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Résumé: L’explosion des données au cours des
dernières décennies a remis en question les pro-
cessus d’analyse de données existants dans le but
découvrir des connaissances et d’extraire des infor-
mations importantes en quasi temps réel. La com-
plexité des données quant à leur hétérogénéité, leur
quantité, leur qualité ou leur absence de qualité,
ainsi que la vitesse à laquelle elles sont générées,
pose des défis importants pour le pipeline d’ana-
lyse de données. Ce pipeline comprend des tâches
telles que l’acquisition de données, le stockage, la
gestion, le transfert, la requête, la visualisation, la
mise à jour, le partage et la création des connais-
sances. Étant donné que la prise de décision basée
sur l’analyse des données massives est fréquem-
ment le résultat de travail collaboratif, l’infrastruc-
ture d’analyse de données et de prise de décision
doit être collaborative. Cela signifie permettre aux
utilisateurs de communiquer, d’interagir avec des
collaborateurs et de coordonner efficacement leurs
activités.

L’objectif de recherche de cette thèse est de
fournir un framework qui facilite l’analytique colla-
borative en utilisant des technologies immersives,
aidant les utilisateurs de divers niveaux d’exper-
tise à visualiser, interagir avec et analyser les don-
nées. Je vise à explorer comment les nouvelles
technologies d’interaction et d’affichage immer-
sives peuvent être utilisées pour faciliter l’explo-
ration des données, le raisonnement analytique et
la prise de décision dans l’analytique visuelle. La
contribution principale de cette dissertation est de
proposer et d’explorer de nouvelles techniques d’in-
teraction dans un cadre d’Analytique Immersive
Collaborative avec l’humain dans la boucle. Ma
dissertation explore de nouvelles techniques de sé-
lection et d’intégration des données dont le but
est d’accélérer le pipeline d’analyse de données,
en particulier pour interagir avec des nuages de
points de données denses en Réalité Augmentée
(RA) basée sur l’interaction à travers des casques.
Ma recherche met également en évidence une nou-
velle approche de partition automatique de l’espace
physique en RA co-localisée. De plus, dans l’ef-
fort commun de lutte contre le changement clima-

tique et le réchauffement climatique, mon travail
se concentre sur l’analyse des données climatolo-
giques et météorologiques, et dans une large me-
sure sur les ensembles de données complexes de
tempêtes et de cyclones provenant d’observations
météorologiques réelles et de modèles de simula-
tion. En effet, les catastrophes climatiques liées
aux cyclones se produisent chaque année dans le
monde entier, causant des dévastations générali-
sées, y compris des pertes humaines, des dom-
mages infrastructurels importants, des revers éco-
nomiques et environnementaux. Ce projet contri-
buera aux efforts urgents actuels pour minimiser
les dégâts causés par les tempêtes et les cyclones
au niveau international, en développant des tech-
niques permettant aux chercheurs en climatologie
et en météorologie, et aux parties prenantes clés
de mieux accéder aux données disponibles et de
les comprendre.

Plus en détail, j’ai d’abord proposé et étudié
une solution pour améliorer la sélection des points
de données. La technique d’interaction proposée
était basée sur l’expansion des points de données
pour améliorer la sélection des utilisateurs lorsqu’ils
utilisent la RA basée sur des casques. Ensuite, j’ai
exploré l’approche basée sur l’ontologie et les don-
nées liées pour intégrer différentes sources de don-
nées, permettant aux utilisateurs d’effectuer des
requêtes et des filtrages de données pendant l’in-
teraction et d’améliorer leurs performances dans
le processus analytique des ensembles de données
météorologiques. Une étude utilisateur a été menée
pour montrer la validité de cette approche propo-
sée. Enfin, je présente une technique qui permet
aux utilisateurs de partitionner automatiquement
l’espace de travail physique partagé en plusieurs
sous-espaces en fonction de l’espace disponible et
de la position des utilisateurs en RA co-localisée
utilisant des casques. J’ai étudié l’effet de cette
technique de partitionnement de l’espace physique
dans le contexte collaboratif de l’analyse des don-
nées de tempête. De plus, l’impact des aspects
privés et publics de ces espaces collaboratifs co-
localisés a également été évalué.
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Abstract: The explosion of data in recent decades
has challenged existing data analysis processes tas-
ked with uncovering patterns and extracting va-
luable insights in near real time. The complexity of
data due to its heterogeneity, quantity, quality or
the lack thereof, as well as the speed at which it
is generated, places significant challenges on data
analytics pipeline. This pipeline encompasses tasks
such as data acquisition, storage, management,
transfer, querying, visualisation, update, sharing,
and the creation of insights. Given that decision-
making based on big data analysis is frequently the
outcome of collaborative endeavours, the data ana-
lytics and decision-making infrastructure must be
collaborative. This means enabling users to com-
municate, interact with collaborators, and effecti-
vely coordinate their activities.

The research focus of this Ph.D. thesis is to
provide a framework that facilitates collaborative
visual analytics using immersive technologies, as-
sisting users with varying expertise to visualise, in-
teract with, and analyse data. I aim to investigate
how new immersive interaction and display tech-
nologies can be used to facilitate data exploration,
analytics reasoning, and decision-making in visual
analytics. The main contribution of this disserta-
tion is to propose and explore novel interaction
techniques in a Collaborative Immersive Analytics
framework supporting visual analytics with human
in the loop. My dissertation explores new tech-
niques of selection and data integration whose aim
is to speed up the data analytics pipeline, espe-
cially for interacting with dense data point cloud
in Head-Mounted-Display (HMD)-based Augmen-
ted Reality (AR). My research also highlights a
novel approach of automatic spatial partition of
physical space in co-located AR. Moreover, in the

common effort of fighting against climate change
and global warming, my work focuses on data ana-
lytics for climatology and meteorology, and to a
great extent on complex storm and cyclone data-
sets from real weather observations and predicted
simulation model projections. Indeed, cyclone cli-
mate disasters occur each year globally, causing
widespread devastation including human casual-
ties, gross infrastructural damage, economic and
environmental setbacks. This project will contri-
bute to current urgent efforts to minimise storm
and cyclone damage internationally, by developing
techniques that allow climate researchers and key
stakeholders to better access and understand avai-
lable data.

In more detail, I first proposed and studied a
solution to improve the selection of data points.
The proposed interaction technique was based on
expanding data points to improve users’ selection
when using HMD-based AR. Second, I explored the
Ontology-and-Linked-Data-based approach to in-
tegrate different data sources that allows the users
to perform queries and filtering of data during the
interaction and to enhance their performance in
the analytics process of meteorological datasets. A
user study was conducted to show the validity of
this proposed approach. Finally, I present a tech-
nique that allows the users to automatically par-
tition the shared physical workspace into several
sub-spaces based on the available space and the
position of the users in co-located AR using HMDs.
I studied the effect of this physical space parti-
tioning technique in the collaborative context of
storm data analysis. In addition, the impact of the
private and public aspects of these co-located col-
laborative spaces was also evaluated.
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Synthèse

Cette thèse s’intéresse à l’analyse immersive collaborative à l’aide de technolo-
gies de Réalité Augmentée, et son application à la Météorologie ou la Climatolo-
gie. L’immersive analytics collaborative combine les technologies immersives et
des techniques d’analyse de données pour permettre à des utilisateurs de colla-
borer pour visualiser et analyser des ensembles de données complexes. En terme
d’immersion, nous avons opté pour les technologies de Réalité Augmentée (RA)
qui présentent certains avantages pour la collaboration co-localisée, mais aussi
pour permettre aux utilisateurs de faire cohabiter leur espace de travail usuel avec
un espace collaboratif virtuel. L’environnement RA proposé, pour la visualisation
immersive et l’interaction collaborative avec des données météorologiques et cli-
matologiques, a du résoudre plusieurs problématiques: l’élaboration de nouvelles
techniques de sélection de points de données (ou Data Points) au sein de nuages
de points très denses, l’intégration d’informations sémantiques à base d’ontologies
pour faciliter l’analyse des données, et enfin la gestion des informations publiques
et privées en termes de visualisation et d’espace de travail pour la collaboration
immersive co-localisée en RA.

Techniques de Sélection en Réalité Augmentée pour l’Analyse
Immersive de Données

La première problématique abordée au cours de cette thèse a été la sélection
de points 2D ou 3D dans des environnements immersifs de RA. Dans de nombreux
domaines d’analyse de données, ces points sont porteurs de nombreux attributs,
d’où leur dénomination de points de données ou Data Points. En météorologie et
climatologie, par exemple, à un point donné de latitude, de longitude et d’altitude,
pour un instant donné, correspondent de nombreuses valeurs d’attributs tels que :
la pression, la température, la quantité d’eau de ruissellement, le taux d’humidité
de l’air, la pluviométrie, la vitesse du vent, etc. Interagir avec ces points de
données est donc très important, mais se heurte à la difficulté que ces points sont
visuellement présentés au sein de nuages (3D) ou de cartes (2D) extrêmement
denses. Or, les paradigmes interactifs proposés sur les systèmes de RA (que ce
soit des approches vidéo ou optiques sur les casques en question) n’ont pas la
précision requise pour permettre des sélections efficaces au sein de visualisations à
forte densité de points.

Notre contribution sur cette problématique est double. Tout d’abord, nous
avons mené une étude systématique des techniques de sélection multimodales
disponibles en RA. Cette étude a révélé que la plupart des techniques proposées
sont fatigantes pour les utilisateurs et peu précises. En particulier, la direction du
regard ou le pointage avec la main n’offrent pas de grandes différences en termes
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de précision, et sont fortement affectées par la technique de confirmation utilisée.
De plus, les confirmations basées sur des gestes ou des clics sur manette aug-
mentent notablement les imprécisions. La reconnaissance vocale, bien que parfois
défaillante et provoquant des répétitions ou des commandes intempestives, reste
encore la technique de confirmation qui semble la plus robuste. Au-delà de cette
étude, nous avons ensuite développé une technique pour améliorer la sélection dans
des visualisations denses de points. L’approche proposée est basée sur l’expansion
des points de données, ce qui permet une sélection plus précise et plus rapide.
Cette méthode d’expansion des points offre aux utilisateurs une plus grande fa-
cilité de manipulation, réduisant ainsi la fatigue et augmentant la précision dans
les environnements immersifs. Bien que développée et évaluée sur des cartes 2D,
nous avons ensuite proposé plusieurs généralisations de cette technique pour son
extension dans des nuages de points 3D.

Cette étude et cette approche ont été validées via une expérimentation qui a
permis de comparer diverses techniques de pointage (par la tête ou la main) et
de confirmation (commande vocale ou gestuelle i.e. Air-Tap), ainsi que d’évaluer
l’impact des modèles de points utilisés lors de la sélection (expansion et non-
expansion) l’analyse immersive de points de données en AR. L’objectif était de
déterminer quelles techniques offraient le meilleur compromis en termes de préci-
sion, de temps de réalisation des tâches (TCT ) et de satisfaction des utilisateurs.
Les résultats ont montré que le temps de réalisation des tâches n’était pas significa-
tivement influencée par les interactions entre les 6 conditions issues des 3 variables
considérées : techniques de pointage, commandes de confirmation et modèles de
point. Cependant, la technique de confirmation par geste est significativement
plus lente que la commande vocale. En ce qui concerne la précision (Total Er-
ror Distance - TED), les tests ont révélé qu’avec une confirmation gestuelle, le
pointage avec la tête est plus efficace que le pointage manuel. L’avantage d’une
répartition multimodale du pointé et de la confirmation sur différents canaux n’a
pour autant pas été confirmé de façon significative pour la commande vocale, bien
que les utilisateurs expriment clairement leur préférence pour sa combinaison avec
n’importe qu’elle des techniques de pointé. Concernant le modèle de points, les
utilisateurs ont noté que l’expansion des points de données réduit significative-
ment leur fatigue et qu’elle est plus intuitive pour l’analyse de ce type de données
en situation immersive. Au surplus, les mesures d’erreur ont démontré que cette
technique améliorait la précision des sélections. Globalement, les utilisateurs ont
exprimé une nette préférence pour une technique combinant commande vocale,
pointé de tête et expansion de point.

Ce volet de ma thèse a été présenté et publié dans les actes de la conférence
ACM Symposium on Virtual Reality Software and Technology (VRST) en Novem-
bre 2022.
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Analyse Immersive de Données Météorologiques: une étude ex-
ploratoire sur une approche sémantique basée ontologie

La deuxième problématique abordée au cours de cette thèse est la gestion de la
complexité des données météorologiques dans des environnements immersifs à base
de technologies de Réalité Virtuelle et Augmentée. En effet, la complexité des don-
nées météorologiques réside principalement dans leur hétérogénéité et leur volume.
Ces données proviennent en effet de multiples sources, telles que des satellites, des
radars, des stations météorologiques, ou encore des simulations numériques, et elles
présentent des formats variés, des résolutions spatiales et temporelles différentes,
ainsi que des structures de données diverses. Cette grande diversité rend la gestion
et l’analyse de ces données particulièrement complexes, notamment lorsqu’il s’agit
d’intégrer ces différentes sources pour obtenir des informations cohérentes.

Dans la littérature, les outils actuels proposés pour la visualisation immersive
des données sont limités en termes de capacité d’affichage, mais aussi en termes
d’échantillonnage des données. Pour répondre à ces défis, nous avons proposé une
approche sémantique basée sur des ontologies. Les ontologies permettent de struc-
turer les données en définissant des relations sémantiques entre différents concepts,
facilitant ainsi l’intégration et l’interopérabilité entre des ensembles de données
hétérogènes. Cette approche sémantique permet non seulement d’interroger les
données de manière plus efficace, mais aussi d’améliorer la vitesse d’exploration des
données par les utilisateurs. Grâce à cette intégration sémantique, les utilisateurs
peuvent effectuer des requêtes complexes, affiner leur exploration des ensembles
de données et identifier plus rapidement des tendances ou des anomalies.

Ainsi, le deuxième ensemble de contributions de cette thèse est la conception
et le développement d’une interface utilisateur en RA basée sur une approche
sémantique. Grâce à l’introduction de la sémantique sur les données, l’utilisateur
peut formuler des requêtes d’affichage pour ne visualiser que les données qui sont
appropriées à sa tâche, ce qui facilite ses interactions et améliore ses performances
dans le processus d’analyse des données. Pour explorer cette approche sémantique
dans les applications de RA, j’ai étudié les ontologies existantes en météorologie et
climatologie, et proposé une ontologie faisant la synthèse de plusieurs d’entre-elles,
tout en prenant en compte les contraintes imposées par l’interaction en RA. En
effet, les ontologies météorologiques et climatologiques présentes dans la littérature
sont souvent volumineuses et complexes en termes de concepts et de dépendances
à d’autres ontologies, ce qui réduit les performances des requêtes dans les systèmes
utilisant des technologies immersives. De plus, ces ontologies manquent de règles
et de concepts spécifiques permettant à l’utilisateur de formuler avec précision
des requêtes sur certaines parties de nos ensembles de données complexes. Au-
delà de l’élaboration de ce modèle sémantique, mon autre contribution a alors
été d’évaluer le potentiel d’une telle approche Analyse Immersive pour l’analyse
immersive de données en RA. L’étude visait à comparer les performances de deux
approches, l’une assistée par ontologie et l’autre non assistée. Les résultats ont

14



montré que l’approche assistée par ontologie a nettement surpassé la méthode
non assistée, notamment en ce qui concerne le temps de complétion des tâches
et le nombre d’essais nécessaires pour réussir. Les participants ont réalisé les
tâches plus rapidement et avec moins d’erreurs lorsqu’ils utilisaient l’ontologie pour
interroger et filtrer les données. De plus, les évaluations de la charge cognitive,
mesurées à l’aide de l’outil NASA-TLX, ont révélé que les utilisateurs percevaient
une charge cognitive nettement inférieure avec l’approche sémantique. Enfin, les
retours d’expérience des participants ont mis en avant une forte préférence pour
la méthode assistée, avec des scores de satisfaction utilisateur élevés (SUS). Cette
contribution a été publiée aout 2024 dans le journal Springer Virtual Reality.

Collaboration Immersive Co-localisée en RA: confidentialité des
espaces de travail et de la visalisation des données

En plus de l’amélioration des techniques d’interaction, une autre problématique
clef abordée dans cette thèse est la gestion de l’espace de travail dans le cadre du
travail collaboratif co-localisé en analyse immersive de données. La collaboration
entre plusieurs utilisateurs est essentielle dans des domaines tels que la météorolo-
gie, où des experts de différents domaines doivent travailler ensemble pour analyser
des phénomènes complexes. Cependant, la gestion de l’espace de travail pour la
collaboration immersive co-localisée en réalité augmentée reste un défi. Par ex-
emple, afficher des données partout dans l’espace physique peut être perturbant
ou distrayant pour d’autres collaborateurs, surtout lorsque certaines parties des
données ne sont pas pertinentes pour tous. D’autre part, les relations spatiales et
le positionnement des individus à proximité peuvent avoir un impact significatif sur
les performances et le comportement des utilisateurs lors de la collaboration. Pour
améliorer l’expérience collaborative, nous avons conçu un mécanisme de partition-
nement automatique de l’espace de travail. Ce mécanisme divise l’espace physique
partagé en zones privées et publiques, permettant aux utilisateurs d’organiser leur
environnement sans interférer avec les autres. Trois techniques de visualisation
des frontières de ces zones ont été testées : les frontières linéaires, opaques et
semi-transparentes. Le troisième ensemble de contribution concerne la gestion
de l’espace de travail dans le cadre du travail collaboratif co-localisé en RA. J’ai
tout d’abord proposé un algorithme de partitionnement de l’espace qui permet
aux utilisateurs de diviser l’espace de travail et j’ai implémenté de cette tech-
nique dans une application d’Analyse Immersive de données. De plus, j’ai proposé
différentes formes d’affichage des frontières des espaces de travail, affichage ser-
vant à pour montrer aux collaborateurs les différents espaces de travail disponibles
pour la collaboration. Enfin j’ai globalement mené une étude sur l’apport de ce
partitionnement de l’espace de travail dans ce type de collaboration immersive.
Deux expérimentations ont été menées pour évaluer l’efficacité de la partition de
l’espace physique et la gestion de la confidentialité des vues dans un contexte de
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collaboration immersive en réalité augmentée.
La première portait sur l’évaluation des techniques de visualisation des fron-

tières pour le partitionnement de l’espace de travail. Bien que les temps de réal-
isation des tâches n’aient pas montré de différences significatives entre les dif-
férentes méthodes de visualisation des frontières (lignes, frontières opaques ou
semi-transparentes), les utilisateurs ont préféré la technique des « lignes » pour sa
clarté et sa simplicité. Cette étude a été acceptée pour publication dans les actes
des Posters de la conférence internationale EuroXR 2024.

La deuxième expérimentation s’est concentrée sur l’impact de la partition de
l’espace physique (non divisé/divisé, ce dernier étant donc constitué d’une zone
publique et de deux zones privées) et des conditions de confidentialité des vues
(public/privé) sur une tâches collaboratives d’analyse de données météorologiques.
Les résultats ont montré, d’une part, que la partition de l’espace n’a pas d’impact
significatif sur le temps total d’exécution des tâches, et que, d’autre part, la con-
fidentialité des vues joue un rôle important dans la performance individuelle. Les
utilisateurs ont obtenu de meilleurs résultats dans les tâches réalisées en vue privée,
indiquant que la gestion de la confidentialité dans les espaces collaboratifs immer-
sifs est cruciale pour optimiser la performance et minimiser les distractions. Dans
l’interview des utilisateurs, il apparait que la flexibilité de pouvoir rendre public ou
non un objet est préféré à la contrainte de devoir le placer dans un espace public
prédéterminé, même si la cohabitation des utilisateurs en collaboration immersive
co-localisée en RA suppose un minimum de partitionnement de l’espace de travail.
Cette deuxième partie a été publiée à ACM Symposium on Spatial User Interaction
(SUI 2024) en Octobre 2024.

Conclusions et Perspectives

Dans cette thèse, plusieurs techniques ont été développées pour l’analyse col-
laborative immersive, notamment la sélection de points de données, la gestion des
données à travers une approche sémantique, et la gestion de l’espace physique pour
la collaboration co-localisée. Les contributions de cette thèse ne se limitent pas au
domaine de la météorologie. Les techniques développées peuvent être appliquées à
d’autres secteurs nécessitant l’analyse collaborative de données massives, comme
la santé, la géologie ou encore l’urbanisme. Cependant, ces solutions présentent
certaines limites, ouvrant ainsi des pistes pour des travaux futurs.

L’une des premières perspectives à court terme consiste à étudier les facteurs
influençant les différentes techniques proposées. Par exemple, pour la technique
d’expansion des points de données, il serait intéressant d’étudier l’impact de la taille
finale des points une fois étendus et sa corrélation avec la taille initiale. Ensuite
optimisation du temps de réponse des requêtes ontologiques est une autre priorité
à court terme. Actuellement, le temps de réponse augmente de façon exponen-
tielle avec le nombre de points de données interrogés, rendant cette approche peu
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adaptée aux systèmes interactifs en temps réel pour les ensembles de données vo-
lumineux. Une solution envisagée est l’implémentation d’un indexage basé sur des
graphes et une amélioration du traitement des requêtes au sein de l’architecture
client-serveur utilisée par le système.

À plus long terme, il est prévu d’étendre ces techniques à des scénarios plus
complexes. Une piste majeure consisterait à améliorer tous les aspects de la visual-
isation météorologique et climatologique en utilisant la réalité augmentée (RA). En
outre, l’impact de cette approche immersive sur une longue période, avec un plus
grand nombre de participants experts, doit être étudié afin de mieux comprendre
son utilité dans des environnements professionnels.

D’autres travaux futurs à long terme pourraient consister à explorer des tech-
niques alternatives telles que le curseur bulle 3D ou des techniques de sélection
prédictive. Ces approches permettraient de rendre les objets masqués visibles ou
d’anticiper les cibles à sélectionner en fonction de la proximité de l’utilisateur. De
plus, l’intégration d’algorithmes d’apprentissage automatique ou de réseaux neu-
ronaux profonds pourrait offrir des alternatives aux ontologies pour le traitement
des données complexes.

Enfin, un autre axe de recherche serait d’améliorer la compatibilité entre dif-
férentes interfaces (ordinateurs de bureau, RA et RV) pour créer un système in-
teropérable, utilisable dans des contextes de collaboration synchrone et asynchrone,
à la fois co-localisée et distribuée. Cela permettrait à divers profils d’utilisateurs,
tels que météorologues, ingénieurs ou responsables de la santé publique, de tra-
vailler ensemble de manière plus efficace lors de la gestion des crises climatiques.
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1 - Introduction

The rapid expansion of data collection and the increasing speed at which it is
generated make effective information processing essential. Moreover, the diversity
of data types — from structured numerical entries to unstructured text and multi-
media formats — poses significant challenges in data processing. For example, in
the meteorological domain, each data point typically includes several key proper-
ties (e.g., temperature, pressure, velocity, and surface runoff) that vary over time
and space, and originate from different sources like satellites and radars. These
properties are crucial for understanding and predicting various meteorological phe-
nomena. Collaboration amongst individuals with diverse scientific knowledge and
expertise is necessary to visualise and interpret these multiple parameters, with
each person potentially focusing on specific aspects crucial to a common task.
Consequently, data analytics tasks demand versatile integration and analysis tools
that support collaborative work to ensure comprehensive coherence and utility of
the data processing. However, the limitations of desktop-based data visualisation
are increasingly apparent in this context. In response to this big data problem, this
thesis adopts collaborative Immersive Analytics (CIA) using Augmented
Reality (AR) technology. collaborative Immersive Analytics, according
to Billinghurst et al. [1], is a multidisciplinary approach that combines visual analyt-
ics, immersive techniques, and Computer-Supported Collaborative Work (CSCW)
(Fig. 1.1).

Figure 1.1 – collaborative Immersive Analytics and its related fields according to
Billinghurst et al. [1].

Before discussing about my main research questions and contributions in this
work, I will first introduce different aspects of Visual and Immersive Analytics as
well as CSCW and CIA. I will also present the rationale of why I considered AR
technology for CIA and which types of AR devices used in this context. A more
in-depth literature review of these related domains will be presented in Chapter 2.
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Meteorological and Climatological Data

Meteorological and climatological data are closely linked, particularly in how
short-term weather events accumulate over time to form long-term climate pat-
terns. For example, recurring heatwaves (meteorological data) over several decades
contribute to an observable trend of rising temperatures (climatological data).
These relationships can be analyzed from multiple perspectives:

— Phenomenological Relationships: Meteorological events like cyclones,
heatwaves, and droughts are manifestations of underlying climate condi-
tions. For instance, global warming intensifies tropical storms, increasing
their frequency and severity [19].

— Physical Relationships: The physical laws of thermodynamics and fluid
dynamics govern the behavior of both short-term weather systems and
long-term climate patterns. Rising ocean temperatures, for example, fuel
the energy required for more intense storms [20].

— Statistical Relationships: Climatologists use statistical models to iden-
tify correlations between meteorological variables (e.g., temperature, pre-
cipitation) and long-term climate trends. These models are essential for
predicting future climate conditions based on historical data [21].

Meteorologists and climate analysts have different analytical requirements based
on the temporal scope of their work. Meteorologists, who focus on real-time data,
need tools that can process and visualize information quickly to make accurate
short-term forecasts. This includes the ability to perform on-the-fly data pro-
cessing, highlight critical regions (e.g., cyclone paths), and collaborate with other
specialists in real-time.

Climate analysts, on the other hand, focus on long-term data to identify trends
and anomalies in the global climate. Their work relies on robust statistical models
capable of simulating future scenarios based on historical datasets (over periods
of 30 years or more, following the guidelines of the World Meteorological Orga-
nization (WMO) [22]). Climate analysts often need to compare past trends with
current data to detect significant climate changes [23]. For instance, LATMOS
(Laboratoire Atmosphères, Observations Spatiales) scientific teams are tasked with
the analysis of complex atmospheric datasets, employing various techniques and
methods. The following table outlines the primary tasks, objectives, and challenges
faced in this type of data analysis:

Meteorological and Climatological data from systems such as GPM (Global
Precipitation Measurement), MERRA-2 (Modern-Era Retrospective anal-
ysis for Research and Applications), GLDAS_NOAH (Global Land Data
Assimilation System), and others are vast in size due to their high spatial reso-
lution, large coverage areas, and the extensive range of variables they track.

For instance, data from GPM, including instruments like DPR (Dual-frequency
Precipitation Radar) and GMI (GPM Microwave Imager), primarily contains
global precipitation data. These data cover areas between 60°N and 60°S, with a
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Table 1.1 – Overview of Main Tasks, Objectives, and Challenges in Cli-
mate Data Analysis at LATMOS

Main Task Description / Objec-
tives

Challenges

Identifying the Area
of Interest

Locate areas present-
ing specific structures
(e.g., brightness tem-
peratures indicating
rain).

Manipulating multi-
ple images without
automated tools,
visual comparison.

Selection of the
Area

Isolate and explore a
zone of interest in
more detail to refine
the data within that
zone.

If the data is coarse, it
must be refined after
zooming.

Multi-PlatformData
Preparation

Compare data from
multiple sources to
find spatiotemporal
correspondence.

Problem aligning
data from different
platforms (distinct
satellites).

Check algorithm
output

Validate AI algorithm
results by corroborat-
ing data from differ-
ent sources.

Current tools do
not easily allow
large-scale data
cross-referencing.

spatial resolution of 5 km. GPM also measures additional variables such as cloud
properties, water vapor, and the vertical structure of precipitation. The satellite
revisits most locations every 3 hours, generating millions of data points daily. Due
to its high resolution and frequent temporal coverage, GPM produces terabytes
of data each year.

Similarly, MERRA-2 provides atmospheric reanalysis data for the entire globe,
offering variables such as air temperature, pressure, wind speed, humidity, and
aerosol concentrations. With a spatial resolution of 0.5° x 0.625° and hourly
time intervals, MERRA-2 contains billions of data points spanning back to 1980.
The dataset, covering several decades of meteorological information, totals in the
petabytes due to its extensive historical range and the number of variables it
includes, such as radiation fluxes, soil moisture, and cloud cover.

GLDAS_NOAH focuses on simulating land surface conditions, including vari-
ables such as soil moisture, surface temperature, snow depth, and evapotranspi-
ration. It operates with a spatial resolution of 0.25° and a temporal resolution
of 3 hours. GLDAS_NOAH covers the global land surface, producing billions of
data points annually. Its datasets grow into terabytes of information, containing
detailed simulations of the Earth’s surface processes, which are critical for water
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resource management, agriculture, and climate modeling.
In addition, the ERA5 reanalysis dataset provides global atmospheric, land

surface, and sea surface data with a spatial resolution of 0.25° and hourly intervals.
ERA5 includes variables such as air pressure, temperature, wind velocity, humidity,
soil moisture, and radiation fluxes. It spans back to 1950, generating trillions of
data points and accumulating into several petabytes due to its long time series
and fine spatial and temporal resolutions.

Other meteorological datasets, such as those from MODIS (Moderate Res-
olution Imaging Spectroradiometer), contain information on cloud properties,
aerosol concentrations, and land surface conditions like vegetation health and land
cover, with spatial resolutions as fine as 250 meters and near-daily coverage of
the Earth’s surface. These data products generate hundreds of terabytes annually,
with archives that have grown into the petabyte scale.

Visual Analytics

Since the early 2000s, the exponential growth of data collection posed new
challenges for understanding and extracting valuable insights from immense and
complex datasets, leading to the emergence of Visual Analytics (VA) domain. VA
was established as a significant milestone in this evolution, with two researchers
Cook and Thomas [24] coining the term in their technical report in 2005. VA
stands at the intersection of visualisation, human-computer interaction, and per-
ception, aiming to facilitate the data analytics process by visually highlighting the
relationships between data that may be difficult to discern using only compartmen-
talised techniques from these separate domains. VA process is depicted by Keim
et al. [2] in Fig. 1.2. This process integrates automatic and human-centred visual
analysis techniques, closely interconnected through human interaction to extract
knowledge from data.

Specifically, the process includes various transitions:
— Transformation and Mapping: Data may initially undergo a pre-processing

step in order to be transformed and derived with different representations
suitable for further exploration. This may include data cleaning, normali-
sation, and integration of heterogeneous data sources.

— Model Building: Depending on the analysis needs, one can choose between
visually interactive and automatic analysis methods. If automated analysis
is chosen, data mining techniques are applied to create models from the
data.

— Model Visualisation: The visual representation of models helps to assess the
outcomes of automatic analyses, facilitating an iterative cycle of verification
and refinement. This iterative approach helps identify misleading results
early, leading to more reliable outcomes.

— Visual Data Exploration and User Interaction: Visualisation process enables
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Figure 1.2 – Illustrative diagram of the Visual Analytics process proposed by Keim et
al. [2]. Different stages and objects are illustrated by ovals and transitions by arrows.

analysts to interact with the models by tweaking parameters or selecting
different algorithms for analysis. This interaction allows for the evaluation
of model findings and supports the refinement of these models based on
visual feedback.

— Feedback Loop: The whole process includes a feedback mechanism where
insights gained from visual data exploration can guide further model build-
ing and refinement in automated analysis.

Visual Analytics, primarily relying on two-dimensional interfaces, can encounter
limitations in effectively representing multi-dimensional data and complex spatial
relationships. Although VA employs various visual characteristics to visualise addi-
tional dimensions of data such as colour, size, or shape, these strategies can some-
times result in overcrowded or ambiguous visualisations. To expand the horizon of
visual data analytics, a new approach has been introduced, known as Immersive
Analytics.

Immersive Analytics

Combining Visual Analytics (VA) with immersive technologies, Immersive An-
alytics (IA) field was born. While VA emphasises on analytical reasoning and
decision making process through the “human-in-the-loop” [25], IA takes advantage
of immersive systems to allow users to be immersed in the data world for better
data analytics performance [26]. Its primary objective is to provide an engaging
and interactive environment that allows the users to explore and interact with com-
plex data in a more intuitive and immersive way. In IA, data is typically presented
and manipulated within a 3D virtual and/or real space. The users can navigate
within this space, manipulate data, and visualise patterns and relationships [27] in
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a manner that closely resembles natural interactions with physical objects.
Immersive Analytics holds potential applications across various domains, in-

cluding data exploration and analysis [28, 29], scientific research [30], health-
care [31, 32], and architecture [33, 34]. It offers a promising avenue for trans-
forming how we interact with and derive insights from data [35], ultimately leading
to enhanced decision-making and problem-solving.

Collaborative Immersive Analytics

Computer-Supported Collaborative Work (CSCW) [36] refers to a research field
that focuses on understanding how people collaborate through the use of computer
and on designing systems that effectively support this collaboration. According to
Ellis et al.’s taxonomy [3] (Fig. 1.3), groupware systems are categorised based on
the time and place of interaction amongst the users. Specifically, the taxonomy is
generally divided into four quadrants:

— Same time, same place (synchronous and co-located): Users interact
in real-time while being physically present in the same location.

— Same time, different place (synchronous and distributed): Users in-
teract in real-time but from different physical locations.

— Different time, same place (asynchronous and co-located): Users
interact at different times, but share the same physical space for their
interactions (though not simultaneously).

— Different time, different place (asynchronous and distributed): Users
interact at different times and from different locations.

Figure 1.3 – Space-time collaboration matrix based on Ellis et al.’s collaboration tax-
onomy [3].

Collaboration in visual analytics facilitates groups of people working together
for sense-making [37, 38, 39] and understanding big and complex data [37]. Ac-
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cording to Isenberg et al. [40], collaborative visualisation is “the shared use of
computer-supported interactive visual representations of data by more than one
person with the common goal of contribution to joint information processing ac-
tivities.” Following the groupware taxonomy of Ellis et al., this thesis deals with
synchronous co-located immersive collaboration. Detailed related work in this field
will be presented later in Chapter 2.

Mixed Reality

Milgram and Kishino [4] defined Mixed Reality (MR) as the interval between
the real and the virtual environment well known as Reality-Virtuality continuum
(Fig. 1.4). Extended Reality (XR) is considered as the whole spectrum that covers
MR and Virtual Reality (VR). Within the MR spectrum, Augmented Reality (AR)
aims to overlay and integrate digital contents into the real world, and Augmented
Virtuality (AV) is defined as integrating the real objects into the virtual world.
In his survey in 1997, Azuma [41] argued that “AR allows the user to see the
real world, with virtual objects superimposed upon or composited with the real
world.“ To avoid any confusion, he defined AR as a system with the following
three characteristics: combination of real and virtual, real-time interaction, and
3D registration. AR interfaces are often the main subject of comparison with other
types of devices in different applications, for instance, in-depth perception [42],
exposure therapy [43], consumer purchase intentions [44], or simulation [45].

Figure 1.4 – Milgram and Kishino’s Reality-Virtuality Continuum [4].

In the context of data analytics, in the early days, Belcher et al. [46] explored
the use of AR in visualising complex graph links, comparing AR interfaces to
desktop interfaces. The experiment showed that AR interfaces can be effectively
used for graph link analysis. Similarly, a user study has been conducted by Hedley et
al. [47] to evaluate the performance of an AR interface against its desktop version
in helping users develop mental models of spatial data visualisation in geographic
data visualisation. Findings indicate that AR interfaces may offer enhanced spatial
understanding, providing more detailed and complete cognitive representations of
geographic visualisations. More recently, Bach et al. [48] evaluated AR Head-
Mounted Displays (HMD), handheld tablet, and desktop setups for 3D point clouds
visualisation tasks. They found that the desktop generally offers superior precision
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and speed. However, AR shows promise for spatial manipulation tasks, suggesting
potential areas for future improvement and application designs.

Later, Whitlock et al. [49] conducted a study to measure how a user performs
analysis tasks using various interfaces (desktop, VR, and AR) to interpret data visu-
alisations over five visual factors (i.e. colour, size, height, orientation, and depth).
The conclusion was that while each display type has its own advantages, desktop
displays generally allow for more precise data analysis, confirming Bach et al.’s
study [48]. Nonetheless, in cases where spatial manipulation is crucial, immersive
displays like AR and VR show potential benefits. The authors, therefore, confirmed
the benefits of stereoscopic viewing when the user works in three-dimensional (3D)
space and concluded that AR encourages navigation but decreases performance
with colour-based visualisation. More recently, Lisle et al. [50] explored the com-
parative effectiveness of AR and VR in supporting the sense-making process. They
concluded that AR enhances user satisfaction by allowing the integration of real-
world tools, whereas VR offers a more focused task environment by isolating the
user from physical distractions.

In research for collaboration using immersive technologies, many studies have
been conducted to determine the best interface for collaborative tasks, especially
between the AR and the other interfaces. For instance, Szalavri et al. [51] argued
that their collaborative AR system provides benefits beyond traditional desktop-
based visualisation. Nilsson et al. [52] compared the AR collaborative system
with traditional paper for supporting joint planning tasks. Their results show that
the users positively appreciated working with the AR system compared to their
traditional tools and would like to use it in real work. Later, Prytz et al. [53]
studied the effect of eye contact in AR compared to the traditional use of paper.
They concluded that the decreased stakeholder’s eye contact with HMDs does not
affect the collaboration directly. Recently, Wang and Dunston [54] showed that AR
systems can improve performance time and mental effort in collaborative design
tasks compared to paper-based drawing. In a user study comparing immersive VR
and AR, Billinghurst et al. [55] found that there was no significant difference in
task completion time; however, the subjective data showed that the participants
perceived that they performed better when using AR mode as they could see the real
world and their real collaborators. Additionally, Kiyokawa et al. [56] demonstrated
that AR is more effective than VR for collaborative target selection tasks.

Moreover, besides comparison with other interfaces, many studies showed the
benefit of AR for collaboration. For example, Poelman et al. [57] argued that crime
scene investigators using AR for collaboration can support mutual understanding,
lead to consensus, and support hypothesis testing. Dong et al. [58] showed that
collaborative AR can facilitate communication and discussion of engineering pro-
cesses. More recently, Mohan et al. [59] study’s results demonstrated promising
potential for AR collaboration for air traffic control.

Although my thesis did not involve augmenting real objects with digital con-
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tent as often indicated as the main purpose of AR, I focused on HMD-based AR
interfaces for several reasons. First, they uphold the advantages found in HMD-
based VR systems for big data visualisation by providing the users with an extended
workspace that does not need to be anchored to physical monitors [60]. Moreover,
compared to VR, AR interfaces facilitate a hybrid and flexible working environment
on a daily basis, making possible a cohabitation between immersive data analysis
and interaction with conventional tools (e.g., desktops, office stationary for taking
notes) without the users having to remove their headset. In addition, given the
demonstrated effectiveness of AR in collaborative tasks in literature, AR’s ability to
enhance understanding, support consensus-building, and improve task performance
aligns with my goal of facilitating complex data visualisation through collaborative
efforts.

Augmented Reality Devices for Immersive Analytics

This section provides an overview of the AR devices and discuss their limita-
tions. The AR devices can be categorised into two broad categories: mobile and
stationary setups. While the stationary setups are mostly anchored to a desktop or
laptop computer, mobile setups are portable, which can be handheld or wearable
devices.

The stationary category is considered to be fixed in physical space. For exam-
ple, HoloDesk [5], illustrated in Fig. 1.5, consists of a half-silvered mirror, a Kinect
sensor, and a projector, creating a see-through display where users can view and
interact with virtual and physical objects simultaneously. Stationary setups can be
increasingly elaborated which generally make use of highly advanced tracking tech-
nology for accurate 3D registration of spatial AR rendering. However, their main
disadvantage lies in their limited mobility and fixed setup requirements, as they
may not be easily adaptable to diverse tasks and contexts of everyday workflow.

Figure 1.5 – A physical setup of HoloDesk with its main components [5].

Handheld AR devices are the devices that are often held in the user’s hand for

27



interaction, such as smartphones or tablets. Handheld devices are often equipped
with a camera that captures the real environment and a screen that displays digital
content on top of the video feed. They are easy to use, versatile and almost
everyone has one for use nowadays. However, they have some limitations, such as
a small field of view and low computing capacity. This type of devices occupies the
users’ hands and needs them to maintain an uncomfortable posture in prolonged
interactions. All these limitations make these devices unsuitable for long-lasting
data analysis tasks. For example, Fig.1.6 illustrates the position the user should
hold their smartphone when they are interacting.

Figure 1.6 – Users using handheld devices (tablets) for AR interaction [6].

On the other hand, wearable devices such as Head-Mounted Displays (HMDs)
provide a hands-free AR experience by being worn on the user’s head or attached to
accessories like glasses. Based on the rendering method, they can be further clas-
sified into two other groups: Video See-Through (VST) and Optical See-Through
(OST) devices. VST devices (Fig.1.7.A) capture the real-world scene through live
video streams from cameras, seamlessly superimposing virtual objects onto it in
real-time (e.g., Varjo XR-3 [61], Meta Quest 3 [7]). The primary issue with VST
devices is that if the device ceases to operate, the user’s field of view becomes
entirely obstructed. OST devices (Fig.1.7.B) operate by projecting digital con-
tent onto a transparent or semi-transparent display, thereby superimposing digital
information onto the user’s real-world environment (e.g., Microsoft HoloLens [8],
Magic Leap [62]). These devices have some limitations with regard to the quality
of resolution, especially when performing rendering in various lighting conditions.

In this project, I have chosen the HMD OST device for various reasons. First,
it is mobile, but unlike handheld devices, it allows a hands-free interaction that is
essential in IA, supporting simultaneous interaction with the data, physical world
and between collaborators without constraints. Second, it ensures that the users
can see digital overlaying directly in their real-world view without the latency or
disorientation often associated with HMD VST device. At the time I was starting
my project in 2020, Microsoft HoloLens 2 was one of the most advanced HMD
OST devices available.
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Figure 1.7 – Example of: A) Meta Quest 3 Video See-Through (VST) device [7], and B)
Microsoft HoloLens 2 [8] Optical See-Through device (OST).

Objectives and Research Questions

As previously discussed with regard to the main topic and technological choices
of this thesis, my research focuses on co-located collaborative Immersive Analysis
(IA) using Augmented Reality (AR). Rather than targeting mainstream applica-
tions, my work specifically emphasizes the development of research tools to sup-
port climatology and meteorology data analysis processes. In the collective effort
to combat climate change and global warming, it addresses the challenges of work-
ing with complex storm and cyclone datasets from real weather observations and
predicted simulation model projections. Cyclone climate disasters occur globally
each year, causing widespread devastation, including human casualties, significant
infrastructural damage, and economic and environmental setbacks. This project
aims to contribute to ongoing urgent efforts to minimize storm and cyclone damage
internationally by developing techniques that enable climate researchers and key
stakeholders to better access and understand available data. In detail, I studied
three main aspects of an IA framework using Head-Mounted Display (HMD)-based
AR technology: from data integration to selection techniques and support for col-
laborative research work.

One of the primary challenges of IA process is data integration. It enables
the consolidation of data from various sources to provide a unified, coherent, and
comprehensive view and get it ready for visualisation. This step is important for
any IA tasks but is also crucial in AR-based systems, especially when it relies on
devices with low computing power and often limited fields of view. Therefore, the
first objective of this thesis is to study how to effectively integrate multidimensional
datasets to facilitate their visualisation and interaction in IA. To achieve this goal, I
proposed a semantic-based approach using ontology and linked data to help reduce
the complexity of the data as well as to accelerate the analytical reasoning process.
This leads to the first main research question:

RQ1: Can the semantic-based approach facilitate visualisation and analysis
in immersive analytics for meteorological data?
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Interacting with data allows the users to manipulate its multiple variables,
observe outcomes, and gain insights through direct manipulation and visualisation.
One of the basic but essential interaction operations is data point selection. This
selection task enables the users to select specific information, which helps them to
focus on particular data points and examine detailed attributes of selected data.
Such targeted interaction enhances the users’ ability to analyse trends, detect
anomalies, and understand correlations within the data. However, one existing
limitation of AR-based IA systems using HMDs is that selection operations are
often repetitive, tiresome, and imprecise for selecting small objects from a distance.
The second objective is to explore new AR interaction techniques to facilitate the
exploration of scientific data, especially for multidimensional datasets. I proposed
in this project a new selection technique based on expanded data points. This
leads to the following research question:

RQ2: Will the selection technique based on expanded data points improve
the performance and user experience of data selection in HMD-based AR
interfaces?

Furthermore, collaboration is important to be studied in a IA system as it en-
ables the users from different fields of expertise to collaborate for data analysis
and decision making. In this project, I studied in a special aspect of synchronous
co-located collaboration using AR: how the users can organise themselves within
the physical space available of the workspace during individual and collaborative
tasks. Indeed, in daily limited workspaces such as offices and meeting rooms,
collaborators working on large and complex data sometimes disturb or invade in-
advertently each other’s physical space. On the other hand, spatial relationships
and the positioning of the users can have significant impact on their performance
and collaborative behaviour. The third objective of this project is to design and
propose a collaborative immersive platform that facilitate collaborative work be-
tween the users. I proposed an automatic partitioning technique to divide the
available physical space for co-located users using HMD-based AR system, in com-
bination with view privacy aspect of data visualisation. To effectively display the
workspace boundaries after the partitioning, I also proposed different visualisation
modes for these boundaries on the floor of the workspace, including Line, Opaque,
and Semi-transparent. This work leads to two following research questions:

RQ3.1: Which of the three visualisation modes: Line, Opaque, and
Semi-transparent is the most appropriate method of displaying the users’
workspace boundaries?
RQ3.2: Will the automatic partitioning with a separation of public and
private view for each user facilitate the workflow of the immersive analytics
work on meteorological data?
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Dissertation Organisation

This thesis dissertation is organised as follows:
Chapter 2 provides an overview of related work. It is divided into four parts.

The first part summarises existing works on selection in immersive environments,
introducing pointing and confirmation (activation) techniques. The second part
presents Immersive Analytics (IA). Specifically, I will present different interac-
tion tasks, and some immersive visualisation toolkit. The third part presents the
semantic-based approach in immersive environments. It defines the ontology and
provides some examples of its application in virtual and augmented reality. The
last part introduces collaborative immersive analytics by first presenting collabo-
rative IA frameworks, then discussing users’ position arrangements in synchronous
co-located collaboration and different privacy management strategies in immersive
collaboration.

Chapter 3 focuses on the selection technique study in IA. It first introduces
the new technique proposed to improve the selection based on expanded data
points. The chapter also presents the user study that has been conducted to
evaluate this technique across different factors (pointing and activation) on a head-
mounted display (HMD)-based Augmented Reality (AR) interface. I will conclude
this chapter by discussing the limits of the technique and its future work.

Chapter 4 introduces a semantic IA framework for meteorological data analyt-
ics. It details how the proposed ontology and the IA system were built. It also gives
an overview of the evaluation of the ontology’s application in this IA framework.
Finally, I conclude this chapter by presenting lessons learned for this use case study
and discuss existing open problems.

Chapter 5 presents the design of the proposed automatic technique to partition
available physical space for the co-located users using AR for IA. It will also detail
the co-located collaborative IA system. It introduces the three boundary presen-
tation techniques. Two user studies will be presented in this chapter: the first
one evaluating the three proposed boundary presentation techniques, and the sec-
ond studying the partitioning technique with view privacy strategies. The chapter
concludes with a discussion of future work.

In the final chapter, the thesis concludes by summarising the findings and
discussing the potential avenues for future research related to this work.
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2 - Background Study

This chapter introduces several relevant related works of this thesis: selection
techniques in extended reality; immersive analytics; sematic-based approach, espe-
cially ontology and linked data for meteorology and climatology and how semantic-
based approach has been applied in extended reality; and finally collaborative im-
mersive analytics with a closer look on users’ position arrangement and privacy
strategies in synchronous co-located collaboration.

2.1. Selection Techniques in Extended Reality

Selection is one of basic but important operations during the interaction in
eXtended Reality (XR). In this thesis, one of my objectives was to explore and
improve selection for Head-Mounted Display (HMD) based Augmented Reality
(AR) interfaces. This section gives an overview of main works on existing selection
techniques. From the classification of selection techniques by task decomposition
in Bowman et al.’s [63] book (p.149-158), I focused mostly on pointing techniques
in the phase of indication of object, and event, gesture, and voice command for
confirmation of selection.

2.1.1. Pointing Techniques
This section gives an overview of main existing works with regard to pointing

techniques for selection. It is one of the most fundamental operations used during
selection and manipulation of 3D virtual objects. Indeed, the quality of these
elementary interaction techniques has a profound effect on overall user experience
in immersive systems. Pointing technique allows the users to indicate one or several
objects to be selected for manipulation, especially when they are out of arm’s reach.
In the early 1980s, Bolt’s description of the pointing technique [64] was one of the
earliest examples. Since then, many approaches have been proposed (cf. [63, 65]).

Figure 2.1 – Examples of pointing techniques: The left image shows a user uses a ray
casting from their head for pointing, while the right image demonstrates hand-based
pointing.
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Ray-casting with a virtual pointer (cursor) at its end is the most commonly used
pointing method due to its simplicity, ease of use, and affordance. This approach
depends on the origin and direction of the ray [66]. On an AR HMD device, its
origin and direction can be determined by hand (i.e. using hand position as the
origin and wrist as orientation (Fig. 2.1 right)), head (i.e. using head position as
the origin and front head direction as orientation (Fig. 2.1 left)), eye (i.e. using
eye or head position as the origin and front direction of the head as orientation
(Fig. 2.6 left)), or a combination of head and hand (i.e. using the head position
as the origin and wrist as orientation). It can also be defined by using two hands:
one hand for ray origin, the other to specify where the ray is pointing to [67, 68].
Actually, most of the HMD devices use head- or hand-pointing approach (e.g.,
Oculus Quest [69] and Microsoft HoloLens [70]).

To determine which modality (i.e. hand, head, eye, or a combined one) is the
most appropriate for pointing, many studies have been conducted to compare these
different techniques. For instance, Bates and Istance [71] studied eye- and head-
based pointing. They concluded that eye-based pointing offers poorer performance,
is more unpleasant to use, and requires more effort than head-based pointing. On
a HMD device (MicroOptical), Jalaliniya et al. [72] compared eye- and head-based
pointing to mouse pointing, and they found that the eye-gaze approach is faster and
the head-based pointing is more accurate than the others. Later, Kytö et al. [73]
confirmed Jalaliniya et al.’s conclusion with an evaluation on Microsoft HoloLens.
Conversely, Hansen et al. [74] found that there is no significant difference between
eye-gaze- and head-based pointing, except that they are slower than the mouse.
Tanriverdi and Jacob [75] compared eye-gaze-based and hand-based pointing in VR.
Their results show that eye-gaze-based pointing is significantly faster for distant
object selection, and they did not find any significant difference in object selection
in close range. In contrast, Cournia et al. [76] did not find a performance advantage
of eye-gaze-based pointing over hand-based pointing.

Lin et al. [77] compared head and hand pointing methods when using a large
stereoscopic projection display. The results show that hand pointing has better
overall performance, lower muscle fatigue, and better usability, yet head-pointing
provides better accuracy. Later, Bernardos et al. [78] compared index finger and
head pointing on a wall-sized projection screen. They did not find a significant
difference between them in task performance.

To improve pointing accuracy, many works proposed to combine different con-
trol modalities. For instance, Vanacken et al. [9] introduce 3D Bubble Cursor
and Depth Ray in VR. The 3D bubble cursor (Fig. 2.2) dynamically resizes a semi-
transparent sphere so that it only contains the closest target, ensuring unambiguous
selection. It highlights the target in yellow and can make nearby occluded object
semi-transparent to aid visibility and selection. The Depth Ray (Fig. 2.3) uses a
ray casting technique combined with a depth marker controlled by the user’s hand
movements. It selects the target closest to the depth marker along the ray, which
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Figure 2.2 – 3D Bubble Cursor as proposed by Vanacken et al. [9]: A) 3D bubble cursor
is illustrated as a semi-transparent grey sphere. This sphere dynamically resizes to
capture only the closest target. The closest target, highlighted in yellow, is the only
one that falls within the boundaries of the bubble cursor. A crosshair is visible at
the centre of the bubble cursor for additional visual feedback. B) When necessary, a
second semi-transparent sphere is rendered around the captured target to ensure
that it appears fully contained within the bubble cursor.

Figure 2.3 – Depth Ray technique as proposed by Vanacken et al. [9]: A) The depth ray
technique is shown, where a thin red cylinder represents the ray cast into the scene.
The depth marker, controlled by the user’s hand movements, is used to select the
target. The closest target to the depth marker along the ray is highlighted in yellow,
while other intersected targets are highlighted in green. B) This subfigure illustrates
the user’s ability to control the position of the depth marker along the ray by moving
their hand forwards or backwards. This movement adjusts which target is selected
based on proximity to the depth marker.

is rendered as a thin red cylinder. It also highlights the captured target in yellow
and uses transparency to make occluded targets visible

Argelaguet et al. [10] studied in a CAVE-like system the problem of eye-hand
visibility mismatch affecting pointing selection techniques when using hand-base
pointing. They developed a new technique that combines image-plane technique
and ray control by the users’ hand rotation (Fig. 2.4). This technique outperforms
ray casting in complex scenes. Liu et al. [79] introduced a pointing technique
named Gunslinger (Fig. 2.5) on a large display. This technique allows the users to
use hand pointing with arms-down postures.

Recently, Kyoto et al. [73] combined primary pointing methods (head or eye-
gaze pointing) with a refinement technique (head movement, hand gesture, or
handheld device). More recently Wei et al. [80] proposed two predictive models
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Figure 2.4 – Illustration of the ray casting from the hand and the eye technique of
Argelaguet et al. [10]: (A) Traditional ray casting where the selection ray originates
from the user’s hand, which can lead to an eye-hand visibility mismatch. (B) Using
traditional ray casting, the user may attempt to align their hand with the viewing di-
rection to mitigate visibility issues, resulting in an uncomfortable posture. (C) Their
proposed technique allows the user to use a selection ray originating from their eye,
directed by the orientation of their hand. (D) The proposed technique setup involves
two rays: the selection ray (red) from the eye position (E), controlled by hand orienta-
tion (H), and a feedback ray (green) providing visual feedback by connecting the hand
position to the intersection point (Q) on the selection ray.

(Fig. 2.6 right) to improve target selection in AR based on eye and head movements
(unimodal model using eyes only and multimodal model using eyes and head to
predict target selection).

I have not evaluated all the pointing techniques in the user study conducted
in Chapter 3, even though Microsoft HoloLens (1 & 2) allows the users to select
virtual objects through different available pointing techniques (eye, hand, or head
pointing). I only considered hand and head pointing because, based on previous
research, it is known that eye pointing suffers from the ‘Midas Touch’ problem
[81] (‘Midas Touch’ problem refers to the issue where involuntary selection occurs
during interaction), making it difficult to select small objects like data points.
Additionally, I have not found any comparative studies regarding accuracy and
speed using the two modes, head and hand, on Microsoft HoloLens 2.

2.1.2. Confirmation of Selection
Techniques of confirmation of selection allow users to confirm and activate the

selection of object(s). The most commonly used techniques are dwell (or dwell-on-
object [82]), button click (or press-to-select) [74, 83], speech [84, 85], and hand
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Figure 2.5 – Gunslinger pointing technique metaphor: A) Both hands are in a neutral
position, hanging down naturally beside the body. B) Commandmodes are activated
by specific hand postures. For instance, the dominant hand’s thumb and index finger
form a pointing gesture (green circle) while two fingers on the non-dominant hand in-
dicate a zoom gesture (blue circle). C) Events or parameters aremanipulated through
fingermovements, such as folding the thumb down on the right hand to click ormov-
ing the two fingers to zoom in or out.

gestures [86, 87].
Dwell technique has been widely studied (e.g., [74, 88, 89]). It consists in

triggering the selection when the ray or virtual cursor dwells on the target for a
certain amount of time. For instance, Muller [90] proposed between 350-600 ms
depending on the application. It has been studied as hand-free input to solve the
‘Midas Touch’ problem of the gaze pointing [91, 92]. Even if different studies show
that dwell’s activation makes the least error [83, 93] compared to other techniques,
a short or long dwell threshold can affect selection as a whole, making it sensitive
to the ’Midas Touch’ problem. Therefore, it is difficult to use such technique for
the selection of small objects (like data points).

Button click activation (press of a button to trigger a selection) has also been
evaluated. For example, Hansen et al. [74] compared it with dwell confirmation
technique. Dwell activation was faster than click activation. Recently Esteves et
al. [93] compared the five confirmation techniques: dwell, speech, clicker, and mid-
air gesture. They found that clicker was the best during hands-on input. Later
Mutasim et al. [83] did not find any difference between click and pinch. Although
the research studies have shown the benefits of confirmation with this technique, it
may induce the Heisenberg effect [86] (Heisenberg effect in refers to the unintended
changes in user behavior or accuracy that occur due to the process of interacting
with a control mechanism) in the following situations: using head pointing and
clicking on confirmation button on the side of the headset, or when using the same
hand for pointing/holding the controller and clicking on the button.

Voice can be used to activate a selection by voice-only interaction or by com-
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Figure 2.6 – Left: A user uses eye-pointing for selection on an AR headset. Right: Wei
et al.’s [80] predictive model: after each selection, the final positions of the eye and
head are recorded, establishing patterns of typical user behavior regarding where
they look and how they orient their head. The model uses this data to predict which
object the user ismost likely to select, effectively identifying themost probable target.

bining it with the pointing technique. For instance, when the user says the name
of objects in [94, 95], these objects are selected. However, voice is not a reliable
input channel in a noisy environment. Combining voice activation and hand point-
ing may reduce the Heisenberg effect compared to button click and pinch during a
selection task. However, I did not find any user study evaluating the combination
of voice activation with hand and head pointing.

Hand gestures can also be used as a selection activator. The user must perform
a pinch gesture [86] to trigger the selection. This technique can be sensible to the
Heisenberg effect the the user uses the same hand to point and activate selection.
To minimize this effect, for instance, Vogel and Balakrishnan [87] proposed the
AirTap and Thumb Trigger, and other researchers suggested to combine head or
gaze pointing with pinch [83, 93, 96]. However, I did not find any work comparing
pinch and other selection activation techniques (dwell, click, and voice) apart from
the recent study conducted by Mutasim et al. [83]. They concluded that compared
to dwell and click, the pinch is slower and increases more errors.

2.2. Immersive Analytics

This section discusses previous research in Immersive Analytics (IA) and ex-
plores the application of Augmented Reality (AR) in Meteorology and Climatology.

2.2.1. Data Visualisation using Extended Reality
In the literature different visualisation techniques have been used for data visu-

alisation. Kraus et al. [97], in their survey, identified eight visualisation techniques
as node-link graphs, scatter plots, parallel coordinates, glyphs, geographic, volume,
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flow, and others including all visualisation techniques which could not be assigned
to any of the seven previous groups.

Node-link graphs [98] (Figure 2.7) is a visual representation of networks where
entities are depicted as nodes (or vertices), and the relationships between them are
shown as links (or edges).

Figure 2.7 – Immersive node-link graphs visualisation [11]

Scatter plots [11] (Figure 2.8) are the data visualisation technique that uses
Cartesian coordinates to display data points in 2D/3D visualisation systems. The
data point typically represents an individual unit of information or an observation
collected from a dataset. For the sake of simplicity, I will call them data points
(or points) even though they can come in different shapes and sizes. Indeed, size,
colour, texture, or other attributes of these data points can be used to encode
different data dimensions or properties.

Figure 2.8 – An example of scatter plots visualisation using IATK [12].

Unlike scatter plots, parallel coordinates [99] (Figure 2.9) are used to display
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data by plotting each data point as a line that intersects several parallel axes, each
axis representing a different dimension of the data. It is particularly useful for
exploring patterns and relationships across multiple variables simultaneously.

Figure 2.9 – 3D parallel coordinate plot (PCP) visualisation in an AR interface using
HMD and touch screen [13].

Glyph visualisation [100] (Figure 2.10) displays multi-dimensional data points
using complex symbols or icons where each aspect of the glyph’s shape, size, colour,
orientation, or texture represents a dimension of the data.

Figure 2.10 – An example of glyph visualisation: the image shows a diesel particle filter
oxidising soot at over 1000 degrees Celsius. It uses colour to indicate temperature of
the process, different shapes to show soot quantity and change rate, and rotation to
represent needed oxygen [101].

Geographic visualisation, also known as cartographic visualisation [102], refers
to the graphical representation of spatial and geographic data. It is typically used
to display relationships and patterns across geographic locations and can be found
in various forms such as maps and globes (Figure 2.11).

Volume visualisation [103] allows to transform multi-dimensional datasets into
visually interpretable forms using techniques like ray casting [104] or iso-surface ex-
traction [105], facilitating the detailed analysis of internal structures (Figure 2.12).
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Figure 2.11 – Geographic visualisation using 3D Globe: the participants exploring mi-
gration flows between countries [14].

Figure 2.12 – Example of volume visualisation: users visualising cell model in 3D [15].

Finally, flow visualisation [106] is a technique that used dyes, smoke, or particles
to trace and map the flow patterns of computational simulations, applicable in fields
such as aerodynamics, meteorology, and medical research (Figure 2.13).

2.2.2. Interaction with Data
According to Brehmer and Munzner’s [17] taxonomy (Figure 2.14), IA manip-

ulation can be organised into tasks: Select, Navigate, Arrange, Change, Filter, and
Aggregate.

Select refers to the interaction technique used to identify and choose specific
data points. It allows users to trigger actions like displaying detailed information,
applying filters, or modifying visualisation properties of the selected data points.
The selection can be classified into single-point selection using raycasting [107,
108, 109] or virtual cursor [110, 9], and multi-object selection using brushing [111,
112, 113] or box selection [114, 115, 116].

Navigate enables the users to change their viewpoint or move through a vir-
tual and/or real environment. Different modalities have been proposed to facilitate
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Figure 2.13 – Example of flow visualisation: a user visualising the air flow [16].

navigation such as natural walking, redirected walking, or ‘flying’ through environ-
ments using controllers [108, 117], zooming [118, 119, 120], and manipulating
the visualisation space itself (e.g., through scaled world grabbing [121, 122] or
world-in-miniature technique [122, 123]).

Arrange refers to the interaction techniques that allow the users to organise or
reposition data within a visualisation environment. This involves moving, rotating,
or re-scaling objects to enhance visibility and comprehension or to reveal hidden
patterns within the data. According to Fonnet and Prié [124] different techniques
can be categorised into arranging data points [125, 126], view components [127,
128], and entire view [117, 129, 130].

Change is a functionality that allows the users to modify the visual encoding of
data points. Key aspects include changing visual mapping of data attributes [131,
132] (e.g., colour, shape, or size), switching between different data visualisations
[133, 134, 135] (e.g., graphs or scatter plots), and adjusting visual properties (e.g.,
opacity or scale [136, 137]). This capability is used for dynamically exploring data
by adapting the visual presentation to highlight trends, patterns, or anomalies,
making it easier for the users to derive insights from complex datasets.

Filter refers to the techniques that enable the users to selectively control the
display of data within a visualisation setting based on specified criteria. According
to Fonnet and Prié [124], the users can use direct selection-based filtering to
interact directly with the data. Filtering is done by the direct result of selection
using box [114], voice command [118], or slice [138]. Alternatively, abstract layer
manipulation [108, 139] uses menu elements, allowing for the application of filters
through a structured interface.

Aggregate involves different techniques for changing the granularity of visual
data representations. An example can be found in the work of Hurter et al. [134]
when they mapped the users’ movements to data exloration tools in a mixed reality
data sphere. This capability allows the users to adjust the level of detail in their
analysis, facilitating both overview and in-depth exploration of the data.

The other manipulation interactions can come from combining different tasks
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Figure 2.14 – The Immersive Analytic manipulation interaction, according to Brehmer
and Munzner [17]

listed above. For instance, details-on-demand is closely linked to Navigate and Se-
lect. It allows the users to request and view additional, detailed information about
specific data points. This technique helps the users explore complex datasets by
providing insights into data points without overwhelming them with excessive infor-
mation upfront. This is in line with the Overview+Detail (O+D) design paradigm,
which provides a high-level view of the dataset (the overview) while allowing users
to zoom in on specific areas to retrieve more granular information (the detail).
This approach enables users to manage and navigate large datasets effectively by
balancing the need for context with the ability to focus on specifics [140, 141].

In immersive environments, details-on-demand can be activated by selecting a
data point (the activation can be reactive [107, 142] or predictive [143]), typically
through gestures, raycasting, or controller inputs. Once activated, it can display
textual descriptions, data attributes, linked metadata, or more detailed visual rep-
resentations such as charts, graphs, or even multimedia content.

2.2.3. Immersive Analytic Toolkits
In order to facilitate the usability of IA to the large public, many IA frame-

works or toolkits have been proposed with a high-level, friendly user interface and
grammar language appropriate for both novice and expert users. For instance,
ImAxes [133] is one of the first systems that provides a flexible set of axes to be
manipulated and combined to create different plots for adaptive visualisation of
data in both VR and AR. The two following toolkits DXR [144] and IATK [12]
were developed for a wide range of users for rapid prototyping. DXR [144]’s declar-
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ative visualisation grammar allows the users with no experience in 3D graphs or
immersive technologies to easily create 3D data visualisation in immersive environ-
ments. IATK [12], on the other hand, supports interactive data visualisation using
scatterplots, bar charts, and parallel coordinates plots with manual data-linking
capabilities. Later, another framework called U2VIS was proposed by Reipschlager
et al. [30] to support 2D and 3D bar charts, scatter plots, line charts, parallel
coordinates, and pie charts using AR. To facilitate the usability evaluation of MR
applications, Nebeling et al. [145] introduced the Mixed Reality Analytics Toolkit
(MRAT), designed as an integrable Unity plugin, enabling the collection, analysis,
and visualisation of user interaction data.

For in-situ data analytics, some toolkits have been also proposed. For in-
stance, MIRIA [146] has been designed for in-situ visualisation and analysis of
spatio-temporal user interaction data in mixed reality and multi-display environ-
ments. It supports various visualisations like 3D movement trajectories, position
heatmaps, scatter plots. It also integrates AR visualisations of spatial interaction
data into the physical locations where it was recorded, facilitating a comprehensive
and immersive analysis of complex spatial interaction data. A more recent toolkit
is RagRug [147], designed for situated analytics for context-aware, adaptive visu-
alisations with AR, facilitating the integration of AR visualisations with Internet of
Things (IoT) data streams through distributed dataflow and reactive programming
patterns. It allows developers to describe and link physical and virtual elements
with data flows.

A completely different approach for web-based IA was introduced in Saifee’s
work [148] through VR-Viz, which facilitates quick exploration and prototyping.
Additionally, Butcher et al. [149] present VRIA, which, akin to AR.js within this
process, provides data visualisation capabilities in AR across desktop and mobile
browsers.

To the best of our knowledge, existing IA toolkits (Figure 2.15) are still limited
in their ability to manage big and complex datasets. Most of them use CSV/JSON
files or SQL databases to store and query data. For instance, the users of IATK
or DXR can import CSV or JSON files into Unity scenes to visualise using VR
or AR headsets. Similarly, MRAT uses SQL databases for storing and managing
the interaction data collected during user sessions. However, these methods of
managing data are limited in terms of reasoning and inference capabilities, and
therefore, may not support many types of queries.

2.2.4. Meteorology and Climatology Data Analysis
Meteorological and climatological data analysis often requires the visualisation

and manipulation of large amount of data. In practice, the analysis process re-
lies heavily on visualisation methods using weather maps and different types of
diagrams and graphs to represent the data. Most researchers in meteorology and
climatology use desktop-based 3D open-source software (e.g., Met.3D [150], VA-
POR [151], ParaView [152]), the commercial software (e.g., Iris Explorer [153],
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Figure 2.15 – Examples of Immersive Analytics Toolkits: A) ImAXes enables dynamic
manipulation and combination of axes for flexible data representations. B) DXR and
C) IATK facilitate the creation of 3D visualisations within immersive environments,
offering advanced data exploration capabilities. D) VRIA is a comprehensive web
framework, supporting immersive 3D data visualisation, allowing for accessible and
interactive data analysis across platforms.

Amira-Avizo [154]) are rarely employed [155] or scripts based on Python or differ-
ent programming languages by using libraries, for example, MetPy [156].

These tools can be classified into two categories according to their utility: in
a research context and in an operational forecasting setting [157]. According to
Koppert et al. in [158], the research tools are mostly used to explore data from
observations or simulations to find correlations between numerical variables and
real meteorological phenomena. Therefore, ideally those systems must be complex
but flexible enough to adapt to different exploration and analysis tasks as well
as various data formats, and be configurable by different types of users (novices
and experts). On the other hand, forecasting tools have to be designed with few
parameters and be usable in the most efficient way possible.

Many studies have been conducted to determine the potential of AR in these
fields. In the research context, AR interfaces have often been used in weather
simulation. For instance, [159] is one of the earliest studies on augmented video
for cloud and sky simulation. Later, an AR simulator was proposed to visualise
precipitation data (rain, snow, and hail) [160]. Recently, Ritterbusch et al. [161],
through the simulation of urban wind flow, demonstrate the advantages of mobile
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AR in facilitating the access to simulation results. Besides the simulation, for
scientific data analysis, there are different IA tools designed to plot different graphs
of meteorological and climatological data. Sicat et al. [144] show that their toolkit
can be used to visualise weather data and how it can be helpful for collaborative
tasks. Their system was designed for hurricane data, but it was limited to only
few thousands of data points. IATK [12] asserts to be able to visualise to a much
larger number of data points. For the weather forecasting, few works were done
(e.g., [162, 163]), and most of them were based on mobile AR because of their
promoted accessibility to the large public.

Apart from scientific and weather forecast context, the AR interfaces have been
used for others applications. For instance, regarding environmental monitoring,
some works have combined Internet of Things with AR interfaces [164, 165]. They
are used to overlay information (e.g., air temperature, oxygen rate in the air),
informing the user about the surrounding environment in real-time. Training about
meteorological concepts through AR-based serious games is another application.
Murrell et al. [166] show that AR can increase students’ engagement to learn the
basics of meteorology in large lecture class. Meister et al. [167] confirm that AR
technology can improve the training of aviation students on weather conditions.

2.3. Semantic-based Approach in Meteorology and Climatology
using Extended Reality

This section begins by introducing some common terms, then provides an
overview of the application of semantic-based approaches for meteorology and
climatology. It also explore how ontology and linked data have been implemented
in extended reality.

2.3.1. Ontology and Linked Data
In computer science, an ontology is “a formal, explicit specification of a shared

conceptualisation” [168]. The principal components of an ontology are classes (or
concepts), properties (or attributes), instances (or class members), and relations. It
can be built using different ontology languages such as KIF (Knowledge Interchange
Format) [169], DAML+OIL [170], RDF (Resource Description Framework) [171],
RDFS (RDF Schema) [172], and OWL (Web Ontology Language) [173]. The RDF,
RDFS, and OWL are the standard languages developed by the World Wide Web
Consortium (W3C). These languages are then manipulated using syntaxes such
as XML, JSON, or N3. W3C has recommended an architecture of semantic web,
an extended version of the current World Wide Web by incorporating semantic
metadata into information and data, enabling systems to better understand and
process content. The architecture of semantic web includes:

— Representation layer: it structures and describes the data (RDF/XML)
and allows for uniquely identifying resources based on their namespace
(URI/IRI).
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Figure 2.16 – Architecture of semantic web recommended by W3C.

— Query layer: it enables the expression of queries on documents in RDF
format. The dedicated query language is SPARQL.

— Reasoning layer: it sets interpretations on the data through the definition
of axioms inspired by the family of description logics.

— Trust layer: it ensures the protection of data and resources from unau-
thorised access and attacks, providing mechanisms such as authentication,
authorisation, and encryption.

— Interaction layer: it provides mechanisms for user interaction with the
system, allowing users to view, manipulate, and query data effectively.

I will detail next two main ontology languages that I used in this thesis: RDF
and OWL.

RDF
RDF is a framework of information representation in the semantic web [171]

(Figure 2.17). Its statement is in the form of a triplet: a subject, a predicate
(property), and an object. RDF Schema (RDFS) is an extension of RDF. It pro-
vides basic elements for the description of ontologies. RDF structures data as a
model of directed graphs, which formally describe resources and their properties or
relationships:

— Subject is the resource to describe,
— Predicate is the property of the subject, and
— Object can be either the final information (literal) or another resource.
A resource can be a URI (Uniform Resource Identifier), a literal, or identity-
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less. In the latter case, it is referred to as a “blank node” or anonymous node. This
is an important concept that enables the definition of multi-component structures
to describe the provenance of information or to represent complex information.
These are containers used for the aggregation of data.

Figure 2.17 – Illustration of the basic decomposition of a triple in RDF language: Sub-
ject, Predicate, Object.

Example of RDF Triple

1 @prefix foaf: <http :// xmlns.com/foaf /0.1/ >.
2

3 <http :// example.org/#Alice > foaf:knows <http :// example.org
/#Bob > .

This RDF triple illustrates a simple relationship:
Subject <http://example.org/Alice> represents a person named Alice.
Predicate foaf:knows, used from the FOAF vocabulary [174], denotes a relational
link to another person.
Object <http://example.org/Bob> identifies the person known by Alice, namely
Bob.

OWL
OWL is an extension of the RDF Schema that allows rich and complex knowl-

edge representation. This language uses the family of description logics for the
definition of axioms, enabling the verification of the consistency of a description
schema and the automatic verification of a resource based on its properties. OWL
also enables the inclusion of relationships between objects with assertions provided
by RDFS, and allows properties to link classes through relations such as symmetry,
equivalence, and cardinality.
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Example of RDF Schema (RDFS)

1 @prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .
2 @prefix ex: <http :// example.org/> .
3

4 ex:Person rdfs:Class .
5 ex:Employee rdfs:subClassOf ex:Person .

This RDF Schema example defines Person as a class and Employee as a
subclass of Person, illustrating a simple class hierarchy.

Example of Web Ontology Language (OWL)

1 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
2 @prefix ex: <http :// example.org/> .
3

4 ex:Person a owl:Class .
5 ex:Employee a owl:Class ;
6 owl:equivalentClass [ owl:intersectionOf (ex:

Person ex:FullTime) ] .
7

8 ex:manages a owl:ObjectProperty ;
9 owl:domain ex:Employee ;
10 owl:range ex:Employee .

This OWL example showcases more complex definitions, including equiva-
lent classes and object properties with specific domain and range restrictions.
ex:Employee is equivalent to the intersection of ex:Person and ex:FullTime,
meaning that an individual must satisfy both conditions (being Person and Full-
Time) to be classified as an Employee. ex:manages property is an object prop-
erty where only ex:Employee instances can manage other ex:Employee instances,
as specified by its domain and range.

2.3.2. Ontology and Linked Data for Meteorology and Climatology
To link and share meteorology and climatology data easily without restriction,

different ontologies have been created. SWEET (Semantic Web for Earth and En-
vironmental Terminology) is one of the early projects on weather conceptualisation
into ontology and linked data [175, 176]. It is a set of 200 ontologies containing
about 6,000 concepts developed by NASA’s Jet Propulsion Laboratory [177]. Its
initial version was based on DAML+OIL [170] and the current version (SWEET
2.3) on OWL 2. Built on top of SWEET ontology, NNEW (Next Generation Net-
work Enabled Weather) [178] was promoted in the NextGen (Next Generation Air
Transport System [179]) project. It especially introduces additional weather phe-
nomena and concepts as well as relations to develop a 4-dimension weather data
cube (4-D Wx Data Cube). Both SWEET and NNEW contain concepts describing
complex meteorological phenomena to be used as core ontology. However, they
are partitioned into several ontologies and there are dependencies between them.
Using an ontology requires importing all of its dependencies. It can overload the
database and thus affect its response time, an important factor for smooth and
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real-time AR interaction.
Sensor Web Enablement (SWE) [180] proposed by Open Geospatial Consortium

(OGC) [181] was set up to describe sensors, sensor observations, and sensor inter-
face definitions. It is based on seven top-level concepts (i.e. Feature, Observation,
ObservationCollection, Process, PropertyType, ResultData, and UnitOfMeasure-
ment), excluding the location and time concept which are imported from other
sources. Inspired by SWE, an ontology based on OWL 2 was created by W3C
Semantic Sensor Network Incubator group. It is called SSN (Semantic Sensor
Network) ontology [182]. It uses DUL (DOLCE-UltraLite) [183] as an upper-level
ontology and adds additional concepts to describe sensors. Since SSN is the stan-
dard ontology of semantic sensor web, we used it as the main core of our own
meteorological ontology.

Several ontologies emerged later which extends the SSN with new concepts
describing time, location, or measurements: AEMET [184], SMEAR [185] and
ACORN-SAT [186]. AEMET ontology was designed to publish dataset of the
Spanish Meteorological Office in the form of linked data. It consists of four mod-
ules: measurements, sensors, time, and location. This ontology, however, does not
define classes for complex meteorological phenomena. On the other hand, SMEAR
ontology has been designed to describe environmental phenomena dataset. It was
set up as a software framework (called Wavellite) to organise and interpret sen-
sor data for atmospheric monitoring. It is based on four ontologies (WURVOC,
SSN, QB, and STO) to structure information according to four layers (measure-
ment, observation, derivation, and situation). Finally, ACORN-SAT is the ontology
proposed to publish the Australian Bureau of Meteorology (BOM) dataset (daily
temperature records over the last 100 years) as linked data. It focuses on the
description of temperature and rainfall data. Moreover, it does not contain classes
for complex meteorological phenomena such as hurricane, storm, or sea and wind
characteristics.

The proposed ontology in Chapter 4 does not use ACORN-SAT as it does not
describe the meteorological phenomena necessary for our application. Addition-
ally, the SMEAR ontology is too software-dependent to be reused in IA context.
Regarding AEMET, the aim is to use a more simplified version by not including
the location and measurement unit classes. Instead, we propose to use only some
basic ontologies (SSN, WGS84_pos [187], time [188], and units [189]) and add
new classes to describe complex weather phenomena which are currently missing
in SSN.

2.3.3. Ontology and Linked Data in Extended Reality
Domain-specific ontologies are used to semantically describe and model ex-

isting concepts and knowledge. For instance, they help to tackle the explosion
of information ([190, 191, 192]), to facilitate the interconnection of data sources
(linked data) ([193, 194]), to solve the problems of data integration ([195, 196])
and interoperability [197], to target the issue of spatial-temporal dimensions and
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heterogeneous environmental data visualisation [198].
In VR, ontology is often used in many types of applications. For example,

Pellens et al. [199] used an ontology to define how objects behave in the vir-
tual environment, while Aubry et al. [200] proposed to structure and organise the
knowledge model associated with annotations using ontology. Edward et al. [201]
used the ontological approach to manage a virtual environment for risk prevention.
Additionally, Moreno et al. [202] employed this technique to enhance simulation re-
alism and integrate different data sources. Another example is Trellet et al. [203]’s
work which unifies the interaction between 3D structures and 2D data analysis of
molecules with ontology. Youcef et al. [204] utilised ontology to normalise termi-
nology in cataract surgery training in VR. Lastly, Chokwitthaya et al. [205] used
ontology to standardise VR experiments on human-building interactions.

In AR applications, ontology and linked data can be used to increase dynamic
context-awareness of the physical world. For instance, they have been used to
display the contextual information about cultural heritage sites [206, 207, 208],
to specify geographic locations [206, 209], to support maintenance or training on
complex systems [210, 211, 212, 213]. Such semantic-based approach for context-
awareness in AR is also useful for healthcare and well-being: to support daily
patients’ needs [209, 214], or for elderly dependent users [215].

Besides context awareness, semantic-based approach in AR has been used for
scientific data visualisation. An example is DatAR [216], an IA environment for
the visualisation of neuroscientific concepts. However, regarding meteorological
and climatological scientific data, I did not find any AR system based on ontology
and linked data. Moreover, for other application fields, no user experiment has been
conducted to study the impact of such approach in terms of usability, performance,
and effort for the users to solve data analysis tasks.

2.4. Shared Workspace in Collaborative Immersive Analytics

This section introduces different frameworks and toolkits proposed for collab-
orative IA. It then explores various studies conducted on synchronous co-located
collaboration for different user position arrangements. Finally, it examines different
privacy management strategies in immersive collaboration.

2.4.1. Collaborative Immersive Analytics
One of the first IA collaborative platforms was designed for the CAVE [217].

Its benefits have been highlighted for collaborative data analysis [218], but it is
still costly due to the high cost for infrastructure. Later, similar systems have been
developed, improving resolution and tracking systems (e.g., [219, 220]). Cordeil
et al. [221] compared CAVE2 with VR HMD in the visualisation of 3D graphs.
They found that in both platforms, the pairs of participants achieved similar high
accuracy. However, they were faster in the HMD condition, which means that
CAVE environments are not necessarily required for collaborative IA.

51



Several IA platforms and frameworks have been proposed for scientific visu-
alisation using HMDs. For instance, Szalavri et al. [51] developed a co-located
collaborative AR system for scientific visualisation. Benko et al. [222] proposed
a collaborative AR system that supported both remote and co-located work to
explore an archaeological dig. Similarly, Kurillo et al. [223] proposed Telearch, a
VR system for remote collaboration for archaeological research. Donalek et al. [37]
explored the use of immersive collaborative VR platforms for both co-located and
remote scientific data visualisations and showed that immersion led to a demonstra-
bly better perception and understanding of the data. Nguyen et al. [224] designed
a framework for collaborative IA in co-located as well as remote contexts, com-
posed of four system’s components: data management, analytics engine, query
engine, and networking and communication. In [225], Royston et al. demon-
strated a VR system for co-located collaborative interaction with social network
(Twitter friend/follow network) data visualisation. Butscher et al. [13] proposed
ART, a co-located collaborative analysis tool to visualize multidimensional data in
AR. More recently, Seraji et al. [226] introduced XVCollab, a co-located IA tool
that allows users to use different interfaces such as desktop environments and AR
setups. Additionally, Friedl-Knirsch et al. [227] proposed a co-located IA proto-
type for collaborative data analysis using different AR technologies, including video
see-through, optical see-through, and handheld devices.

The trend of using HMD-based AR for IA, especially for co-located collabora-
tion, is significantly increasing. However, only some systems take into account the
fact that visualising complex scientific data may require different profiles and thus
intricate phases between cooperative and individual tasks. Moreover, to the best
of my knowledge, there is no existing solution to structure the physical space so
that collaborators can interact with each other and with the complex data with-
out disturbing or invading each other’s physical space, especially in daily limited
workspaces such as offices and meeting rooms. This thesis explores different ap-
proaches to organise the users’ position in a co-located situation and the division
of private and public workspace when working collaboratively.

2.4.2. Users’ Position Arrangement in Synchronous Co-located Col-
laboration

This subsection explores existing works on different approaches to organise
users’ position in a co-located scenario collaboration. In a synchronous system, the
awareness of others in space is paramount to the collaborative working process.
This awareness involves identifying the presence, location, actions, and activities of
others at a particular moment [228]. Therefore, face-to-face interaction greatly fa-
cilitates communication cues via body language and gestures [229, 230]. Moreover,
social protocols are often maintained during AR-based co-located interactions. For
instance, the users do not interact with virtual content when it is outside of their
personal workspace and thus perceive it as if it does not belong to them [231].

Examining synchronous co-located collaboration through an immersive inter-
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face presents a challenge related to the arrangement of the users’ positions. Numer-
ous investigations into user behaviours during collaboration have centred around
the F-formation [232]. This phenomenon, observed in face-to-face interactions, de-
lineates how individuals unconsciously configure themselves spatially and socially
during a conversation, often forming a structure resembling the letter ‘F’. It often
occurs in face-to-face, side-by-side, or corner-to-corner arrangements. A specific
study by Marquardt et al. [233] delved into collaborators’ behaviour using various
F-formation configurations, asserting that spatial relationships and positioning of
individuals significantly impact their performance and conduct during collabora-
tion. This conclusion finds support in another study [38], which further explored
the users’ position arrangement through F-formation in the context of IA using
VR.

In real-world context such as office environments or enclosed spaces, Lee et
al. [231] conducted an exploratory study involving teams of three co-located users
who were instructed to freely arrange their shared virtual workspace. They observed
a natural inclination among participants to use walls for organising 2D items of
personal charts/windows, while positioning 3D visualisations in the surrounding
space. Recent work by Luo et al. [234] presents an empirical study focusing on the
influence of the physical environment on spatial arrangement during collaborative
tasks with paired users in AR. Their findings emphasise that the configuration of
workspace furniture significantly impacts how users organise their virtual content.
The recommendation arising from their research suggests incorporating furniture
into AR workspaces within physical environments rather than opting for entirely
empty rooms. These investigations highlight the critical role of effective spatial
planning, considering factors such as line of sight, workspace furniture, and over-
all ergonomic design of collaborative (virtual and physical) workspace, to ensure
seamless and efficient interaction among participants.

2.4.3. Privacy Management in Immersive Collaboration
In collaborative immersion, an important issue is to manage private and public

content. To study the management of private and public content, I classified the
proposed solution into two groups: visually oriented (a user can not see the private
contents of others), and space-partition oriented (the user has their own personal
space and can not interact or see the contents of other restricted spaces).

The visually oriented privacy approach enables personal or sensitive virtual
content to be hidden so only authorised people can interact with or see it without
any space restrictions. Some mechanics are required to allow the users to configure
the privacy when they want to share the hidden content. For example, the work
in [18] proposed “vampire mirrors” and “privacy and publicity lamps” in collaborative
AR to manage the users’ view. Using “vampire mirrors,” all public objects are visible
in the mirror; it reflects objects that are set as public, while those designated as
private do not appear in the mirror (Figure 2.18). In “privacy and publicity lamps”
metaphor, the privacy state of objects can be changed by shining a light on them,
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Figure 2.18 – Example of “vampire mirror” to visualise public and private objects [18]:
Top - all public objects are visible in themirror. Bottom - private objects are not visible
anymore in the mirror.

marking them as either visible to all (public) or hidden from view (private). Thus,
privacy lamps render objects private, whereas publicity lamps highlight objects to
make them visible to all participants in the environment (Figure 2.19).

Regarding the space-partition oriented approach, 3D contents are dispatched,
according to their privacy status, in different sub-spaces of the world dedicated to
each user (private sub-spaces) or available for all users (public sub-space). There-
fore, a user can interact with 3D contents, either if they are located in their private
sub-space or are located in the public sub-pace and not currently used by another.
Bullock and Benford [235] early discussed on access control of 3D contents in
collaborative virtual environments in proposing access restrictions based on sub-
spaces of the virtual world. Later, Szalavári et al. [236] introduced the concept of
privacy layers within co-located collaborative environments, specifically for gam-
ing. They developed a system where specific spaces were assigned distinct privacy
layers. Within this setup, all objects in a given region shares the same privacy level.
Crucially, when objects were moved from one region to another, their privacy status
would automatically change to match the new region’s privacy level. Recently, for
AR-based remote immersive collaboration, Mahmood et al. [237] proposed space
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Figure 2.19 – Example of “privacy and publicity lamps” [18]: Left - a privacy lamp shines
on an object, hiding it fromother users. Right - the perspective of another user, where
the objects illuminated by the lamp light are missing.

partition of each individual’s AR workspace in two sub-spaces, one to manage their
private contents, and the other allocated to the public virtual space shared with
all the users. James et al. [238], presented a study on a co-located collaborative
system combining the use of wall displays with AR headsets. In the proposed hy-
brid system, public contents were accessible on some physical wall displays but also
on shared virtual walls, visible with the AR headsets. Moreover, the AR headsets
managed a private space located as close to the user as possible, with virtual ob-
jects dispatched in a semi-circle around the user, always facing and moving with
them.

Existing space-partition based approaches often overlook physical workspace
constraints and the spatial arrangement of collaborators when defining private
or public sub-spaces. In my opinion, this is a significant limitation in existing
co-located AR-based immersive collaborative systems. To address this, my pro-
posal involves automatically dividing the physical workspace into dedicated sub-
workspaces, considering factors such as physical constraints, number of collabo-
rators and their positions. Furthermore, to evaluate the added value of this par-
titioning approach, we plan to assess its effectiveness in combination with view
privacy policies. Additionally, we aim to explore the implications of private and
public views within this co-located collaborative space. One of the most recent
works and similar to this study is workspace guardian concept proposed in [239].
However, this work did not address the IA use case. Furthermore, their partition-
ing technique was manual (self-defined workspace boundary) and the boundary was
not visualised on the floor.
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2.5. Conclusion

This chapter begins with a brief introduction to existing interaction techniques
which focus on selection for Head-Mounted Display (HMD)-based Augmented Re-
ality (AR) interfaces. It also provides an introduction to Immersive Analytics,
starting with data visualisation and interaction in Extended Reality. Additionally, I
defined the notion of ontology and present an overview of relevant AR and Virtual
Reality (VR) applications. Finally, I introduced existing collaborative IA frameworks
and explore various user studies on user positioning in co-located collaboration, as
well as different privacy management techniques in immersive collaboration.

Overall, existing IA toolkits do not fully support data management and selec-
tion interaction, two important processes especially when working with big and
complex datasets. Additionally, working collaboratively in co-located settings can
be challenging when visualising multidimensional data, such as meteorological data.
The design of the proposed collaborative systems should be adapted to meet these
requirements. In the upcoming chapters, I will first present, in Chapter 3, im-
provements to selection techniques by introducing expanded data points in IA and
conducting a user study to identify the best selection methods in IA. Then, in
Chapter 4, I will highlight the proposed IA system for meteorological visualisation
and examine the benefits of a semantic approach for data management through
a user study. Finally, in Chapter 5, I will showcase new techniques for workspace
management to improve user position arrangements and study the effects of these
proposed techniques.
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3 - Selection Techniques in Augmented Re-
ality for Immersive Analytics

This chapter presents the new selection technique based on expanded data
points that I have designed to improve selection tasks in Augmented Reality (AR).
This technique aims to help a user to select quickly and accurately data points
during meteorological immersive analytics (IA) tasks using hand-mounted display
(HMD)-based AR interface. However, it is relevant and applicable to all immersive
systems that use this type of data-point visualisation. In this chapter, after the
introduction, I will detail the technical aspects of the approach. Then, I will de-
scribe a user experiment conducted to investigate user performance and subjective
evaluation of this selection technique. Lastly, several prospective approaches to
further enhance this data-point selection will be outlined.

3.1. Introduction

The selection and manipulation of data are among the key operations (see
Section 2.2.2) that are performed repetitively during a data analysis task. The
ability to select specific data points within a dataset is crucial for inspection and
comparison between them. A data point is a unit of data that contains several
attributes. For example, in meteorology, a data point can include measurements
such as pressure, wind speed, temperature, and other variables at a specific time.
By selecting individual data points or groups of data points, the user can focus
their attention on specific regions, uncover hidden patterns, and gain a better
understanding of the underlying data distribution. The effectiveness of the selection
depends not only on the pointing and selection confirmation technique, but also
on the target size according to Fitts’ law [240]. The pointing technique (e.g.,
ray casting, virtual hand) allows the user to indicate one or several objects to be
selected for manipulation, and the confirmation selection technique (e.g., dwelling,
clicking, voice, and hand gesture) triggers the selection. In case of the ray-casting
technique for the pointing, this method depends on the ray’s origin (head, hand,
or eye) and its direction. The air-tap and voice confirmation techniques combined
with hand or head pointing have been largely used in Microsoft HoloLens headsets.
However, selecting distant and small objects is often challenging, which can greatly
affect the user experience.

To overcome this limitation, I proposed a solution which facilitates the selection
operation via the expansion of a data point when the cursor of the ray or the virtual
hand hovers over it. Moreover, I consider that the data visualisation on a 2D plan
is an important aspect to be studied when designing an IA system due to the fact
that many real datasets from geophysics, meteorology, or climatology domains are
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actually visualised in 2D based on the geographic coordinates of the data itself.
Despite this constraint, it is relevant to assert the usefulness of the Fitts’ law and
its application in expanding data points for selection in working with 2D datasets
on a 3D HMD-based AR interface. My main contribution in this aspect was to
propose, design, and evaluate this new selection technique using a headset-based
AR interface. The research question addressed in this chapter is:

RQ2: Will the selection technique based on expanded data points improve
the performance and user experience of data selection in HMD-based AR
interfaces?

The expanding data point technique was presented as a poster at the ACM
Symposium on Virtual Reality Software and Technology (VRST) in November 2022
[241].

3.2. Fitts’ Law and Expanding Interacting Widgets

In this section, I will present some background on Fitts’ law, a predictive model
of human movement on which I based my design for the selection technique by
expanding 3D data points.

Indeed, most of the comparative selection techniques [74, 93, 83] used Fitts’
law design in Human-Computer Interaction (HCI) given by equation formulated by
MacKenzie [240].

MovementT ime(MT ) = a+ b× ID (3.1)

ID = a+ b× log2(
A

W
+ 1) (3.2)

where a and b are empirically determined via linear regression, and A and W
represent the target distance and size. ID (logarithmic term in Fitts’ law) is the
index of difficulty, which represents the task difficulty. From this law, it is known
that the larger the target, the less time it takes to reach it. The earliest study [240]
involves the target with a constant size (meaning no expanding target).

The concept of expanding interacting widgets during selection has been largely
used in interface design. The widgets are expanded when being pointed at. For
instance, in Mac OS X, the icons in the dock bar expand when the mouse cursor
hovers over them. Many experiments were conducted to determine the factors that
affect the selection of expanding targets. For instance, McGuffin and Balakrishnan
[242] concluded that the isolated expanding item selection is faster and easier than
a non-expanding item. Moreover, they found that the improvement in the user
performance does not depend on the initial target size but on the final one. Later,
Zhai et al. [243] investigated the expanding items by testing more conditions. For
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example, they add the condition that participants did not always know whether
expansion would occur. They did not get full evidence that the expanding target
facilitates pointing (due to the increase of error rate depending on ID), as concluded
by McGuffin and Balakrishnan [242]. However, they found that the performance
was further improved when the users did not know whether the expansion was
going to occur. In 2005, McGuffin and Balakrishnan [244] conducted another
experiment in which they considered the error rate, besides different designs of
multiple expanding targets. However, unlike Zhai et al. [243], they did not observe
a clearly increasing error rate when the difficulty index of target acquisition was
increasing.

3.3. Selection Technique

Inspired by the studies on expanding widgets by McGuffin and Balakrish-
nan [242, 244], I have developed a technique for selecting data points in interactive
applications (IA) by expanding their size during interaction. The selection mech-
anism activates when the cursor intersects with a data point, causing its visual
representation to expand.

Our proposed approach is, given a data point Pi where the cursor is located
at a certain time, we propose to enlarge its size (wi) and also those of its eight
neighboring points in a linear way based on a ratio A. Initially, we have:

wi = wi+1 = w

where wi represents the size of Pi, wi+1 represents the size of the neighboring
points of Pi, and w is the common value of their sizes.

I0 = D − w

Where Io is the initial distance between the two points from side to side, and D is
the distance between the two points from center to center (with D being invariant)
(Fig 3.2).

Following the enlargement, the new interspacing is given by:

I1 = D − wi + wi+1

2

Where I1 becomes the new distance between the two points from side to side.
Basically, we want a linear distribution of the enlargement limited to Pi and

Pi+1, thus:

wi = Aw, wi+1 =
A+ 1

2
w and wi+2 = w

Consequently, we have:

I1 = D − 3A+ 1

4
w (3.3)
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To prevent overlapping of data points, it is necessary that:

I1 > 0 ⇒ D >
3A+ 1

4
w

In our experimental setup, as illustrated in Fig. 3.1 with D = 2w, it follows that:

A <
7

3

Thus, we choose A = 2. Thanks to this:

I1 =
1

4
w and I2 =

3

4
w

⇒ no overlap between the enlarged data points Pi and Pi+1.

Figure 3.1 – Design of expandable data points.

Figure 3.2 – Representation of three data points and the distance between them.
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3.4. User Study

This experiment aimed to evaluate the benefits of the expanding technique of
data points when the user selects 3D data points regularly tiled on 2D data board
with a Microsoft HoloLens 2 headset. I compared it with the baseline condition
which was without the expanded point model. I also considered their usage within
the combination of different approaches for ray-casting and selection confirma-
tion technique commonly used with this headset. In summary, I considered three
following factors:

— Pointing is the ray-casting technique to control the interacting cursor
using Head or Hand as the origin of the ray and to give its direction.

— Selection Confirmation is the interactive mode used to confirm the
selection provided by the ray-casting. It can be either Voice or Air-Tap. To
avoid using the HoloLens 2 system command’s “Select”, the word “Point”
was used for the Voice.

— Point Design indicates whether to use expanded point model (Expanded)
or not (NoExpanded).

The experiment was conducted with eight conditions (see Table 3.1) following
a within-subjects experimental design.

ID Pointing Selection Con-
firmation

Point Design Abbreviation

C1 Head Voice Expanded He-V-E
C2 Head Air-Tap Expanded He-AT-E
C3 Hand Voice Expanded Ha-V-E
C4 Hand Air-Tap Expanded Ha-AT-E
C5 Head Voice NoExpanded He-V-noE
C6 Head Air-Tap NoExpanded He-AT-noE
C7 Hand Voice NoExpanded Ha-V-noE
C8 Hand Air-Tap NoExpanded Ha-AT-noE

Table 3.1 – Eight conditions of the Exp. 1 with three factors.

3.4.1. Hypotheses
I expected that the Expanded approach would help the user select more easily

the data points within the scene. Therefore, I formulated the following hypotheses:
H1.1 Expanded point design will help the user finish their task faster compared

to NoExpanded despite different Pointing and Selection Confirma-
tion techniques.

H1.2 Expanded results less error compared to NoExpanded despite different
Pointing and Selection Confirmation techniques.
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3.4.2. Participants
In this study, there were 9 male and 7 female participants whose age ranged

from 22 to 30 (µ = 26.25, σ = 3.66). Five of them (one male and four females)
have never used an immersive system before.

3.4.3. Apparatus

The system was running Unity3D on a computer with a Intel® Xeon® W-
2135 processor, 32 GB RAM, and Nvidia Quadro 4000 graphics card. A Microsoft
HoloLens 2 was used for rendering and interaction.

3.4.4. Experimental Task
In each condition (C1-C8), the participant had to select nine target red points

out of 36 ∗ 36 points in total regularly arranged on a 1m × 1m data board (the
remaining points were in blue) (see Fig. 3.3 - left). Each point is represented as
a cube of 0.8 cm of each dimension. This data board was placed directly 1.5m

away in front of the participant at the beginning of the task. The target points
were randomly distributed in nine zones of the data board (see Fig. 3.3 - right).
When the participant selected a target, its colour turned to white to indicate the
successful selection. The task for each condition was completed when all the
targets were selected.

Figure 3.3 – Left: Random distribution of red targets in nine zones of a data board
which includes in total 36∗36 3Dpoints regularly tiled. Right: Blue points are removed,
targets are accentuated for visibility, and dividing lines are added.

3.4.5. Procedure
This experiment took approximately 50 minutes. At the beginning, each par-

ticipant was welcomed and received instructions on the task, and signed a consent
form. They also filled a pre-experimental questionnaire for demographic data and
their VR/AR experience. Next, they were equipped with a Microsoft HoloLens 2
headset and followed a tutorial to learn how to use it.

The eight conditions was randomly ordered for each participant. Before starting
each condition, there was a training trial during which they were asked to use its
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corresponding combination technique of the three factors to select the four cubes
of different sizes (1 cm, 3 cm, 6 cm, and 9 cm) arranged on the horizontal line.
There was no time limit in the training until the participant felt ready to start the
task. Once the task is completed, they filled out NASA-TLX questionnaire. At
the end of the experiment, I asked the participant to rank the eight conditions
according to their preferences.

3.4.6. Data Collection
I registered 1152 trials: 2 Pointing techniques × 2 Selection Confir-

mation techniques × 2 Point Design modes × 9 targets × 16 participants.
For each trial, I collected the following measures:

— Task Completion Time (TCT): the time needed to complete the task in
each condition. It started when the participant began to perform the task
and ended once the nine targets were correctly selected.

— Total Error Distance (TED): the distance between the badly selected points
to the intended target in the same zone. The final value was accumulated
for all the targets.

— Total Distance of Cursor Movement (TDCM): the accumulated distance
that the pointer covered before reaching a target. For each trial, I obtained
nine values for nine targets as follows:

d(CPti , CPti+1) = ∥CPtiCPti+1∥ (3.4)

TDCMk =

{ ∑
d(CPti , CPti+1)− d(CPt0 , TPk) if k = 0∑
d(CPti , CPti+1)− d(TPk, TPk−1) if not.

k ∈ {0, 8}

(3.5)

with CP: the cursor’s position , TP: target point’s position, t: time at
instance t, and i: time index, k: index of the targeting point. Since the
order to select one of 9 targeted points was random during the task, the
first targeted point selected index is 0 (k = 0), and the last targeted point
index is 8 (k = 8).

— NASA-TLX : the subjective evaluation of cognitive load of each condition
at the end of the corresponding task.

— Overall ranking : the preference ranking of eight conditions from 1 to 8 (1
is the best and 8 is the least preferred) at the end of the experiment.

3.4.7. Statistical Results
For the Task Completion Time (TCT), I used normal QQ-plots and Shapiro-

Wilk tests to analyse the normality of the data and it was not normally distributed.
I then calculated its asymmetry and found that the distribution was positively asym-
metric. Therefore, I applied a log-transformation (log10(x) for positive asymmetric
data). The average TCT for each technique and its 95% confidence intervals (CI)
are presented in Fig. 3.4.
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Figure 3.4 – Task Completion Time (TCT) firstly grouped into two conditions of Point-
ing technique. Error bars show 95% confidence intervals (CI).

Using multi-way repeated-measures ANOVA test with the three factors, I did
not find any significant three-way interaction between them (F1,120 = 0.01∗10−3,
p = 0.99). There were no interaction effects between Pointing and Selection
Confirmation (F1,120 = 1.13, p = 0.30), or between Pointing and Point
Design (F1,120 = 0.40, p = 0.53). However, there was a significant interaction
effect between Selection Confirmation and Point Design (F1,120 = 7.85,
p < 0.001). Further analysis showed that the main effect of Point Design on
TCT was statistically significant for the Air-Tap confirmation (F1,124 = 27.60, p <

0.001), but was not significant for the Voice command (F1,124 = 1.69, p = 0.20).
I also investigated the main effect of each factor separately on TCT. The result
shows a significantly independent effect of Point Design on TCT (F1,120 =

21.57, p < 0.001) and of Selection Confirmation on TCT (F1,120 = 19.61,
p < 0.001). However, there was no significantly independent effect of Pointing
on TCT.

Regarding Total Error Distance (TED) (see Fig. 3.5), the QQ-plots and Shapiro-
Wilk tests showed that the data were not normally distributed. I applied a log-
transformation as previously mentioned in TCT analysis. The results of multi-way
ANOVA revealed no statistically significant interaction between the three factors
(F1,120 = 0.19, p = 0.66), and no significant interaction effect neither between
Point Design and Selection Confirmation (F1,120 = 0.01, p = 0.90),
nor between Pointing and Point Design (F1,120 = 0.70, p = 0.40). How-
ever, there was a significant interaction effect between Pointing and Selection
Confirmation (F1,120 = 6.72, p < 0.05). The simple main effect of Selection
Confirmation on TED was statistically significant for Head pointing technique
(F1,124 = 16, p < 0.001), but was not statistically significant for Hand pointing
(F1,124 = 0.07, p = 0.79). The main effect analysis has been conducted to inves-
tigate the effect of each factor on TED. The result revealed a significant effect of
Selection Confirmation (F1,120 = 9.2, p < 0.001). However, there were no
significantly independent effect of Point Design (F1,120 = 1.78, p = 0.18) or
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Figure 3.5 –Means and 95%CI of Total Error Distance (TED) results grouped according
to Selection Confirmation.

Figure 3.6 – Heatmaps of the participant P04’s Total Distance of Cursor Movement
(TDCM) of the eight conditions mapped on the data board in their order of execution
(left to right, top to bottom).

Pointing (F1,120 = 2, p = 0.16).
Using the Total Distance of Cursor Movement (TDCM) data collected, I anal-

ysed the tendency of the participants’ cursor movements on the data board during
their tasks. I found that they followed a similar fashion and for illustration, the
TDCM heatmaps of the participant P04 is showed in Fig. 3.6.

Regarding the answers from NASA-TLX questionnaire (see Fig. 3.7), to analyse
non-normal and ordinal-scale data, it is recommended to apply non-parametric
statistical tests. However, in my case the variance homogeneity test with Levene’s
test was not significant. Moreover, the Shapiro-Wilk’s test of normality revealed
that data of all the NASA subscales was normally distributed. Therefore, I used the
parametric multiple-way ANOVA. The test showed that there was no statistically
significant interaction between the three factors on subscales of the cognitive load.
mental demand (F1,120 = 0.70, p = 0.41), physical demand (F1,120 = 0.70, p =
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Figure 3.7 – The NASA-Task Load Index (NASA-TLX) results mainly grouped into two
conditions of Selection Confirmation.

0.40), temporal demand (F1,120 = 0.16, p = 0.70), performance (F1,120 = 1.80,
p = 0.18), effort (F1,120 = 0.30, p = 0.58), and frustration (F1,120 = 1.70,
p = 0.19). In addition, there was no significant interaction between any pair of
factors. The results of the two-way ANOVA are in the Table 3.2. An analysis
has been conducted to investigate the three factors’ main effect on the NASA
subscales. The result showed a significant independent effect of Point Design
on all the subscales. It was similar in the case of Selection Confirmation
on all the subscales except performance. There was a significant main effect of
Pointing on mental demand.

Pointing Pointing Confirmation
X Confirmation X Point Design X Point Design

Mental F (1,120) = 0.66, F (1,120) = 0.2, F (1,120) = 0.05,
Demand p = 0.41 p = 0.6 p = 0.8
Physical F (1,120) = 1.14, F (1,120) = 0.07, F (1,120) = 1.14,
Demand p = 0.28 p = 0.8 p= 0.3
Temporal F (1,120) = 0.16, F (1,120) = 2.7, F (1,120) = 0.7,
Demand p = 0.7 p = 0.1 p = 0.4
Performance F (1,120) = 0.01, F (1,120) = 0.9, F (1,120) = 0.37,

p = 0.9 p = 0.33 p = 0.53
Effort F (1,120) = 1.77, F (1,120) = 0.02, F (1,120) = 0.39,

p = 0.19 p =0.88 p = 0.53
Frustration F (1,120) = 1.58, F (1,120) = 0.01, F (1,120) = 0.09,

p = 0.21 p = 0.91 p = 0.76

Table 3.2 – Two-way ANOVA results between different factors on the
NASA-TLX subscalse.

Concerning Overall ranking (see Fig. 3.8), the combined Head -Voice-Expanded
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condition (µ = 2.44, σ = 1.88) was rated the best, while the Hand -Air-Tap-
NoExpanded condition was the least preferred (µ = 7.11, σ = 1.69).

Figure 3.8 – Ranking of the eight methods according to user preference. The 1st rank
indicates the most preferred and the 8th the least.

3.4.8. Discussion
Overall, if only the Point Design mode was considered, this experiment

showed that selection using Expanded points was faster than No-Expanded ones.
However, expanding the data points significantly improved TCT using Air-Tap
confirmation technique but not in the case of Voice command. Therefore, this
result could not confirm H1.1.

I found that using Voice to activate selection was faster than Air-Tap gesture.
This can be explained by the gesture recognition performance mentioned in [83].
There was no significant difference between Head and Hand pointing techniques
in terms of TCT or TED. However, due to the interaction between Pointing
and Selection Confirmation, Head pointing technique could affect the TED
based on the Selection Confirmation. In this case, Air-Tap could produce
less TED than Voice technique. From the results of TED, contrary to my expecta-
tions, I did not find any significant difference between Expanded and No-Expanded
points using different selection techniques, which did not support H1.2.

The heatmaps of TDCM shows that the participants had two difficulties in
selecting data points. The first is related to the relative position of data point to
the central part of the data board. Points near the edges were difficult to select
despite the point model (expanded or not). The second concerns the order with
which the participant selects data points. The participants took more effort to
select the first targets but they got better afterwards.

The results of the subscale cognitive load analysis of NASA-TLX showed that
for all the subscales except mental demand, Expanded condition has been rated
less demanding than No-Expanded. Amongst the two techniques for Selection
Confirmation, Air-Tap was rated more demanding than Voice with regard to
physical demand, temporal demand, effort, and frustration. The participants pre-
ferred the condition with Head pointing and Voice confirmation command with
Expanded points than the others.
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3.5. Improvement of Proposed Technique

In this selection, I will elaborate some ideas for improving and adapting the
technique to expand data point technique in IA on different types of data points.
I also propose a new refinement technique to improve the selection technique on
HMD-based AR interface.

3.5.1. Towards a Generalisation of Expanded-Data-Point Technique
This section introduces how expanded-data-point approach can be used on

different data representations (e.g., arrows, spheres, cubes, glyphs) in 2D and 3D
graphs with potential occlusion or overlapping in dense clusters. In the context of
IA, when I refer to overlapping of data points, it means that multiple data points
in a dataset occupy a small space or take up close positions in the feature space
or on a graph. In other words, their values or coordinates are closely similar or
identical. In order to detect the occlusion, the data can be easily pre-analysed
before the visualisation using one of the classic data mining techniques for cluster
analysis such as k-means [245], hierarchical clustering [246], and density-based
clustering [247].

Non-overlapped Data Points

With non-overlapped data points, I propose an expanding technique of 3D data
points that can be applied both in 2D plan and 3D plan. In the design of expanded
data points displayed in the 2D plan, I use arrow shape to represent data points
but my proposed approach is also pertinent for all types of data representation
(sphere, cube, glyph, etc.). I choose arrows as they often represent vector data
types, which are popular in geophysical, geospatial, or meteorological datasets. An
arrow pointing in a particular direction in 3D can represent the direction of a vector
(u, v, w), while its length and/or colour can be used for other properties.

Figure 3.9 – Design of expanded data points visualised on a 2D plane. The visualisa-
tion shows wind direction as vectors and wind force simulated on a regular 2D grid
with latitude and longitude coordinates.

In an example in Fig. 3.9, I present some data points of wind direction in
3D and wind force simulated on a regular 2D grid with latitude and longitude
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Figure 3.10 – Design of expanded 3D data points in a 3D space. The data includes 3D
vectors visualising the wind (wind direction and wind force) simulated in 3D space
with latitude, longitude, and elevation coordinates.

coordinates. Using the expanded-data-point approach, during the selection, the
arrows can dynamically resized depending on their proximity to the user’s cursor.
We define an invisible boundary (a sphere in 3D) surrounding each data point.
Given si the initial size of a data point, its boundary radius is r = 2si. When the
cursor is within this boundary, the data point expands its size following the next
equation:

sc =
−d

2
+ 2si (3.6)

where sc is current size, si is initial size, and d is the distance between the current
cursor’s position and the centre of boundary.

To avoid overlapping as in the first technique (Equation 3.3) when the points
expand, Ii must be greater than 0.

Ii = D − si + si+1

2
= D − 3

2
si. (3.7)

Thus from Equation 3.7 we have: Ii > 0 ⇒ D > 3si
2 , where Ii is the distance

between two data points (Pi and Pi+1 in Fig. 3.2).
Once the cursor reaches the data point, its size is at the maximum value of

2si. On the other hand, when the cursor moves away from the data point, its size
gradually decreases until it goes back to the original size of si when the cursor
goes beyond the boundary. If the boundaries of several data points are overlapped
and the cursor is within the intersection, each of these data points will expand
proportionally according to Equation 3.6. The same principles can be applied for
the interaction between cursor and data points during the selection of the 3D data
points in 3D space (see Fig. 3.10).

I apply the same principles for the interaction between cursor and data points
during the selection of the 3D data points in 3D space (see Fig. 3.10).
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Overlapped Data Points

To design expanded data points in overlapped data clusters, I propose the
following approach of “exploding” the neighbourhood of the data point in focus
with regard to its nearest data points (see Fig. 3.11). This algorithm will work
with all the data points that have been pre-labelled as in the dense clusters using
cluster analysis techniques as mentioned above. This algorithm looks at all the
neighbourhood points within a predefined distance that surround the data point
that has come in contact with the cursor (Point in Contact with Cursor - PCC). By
creating a spatial buffer between the PCC and its neighbours, it allows sufficient
space for the data points to expand their size.

Specifically, when the cursor hovers over in the boundary zone of a data point
(PCC) with its initial size si:

1. The first step consists in determining the PCC’s neighbourhood by consid-
ering all data points of the same cluster that the PCC belongs to. Two radii
(r and R with r < R) from the PCC centre are defined. The distances
between PCC and all the points of the same cluster are calculated. If the
distance is inferior to r, the data point is considered as in the immediate
neighbourhood. If the distance is between r and R, the data point is a
distant neighbour. If it is out of range of R, the data point will not be
taken into account for the next step.

2. This step consists in adding space between the data points in the immediate
and distant neighbourhood and PCC. For the immediate neighbourhood,
the distance between each data point in this zone and PCC will be increased
an r value. And for the ones in distant neighbourhood, their respective
distance to PCC will be added an R value.

3. The final step consists in changing the size of CCP to 2si and the immediate
neighbourhood to 3si/2.

When the cursor is at the intersection of several boundary zones, only the data
point that is closest to the cursor will be considered as PCC. In this design, I used
a cube representation; but the technique can be used with other representations
(sphere, line, glyph, etc.).

3.5.2. Refinement for Selection Technique
I propose a new approach for accurate pointing by following a paradigm that

combines a primary point method and a refinement technique. My approach uses
the user’s head for ray-casting in normal cases and when the accuracy to select
the target is needed, the user can activate the refinement mode by using their
hand gesture. The flowchart of the whole process of the algorithm is illustrated in
Fig. 3.12.
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Figure 3.11 – Algorithm of expanding data points by adding distance between the data
point in contact with the cursor (PCC) and its neighbouring data points. A) Immedi-
ate neighbourhood is detected, represented by orange data points, while the distant
neighbouring points are in red. B) Space is added between these data points and the
PCC to create a buffer for expansion. C) PCC and the data points in the immediate
neighbourhood are expanded.
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Figure 3.12 – Flowchart of the process of the head-pointing and hand-refining tech-
nique for selection.

Head-and-Hand Switching Technique for Pointing using Ray-casting

This algorithm is designed to be used during the selection process which in-
volves mostly the head-based approach to control the ray and the cursor. It is
triggered when the user’s hand is raised and detected by the Microsoft HoloLens
2 headset. Once the trigger is recorded, the system will decouple the cursor’s
attachment from the ray and freeze its movement. A loop of checking the pinch
gesture performed by the user and their hand movement is executed to control the
position of the cursor accordingly (Fig. 3.13.A). The loop continues until either the
cursor is on the target (which allows the user to validate it), or the user releases the
pinch gesture (Fig. 3.13.B). The control of the cursor’s position will go back to the
ray (and thus controlled again by the user’s head) once the headset cannot track
the hand anymore (Fig. 3.13.C). This pointing technique can be easily integrated
in the whole selection workflow with different techniques of selection confirmation
using voice or other hand gestures.

During the control loop of the cursor’s position by the pinch gesture and hand
movement, the PRISM (Precise and Rapid Interaction through Scaled Manipula-
tion) technique [248] is applied to improve the accuracy of the cursor’s position in
relation to the hand movement. Concretely, three velocity values are predefined:
Min, Scaling Constant (SC), and Max. If the user’s hand velocity is lower than
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Figure 3.13 – Switching technique between head and hand to control the ray-casting
attached to a cursor during pointing operation using an AR HMD device (Microsoft
HoloLens 2). The ray and cursor follow the user’s field of view based on the head’s
forward direction. A) When the user’s hand is up (and the HMD can track the hand),
the direct link between the ray and the cursor is decoupled, and the cursor stops
moving. If the user makes a pinch gesture (pinching the thumb with the index), the
cursor follows the hand and moves accordingly within a 2D plane. B) If the user re-
leases the pinch while their hand is still tracked, the cursor becomes immobile again.
The user can repeat the pinch gesture as in A) to adjust the cursor’s position for bet-
ter refinement. C) When the hand is down and untracked, the cursor reattaches to
the ray and follows the head movement.

Min value, the cursor stays still. If it is between Min and SC, the cursor’s motion
is scaled down from the hand’s motion. As soon as the user moves their hand
at the velocity above SC, the cursor’s velocity will match exactly to the hand’s.
And once the user’s hand velocity exceeds Max value, besides the 1:1 matching
between the velocity of the hand and cursor, a recovery procedure is applied to
reduce offset (accumulated distance between the hand and the cursor) over time
until the offset is eliminated or the hand speed falls below Max. The advantage of
using PRISM for cursor movement is that it provides a fine-grained control over
the cursor’s movement, facilitating the user’s precise adjustments and movements.
This is especially useful for tasks requiring high accuracy levels such as data point
selection. Additionally, using PRISM can reduce fatigue and strain, allowing the
user to move the cursor using more natural hand movements.

Implementation

The technique was implemented in AR interfaces on Microsoft HoloLens 2
using Unity3D version 2021.3.31f1 and Mixed Reality Toolkit 2 (MRTK2). The
algorithm of this technique can be found in Algorithm 1. Specifically, I used
IMixedRealityHandJointService provided in MRTK2 for the hand-joint data.
I obtained the origin (position and orientation) of the palm’s centre using the
RequestJointTransform(param1,param2) function, which is used as the origin
of the hand pointing. The param1 specifies which joint or part of the hand for
tracking; in our case, it is set to TrackedHandJoint.Palm. The param2 specifies
which hand to track and I used Handedness.Right. I used the same function to
get the finger data by changing the parameters using
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Algorithm 1 Head-and-Hand Switching Approach for Selection Technique

procedure HeandPointingHandRefining
jointPose← TryGetJointPose(Palm,HandRight)
while true do

if jointPose then
PalmjointTransform← RequestJointTransform(Palm,HandRight)
ThumbjointTransform← RequestJointTransform(ThumbT ip,HandRight)
IndexjointTransform← RequestJointTransform(IndexT ip,HandRight)
PalmHeadDist← Distance(PalmjointTransform.position,Head.position)
if PalmHeadDist <= DeltaDistA then

ThumbIndexDist← Distance(ThumbjointTransform.position, IndexjointTransform.position)
if ThumbIndexDist <= DeltaDistB then

CursorNextPosition← PRISM(CursorLastPosition, PalmjointTransform.Position)
MoveCursor(CursorNextPosition)
CursorLastPosition← CursorNextPosition

else
FreezeCursor(CursorLastPosition)

end if
else

MoveCursor(HeadPostion,HeadForwardDirection)
end if

else
MoveCursor(HeadPostion,HeadForwardDirection)

end if
end while

end procedure

RequestJointTransform(TrackedHandJoint.ThumbTip,Handedness.Right) for
the thumb tip and the
RequestJointTransform(TrackedHandJoint.IndexTip,Handedness.Right) for
the index tip.

In the pseudo-code (Algorithm 1), DeltaDistA and DeltaDistB are the thresh-
olds to be set. DeltaDistA is the threshold distance between the user’s hand and
head. In the implementation, the DeltaDistA was set at 0.4m because with dif-
ferent values [0, 0.1, 0.2, ..., 1] tested, I found that 0.4m was the easiest to use.
This parameter is important because it will let us know when to stop the cursor
from moving. When the value is too large, the cursor may frequently stop in-
voluntarily, affecting the user experience. DeltaDistB is the threshold used to
determine if the finger has been pinched. It must be close to zero for good accu-
racy. Fig. 3.14 shows a sequence of hand gestures to activate the head-and-hand
switching approach for selection.

3.6. Conclusion

In this chapter, I presented an expandable data representation model inspired
by the study in [244]. I have conducted an experiment to assess this novel selection
technique. The result showed that the selection using Expanded points was faster
than No-Expanded ones considering only the Point Design mode. Moreover,
Voice confirmation was rated as the best selection technique from subjective feed-
back. Consequently, the Expanded data point design received positive feedback in
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Figure 3.14 – Different hand gestures to activate the Head-and-Hand switching tech-
nique for pointing and selection. A) The user raises their hand to activate this tech-
nique from the default technique of cursor control by the head. The cursor stops
moving. B) The user presses their index finger with the thumb, and the cursor starts
following their hand movement. C) The user confirms the selection by using the Air-
Tap gesturewith either the right or left hand. D) A close-up view of themeteorological
dataset with dense data points on the HMD-based AR interface.

regardless of the pointing and confirmation technique in use.
In summary, although H1.1 and H1.2 were not fully confirmed, the results show

that Expanded data points improved performance and user experience, compared
to Non-Expanded data points, answering the RQ2. Therefore, I decided to use the
Head -Voice-Expanded combination as the selection technique for my proposed IA
environment (Chapter 4) for three reasons. First, the experiment results showed
that the Expanded points were easy and faster to select. Second, Voice command
was less tiring and more preferred by the participants and Head pointing also
received a lot of positive feedback. Finally, the combination of the three techniques
was rated by most participants as their best technique for selection.

However, the experiment still had many limitations. In this study, the selection
technique was considered only for visualising 3D data points regularly tiled on a
2D plane. Moreover, the multi-target selection was not evaluated.

To adapt this proposed technique to another type of data point, I proposed
in Section 3.5.1 a solution to generalise this technique to overlapped and non-
overlapped 3D data points displayed in a 3D space. Moreover, I designed and
implemented a novel technique of decoupling head movement for pointing and
hand gestures for pointing refinement to improve its accuracy. In the future, a user
study must be conducted to confirm this enhancement.
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4 - Immersive Analytics with Augmented Re-
ality in Meteorology: An Exploratory Study
on Ontology and Linked Data

This chapter addresses some multi-scale data visualisation challenges in Immer-
sive Analytics (IA) through Augmented Reality (AR). To tackle these issues, I will
present an ontological approach for handling multi-scale meteorological datasets. In
a user study conducted to evaluate this approach, meteorology serves as the proof
of concept, demonstrating the approach’s effectiveness with inherently multi-scale
data. Nonetheless, this methodology can be applied to other IA systems utilis-
ing AR. The chapter concludes with a discussion of open problems related to this
contribution.

4.1. Introduction

In Section 2.2.4, I have discussed how the AR technology could bring great
benefits to meteorological data analytics. However, the limited field of view of AR
Head-Mounted Displays (HMD) may hinder the analysis process when there is too
much data to visualise all at once, which often happens in the context of complex
data analytics tasks with large datasets. In addition, most Virtual Reality (VR) and
AR applications in IA use NoSQL databases to store and query data [249, 250, 251],
and to handle large volumes of unstructured or semi-structured data [252, 253,
254]. However, NoSQL databases are sometimes limited in terms of reasoning and
inference capabilities, and therefore, may not support some range of queries.

One approach to help reduce the complexity of the datasets and to accelerate
the analytical reasoning process is to rely on the previous knowledge of the related
domain(s) in the form of ontology and linked data. Essentially, an ontology, as
defined by Thomas Gruber, is “a specification of a representational vocabulary
for a shared domain of discourse - definitions of classes, relations, functions, and
other objects” [255]. Over the last decades, we have witnessed a colossal effort
of many experts in different scientific fields who aimed to build and share their
own ontologies (e.g., life sciences [256], climatology [186], biomedicine [257]). In
semantic web technologies, ontologies are utilised to aid in the comprehension and
manipulation of data. By linking structured data, linked data can enhance its utility
through semantic queries [258]. Despite the fact that ontology and linked data are
field-dependent, once the domain knowledge has been formulated, it can be easily
reused in many applications.

This chapter proposes an exploratory study on the use of a semantic approach
in AR-based IA and addresses the following research question:
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RQ1: Can the semantic-based approach facilitate visualisation and analysis
in immersive analytics for meteorological data?

My case study uses meteorological datasets collected from different sources
of real measurements and simulations. These datasets include heterogeneous and
multi-scale big data on temperature, heat flux, precipitation, humidity, wind veloc-
ity, amongst others. I consider this a is typical example to demonstrate the interest
of the semantic based approach in a real-world IA application. I will present next
the design and the development of a proof of concept of an AR interface using an
ontology to demonstrate how such approach enables the user to display appropriate
data during the interaction and to enhance their performance in the data analytics
process. To bring forth the advantages of ontology and linked data in this IA appli-
cation, I examined different ontologies in meteorology and climatology and design
an ontology based on the existing ones. Indeed, the meteorological and climato-
logical ontologies in the literature are often large or complex in terms of concepts
and dependencies on other ontologies, which reduces the query performance in AR-
based systems. Moreover, they also lack certain rules and concepts to allow the
user to accurately formulate queries to some specific part of the datasets. Finally,
I evaluated the potential of my AR-based IA system in conducting an experiment
that aims to demonstrate the relevance of my semantic approach compared to
a conventional non-ontological one. This chapter is based on work accepted for
publication at Virtual Reality Springer [259].

4.2. Semantic Immersive Analytics Framework

I present in this section my semantic IA framework which follows the ontology
and linked data approach to support the AR-based IA process to analyse meteoro-
logical data.

4.2.1. Design Overview
The semantic IA pipeline consists of four processes (Data, Models, Knowledge,

and Visualisation) proposed by Keim et al. [2] with some modifications (Fig. 4.1).
Data process is an essential step in the framework (cf. Data Processing and

Concept Modelling component in Fig. 4.1). It aims to transform heterogeneous
data to homogeneous one. Indeed, meteorological data is mainly spatial-temporal,
but is collected from different sources (e.g., satellites, radar, weather balloons,
etc.). It must be transformed to be used for querying and visualising. Therefore,
our first concern was to set up our own ontology model in this specific domain.
I then instantiated ontological individuals (via Resource Description Framework
(RDF) triples) to semantically link raw data to some of the classes of our ontology.

Visualisation process allows the user to explore the data interactively. This pro-
cess is managed by Visualisation Engine via User Interface modules of Interacting
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Figure 4.1 – Overview of our semantic immersive analytics approach.

component in order to gain Knowledge from data. However, in some cases, Visu-
alisation process alone is not enough to extract domain knowledge via Querying
component, and it must be coupled with an analysis step (cf. Analytics Engine)
which is characterised by the Models process. This process allows users to auto-
matically extract information from data, targeting the Knowledge process. It is
managed within Rules and Reasoning component, which infers the model via a
reasoning engine (cf. Reasoner). I will detail next the design and implementation
of each component.

4.2.2. Data Processing and Concept Modelling
As highlighted in Section 2.3, the existing ontologies for meteorology and cli-

matology are often very large or complex in terms of concepts/classes and depen-
dencies (e.g., SWEET, NNEW described in Section 2.3.2). Some ontologies also
lack some of the concepts that are needed in our application (e.g., SSN, AEMET,
SMEAR, ACORN-SAT), or are designed for very specific datasets (e.g., AEMET,
ACORN-SAT). To avoid overloading of RDF database which stores the data in the
form of linked data, I propose an ontology using SSN as a core, extend it by other
specific ontologies such as units and time, and add more classes and rules for the
system.

To design the domain-specific ontology, there are different approaches (e.g., [260,
261, 262, 263]) which helps to avoid common pitfalls. I built the ontology (Fig. 4.2)
following “Ontology development 101” approach [263]. It provides an intuitive and
iterative tool to build ontologies with basic knowledge of their design process. This
approach is divided into sequential steps as follows:

— Step 1: Identifying the domain and scope of the ontology. In this step,
questions related to expertise (also called competency questions) were for-
mulated with the meteorologists I collaborated with at LATMOS (Labora-
toire Atmosphères, Observations Spatiales), and the ontology must be able
to answer them. Some examples of the formulated competency questions
are:

Q1: What is the wind state according to the Beaufort scale Ta-
ble [264]?
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Q2: Is there a depression/anticyclone?
Q3: When/Where does the cyclone phenomenon start/ends?
Q4: Where is the eye of the cyclone phenomenon?
Q5: What is the temperature, humidity, precipitation, wind speed, and
other recorded values at a specific place, time and date?
Q6: What is the minimum/maximum temperature, humidity, wind
speed, and other recorded values at a specific place, time and date?
Q7: Is there sunshine at a specific place, time and date?
Q8: When/Where does the temperature drop/stay below 0◦ Celsius?
Q9: Over a period of time, what is the highest/lowest temperature,
pressure, precipitation, pressure and other values recorded, and at which
specific place, time and date?

— Step 2: Considering the reuse of existing ontologies in the context of IA,
the chosen ones should be understandable for future extension with classes,
properties, and rules to facilitate data integration and resampling. More-
over, to support real-time interaction required in AR and VR applications,
the existing ontologies to be selected must have only few dependencies with
others, to avoid overloading the RDF database in favour of query response
time, an important factor for fluid interaction in IA. Therefore, I chose to
reuse in a modular structure the four following ontologies (Fig. 4.2):

SSN [182] describes sensors and observations. It is composed of 41
concepts and 39 object properties organised into ten modules, inheriting
directly from DUL 11 concepts and 14 object properties [183].
OWL Time [188] describes temporal concepts and expresses the rela-
tionship between temporal entities.
WGS84_pos [265] is used to describe the coordinates (latitude, lon-
gitude, and altitude) and other related information about spatially-
located objects (e.g., size, shape, etc.).
Units [189] represents different units of measurement and the relation
between them.

— Step 3: Enumerating domain-dependent terms. This step consists in defin-
ing the terms of the ontology glossary. This glossary is extracted from
competency questions (formulated in Step 1). In this case, it contains
terms such as: Wind state, Light winds, Light breeze, Gentle breeze, Fresh
breeze, Strong breeze, Storm, Hurricane, Pressure, Average pressure, De-
pression, Anticyclone, Cyclone, Phenomenon, Cyclone eye, Temperature,
Cold, Dew point, Precipitation, Humidity, Wind, Sunshine, Cloud, etc.

— Step 4: Identifying concepts amongst all the terms defined in Step 3.
The class of a concept either already exists in the reused ontologies and
if not, this concept is added as a new class in the ontology. Following
this process, I introduced 28 new classes (Fig. 4.2). They are then linked
together to create a class hierarchy through the relationship of subclass-of
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or is-a (Fig. 4.3).
— Step 5: Iterating over all the classes and determing the terms in the set of

terminology that are properties. The properties are used to connect two
individuals (object properties) or to connect a subject with an attribute and
to define data types (data properties). Following this process, I identified
21 object properties. Some exist in the reused ontologies such as: Lo-
cation, Longitude, Latitude, Altitude, etc. Some others have been added
as new ones such as: hasTemperature, hasHeat, hasPressure, hasWind-
Force/hasWindVelocity, hasHumidity, hasDirection, hasWindState, belong-
sObservation, hasDewPoint, hasWeather, hasCloud, etc. I also identified
16 data properties. Existing ones are, for instance: hour, resultTime, has-
SimpleResult, hasXSDDuration, etc. I also added others such as: has-
Min, hasMax, hasTemeperatureValue, hasPressureValue, heatRate, has-
DirectionU, hasDirectionV, hasHeatValue, hasSource, hasDowPointValue,
etc.

— Step 6: Specifying possible domains and ranges of values for the new
properties defined in Step 5. The domain states that any resource that has
a given property is an instance of one or more classes. The range states
that the values of a property are instances of one or more classes [266].

— Step 7: Defining instances of the classes and adding them into the ontology.
This step transforms the data into RDF triples based on the ontology.

Figure 4.2 – A representative part of our ontology model. Different modules are rep-
resented with specific colours: black, green, blue, and red, representing respectively
the WGS84_pos, Time, Units, and SSN ontologies (along with our additional classes).
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Figure 4.3 – Using subclass-of or is-a to specify class inheritance.

4.2.3. Rules and Reasoning
The inferred model (cf. Rules and Reasoning in Fig. 4.1) allows the sampling

and feature extraction of data. To perform reasoning process (i.e. deducing knowl-
edge), I need reasoners and syntactic rules. Reasoners are used to compute or derive
new facts from existing knowledge. Many reasoners exist (e.g., OWLIM-lite [267],
Jena [268], Fuxi [269], EYE [270]) with their pros and cons [271]. Amongst them,
Jena is a Java-based open-source application framework for semantic web applica-
tions. I selected this framework because of its predefined reasoners, and especially
its generic rule reasoner. This latter provides human-readable syntax with short
rules to simplify notation. It also supports user-defined rules written in Jena format.

The ontology model was defined using basic rules between classes such as
transitivity, disjunction, and equivalence. Moreover, as mentioned above, the on-
tologies I reused do not address specifically meteorological phenomena and I thus
added concepts and properties to target them. I also introduced in the inferred
model a number of rules enabling the extraction of data that must be classified as
an instance of specific phenomena (e.g., storm, hurricane). Some of these rules
have been used to help the users perform tasks in the experiment (Section 4.3).

For example, rule R1 (cf. Listing 4.1) determining the set of data points of a
depression is based on pressure property (in Hectopascal (hPa)). As a Storm is-a
Depression, to determine if this same set of data points describes also a storm,
rule R2 (cf. Listing 4.2) only needs to analyse the wind speed property (in m/s).
Listings 4.1 & 4.2 present these rules written in Jena generic.

1 [isDepressionPoint:
2 (?p rdf:type local:Pressure)
3 (?p local:hasPressure ?pressure)
4 le(?pressure ,1013.2)
5 (?p geo:location ?coordinate)
6 ->(?coordinate rdf:type local:Depression)]

Listing 4.1 – Depression Rule (R1).

1 [isThePointInSTorm:
2 (?w rdf:type local:Wind)
3 (?w local:hasWindForce ?force)
4 ge(?force ,17.43) le(?force , 32.63)
5 (?w geo:location ?coordinate)
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6 (? coordinate rdf:type local:Depression)
7 ->(?w rdf:type local:Storm )]

Listing 4.2 – Storm Rule (R2).

4.2.4. Data Query Engine
Once the RDF database is established, it is crucial to set up a data query en-

gine that can extract and process the data for visualisation in response to real-time
interaction events from the user interface. Our system relies on the use of SPARQL
query language, which is based on different query forms such as: SELECT, CON-
STRUCT, ASK and DESCRIBE [272]. To support the interaction, I set up different
manipulation and voice commands on the AR interface using Microsoft HoloLens
2: to trigger generic actions (e.g., show the main menu “Main menu", to select
a button “Select"), or to make queries on field-dependent information (e.g., to
display data of “Wind Velocity", “Pressure", “Depression", “Storm Zone", etc.).
The querying process (cf. Querying in Fig. 4.1) allows the user to filter the data
or a part of the data.

For example, via a SELECT operation automatically generated by a simple
voice command, the user can request part of data which satisfies the specific
rule R2 about the storm to highlight the related data points in the immersive
environment (see Fig. 4.4).

Figure 4.4 – Left: Data points resulting from the "Storm Zone" voice command. Right:
The corresponding SPARQL query to find all data points (individuals) belonging to the
inference class Storm during a specific interval of time.

The user can also trigger an ASK operator to check whether an instance belongs
to a specific class or satisfies some criteria. Some examples of ASK command
include:

— To check if a class belongs to another class.

1 ASK {local: Strabus
2 rdfs: subClassOf local: Cloud
3 }

The response is true for this case.
— To check if an individual of a specific class satisfies some criteria:
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Figure 4.5 – A) A user performsmeteorological data exploration and analysis tasks us-
ing an Augmented Reality headset. The data is linked between graphs, facilitating the
analysis of associated variables of a phenomenon. B) Some features implemented for
spatial-temporal data exploration: (1) Bounding box for data manipulation, (2) Tool-
box offering different colour maps for data visualisation, (3) Toolbox for animations
of spatio-temporal data, and (4) Main menu to choose the weather observation(s) to
visualise. Thanks to ontology and linked data, it is possible to animate different vari-
ables in the same temporal context.

1 ASK {
2 ?class a local:Storm;
3 geo:location ?location.
4 ?location geo:lat "150"^^unit:deg;
5 geo:long " -20"^^unit:deg.
6 }

This request checks whether the data point with latitude of 150 degrees
and longitude of -20 degrees in the database is situated in a storm area.

— To perform some reasoning by automatically using SPARQL queries.

1 ASK {ssn: ’Feature of interest ’
2 rdfs: subClassOf local: Cirrus
3 }

The response will be true despite the absence of an explicit direct link
between the two concepts.

The data resampling based on this querying process allows the user to visualise
only the data of interest. In the context of AR-based IA, it is beneficial from two
main aspects. First, in terms of visualisation and interaction, the limited field of
view of some AR headsets makes their use tiring for the user, which can affect
user experience. The resampling helps to filter the data to show only relevant part
of it. Second, concerning computational power, this process will help to save the
GPU calculation to facilitate the big and complex data rendering. Moreover, ASK
commands allow the user to check relevant information before displaying it.

4.2.5. Analytics Engine and Interaction
The IA environment has been designed based on the features and limitations

of the AR headset (Microsoft HoloLens 2) I used in this study (see Fig. 4.5). The
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system follows a client-server architecture that separates database management
and interaction components.

The AR interface allows the user to integrate data from different sources and
to understand the relationship between the data thanks to the semantic links. It
can be used by both novice and advanced users. I focus on AR technology for
immersive analytics because it provides the user with a large workspace and its
potential for co-localised immersive collaboration.

I implemented different interaction techniques following the O+D design paradigm
for interactive data exploration at various levels of detail [140, 141]. For instance,
with Context-on-demand, the user can see all the details of a particular point by
selecting it (Fig. 4.6). The system also supports voice commands and air-tap ges-
tures to confirm the selection. The touch interaction was implemented, but due
to a tracking issue and the large number of data points in the experiment (Sec-
tion 4.3), it was not accurate for selection and is not considered in the user study.
Moreover, the Microsoft HoloLens 2 headset’s existing pointing techniques (see
Section 2.1) do not help to avoid the Eisenberg effect [86] when selecting distant
and small objects. To overcome this issue, based on the result of an experiment in
Chapter 3, I chose to use the Expanded Data Points selection technique proposed
in Section 3.3 with the head pointing and voice validation technique. Since I also
deal with temporal datasets, I implemented both automated and manual animation
control to visualise the data that changes over time.

The user can make queries of different types of data (e.g., pressure, tempera-
ture, humidity, wind) and visualise it in graphs or scatter plots. Thanks to the links
created between them in the ontology, when the user selects a data point in one
representation, its corresponding points are also selected in others (Fig. 4.6.B). In
addition, they can display a world map to pinpoint the source of the data based on
the real spatial coordinates (Fig. 4.6.A). They can use two types of data represen-
tation: a pixel-based board for 2D data based on its longitude and latitude, and a
voxel-based volume for 3D data with its 3D coordinates. The pixel-based board is
a graph in which each cell is colour encoded. It illustrates meteorological data in
conventional way by using colour maps to indicate the value of physical quantities
(e.g., wind speed, pressure, humidity, etc.). Similarly, the voxel-based volume pro-
vides an overview of the multi-dimensional data in 3D space. For smooth rendering
and performance management on Microsoft HoloLens 2, I used graphical shaders
for data visualisations.

4.3. Use Case Study

I conducted an experiment to compare my ontological approach with the non-
ontological baseline using an AR Microsoft HoloLens 2 headset. The experiment
follows a counter-balanced within-subjects design with repeated measures and two
independent factors considered as follows:
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Figure 4.6 – A) The user interacts with the graph and themap: when they select a data
point, it is highlighted on the map. B) The user can display multiple graphs together
(e.g., pressure, temperature, wind velocity, etc.): when a point is selected on one
graph, the corresponding points are automatically selected on the others.

— Approach (A) indicates whether the user uses computer-assisted (A1)
or non-computer-assisted method (A2). Using A1, the user can get help
from the underlying architecture of ontology and linked data (Fig. 4.7). For
example, for task T2 (see Sec. 4.3.4), they can trigger a SPARQL query via
voice command “Storm Zone" to automatically select all the data points
belonging to a storm zone instead of manually looking for them. With A2,
the data is stored in a MongoDB database under the document format.
The user solves the tasks themselves based on given rules (e.g., Rule 1: a
storm occurs when a depression area is accompanied by circular wind flow
and wind speed between 17.43 and 32.63 m/s). Such rules was explained
to participant during the training phase.

Figure 4.7 – When the user focuses their cursor on the graph and says "Storm Zone",
all the data points belonging to a storm zone that satisfy rule R2 (Listing 2) are high-
lighted in a more vivid colour. This region of interest is outlined by a black circle in
the two figures for readability purposes.

— Task (T) consists of three types of tasks (see Sec. 4.3.4) selected in the
context of meteorological data analysis. Since I conducted this experiment
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during the Covid pandemic with the participants from my university who
are novice in this specific domain, the tasks were simplified.

In this experiment, I used the data which includes surface pressure and wind
speed from 09/08/2004 to 16/08/2004 simulating Hurricane Charley given by
Alex Crosby et al. [273]. Nine separate subsets of the data were picked for training
and evaluation tasks.

4.3.1. Hypotheses
I assumed that as the computer-assisted data analysis approach provided the

user with an intelligent heterogeneous data integration and analysis in the IA envi-
ronment, it would improve the analysis task performance. I formulated the following
hypotheses:

H2.1 It takes less time and effort for the user to solve data analysis tasks with
the computer-assisted approach than with a non-computer-assisted one.

H2.2 The computer-assisted will produce the least amount of errors and in-
crease the user’s confidence in their answers to the tasks.

4.3.2. Participants
Sixteen participants participated in this experiment, including 4 females and 12

males aged between 19 and 30 years old (µ = 24.25, σ = 3.66) from my university.
14 were computer scientists, 13 had previously used an AR headset, and seven had
used 3D visualisation software (e.g., CAD, 3D modelling, 3D data visualisation).
None of them was working with meteorological data before. As the meteorologists
of the Atmospheres, Space Observations Laboratory (LATMOS), have contributed
in designing and evaluating the first prototype, we recruited non-experts in me-
teorology in this study in order to get a more generalised understanding of the
ontological approach’s performance with basic data analytics tasks. They could
also provide valuable feedback for refining the system and making it applicable to
a wider range of users and immersive analytics scenarios in domain applications.

4.3.3. Apparatus
The system was developed in Unity3D and ran on a Windows computer of Intel

Xeon w-2135 processor, 32 GB RAM, and RTX 4000 graphics card. Microsoft
HoloLens 2 was used for rendering and interaction. The 5 GHz Wi-Fi connected
the desktop to the headset. Regarding the databases, I used Apache Jena Fuseki
server for ontology and linked data for A1, and MongoDB for document data for
A2 on Windows 10.

A comparison between these two databases was performed in terms of query
response time according to the number of queried data points (see Fig. 4.8). The
test was run on the same dataset using the same hardware for the experiment. It
shows the disadvantage of Apache Jena Fuseki when the number of queried data
points at one time increases over 1 million. Therefore, I did not considered the
response times of the two databases for queries in the final task completion time
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of the experiment.

Figure 4.8 – Query response time according to the number of queried data points
using two types of database server.

4.3.4. Experimental Tasks
There were three tasks T1 to T3 with increasing complexity (see Table 4.1)

chosen according to the meteorological data analysis task process. Each task was
solved within the two conditions (A1 and A2) on different datasets to limit the
learning effect. T1 and T3 have two equivalent sub-tasks, X and Y, using two
separate datasets. For example, if the T1X was used for A1 then T1Y was used
for A2, and vice versa. There were 2450 data points for each graph in T1 and
3872 in T2. In T3, there were 3872 data points for each graph in each timestamp.

During T1, the participants must find the three lowest/highest pressure data
points and their corresponding wind velocity. With T1 in A1 condition, thanks to
the linked data, when the participant selected a data point in Pressure graph,
its corresponding point was automatically highlighted in Wind Velocity graph
(Fig. 4.6.B). With T1 in A2, they had to identify manually the corresponding
wind velocity.

With T2 in A1, the participant could use the voice command “Storm Zone”
(not mandatory), which triggered a SPARQL query to select all the data points for
the specific date satisfying the rule R2 (Fig. 4.7). The user had to check before
validating their choices. With T2 in A2, in order to balance the average time
between the two conditions A1 and A2, the user had to find only four points in
the storm areas.

Finally, in T3, they performed the task similar to T2 at three different times-
tamps.

4.3.5. Procedure
Each session lasted about 75 minutes. At the beginning, each participant

was welcomed, signed a consent form, and received introduction of the system.
Next, they filled out a pre-experimental questionnaire on demographic information.
Afterwards, they were equipped with the AR headset. A pre-training session was
conducted to familiarise the participant with the use of the headset, the user
interface, its functions and interactions.
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ID Task
T1X 1. Find three lowest pressure points in Pressure

graph.
2. Validate the corresponding points with the same
coordinates in Wind Velocity graph.

T1Y 1. Find three highest pressure points in Pressure
graph.
2. Validate the corresponding points with the same
coordinates in Wind Velocity graph.

T2 Find four points in the storm area in both the
Pressure graph and Wind Velocity graph.

T3X Find the points in the storm area in both Pressure
and Wind Velocity graph on 12/08/2004
at 02:00 & 17:00, and on 13/08/2004 at 11:00.

T3Y Find the points in the storm area on both Pressure
and Wind Velocity graph on 10/08/2004
at 21:00, 22:00 & 23:00.

Table 4.1 – Three types of tasks in the experiment.

There was a training phase before each task when the meteorological concepts
and task instructions were explained on a training dataset. Subsequently, the
participant started a task in A1 and A2 condition in a counter-balanced order on
two different datasets.

After each condition, they filled out two questionnaires: NASA-TLX for cogni-
tive load and SUS for system usability. At the end of each task, the participant also
ranked the two conditions according to their preference and rated their confidence
on the answers. The same process was repeated for all of the three tasks.

4.3.6. Data Collection
I collected data from 96 trials: 2 Approaches × 3 Tasks × 16 participants.

For each trial, I registered the following measures.

Quantitative data:
— Task Completion Time (TCT): the time needed to complete the task in

each condition. It started when the participant initiated the task and ended
once it was done. This time did not include the response time of queries
to the databases.

— Number of attempts: the number of times the participant tried to reach
requested data points during the task. It was calculated based on the
number of times the cursor passes over them.

— Answers to tasks: the number of data points correctly selected. It was
used to evaluate the correctness of the answers.
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Subjective data:
— System Usability Scale (SUS): the usability of each approach (A1 and A2)

estimated after the task.
— NASA-TLX : the cognitive load of each approach estimated after the task.
— Overall ranking : the ranking of the two approaches according to the pref-

erence of the participant for each task.
— Confidence score: the degree of confidence in the participant’s answer from

1 (not at all confident) to 7 (very confident) after having solved the task.

4.3.7. Statistical Results
Quantitative data: I used normal QQ-plots and Shapiro-Wilk tests to analyse

the normality of all the data from the three quantitative measurements. Since none
was normally distributed, I applied a log-transformation after an asymmetry test.

Regarding Task Completion Time (TCT) (see Fig. 4.9), a two-way repeated-
measures ANOVA was used to evaluate the interaction of the two factors Ap-
proach and Task. The result revealed that there was no significant interaction
between them (F2,90 = 0.80, p = 0.41). The main effect test was performed
and the result showed a significantly independent effect of TCT on Approach
(F1,90 = 44, p < 0.001) as well as on Task (F2,90 = 20.7, p < 0.001).

Figure 4.9 – Means and 95% CIs of Task Completion Time (TCT) in seconds for both
of the approaches and the three tasks.

From Number of attempts (see Fig. 4.10), I analysed the interaction of the
two factors using two-way repeated-measures ANOVA. I did not find any signifi-
cant interaction effect between them (F2,90 = 0.09, p = 0.91). The main effect
test showed that there was a significantly independent effect of this factor on
Approach (F2,90 = 8.60, p < 0.001) and Task (F2,90 = 11, p < 0.001).

To evaluate the correctness of Answers to tasks, the participants’ responses
were transformed into numerical data. I converted correct answers into 1 while the
false ones into 0. The final result showed that there were only two wrong answers
in the data.

Subjective data: With the answers from System Usability Scale (SUS) question-
naire, I used its score calculation method to compute usability score. The pair-
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Figure 4.10 – Means and 95% CIs of Number of attempts for both of the approaches
and the three tasks.

Figure 4.11 – NASA-TLX results are detailed in subscales for the two approaches.

sample t-test was used to compare the mean SUS scale values in computer-assisted
(µ = 81.30, σ = 13.14) and non-computer-assisted (µ = 71.77, σ = 16.60). I
found that there was a significant difference in the score (p < 0.05).

Concerning NASA-TLX (see Fig. 4.11), I used Wilcoxon signed-rank tests to
analyse the overall workload. There was a significant difference between computer-
assisted (µ = 24.24, σ = 17.02) and non-computer-assisted (µ = 35.04, σ =

14.58) workload (p < 0.001).
The answers from Overall ranking showed that all the participants preferred

computer-assisted approach for T1, and 15 of them preferred the same approach
for T2 and T3.

I used Wilcoxon signed-rank tests for crossed comparison of Confidence score.
The result showed that there was no significant difference between computer-
assisted (µ = 6.06, σ = 1.04) and non-computer-assisted (µ = 5.83, σ = 0.16)
on the score of confidence.

4.3.8. Discussion
The statistical analysis showed that computer-assisted approach based on on-

tology outperformed non-computer-assisted by means of Task Completion Time
(TCT). I also found that computer-assisted task required significant fewer number
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of attempts made by the participants to solve the tasks. These two results support
H2.1.

The answers to the tasks the participants gave were mostly correct for both
conditions. The confidence score was also similarly rated. Therefore, I could not
confirm H2.2. Both of these measurements can be explained by the fact that each
participant was very well trained in different interaction techniques employed in
the tasks and performed well with the minimum meteorological concepts required.

In terms of usability score, both of the approaches were rated positively in all the
tasks even though computer-assisted was significantly rated higher on average than
non-computer-assisted. Moreover, the participants perceived that solving the tasks
using computer-assisted significantly reduced the cognitive load compared to non-
computer-assisted. Overall, they preferred computer-assisted based on ontological
approach to non-computer-assisted according to the questionnaires’ answers. In
general, computer-assisted approach received overwhelmingly positive feedback
from all the participants.

The high usability score of the semantic approach confirms that it can be used
to visualise and analyse complex data for meteorology. Using the same methodol-
ogy can help to get this approach go beyond the meteorology domain. Specifically,
considering an application field using immersive analytics, we can first analyse the
concepts and knowledge required in the related domain to determine if some ex-
isting ontologies can be combined and/or extended to target the application. The
second step is to establish domain-dependent inference rules to help users manage
large datasets and, more specifically, to facilitate data queries in an immersive con-
text. The third step is to tune these ontologies and rules according to the technical
limitations of the chosen XR technologies. The final step is to experiment with
the system using application scenarios and end-users to validate and enhance the
inference rules and their related interactive paradigms.

4.4. Conclusion

Recently, Immersive Analytics (IA) using Augmented Reality (AR) technology
has gained its popularity. Although AR facilitates data exploration and user ex-
perience, it is still challenging to visualise and interact with heterogeneous and
big data from different sources. It is due to computational limits and the lack of
appropriate methods to integrate such data in the same immersive environment.

To fill this gap, I proposed an approach based on semantic-knowledge repre-
sentation using ontology and linked data. I explored its benefits in the context
of meteorological data analysis. I designed and developed an AR-based IA envi-
ronment for novices and experts to work on such divers data sources, which are
conceptualised and linked within an ontology.

In the first part of the chapter, I proposed a design of an ontology for meteoro-
logical data in AR-based IA. Following the “Ontology development 101” methodol-
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ogy [263], the main features of this design process are: (i) identifying the domain
and scope of the ontology, (ii) considering the reuse of existing ontologies, (iii)
building the glossary of terms by enumerating domain dependent terms in mete-
orology with the end-users, (iv) identifying concepts among all this glossary, (v)
iterating over all the classes to find the terms in the set of terminology that are
properties, (vi) specifying the possible domains and ranges of values for each prop-
erty previously defined, (vii) defining instances of the classes and adding them
within the ontology. With this ontology set up, I designed and implemented an
ontology-based AR system on Microsoft HoloLens 2 device for IA tasks on mete-
orological data. The second part of this chapter, I described the use case study I
conducted to evaluate the interest of such ontological approach for an AR-based
IA. The results show that the semantic-based approach does facilitate visualisation
and analysis process in IA for meteorological data, answering the RQ1.

In the next chapter, I aim to assess the performance of this IA system using
AR technology in a collaborative context.
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5 - Physical Space Partitioning and View Pri-
vacy in AR-based Co-located Collabora-
tion for Immersive Analytics

This chapter presents my new proposal on the automatic physical space parti-
tion technique, which also includes three generated virtual boundaries to highlight
the workspace limit, and the co-located collaboration system using Augmented
Reality (AR) technology. The physical space partition technique was designed by
considering the available physical space and the various users’ positions during their
collaborative Immersive Analytics (IA) tasks. Although it has been con-
structed for IA, it can be applied to all generic co-located AR collaboration that
involves both individual and shared tasks. In this chapter, after an introduction, I
will detail the design and implementation of the physical space partitioning tech-
nique. Then, I will describe two experiments carried out to evaluate it. The first
was a study on the different types of visual representations that can be used to
visualise the physical space boundaries. The second experiment focused on the
effect of workspace management techniques and view privacy when combined with
the physical space partitioning technique. This chapter will be concluded with
some guidelines in applying physical space partitioning technique and a discussion
of several open problems.

5.1. Introduction

In many immersive collaborative systems, people with different expertise and
skills can work collaboratively to interact with and analyse data for decision-making.
Each person may focus on some particular aspects that are crucial for addressing a
common question or a shared task. On the one hand, in co-located collaboration,
displaying data when its quantity becomes significantly large everywhere in the
physical space can be disturbing or distracting for other collaborators when some
parts of the data itself may not be relevant for all of them. On the other hand,
nearby individuals’ spatial relationships and positioning can significantly affect user
performance and behaviour during collaboration [233]. Regarding collaborative
tasks, which often consist of a sequence of several sub-tasks alternating between
individual and cooperative steps intertwined, this becomes particularly critical.

This work aims to help the users to be aware of their personal and public
workspace in the physical space to perform collaborative tasks better. To achieve
this goal, my proposed solution focuses on partitioning physical space, with consid-
eration for the available area and the various configurations of public and private
workspaces needed. Moreover, to effectively split the workspace in AR, it is im-
portant to use visual cues to display boundaries. These cues should help the users
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understand their own workspace, their partners’, and the shared (or public) one.
By ensuring clear delimitation and aiding in the maintenance of spatial awareness
within the physical environment, I suppose that smoother collaboration and in-
teraction is facilitated. However, it is important that these boundary cues (Line,
Opaque, and Semi-transparent boundary cues) do not overly alter the perception
of real and virtual objects within the users’ field of view. This leads to two following
research questions :

RQ3.1: Which of the three visualisation modes: Line, Opaque, and
Semi-transparent is the most appropriate method of displaying the users’
workspace boundaries?
RQ3.2: Will the automatic partitioning with a separation of public and
private view for each user facilitate the workflow of the immersive analytics
work on meteorological data?

To address these questions, the proposed system for IA of meteorological data
analysis presented in Chapter 4 was extended to a co-located collaborative setup in
this work. Using this collaborative AR-based IA system, I first studied various tech-
niques for visualising the boundaries of the physical environment, including Line,
Opaque, and Semi-transparent boundary. I conducted a study to compare them in
terms of task performance, usability, and cognitive load. Following the outcomes
of the initial experiment, a second experiment was undertaken to investigate the
impact of the physical space partitioning technique when it is combined with differ-
ent view privacy configurations. This user study involved pairs of co-located users
engaging in collaborative tasks on complex datasets. From the results obtained,
an analysis was conducted, leading to discussions on the merits and limitations of
workspace partitioning in AR co-located collaboration.

The first study in this chapter is currently under review for the EuroXR 2024
conference, while the second study has been accepted for publication at Spatial
User Interaction (SUI) 2024 [274].

5.2. Automatic Physical Space Partitioning & View Privacy

When designing a co-located immersive system for multiple users involved in
collaborative tasks, it is critical to consider the limitations of physical space. In
typical work settings, such as offices or meeting rooms cluttered with cumbersome
furniture, the users might find themselves needing to negotiate the occupied space
to enable spatial interactions in AR. This aspect gains particular importance dur-
ing the handling of complex task that include the transitions between individual
and cooperative phases. The absence of established, agreed-upon individual and
collective workspaces can result in confusion, reduced productivity, and disruptions
in workflow, as the users may inadvertently obstruct each other or cause visual
occlusions. Moreover, I believe that the arrangement of collaborators within the
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physical workspace not only affects individual performance but also shapes collec-
tive behavior and collaboration patterns.

This section introduces the automatic technique for partitioning the available
physical space amongst the co-located users utilising a Head-Mounted Display
(HMD)-based AR interface. This technique calculates and allocates a designated
subspace for each collaborator, catering to both individual and collaborative tasks.
My method for determining a set of suitable physical workspaces encompasses the
following key steps:

— Step 1: Scan the physical space to understand the scene, obtain the envi-
ronment mesh data, and remove the ceiling and walls from the mesh.

— Step 2: Partition the space into n + 1 spaces, where n is the number of
collaborators.

— Step 3: Compute new meshes to define the boundaries of different workspaces.
— Step 4: Assign to each user a private workspace, and indicate the public

workspace.
These steps are detailed in the following:

In the initial step, the Scene Understanding package from the Mixed Reality
Toolkit (MRTK) is used to scan the environment. This process generates a mesh
of the physical space, capturing its main structures, including walls, floors, and
ceilings. The mesh’s vertex coordinates are subsequently used as input for the
partitioning algorithm.

Following this, the partitioning algorithm divides the environment in the sec-
ond phase. Given our scenario, the environment is partitioned into n + 1 spaces,
accounting for the number of collaborators n in addition to a public/joint space.
Various algorithms exist for space partitioning, each with its advantages and draw-
backs, as noted in the literature [275]. The k-means clustering algorithm was
selected for its simplicity, efficiency, and quick convergence, attributes that render
it ideal for real-time or iterative clustering tasks [276].

The third step involves generating new textured meshes for each cluster, using
the results from the k-means algorithm.

In the final stage, the system identifies the joint space by analysing the room’s
mesh data. The subspace nearest to the room’s centre is earmarked as the public
workspace. The system then calculates the distance from each user’s current
position to the other subspaces, assigning them to the nearest available subspace
accordingly. The pseudo-code of the algorithm is found in Algorithm 2.

To allow content privacy in the different subspaces, I also implemented a pri-
vacy policy for the digital content corresponding to each user. In essence, when a
user operates within their designated individual workspace, all associated objects
are private. Consequently, these private objects are only visible and implicitly mod-
ifiable by their owner. The owners are provided with the flexibility to alter privacy
settings, enabling either sharing functionality explicitly or transferring objects to
the public workspace. By default, all the objects located in the public space are
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Algorithm 2 Automatic Physical Space Partitioning Technique
Input: MeshVerticesList, MeshPosition, UsrNumB
Output: MeshList

1: procedure SpacePartition(MeshV ertices, UsrNumB)
2: N ← UsrNumB+1
3: if N < 3 then
4: MeshList.Add(MeshGenerate(MeshVerticesList))
5: return MeshList
6: else
7: clusters← KMeans(MeshVerticesList, N)
8: for k ← 0 to N − 1 do
9: MeshList.Add(MeshGenerate(clusters[k]))
10: end for
11: return MeshList
12: end if
13: end procedure

visible and interactable by all the users. In this use case, interactions with these
objects include modifications to their position, orientation, and size.

5.3. Boundary Visual Representations for Space Partitioning

To communicate the workspace boundary established by the above space parti-
tioning technique to the users, I proposed three visualisation modes. These visual
representation use varying opacity levels to mark the boundary: opaque, semi-
transparent, and line mesh textures.

In the cases of opaque and semi-transparent boundaries, as illustrated in Fig. 5.1.C
and Fig. 5.1.D respectively, the MeshGenerate function from Algorithm 2 takes
the result of the k-means algorithm as input. The Delaunay triangulation algo-
rithm [277] is subsequently used to identify all the triangles that form the new mesh,
with each cluster derived from the k-means output delineating a distinct workspace.
These meshes are then rendered with the appropriate materials. Specifically, for
the opaque boundary, Unity’s default materials are employed, setting their opac-
ity to ‘opaque’. In contrast, for the semi-transparent boundary, materials from the
MRTK toolkit are used, which feature an option for near-fading. This functionality
allows for the configuration of the system such that the areas in close proximity to
the user appear transparent, and gradually transition to full opacity as the distance
increases.

For the line boundary (Fig. 5.1.B), after clustering with the k-means algorithm,
the focus shifts towards identifying the border vertices for each subspace. Once
these vertices are determined, the subsequent step involves connecting them to
form the line mesh that delineates the boundaries of each subspace.

Meticulous design underpins each boundary visualisation technique, with a keen
consideration of its advantages and limitations aimed at informing users about the
distinct limits of workspaces. This approach enhances user interaction and aware-
ness during collaboration. Specifically, the implementation of an opaque boundary
responds to the critical need for unmistakable differentiation not only between the
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Figure 5.1 – A) The roommesh is obtained by scanning the physical environment using
Microsoft HoloLens 2. The space is then partitioned using three types of boundaries
generated on the floor to indicate differentworkspaces (green is public, red andwhite
are private): B) Line on real floor, C) Opaque, and D) Semi-transparent in Unity3D.

physical floor and the workspaces but also amongst various virtual workspaces.
Conversely, semi-transparent boundaries present a notable advantage by allowing
users to perceive the physical floor below, a feature essential for circumventing
real-world obstacles that might lie on the ground in the user’s proximity. Pro-
viding a visual cue for the physical floor, while simultaneously delineating virtual
workspace boundaries, serves to bolster safety and situational awareness amongst
users. Finally, opting for the line boundary technique, known for its simplicity and
minimal visual intrusion, provides a discreet demarcation of workspace limits, thus
minimising visual distraction from the workspace boundaries for the users.

5.4. Experiment 1: Evaluation of Boundary Visualisation Tech-
niques for Physical Space Partitioning

To choose amongst the three boundary visualisation techniques for physical
space partitioning, meaning opaque, semi-transparent, and line mesh textures (Sec-
tion 5.3) for the collaborative IA system. The first experiment was conducted to
evaluate them independently following within-subjects experimental design. There
was one factor Technique which includes three conditions (Fig. 5.1):

— Opaque boundary technique allows the users to view workspace floors cov-
ered by an opaque virtual material.

— Semi-transparent boundary places a virtual material over the real floor,
enabling the users to see the floor beneath them within a certain radius,
beyond which the view becomes progressively opaque.

— Line boundary technique outlines the workspace boundary with a virtual
line on the real floor.

During the experiment, the order of the techniques was counterbalanced across
all participants based on a balanced Latin square.

5.4.1. Hypotheses
Given the impact of different boundary visualisation techniques on user perfor-

mance, it was assumed that while all boundary visualisation techniques would de-
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lineate the virtual limits of different workplaces, they would not significantly affect
user performance. However, the Line Boundary technique could be more subjec-
tively favoured by participants due to the minimal visual distractions it presents,
allowing clear visibility of the boundaries. I thus formulated the following hypothe-
ses:

— H3.1.0: A similar amount of time will be needed to complete the re-
quired tasks under any of the three conditions: Opaque boundary, Semi-
transparent boundary, and Line boundary.

— H3.1.1: Line boundary technique will be rated higher in usability, demand
less task load, and be preferred by participants over the other conditions.

5.4.2. Participants
Six pairs of participants, ranging in age from 18 to 32 (nine men and three

women), participated in the experiment, having been recruited from our Depart-
ment and University. Amongst these participants, ten were working in the field
of computer science, while the remaining two were involved in mechanics and
language processing, respectively. In terms of academic qualifications, two partic-
ipants held a Ph.D., eight had a Master’s degree, and two possessed a Bachelor’s
degree. Additionally, seven participants had previous experience with virtual and
augmented reality systems, with two regarding themselves as experts.

5.4.3. Experiment Setup
The entire system, including its components (two clients and a server), was

developed using Unity3D 2021.3.15f1. The server application was executed on a
Windows computer equipped with an Intel Xeon W-2135 processor, 32GB of RAM,
and an RTX 4000 graphics card. Microsoft HoloLens 2 devices were employed for
rendering and interaction, serving as the client hosts. A local network utilising
5-GHz WiFi facilitated the connection of the headsets (clients) to the desktop
(server). The experimental room was set up to mimic a real office space for two
people, with dimensions of 5m× 3.5m, and was furnished with tables and chairs.

5.4.4. Experimental Task
Given that the experiment aimed to evaluate the three boundary visualisation

techniques, it could be considered independently from conventional data analytics
tasks. Therefore, I designed an entertaining, collaborative scenario for pairs of
participants. The task for the experiment involved decorating an apartment, where
each participant was assigned a different kind of its interior furniture to process.
Initially, participants engaged in a discussion to understand the apartment’s design
plan, which was based on a 2D image (Fig. 5.2.B). This discussion aimed to
clarify their individual responsibilities in collecting various objects from their own
workspaces to furnish the 3D model of the apartment situated in the common area.
Three 3D models of apartments were randomly linked to the three conditions of
the boundary visualization technique, with the specific objects to be collected by
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each participant varying according to the apartment models. For each condition,
participants were tasked with finding and bringing six particular types of objects
from a shelf in their workspace. One participant focused on decorative items such
as flowers, plants, and lamps (Fig. 5.2.A), while the other concentrated on furniture
and appliances like chairs, tables, and fridges (Fig. 5.2.C). The allocation of roles
was predetermined randomly at the beginning of each condition’s task.

Figure 5.2 – Example of a task in experiment 1: A) User A’s shelf contains decorative
items such as lamps, flowers, plants, a TV, and a laptop. B) A 3D apartment model
and a 2D image highlightmissing objects with red circles indicatingwhere they should
be placed in the 3D space. C) User B’s shelf contains furniture items such as chairs,
tables, fridges, and cabinets.

5.4.5. Procedure
The duration of the experiment was approximately 40 minutes. Upon arrival at

our laboratory, each pair of participants received a warm welcome, were provided
with task instructions, and signed an informed consent form. Subsequently, they
completed a demographic information questionnaire. Each participant was then
equipped with a Microsoft HoloLens 2 headset. A training session ensued to fa-
miliarise the participants with the headset usage, user interface, its functionalities,
and interaction modalities. Following this, the participants undertook three tasks
aligned with the three conditions, with the sequence of these conditions being
counterbalanced.

To begin each task, the participants were required to position themselves in
the public workspace (denoted as the green workspace in Fig. 5.1) to review the
task instructions and observe the boundaries demarcating the different workspaces.
Upon readiness, they initiated the task by pressing the start button on the menu.

At the end of each task, the participants were asked to complete the NASA-
TLX questionnaire and the System Usability Scale (SUS) form. At the end of the
entire experiment, they were requested to rank the three techniques based on their
preference. An open-ended interview was conducted to collect their feedback on
the three visualisation modes.

5.4.6. Data Collection
I registered 36 trials: 3 techniques × 12 participants and collected the

following measures:
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Quantitative data:
— Task Completion Time (TCT): the time needed to complete a task un-

der different conditions. This duration commenced from the moment the
participants initiated the task and finished with the placement of the last
objects in the 3D model. Given that six objects were to be identified and
positioned within each task, the average TCT across these six trials was
utilised for statistical analysis.

Subjective data:
— System Usability Scale (SUS): usability of each technique estimated after

the task.
— NASA-TLX : a cognitive load of each approach estimated after the task.
— Overall ranking :The participants ranked the three techniques according to

their preferences, with 1 being their top choice, 2 being their second choice,
and 3 being their least preferred.

5.4.7. Statistical Results
Regarding TCT, the Shapiro-Wilk test was used to test the normality. The

TCT data was found to be normally distributed. Subsequently, a one-way repeated-
measures ANOVA test was conducted. The results of this test revealed no signif-
icant difference between the various techniques in terms of TCT : F2,22 = 0.36,
p = 0.7 (Line: µ = 35.72s, σ = 8.2, Opaque: µ = 38.31s, σ = 10.54, Semi-
transparent: µ = 34.93s, σ = 12.65).

Figure 5.3 –Mean TCT by techniquewith error bars showing 95% confidence intervals
(CI).

The subjective questionnaires were analyzed using the Friedman test. For
the cognitive load, as measured by the NASA-TLX, the Friedman test showed no
significant effect (χ2(2) = 3.5, p = 0.17), with all conditions presenting a low
cognitive load (Line: µ = 25.83, σ = 13.3, Opaque: µ = 35.13, σ = 16.39,
Semi-transparent: µ = 23.75, σ = 9.26).
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The SUS questionnaire and its score calculation method were used to calculate
the usability score. The Friedman test indicated no significant effect (χ2(2) = 0.12,
p = 0.94). However, amongst the conditions evaluated, only the Line condition
achieved a mean score above 68, suggesting it was considered above average in
usability (Line: µ = 68.33, σ = 24.38). Conversely, the mean values for the
Opaque and Semi-transparent conditions were below this threshold, indicating
lower usability scores (Opaque: µ = 63.54, σ = 17.03, Semi-transparent: µ =

62.92, σ = 17.28).
In terms of overall ranking (Fig. 5.4), the Friedman test on the mean rank-

ings revealed a significant effect (χ2(2) = 8.66, p = 0.013). A post-hoc analysis
for paired conditions was performed using the Wilcoxon Signed Rank test with
Bonferroni correction. This analysis indicated a significant difference between the
Line and Semi-transparent conditions (p = 0.014), no significant difference be-
tween Opaque and Line (p = 0.27), and no significant difference between Opaque
and Semi-transparent (p = 1). Considering only the number of participants who
ranked a technique as their preferred choice (1), nine participants favored the
Line technique as the best, in contrast to three for the Opaque and none for the
Semi-transparent.

Figure 5.4 – Mean of overall user ranking of the three boundary visualisation tech-
niques (1 indicating the best, 3 the worst), with error bars showing 95% confidence
intervals (CI).

5.4.8. Discussion
This study investigated the effects of three different boundary visualisation

techniques on Task Completion Time (TCT), cognitive load, and system usability.
Initial hypotheses posited that there would be no significant differences amongst
the conditions concerning TCT, which was corroborated by the statistical analysis.
This outcome indicates that the selection of a boundary visualisation technique
does not significantly impact task efficiency, thereby supporting the null hypothesis
H3.1.0.
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The absence of significant differences in cognitive load and SUS scores suggests
that participants did not perceive any notable differences in usability or cognitive
load amongst the techniques. However, the Line technique’s higher SUS score,
surpassing the average usability threshold, unlike the Opaque and Semi-transparent
conditions. This could imply that the participant’s subjective preference is higher
for the Line condition regarding its usability, aligning partially with H3.1.1.

Furthermore, the overall ranking data, indicating a frequent preference for and
positive feedback towards the Line technique, corroborates the SUS findings. For
example, the P4 noted that the Line borders were easy to identify and did not
interfere as much as the Opaque ones did. The P7 said “It’s better when there
are no colours on the floor.” By comparing the Line condition to the Opaque and
Semi-Opaque conditions, the P9 mentioned that "The opaque surfaces were too
visually overwhelming, so it was somewhat headache-inducing”, and the P8 said
“If I use opaque, it hurts my eyes, and with transparent, I won’t get all the details
without outlines”. Interestingly, the P12 commented “I didn’t like the transparency
of the floor; I preferred it to be completely opaque or just with Line on the borders.
I found the transparency somewhat bothersome.”

In response to RQ3.1, although the participants’ preferences did not manifest
as significant differences in performance or cognitive load, the Line technique was
the most appropriate for displaying the users’ workspace boundary because of its
good usability, cognitive load score, and user preference. It was thus selected for
the next experimentation.

5.5. Experiment 2: Evaluation of Physical Space Partitioning
and View Privacy

This ultimate experiment investigated the effect of physical space partitioning
techniques, as detailed in Section 5.2, along with view privacy policy on co-located
collaboration in IA. Pairs of participants performed both collaborative and individ-
ual data analysis tasks on meteorological datasets. More specifically, I compared
the efficacy of partitioned collaborative spaces against the baseline scenario where
no partitioning was applied. Furthermore, the dynamics between private and public
views and their influence on the collaborative workflow amongst the participants
were examined. This experiment was designed as a [2×2] balanced within-subjects
study, incorporating the following factors:

— Workspace: Non-partitioning and Partitioning,
— View-Privacy: Private and Public.

The two variables of the Workspace factor are as follows:
— Non-partitioning serves as the default configuration for co-located collabo-

rative workspaces in IA (Fig. 5.6). This setup allows the users to place their
data anywhere in the real environment. In the context of this case study,
for collaborative tasks, the participants stand side-by-side at a location of
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Figure 5.5 – The user’s view is represented by blue and red circles, while the space
is divided into three workspaces, denoted by blue, green, and red rectangles: one
public (green space) and two private areas. In condition (A), each user can see and
edit only the objects within their designated space, in addition to those in the public
area. In condition (B), all objects are visible to all users; however, editing rights are
restricted such that only the owner canmodify their objects, except for objects in the
public space, which are editable by everyone.

Figure 5.6 – The workspace is not partitioned: In condition (C), an object is visible
and modifiable only by its owner, while public/shared (green) objects are visible and
modifiable by everyone. In condition (D), every user can see all objects, but only the
owner can edit them, while anyone can edit the public/shared objects.

their choosing within the real environment. When engaging in individual
tasks, each participant selects their preferred position anywhere within the
physical room.

— Partitioning (Fig. 5.5) describes the condition where the proposed parti-
tioning technique is applied to segment the physical space into three distinct
workspaces using a virtual line boundary on the floor: a public workspace
(shared space) and two private workspaces (individual spaces). The public
workspace is designated for collaborative tasks, whereas the two private
workspaces are assigned to each pair of participants for individual tasks.
The shared space remains accessible during individual tasks due to the
availability of shared data that needs to be analyzed within this workspace.

For View-Privacy, two different privacy policies are considered:
— Private view privacy (see Fig 5.5 A and Fig 5.6 C) is the condition in which

there are two types of data: personal data belonging to its owner unless
explicitly shared, and public data visible to all the users.

— Public view privacy (see Fig 5.5 B and Fig 5.6 D) implies that all the data
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for individual and collaborative tasks is visible to all the users.
Combining these two factors with each two variables, I obtained four conditions
summarised in Table 5.1.

Table 5.1 – Four conditions in Experiment 2

Condition Workspace View-Privacy
A Partitioning Private
B Partitioning Public
C Non-partitioning Private
D Non-partitioning Public

5.5.1. Hypotheses
I assumed that Partitioning, with Private view for each user, would facilitate

the workflow of collaborative work, increase the performance of individual and
collective tasks, and improve overall user experience. Consequently, the following
hypotheses were formulated:

— H3.2.1: Despite the privacy of the view, it takes less time and effort for
the users to set up the workspace with Partitioning approach than with
Non-Partitioning one during collaborative and individual tasks.

— H3.2.2: Regardless of the workspace’s Partitioning or Non-Partitioning
condition, sharing complete information all the time in Public view may
negatively affects user performance and experience.

5.5.2. Participants
In this experiment, 16 people (8 pairs) were recruited, with ages ranging from

19 to 37 (12 men and four women). The majority had a background in computer
science, with the exception of four who studied sociology. Regarding educational
qualifications, three participants held a Ph.D., nine possessed a Master’s degree,
two had a Bachelor’s degree, and two had completed high school. Experience with
VR and/or AR technology varied among participants: six had basic knowledge, six
had intermediate experience, and two considered themselves experts. In terms of
data analysis skills, half of the participants had basic skills, though only one had
prior experience with meteorological data.

5.5.3. Overview of the IA System
For this experiment, I have extended the previous AR-based IA system for

collaborative data analytics tasks. This IA system was based on the client-server
architecture, where the server enables a shared virtual space and facilitated real-
time collaboration. The users are able to access both shared and private digital
content by connecting their Microsoft HoloLens 2 devices to the server through a
wireless network.
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For data analytics tasks, I used the meteorological data collected from two
NASA weather data sources: MERRA-2 [278] and GLDAS_NOAH [279]. The
Modern-Era Retrospective Analysis for Research and Applications 2 (MERRA-2)
provides estimates of atmospheric variables such as temperature, humidity, winds,
and other parameters across the globe. The dataset features a latitude resolution
of 0.5°, a longitude resolution of 0.625°, and a time step of 1 hour. On the other
hand, the GLDAS_NOAH (Global Land Data Assimilation System with Noah Land
Surface Model) represents a land surface modelling system. It merges satellite
and ground-based observational data with land surface modelling techniques to
produce a detailed representation of global land surface conditions. The GLDAS-
2.0 format features a three-hourly time step and spatial resolutions of 0.25× 0.25.
To synchronise both data types to the same time step, the GLDAS_NOAH data
was converted into three-hour time steps by averaging the data across each spatial
coordinate over 3 hours.

Figure 5.7 – Snapshots of our IA system: A) Overview: Pluviometry data of the world
is publicly visualised to all users. They can narrow down to a specific area through
a semi-transparent, modifiable green box that acts as a filtering tool. B) Filtering:
The data filtered by the green box allows users to inspect the zone of interest in
more detail. C) Private view: Different users have access to various sets of data in a
private view and interact with themusing their own tools. The interactions in both the
public (B) and private (C) views are automatically reflected in the corresponding data
visualisation to support the mutual decision-making process. In this example, two
users manipulate two tools separately (red and white) in their own view to redefine
the area with interesting meteorological phenomena based on different parameters
(e.g., pluviometry, water runoff, temperature).

To support the analytics tasks of these datasets, I implemented the three main
features following Shneiderman’s Visual Information-Seeking Mantra [280]:

— Overview enables the users to have a global overview of different types
of datasets available in the public (Fig. 5.7.A & B) and private space
(Fig. 5.7.C). Since there are many parameters of the datasets (e.g., wind
velocity, pluviometry, water runoff) to be inspected (together or separately)
as it is typical in the real-world scenarios, I also implemented functionalities
for expanding and shrinking sections in the data visualisation, allowing
the users to tidy up the workspace swiftly as needed, and sharing when
necessary (Fig. 5.7.C).

— Filtering and resampling allow the users to dynamically refine and ma-
nipulate data representations based on specific criteria or parameters. They
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Figure 5.8 – A) When the user’s cursor hovers over a data point, it is automatically ex-
panded, and its related details are shown. B) The information related to a data point is
also displayed when the user selects it. Different colours are used to associate the in-
formation with a small subset of selected data points. C) A semi-transparent box can
be used to select a specific area, and the label displays averaged information about
the selected area. D) The user can also see the partner’s current interaction (e.g., a
data point and its associated data), but this feature can be activated or deactivated to
avoid visual clustering. E) A toolbox for playing animations of spatio-temporal data.
The red lines and circles are used to highlight each corresponding item.

can apply filters to the displayed dataset, focusing on particular aspects,
subsets, or categories of the data. These filters also include data sources,
date and time ranges, geographic locations, meteorological parameters, or
any other relevant data attributes. For instance, using an expandable 3D
green box (Fig. 5.7.A), the users can select a specific area and trigger a
data query to the database to select and display all the data belonging to
this zone from different data sources (collected by various satellites or in-
struments). The result of the filtering is shown in Fig. 5.7.B. Alternatively,
they can specify parameters for filtering directly on the interface using a
2D toolbox.

— Details-on-demand is a feature that enables the users to access specific
information about particular data points by making a selection. The users
can either hover the cursor on top of each data point for quick access of
the information (Fig. 5.8.A) or select it explicitly for later comparison. If it
is the latter, its details will be visualised in the neighbourhood of the graph
(Fig. 5.8.B). Furthermore, they can select a subset of multiple data points
by selecting several individual data points or by using a 3D semi-transparent
modifiable box for zone selection (Fig. 5.8.C). It can be particularly helpful
for comparing different values of these data points. Other users can see the
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details of the data points under the user’s cursor if this option is activated
(Fig. 5.8.D).

5.5.4. Experiment Setup
The setup was the same as in Experiment 1.

5.5.5. Experimental Task
Based on the results of several interviews with meteorologists at LATMOS and

Mahmood et al.’s study [237], it was determined that a typical collaborative sce-
nario for meteorological and geo-spatial data analysis entails three principal stages.
Initially, the collaborators discuss and explore a set of data together to identify a
zone of interest and develop hypotheses of its meteorological phenomenon. The
second stage involves evaluating additional parameters (such as rainfall, runoff,
wind velocity, temperature variation) or consulting alternative data sources (like
satellite imagery, radar, or weather balloons) related to the same area. This is a
crucial activity, given the potential for data anomalies due to instrument errors
under various setup conditions. Consequently, the collaborators must verify the
consistency of their chosen area across different datasets, a process that may be
undertaken individually as each person may be interested in other parameters or
other data sources. In the final step, they gather their findings and discuss them
together to make a final decision when it is possible.

Figure 5.9 – A) Two participants worked together in the co-located AR environment
during an individual sub-task. B) User 1 visualises temperature variation, land-water,
and runoff data. C) Meanwhile, User 2 works on pluviometry, wind-velocity, and
runoff data.

Therefore, the experiment was designed as follows: the pair of participants
performed a data analysis task, which was segmented into three sub-tasks. The
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initial collaborative sub-task (collab-subtask-1) involved collaboratively identifying
a zone of interest - specifically, an area with the highest rainfall in the first dataset
(data A). The individual sub-task (called ind-subtask) followed to check whether
the selected zone of interest of the first sub-task was consistent with other infor-
mation in other databases or the same database but using different parameters.
For instance, the first participant (P1) used data A but inspected other meteoro-
logical parameters (rate of change of total land water, temperature variations, and
the runoff ), while their partner, the second participant (P2) visualised data B of
another source, using three meteorological parameters (rainfall, runoff, wind ve-
locity) (Fig. 5.9). Then, they moved on to the final collaborative sub-task (called
collab-subtask-2) to confirm or refute that the area of interest corresponds to their
selected area in the collab-subtask-1.

For the four conditions (Table 5.1), the pair of participants performed four
main tasks with similar collaborative and individual sub-tasks. Each main task
was carried out using different sets of data. Five data sets were used, one for
training and four for evaluation; each data was from a specific day when a hurricane
occurred. For the training task, the participants used the data from Hurricane
Dorian (2009-08-26, 3 pm to 6 pm). For the experimental tasks, they used the
data from Hurricane Katrina (2005-08-29, 6 pm to 9 pm), Monica (2006-04-23,
12 am to 3 am), Nargis (2008-05-02, 3 am to 6 am), and Marakot (2009-08-
08, 9 pm to 12 am). The different data sets were collected from MERRA-2 and
GLDAS_NOAH (Sec. 5.5.3). To simplify the experiment, although the whole
database contained temporal data, certain timeframes were pre-selected for the
participants to work with.

5.5.6. Procedure
Each experimental session lasted about 60 minutes and its main procedure was

similar to Experiment 1. However, the difference was the training before the tasks
to explain some meteorological concepts and the task instructions on a training
dataset. Both participants performed the training as long as they needed and could
ask questions any time. Then, the participants started a task for the condition in a
random order (A, B, C, or D) on a random dataset. After each condition, they filled
two questionnaires: NASA-TLX and SUS. They could also take a break between
tasks if they wished to. When they finished the experiment, the participants ranked
the four conditions according to their preferences and participated in an open-ended
interview.

5.5.7. Data Collection
I collected data from 64 trials: 2 Workspace × 2 View-Privacy × 16

participants. For each trial, I recorded the following measures:
Quantitative data:

— TheTask Completion Time (TCT): is the total duration required to finish
the task under different conditions. It started to be recorded when the
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participants began the first collaborative sub-task and ended when they
finished the last collaborative sub-task.

— The Time to Arrange the Workspace (TAW): refers to the duration the
participants needed to arrange the objects (public, private data) in the
workspace under different conditions. Exceptionally, it was collected from
256 data points: 64 trials × 4 data charts (three private and one public).

— The Time for Positioning (TP): is the time the participants took to find
a workplace for their individual sub-task. It started when they finished the
first collaborative sub-task and stopped when the participant began their
individual sub-task.

— User Position: This represents the spatial coordinates of an individual
within the physical environment, which were recorded every second through-
out each task.

Subjective data:
— NASA-TLX : the cognitive workload of each condition estimated after its

corresponding task.
— System Usability Scale (SUS): the usability of each condition estimated

after each task.
— Overall ranking : is the score (from 1 the best to 4 the worst) participants

given to the four conditions.

5.5.8. Statistical Results
Quantitative data: The normality of three types of time-related data was

assessed using the Shapiro-Wilk test, and the ANOVA test was used to analyse the
interaction between the two factors. The Shapiro-Wilk test determined that all
time-related data did not follow a normal distribution. Upon calculating skewness,
it was found that the distribution of the data was positively skewed. To address
this, a logarithmic transformation was applied to TCT, TAW, and TP. Nonetheless,
TTC remained non-normally distributed, so I used the Box-Cox transformation on
this data.

In terms of Task Completion Time (TCT), the two-way repeated-measures
ANOVA indicated no significant interaction between the factors Workspace
and View-Privacy (F1,28 = 0.28, p = 0.59). Moreover, the main effects of
Workspace (F1,28 = 0.003, p = 0.96) and View-Privacy (F1,28 = 0.008,
p = 0.93) on TCT were found to be statistically insignificant.

For deeper analysis, TCT was segmented into three phases: collab-subtask-1,
ind-subtask, and collab-subtask-2 (refer to Sec. 5.5.5 and Fig. 5.10). The TCT
for both collab-subtask-1 and collab-subtask-2 demonstrated non-normal distribu-
tion. Following the results of the skewness test, a logarithmic transformation was
applied. The two-way repeated-measures ANOVA test indicated no significant two-
way interaction between Workspace and View-Privacy across collab-subtask-
1 (F1,28 = 1.79, p = 0.19), ind-subtask (F1,60 = 0.001, p = 0.98), and collab-
subtask-2 (F1,28 = 1.07, p = 0.31). Additionally, there were no significant inde-
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Figure 5.10 –Mean of Task Completion Time (TCT) divided into three phases: A) collab-
subtask-1, B) ind-subtask, and C) collab-subtask-2.

pendent effects of either Workspace or View-Privacy on collab-subtask-1 and
collab-subtask-2. However, a significant independent effect of View-Privacy on
ind-subtask was observed (F1,60 = 7.7, p = 0.007), prompting a grouping of the
data according to this variable. For the Private view condition, the mean and
standard deviation were µ = 146.82s, σ = 42.98, while for the Public view
condition, these were µ = 205.31s, σ = 109.24.

The analysis of the Time to Arrange the Workspace (TAW), no significant
interaction was detected between the two factors (F1,252 = 0.49, p = 0.48), and
neither of the independent variables, Workspace (F1,252 = 0.1, p = 0.91) nor
View-Privacy (F1,252 = 0.14, p = 0.48), exhibited a statistically significant
main effect on TAW.

For further investigation, TAW was segmented into two phases: the Time
to Arrange the Public Workspace (Public TAW ) and the Time to Arrange the
Individual Workspace (Individual TAW ).

In terms of Public TAW, a statistically significant interaction was observed be-
tween View-Privacy and Workspace (F1,60 = 5.75, p = 0.02). The simple
main effect of Workspace on Public TAW was significant under the Private view
condition (F1,60 = 7.35, p = 0.009) but not under the Public view (F1,60 = 0.46,
p = 0.5). Within the Private view condition, the mean TAW for Partitioning
(µ = 6.75, σ = 7.02) exceeded that for Non-partitioning (µ = 2.25, σ = 2.59).
Additionally, the simple main effect of View-Privacy on Public TAW was sig-
nificantly apparent for Partitioning (F1,60 = 6.56, p = 0.01) but not for Non-
Partitioning (F1,60 = 0.68, p = 0.41). The mean TAW for Partitioning in the Pri-
vate view condition (µ = 6.75, σ = 7.02) was higher than that in the Public view
(µ = 2.5, σ = 3.18). Despite the application of various statistical normalisation
techniques, the distribution of the time taken to arrange the individual workspace
(Individual TAW ) remained non-normal. Consequently, a non-parametric test,
specifically the Friedman test, was used to assess the differences across the four
conditions. The results of this test revealed that there was no significant difference
in Individual TAW among the conditions.

Concerning Time for Positioning (TP), the two-way ANOVA indicated no
significant two-way interactions between the factors (F1,60 = 0.29, p = 0.58).
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Figure 5.11 – Time to Arrange the PublicWorkspace (TAW) grouped into two conditions
of Workspace.

Additionally, there were no significant independent main effects of Workspace
(F1,60 = 0.3, p = 0.56) or View-Privacy (F1,60 = 0.4, p = 0.52) on TP.

The recording of user position data involved plotting their trajectories to ex-
amine the movement patterns of different participants throughout the experiment.
Fig. 5.12 illustrates typical examples of participants P1 and P2’s movements. The
sequence in which conditions were experienced began with B, followed by C, D,
and finally A. It was noted that, generally, the same workspace configuration was
preserved by the participants. This pattern of behaviour was consistent across all
the pairs. Notably, after experiencing a partitioning condition and then moving to
a non-partitioning condition, participants tended to remain within the space previ-
ously assigned to them during the partitioning phase, despite having the option to
occupy different areas.

Subjective data: The Friedman test was used to analyse the subjective ques-
tionnaires. In terms of cognitive load, the test did not find statistically signifi-
cant differences in the means across the four conditions (A, B, C, D). Neverthe-
less, it was observed that the average workload was low across all conditions: A
(µ = 37.02, σ = 14.59), B (µ = 34.52, σ = 13.87), C (µ = 35.85, σ = 18.17),
and D (µ = 42.65, σ = 17.16).

Regarding the System Usability Scale (SUS) data, the Friedman test indi-
cated no statistically significant variation in means across the different conditions
(p = 0.61). However, each of the four conditions scored SUS score above 68,
suggesting generally favorable usability perceptions: A (µ = 69.68, σ = 13.9), B
(µ = 72.34, σ = 13.31), C (µ = 74.84, σ = 12.86), and D (µ = 72.03, σ = 18.78).

In the Overall ranking (Fig 5.13), the preferences of participants were as follows:
condition C was favoured by seven participants, B by four, D by three, and A
by two. Additionally, at the end of the experiment, 12 participants agreed to
partake in open-ended interviews. Regarding the method of data sharing between
collaborators in the Private view conditions (Q: Which one do you prefer? Using
the button to share the information with your partner or dragging the data to the
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Figure 5.12 – Trajectories made by Participant 1 (in blue) and 2 (in green) during the
task across the four conditions.

Figure 5.13 – Mean of overall user ranking of the four conditions (1 indicating the best,
4 the worst), with error bars showing 95% confidence intervals (CI).

shared workspace? ), eight participants expressed a preference for the share button,
whereas four participants preferred sharing their data through the public space.

5.5.9. Discussion
The statistical analysis revealed no significant differences between conditions

when the data from the three sub-tasks were analysed together. This lack of
difference might be attributed to averaging effect. By combining the data from
different sub-tasks, the distinct effects of each condition on individual sub-tasks
could be obscured. For instance, if a condition significantly influences collab-
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subtask-1 but has little to no impact on ind-subtask or collab-subtask-2, these
contrasting effects can neutralise each other in the overall analysis, leading to a
lack of significant findings.

The statistical analysis showed the pairs of participants needed roughly the
same amount of time to complete the three sub-tasks across different conditions.
This lack of significant differences in task completion times could also be attributed
to the well designed tasks and the easy-to-use IA system, and the participants’
familiarity with them. However, when I consider only their performance during
individual sub-tasks, the analysis showed that they were faster under Private view
condition. This could be explained by the fact that in private views, the participants
were less distracted by their partner’s data and could concentrate on their own
tasks.

The results also showed that the same amount of time was needed across all
the conditions to position (both shared and individual) objects, probably due to
averaging effect. Nonetheless, if I consider only the time needed to place shared
objects, I found that under Private view conditions, Non-partitioning was better
than Partitioning, which might be due to the fact that the participants must pay
attention to the public space boundaries when placing the objects. On the other
hand, in Non-partitioning conditions, there was no need to respect boundaries,
enabling the participants to act more quickly by placing them whenever convenient.
Moreover, I found that when it came to working with Partitioning, the public view
could improve the TAW of shared objects. I noticed that the participants used the
room’s furniture (specifically tables) to place the public data, as in the [234]’s study
(Fully-furnished condition). However, almost all the participants (15 participants)
used the wall to place the different personal objects (data and windows). I did
not observe that the use of surfaces was coupled to the type of visualisation (2D
or 3D), as observed in [231]’s study in which participants used walls to organise
2D visualisations but positioned 3D visualisations in the space around them. I also
found that in all the different conditions during the individual tasks, the participants
maintained the social protocol by not interacting with the data that belonged to
their partner, as noted in [231].

In our experiment, the participants took roughly the same amount of time to
position themselves for the individual task using different conditions. This result
suggests that the primary processes of orientation and task initiation were not
impacted by the different factors (Workspace or View-Privacy). This result
can also be explained by the size of the workspace. A larger room might have
more effect on this measure, as participants would have more choices in positioning
themselves for individual tasks in non-partitioned conditions, potentially leading to
a longer time to decide where to work.

From the user position data, I found that the participants always maintained
the same workspace configuration they learned during a Partitioning condition,
i.e., if a participant worked in the left-hand private workspace during the previous
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Partitioning condition, they would still choose to work on the left in approximately
the same place during the next Non-partitioning condition. This behaviour un-
derscores a natural inclination towards familiar work settings. For instance, P15
explained, “Following the partitioned space condition, I continued to use the same
area where the partition had been. It felt instinctive to return and work there,
despite the partition no longer being in place." This behaviour could also explain
the lack of difference between conditions in terms of overall task completion time,
user positioning time, and workload.

The outcomes of the quantitative data analysis do not allow us to confirm
or refute H3.2.1 and H3.2.2. However, the subjective data revealed that all the
conditions were associated with a low workload and high usability, which support
that AR can be used to visualise and analyse complex data [43, 47]. Condition C
was the favourite for most of them. Three participants stated that its appeal was
due to the freedom it offered; there were no constraints like boundaries, as found
in the Partitioning condition. P4 mentioned, “I did not choose the partitioning
conditions because I didn’t pay much attention to the boundary on the floor.”
Condition B was the participants’ second favourite (four participants indicated
that it was their favourite). A pair of participants indicated their preference for it
because the shared space facilitated data organisation and the public view space
allowed them to share information about their private data without having to move
their data to a public space or use a button.

Workspace partitioning with virtual boundaries using AR holds potential. Al-
though dividing space with virtual boundaries is not commonly used in collaborative
IA, using these partitions does not lead to significant differences in terms of overall
task performance. Furthermore, I recommend that collaborative IA system should
allow users the option to set their data as private or public during analysis tasks. It
would be preferable to use buttons to change the confidentiality of objects, rather
than linking confidentiality to specific spaces. Thus, even in a personal space, a
user could make their objects visible to facilitate collaboration.

This partitioning design can be generalised to various tasks by first evaluat-
ing the key characteristics of the tasks, considering collaboration needs, privacy
requirements, available workspace, and interaction dynamics. Once the task char-
acteristics are clearly understood, the next step is to align these specific AR design
implications with the identified characteristics. This process involves implementing
spatial partitioning and managing view privacy effectively using the proposed ap-
proach. The proposed algorithm for AR-based space partitioning and view privacy
can be adapted to different room configurations due to its inherent flexibility and
scalability. The algorithm scans the physical environment dynamically, allowing it
to gather all room object data so that different environmental settings, such as
room size, shape, and furniture, do not affect its effectiveness. Furthermore, if the
algorithm utilises real-time data input, it can continuously update and recalibrate
the virtual partitions and privacy settings as the room configuration changes. This
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is particularly useful during events where furniture is moved.

5.6. Conclusion

This chapter proposed and studied the partitioning of physical workspace and
view privacy policies and various representations of the partitioned workspace
boundaries for co-located immersive analytics using augmented reality.

An initial experiment was carried out to study the impact of partitioning the
physical workspace using three distinct boundary visualisation techniques (Line,
Opaque, and Semi-transparent). Six pairs of participants were engaged in a col-
laborative task requiring access to different sets of information for apartment dec-
oration. The task completion time, cognitive workload, and system usability score
were measured. Contrary to preliminary expectations, this experiment revealed no
significant differences amongst the visualisation techniques regarding these met-
rics, indicating that the choice of boundary visualisation might not substantially
affect overall task efficiency. Although there were no notable differences in cog-
nitive workload and system usability scores across the techniques, the usability
score for the Line technique was above the average, denoting favourable usability.
Furthermore, the Line visualisation emerged as the preferred technique and was
subsequently selected for the Experiment 2.

The second study aimed to evaluate the advantages of physical workspace
partitioning in assisting users during co-located AR-based collaboration for data
analytics tasks. This investigation explored the combination of partitioning tech-
niques (Partitioning and Non-partitioning) and view privacy policies (Public and
Private) in the context of both collaborative and individual tasks involving mete-
orological data analysis.

The findings indicated that the duration required to complete the tasks was
consistent across various conditions. However, a detailed analysis of performance
across the three sub-tasks (collaborative, individual, then collaborative task in the
sequence) within the Private view condition showed that participants completed
individual sub-tasks more efficiently. Notably, the Non-partitioning condition en-
abled faster placement of shared objects compared to the Partitioning condition.
In contrast, the Public view condition within a Partitioning resulted in improved
Time to Arrange Workspace (TAW) for shared objects. This suggests that parti-
tioning with a separation of public and private view for each user has no significant
impact on the workflow in collaborative work, answering RQ3.2.

Despite the findings, our user studies present several limitations. The parti-
tioning of the physical workspace was limited to the floor area, omitting potential
obstacles such as tables and walls that could influence spatial navigation and in-
teraction. Moreover, the relatively modest number of participants and the specific
choice of meteorological datasets for the second study, which involved lay partici-
pants, may limit the generalisability of our findings.
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6 - Conclusion

Co-located collaborative Immersive Analytics (IA) using Augmented
Reality (AR) primarily enables users to interact with data for sense-making, chosen
as a response to the big data problem. However, interacting with small objects
like data points in IA can be challenging. The first study proposed an expandable
data representation model to enhance selection techniques in IA. The experiment
demonstrated that using expanded points significantly improved selection speed
and accuracy, and voice confirmation was preferred by users, indicating a promis-
ing approach for future IA environments.

Despite the observed benefits, the first study had limitations, such as focusing
exclusively on 2D tiled data points. To address these challenges, a generalisation
of the technique for 3D data points was proposed, along with a novel decoupling
method for head movement and hand gestures, aiming to improve accuracy in
complex data visualisation scenarios.

Displaying data without filtering or re-sampling can be overwhelming due to the
field of view limitations of AR Head-Mounted Displays (HMDs) like the HoloLens
and their limited computational power. The second study in the chapter 4 ad-
dressed this issue by proposing a semantic-knowledge representation approach
using ontology. The user study has been conducted to evaluate this approach.
In the experiment, the participants performed three different data analysis tasks
under two conditions: computer-assisted based on ontology and linked data vs.
non-computer-assisted using a NoSQL database (MongoDB). Excluding the query
time response from the final task completion time, the computer-assisted approach
allows the participants to solve tasks of exploring and manipulating the data faster
than non-computer-assisted one, and all the participants rated computer-assisted
as the best approach.

Efficient workspace management is crucial for multi-dimensional in co-located
collaborative environments. In the chapter 5 I proposed a partition space tech-
nique. However, there are many ways to show the boundaries of the workspace,
each with its own advantages and disadvantages. So, I first conducted an ex-
periment to evaluate the partitioning of physical workspace with three different
boundary visualisation techniques (Line, Opaque, and Semi-transparent). This ex-
periment found no significant difference among the three visualisation techniques
on these metrics. However, the Line visualisation mode was also rated as the best
technique and was selected for the next user study.The second and main study
investigated the combination of the partitioning technique (Partitioning and Non-
partitioning) and the view privacy policy (Public and Private) during collaborative
and individual analysis tasks on meteorological data. The experiment revealed that,
when analysed the performance of three sub-tasks (collaborative, individual, then
collaborative task in the sequence) independently, within Private view condition,
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the participants performed individual sub-tasks more quickly.

6.1. Contributions

This thesis focuses on data visualisation in IA, particularly for multi-dimensional
data such as meteorology. Three main aspects of data visualisation issues in AR
are addressed: integration, interaction, and collaboration among multiple users.
My research work is then organised around these aspects.

The first main contribution was to improve data point selection in IA. In that
exploration, I proposed to study the expandable data representation model. The
contributions of this chapter 3 are as follows:
I proposed and studied the effect of this technique on user performance. To improve
the expended selection method, I proposed different approaches to enhance the
data point selection technique. More specifically, I designed and implemented
a novel technique decoupling head movement for pointing and hand gestures to
refine the pointing to improve its accuracy. This technique is mainly designed for
the ray-casting pointing technique, which is commonly used in AR head-mounted
displays. I also extended the application of the expanded data technique in two
different contexts: with non-overlapped and overlapped data points. A part of
this contribution was publish at ACM Symposium on Virtual Reality Software and
Technology (VRST) in November 2022

The second main contribution of this thesis is the design and development of
an AR user interface using a semantic approach in chapter 4 that aims to enable
the user to display appropriate data during the interaction and to enhance their
performance in the data analytics process. The contributions of this part are as
follows:
To bring forth the advantages of ontology and linked data in AR applications,
I examined different ontologies in meteorology and climatology and proposed an
ontology based on the existing ones by taking into account the AR limitations.
Indeed, the meteorological and climatological ontologies in the literature are often
large or complex in terms of concepts and dependencies on other ontologies, which
reduces the query performance in AR-based systems. Moreover, they lack specific
rules and concepts to allow the user to accurately formulate queries to some parts
of our complex datasets. I evaluated the potential of our AR-based IA system by
conducting an experiment that aims to demonstrate the relevance of our semantic
approach compared to a conventional non-ontological one. This contribution was
publish Virtual Reality Springer in 2024.

The third main contribution is discussed in chapter 5 and deals with workspace
management in co-located work. The contributions of this chapter are as follows:
I introduced an algorithm for space partition that allows users to partition the
workspace and implemented this technique in the IA system. Additionally, I pro-
posed and study different boundary display shapes that can be used to show the
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different workspaces to the collaborators. I designed a user study to evaluate the
different proposed boundary techniques. This contribution was published at Eu-
ropean Association for eXtended Reality (EuroXR) in November 2024. The final
contribution was an experimental study to explore the effect of space partition and
view privacy in co-located collaboration work. This contribution was published to
the ACM Symposium on Spatial User Interaction (SUI 2024).

6.2. Future Work

In this thesis, I discuss IA: the Selection, the data management using a Semantic-
based approach, and Physical Space Management in co-localized collaboration.
However, the proposed solutions still have limitations, leading to several future
research directions.

One of my short-term objectives for future work is to study the different factors
that impact each of the proposed techniques and their combinations during the
selection process and data analytics tasks. For instance, one area of future work
on the expansion technique of 3D data points will be to investigate the impact of
the final size of expanded points and its correlation with their initial size, similar
to the method used for menu items in [242].

The approach to dealing with the problem of overlapped data points, such
as "exploding" the neighbourhood area of the data, can help to decluster for an
effective selection and confirmation of a data point as the target. However, this
approach may change the local visualisation context of the data because adding
a spatial buffer between data points can alter any existing patterns in the dataset
within this zone. A study could be conducted to see if this change affects user
performance when looking for different patterns in the data.

For the Head-and-Hand switching technique for pointing using Ray-casting,
another study could consider the three main factors that can influence our tech-
nique’s performance: user’s distance to the target, target’s size, and the technique
subsequently used to validate the pointed target. The potential of our pointing
technique could be evaluated in terms of time performance of selection, workload,
accuracy, and user experience.

A common challenge with any ontological approach is the time and domain
knowledge required to build an accurate ontology. Besides this, my work presents
some limitations: First, regarding the user study, due to the Covid-19 pandemic, I
could only recruit participants from my university who were not experts in meteo-
rology and climatology. This necessitated simplifying the experimental tasks, which
did not fully demonstrate the potential of my system in these domains. Second,
the query response time of the ontological approach increases exponentially with
the number of queried data points, making it unsuitable for real-time interactive
systems when dealing with big data. To overcome this limitation, the short-term
future work will be to improve the user interface and the process to design the
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ontology. Also to enhance query execution time by implementing the graph-based
indexing and query processing technique proposed by [281] within the client-server
architecture of my system but also an make a user study with expert meteorological
participants.

The user studies conducted to explore the different boundary representations
and the partitioning space still have several limitations. First, when we performed
the partitioning of the physical workspace, we only considered the floor and remove
a mesh of the object like tables and walls. The limited number of participants and
the use of meteorological datasets in the second study with laymen may limit the
generalisability of the results. For future studies, we will improve the partition-
ing technique by including other available surfaces on objects such as furniture.
Additionally, we could implement a warning mechanism to alert users if they are
about to enter someone else’s personal space. We also plan to extend our study to
experts in meteorology and climatology, and to other types of IA tasks in various
domains to see if our findings hold in different contexts.

One of the long-term works can be to explore how to improve all aspects of me-
teorological and climatological visualisation using AR. Additionally, it is important
to study the impact of this immersive analytics approach over extended periods
with a large number of expert participants.

Another potential long-term work could be to explore alternative approaches
to expanded data points. This could involve expanding the cursor, as proposed by
Vanacken et al. [9], with the 3D Bubble Cursor. Their proposed 3D Bubble Cursor
dynamically resizes to select the nearest target, using a semi-transparent sphere
that makes occluded targets visible by rendering them semi-transparent when they
are close to the cursor. Another approach worth exploring is the predictive selection
technique, as recently proposed by Wei et al. [80] (Fig. 2.6).

Additionally, we can explore alternative approaches such as machine learning
or deep learning algorithms for data integration. Instead of building an ontology,
we can store raw data in a MySQL database and design an interface that allows
users to directly apply ML algorithms through drag-and-drop gestures or by using
trigger buttons. Users can employ deep learning models, such as convolutional
neural networks (CNNs), to extract meaningful features from complex data types
like satellite imagery. They can also use anomaly detection algorithms, such as
regression models or artificial neural networks (ANNs), to identify and correct
outliers or erroneous data points, ensuring data quality. Furthermore, clustering
algorithms can be used to group related data points and identify patterns. Given
the power limits of headsets, for such an approach all the calculations of ML models
must be done at the server level, and the headset will just display the graphs or
results. However, I believe that in the coming decades, VR and AR technology
will advance significantly, allowing for the direct use of powerful algorithms for
data analysis, which will encourage many companies to use these technologies for
complex data visualisation.
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Another long-term project could be to improve the system that ensures interop-
erability between different types of interfaces, such as desktop, AR, and VR, making
it usable for all kinds of collaborative work (synchronous co-located, synchronous
distributed, asynchronous co-located, and asynchronous distributed). This would
enable users to connect and work collaboratively across these interfaces, and also
globally for climate crisis management. This is important because, to effectively
manage various climatological crises such as hurricanes, droughts, and wildfires,
diverse profiles must work together. For example, meteorologists provide critical
weather forecasts, engineers design resilient infrastructure, and public health offi-
cials prepare for health impacts, ensuring a comprehensive and effective response.
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