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Abstract: The properties and behaviors of ma-
terials under extreme conditions are essential for
energy systems such as fission and fusion reac-
tors. However, accurately predicting the prop-
erties of materials at high temperatures remains
challenging. Direct measurements of these prop-
erties are constrained by experimental instru-
ment limitations, and atomic-scale simulations
based on empirical force fields are often unre-
liable due to a lack of accuracy. This prob-
lem can be addressed using machine learning
techniques, which have recently become widely
used in materials research. Machine learning
force fields achieve the accuracy of ab initio
calculations; however, their implementation in
sampling methods is limited by high compu-
tational costs, typically several orders of mag-
nitude greater than those of traditional force
fields. To overcome this limitation, this the-
sis has two objectives: (i) developing machine
learning force fields with a better accuracy-
efficiency trade-off, and (ii) creating accelerated
sampling methods to facilitate the use of com-
putationally expensive machine learning force
fields and accurately estimate free energy. For
the first objective, we enhance the construction
of machine learning force fields by focusing on
three key factors: the database, the descriptor
of local atomic environments, and the regres-
sion model. Within the framework of Gaus-
sian process regression, we propose and opti-
mize descriptors based on Fourier-sampled ker-
nels and novel sparse points selection methods
for kernel regression. For the second objective,
we develop a fast and robust Bayesian sampling
scheme for estimating the fully anharmonic free
energy, which is crucial for understanding tem-

perature effects in crystalline solids, utilizing an
improved adaptive biasing force method. This
method performs a thermodynamic integration
from a harmonic reference system, where nu-
merical instabilities associated with zero fre-
quencies are screened off. The proposed sam-
pling method significantly improves convergence
speed and overall accuracy. We demonstrate the
efficiency of the improved method by calculating
the second-order derivatives of the free energy,
such as the elastic constants, which are com-
puted several hundred times faster than with
standard methods. This approach enables the
prediction of the thermodynamic properties of
tungsten and Ta-Ti-V-W high-entropy alloys at
temperatures that cannot be investigated ex-
perimentally, up to their melting point, with
ab initio accuracy by employing accurate ma-
chine learning force fields. An extension of this
method allows for the sampling of a specified
metastable state without transitions between
different energy basins, thereby providing the
formation and binding free energies of defective
configurations. This development helps to ex-
plain the mechanism behind the observation of
voids in tungsten, which cannot be explained by
existing ab initio calculations. The free energy
profile of vacancies in the Ta-Ti-V-W system is
also computed for the first time. Finally, we val-
idate the application of this free energy sampling
method to liquids. The accuracy and numerical
efficiency of the proposed computational frame-
work, which combines machine learning force
fields and enhanced sampling methods, opens up
numerous possibilities for the reliable prediction
of finite-temperature material properties.
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Résumé: Les propriétés et le comportement
des matériaux dans des conditions extrêmes
sont essentiels pour les systèmes énergétiques
tels que les réacteurs de fission et de fusion.
Cependant, prédire avec précision les propriétés
des matériaux à haute température reste un
défi. Les mesures directes de ces propriétés sont
limitées par les instruments expérimentaux, et
les simulations à l’échelle atomique basées sur
des champs de force empiriques sont souvent
peu fiables en raison d’un manque de préci-
sion. Ce problème peut être résolu à l’aide de
techniques d’apprentissage statistique, qui ont
récemment vu leur utilisation exploser en sci-
ence des matériaux. Les champs de force con-
struits par apprentissage statistique atteignent
le degré de précision des calculs ab initio ;
cependant, leur mise en œuvre dans les méth-
odes d’échantillonnage est limitée par des coûts
de calcul élevés, généralement supérieurs de
plusieurs ordres de grandeur à ceux des champs
de force traditionnels. Pour surmonter cette lim-
itation, deux objectifs sont poursuivis dans cette
thèse : (i) développer des champs de force par
apprentissage statistique avec un meilleur com-
promis précision-efficacité et (ii) créer des méth-
odes accélérées d’échantillonnage de l’énergie li-
bre afin de faciliter l’utilisation de champs de
force d’apprentissage statistique coûteux en ter-
mes de calcul. Pour le premier objectif, nous
améliorons la construction des champs de force
d’apprentissage statistique en nous concentrant
sur trois facteurs clés : la base de données, le de-
scripteur de l’environnement atomique local et
le modèle de régression. Dans le cadre de la ré-
gression par processus gaussien, nous proposons
et optimisons des descripteurs basés sur des noy-
aux échantillonnés par la transformée de Fourier
ainsi que de nouvelles méthodes de sélection
de points épars pour la régression par noyau.
Pour le deuxième objectif, nous développons
un schéma d’échantillonnage bayésien rapide
et robuste pour estimer l’énergie libre anhar-

monique, qui est cruciale pour comprendre les
effets de la température sur les solides cristallins,
à l’aide d’une méthode de force de biais adap-
tative améliorée. Cette méthode effectue une
intégration thermodynamique à partir d’un sys-
tème de référence harmonique, où les instabilités
numériques associées aux fréquences nulles sont
éliminées. La méthode d’échantillonnage pro-
posée améliore considérablement la vitesse de
convergence et la précision globale. Nous dé-
montrons l’efficacité de la méthode améliorée
en calculant les dérivées de second ordre de
l’énergie libre, telles que les constantes élas-
tiques, avec une rapidité plusieurs centaines
de fois supérieure à celle des méthodes stan-
dard. Cette approche permet de prédire les
propriétés thermodynamiques du tungstène et
des alliages à haute entropie Ta-Ti-V-W à des
températures qui ne peuvent être étudiées ex-
périmentalement, jusqu’à leur point de fusion,
avec une précision ab initio grâce à l’utilisation
de champs de force construits par apprentissage
statistique. Une extension de cette méthode
permet l’échantillonnage d’un état métastable
spécifique sans transition entre différents bassins
d’énergie, fournissant ainsi l’énergie libre de for-
mation et de liaison d’une configuration dé-
fectueuse. Ce développement aide à expliquer
le mécanisme derrière l’observation des cavités
dans le tungstène, mécanisme qui ne peut pas
être expliqué par les calculs ab initio existants.
Le profil d’énergie libre des lacunes dans le sys-
tème Ta-Ti-V-W est également calculé pour la
première fois. Enfin, nous validons l’application
de cette méthode d’échantillonnage de l’énergie
libre aux liquides. La précision et l’efficacité
numérique du cadre de calcul proposé, qui
combine des champs de force d’apprentissage
statistique et des méthodes d’échantillonnage
améliorées, ouvrent de nombreuses possibilités
pour la prédiction fiable des propriétés des
matériaux à température finie.
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Chapter 1

Introduction

Multi-scale modeling stands as a pivotal paradigm in materials science, offering a compre-
hensive framework to understand and predict the behavior of materials across varying length
and time scales. By integrating knowledge from atomistic, mesoscopic, and continuum levels,
multi-scale modeling enables researchers to elucidate complex material phenomena, ranging
from atomic rearrangements and phase transformations to macroscopic mechanical responses
and material failure. Multi-scale modeling seeks to bridge the gap between fundamental atomic
interactions and macroscopic material properties, recognizing that phenomena occurring at
different length and time scales are inherently interconnected. As presented in Fig. 1.1, com-
putational modeling and simulations grant access to length and time scales unachievable by
experiments, thereby enabling a deeper understanding of macroscopic material properties and
behaviors, and guiding the design of novel materials.

The development of multi-scale modeling techniques has been propelled by advances in
computational power and simulation algorithms. These techniques encompass a diverse array
of methodologies, including ab initio calculations of electronic structures, atomic-scale molecu-
lar dynamics (MD), mesoscopic Monte Carlo (MC) simulations and dislocation dynamics, and
finite element analysis of macroscopic objects, each tailored to address problems at specific
length and time scales. In general, the application of methods at smaller scales is limited
by the computational cost associated with their high accuracy. The objective of this work is
to overcome this limitation, enabling atomic-scale simulations to achieve ab initio accuracy
and providing properties that emerge in the macroscopic assessment of materials. To this
aim, we mainly focus on interatomic potentials, which serve as the “engine” of atomic-scale
simulations. We demonstrate the improved design and applications of reinforced interatomic
potentials based on machine learning (ML) techniques.

In this chapter, we briefly introduce the background of this work. The concept of inter-
atomic potentials and the limitations of their traditional design are presented in Section 1.1,
allowing readers to understand why improvements are indispensable. In Section 1.2, we show
how artificial intelligence (AI) benefits the physics and materials science communities, partic-
ularly in the design of interatomic potentials. With better tools available, it is essential to find
effective ways to use them, which calls for improved simulation methods in this context. Thus,

1



1.1. Interatomic potential: traditional methods and limitations

Figure 1.1: Illustration of an integrated experimental and computational approach for multi-scale
investigation of materials [1]. The multi-scale modeling methods are depicted within the gray region.

in Section 1.3, we present the scheme of free energy sampling techniques, where ML-based po-
tentials can be employed to predict material properties. Finally, in Section 1.4, we outline the
general framework of this thesis, which includes novel ML-based interatomic potentials and
enhanced free energy sampling approaches, for the accurate prediction of finite-temperature
properties of metallic materials.

1.1 Interatomic potential: traditional methods and limitations

In classical mechanics, the evolution of a system is determined by the distribution of
local minima and saddle points on the potential energy surface. Configurations located in
the minima drive the system’s thermodynamics, while the saddle points and the pathways
connecting the local minima govern the system’s kinetic evolution. In atomic-scale simulations,
the potential energy surface is determined using an interatomic potential (also known as a
force field), where the energy of interaction between atoms is expressed as a function of atomic
coordinates, with electronic degrees of freedom only implicitly accounted for. The connection
between local atomic energy and local atomic environments was established early in the field
of atomistic materials science. For metals, the tight-binding approximation [2, 3] formalized
the basis of this relationship. With the advent of semi-empirical potentials [3, 4, 5], the second
moment tight-binding model was replaced by ad-hoc local functions that are fitted to bulk
properties, defect formation energies, migration energies, and other characteristics. Not limited
to metals, the functional form of the local energy as a function of local coordination forms the
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basis of empirical many-body force fields. These functions have simple analytic forms, such as
the number of first and/or second neighbors, radial functions [6, 4, 7, 8, 9, 10, 11, 12, 13, 14],
or somewhat more complex functions that account for angular information [15]. Regardless
of their analytic form, all these functions have the same utility and they provide fingerprints
of atomic environments. For example, in metals where the functional form of the density of
states is relatively simple, Embedded Atom Method (EAM) potentials [16, 6, 4, 17, 18, 19] are
valid and widely applied. EAM provides an accurate description of the complex many-body
interactions by incorporating the effects of the local atomic environment. In this way, the total
potential energy of a system is expressed as a sum of local contributions from individual atoms,
where the energy of each atom is a function of its local electron density, which is influenced
by its neighboring atoms. For materials subjected to irradiation, EAM potentials have yielded
many important results. A bibliographic review covering the past decade of atomistic studies
on metals crucial for current (e.g., fission) or future (e.g., fusion) power generation reveals
over 1500 studies utilizing EAM potentials for iron (Fe) [8, 13, 20] and tungsten (W) [21, 22].
Given this success, one might question why there is a need to explore alternative methods
for parameterizing interatomic interactions in complex systems. There are at least two major
reasons.

Firstly, the fitting process of a traditional potential, such as EAM, is often limited and
rigid. As computational power continues to increase, ab initio approaches frequently reveal
new, previously hidden aspects of defects, necessitating the integration of these findings into
empirical models. Consequently, the task of developing empirical potentials becomes increas-
ingly complex and labor-intensive. Improving certain properties often comes at the expense of
others, suggesting that the underlying formalism should be changed to enhance the flexibility
of the functional form. However, such changes should not result in overfitting or compromis-
ing the fundamental physics underlying the potential. Over the past three decades of effort,
various empirical potentials, including Modified EAM (MEAM) [23], Bond-Order Potentials
(BOP) [24], Reactive Force Field (ReaxFF) [25], and Charge-Optimized Many-Body (COMB)
potentials [26], have been developed. Although these potentials generally offer greater accu-
racy than EAM in comparison with ab initio calculations, they also encounter issues related to
transferability. Transferability refers to the ability of a potential to accurately describe a wide
range of different systems and conditions beyond those used in its initial parameterization.
A potential with high transferability can reliably predict properties across various materials
(e.g., alloys with the same base elements but different compositions or atomic percentages)
and environments, whereas one with low transferability may perform well only within a lim-
ited set of conditions. In this context, exploring new fitting solutions and support functions
inspired by the AI and ML communities offers promising avenues to overcome the limitations
of classical potentials.

Secondly, physical models constrain the scalability of numerical methods [27]. A detailed
analysis of existing numerical methods in materials science reveals a gap between less accurate
empirical methods, which scale as N2

s or lower (Ns being the number of atoms in system s),
and more accurate electronic structure calculations, which scale as N3

s or higher. Although
electronic structure methods, such as tight-binding or hybrid quantum mechanics/molecular
mechanics (QM/MM) approach, attempt to bridge the gap between ab initio ≥ N3

s methods
and empirical ≤ N2

s methods, they often fall short and retain unfavorable scaling. The rigorous
parameterization and increasing accuracy of AI/ML methods provide a possibility to bridge
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this gap.

Building upon these two considerations, the subsequent section will elucidate the applica-
tion of AI/ML methodologies in materials science, especially focusing on the development of
interatomic potentials. The present-day ML potentials [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]
propose a direct multivariate regression in the descriptor space, between the local atomic en-
vironments and the atomic energy.

1.2 Machine learning approaches: the renaissance of empirical po-
tential

Nowadays, artificial intelligence and machine learning influence many fields of physics and
materials science. However, AI/ML methods cannot fully replace traditional approaches in
these disciplines. In the fields of physics and materials science, dynamical systems are endowed
with a well-defined Hamiltonian and structure, and their evolution within their phase space is
governed by the Schrödinger equation for states (wave functions) or the Liouville-von Neumann
equation for the density operator.

This space is too vast and complex to be adequately described solely by the inherent sta-
tistical correlations within the data points. To our knowledge, no statistical methods alone,
generically called ML and its subclass deep learning (DL), can provide a valuable alternative
to the laws of physics. To provide reliable results in the field of physics, ML and DL should
be trained on robust, coherent data provided by well-established methods from the physics
community. Statistical methods trained on physical datasets can be immensely helpful when
traditional methods are limited or their direct application is hindered by factors such as high
computational costs or insufficient computer memory. The synergy of ML approaches with
traditional methods opens up numerous research opportunities in materials science. In partic-
ular, it enhances materials modeling by providing access to crucial physical properties, such as
accurate energy within molecular dynamics trajectories [39, 40, 41], free energy sampling with
ab initio accuracy [42, 43, 44], formation and migration energy of large defects such as straight
dislocations, kink pairs, loops, and large 3D clusters [45, 46], as well as the investigation of
continuum mechanics [47]. Similar approaches could be applied to large systems of biologi-
cal and chemical molecules. Statistical methods help overcome the limitations of traditional
methods from the community of physics and bridge the gap between different length and time
scales, thereby enabling further progress and developments in these fields.

The first attempt to couple AI and high-dimensional problems in atomic-scale materials
science was proposed by Behler and Parrinello in 2007 [28]. In contrast to traditional force
fields, where the performance and limitations of the potential are mainly defined by the physical
formalism, the performance and accuracy of ML potentials are determined by three equally
important components: the database containing density functional theory (DFT) calculations
(i.e., ab initio calculations), the representation of atomic environment in descriptor space, and
the regression algorithm used for fitting. This feature is indicated in Fig. 1.2.
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Figure 1.2: Three important components that determine the performance and accuracy of machine
learning potentials.

Like all ML algorithms, ML potentials require an extensive training database, as its con-
tent significantly impacts the accuracy and transferability of the potential. The design of
the database, including the selection of relevant information and the choice of pertinent in-
stances [48, 49], referred to as sparsification, is a crucial step in developing an effective ML
potential.

Atomic descriptors provide a specific numerical representation of atomic structures from the
database and offer an invariant description with respect to the symmetries of the Hamiltonian
of the system (e.g., permutation of identical atoms, rotation, translation). Thus, rather than
using an R3Ns-dimensional description of all local atomic environments in a system containing
Ns atoms, one employs a descriptor space in RD, where D represents the dimensionality of the
descriptor space. The value ofD typically ranges from a few tens to a few thousand [50, 51, 52].
Since each atomic environment is described individually, this space has a fixed dimensional-
ity that remains constant regardless of the system size. The descriptors encode the local
geometry of neighboring atoms using various methods, basically including distances and/or
angles between atoms [28, 27, 50], spectral analysis of local atomic environments [27, 50] and
tensorial description of atomic coordinates [53, 54]. Besides, Mallat et al. [55, 56] proposed in-
novative descriptors based on the scaling wavelets transformation. Following more specialised
approaches, Bruneval et al. [57] used physical observables such as Mulliken charges in or-
der to define quantum mechanical-informed descriptors and Yeo et al. [58] adopted partial
histograms of electronic density of states. Moreover, a systematic basis that preserves the
symmetry of the potential energy function with respect to rotations and permutations can
also be developed by expressing the total energy as a sum of atomic body-ordered terms in
permutation-invariant polynomials [59, 60]. The similarity distance descriptors characterize
the distances between pairs of atomic environments. Examples include the Smooth Overlap
of Atomic Positions (SOAP) [50] and the graph version [61, 62], which is defined through
a functional representation of atomic positions. Similar to SOAP but employing a different
framework, the Atomic Cluster Expansion (ACE) can be used to construct a complete basis
of invariant polynomials by combining radial and spherical harmonic functions [36, 37]. The
framework of deep learning neural networks (NNs) itself can also be employed to construct

5



1.2. Machine learning approaches: the renaissance of empirical potential

descriptors [63, 39, 64, 65, 66, 67, 68, 69]. Recently, the use of Graph Neural Networks (GNNs)
for embedding local environments has gained significant popularity, especially for surrogate
models [70, 71, 72, 73, 74].

Figure 1.3: Logo of MiLaDy package. The full introduction and utilities of the code can be found at
online documentation.

The fitting of ML potentials is conducted in descriptor space, where the statistical
ML procedure used for the fit defines the performance and limitations of the poten-
tial. The relationship between atomic energies and the components of the descriptors can
be either linear [75, 34, 35, 76, 77, 78, 38, 79] or non-linear. Non-linear relationships
are most commonly modeled using dense NNs [28, 31, 32, 80, 81], invariant/equivariant
GNNs [82, 83, 84, 85, 86, 82, 87, 88, 89, 90] or kernel methods [91, 92, 93, 94, 95, 96, 40, 97].
Using a linear kernel corresponds to performing linear regression, whereas a polynomial kernel
is equivalent to linear regression with a basis set composed of the outer products of the ele-
ments of the feature vectors [98]. Some kernel models are formalized within the ever-growing
field of statistical on-the-fly learning methods [96, 97, 42], while others are built in the form
of potentials, such as Gaussian Approximation Potentials (GAP) [27, 33], which is a widely
used variant of kernel-based potentials. Generally speaking, highly non-linear methods are
suitable for interpolating multivariate functions, but they often exhibit poor performance in
the extrapolation regime [99, 100]. This inconvenience can be partially mitigated through well-
chosen regularization, continuous augmentation of the database, or by employing on-the-fly
active learning techniques [97, 42, 101] to constantly expand the boundaries of the interpo-
lation regime. However, modeling complex energy landscapes, such as those encountered in
the study of irradiation damage or phase transformations, often necessitates extremely large
fitting databases to maintain accuracy. In this context, sparsification approaches can reduce
the database size and enhance regression and evaluation efficiency [102] without impairing
extrapolation performance.

The general workflow for constructing a ML force field based on a given database involves
the following steps: a user-specified descriptor is computed for the local atomic environments
consisting of the atomic coordinates in the database. Then the descriptors in the training
dataset are fitted to the DFT values using a user-specified regression model to determine the
model parameters. The model is validated on a testing dataset to prevent overfitting, and
further validated on its prediction of basic physical parameters to ensure the preservation of
physical nature. Once the model is validated in terms of both statistical accuracy and physical
validity, the ML potential can be employed in simulations.

Constructed from a database of DFT calculations, ML force fields enable atomic-scale
simulations to achieve ab initio-level accuracy. However, it is important to emphasize that
ML potentials are typically orders of magnitude slower than empirical potentials, although
they remain orders of magnitude faster than DFT calculations [103].
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MiLaDy (Machine Learning Dynamics) is a package designed by M.-C. Marinica and A. M.
Goryaeva at SRMP, CEA Saclay, for the construction and application of machine learning force
fields (Fig. 1.3). All algorithm developments for ML potentials in this thesis were implemented
within this framework, and all newly built ML potentials were created using this toolkit.

1.3 Advanced sampling schemes and estimation of free energy

The thermodynamic properties of materials, including heat capacity, thermo-elasticity, and
phase stability, are critical benchmarks in materials design, as they dictate the performance and
practical applications of a given material. Consequently, this knowledge is indispensable for
comprehending the behavior of materials at finite temperatures. Experimental measurements
of the thermal quantities are often time-consuming, expensive or even unfeasible under extreme
conditions, e.g., at high temperatures and/or pressures. Atomic-scale simulations are therefore
widely used to predict the thermodynamic quantities of practical interest and/or extrapolate
them beyond experimental conditions.

Thermodynamic properties are well characterized by the free energy and its derivatives. In
crystalline solids, an accurate representation of the free energy includes three contributions:
(i) the contribution accounting for chemical disorder and including configurational entropy,
which can be computed using MC simulations or approximated by assuming that the lattice is
rigid, (ii) the contribution of the electronic excitations, and (iii) the harmonic and anharmonic
contributions of the lattice vibrations, i.e., the interactions of phonons with themselves and
with other modes of excitation. In this thesis, we thus focus on the vibrational contribution
to free energy. Its harmonic part can be straightforwardly obtained by computing the phonon
spectrum resorting to the harmonic or quasi-harmonic approximations [104, 105, 106]. These
two approximations, however, become inaccurate at elevated temperatures, where phonon
softening and broadening need to be considered [107].

The anharmonic free energy contribution, which is crucial for deriving the finite-
temperature properties, can be directly evaluated by thermodynamic integration (TI) from
a suitable reference system [108, 109, 105]. In TI, the first derivative of free energy is first
estimated using a sampling algorithm and then integrated. TI-based calculations of thermo-
dynamics properties including the impact of anharmonicity from accurate electronic structure
calculations, i.e., ab initio calculations, were initiated in 2001 [110, 111]. Such brute-force inte-
gration from electronic structure calculations is often computationally prohibitive in practice,
as it necessitates sampling too many configurations along the integration path [42]. There-
fore, several improvements have been proposed to make TI-based methods more feasible and
amenable, particularly for electronic structure calculations. Notably, upsampled thermody-
namic integration using Langevin dynamics (UP-TILD) method was developed [112], which
enhances the performance of TI by combining the DFT calculations using “reduced” DFT pa-
rameters (energy cutoff of kinetic energy and k-points sampling of the Brillouin zone) with an
almost configuration-independent offset with respect to the fully converged energy, where only
a small number of configurations are required to evaluate the fully converged term. Based on
UP-TILD, an improved version, referred to as two-stage upsampled thermodynamic integra-
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tion using Langevin dynamics (TU-TILD), was developed to further accelerate the convergence
of calculation [113], wherein TI is split into two stages, first from the harmonic to an interme-
diate potential, and then from the intermediate potential to the full DFT Hamiltonian. The
TU-TILD scheme has recently been applied with moment tensor potentials [114], a class of
ML potentials that have demonstrated good accuracy and efficiency [42, 43]. However, these
approaches assume that the points sampled from the reference distribution faithfully repre-
sent the target distribution associated with the full Hamiltonian. This assumption can be true
for high quality reference or intermediate potentials, such as the moment tensor potentials
within the ML framework, but is not very reliable when using simple reference systems such
as harmonic or quasi-harmonic Hamiltonians [42]. Generally speaking, when ML potentials
are chosen as intermediate potential, the free energy from the reference should be computed
with great accuracy. Nevertheless, this can be a crude task because, at least for crystalline
materials, the ML force fields are from a few tens times slower up to four orders of magnitude
slower in terms of CPU times than, for instance, traditional EAM potentials.

In addition to the integration of the first derivative, the free energy difference between two
distinct Hamiltonian states can be computed directly by implementing the free energy pertur-
bation (FEP) method. This entails the sampling of one of the two states and the estimation
of a partition function ratio [115]. In practice, the degree of accuracy of the FEP method is
controlled by the extent of overlap between the reference and target distributions [116]. High
energy barriers limit the ergodic sampling of phase space by inhibiting transitions between
connected basins of attraction and preventing the system from exploring the important re-
gions of phase space that contribute most to the free energy difference. To enhance numerical
ergodicity, substantial effort has been directed at artificially favouring the rare excursions to
important regions. The central idea of the so-called importance-sampling techniques [117]
is to sample from another distribution, one that exhibits good overlapping properties with
both the target and reference distribution. The first importance-sampling technique used in
free energy calculations has been dubbed umbrella sampling [118, 119], precisely because the
sampling distribution specified by the biasing potential should cover simultaneously the region
of configuration space relevant to both the target and reference systems. Establishing such
a biasing potential that provides good overlapping properties is a complex task, and signifi-
cant progress has been made in this area. In particular, the adaptive dynamics employing an
on-the-fly adjustment of biasing potential reduce significantly the intervention from the user.
In a MC run, the adaptive process can be realized by the Wang-Landau algorithm [120, 121],
that is, modifying the MC acceptance probability every time a new configuration is visited.
For MD simulations, metadynamics was proposed, wherein the system evolution is biased by
a time-dependent potential constructed as the sum of Gaussian functions [122, 123, 124, 125].
Inspired by metadynamics, temperature accelerated molecular dynamics (TAMD) [126, 127]
was subsequently introduced. This method demonstrates that sampling can be accelerated by
applying an artificially high temperature to the collective variables. Recently, Swinburne et
al. introduced an analytical mean-force model able to directly compute the anharmonic free
energy of a general bond lattice within meV/atom of accuracy [128]. Although computation-
ally inexpensive, this model is restricted to perfect crystals and difficult to extend in presence
of imperfections.

Despite the advancements, accurate and general determination of thermodynamics proper-
ties remains challenging, since those quantities of interest rely on the numerical convergence of
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first and second derivatives of free energy, which requires considerable precision and stability
of the algorithm. Within the framework of adaptive algorithms, the adaptive biasing force
(ABF) method [129, 130, 131, 132, 133] combines the computationally expensive TI with the
importance sampling strategy, giving access to the numerically exact free energy profile. In
the ABF technique, the on-the-fly estimate of the free energy gradient from TI is used as the
biasing force, which corresponds to the gradient of the biasing potential. It has been rigorously
proved that the free energy is obtained in the long time limit, and the convergence is exponen-
tially fast in time [134]. In recent decades, various improvements of ABF have been proposed,
including extended ABF (eABF) method [135, 136, 137, 138] which utilizes fictitious variables
that are harmonically coupled to the transition coordinates instead of the original coordi-
nates, as well as metadynamics-ABF hybrid technique [139] that is augmented with machine
learning techniques, such as Gaussian process regression [140] and deep learning [141, 142].
The latter is often applied in biological research of organic molecules, such as protein fold-
ing. Moreover, a Bayes-formula estimator has been previously used in the eABF context in
combination with MD [143] or MC [144] simulations, which allows to systematically reduce
the statistical variance when the converged biasing force is frozen [145], compared with other
standard estimators. However, the Bayesian formulation of TI has never been profiled and
used to compute the anharmonic free energy of a crystalline solid. We present a rationale for
why this formulation offers numerous advantages, including rapid convergence and robustness,
which are crucial for an adaptive sampling algorithm aimed at estimating free energy.

1.4 Machine-learnt free energy profile: introduction to the thesis

This thesis introduces a comprehensive computational framework that integrates ML force
fields with advanced sampling methods to accurately estimate free energy and predict the
finite-temperature properties of materials, achieving a level of precision comparable to that
of DFT calculations. The DFT-level accuracy of this framework is ensured by ML poten-
tials. However, as mentioned in Section 1.2, their use in atomic-scale simulations is limited
due to high computational costs, being slower by a factor of several tens to four orders of
magnitude compared to empirical potentials. To make the investigation of free energy profiles
from computationally expensive ML potentials feasible at elevated temperatures, this thesis
focuses on two main objectives: (i) developing ML potentials with an improved accuracy-
efficiency trade-off, and (ii) creating faster and more robust sampling methods for free energy
computations.

This thesis is divided into three main chapters:

• Chapter 2 addresses the first objective, detailing the three essential components of ML
force fields (Fig. 1.2) in Section 2. We propose optimizations for constructing ML po-
tentials based on these components. The main developments of this work, focusing on
kernel regression, are presented in Section 2.2. Additionally, a correction strategy for
short interatomic distances is introduced in Section 2.3.

• Chapter 3 focuses on the second objective, wherein Section 1.3 presents the fundamental
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concepts and important existing approaches within the framework of free energy calcu-
lations. Building on this, we introduce a Bayesian adaptive sampling algorithm for the
fast evaluation of anharmonic free energy in Section 3.2. An extension of this method for
sampling a specified metastable state is presented in Section 3.3, and Section 3.4 briefly
demonstrates how to sample the free energy profile of a liquid system.

• Chapter 4 covers applications of the current ML-based free energy sampling framework.
Using this toolkit, we investigate the thermodynamic properties and stability of vacancies
in tungsten (Section 4.1) and Ta-Ti-V-W high-entropy alloys (Section 4.2) over a wide
temperature range up to their melting points. The results for tungsten show great
consistency with experimental observations. Moreover, in Section 4.3, we identify and
validate a direct shortcut from harmonic approximation to full anharmonic free energy
for tungsten and iron, benefiting from the proposed method.

Briefly, the first two main chapters elaborate on the methodological innovations of this thesis,
while the final chapter demonstrates the practical utility of these methods by addressing real-
world problems in materials science.
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Atomic-scale modeling of materials has made remarkable progress, yet it remains funda-
mentally constrained by the high computational cost of explicit electronic structure methods,
such as DFT calculations. This chapter demonstrates how machine learning is currently en-
abling a new level of realism in materials modeling. By “learning” electronic structure data,
ML-based force fields provide access to atomistic simulations that achieve DFT-level accu-
racy but are orders of magnitude faster. Firstly, in Section 2.1, we provide a comprehensive
perspective of machine learning interatomic potentials by detailing the construction process
and highlighting possible optimization strategies from the three key components: the database
(Subsection 2.1.1), the representation of local atomic environments (LAEs) (Subsection 2.1.2),
and the regression model (Subsection 2.1.3). Following this, we focus on a specific model
type, the kernel model based on Gaussian process (GP) regression, discussed in Section 2.2.
This section includes the definition of the model in Subsection 2.2.1 and several essential ex-
amples in Subsection 2.2.3. Additionally, we propose optimizations for the kernel regression
structure, specifically the sparse points selection method, in Subsection 2.2.2, and introduce a
novel LAE representation based on the Fourier transform-sampled n-body kernels in Subsec-
tion 2.2.4. This chapter concludes by presenting a correction strategy designed to handle very
short interatomic distances (Section 2.3).

2.1 Basics of machine learning force fields

The foundation of any empirical potential concept states a correlation between the LAE
and the local atomic energy. Here, we define the local energy as the energy attributable to
atoms located within the neighborhood or LAE of a central atom, up to a cutoff distance
Rcut as illustrated in Fig. 2.1. The relationship between total energy and local atomic energy
was established in the early days of atomistic materials science. For metals, the tight-binding
approximation [2, 146, 3] formalized the basis of this relationship. According to this formalism,
the total energy Es of a system s containing Ns atoms can be expressed as the sum of the
local energies ϵs,a of each ath atom:

Es =

Ns∑
a=1

ϵs,a. (2.1)

It should be noted that the above form of the total energy is a crude approximation
for systems where electronic correlations are important, or in cases where charge screening is
ineffective (e.g., insulators), and the charge interaction between ions cannot be neglected. Such
systems require more sophisticated formalisms [147], such as explicitly accounting for long-
range interactions beyond Rcut, which is beyond the scope of the present study. Consequently,
the total energy, forces, and stress are related to their representations in the descriptor space
through various functions, ranging from linear to highly non-linear, as well as all combinations
in between. The advantage of this reduction is that it allows the projection of any system
into a unified descriptor space. The case of simple proportionality between the local energies
and the descriptor representations of the LAEs is illustrated in Fig. 2.2(a). Similar to the
case of energy (Eq. 2.1), atomic forces exhibit a linear relationship with the force descriptors
and are characterized by the same regression parameters, as shown in Fig. 2.2(b). Using this
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type of regression, we can achieve unprecedented accuracy in energy (< 10meV/atom), force
(< 8meV/Å) and stress (< 20meV/Å3) compared to DFT targets (Fig. 2.2(c)) [148, 49].

Figure 2.1: Cutoff distance in atomic systems. The derivatives of the descriptors are nontrivial to
evaluate. However, we consider that any observable and their descriptor is zero outside the cutoff
distance. In this case, the derivatives are easier to handle using a list of neighbors of atom a within
the radius Rcut.

The primary distinction of the proposed approach from conventional potentials lies in its
unambiguous control over the accuracy of target properties, without causing a degradation of
other already adjusted properties. Furthermore, by combining descriptors with varying levels
of accuracy, one can manage the trade-off between computational cost and the precision of
the potential [38]. The selection of hybrid descriptors, as well as the mixing proportions of
each component, should be guided by the specific physical problem and the desired accuracy
in the fitting process. The user-defined control over the balance between cost and accuracy
in ML potentials enables a hierarchical approach to materials property calculations. Here, we
present an example of such hierarchical calculations by computing the phonon spectrum of
body-centered cubic (bcc) tungsten (W) (Fig. 2.3). The accuracy of the phonons improves
incrementally with the fidelity of ML potentials, corresponding to the increased accuracy of the
associated descriptors. This methodology allows the generation of a set of ML potentials that
achieve comparable accuracy levels for certain material properties (e.g., lattice parameter a0
and elastic constants), while the predictive accuracy of phonons and related finite temperature
properties continues to improve with higher numerical costs associated with the potential.
Figure 2.3 demonstrates how enhancing the completeness of descriptors progressively enhances
the capability of ML potentials to predict phonon dispersion along high symmetry directions
in the first Brillouin zone. The pure bispectrum SO(4) descriptor with jmax = 4.0 determines
the accuracy limit for the calculations, where minor deviations between ML predictions and
experimental data primarily arise from systematic errors in the DFT calculations contributing
to the W database. Among the tested ML potentials, hybrid descriptors provide reasonably
accurate phonon predictions several times faster than the pure bispectrum descriptors.

The proposed hierarchical approach opens up many research avenues in the field of molecu-
lar dynamics calculations, particularly those utilizing thermodynamic adaptive sampling meth-
ods such as adapting biasing force [129, 149] or adapting biasing potential dynamics [150]. The
less accurate yet faster hybrid descriptors can be employed to comprehensively explore the re-
gion of interest across phase space. By focusing on specific regions, one can gradually increase
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design matrix

1 bcc atom    (111) surface, 12 atoms

=

parameters  DFT data

1/2 <111> screw dipole in bcc 
135 atoms

...

...

...

...

... ...
(a) 

(c)(b)

Figure 2.2: Framework of linear ML potential: (a) The projection of atomic systems into a descriptor
space of dimension D. (b) After constructing the design matrix, linear regression is performed to
obtain the ML potential parametrization, i.e., the regression parameters. (c) Error analysis based on
a test dataset, between the ML-predicted values and the DFT target values of energy, force and stress.

sampling accuracy using more accurate but slower ML potentials. This strategy significantly
improves the quality of thermodynamic sampling while keeping computational costs within
acceptable limits.

The present section details how to build a ML interatomic potential step by step within the
hierarchical framework of efficiency/accuracy trade-off. As mentioned in Subsection 1.2, three
key factors contribute to the design of a machine learning potential: the database containing
DFT calculations, the descriptors of LAEs and the regression model. In accordance with these
factors, we present the method of database construction in Subsection 2.1.1, the approach to

14



2. Machine learning force fields

(a) (b)

(c) (d)

Figure 2.3: Hierarchical approach for the phonons calculations enabled by the hybrid descriptors [38].
(a-d) Phonon dispersion curves in W, plotted along high symmetry directions of the first Brillouin
zone, computed using four different hybrid descriptors. Experimental data [151, 152] is depicted
with black points; the LML calculations are shown with solid green lines. The inserts with gray
background schematically illustrate the structure of the hybrid descriptors (bottom left corner) and
their hierarchical performance (top right corner).

build the design matrix based on LAE descriptors in Subsection 2.1.2, and the procedure for
determining the parameters that relate the descriptors (design matrix) to the target DFT data
(target vector) in Subsection 2.1.3.

2.1.1 Database for machine learning force fields

A database plays a crucial role in the development, training, and evaluation of machine
learning models. It provides the necessary data samples for training various models, as well as
separate datasets for testing the trained models to evaluate their performance. For machine
learning force fields in materials science, it is essential that the generation of the database is
consistent and representative of the properties under investigation. In this section, we first
outline the methodology employed to create the database, followed by the approach used to
construct the target vector in Subsection 2.1.1.1. Subsequently, we discuss in Subsection 2.1.1.2
the maintenance and updating of the database utilizing the concept of active learning. For our
first application, we focus on the case of W, but this procedure is general and can be applied
to other crystalline materials.

2.1.1.1 Database from DFT and construction of target vector
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2.1. Basics of machine learning force fields

Figure 2.4: The transpose of the target vector (y⊤ ∈ R1×M ), filled by the DFT values of energy (E),
force components (F) and stress components (S) system by system.

To study the behavior of materials under irradiation, the designed DFT databases for
W include atomic environments relevant to the physics of various types of defects. We take
into account configurations of both perfect and distorted bcc structures, as well as various
types of defects, including self-interstitial atoms (SIAs), vacancies, free surfaces, γ-surfaces,
dislocations and the liquid state. For most of the atomic systems, we compute the system’s
energy and the forces on each atom. Additionally, for some systems, the virial stress is also
considered. Therefore, a system containing Ns atoms provides at most 7+3Ns observables to
fit: 1 energy (ME), 3Na force components (MF ) and 6 independent stress components (MS).
The full content of an example database and the total number of (ME+MF+MS) observables
are detailed in Table 2.1. To build the target vector y ∈ RM×1 with M = ME +MF +MS ,
the observables are arranged in the order shown in Fig. 2.4. The DFT values are recorded
system by system: for each system, we sequentially list 1 energy value, 3Ns force component
values, and 6 stress component values (if considered), and then repeat the process for the next
system.

The database is calculated with VASP 6.2.0 [153] package using projector augmented wave
(PAW) pseudopotentials that account for 14 valence electrons [Xe4f14]5s25p66s15d5 for W. The
exchange-correlation energy is evaluated using the Perdew-Burke-Ernzerhof (PBE) parameter-
ization of the Generalized Gradient Approximation (GGA). The plane wave energy cutoff is
set to 500 eV and the Hermite-Gaussian broadening-width for Brillouin zone integration is
0.1 eV. The k-point grid of the Brillouin zone is chosen such that each configuration in the
database has a similar density of k-points and corresponds to that of the cubic unit cells of W
at a0 = 3.1854 Å with Monkhorst-Pack (MP) 20×20×20 grid.

The database contains information from three types of DFT calculations: (i) structural
optimization at 0 K, (ii) minimum energy pathways at 0 K, and (iii) finite temperature MD
calculations. The 0K minimization is performed using conjugate gradients until the maximum
magnitude of the atomic forces becomes lower than 0.01 eV/Å. The minimum energy pathway
(MEP) calculations are performed using the climbing image version of Nudge Elastic Band
(NEB) method [154, 155, 156] with 7-9 images and the same criterion on the maximum force
as mentioned above. The MD-DFT simulations sample finite-temperature trajectories of bcc
(perfect bulk or perfect bulk with a few defects) and the liquid state using MiLaDy-Lammps
package [157], and the collected configurations are recomputed by VASP 6.2.0 [153]. High
temperature MD-DFT simulations are used to sample the Boltzmann distribution of positions
at a given temperature. The MD-DFT calculations are performed in the NVT ensemble. The
time step of MD integration is set to 1.0 fs. The shape of the simulation boxes used for MD
is cubic and is fixed to 4a0×4a0×4a0 with the value of a0 set to the lattice parameter at 0K
from the DFT calculations. The chosen temperatures are 300 K, 1000 K and 3000 K.
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2.1. Basics of machine learning force fields

2.1.1.2 Active learning and database updating

Active learning is a specialized subset of ML wherein the learning algorithm can interac-
tively query a user to perform specific tasks on data points. This concept can be applied to
the development of ML potentials. The main idea is to enlarge the training database for the
new potential by adding the information lacking in the previous potential. In the following
paragraphs, we will give a simple example of database updating based on the concept of active
learning, as illustrated in Fig. 2.5(a).

Figure 2.5: (a) Optimization strategy of ML potentials based on active learning. The main idea is to
enlarge the database for the construction of new potential by adding configurations sampled with MD
simulations and calculated with DFT. (b) Variation of the potential energy during an MD simulation
in the NPT ensemble with increasing temperature.

Firstly, an ML potential is built upon the baseline database (Table 2.1), denoted by “Iter-
ation 1”. Then an MD simulation in NPT ensemble is carried out using this potential together
with the MiLaDy-Lammps package [157]. The simulation system contains 128 atoms, and the
temperature varies linearly from 2000 K to 5000 K in 150000 steps. However, this computation
diverges, as illustrated by the blue line in Fig. 2.5(b), and damage to the system is observed.
Clearly, this potential is poorly constructed, and additional data points are necessary for the
database.
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2. Machine learning force fields

To complete the database, 7 “bad” configurations are randomly selected from the MD
simulation and then recalculated using DFT with VASP 6.2.0 [158] package. Based on this
database, a new potential, denoted by “Iteration 2”, is constructed. As shown Fig. 2.5(b), this
new potential performs much better than the previous one, holding a higher stability at high
temperatures. This is actually an efficient approach to correct the stability problems in the
construction of ML potentials.

Moreover, we notice that in the baseline database Table 2.1, only the configurations at
300 K, 1 000K and 3 000K exist, while the melting point of W is 3695 K. In response to the
demand of a better performance over the whole range of temperature up to the melting point,
the database can be further enlarged with another 21 configurations generated by the potential
“Iteration 2”, including 10 samples of bcc crystal and 11 samples of liquid phase. In this way,
the database is completed by the new features that enhance the prediction of the energy
landscape at finite temperatures.

Epistemic uncertainty from the predictive variance, which will be detailed in Subsec-
tion 2.1.3.3, is another strong tool for active learning [159, 160]. Computation of uncertainty
(e.g., the variance of the force prediction, as subsequently formulated and illustrated in Fig. 2.8)
provides quantitative estimates of the force field’s accuracy for each configuration. It can then
inform us which configurations have high uncertainty and should, therefore, be recalculated
using DFT and added to the database. This uncertainty-driven method for selecting training
points allows for the training of an accurate force field with a minimal number of relatively
expensive DFT calculations.

Overall, a well-designed and maintained database is crucial for the success of machine
learning potentials, as it forms the foundation upon which models are trained, tested, and
deployed. To be capable of predicting the energy and forces for various types of configurations,
the database should contain relevant configurations and demonstrate transferability.

2.1.2 Representation of local atomic environment

Atomic descriptor is a fundamental component for the machine learning methods applied
to materials science. It serves as a representation of the LAE of an atom, considering the
neighboring atoms within a defined cutoff radius, and captures crucial features necessary for
accurately predicting material behaviors and properties.

In this section, we will discuss how to describe the LAE using descriptors. First, in Sub-
section 2.1.2.1, we will define and explain the use of local atomic descriptors in multi-scale
simulations by listing various types of descriptors, with a particular focus on those that we
will employ in subsequent sections. Then, in Subsection 2.1.2.2, we will introduce the method
for constructing the design matrix based on these descriptors, which will be directly utilized
in the regression process.

2.1.2.1 Local atomic descriptor: definition and examples
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2.1. Basics of machine learning force fields

To be efficient, machine learning methods applied to materials science do not directly
use the coordinates q = (q1,q2, · · · ,qNs) ∈ R3Ns of all Ns atoms within the system as
input but instead employ a reduced representation of these coordinates known as a descriptor.
Descriptors are functions that map the configuration space to the descriptor space. The
construction of the descriptor space depends on the choice of the specific descriptor used.

We define a local descriptor centered on atom a in system s to describe the structure of
Na neighboring atoms in the neighborhood V(a) as follows:

Ds,a : R3×Na → RD

qNa → Ds,a(q).
(2.2)

Here, qNa = (qa1 ,qa2 , . . . ,qaNa
) ∈ R3Na represents the vector restricted to the neighborhood

of atom a from the full atomic coordinate vector q ∈ R3Ns . The function Ds,a projects the
local environment of atom a into the descriptor space with given dimensionality D. For an
extensive physical quantity that decomposes locally in an exact manner, we can construct a
global descriptor of the system by summing these local descriptors:

Ds =

Ns∑
a=1

Ds,a. (2.3)

This global descriptor of dimension D takes into account the entire local configurations. The
sum is the simplest method for aggregating local descriptors into a global descriptor for the
entire system, preserving permutation invariance; that is, the value of Ds does not change
when the atomic ID labels a are permuted. While other aggregation methods are possible,
particularly those found in the literature on GNNs [70, 71, 72, 73, 74], we will use the sum in
this thesis.

More generally, the system is described by combining the local descriptor computed for
each atom, which represent a transformation from the space R3Ns to RD×Ns . In most cases,
D ≫ 3, meaning the dimensionality of the descriptor space is much greater than that of
the original configuration space. Consequently, the problem posed in the descriptor space
inherently has a higher dimensionality than the original problem. The fundamental idea
behind this representation is to linearize the original problem, which becomes feasible when
projecting it into a sufficiently high-dimensional space. In this way, the complex topology
of the data is encoded by the descriptor space, allowing the transformation of a non-linear
problem into one that is sufficiently “flat” to be linearizable. The choice of projection should
not be made randomly and must depend on the specific problem being studied. Descriptors
must respect important symmetry properties and their components must be sufficiently non-
collinear to describe a configuration in a quasi-unique manner, as the mapping R3Ns → RD

cannot be bijective.

We will now present the main symmetry properties that a descriptor must satisfy. We
denote G as the symmetry group of the system under study. The most important sym-
metry groups in materials science include: (i) the permutations group, ensuring equivalence
for exchanges of two identical particles; (ii) the translations group; and (iii) the orthogonal
transformations group, encompassing rotations and reflections for crystalline systems. The
representation of descriptors should remain invariant under transformations by the elements
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2. Machine learning force fields

of the system’s symmetry group, i.e., for a local descriptor of the atomic environment centered
on the atom a in the system s:

∀g ∈ G, Ds,a ◦ g = Ds,a. (2.4)

Here, ◦ indicates the composition operator. In this thesis, symmetry composition will be
utilized; however, recent literature has made significant efforts towards employing equivariant
methods to preserve the aforementioned physical symmetries [161, 162, 163].

The concept of a descriptor that we have discussed so far is still quite abstract. Now, we
will present some examples of local atomic descriptors that satisfy the conditions mentioned
above. The simplest one is the coordination number. The coordination number meets all
the symmetry and invariance requirements of the system and provides qualitative information
about the local environment of atom a. For instance, analyzing the coordination number
can help detect the presence of a vacancy or an interstitial near the atom a. However, this
information is not quantitative, meaning that the coordination number alone is insufficient for
constructing an accurate local energy model for atom a. To develop a more precise model, we
need to use a descriptor that includes more information than just the coordination number.

Another simple example of a local descriptor for quantitative analysis is the Coulomb
matrix [164, 165, 166]. The Coulomb matrix is typically employed for small systems where
electrostatic interactions play a significant role, such as in organic molecules. In this case, the
system coordinates are replaced by the following matrix:

Cab =

{
Z2.4
a , if a = b
ZaZb

|qa−qb|
, else (2.5)

where Zi and qi represent the electric charge and the position of atom i, respectively. The
Coulomb matrix respects the symmetry and invariance properties of the system. Unlike the
coordination number, the Coulomb matrix contains enough information to quantitatively pre-
dict various observables of the system, such as its energy [164, 165, 166]. In the literature,
a wide range of more complex and varied atomic descriptors have been developed. Here, we
will describe the main categories of these descriptors: (i) radial and angular descriptors, (ii)
descriptors based on neural networks, (iii) spectral descriptors, and (iv) tensor descriptors.

Radial and angular descriptors. The analytical development of descriptors was pioneered
by Behler and Parrinello [28, 31, 167], as well as Bartók et al. [33, 27, 50], and it serves
as the current basis for local descriptors used in materials science. These descriptors en-
code the local geometry of neighboring atoms by considering radial distances and triplet
angles among atoms in a system. Examples include the Behler-Parrinello symmetry func-
tion [28, 31, 168, 76, 77, 169] and the Angular Fourier Series (AFS) descriptor [33, 27, 50].
Typically, these descriptors consist of between 10 and 100 components. Additionally, Permu-
tationally Invariant Polynomial Descriptors (PiP) [59, 60] and tabulated Gaussian Approxima-
tion Potential (tabGAP) [170] also account for bonds, angles, triangles, and higher body-order
interactions, such as 4-body and 5-body.

Descriptors based on neural networks. Descriptors can also be specifically tailored for a
particular system [171, 172, 61, 93], and in such cases, they can be directly created using DL
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2.1. Basics of machine learning force fields

methods [63, 173, 174, 175]. In this scenario, the descriptors are automatically generated by
NNs, which inherently construct symmetries and invariances. Initially introduced in 2017 [176],
GNNs have become the most popular DL method for structural analysis in chemistry, biology,
and drug design applications. Since then, numerous methods based on invariant or equivari-
ant descriptions of LAEs have been proposed. The most popular include SchNet, a weighted
atom-centered symmetry function and the deep tensor neural network [173, 177]; DimeNET
- Directional Message Passing Neural Network [89, 90]; ALIGNN - Atomistic Line Graph
Neural Network [178]; PAINN - Polarizable Atom Interaction Neural Network [82]; Nequip -
Neural Equivariant Interatomic Potentials [86]; and MACE - Higher Order Equivariant Mes-
sage Passing Neural Networks [87, 88, 179]. These GNN-based approaches have demonstrated
remarkable performance in accurately predicting and characterizing various chemical prop-
erties, making them primarily utilized in the domains of chemistry and biology. However,
their numerical cost is several orders of magnitude higher than that of traditional descriptors.
Consequently, in the field of materials science where LAEs are usually simpler, traditional
descriptors are predominantly used [103]. It is important to note that the analytical form of
these descriptors is not explicitly known and is “hidden” within the weights of the NN. As
a result, this approach does not guarantee invariance to certain symmetry operations unless
those symmetries are explicitly represented in the training data.

Spectral descriptors are constructed by decomposing the local atomic density onto a basis
of hyperspherical functions, the properties of which are then utilized to build invariants. The
form and quality of these descriptors depend on the choice of the distribution function. The
atomic density can be represented as a sum of delta functions centered on each atom in the
system, leading to the bi-spectrum descriptor SO(4) [50]. Alternatively, using Gaussians of
finite width results in the Smooth Overlap of Atomic Positions (SOAP) descriptor [33, 27, 50].
Using Gaussians instead of delta functions ensures that the descriptor is smooth. The two
descriptors mentioned above are local descriptors, but it is also possible to develop multi-
scale spectral descriptors. This is the case of solid harmonic wavelet scattering representation
developed by Mallat et al. [56, 180, 55, 181]. Here, the invariance construction is more general
and is not based on the specific properties of hyperspherical functions. By multiplying solid
harmonic functions with Gaussian windows dilated at different scales, one can construct a
descriptor that splits the information across scales and provides scale interaction coefficients
related to multi-scale physical phenomena.

Two main families of spectral descriptors can be distinguished: (i) compact descriptors,
such as the bi-spectrum SO(4), typically consisting of between 10 and 50 components, and
(ii) non-compact descriptors, including SOAP and scattering representation, which range from
100 to 4000 components. The compactness of these descriptors depends, in particular, on how
radial and angular information are coupled in the descriptor.

We will provide a detailed description of the bi-spectrum SO(4) descriptor, which is very
often utilized throughout this thesis. Based on the decomposition of local atomic density on
the basis of 4-dimensional hyperspherical functions [27, 50], there exists a bijection between
the real space R3 and the unit hypersphere S4 ∈ R4. The atomic environment of atom a is
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described by its density ρa(r) and is decomposed as follows on hyperspherical functions:

ρa(r) =
∑

k∈V(a)

wkδ(r − rak) (2.6)

=

∞∑
j=0,1/2,···

j∑
m,m′=−j

cm,m′

a,j Um,m′

j

(
θak0 , θak, ϕak

)
, (2.7)

where V(a) is the neighborhood of the atom a and the density is zero outside this neighborhood.
Here rak = qk − qa is the Cartesian coordinate of the vector from the centered atom a to
is neighbor atom k, wk is a scalar depending on the chemical species, cm,m′

a,j is the result of
the scalar product between the density function centered on atom a and the hyperspherical
harmonics Um,m′

j :

cm,m′

a,j =
∑

k∈V(a)

wkU
m,m′

j

(
θak0 , θak, ϕak

)
, (2.8)

where the j values can only be positive integer or half-integer, i.e., j = 0, 12 , 1,
3
2 , etc. For

the maximal value of the angular moment jmax, the total number of components Um,m′

j is∑jmax

j=0 (2j + 1)2. The polar angles θak0 , θak, ϕak are the representation of the vector rak on the
R4-sphere.

Using Eq. 2.7 and the expansion coefficients cm,m′

a,j (also called power spectrum coefficients),
we can deduce the power spectral decomposition and the bi-spectrum of the atomic density
centered on the atom a. We then define the components of the bi-spectrum SO(4) B as follows
with j ≤ jmax and |j1 − j2| ≤ j ≤ j1 + j2:

Ba
jj1j2 =

(
cm,m′

a,j

)†
Hj1j2

(
c
m1,m′

1
a,j1

⊗ c
m2,m′

2
a,j2

)
. (2.9)

Here, ⊗ denotes the tensor product and Hj1j2 are related to the Clebsch-Gordan coefficients for
the SO(4) group. A detailed description of these coefficients is given by Bartók et al. [27, 50].
The bi-spectrum SO(4) inherently ensures translation and permutation invariance. However,
rotational invariance is more subtle, enabled by the properties of hyperspherical functions
and the construction of the descriptor [27, 50]. Due to Clebsch-Gordan coefficients, certain
components of the bi-spectrum SO(4) are zero; hence, one can utilize the non-zero components
or exclusively the diagonal components, i.e., those corresponding to j1 = j2 [182, 27, 50]. The
bi-spectrum SO(4) provides a highly sensitive description of the atomic environment. Even a
small difference in the Euclidean norm between q1 and q2 can lead to a significant discrepancy
in terms of irreducible representations, resulting in a large difference between Ds(q1) and
Ds(q2). Despite its sensitivity, the bi-spectrum SO(4) descriptor suffers from a significant
drawback in its construction: it is impossible to decouple radial and angular information
due to their projection onto the S4 sphere. Qualitatively, the bi-spectrum SO(4) offers a
precise angular description but requires considerable computational time due to the recurring
calculation of Clebsch-Gordan coefficients, which limits the value of jmax.

Tensor descriptors represent a novel approach for systematically generating invariants rel-
ative to a symmetry group. Tensor methods employ a similar “trick” to scattering representa-
tion but are not confined to using a basis of hyperspherical functions. This method allows for
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the creation of rotation- and permutation-invariant descriptors using polynomial basis func-
tions [53, 54]. Descriptor construction can encompass interactions involving Ns atoms, as seen
in the work of Oord and Allen [60, 59]. Special cases of this method lead to some afore-
mentioned descriptors. For example, when hyperspherical functions serve as the basis and are
restricted to second-order tensor development, the resulting tensor descriptors yield SOAP [27].
Another example is the atomic cluster expansion (ACE) descriptor [36, 37], which leverages
the invariant properties of spherical harmonics and explicitly incorporates n-body interactions.
Tensor descriptors typically involve a very large number of components, ranging from 1 000 to
10 000, which often makes them challenging to use directly in practical applications.

Other types of descriptors. Finally, more “exotic” descriptors can be created by concate-
nating several different descriptors, resulting in what are known as hybrid descriptors [38]. A
concrete example of hybrid descriptors will be provided in Subsection 2.2.3.2. Additionally,
it is possible to construct more “physical” descriptors. Based on surrogate models, various
physically-informed descriptors were recently proposed [58, 57, 69].

2.1.2.2 Construction of design matrix

Let us consider a database DB = {(xm, ym) for m = 1, . . .M} with M observations ym
(as mentioned previously, M = ME +MF +MS) for a D-dimensional representation of the
data xm ∈ RD. This representation is based on the D-dimensional descriptors elaborated in
the previous Subsection 2.1.2.1. Any supervised machine learning or deep learning algorithm
optimizes a function fML: RD × RP → R such that

fML (xm,w) = ym, (2.10)

where xm ∈ RD represents the mth data point of the database, w ∈ RP denotes the parameters
and ym ∈ R is the mth target property of the database (mth element of the target vector).

Here we make a precision so as to clarify the difference between the descriptor xm, which
is the mth data point of the database D = {xm ∈ RD for m = 1 . . .M}, and the local atomic
descriptor of the atom a from the system s, denoted by Ds,a ∈ RD, which encodes the LAE. In
the current context, the descriptor xm is associated with a physical observable of the system s,
such as energy, atomic forces, or virial stress. These descriptors xm constitute what is typically
referred to as the input space of dimension D in the artificial intelligence and machine learning
community. In materials science, the local atomic descriptor Ds,a serves as an intermediate
step between the atomic coordinates and the descriptors xm for energy, force, and stress:

• The global energy descriptor of a system is denoted by Ds ∈ RD and computed by
Eq. 2.3.

• The force descriptor DF
s,a of the ath atom in the system s is obtained by applying the

gradient with respect to the Cartesian coordinates of a to the global energy descriptors:

DF
s,a = −∇aDs = −

∑
b∈V(a)

∂Ds,b

∂qa
∈ R3×D. (2.11)
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• The virial stress descriptor of the system s is constructed based on the definition of the
virial stress tensor. For each dimension i of the local atomic descriptor Ds,a, denoted by
Ds,a,i with i = 1, . . . , D, the virial stress tensor τ s can be expressed as:

τ s,i =
1

2Vs

∑
a∈s

∑
b∈V(a)

(qa − qb)⊗
∂Ds,b,i

∂qa
. (2.12)

where Vs is the volume of the system s and the dimension i of the virial stress descriptor
is formulated using the Voigt notation:

DS
s,i = (τs,i,xx, τs,i,yy, τs,i,zz, τs,i,yz, τs,i,xz, τs,i,xy) . (2.13)

Therefore, the virial stress descriptor of the system s is defined by DS
s ∈ R6×D.

Any row of an energy, force, or stress descriptor is of dimension D and serves as a data point
xm ∈ RD in the database.

The function fML can take a simple linear form in both the parameter and descriptor
spaces, as exemplified by a linear ML model, i.e., fML (xm,w) = w⊤xm. Alternatively, it can
be highly non-linear, as in the case of deep learning applications, such as neural networks. A
general model that is linear in the parameter space can be expressed as:

ym = fML(xm,w) = w⊤ϕ(xm) = ϕ(xm)⊤w (2.14)

with the notations:

w =


w1

w2
...
wP

 ∈ RP×1 ; ϕ(xm) =


φ1(xm)
φ2(xm)

...
φP (xm)

 ∈ RP×1;

where φp : RD → R encodes the original descriptors in such a way that the initial D-
dimensional descriptor space is mapped into a P -dimensional space using a collection of P
functions φp, simply denoted by a multi-dimensional map ϕ : RD → RP . In general, P is
greater than D, and this technique is used to increase the dimensionality of the linear fit
from D to P . This applies to quadratic, cubic or general kernel methods, where P ∼ D2,
P ∼ D3 or P is usually denoted as K, respectively. With the above notations, the design
matrix is defined as the matrix associated with the D-dimensional database representation
D = {xm ∈ RD for m = 1 . . .M} for a given P -dimensional map ϕ that encodes the descrip-
tors. As illustrated in Fig. 2.6, the design matrix has M rows (the number of data points)
and P columns, and each row represents a data point related to an observable (energy, force
component or stress component):

Φ (D) =

 φ1(x1) φ2(x1) · · · φP (x1)
...

...
. . .

...
φ1(xM ) φ2(xM ) · · · φP (xM )

 ∈ RM×P (2.15)
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Figure 2.6: The transpose of the design matrix (Φ (D)
⊤ ∈ RP×M ), filled by the ϕ-encoded information

of energy (E), force components (F) and stress components (S) system by system.

or in a more compact form:

Φ (D) =


ϕ⊤(x1)
ϕ⊤(x2)

...
ϕ⊤(xM )

 ∈ RM×P ;

Φ (D)⊤ =
(
ϕ(x1) ϕ(x2) · · · ϕ(xM )

)
∈ RP×M . (2.16)

Here are some useful elementary relations for the multiplication of the design matrix:

Φ (D)⊤Φ (D) =
(
ϕ(x1) ϕ(x2) · · · ϕ(xM )

)

ϕ⊤(x1)
ϕ⊤(x2)

...
ϕ⊤(xM )


=

M∑
m=1

ϕ(xm)ϕ⊤(xm) ∈ RP×P

and

Φ (D)Φ (D)⊤ =


ϕ⊤(x1)
ϕ⊤(x2)

...
ϕ⊤(xM )

(ϕ(x1) ϕ(x2) · · · ϕ(xM )
)

=

 ϕ⊤(x1)ϕ(x1) · · · ϕ⊤(x1)ϕ(xM )
...

. . .
...

ϕ⊤(xM )ϕ(x1) · · · ϕ⊤(xM )ϕ(xM )

 ∈ RM×M .

Each element of the above matrix is in R and has the form:

ϕ⊤(xm1)ϕ(xm2) =
P∑

p=1

φp(xm1)φp(xm2) = ϕ⊤(xm2)ϕ(xm1) ,
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implying that the matrix Φ (D)Φ (D)⊤ is symmetric.

2.1.3 Regression model

A regression model is employed to establish the relationship between the atomic environ-
ment encoded in the design matrix and the target values of energy, force, and stress obtained
from highly accurate DFT computations. A well-performing regression model allows machine
learning potentials for atomic-scale simulations to approximate the accuracy of DFT.

Any regression that is linear in parameters can be formulated as an optimization problem
of a linear system:

fML(x,w) = ϕ (x)⊤w , (2.17)
fML(xm,w) = ym,m = 1 . . .M ⇐⇒ Φ (D)w = y . (2.18)

Consequently, the solution of the linear-in-parameters model is the solution of the linear system
Φ (D)w = y, which can be formally written as:

w =
(
Φ (D)⊤Φ (D)

)−1
Φ (D)⊤ y =

(
Φ (D)⊤Φ (D)

)−1
(

M∑
m=1

ymϕ(xm)

)
(2.19)

and any prediction for the data x⋆ reads:

y(x⋆) = ϕ⊤(x⋆)
(
Φ (D)⊤Φ (D)

)−1
(

M∑
m=1

ymϕ(xm)

)
(2.20)

The solution presented in Eq. 2.19 is merely a formal solution that is not typically employed
in practice. The practical solutions will be detailed in Subsection 2.1.3.3. In the following
subsections, we will illustrate some of the most widely used regression models in materials
science.

2.1.3.1 Linear model

Linear Machine Learning (LML) fitting implies that the dimensionality of the data x ∈ RD

equals the number of parameters w ∈ RP , i.e., D = P , and the function fML(x,w) = w⊤x.
In this case, φp(xm) = x

(p)
m map the pth component of D dimensional vector xm ∈ RD:

ϕ(xm) =


φ1(xm)
φ2(xm)

...
φP (xm)

 =


x
(1)
m

x
(2)
m
...

x
(D)
m

 ∈ RD×1

and the design matrix is:

ΦLML (D) =

x
(1)
1 x

(2)
1 · · · x

(D)
1

...
...

. . .
...

x
(1)
M x

(2)
M · · · x

(D)
M

 ∈ RM×D. (2.21)
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It should be noted that the above discussion is only applicable to cases where the data is
unbiased. For the general case, a supplementary parameter φ0(x) = w0 is added to the linear
fit, which serves as a constant to represent the intercept of the linear regression. Then in this
LML case, P = D + 1 and the fitting function can be written as fML(x,w, w0) = w0 +w⊤x.

2.1.3.2 Nonlinear model

Usually, a linear regression model is insufficient to describe the nontrivial topology of the
data. To address the limitations of linear regression, nonlinear models are widely employed.
In this subsection, we will discuss a simple yet effective nonlinear method: quadratic machine
learning (QML) fitting. In this case, P = D2 and the application φp(xm) = x

(p1)
m x

(p2)
m mixes

2 components of the D-dimensional vector xm ∈ RD:

ϕ(xm) =


φ1(xm)
φ2(xm)

...
φP (xm)

 =



x
(1)
m x

(1)
m

x
(1)
m x

(2)
m

...
x
(1)
m x

(D)
m

x
(2)
m x

(1)
m

...
x
(D)
m x

(D)
m


∈ RD2×1.

Then the design matrix becomes:

ΦQML (D) =


ϕ⊤(x1)
ϕ⊤(x2)

...
ϕ⊤(xM )

 (2.22)

=

x
(1)
1 x

(1)
1 x

(1)
1 x

(2)
1 · · · x

(1)
1 x

(D)
1 · · · x

(D)
1 x

(D)
1

...
...

. . .
...

...
...

x
(1)
M x

(1)
M x

(1)
M x

(2)
M · · · x

(1)
M x

(D)
M · · · x

(D)
M x

(D)
M

 ∈ RM×D2

The QML fitting function is symmetric fQML (x,w) = x⊤wx. Following this symmetric
structure, the columns of the design matrix are repeated, and the rank of the matrix, i.e., the
maximum number of independent parameters in the QML model, cannot exceed D(D+1)/2.

It is also noteworthy that models with various functional forms can be combined. An
example of this is the Quadratic Noise Machine Learning (QNML) model, where the design
matrix concatenates both LML and QML models. The combined form is:

ΦQNML (D) = ΦLML (D)⊕ΦQML (D) ∈ RM×D ⊕ RM×D2 ∈ RM×(D+D2) (2.23)

A notable feature of linear-in-parameters hybrid models is that their regression parameters
naturally exhibit a direct sum decomposition structure:

wQNML = wLML ⊕wQML ,
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which suggests various training strategies, such as direct optimization over the entire QNML
space or sequential optimization, i.e., initially optimizing in the LML space, followed by opti-
mization in the remaining QML space.

Linear interpolation exhibits reasonably good performance outside its fitting range. To
preserve this advantageous property in other non-linear fitting approaches, we impose a pre-
condition, set by the linear interpolation, on the quadratic regime. It means that only the
deviation of the LML values from the target properties is fitted within the quadratic regime:

y = fLML (x,w) + ∆y ≃ fLML (x,w) + fQML (x,w) = fML (x,w) ,

EDFT
s = ELML

s +∆E ≃ ELML
s + EQML

s = EML
s , (2.24)

where the last equation is formulated assuming the target observable is the total energy of
system s (i.e., the DFT energy), and the term EQML

s exhibits a quadratic form in terms of the
descriptors, EQML

s = fQML (Ds,w).

The local atomic energy can be written as:

ϵs,a = ϵLML
s,a + ϵQML

s,a (2.25)

ϵLML
s,a = fLML (Ds,a,w)

ϵQML
s,a = fQML (Ds,a,w) .

The above QNML development incorporates a well-defined preconditioning imposed by the
linear fitting. Specifically, the parameters wLML of the linear fit are first evaluated and then
fixed, so as to eventually determine the parameters wQML of the quadratic fit.

Similar to the linear case [34, 35, 38], the atomic forces and the virial stress are also
considered in the quadratic formalism. The force acting on an atom is computed from the
total ML energy EML

s in Eq. 2.24. In the case of QNML, the descriptor associated with the
force on atom a in the direction α becomes:

DF
s,a,α = −

0,
∑

b∈V(a)

∇a,αDs,b,
∑

b∈V(a)

(∇a,αDs,b ⊗Ds,b +Ds,b ⊗∇a,αDs,b)

 .

The force descriptors mentioned above reside within the same R1×(1+D+D2) space and require
a non-trivial computation of derivatives for each atomic descriptor with respect to the atomic
Cartesian coordinates in the neighborhood of the central atom a within the cutoff radius.

We emphasize that the proposed QNML formalism is different from the quadratic Spectral
Neighbor Analysis Potential (qSNAP) in Ref. [35]. While qSNAP potentials are fitted as a
second-degree polynomial with explicit linear and quadratic forms, QNML treats only the
error of the linear fit as a quadratic form of atomic descriptors. Furthermore, the QNML
procedure is inspired by the nearly Gaussian shape of the error distribution in the linear fit.
As showed in Fig. 2.7(b), the distribution of the noise EDFT

s − ELML
s closely resembles a

unimodal Gaussian distribution, whereas the absolute DFT energies in our database exhibit
a bimodal shape. Such distribution of DFT data, without appropriate treatment, can lead to
overfitting or highly heterogeneous parameterization. The error of the LML fit serves as the
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Figure 2.7: Histogram depicting (a) the distribution of DFT data for energy (in eV) and force (in
eV/Å), and (b) the error noise deviation of LML and QNML force fields for bcc W [148]. The absolute
DFT energy is presented in a re-scaled form

(
E − E

)
/σ, where E is the average energy of the database

and σ is the standard deviation. The error distribution for energy and force follows a Gaussian shape,
with the distribution being narrower for the QNML potential.

target in the QNML formalism. To mitigate the inherent risk of overfitting with nonlinear
approaches, appropriate regularization techniques, such as L2 ridge and Bayesian methods,
are applicable [183, 100, 99] and will be discussed in the following subsection.

2.1.3.3 Loss function and error evaluation

As mentioned previously, any regression that is linear in parameters can be formulated as
an optimization problem in the form of a linear system:

Φ (D)w = y . (2.26)

Solutions of this linear system can be formally given using the pseudo inversion of the design
matrix Φ(D)+ ∈ RP×M . For the case where P ≥ M , meaning that we have more equations
than unknowns, the entire ensemble of solutions w ∈ RP can be expressed as:

w = Φ(D)+y +
[
IP −Φ(D)+Φ(D)

]
r, (2.27)

where r ∈ RP is an arbitrary vector. Solutions exist if and only if the equality Φ(D)Φ(D)+y =
y holds. If this condition is satisfied, the solution is unique if and only if Φ(D) has full column
rank, i.e., rank(Φ(D)) = P , in which case IP − Φ(D)+Φ(D) is a zero matrix. If solutions
exist but Φ(D) does not have full column rank, we have an indeterminate system, where the
infinite solutions are determined by a random choice of the r vector.

In the case where M ≥ P , which is the most common case in materials science, indicating
that the number of data points is larger than the feature space dimension, there exists no
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exact solution, only an approximate one, with an error ϵ = y − Φ(D)w. Among all these
approximate solutions, we choose in general the one that minimizes this error:

w = argmin
w∈RP

∥y −Φ(D)w∥ = argmin
w∈RP

J(w), (2.28)

where J(w) is the L2 objective function:

J(w) =
M∑

m=1

|ym − ŷ(xm,w)|2 (2.29)

with ŷ(xm,w) = fML(xm,w) = ϕ⊤(xm)w the prediction of the ML model with parameters w.
The formal solution of this optimization problem can be expressed by the left pseudo inversion
of the design matrix Φl(D)+ ∈ RP×M as

w = Φl(D)+y =
(
Φ (D)⊤Φ (D)

)−1
Φ (D)⊤ y. (2.30)

This solution is the orthogonal projection of y on the orthogonal complement of the null space
N (Φ(D)). The projection error is given by [IM −Φ(D)Φl(D)+]y.

The solution given above in Eq. 2.30 has an apparently unique form. However, this solution
that minimizes the L2 objective function J(w) is one solution among an infinite number
of solutions. Very often, this solution is mathematically optimal but may not be the most
“physical”. To approach more “physically” plausible alternative solutions, we propose the
following three principal methods.

Regularization

The variation of the predicted physical observable should exhibit smoothness with respect
to small variations in atomic coordinates. Rough solutions may arise, particularly when the
model has high dimension P (P ∼ several thousands). Regularization methods are absolutely
essential in the context of high-dimensional regression. As previously discussed, they help
prevent overfitting on certain datasets, thereby enhancing the transferability of models. In
the current context, we regularize the solution to prevent the occurrence of rough solutions
with poor extrapolation capacity and to avoid ill-defined numerical inversion of the matrix
Φ (D)⊤Φ (D) in Eq.2.30.

Regularization refers to any modification made to a learning algorithm with the intent to
reduce generalization error rather than training error. This technique is often grounded in the
expectation that models should be smooth rather than overly complex. In the framework of
linear regression, smoother functions are typically associated with smaller weight magnitudes.
Therefore, we can penalize complex functions by incorporating an appropriate penalty term
into the loss function that we aim to minimize:

Jr(w) = J(w) +wTCPw, (2.31)

where CP ∈ RP×P can be regarded as a matrix that imposes constraints on the parameters
w. The choice of CP controls our preferences for weights. There are various methods to
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select CP , either implicitly or explicitly. An explicit approach involves properly defining the
validation error, which can be addressed by designating a validation set from the training
data. Minimizing the validation error corresponds to optimizing the hyperparameters on the
validation data. The most widely used choice for CP is a diagonal matrix CP = λ2IP , where
IP is the P × P identity matrix. Under this condition, we prefer the parameters w that
minimize the norm weighted by a factor of λ2, giving the loss function:

Jr(w) = J(w) + λ2∥w∥2 (2.32)

This regularization term is the L2 regularization, also known as Tikhonov regularization,
proposed by Tikhonov and Phillips [184]. Using this regularization, the solution becomes

w =
[
Φ (D)⊤Φ (D) +CP

]−1
Φ (D)⊤ y. (2.33)

For λ = 0, we obtain the previous solution, whereas a large value of λ forces the weights to be-
come smaller, leading to a smoother fit. Selecting the appropriate value for the hyperparameter
λ is challenging. As we will see below, the matrix CP has a clear statistical interpretation.

Weighting the fit

The “physical” solution can be produced by weighting the fit, specifically by assigning
greater importance to certain columns of Φ(D), in accordance with the physical significance
of those observations in the database. Physical intuition often guides the selection of database
observations that are pertinent to the target problem. Certain datasets may be preferred over
others to accurately predict specific observations. For example, when aiming to accurately
determine elastic constants and lattice parameters of a crystalline structure, it may be sufficient
to carefully fit only a few deformed configurations around the equilibrium state while leaving
the majority of data in the database untouched.

In this case, we complete the information contained in the dataset D and by associating the
desired weights ωm ∈ R+ with descriptors and observations (xm, ym). The weighted database
is now defined as Dω = {((xm, ym, ωm) form = 1 . . .M}. To take into account these weights,
the L2 objective function is slightly changed and becomes:

J(w) =
M∑

m=1

ωm |ym − ŷm(xm,w)|2 , (2.34)

The complete loss function should incorporate the components of the database for energy
(E), force (F), and stress (S). Specifically, the objective function consists of at least four
components: three for energy, force, and stress, and a fourth component that includes the
regularization terms R(w, λ):

J(w) = JE(w) + JF (w) + JS(w) +R(w, λ) , (2.35)

To balance the contribution of energy, force, and stress, the simplest formulation would be:

J(w) =
1

2ME

ME∑
mE=1

ωE
mE

(
yE
mE

− ŷE
mE

)2
+

1

2MF

MF∑
mF=1

ωF
mF

(
yF
mF

− ŷF
mF

)2
+

1

2MS

MS∑
mS=1

ωS
mS

(
yS
mS

− ŷS
mS

)2
+R(w, λ). (2.36)
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Here, ME denotes the total number of energy data points indexed by mE . Similarly, MF and
MS represent the total number of force and stress data points, with mF and mS indexing
the mth

F force data point and the mth
S stress data point, respectively. The objective function

can be expressed as J(w,ω), where ω encompasses all database weights (ωE
mE
, ωF

mF
, ωS

mS
) for

energy, force, and stress.

Equation 2.34 is equivalent to the following linear system:

Ω1/2Φ (D)w = Ω1/2y , (2.37)

where Ω is the weights matrix that is positive definite and diagonal:

Ω =


ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωM

 ∈ RM×M . (2.38)

The corresponding solution is equivalent to that of the non-weighted problem after transform-
ing the design matrix Φ (D) and the target vector y according to:

Φ (D) → Ω1/2Φ (D)

y → Ω1/2y .

Therefore, the formal solution is given by:

w =
[
Φ (D)⊤ΩΦ (D)

]−1
Φ (D)⊤Ωy , (2.39)

and with the L2 regularization R(w, λ) = λ2∥w∥2,

w =
[
Φ (D)⊤ΩΦ (D) + λ2IP

]−1
Φ (D)⊤Ωy . (2.40)

Bayesian interpretation

Sometimes, the “physical” solution corresponds to the Bayesian approach of linear fitting,
which incorporates our prior or assumptions about the conditions satisfied by the parameters
w. The solution of linear regression can be reinterpreted from a Bayesian probabilistic perspec-
tive. From this viewpoint, the parameters are inherently uncertain due to the limited available
training data and are assumed to follow a distribution that should be determined. Even the
measurement of observations is subject to error, so the database D = {(xm, ym)| form = 1,M}
can be regarded as being generated from an exact, noise-free model f(x,w) with additive Gaus-
sian noise ϵ ∼ N (0, σ2M ), formulated as y = f(x,w)+ϵ. In a Bayesian framework, the quantity
to determine for obtaining the optimal set of parameters is derived from the distribution func-
tion or the conditional probability p(w|D). This quantity of interest is commonly referred to
as the posterior probability, which can be determined using Bayes’ rule:

posterior =
likelihood × prior

marginal likelihood
, (2.41)
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p(w|x,y) = p(x,y|w)p(w)

p(x,y)
=
p(y|x,w)p(w)

p(y|x)
, (2.42)

where the marginal likelihood is independent of the parameters and given by

p(y|x) =
∫
p(y|x,w)p(w)dw . (2.43)

It is important to note that the previous equation combines the likelihood p(y|x,w) and the
prior over the parameters p(w) to obtain the posterior distribution. This means that our initial
belief about the parameters p(w) is corrected by the likelihood distribution of the observed
data. The prior belief about the parameters assumes that their distribution is Gaussian with
zero mean and a covariance matrix ΣP , i.e., w ∼ N (0,ΣP ), with the probability density
function

p(w) = (2π)−P/2 det(ΣP )
−1/2 exp

(
−1

2
w⊤Σ−1

P w

)
. (2.44)

With these statistical conditions and using Bayes’ rule (Eq. 2.42), it can be demonstrated [185]
that the mean of the posterior distribution for the parameters p(w|x,y) is

w =
[
σ−2
M Φ (D)⊤Φ (D) +Σ−1

P

]−1
Φ (D)⊤ y .

We can now clearly recognize the least squares solution of our linear model with regularization
in the case where the constraint matrix is the inverse of the covariance matrix of the parameters,
CP = Σ−1

P .

The strength of Bayesian models lies in their ability to perform marginalization, which
means integrating over the parameters of the model to make predictions. In the classical
approach, predictions are derived directly from the values of the function as specified by a
given set of parameters. However, it is the prediction itself that is of primary importance,
rather than the specific set of fitted parameters. In the Bayesian framework, marginalization
allows for the integration over all possible parameter values. The probability distribution of
the prediction y⋆ for a given input x⋆ and a dataset D can be expressed as:

p (y⋆|x⋆,D) =

∫
p(y⋆|x⋆,w)p(w|D)dw . (2.45)

The prediction follows a normal distribution with mean µ(y⋆) and variance V(y⋆):

y⋆ ∼ N (µ(y⋆),V(y⋆)) , (2.46)

µ(y⋆) = ϕ(x⋆)
⊤
[
σ−2
M Φ (D)⊤Φ (D) +Σ−1

P

]−1
Φ (D)⊤ y , (2.47)

V(y⋆) = ϕ(x⋆)
⊤
[
σ−2
M Φ (D)⊤Φ (D) +Σ−1

P

]−1
ϕ(x⋆) , (2.48)

where ϕ(x) = (φ1(x), . . . , φp(x))
⊤ is the P × 1 vector that contains the functions of the linear

model at a given point x, and we denote by A ∈ RP×P the matrix A = σ−2
M Φ (D)⊤Φ (D) +

Σ−1
P . This distribution incorporates uncertainty in the parameters by averaging over all pos-

sible values of w. Classical regularization, or even maximum a posteriori predictions, does not
account for how well the parameters w are determined. In addition, we can estimate the epis-
temic uncertainty from the predictive variance at a given input x⋆ as σ2M + ϕ(x⋆)

⊤A−1ϕ(x⋆),
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2. Machine learning force fields

Figure 2.8: Epistemic uncertainty in force prediction, evaluated from the predictive variance, for a
tungsten configuration of 126 atoms containing two vacancies (the white region). The prediction for
the atoms near the defects is less certain.

as shown in Fig. 2.8. This uncertainty can be used as input for the active learning procedure
introduced in Subsection 2.1.1.2.

Now we will discuss the computational cost of predicting using the aforementioned Eq. 2.46.
Both prediction and variance computations require the inversion of the P × P matrix A.
Depending on the dimensions of the design matrix and which dimension is larger—either the
feature space dimension P or the number of observations M—the equation above needs to
be rearranged accordingly. If P < M , the above equations provide the most efficient way to
make predictions. However, if P ≥ M (for example, in Gaussian processes where P → ∞),
the mean and variance equations for the prediction y⋆ of a given input x⋆ should be rewritten
as:

µ(y⋆) = ϕ(x⋆)
⊤ΣPΦ (D)⊤ (KMM + σ2MIM )−1y , (2.49)

V(y⋆) = ϕ(x⋆)
⊤ΣPϕ(x⋆) (2.50)

−ϕ(x⋆)
⊤ΣPΦ (D)⊤ (KMM + σ2MIM )−1Φ (D)ΣPϕ(x⋆) ,

where the matrix KMM = Φ (D)ΣPΦ (D)⊤ is an M ×M matrix and consequently the time
complexity is of O(M3). It should also be noted that in the general case, the matrix KMM

has the form:

KMM =


ϕ⊤(x1)
ϕ⊤(x2)

...
ϕ⊤(xM )

ΣP (ϕ(x1) , · · · , ϕ(xM )) , (2.51)

which means that the elements of KMM are structured as follows:

k(xm,xm′) = ϕ(xm)⊤ΣPϕ(xm′) . (2.52)

For reasons that will become clear later, we call k(·, ·) a covariance function or kernel, which is a
key quantity in Gaussian processes (GPs). A GP is, in general, a collection of random variables,
any finite number of which have a joint Gaussian distribution. A GP is completely specified
by its mean function and covariance function. Often, GPs are defined over time, but this is
not the case in our use. In our case, the random variables represent the value of the function
fML(x,w) at location x ∈ RD. The Bayesian linear regression model fML(x,w) = ϕ (x)⊤w
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2.2. Kernel regression

with prior w ∼ N (0,ΣP ) provides a simple example of GP, where the covariance matrix C
for any dataset D is defined as:

C = E
(
ŷŷ⊤

)
= Φ (D)E(ww⊤)Φ (D)⊤ = Φ (D)ΣPΦ (D)⊤ (2.53)

which corresponds to the definition of the matrix KMM .

A separate dataset consisting of a specified number of data points is randomly selected from
the database for testing and validating the trained models. To evaluate their performance, we
utilize the root mean square error:

RMSE =

√√√√ 1

N

N∑
i=1

|yi − ŷ(xi,w)|2 (2.54)

where N is the number of data points in the training or testing dataset, ŷ represents the value
predicted by the model for xi, and y denotes the associated target value obtained from the
DFT calculations.

Another check to validate an ML potential is the comparison between the ML potential-
predicted value and the DFT value of some basic physical properties (lattice constant a0, bulk
modulus B and the cubic elastic constants C11, C12 and C44). Table 2.2 shows the comparison
for two ML potentials with different regression models (LML and QNML), demonstrating that
these ML potentials have good prediction performance on the elastic properties. Besides the
basic elastic properties, some other properties related to the target problem should be verified.
For example, in the section 4.1.2.2, the aim is to build an ML potential for studying the vacancy
properties. Therefore, the formation energy and the migration energy of mono-vacancy and
di-vacancies are also compared with the DFT values (Table 4.2), to guarantee the reliability
of the ML potential in predicting the vacancy behaviors.

Table 2.2: Elastic properties of bcc W provided by the developed LML and QNML potentials and
their comparison with the reference DFT values, obtained from DB class 2 in Table 2.1.

LML potential QNML potential DFT Unit
a0 3.1855 3.1854 3.1854 Å
B 303.2 304.1 304.5 GPa
C11 509.8 516.7 516.6 GPa
C12 200.0 197.8 198.5 GPa
C44 144.5 137.2 140.2 GPa

2.2 Kernel regression

For many regression algorithms, the raw data must be explicitly transformed into feature
vector representations via a user-specified feature map. In the present context, the raw data
are the data points xm, which can be transformed using the feature map ϕ into the feature
space V ⊂ RP , as previously introduced. We talked about the kernel (or covariance function)
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2. Machine learning force fields

of Gaussian processes in Subsection 2.1.3.3, based on the feature map ϕ chosen for the machine
learning model. However, the computation of the covariance matrix KMM has a complexity of
O(M2P 2), which is computationally intensive. Therefore, we aim to identify a kernel function
k(·, ·) that directly provides the value of the covariance function instead of computing Eq. 2.52.
This method is called the kernel regression method.

First, we introduce the mathematical framework for this method. We cover reproducing
kernel Hilbert spaces (RKHSs), which define a Hilbert space of sufficiently-smooth functions
corresponding to a user-specified, symmetric, positive definite kernel k : X ×X → R. A kernel
k is considered positive definite if, over the input space X , the matrix Kij = k(xi,xj) is a
positive definite matrix.

Definition (Reproducing kernel Hilbert space). Let H be a Hilbert space of real func-
tions f defined on an index set X . Then H is called a reproducing kernel Hilbert space
endowed with an inner product ⟨·, ·⟩H and norm ∥f∥H =

√
⟨f, f⟩H if there exists a func-

tion k : X × X → R with the following properties:
1. ∀x ∈ X , the function x′ → k(x,x′) belongs to H, and
2. k has the reproducing property: ∀x ∈ X , ∀f ∈ H, we have ⟨f(·), k(·,x)⟩H = f(x).

The RKHS uniquely determines k, and vice versa, as stated in the Moore-Aronszajn theorem
theorem:

Theorem (Moore-Aronszajn theorem [186]). Let X be an index set. Then for every
symmetric, positive definite kernel k (·, ·) on X × X , there exists a unique RKHS, and
vice versa.

The Moore-Aronszajn theorem states that every symmetric, positive definite kernel defines
a unique RKHS. We denote Hk the RKHS defined by a user-specified kernel function k. In this
space, every function can be reproduced by an inner product. In particular, if we set f(·) =
k (·,x′) ∈ Hk, the reproducing property becomes f(x) = k (x,x′) = ⟨k (·,x′) , k (·,x)⟩Hk

. This
equality holds for every x,x′ ∈ X . Let ϕ(x) = k (·,x), then we have

∀x,x′ ∈ X , k
(
x,x′) = ⟨k(·,x), k(·,x′)⟩Hk

= ⟨ϕ(x), ϕ(x′)⟩Hk
. (2.55)

The feature map ϕ in ML kernels is infinite-dimensional but only requires a finite-
dimensional matrix from user input according to the representer theorem, which states that
every function in an RKHS that minimises an empirical risk functional can be written as a
linear combination of the kernel function evaluated at the training points. This is a prac-
tically useful result as it effectively simplifies the optimization problem from an infinite-
dimensional to a finite-dimensional one. In our case, the index set X is the database
D = {xm ∈ RD for m = 1, . . .M}. It is a finite set with M elements, on which we have
k (xm,xm′) = ⟨ϕ(xm), ϕ(xm′)⟩Hk

. Here ϕ(xm) : x → k (x,xm) is a discrete function param-
eterized by xm, so a common inner product gives k (xm,xm′) =

∑M
i=1 k (xi,xm) k (xi,xm′).
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2.2. Kernel regression

Notice that Eq. 2.52 is also an inner product (with respect to ΣP ). As ΣP is positive definite,
we can define Σ

1/2
P so that (Σ1/2

P )2 = ΣP . Then defining ψ(x) = Σ
1/2
P ϕ(x), we obtain a simple

dot product representation of Eq. 2.52: k (xm,xm′) = ψ(xm)⊤ψ(xm′) = ⟨ψ(xm), ψ(xm′)⟩.

The kernel function is a similarity function for covariance over all pairs of data points. In
the case of atomic simulations, it defines the similarity between different LAEs. This section
focuses on kernel regression models for building interatomic potentials, such as Gaussian Ap-
proximation Potentials (GAPs) [33]. GAP is based on GPs and approximates the local atomic
energy with a user-specified kernel. This kernel-based interatomic potential has been employed
to predict the energy and forces for a wide range of materials, including metals, semiconduc-
tors, and amorphous solids [187, 188, 189, 102, 30, 190]. In the following subsections, we will
detail this method, as well as the developments and optimizations we have made for it.

2.2.1 Kernel model: definition and formulation

Kernel machine learning (KML) regressions using D-dimensional descriptors x ∈ RD is a
nonlinear regression model. Basically, it involves computing the kernel k (xm,xm′) for every
unordered pair of data points (xm,xm′) in the database D = {xm ∈ RD for m = 1 . . .M}.
Instead of performing M(M +1) kernel calculations, a sparse approximation is used to reduce
the training complexity in the GAP approach. It is possible to select K representative points,
often referred to as sparse points [33, 191, 192] in the literature, with K ≤M . In ML models,
many selections procedures and algorithms can be used in order to ensure the “representative-
ness” of the sparse points with respect to the database and the type of regression.

The selection using statistical distances is the focus of the present discussion, but let us first
demonstrate how to integrate the design matrix into the kernel formalism. Assume that the K
sparse points have been selected among the M database points. In that case, the application
ϕ(xm) = k(xm, ·) = k(·,xm), where xm ∈ D ⊂ RD and k : D×D → R is a function having the
kernel properties, is defined on the subset K ⊂ D consisting of the K selected sparse points
K = {zk ∈ D for k = 1, . . . ,K}. ϕ(xm) can then be expressed by listing all its values over
the domain K, indicated by φp(xm) = k(xm, zp), where p is one point among the K selected
points. We have

ϕ(xm) =


φ1(xm)
φ2(xm)

...
φK(xm)

 =



k(xm, z1)
k(xm, z2)

...
k(xm, zp)

...
k(xm, zK)


∈ RK×1, (2.56)
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and the kernel-based design matrix over the database becomes:

ΦKML (D) =


ϕ⊤(x1)
ϕ⊤(x2)

...
ϕ⊤(xM )

 (2.57)

=

 k(x1, z1) k(x1, z2) · · · k(x1, zK)
...

...
. . .

...
k(xM , z1) k(xM , z2) · · · k(xM , zK)

 ∈ RM×K .

In this case, the dimension of the parameters w is K. Moreover, the collection of z points
from the database D is also part of the parametrization. Consequently, the total number of
real numbers required for the parametrization of a KML model is K +KD.

Let us now introduce how the present formulation of kernel regression is related to GPs.
In a standard noisy GP for the database D, the design matrix has a square shape K = M ,
which means that all the data points of the database are selected. Then the prediction y⋆ for
a new point x⋆ is made using the key predictive equations [100]:

y⋆ ∼ N (µ(x⋆),V(x⋆)) ,

µ(y⋆) = k(x⋆)
⊤(KMM + σ2MIM )−1y , (2.58)

V(y⋆) = k(x⋆,x⋆)− k(x⋆)
⊤(KMM + σ2MIM )−1k(x⋆) , (2.59)

with k(x⋆)
⊤ = (k(x1,x⋆), . . . , k(xM ,x⋆)) and KMM = ΦKML (D) ∈ RM×M . The similarity

of these equations to Eq. 2.49 and Eq. 2.50 is evident. Actually, Eq. 2.49 and Eq. 2.50
can be transformed to Eq. 2.58 and Eq. 2.59 by regarding the kernel function k(x⋆) as the
map feature ϕ(x⋆) in Eq. 2.49 and Eq. 2.50, and assuming a prior of the parameters w ∼
N (0,K−1

MM ). Alternatively speaking, this transformation can be achieved by applying the
following replacements to Eq. 2.49 and Eq. 2.50:

ϕ(x⋆) → k(x⋆),Φ (D) → KMM = K⊤
MM and ΣP → K−1

MM . (2.60)

The GP prediction can be obtained from a linear fit in parameters using a generalized finite
basis y⋆ =

∑M
m=1wmk(x⋆,xm) with a prior w ∼ N (0,K−1

MM ).

The design matrix for standard kernel or GP approaches (K =M) is called the full kernel
matrix KMM . In cases where K < M sparse points are selected, the kernel matrix between all
points in the database D and the selected points is called the partial kernel matrix, denoted by
KMK = ΦKML (D) ∈ RM×K . We similarly denote the transpose of KMK by KKM = K⊤

MK ∈
RK×M , and the square kernel matrix of the sparse points by KKK = ΦK (K) ∈ RK×K . As K
is less than M , the predictive equations can be given by preforming the same transformation:

ϕ(x⋆) → k(x⋆) = (k(x1,x⋆), . . . , k(xK ,x⋆))
⊤ , (2.61)

Φ (D) → KMK and Σ−1
P → KKK . (2.62)

on Eq. 2.47 and Eq. 2.48. This operation gives the complete expression for the mean and
variance of the prediction y⋆ =

∑K
k=1wkk(x⋆, zk) with a prior w ∼ N (0,K−1

KK):

µ(y⋆) = k(x⋆)
⊤ (σ−2

M KKMKMK +KKK

)−1
KKMy , (2.63)

V(y⋆) = k(x⋆)
⊤ (σ−2

M KKMKMK +KKK

)−1
k(x⋆) . (2.64)
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As can be seen, both approaches can be easily transformed from one to the other. This method
is sometimes called a “subset of regressors” as suggested by Wahba [193] and Rasmussen [100].
The advantage of using such a partial kernel matrix is the reduction in computational com-
plexity from O(M3) to O(MK2). After training is completed, the prediction of the mean and
variance has complexities of O(K) and O(K2), respectively.

As we have pointed out earlier in the case of quadratic models (QML), the KML model
can also be hybridized with a linear model (LML) to form a Kernel Noise Machine Learning
(KNML) model:

ΦKNML (D) = ΦLML (D)⊕ΦKML (D) ∈ RM×D ⊕ RM×K ∈ RM×(D+K) . (2.65)

Similar to QNML, the parameters are in direct product w = wLML ⊕ wKML. This can be
interpreted as an extension with K components of the original D-dimensional descriptor space.
The total energy of the system s is the sum of the local atomic energies:

Es =
∑
a∈s

ϵKNML
s,a =

∑
a∈s

ϵLML
s,a +

∑
a∈s

ϵKML
s,a , (2.66)

ϵKNML
s,a = (wLML)⊤Ds,a + (wKML)⊤k(Ds,a)

= (wLML ⊕wKML)⊤ [Ds,a ⊕ k(Ds,a)] . (2.67)

From the above equations it is straightforward to see that the new local atomic descriptor
becomes Ds,a⊕k(Ds,a) and the energy descriptor of system s becomes xs⊕x′

s ∈ RD+K where
xs =

∑
a∈sDs,a ∈ RD and x′

s =
∑

a∈s k(Ds,a) ∈ RK .

2.2.2 Selection of sparse points

In this section, we will talk about how to build and optimize the kernel by selecting the
most representative data points of the database as the so-called sparse points. Firstly, we
introduce the notion of an atomic design matrix associated with a database. The difference
between the atomic design matrix and the previous design matrix is that here each line lays
the local energy descriptor Ds,a of one atom a where a runs over the entire array of Ns atoms
from the sth system of the database, instead of the feature-mapped energy, force, or stress
descriptors as in the case of the previous design matrix. The underlying local atomic database
is denoted by Da = {xa

m ≡ Ds,a ∈ RD×1 for m = 1, . . . ,Ma} where Ma is the total number of
LAEs of the database, and there is a bijective function that map the mth component of the
database into the tuple of integers (s, a), i.e., h(m) = (s, a) and h−1(s, a) = m. The atomic
design matrix Φa over the atomic database Da is defined as:

Φa (Da) =

 xa
1
⊤

...
xa
Ma

⊤

 =


x
a,(1)
1 x

a,(2)
1 · · · x

a,(D)
1

...
...

. . .
...

x
a,(1)
Ma

x
a,(2)
Ma

· · · x
a,(D)
Ma

 ∈ RMa×D . (2.68)

We have implemented five procedures for selecting the sparse points: (i) random selection,
and four others based on (ii) statistical distance, (iii) normalized statistical distance, (iv) CUR
decomposition, and (v) statistical distance-based CUR decomposition.
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Random selection is the most straightforward and fast procedure: we simply pick K lines
among the M lines of the atomic design matrix Φa(Da). By defining an injective function m
that randomly maps the first K positive integers into the first M ≥ K positive integers, the
set of sparse points can be written as K = {zk = xa

m(k) ∈ D for k = 1, . . . ,K}. In practice,
the random selection is performed within each class (e.g., the column “DB class” in Table 2.1)
separately, and the number of random picks pc within a class c is normalized by the proportion
of the number of LAEs in this class (M c

a) to the total number, i.e., pc = KM c
a/Ma.

Statistical distance selection is based on uniform sampling of the statistical distances
between LAEs and a given dataset. For this purpose, let us consider a subset S ⊂ Da with
nS LAEs on which we define the statistical distance dS(xa) ∈ R of each point xa ∈ Da:

dS(x
a) =

[
(xa − µm)⊤Σ−1

S (xa − µm)
] 1

2
, (2.69)

µS =
1

nS

∑
s∈S

xa
s ,

ΣS =
1

nS − 1

∑
s∈S

(xa
s − µS) (x

a
s − µS)

⊤ ,

where ΣS ∈ RD×D and µS ∈ RD are the sample covariance matrix and the center of
set S, respectively. For S = Da, we obtain for any xm ∈ Da the Mahalanobis distance
d(xa). There are two important observations: (i) in the case of the Mahalanobis dis-
tance, the sample covariance matrix can be easily computed from the atomic design matrix
ΣDa =

[
Φa(Da)

⊤Φa(Da)−Ma (µiµj)i,j

]
/ (Ma − 1) and (ii) when the data in the domain Da

has an underlying Gaussian distribution, the Mahalanobis distance follows a χ2(D) distribu-
tion.

The interest in using statistical distance for selecting the most representative points stems
from its foundational role in the recently introduced concept of distortion score [49]. For a
specific choice of the set S, where the determinant of the sample covariance matrix ΣS is
minimal [194, 195], the corresponding statistical distance becomes the distortion score [49].
The distortion score of LAEs describes a statistical distance from a reference distribution in
the feature space of atomic descriptors. The reference distribution derived from S can be
constructed from the LAEs of a defect-free crystalline system at a given temperature, or from
a subset of atoms of particular interest. It is pointed out by Goryaeva et al. [49] that when
computed with respect to the distribution of the underlying bulk structures, the distortion
score demonstrates a correlation with the local atomic energy, as shown in Fig. 2.9. The
comparison is performed in bcc Fe, for the atomic arrays with three classes of structural
defects: vacancies, self-interstitials and stacking faults. These configurations are included in
the training database of the GAP for Fe [29]. The atomic energies are computed using the same
potential. For all three defect classes, the determination-correlation coefficient R2 between the
distortion score dS and local energy is higher than 80 %. Both concepts, local atomic energy
and distortion score, encode the geometric information of the LAE.

The strong correlation between the distortion score described by statistical distances and
the local energy suggests a physical selection of sparse points from databases designed for
materials modeling of defects in crystalline solids. This conjecture enables us to select sparse
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Figure 2.9: The correlation between energy per atom and the distortion score dS(x) [49]. The dis-
tortion score is described via a selection of points from classes of physical interest and using MCD
algorithm [196, 194, 195] that gives a robust distance dRB in bcc Fe systems with: (a) vacancies;
(b) self-interstitials; (c) stacking faults. Each point on the plot represents an individual atom in a
simulation box. The atomic arrays are taken from the GAP potential database [29]. The correlation
is performed over 103 000 LAEs, and each defect class gathers diverse instances from 0 K static re-
laxation to molecular dynamics simulations at various temperatures. MCD analysis is performed on
the structural data represented using bispectrum SO(4) descriptor [33, 50] with the angular moment
jmax=4.5. The atomic energies are computed with the GAP potential [29].

points only based on geometrical considerations, which are representative for the entire range
of atomic energies involved in the fit. With this respect, we define a linear grid of G bins
between dmin = minxa∈Da dS(x

a) and dmax = maxxa∈Da dS(x
a), with an interval of δd =

(dmax − dmin)/G. The gth bin is defined as the collection of Gg points:

Gg = {xa ∈ Da | xg+1 ≥ dS(x
a) ≥ xg} , (2.70)

xg = dmin + (g − 1)δd .

In the selection based on statistical distance, we divide the range of [dmin, dmax] into K bins,
i.e., G = K where K is the target number of sparse points. Then we simply select one point
from each grid set Gg if there is more than one point in it. If there are no points within this
set, it is skipped, and no point is selected. Additionally, we have implemented an alternative
selection approach known as the normalized statistical distance method. In this case, the
number of points collected from the set Gg, denoted as Kg, is proportional to its population:
Kg ∼ Gg/Ma.

CUR matrix decomposition [48] is an enhanced data analysis method. It involves a low-
rank matrix decomposition that is explicitly represented in terms of a small number of actual
columns and/or rows of the data matrix. This method is particularly useful for sparse matrices
and falls within the same class as traditional linear algebra techniques like singular value de-
composition (SVD) and principal component analysis (PCA). However, a significant difference
between CUR decomposition and these methods is the the direct construction from original
data elements. Since then, CUR decomposition is interpretable by practitioners of the field
from which the data are drawn, keeping the “real” meaning of the data.

In our case, performing CUR decomposition to select the rows from the atomic design
matrix allows to select the sparse points from the database. The CUR decomposition of the
atomic design matrix gives Φa(Da) = CUR. It means that a set of columns C and a set
of rows R are directly chose from the original matrix. C and R play the same role as the
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matrices U and V in SVD decomposition (Φa(Da) = UΣV⊤). Similar to standard SVD, CUR
decomposition is an approximation of the original matrix. Truncated SVD is widely used, as
it provides the most accurate k-rank approximation Φa

k = UkΣkV
⊤
k in terms of the Frobenius

norm. However, the vectors Uk and Vk themselves may lack any meaning in the field from
which the data are drawn. After all, the singular vectors are mathematical abstractions that
mix all the columns and rows of the original matrix, and they can be calculated for any
data matrix. These abstract objects do not have any physical reality. Therefore, SVD is not
applicable in the current context.

Back to CUR decomposition. In order to identify the sparse points from the matrix Φa(D),
we are interested in sampling the most representative rows. We denote by A = Φa(Da)

⊤ ∈
RD×Ma the transpose of the atomic design matrix, from which we extract the most important
column features xa

m. The only information that we have are: (i) A ∈ RD×Ma (ii) the number
of columns c that we intend to select, 1 ≤ c ≤Ma and (iii) the order k of CUR decomposition
1 ≤ k ≤ rA = rank(A) ≤ min(D,Ma). The CUR algorithm proposed by Mahoney et al. [48]
proceeds as follows:

1. Perform k-rank SVD decomposition A = UkΣkV
⊤
k and compute the normalized statis-

tical leverage scores of the mth column as:

lsm =
1

k

k∑
j=1

(Vk)
2
m,j

where (Vk)m,j is the element (m, j) of the matrix Vk ∈ RMa×k. With this normalization,
we have lsm ≥ 0 and

∑Ma
m=1, and thus that these scores form a probability distribution

over the Ma columns.

2. Based on the probability pm = min (1, clsm), we perform c attempts to select the columns
from the entire set of Ma columns:
i = 0
for t from 1 to c do

select m ∈ {1, · · · ,Ma}, compute pm = min (1, clsm)
sample x ∼ U(0, 1)
if pm ≥ x then

the column m is selected
i = i+ 1
set ith column of matrix C ∈ Rc×D as (C):,i = A:,m

else
the column m is not selected

end if
end for
the final number of selected column c′ = i

3. Return the matrix C ∈ RD×c′ .

With this procedure, the matrix C contains c′ columns, where c′ ≤ c in expectation.
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2.2. Kernel regression

The CUR algorithm can also be used to perform a selection of r rows from the entire
D rows of the matrix A. This selection can be easily done by applying the above column
algorithm to the transpose matrix A⊤ = Φa(Da). The selection of rows for the matrix A
actually corresponds to the selection of dimensions of the descriptor among all its D dimen-
sions. For a high-dimensional descriptor (where D is large), this operation allows to reduce
the dimensionality by retaining only the most representative dimensions. Finally, the matrix
A is decomposed as the product of three matrices: A = Φa(Da)

⊤ = CUR with C ∈ RD×c′ ,
U ∈ Rc′×r′ and R ∈ Rr′×Ma . Each column of the matrix C represents a sparse point zk ∈ RD

and we have the number of sparse points K = c′.

Finally, we have implemented an additional selection method that combines the meth-
ods based on statistical distance and CUR decomposition. We replace simply the probabil-
ity pm = min (1, clsm) in the CUR selection algorithm by pm = p′ exp

(
−dS(xa

m)2/2
)

with
p′ = c/

∑Ma
s=1 exp

(
−dS(xa

s)
2/2
)
. This formalism is inspired by Ref. [49], where the statistical

distance is regarded as an analogy to the energy. In this way, SVD decomposition is not
necessary. Similar to CUR decomposition selection, the number of selected sparse points K
is not exactly equal to the user-specified c, but they are very close. This method is called
statistical distance-based (d-based) CUR decomposition.

Figure 2.10 illustrates the distribution of sparse points among the entire database Da,
selected by the four aforementioned methods. Here, we try to select 5 000 sparse points
from a bcc W database, completed from Table 2.1, which contains a total of 48 557 LAEs
(Ma = 48 557). The number of sparse points actually selected by the methods based on
statistical distance, normalized statistical distance, CUR decomposition, and d-based CUR
decomposition is 3 607, 4 655, 4 821 and 4 934, respectively. The vertical axis in Fig. 2.10
indicates the class of the database to which a LAE xa

m belongs, while the horizontal axis dDa

denotes the statistical distance between this data point and the entire database Da. All data
points within the database are plotted in dark blue, and the selected sparse points among
them for building the kernel are represented in light blue. The histogram of data points
distribution according to statistical distance ({dDa(x

a
m) for m = 1,Ma}) and configuration

class (column “DB class” in Table 2.1) is displayed at the top and right-hand side of each sub-
figure. We can see that the selections based on normalized statistical distance and d-based
CUR decomposition are more “homogeneously” distributed in the database, and they better
follow the distribution over the entire database with respect to both statistical distance and
configuration class. Given their expressions, this is evident. However, CUR decomposition
emphasizes the importance of “rare” data, that is, the minority of data points that are distant
from the main cluster, in accurately representing the database. The classes favored by CUR
decomposition (classes 18, 19, 22, 23) are actually the liquid configurations obtained from MD
simulations that exhibit large statistical distances from the overall database.

Moreover, the selection of K can be biased by user-selected classes. Besides the general
selection from the entire database that builds K, it is possible to make an additional selection
from several classes that the user considers more important for the target problem, denoted
as Kc. In this case, the final set of sparse points becomes K ∪ Kc.

How is the performance of the four selection methods? To better address this question,
models using these selection methods were trained and tested on the Ta-Ti-V-W high-entropy
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2. Machine learning force fields

Figure 2.10: The selection of sparse points with four models using (a) statistical distance, (b) nor-
malized statistical distance, (c) CUR decomposition and (d) statistical distance-based (d-based) CUR
decomposition. The horizontal axis dDa

denotes the statistical distance between a LAE xa
m and the

entire database Da, and the various classes of the bcc W database are indicated by the vertical axis.
All data points within the database are plotted in dark blue, while the selected sparse points zk in the
kernel are represented in light blue. The histogram of data points distribution according to statistical
distance and configuration class is also provided, displayed at the top and right-hand side of each
sub-figure, respectively.

alloy system. We consider a polynomial kernel, the formulation of which is detailed in the next
subsection 2.2.3.1, with lPO = 0.05, σPO = 0 and p = 4 in Eq. 2.74. The models are trained
and tested on a database containing the configurations listed in Table 4.3, wherein there are
883 896 LAEs. The RMSE in energy and force prediction, evaluated on both the training
and testing datasets, is presented in Fig. 2.11. For all four methods, as the number of sparse
points increases, the RMSE decreases, indicating an improvement in accuracy. However, the
differences in RMSE among the methods are not significant. In terms of numerical efficiency, we
notice that the complexity of CUR decomposition and of the other three methods is respectively
O(MD2) and O(MD) withD varying from 102 to 103, while the difference in accuracy between
them, in terms of the RMSE, is not remarkable. Hence, the methods based on normalized
statistical distance and d-based CUR provide better trade-off between the computational cost
and the prediction performance. Moreover, the d-based CUR method results in a much better
consistency between the distribution of the selected kernel and the entire database. As shown
in Fig. 2.10(c), the original CUR decomposition tends to select outliers from the database,
which cannot effectively represent the underlying physics. In contrast, the d-based CUR
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2.2. Kernel regression

decomposition captures the database in a more physical manner by respecting its distribution
(Fig. 2.10(d)).

Figure 2.11: RMSE in energy and force prediction by the polynomial kernel potentials with different
number of sparse points K and four selection methods: statistical distance (SD), normalized statistical
distance (Normalized SD), CUR decomposition (CUR) and statistical distance-based CUR decompo-
sition (d-based CUR). The RMSE is evaluated on the training/testing datasets of Ta-Ti-V-W high
entropy alloy system. The vertical grid lines at 3 000, 5 000, 9 000 and 13 000 denote the user-specified
number of sparse points.

2.2.3 Examples of kernel functions

In the upcoming subsection, we will explore various symmetric, positive definite kernel
functions used in the construction of kernel regression potentials. The kernels are crucial
for ensuring accuracy and efficiency of the ML model. We will cover well-known kernels
such as the squared-exponential, polynomial, Mahalanobis and n-body kernels based on their
mathematical formulations and applications.

2.2.3.1 Squared-exponential, polynomial and Mahalanobis kernels
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2. Machine learning force fields

Firstly, we focus on three types of kernel based on the descriptors associated with the
selected sparse points. Here the kth effective sparse point zk is centered by being recomputed
from the original local energy descriptor of the corresponding atomic environment Dk ∈ RD×1:

zk =
Dk − µK

VarK
(2.71)

with µK = 1
K

∑K
k=1Dk and VarK = 1

K

∑K
k=1 |Dk − µK |2, and we employ the normalized

version of kernel:

k(xm,x
′
m) =

k̃(xm,x
′
m)√

k̃(xm,xm)
√
k̃(x′

m,x
′
m)

. (2.72)

There is a wide variety of kernel functions k̃ available. Two standard kernels with tunable
hyperparameters are presented as follows.

Squared-exponential (SE) kernel

k̃(Ds,a, zk) = σ2SE exp

(
−|Ds,a − zk|2

2l2SE

)
(2.73)

Polynomial (PO) kernel

k̃(Ds,a, zk) =

(
σ2PO +

Ds,a · zk
2l2PO

)p

(2.74)

Here σ, l and p are the kernel hyperparameters.

A third kernel, which is hyperparameter-free, is also available based on statistical distance
in the Mahalanobis form.

Mahalanobis (MA) kernel

The Mahalanobis distance describes the statistical distance between an atomic environment
Ds,a and a sparse point zk with respect to K is:

d(Ds,a, zk,K) =
[
(Ds,a − zk)

⊤Σ−1
K (Ds,a − zk)

] 1
2
, (2.75)

µK =
1

K

K∑
k=1

zk = 0 ,

ΣK =
1

K − 1

K∑
k=1

(zk − µK)(zk − µK)
⊤ =

1

K − 1

K∑
k=1

zkz
⊤
k ∈ RD×D .

Based on this concept, the Mahalanobis kernel is defined as:

k̃(Ds,a, zk) = (Ds,a − zk)
⊤Σ−1

K (Ds,a − zk) . (2.76)
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2.2. Kernel regression

To compute the atomic forces, we must also provide the derivatives of the kernels. In order
to account for the derivatives of the kernel contribution with respect to the coordinates of
atom b in the neighborhood of atom a (b ̸= a), we need the derivatives of the local energy:

∇bϵ
KML
s,a =

K∑
k=1

wKML
k ∇bk(Ds,a, zk) (2.77)

∇bk(Ds,a, zk) =
1√

k̃(Ds,a,Ds,a)
√
k̃(zk, zk)

× (2.78)

[
∇bk̃(Ds,a, zk)− k̃(Ds,a, zk)

∇bk̃(Ds,a,Ds,a)

2k̃(Ds,a,Ds,a)

]

where derivatives are computed only with respect to the target descriptors and not the sparse
points. The two gradient terms to consider for the squared exponential (SE), polynomial (PO),
and Mahalanobis (MA) kernels are:

∇bk̃(Ds,a, zk) =
∂k̃(Ds,a, zk)

∂Ds,a
∇bDs,a

SE = −
2σ2SE
2l2SE

∇bDs,a · (Ds,a − zk) exp

(
−|Ds,a − zk|2

2l2SE

)
PO =

p

2l2PO
∇bDs,a · zk

(
σ2PO +

Ds,a · zk
2l2PO

)p−1

MA = 2∇bDs,aΣ
−1
K (Ds,a − zk)

and

∇bk̃(Ds,a,Ds,a) =
∂k̃(Ds,a,Ds,a)

∂Ds,a
∇bDs,a

SE = 0

PO =
2p

2l2PO
∇bDs,a ·Ds,a

(
σ2PO +

Ds,aDs,a

2l2PO

)p−1

MA = 0 .

2.2.3.2 2- and 3-body kernels

Another type of kernel is based on the geometric configurations within the neighborhood of
an atom. It is natural to decompose the total energy of the system into body-ordered contri-
butions, which can then be summed into local atomic (or site) energies. According to Glielmo
et al. [197, 198, 199], a smooth translation- and permutation-invariant 2-body kernel between
two atomic environments a and b can be defined by summing all the squared exponential
distances between the relative positions of the atoms included in these environments:

k2b(a, b) =
∑

j∈v(a)

∑
i∈v(b)

exp−|rja − rib|2

2σ22
, (2.79)
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where rja is the vector from the position of atom a to the position of its neighbor atom j
and σ2 is a hyperparameter. It is important to note that the kernels defined as above are not
rotation invariant, i.e., for rotations R and R′, the equality k(v(a), v(b)) = k(Rv(a),R′v(b))
does not always hold. In order to give rotational invariance, we can follow the procedure
proposed by Glielmo et al. [198] for symmetrization using Haar integration. However, explicit
symmetrization through Haar integration invariably requires the evaluation of computationally
intensive functions of the atomic positions. Motivated by this observation, one could take an
alternative approach and consider symmetric n-kernels defined as functions of the effective
rotation-invariant degrees of freedom of n-plets of atoms [199]. In particular, for 2-body
(n = 2) and 3-body (n = 3) kernels we can choose these degrees of freedom to be simply the
interatomic distances in atomic pairs and triplets. The resulting kernels are formulated as:

2-body kernel

k2b(a, b) =
∑

j∈v(a)

∑
i∈v(b)

exp−(rja − rib)
2

2σ22
(2.80)

and

3-body kernel

k3b(a, b) =
∑
j1>j2

j1,j2∈v(a)

∑
i1>i2

i1,i2∈v(b)

∑
P∈P3

exp−|(rj1a, rj2a, rj1j2)⊤ −P(ri1b, ri2b, ri1i2)
⊤|2

2σ23
(2.81)

where P runs over all 6 permutations of 3 elements, i.e., all elements of the P3 permutation
group.

For the multi-species case:

k2b(a, b) =
∑

j∈v(a)

∑
i∈v(b)

δsaj ,sbi exp−
(rja − rib)

2

2σ22

=
∑

j∈v(a)

k2b,saj (rja, b) (2.82)

where saj denotes an unordered set of the species of atoms a and b, and

δsaj ,sbi =

{
1, if saj = sbi

0, else
(2.83)

The same generalization can also be done for the 3-body kernel. If we denote by qaij =
(ria, rja, rij)

⊤ ∈ R3 a tri-dimensional vector for a 3-body triangle aij, then:

k3b(a, b) =
∑
j1>j2
j1∈v(a)
j2∈v(a)

∑
i1>i2
i1∈v(b)
i2∈v(b)

∑
P∈P3

δsaj1j2 ,Psb,i1,i2
exp−|qaj1j2 −Pqbi1i2 |2

2σ23

=
∑
j1>j2
j1∈v(a)
j2∈v(a)

k3b,aj1j2(raj1 , raj2 , rj1j2 , b) . (2.84)
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The computational cost of evaluating the multi-species kernels described above does not in-
crease with the number of species present in a given environment.

In practice, the n-plets geometries composed by atoms are sampled as sparse points. For
two-body kernel, suppose that we have K2b sparse points. The kth sparse point samples two
atoms of species (k1, k2) at the distance z2b,k. The 2-body local energy on the site a can be
written as:

ϵ2b,a =
∑

j∈v(a)

K2b∑
k=1

w2b,k(δsa,sk1 δsj ,sk2 + δsa,sk2 δsj ,sk1 ) exp−
(rja − z2b,k)

2

2σ22

=

K2b∑
k=1

w2b,k

 ∑
j∈v(a)

δsaj ,sk1k2 exp−
(rja − z2b,k)

2

2σ22

 (2.85)

=
∑

j∈v(a)

[
K2b∑
k=1

w2b,kδsaj ,sk1k2k2b(rja, z2b,k)

]

=
∑

j∈v(a)

K2b,sja(rja)

where the last function K2b,sja can be viewed as a 2-body potential:

K2b,sja(rja) =

K2b∑
k=1

w2b,kδsaj ,sk1k2k2b(rja, z2b,k), (2.86)

and the distance z2b,k is equally distributed from 0 Å to the cutoff radius for each species pair
instead of sampling in the database.

The same procedure can be applied for any order of n-body term. For example, the local
energy based on the 3-body kernel with multi-species can be expressed as follows:

ϵ3b,a =
∑
j1>j2
j1∈v(a)
j2∈v(a)

K3b,saj1j2
(raj1 , raj2 , rj1j2) (2.87)

K3b,saj1j2
(raj1 , raj2 , rj1j2) =

K3b∑
k=1

w3b,kδsaj1j2 ,sk1k2k3k3b(raj1 , raj2 , rj1j2 , z3b,k).

The kernel regression can be regarded as the linear regression of kernel LAE descriptors.
Let us take the example of the 2-body kernel. As formulated in Eq. 2.85, local energy of the
atom a can be expressed as a linear combination of the components of the 2-body descriptor
D2b,s,a ∈ RK2b . This descriptor takes into account only the radial atomic environment and
thus can be a complement of the descriptors with reduced radial description. For the bi-
spectrum SO(4) descriptor introduced in the section 2.1.2, a low value of the angular moment
jmax is sufficient to ensure the accuracy of the angular description. However, this low value of
jmax will degrade the radial description provided by the spectral descriptor. To guarantee the
robustness of the radial description without increasing the value of jmax which is proportional
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to the computational cost, a hybrid form of atomic descriptors is proposed by Goryaeva et
al. [38] by combining the radial 2-body kernel descriptor and the bi-spectrum SO(4) with
relatively low dimensionality (jmax = 1.5 − 3.5). The new descriptor is built as a direct sum
Ds,a = Bs,a ⊕D2b,s,a and its dimension is equal to the sum dim(Bs,a) + dim(D2b,s,a).

Hybrid atomic descriptors can also be built upon other fast and less accurate descriptors
complemented with the slow and numerically accurate ones. Following this general idea, it
is often recommended to combine a many-body descriptor with the 2-body kernel descriptor,
denoted as Ds,a = Dmany-b,s,a ⊕D2b,s,a.

2.2.4 Fourier-sampled kernels

Constructing and evaluating positive definite kernel functions for large datasets poses a
major challenge in machine learning, particularly in the n-body case discussed in Subsec-
tion 2.2.3.2 when n exceeds 3. In this subsection, we will elucidate the reasons for the complex-
ity of this task and present a solution. Specifically, we will demonstrate how to approximate
a kernel function by transforming samples from their spectral density by leveraging Bochner’s
theorem.

2.2.4.1 Invariant n-body kernels and Fourier sampling

We denote by b an n-plets body term which can be 2-body, 3-body, 4-body, etc. All of
them can be written in unique form:

knb(a, b) =
∑

j∈v(a)

∑
i∈v(b)

∑
P∈Pn

exp−
|xja −Pxib|2

2σ2n
. (2.88)

The expressions of j and xja are determined by the body-order n:

2-body

j ≡ j

xja ≡ rja

3-body

j ≡ (j1, j2) with j1 > j2 and j1, j2 ∈ v(a)

xja ≡ (rj1a, rj2a, rj1j2)
⊤ ∈ R3×1

4-body

j ≡ (j1, j2, j3) with j1 > j2 > j3 and j1, j2, j3 ∈ v(a)

xja ≡ (rj1a, rj2,a, rj3a, rj1j2 , rj1j3 , rj2j3)
⊤ ∈ R6×1
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The permutation P in Eq. 2.88 is necessary to preserve permutation symmetry, and, to
ensure the symmetry of the kernel, i.e., knb(a, b) = knb(b, a). The latter property is simple to
prove. A permutation P ∈ Pn can be regarded as a binary matrix in Rn×n that has exactly
one entry of 1 in each row and each column with all other entries 0. This matrix has two nice
properties: (i) full rank (rank(P) = n in this case), which means that it is invertible and (ii)
P⊤ = P−1. In those conditions, for x,y ∈ Rn×1 and P ∈ Pn, the function k(x,y) = |x−Py|2
is symmetric:

|x−Py|2 = |PP⊤x−Py|2 = |P(P⊤x− y)|2 = |P⊤x− y|2

then

knb(a, b) =
∑

j∈v(a)

∑
i∈v(b)

∑
P∈Pn

exp−
|xja −Pxib|2

2σ2n

=
∑

j∈v(a)

∑
i∈v(b)

∑
P∈Pn

exp−
|P⊤xja − xib|2

2σ2n

=
∑

j∈v(a)

∑
i∈v(b)

∑
P∈Pn

exp−
|xib −Pxja|2

2σ2n

= knb(b, a) .

The permutations can be avoided by introducing permutation invariant function. For
simplicity, we consider only one type of element in the subsequent discussion. For the case of
3-body, the considered geometry is a triangle. As illustrated in Fig. 2.12(b), x1 = rj1a and
x2 = rj2,a are the distances between the neighboring atoms j1, j2 and the center atom a, while
x3 is the angle ∠j1aj2. Then the permutation invariant function is written as:

qja = (x1 + x2, x1x2, x3)
⊤ ∈ R3×1. (2.89)

Similarly, for the case of 4-body (Fig. 2.12(c)) we have:

qja =

(
3∑

i=1

xi,

6∑
i=4

xi,

3∑
i=1

x2i ,

6∑
i=4

x2i ,

3∑
i=1

x3i ,

6∑
i=4

x3i

)⊤

∈ R6×1. (2.90)

By utilizing the permutation invariant function, the kernel can be expressed in the following
form:

knb(a, b) =
∑

j∈v(a)

∑
i∈v(b)

exp−
|qja − qib|2

2σ2n
, (2.91)

and by uniformly sampling Knb points instead of sampling the n-body geometries qib, as
previously presented in Subsection 2.2.3.2, the n-body local energy on the site a can be written
as:

ϵnb,a =
∑

j∈v(a)

Knb∑
k=1

wnb,k exp−
|qja − znb,k|2

2σ2n
. (2.92)
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Figure 2.12: Illustration of (a) 2-body, (b) 3-body and (c) 4-body features for the permutation invariant
function.

In a general n-body case, we have znb,k ∈ Rν(n)×1 where ν(n) = 3n−6 if n > 2 and ν(n) = 1 if
n = 2 is the number of degrees of freedom of the n-plets feature. Note that to achieve the same
accuracy as 2-body kernel with N sparse points, i.e., K2b = N and znb,k = kRcut/K2b for k =
1, . . . ,K2b, the n-body case requires Knb = Nν(n) sparse points, which is computationally
heavy. In practice, K2b is often set on the order of magnitude of 10. Therefore, for 4-body
(ν(4) = 6) and 5-body kernel (ν(5) = 9), K4b and K5b need to reach 106 and 109, respectively.
Potentials with such a large number of parameters are impossible to use in MD simulations at
reasonable CPU cost.

To be capable of capture high body-order features, we proposed a Fourier transformed
version of n-body kernel, wherein the kernels are approximated with random projections [200].
The main idea is based on Bochner’s theorem:

Theorem (Bochner’s theorem). If f : Rn → C is positive-definite, continuous, and
satisfies f(0) = 1, then there exists a unique probability measure µ on Rn such that f
is the Fourier transform of µ.

The function f : x → exp− |x|2
2σ2

n
for x ∈ Rn is positive-definite, continuous, and it satisfies

f(0) = 1. According to Bochner’s theorem, f(x− x′) can be written as:

f(x− x′) =

∫
Rn

e−iω(x−x′)dµ(ω) = Eµ

[
ζω(x)ζ

⋆
ω(x

′)
]

(2.93)

with µ a probability measure on Rn, ζ⋆ω the complex conjugate of ζω and ζω(x) = e−iωx. We
can get an unbiased approximation of this expectation by sampling ω from µ. By drawing F
samples ω1, . . . ,ωF independently from µ, we have:

f(x− x′) = Eµ

[
ζω(x)ζ

⋆
ω(x

′)
]
=

1

F

F∑
f=1

ζωf
(x)ζ⋆ωf

(x′). (2.94)

Simplification can be made by eliminating the imaginary part. Since e−iωx = cos (ωx) −
i sin (ωx) and f is a real-valued function, expectation of the sin term with respect to µ(ω) will
be zero. Thus, for our purposes, we can ignore the imaginary component of the expression
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and get:

f(x− x′) =

∫
Rn

cos
(
ω(x− x′)

)
dµ(ω)

=

∫
Rn

[
cos (ωx) cos

(
ωx′)+ sin (ωx) sin

(
ωx′)] dµ(ω)

=
1

F

F∑
f=1

[
cos (ωfx) cos

(
ωfx

′)+ sin (ωfx) sin
(
ωfx

′)]
= z(x)⊤z(x′) (2.95)

with

z(x) =

√
1

F


cos (ω1x)
sin (ω1x)

...
cos (ωFx)
sin (ωFx)

 ∈ R2F×1.

In practice, we take

z(x) =

√
2

F

 cos (ω1x+ b1)
...

cos (ωFx+ bF )

 ∈ RF×1

instead in Eq. 2.95. Here, µ(ω) is a user-specified distribution that depends on the database
we are using, and bf is sampled from a uniform distribution.

With this technique, the above n-body kernel (Eq. 2.91) can be sampled using the Fourier
random feature:

knb(a, b) =
∑

j∈v(a)

∑
i∈v(b)

exp−
|qja − qib|2

2σ2n

=
∑

j∈v(a)

∑
i∈v(b)

f(qja − qib)

=
1

F

∑
j∈v(a)

∑
i∈v(b)

F∑
f=1

[cos (ωfqja + bf ) cos (ωfqib + bf )]

= zω(a)
⊤zω(b) (2.96)

with

zω(a) =


∑

j∈v(a) zω1(qja)∑
j∈v(a) zω2(qja)

...∑
j∈v(a) zωF (qja)

 =

√
1

F


∑

j∈v(a) cos (ω1qja + b1)∑
j∈v(a) cos (ω2qja + b2)

...∑
j∈v(a) cos (ωFqja + bF )

 ∈ RF×1 ,
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and the local energy becomes:

ϵa = w⊤
ωzω(a) =

F∑
f=1

wω,f

∑
j∈v(a)

zωf
(qja)

=
∑

j∈v(a)

 F∑
f=1

wω,fzωf
(qja)

 =
∑

j∈v(a)

F (qja) . (2.97)

Equation 2.96 provides an approximation of the covariance matrix in the GP. As illustrated
in Fig. 2.13(a), the covariance between the LAE of atoms a and b, denoted as cov(a, b), is
approximated by the sampled information of dimension F for the corresponding LAEs zω(a)
and zω(b). It should be noted that here knb(a, b) represents the Fourier-sampled approximation
of the kernel function in Eq. 2.91, which defines the covariance cov(·, ·) in the input space, using
random projections. Figure 2.13(b) presents the performance of the current approximation
feature with F = 10, 200 and 400 for a covariance matrix of dimension 4000 × 4000, shown
in the last graph. It can be observed that the performance improves with larger values of F .
However, even with a small F amounting to a few tenths of M , the approximation performance
remains correct.

Figure 2.13: (a) Illustration of the F -dimensional Fourier-sampled approximation for the covariance
(kernel) matrix and (b) its performance with F = 10, 200 and 400 for a covariance matrix of dimension
M = 4000. The values of the matrix elements are colored in viridis scale from 1 (yellow) to 0 (blue).

2.2.4.2 Fourier-sampled n-body descriptors

As introduced in Subsection 2.2.3.2, the kernel regression can be regarded as the linear
regression of kernel LAE descriptors. Adopting this concept, we propose a type of descriptors
based on Fourier-sampled n-body random kernels (Subsection 2.2.4.1), denoted as DFTnb,s,a

for the atom a in the system s. This so-called Fourier-sampled n-body descriptor is formulated
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2.2. Kernel regression

Figure 2.14: RMSE in (a, d) energy and (b, e) force prediction evaluated on the training/testing
datasets and (c, f) computational time for training/testing the interatomic potential with Fourier-
sampled n-body descriptors using linear regression. (a-c) Varying dim(FT3b) at a given dim(FT2b).
(d-f) Varying dim(FT4b) at dim(FT2b) = 80 and dim(FT3b) = 1000. The horizontal lines in the
sub-figures (a-b) and (d-e) denote the corresponding RMSE of the bispectrum SO(4) descriptor. The
graphs (b) and (c) share the same legends as (a), and the graphs (e) and (f) share the same legend as
(d).
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as follows:

DFTnb,s,a = zω(a) =

√
1

F


∑

j∈v(a) cos (ω1qja + b1)∑
j∈v(a) cos (ω2qja + b2)

...∑
j∈v(a) cos (ωFqja + bF )

 ∈ RF . (2.98)

For Fourier-sampled 2-, 3- and 4-body descriptors, ωf and qja have dimensions of 1, 3
and 6, as expressed in the section 2.2.4.1. Theses descriptors can be combined by a direct
sum DFTnb,s,a = DFT2b,s,a ⊕ DFT3b,s,a ⊕ DFT4b,s,a ⊕ . . . with the dimension dim(Ds,a) =∑

n dim(DFTnb,s,a), where dim(DFTnb,s,a) corresponds to F in Eq. 2.98 for body-order n.
The notation dim(DFTnb,s,a) can be simplified as dim(FTnb) and FTnb stands for “Fourier
transform-sampled n-body descriptor”.

In Figure 2.14, we show the root-mean-square error (RMSE) of the energy and force pre-
diction evaluated on the training/testing datasets when combining the 2- and 3-body Fourier-
sampled descriptors (sub-figures (a-c)), as well as combining the 2-, 3- and 4-body Fourier-
sampled descriptors (sub-figures (d-f)). All the ML potentials tested here are fitted with linear
regression on the database listed in Table 2.1.

RMSE of the bispectrum SO(4) descriptor (see the section 2.1.2) with the angular mo-
ment jmax = 4 is also plotted as horizontal lines to provide comparison. From the graphs
(a-b) of Fig. 2.14, we can derive that the accuracy gains from increasing the dimensionality of
2-body Fourier-sampled descriptor are negligible. And when we fix dim(FT2b) and increase
the dimensionality of 3-body Fourier-sampled descriptor, a relatively significant reduction of
RMSE can be observed at small values of dim(FT3b), while at dim(FT3b) > 10 000, increasing
dim(FT3b) does not seem to be efficient anymore. However, in terms of the RMSE of force
prediction which is the key factor in atomic simulations, even using the 2- and 3-body hybrid
Fourier-sampled descriptor with dim(FT2b) = 80 and dim(FT3b) = 1000 (the lowest dimen-
sionality that makes sense) can lead to an accuracy improvement of about 25% in comparison
with the bispectrum SO(4) descriptor. In this way, it is not that interesting to increase the
dimensionality of 2- and 3-body descriptors.

Next, we also take the 4-body descriptors into account. In the graphs (d-e) of Fig. 2.14, we
show the RMSE of the energy and force prediction by the 2-, 3- and 4-body hybrid Fourier-
sampled descriptors at dim(FT2b) = 80, dim(FT3b) = 1000 and different values of dim(FT4b).
Similar observation can be found: increasing dim(FT4b) brings about reduced RMSE but only
at low values, and the magnitude of this reduction is actually not attractive when considering
that the accuracy improvement in force prediction attains 55%, even at dim(FT2b) = 80 and
dim(FT3b) = dim(FT4b) = 1000, compared to the bispectrum SO(4) descriptor.

Another drawback of increasing the dimensionality of the n-body descriptors to lower the
RMSE is the augmentation of the computational cost. Computational time for training and
testing the linear ML potentials using the corresponding n-body descriptors is presented in
the graphs (c) and (f) of Fig. 2.14, showing that the computational cost grows linearly as the
dimensionality increases. Moreover, the computational cost of applying the ML potential in
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MD simulations is higher with larger dimensionality of the LAE descriptors. The computa-
tional time for computing the forces on one atom at each MD step using linear ML potentials
with different LAE descriptors, as well as the RMSE of force prediction, are listed in Ta-
ble 2.3. The computational time of an EAM potential [22] is also provided as benchmark.
Each test on the computational speed of MD simulations shown in this table is performed
with MiLaDy-Lammps package on 32 processes and averaged on 100 steps within a system
of 128 atoms. From this table, we can see that the 2-, 3-, and 4-body hybrid Fourier-sampled
descriptor, which improves the force prediction accuracy by 55%, also results in a 370-fold
increase in computational time. However, Eq. 2.97 can be represented by multidimensional
(ν(n)-dimensional) spline interpolation and tabulated, as F (qja) is a function of the n-plets
feature, i.e., ν(n)-dimensional geometric information. Therefore, instead of computing from
wω, ωf and bf for f = 1 . . . F , the local energy can be directly computed from the spline
representation. This approach can drastically reduce the computational time required for
force evaluation in simulations, by one order of magnitude for the 2-body case and two orders
of magnitude for the 3-body case. Nowadays, packages for multidimensional spline interpola-
tion [201] can effectively handle up to 6 dimensions, providing access to the spline interpolation
for Fourier-sampled n-body descriptors up to n = 4.

Table 2.3: Computational time for computing the forces on one atom at each molecular dynamics (MD)
step, and the root-mean-square error (RMSE) of force prediction for linear ML potentials using different
LAE descriptors. For the Fourier-sampled n-body descriptors in this table, the lowest reasonable
dimensionality is taken: dim(FT2b) = 80, dim(FT3b) = 1000 and dim(FT4b) = 1000. Note that
the computational time for the Fourier-sampled n-body descriptors can be drastically reduced by one
order of magnitude for 2-body and two orders of magnitude for 3-body if the spline interpolation of
Eq. 2.97 is used.

Potential MD time (s/step/atom) Force RMSE (eV/Å)
EAM [22] 7.5× 10−7

2-body Fourier-sampled 8.7× 10−6 0.42
Bispectrum SO(4) 1.0× 10−4 0.24
2,3-body Fourier-sampled 1.5× 10−3 0.18
2,3,4-body Fourier-sampled 3.7× 10−2 0.11

In the next step, we want to test the unprecedented 5-body feature by deploying the Fourier
sampling scheme. However, as shown in Table 2.3, even if the Fourier sampling makes it fea-
sible to use the 4-body descriptor, there is no advantage in terms of computational speed. As
a result, to implement the 5-body feature which is more accurate but even computationally
more expensive, a self-adaptive cutoff radius approach is applied. It means that different cutoff
radius is set to different body-ordered n. Six different cases are considered and the correspond-
ing RMSE of the energy and force prediction evaluated on the training/testing datasets are
presented in Fig. 2.15(a, b). The graph (c) reveals the computational training/testing time
for each case (left y-axis), and also the computational time of forces evaluation per atom per
MD step obtained from MiLaDy-Lammps package (right y-axis). All the trials are performed
with the following dimensionality: dim(FT2b) = 80, dim(FT3b) = 500, dim(FT4b) = 3000
and dim(FT5b) = 5000. We detail in the sub-figure (d) of Fig. 2.15 the 6 cases of cutoff radius
combination with respect to the index of Rcut case. For example, for the Rcut case 3, the cutoff
radius of 2- and 3-body Fourier-sampled descriptors is 5.3 Å (indicated at the right-hand side
of the illustration), covering the first to the forth nearest neighbours (1nn to 4nn, indicated at
the right-hand side of the illustration), and the cutoff radius of 4- and 5-body descriptors is
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2. Machine learning force fields

4.6 Å, only covering the first to the third nearest neighbours. The index 0 represents the case
where there is no 5-body feature in the hybrid descriptor, and the case 1 denotes the “full”
2-, 3-, 4- and 5-body Fourier-sampled descriptors, which means that the cutoff radius of all
components is 5.3 Å. The cases 0 and 1 are regarded as the benchmark.

Taking into account the trade-off between accuracy and efficiency, we notice that the case
5 is not interesting due to an RMSE of force prediction much larger than the other cases. The
similar cases 2 and 3 provide a slight improvement of accuracy (about 10%) at a reasonable cost
of computational resource, so they are possible choices when pursuing a very high accuracy.
The case 4, however, is a suitable alternative of the case 0. With a loss in force RMSE about
6% (0.007 eV/Å), the ML potential with the hybrid descriptors at Rcut case 4 runs around
3 times faster in an MD simulation than the ML potential without 5-body descriptor (Rcut
case 0). To be more quantitative, the computational time of force evaluation using the ML
potentials corresponding to the case 0 and the case 4 is respectively 0.098 s/step/atom and
0.034 s/step/atom.

Figure 2.15: RMSE in (a) energy and (b) force prediction evaluated on the training/testing datasets
and (c) computational time for training/testing the interatomic potential with Fourier-sampled n-body
descriptors using linear regression, when setting different cutoff radius for different body-ordered n.
We detail in the sub-figure (d) the cases of cutoff radius corresponding to the index of Rcut case in the
sub-figures (a-c), where the options of cutoff radius are listed at the right-hand side of the graph (2.9 Å,
3.3 Å, 4.6 Å and 5.3 Å), and the distances between an atom and its first to forth nearest neighbours
(nn) are given at the laft-hand side. Dimensionality of the Fourier-sampled n-body descriptors in this
figure: dim(FT2b) = 80, dim(FT3b) = 500, dim(FT4b) = 3000 and dim(FT5b) = 5000.

Finally, we fix the cutoff radius of the 2-, 3- and 4-body features in the hybrid Fourier-
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sampled descriptors at 5.3 Å and only vary the cutoff radius of the 5-body features. Sim-
ilarly, the RMSE of the energy and force prediction, and the computational time for train-
ing/testing/employing the ML potentials are plotted to characterize its quality (Fig. 2.16). It
proves that reducing the cutoff radius of the 5-body feature to a low value is not advisable.
The optimal choice, balancing accuracy and efficiency, is 4.6 Å, which corresponds to the Rcut
case 2 in Fig. 2.15.

Figure 2.16: RMSE in (a) energy and (b) force prediction evaluated on the training/testing datasets
and (c) computational time for training/testing the interatomic potential with Fourier-sampled n-body
descriptors using linear regression, when setting the cutoff radius for 2-, 3- and 4-body Fourier-sampled
descriptors at 5.3 Å and varying the cutoff radius of 5-body descriptors.

2.2.4.3 High-order kernels: incomplete but very fast kernels

In the previous section, we developed a method capable of sampling n-body kernels for
large values of n. This method is systematic and robust; however, it entails a significant
numerical burden. The primary outcome of the previous investigation reveals that in high-
order body approximations, it is not necessary to systematically include all n-body terms.
This insight paves the way for new research avenues, such as the use of incomplete high-order
kernels, which can be evaluated numerically with great efficiency. Here, we outline the strategy
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to follow, which closely aligns with the approach emphasized in previous work by Glielmo et
al. [202, 198, 199].

Suppose that we have developed an n-body kernel, which includes all invariant properties.
A new kernel can be obtained as follows:

kn′b(a, b) = [knb(a, b)]
p (2.99)

The order of the new kernel is n′ = (n − 1)p + 1, because, due to the multiplication, it is
possible to have n′-tuplets of atoms: p series of n − 1 atoms and the central atom. This
observation allows modeling any interaction order while incurring only the computational cost
of computing the 2-body kernel (n = 2). For example, with p = 4, we can achieve a body order
of 5 at minimal cost. It seems too good to be true. However, the problem is that the n′-body
kernel is incomplete. The number of degrees of freedom for a complete n-body kernel is 3n−6
for n > 2 (and 1 for n = 2), while for the output kernel from Eq. 2.99 with power p, the number
of independent variables is p(3n− 3) for the case n > 2. This number is always lower than the
number of degrees of freedom for a complete n′-body kernel with n′ = (n− 1)p+1, which are
3n′−6 = 3p(n−1)−3. This indicates that the output kernel is incomplete. Let us consider an
example where n = 3 and p = 2. The resulting kernel will have an order of n′ = 7. If the output
kernel were complete, it would have 3n′ − 6 = 15 degrees of freedom. However, the number of
independent variables is p(3n − 3) = 12. Thus, 12 variables should describe a manifold with
15 degrees of freedom. This is a general characteristic of this method of constructing kernels:
the number of independent variables is always lower than the number of degrees of freedom
of a complete kernel. Regardless of the size of the database or the learning algorithm, these
kernels will always have a lack of representation for certain classes of configurations, resulting
in imperfect learning. However, as we have seen in Refs. [202, 198, 199], even these incomplete
representations can significantly improve the fits.

Incompleteness is a serious issue in high-dimensional representations of databases. There
are well-known examples of popular descriptors that have been found to be incomplete, such
as the SOAP kernels [203]. Even complex neural networks, such as recent architectures based
on Graph Neural Networks, can suffer from this problem [204]. However, this phenomenon can
be formalized and avoided in many situations, presenting opportunities for very fast evaluation
of high-order interactions.

2.3 Short-range correction: Ziegler-Biersack-Littmark potential

Some of the descriptors exhibit strange behavior at small distances, even in their hybrid
form with the 2-body kernel. To make the force field applicable for the simulations of cascade or
liquid in which the atoms can be very close in between, the internuclear repulsion at extremely
short distances can be described by an external pair potential Vpair, in the form of a screened
Coulomb potential.

In this case, the total energy of the system s is a sum of the pair potential and the ML
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Figure 2.17: Schematic illustration of the correction for short interatomic distances. At distances
shorter than an inner cutoff distance Rin

cut, we only consider the pair potential Vpair coupled with
the 2-body potential ϵ2b,a, without any many-body interaction. At distances larger than Rin

cut + win,
full ML potential is computed from the hybrid descriptors including both 2-body and many-body
contributions. Between Rin

cut and Rin
cut +win, interpolation is performed to ensure continuity up to the

second derivatives across the entire range of distances, from 0Å to the cut-off distance Rcut.

parts, which can be further divided into the 2-body and many-body interactions:

Es =
∑
i,j∈s

Vpair (rij) +
∑
a∈s

ϵML
s,a (w,D2b,s,a ⊕Dmany-b,s,a)

=
∑
i,j∈s

Vpair (rij) +
∑
a∈s

(ϵ2b,a + ϵmany-b,a) . (2.100)

In practice, the many-body interaction is turned off and the 2-body interaction (Eq. 2.85)
is coupled to the external pair potential for distances shorter than an inner cutoff distance
Rin

cut. Only the differences in energies and forces between the external pair potential and the
training data need to be reproduced by the 2-body kernel. The screened Coulomb potential
fully dictates the short-range dynamics as desired, and the 2-body ML potential only needs to
be trained to predict energies and forces close to zero for short interatomic distances. Between
Rin

cut and Rin
cut + win, a buffer region of width win (a possible choice is 0.4 Å) is established

for a smooth interpolation to ensure continuity up to the second derivatives between the pair
potential coupled with the 2-body potential and the pure ML parts from the hybrid descriptors.
These features are illustrated in Fig. 2.17.

The function Vpair is identical to the universal Ziegler-Biersack-Littmarck (ZBL) poten-
tial [205]:

Vpair (rij) =
1

4πε0

ZiZje
2

rij
ψ (rij/a) fcut (rij) , (2.101)

where Zi and Zj are the atomic number of the atom i and j, and

a =
0.46848

Z0.23
i + Z0.23

j

. (2.102)

The screening function ψ(x) should be specifically refitted for the target system, as the ZBL
potential may differ significantly from the VASP data. For example, in the case of W-W
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repulsion [206], ψ(x) is refitted using the all-electron DFT-DMol data from Ref. [207] as

ψ(x) = 0.32825 exp(−2.54931x) + 0.09219 exp(−0.29182x)

+0.58110 exp(−0.59231x) . (2.103)

The screened Coulomb potential is forced to zero by the cutoff function

fcut (r) =


1, r ⩽ r1

1− χ3
(
6χ2 − 15χ+ 10

)
, r1 < r < r2

0, r ⩾ r2

(2.104)

where χ = (r − r1)/(r2 − r1). The cutoff range is chosen as r1 = 1Å and r2 = 2.2Å. The
characteristic distances here should satisfy the following relationship: r1 < Rin

cut < Rin
cut+win <

r2, leaving the region from Rin
cut + win outward to be fully machine-learned. In practice, Vpair

can be tabulated to accelerate the training and the application of the ML potential.

Figure 2.18: Free energy from DFT calculations of dimer at different distances in the box of size
10× 10× 10 and 12× 12× 12 (in Å). The sub-figure at right is the local zooming of the sub-figure at
left.

We emphasize that, to construct a model with the ZBL correction for short interatomic
distances, it is necessary to include specific configurations in the database, where atoms are
positioned at very short distances from each other. In the case of tungsten, we compute with
VASP 6.2.0 [153] the configurations of dimers, positioned at (0, 0, 0) et (d, 0, 0) with d the
interatomic distance ranging from 0.8 Å to 5.0 Å for the boxes of size 10 × 10 × 10 and from
0.8 Å to 6.0Å for the boxes of size 12× 12× 12 (in Å), at an interval of 0.2 Å. Considering the
periodic boundary conditions, repetition occurs when the distance between dimers exceeds half
the length of the box. As presented in Fig. 2.18, the results of free energy can be considered
as independent of the box size. We added therefore the 27 configurations obtained within the
boxes of size 12× 12× 12 into the database of tungsten.

2.4 Conclusion of the chapter
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In this chapter, we talk about how to build and optimize the machine learning potentials,
based on its three key factors of construction: database, representation of LAEs and regression
model. As shown in Fig. 2.19, the LAEs consisting of the atomic coordinates qm in the
database are described by a user-specified descriptor of local energy, from which the descriptors
of global energy, atomic forces and virial stress are derived (xm). The descriptors are further
encoded using a feature map ϕ(xm) to “flatten” the topology of the descriptor space, enabling
linear regression of the elements.

Figure 2.19: Structure of machine learning potential in 4 bubbles.

Within this framework, the author contributed to the MiLaDy package by:

• Database: completing the database of tungsten, molybdenum and Ta-Ti-V-W high en-
tropy alloys with the active learning method (Subsection 2.1.1.2).

• Representation: developing a novel Fourier-sampled n-body descriptor, which enables
the capture of high body-order geometrical features in the LAE (Subsection 2.2.4.2) and
leads to a 55 % improvement in force prediction accuracy compared to the widely used
bispectrum SO(4) descriptor.

• Regression: implementing (i) various sparse points selection methods (Subsection 2.2.2)
for the kernel regression model, and identifying the recommended ones in terms of the
accuracy-cost trade-off; (ii) implementing the short-range correction using the ZBL po-
tential (Section 2.3).

Moreover, based on the aforementioned techniques, ML potentials for tungsten and Ta-Ti-V-
W high entropy alloys were trained and tested with precise calibration of hyperparameters.
These potentials will be employed in Chapter 4 to provide accurate predictions of material
properties at high temperatures.
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Enhanced sampling methods for free
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3.1. Free energy estimation: general perspectives

An essential task of atomic simulations in materials science is the computation of free
energy. Free energy is a crucial physical quantity that connects the microstructure of materials
to their macroscopic properties. From the free energy landscape, we can derive thermodynamic
properties such as thermal expansion, elastic constants, thermal conductivity, etc. Moreover,
the free energy profile of defects can be used to predict their behavior under complex conditions,
such as high temperatures or irradiation, thereby determining the material’s performance
under these conditions.

Obtaining an accurate free energy landscape is not an easy task. While DFT-based meth-
ods offer high accuracy, they are computationally intensive. A practical approach is to utilize
the machine learning (ML) force fields presented in Chapter 2, which achieve the accuracy
of ab initio calculations while surpassing their computational speeds by up to more than six
orders of magnitude. However, compared to traditional EAM potentials, ML potentials are
slower by a factor of several tens to four orders of magnitude. Consequently, free energy sam-
pling remains challenging, particularly at high temperatures where atomic dynamics exhibit
significant statistical fluctuations. To address this issue, more efficient sampling methods are
necessary to enable the integration of ML potentials into dynamic simulations.

In this chapter, we discuss the general perspectives of free energy sampling in Section 3.1,
covering background knowledge in statistical physics and classical computational techniques,
alongside recent developments. Subsequently, in Section 3.2, we present a highly efficient
method for sampling anharmonic free energy. This method builds upon the existing ap-
proaches introduced in Section 3.1 and incorporates Bayesian reasoning. In Section 3.3, we
extend this method to enable sampling of specific metastable states, allowing for investigation
into the free energy landscape of defects. Finally, in Section 3.4, we demonstrate that our
approach is also applicable to liquid systems. This chapter focuses on the methodology of free
energy computations. Here, we detail our progress in sampling methods, covering theoretical
formulation, algorithm implementation, optimizations, and validation.

3.1 Free energy estimation: general perspectives

This section outlines the theoretical framework of free energy sampling and the method-
ological advancements in numerical computations. In Subsection 3.1.1, we provide a brief
introduction to the thermodynamic ensemble under consideration and the stochastic dynam-
ics for sampling the phase space within it. Furthermore, we emphasize the significance of
anharmonic contributions to the free energy by elucidating the limitations of the harmonic
approximation. This subsection is optional for experts in statistical physics. Subsection 3.1.2
primarily discusses two widely-used and well-established methods in free energy computations:
thermodynamic integration and free energy perturbation. Furthermore, a review of the exist-
ing literature on the utilisation of adaptive biasing techniques is conducted. The approaches
presented in this section provide the basis of our enhanced methods.
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3. Enhanced sampling methods for free energy landscape

3.1.1 Preliminaries in statistical physics

Calculating the free energy requires the knowledge of the system’s Hamiltonian. Assuming
the Hamiltonian is separable, it can be decomposed into two contributions:

H(q,p) = Ek(p) + U(q) . (3.1)

The first term and the second term on the right-hand side represent the microscopic kinetic
energy and the microscopic potential energy of the system, respectively. In this chapter, we de-
note q = (q1,q2, · · · ,qNs) = (q1, q2, · · · , q3Ns) and p = (p1,p2, · · · ,pNs) = (p1, p2, · · · , p3Ns)
the atomic coordinate vector and the atomic momentum vector of the system containing
3Ns atoms, with pi = (p3i−2, p3i−1, p3i) and qi = (q3i−2, q3i−1, q3i) the coordinate and the
momentum of atom i. A microstate (q,p) is defined by an element in the phase space
E = Q×P ⊂ R3Ns × R3Ns .

3.1.1.1 Canonical ensemble

In many physical scenarios, systems are in contact with a heat bath, which is commonly
referred to as a thermostat. A canonical ensemble is the statistical ensemble that represents
the possible states of a system in thermal equilibrium with such a thermostat. The canonical
ensemble is often referred to as the NVT ensemble because the number of particles Ns, the
volume V , and the temperature T are fixed. The canonical ensemble allows heat exchange
with the thermostat, leading to fluctuations in the system’s energy around an average value,
while maintaining a constant temperature. In this case, the microscopic configurations are
distributed according to the canonical measure, which is defined as follows:

µ(dqdp) = Z−1

[
1

h3NsC
exp (−βH(q,p))

]
dqdp , (3.2)

where β = (kBT )
−1, kB is the Boltzmann constant, h is the Planck constant, C is a degen-

eracy factor depending on the statistical nature of the atoms involved, and the dimensionless
normalization constant Z is called the partition function:

Z =
1

h3NsC

∫
Q×P

exp (−βH(q,p)) dqdp . (3.3)

For indistinguishable atoms following Bose-Einstein statistics, as is the case here, the degen-
eracy factor is

C =
∏
α

Nα! , (3.4)

where Nα is the number of atoms of species α and we have Ns =
∑

αNα. As the Hamiltonian
H is separable, the canonical measure is of the tensorized form µ(dqdp) = ν(dq)κ(dp), where
ν and κ are the two following probability measures:

ν(dq) = Z−1
ν exp (−βU(q)) dq , Zν =

∫
Q
exp (−βU(q)) dq (3.5)
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and

κ(dp) =

(
β

2π

)3Ns/2 Ns∏
i=1

m
−3/2
i exp

(
−β
2
p⊤M−1p

)
dp . (3.6)

Here, mi is the mass of particle i and M is the mass matrix:

M =


m1I3 0 · · · 0
0 m2I3 · · · 0
...

...
. . .

...
0 0 · · · mNsI3

 ∈ R3Ns×3Ns . (3.7)

Under the canonical measure µ, the coordinate q and the momentum p are independent
random variables. Thus, sampling (q,p) ∼ µ(dqdp) can be realized by independently sampling
q ∼ ν(dq) and p ∼ κ(dp). It is straightforward to sample from κ since the momenta are
Gaussian random variables. The actual difficulty lies in sampling from ν.

3.1.1.2 Sampling in the canonical ensemble

The canonical measure Eq. 3.2 can be sampled by the techniques of stochastic dynamics
t→ (qt,pt), which are ergodic for the canonical measure, in the sense that the expectation of
a given observable

E(O) =

∫
Q×P

O(q,p)µ(dqdp) (3.8)

can be obtained as an ergodic limit

E(O) = lim
T→+∞

1

T

∫ T

0
O(qt,pt)dt (3.9)

over a single realization of the stochastic dynamics. The dynamics we use are chosen solely
for their ergodic property (Eq. 3.9), and should therefore be regarded as a sampling mean.
The physical relevance of the evolution is not of concern, as our primary interest is in time-
independent equilibrium properties. The Langevin dynamics satisfies the ergodic theorem [149]
and is described by the following evolution equations for a system of Ns atoms:{

dqt = M−1pt dt ,
dpt = −∇qU(qt) dt− γM−1pt dt+ σ dWt ,

(3.10)

where γ, σ > 0 verify σ2β = 2γ, and the last term represents a standard 3Ns-dimensional
Brownian motion, with Wt denoting a 3Ns-dimensional Wiener process. It satisfies the prop-
erty Wt+u−Wu ∼ N (0, tI3Ns), i.e., Wt−W0 =

∫ t
0 dWt is normally distributed with zero mean

vector and tI variance matrix.

Since the challenging task is sampling the configurational part ν (Eq. 3.5) of the canonical
measure, we could consider a dynamics restricted to the configurational space, such as the
overdamped Langevin dynamics:

dqt = −∇qU(qt) dt+
√

2β−1 dWt . (3.11)
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Under reasonable assumptions [149], this dynamics satisfies the ergodic theorem

E(O) =

∫
Q
O(q)ν(dq) = lim

T→+∞

1

T

∫ T

0
O(qt)dt . (3.12)

Intuitively, each term in Eq. 3.11 can be interpreted as follows: the gradient force −∇qU(qt)
ensures a decrease in energy, thereby ensuring the sampling of energetically favorable configura-
tions, while the random noise term supplies some energy to maintain the correct temperature.

3.1.1.3 Harmonic approximation and its limitations

For a canonical ensemble, thermodynamic variables are directly related to the canonical
partition function Z of the system. In particular, the Helmholtz free energy of a system is
defined as F = −kBT lnZ. To compute this value, the remaining difficulty is to calculate the
expressions for Ek(p) and U(q) in the Hamiltonian Eq. 3.1. The microscopic kinetic energy
of a system with Ns particles can be expressed as follows:

Ek(p) =
1

2
p⊤M−1p . (3.13)

In the harmonic approximation, the system is close to a minimum of the potential energy,
corresponding to the coordinates q0. Without loss of generality, we assume that the potential
depends only on the coordinates q. We then denote U0 = U(q0) the value of the potential
at the minimum. The harmonic approximation involves performing a Taylor expansion of the
potential U(q) up to the second order, around the equilibrium position q0:

U(q) = U0 +∇U(q0) · (q− q0) +
1

2
(q− q0) ·H · (q− q0) + o(γ∥q− q0∥3) (3.14)

where ∇U(q0) ∈ R3Ns is the gradient of the potential U with respect to the coordinates q
evaluated at q0, ∥ · ∥ is the Euclidean norm and γ is a constant that ensures homogeneity.
H = [Hij ] ∈ R3Ns×3Ns is the Hessian matrix of the potential energy with respect to q evaluated
at q0:

Hij =
∂2 U(q)

∂ qi∂ qj

∣∣∣∣
q=q0

. (3.15)

We define the harmonic approximation by the second-order expansion of Eq. 3.14, which
describes the potential energy around a minimum of the energy landscape, as a quadratic
form of q− q0.

The harmonic framework is a local approximation of the energy landscape around a given
minimum. For small displacements q−q0, a minimum can still be accurately described using
this approximation. However, for larger displacements q − q0, e.g., in the case of finite-
temperature systems, the assumptions of this approximation may no longer be valid. Many
finite-temperature phenomena cannot be understood without taking into account the anhar-
monic terms, i.e., the terms of order greater than 2, in the expansion of the potential energy
Eq. 3.14. An example is the temperature dependence of the thermal expansion of crystalline
materials, which remains independent of temperature within the framework of the harmonic
approximation, as the equilibrium distance between atoms in such a model is independent of
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temperature [208]. Another physical quantity that requires phonon anharmonicity as a key
factor is thermal conductivity. In a perfect crystal of an insulator, harmonic phonons would
not be scattered, resulting in theoretically infinite thermal conductivity at all temperatures.

3.1.2 Including anharmonicity in free energy

Due to the inadequacy of the harmonic approximation in describing volume-dependent
thermal effects, the quasi-harmonic approximation [209] has been proposed. This approach
assumes that the harmonic approximation holds for each value of the lattice constant, which
implies that the free energy becomes volume-dependent. From a phonon perspective, the quasi-
harmonic approximation assumes that phonons are volume-dependent but non-interacting.
This assumption breaks down when phonon-phonon interactions need to be taken into account,
which occurs in various situations, such as at high temperatures and during structural phase
transitions. Therefore, we will move directly beyond the quasi-harmonic approximation and
pursue a fully anharmonic free energy calculation.

To account for full anharmonicity, the complete Hamiltonian H(q,p) of the system, without
any approximation of the potential energy U(q), should be used. We recall the definition of
the Helmholtz free energy for a system at temperature T :

F = −β−1 ln

[
1

h3NsC

∫
Q×P

exp (−βH(q,p)) dqdp

]
(3.16)

= −β−1

[
ln

(
V Ns

h3NsC

∫
P
exp (−βEk(p)) dp

)
+ ln

(
1

V Ns

∫
Q
exp (−βU(q)) dq

)]
=

[
β−1 ln

(
C

Ns∏
i=1

(
Λ3
i /V

))]
︸ ︷︷ ︸

Fig

+

[
− β−1 ln

(
1

V Ns

∫
Q
exp (−βU(q)) dq

)]
︸ ︷︷ ︸

Fex

= −β−1 ln

[
1

C
∏Ns

i=1 Λ
3
i

∫
Q
exp (−βU(q)) dq

]
,

where V is the supercell volume and Λi = h/
√
2πkBTmi is the thermal de Broglie wave-

length. The quantity Fig is referred to as the ideal gas free energy (i.e., the free energy of
a corresponding system in which the atoms are not subject to interatomic interactions), and
Fex is called the excess free energy. The latter quantity is zero for an ideal gas, for which the
potential energy is zero (U(q) = 0). The free energy F as given in Eq. 3.16 implicitly includes
anharmonic effects. It is important to note that, despite the emergence of efficient methods,
its direct calculation remains numerically challenging today. The ideal gas contribution of
the free energy, Fig, is easy to calculate through direct integration over the momentum space.
However, evaluating the excess contribution, Fex, is difficult due to the complexity of the en-
ergy landscapes of the systems under study. In the following, we will compute the differences
in either the free energy or the excess free energy. The distinction between F and Fex is
unimportant, as we will always consider free energy differences between two systems with the
same volume, atomic composition and temperature. The free energy differences computed in
solids represent exactly the anharmonic contribution when the reference system is chosen as
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the corresponding harmonic solid. Various numerical methods will be introduced to compute
these free energy differences.

3.1.2.1 Thermodynamic integration-based calculations

The anharmonic free energy contribution, which is crucial for deriving the high-temperature
properties, can be directly evaluated by thermodynamic integration (TI) from a suitable ref-
erence system [108, 109, 105]. In TI, the first derivative of free energy with respect to the
reaction coordinate is firstly estimated using a sampling algorithm and then integrated. A
reaction coordinate is an application defined on the configurational space Q

ξ : Q → Rm . (3.17)

The reaction coordinate characterizes the transformation of interest. For example, it can be
defined as the distance between two groups of atoms, which serves as a measure of binding
energy. Defining the manifolds Σ(z) = {q ∈ Q | ξ(q) = z} where z ∈ Rm allows decomposing
the configuration space as

Q =
⋃

z∈Rm

Σ(z) (3.18)

where m ≤ 3Ns. The corresponding partition function for a system with Ns atoms in the
canonical ensemble can then be written as:

Z(Ns, V, T, z) =
1

C
∏Ns

i=1 Λ
3
i

∫
Σ(z)

exp [−βU(q)] δξ(q)−zdq , (3.19)

where δξ(q)−z is the Dirac mass at z with ξ(q) as the argument. Then the Landau free energy
is defined as A(z) = −β−1 lnZ(Ns, V, T, z) (up to an addictive constant), and the difference
in Landau free energy between two states represented by ξ(q) = a and ξ(q) = b becomes:

∆A = A(a)−A(b) = −β−1 ln

[∫
Σ(a) exp [−βU(q)] δξ(q)−adq∫
Σ(b) exp [−βU(q)] δξ(q)−bdq

]
. (3.20)

Detailed procedure of TI in the reaction coordinate case can be found in Section 3.2 of
Ref. [149]. Here, we briefly provide the expression for the case of an internal reaction coordi-
nate. This is done to outline the generality and the difficulty associated with the TI approach.
TI simply consists of integrating the derivative of A(z) along a smooth curve C(a, b) whose
endpoints are a and b:

∆A =

∫
C(a,b)

∇A(z)⊤dz =
∫
C(a,b)

[∫
Σ(z) f(q) exp [−βU(q)] δξ(q)−zdq∫

Σ(z) exp [−βU(q)] δξ(q)−zdq

]⊤
dz , (3.21)

where u⊤v stands for the scalar product of vectors u, v ∈ Rm and f(q) is the local mean force.
Its expression is quite involved and requires to introduce the m×m Gram matrix:

G = (∇ξ)⊤∇ξ , (3.22)

with Gα,β = ∇ξα · ∇ξβ . The components of the local mean force are, for α ∈ {1, . . . ,m},

fα =
m∑

γ=1

G−1
α,γ∇ξγ · ∇U − β−1 div

 m∑
γ=1

G−1
α,γ∇ξγ

 (3.23)
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with 1 ≤ α ≤ m. The difficulty in implementing the TI approach lies in the ability to compute
the local mean force, which involves second derivatives of the reaction coordinates. This task is
non-trivial, especially for reaction coordinates based on bond-orientational order parameters.
TI along an external parameter ζ ∈ Λ ⊂ R, such as temperature, pressure, volume or number
of atoms, can be cast in this general set-up. It requires defining extended coordinates within
an extended space (ζ,q) ∈ Λ ×Q together with an extended potential energy U(ζ,q). Since
the “reaction coordinate” ζ ≡ ξ(ζ,q) is orthogonal to the remaining coordinates q, the local
mean force simply becomes ∂ζU(ζ,q).

In the following sections, we will exclusively consider the simple alchemical setting, based
on a general potential energy U(ζ,q) that linearly mixes the potential energy of the given
target system U(q) and that of a reference system Uref(q) through a coupling parameter ζ:

U(ζ,q) = ζU(q) + (1− ζ)Uref(q) . (3.24)

When periodic boundary conditions are applied during sampling, the coordinate q is defined
on the 3Ns-dimensional torus Q = T3Ns ⊂ R3Ns , i.e., the configuration space with periodic
boundary conditions. Here, the coupling parameter ζ, similar to a reaction coordinate, has
real values inside the [0, 1] range. The canonical partition function in this case can be derived
as:

Z(Ns, V, T, ζ) =
1

C
∏Ns

i=1 Λ
3
i

∫
Q
exp [−βU(ζ ,q)] dq . (3.25)

This partition function gives access to the probability of finding the generalized system in a
state characterized by ζ:

P0(ζ) =
Z(Ns, V, T, ζ)∫ 1

0 Z(Ns, V, T, ζ̃)dζ̃
. (3.26)

The associated Landau free energy reads:

A(ζ) = −β−1 lnP0(ζ) = −β−1 lnZ(Ns, V, T, ζ) +B , (3.27)

where the quantity B is independent of ζ. Then, the derivative of the free energy can be
deduced:

A′(ζ) =

∫
Q ∂ζU(ζ,q) exp [−βU(ζ,q)] dq∫

Q exp [−βU(ζ,q)] dq
=

〈
∂U(ζ,q)

∂ζ

〉
ζ

, (3.28)

where ⟨·⟩ζ denotes the ensemble average. Integration of Eq. 3.28 between ζ = 0 and ζ = 1
gives the difference in free energy:

∆A = A(1)−A(0) =

∫ 1

0
⟨U(q)− Uref(q)⟩ζdζ , (3.29)

where A(0) and A(1) represent the free energy of the reference system with potential Uref(q)
and the target system with potential energy U(q), respectively. Based on Eq. 3.29, deter-
mination of free energy of any given system is subject to two requirements: the existence of
reference system for which free energy can be calculated numerically or analytically, as well as
a reversible artificial pathway between the system of interest and the reference crystal, which
allows to carry out the thermodynamic integration of potential energy. Here the coupling
parameter ζ provides a smooth transition from a known reference state to a realistic system.
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TI-based calculations of thermodynamic properties including the effect of anharmonic-
ity from accurate electronic structure calculations, i.e., ab initio calculations, were initiated
in 2001 [110, 111]. Such ab initio brute-force TIs are often computationally prohibitive in
practice, because it is necessary to sample too many configurations along the path of inte-
gration [42]. Accuracy of TI is highly dependent on ∂U(ζ,q)/∂ζ, which is strongly curved in
nature. As a result, the discretization of ζ often involves up to tens of steps, and for each
discretized value of ζ, a canonical sampling of configurations should be launched. Due to the
high computational requirements, several improvements have been proposed to make TI-based
methods more feasible and, in particular, amenable to electronic structure calculations. No-
tably, upsampled thermodynamic integration using Langevin dynamics (UP-TILD) method
was developed [112], which enhances the performance of TI by combining the DFT calcula-
tions using “reduced” DFT parameters (energy cutoff of kinetic energy and k-points sampling
of the Brillouin zone) with an almost configuration-independent offset with respect to the fully
converged energy:

∆A =

∫ 1

0

[
⟨UDFT

low − Uqh
ref⟩ζ + ⟨∆U⟩UP

ζ

]
dζ

=

∫ 1

0

[
⟨UDFT

low − Uqh
ref⟩ζ +

1

N

N∑
i=1

(UDFT
high − UDFT

low )

]
dζ . (3.30)

Here UDFT
low is given by the “reduced” DFT calculations and Uqh

ref is the DFT quasi-harmonic
energy of the quasi-harmonic reference system. These two energies are required for every
atomic configuration during the Langevin dynamics run associated with a specific ζ. UDFT

high is
calculated using fully converged DFT parameter, but only a small number of configurations
(N ≈ 5) are required to evaluate this term. Based on UP-TILD, an improved version, referred
to as two-stage upsampled thermodynamic integration using Langevin dynamics (TU-TILD),
was developed to further accelerate the convergence of the calculation [113], wherein TI is split
into two stages, first from the quasi-harmonic system to an intermediate potential, and then
from the intermediate potential to the exact DFT Hamiltonian:

∆A =

∫ 1

0

[
⟨Upot − Uqh

ref⟩ζ1
]
dζ1 +

∫ 1

0

[
⟨UDFT

low − Upot⟩ζ2 + ⟨∆U⟩UP
ζ2

]
dζ2 , (3.31)

where the second term of the right-hand side is computed using the aforementioned UP-TILD
method. This method is more efficient compared to the UP-TILD method because the time-
consuming DFT MD runs are only conducted during the second stage, and the convergence of
TI in this stage is much faster than in the UP-TILD approach since the configuration space
sampled by the intermediate potentials is closer to the DFT sampling. The TU-TILD scheme
has recently been applied in combination with Moment Tensor Potentials (MTPs) [114], a
class of ML potentials that have demonstrated both accuracy and efficiency, serving here as an
intermediate thermodynamic state and an intermediate potential [42, 43, 44]. However, these
methods assume that the points sampled from the intermediate reference distribution faithfully
represent the target distribution associated with the exact Hamiltonian. This assumption
can be true for high quality reference or intermediate potentials, such as the MTPs within
the ML framework, but is not very reliable when using simple reference systems such as
harmonic or quasi-harmonic Hamiltonians [42]. In general, when ML potentials are chosen
as intermediate potentials, the free energy from the reference should be computed with great
accuracy. However, this can be a crude task because, at least for crystalline materials, the ML
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force fields are from several tens times slower up to four orders of magnitude slower in terms
of CPU times than, for example, traditional EAM potentials. For this reason, the method
proposed in this chapter aims to reduce the computational cost.

3.1.2.2 Free energy perturbation and adaptive sampling

Free energy perturbation (FEP) [115] is another powerful computational method used to
calculate free energy difference between two states of a system. One of the key advantages of
FEP is its computational efficiency. Without dependence on the designation of ζ, it typically
requires fewer simulations than TI, making it a more attractive option for large systems or
when computational resources are limited. The FEP method consists of sampling the reference
distribution and estimating the free energy difference via the logarithm of a partition function
ratio [115]. In the alchemical case, we can deduce from Eq. 3.27 that

∆A = A(1)−A(0) = −β−1 ln
Z1

Z0

= −β−1 ln

[
Z−1
0

1∏Ns
i=1 Λ

3
i

∫
Q
exp (−βU(q)) dq

]

= −β−1 ln

[∫
Q
exp [−β(U(q)− Uref(q))] ν0(dq)

]
. (3.32)

where we denote Zζ = Z(Ns, V, T, ζ) as defined in Eq. 3.25, and for a given ζ,

νζ(dq) = Z−1
ζ

[
1∏Ns

i=1 Λ
3
i

exp (−βU(ζ,q))

]
dq , Zζ =

1∏Ns
i=1 Λ

3
i

∫
Q
exp (−βU(ζ,q)) dq (3.33)

is the canonical measure on the configurational space for a separable Hamiltonian, as explained
in Subsection 3.1.1.1. An approximation of Eq. 3.32 is obtained by generating configurations
qs ∼ ν0, using sampling techniques such as Markov chain methods (e.g., Monte Carlo (MC)
simulations) and stochastic dynamics (e.g., the Langevin process), and averaging the quantities
exp [−β(U(qs)− Uref(qs))], leading to the estimator:

∆̂A = −β−1 ln

[
1

M

M∑
s=1

exp [−β(U(qs)− Uref(qs))]

]
, qs ∼ ν0 . (3.34)

Alternatively, the free energy difference can also be computed from an average with respect to
the measure ν1 by regarding ∆A = − [A(0)−A(1)]. In this case, the ratio Z0/Z1 is estimated
and we have:

∆̂A = β−1 ln

[
1

M

M∑
s=1

exp [β(U(qs)− Uref(qs))]

]
, qs ∼ ν1 . (3.35)

In practice, the accuracy of the FEP method is controlled by the degree of overlap be-
tween the reference and target distributions [116]. A straightforward idea is to divide the
transition into a series of independent smaller “windows”, i.e., ∆A =

∑
i=1N−1A(ζi+1)−A(ζi)

74



3. Enhanced sampling methods for free energy landscape

with ζ1 = 0 and ζN = 1. This setup actually returns to the concept of TI. An enhanced
method to improve the accuracy of FEP involves sampling from a third distribution that ex-
hibits better overlapping properties with both the target and reference distributions. This
importance-sampling approach for the calculation of free energy difference traditionally em-
ploys an auxiliary biasing potential and is dubbed umbrella sampling [118, 119], precisely
because the sampling distribution specified by the biasing potential should cover simultane-
ously the region of configuration space relevant to both the target and reference systems.
Establishing such a biasing potential that provides good overlapping properties is a challeng-
ing task. To achieve this, the well-established framework of adaptive methods serves as a
source of inspiration [120, 121, 129, 130, 123, 131, 124, 125, 117].

The main motivation for the development of the adaptive sampling methods is to overcome
the obstacles arising during the stochastic process due to free energy barriers [115, 149]. The
principle is to modify the potential U applied on the atoms during the simulation, based on
an approximation A⋆ of the free energy A associated with some reaction coordinate of interest
ξ. The corresponding biased potential UA⋆ is defined as:

UA⋆(ζ,q) = U(ζ,q)−A⋆(ζ) , (3.36)

where A⋆ is referred to as the biasing potential added to the original potential. The biasing
potential is adjusted on-the-fly, and it is necessary to provide some rule to update the biasing
term A⋆ in such a way that A⋆ tends towards the free energy A in the longtime limit. When
the method is constructed carefully, it can be proved that if A⋆ converges (which is usually
nontrivial), then it converges to A, up to an additive constant [149].

Let dW ζ
t and dWq

t denote the standard Wiener process in Λ and Q. There are two types
of adaptive methods, depending on the way the bias is updated.

Adaptive Biasing Potential (ABP) method in the extended space Λ × Q updates the
biasing potential A⋆, indicated as At for a given time t. The biased overdamped Langevin
dynamics reads: 

dζt = α(A′
t(ζt)− ∂ζU(ζt,qt)) dt+

√
2αβ−1 dW ζ

t ,

dqt = −∇qU(ζt,qt) dt+
√

2β−1 dWq
t ,

dAt(ζ
⋆) = −ηtβ−1δϵζ⋆−ζt

dt ,

(3.37)

where the factor α allows to control the time scale associated with ζt and to decouple it from qt.
The function δϵ corresponds to a Gaussian distribution with zero mean and variance ϵ, which
converges to the Dirac delta function as ϵ approaches 0. The function ηt is strictly positive and
decays to 0. It controls the speed at which the biasing potential is updated and is the crucial
simulation parameter of the ABP method. We can intuitively interpret that the ABP method
penalizes the regions in the reaction coordinate space that have been previously visited by
increasing the potential energy in these areas, as illustrated in Fig. 3.1. Consequently, this
technique encourages the exploration of unvisited regions. In this framework, if At converges
in the longtime limit, then it converges to A. Furthermore, the convergence speed of At in the
ABP method is exponential. The challenge in implementing this approach lies in the tuning
of the decaying function ηt. If the decay is too rapid, the biasing potential will converge
too slowly, whereas if the decay is too slow, the biasing potential will experience significant
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Figure 3.1: Iterative construction of the biasing potential A⋆ to sample the free energy profile along
a reaction coordinate ζ, from Bussi et al. [210]. The real potential U is shown in dark gray and the
biasing potential A⋆(ζ) in light gray.

fluctuations and will not stabilize. It is necessary to identify an appropriate balance between
these two extremes.

In terms of convergence, the Adaptive Biasing Force (ABF) method is more reliable and
possesses fewer simulation parameters [149].

Adaptive Biasing Force (ABF) method in the extended space Λ×Q updates the derivative
A′

⋆ at ζ⋆ ∈ Λ, which is denoted as A′
t(ζ

⋆) for a given time t in the following discussion. The
ABF dynamics takes the following form:

dζt = α(A′
t(ζt)− ∂ζU(ζt,qt)) dt+

√
2αβ−1 dW ζ

t ,

dqt = −∇qU(ζt,qt) dt+
√
2β−1 dWq

t ,

A′
t(ζ

⋆) =

∫ t
0 ∂ζU(ζs,qs)δϵζ⋆−ζs

ds∫ t
0 δϵ

ζ⋆−ζs
ds

.

(3.38)

It is rigorously proved that the biasing force A′
t converges to the free energy A in the long

time limit [134]. The interpretation of the ABF method should be slightly different from that
of the ABP approach. Here, a bias is added directly to the forces acting on the ζ coordinate,
counteracting the mean force along the transition direction to prevent the system from being
trapped by free energy barrier, as well as reducing the statistical variance [145].

ABF-based techniques have been widely developed and applied over the past two
decades [135, 136, 137, 140, 138, 211]. As an improvement of the traditional MD- and MC-
based sampling methods with proven convergence [134], ABF algorithms enhance remarkably
the sampling efficiency [129, 130, 131, 132, 133]. In the upcoming sections, we will present a
series of ABF-based methods for the fast evaluation of the anharmonic free energy of computa-
tionally intensive force fields. These methods build upon the previously developed approaches
introduced in this section and demonstrate a significant improvement in computational effi-
ciency compared to those earlier approaches.
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3.2 Accelerated Bayesian adaptive biasing force method

In this section, we present an accelerated ABF-based method that enables the calcula-
tion of anharmonic free energy with DFT accuracy at a very reasonable computational cost.
Specifically, our approach is approximately 100 times faster than traditional TI for achieving
an accuracy of 0.1 meV/atom, and about 800 times faster than conventional MD simulations
for obtaining the bulk modulus (the second derivative of free energy) at high temperatures (see
subsection 3.2.3). Therefore, it allows for the use of ML force fields that provide DFT-level
accuracy, noting they are typically computationally slower by several tens to four orders of
magnitude compared to traditional EAM potentials.

Our methods mix the reference and target Hamiltonians without the specific requirement
of good overlapping properties between the reference and target distributions, and they re-
cover the right statistics resorting to Bayes formula, without further approximations. The
Bayesian reasoning framework [143, 144, 145, 212] for sampling the distribution associated
to an extended Hamiltonian allows to systematically reduce the statistical variance of the
estimated free energy difference when the converged biasing force is frozen, compared with
the other standard estimators (FEP, TI, thermodynamic-occupation and weighted-histogram
estimators, see Ref. [145]). Note that this Bayesian approach can be viewed as a particular
and efficient FEP method because the biasing mean force is computed through umbrella sam-
pling and because the implemented Bayes formula corresponds to a FEP equation in which
the sampled reference distribution is a biased marginal probability distribution.

Here, a Bayesian adaptive approach is used for the first time to compute the anharmonic
free energy of a crystalline solid [213]. In Subsection 3.2.1, we detail the method, including
the theoretical framework and the algorithm implementation. In Subsection 3.2.2, two new
features are proposed to enhance the robustness and efficiency of the method: one concerns
the reference system for TI, and the other involves a weighting technique for sampling. In
Subsection 3.2.3, we validate the current approach by comparing it with MD simulations for
bulk modulus calculations at high temperatures. Moreover, we demonstrate the significant
reduction in computational cost achieved by our method compared to MD and TI.

3.2.1 Bayesian adaptive biasing force: theoretical framework and implementation

We recall that for a system containing Ns atoms, the alchemical TI is performed using a
general potential energy U(ζ,q) that linearly mixes the potential energy of the given target
system U(q) and of the reference system Uref(q) through a coupling parameter ζ:

U(ζ,q) = ζU(q) + (1− ζ)Uref(q) . (3.39)

Here, q is defined in the 3Ns-dimensional torus T3Ns ⊂ R3Ns since periodic boundary condi-
tions are applied. The interval of ζ ∈ [0, 1] is discretized, in our study into 201 equally spaced
discrete values. Beyond this simple numerical setup, some strategies have proven useful in
variance minimization and convergence acceleration, including adoption of a nonlinear depen-
dence of the potential on the coupling parameter [115], as well as modification of discretization
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method [149]. Besides, the free energy difference can be directly computed from a single very
long simulation in which the temporal reaction coordinate ζ(t) progresses linearly from 0 to
1 [214]. Although sometimes advantageous, it is unnecessary to employ such methods in our
case for which accuracy and efficiency are both guaranteed by the Bayesian formalism.

To numerically calculate the integral in Eq. 3.29, we propose an optimized ABF algorithm,
namely the Bayesian ABF (BABF) method, based on the Bayesian estimator proposed in
Ref. [143]. In the alchemical setting, the biased potential UA⋆ in Eq. 3.36 is written as:

UA⋆(ζ,q) = U(ζ,q)−A⋆(ζ), (3.40)

where A⋆ is the biasing potential added to the extended potential, and it will be adaptively
constructed by averaging and integrating the derivative of the extended Hamiltonian with
respect to the coupling parameter.

Let PA⋆(ζ,q) denote the joint probability of the extended state (ζ,q) in the extended
ensemble with biasing potential A⋆. We have

PA⋆(ζ,q) =
exp [−βUA⋆(ζ,q)]∫∫

T3Ns×[0,1] exp [−βUA⋆(ζ̃, q̃)]dζ̃dq̃
. (3.41)

Then the mean force A′(ζ) formalized by Eq. 3.28 can be transposed in the extended ensemble
associated with the biasing potential UA⋆(ζ,q):

A′(ζ) =

∫
T3Ns ∂ζU(ζ,q) exp[−βUA⋆(ζ,q)]dq∫

T3Ns exp[−βUA⋆(ζ,q)]dq

=

∫
T3Ns ∂ζU(ζ,q)PA⋆(ζ,q)dq∫

T3Ns PA⋆(ζ,q)dq
. (3.42)

The above equality indicates that it is possible to compute the mean force in the biased
extended system. We show how to do it through Bayesian reasoning.

The marginal probability of ζ and q can be respectively expressed as

PA⋆(ζ) =

∫
T3Ns

PA⋆(ζ,q)dq (3.43)

and

PA⋆(q) =

∫ 1

0
PA⋆(ζ,q)dζ. (3.44)

Then, the conditional probabilities of ζ for a given q and of q for a given ζ are respectively
given by pA⋆(ζ|q) = PA⋆(ζ,q)/PA⋆(q) and pA⋆(q|ζ) = PA⋆(ζ,q)/PA⋆(ζ). The two equivalent
expressions of the joint probability below

pA⋆(q|ζ)PA⋆(ζ) = pA⋆(ζ|q)PA⋆(q) (3.45)

allow to formulate the Bayes relation, expressing the conditional probability of q given ζ as a
function of that of ζ given q:

pA⋆(q|ζ) =
pA⋆(ζ|q)PA⋆(q)

PA⋆(ζ)
. (3.46)
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The two equivalent expressions in Eq. (3.45) also allow to cast the mean force in Eq. (3.42)
into the two respective forms:

A′(ζ) =

∫
T3Ns

∂ζU(ζ,q)pA⋆(q|ζ)dq (3.47)

=

∫
T3Ns ∂ζU(ζ,q)pA⋆(ζ|q)PA⋆(q)dq∫

T3Ns pA⋆(ζ|q)PA⋆(q)dq
, (3.48)

where the marginal probability of ζ cancels in Eq. (3.47) and appears as the denominator of
Eq. (3.48) in the form PA⋆(ζ) =

∫
T3Ns pA⋆(ζ|q)PA⋆(q)dq. Equation (3.48) corresponds to the

expectation form of Bayes formula.

If the distribution PA⋆(q) can be sampled, the above average can be well approximated
owing to the ergodic theorem. Given a sequence of N points {qs}1≤s≤N sampled from the
probability distribution PA⋆(q), the mean force is estimated as:

A′(ζ) =

∑N
s=1 ∂ζU(ζ,qs)pA⋆(ζ|qs)∑N

s=1 pA⋆(ζ|qs)
, (3.49)

where the conditional probabilities of ζ given the sampled points are directly calculated through
numerical quadrature and the relation below:

pA⋆(ζ|q) =
exp [−βUA⋆(ζ,q)]∫ 1

0 exp[−βUA⋆(ζ̃,q)]dζ̃
. (3.50)

A simple way to sample the distribution PA⋆(q) consists in implementing an overdamped
Langevin dynamics:

dqt = ∇q

{
β−1 ln [PA⋆(qt)]

}
dt+

√
2β−1dWt. (3.51)

The first term of the right-hand side of Eq. 3.51 can be written as an effective force field:

∇q

{
β−1 ln [PA⋆(q)]

}
= −

∫ 1

0
∇qU(ζ,q)pA⋆(ζ|q)dζ = FA⋆(q) .

In practice, we prevent the center of mass of the system from drifting with respect to the fixed
reference lattice. To achieve this, we introduce a projection P that shifts the center of mass
from any position to its initial position. This operator being symmetric and idempotent, we
have P = PP⊤. Consequently, the projected Langevin dynamics of the system reads:

dqt = PFA⋆(qt)dt+
√
2β−1PdWt. (3.52)

By definitions in Eq. 3.25 and Eq. 3.27, we have ∀z ∈ [0, 1],

ln
PA⋆(ζ = z)

PA⋆(ζ = 0)
= ln

∫
T3Ns exp [−βUA⋆(z,q)] dq∫
T3Ns exp [−βUA⋆(0,q)] dq

= β[(A⋆(z)−A⋆(0))− (A(z)−A(0))]. (3.53)

Therefore, once we obtain a uniform sampling of PA⋆(ζ) over ζ ∈ [0, 1], we have A⋆(z)−A⋆(0) =
A(z)−A(0) which gives the difference in free energy from the difference of biasing potentials.

To implement the numerical algorithm, Eq. 3.52 is discretized. The (n + 1)th molecular
dynamics move can be realized based on the first n steps with the following algorithm:
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1. A′
n(ζ) is computed as:

A′
n(ζ) =

∑n−1
s=1 ∂ζU(ζ,qs)pAs(ζ|qs)w(s)∑n−1

s=1 pAs(ζ|qs)w(s)
, (3.54)

where ∇ζU(ζ,qs), being exactly equal to U(q) − Uref (q), is easy to evaluate and the
weighting function w(s), detailed in the following section, is introduced to accelerate the
initial convergence.

2. The free energy An(ζ) for the step n is determined as:

An(ζ) =

∫ ζ

0
A′

n(ζ̃)dζ̃ +An(0). (3.55)

3. The corresponding conditional probability of ζ for a given qn is calculated as:

pAn(ζ|qn) =
exp [−βUAn(ζ,qn)]∫ 1

0 exp
[
−βUAn(ζ̃,qn)

]
dζ̃
. (3.56)

4. The effective force field is obtained by the equation:

FAn(qn) = −
∫ 1

0
∇qU(ζ,qn)pAn(ζ|qn)dζ. (3.57)

5. Integration of the dynamic equation is carried out to obtain:

qn+1 = qn +PFAn(qn)δt+
√

2β−1δtBn, (3.58)

where Bn ∼ N (0,P) is a normal deviate with zero mean and P variance.

Once the new positions are determined, iteration continues until the desired accuracy of
An(ζ) is achieved. Based on Eq. 3.53, we have lim

n→+∞
∆An = ∆A. The iterative process is

concisely illustrated by the flowchart in Fig. 3.2.

Figure 3.2: Bayesian iterative flowchart of the present free energy sampling: the forward step integrates
the whole history of the Langevin dynamics. The weight w(n) is inserted at each integration step in
order to accelerate the convergence of An and its form is a user choice as discussed in Subsection 3.2.2.2.

In practical applications, we analyze the sampling stability on the fly by monitoring the
running estimate of the marginal probability at step n:

PAn(ζ) =
1

n

n∑
s=1

pAs(ζ|qs) , (3.59)
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which is the mean value of the probability of ζ conditioned on the sampled states qs during
the Langevin dynamics and given the successive biasing potentials As, with 1 ≤ s ≤ n. As
a probability density, the integral of PAn(ζ) over ζ ∈ [0, 1] is 1. This distribution should be
uniform in ζ in order to ensure that the difference in free energy of the target and reference
systems becomes equal to the corresponding difference in the biasing potentials yielded by the
adaptive Langevin dynamics, as expected from Eq. (3.53).

For assessing the relative efficiency of sampling using different reference systems and weight-
ing functions, we also monitor the Kullback–Leibler (KL) divergence of PAn(ζ) from the uni-
form distribution:

DKL(PAn ||1[0,1]) =
∫ 1

0
PAn(ζ) ln

PAn(ζ)

1[0,1](ζ)
dζ. (3.60)

This statistical pseudo-norm measures how close the probability distribution PAn(ζ) is to the
uniform distribution 1[0,1](ζ). It is 0 for identical distributions and infinite for non overlapping
distributions. The closer to zero the KL divergence is, the better the adaptive sampling proce-
dure has converged. The reason is that the biasing potential integrated from a well-converged
biasing force yields a reliable estimate of the free energy A(ζ). The recorded marginal proba-
bility of ζ, PAn(ζ) from Eq. 3.59, should thus converge towards PA(ζ) that corresponds to the
uniform probability distribution over [0, 1] range, which is 1[0,1](ζ).

3.2.2 Optimizations of BABF method

In this subsection, we enrich the Bayesian adaptive approach with two new features. First,
we eliminate the numerical instabilities of the reference Hamiltonian via a singular value de-
composition (SVD) filter to improve sampling robustness. This technique is detailed in Sub-
section 3.2.2.1, where a comparison between two different reference systems is also provided.
Second, we introduce in Subsection 3.2.2.2 a simple weighting scheme for the biasing force to
enhance the initial speed of convergence.

3.2.2.1 Reference system: choices and numerical instabilities filter

Hoover and Ree’s single-occupancy cell (SOC) method [215, 216] is one of the first methods
proposed to obtain a reference system in the form of artificial solid. According to the SOC
method, each of the Ns atoms in the system is confined in its own cell of volume V/Ns at
all densities to ensure that no melting occurs and the solid-phase thermodynamic properties
of this artificial solid hold true. Though unphysical, this method was successfully applied to
the calculation of the free energy of hard-spheres [215] using computer simulations. Hoover et
al. [217, 218] also suggested an alternative method which involved a two-step calculation [109].
In the first step, the given solid is approximated as a harmonic crystal by cooling it to a
sufficiently low temperature and then the free energy of this solid can be analytically calculated
using lattice dynamics. The second step involves using the result from the first step as a
reference to calculate the free energy at a given higher temperature. However, both methods
have some drawbacks. For instance, numerical integration for the SOC method is complicated
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for unstable solids where phase transitions may occur; cooling used to obtain a harmonic
crystal may not be reversible, etc.

In order to improve the performance of the method, other useful references have been
proposed, such as Einstein crystal [219, 220], harmonic solid [221, 222], Morse potential [107],
Lennard-Jones system [111], inverse power potential [111, 110], EAM [110, 223], MTP [114]
and linear combination of the potentials above [110]. In this study only reference systems
with analytically known free energy are considered. We test the use of Einstein and harmonic
approximations and further optimize the harmonic reference. We demonstrate that such simple
references are sufficient to provide accurate and efficient calculations with the BABF approach.

Einstein approximation. The Einstein crystal has been used extensively as a reference
system in free energy calculations since the works of Broughton et al. [224] and Frenkel et
al. [219], due to the simplicity of its formalism and implementation. In Einstein approxi-
mation (EA), it is assumed that the atoms oscillate independently about their mechanical
equilibrium positions denoted by q0 ∈ T3Ns , i.e., the lattice vibrations are represented by Ns

three-dimensional classical distinguishable oscillators, yielding 3Ns oscillators with an average
frequency ωi for i = 1, · · · , 3Ns and atomic mass mi. The Hamiltonian of the Einstein system
has the following potential energy:

U(q) = U(q0) + UEA (q,q0)

UEA (q,q0) =
1

2

3Ns∑
i=1

miω
2
i (qi − qi,0)

2. (3.61)

For the special case where all atoms have the same mass mi = m and vibrate at the same
frequency ωi = ω, the free energy can be written as:

FEA = 3Nsβ
−1 lnβℏω. (3.62)

As previously emphasized, our aim is to construct a reversible path from the non-interacting
Einstein crystal to the crystal of interest. This implies that the lattice of the reference system
at mechanical equilibrium should coincide with that of the target crystal. This condition can
be ensured by harmonically coupling (via springs) the center of mass of the Einstein crystal
to that of the crystal of interest. According to Ryckaert et al. [225, 109], Eq. 3.62, for a
constrained system, can be written as:

FEA, c = (3Ns − 3)β−1 lnβℏω. (3.63)

The main drawback of EA is that the Einstein frequency needs to be calibrated very
carefully, because even a small variation in frequency can produce a large difference in the
free energy of the reference and target crystals and result in computational overhead. Using
Eq. (3.63), this calibration can be performed through the harmonic free energy calculation of
a small system:

ω(β) =
1

βℏ
exp

[
βF bulk(β)

3Ns − 3

]
, (3.64)
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taking into account the temperature dependence of ω. For instance, the full anharmonic free
energy F bulk(β) can be quickly estimated in a short simulation at inverse temperature β using
a system with a small number of atoms (in the case of bcc lattice, a 2× 2× 2 simulation cell
with 16 atoms may be sufficient) and then, through the estimated value of ω(β), scaled to a
larger system.

Harmonic approximation. Alternatively, the reference system can be built upon the har-
monic approximation (HA), which involves a second-order Taylor expansion of the potential
energy around the mechanical equilibrium (subsection 3.1.1.3):

U(q) = U(q0) + UHA (q,q0)

UHA (q,q0) =
1

2

3Ns∑
i,j=1

Hij (qi − qi,0) (qj − qj,0) (3.65)

where the Hessian matrix of the potential energy at the minimum defines the force constants
Hij = ∂2 U(q)

∂ qi∂ qj
|q=q0 . Moreover, the force field deriving from the HA potential has a compu-

tational complexity of O(N2
s ), as can be inferred from the double summation appearing in

Eq. (3.65). However, the quadratic complexity can be turned linear since the atomic interac-
tions are ignorable beyond some cutoff radius Rcut and therefore the force constants Hij are
zero above 2Rcut interatomic distance, i.e., the sum in Eq. 3.65 can be reorganized as:

UHA (q,q0) =
1

2

3Ns∑
i=1

∑
j∈v(i)

Hij (qi − qi,0) (qj − qj,0) , (3.66)

for which v(i) is the collection of neighbour atoms of the ith atom within 2Rcut distance.
These summations have O(Nsn) computational complexity, where n is the average number of
neighbour atoms within v(i) (in general for large systems n≪ Ns).

In the present case the HA development is performed around a minimum q0 of the potential
energy, which means that HA contribution in Eq. (3.65) is a positive semi-definite quadratic
form and so matrix H = [Hij ] is symmetric and non-negative. Defining the reference system
based on an approximation accounting for all vibration frequencies of the physical system
provides an important advantage: the degree of overlap between the reference and target
distribution is expected to be high. Besides, the free energy difference between the target and
reference systems should be relatively small, at least at reasonable temperatures lower than
one third of the melting point.

The partition function, from which the harmonic free energy is deduced, is obtained by
writing the Hamiltonian in normal coordinates and solving the decoupled equations of motion.
The normal modes correspond to the eigenvectors of the dynamical matrix Dij = Hij/

√
mimj .

Note that the dynamical matrix has only real values in the present study because we treat
only the Γ-HA modes, i.e., those in the center of the Brillouin zone of the crystal.

Being also symmetric non-negative, the matrix D is diagonalizable with real non-negative
eigenvalues whose square roots define the frequencies of the normal modes. We sort the
frequencies in descending order by convention: ω1 ≥ ω2 ≥ · · · ≥ ω3Ns−3 > 0. Here, frequen-
cies are strictly positive except the three last ones that are exactly zero due to the periodic
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Figure 3.3: Phonon frequencies ωi derived from the eigenvalues ω2
i of the dynamical matrix D ∈

R384×384 of 128 atoms in pure bcc W at equilibrium and the filtered matrix U⊤
r DUr, where r = 381 =

3× 128− 3 and Ur ∈ R384×381 is the matrix of the first r left singular vectors of D.

boundary conditions (PBC) that are applied to our atomistic simulations. The null-space
normal modes characterize the three translation symmetries of the overall system in the three-
dimensional physical space. When free boundaries are imposed on the system, the potential
energy becomes rotationally invariant, resulting in two rotational symmetries and two addi-
tional null eigenvalues.

In the limit of high temperature, the phonons (normal modes) behave as independent and
Boltzmann-distributed classical oscillators, so the free energy becomes:

FHA = β−1
3Ns−3∑
i=1

ln (βℏωi) . (3.67)

Removal of numerical instabilities: SVD filter. It should be noted that employing
directly the HA potential energy in Eq. (3.65) as the reference system may lead to unstable
and non-converging dynamics in some cases, especially at saddle points separating local energy
minima, for which negative eigenvalues of D exist.

The sampling instability in a physically stable state, like bulk tungsten (W), stems from
the fact that the 3 translation eigenvalues are not exactly zero as they should be. These lowest
eigenvalues correspond to the overall displacement of the system along 3 directions through
the periodic boundaries.

In exact arithmetic, the null-space that reflects the translation symmetries does not affect
the dynamics because the center of mass is shifted to its initial position at each step, which
means that the displacement vector q− q0 remains orthogonal to the null-space. However, in
finite-precision arithmetic, rounding errors in the evaluated eigenvectors result in a non-zero
projection of the displacement vector onto the computed null-space. As soon as a translation
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eigenvalue becomes slightly negative, it generates forces that favor the atomic motion away
from the unstable equilibrium position. Hence, excessive atomic displacements may occur
whenever the dynamics is dominated by the harmonic potential.

To address this problem, we develop and test another numerical scheme, in which we force
the translation eigenvalues of the dynamical matrix to be strictly equal to zero so that the
gradient of the harmonic potential in Eq. (3.65) is null along translation symmetries and the
dynamics is always orthogonal to this null-space. To achieve this goal, a numerical filter based
on SVD is proposed. The SVD decomposition of the real dynamical matrix D = [Dij ] ∈
R3Ns×3Ns is given by:

D = UΣV⊤

U =
(
U1 . . . U3Ns

)
(3.68)

with Ui ∈ R3Ns×1 are the 3Ns left singular vectors whilst Σ and V contain the singular
values and the right singular vectors. We filter the spurious modes associated with the 3
lowest eigenvalues by projecting the constant matrix D into the subspace spanned by the first
3Ns − 3 right singular vectors Ur = (U1 . . . Ur) ∈ R3Ns×r where r = 3Ns − 3. The projector
ensuring this transformation is UrU

⊤
r . In this way, H = [Dij

√
mimj ] in Eq. 3.65 is replaced

by HSVD = [DSVD
ij

√
mimj ] where DSVD = UrU

⊤
r DUrU

⊤
r . The bottleneck here is the SVD

decomposition whose computational complexity is cubic but which, fortunately, should be
made only once, as a separate calculation before the sampling procedure begins. Note that
evaluating the filtered potential energy has the same scalability as that for evaluating the
non-filtered potential energy. The computational complexity is linear when the null-space
components of the position vector are filtered out prior to calling the neighboring list defined
in Eq. (3.66).

For the perfect bulk tungsten where no negative eigenvalues exist apart from the 3 trans-
lation eigenvalues, the applications of the SVD filter and the P projector in Eq. (3.52) are
equivalent. However, SVD filtering is more general. Using the SVD-filtered potential is ex-
pected to improve the stability of mean force sampling by preventing the reference dynamics
from diverging. It should therefore be useful in sampling unstable transition states.

Comparison between Einstein and harmonic approximations. Here we compare the
convergence of the biasing force towards the mean force using the BABF method for which the
reference system is based on the Einstein or harmonic approximations. The target physical
system consists of W atoms described by an EAM potential [22]. To assess finite size effects,
we first performed two preliminary simulations in systems containing 128 and 1024 atoms at
3 400K. The variation of the lattice constant in BABF calculations with those systems is of
the order of 10−4Å. The associated difference in bulk modulus is 1GPa (the relative error is
0.37%). Considering this error to be acceptable, we conclude that the small system size of 128
atoms does not limit the accuracy of the BABF calculations. Therefore, all simulations in the
following part of the paper are carried out with 128 atoms, unless otherwise specified.

The behavior of the BABF method using the standard HA reference (denoted by HA)
and the SVD-filtered harmonic reference (denoted by HA-SVD) is first briefly discussed. As
previously stated in Subsection 3.2.2.1, using the projection operator P defined in Eq. 3.52,
which shifts the center of mass from any position to its initial position at each dynamic step,
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is equivalent to filtering the HA reference via SVD decomposition in this case (perfect bulk
crystal). Hence, either of the two methods is able to stabilize the dynamics. This equivalence is
demonstrated by the overlapping curves of recorded marginal probability PAn(ζ) at n = 2000
for HA and HA-SVD references displayed in Fig. 3.4(a). Since the SVD filter is a more
general approach, the standard HA reference will not be investigated anymore in the following
sections. We rather focus on the SVD-filtered harmonic reference, denoted by HA-SVD, and
thus compare EA and HA-SVD references implemented in BABF simulations. The recorded
marginal probability PAn(ζ) at n = 2000 for the two references are also displayed in Fig. 3.4(a),
from which we observe a more uniform sampling when HA-SVD, rather than EA, is used as
reference. We further assess the sampling performance by computing the Kullback–Leibler
(KL) divergence of PAn(ζ) from the uniform distribution (see Eq. (3.60)).

As illustrated in Fig. 3.4(b) where the KL divergence is plotted as a function of n, the
convergence level achieved after 80 000 Langevin steps using the Einstein reference necessitates
three times more steps than when using the SVD-filtered harmonic reference instead. This
trend is explained by the fact that the harmonic solid is more supple than the Einstein solid, as
the harmonic Hamiltonian includes information from all possible pairwise interactions, while
the Einstein formalism considers a set of independent but identical harmonic oscillators.

Additional profiles of the probability distributions PAn(ζ) are shown in Fig. 3.4(c-e) at
increasing n values and using two types of weighting functions w(n) in Eq. (3.54). The linear
weighting function w(n) = n/N where N denotes the total number of steps is implemented in
addition to the constant function w(n) = 1 used previously. For both weighting functions, the
distribution PAn(ζ) flattens faster with the filtered harmonic reference than with the Einstein
reference, which indicates a better sampling performance of the former. In contrast, the use
of the latter results in excessively high probability on both sides, especially around ζ = 1. We
further observe from the graphs (b-e) of Fig. 3.4 that convergence is significantly improved
by the use of the linear weighting function. We next investigate the impact of the weighting
function on the convergence behavior of the BABF method with HA-SVD reference.

3.2.2.2 Acceleration of convergence: reweighting sampling

As emphasized in Fig. 3.4, one should notice that the first several iterations of the BABF
method give relatively biased sampling of ζ. Hence, a weighting function reevaluated at each
step is set in Eq. 3.54 to reduce the contribution of the configurations initially sampled and
then improve the sampling efficiency. In Fig. 3.4, results of the simplest linear weighting
function w(n) = n/N for n = 1, . . . , N are compared with the case without weighting function
(w(n) = 1). Application of weighting results in significant improvement of sampling efficiency.
To reach the convergence level DKL(PAn ||1[0,1]) < 10−3 with harmonic reference, 20 000 steps
of Langevin dynamics are sufficient through linearly weighting the sampling, while 80 000 steps
are still not enough without the use of weighting function. Consequently, it is of great interest
to figure out the effects of the weighting function.

Several weighting functions varying from 0 to 1 are tested in order to measure the impact
of the functional form. Figure 3.5 illustrates the results of employing the various weighting
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Figure 3.4: (a) Distribution of the estimated marginal probability PAn
(ζ) at Langevin step n = 2000

of BABF calculations using references with Einstein approximation (EA), standard harmonic approx-
imation (HA) and SVD-filtered harmonic approximation (HA-SVD). (b) Variation of KL divergence
for the BABF calculations with EA reference and HA-SVD reference. (c-e) Distribution of PAn(ζ) at
Langevin step (c) n = 10 000, (d) n = 20 000, and (e) n = 40 000 of the calculations shown in (b). No
weighting function (w(n) = 1) is applied in (a), while two cases of weighting function (w(n) = 1 and
w(n) = n/N) are considered in (b-e), where N is the total number of Langevin steps. Legends for
(c-d) are the same as that in (b). All the calculations in this figure are performed in a bcc W system
of 128 atoms at 3 400K using WEAM4 potential [22].

functions that have been selected. The different shapes of these functions are illustrated in
Fig. 3.5(a). To evaluate the importance of the first n samples, we display the following char-
acteristic function w(n)/

∑n
s=1w(s) in Fig. 3.5(b), while the corresponding KL divergence is

shown in Fig. 3.5(c). The weighting function with larger value of w(n)/
∑n

s=1w(s) at n≪ N
leads to faster convergence (Fig. 3.5(b-c)) since it lowers the contribution of the initial sam-
pling. From this analysis it can be concluded that an appropriate choice of weighting function,
such as w(n) =

[
sin
(
nπ
2N − π

2

)
+ 1
] (

n
N

)2, can further improve the sampling significantly in
terms of convergence speed: it requires only 6 000 steps to attain DKL(PAn ||1[0,1]) < 10−3,
which is three times faster than using the linear weighting function.

3.2.3 Validation: comparison with MD simulations and TI

In this subsection we compare the performance of the present BABF method with classical
molecular dynamics (MD) simulations. The direct comparison on free energy calculations is
out of scope. It is well known that direct MD simulations are unable to estimate the free energy
of the system. Here, we instead perform an indirect comparison on the second derivative of
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3.2. Accelerated Bayesian adaptive biasing force method

Figure 3.5: (a) Shape of different weighting functions. (b) The value of w(n)/
∑n

s=1 w(s), which
determines the convergence speed. (c) Variation of KL divergence for different weighting functions.
Legends for (a) and (b) are the same as that in (c). All the results in this figure are obtained by BABF
calculations with HA-SVD reference based on the same bcc W system and the same EAM potential
as in Fig. 3.4.

the free energy with respect to the volume of the system, i.e., the isothermal bulk modulus
BT .

The previous BABF method with both EA and HA-SVD references is used to compute the
free energy at 20 temperatures ranging from 10K to 3 800 K. At each temperature, a series
of deformed systems is considered, allowing to extract the bulk modulus from the second
derivative of the free-energy versus volume curve. Details of the procedure are illustrated
in Fig. 3.6. The bulk moduli from MD-based simulations are obtained by measuring the
change in average stress tensor when the cell volume undergoes a finite deformation [226] with
the elastic_t package available in Lammps [227]. The high temperatures 3 000 K, 3 400K,
3 600K and 3 800K, for which the thermal fluctuations are large, have been selected. The bulk
modulus computations using both methods are made within a bcc W system modeled with
WEAM4 potential [22]. A system containing 128 atoms is used in BABF calculations, while
16 000 atoms are needed in MD simulations to avoid excessive fluctuations.

The relative error is recorded along the BABF and MD simulations for the system at
3 400K and plotted in Fig. 3.7(a). We notice that the BABF calculation with EA reference
exhibits a significantly larger initial relative error than that obtained with HA-SVD reference.
BABF calculations with both references converge quickly. Specifically, the relative error of
BABF calculation decreases to less than 1% from step 8 000 with EA reference and from step
2 000 using HA-SVD reference. In contrast, MD simulation starts with a relatively slight error
but always suffers severe fluctuations so that a large number of MD steps are required to
obtain a reliable time average. In the current case, 130 000 MD steps are necessary. Thus, the
much smaller number of integration steps (here, 20 000 for BABF+HA-SVD and 130 000 for
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3. Enhanced sampling methods for free energy landscape

Figure 3.6: Illustration of thermodynamic properties calculation with the BABF method, where Veq
and F denote the equilibrium volume and the Helmholtz free energy, respectively. At temperature T ,
we compute the free energy for a series of systems with different volumes as presented by the dark blue
curves. The value of the lattice constant corresponding to Veq, i.e., the free energy minimum, is the
lattice constant at this temperature, from which the volumetric thermal expansion can be obtained
(dark orange curve). Bulk modulus is proportional to the second derivative of the free energy with
respect to the volumetric strain. Temperature dependence of the free energy minimum (light blue
curve) allows the entropy evaluation.

MD), combined with the smaller system size (128 atoms for BABF+HA-SVD and 16 000 for
MD), results in a hundredfold increase in computational efficiency for the BABF approach.

We also provide the comparison between the efficiency of the present BABF method with
the standard TI from a very recent publication of Jung et al. [44]. In Section E of the
Supplementary Information of Ref. [44], Jung et al. declare that the standard TI is run for
50 000 steps to obtain statistically very well converged average energies for a given coupling
parameter λ (denoted as ζ in our work), and at least 20 λ values are needed to perform a λ-
based TI, resulting in a total of 20× 50 000 = 1 000 000 steps. As presented in Supplementary
Fig. 4 of Ref. [44], 50 000 steps of MD simulation at a given λ allow the TI-estimated free
energy to converge within 0.1 meV/atom. Here we also show a convergence test of time-steps
in Fig. 3.8 for the BABF method. The test is performed with HA-SVD reference, in a bcc
W system of 128 atoms at 3 400 K using WEAM4 potential [229]. Comparison between the
BABF method and the standard TI is detailed as follow:

• As revealed in Fig. 3.8(b), the BABF method also requires 50 000 steps to achieve the
accuracy of 0.1 meV/atom. However, with the Bayes formula, we do not need to perform
the dynamics for each descritized coupling parameter. Therefore, 50 000 steps are enough
using BABF calculation instead of 1 000 000 steps with standard TI.

• One should notice that the standard TI calculations shown in Supplementary Fig. 4 of
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3.2. Accelerated Bayesian adaptive biasing force method

Figure 3.7: Comparison of BABF method and MD simulation. (a) Runtime relative error (BT
n −

BT
∞)/BT

∞ at 3 400 K with BT
∞ the fully converged value. (b) Rescaled bulk modulus as function of

temperature. We take the ratio of the bulk modulus at temperature T to its value at the Debye
temperature TDebye, equal to 400K for W [228]. The dark blue and light blue lines are computed with
BABF method without weighting function using EA and HA-SVD references, respectively. The dark
orange line is obtained from MD simulations. The number of atoms in the bcc W system and the
number of iteration steps to achieve the convergence for each method are indicated in the legends. All
the curves are obtained with WEAM4 potential [22].

Ref. [44] are performed in a Mg system containing 490 atoms (Supplementary Table 11),
while our BABF calculation in Fig. 3.8 is conducted in a W system of 128 atoms. Hence,
the BABF test is actually based on a smaller system compared with the standard TI.

• The exact temperature of the standard TI calculations shown in Supplementary Fig. 4 of
Ref. [44] is not given. However, from Supplementary Table 11, we can see that the highest
temperature for the calculations of Mg is 989 K. Our BABF calculation in Fig. 3.8 is
performed in a system at 3 400K, which is much higher than the simulation temperature
of the standard TI.

Therefore, even at higher temperatures and using a system that is almost four times smaller,
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3. Enhanced sampling methods for free energy landscape

the BABF method achieves a 20-fold increase in computational efficiency compared to the
standard TI. Figure 3.8(a) reveals that with the BABF method, 30 000 Langevin steps are
enough to attain a relative error of free energy less than 0.1% at high temperature (3 400 K).
Moreover, the BABF method is more stable than standard TI and FEP. With the SVD-
filtered harmonic reference, the BABF method can even be applied in the presence of free
energy barriers and can be useful in, for example, the study of interstitial atoms.

The results of BABF with EA and HA-SVD references are consistent with those obtained
from MD simulations (Fig. 3.7(b)). The obtained agreement validates the further application
of the optimized BABF method to the calculations of elastic properties and thermal expansion.
From the cost analysis, we conclude that the present method is fast and robust for estimating
the free energy in crystalline solids and can be applied to sample not only fast standard force
fields but also numerically heavy machine learning potentials [230, 168, 103, 231].

To summarise, the BABF approach is validated by the calculations of thermodynamic prop-
erties of W, in comparison to the traditional MD simulations at temperatures above 3 000 K.
Its accuracy is also proved by comparison with experimental results at temperatures below
2 100K, which will be shown in the next chapter (Fig. 4.3). With sufficient efficiency to apply
the ML potentials, this accelerated BABF method makes the fast and accurate investigation
of free energy at extremely high temperatures feasible. In Chapter 4, we will demonstrate the
applications of this method in predicting the high-temperature thermodynamic properties of
tungsten and Ta-Ti-V-W high-entropy alloys.

3.3 Bound BABF method: sampling a metastable state

In this section, we put forward an extension of the previously presented BABF method,
which makes it possible to sample a given metastable state. This technique facilitates the study
of the free energy landscape of defects, thereby providing insights into the mechanisms govern-
ing defect behaviors. In Subsection 3.3.1, we present the rationale for developing this enhanced
methodology, exemplifying a scenario in which the existing BABF approach is insufficient to
effectively address the problem at hand. Next, we outline the challenges encountered when
applying the BABF method to this problem, along with our proposed approach to address
these issues. The formulation, implementation, and validation of our solution are elaborated
in Subsection 3.3.2. To further accelerate the sampling process, we employ a parallelization
scheme detailed in Subsection 3.3.3.

3.3.1 Motivation: sampling free energy landscape of defects

Point defects, such as vacancies, have a significant influence on diffusion and microstruc-
tural evolution in solids. Understanding these defect-driven processes becomes particularly
challenging at high temperatures, as they depend crucially on complex free energy surfaces.
This task is quite difficult, even with DFT calculations. For instance, in tungsten, vacancy
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3.3. Bound BABF method: sampling a metastable state

Figure 3.8: (a) Relative error of ∆A = A(1)−A(0) and (b) convergence of ∆A. ∆An is the free energy
difference estimated at Langevin step n and ∆A is the well converged free energy difference. The
BABF calculation is performed with HA-SVD reference, in a bcc W system of 128 atoms at 3 400 K
using WEAM4 potential [229].

loops and voids have been experimentally observed during annealing treatments following heat-
ing [232]. However, previous DFT calculations cannot explain the existence of vacancy clusters.
DFT results indicate that di-vacancies are strongly unstable in second nearest-neighbor (2NN)
configurations, and either unstable or stable in first nearest-neighbor (1NN) configurations,
depending on the parameters of the calculations [233, 234, 235, 236, 237, 229, 238, 239, 240].
Nevertheless, we assert that the previous calculations were not sufficiently converged. The
Fermi surface of W is very complicated and a large mesh of k-points is required. The binding
energies calculated by DFT for the di-vacancies are plotted in Fig. 3.9 as a function of the
number of k-points used. For a cubic cell of (128 − 1) atoms, i.e., 4a0 × 4a0 × 4a0, where
a0 is the equilibrium bcc W lattice parameter, we find that the calculations tend to converge
for k-points grid larger than 6× 6× 6 with an electronic smearing parameter σ set to 0.3 eV.
For the smaller σ-value of 0.1 eV, the DFT-calculated energies are unreliable, even for the 63

mesh. Therefore, previous calculations [237, 235, 233, 229, 239, 240] probably did not reach
convergence due to their choice of the number of k-points, resulting in parameter-dependent
trends that are not supported by experimental evidence.
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3. Enhanced sampling methods for free energy landscape

Figure 3.9: DFT-based binding energy for 1NN and 2NN di-vacancies at smearing parameter σ of
0.1 eV and 0.3 eV, as a function of the number of k-points. (The calculations are conducted using
VASP 6.2.0 [158] package with AM05 [241, 242, 243] exchange-correlation functional. Methfessel and
Paxton smearing method is utilized to approximate the Fermi-Dirac statistics [244].

We find that 1NN and 2NN di-vacancies in W are unstable and repulsive at 0K
for three exchange-correlation functionals, namely the Perdew-Zunger functional [245, 246]
from the local-density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) func-
tional [247, 248, 249] from the generalized gradient approximation (GGA) and the Armiento-
Mattson (AM) functional [241, 242, 243] also from the GGA. Merely extrapolating the energy
landscape constructed from electronic structure calculations at 0K to high temperatures sug-
gests that there should be no vacancy clustering in W, in contradiction with the experimental
observations. Any mechanistic model describing the formation of voids must necessarily take
into account the instability of 1NN and 2NN di-vacancies and concomitantly involve the ag-
glomeration of vacancies into intermediate nano-clusters as experimentally observed at high
temperatures.

To understand this phenomenon, we need to quantify the temperature effects on the for-
mation and binding free energy landscape of small vacancy-type defects. Free energy sampling
using the BABF method presented in Section 3.2 seems to be a good choice. However, sam-
pling a specified defect configuration based on Langevin dynamics is challenging: it should be
able to sample a given metastable state without allowing the system to transition from one
free energy basin to another. For this reason, we develop the bound BABF method, which
enables constrained exploration of the free energy landscape without bias.

3.3.2 Constrained configuration space exploration without bias

The anharmonic vibrational contribution plays an important role in the free energy land-
scape of a configuration. The free energy of a system containing Ns atoms at its equilibrium
volume and temperature T includes three components:

F (Ns, T ) = Fvib(Ns, T ) + Fcon(T ) + E0(Ns, T ) . (3.69)
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3.3. Bound BABF method: sampling a metastable state

Figure 3.10: (a) Difficulty in sampling a given vacancy configuration: vacancy migration corresponding
to the transition between two metastable basins, such as 1NN and 2NN di-vacancy configurations in bcc
lattice (the vacancies are indicated by empty circles). (b) Schematic illustration of the original BABF
sampling and the bound BABF sampling. Compared to the original approach, bound BABF sampling
inhibits unfavorable transitions between free energy basins by artificially increasing the energy barrier.
This additional potential energy confines sampling to a single metastable state, but introduces a bias
in the free energy estimation.

Among them, the configurational free energy Fcon depends on the number of equivalent config-
urations for a specified defect type, energy minimization in Lammps [227] gives the potential
energy at equilibrium E0, and the vibrational term Fvib is the most difficult to evaluate.

To compute the vibrational free energy, the TI is performed using a general potential energy
U(ζ,q) that linearly mixes the potential energy of the target system U(q) (e.g., ML potentials),
and the potential energy of the reference system UHA(q) (here we choose the SVD-filtered
harmonic approximation as recommended in Subsection 3.2.2.1), through a coupling parameter
ζ: U(ζ,q) = (1− ζ)UHA(q)+ ζU(q). The associated Landau free energy is defined as A(ζ) =
−β−1 lnZ(Ns, V, T, ζ) + B where Z(Ns, V, T, ζ) is the partition function for the canonical
ensemble. Then the target vibrational free energy Fvib can be calculated from the free energy
difference between the target system and the harmonic reference system ∆A = A(1) − A(0)
as Fvib = FHA

vib + ∆A. As mentioned previously, in harmonic approximation, the phonons
are regarded as independent and Boltzmann-distributed classical oscillators with frequencies
ωi, i = 1, . . . , Nm, that are the eigenvalues of the Hessian matrix. For a system containing Ns

atoms at metastable states corresponding to a local energy minimum, the number of non-zero
normal modes Nm = 3Ns − 3, so the free energy becomes:

FHA
vib = β−1

3Ns−3∑
i=1

ln [1− exp (−βℏωi)] . (3.70)

Based on the BABF calculation, we can efficiently obtain the free energy through the
sampling driven by Langevin dynamics. However, the thermodynamic micro-state associated
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with a vacancy configuration corresponds to a metastable basin of attraction. The difficulty
in estimating its free energy through Langevin-based sampling is that the dynamical system
easily evolves towards other metastable basins by crossing over surrounding energy barriers
beyond a certain temperature, as shown in Fig. 3.10(a). This entails either the migration of
the mono-vacancy or the interconversion of 1NN and 2NN di-vacancies.

To prevent the system from escaping its thermodynamic micro-state, we constrain each
atom neighbouring the vacancy defect, i.e., we push the atom back to its initial basin by
applying the restoring force

FB(r) = − r

∥r∥
C

δ
ϕ

(
∥r∥ −Rc − δ

δ

)
(3.71)

on the atomic displacement vector r with ∥r∥ denoting its Euclidean norm. The non-negative
real function ϕ is even:

ϕ(x) = max
[
0, (1 + coshx)−1 − (1 + cosh 1)−1

]
. (3.72)

Expressing the restoring force as the negative gradient of a potential energy FB(r) =
−∇rE

B(q), the additional biasing potential EB acts as an additional energy barrier further
trapping the system inside its basin, as illustrated in Fig. 3.10(b). In this case, the general
potential energy becomes

UB(ζ,q) = (1− ζ)UHA(q) + ζ
[
U(q) + EB(q)

]
. (3.73)

Constrained potential UB(ζ,q) allows the system to stay confined in the original basin
of the sampling. Nevertheless, propagating the Langevin dynamics with the extra potential
energy EB(q) results in a sampling bias that must be removed from the free energy estimator.
In the next paragraph, we show that it is possible to cancel the influence of the supplemental
potential by proposing an unbiased procedure to estimate the free energy in a given basin.

Based on mean force estimation formula given in Eq. 3.48, we can estimate AB ′
(ζ) in the

constrained extended ensemble:

AB ′
(ζ) =

∫
T3Ns ∂ζU

B(ζ,q)πAB
⋆
(ζ|q)ΠAB

⋆
(q)dq∫

T3Ns πAB
⋆
(ζ|q)ΠAB

⋆
(q)dq

, (3.74)

where ΠAB
⋆
(q) is the marginal probability associated to q in the constrained energy landscape.

This probability can be easily sampled thanks to ergodic theorem. This expression involves
also the following conditional probability:

πAB
⋆
(ζ|q) =

exp
[
β(AB

⋆ (ζ)− UB(ζ,q))
]∫ 1

0 exp
[
β(AB

⋆ (ζ̃)− UB(ζ̃,q))
]
dζ̃
, (3.75)

Mean force estimation proposes in Eq. 3.74 can be computed by using standard BABF method.
However, this mean force is biased by the constrained potential.

We are interested in the estimation of the unbiased mean force given in equation (3.48).
This estimation can be rewritten as an expectation on ΠAB

⋆
(q) distribution sampled in the
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constrained extended ensemble:

A′(ζ) =

∫
T3Ns ∂ζU(ζ,q)PAB

⋆
(ζ,q)dq∫

T3Ns PAB
⋆
(ζ,q)dq

=

∫
T3Ns ∂ζU(ζ,q)

P
AB
⋆
(ζ,q)

Π
AB
⋆
(q) ΠAB

⋆
(q)dq∫

T3Ns

P
AB
⋆
(ζ,q)

Π
AB
⋆
(q) ΠAB

⋆
(q)dq

, (3.76)

where PAB
⋆
(ζ,q) ∝ exp

[
β(AB

⋆ (ζ)− U(ζ,q))
]

is the joint probability associated to the unbiased
system in the constrained extended ensemble. Then, in order to simplify the notation, we chose

to denote by pAB
⋆
(ζ|q) =

P
AB
⋆
(ζ,q)

Π
AB
⋆
(q) the conditional unbiased probability of ζ for constrained

bias q distribution. This conditional probability can be estimated in the extended constrained
ensemble and lead to the present formulation:

pAB
⋆
(ζ|q) =

PAB
⋆
(ζ,q)

ΠAB
⋆
(q)

=
exp

[
β(AB

⋆ (ζ)− U(ζ,q))
]∫ 1

0 exp
[
β(AB

⋆ (ζ̃)− UB(ζ̃,q))
]
dζ̃
. (3.77)

The new two-estimations scheme for free energy calculations allows to sample a target
metastable state in the extended constrained biasing potential UB(ζ,x)−AB

⋆ (ζ). An estima-
tion of the constrained biased free energy based on mean force integration of Eq. 3.74 allows to
calculate an unbiased mean force based on the importance sampling formula given in Eq. 3.76.
The thermodynamic integration of this unbiased mean force allows us to recover the unbiased
free energy difference ∆A associated with the metastable basin.

The bound BABF procedure is detailed step by step below:

1. The mean forces are estimated as:

A′
n(ζ) =

Ên[pAB (ζ|q)∂ζU(ζ,q)]

Ên[pAB (ζ|q)]
=

∑n−1
s=1 ∂ζU(ζ,qs)pAB

s
(ζ|qs)w(s)∑n−1

s=1 pAB
s
(ζ|qs)w(s)

, (3.78)

AB ′
n(ζ) =

Ên[πAB (ζ|q)∂ζUB(ζ,q)]

Ên[πAB (ζ|q)]
=

∑n−1
s=1 ∂ζU

B(ζ,qs)πAB
s
(ζ|qs)w(s)∑n−1

s=1 πAB
s
(ζ|qs)w(s)

, (3.79)

with ∂ζU(ζ,qs) = U(qs)− UHA(qs) and ∂ζUB(ζ,qs) = U(qs) + UB(qs)− UHA(qs).

2. The free energies An(ζ) and AB
n (ζ) for the step n are determined as:

An(ζ) =

∫ ζ

0
A′

n(ζ̃)dζ̃ +An(0), (3.80)

AB
n (ζ) =

∫ ζ

0
AB ′

n(ζ̃)dζ̃ +AB
n (0). (3.81)
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3. The corresponding conditional probabilities are calculated as:

pAB
n
(ζ|qn) =

exp
[
β(AB

n (ζ)− U(ζ,qn))
]∫ 1

0 exp [β(AB
n (ζ)− UB(ζ,qn))]dζ̃

, (3.82)

πAB
n
(ζ|qn) =

exp
[
β(AB

n (ζ)− UB(ζ,qn))
]∫ 1

0 exp [β(AB
n (ζ)− UB(ζ,qn))]dζ̃

. (3.83)

4. The effective force field is obtained by the equation:

FAn(qn) = −
∫ 1

0
∇qU

B(ζ,qn)πAB
n
(ζ|qn)dζ. (3.84)

5. Integration of the dynamic equation is carried out to obtain:

qn+1 = qn +PFAn(qn)δt+
√

2β−1δtBn. (3.85)

We show in Fig. 3.11 a simple test performed in a configuration containing one vacancy
(thus 127 atoms) at 3 000K with the ML potential (PBE functional), demonstrating in the
sub-figure (a) that the bound BABF method achieves the accuracy of ±0.1meV/atom within
5 × 104 Langevin steps, and 2 × 104 Langevin steps are enough to attain a relative error of
free energy less than ±1%. The bias removal procedure is validated by the same test, where
we prove that by using the present correction framework, the bias can be removed within a
relative error |∆A−∆AB |

∆A of 1.2 × 10−4% for 6 × 104 steps (Fig. 3.11(b)). Obviously, the force
FB is applied once (at about step 12 000) in the whole simulation.

3.3.3 Parallelization based on shared bias

To reach the ergodic limit, sampling can be accelerated by propagating several replicas of
the system simultaneously [250, 144]. P replicas of the system are created and each of them
is allocated to a distinct group of processors. Those replicas are simulated with independent
Wiener processes on a parallel computer architecture, while the evaluation of the mean force
is shared by all replicas: Eq. 3.74 and Eq. 3.76 are approximated by

AB ′
(ζ) =

∑P
p=1

∫
T3Ns ∂ζU

B(ζ,qp)πAB
⋆
(ζ|qp)ΠAB

⋆
(qp)dqp∑P

p=1

∫
T3Ns πAB

⋆
(ζ|qp)ΠAB

⋆
(qp)dqp

, (3.86)

A′(ζ) =

∑P
p=1

∫
T3Ns ∂ζU(ζ,qp)pAB

⋆
(ζ|qp)ΠAB

⋆
(qp)dqp∑P

p=1

∫
T3Ns pAB

⋆
(ζ|qp)ΠAB

⋆
(qp)dqp

. (3.87)

In this study, we often adopted this approach by using 32 replicas, with each replica computed
on 8 processors when employing the ML potentials.
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Figure 3.11: (a) Runtime relative errors (blue) and absolute errors (dark orange) during the BABF
free energy calculation, where ∆An is the free energy difference estimated at step n and ∆A is the
converged value. (b) Runtime relative errors of free energy difference between the biased value ∆AB

n

and the rescaled (debiased) value ∆An, when the force FB is applied. All the errors are evaluated in
a configuration containing one vacancy at 3 000K, using QNML potential with PBE functional.

To implement the numerical algorithm, the bound BABF procedure is discretized: the
(n + 1)th molecular dynamics move of replica p can be realized based on the first n steps of
this replica. Combining with the subsection 3.3.2, the algorithm can be detailed step by step
as follows:

1. The unbiased and biased mean forces are estimated as:

A′
n(ζ) =

∑P
p=1

∑n−1
s=1 ∂ζU(ζ,qp

s)pAB
s
(ζ|qp

s)∑P
p=1

∑n−1
s=1 pAB

s
(ζ|qp

s)
, (3.88)

AB
n
′
(ζ) =

∑P
p=1

∑n−1
s=1 ∂ζU

B(ζ,qp
s)πAB

s
(ζ|qp

s)∑P
p=1

∑n−1
s=1 πAB

s
(ζ|qp

s)
, (3.89)

where ∂ζU(ζ,qp
s) = U(qp

s)− UHA(qp
s) and ∂ζUB(ζ,qp

s) = U(qp
s) + UB(qp

s)− UHA(qp
s).
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2. The unbiased and biased free energies for the step n are evaluated as:

An(ζ) =

∫ ζ

0
A′

n(ζ̃)dζ̃ +An(0), (3.90)

AB
n (ζ) =

∫ ζ

0
AB ′

n(ζ̃)dζ̃ +AB
n (0). (3.91)

3. The corresponding conditional probabilities are calculated as:

pAB
n
(ζ|qp

n) =
exp

[
β(AB

n (ζ)− U(ζ,qp
n))
]∫ 1

0 exp [β(AB
n (ζ)− UB(ζ,qp

n))]dζ̃
, (3.92)

πAB
n
(ζ|qp

n) =
exp

[
β(AB

n (ζ)− UB(ζ,qp
n))
]∫ 1

0 exp [β(AB
n (ζ)− UB(ζ,qp

n))]dζ̃
. (3.93)

4. The effective force field is obtained by the equation:

FAn(q
p
n) = −

∫ 1

0
∇p

qU
B(ζ,qp

n)πAB
n
(ζ|qp

n)dζ. (3.94)

5. Integration of the Langevin dynamic equation is carried out to obtain:

qp
n+1 = qp

n +PFAn(q
p
n)δt+P

√
2β−1δtBp

n. (3.95)

where P denotes the projection that shifts the center of mass of the system to its initial
position and Bp

n is a normally distributed deviate representing a 3N -dimensional Wiener
process.

3.4 Fluid-phase free energy computations

In addition to crystalline solids, the Bayesian ABF method proposed in Subsection 3.2 can
also be applied to liquids. However, the selection of a reference system for a liquid is more
complex than for a solid. A common choice for a reference system is the ideal gas (ig). Yet,
a direct transformation path between an ideal gas and a liquid can intersect the liquid-vapor
coexistence line, leading to a liquid-vapor phase transition that is usually accompanied by
hysteresis [251]. To avoid passing through the two-phase region and ensure a smooth variation
of thermodynamic quantities along the path, a commonly employed approach is to carry out
the process in two stages:

∆Aig→liq = ∆Aig→pot +∆Apot→liq

=

∫ 1

0
⟨Upot − Uig⟩ζdζ +

∫ 1

0
⟨Uliq − Upot⟩ζdζ , (3.96)

where Uig = 0 since there are no interactions between the atoms in an ideal gas, and a
purely repulsive intermediate reference Upot is required. Given that such systems do not
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3.4. Fluid-phase free energy computations

undergo a liquid-vapor transition, both of the free energy differences ∆Aig→pot ∆Apot→liq can
be computed using the BABF method.

For selecting a reference system, the aforementioned ZBL potential formulated in Subsec-
tion 2.3 can be a suitable choice. Another option is the Uhlenbeck-Ford (UF) model [252, 253],
which is a purely repulsive pair potential characterized by a single parameter. An advantage
of the UF model is that only the liquid phase is stable within it, thereby preventing hysteresis
associated with phase transformations. The potential energy of the UF model is given by

UUF = −β−1
Ns∑
i<j

p ln

{
1− exp

[
−
(rij
σ

)2]}
(3.97)

where rij is the interatomic distance between the atoms i and j, σ is a length-scale parameter,
and p a non-negative scaling factor that controls the strength of the interaction. The free
energy of the UF model is represented as

FUF = Fig +∆Aig→UF , (3.98)

and the last term can be expanded as

∆Aig→UF = β−1
∞∑
n=1

B̃n+1(p)

n
xn . (3.99)

Here, x ≡ bρ with b ≡ 1
2

(
πσ2

)(3/2) and ρ = Ns/V the number density. Although the reduced
virial coefficients B̃n+1(p) can be computed with absolute precision, we prefer to use the
accurate numerical representation of the UF free energy, expressed in terms of splines, that is
available in Ref. [252]. It takes p and x as input and gives the value of ∆Aig→UF.

As Uig(q) = 0, the extended potential takes the very simple form ζU(q). This simple
simulation problem is used to conduct a comparative analysis of the relative performance of
the BABF and ABF-bin methods. The ABF-bin method directly samples (ζ,q) to compute
Eq. 3.42:

A′(ζ) =

∫
T3Ns U(q)PA⋆(ζ,q)dq∫

T3Ns PA⋆(ζ,q)dq
. (3.100)

This method consists in considering the dynamics{
dζt = α(A′

t(ζ)− U(qt)) dt+
√
2αβ−1 dW ζ

t ,

dqt = −∇qU(qt) dt+
√
2β−1 dWq

t .
(3.101)

The interval [0, 1] is equally divided into M sub-interval (M = 200 for the present calculation),
denoted as zm = [m−1

M , m
M [ for m = 1, . . . ,M − 1 and zM = [M−1

M , 1]. Then, the mean force is
evaluated at the mid-point of each interval ζm = 2m−1

2M . It should be noted that the superscript
m is used to index the grid of the discretization of the coupling parameter, while the subscript
n denotes the values sampled from the dynamics (Eqs. 3.101) at step n. We introduce the
indicator function 1ζs∈ζm that takes value one if ζs belongs to the bin of ζm (i.e., ζs ∈ zm)
and zero otherwise. By the ergodic theorem, the mean force evaluated at ζm and step n is
computed as:

A′
n(ζ

m) =

∑n−1
s=1 U(qs)1ζs∈ζm∑n−1

s=1 1ζs∈ζm
. (3.102)
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To validate the application of our methods to liquids, we conducted a computation on a
system containing 128 atoms of molten tungsten at 4 000K, with the UF parameters p = 1
and σ =

√
(2)2/3/π [252]. Both the BABF method and the ABF-bin method are utilized

to estimate ∆Aig→UF, as shown in Fig. 3.12. The results are then compared with the value
obtained from the spline representation in Ref. [252], indicated by the dashed line. The
values of ∆Aig→UF given by spline representation, BABF and ABF-bin are 2.17 eV, 2.20 eV
at 200 000 steps and 2.01 eV at 500 000 steps, respectively. Figure 3.12 presents the runtime
estimate of ∆Aig→UF during the dynamics of the two ABF methods, in absolute value (sub-
figure (a)) and relative difference compared to the spline representation (sub-figure (b)). The
BABF calculation at step 200 000 has converged, with the result being sufficiently close to
the spline value, showing a discrepancy of only 0.234 meV/atom (1.38%). This difference may
also arise from the fitting error of the spline representation. However, the ABF-bin method
converges slowly and does not converge even at step 500 000. This observation demonstrates
the advantage of the BABF method in terms of convergence. It should also be noted that
sampling liquid configurations requires more integration steps compared to sampling solid
configurations.

Once the free energy difference ∆Aig→UF is determined, the remaining work is simple. To
obtain the full anharmonic free energy of a liquid via Fliq = Fig +∆Aig→UF +∆AUF→liq, the
last term ∆AUF→liq can be directly computed using the BABF method, with the UF model
serving as the reference system. The free energy of the ideal gas is given by

Fig = Nsβ
−1

(
ln ρ− 1 +

∑
α

cα ln cα

)
+ 3β−1

Ns∑
i=1

ln Λi , (3.103)

with cα the concentration of species α and Λi the thermal de Broglie wavelength.

3.5 Conclusion of the chapter

The computation of free energy differences is a crucial and active research field in ma-
terials science, as well as in computational statistical physics, chemistry, and biology. This
chapter presents how to investigate the free energy profile of a target system, along the ther-
modynamic path from a reference system with accessible free energy, through phase space
sampling. Despite significant progress in recent decades, calculating anharmonic free energy
at finite temperatures from precise electronic structure calculations (DFT) remains an ongoing
challenge. As a result, high-temperature properties and performance of materials cannot be
accurately predicted.

As an alternative of DFT calculations, ML potentials approach the DFT accuracy at a
computational cost several orders of magnitude lower than the DFT but several orders of
magnitude higher than the traditional EAM potentials. With existing sampling methods, it
is still a crude task to employ the ML potentials, especially at high temperatures. Within this
context, the author proposed:
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Figure 3.12: Comparison between the BABF method and the ABF-bin method, in computing the
free energy difference between the UF model and the ideal gas ∆Aig→UF = AUF − Aig, for a molten
tungsten system of 128 atoms. (a) Runtime estimate of ∆Aig→UF during the dynamics of BABF and
ABF-bin. The horizontal line denotes the reference value 2.17 eV given by the spline representation in
Ref. [252]. (b) Runtime relative difference between the two ABF methods and the spline representation,
constrained within the range of [-20%, 20%].

• Accelerated Bayesian adaptive biasing force (BABF) method (Section 3.2), a robust ap-
proach to compute the fully anharmonic free energy of crystalline solids, that is approx-
imately 100 times faster than traditional TI for achieving an accuracy of 0.1 meV/atom,
and about 800 times faster than conventional MD simulations for obtaining the bulk
modulus (the second derivative of free energy) at high temperatures.

• Bound BABF method (Section 3.3), an unbiased free energy estimator for a specified
metastable state, based on constrained sampling that prevents transitions between dif-
ferent energy basins.

• BABF method for fluid-phase free energy sampling built on a two-stages scheme (Sec-
tion 3.4).
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3. Enhanced sampling methods for free energy landscape

Enhanced numerical efficiency of these methods allows for the use of ML potentials, mak-
ing it feasible to explore the high-temperature free energy landscape with DFT accuracy at a
reasonable computational cost. These methods provide access to exact thermodynamic prop-
erties, including those derived from the second derivatives of the free energy, as well as the
behavior of defects up to the melting point with DFT accuracy. Relevant applications of these
methods incorporating ML potentials will be presented in the next chapter.
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4.1. Applications to bcc tungsten

As previously mentioned, the computational cost (CPU time) per Langevin step for ma-
chine learning (ML) force fields, as presented in Chapter 2, is significantly lower than that of
equally accurate DFT calculations. However, it is several tens to four orders of magnitude
higher than that of empirical EAM potentials. The accelerated Bayesian adaptive biasing force
(BABF) method, detailed in Chapter 3, offers an effective solution to this efficiency problem
by achieving computational speeds several hundred times faster than traditional MD simula-
tions. This computational framework, which combines ML force fields with a fast and robust
free energy sampling method, enables the exploration of high-temperature properties of ma-
terials with DFT accuracy at temperatures up to their melting point. This chapter presents
the applications of this computational framework to bcc tungsten (W) in Section 4.1 and
Ta-Ti-V-W high-entropy alloys (HEAs) in Section 4.2. We predict thermodynamic properties
such as linear expansion, bulk modulus and elastic constants for W in Subsection 4.1.1. The
free energy profile of vacancies is rigorously investigated using the bound BABF method to
explain the observation of voids in W, as shown in Subsection 4.1.2. The same study is carried
out for the HEA system, examining the elastic properties in Subsection 4.2.2 and vacancy
formation in Subsection 4.2.3. For each topic, appropriate ML force fields are constructed
based on the techniques presented in Chapter 2, and then employed within a corresponding
BABF method. Throughout this chapter, all the BABF calculations are performed using the
SVD-filtered harmonic approximation (HA-SVD) reference unless otherwise stated. In addi-
tion to the direct prediction of material properties, we demonstrate in Section 4.3 an intriguing
correlation between the harmonic and anharmonic contributions to the free energy, observed
via the BABF calculations for a bunch of ML potentials. This discovery allows for a rapid
estimation of anharmonicity without the need for sampling.

4.1 Applications to bcc tungsten

Tungsten (W) is a highly promising material for the first-wall near the divertor area in
fusion reactors because of its exceptional physical properties at high temperatures [254, 255].
The divertor target plates are the most thermally loaded in-vessel components in a fusion
reactor, where the plasma-facing components (PFCs) experience high heat fluxes due to in-
tense plasma bombardment, radiation, and nuclear heating. In the heat flux profile specified
for the ITER divertor targets, the peak heat flux is assumed to be 10MW/m2 for the quasi-
stationary operation (2 h) and 20MW/m2 for slow transient events (<10 s) [256, 257]. 3D
thermo-hydraulic simulations indicate that the maximum temperature can exceed 2000 K un-
der a heat flux of 20MW/m2 [258]. Tungsten possesses the highest melting point among all
metals. In the work package Divertor of EUROfusion Consortium, seven different design con-
cepts of PFCs are currently under development for high heat flux application (see Table 2 of
Ref. [258]). All of them are composed of tungsten armor (blocks or tiles) and a cooling pipe
at the center serving as a heat sink. The high melting point and high temperature strength
of tungsten enables it to mechanically withstand the extreme temperatures generated in the
reactor, ensuring structural integrity under severe heat fluxes. Furthermore, its high thermal
conductivity is crucial for efficient heat dissipation, preventing overheating and enhancing the
overall thermal management of the reactor. These attributes collectively make tungsten a
standout choice for PFCs in fusion energy systems.
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4.1.1 High-temperature thermodynamic properties

Despite the aforementioned huge industrial interest of W, its high-temperature mechanical
properties remain perplexing. As presented in Fig. 4.1, there are no direct measurements of
the bulk modulus of the bcc phase of W at temperatures higher than 2 100 K, while numerical
calculations of a system at such temperatures suffer from severe statistical fluctuations. In
this subsection, our main application concerns the thermodynamic properties of crystalline
tungsten.

Figure 4.1: Adiabatic bulk modulus BS of W. Experimental values are obtained from four different
experiments in the temperature range from 4.2 K to 2 073.15K [259, 260, 261, 262], while the calculated
values are extended up to the melting point by two models [263, 264].

The performance of the accelerated BABF method, as discussed in Section 3.2, has been
demonstrated through comparisons with MD simulations for calculating the bulk modulus of W
at temperatures higher than 3000K. Here, the temperature dependence of elastic constants for
W is investigated using this approach. We conduct BABF calculations with various interatomic
potentials across a wide temperature range (10 K to 3 800 K) and compare the results with the
experimental values, available in the range between 4.2K and 2 073.15 K [261, 262].

Firstly, we detail how to compute the bulk modulus B and elastic constants Cij from the
relationship between free energy and deformations. Let ε = (ε1, ε2, ε3, ε4, ε5, ε6) represent the
strain tensor with its six independent components: ε1 ε6/2 ε5/2

ε6/2 ε2 ε4/2
ε5/2 ε4/2 ε3

 . (4.1)

For the bulk modulus, only volumetric strains ε1 = ε2 = ε3 = ε need to be considered, and
the rest (ε4, ε5 and ε6) are set to zero. At a given temperature T , we can determine a set of
free energies Fi = F (Vi) by performing BABF calculations at several volumes Vi around the
expected equilibrium volume. For the case of tungsten, eleven values of ε equally distributed
in the interval [−0.8%, 0.8%] are selected, yielding ten distinct volumes. We then make a
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least-squares fit of the set (Vi, Fi) to the Birch-Murnaghan equation of state:

F (V ) = F0 +
9V0B

16


[(

V0
V

)2/3

− 1

]3
B′ +

[(
V0
V

)2/3

− 1

]2 [
6− 4

(
V0
V

)2/3
] (4.2)

with V0 the equilibrium volume, B the isothermal bulk modulus and B′ the pressure derivative
of the bulk modulus. V0 corresponds to the minimum of the free energy F , while B and B′ can
be derived from the fit. In practice, we often perform a first BABF computation to estimate
V0, followed by a second computation with Vi expanded around V0 to obtain the bulk modulus.
The temperature dependence of V0 also provides the linear thermal expansion.

At a given temperature T , when the applied strain ε is small, the free energy F of a system
with volume V can be expanded around ε = 0:

F (ε) = F (0)− P (V0)∆V +
V0
2

6∑
i,j=1

Cijεiεj +O[ε3i ] (4.3)

where P (V0) is the pressure of the undeformed lattice at volume V0, ∆V is the change in the
volume of the lattice due to the strain, Cij are the elastic constants in Voigt notations, and
O[ε3i ] notation indicates that the neglected terms in the polynomial expansion are cubic and
higher powers of εi. For cubic lattices, there are only three independent elastic constants, C11,
C12 and C44. The bulk modulus can be related to the elastic constants by the formula

B = (C11 + 2C12)/3 . (4.4)

The shear modulus C ′ = (C11 − C12)/2 and the modulus C44 can be evaluated from Eq. 4.3.
For the shear modulus, we apply volume-conserving strains such that ∆V = 0 in the following
form:

ε = (ε,−ε, ε2/(1− ε2), 0, 0, 0) , (4.5)

and Eq. 4.3 becomes

∆F (ε) = F (ε)− F (0) = V0(C11 − C12)ε
2 +O(ε4) . (4.6)

We employ a similar technique for determining the modulus C44 by considering volume-
conserving strains, formulated as:

ε = (0, 0, ε2/(4− ε2), 0, 0, ε) , (4.7)

then
∆F (ε) = F (ε)− F (0) = V0C44ε

2/2 +O(ε4) . (4.8)

Same as the case of bulk modulus, we take eleven values of ε equally distributed in the
interval [−0.8%, 0.8%] and compute the corresponding free energy for each strain using the
BABF method. The values of C11 −C12 and C44 can then be determined by fitting ∆F/V0 to
a quadratic form of ε.
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It should be noted that the elastic moduli calculated in this manner are the isothermal
quantities. To compare with experiments, the adiabatic results directly obtained from exper-
iments should be converted to the isothermal results using the following relations:

CT
11 = CS

11 −BS +BT ,

BT =
CPB

S

CP + TV α2BS
,

C ′T = C ′S , CT
44 = CS

44 ,

(4.9)

where the superscripts T and S represent the isothermal and adiabatic quantities, CP and α
denote the experimental isobaric heat capacity and the volumetric thermal expansion, respec-
tively [265, 266, 263, 261, 262]. Here, for each temperature, the elastic properties are rescaled
by the corresponding values at the Debye temperature TDebye, equal to 400 K for W [228].

The adiabatic elastic constants of W were successively measured by pure continuous
wave techniques (from 77K to 500 K [260]), pulse-echo techniques (from 4.2K to 300K [261]
and from 297.15 to 2073.15 K [262]) and sampled continuous-wave techniques (from 4.2 K to
77 K [259]). To develop a high-temperature model which cannot be experimentally achieved,
an empirical cBΩ-model [267] of self-diffusion was applied to determine the bulk modulus
of W [268]. With this model, Wang and Reeber evaluated the tungsten bulk modulus from
self-diffusion, thermal expansion and specific heat data over a wide range of temperature (300
- 3600 K) [263]. Besides, Gustafson provided a polynomial expression of isothermal bulk mod-
ulus for W through evaluating the available experimental data [269], based on which Saxena
and Zhang gave an estimation up to 3700K [264].

4.1.1.1 Performance of EAM potentials

In this work, we first perform BABF calculations to compute the linear thermal expan-
sion, bulk modulus, and three elastic constants at various temperatures using five different
traditional EAM potentials: WDD by Derlet et al. [21], WEAM2 and WEAM4 by Marinica et
al. [22] (denoted as EAM2 and EAM4 in Ref. [22]), WJW by Juslin and Wirth [270]), as well as
WMB by Mason et al. [271], commonly used for atomic-scale modeling of bcc W. As reported
in Fig. 4.2, none of the five EAM potentials can correctly reproduce the experimental curves.
The curves of WDD and WMB strongly deviate from that of the experiments. WEAM2 and
WEAM4 provide an opposite trend up to 800 K compared to the experiments: for CT

11, CT
12

and CT
44, the computed values augment while the measured values decrease with increasing

temperature. WJW potential can describe the decreasing tendency of elastic constants. Nev-
ertheless, the slope is too large, and abnormal fluctuation occurs at high temperature due
to the potential instability. There are several reasons why these potentials cannot correctly
reproduce the temperature dependence of elastic constants in W: (i) firstly the formalism is
too basic to take into account the fact that W is a metal for which the Fermi level lays into
a pseudo-gap [22, 272]. This fact enhances the angular characters of the bonds, which cannot
be reproduced by the radial many-body EAM force fields. (ii) For all these potentials the
database used for fitting is very poor, without much data beyond 0 K (except WEAM2 and
WEAM4 for which a few W liquid configurations are included). The relatively simple physical
model of the EAM formalism, along with the limitations in the fitting information, does not
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Figure 4.2: (a) Linear thermal expansion, (b) rescaled bulk modulus and (c-e) rescaled elastic constants
of bcc W, from 0K to the melting point, computed employing BABF-HA-SVD method and five different
traditional EAM potentials: WDD [21], WEAM2 [22], WEAM4 [22], WJW [270], and WMB [271].
We take the ratio of the elastic properties at temperature T to its value at the Debye temperature
TDebye = 400 K [228]. In all panels, the circles denote the results of BABF-HA-SVD calculations with
respective force fields whilst the black lines and dash/dotted black lines are experimental [262] and
calculated values [263, 264], respectively. All the subplots share the legend provided in (a) and (b).

allow for accurate predictions of high-temperature properties of W, such as the evolution of the
bulk modulus with temperature (Fig. 4.2(b)). Therefore, in the next subsection, we will turn
to the class of ML potentials, which provide a remarkable improvement of accuracy compared
with the empirical potentials [40, 273, 274] especially for W [30, 206, 240].

4.1.1.2 Prediction of elastic properties based on existing ML force fields

As previously stated, the traditional EAM force fields fail to reproduce thermo-elasticity
of bcc W. Employing the fast and robust BABF method developed in the present study, we
will run through the numerically heavy but accurate ML force fields. During the past several
years, various types of ML interatomic potentials have been developed for W, which are most
commonly based on the kernel methods, including the GAP [30, 206], linear potential [38, 240]
and quadratic noise potential [240]. Moreover, the framework of deep learning and neural
network is also used to construct the potential model for W [275].

In this subsection, we perform the BABF calculations of elastic properties and thermal
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Figure 4.3: The same elastic properties of bcc W as in Fig. 4.2, evaluated using ML potentials with
different formalism: LML [240], QNML [240], GAP [30], and KNML. In all panels, the circles de-
note the results of BABF-HA-SVD calculations with respective force fields whilst the black lines and
dash/dotted black lines are experimental [262] and calculated values [263, 264], respectively. All the
subplots share the legends provided in (a) and (b).

expansion in bcc W using different types of ML potentials and compare our results with
the experimental values [261, 262]. Firstly, we investigate the existing recent ML potentials
for W, which are constructed with linear formalism (LML) and quadratic noise formalism
(QNML) [240]. These potentials are designed for the simulation of point and extended defects,
and the underlying database contains some finite-temperature W systems such as bulk and
liquid state. The numerical speed of these ML potentials, which approach the accuracy of
DFT calculations, is much slower than that of the EAM potentials. The linear expansion and
elastic properties given by both ML potentials (Fig. 4.3) are in much better agreement with
the experimental results compared to those from the EAM potentials (Fig. 4.2). However, the
rescaled bulk modulus calculated with QNML starts deviating from the experimental curve
around 1000 K (Fig. 4.3(b)). In addition, the calculations of the elastic constants, e.g., C44

in Fig. 4.3(e), reveal the limitations of the two ML potentials for the calculations of high-
temperature elasticity.

Therefore, the widely used model GAP [30] for bcc W is considered. High efficacy and
robustness of the present BABF-HA-SVD approach make it feasible to employ this compu-
tationally heavy force field, of which the numerical cost per Langevin step is about 15 times
higher than that of the LML and QNML potentials. As shown in Fig. 4.3, the previously
mentioned deficiencies of LML and QNML are dealt with using the GAP. Nevertheless, the
linear expansion obtained with GAP deviates from the experimental curve at high tempera-
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tures. This can be explained by the lack of configurations above 1000 K in the database of
GAP. In the next subsection, we present the strategy to improve the accuracy of predicting
these high-temperature properties by adopting the aforementioned concept of active learning
for the optimization of ML force fields.

4.1.1.3 Improvement of ML force fields

Based on the concept of active learning described in Subsection 2.1.1.2, the learning ca-
pacity of machine learning force fields can be increased by changing the formalism while the
transferability can be optimized by increasing the size and the morphologies of the atomic
environments in the database. Firstly, we note that no configuration above 1000 K exists in
the training database of the GAP force field, while in that of LML and QNML, only the
configurations at 300 K, 1000 K and 3000 K exist. However, the results of the GAP formalism
appear to be very accurate up to 2 000 K compared to experimental data, and they are more
reliable than the numerically efficient but lower-capacity models yielding the LML and QNML
potentials. Therefore, we propose to enlarge the database by collecting information from a
wider range of temperatures and simultaneously increasing the learning capacity of the ML
model. Here, the bispectrum SO(4) descriptor [169] previously used in linear and quadratic
noise regression to construct the LML and QNML force fields is similarly employed in the
higher-capacity kernel-based models. This descriptor consists of D = 55 components with a
cutoff radius of Rcut = 5.0Å and an angular moment cutoff jmax = 4. The Machine Learning
Dynamics (MiLaDy) package is used to construct the associated force field.

To complete the database, MD simulation in NPT ensemble is carried out using the
MiLaDy-Lammps module [157]. The simulation system contains 128 atoms, and the temper-
ature varies linearly from 100 K to 5 000 K in 245 000 steps. From the MD simulation, 38 con-
figurations are randomly selected and then recalculated with DFT using VASP 6.2.0 [158] and
the PAW pseudopotential for W that accounts for 14 valence electrons [Xe4f 14]5s25p66s15d5

(known in VASP database as W_sv). The exchange-correlation energy is evaluated using the
PBE parametrization [249, 276] of GGA. The DFT setup is exactly the same as in the database
from Ref. [240]. In this work, the training dataset is composed of the MD-generated configu-
rations and the original database of the previous LML and QNML potentials [240].

We use the normalized polynomial kernel formulated in the subsection 2.2.3.1:

k(Ds,a, zk) =
k̃(Ds,a, zk)√

k̃(Ds,a,Ds,a)
√
k̃(zk, zk)

,

k̃(Ds,a, zk) =

(
σ2 +

Ds,a · zk
2l2

)p

. (4.10)

Here σ, l and p are the kernel hyperparameters. In this framework, σ = 0 because after the
linear fitting, the difference between the DFT target values and the LML prediction follows a
normal distribution with zero mean [240]. After many trials the other two hyperparameters are
set to l = 0.05 and p = 4. The K = 3615 sparse points zk ∈ RD are selected via sampling the
Mahalanobis distance of the fitting database, as presented in the subsection 2.2.2. We compute
the statistical distance of each local atomic descriptor Ds,a for all atoms of the database that
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contains in total M = 47 277 data points. We recall that the Mahalanobis distance of the
mth local atomic environment with respect to the covariance matrix Σ ∈ RD×D of all M local
descriptors contained in the database can be written as:

d(Dm) =
[
(Dm − µ)⊤Σ−1 (Dm − µ)

] 1
2
, (4.11)

Σ =
1

M − 1

M∑
m=1

(Dm − µ)(Dm − µ)⊤ ,

µ =
1

M

M∑
m=1

Dm .

The statistical distance d(Dm) for each point is computed to measure the distance between this
point and the distribution of the whole database. Instead of directly sampling the statistical
distance d(Dm), we sample dp(Dm) with a very low power p, here equal to 0.05. Then the
interval ID = [minm(dp(Dm)),maxm(dp(Dp))] is equally divided into several segments, and
one point is selected as kernel sparse point in each sub-interval if possible. Firstly, from the
entire database for which M = 47 277, K = 2812 sparse points are collected from 4 000 sub-
intervals of ID. Secondly, we make another dense selection, in addition to the previous one,
in the portion of the descriptor space that represents the primarily important components of
the database for the physics of our study. In our case, since we intend to have good elastic
constants at high temperatures, we intensify the collection of the configurations related to
elastic deformations and finite-temperature MD simulations. Consequently, we perform the
same procedure only for three special classes of the database, including the bulk systems under
elastic deformations at 0 K, and the perfect bulk systems sampled from MD simulations at
300 K and 3 000 K [240]. From those classes consisting of 5 142 data points we extract 803
sparse points from 1000 sub-intervals.

4.1.1.4 Prediction model of elastic properties

Using the above KNML formalism and the fourth order polynomial kernel, we train a
new potential on the new database oriented towards high-temperature properties of bcc W.
The present KNML potential is validated by giving almost the same results at reasonable
low temperatures (< 2 000K) as the GAP (Fig. 4.3), which is also based on the fourth order
polynomial kernel. The difference between the results of KNML and of GAP, especially at high
temperatures, is also reasonable considering difference in database, selection of sparse points
and fitting. In terms of computational speed, our KNML potential offers a 6-fold increase
over GAP potential. Gratifyingly, the predictive ability of the KNML potential is satisfying.
All the properties computed with this potential (Fig. 4.3) are in excellent agreement with
the experimental curves. The lattice expansion in Fig. 4.3(a) closely follows the experimental
value up to the melting point. This fact is surprising because the present formulation does not
take into account the electronic entropy. Perhaps, the present agreement does not exclude an
error compensation in the estimation within GGA-PBE exchange-correlation functional, i.e.,
the finite-temperature effects are amplified by the same amount as the electronic free energy.

Slight discrepancy is observed for all elastic constants at temperatures below the Debye
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temperature of W. This behavior is foreseeable because our free energy calculation method,
BABF, is based on classical mechanics statics and cannot account for the quantized zero-point
energy of phonons in bcc W. This work focuses on the high-temperature properties of bcc W,
while the measurable impact of quantized phonons at low temperature has been investigated
in a large number of recent studies [277, 278, 279]. At the intermediate temperature between
1000 K and 2000 K, a discrepancy in bulk modulus between the experimental observation and
the present KNML potential-based calculation can also be observed. However, this difference
is lower than the 0 K difference between the bulk modulus value from the DFT GGA-PBE
approach (304.5 GPa) [240] and the low-temperature experimental value (314.73 GPa) [259].
The overall consistency between the experimental measurements and the present computa-
tional results is remarkable in terms of the temperature dependence of the elastic properties,
which provides a novel perspective on the contribution of electronic entropies and the role of
exchange correlation functional.

Based on the results calculated with the accurate KNML potential, a polynomial model is
proposed for the rescaled isothermal bulk moduli and elastic constants of bcc W from 0 K to
the melting temperature:

BT (T )

BT (TDebye)
= −4.434× 10−12T 3 − 2.082× 10−9T 2 − 4.042× 10−5T + 1.013 ,

CT
11(T )

CT
11(TDebye)

= −3.018× 10−13T 3 − 2.209× 10−8T 2 − 6.875× 10−5T + 1.029 ,

C ′T (T )

C ′T (TDebye)
= 5.800× 10−12T 3 − 5.166× 10−8T 2 − 1.103× 10−4T + 1.054 ,

CT
44(T )

CT
44(TDebye)

= −2.592× 10−12T 3 − 1.343× 10−10T 2 − 6.616× 10−5T + 1.026 .

This model with proven correctness could be useful to predict the elastic behaviors of bcc W
at extremely high temperature which cannot be reached by the experiments.

4.1.2 Free energy landscape of vacancies

Point defects, such as vacancies, have a significant influence on diffusion and microstruc-
tural evolution in solids. The presence of vacancies facilitates the movement of atoms, thereby
enhancing diffusion rates, which is critical in processes like sintering, phase transformations,
and creep. Additionally, the accumulation and interaction of these point defects can lead to
the formation of dislocations, grain boundaries, and other microstructural features. These
changes in microstructure can further affect the mechanical properties, thermal stability, and
overall performance of the material, particularly under high-temperature conditions and dur-
ing long-term operation. Understanding the effects of temperature on defects is particularly
important in materials like tungsten, known for its high-temperature applications.

As in many metallic systems, vacancy clusters in tungsten can be directly observed using
transmission electron microscopy (TEM). However, there is still no consensus regarding the
mechanism of their formation. There is no experimental evidence for the existence of vacancy
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clusters at temperatures lower than a few hundred Kelvin. No clusters were observed even
under the conditions of vacancy ballistic migration, where vacancies are displaced during
the ballistic regime of TEM due to collisions between electrons and atoms near the vacancy.
Despite the diffusion of vacancies induced by electron irradiation, vacancy aggregation has not
been reported [279]. Electrical resistometry and ion field microscopy have been used to study
tungsten samples previously heated to high temperatures close to the melting point and then
quenched to retain the excess vacancies [232, 280, 281, 282]. Vacancy loops and voids were
observed to appear during subsequent annealing treatments in the temperature range from
800K to 1000K [232]. Such experimental observations raise a natural question regarding the
formation and clustering mechanism of vacancies in this material. Formation of voids implies
firstly the formation of small clusters as di-vacancy. Di-vacancy in tungsten, as in other bcc
metals of the group VI, such as Mo, has an unusual energy landscape [233, 237]. As mentioned
in Subsection 3.3.1, previous DFT calculations state that di-vacancies are strongly unstable
in 2NN configurations, and either unstable or stable in 1NN configurations, depending on the
details of the calculations. We attribute these parameter-dependent trends to the insufficient
convergence of the calculations, which resulted from an inadequate density of the k-points
mesh used.

Bound BABF

 

Energy minimization

DFT Database 

Basic

database

Con�gurations 

containing vacancies

Machine 

learning 

potentials

Model=QNML/h-LML
Vibrational

free energy

Static energy

Con�gurational

free energy

E0

Fcon

Fvib

Free

energy
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Figure 4.4: Workflow implemented in the present study. The MLPs are constructed using databases
specifically tailored for vacancy studies, based on two GGA functionals, AM and PBE. The model is
fitted using the bispectrum SO(4) descriptor [169] and its hybrid version, employing both quadratic
and linear formalisms. For each configuration of interest (mono-vacancy, 1NN and 2NN di-vacancies),
energy minimization through molecular statics provides the static energy E0. The vibrational free
energy Fvib is obtained via bound BABF calculations. By combining E0 and Fvib with the config-
urational free energy Fcon, which depends only on the vacancy type, the free energy profile can be
determined at different temperatures, allowing for the further calculation of formation and binding
free energies for vacancies.

In this subsection, the formation of vacancy clusters in bcc W is systematically investi-
gated. We first present in Subsection 4.1.2.1 the experimental TEM observations from Kazuto
Arakawa at Shimane University, demonstrating the existence of a threshold temperature below
which void formation is inhibited and above which voids are stabilized. Understanding this
phenomenon is crucial for comprehending the temperature effects on the mechanical properties
of W due to void formation. This can be achieved by quantifying the temperature effects on
the formation and binding free energy landscape of small vacancy-type defects. To achieve this
goal, we face three major challenges. Firstly, despite recent advances in free energy calculations
using TI [112, 113], the aforementioned dependence of the convergence rate on the number
of k-points makes it unfeasible to sample with an entirely DFT-computed force field within
reasonable CPU cost. Secondly, the differences in binding energies are very small, requiring
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the use of a highly accurate free energy calculation method. Thirdly, even with an accurate
sampling method, it should be able to sample a given metastable state without allowing the
system to transition from one free energy basin to another. To address these challenging prob-
lems, we employ ML force fields that achieve DFT accuracy, trained on sets of converged DFT
calculations using k-point meshes of appropriate density. The construction of the ML poten-
tials will be detailed in Subsection 4.1.2.2. In particular, configurations containing vacancies
are additionally added to the database. For fast sampling and robust free energy estimation
of a specified metastable state with the ML force fields, we rely mainly on the bound BABF
approach proposed in Section 3.3. Evaluation of the formation and binding free energy for
di-vacancies will be elaborated in Subsection 4.1.2.3.

The present workflow is illustrated in Fig. 4.4. Beforehand, three ML potential variants are
trained on databases specific to vacancy properties. For each potential, four thermodynamic
configurations, i.e., the bulk crystal, the mono-vacancy and the 1NN and 2NN di-vacancies
(cell configurations can be found in Fig. 3.10(a)), are investigated in the canonical ensemble
to obtain the vibrational free energy. The full free energy profile is therefore accessible by
adding the configurational free energy and the static energy at equilibrium computed from
energy minimization. The electronic free energy is omitted here since its contribution to the
vacancy formation free energy is negligible up to 2 000K [283]. We compute the formation free
energy for each defect type from the corresponding free energy landscape and further deduce
the binding free energy of 1NN and 2NN di-vacancies at different temperatures from 10K to
2 000K. The binding free energy results show that the interaction of di-vacancies changes
from repulsion to attraction at a critical temperature, and this conversion occurs at a lower
temperature for the 1NN configuration than for the 2NN one. We demonstrate that in W,
finite temperature excitations play an important role in the physics of defects, in particular in
determining their aggregation properties.

4.1.2.1 Experimental observations of void formation

Figure 4.5: (a) Vacancy (Frenkel pair) production induced by the incident electrons under the beam
(acceleration voltage: 2000 kV; beam intensity: 3.3 × 1022 m-2s-1; temperatures: 628, 665, 813, 850,
924, 1034, 1145, 1182, 1219 K). (b) Vacancy migration driven by an acceleration voltage of 1000 kV.
No Frenkel pair production at this stage.

The experimental methods in this study are similar to those used in Ref. [279]. Specimens
were prepared from the W (110) TEM sample at purity of 99.9999 mass per cent. For vacancy
production (Fig. 4.5), Frenkel pairs were created in the thin foil specimens via knock-on dis-
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placement by high-energy electron irradiation in a high-voltage electron microscope (Hitachi
H-3000). Nine temperatures were considered: 628, 665, 813, 850, 924, 1034, 1145, 1182 and
1219 K. The acceleration voltage was 2 000 kV, the beam flux was 3.3× 1022 m-2s-1 (1.0× 10−4

displacements per atom per second, dpa/s), and the dose was 0.54 dpa for the three lowest
temperatures and 0.80 dpa for the remaining temperatures.

Figure 4.6: TEM images of samples at different temperatures provided by Kazuto Arakawa. There is
no vacancy cluster at 628K and 665K, while at a temperature equal to or higher than 813K, vacancy
clusters are observed.

For the vacancy observations, electron beam is used to induce the vacancy mobility, with
acceleration voltages of 1000 kV, which is below the threshold for point defect generation in
tungsten [284]. The specimen thickness is 80 nm, measured with equal-thickness fringes. The
observations were carried out using the bright-field imaging with a reflection of g = 200. As
shown in Fig. 4.6, voids (vacancy clusters) were observed only at temperatures equal to or
higher than 813K; no voids were observed at 628K and 665K. Figure 4.7 provides the void
density at different temperatures. The density at 665K and 813K is below the observation
limit of the microscope, indicating no observation of voids at these temperatures. The absence
of voids formed from moving vacancies suggests a repulsive interaction between vacancies at
temperatures lower than a threshold value between 665K and 813K. Above this temperature,
voids are produced and stabilized, implying that the vacancies become attractive to each other.

4.1.2.2 ML force fields for vacancy study

The associated force fields are built with MiLaDy package [38, 240]. Content of ML database
has a strong impact on the accuracy and transferability of the potential. Here we detail in
Table 4.1 the list of configurations in the database used for fitting the potentials for W. In par-
ticular, with the aim of modeling vacancies in W, we include in the database the configurations
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Figure 4.7: Void density at different temperatures. Suppression of void formation at low temperature
(< 665− 813K) indicates the repulsive interaction between vacancies.

containing vacancies, collected from the nudged elastic band (NEB) method and the projected
average force integrator (PAFI) calculations [285]. The NEB calculations are performed for

Figure 4.8: Configuration pairs containing (a) 1 vacancy, (b) 2 vacancies and (c) 3 vacancies that
define the transition paths in NEB and PAFI calculations for the database construction. The difference
between the two configurations in each pair results from a single vacancy migrating to its 1NN lattice
site.

finding the atomic configurations associated with a minimum energy path (MEP) of the tran-
sition between two states at 0 K. As illustrated in Fig. 4.8, we consider the transition paths
between two configurations both containing 1, 2 or 3 vacancies. These transitions correspond
to the migration of a single vacancy to its 1NN lattice site. Note that the two configurations
in graphs (a) and (c) of Fig. 4.8 are equivalent with boundary conditions, so the transition
paths should be symmetric, while this is not the case in graph (b). At finite temperatures,
the minimum free energy path (MFEP) is computed instead of the FEP, again between the
two states of the configuration pairs in Fig. 4.8. The configurations along the MFEP can be
derived using the PAFI method. Initially, the MEP is obtained via the NEB technique, after
which a series of hyperplanes perpendicular to the MEP are defined, as illustrated in Fig. 4.9.
Constrained MD are then performed within each hyperplane, involving a thermalization pro-
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cess followed by sampling using overdamped Langevin dynamics. This procedure allows the
system to move towards a minimum free energy state. By applying this method across a series
of hyperplanes along the MEP, the MFEP is accurately determined.

Figure 4.9: Illustration of the sampling process by PAFI [286]. An estimate of the minimum free
energy position is obtained by repeating the thermalization and constrained MD several times within
the hyperplanes ∂rX0(r) (shown in orange) perpendicular to the MEP X0(r) with respect to some
reaction coordinate r.

Table 4.1: List of configurations for the database of W oriented to vacancy studies.

System W(Nd,ϵ)
Temperature in K Total

0 875.0 1750 2625 3500
bulk, ϵ = +0% 1 10 10 10 10 41
bulk, −5% ≤ ϵ ≤ 5% 1000 0 0 0 0 1000
1 vacancy, ϵ = 0% 10 10 10 10 10 50
2 vacancies, 1NN 10 10 10 10 10 50
2 vacancies, 2NN 10 10 10 10 10 50
2 vacancies, 3NN 10 10 10 10 10 50
NEB 1 vacancy, 1NN 7 0 0 0 0 7
NEB 2 vacancies, 1NN 7 0 0 0 0 7
NEB 3 vacancies, 1NN 7 0 0 0 0 7
PAFI 1 vacancy, 1NN 0 5 5 5 5 20
PAFI 2 vacancies, 1NN 0 3 3 3 3 12
PAFI 3 vacancies, 1NN 0 3 3 0 0 6
MD liquid 5
Elastic constants 13 0 0 0 0 13
Molecular dynamics 0 12 12 12 12 48
Total 1075 73 73 70 70 1368

All the configurations in the database are recalculated with DFT using VASP 6.2.0 [158].
(4a0)

3 cells with 6× 6× 6 k-points grid are used at σ = 0.3 eV, which has demonstrated con-
vergence in Fig. 3.9. The exchange-correlation energy is evaluated using the GGA-PBE [249]
and GGA-AM [241] functionals, resulting in the creation of two separate databases. GGA-
PBE is a widely used and universal functional applicable to a wide range of systems including
metals. It generally performs better than LDA but systematically overestimates the lattice
constants [287, 288]. GGA-AM has been shown to be more accurate than PBE in reproducing
the lattice constants of solids [241]. Therefore, both functionals are employed in this study.
The other DFT setup is exactly the same as in the database from Ref. [240]. Bispectrum
SO(4) descriptor [169] with dimension D = 55, Rcut = 5.3 Å and the maximum angular mo-
ment jmax = 4.0 is used to describe the atomic environment, and the QNML formalism is
applied for both GGA functionals. Another potential is created based on the PBE database
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by linearly fitting a hybrid descriptor (bispectrum SO(4) with jmax = 5.0 and 2-body ker-
nel). As presented in the subsection 2.2.3.2, the 2-body kernel is a smooth translation- and
permutation- invariant kernel between two atomic environments, which can be defined by
summing all the squared exponential distances between the relative atomic positions included
in these two atomic neighborhoods [289]. We adopt here the formulation in Eq. 2.85, where
K2b = 40 interatomic distances are considered. The cutoff distance for applying the ZBL
correction (Section 2.3), i.e., the inner cutoff Rin

cut for the hybrid descriptor, is set to 1.2 Å,
to avoid unphysical behaviors at low interatomic distances. In this way, three different ML
potentials are built for the following study:

• QNML+AM: bispectrum SO(4) descriptor, AM database, QNML regression;

• QNML+PBE: bispectrum SO(4) descriptor, PBE database, QNML regression;

• h-LML+PBE: hybrid descriptor (bispectrum SO(4) + 2-body kernel), PBE database,
LML regression.

For each of them, we compare some key quantities related to the properties of vacancy-type
defects between the DFT calculations and the ML potential predictions. Comparison is pre-
sented in Table 4.2, where E1f , E1NN

2f and E2NN
2f represent the formation energy at 0 K of

mono-vacancy, di-vacancies at 1NN and 2NN, respectively. E1m and E2m denote the migra-
tion energy for mono-vacancy and di-vacancies at 0K. The obtained agreement validates the
data-based fitting of potentials.

Table 4.2: Comparison between DFT calculations and ML potentials for key quantities in W: lattice
constant, bulk modulus, elastic constants, formation energies and migration energies. Two exchange-
correlation functionals are considered: PBE and AM.

PBE AM UnitDFT QNML h-LML DFT QNML
a0 3.18569 3.18568 3.18568 3.15073 3.15070 Å
B 304.7 304.6 304.6 327.9 327.6 GPa
C11 515.4 513.4 513.4 559.6 554.4 GPa
C12 199.3 200.3 200.2 212.0 214.2 GPa
C44 139.9 139.9 139.8 151.4 151.5 GPa
E1f 3.20 3.19 3.23 3.53 3.52 eV
E1NN

2f 6.56 6.52 6.52 7.20 7.18 eV
E2NN

2f 6.89 6.84 6.84 7.50 7.49 eV
E1m 1.72 1.63 1.63 1.78 1.72 eV
E2m 1.30 1.20 1.13 1.37 1.38 eV

4.1.2.3 Binding free energy of di-vacancies

The formation energy of a configuration containing n vacancies at temperature T can be
computed as

Fnf (T ) = F (Ns − n, T )− Ns − n

Ns
F (Ns, T ), (4.12)
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with F (Ns, T ) = Fvib(Ns, T ) + Fcon(T ) + E0(Ns, T ) the free energy of a system containing
Ns atoms at its equilibrium volume and temperature T . The configurational free energy is
expressed as Fcon(T ) = −β lnNcon, where Ncon is the number of equivalent configurations for
one defect type (Ncon equals to 1 for bulk and mono-vacancy, 8 for 1NN di-vacancies and 6 for
2NN di-vacancies). Energy minimization in Lammps [227] gives the static energy E0(Ns, T ),
and the vibrational free energy Fvib(Ns, T ), including the temperature-dependent anharmonic
contribution, can be obtained by the bound BABF approach (Section 3.3). The relation 4.12
allows us to access the formation free energy for the 3 types of target defects (mono-vacancy:
F1f , di-vacancies at 1NN: F 1NN

2f and di-vacancies at 2NN: F 2NN
2f ) at any finite temperature.

Then, the binding free energy for both types of di-vacancies can be evaluated from

F 1NN
2b (T ) = 2F1f (T )− F 1NN

2f (T ) , (4.13a)

F 2NN
2b (T ) = 2F1f (T )− F 2NN

2f (T ) . (4.13b)

Within this theoretical framework, we utilize the bound BABF method to calculate the
free energies of the three aforementioned defective configurations and the reference bulk crystal
without defects over a temperature range from 10 K to 2000 K. In particular, the reference
bulk crystal at equilibrium corresponds to a stable state where no transitions occur during
sampling. Therefore, applying an additional energy barrier is unnecessary, and the BABF
method alone suffices. For the bound BABF calculations of vacancy structures, the scaling
and cutoff parameters in Eq. 3.71 are chosen as δ = 0.5Å, C = 25 eV and Rc = 2.23Å. To
be exhaustive, we use the three different ML potentials as the target potential energy U(q) in
the linearly mixed general potentials Eq. 3.39 and Eq. 3.73.

The discussion below exclusively considers the results obtained using ML potentials em-
ploying the QNML formalism, as the results associated with the h-LML formalism show con-
sistent trends with those of the QNML formalism. The binding free energies for the 1NN
and 2NN di-vacancies deduced from Eqs. 4.13 are presented in Fig. 4.10(a) and Fig. 4.10(b),
respectively. They include the anharmonic contributions. For comparison, we also display
the reference free energies computed using the harmonic approximation (HA), where phonon
frequencies are derived from the Hessian of a system with the temperature-dependent lattice
constant obtained from the corresponding BABF calculations. This harmonic free energy is
exactly the reference free energy A(0) that equals to Eq. 3.67. Obviously, the differences
among the results from different ML potentials are insignificant, and all of them show the
same trends. Both 1NN and 2NN di-vacancies are repulsive at low temperatures and they
become attractive as temperature increases. The critical temperature of repulsion/attraction
conversion is denoted as Tc, at which the binding free energy reaches zero. For all the ML
potentials considered here, this critical temperature remains much higher for di-vacancies at
2NN than at 1NN. At temperatures higher than around 400K, the di-vacancies system can
be stabilized in 1NN configuration, while to have stable 2NN configuration the temperature
needs to reach around 1400K. Anyway, the agreement among the different ML potentials con-
firms that increasing the temperature and quenching the W solid can increase the di-vacancy
concentrations. 1NN configuration is always more stable at temperatures lower than 2 000K,
however, even 2NN configuration can be stabilized by high temperature.

Comparing the anharmonic and harmonic results enables us to assess the importance of the
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(a)

(b)

(c)

Figure 4.10: Binding free energy including anharmonic contributions from 0K to 2 000 K of (a) 1NN
di-vacancies and (b) 2NN di-vacancies computed from the bound BABF method with three machine
learning potentials, harmonic approximation at temperature-dependent lattice constants given by ML
potentials and DFT calculations. Tc denotes the temperature at which the binding free energy is zero.
(c) Binding volume of the di-vacancies in ΩT , the equilibrium atomic volume at temperature T .
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anharmonic contribution in the free energy. For both 1NN and 2NN di-vacancy configurations,
the anharmonicity becomes significant only at high temperatures, while the differences at low
temperatures are negligible. Specifically, for 1NN di-vacancies, the critical temperature Tc
falls within a temperature range where the anharmonic effects are slight, resulting in very
close agreement between harmonic and anharmonic results. In this case, we perform the full
DFT calculations based on the same temperature-dependent lattice constants at T = 0K,
200K, 400K and 600K from the BABF calculations, to obtain the exact values from DFT. In
light of the negligible anharmonicity at these temperatures, the system is assumed to be purely
harmonic and its free energy is calculated analytically by means of Eq. 3.67, with the phonon
frequencies obtained from DFT. In the present DFT calculations, a reference bcc super-cell
containing 128 tungsten atoms, a 6× 6× 6 shifted k-point grid of the Monkhorst-Pack scheme
and a plane wave cutoff energy of 500 eV are used. As indicated in Fig. 4.10(a), the critical
temperature Tc equals to 447.4K for AM and 512.1K for PBE, which closely aligns with the
results obtained from ML potentials using the same functional.

Finally, we also deduce the binding volume which is analogous to the binding free energy:

V 1NN
2b (T ) = 2V1f (T )− V 1NN

2f (T ) , (4.14a)

V 2NN
2b (T ) = 2V1f (T )− V 2NN

2f (T ) , (4.14b)

with
Vnf (T ) = V (Ns − n, T )− Ns − n

Ns
V (Ns, T ) . (4.15)

where V (Ns, T ) is the equilibrium volume corresponding to the free energy minimum at
temperature T for a system of Ns atoms. This quantity has previously been considered
temperature-independent and is now being investigated for the first time. Fig. 4.10(c) re-
veals that 2NN configuration always has larger binding volume than 1NN configuration.

In this subsection, we demonstrated that temperature is the crucial factor influencing the
formation of di-vacancies and larger clusters. This study represents the first calculation of
the formation free energy, including the anharmonic contribution, for mono-vacancy and di-
vacancies in W at finite temperatures. Both 1NN and 2NN di-vacancies are repulsive at low
temperatures. Via the BABF-based calculations, we demonstrate that the increasing tem-
perature stabilizes all repulsive configurations approximately in the range of 500K (1NN) to
1500K (2NN), and thus augments the concentration of di-vacancies. For higher temperatures,
even 2NN di-vacancies are stable. These results provide a quantitative explanation for the ex-
perimental observations shown in Subsection 4.1.2.1. Moreover, the temperature-dependence
of binding volume is revealed for the first time. With the present calculations, we can depict
a scenario for the formation of vacancy clusters in W.

4.2 Applications to bcc Ta-Ti-V-W high-entropy alloys

High-entropy alloys (HEAs) were discovered and synthesized in 2004 by two separate groups
of scientists: Cantor et al. [290] and Yeh et al. [291]. Since then, rapid developments in this
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emerging field of materials science have been observed. Experimental studies have revealed that
HEAs exhibit unique microstructures and properties. Their high yield strength and hardness
at elevated temperatures make HEAs promising materials for high-temperature applications.
Additionally, their superior irradiation properties compared to pure elements and conventional
alloys position HEAs as potential candidates for structural elements in future fusion and fission
reactors [292, 293, 294, 295, 296, 297]. For example, Ref. [295] reports that there are no signs
of radiation-induced dislocation loops under radiation damage of 8 dpa, at room temperature
and 1073 K, in bcc-based HEA W38Ta35Cr16V11. In this section, we focus on the bcc Ta-Ti-
V-W HEAs. The choice of Ta-Ti-V-W systems is based on the prediction that solid solutions
within this alloy class exhibit some of the lowest ordering temperatures [297], implying that
the formation of disordered solid solutions is possible at lower temperatures than in other
alloy systems. This theoretical prediction is experimentally validated in Ref. [298], where the
Ta-Ti-V-W alloy is identified as the sole quaternary alloy in the Cr-Ta-Ti-V-W system to
exclusively form a single bcc phase. Moreover, this composition is worth studying because
systems composed of these elements have demonstrated high tolerance to radiation damage
and maintain sustainable mechanical properties after irradiation [297].

4.2.1 ML force fields for Ta-Ti-V-W HEAs

To begin the study, the fist goal is to develop the ML potential capable of investigating the
properties of Ta-Ti-V-W alloys across a wide range of compositions and temperatures. There-
fore, the DFT database contains the results for various compositions of the form A40B20C20D20,
A10B30C30D30 and A40B40C10D10, where A, B, C, D cover all possible combinations of Ta, Ti,
V and W atoms. The list of configurations used to develop ML potentials for the Ta-Ti-V-W
system is summarized in Table 4.3. DFT calculations are performed using VASP 6.2.0 [158]
with exchange and correlation treated in GGA-PBE [249, 276] parametrizations. We use the
PAW pseudopotential without semi-core electron contributions and do not take magnetism into
account. The same DFT parameters are taken as those used in Ref. [297]. The plane-wave
cutoff energy is set to 400 eV. The Brillouin zone is sampled according to the Monkhorst–Pack
scheme [299] with 4 × 4 × 4 k-points mesh for the (4a0)

3 bcc supercells. This computational
setup is used to generate representative structures of Ta-Ti-V-W alloys to serve as the database
for the ML force fields.

We employ the same type of hybrid descriptor as used in Subsection 4.1.2.2, combining the
widely-used bispectrum SO(4) descriptor with the fast and simple 2-body kernel descriptor,
with an general outer cutoff distance Rcut = 4.9Å and an inner cutoff distance Rin

cut = 1.4Å,
below which the atomic interactions are described by the ZBL potential. The maximum
angular moment jmax for the bispectrum SO(4) is set to 4.5, and for the 2-body kernel,
K2b = 40 distances are sampled for each possible type of atom pair (Ta-Ta, Ta-Ti, Ta-V, Ta-
W, Ti-Ti, Ti-V, Ti-W, V-V, V-W, and W-W). The simple LML formalism (Section 2.1.3.1) is
used for the regression. Thus, the present ML potential is denoted as h-LML in the following
discussion.

4.2.2 Finite-temperature elastic properties
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4.2. Applications to bcc Ta-Ti-V-W high-entropy alloys

The elastic properties of alloys are of paramount importance in many applications. To
predict these properties for Ta-Ti-V-W HEAs at finite temperatures, the BABF method in-
troduced in Section 3.2 is employed. Same as the case of W in Subsection 4.1.1, this method
is used to obtain the anharmonic free energies for various deformations of the system at dif-
ferent temperatures. The elastic constants are then computed from the second derivatives
of the free energy with respect to strains. The elastic constants are calculated for disordered
[TaTiV]100−xWx pseudobinary alloys at three tungsten concentrations: 10, 25 and 40 at. % W.
For each concentration, we use a system of 128 atoms, which is too small to be regarded as
cubic crystal. Therefore, we compute nine elastic constants and the values adopting cubic
symmetry are approximated as

C11 =
1

3
(C11 + C22 + C33) , C12 =

1

3
(C12 + C13 + C23) , C44 =

1

3
(C44 + C55 + C66) . (4.16)

The 9 elastic constants are calculated following the steps below:

1. Perform MD in NPT ensemble with h-LML potential to get a relaxed configuration as
well as V0 at each temperature.

2. Apply the strains ε listed in Table 4.4 on the relaxed configuration obtained in step 1 to
construct the deformed structures. We took ε = ±0.2%,±0.4%,±0.6%,±0.8% for each
type of deformation.

3. Using the BABF method, calculate the free energy for the relaxed configuration (F (0))
and the free energy for the deformed configurations (F (ε)).

4. The corresponding free energy changes ∆F/V0 = [F (ε)−F (0)]/V0 derived from Eq. 4.3
are listed in Table 4.4. Fit ∆F/V0 to a quadratic form of ε and get the nine elastic con-
stants from the quadratic coefficient. Notice that the last six deformations in Table 4.4
conserve the volume, whereas the first three are not volume-conserving. However, the
target pressure for the NPT relaxation in step 1 was set to zero, representing a state
without an external load. The pressure fluctuation of such a relaxed metal system P (V0)
is very slight compared to the elastic constants, which are on the order of magnitude of
1010 to 1011 Pa.

Table 4.4: Strains and free energy changes for computing the elastic constants.

Elastic constant ε ∆F/V0
C11 (ε, 0, 0, 0, 0, 0) C11ε

2/2− P (V0)ε+O[ε3]
C22 (0, ε, 0, 0, 0, 0) C11ε

2/2− P (V0)ε+O[ε3]
C33 (0, 0, ε, 0, 0, 0) C11ε

2/2− P (V0)ε+O[ε3]
C44 (ε2/(4− ε2), 0, 0, ε, 0, 0) C44ε

2/2 +O[ε4]
C55 (0, ε2/(4− ε2), 0, 0, ε, 0) C55ε

2/2 +O[ε4]
C66 (0, 0, ε2/(4− ε2), 0, 0, ε) C66ε

2/2 +O[ε4]
C12 (ε,−ε, ε2/(1− ε2), 0, 0, 0) (C11 + C22 − 2C12)ε

2/2 +O[ε4]
C13 (ε, ε2/(1− ε2),−ε, 0, 0, 0) (C11 + C33 − 2C13)ε

2/2 +O[ε4]
C23 (ε2/(1− ε2), ε,−ε, 0, 0, 0) (C22 + C33 − 2C23)ε

2/2 +O[ε4]

The approximated elastic constants C11, C12 and C44 for disordered [TaTiV]100−xWx ob-
tained with the h-LML potential are shown as a function of temperature in Fig. 4.11. We
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4. Applications

Figure 4.11: Prediction of elastic constants from the BABF anharmonic free energy calculations using
the h-LML potential: (a) C11, (b) C12 and (c) C44 of disordered [TaTiV]100−xWx pseudobinary alloys
with three different concentrations of W, namely 10, 25 and 40 at.%, as a function of temperature.

denote by “EQA” the equiatomic TaTiVW alloy at 25 at. % W. The maximum simulated
temperature for each composition depends on the corresponding melting point. The trend of
increasing elastic constants with higher concentrations of W is consistently observed across
all temperatures. Like many metallic materials, the elastic constants C11, C12 as well as the
bulk modulus B = (C11 + 2C12)/3, exhibit lower values at higher temperatures for all con-
centrations of W, implying that the material exhibits lower resistance to deformation when
subjected to normal stress. However, the temperature dependency of C44 is not significant,
in contrast to the decreasing tendency observed in all its components: Ta [300], Ti [301],
V [302] and W [303]. This indicates that the ability of alloys to withstand shear forces is less
influenced by temperature changes compared to pure metals. It is important to note that the
elastic constants predicted using the h-LML potential change smoothly as a function of W
concentration. This stability shows that the h-LML potential is stable and can be reliably
applied to predict the properties of Ta-Ti-V-W alloys at elevated temperatures.

4.2.3 Finite-temperature formation free energy of vacancy

The properties of vacancies in alloys depend not only on the composition of the alloy but
also on the local environment of a defect [304, 305, 306]. Given the computational costs
of DFT calculations, an alternative approach to evaluating the formation energies at 0 K in
multicomponent alloys is through molecular statics (MS) calculations employing ML force
fields. To obtain better statistics, MS calculations using h-LML potential are performed on
432 structures, each generated by removing one of the atoms from the non-defected structure
containing 432 atoms displayed in a 6×6×6 bcc supercell. The MS calculations are carried out
for disordered pseudobinary alloy structures at 10, 25 (equiatomic) and 40 at. % W in order to
study the influence of W concentration on vacancy properties. The increase of W content in
the pseudobinary HEAs leads to a corresponding increase in the mean mono-vacancy formation
energy (E1f ). The value obtained for the alloy with 10 at. % W (2.33 eV) approaches the E1f

for pure bcc V (2.51 eV) [21] and bcc Ti (2.03 eV) [307]. For the equiatomic case, E1f equals
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4.2. Applications to bcc Ta-Ti-V-W high-entropy alloys

2.65 eV. When the W concentration is increased to 40 at. %, the mean value of E1f reaches
3.06 eV, approaching the value for pure bcc W (3.56 eV) [21].

Figure 4.12: Formation free energies computed for the vacancy in disordered [TaTiV]100−xWx pseu-
dobinary alloys with three different concentrations of W, namely 10, 25 and 40 at. %, as a function of
temperature using h-LML potential. For each composition, a reference structure is first created, and
10 calculations are performed by randomly removing one atom from the reference structure, resulting
in 10 configurations with a single vacancy at different locations. These calculations are represented by
colorful dashed lines, and an exponential average of them is shown in black. The maximum tempera-
ture reported in panels (a), (b) and (c) increases because the melting point of the HEA is lower with
a smaller W concentration.

At finite temperatures, the same computational framework combining bound BABF cal-
culations and ML potentials, as described in Subsection 4.1.2, is applied to compute the mean
formation free energy of a mono-vacancy. As the properties of a vacancy in alloys depend on
both the composition of the alloy and the local environment of the defect, adoption of Eq. 4.12
is an approximation which amounts to averaging the chemical potential over the composition.
This gives the formation free energy of a vacancy at location i as

F1f (T, i) = F i
vac(T )−

(Ns − 1)

Ns
Fref (T ) , (4.17)

where F i
vac is the free energy of the alloy configuration containing a vacancy at location i,

and Fref is the free energy of the reference structure containing Ns atoms without defects.
The above definition of formation free energy is exact only in the limit of averaging the chem-
ical potential over the composition. Otherwise, it can be seen as an arbitrary limit in the
reference of formation free energy. Indeed, the free energies involved here include the anhar-
monic vibrational contribution but excludes the combinatorial contribution. Evaluating the
latter contribution would involve extensive sampling of the alloy configurations and vacancy
locations, incurring a high computational cost of approximately 1280 core-hours per configu-
ration, which is beyond our computational capacity. We therefore limited our investigations
to a series of 10 randomly selected vacancy locations (Nloc = 10) for three compositions of
the disordered alloy and a range of up to 7 temperatures. An estimate of the free energy of
mono-vacancy formation for a given composition and reference disordered structure is then
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4. Applications

obtained by exponential averaging over the Nloc vacancy locations:

F1f (T ) = −β−1 ln

Nloc∑
i=1

1

Nloc
exp [−βF1f (T, i)] . (4.18)

Note that the quantity exp [−βF1f (T )] is an unbiased estimate of the vacancy concentration
at temperature T given the alloy configuration: its average over all random subsets of vacancy
locations gives the expected vacancy concentration. Estimating the free energy of vacancy
formation resorting to the exponential average in Eq. 4.18 amounts to implementing a Widom
test-particle method where a difference in vibrational free energy to suppress an atom is
substituted for the usual difference in potential energy, and where a single random distribution
of atoms over the lattice sites is considered in the reference system. Based on Eq. 4.18, we
show in Fig. 4.12 the temperature dependence of mono-vacancy formation free energies for the
disordered [TaTiV]100−xWx pseudobinary alloys with 10, 25 and 40 at. % W, for temperatures
up to a maximum determined by the corresponding melting point of each composition. For
some vacancy locations, we observe very frequent vacancy migrations at elevated temperatures
that lead to transitions among different free energy basins, thereby hindering the sampling of
a single metastable state. Even within the bound BABF method, the high frequency of
calling the restoring force results in error accumulation. Consequently, these problematic
samplings are excluded, leading to some missing data points in Fig. 4.12, while the remaining
data is unbiased. At lower temperatures, the ranges of vacancy formation free energies for
the alloys under consideration align with the E1f values computed at 0 K. As temperature
increases, the average value of F1f (T ) remains nearly stable for the alloy with 10 at.% W and
decreases for alloys with 25 and 40 at. % W, reaching 1.13 eV, 1.64 eV, and 2.26 eV at 1500 K,
respectively. It should be noted that 10 random vacancy locations are insufficient to provide
a statistically reliable average of the formation free energy, yielding only a rough estimate.
Nevertheless, interesting trends can still be identified. Notably, the range of F1f (T ) at a
given temperature (the difference between the maximum and minimum values among the 10
random vacancy locations) decreases with increasing temperature. This observation suggests
that the dependence of the formation free energy on the local atomic environment of the
vacancy diminishes at higher temperatures, as vibrational entropy becomes more significant.

4.3 Correlation between harmonic and anharmonic contributions

In this section, we present an interesting correlation between the harmonic and anharmonic
contributions to the free energy, which is found with the help of the fast and robust BABF
method detailed in Section 3.2. This observation allows for a rapid estimation of the fully
anharmonic free energy based solely on the computationally inexpensive harmonic approxi-
mation. We present the workflow using bcc W, which has been thoroughly discussed in this
thesis, and the results will also be validated in the bcc Fe system. The present workflow can
be divided into the following steps:

1. Random creation of ML potentials: 500 ML potentials are randomly constructed with
MiLaDy package, based on the database detailed in Table 2.1, using random weights
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4.3. Correlation between harmonic and anharmonic contributions

specified for each database class. It means that the value of ωm in Eq. 2.34 is randomly
chosen from [0, 1000] for each class of the database, except those determine the basic
thermodynamic properties (lattice constant, bulk modulus and elastic constants). Here,
the weight ωm for the global energy of the configurations in DB classes 2 and 3 is fixed
to 107. Besides aiming to ensure the correct prediction of basic quantities, this large
value is also due to the fact that the global energies are relatively small in these classes,
given that the systems contain only 2 or 4 atoms. The potentials are built in the same
way as the LML potential in Ref. [148], employing the bispectrum SO(4) descriptor and
the linear regression.

2. CUR selection of ML potentials: out of the total 500 potentials generated in the first step,
the 106 most “influential” potentials are selected using the CUR decomposition method
presented in Subsection 2.2.2. The lattice constant, bulk modulus and three elastic
constants at 0 K given by these 109 potentials are plotted in Fig. 4.13, demonstrating the
basic correctness of the selected potentials, at least in terms of thermodynamic stability.
The predicted properties are distributed within a reasonable interval, e.g., 0.003 Å for
the lattice constant, and are not far from the DFT value of 3.1854Å. Therefore, all the
following calculations are performed based on the equilibrium configuration of 128 atoms
with the DFT-computed lattice constant.

3. BABF free energy calculation: for each selected potential, the free energy difference
∆A = A(1) − A(0) between the harmonic reference system with Landau free energy
A(0) = FHA and the real system associated with the target anharmonic free energy
A(1) is computed using the BABF method, at 300 K, 1000 K, 2000 K and 3000 K. The
anharmonic contribution ∆A is illustrated in Fig. 4.14 as a function of the harmonic free
energy FHA given by the same potential.

Figure 4.13: Distribution of the values of lattice constant, bulk modulus and elastic constants C11,
C12 and C44 at 0K, computed from the selected ML potentials for W. The horizontal axes denote the
indices of the selected potentials, and the vertical axes of the graphs in the first row present the values
of the corresponding thermodynamic quantities, whose distribution densities are shown in the second
row.

Figure 4.14 shows a significant linear correlation between the harmonic and anharmonic con-
tributions for the ML potentials. These potentials are generated using completely random
database weighting, resulting in parameters that are entirely different from each other. The
coefficients of determination R2 for the four temperatures in increasing order are 0.860, 0.862,
0.870 and 0.881. We fit this FHA-∆A correlation to the linear form ∆A = αFHA + β at each
temperature, and the temperature-dependence of the slope α and the intercept β are plotted
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in Fig. 4.15. Both the slope α and the intercept β are fitted to the cubic form:

α(T ) = −6.256× 10−13T 3 + 2.320× 10−8T 2 − 3.519× 10−4T + 2.495× 10−3 ,

β(T ) = −2.830× 10−10T 3 − 2.866× 10−5T 2 + 1.466× 10−2T − 2.134 .

In this way, a rough estimate of the fully anharmonic free energy at finite temperature can be
directly given by the fast and numerically inexpensive harmonic approximation. Here for W,
we have

∆A(T, FHA) = α(T )FHA + β(T ) , (4.19)

of which the RMSE at 300K, 1000K, 2000K and 3000 K is respectively 0.0013 eV, 0.014 eV,
0.051 eV and 0.10 eV, corresponding to the per-atom values 1.03 × 10−5 eV/atom, 1.10 ×
10−4 eV/atom, 4.01× 10−4 eV/atom and 8.02× 10−4 eV/atom.

Figure 4.14: Correlation between the free energy from the harmonic approximation (FHA) and the
anharmonic contribution (∆A) for W at 300 K, 1000K, 2000K and 3000K. Each color represents a
selected potential. A linear correlation is observed with R2 values ranging from 0.86 to 0.88, and the
fitted model Eq. 4.19 is plotted in blue. The relative positions of the potentials in this correlation are
independent of temperature.

Equation 4.19 provides an approximate solution. We also notice that the relative positions
of the potentials in the sub-figures of Fig. 4.14 remains unchanged (although the scale is
changed), indicating that they are temperature-independent. This observation suggests that
in the investigation of ML potentials, such as the optimization of database weighting, once
the anharmonic free energy of two potentials is computed, the anharmonic free energy of any
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other potential can be accurately determined from its harmonic approximation and the linear
combination of the free energy profiles of the two known potentials. This approach is even
more precise than the prediction model given in Eq. 4.19.

Figure 4.15: (a) Slope α and (b) intercept β of the linear correlation ∆A = αFHA + β at 300 K,
1000 K, 2000 K and 3000 K, derived from the data shown in Fig. 4.14. A cubic fit is performed for both
coefficients as functions of temperature, and the fitted results are indicated by the dashed lines.

To validate this method, the same procedure is applied to bcc Fe at 300K, 700K, 1100K
and 1600 K. Similarly, figure 4.16 displays the distribution of the values of lattice constant,
bulk modulus and three elastic constants at 0 K, computed from the 103 selected ML potentials
for Fe. The fitted model for Fe can be expressed as:

α(T ) = 7.196× 10−12T 3 − 8.329× 10−8T 2 − 5.205× 10−4T − 9.869× 10−3 ,

β(T ) = −1.244× 10−8T 3 − 2.185× 10−5T 2 + 1.201× 10−2T − 1.265 .

The RMSE for Fe is respectively 0.0022 eV (1.76 × 10−5 eV/atom) at 300 K, 0.012 eV
(9.09 × 10−5 eV/atom) at 700 K, 0.028 eV (2.16 × 10−4 eV/atom) at 1100 K and 0.057 eV
(4.46× 10−4 eV/atom) at 1600 K.

Figure 4.16: Distribution of the values of lattice constant, bulk modulus and elastic constants C11,
C12 and C44 at 0 K, computed from the selected ML potentials for Fe. The horizontal axes denote the
indices of the selected potentials, and the vertical axes of the graphs in the first row present the values
of the corresponding thermodynamic quantities, whose distribution densities are shown in the second
row.

The finding of this shortcut to the anharmonic free energy is made possible by the high
efficiency of the BABF method. By establishing surrogate models between the harmonic and
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Figure 4.17: Correlation between the free energy from the harmonic approximation (FHA) and the
anharmonic contribution (∆A) for Fe at 300K, 700 K, 1100K and 1600 K. Each color represents a
selected potential. Similar to the case of W, a linear correlation is observed with R2 values ranging
from 0.81 to 0.87, where the relative position of each potential is independent of temperature. The
fitted model is plotted in blue.

anharmonic contributions to the free energy profile, this observation allows for the estimation
of anharmonicity directly from the harmonic approximation without any sampling, thereby
significantly reducing computational cost. This approach can be applied to explore the free
energy-related properties of materials, as well as for the rapid calibration of the numerically
expensive ML potentials.

4.4 Conclusion of the chapter

This chapter focuses on the applications of the computational framework that integrates
ML techniques from Chapter 2 with adaptive sampling methods for free energy estimation
from Chapter 3. Within this framework, ML force fields improve the accuracy of atomic-scale
simulations to a level comparable to that of DFT calculations. However, their implementation
in sampling simulations is often restricted by computational costs, which are several orders of
magnitude higher than those of traditional potentials. The fast and robust BABF methods help
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overcome these limitations and enable the exploration of high-temperature free energy profiles
with DFT-level accuracy. This capability facilitates the investigation of material properties at
elevated temperatures.

Predicting the high-temperature properties and behaviors of defects in metallic materials
represents a challenging yet essential task in a number of fields, including nuclear energy,
aeronautics, and high-temperature manufacturing. Therefore, the author applied the afore-
mentioned computational framework to address the following unresolved issues:

• For bcc W (Section 4.1), (i) thermodynamic properties such as linear expansion, bulk
modulus, and elastic constants are predicted at various temperatures up to the melting
point. The computations are validated by perfect consistency with experimental results
at temperatures below 2100K. (ii) Binding free energy for di-vacancies is investigated at
finite temperatures to explain the temperature dependence of void formation observed
in experiments.

• For Ta-Ti-V-W HEAs (Section 4.2), a new material under design, (i) the elastic constants
of alloys with various compositions are calculated at different temperatures up to their
melting points. (ii) The finite-temperature formation free energy of mono-vacancy is
studied for different local atomic environments.

• For bcc W and bcc Fe, a correlation between harmonic and anharmonic contributions to
the free energy is identified, offering a shortcut from the simple harmonic approximation
to the full anharmonicity at finite temperatures without sampling (Section 4.3).

All the work above relies on the high accuracy of the ML force fields and the efficiency of
the BABF-based sampling methods. Within these applications, the two-part computational
framework is also validated by the experimental observations and proven to be applicable to
multi-component systems.
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Chapter 5

Conclusion and outlook

This thesis presents a comprehensive computational framework that effectively integrates
machine learning force fields with advanced sampling and free energy estimation methods to
predict finite-temperature properties of materials with accuracy comparable to DFT calcu-
lations. This framework addresses enduring challenges in computational materials science,
specifically the efficient sampling of free energy surfaces at finite temperatures and the accu-
rate estimation of free energy. The DFT-level accuracy of this framework is ensured by ML
potentials, which, however, are constrained by their high computational costs. In comparison
to empirical potentials, these are slower by a factor of several tens to four orders of magnitude.
To make the investigation of free energy profiles with ML potentials feasible even at elevated
temperatures, this thesis concentrates on two primary objectives: (i) developing ML poten-
tials with an enhanced accuracy-efficiency trade-off, and (ii) devising faster and more robust
sampling methods for free energy computations. As illustrated in Fig. 5.1, the advancements
regarding these two objectives are elaborated in Chapter 2 and Chapter 3, respectively. The
applications of the overall computational framework, which combines these novel techniques,
are presented in Chapter 4.

The second chapter lays the groundwork for constructing and optimizing ML potentials,
focusing on three key factors: the database, the representation of local atomic environments,
and the regression model. The contributions in this chapter are multifaceted:

• Database enhancement: databases for tungsten, molybdenum, and Ta-Ti-V-W high-
entropy alloys were completed based on the concept of active learning.

• Novel descriptors: a new Fourier-sampled n-body descriptor was introduced, significantly
improving the representation of LAEs. This descriptor captures higher-order geometrical
features, resulting in a 55 % improvement in force prediction accuracy compared to the
widely used bispectrum SO(4) descriptor.

• Advanced regression techniques: various sparse points selection methods were imple-
mented for the kernel regression model, optimizing the accuracy-cost trade-off. Addi-
tionally, short-range corrections using the ZBL potential were incorporated to prevent
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Figure 5.1: Overall workflow and achievements of the current thesis.

unphysical behavior at very short interatomic distances.

The advancements in this chapter led to the development of highly accurate ML potentials for
tungsten and Ta-Ti-V-W high entropy alloys, which are employed in the subsequent part of this
work. With the development of computational techniques, such as faster and larger computer
clusters, these ML force fields can also be directly applied in MD simulations, for which we
have developed the MiLaDy-Lammps plugin for Lammps [227]. This application allows
for the investigation of physical microstructural evolution, thereby building a comprehensive
mechanism from a dynamic perspective.

The third chapter delves into the computation of free energy differences, with a particular
emphasis on anharmonic contributions. The extent of anharmonicity is a pivotal aspect of
materials science, particularly at finite temperatures. The chapter tackles the challenges asso-
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ciated with the generally high computational costs of ML potentials, proposing novel methods
to overcome these hurdles:

• Accelerated Bayesian adaptive biasing force (BABF) method: this method provides a
robust approach for computing the anharmonic free energy of crystalline solids, achiev-
ing an accuracy of 0.1meV/atom approximately 100 times faster than traditional TI
methods, and it is roughly 800 times faster than conventional MD simulations for de-
termining the bulk modulus (the second derivative of free energy) at high temperatures
(> 3000K).

• Bound BABF Method: an unbiased free energy estimator for metastable states was
introduced, using constrained sampling to prevent transitions between different energy
basins, ensuring accurate free energy calculations for specified configurations.

Moreover, a two-stage BABF method was demonstrated feasible for fluid-phase systems, and
its accuracy and efficiency were validated by computing the free energy difference between
the ideal gas and the UF liquid model. The enhanced efficiency of these methods enables
the practical application of ML potentials to the exploration of finite-temperature free energy
profiles with DFT-level accuracy at a reasonable computational cost.

The fourth chapter demonstrates the practical applications of the developed computa-
tional framework, integrating the ML techniques with the free energy estimation and adaptive
sampling methods from the previous chapters. The framework was applied to predict the
finite-temperature properties of several materials at temperatures up to their melting points,
yielding significant findings:

• Bcc tungsten: the framework predicted thermodynamic properties such as linear expan-
sion, bulk modulus, and elastic constants up to the melting point. These predictions
were validated against experimental results, showing excellent consistency. Additionally,
the binding free energy of di-vacancies at finite temperatures was investigated, offering
insights into the temperature dependence of void formation observed in experiments,
which cannot be explained by existing DFT calculations.

• Ta-Ti-V-W high entropy alloys: for this new material under design, the elastic constants
of alloys with various compositions were calculated at different temperatures up to their
melting points. The formation free energy of mono-vacancies was also studied, offering
valuable data for material design and optimization.

• Correlation between harmonic and anharmonic contributions: For bcc tungsten and
bcc iron, a correlation was identified between harmonic and anharmonic free energy
contributions. This finding offers a shortcut from the simple harmonic approximation to
full anharmonicity at finite temperatures, significantly reducing computational effort.

These applications validate the accuracy and efficiency of the computational framework,
demonstrating its capability to predict material properties with high precision and its ap-
plicability to multi-component systems.
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The current approach can be further improved in the following aspects. For the ML
potentials, we plan to (i) employ the spline interpolation for the Fourier-sampled n-body
descriptors, as this representation can drastically reduce the numerical time required for force
evaluation in simulations by one order of magnitude for the 2-body case and two orders of
magnitude for the 3-body case; and (ii) implement the incomplete but very fast high-order
kernels as explained in Subsection 2.2.4.3. In regard to the estimation of free energy from
adaptive sampling, we recognize that the initialization process significantly influences the
overall convergence performance. In the next work, we will adopt the multi-state Bennett
acceptance ratio (MBAR) estimator [308] for the initial sampling. This approach involves
performing a series of simulations at different values of an external thermodynamic parameter
(ζ in this work). The MBAR estimator provides an initial estimate for the mean force by
solving a large system of nonlinear equations, which can be addressed using a stochastic
approximation method [309]. This estimator is optimal because its variance is lower than
that of a large class of estimators [308, 145]. We anticipate that this optimization of the
initialization process will greatly enhance the convergence speed.

In conclusion, the research presented in this thesis has established a powerful and efficient
computational framework that combines ML potentials with advanced sampling methods for
the estimation of free energy. This framework addresses key challenges in predicting the
properties of materials at high temperatures, achieving unprecedented efficiency for the same
level of accuracy. It opens new avenues for exploring the complex behaviors of materials under
extreme conditions, paving the way for new discoveries and innovations in the field. Beyond
materials research, this computational workflow is also applicable in chemistry and biology,
such as calculating the free energy of ligand-protein binding processes for drug design [310].
We are enthusiastic about exploring further applications in these domains.
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Les propriétés et le comportement des matériaux dans des conditions extrêmes sont essen-
tiels pour les systèmes énergétiques tels que les réacteurs de fission et de fusion. Cependant,
prédire avec précision les propriétés des matériaux à haute température reste un défi. Les
mesures directes de ces propriétés sont limitées par les instruments expérimentaux, et les sim-
ulations à l’échelle atomique basées sur des champs de force (également connus sous le nom
de “potentiels interatomiques”) empiriques sont souvent peu fiables en raison d’un manque
de précision. Ce problème peut être résolu à l’aide de techniques d’apprentissage statistique,
qui ont récemment vu leur utilisation exploser en science des matériaux. Les champs de
force construits par apprentissage statistique (aussi appelé machine learning, ML) atteignent
le degré de précision des calculs ab initio ; cependant, leur mise en œuvre dans les méth-
odes d’échantillonnage est limitée par des coûts de calcul élevés, généralement supérieurs de
plusieurs ordres de grandeur à ceux des champs de force traditionnels.

Pour surmonter cette limitation, cette thèse présente un cadre de calcul complet qui intè-
gre efficacement des champs de force par apprentissage statistique avec des méthodes avancées
d’échantillonnage et d’estimation de l’énergie libre pour prédire les propriétés à température
finie des matériaux avec une précision comparable aux calculs DFT. Ce cadre répond aux
défis persistants de la science numérique des matériaux, en particulier l’échantillonnage effi-
cace des surfaces d’énergie libre à des températures finies et l’estimation précise de l’énergie
libre. La précision de ce cadre au niveau ab initio est assurée par les potentiels ML, qui
sont toutefois limités par leurs coûts de calcul élevés. Afin de rendre possible le calcul des
profils d’énergie libre avec des champs de force ML même à des températures élevées, deux
objectifs sont poursuivis dans cette thèse : (i) développer des champs de force par appren-
tissage statistique avec un meilleur compromis précision-efficacité et (ii) créer des méthodes
accélérées d’échantillonnage de l’énergie libre afin de faciliter l’utilisation de champs de force
d’apprentissage statistique coûteux en termes de calcul. Les avancées concernant ces deux
objectifs sont élaborées respectivement dans le Chapitre 2 et le Chapitre 3. Les applications
de ce cadre de calcul, qui combine ces nouvelles techniques, sont présentées dans le Chapitre 4.

Pour le premier objectif, nous améliorons la construction des champs de force par appren-
tissage statistique en nous concentrant sur trois facteurs clés : (i) la base de données contenant
l’énergie, les forces et les contraintes des configurations calculées par ab initio, (ii) le descripteur
représentant les environnements atomiques locaux, et (iii) le modèle de régression permettant
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de déterminer les paramètres reliant le descripteur à l’énergie, dont la dérivée correspond aux
forces. La définition de ces concepts, ainsi que les optimisations que nous proposons dans
le cadre de la régression par processus gaussien, sont présentées en détail dans le deuxième
chapitre :

• Amélioration de la base de données : les bases de données pour le tungstène, le molybdène
et les alliages à haute entropie Ta-Ti-V-W ont été complétées sur la base du concept
d’apprentissage actif.

• Nouveaux descripteurs : un nouveau descripteur n-corps basés sur des noyaux échantil-
lonnés par la transformée de Fourier a été introduit, améliorant de manière significative
la représentation des environnements atomiques locaux. Ce descripteur capture des car-
actéristiques géométriques d’ordre supérieur, ce qui se traduit par une amélioration de
55 % de la précision de la prédiction de la force par rapport au descripteur à bispectre
SO(4) largement utilisé.

• Techniques de régression avancées : diverses méthodes de sélection de points épars (sparse
points) ont été mises en œuvre pour le modèle de régression par noyau, afin d’optimiser le
compromis précision/coût. En outre, des corrections à courte portée utilisant le potentiel
ZBL ont été incorporées pour éviter un comportement non physique à de très courtes
distances interatomiques.

Les avancées réalisées dans ce chapitre ont permis de développer des potentiels ML très précis
pour le tungstène et les alliages à haute entropie de Ta-Ti-V-W, qui sont utilisés dans la partie
suivante de ce travail. Avec le développement des techniques de calcul, telles que les clusters
de calcul plus rapides et plus puissants, ces champs de force ML peuvent également être
directement appliqués dans les simulations de dynamique moléculaire (DM), pour lesquelles
nous avons développé le plugin MiLaDy-Lammps pour le logiciel communautaire de DM
Lammps. Cette application permet d’étudier l’évolution physique de la microstructure et
ainsi de construire un mécanisme complet d’un point de vue dynamique.

Pour le deuxième objectif, nous développons un schéma d’échantillonnage bayésien rapide
et robuste pour estimer l’énergie libre anharmonique, qui est cruciale pour comprendre les
effets de la température sur les solides cristallins, à l’aide d’une méthode de force de biais
adaptative améliorée. En se concentrant sur le calcul précis des différences d’énergie libre, le
troisième chapitre aborde les défis liés aux coûts de calcul généralement élevés des potentiels par
apprentissage statistique, en proposant de nouvelles méthodes pour surmonter ces obstacles.
Ces approches effectuent une intégration thermodynamique à partir d’un système de référence
harmonique, où les instabilités numériques associées aux fréquences nulles sont éliminées.

• Méthode BABF (Bayesian adaptive biasing force) accélérée : basée sur l’échantillonnage
bayésien, cette méthode offre une approche robuste pour calculer l’énergie libre an-
harmonique des solides cristallins, qui est environ 100 fois plus rapide que les méth-
odes d’intégration thermodynamique traditionnelles pour atteindre une précision de
0.1 meV/atome, et environ 800 fois plus rapide que les simulations DM conventionnelles
pour déterminer le module d’élasticité isostatique (la dérivée seconde de l’énergie libre)
à des températures élevées (> 3000 K).

140



Résumé étendu en français

• Méthode Bound BABF : un estimateur d’énergie libre sans biais pour les états métasta-
bles a été introduit, basé sur un échantillonnage contraint afin d’empêcher les transitions
entre différents bassins d’énergie, garantissant ainsi des calculs d’énergie libre précis pour
des configurations spécifiées.

La méthode d’échantillonnage proposée améliore considérablement la vitesse de convergence
et la précision globale. En outre, il a été démontré qu’une méthode BABF en deux étapes était
réalisable pour les systèmes en phase fluide, et sa précision et son efficacité ont été validées
en calculant la différence d’énergie libre entre le gaz idéal et le modèle de liquide Uhlenbeck-
Ford. L’efficacité accrue de ces méthodes permet l’application pratique des potentiels ML à
l’exploration des profils d’énergie libre à température finie avec une précision de niveau DFT
à un coût de calcul raisonnable.

La méthode BABF accélérée permet de prédire les propriétés thermodynamiques des
matériaux métalliques à des températures inaccessibles expérimentalement, jusqu’à leur
point de fusion, avec une précision des calculs ab initio grâce à l’utilisation de champs
de force d’apprentissage statistique. L’extension de cette méthode, Bound BABF, permet
d’échantillonner un état métastable spécifique sans transition entre différents bassins d’énergie,
fournissant ainsi l’énergie libre de formation et de liaison d’une configuration défectueuse. Le
quatrième chapitre démontre les applications pratiques du cadre de calcul développé, en inté-
grant les techniques de ML avec l’estimation de l’énergie libre et les méthodes d’échantillonnage
adaptatif des chapitres précédents. Le cadre de calcul a été appliqué pour prédire les propriétés
à température finie de plusieurs matériaux à des températures jusqu’à leur point de fusion, ce
qui a donné des résultats significatifs :

• Tungstène cubique centré : le cadre a prédit les propriétés thermodynamiques telles
que l’expansion linéaire, le module de masse et les constantes élastiques jusqu’au point
de fusion. Ces prédictions ont été validées par rapport aux résultats expérimentaux,
montrant une excellente cohérence. En outre, l’énergie libre de liaison des bilacunes à
des températures finies a été étudiée, permettant d’élucider la dépendance de la formation
des cavités à la température ainsi que le mécanisme de ce phénomène, qui ne peut pas
être expliqué par les calculs ab initio existants.

• Alliages à haute entropie de Ta-Ti-V-W : pour ce nouveau matériau en cours de con-
ception, les constantes élastiques d’alliages de diverses compositions ont été calculées à
différentes températures jusqu’à leur point de fusion. Le profil d’énergie libre des mono-
lacunes a également été étudié pour la première fois, offrant des données précieuses pour
la conception et l’optimisation des matériaux.

• Corrélation entre les contributions harmoniques et anharmoniques : pour le tungstène
cubique centré et le fer cubique centré, une corrélation a été identifiée entre les con-
tributions harmoniques et anharmoniques à l’énergie libre. Cette découverte permet
d’établir un lien direct entre la simple approximation harmonique et l’anharmonicité to-
tale à des températures finies, réduisant ainsi de manière significative les efforts de calcul
nécessaires.

Ces applications valident la précision et l’efficacité numérique du cadre de calcul proposé,
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démontrant sa capacité à prédire les propriétés des matériaux avec une grande précision et
son applicabilité à des systèmes multi-composants. Ce cadre de calcul ouvre de nombreuses
perspectives pour une prédiction fiable des propriétés des matériaux à température finie.

Figure 5.2: Résumé illustratif de cette thèse.

En conclusion, les travaux présentés dans cette thèse ont établi un cadre de calcul puissant
et efficace, combinant des champs de force issus de l’apprentissage statistique et des méthodes
d’échantillonnage avancées pour l’estimation de l’énergie libre. Ce cadre permet de relever les
principaux défis liés à la détermination des propriétés des matériaux à température finie, tout
en atteignant une efficacité sans précédent pour un même niveau de précision. La précision et
l’efficacité numérique de ce cadre ouvrent de nombreuses perspectives pour la prédiction fiable
des comportements complexes des matériaux à haute température, ouvrant ainsi la voie à de
nouvelles découvertes et innovations dans le domaine des matériaux sous conditions extrêmes,
qui sont essentielles dans les développements liés à l’industrie de l’énergie atomique (fission
et fusion). Au-delà de la recherche sur les matériaux, ce processus de calcul est également
applicable en chimie et en biologie, par exemple pour le calcul de l’énergie libre des processus
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de liaison ligand-protéine dans la conception de médicaments. Nous sommes enthousiastes à
l’idée d’explorer de nouvelles applications dans ces domaines.
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