simulations is k = 1 which implies that

vg ⇡ 0.71 < CFL (cf. Eq. (2.24)) and a focusing NLS equation (PQ > 0). The resulting

bright soliton propagation initially excited using Eqs (2.51-2.52) is displayed in Fig. 2.6.

In panel (a), the solitary wave propagates, keeping its form and velocity. The envelope

is an exact solution of NLS and the propagating wavepacket is an approximate solution

of the KG equation. As displayed in panel (b), theory and numerics are consistent. Nev-

ertheless, the limits of our approximation can be tested, choosing ✏ = 0.5 for instance,

yielding the results revealed in Fig. 2.7. Although a localized wavepacket is still found

to propagate in the KG lattice, the theoretical prediction deviates from the numerical

results.
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(a)

(b)
Analytical (NLS)

Numerical (KG) 

Figure 2.6: Bright soliton propagation regarding time and space initially at the position

X0 = L/4. In panel (a) the full evolution of the soliton is represented while in panel (b)

only at a few particular times T = 50, 150, 250, which allows us to compare the numerical

result of the KG nonlinear equation with the NLS analytical solution. The numerical

parameters employed are ✏ = 0.1, ∆x = 0.1, ∆t = 0.05.

Collision of two bright solitons

As introduced at the beginning of this section, solitons of the NLS equation collide nearly

elastically except for the phase [53]. During the collision, the two colliding solitons merge

with each other before separating out. However, depending on the phase shift, merging

is not the same.
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Analytical (NLS)

Numerical (KG) 

Figure 2.7: Bright soliton propagation in time and space initially at position X0 = L/4.

In panel (a), the full evolution of the soliton is represented while in panel (b), only a

few particular times T = 50, 150, 250 are represented. This allows us to compare the

numerical result of the nonlinear KG equation with the NLS analytical solution. The

numerical parameters employed are ✏ = 0.5, ∆x = 0.1, ∆t = 0.05.

Here, using the multiple scales method, we show that similar interactions can be observed

for the KG equation. Let us assume the sum of two bright solitons propagating in opposite

directions by choosing k1/2 = ±k, with X01 = L
4
, X02 = 3L

4
and ✏ = 0.1 with the same

phase ∆� = 0. This leads to the following representations in time and space, see Fig. 2.8.

This solution corresponds to two independent solitons at T = 0, that collide around

T ⇡ 125. After a strong nonlinear interaction, they recover their initial shapes and

resurge intact from the collision.

However, depending on the phase shift between the two solitons, their interaction is

different. Fig. 2.9 represents two colliding bright solitons for four chosen values of phase-

shifts ∆�. In-phase (∆� = 0) collision is translated into a strong peak of amplitude at

the middle of the collision. When out-of-phase (∆� = ⇡), they appear to repel each

other while they still actually pass through one another. For intermediate phase shifts

∆� = ⇡/2 and 3⇡/2, the evolution is similar to an in-phase collision, with a peak of

amplitude this time shifted towards the left (right) for ⇡/2 (3⇡/2) for the collision center.

The two wavepackets propagate and collide elastically. Nevertheless, regardless of the

phase shift, their trajectories highlight the particle-like property of solitons which expe-

rience a position shift after their collision. The theoretical and numerical results are in
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(a)

(b)
Analytical (NLS)

Numerical (KG) 

Figure 2.8: Two colliding bright solitons of the same amplitude, phase, and velocity vg,

propagating in opposite directions, k01 = 1 and k02 = �1 regarding time and space. They

are initially at position X01 = L/4 and X02 = 3L/4. In panel (a), the full evolution of the

solitons is represented while in panel (b), it is only represented at a few particular times

T = 50, 150, 250. This allows us to compare the numerical result of the KG nonlinear

equation with the NLS analytical solution. The numerical parameters employed are ✏ =

0.1, ∆x = 0.1, ∆t = 0.05.

perfect agreement in this low amplitude (weakly nonlinear) regime.
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�� = �/2 �� = ��� = 3�/2�� = 0

Figure 2.9: Zoom on the spatio-temporal dynamics of the collision of two identical solitons

of amplitude A0 = 6, the rest of the parameters are identical to Fig. 2.8. This figure shows

the impact of the phase shift on the collision.

2.4. Conclusions

In this pedagogical chapter, we have introduced multiple analytical and numerical tools

useful for the upcoming studies of this thesis. We have applied these methods to a

simple system, the pinned rotating square structure, where each particle can only rotate.

We have shown that for sufficiently large wavelengths, the wave dynamics in this lattice

can be described by the nonlinear KG equation. As this equation has been extensively

studied [74], it is of pedagogical interest to understand the dynamics of this system. It

is also well known that low amplitude modulated wave propagation can be described by

a nonlinear Schrödinger equation. To this end, we have outlined the steps involved in

obtaining this equation, describing the spatial and temporal evolution of the modulated

wave envelope. With the concepts now presented, a more complex structure can be studied

by "unpinning" the rigid particles.
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In this chapter, we study modulation instabilities (MI) in a one-dimensional chain con-

figuration of a flexible mechanical metamaterial (FlexMM). Using the lumped element

approach, FlexMMs can be modeled by a coupled system of discrete equations for the

longitudinal displacements and rotations of the rigid mass units. In the long wave-

length regime, and applying the multiple-scales method we derive an effective nonlinear

Schrödinger equation for slowly varying envelope rotational waves. We are then able

to establish a map of the occurrence of MI to the parameters of the metamaterials and

the wavenumbers. We also highlight the key role of the rotation-displacement coupling

between the two degrees of freedom in the manifestation of MI. All analytical findings

are confirmed by numerical simulations of the full discrete and nonlinear lump problem.

These results provide interesting design guidelines for nonlinear metamaterials offering

either stability to high amplitude waves, or conversely being good candidates to observe

instabilities.

3.1. Introduction

In the context of nonlinear waves, flexible mechanical metamaterials have recently emerged

as a rich and versatile platform, opening the way for fundamental studies and potential

applications [48]. Such flexible mechanical metamaterials (FlexMMs) can be defined as

artificial compliant structures able to support large deformations and mechanical insta-

bilities leading to new modes of functionality [31]. As a result, a plethora of original

quasi-static behaviors and functions have already been reported, with applications to soft

robotics [46], structure reconfigurability [75] or mechanical logic devices [32, 33, 76], as

examples. In addition and more recently, the study of their dynamic properties has re-

vealed that the nonlinearity is most often geometric in nature, resulting from large local

deformations, which makes the nonlinear dynamic response governed by the architecture

and therefore controllable [48]. This latter possibility opens the way to targeting specific

dynamical properties, which have been known to be described by existing fundamental

equations (such as nonlinear Klein-Gordon equations found in [39]) or which could illus-

trate and reveal new relevant dynamic equations. FlexMMs have also the potential of

offering realizable configurations for testing exciting concepts or processes such as those

encountered in time crystals [77, 78], in active metamaterials [79, 80] or for micropolar

elasticity of mechanical metamaterials [81].

Up to now, the specific behaviors of the reported FlexMM designs could be accurately

modeled as rigid units able to translate and rotate, connected with highly compliant

springs of longitudinal, shear, and bending nature. On the one hand, the derived non-



3| Modulation instability in nonlinear flexible mechanical metamaterials 37

linear and discrete equations of motion for multiple degrees of freedom can be efficiently

solved by numerical integration [48]. On the other hand, several steps towards analyt-

ical solutions can be taken, including the consideration of periodicity, long wavelength

compared to the lattice period, and expansions to first-order nonlinear and dispersive

terms, for instance. A review of the main nonlinear wave processes and corresponding

equations in FlexMM reported to date can be found in [48]. These include among others

the observation of mechanical vector solitons, their interactions and tuning [39, 7, 48],

the observation of cnoidal waves [50] and of transition waves [75, 32, 33, 76]. However,

nonlinear modulated waves in FlexMM is an unexplored field. Many interesting wave

phenomena are expected to be revealed, including the manifestation of modulation in-

stability (MI) and the resulting formation of localized waves such as envelope solitons

or breathers [82, 83, 84]. Beyond these fundamental interests, understanding the contin-

uous wave dynamics of non-linear flexible metamaterials is a key step before analyzing

driven-damped problems and implementing these for practical applications such as, e.g.,

vibration damping or energy harvesting, where periodic signals are often encountered.

The phenomenon of MI has attracted significant research interest in a range of different

wave systems, both continuum (water surface [64, 65, 51], plasmas [67], optical fibers

[85, 86], Bose-Einstein condensates [87]) and discrete (electrical transmission lines [66],

granular chains [88]) described by the universal nonlinear Schrödinger equation (NLSE)

[73, 71, 89]. MI analysis conventionally describes the early (linear) stage of the exponential

growth of perturbations of an unstable plane wave background [85, 86, 90, 91, 92, 93].

Recently, a renewed interest in MI has appeared, motivated by the search for extreme

waves, and has led to the analysis of various initial conditions not limited to plane waves

as well as to the study of the subsequent nonlinear stages of instability beyond the initial

linear stage. [94, 95, 96]. Along these lines, numerous theoretical and experimental works

in water wave tanks and optical fibers appeared in the literature [65, 51, 97, 98, 99, 100,

101, 102, 88, 103, 84].

It is the main objective of this chapter to study the phenomenon of MI in nonlinear

FlexMM. To do so, starting from a discrete, nonlinear lump model, which was found to

describe well the dynamics of FlexMM, we derive an NLS equation for the slowly varying

envelope of waves of the rotational degree of freedom. Then, we analyze under which

conditions, the modulation instability of plane waves emerges by random perturbations.

We finally compare the theoretical results with numerical simulations of the full nonlinear

lump model. We show that, via an initial condition problem, the coupling between the de-

grees of freedom of the particles as well as the mechanical parameters of the metamaterial

(see section 3.2), can allow modulation instability to occur and under which conditions.
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Figure 3.1: (a) Sketch of the chain configuration periodic FlexMM under consideration.

It is composed of two rows of rigid mass units (gray squares) linked by elastic connectors

(thick, blue lines) extending along the x-direction with a lattice constant ↵. The rigid units

can be of various shapes (for example crosses, spheres, cubes) and are characterized by a

mass m and a moment of inertia J . The elastic bonds (for example highly flexible plastic

films) are characterized by three effective stiffness. We consider symmetric movements

relative to the horizontal symmetry axis of the system. The displacements of the n and

n� 1 particles from the equilibrium position are shown in panels (b) and (c) for the two

different considered cases. In panel (b) the mass units can only rotate, case (I) while in

panel (c), the mass units can both rotate and longitudinally translate, case (II).

Note that in this theoretical and numerical study, damping is not considered. The latter

is expected to affect substantially the dynamic behavior of FlexMM subjected to contin-

uous excitation in experiments, and requires solving driven-damped problem types. Such

problems are beyond the scope of this chapter but could constitute the next steps in order

to fully describe experimental results and lead to applications.
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3.2. Properties and modeling of the considered Flex-

ible Mechanical Metamaterial

3.2.1. Problem position and modeling of the structure

The considered structure is inspired by the flexible Lego® chain implemented in ref. [7]

and it consists of rigid units (an assembly of Lego® bricks), that are linked to the next

neighbors by highly flexible plastic films. A periodic chain can then be constructed by

connecting pairs of units along one direction as shown in Fig. 3.1(a). The plastic films

connecting the rigid bodies are physically modeled by massless springs. Three springs

are needed to represent the plastic film connections, a longitudinal spring with stiffness

kl, a shear spring with a shear stiffness ks, and a bending spring with a bending stiffness

k✓. Two rows of masses were originally used in ref. [7] because this chain configuration

possesses a symmetry axis ensuring symmetry of the motion and no experimental buckling

of the chain out of this axis. The motion takes place in the plane of the chain and in

the general case, each mass should have 3 degrees of freedom, one rotation, and two

displacements. In the context of soliton propagation [7, 39], it has been shown numerically

and experimentally that ignoring the transversal displacement is a reasonable assumption.

Indeed, the numerically and experimentally observed transversal displacement amplitude

is an order of magnitude smaller than the longitudinal one. A 2-degree-of-freedom model

was therefore used for this system and could be used as a starting point for obtaining

relevant analytical solutions.

In the present study, we also ignore the transversal displacements and we consider two

cases. Case (I), Fig. 3.1(b), where each rigid unit is free only to rotate (thus is described

by one DOF ✓), and case (II), Fig. 3.1(c), where each rigid unit both rotates and is

longitudinally displaced (thus is described by two DOFs ✓ and u). Based on the mirror

symmetry of the two lines configuration along the y-axis, we look for symmetric excitations

for which the two rigid units of each column move along x with the same amount and

rotate at an opposite angle.

As done in [7], a positive direction of rotation is from now on defined alternately for

neighboring units since the natural rotation is alternated, upon static compression or

long-wavelength propagation. The corresponding normalized equations of motion for the

n-th column are then written [7],



40 3| Modulation instability in nonlinear flexible mechanical metamaterials

@2Un

@T 2
= Un+1 � 2Un + Un−1 �

cos ✓n+1 � cos ✓n−1

2
,

1

↵2

@2✓n

@T 2
= �K✓ (✓n+1 + 4✓n + ✓n−1) +Ks cos ✓n [sin ✓n+1 + sin ✓n−1 � 2 sin ✓n]

� sin ✓n [2 (Un+1 � Un−1) + 4� 2 cos ✓n � cos ✓n+1 � cos ✓n−1] ,

(3.1)

where we have introduced the following normalized variables and parameters: the longi-

tudinal displacement of unit n, Un = un/a, the normalized time T = t
p

kl/m, an inertial

parameter ↵ = a
p

m/(4J), and stiffness parameters K✓ = 4k✓/(kla
2) and Ks = ks/kl.

Above, m and J are the mass and the moment of inertia of the rigid units, while a is the

unit cell length (distance between the centers of the masses).

3.2.2. Discrete dispersion relations

A particularity of this system, compared to other mechanical chains with two DOFs,

[104, 105, 36, 10, 37], is that in the linear limit, the two motions (displacements and

rotations) are decoupled, i.e. each degree of freedom follows its dynamics, independent of

the other (see appendix A).

The corresponding dispersion relations are given by

!(1) = 2 sin
⇣qa

2

⌘

,

!(2) = ±

r

4↵2(Ks �K✓) sin
2
⇣qa

2

⌘

+ 6↵2K✓ .

(3.2)

(3.3)

The first branch, Eq. (3.2), describes propagating longitudinal waves with the typical

monoatomic dispersion relation. The second branch, Eq. (3.3), describes propagating

rotational waves with a Klein-Gordon type dispersion relation and a lower cutoff frequency

at ! = ↵
p
6K✓. From Eq. (3.3), it is clear that the dispersion relation of the structure can

be highly tuned through the inertial parameter ↵ (changing the mass and the shape of the

rigid particles) as well as the stiffness parameters Ks, K✓ (changing the elastic parameters

of the plastic films). Four examples of the dispersion relation for different values of the

bending stiffness K✓ are shown in Fig. 3.2 with solid lines. The rest of the parameters are

chosen to be consistent with the literature [39, 7, 8, 50]. Note also that the concavity of

the dispersion relation for the rotation DOF is defined by the sign of � = Ks � K✓, see

Fig. 3.2(a-c) vs (b-d). As we explain below, the sign of � plays a key role in the stability

of the plane waves in the system.
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3.2.3. Continuum limit

Considering waves with wavelengths that are sufficiently larger than the unit cell distance,

i.e. �� a, one can employ the continuum limit approximation. Therefore, we define two

continuous functions U(X, T ) and ✓(X, T ), interpolating the displacement and rotation

of the n-th pair of rigid units located at the position xn = na, where n is an integer, such

that

U(Xn, T ) = Un(T ) , ✓(Xn, T ) = ✓n(T ) , Xn =
xn

a
. (3.4)

If we further assume weak nonlinearity, namely ✓ ⌧ 1, keeping terms up to ✓3, see also

[7, 39], Eqs. (3.1) yield,

@2U

@T 2
=
@2U

@X2
+ ✓

@✓

@X
,

@2✓

@T 2
= C1

@2✓

@X2
� C2✓ � C3✓

3 � C4✓
@U

@X
,

(3.5)

(3.6)

where C1 = ↵2[Ks �K✓], C2 = 6K✓↵
2, C3 = 2↵2 and C4 = 4↵2. The system of equations

(3.5-3.6) is a simple dispersion-less wave equation for the displacement field U , Eq. (3.5),

coupled through a nonlinear term, with a nonlinear Klein-Gordon equation for the rotation

field ✓, Eq. (3.6). Pulse soliton solutions of (3.5-3.6) were theoretically obtained and

experimentally observed in [7], revealing the validity of the continuum-coupled equations.

The linear dispersion relations of Eqs. (3.5-3.6) are given by,

!(1) = k ,

!(2) =
p

C1k2 + C2 ,

(3.7)

(3.8)

and they are shown in Fig. 3.2 with dashed lines. For the cases we plot, one can see that

as long as the wavenumber qa  1, the continuum equations capture well the dispersive

characteristics of the discrete model.

3.3. Modulated waves in FlexMM

Although there are several recent studies on pulse nonlinear waves, the existence, stability,

and propagation of nonlinear modulated waves, in the form of plane waves or wavepackets

in FlexMM remain unexplored. Only recently, the existence and stability of discrete

breathers in FlexMM were explored [106]. Here, we derive the theoretical framework for
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Figure 3.2: Dispersion relations of Eqs. (3.2-3.3) (solid lines) and of the continuum

approximation (dashed lines) following Eqs. (3.7-3.8). In all the examples, we fix the

coefficients ↵ = 2.5, Ks = 0.01851 and we vary K✓. (a) K✓ = 1.534.10−4, (b) K✓ = 0.1,

(c) K✓ = 0.01551, and (d) K✓ = 0.02151. Left (right) panels correspond to � > 0 (� < 0).

the description of long-wave, nonlinear modulated waves. For this purpose, we apply

below the multiple-scales method [71, 70] to Eqs. (3.5-3.6).

3.3.1. Multiple-Scales

We are looking for U and ✓, in the form of a perturbative expansion,

U =
N
X

i=1

✏iui(X0, . . . XN , T0, . . . TN) ,

✓ =
N
X

i=1

✏i✓i(X0, . . . XN , T0, . . . TN) ,

(3.9)

where Ti = ✏iT and Xi = ✏iX, with i = 0, 1, . . . N and ✏ represents a small parameter. X0

and T0 correspond to the original “fast” spatial and temporal scales of the carrier wave,
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while Xi and Ti with i 6= 0 define progressively the “slow” spatial and temporal scales of

the envelope.

By inserting the expansions of Eq. (3.9) into the system of Eqs. (3.5-3.6), and taking into

account the derivative operators of the new spatial and temporal variables (see appendix B

Eq. (B.1)), we end up with the following hierarchy of equations at successive orders of ✏,

O(✏)
8

<

:

L̂(1)
0 u1 = 0 ,

L̂(2)
0 ✓1 = 0 ,

O(✏2)
8

<

:

L̂(1)
0 u2 = �L̂(1)

1 u1 + M̂(1)
0 ✓21 ,

L̂(2)
0 ✓2 = �L̂(2)

1 ✓1 + ✓1M̂
(2)
0 u1 ,

O(✏3)
8

<

:

L̂(1)
0 u3 = �L̂(1)

1 u2 � L̂(1)
2 u1 + M̂(1)

1 ✓21 + 2M̂(1)
0 ✓1✓2 ,

L̂(2)
0 ✓3 = �L̂(2)

1 ✓2 � L̂(2)
2 ✓1 + M̂(3)✓31 + ✓1M̂

(2)
0 u2 + ✓1M̂

(2)
1 u1 + ✓2M̂

(2)
0 u1 ,

(3.10)

where the linear operators, L̂(i)
j and M̂(i)

j , applied to the linear and nonlinear terms of

the equations (3.5-3.6) respectively are defined in appendix B Eqs. (B.2).

The first set of equations (3.10) of order O(✏), corresponds to the linearized system of

Eqs.(3.5-3.6). Using the fact that in the linear regime, the two fields are decoupled, we

will focus on the particular case in which, at the leading order, there is only rotational

motion, i.e.,

u1 = 0 ,

✓1 = B(X1, T1, X2, T2, ...)e
i(kX0−!T0) + c.c ,

(3.11)

with ! and k satisfying the dispersion relation Eq. (3.8) and c.c stands for the complex

conjugate.

Let us proceed to the next order of the perturbation scheme, O(✏2), and substitute the

solutions (3.11) into the second set of equations (3.10) to obtain,

L̂(1)
0 u2 = M̂(1)

0 ✓21 ,

L̂(2)
0 ✓2 = �L̂(2)

1 ✓1 .
(3.12)
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The right-hand-side of the last equation is a secular term, as it acts as a source term

proportional to ei� (� = kX0 � !T0) with which the linear operator L̂(2)
0 on the left is

in resonance. This implies that the solution ✓2 would blow up as t ! 1 and thus the

perturbation scheme will fail. The only way for the expansion to be bounded is to set the

secular term to zero, which translates to the following relation for the envelope function

B,

D1B + vgD1XB = 0 . (3.13)

Here we have introduced the group velocity given by

vg =
C1kp

C1k2 + C2

=
C1k

!
. (3.14)

Once the secular term is removed, the system of equations of the second order in ✏ in

Eq. (3.10) is now reduced to,

8

<

:

L̂(1)
0 u2 = ikB2e2i� + c.c ,

L̂(2)
0 ✓2 = 0 .

(3.15)

The first equation has the following solution,

u2 =
ikB2

4(k2 � !2)
e2i� + c.c , (3.16)

where the homogeneous part of the solutions is omitted due to our choice of initial condi-

tions U(0, X) = U̇(0, X) = 0. For ✓2 we choose the trivial solution, i.e. ✓2 = 0, since any

other solution can be incorporated in B.

3.3.2. Nonlinear Schrödinger equation (NLSE)

We now proceed with the O(✏3) order of the perturbation scheme. By using u1 = 0 and

✓2 = 0, as discussed above, the last equation of Eq. (3.10) is reduced to

L̂(2)
0 ✓3 = �L̂(2)

2 ✓1 + M̂(3)✓31 + ✓1M̂
(2)
0 u2 . (3.17)

Similar to the previous order, there are secular terms on the right-hand side of Eq. (3.17)

proportional to ei�: the L̂(2)
2 ✓1, and parts of the M̂(3)✓31 and ✓1M̂

(2)
0 u2 terms. To find their

secular contributions, we develop the operators as well as the functions on which they are



3| Modulation instability in nonlinear flexible mechanical metamaterials 45

applied. For the first of them,

M̂(3)✓31 = �C3B
3e3i� � 3C3|B|2Bei� + c.c , (3.18)

the secular contribution is �3C3|B|2Bei�. For the next one,

✓1M̂
(2)
0 u2 =

C4k
2B3

2(k2 � !2)
e3i� +

C4k
2|B|2B

2(k2 � !2)
ei� + c.c , (3.19)

the secular contribution is C4k2|B|2B
2(k2−!2)

ei�. To avoid resonant driving we set all the secular

terms equal to zero (3.17-3.18-3.19),

L̂(2)
2 ✓1 +

✓

3C3 �
C4k

2

2 (k2 � !2)

◆

|B|2Bei� = 0 . (3.20)

It is possible to simplify this expression Eq. (3.20) by using the variables ⇠i = Xi �
vgTi, ⌧i = Ti, i.e. a reference frame moving with the group velocity. Within this

frame Eq. (3.13), becomes @B/@⌧1 = 0 and Eq. (3.20) leads to the following nonlinear

Schrödinger equation,

i
@B

@⌧2
+

g1
2

@2B

@⇠21
+ g2|B|2B = 0 . (3.21)

Eq. (3.21) describes the evolution of envelope B of the modulated rotational waves, in the

co-moving space variable and the second-order slow time.

The coefficients g1 and g2 are given by the following expressions,

g1 =
C1 � v2gp
C1k2 + C2

,

g2 = � 1

2
p
C1k2 + C2

✓

3C3 +
C4k

2

2k2(C1 � 1) + 2C2

◆

.

(3.22)

Furthermore, Eq. (3.21) can be rewritten as a function of a single nonlinear parameter

g = g2/g1 by applying the following change of variable ⌧̃2 = g1⌧2,

i
@B

@⌧̃2
+

1

2

@2B

@⇠21
+ g|B|2B = 0 . (3.23)

In its current form, the NLS equation has two distinct behaviors depending on the sign of

the nonlinearity coefficient: it is known as focusing when g > 0 and defocusing for g < 0.

Among other different properties between these two cases, an important one is the stability

of plane wave solutions. More precisely, for the focusing case, it is known that plane waves
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are subject to modulational instabilities [84, 107, 108, 109, 110, 91, 92], which is the main

interest of the present work. Therefore, below we establish the conditions under which

MI appears in the proposed FlexMM.

3.3.3. Modulation instability (MI)

We seek solutions of Eq. (3.23) in the form of a perturbed plane wave [82],

B(⇠1, ⌧̃2) = (A0 + b(⇠1, ⌧̃2))e
i(k0⇠1−!0⌧̃2+✓̃(⇠1,⌧̃2)) , (3.24)

with b the amplitude and ✓̃ the phase of small perturbations. The unperturbed plane

wave satisfies the dispersion relation,

!0 =
k2
0

2
� gA2

0. (3.25)

Inserting Eq. (3.24) into Eq. (3.23), we find at first order a set of linear equations for the

perturbations b and ✓̃. We thus assume harmonic solutions of the form,

b = f1e
i(K⇠1−Ω⌧̃2) , ✓̃ = f2e

i(K⇠1−Ω⌧̃2) , (3.26)

where the perturbation frequency Ω and wavenumber K follow the dispersion relation,

Ω = Kk0 ± |K|

r

K2

4
� gA2

0 . (3.27)

We can now identify two different regions of stability of the plane waves. On the one

hand, where g < 0 the perturbations are oscillating functions and remain bounded. Thus

we call this region modulational stable. On the other hand, for g > 0 there exists a band

of unstable wavenumbers satisfying K < Kc where,

|Kc| = 2A0
p
g , (3.28)

resulting in a complex frequency Ω = ΩR ± iΩI with

ΩR = Kk0, ΩI = |K|A0

s

g � K2

4A2
0

. (3.29)

We call this region modulational unstable. The small unstable wavenumbers lead to an

exponential growth of the perturbations, with a growth rate ΩI . Thus any perturbation
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with wavenumbers within the instability band should lead to MI. Another important

parameter for studying MI is the wavenumber with the maximum growth rate,

|Km| = A0

p

2g . (3.30)

We notice that both the critical wavenumber Kc and the wavenumber corresponding to

the fastest growth rate of the perturbations Km, depend on the parameter g and the

initial amplitude A0.

Parametric study of the coefficient g

It is now clear that the stability of modulated waves in the FlexMM depends on the sign

g. As already discussed in section 3.2, we study two distinct cases: (I) allowing only

rotations and (II) with 2 DOFs per unit, i.e. including both rotation and longitudinal

displacement [Fig. 3.1(b-c)]. The corresponding nonlinear coefficient g(�,↵, K✓, k) for the

two cases is given by,

g =
�3↵2

�↵2 � v2g
, (3.31)

for case (I), and

g =
�3↵2

�↵2 � v2g

✓

1 +
k2

3k2 (↵2� � 1) + 18K✓↵2

◆

, (3.32)

for case (II).

In practice, the sign of g is determined by the choice of the carrier wavenumber k and

the geometrical characteristics of the FlexMM. This shows the great flexibility that the

proposed system offers to manipulate weakly nonlinear waves. In Fig. 3.3 we plot a map

of the sign of g as a function of the wavenumber k and �. In all cases, white (resp. black)

regions correspond to g > 0 (resp. g < 0). From the left panel, it is clear that for case

(I) with only rotations, the sign of g solely depends on the sign of delta. However for

case (II), things are different and the coupling between the rotation and the longitudinal

motion creates intermediate regions of focusing and defocusing behavior depending also

on the wavenumber k. The different panels of Fig. 3.3 also show how these regions "move"

towards larger k by changing the value of the inertia parameter ↵.

Another interpretation of the results plotted in Fig. 3.3 is that the coupling between the

rotations and longitudinal displacements creates stripes of stability (black shaded regions)

in the otherwise unstable single DOF lattice with only rotations [panel (a)]. At the same

time, this coupling forms regions of instability (white) where solely rotational motion

would have been stable. Once again, this result shows the great tunability and richness
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of the system regarding nonlinear wave propagation.

g > 0 g < 0

(a) (b)

(c) (d)

Figure 3.3: Sign of the nonlinear coefficient g as a function of k and �, for ↵ = 1.5, 2.5, 3.5.

Panel (a) corresponds to case (I) while panels (b,c,d) to case (II).

3.4. Numerical simulations of the FlexMM

In this section, we use direct numerical simulations of the system’s discrete equations

(3.1), in order to verify our analytical predictions. In particular, we first want to check

the stability of plane waves as this is predicted by the sign of g (defocusing vs focusing) of

the effective NLS. In addition, in the case of modulational instability, we want to compare

the unstable generated wavenumber, according to the ones that the MI analysis predicts.

Furthermore, we use the numerical simulations to uncover as well the dynamics of the

system long after the emergence of the MI. We thus solve the Eqs. (3.1) using a 4th order

Runge-Kutta iterative integration scheme for a total of N = 500 sites, using periodic

boundary conditions. We focus on the case with ↵ = 2.5 (Fig. 3.3 panels (a) and (c))

although any other choice of ↵ could have been done in principle.
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As initial conditions, we apply plane waves on the rotations only, with wave-number k,

whose amplitude is perturbed by a random noise

✓(n, 0) = 2✏(1 + b0) cos(kn) ,

✓̇(n, 0) = 2✏!(k)(1 + b0) sin(kn) ,
(3.33)

with ✏ = 0.01 and b0 2 [�10−3, 10−3] is a random number taken from a uniform dis-

tribution. As mentioned above, in all the cases we use U(n, 0) = U̇(n, 0) = 0 for the

longitudinal displacements. Here random noise was chosen as a perturbation, not only

because it is relevant to realistic experimental conditions but also because it is an efficient

way to excite all the wavenumbers including the unstable ones. Moreover, we can confirm

in this way our analytical results by identifying the two characteristic wavenumbers Kc

and Km using Eqs.(3.28) and (3.30) during the lattice dynamics simulation.

Here we note the following technical point. Due to the periodic boundary conditions,

the spectrum is wrapped between [0; ⇡]. During the manifestation of the MI, we expect

to identify at least the following wavenumbers: the carrier k, and the most unstable

wavenumber Km. However, we know that we always excite at least the third harmonics

3k. In order for all these frequencies to be well identified, we thus choose parameters such

that the k + ✏Km is smaller than 3k. To do so, we use an alternative representation of

Fig. 3.3, using as colormap the values of Km. The two points denoted by squares and

circles in the left and right panels respectively, are the two examples that we will study

in detail below.

Case (I) Case (II)

Figure 3.4: Most unstable wavenumber Km (colormap) as a function of � and k for

↵ = 2.5. In both panels, two particular points are indicated: a blue square point for

k = 0.81681 and � = 0.003 and a green circle point at the position k = 0.92991 and

� = �0.003.
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For the exact same FlexMM and the same initial condition, if we allow the coupling

between the two DOFs, namely if we consider the case (II), the dynamics are radically

different. This scenario is shown in Fig. 3.6. As predicted by the theory, the wavenumbers

of the perturbation that belong to the instability band, start growing. This is clear

by the two sidebands that are developed symmetrically around the excited wavenumber

k = 0.81681 in panel (b) of Fig. 3.6. More precisely, the center of these sidebands

corresponds to the point k ± ✏Km since the most unstable wavenumber rises first. The

generation of these wavenumbers is directly revealed on the rotations as large amplitude

localized structures appear (see Fig. 3.6 (a)). For later times, after the instability kicks

in, and when the amplitude of the rotations becomes large enough, we observe a spectrum

with many excited wavenumbers.

In this case, since rotations are coupled to the longitudinal displacements Un, we expect

to see some dynamics in the displacements too. Indeed, as expected from our analysis in

Eq. (3.16), U starts oscillating with a wavenumber 2k as shown in Fig. 3.6(d), and at later

times following the evolution of ✓, larger amplitude modulated waves are also emerging

in the displacements Un.

3.4.2. Stabilizing plane waves using the coupling of DOFs

The second configuration which we focus on is the "complementary" one. It corresponds

to the green circles in Fig. 3.4, where the uncoupled system (case I) is described by a

focusing NLSE, thus we expect the plane waves to be modulationally unstable, while by

allowing the coupling between the two DOFs (case II), the effective NLSE is focusing

and thus, the plane waves are stable. To confirm these theoretical predictions, we use

the same initial conditions as in Eq. (3.33) but with k = 0.92991 and � = �0.003 and

we solve again numerically the system of Eqs. (3.1). The result of the case (I) is shown

in Fig. 3.7. Following our analysis, the numerical simulations confirm that an initially

perturbed plane wave develops initially the expected side branches at k±✏Km. At the final

steps of the simulation, all the wavenumbers are excited. On the other hand, when both

DOFs are present (case (II)) and for exactly the same parameter values, the corresponding

numerical result, shown in Fig. 3.8(a-b), verifies the stability of the plane wave solution.

We see that for the same total time of propagation as in the decoupled case, ✓ shows

stable oscillations with a wavenumber k while U oscillates at 2k, as per the theory.
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3.5. Conclusions

In this chapter, we focused on the archetypal nonlinear phenomenon of MI. To that

end, starting from a discrete, nonlinear lump model, that has been proved to accurately

describe their dynamics, we first derived a NLS equation for slowly varying rotational

envelope waves. We then studied the stability of the rotational plane waves to small

perturbations via the MI analysis for the derived NLSE. Analytical and numerical results

revealed that, under proper values of the physical parameters of the FlexMM, namely un-

der some particular values of the inertia and stiffness parameters, it is possible to observe

MI in these FlexMMs. More importantly, we have analyzed the role of the coexistence

of two DOFs. In particular, the interplay between the two DOFs can lead to regions of

stability, in an otherwise unstable FlexMM which supports only rotations, i.e., only one

of the two DOFs, and vice versa.
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In this chapter, we employ a combination of analytical and numerical techniques to in-

vestigate the dynamics of lattice envelope vector soliton solutions propagating within a

one-dimensional chain of flexible mechanical metamaterial. To model the system, we

formulate discrete equations that describe the longitudinal and rotational displacements

of each individual rigid unit mass using a lump element approach. By applying the

multiple-scales method in the context of a semi-discrete approximation, we derive an ef-

fective nonlinear Schrödinger equation that characterizes the evolution of rotational and

slowly varying envelope waves from the aforementioned discrete equations of motion. We

thus show that this flexible mechanical metamaterial chain supports envelope vector soli-

tons where the rotational component has the form of either a bright or a dark soliton.

In addition, due to nonlinear coupling, the longitudinal displacement displays kink-like

profiles thus forming the 2-components vector soliton. These findings, which include

specific vector envelope solutions, enrich our knowledge on the nonlinear wave solutions

supported by flexible mechanical metamaterials and open new possibilities for the control

of nonlinear waves and vibrations.

4.1. Introduction

Nonlinear flexible mechanical metamaterials (FlexMMs) are an emerging class of engi-

neered materials often consisting of highly deformable soft elements connected to stiffer

ones [31]. They encompass a variety of designs such as origami [111, 37] and kirigami

structures [6, 112], assembled mechanical parts, 3D-printed multimaterials [113, 114], and

have been shown to exhibit "exotic functionalities, such as pattern and shape transfor-

mations in response to mechanical forces, or reprogrammability" [31]. Their capacity to

undergo large local deformations, including local rotations, stems from the high elastic-

ity contrasts together with their structure and naturally implies geometric non-linearity.

As with other types of metamaterials, their linear properties depend on the geometry of

the structure in addition to the constituent materials, so that both non-linear and linear

mechanical behaviors can be tuned by modifying their structural or material parameters.

Interestingly, in the context of wave control, harnessing the nonlinear properties of a

metamaterial is particularly novel, since the majority of reported results have focused on

controlling linear waves by managing dispersive effects.

Despite linear wave metamaterials constitute the vast majority of studied wave control

strategies, a number of nonlinear wave effects have been studied and revealed in such

flexible mechanical metamaterials [48], including pulse vector solitons [39, 7, 115], rarefac-

tion solitary waves [116, 69], transition waves and topological solitons through bistable
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structures for example [34, 35, 49], and more recently the manifestation of modulation

instability (MI) [117].

However, to our knowledge, envelope solitons (bright and dark solitons) or breathers, have

not been reported in FlexMM. Bright and dark solitons are solutions of the universal

nonlinear Schrödinger equation (NLSE), and result from the complex interplay between

the dispersion and nonlinearity properties of a medium [73, 71]. On the one hand bright

solitons [118], are characterized by their ability to maintain a focused intensity peak

during propagation. As such, these wave objects have practical applications in optical

communication systems via nonlinear optical fibers, contributing to the stability and

robustness of information transmission [119, 120]. On the other hand, dark solitons,

which manifest themselves as stable and localized intensity drops in a wave train, have

been studied in various physical contexts, including Bose-Einstein condensates in ultracold

atomic gases [121], water tank experiments [52] and optics [122, 123, 124].

In terms of applications, both bright and dark solitons find utility in fields such as sig-

nal processing, optical communications, and ultrafast optics. Thus, we believe that the

study of bright and dark solitons in FlexMMs will be useful in controlling large amplitude

vibrations. We also expect to observe nonlinear wave phenomena in FlexMMs not yet

reported in mechanics or for other wave fields. Indeed, while bright and dark solitons

are mostly associated with optical systems and cold atoms, recent research has expanded

their relevance to mechanical devices. For example, researchers have explored soliton-like

phenomena in structures such as granular chains or phononic crystals [125, 126]. These

granular solitons show potential applications in shock absorption and energy transfer

mechanisms [127]. In addition, dark solitons have been studied in the context of acoustic

waves with acoustic transmission lines [68], leading to the development of novel devices

for sound manipulation and waveguiding [128]. The interdisciplinary study of solitons

in mechanical systems reflects a growing interest and understanding of their universal

properties. The applications of bright and dark solitons in mechanical devices continue

to expand, paving the way for innovations in fields such as acoustics, wave engineering,

and materials science.

The main objective of this chapter is to study the bright and dark soliton solutions of the

NLS equation as lattice envelope vector solitons in the nonlinear FlexMM context. The

chapter is structured as follows. In Sec. 4.2 we present the nonlinear discrete lump model

which was found to be relevant for describing the dynamical equations of FlexMMs. In

section 4.3 we derive an effective NLS equation (eNLSE) for the slowly varying envelope

of waves of the rotational degree of freedom in the semi-discrete approximation using
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asymptotic expansion and multiple-scale methods, from the discrete equations of motion

of the system. Finally in sections 4.4 and 4.5, the existence and dynamics of bright and

dark envelope vector solitons are investigated respectively.

4.2. Lumped element approach

4.2.1. Problem position and modeling of the structure

The family of FlexMM that we consider in this work consists of rigid particles (in the shape

of crosses) connected to their nearest neighbors by elastic connectors and periodically

arranged in a chain of two rows and N columns, see Fig. 4.1(a). This type of structure

is inspired by the FlexMM studied experimentally in Ref. [7]. There, the particles are

constructed with Lego® bricks and the elastic connectors are made with highly flexible

plastic films.

To model this structure in the low-frequency regime, we adopt the lumped-element ap-

proach. We consider the particles as rigid, characterized by their mass m and their

moment of inertia J , while the elastic connectors are modeled as three massless springs; a

longitudinal spring with stiffness kl, a shear spring with shear stiffness ks, and a bending

spring with bending stiffness k✓. We focus on in-plane motion, so in general, each particle

has three DOFs, one rotation (around the z-axis), and two displacements (one in the lon-

gitudinal direction along x and one in the transverse direction along y). We also consider

only symmetric motion relative to the symmetry axis, see Fig. 4.1(b).

Similarly to Ref. [7], we consider two DOFs, a longitudinal displacement u and a rotational

motion ✓. This means that we constrain the particles not to move along the y-axis.

Ignoring the transverse motion may also be valid even without this forced constraint.

In fact, for the structure of Ref. [7] it was shown numerically and experimentally that

during the soliton propagation [7, 39], ignoring the transversal displacement is a reasonable

assumption since the transversal displacement amplitude was experimentally found to be

an order of magnitude smaller than the longitudinal one.

The sign of the rotation angles is considered positive in the trigonometric direction. In

previous works [7, 117], the angle is defined as a positive-negative alternation from one

cell to the next, which is a different point of view but does not change the physics. The

choice made here makes the analysis easier since we are studying modulated waves.
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Thanks to the position of the vertices, the elongations of horizontally oriented springs are

given by,

∆ln,1 = yn + [{r3(✓n+1)� r3(0)}� {r1(✓n)� r1(0)}]

=

"

un+1 � un � l cos ✓n+1 � l cos ✓n + 2l

�l sin ✓n+1 � l sin ✓n

#

,
(4.2)

while the elongation of the vertically oriented springs is neglected, due to symmetry as

mentioned above,

∆ln,2 = 0 . (4.3)

Rotational elongation can also be expressed by,

∆✓n,1 = ✓n+1 � ✓n ,

∆✓n−1,1 = ✓n � ✓n−1 ,

∆✓n,2 = 2✓n .

(4.4a)

(4.4b)

(4.4c)

Combining the expression of each hinge elongation, the expression for the potential energy

of the system can be written,

Un,p(∆ln,p,∆✓n,p) =
1

2
kk.∆ln,pk2 +

1

2
k✓∆✓n,p

2 , (4.5)

with, p = {1, 2} and k = (
p
kl,

p
ks). Note that this model for the elastic potential energy

assumes that the elastic bonds between vertices behave physically in the following way:

the bending/rotational restoring moment just depends on the relative angles between

the neighboring units, the shear restoring force is proportional to the elongation of the

connector projected on the axis orthogonal to the connector axis at rest (e.g. a vertical

displacement difference of the vertices for a horizontal connector), and the longitudinal

restoring force is proportional to the elongation of the connector projected on the axis

of the connector axis at rest. A more general model could be implemented, accounting



4| Bright and Dark solitons in nonlinear flexible mechanical metamaterials 63

for global rotation effects and geometrical nonlinearity associated with large rotations,

but would not necessarily lead to tractable equations of motion. These assumptions have

been previously experimentally validated for soliton propagation in similar metamaterial

chains [7, 115, 48].

The Hamiltonian of the total system can then be written as,

H =2
N
X

n=1

⇢

1

2
mu̇n

2 +
1

2
J ✓̇n

2
�

+ 2
N−1
X

n=1

Un,1 (∆ln,1,∆✓n,1) +
N
X

n=1

Un,2 (∆ln,2,∆✓n,2) , (4.6)

from which the equations of motion can be derived, assuming symmetry of the motions

relative to the horizontal symmetry axis of the chain,

mün = �1

2

@H

@un

= �@Un−1,1

@un

� @Un,1

@un

,

J ✓̈n = �1

2

@H

@✓n
= �@Un−1,1

@✓n
� @Un,1

@✓n
� 1

2

@Un,2

@✓n
.

(4.7a)

(4.7b)

The corresponding normalized equations of motion for the n-th column are then written,

d2Un

dT 2
= Un+1 � 2Un + Un−1 �

cos ✓n+1 � cos ✓n−1

2
,

1

↵2

d2✓n
dT 2

= K✓ (✓n−1 � 4✓n + ✓n+1)�Ks cos ✓n [sin ✓n−1 + 2 sin ✓n + sin ✓n+1]

� sin ✓n [2(Un+1 � Un−1) + 4� cos ✓n−1 � 2 cos ✓n � cos ✓n+1] ,

(4.8a)

(4.8b)

where we have introduced the following normalized variables and parameters: the longi-

tudinal displacement of unit n, Un = un/a, the normalized time T = t
p

kl/m, an inertial

parameter ↵ = a
p

m/(4J), and stiffness parameters K✓ = 4k✓/ (kla
2) and Ks = ks/kl.

Above, m and J are the mass and the moment of inertia of the rigid units, while a is

the unit cell length (distance between the centers of the masses). If we compare this

set of equations, cf. Eq. (4.8), in the one used in our previous work about modulation

instability [117], the connection can be made by changing the signs of angles ✓n±1.

In the linear limit, the two motions (displacements and rotations) are decoupled, i.e. each

DOF follows its own dynamics, independent of the other. The corresponding dispersion
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relations are given by,

!(1) = 2 sin

✓

k

2

◆

,

!(2) = ±

s

4↵2(Ks �K✓) cos2
✓

k

2

◆

+ 6↵2K✓ .

(4.9a)

(4.9b)

Displayed in the figure 4.1(c), the red branch corresponds to propagating longitudinal

wave: !(1), exhibiting a typical monoatomic dispersion relation, see Eq. (4.9a). The

second branch, described by Eq. (4.9b), represents propagating rotational waves with an

inverse Klein-Gordon type dispersion relation: !(2). Notably, this branch has an upper

cutoff frequency at !
(2)
c = ↵

p
4Ks + 2K✓.

4.3. Modulated waves in FlexMM: effective NLS equa-

tion from the semi-discrete approximation

Below we focus on weakly nonlinear solutions and consequently substitute the following

expansions,

cos ✓n = 1� ✓2n
2

+ . . . , sin ✓n = ✓n �
✓3n
6

+ . . . , (4.10)

to Eq. (4.8). By keeping terms up to cubic order we end up with the following set of

equations of motion,

d2Un

dT 2
= Un+1 � 2Un + Un−1 �

✓2n−1 � ✓2n+1

4
,

d2✓n
dT 2

= �↵2 (Ks �K✓) (✓n−1 + 2✓n + ✓n+1)� 6K✓↵
2✓n + ↵2(Ks � 1)✓3n

� ↵2 ✓n

2

�

✓2n−1 + ✓2n+1

�

+
↵2Ks

6

�

✓3n−1 + 2✓3n + ✓3n+1

�

+Ks↵
2 ✓

2
n

2
(✓n−1 + ✓n+1)

� 2↵2✓n(Un+1 � Un−1) .

(4.11a)

(4.11b)

In order to study modulated traveling waves we make use of the semi-discrete approx-

imation [129, 130, 131], where a carrier wave, obeying the discrete dispersion relation,

is modulated by a slowly varying envelope function treated in the continuum limit. In
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particular, we look for solutions of the following form,

Un = ✏U0 + ✏2U2 ,

= ✏G0,n(T ) + ✏2(G2,n(T )e
2i�n +G∗

2,n(T )e
−2i�n) ,

✓n = ✏✓1

= ✏(F1,n(T )e
i�n + F ∗

1,n(T )e
−i�n) ,

(4.12a)

(4.12b)

with �n = kn�!T . In this ansatz, F1,n is the modulation of the plane wave ✓n with phase

�n. Also, due to the quadratic terms ⇠ ✓2 in Eq. (4.11), in the ansatz for Un we include

both a dc-term G0,n and a term G2,n oscillating with a phase 2�n. Substituting Eq. (4.12)

into Eq. (4.11)(a) we arrive at the following equations collecting the dc in Eq. (4.13a) and

e2i�n terms in Eq. (4.13b) respectively,

✏G̈0,n = ✏ (G0,n−1 � 2G0,n +G0,n+1)�
✏2
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.

(4.13a)

(4.13b)

Similarly, substituting Eq. (4.12) into Eq. (4.11)(b) we get the following equation collect-

ing the ei�n terms,
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(4.14)

We now proceed considering that the discrete functions Wn(T ) = {F1,n(T ), G0,n(T ), G2,n(T )}

are varying slowly in space and time. Therefore the continuum limit approximation is ap-

plied and the above discrete functions Wn(T ) are replaced by W (X1, X2, . . . , T1, T2, . . .),

where Xi = ✏iX and Ti = ✏iT are slow variables with i = 1, 2, . . .. Note that under this
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approximation the slowly varying functions are independent of the fast variables n and

T . In addition Wn±1, is computed up to order ✏2 using Taylor expansion,

Wn±1 = W ± ✏
@W

@X1

± ✏2
@W

@X2

+
✏2

2

@2W

@X2
1

+O(✏3) , (4.15)

and the time derivation as,

Ẇn =
@W

@T
= ✏

@W

@T1

+ ✏2
@W

@T2

+O(✏3) . (4.16)

Substituting Eqs. (4.15-4.16) into the set of Eqs. (4.13-4.14) we arrive at a system of

equations at successive orders in ✏. The lowest order in Eq. (4.13a) (analogous to ✏3) gives

us a relation between the dc-term G0 and the envelope of the modulated plane wave F1,

✓

@2

@T 2
1

� @2

@X2
1

◆

G0 =
@|F1|

2

@X1

. (4.17)

In Eq. (4.13b) the lowest order is analogous to ✏2 and relates G2 to F1 as follows,

G2 =
i sin(2k)

8
�

sin2(k)� !2
�F 2

1 . (4.18)

We now move to Eq. (4.14) where at order ✏1, we recover the dispersion relation,

!2 = 4↵2(Ks �K✓) cos
2

✓

k

2

◆

+ 6↵2K✓ , (4.19)

which corresponds to the branch of the rotational waves of the discrete model, cf. Eq. (4.9b).

At order ✏2 we obtain the solvability condition,

@F1

@T1

+ vg
@F1

@X1

= 0 , (4.20)

where

vg = �↵
2(Ks �K✓) sin(k)

!
, (4.21)

is the group velocity corresponding to Eq. (4.19). Up to this order F1 is linear and

not coupled to G0, G2. At the order ✏3 we have the contribution from all fields and

nonlinearity, leading to the following nonlinear Schrödinger equation,

i
@F1

@⌧2
+ P

@2F1

@⇠21
+Q|F1|

2F1 = 0 , (4.22)
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in terms of the slow variables ⇠1 = ✏(X � vgT ) and ⌧2 = ✏2T . P and Q, are the dispersion

and nonlinear coefficients respectively given by the following expressions,

P =
↵2(K✓ �Ks) cos(k)� v2g

2!
,

Q =
1

2!

"

8Ks↵
2 cos2

✓

k

2

◆

� ↵2(5 + cos(2k)) +
↵2 sin2(2k)

2
�

sin2(k)� !2
� � 4↵2

v2g � 1

#

.

(4.23a)

(4.23b)

We note that the last two terms in Eq. (4.23b) arise due to the presence of G0 and G2

at order ✏3 (in the case that we consider only rotation DOF these terms are absent), and

have an important effect on the resulting eNLSE properties.

The NLS equation exhibits two distinct behaviors depending on the sign of the prod-

uct PQ. When PQ > 0, it is known as focusing featuring modulational instability and

bright soliton solutions among others, while for PQ < 0, it is referred to as defocusing

with stable plane waves and dark solitons [73]. For our system, the sign of PQ is de-

termined by the choice of the carrier wavenumber k and the design characteristics of the

flexible metamaterial (FlexMM) through the parameters ↵, Ks, K✓ [117].

In figure 4.2, we show the sign of PQ as a function of the wavenumber k for the fixed

inertial parameter ↵ = 1.815 which corresponds to the experimental setup Ref.[48].

In addition, we choose two different cases of bending stiffness, with very small values

K✓ = 1.534e−2 for panels (a-c) and K✓ = 1.534e−4, typically found in flexible elastic

metamaterials. To highlight the effect of coupling between the 2DOFs (rotation and lon-

gitudinal displacement) on the nature of the NLSE, in panels (a-b) we plot the sign of the

PQ product when only rotational DOF are considered, while in panels (c-d) when both

DOFs are considered. Interestingly, by comparing panels (a-b) to (c-d), we observe that

the coupling between the two DOFs dramatically changes the nature of the NLSE. We

also observe that the variation of Ks stiffness has a stronger impact in the case of 2DOFs,

panels (c-d). In conclusion, the nature of the eNLSE crucially depends on the design

characteristics of the FlexMM and the presence of 2DOFs (Un and ✓n). See appendix C

for more details.

For the rest of the chapter, we will focus on two particular designs of FlexMM correspond-

ing to the green and red lines, cf. Fig. 4.2, respectively called FlexMM 1 and FlexMM 2.

In Fig. 4.3, we show the sign of PQ (as given by Eq. (4.23)) together with the dispersion

relation Eq. (4.9) corresponding to the two FlexMM configurations mentioned above.
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PQ > 0 PQ < 0

(b)

(c) (d)

(a)

FlexMM 1 FlexMM 2

1 DOF ( )�n 1 DOF ( )�n

2 DOFs ( )�n , Un 2 DOFs ( )�n , Un

Figure 4.2: Sign of PQ as a function of k and Ks for two different

K✓ = [1.534e�2, 1.534e�4] respectively used in panels (a-c) and (b-d), with ↵ = 1.815

fixed. Panels (a-b) correspond to a configuration where particles can only rotate, while in

panels (c-d) the particles can rotate and translate. The horizontal colored lines represent

the parameters chosen in Secs. 4.4-4.5 to study bright and dark solitons propagation along

FlexMMs.

4.4. Bright envelope vector solitons

4.4.1. Theoretical prediction

The focusing nonlinear Schrödinger equation, Eq. (4.22) with PQ > 0, admits the follow-

ing bright soliton solution [53],

F1(⇠1, ⌧2) = A0sech



1

Le

(⇠1 � c⌧2)

�

e
ic⇠1+iQ

✓

A2
0−c2

2

◆

⌧2
, (4.24)

where

Le =
1

A0

s

2P

Q
, (4.25)
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FlexMM 2

FlexMM 1(a)

(b)

Figure 4.3: Dispersion relations of Eq. (4.8), derived in Eq. (4.9). The effective NLS

focusing and defocusing regions are represented by white and black areas, respectively.

The colored dots correspond to the pair of Ω and k used in Sec. 4.4 to generate lattice

envelope solitons. On the panel (a), the dispersion relation corresponds to FlexMM 1

defined by the following set of parameters: ↵ = 1.815, Ks = 0.1851, K✓ = 1.534e−2. For

panel (b), the FlexMM 2 parameters are: ↵ = 1.815, Ks = 0.01851, K✓ = 1.534e−4.

is the width, A0 the amplitude, and c the velocity of the soliton at the co-moving frame

coordinate system ⇠ = X � vgT .
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Using Eq. (4.12), the rotation ✓1 for c = 0 is found to be

✓1(X, T ) = 2A0sech
h ✏

Le
(X �X0 � vgT )

i

cos[kx� ΩT ] . (4.26)

The angular frequency of the carrier wave,

Ω = !(2) � ✏2
QA2

0

2
, (4.27)

has been shifted at order ✏2, in comparison to the linear dispersion relation !(2) due to

nonlinearity. Depending on the sign of Q, the shift can occur above or below the linear

branch.

The combination of Eqs. (4.24) and (4.17) gives the following expression for the dc-term,

U0(X, T ) =
A2

0Le

v2g � 1
tanh



✏(X �X0)� ✏vgT

Le

�

. (4.28)

Equations (4.26) and (4.28) constitute a polarized envelope nonlinear wave solution of

Eq. (4.8) which is propagating with a common velocity determined by the spatial frequency

of the carrier wave, defined as vg = d!(2)

dk
= �↵2(Ks−Kθ) sin k

!(2) . From now on, we refer to

it as bright envelope vector soliton (BEVS). We can note that the shape of the U field

physically corresponds to a longitudinal contraction of the chain around the maximum of

rotating sites during the propagation of the BEVS.

4.4.2. Bright Envelope vector soliton propagation in FlexMM

Direct numerical simulations of the discrete set of equations (4.8) are employed to validate

our analytical predictions. The system (4.8) is solved using a fourth-order Runge-Kutta

iterative integration scheme for a total of N = 1000 sites, with free boundary conditions

at both ends. The results presented in section 4.4 were obtained by performing the

integration for a duration of eight nonlinear times: tf = 8TNL [55]. TNL is based on

the initial condition (IC) amplitude A0, the system nonlinearity Q and the carrier wave

number k, cf. Eq. (4.23). The relationship between TNL, A0 and Q is given by,

TNL =
1

✏2|Q|A2
0

. (4.29)



4| Bright and Dark solitons in nonlinear flexible mechanical metamaterials 71

The initial conditions are taken to be,

✓(X, 0) = ✏✓1(X, 0) , ✓̇(X, 0) = ✏✓̇1(X, 0) , (4.30)

U(X, 0) = ✏U0(X, 0) , U̇(X, 0) = ✏U̇0(X, 0) , (4.31)

using Eqs. (4.26-4.28) with X0 = N/2 = 500. The initial amplitude A0 chosen for the

next simulations is defined as A0 = A
q

2P
Q

with A = 15. When P = 1/2 and Q = 1,

A0 = A is the amplitude of the bright soliton of the normalized NLS equation. Defining

the amplitude A0 as a function of P and Q implies, from the perspective of the NLS

model, that the bright soliton initial conditions for FlexMM1 and FlexMM2, represented

in Figs. (4.4-4.5-4.7), are the same.

Nonlinear dynamics of FlexMM 1

We start by studying the first FlexMM structure characterized by the dispersion relation

shown in Fig. 4.3(a), that as one can see, the upper cut-off frequencies of the two branches

are close !
(2)
c ⇡ !

(1)
c = 2. We will focus on the small k region where the effective NLSE is

focused and thus BEVS is predicted. In Fig. 4.4, we show the nonlinear dynamics of an

initial condition with a BEVS with k = 0.1885, corresponding to the green circle point of

Fig. 4.3(a). The dynamics confirm that indeed the IC evolves as a BEVS and propagates

with a constant velocity keeping its shape undistorted in the form of an envelope for

rotations ✓ (Fig. 4.4(a),(c)) and a kink for displacement U (Fig. 4.4(b)).

For a more systematic study, we have performed numerical simulations of BEVS with

different wavenumbers, within the focusing NLS region. In figure 4.5 (a-b), we show

the solution profile at the final time tf = 8TNL for three cases corresponding to the three

circles (orange, green, and blue) in Fig. 4.3(a). Superimposed are the theoretical solutions

(black lines) given by Eqs. (4.26-4.28).

As expected, the orange one (k = 0) remains centered at X0 due to vg = 0, see dispersion

relation curves Fig. 4.3(a). The other two (k = {0.1885, 0.3770}) move in the left direction

due to negative group velocities, with different velocities. Overall, analytical predictions

and simulation results are in good agreement. The BEVS predicted by the NLS bright

soliton show a robust behavior after eight nonlinear times, confirming the validity of

the effective NLSE. This is the first signature that BEVs exist and propagate through

the lattice. For the three cases, final times of integration are close, tf (k = 0) ⇡ 1013,

tf (k = 0.1885) ⇡ 1020, tf (k = 0.3770) ⇡ 1031.
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Figure 4.4: Evolution in time (T ) of the amplitudes of the rotational (a-c) and longitudinal

(b) displacements along the chain (n). The results correspond to a FlexMM (FlexMM 1)

defined by the following set of parameters: ↵ = 1.815, Ks = 0.1851, K✓ = 1.534e−2. The

initial condition corresponds to a BEVS with k = 0.1885 and A = 15, and a perturbation

of ✏ = 0.01.

For a more complete analysis, in appendix D we show the nonlinear dynamic response of

the structure initially excited by Eqs. 4.30-4.31 in the case of a defocusing eNLS equation.

Another signature of the BEVS propagating through the lattice can be extracted from

the nonlinear dispersion relation (NDR). As shown in [132, 133], bright solitons corre-

spond to straight lines in the NDR. To see this, let us use the space-time double Fourier

transformation,

✓̃1(!, k) =

Z +∞

−∞

Z +∞

−∞

✓1(X, T )e−ikXe+i!TdXdT, (4.32)

using as ✓1(X, T ) the BEVS solution, namely Eq. (4.26), at a chosen ks and !(2)(ks). We
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(b)

Figure 4.5: Rotational and longitudinal displacement amplitudes along the chain (n)

at final time tf = 8TNL. The initial conditions correspond to BEVS with k = 0 in

orange, k = 0.1885 in green and k = 0.3770 in blue, and an amplitude of A = 15, and a

perturbation of ✏ = 0.01.
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obtain that,

✏✓̃1(!, k) = 2⇡2A0Lesech

✓

⇡Le(k � ks)

2✏

◆

e−iX0(k−ks)�

✓

!s �
Q✏2A2

0

2
+ vg(k � ks)� !

◆

+ 2⇡2A0Lesech

✓

⇡Le(k + ks)

2✏

◆

e−iX0(k+ks)�

✓

�!s +
Q✏2A2

0

2
+ vg(k + ks)� !

◆

.

(4.33)

Using the Dirac function property, the value of �(!s� Q✏2A2
0

2
+vg(k�ks)�!) and therefore

✓̃1 is 0 except for points on the line,

! = vgk +

✓

!s � vgks � ✏2
QA2

0

2

◆

. (4.34)

Eq. (4.34) is the NDR of the BEVS which indeed is a straight line in the ! � k diagram.

Now, using the spatio-temporal dynamics, Fig. 4.4, we calculate the double FFT (in space

and time). Since the lattice has two fields, ✓n(T ) and Un(T ), we apply the space-time

double Fourier transform in both fields to obtain ✓̃(!, k) and Ũ(!, k). In Fig. 4.6, we

represented the normalized sum of the double FFT in space and time, in log scale,

 ̃(!, k) =

�

�

�

�

�

✓̃(!, k)

✓̃max

�

�

�

�

�

+

�

�

�

�

�

Ũ(!, k)

Ũmax

�

�

�

�

�

. (4.35)

As it is seen, a large amount of the 2D FFT (blue color gradient) closely matches the esti-

mate line provided by Eq. 4.34, that is tangent to !(2) (yellow line) at point (Ωs, ks). This

corresponds to the NDR of a bright soliton. An upper shift, of the order ✏2, cf. Eq. (4.27),

compared to the linear dispersion relation !(2) is visible. In addition, low frequency

components around k = 0 are observable, on the !(1)curve . This corresponds to the

dc-component of U of the BEVS solution.

Nonlinear dynamics of FlexMM 2

We now consider the FlexMM 2 configuration. Namely, the one that follows the dispersion

relation shown in Fig. 4.3 (b) and which corresponds to the set of parameters used in

experiments of [7, 8]. As one can see in Fig. 4.3 (b), this FlexMM supports rotational

modes (blue curve) with frequencies that are much lower than those of the translational

modes (red curve). In particular, the upper cutoff frequencies of the two branches are

such that !
(2)
c ⌧ !

(1)
c = 2. Following the same analysis as before, we now use as an



4| Bright and Dark solitons in nonlinear flexible mechanical metamaterials 75

Figure 4.6: Numerical representation of the nonlinear dispersion relation of FlexMM 1

from its dynamics, represented in Fig. 4.4 using a normalized sum of the 2D-FFTs of

the ✓ and U components. The red and blue curves denote the linear dispersion relation

(see Fig. 4.3(a)), while the yellow line denotes NDR of the soliton described in Eq. (4.34).

The color bar represents the  ̃(!, k), in log scale.

(a) �

× 10
−3

× 10
−3

(b) U

Figure 4.7: Evolution in time (T ), for a duration between T=[2800; 2900], of the ampli-

tudes of rotational (a) and longitudinal (b) displacements along the chain (n), zoomed

between n = [300; 500]. The results correspond to a FlexMM (FlexMM 2) defined by the

following set of parameters: ↵ = 1.815, Ks = 0.01851, K✓ = 1.534e−4. The bright soliton

is generated by the initial conditions expressed in Eqs. (4.30-4.31) for a spatial frequency

of k = 0.1885, an amplitude of A = 15, and a perturbation of ✏ = 0.01.

initial condition Eqs. (4.30-4.31), that corresponds to a BEVS with k = 0.1885. The

dynamics is shown in Fig. 4.7 The rotational dynamics is observed in panel (a), where it

becomes evident that an envelope wave, in the form of a bright soliton, is propagating,
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accompanied by the generation of additional small waves, with frequencies around Ωs,

that are radiated by the envelope wave. Note that we have confirmed that the strength of

this radiation field is of the same order as that of FlexMM 1. The latter is not visible for

the scales used in Fig. 4.4. From the dynamics of the longitudinal displacement, see panel

(b), we observe a kink profile followed by small waves, at a frequency calculated to be

around 2Ωs, that move away at a relatively higher speed than the radiation observed in

the rotation field. For a better understanding of these dynamics, we examine the temporal

and spatial frequency spectra in Fig. 4.8.

Figure 4.8: Numerical representation of the nonlinear dispersion relation of FlexMM 2

from its dynamics, represented in Fig. 4.7 using a normalized sum of the 2D-FFTs of

the ✓ and U components. The red and blue curves denote the linear dispersion relation

(see Fig. 4.3(b)), while the yellow line denotes NDR of the soliton described in Eq. (4.34).

The color bar represents the  ̃(!, k), in log scale.

Here, we first note that a large amount of the 2D FFT is centered around the line that

is tangent to !(2) at point (Ωs, ks). This corresponds to the NDR of a bright soliton.

We also note that again we have spectral contribution around k = 0, coming from the

dc-term, cf. Eq. (4.34). These two observations are a signature of the BEVS propagation

through the lattice. However, in this case, we also observe significant components of the

2D FFT in other regimes of the !�k space. In particular, we observe frequencies around

2Ωs belonging to the dispersion of the U DOF i.e., !(1) (see rightmost inset of Fig. 4.8) as

expected by the quadratic terms in Eq. (4.11a). These frequency components correspond

to the radiation field of U . Note that this was not the case for FlexMM 1, since this

frequency was in the gap of the corresponding dispersion relation.
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4.5. Dark envelope vector solitons

4.5.1. Theoretical prediction

In the previous section, we studied the existence and propagation of BEVS solutions in

the dispersion relation region corresponding to the focusing eNLS equation, PQ > 0.

Let us now turn our attention to the regions associated with a defocusing eNLSE, where

PQ < 0. It is established that the defocusing eNLSE admits the following dark soliton

solution [53],

F1(⇠1, ⌧2) = A0tanh



1

Le

(⇠1 � ⇠0)

�

e−iQA2
0⌧2 , (4.36)

where A0 is its amplitude and Le is its width (see Eq. (4.25)). Following the steps presented

in section 4.4, we derive the subsequent analytical solution for the rotation,

✓1(X, T ) = 2A0tanh



✏

Le

(X �X0 � vgT )

�

cos[kX � ΩT ] , (4.37)

where Ω is the angular frequency. Its expression is given by,

Ω = !(2) + ✏2A2
0Q . (4.38)

As for the bright soliton solution, cf. Eqs. (4.26-4.27), the angular frequency has un-

dergone a shift at order ✏2, relative to the linear !(2). This shift can manifest itself

either above or below the linear branch, depending on the sign of Q. The combination of

Eq. (4.17) with the envelope part of Eq. (4.37) gives an expression for G0 yielding,

U0(X, T ) =
A2

0

v2g � 1

✓

✏(X �X0 � vgT )� Le tanh



✏

Le

(X �X0 � vgT )

�◆

. (4.39)

Equations (4.37-4.39) form a polarized nonlinear wave solution which from now on will

be called dark envelope vector soliton (DEVS).

4.5.2. Dark envelope vector soliton propagation in FlexMM

To validate our predictions regarding the existence of DEVS, we solve the discrete set

of equations (4.8) using the process described in Sec. 4.4.2. We apply free boundary

conditions at both ends of the structure and perform the integration over a duration of

five nonlinear times: tf = 5TNL, cf. Eq. (4.29).
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In the case of DEVS, the presence of a jump in the phase field, see Fig. 4.9, leads to

a mismatch with the free boundary conditions, causing boundary effects that propagate

through the lattice. To avoid these effects, similarly to [134, 135], we multiply the ✓ field

Figure 4.9: Analytical solution of the rotational component ✏✓1 (cf. Eq. (4.37)), and its

corresponding phase at T = 0, for the DEVS of wave number k = ⇡.

of Eq. (4.37) by a super-gaussian window W of the following form,

W = e−(
ξ1−ξ0

S )
p

= e
−

⇣

(X−X0−vgT )

s

⌘p

, (4.40)

centered on the initial position X0, of the dark soliton. The width of the window is

governed by s = S/✏ where the p parameter controls the edges’ sharpness. For the

numerical simulations, we use s = N/10 = 100 and p = 8. The application of the

spatial window W modulates to zero the initial rotation displacement and velocity near

the boundaries. The dependence of G0 on F1 established by the combination of Eqs. 4.24

and 4.17 written,

G0(⇠1) =
1

v2g � 1

Z

|F1|
2d⇠1, (4.41)

involves that in the presence of the window W , G0 is now dependent on the product F1W .

Substituting F1 by F1W by putting Eqs. (4.36-4.40) in Eq. (4.41) leads to,

G0(⇠1) =
A2

0

v2g � 1

Z

tanh2

✓

⇠1 � ⇠0

Le

◆

e−2( ξ1−ξ0
S )

p

d⇠1 . (4.42)
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The resulting integral has no analytical solution. Thus, the integration is numerically

solved by computing the approximate cumulative integral of Eq. (4.42) via the trapezoidal

method for each time step of the integration. At T = 0 the result gives the initial condition

Eq. (4.43c). Performing the derivative in real-time (T ), noted ˙( ), before the numerical

integration allows to obtain the initial condition for the velocity Eq. (4.43d). Finally, the

initial conditions employed to excite the lattice are,

✓(X, 0) = ✏✓1(X, 0)W(X, 0) ,

✓̇(X, 0) = ✏✓̇1(X, 0)W(X, 0) + ... ,

U(⇠1, 0) =
✏

v2g � 1

Z

|F1|
2W2d⇠1 ,

U̇(⇠1, 0) =
✏

v2g � 1

Z

˙|F1|2W
2d⇠1 + ... .

(4.43a)

(4.43b)

(4.43c)

(4.43d)

The Ẇ terms in Eqs. (4.43b - 4.43d) can be neglected because they are proportional to

✏p. Moreover in the numerical simulations Ẇ is proportional to ✏8.

Figure 4.10: Panels (a-b) represent the evolution in time (T ) of the rotational (a) and

longitudinal (b) displacements along the chain (n). The results correspond to a FlexMM

(FlexMM 1) defined by the following set of parameters: ↵ = 1.815, Ks = 0.1851, K✓ =

1.534e−2. A DEVS is generated by the initial conditions expressed in Eqs. (4.30-4.31),

for a spatial frequency of k = 2.9531, and an amplitude of ✏A0 = 0.1.

In Fig. 4.10, we show the nonlinear dynamics of the FlexMM 1, cf. Fig. 4.3(a), using as

an initial condition a DEVS (Eq. 4.43) with k = 2.9531 (see green triangle in Fig. 4.3(a)).

As one can see in Fig. 4.10(a), the envelope of the rotational DOF is a continuous dip

that propagates at a constant velocity and maintains its shape. Moreover, the profile of

U , displayed in Fig. 4.10(b), also remains approximately constant in time, a characteristic
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of vector solitary waves according to our theoretical predictions. To complete the anal-

ysis, Fig. 4.11 represents DEVS at the final time of integration in FlexMM 1 for initial

conditions with different wave numbers indicated by colored triangles in Fig. 4.3(a). We

can see that the numerical results (color dotted lines) remain close to the theoretical ones,

in terms of the carrier wave (black line) and of the absolute value of the envelope (gray

area).

(b)

Figure 4.11: Rotational and longitudinal displacement amplitudes along the chain (n) at

final time tf = 5TNL. The DEVS are generated by initial conditions: a spatial frequency

of k = 2.8274 in orange, k = 2.9531 in green, and k = ⇡ in blue. For the three cases, an

amplitude of A0 = 10 and a perturbation of ✏ = 0.01 are used.
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4.6. Conclusions

In this chapter, we demonstrated the generation and propagation of nonlinear envelope

waves under the form of bright and dark envelope vector solitons. In particular, we found

that the rotational DOF can be described by an eNLS equation and that longitudinal dis-

placements follow the dynamics induced by the nonlinear coupling through a dc-term at

the leading order. This dc-term was not observed in our studies on modulation instability

phenomena [117]. Both analytical and numerical results show that with an appropriate

choice of physical parameters for the FlexMM, in particular, specific combinations of iner-

tia ↵ and stiffness parameters (Ks and K✓), the propagation of these solutions in FlexMMs

becomes feasible and robust. This demonstrates the significant versatility offered by the

proposed system in the manipulation of weakly nonlinear modulated waves.
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In this final chapter, we investigate the generation of extreme wave events using the reg-

ularization of the gradient catastrophe theory developed by A. Tovbis and M. Bertola for

the nonlinear Schrödinger equation (NLS). According to this theory, Peregrine solitons

can locally emerge in the semiclassical limit of the NLS equation. Our objective is to

investigate whether the phenomenon of gradient catastrophe can occur in FlexMM struc-

tures, in the regime where the effective focusing NLS model, described in chapter 4, is

valid.

5.1. Introduction

Rogue or freak waves are fascinating oceanic extreme phenomena that are rare and un-

predictable. These giant waves emerge seemingly "from nowhere" [136], towering over

surrounding waves. Due to their rarity and the difficulty in predicting their occurrence,

they are a threat to maritime safety and infrastructure [137, 138]. Before 1995, many

scientists questioned the existence of these mysterious giant waves because of the lack

of proof and explanation. When the first measurement of rogue waves was done on the

Draupner platform in the North Sea, the scientific community increasingly started recog-

nizing rogue waves as a real complex natural phenomenon.

Studies have revealed that rogue waves are omnipresent [139, 140] and that they can ap-

pear in different contexts, induced by various linear and nonlinear mechanisms [141, 142].

This diversity makes it challenging to establish a simplified definition of these unusual

events [143]. For example, constructive interference of wave groups [144] is a linear

mechanism that amplifies wave heights, described by linear theories. Wave-current in-

teractions, as well as underwater topographical features, including shoals or deep canyons

[145, 146, 139], can also contribute to wave steepening leading to rogue wave formation. In

addition, external factors such as atmospheric forcing [147, 148] can promote the growth

of large wave groups. Wind applies pressure variations, transferring energy to the ocean

surface. However, linear wave theory is limited in its ability to explain both the sponta-

neous occurrence and the extreme height of larger rogue waves. Indeed, these phenomena

are much more frequent than the wave height distribution predicted [149] (Rayleigh dis-

tribution). As a result, the study of nonlinear ocean dynamics has gained increasing

popularity in understanding the stability and interactions of ocean waves which lead to

the formation of coherent structures. It has been shown that ocean dynamics in the deep

water limit are mathematically described by the nonlinear Schrödinger equation [63].

This very same equation was found to describe accurately many other physical systems

[73, 53, 71]. This has led scientists to generalize the study of extreme wave events to many
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other physical disciplines, such as nonlinear optics [99, 84], Bose-Einstein condensates

[150], plasma physics [151], as well as discrete systems as transmission lines [55, 152]or

mechanical systems [153].

The one-dimensional focusing NLS equation supports different dynamical mechanisms

that lead to the emergence of coherent structures. For example, the modulation insta-

bility phenomenon, studied in Chap. 3 which originates in the exponential growth of the

perturbations of an unstable plane wave background can be triggered by either random

or deterministic processes. From another point of view, isolated coherent pulses and par-

tially coherent fields [154] can demonstrate self-focusing dynamics. For instance, solitons

on finite backgrounds or breathers have been identified. Amongst those, the Peregrine

soliton (PS), localized both in time and space, may be appropriate to describe unique

wave events [155, 107, 51, 83].

Recent mathematical proofs [156] have shown that in the semiclassical limit of the 1D

focusing NLSe, a universal mechanism regularizes the gradient catastrophe, leading to the

local emergence of a Peregrine soliton. This phenomenon has already been experimentally

observed in fiber optics [100, 101] and water tanks [157]. We aim to apply this knowledge

to FlexMM structures to control the emergence of coherent structures both temporally

and spatially.

First of all, in Sec. 5.2, we present an overview of the FlexMM structure and its associated

equations of motion. The effective NLS equation, derived in Sec. 5.3, is then discussed to

stay in the service mi-classical limit. The Peregrine soliton and the theoretical concept

of gradient catastrophe regularization are presented. We show in Sec. 5.5, via an initial

condition problem that the dynamics of the NLS model are consistent with the dynamics

of FlexMMs.

5.2. System and equations of motion

As the structure is presented in detail in chapters 3 and 4, we provide only a brief pre-

sentation in this section. For further information, please refer to the chapter 4. Using

a lumped-element approach, the FlexMM structure can be modeled in the low-frequency

regime by a one-dimensional chain made of rigid units of mass m and inertia moment

J , periodically connected by three massless springs, a longitudinal spring with stiffness

kl, a shear spring with shear stiffness ks, and a bending spring with bending stiffness k✓.

We consider only symmetric motion relative to the symmetry axis between the two lines

which means each mass of the system has two DOFs, a longitudinal displacement U and

a rotational motion ✓ where the sign of the rotation angles is considered positive in the
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trigonometric direction.

From this assumption, the normalized equations of motion of the system write,

d2Un

dT 2
= Un+1 � 2Un + Un−1 �

cos ✓n+1 � cos ✓n−1

2
,

1

↵2

d2✓n
dT 2

= K✓ (✓n−1 � 4✓n + ✓n+1)�Ks cos ✓n [sin ✓n−1 + 2 sin ✓n + sin ✓n+1]

� sin ✓n [2(Un+1 � Un−1) + 4� cos ✓n−1 � 2 cos ✓n � cos ✓n+1] ,

(5.1a)

(5.1b)

where the following normalized variables and parameters are introduced: the longitudi-

nal displacement of unit n, Un = un/a, the normalized time T = t
p

kl/m, an inertial

parameter ↵ = a
p

m/(4J), and stiffness parameters K✓ = 4k✓/ (kla
2) and Ks = ks/kl.

The parameters chosen to build the virtual FlexMM are those used in chapter 4 Sec. 4.4,

i.e. FlexMM1, they are the following,

↵ = 1.815, Ks = 0.1851, K✓ = 1.534e−2. (5.2)

In the linear limit, the two motions (transversal and rotational) are decoupled, i.e. each

DOF follows its own dynamics. The corresponding dispersion relations are given by,

!(1) = 2 sin

✓

k

2

◆

,

!(2) = ±

s

4↵2(Ks �K✓) cos2
✓

k

2

◆

+ 6↵2K✓ .

(5.3a)

(5.3b)

Displayed in figure 4.1(c), the red branch corresponds to propagating longitudinal waves

(!(1)). It exhibits a typical monoatomic dispersion relation, see Eq. (5.3a). The second

branch, described by Eq. (5.3b), represents propagating rotational waves with an inverse

Klein-Gordon type dispersion relation (!(2)). Notably, this branch has an upper cutoff

frequency at !
(2)
c = ↵

p
4Ks + 2K✓.

5.3. Effective nonlinear Schrödinger equation

From Chap. 4, we build a theoretical model using the semi-discrete approximation in order

to describe the propagation of slow-modulated traveling waves of the following form, in

the weakly nonlinear regime,
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Un = ✏U0 + ✏2U2 ,

= ✏G0,n(T ) + ✏2(G2,n(T )e
2i�n +G∗

2,n(T )e
−2i�n) ,

✓n = ✏✓1

= ✏(F1,n(T )e
i�n + F ∗

1,n(T )e
−i�n) .

(5.4a)

(5.4b)

In this ansatz, F1,n is the envelope of the modulated plane wave ✓n determined in the

continuum limit. The fast oscillations of the carrier wave of phase �n = kn � !T are

treated exactly obeying the discrete dispersion relation. Due to the quadratic coupling

terms ⇠ ✓2n±1 in Eq. (4.11), the ansatz Un must include both a dc-term G0,n and a term

G2,n oscillating with a phase 2�n to model the first order harmonics generated.

It has been proved in Sec. 4.3 that the envelope of the modulated wave ✓n follows a

nonlinear Schrödinger equation,

i
@F1

@⌧2
+ P

@2F1

@⇠21
+Q|F1|

2F1 = 0 , (5.5)

with,

P =
↵2(K✓ �Ks) cos(k)� v2g

2!
,

Q =
1

2!

"

8Ks↵
2 cos2

✓

k

2

◆

� ↵2(5 + cos(2k)) +
↵2 sin2(2k)

2
�

sin2(k)� !2
� � 4↵2

v2g � 1

#

,

(5.6a)

(5.6b)

where P and Q are coefficients that depend on the structure geometry and the wave

number used in the initial conditions. The analysis of the focusing respectively defocusing

region has been displayed in Fig. 4.3(a) for more details. G0 and G2 can be directly

computed from F1,

G0(⇠1, ⌧2) =
1

v2g � 1

Z

|F1(⇠1, ⌧2)|
2d⇠1 ,

G2(⇠1, ⌧2) =
i sin(2k)

8
�

sin2(k)� !2
�F1(⇠1, ⌧2)

2 .

(5.7a)

(5.7b)

⇠1 = ✏(X � vgT ) and ⌧2 = ✏2T are the time and space scales used for the development.

They are defined from the multiple scales method.

We have shown that Eq. (5.5) is an accurate model to predict and control the evolution

of bright envelope vector soliton solutions, see Eq. (4.24). It is known that the evolution

of solitons can be robust due to a perfect balance between nonlinearity (which tends to



88
5| Gradient catastrophe and Peregrine soliton in nonlinear flexible

mechanical metamaterials

focus the wave) and dispersion (which tends to spread the wave). When the nonlinearity

is much stronger than the dispersion, the wave behavior is dominated by nonlinear effects.

5.3.1. Semiclassical limit

The semiclassical limit (also known as zero dispersion limit) of the NLS equation corre-

sponds to the strongly nonlinear regime obtained when the dispersion is much weaker than

the nonlinearity. For the semiclassical limit analysis, the NLS equation can be written in

the following form,

i
@ 

@T
+

1

2N

@2 

@X 2
+N | |2 = 0 , (5.8)

where N is the soliton number (see below) and  , X and T are given by the following

normalization relations,

 =
F1

A0

, T =
⌧2p

TNLTD

, X =
⇠1

Le

. (5.9)

The soliton number N > 0, which may not be an integer, controls the dispersion-

nonlinearity ratio,

N =

r

TD

TNL

, (5.10)

where TD = L2
e

2|P |
and TNL = 1

|Q|A2
0

are the characteristic dispersive and nonlinear times,

defined by the amplitude A0 and width Le of the initial pulse. When N is an integer, an

N -soliton solution [158] of Eq. (5.8) at T = 0 gives,

 (X , 0) = sech (X ) . (5.11)

These solitons exhibit more complex dynamics than the fundamental 1-soliton, including

periodic oscillations called breathers or multi-peak structures produced by the interaction

and the superposition of multiple fundamental solitons, explained by the Inverse Scatter-

ing Transform method [158]. In the semiclassical limit of the one-dimensional focusing

NLS equation, recent studies [100, 101, 132] revealed that another fundamental mecha-

nism, called gradient catastrophe, leads to the emergence of localized structures using the

self-focusing property of the NLS equation. These localized structures have been proven

to asymptotically (when N ! 1) approach the Peregrine soliton [156, 100].



5| Gradient catastrophe and Peregrine soliton in nonlinear flexible
mechanical metamaterials 89

5.3.2. Peregrine soliton of the NLSE

The Peregrine soliton is a rational solution of the NLS equation originally proposed in

1983 by D.H. Peregrine [155]. It is a spatiotemporal localized solution of high amplitude

with a stiff wavefront profile. Mathematically, the Peregrine soliton solution to the NLS

equation of the form of Eq. (5.8) is expressed as,

 (X , T ) = a0
1� 4[1 + 2ia20N(T � Tm)]

1 + 4a20N
2X 2 + 4a40N

2(T � Tm)2
eia

2
0N(T −Tm) , (5.12)

where a0 is the continuous background amplitude and Tm is the moment of maximum

compression. The analytical PS, cf. Eq. (5.12), is displayed in Fig. 5.1.

(a) (b)

(c)

Figure 5.1: Analytical Peregrine soliton solution of the NLS equation, cf. Eq. (5.8), for

N = 10 and a0 = 1. In panel (a), a spatiotemporal representation is displayed while in

panels (b-c), a cross-section at the maximum compression moment T = Tm = 0.5 of the

amplitude and phase profile is visible.

At the maximum compression moment, visible in Fig. 5.1 (b), the amplitude of the PS

reached three times the continuous background amplitude  (0, Tm) = 3a0 including a

⇡-phase jump, see Fig. 5.1 (c). After this point, the amplitude of the solution decreases,

expands, and finally disappears, see Fig. 5.1 (a). The shape and its localization in both

space and time, resemble the sudden and transient nature of rogue waves [159]. This is

why Peregrine soliton is often considered as a possible explanation of this kind of event.
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5.4. Local emergence of the Peregrine soliton by the

regularization of the gradient catastrophe

In the semiclassical limit of the one-dimensional focusing nonlinear Schrödinger equation,

for N � 1, it has been established [100, 84] that during the initial stages of its evolution,

a wide pulse undergoing propagation is primarily influenced by nonlinear effects, while

dispersive effects are negligible. This dominance of nonlinearity leads to a self-steepening

of both the phase and amplitude profiles of the pulse, reaching a critical point (Tc, Xc)

where the derivatives of phase and amplitude become infinite. At this point, the gradient

catastrophe phenomenon emerges, localized at position Xc and moment Tc. Following

the gradient catastrophe occurrence (T > Tc), dispersive effects cannot be ignored, lead-

ing to the regularization of the gradient catastrophe through the emergence of localized

breathers. From mathematical predictions [156], the maximum compression point occurs

at time,

Tm = Tc + CN−4/5 , (5.13)

with C a universal constant defined as,

C = 2.38

✓

5|C1|

4

◆1/5

(2b0)
−3/2

�

1 +O
�

N−4/5
��

. (5.14)

When the initial pulse is an N -soliton solution,

Tc = 1/2 , b0 =
p
2 , C1 =

32
p
2i

15⇥ 29/4
. (5.15)

The first localized structure that emerges can be asymptotically approximate to a Pere-

grine soliton of the NLSE, cf. Eq. (5.12). For N ! 1, the amplitude of the Peregrine

soliton reaches the asymptotic limit  (⇠, Tm) = 3
p
2.

5.5. Comparison of the gradient catastrophe phenomenon

in the FlexMM and in the NLSE

The theoretical concept and main results for the gradient catastrophe phenomenon reg-

ularization have been presented. Now, we would like to find out whether such a phe-

nomenon can be observed in FlexMM structures. From the effective NLS equation of

the architected structure, the initial conditions can be determined. In the next sections,
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we compare the dynamics of the FlexMM with the effective NLS equation evolution. To

this end, we have carried out a series of simulations on both the NLS equation and the

FlexMM discrete-lattice equations of motion. As the phenomenon is known for the NLS

equation, the aim here is to vary the number of N -soliton solutions to numerically prove

that the first emerged localized structure in the rotational evolution of the FlexMM can

also be well fit by a Peregrine soliton.

5.5.1. Numerical integration of the NLS equation and FlexMM

equations of motion

To numerically solve the NLS equation Eq. (5.8), we use the exponential time difference

fourth-order Runge-Kutta (ETDRK4) scheme [160, 161]. It is a powerful integration

scheme that provides a robust, accurate, and efficient solution for stiff differential equa-

tions by exactly handling the stiffness arising from the linear components of the system.

More information is available in appendix E. The integration is done using an exact N -

soliton solution as an initial condition,

 (X , T = 0) = sech (X ) . (5.16)

Direct numerical simulations of the discrete set of equations (5.1) are employed to validate

the analytical predictions and to compare them to the NLS equation evolution. The

system (5.1) is solved using a fourth-order Runge-Kutta iterative integration scheme with

free boundary conditions at both ends.

As an initial condition, we use the N -soliton solution, Eq. (5.16). The latter can be

expressed in (⌧2, ⇠1) variables as,

F1(⇠1, 0) = A0sech

✓

⇠1

Le

◆

, (5.17)

with

Le =
N

A0

s

2|P |

|Q|
, (5.18)

where A0 is the amplitude of the pulse in the co-moving frame coordinate system and

where ⇠1 = ✏(X � vgT ).

To determine the initial conditions for the FlexMM dynamical equations, namely the
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corresponding lattice waves for ✓ and U fields, using Eq. (5.4), we obtain for the rotation,

✓1(X, 0) = 2A0sech



✏

Le

(X �X0)

�

cos(kx) . (5.19)

k is the wave number of the carrier wave following the dispersion relation of the ✓ branch,

cf. Eq. (5.3b). The combination of Eqs. (5.17) and (5.7a) gives the following expression

for the dc-term initial condition,

U0(X, 0) =
A2

0Le

v2g � 1
tanh



✏(X �X0)

Le

�

. (5.20)

The initial conditions on the velocity ✓̇1(X, 0) and U̇0(X, 0) are deduced from the anlytical

expression in Chap. 4 of the BEVS expressed in Eqs. (5.19-5.20). Since the solution only

is taken into account up to the first order of perturbation (✏), the initial conditions write,

✓(X, 0) = ✏✓1(X, 0) , ✓̇(X, 0) = ✏✓̇1(X, 0) , (5.21)

U(X, 0) = ✏U0(X, 0) , U̇(X, 0) = ✏U̇0(X, 0) . (5.22)

For the simulations, the initial condition is centered at X0, the middle of the lattice.

Here are some details on the parameters used to run the simulations.

• FlexMM - The integration of the equations of motion is done on ns = 2000 sites for

a total time of Tf = 104, with time step dt = 0.05. The initial amplitude is A0 = 5,

the wave number of the carrier wave is set to k = 0 and ✏ = 0.01.

• NLS - For the ETDRK4 scheme, the integration is done for Tf = ✏2Tf

p
TNLTD, with

time step h = 1e−3. The space is a grid of size Lx = ✏ns/Le divided in Nx = 210

points.

5.5.2. Higher-order solitons in FlexMM

In this section, we focus on the higher-order soliton solutions of FlexMMs, predicted by

the effective NLS equation. In the first row of Fig. 5.2, we display the results of the

numerical integration of the NLS equation (cf. Eq. (5.8)), while in the second (third) row,

we show the numerical results of the lattice equations (cf. Eq. (5.1)), for the rotational

(longitudinal) component, choosing N = {2, 3, 4}.

Let us first discuss the N = 2 soliton solution. It corresponds to the first column of
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|� |

NLS

|� |

NLS

|� |

NLS

|� |

FlexMM

|� |

FlexMM

|� |

FlexMM

U

FlexMM

U

FlexMM

U

FlexMM

Figure 5.2: Numerical solutions of the NLS equation in the first line and of the FlexMM

in the second one, for the rotational motion ✓, and in the third lines for the longitudinal

displacement U . Each column corresponds to simulations for a specific number of solitons

N = {2, 3, 4}.

Fig. 5.2. Concerning the NLSE, this solution consists of the nonlinear superposition of

two fundamental, non-traveling solitons. Together, they form a bound state that results

in a breathing solution characterized by a temporally-periodic evolution. Concerning

the FlexMM discrete lattice model, we observe that the envelope of the ✓ component

follows the NLS equation evolution with great accuracy. In addition, due to the nonlinear

coupling with the U component, one can observe a corresponding pattern in the evolution

of the longitudinal motion that follows (is driven by) the rotational motion.
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Similarly, for higher order solitons, for example, N = 3 and (N = 4), the emergence of

localized breathing structures is induced by the interaction of three (four) bright solitons

as shown in the second (third) column of Fig. 5.2. Once again, the FlexMM discrete

evolution is in good agreement with what the NLSE predicts.

5.5.3. Gradient catastrophe in FlexMM

As noted in Sec. 5.4, the gradient catastrophe phenomenon is regularized by the local

emergence (at T = Tm) of a Peregrine soliton as an asymptotic solution of the focusing

NLS equation. This property is verified in Fig. 5.3.

(a) (b) (c)

Figure 5.3: Profile and phase of the first localized structure for N = 2 in panel (a), for

N = 3 in panel (b), and N = 4 in panel (c) at the maximum compression moment for

the FlexMM (blue square) and the NLS equation (black line). For each N , the coherent

structure is compared to a scaled PS (red dashed line).

In this figure, the discrete spatial profile at the maximum compression moment for the

rotational motion of the FlexMM is plotted (blue squares) and compared to the NLSE

prediction (black line). The analytic PS (dashed red line) agrees with the discrete sim-

ulations for both the spatial and phase profiles. We note that we determined the PS

continuous background a0, cf. Eq. (5.1), from the maximum amplitude of the rotational

component (NLSE simulation). In this case a0 = |✓(X0, Tm)|/3.

For a more detailed analysis of the theoretical prediction accuracy, we show the amplitude

of the first localized structure in Fig. 5.4(a) and the maximum compression moment in

Fig. 5.4(b) for a wide range of N values. For the discrete equations of the FlexMM, N

takes values from 2 to 10. For all these values of N , it is clear that FlexMM and the NLS

model are in excellent agreement. If for N = 10, the numerically calculated value of Tm

is close to the theoretical estimation, we observe that the amplitude remains significantly
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far from the asymptotic value,

✓N→∞ = 6
p
2✏A0. (5.23)

(a) (b)

Figure 5.4: Numerical simulations displaying the maximum amplitude (a) of the rotational

evolution at the compression moment (b) as a function of N . The black dashed line

represents the theoretical predictions from Eqs. (5.23-5.13). The red line represents the

simulation results using the NLS equation, and the blue squares represent those of the

FlexMM.

Fig. 5.5 represents the dynamic evolution of the NLS equation (a) and of the discrete

FlexMM equation (b-c) for N = 10 in more detail. The spatial profiles of |✓| (d) and

U (e) are represented at the maximum compression point. From the |✓| profile of the

NLS model shown in panel (d), we can predict the profile of the first-order term of the

longitudinal displacement, G0, using Eq. (5.7a). This prediction is represented by the

black line in panel (e). The excellent match between the predicted and actual FlexMM

profiles demonstrates the effectiveness of the NLS model in accurately describing the

envelope dynamics of the FlexMM.

5.6. Conclusions

In this last chapter, we have introduced a mathematical concept developed by A. Tovbis

and M. Bertola, called gradient catastrophe. It has been proven that this phenomenon

can lead to the generation of the rational Peregrine Soliton as a local asymptotic solution

of the NLSE. Based on the theoretical model introduced in Chap. 4, we have proven that

the propagation of sufficiently large initial modulated waves in FlexMMs can lead to the

emergence of the gradient catastrophe phenomenon. An interesting future direction is

to study if the manifestation of the gradient catastrophe could be used as a dynamical

trigger of transition waves in bistable mechanical structures like the ones already studied

in the literature [32, 162]. For preliminary results following this line, see the Chap. 6.
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|� |

NLS

U|� |

FlexMM FlexMM

(a) (b) (c)

(d) (e)

Figure 5.5: Numerical simulations of Eq. (5.8) in panel (a) and Eq. (5.1) in panels (b-c)

for an initial pulse with N = 10. Panel (d) represents the absolute value of the rotational

profile of the dynamics displayed in (a) and (b) at the maximum compression moment

where the scaled PS is superimposed for comparison. In panel (e), the longitudinal dis-

placement is compared to the theoretical profile obtained using Eq. (5.7a). This prediction

is calculated by substituting the rotational field, computed with the NLS equation, into

Eq. (5.7a).
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6| General conclusion and

perspectives

The presented PhD work has been dedicated to the theoretical and numerical investigation

of propagating modulated waves in nonlinear flexible metamaterials (FlexMMs). These

structures, whose unique properties arise from the geometric nonlinearity and the multiple

degrees of freedom of the structures, offer a rich platform for exploring various nonlinear

wave phenomena.

Chapter 2 laid the groundwork for essential analytical and numerical tools. Those were

first applied to a simpler system: the simplified rotating-square structure where the motion

equation reduces to a nonlinear Klein-Gordon equation with cubic nonlinearity. Applying

multiple scales perturbation, the transition to the nonlinear Schrödinger equation (NLSE)

was highlighted. This methodology is of fundamental importance and sets the stage for

understanding the more complex case of FlexMMs with two DOFs.

Building on this base, chapter 3 explored the modulation instability (MI) phenomenon

in FlexMMs. The stability of these waves was examined by deriving an NLS equation

for slowly varying envelope waves from a discrete, nonlinear lump model. The analysis

revealed that the interplay between the rotational and longitudinal DOFs can stabilize

regions that would otherwise be unstable. A natural extension of this work includes the

initial excitation of both the rotational and longitudinal modulated waves, leading to a

coupled NLS equation with much richer MI dynamics.

Chapter 4 extended the approach and the methodology to account for discrete effects and

localized modulated waves. As an outcome, the existence and propagation of bright and

dark envelope vector solitons were analyzed in detail. The rotational DOF was found

to be described by an extended NLS equation (compared to the one in chapter 3). The

longitudinal one followed the dynamics induced by a nonlinear coupling. These solutions

constitute novel nonlinear wave solutions under vectorial form. Future investigations could

take advantage of the multiple DOFs to seek other types of vector solitons in FlexMMs

which would be described by a multiple-component NLS equation.
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Finally, in chapter 5, the concept of gradient catastrophe was introduced, as developed by

A. Tovbis and M. Bertola [156]. We demonstrated that the propagation of sufficiently large

initial modulated plane waves in FlexMMs could lead to the generation of an assembly

of localized coherent structures. The first emerging structure is locally asymptotic to

a Peregrine soliton, a solution of the effective NLS equation theoretically predicted in

chapter 4.

In a nutshell, this thesis has shown the significant potential of nonlinear FlexMMs for ob-

serving and controlling both typical and novel nonlinear phenomena related to modulated

waves. Future research will focus on the experimental validation and the modeling of

dissipative effects. These efforts will further enhance our understanding of nonlinear wave

dynamics in soft mechanical metamaterials, paving the way for innovative developments

and applications in this field. The two very last sections present the preliminary results

following the line of setting up experiments and exploring gradient catastrophe in bistable

systems to trigger transition waves.

Towards Experiments: Experimental setup

Several steps must be taken to prepare for future experimental validation of the findings in

this thesis. These include exciting the system by applying driving functions to one end of

the chain and adding dissipation to the system. Additionally, the third degree of freedom,

namely the transverse displacement, could also be considered if needed. Some work has

already been pursued in that way, particularly in Xinxin Guo’s PhD thesis prepared at

LAUM and defended in 2018 [8]. In this work, the system of equations of a structure

consisting of N and M columns of rigid particles was determined, taking into account the

third degree of freedom. The influence of the static angle (i.e. the initial orientation of the

particles) on the linear propagation properties of the global structure also was considered.

Preliminary results using numerical simulations of lumped element equations similar to the

ones used in the text core are shown in Fig. 6.1(a). Here, one can observe the propagation

of a damped bright soliton within the FlexMM, generated by a driver at one extremity

of the chain. Here, a simple linear viscous damping, proportional to the velocity of the

particles, has been used. Losses in the system lead to an exponential decrease in the

amplitude of the soliton. Moreover, decay causes the solution to spread out.
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FlexMM
LF Shaker

Input Signal

Plane wave modulated  
by a bright soliton

Numerical 
simulation

Experimental 
Set-up

(a) (b)

(c)

Figure 6.1: (a) Evolution of the ✓ component of a bright envelope vector soliton with

linear viscous damping propagating in the FlexMM. (b) Profile of the BEVS envelope at

different moments. The system is excited using a driving function on the left extremity

of the chain. (c) The input signal could be applied experimentally with a low-frequency

(LF) shaker.

Gradient-catastrophe induced transition waves: pre-

liminary results

Figure 6.2: Evolution of the bistable system. At

T = 50 the transition wave is generated by the

emergence of a local coherent structure.

Bistable (multistable) systems can

be observed both in natural and

engineered materials. Due to the

existence of two (multiple) stable

states, these systems exhibit a rich

phenomenology including structural

phase transitions, the existence of do-

main walls, and more.

For mechanical structures, this prop-

erty makes them valuable in various

applications such as energy harvest-

ing, mechanical switches, and adap-

tive materials. Due to the potential

barrier, transitioning to the other sta-

ble state requires a critical amount of
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essary to generate and characterize the gradient catastrophe phenomenon. In Fig. 6.3(c),

the nonlinear dynamics of the bistable structure are illustrated at three different moments.

The first one describes the case in which the discrete points are trapped in the potential

well corresponding to stable state 1. In the second panel, the regularization of the gra-

dient catastrophe occurs, resulting in the emergence of a localized structure in space and

time. Finally, in the last panel, the transition wave successively moves the points into

stable state 2. In Fig. 6.3(b), the NLS model (black dotted line) shows consistency with

the dynamics of the discrete model until the transition.

Many questions remain unanswered and need to be explored in greater depth, particularly

regarding the energy required for the transition. Up to now, observations have been made

on this matter. It appears that a single point crossing the potential barrier is insufficient

for a transition, due to interactions with its neighbors. Additionally, the initial phase of

the carrier wave seems to influence the amount of required energy.
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A| Dispersion relation

The dispersion relation of the metastructure is obtained by linearizing the equations

of motion (sin ✓ ⇡ ✓) and assuming that the chain is excited by a harmonic source of

pulsation !, propagating along increasing x. The harmonic solutions of the linear system

are represented by the following three vectors when one poses xi = ia, xi±1 = (i± 1)a:

~�i =

"

Ui

✓i

#

=

"

U0

✓0

#

ej(!t−qxi) =

"

Ui

✓i

#

,

~�i+1 =

"

Ui+1

✓i+1

#

=

"

U0

✓0

#

ej(!t−qxi+1) =

"

Ui

✓i

#

e−jqa,

~�i−1 =

"

Ui−1

✓i−1

#

=

"

U0

✓0

#

ej(!t−qxi−1) =

"

Ui

✓i

#

e+jqa.

(A.1)

By substituting these harmonic solutions in the linearized equations, we obtain an eigen-

value problem,

[M ]−1[K]~� = �~� , (A.2)

with � = !2 the eigenvalue and ~� =

"

U0

✓0

#

the eigenvector, and

[M ] =

"

1 0

0 ↵−2

#

,

[K] =

"

2 (1� cos(qa)) 0

0 �2� cos(qa) + 2 (Ks + 2K✓)

#

.

(A.3)

The coupling between modes comes from the anti-diagonal terms of the K matrix. Since

every mass unit is aligned at the initial time, these anti-diagonal coefficients are equal to

zero. The modes are decoupled.





105

B| Multiple scales method

The different scales imply that the differentials of X and T must be redefined according to

the different scales used Xi and Ti. By defining the notation Di =
@

@Ti
and in an analogous

way DiX = @
@Xi

, we can write,

@2

@T 2
= (D0 + ✏D1 + ✏2D2 + ...)2 ,

= D2
0 + 2✏D0D1 + ✏2(D2

1 + 2D0D2) + ... ,

@2

@X2
= (D0X + ✏D1X + ✏2D2X + ...)2 ,

= D2
0X + 2✏D0XD1X + ✏2(D2

1X + 2D0XD2X) + ... .

(B.1)

The operators L̂(i)
j and M̂(i)

j are given by the following expressions:

L̂(1)
0 = D2

0 �D2
0X

L̂(2)
0 = D2

0 � C1D
2
0X + C2 ,

L̂(1)
1 = 2(D0D1 �D0XD1X) ,

L̂(2)
1 = 2(D0D1 � C1D0XD1X) ,

L̂(1)
2 = D2

1 �D2
1X + 2D0D2 � 2D0XD2X ,

L̂(2)
2 = D2

1 � C1D
2
1X + 2D0D2 � 2C1D0XD2X ,

M̂(1)
0 =

1

2
D0X ,

M̂(2)
0 = �C4D0X ,

M̂(1)
1 =

1

2
D1X ,

M̂(2)
1 = �C4D1X ,

M̂(3) = �C3 .

(B.2)
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C| Parametric study of the PQ

product

As mentioned in Sec. 4.3 of the main text, the NLS equation exhibits two different

behaviors depending on the sign of the product PQ. In figure C.1, parametric studies are

displayed to illustrate the influence of each parameter and the coupling effect between the

rotational and longitudinal displacements on the NLS equation. To do this, all parameters

are initially set to those used in the Lego® structure for the experiments [7], ↵ = ↵l =

1.815, Ks = Ksl = 0.01851, K✓ = K✓l = 1.534e−4. The range of examined parameters

goes from zero to ten times the initial values.

Figure C.1 shows that the coupling between the two DOFs plays a major role, making the

evolution of the sign of PQ as a function of k even more complex (cf. panels (b-d-f)) than

when there is only rotation in the system (a-c-e). For example, if the system can only

rotate, ↵ (cf. panel (a)) does not affect the sign of PQ. Moreover in the case of panels

(c) and (e), Ks and K✓ dependent respectively, the variation of the parameters slightly

changes the transition value of k to obtain a focusing or defocusing NLS equation. If we

compare each of these studies with its coupled equivalent (cf. (a) to (b), (c) to (d), and

(e) to (g)), more transition values (values where PQ change its sign) of k are visible. In

conclusion, the behavior of the eNLSE under coupling conditions, between Un and ✓n, is

very sensitive to the design features of the FlexMM.
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�n �n, Un

(a) (b)

(c)

(e)

(d)

(f)

PQ > 0 PQ < 0

Figure C.1: Sign of PQ as a function of k and: ↵ for panels (a-b), Ks for panels (c-d),

and K✓ for panels (e-f). ↵, Ks, and K✓ are normalized by ↵l, Ksl, K✓l respectively, the

physical parameters used in the Lego® structure for experiments. The horizontal red line

for each panel represents 1, that is when ↵ = ↵l, Ks = Ksl, K✓ = K✓l. Finally, the first

column (a, c, e) corresponds to a configuration where particles can only rotate while in

the second column (b, d, f), particles both can rotate and translate.
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D| Defocusing nonlinearity,

propagation of a modulated

wave in the lattice

In section 4.4 of the main text, the global nonlinear dynamic response of the structure

(see Figs. (4.4-4.7)) and its dynamics only at the final time (see Fig. 4.5) are presented,

generated by an initial excitation of the bright soliton solution in the case of a focusing

eNLS equation. As a result, a lattice BEVS propagates throughout the structure.

�
(a) (b)

U

Figure D.1: Evolution in time (T ) of the amplitudes of the rotational (a) and longitudinal

displacements (b) along the chain (n). The results correspond to a flexMM defined by

the following set of parameters: ↵ = 1.815, Ks = 0.1851, K✓ = 1.534e−2. The solution is

generated by the initial conditions expressed in Eqs. (4.30-4.31) for the spatial frequency

k = 2.8274, an amplitude A = 15, and a perturbation ✏ = 0.01.

For a more general study, it is interesting to use this initial condition in a wisely chosen

wave number range to obtain a defocusing NLS equation, highlighted with the black

areas in Fig. 4.3 (a). A defocusing NLS equation is obtained when the product of the

dispersive and nonlinear coefficients is negative PQ < 0. To use the ICs expressed by

Eqs. (4.30-4.31), we have to put an absolute value to P and Q. As expected in Fig. D.1,

the defocusing property of the eNLS equation, and thus of the propagation medium, leads

to a time spreading of the wave packets.
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E| Exponential time difference

fourth-order Runge-Kutta

scheme

In this appendix, we present the exponential time difference fourth-order Runge-Kutta

(ETDRK4) scheme used in chapter 5 to solve the NLS equation.

This method was developed by Cox and Matthews in 2002 [160] and improved by Kassam

and Trefethen in 2005 [161]. ETDRK-based methods are powerful integration schemes

that provide a robust, accurate, and efficient solution for stiff differential equations by

exactly handling the linear terms and approximating an integral involving the nonlinear

terms, see Eq. (E.7). It combines the strengths of exponential integrators and Runge-

Kutta methods (in our case of 4th order).

For this method, we shall split the PDE into its linear and nonlinear parts,

ut = Lu+N (u, t) , (E.1)

where L is linear and N (u, t) nonlinear. Once the spatial part of the PDE is discretized,

Eq. (E.1) resulting in a system of ODEs,

ut = Lu+ N(u, t) . (E.2)

The concept of the ETD methods is similar to the method of the integrating factor [163].

The idea is to multiply both sides of Eq. (E.2) by an integrating factor,

e−Ltut = e−LtLu+ e−LtN(u, t) . (E.3)

By a relevant change of variable,

v = ue−Lt , (E.4)
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Eq. (E.3) becomes,

vt = e−LtN(veLt)dt . (E.5)

This clever change of variable allows us to exactly solve the linear part on the left side of

Eq. (E.5). Integrating the equation over a single time step h from t = tn to tn+1 = tn+h,

we get,
Z tn+h

tn

d

dt

�

e−Ltu
�

dt =

Z tn+h

tn

e−LtN(u)dt ,

e−L(tn+h)un+1 � e−Ltnun =

Z tn+h

tn

e−LtN(u)dt .

(E.6)

Finally, the solution of Eq. (E.1) at t = tn+1 can be computed exactly using the following

equation,

un+1 = eLhun + eLh

Z h

0

e−L⌧N(u(tn + ⌧), tn + ⌧)d⌧ , (E.7)

where ⌧ = t�tn. As mentioned, up to now, Eq. (E.7) is exact. However, the integral must

be approximated using an ETD numerical scheme of the chosen order. To approximate the

integral, Cox and Matthews developed a recurrence relation that provides an algorithm

based on the Runge-Kutta time-stepping scheme for various orders of approximations.

Here are the formulae for the 4th-order Runge-Kutta scheme,

an =eLh/2un + L−1
�

eLh/2 � I
�

N(un, tn) ,

bn =eLh/2un + L−1
�

eLh/2 � I
�

N(an, tn + h/2) ,

cn =eLh/2an + L−1
�

eLh/2 � I
�

(2N(bn, tn + h/2)� N(un, tn)) ,

un+1 =eLh/2un + ↵N(un, tn) + 2� [N(an, tn + h/2) + N(bn, tn + h/2)]

+ �N(cn, tn + h) ,

(E.8a)

(E.8b)

(E.8c)

(E.8d)

with I the identity matrix and ↵, �, and � defined as,

↵ = h−2L−3
⇥

�4� Lh+ eLh(4� 3Lh+ (Lh)2)
⇤

,

� = h−2L−3
⇥

2 + Lh+ eLh(�2 + Lh)
⇤

,

� = h−2L−3
⇥

�4� 3Lh� (Lh)2 + eLh(4� Lh)
⇤

.

(E.9a)

(E.9b)

(E.9c)

These constants depend on the linear operator L and the time step h and can be computed

before the time-stepping of the Runge-Kutta scheme.
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For the following NLS equation,

i
@u

@t
+

1

2

@2u

@x2
+ |u|2u = 0, (E.10)

we discretize the spatial domain using a Fourier spectral method. Translating Eq. (E.10)

to the Fourier space gives,

ût = �0.5ik2û� i[|u|2u . (E.11)

In form of Eq. (E.2), we obtain the following operators,

Lû(k) = LF(u) = �0.5ik2F(u) ,

N(û(k), t) = N(F(u), t) = �iF
�

|F−1(F(u))|2F−1(F(u))
�

,

(E.12a)

(E.12b)

where F is the discrete Fourier transform.
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In the context of the biennial event Le Mans Sonore 2022, the Laboratoire d’Acoustique

de l’Université du Mans (LAUM) and the RAmDAM association decided to create a
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the analytical model that describes the dynamics of the system with numerical simulations

and experimental results, the accuracy of the theoretical model is discussed, particularly

about whether the pendulums should be considered as point masses.

In this project, the linear and nonlinear regimes of the system were studied experimentally.

To estimate the chain parameters, the dispersion relation of the system was determined. In

addition, different solutions of the sine-Gordon equation in the nonlinear regime, including
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extended my professional network, and my cultural experiences and gave me the chance

to meet great people. Many thanks for these memories!
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G| Extended abstract (in french)

Dans cette thèse, nous nous intéressons à la propagation d’ondes modulées non linéaires

dans des métamatériaux mécaniques flexibles à éléments rotatifs (FlexMM). Avant cela,

il a été démontré et observé que des solitons vecteurs pulsés pouvaient être générés dans

ces structures, et présentent un lien étroit avec l’équation non linéaire de Klein-Gordon.

Le champ de déplacement rotationnel ✓ est modélisé par cette équation dans la limite

continue. Ces études sur les solitons vecteurs pulsés constituent la base de notre investi-

gation, car elles démontrent une connexion entre l’équation non linéaire de Klein-Gordon

et les équations du mouvement de nos FlexMM où chaque élément peuvent, en plus de

pivoter localement, se déplacer suivant un mode de traction-compression longitudinal

U . De plus, puisqu’il est établi que l’équation de Schrödinger non linéaire (NLS) peut

décrire l’enveloppe d’une onde se propageant dans l’équation non linéaire de Klein-Gordon,

nous pouvons anticiper l’observation de phénomènes spécifiques à l’équation NLS dans les

FlexMM, tels que les instabilités modulationelles, les solitons "brights/ darks/breathers",

etc., dans le régime faiblement non linéaire et dispersif.

Cette thèse est motivée par l’amélioration des connaissances sur les propriétés dynamiques

mécaniques non linéaires des FlexMMs, ce qui augmenterait leur potentiel d’application,

notamment dans les dispositifs discrets soumis à des vibrations continues. De plus, les

FlexMM offrent une plateforme prometteuse pour étudier de nouveaux phénomènes et

explorer des événements extrêmes (abordés dans le chapitre 5 et dans les perspectives) à

l’aide d’ondes non linéaires modulées continues.

Dans le premier chapitre de cette thèse sont introduites les notions de métamateriau et

de soliton. Au cours des deux dernières décennies, les structures mécaniques architec-

turées, également connues sous le nom de métamatériaux, ont joué un rôle prédominant

dans les avancées scientifiques effectuées dans le domaine de la physique des ondes. Dans

ce contexte, les métamatériaux désignent des structures composites synthétiques offrant

un contrôle sur la dispersion de différents types d’ondes (optiques, thermiques, acous-

tiques, vibrations mécanique, etc.). Certains comportements insoupçonnés ont ainsi pu

être observés pour toujours mieux contrôler les ondes. Le fait que ces matériaux puissent
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manipuler les ondes d’une manière que les matériaux naturels ne le peuvent, a conduit

à des innovations dans divers domaines. Par exemple, en optique, des métamatériaux

appelés cristaux photoniques sont utilisés pour créer des dispositifs tels que des super-

lentilles ou des capes d’invisibilité. Dans le domaine de l’acoustique et des vibrations,

il existe une très grande variété de métamatériaux qui visent généralement à isoler des

vibrations, pour de la réduction de bruit ou du guidage d’onde, etc..., avec différentes

astuces de fabrication et de conception.

Pour ces travaux de thèse nous nous intéressons à une classe de métamateriaux mé-

caniques, à savoir les métamateriaux mecaniques flexibles (FlexMM). Ce sont des struc-

tures composées d’éléments rigides et souples, qui une fois reliés forment un réseau péri-

odique de cellules unitaires qui peuvent se déplacer de manière continue les unes par

rapport aux autres. Leurs propriétés dynamiques innovantes proviennent de la géométrie

de la structure et non de ses propriétés intrinsèques (composition chimique, structure

atomique...). Chaque cellule peut se déformer, tourner, fléchir, se plier et se rompre sous

l’effet de contraintes mécaniques, et est conçue pour que les cellules adjacentes du réseau

puissent interagir, produisant ainsi un comportement collectif souhaité. L’architecture mi-

crostructurale confère à la structure globale des propriétés uniques et souvent avancées,

telles que la morphing de forme, la protection topologique et des réponses non linéaires.

Le chapitre 2 présente les méthodes analytiques et numériques utilisées dans les chapitres

suivants pour étudier la propagation d’ondes modulées dans les FlexMMs. Nous intro-

duisons une version simplifiée de notre chaîne FlexMM, inspirée de plusieurs travaux, où

l’équation du mouvement se réduit à une équation de Klein-Gordon non linéaire continue

dans la limite continue. Enfin, nous démontrons comment cette équation mène à une

équation de Schrödinger non linéaire, qui décrit l’enveloppe du train d’ondes. La solution

du soliton "bright" de l’équation NLS est particulièrement étudiée comme exemple.

Dans le chapitre 3, l’objectif principal est d’étudier le phénomène non linéaire d’instabilité

modulationnelle (MI) dans les FlexMM. L’étude des MI vise à examiner l’évolution non

linéaire des ondes planes modulées. Cette connaissance fondamentale est cruciale pour

faire progresser les applications pratiques telles que l’amortissement des vibrations et la

récolte d’énergie, où les signaux périodiques sont couramment rencontrés. En partant

d’un modèle non linéaire par éléments discrets qui décrit avec précision la dynamique

des FlexMM, nous dérivons une équation NLS pour l’enveloppe lentement variable des

ondes dans le degré de liberté en rotation. Nous analysons ensuite les conditions sous

lesquelles l’instabilité modulationnelle des ondes planes se manifeste suite à une pertur-

bation aléatoire de l’amplitude de l’onde. Enfin, les prédictions théoriques sont comparées

à des simulations numériques du modèle discret non linéaire complet, démontrant com-
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ment le couplage entre les degrés de liberté des particules et les paramètres mécaniques

du métamatériau peuvent induire des instabilités modulationnelles.

Le chapitre 4 est consacré aux solutions solitons de l’équation NLS : les solitons "bright"

et "dark". Dans le contexte des FlexMM, il s’agit de solitons-vecteurs enveloppe. Nous

présentons le modèle non linéaire par éléments discrets, qui s’est révélé pertinent pour

décrire les équations dynamiques des FlexMM. Par la suite, nous dérivons une équation

NLS effective dans l’approximation semi-discrète pour l’enveloppe lentement variable des

ondes du degré de liberté en rotation. L’utilisation de l’approximation semi-discrète four-

nit un modèle valide pour toute longueur d’onde des ondes porteuses, contrairement au

développement du chapitre 3. Les sections Sec. 4.4 et Sec. 4.5 étudient l’existence et la

dynamique des solitons-vecteurs enveloppe "bright" et "dark".

Dans le chapitre 5, nous explorons la génération d’événements extrêmes dans les FlexMM

en nous inspirant du phénomène des vagues scélérates, présent dans les océans. Les vagues

scélérates sont des vagues géantes et imprévisibles, bien plus hautes que les vagues environ-

nantes. Elles peuvent apparaître soudainement, atteignant des hauteurs de 20 à 30 mètres.

De part leur imprévisibilité, elles sont une menace pour la sécurité des marins ainsi que

pour les infrastructures maritimes. Longtemps contestée, leur existence n’a été confirmée

qu’à partir de 1995. Ces vagues peuvent se former par divers mécanismes linéaires et non

linéaires mais la théorie linéaire ne suffit pas à expliquer leur occurrence. La dynamique

des vagues en eau profonde, modélisée par l’équation non linéaire de Schrödinger, offre

une meilleure compréhension. De part l’universalité de cette équation en optique ou en

mécanique quantique par exemple, de tels phénomènes ont été observés dans d’autres sys-

tèmes comme les fibres optiques, les condensats de Bose-Einstein ou encore dans le cadre

de cette thèse sur les FlexMMs. Mathématiquement, l’objet utilisé pour décrire une

vague scélérate est le soliton de Peregrine, une structure cohérente localisée, qui émerge

dans certaines conditions. Il a été récemment démontré, grâce au théorème dévelopé

par A. Tovbis et M. Bertola, qu’un phénomène appelé "gradient catastrophe" pouvait

engendrer l’apparition de structures cohérentes localisées en espace et en temps. Selon

cette théorie, des solitons de Peregrine peuvent émerger localement dans la limite semi-

classique de l’équation NLS, c’est-à-dire lorsque la non linéarité est bien plus importante

que la dispersion dans le système. En utilisant l’équation NLS effective (eNLS) obtenue

au Chapitre 4, nous comparons l’évolution des dynamiques des FlexMM avec celle de

l’équation NLS en fonction des conditions initiales utilisées. Dans ce chapitre, nous prou-

vons que la propagation d’ondes modulées suffisamment larges, nous rapprochant de la

limite semi-classique de l’équation non linéaire de Schrödinger dans les FlexMM, conduit

à l’émergence de structures localisées à la fois en espace et en temps, très similaires au
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soliton de Peregrine.

Enfin, dans le Chapitre 6, les conclusions générales et les principales perspectives du

travail présenté sont exposées.

L’une de ces perspectives consiste à discuter des élements à mettre en place pour la valida-

tion expérimentale des résultats de cette thèse. Pour préparer la validation expérimentale,

plusieurs étapes clés doivent être franchies. Il s’agit notamment d’exciter le système en

appliquant des fonctions excitatrices à une extrémité de la chaîne (via l’utilisation d’un

pot vibrant par exemple), d’introduire de la dissipation dans le système, et de considérer,

éventuellement, le déplacement transversal comme un degré de liberté supplémentaire. Les

simulations numériques préliminaires montrent déjà des résultats prometteurs, comme la

propagation d’un soliton "bright" amorti au sein du FlexMM, bien que la perte dans

le système entraîne une diminution de l’amplitude et un étalement de la solution. Cela

ouvre la voie à de nouvelles avancées passionnantes dans ce domaine, en s’appuyant sur

les travaux antérieurs et en explorant de nouvelles pistes.

Une autre perspective à ce travail consiste à utiliser les résultats obtenus dans le Chapitre

5 sur un FlexMM bistable. Dans cette étude préliminaire, nous explorons un modèle math-

ématique basé sur une équation non linéaire discrète de Klein-Gordon avec un potentiel

bistable asymétrique de la forme ✓4n. En suivant la méthode décrite dans le Chapitre 5,

nous determinons l’équation non linéaire de Schrödinger effective du système bistable, ce

qui nous permet de définir les conditions initiales pour générer et caractériser le phénomène

du gradient catastrophe. Les dynamiques non linéaires du système bistable sont illustrées

à travers trois étapes distinctes : l’état stable initial dans l’état 1, l’émergence d’une struc-

ture localisée suite à la régularisation du gradient catastrophe, puis la transition finale

vers un nouvel état stable 2. En utilisant ce procédé, il serait possible à la fois de choisir

la position ainsi que le moment auquel se produirait la transition d’un état stable à un

autre, au sein de la structure.
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