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Abstract

This thesis focuses on the statistical analysis of algorithms dedicated to rare events, a
critical area in contexts where data is scarce, such as financial extremes, environmen-
tal risks, and rare diseases. Standard statistical tools, like Hoeffding’s inequality and
empirical risk minimization, lose effectiveness in environments with limited data. This
situation requires the development of new probability bounds and specific algorithms
designed to enhance performance in scenarios of data scarcity.

The study first explores the challenges inherent in extreme values. The goal is to improve
prediction capabilities in extreme zones where events are rare, and data is sparse. The
theoretical framework includes dimension reduction techniques based on approaches
like Sliced Inverse Regression (SIR), which optimizes estimation by reducing biases
from high-dimensional data. The concept of Tail Conditional Independence (TCI) is
introduced to assist in modeling extreme regions. This concept is based on the idea that
certain linear combinations of covariates are sufficient for effectively predicting extreme
values. This statistical framework is applied in fields such as finance, where precise
predictions are essential for rare but critical events.

The second part of the thesis addresses cross-validation in data-scarce regions. It demon-
strates that traditional cross-validation schemes, such as the K-fold method, can induce
high biases in data-scarce scenarios. An alternative is proposed with polynomial and
exponential probability bounds to evaluate the generalization risk. These new bounds
enable better control of prediction errors and enhance the robustness of algorithms in
rare regions. Specific adjustments to cross-validation are explored to minimize risk
based on stability algorithms.

The thesis also tackles the challenge of imbalanced classification, where a minority class
of interest is underrepresented, a common issue in areas like fraud detection and medical
diagnostics. The cost-sensitive classification technique is favored. This method adjusts
the learning algorithm by assigning different misclassification costs to each class, helping
to avoid bias toward majority classes. By incorporating adapted deviation bounds,
the results show that these techniques can ensure reliable performance even when the
probability of rare events is very low.

In conclusion, this thesis proposes an innovative theoretical framework for scenarios
where data scarcity renders classic approaches inadequate. The probabilistic bounds
developed are validated by empirical experiments, demonstrating their ability to certify
algorithm effectiveness in environments with limited data. This research thus con-
tributes to extending the use of machine learning and statistical analyses in critical
contexts, such as financial forecasting and medical diagnostics, where prediction accu-
racy and reliability are essential.





Résumé

Cette thèse se concentre sur l’analyse statistique des algorithmes dédiés aux événements
rares, un domaine crucial dans des contextes où les données sont limitées, comme les ex-
trêmes financiers, la gestion des risques environnementaux ou l’étude des maladies rares.
Les outils statistiques standards, tels que l’inégalité de Hoeffding et la minimisation du
risque empirique, perdent en efficacité dans ces environnements de rareté de données.
Cela exige le développement de nouvelles bornes de probabilité et d’algorithmes spéci-
fiques permettant d’améliorer la performance pratique dans ces scénarios.

Dans un premier temps, l’étude explore les défis posés par l’analyse des valeurs ex-
trêmes. L’objectif est d’améliorer les capacités de prédiction dans les zones extrêmes
où les événements sont rares et les données peu nombreuses. Le cadre théorique inclut
des techniques de réduction de la dimension basées sur des approches comme la Sliced
Inverse Regression (SIR), qui optimise l’estimation en réduisant les biais dus à la grande
dimension des données. Le concept d’indépendance conditionnelle en queue (TCI) est
introduit pour aider à la modélisation des régions extrêmes. Cette notion repose sur
l’idée que certaines combinaisons linéaires de covariables suffisent pour prédire efficace-
ment les valeurs extrêmes. Ce cadre statistique est appliqué à des domaines tels que
la finance, où des prévisions précises sont essentielles pour des événements rares mais
cruciaux.

L’analyse des valeurs extrêmes s’appuie sur des modèles probabilistes permettant de
prévoir la probabilité d’occurrences futures dépassant des seuils élevés. Dans ce con-
texte, la thèse introduit des méthodes de réduction de la dimension, adaptées aux
situations où les données sont insuffisantes pour appliquer des méthodes traditionnelles.
Ces approches permettent de simplifier l’analyse des données multidimensionnelles tout
en assurant la fiabilité des prédictions.

La deuxième partie de la thèse aborde la validation croisée dans des régions où les
données sont rares. Elle démontre que les schémas classiques de validation croisée,
tels que la méthode K-fold, peuvent induire des biais significatifs dans les scénarios
de pénurie de données. Pour pallier cette limite, des alternatives sont proposées, avec
l’introduction de bornes de probabilité polynomiales et exponentielles, afin de mieux
évaluer le risque de généralisation des modèles. Ces nouvelles bornes permettent de
contrôler plus efficacement les erreurs de prédiction et d’améliorer la robustesse des
algorithmes dans les régions où les données sont rares. Des ajustements spécifiques à
la validation croisée sont également explorés pour minimiser le risque et garantir des
estimations fiables, en particulier lorsque les algorithmes sont soumis à des contraintes
de stabilité.

La thèse aborde également le défi de la classification déséquilibrée, où une classe minori-
taire d’intérêt est souvent sous-représentée. Ce problème est particulièrement présent
dans des domaines tels que la détection de fraudes, le diagnostic médical ou la surveil-
lance des infrastructures critiques. La classification sensible aux coûts est privilégiée,
car elle modifie l’algorithme d’apprentissage en attribuant des coûts de classification
différents pour chaque classe. Cela permet au modèle de porter une attention accrue
aux classes minoritaires et de limiter les biais en faveur des classes majoritaires. En inté-
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grant des bornes de déviation adaptées aux scénarios de rareté, les résultats démontrent
que ces techniques garantissent une performance robuste, même lorsque la probabilité
des événements rares est très faible.

Un aspect novateur de cette recherche réside dans la démonstration empirique de la
validité des bornes proposées. Les expériences réalisées montrent que ces bornes per-
mettent de certifier l’efficacité des algorithmes, même dans des contextes où les données
disponibles sont limitées et où l’incertitude statistique est plus importante. La thèse
souligne l’importance de développer des approches théoriques qui intègrent la réalité
de la rareté des données, en mettant en avant des solutions adaptées qui s’écartent des
hypothèses classiques de disponibilité abondante des données.

En conclusion, cette thèse propose un cadre théorique et méthodologique innovant, spé-
cifiquement conçu pour les environnements où la rareté des données rend les approches
classiques inefficaces. Les bornes probabilistes et les ajustements méthodologiques
développés sont validés par des études empiriques, démontrant leur capacité à certi-
fier la fiabilité des algorithmes dans des environnements critiques. Cette contribution
ouvre des perspectives nouvelles pour l’application de l’apprentissage automatique et de
l’analyse statistique dans des domaines sensibles, tels que la finance, la médecine et la
gestion des risques, où la précision et la robustesse des prédictions sont indispensables.
Ces travaux posent également les bases pour des recherches futures visant à affiner en-
core davantage les garanties théoriques et à élargir leur application à d’autres types de
données et de contextes rares.



Thesis outline and reading guide
We now present the outline of this manuscript :

• Chapter 1 introduces the working frameworks of the manuscript and establishes
their connection with the main subject, which is data scarcity. It’s essential for
setting the stage for the subsequent chapters.

• Chapter 2 develops probability bounds for cross-validation procedures dedicated
to the evaluation of algorithms from extreme value analysis.

• Chapter 3 extend the methodology of Sliced Inverse Regression to the field of
extreme value analysis.

• Chapter 4 develops sharp bounds for imbalanced classification problems.

• Chapter 5 focuses on studying transfer learning from the point of view of algo-
rithmic stability.

• Chapter 6 Serves as a conclusion and opening for further research, this chapter
study cross-validation within an algorithmic stability framework, exploring its
limitations and setting the stage for future studies on stability in data-scarce
environments.

Remark to Readers

This thesis is structured to facilitate focused reading. Each section is designed
to be self-contained, complete with its own set of notations and contextual back-
ground. Readers with interest in a specific topic or methodology can directly
navigate to the relevant section without the necessity of reading preceding sec-
tions. This approach is intended to accommodate both comprehensive readers
and those seeking insights into particular areas of our study.
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Notation

:= Equal by definition

N,R Sets of natural and real numbers

Rd Set of d-dimensional real-valued vectors

〈x, y〉 Inner product of vectors x, y ∈ Rd

n number of examples in the full data sample

nT number of examples in the training set

nV number of examples in the validation set

X The input space where the examples of a given task belong

Y The output space of a task

Z The joint space between inputs and outputs with Z = X × Y

‖x‖p `p-norm of vector x ∈ Rd

Rn×d Set of real matrices of size n× d

g ∈ G A predictor g from a hypothesis class G

Id Identity matrix of size d× d

A> Transpose of matrix A

Tr(A), det(A) Trace and Determinant of matrix A

‖A‖F Frobenius norm ‖A‖F = Tr(A.A>)

supp(·) Support of a function or a vector

1E Characteristic function of set E

Ac Complementary set of set A

P(·) Probability of an event

E[·] Expectation of a random variable

i.i.d∼ Independent and Identically Distributed

L2(π) Set of square integrable functions with respect to measure π

X ∼ P Random variable X has distribution P

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

`(g, Z) A user defined positive loss function and where Z ∈ Z





Chapter 1
General introduction, motivations
and contributions
In the modern context, data is often likened to "new oil" for its considerable value
and significance. It’s commonly perceived that data is abundant and easily accessible
across various domains. Yet, this isn’t always the case. In several crucial fields like
as medicine (Ahsan and Siddique, 2022), environmental science (Liu et al., 2022), eco-
nomics (Pandeya et al., 2016), and social sciences (Laurer et al., 2023), the shortage of
data presents significant challenges for decision-making and analytical precision due to
insufficient data. This data scarcity negatively impacts data-centric methods such as
machine learning, which rely on large datasets for precise model training and validation.

Contrary to being a temporary problem, data scarcity is a persistent issue in areas such
as studying rare diseases, detecting financial fraud, or conserving endangered species,
where limited data is a fundamental characteristic. This necessitates a shift in the
mathematical techniques employed for analysis and prediction in these sectors.

Traditional statistical and machine learning techniques often assume the availability of
extensive data, an assumption not valid in data-limited situations. This discrepancy
between methodological expectations and real-world conditions necessitates a reevalua-
tion of theoretical models. Approaches like cost-sensitive learning, transfer learning, and
extreme value analysis, while promising, are theoretically underdeveloped for data-poor
environments. The standard theoretical assurances linked with these methods typically
assume ample data, creating a gap in their effectiveness for data-scarce scenarios.

To clarify the learning problems addressed, we focus on i.i.d. data Zi = (Xi, Yi)i≤n,
with common distribution P , lying in a sample space X ×Y = Z, and a low probability
region A ⊂ Z i.e. P (Z ∈ A) = α � 1. This thesis investigates the statistical behavior
of algorithms and procedures dedicated to these low-probability regions.

The primary aim of this thesis is to fill this gap by deriving new theoretical assurances
that adapt to the challenges of limited data availability. Our goal is to enhance the
effectiveness and reliability of statistical guarantees in data-limited contexts. This thesis
concentrates on developing statistical convergence rates for:

1. Extreme value analysis.

2. Highly imbalanced classification.

3. Transfer learning.
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CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND

CONTRIBUTIONS

1.1 Data scarcity in Extreme value analysis

1.1.1 Introduction to Extreme Value Theory (EVT)

Extreme Value Theory (EVT) (de Haan, 1970; Beirlant et al., 2006; Resnick, 2007)
specializes in modeling the extraordinary, not the ordinary. It plays a crucial role in in-
dustries such as finance, insurance, telecommunications, and environmental sciences for
risk management purposes. EVT’s core function is to accurately assess the probability
of rare occurrences.

The theory offers a method to predict the likelihood of future events that exceed previous
extreme records. It aims to understand how random variables behave when they surpass
high thresholds, a focus particularly pertinent for heavy-tailed distributions where the
likelihood of extreme events is significantly higher. For univariate data, EVT mainly
examines the process’s highest possible values. The asymptotic nature of these maxi-
mums is well-understood and described by the generalized extreme value distribution,
as noted by various studies. In multivariate contexts, defining extremes is more intri-
cate due to the absence of a natural order. However, extremes can be identified through
various methods such as threshold exceedances, analyzing component-wise maxima, or
examining a user-defined norm of vectors. Extreme value theory faces challenges as data
dimensions increase. Common dimension-reduction methods like principal component
analysis (PCA), which focus on covariance matrices, may not be viable with heavy-
tailed distributions where covariance might not be defined. Recent works by Cooley
and Thibaud (2019b); Drees and Sabourin (2021) have proposed adaptations to these
traditional methods, addressing these limitations.

From a statistical perspective, one of the primary challenges of EVT is the inherently
infrequent nature of extreme events, which means that only a small fraction of data is
available for analysis. This limited sample size exacerbates the curse of dimensionality in
EVT, making it challenging to draw reliable inferences from such sparse data (k � n).

Moreover, working in extreme regions poses a significant challenge for most, if not all,
ML algorithms. Considering extreme data points Z—those where the norm ||Z|| goes
beyond a substantial threshold t > 0 their rarity makes them underrepresented in the
training set D. Thus, errors in such input space areas may insignificantly affect the
holistic prediction error of a predictor g ∈ G. Leveraging the total probability formula,
we can write the statistical risk with respect to a loss function ` : G×Z 7→ R as follows:

R[g] := E
[
`(g, Z)

]
= P (‖Z‖ < t)E

[
`(g, Z) | ‖Z‖ < t

]
+ P (‖Z‖ ≥ t)E

[
`(g, Z) | ‖Z‖ ≥ t

]
.

Given the minuscule magnitude of P (‖Z‖ > t) and its empirical version, there is no
assurance that standard ML methods yield an optimal classifier for the rare region

A = {z : ‖z‖ > t}.

This means that the measure E
[
`(g, Z) | ‖Z‖ ≥ t

]
might not be close to optimal.

Nonetheless, in areas like finance, insurance, and aeronautical safety, precise predic-
tions in extreme regions are paramount.
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To address this challenge, numerous algorithms specially designed for extreme regions
have been introduced in recent times, driven by critical factors like dimensionality re-
duction and/or anomaly detection (Goix et al. (2016, 2017); Thomas et al. (2017);
Chiapino and Sabourin (2016); Drees and Sabourin (2021); Jalalzai and Leluc (2021),
see also the review papers Engelke and Ivanovs (2021); Suboh and Aziz (2020)), data
augmentation (Jalalzai et al., 2020), adversarial simulation (Bhatia et al., 2021), graph-
ical models (Engelke et al., 2021; Engelke and Volgushev, 2022) and classification in
extreme regions (Jalalzai et al., 2018, 2020). A large number of these methods have
tuning parameters, and apart from k, their optimal selection is challenging. In the
context of EVT, estimating the (conditional) generalization risk is even more critical
due to the limited available training data. For such scenarios, cross-validation (CV)
presents a fitting solution. Further in this section, we shall present our results regarding
cross validation in extreme regions.

Recently, there have been developments from a statistical learning view on EVT, of-
fering non-asymptotic assurances concerning the statistical errors of specific estimators
or algorithms. The concentration inequalities for order statistics defined in Boucheron
and Thomas (2012) are employed in Boucheron and Thomas (2015) to adaptatively
select k for tail index estimation. In Goix et al. (2015), a consistent bound is de-
rived using a Vapnik-Chervonenkis (VC) class of sets in terms of the deviations of
the conditional empirical metric in a low occurrence zone A, formulated as Pn,α =
1
nα

∑n
i=1 1

{
Zi ∈ ( · ∩ A)

}
, which proportionally scales as O(1/

√
nα) = O(1/

√
k) with

respect to the sample size. Alternative probability bounds with explicit constants are
provided in Lhaut et al. (2021) and Clémençon et al. (2022).

In the rest of this section, we discuss challenges highlighted earlier by introducing a new
method to reduce the curse of dimensionality. Our approach leverages Sliced Inverse
Regression techniques to effectively manage high-dimensional data in extreme regions,
simplifying and improving the analysis process. Additionally, we explore risk estimation
using cross-validation in rare regions.

1.1.2 Dimensionality reduction in EVT

The fundamental objective of statistical regression is to predict a dependent variable
Y ∈ R using a covariate vector X ∈ Rp, which is commonly known as the explanatory
variables. When faced with an abundance of explanatory variables, the challenge be-
comes reducing their dimensionality. Chapter 3 centers on the extreme values of the
target variable, defined as Y 1

{
Y > y

}
, where "y" represents a high threshold—typically

chosen based on a quantile of Y at a probability level of 1−α (with α being exception-
ally low). Here, 1

{
A
}
denotes the indicator function for an event A. In this work, we

propose a novel approach to reduce the dimensionality of X specifically to predict these
extreme Y values.

Our work considers a conditional extremes model wherein the extreme values of Y are
driven by the covariates vector X. The dimension of this vector, p, is significantly larger
than the sample size. The curse of dimensionality is even more pronounced in extreme
value analysis. In such analyses, only a minuscule portion of the data, represented by
the small α, contributes to statistical inference. A real-world instance of this is detecting
outliers when there are some given covariates. Typically defined as the extreme values
of the dependent variable, outliers correspond only to a minor fraction of the total data.
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CONTRIBUTIONS

The aim is to predict the tail distribution of the dependent variable using the covariates.
When the dimension of the vector of covariates p is of considerable size, making such
predictions intricate.

Before delving deeper, it is worth noting that, while the methodology introduced in
this research is framed within the EVT perspective, it is essentially a localized tech-
nique relevant to any restricted range of Y . This approach can be suitably modified
to address the challenge of reducing dimensionality when predicting Y within specific
low-probability regions of various configurations. To put it differently, selecting the tail
region above the 1 − α quantile is not fixed and can be interchanged with any region
with probability α. Nonetheless, considering the critical relevance of risk management
applications, our emphasis remains on this distinct tail region.

The topic of dimensionality reduction for extremes has garnered significant attention in
recent literature. Predominantly, these works cater to the unsupervised setting, which
involves examining the extremes of a multidimensional random vector. Broadly, these
investigations can be categorized into: clustering techniques (Chautru, 2015; Chiapino
et al., 2019a; Janßen and Wan, 2020a), methods for support identification (Goix et al.,
2016, 2017; Chiapino and Sabourin, 2016; Chiapino et al., 2019b; Simpson et al., 2020;
Meyer and Wintenberger, 2019), Principal Component Analysis targeting the angular
aspect of extremes (Cooley and Thibaud, 2019a; Jiang et al., 2020; Drees and Sabourin,
2021), and graphical models tailored for extremes (Hitz and Evans, 2016; Engelke and
Hitz, 2020; Asenova et al., 2021; Engelke et al., 2021). Further details can be found in
Engelke and Ivanovs (2020) and the references therein. Contrary to the aforementioned
studies, our method operates within the supervised realm, focusing on reducing the
dimensionality of X to fulfill a specific objective—predicting the large values of the
output variable Y .

The underlying assumption of a sufficient linear projection has historical roots in statis-
tics, frequently discussed within the context of sufficient dimension reduction (SDR)
spaces (Cook, 2009). Many traditional techniques in supervised dimension reduction,
such as Principal Component Regression (Hotelling, 1957), Partial Least Squares (Wold,
1966), Canonical Correlation Analysis (Thompson, 1984), and sparse regularization
methods like the Lasso (Jenatton et al., 2011), often pivot around a linear regression
relationship between X and Y .

In contrast, SDR operates on the idea of linear dimension reduction: it posits that
predicting the dependent variable only requires a handful of linear combinations of
covariates. This means that there is a linear subspace E with a moderate dimension
d ≤ p such that:

P
(
Y ≤ t

∣∣ X) = P(Y ≤ t|QX), ∀t ∈ R, almost surely, (1.1)

Here, Q symbolizes the orthogonal projection onto E. In essence, Y is dependent on X
solely through QX in Rd. This approach anchors itself in the conditional independence
concept Dawid (1979); Constantinou and Dawid (2017): the aforementioned condition
encapsulates the idea that Y is conditionally independent of X once QX is given.
One significant advantage of this approach is its ability to strike a balance between
interpretability, which is based on linear operations, and the flexibility provided by its
generative model – it does not enforce any specific assumption about the relationship
between QX and Y .
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Assuming the existence of a significant subspace E satisfying the condition, an intuitive
step is to first approximate such a space and subsequently utilize only the variable QX
for predicting Y , effectively simplifying the regression dimensionality.

SDR-based estimation can also be perceived as a distinct variant of semi-parametric
M-estimation (Delecroix et al., 2006). Another avenue is derivative-based methods,
grounded on the idea that the gradient of the regression curve is a constituent of E
(Härdle and Stoker, 1989; Hristache et al., 2001; Xia et al., 2007; Dalalyan et al., 2008).
More recently, the Reproducing Kernel Hilbert Spaces (RKHS) framework has been
leveraged to infer SDR spaces using covariance operators (Fukumizu et al., 2004, 2009).

The methodology most closely associated with our research stems from the inverse re-
gression framework introduced by Li (1991). This includes the Sliced Inverse Regression
(SIR) approach and its more advanced counterpart, the Sliced Average Variance Esti-
mate (SAVE) (Cook and Weisberg, 1991). The central concept behind these techniques
is that, given certain conditions, the inverse regression curve E

[
X|Y

]
and its higher

moment counterpart — the columns of the conditional covariance matrix Var(X|Y )
— are almost certainly part of the minimal SDR. The Cumulative slicing estimation
(CUME) method, introduced in Zhu et al. (2010) and further explored in Portier (2016)
through an empirical process perspective, seeks to identify the most expansive subspace
of the minimal SDR. This is accomplished by estimating the conditional expectation of
X (and its advanced moment version) based on ’slices’ of the target variable Y , repre-
sented as 1

{
Y < y

}
, followed by an integration of such conditional expectations against

y.

A recognized limitation of the SIR approach is its dependence on a specific "linearity
condition" (LC) concerning the covariates :

E
[
X | QX

]
= QX.

The validity of this assumption is further discussed in Hall and Li (1993). This condi-
tion is notably met when the covariates are either part of an elliptical random vector
or are mutually independent (Cook, 2009; Eaton, 1986). Several enhancements of the
SIR method have been proposed to address this limitation. For instance, by employing
RKHS, transformations have been suggested to ensure the LC is nearly fulfilled (Wu,
2008; Yeh et al., 2008). Another alternative, especially when deviating from ellipti-
cal covariates, involves applying the SIR approach and its more advanced versions to
the score functions of the predictor variables (Babichev et al., 2018). Furthermore, in
situations where dimensionality (p) exceeds sample size (n), regularization techniques
have been put forward to enable feature selection (Li and Yin, 2008). However, these
advanced adaptations are beyond the purview of our current study. Here, we primarily
focus on the foundational SIR and SAVE approaches. This suggests opportunities for
further improvement in subsequent researches. For estimation, we examine a variant of
the CUME technique.

Contributions Our contributions are twofold:

1. We extend the principles and methodologies of inverse regression to address the
challenges presented by extreme values. In particular, we introduce the concept
of Tail Conditional Independence which is similar to the SDR but for extreme
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regions.

Definition (Tail Conditional Independence (TCI)). Let Y, V,W be random vari-
ables defined on (Ω,F ,P). We assume that Y is real-valued, Borel measurable,
while V and W take their values in arbitrary measure spaces. We say that Y is
tail conditionally independent from V given W and write Y∞⊥⊥V |W , if

E
∣∣∣P (Y > y

∣∣ V,W )− P
(
Y > y

∣∣W ) ∣∣∣
P
(
Y > y

) −−−−→
y→y+

0, (1.2)

where y+ ∈ R+ ∪ {∞} is the right endpoint (i.e. the supremum) of the support of
the random variable Y .

An extreme SDR space for the pair (X,Y ) is then defined as the subspace Ee of
Rp such that Y∞⊥⊥X|PeX, where Pe is the orthogonal projection on Ee. In other
words, Ee is called an extreme SDR space whenever

E

∣∣∣∣∣P(Y > y|Z)− P(Y > y|PeZ)

P
(
Y > y

) ∣∣∣∣∣ −−−−→y→y+
0.

This TCI setting is a modified version of Gardes (2018)’s probabilistic setting
regarding tail conditional independence. In particular, we explain in Remark 3.5
the relevance of our definition for the purpose of predicting tail events and their
connections to the statistical learning framework of imbalanced classification.

The TIREX principle is similar to the SIR principle. Indeed, under suitable
conditions, in particular, if the extreme conditional expectation converges to some
` ∈ Rp i.e.

E
[
Z
∣∣ Y > y

]
−−−−→
y→y+

`,

then ` ∈ Ee. This result can be seen as an extension of the standard SIR principle
that states that

E
[
Z
∣∣ Y ] ∈ E,

to extreme regions.

2. We conduct an asymptotic analysis of our proposed estimation strategy, TIREX,
which originates from inverse regression, employing specialized tools derived from
the theory of empirical processes. More formally, we use as an estimate an em-
pirical version of the quantity E[Z |Y > y ] for a high threshold y growing with
the sample size n. A typical choice of such a threshold is the quantile of Y at a
probability level 1 − k/n, where k = k(n) is an intermediate sequence such that
k(n) → ∞ and k(n)/n → 0 as n → ∞. Here we propose a refinement of this
strategy integrating out the latter quantities over varying quantiles at probability
levels 1 − uk/n for u ∈ (0, 1). Such a refinement follows the proven approaches
based on the CUME matrice.

Based on the latter approach, the statistical quantity that we will seek to estimate
is the following :

Cn(u) =
n

k
E
[
Z1
{
Ỹ < F−(uk/n)

}]
.
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where Ỹ is the negative target i.e. Ỹ = −Y , F is the c.d.f. of Ỹ and F− is the
left-continuous inverse of F , F−(u) = inf{x ∈ R : F (x) ≥ u}.
In Section 3.5 we propose an empirical estimate of Cn and we derive using proper
empirical process tools (control of classes of functions changing with n) asymptotic
intervals for Ĉn − Cn.
Similar results based on the variance matrix (E[ZZ> |Y > y ]) are also developed
in the same section.

However, all these results come with the tuning of parameter d (the dimension of the
central space), which is generally selected using cross-validation. In the next section,
we shall study the consistency of cross-validation in extreme regions

1.1.3 Cross Validation for EVT

Cross Validation: Context and Challenges

Cross-validation (CV) represents a critical and widely adopted technique for risk esti-
mation and model algorithm selection and is especially relevant to the central focus of
this thesis. The primary concept of CV involves dividing data either once or multiple
times to calculate the risk associated with different algorithms. Specifically, a portion
of the data (referred to as the training sample) is allocated to train each algorithm,
while the remaining data (known as the validation sample) is utilized to estimate the
risk associated with each algorithm. An example of this can be seen in the 5-fold cross-
validation scheme, as illustrated in Figure 1.1.
Within the broader context of risk estimation, CV stands as an improvement over train-
ing error (resubstitution error), largely due to its inherent resistance to overfitting. This
robustness arises from the independence of the training and validation samples, an as-
sumption that holds when the data is independently and identically distributed (i.i.d. ).
One of the major reasons for CV’s wide acceptance stems from its “universality” with
regard to data splitting heuristics.

In a practical setting, given a training sample DT = {Zi | i ∈ T}, T ⊂ [n] and a family
of candidate predictors G the predictor g is selected by an algorithm (or learning rule)
A, so that the final predictor is given by A(T ) ∈ G.
To define the cross-validation estimate, we recall the definition of the holdout estimate:

R̂
[
A(T ), V

]
=

1

nV

∑
i∈V

`
(
A(T ), Zi

)
,

Where the V is a validation set within [n] :=
{

1, 2, . . . , n
}

with cardinal nV and
T = [n] \ V denotes the training set. Since T and V contain independent observa-
tions, this estimate is often less optimistic than the training error (resubstitution error)
R̂
[
A([n]), [n]

]
.

Given a family of validation sets in [n], V1:K = (Vj)j=1,...,K , the CV estimator of the
generalization risk of A([n]) is

R̂CV

[
A, V1:K

]
=

1

K

K∑
j=1

R̂
[
A(Tj), Vj

]
, (1.3)
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where Tj = [n]\Vj . This estimate is highly advantageous compared to a single hold-
out as it can significantly reduce the variance Blum et al. (1999); Kumar et al. (2013).
However, akin to the holdout, it is evident that these quantities are biased estimators

of the statistical risk (generalization risk) R
[
A
(

[n]
)]

. This bias becomes pronounced

when the training size card(T ) is reduced.

We now discuss classical cross-validation techniques: leave-one-out (l.o.o.), leave-p-out
(l.p.o.), and K-fold cross-validation procedures.

Leave-one-out (Stone, 1974) The l.o.o. estimate, also known as the deleted esti-
mate, is a foundational exhaustive CV procedure. In this method, each data point is
iteratively excluded from the sample and utilized for validation. Specifically, l.o.o. is
defined by (6.1) with K = n, Tj = [n]\j, Vj = j for j ∈ {1, 2, . . . , n}.

Leave-p-out (Shao, 1993) with p ≤ n − 1 is another exhaustive CV where each
subset of p data points is sequentially excluded from the sample for validation purposes.
Thus, l.p.o. is defined by (6.1) with K =

(
n
p

)
, and (Vj)1≤j≤B are all subsets of [n] with

size n− p. Note that l.p.o. with p = 1 is l.o.o..

Considering
(
n
p

)
training sets can be computationally intractable, even when p is small.

K-fold scheme has been proposed as an alternative.

K-fold CV (Geisser, 1975) with K ∈ [n] was introduced as an alternative to the
computationally taxing l.p.o., K-fold CV involves initially dividing the data into K
subsamples, each with approximately equal size n/K. Each of these subsamples then
successively serves as the validation set. K-fold CV relies on a preliminary partitioning
of data into K subsamples of approximately equal to the cardinality n/K . Each
subsample successively plays the role of validation sample. Formally, let A1, A2, . . . , AK
be some partition of [n] with ∀j, card(Aj) = n/K . Then, the K-fold CV estimator of
the risk of A

(
[n]
)
is given by (6.1) with Vj = Aj and Tj = [n]\Aj .

Due to its simplicity, K-fold CV is the most used cross-validation scheme in practice.
However, because of the discrepancy between the training size and the full sample size,
the latter estimate can have a pronounced bias which causes K-fold cross-validation to
fail in many contexts (Shao, 1997; Yang, 2006; Arlot, 2008b; Arlot and Lerasle, 2016).

To address the limitations of K-fold, Burman (1989); Fushiki (2011) introduced de-
biasing correction terms to the K-fold CV estimate to improve its convergence rate.
Formally, the bias-corrected CV estimates write as :

R̂corrCV

[
A, V1:K

]
= R̂CV

[
A, V1:K

]
+ R̂

[
A([n]), [n]

]
− 1

K

K∑
j=1

R̂
[
A(Tj), [n]

]
. (1.4)

The behavior of CV, especially l.p.o., in terms of risk assessment and model identifi-
cation has been extensively researched from an asymptotic perspective. The outcome
usually hinges on the splitting ratio, which is the proportion between the validation
and training sets sizes—specifically, p/(n− p) for l.p.o. and 1/(K − 1) for K-fold cross-
validation. This was demonstrated by Shao (1993, 1997) for regression, by Yang (2006)
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for classification, by Bayle et al. (2020); Austern and Zhou (2020b) for stable algorithms
as per (Bousquet and Elisseeff, 2002) and by van der Laan et al. (2004) in density es-
timation contexts. Asymptotic optimality is achieved when this ratio approaches zero
as n tends to infinity. Additional asymptotic insights regarding CV in regression are
detailed in the book by Gyorfi et al. (2010).

From a non-asymptotic standpoint, determining the theoretical properties of CV esti-
mates is challenging because there is no independence between the terms of the average
used in a CV scheme. Commonly used concentration inequalities typically assume in-
dependence among the terms used to create the estimator. As far as we know, the
limited non-asymptotic results can be divided into two categories: On one hand, we
have so-called insanity check bounds, indicating that the obtained guarantees show that
the CV estimate has a better convergence rate than the hold-out estimate. On the other
hand, there is a concept termed sanity check bounds. These bounds do not demonstrate
that the CV risk estimate surpasses either the hold-out or the training risk estimates.
However, they do confirm the consistency of using CV for risk estimation. Subsequently,
we review the literature on each type of result.

Variance insanity check bounds The cross-validation estimator offers an advantage
in reducing variance compared to just one training-test split. In the keystone paper
by Blum et al. (1999), they established insanity check bounds and demonstrated that
cross-validation consistently aids in variance reduction, even though they didn’t specify
the extent of this phenomenon. Subsequently, Kale et al. (2011); Kumar et al. (2013)
quantified the extent of variance reduction by CV when a specific type of stable learner
is used. However, the latter works do not discuss the bias induced by CV schemes, and
in some instances, this bias can result in inconsistency (Shao, 1997; Arlot and Lerasle,
2016).

Sanity check bounds Let us review the existing non-asymptotic analysis that in-
corporates the CV bias. References such as Devroye and Wagner (1979); Anthony
and Holden (1998); Kearns and Ron (1999) have established polynomial upper bounds
for the leave-one-out (l.o.o.) error, assuming a specific weak stability criteria, further
utilized in Cornec (2009, 2017). Moreover, Kearns and Ron (1999) (Lemma 4.2) has
illustrated that ERM over a VC-class possesses error stability. It is paramount to high-
light that exponential bounds for the l.o.o. can be formulated under the more robust
assumption of uniform stability, as demonstrated in Bousquet and Elisseeff (2002). Re-
garding the K-fold scheme, literature is notably less prolific compared to the l.o.o.,
especially when delineating upper bounds for risk estimation. To the best of our knowl-
edge, the only non-asymptotic bounds in this domain are provided in Cornec (2009,
2017). The latter references furnish some upper bounds spanning a range of CV strate-
gies. These specific bounds entail a minimum of either exponential or polynomial terms,
each reliant on the dimensions of the validation and training datasets. Consequently, the
K-fold method yields an exponential bound, given its validation set size is proportionate
with the full sample size, contrasting with l.o.o. and l.p.o..

The exponential and polynomial upper bounds mentioned earlier serve as sanity check
guarantees. This isn’t always the case for model selection, as highlighted in works like
e.g. Wager (2020). Expanding beyond these sanity check limits for CV risk estimators
is still an unsolved issue in the general case.
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To conclude this section we recall the meaning of polynomial probability upper bound
that is an upper bound of the following form :

P (Error > t) ≤ C/ta

for some C > 0 and a ≥ 1. While an exponential upper bound write as :

P (Error > t) ≤ C1 exp
{
−C2t

}
,

for some C1, C2 > 0.

Contributions and Problem Formulation

This thesis is the first of its kind to envision CV for algorithms related to rare regions
from a theoretical perspective. The theoretical guarantees are derived for the extreme
region A = {z = (x, y) ∈ Z : ‖x‖ ≥ tα} for some (semi)-norm ‖ · ‖ and a large threshold
tα chosen as the (1−α)-quantile of ‖X‖ where α = k/n and k = k(n) = o(n). However,
these results can be extended easily to any low-probability region.

In such a context, it is natural to measure the performance of a predictor g in terms of
an expected loss, conditional to the rare event ‖X‖ ≥ tα. In other words, the quantity
of interest is the statistical risk Rα[g] = E

[
`(g, Z) | ‖X‖ ≥ tα

]
.

The hold-out estimate of the statistical error Rα
[
A([n])

]
involves a validation index

set V disjoint from T and writes as

R̂α
[
A(T ), V

]
=

1

nV α

∑
i∈V

`
(
A(T ), Zi

)
1
{
‖Xi‖ > ‖X(bαnc)‖

}
,

where
∥∥∥X(1)

∥∥∥ ≥ . . . ≥ ∥∥∥X(n)

∥∥∥ are the (reverse) order statistics of the sample (
∥∥Xi

∥∥)i=1,...,n.

The CV estimator of the generalization risk of A([n]) in extreme regions is

R̂CV,α

[
A, V1:K

]
=

1

K

K∑
j=1

R̂α
[
A(Tj), Vj

]
. (1.5)

For clarity reasons, we suppose further that n is divisible by K so that n/K is
an integer. This condition guarantees, that all validation sets have the same cardinal
nV = n/K.

It is essential to note that simply applying the same normalization to the risk and its
associated existing upper bounds (Kearns and Ron, 1999; Cornec, 2009, 2017; Arlot and
Lerasle, 2016) on the CV error produces an uninformative bound. Namely, dividing by
α an upper bound of order O(1/

√
n) in order to analyze the case of rare classes yields an

order O(1/(α
√
n)) which may not even converge to zero, e.g. if α = O( 1√

n
). This pitfall

is a distinctive feature of statistical learning in low probability regions already discussed
in (Goix et al., 2015; Lhaut et al., 2021) regarding the deviations of the empirical risk.
One purpose of this thesis is to derive consistent non-asymptotic upper bounds for
algorithms dedicated to rare regions.



1.1. DATA SCARCITY IN EXTREME VALUE ANALYSIS 25

Figure 1.1 – 5-folds cross-validation scheme.

Indeed, previous works on cross-validation (Kearns and Ron, 1999; Cornec, 2017) use
Hoeffding’s type inequalities. However, this type of inequality doesn’t take into account
the low variance of 1

{
‖X‖ ≥ tα

}
. For the sake of completeness, we recall Hoeffding’s

inequality

Theorem (Hoeffding’s inequality). Let Z1, . . . , Zn be independent random variables
such that Zi ∈

[
ai, bi

]
almost surely. For any ε > 0, the following statements hold:

P

 n∑
i=1

Xi −
n∑
i=1

E
[
Xi

]
> ε

 ≤ exp

− 2ε2∑
i

(
bi − ai

)2
 ,

P

 n∑
i=1

Xi −
n∑
i=1

E
[
Xi

]
< −ε

 ≤ exp

− 2ε2∑
i

(
bi − ai

)2
 ,

and P


∣∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E
[
Xi

]∣∣∣∣∣∣ > ε

 ≤ 2 exp

− 2ε2∑
i

(
bi − ai

)2
 .

Applying Hoeffding’s inequality to control the errors
∣∣∣∣ 1
n

∑n
i=1 `(g, Zi)− E

[
`(g, Z)

]∣∣∣∣ and∣∣∣∣ 1
n

∑n
i=1 `(g, Zi)1

{
Xi ≥ tα

}
− E

[
`(g, Z)1

{
X ≥ tα

}]∣∣∣∣ yields the same probability upper

bound. i.e. an upper bound of order 1/
√
n. However, using Bernstein’s type yields

upper bounds of order 1/
√
n and

√
α/n respectively. Thus, existing works in EVT

(Goix et al., 2015; Lhaut et al., 2021) use Bernstein’s type inequalities to control the
deviations in extreme regions. Following the line of the latter references, we will use
the following Bernstein variant to control the deviations of R̂CV,α.

Theorem. For a sequence of observations (Z1, Z2, . . . , Zn) ∈ Zn and some fixed val-
ues z1:l = (z1, z2, . . . , zl) and for some measurable function f : Zn → R, let W =
f(Z1, Z2, . . . , Zn) and define for l ∈ J1, nK:

1. fl(z1, z2, . . . , zl) = E
(
W | Z1 = z1, Z2 = z2, . . . , Zl = zl

)
,
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2. ∆l(z1, z2, . . . , zl−1, zl) = fl(z1, z2, . . . , zl−1, zl)− fl−1(z1, z2 . . . , zl−1), (the positive
deviations)

3. D := maxl=1,...,n supz1,...,zi−1∈Z supz∈Z ∆l

(
z1, . . . , zl−1, z

)
, (the maximum posi-

tive deviation)

4. σ2
l (z1:l−1) = Var

[
∆l(Z1, Z2, . . . , Zl−1, Z

′) | Z1 = z1, Z2 = z2, . . . , Zl−1 = zl−1

]
, where

Z ′ is an independent copy of Zl,

5. σ2 = supz1:l−1∈Zl−1

∑n
l=1 σ

2
l (z1:l−1) (the maximum sum of variances).

Then we have

P(W − E
[
W
]
> t) ≤ exp

(
−t2

2(σ2 +Dt/3)

)
.

The main difficulty compared to existing works that derive non-asymptotic bounds for
EVT estimates is the lack of independence between the different terms of the average
involved in a CV scheme.

We are now poised to detail our contributions concerning the cross-validation estimate
R̂CV,α.

Contribution we present two novel results for conditional risk estimation by cross-
validation R̂CV,α when A is an empirical risk minimizer and α� 1:

(i) We derive an exponential probability bound, contingent on the size of the validation
set. This bound acts as a sanity check within the realm of rare events specifically for the
K-fold CV scheme. It is not applicable to the l.p.o. scheme because, in this instance,
the size of the validation set remains fixed at p. More precisely we derive an upper
bound, that confirms that, by probability at least 1− δ, one has∣∣∣∣∣R̂CV,α

[
A
(

[n]
)]
−Rα

[
A
(

[n]
)]∣∣∣∣∣ = O

(
log(1/δ)√
nV α

)

(ii) Our second result is a polynomial upper bound, which outperforms the exponential
bound in the context of l.p.o.. This is because it is exclusively related to the size of the
training set. The obtained upper bound yields, with probability at least 1− δ,∣∣∣∣∣R̂CV,α

[
A
(

[n]
)]
−Rα

[
A
(

[n]
)]∣∣∣∣∣ = O

(
1

δ
√
nTα

)
.

For cases where α = 1, our contributions match the state-of-the-art probability upper
bounds, apart from certain multiplicative constants and negligible terms. Specifically,
for α = 1, our exponential (respectively, polynomial) upper bound aligns with existing
bounds in Cornec (2017) (risk-fold CV respectively, Kearns and Ron (1999); Cornec
(2017)). Addressing the situation where α � 1 demands distinct proof methodologies
due to the low variance (influenced by α) of the random variables at stake. In our
approach, we employ a Bernstein-type variant of the bounded difference inequality
(McDiarmid, 1998). This mirrors earlier efforts in statistical learning pertaining to
EVT, consistent with the works of Goix et al. (2015); Lhaut et al. (2021). A unique
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aspect of our research lies in addressing the intricate construction of the cross-validation
risk. This risk encompasses a summation of dependent terms, differentiating it from
the empirical risk addressed in prior references.

The aforementioned results establish the consistency of K-fold cross-validation (CV)
for empirical risk minimizers in rare regions, specifically as α → 0 and αn → ∞. The
subsequent section will delve into the performance of CV in conjunction with stable
learners. We will particularly concentrate on scenarios where α = 1, setting the stage
for an in-depth examination of CV applied to stable learners within the context of rare
events.

1.2 Bias corrected K-fold: opening the road for analysing
stable learners in rare regions

A promising avenue is to derive K-fold probability bounds for rare events in an algo-
rithmic stability framework (see Section 1.4 below for the exact definition). However,
to the best of our knowledge all the non-asymptotic guarantees in the standard setting
(α = 1) concern only the l.o.o. and l.p.o. schemes or analyses only the variance of K-
fold (Kale et al., 2011; Kumar et al., 2013; Abou-Moustafa and Szepesvári, 2017; Bayle
et al., 2020; Austern and Zhou, 2020a). None of the latter works imply a universal
upper bound regarding the K-fold neither for risk estimation nor for model selection.
Indeed their focus is on the variance term of the K-fold error, while they do not take
into account the high bias generally induced by this CV scheme (see Shao (1997); Arlot
and Lerasle (2016) for instance).

One may wonder whether the absence of a universal bound for the K-fold CV error
in an algorithmic stability framework is just a coincidence. We answer in the negative
by deriving a lower bound on the K-fold error (Section 6.4) in two different contexts,
specifically, regularized empirical risk minimization and stochastic gradient optimiza-
tion. The latter bound shows that under the uniform stability assumption alone, K-fold
CV is inefficient in so far as it can fail in estimating the generalization risk of a uniformly
stable algorithm.

Furthermore, we analyze the corrected K-fold (cf. Equation (1.4)) procedure and prove
a PAC generalization upper bound covering the general case of uniformly stable learners.
As a consequence, the corrected version of the K-fold is shown to be efficient in contrast
to the standard version. The corrected K-fold scheme has been investigated in Burman
(1989, 1990); Fushiki (2011); Arlot and Lerasle (2016) in the particular frameworks
of ordinary linear regression and density estimation. Furthermore, the analysis in the
latter references relies on strong regularity assumptions (further details are given in
Section 6.5) which aren’t satisfied by many modern learning rules like Support Vector
Machine (SVM), stochastic gradient descent methods, bagging, etc. Instead our upper
bound covers the general case of uniformly stable learners.

Let us briefly recall important notions of stability that will be used in the manuscript.
The notion of stability was first introduced in Devroye and Wagner (1979) to derive
non-asymptotic guarantees for the leave-one-out estimate. Let denote by [n] the set
of indices {1, . . . , n}. The algorithm A is called stable if removing a training point
Zi, i ∈ [n], from the DT or replacing Zi with an independent observation Z ′ drawn
from the same distribution does not alter the risk of the output. Later, Bousquet and
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Elisseeff (2002) introduced the strongest notion of stability, namely uniform stability, an
assumption used to derive probability upper bounds for the training error and the l.o.o.
estimate Bousquet and Elisseeff (2002); Elisseeff et al. (2005); Hardt et al. (2016b);
Bousquet et al. (2020); Klochkov and Zhivotovskiy (2021b). Equipped with the above
notations, uniform stability, also called leave-one-out stability, can be defined as follows.

Definition 1.1. The algorithm A is said to be β(n)-uniformly stable with respect to a
loss function ` if, for any i ∈ [n] and Z ∈ ZT , it holds:∣∣∣∣∣`(A(DT ), Z

)
− `

(
A(D\iT ), Z

)∣∣∣∣∣ ≤ β(n).

In practice, uniform stability may be too restrictive since the bound above must hold
for all Z, irrespective of its marginal distribution. While weaker, the following notion
of stability is still enough to control the leave-one-out deviations Devroye and Wagner
(1979); Bousquet and Elisseeff (2002); Elisseeff et al. (2005); Kuzborskij and Orabona
(2013).

Definition 1.2. The algorithm A has a hypothesis stability β(n) with respect to a loss
function ` if, for any i ∈ [n], it holds:∥∥∥∥∥`(A(DT ), Z

)
− `

(
A(D\iT ), Z

)∥∥∥∥∥
1

≤ β(n),

where
∥∥X∥∥

q
=

(
E
[∣∣X∣∣q])1/q

is the Lq norm of X.

We now recall a direct analog of hypothesis stability: the pointwise hypothesis stabil-
ity. The latter property is used to derive PAC learning bounds for the training error
Bousquet and Elisseeff (2002); Elisseeff et al. (2005); Charles and Papailiopoulos (2018).

Definition 1.3. The algorithm A has a pointwise hypothesis stability γ(n) with respect
to a loss function ` if, for any i ∈ [n], it holds:∥∥∥∥∥`(A(DT ), Zi

)
− `

(
A(D\iT ), Zi

)∥∥∥∥∥
1

≤ γ(n).

Note that the approach based on stability does not refer to a complexity measure like
the VC dimension or the Rademacher complexity. There is no need to prove uniform
convergence, and the generalization error depends directly on the stability parameter.

In this thesis, we study the K-fold within a standard stability setting, we answered the
question that one cannot construct a vanishing upper bound for the latter estimate.

In other words, we construct a problem where K-fold CV fails to estimate the risk of
a uniformly stable learner. Namely, we show that there exists an input space Z, a
probability distribution P , and uniformly stable algorithms (regularized empirical risk
minimizers and stochastic gradient descent) such as

E

∣∣∣∣∣R̂CV

[
A
(

[n]
)]
−R

[
A
(

[n]
)]∣∣∣∣∣
 ≥ C,
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for some constant C > 0. We also show that, contrarily to the standard K-fold, the
bias-corrected K-fold (cf. Equation (1.4)) is consistent, so that for any uniformly stable
learner, one has, with probability at least 1− δ,∣∣∣∣∣R̂corrCV

[
A
(

[n]
)]
−R

[
A
(

[n]
)]∣∣∣∣∣ = O

(
log(1/δ)√

n

)
.

This opens the door to the following intriguing future research avenues:

• What type of algorithmic stability is most suitable for analyzing rare events?

• Can we derive non-asymptotic guarantees for the bias-corrected K-fold of order
1/
√
nα within a rare event framework? If not, can we define a new type of stability

that enables the latter?

Subsequently, we will explore another type of algorithm that is particularly effective for
rare events. Specifically, our focus will be on cost-sensitive learners, which are commonly
utilized in imbalanced classification scenarios.

1.3 Cost sensitive learning

Real-world scenarios frequently present us with highly imbalanced datasets, where one
class significantly outnumbers the others. This is especially true in fields like fraud
detection, medical diagnosis, and rare event prediction. In such cases, the scarcity of
data for the minority class poses a unique challenge termed "data scarcity". Training a
model on such skewed datasets can lead to a model that is heavily biased towards the
majority class, often overlooking the minority instances which, in many applications,
are of paramount importance. This imbalance and subsequent data scarcity can lead to
models that are superficially accurate but lack depth and practical utility. Addressing
this issue requires specialized techniques, algorithms, and a deep understanding of the
domain in which the problem resides.

To face the challenges posed by data scarcity in imbalanced classification tasks, various
strategies have been proposed, among which oversampling and cost-sensitive learning are
prominent. Oversampling involves artificially augmenting the minority class by repli-
cating instances or generating synthetic data, thus equalizing the class distribution.
Techniques such as the Synthetic Minority Over-sampling Technique a.k.a SMOTE
(Chawla et al., 2002) and GAN (Mariani et al., 2018) have gained popularity for their
ability to create synthetic samples that lie in the feature space of the minority class,
thereby enhancing its representation. While oversampling can indeed enhance the rep-
resentation of the minority class, it also inherently introduces some level of noise into
the data. This is because the synthetic samples, though they lie within the feature space
of existing samples, may not necessarily represent genuine instances that would occur
in real-world scenarios. In essence, these are "imaginary" data points based on the
existing minority samples. Furthermore, there is another dimension to this. If oversam-
pling is applied aggressively (for example as in Figure 1.2), it can lead to the creation
of synthetic samples that lie close to the decision boundary between classes. This can
make the decision boundary more ambiguous, potentially leading to over-generalization
and reduced model performance.
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Original Data

Majority class

Minority class

Data after SMOTE

Majority class

Minority class

Figure 1.2 – Illustration of the impact of SMOTE oversampling on the noise in a highly
imbalanced classification problem.

A simpler strategy is cost-sensitive learning (Elkan, 2001a). It modifies the learning
algorithm itself by assigning different misclassification costs to different classes. This
ensures that the model pays a higher penalty when misclassifying the minority class,
making it more attentive to the nuances of the under-represented class. For instance,
a fraudulent credit card transaction might lead to a loss of several hundred dollars, or
in e-commerce, not displaying the right item to a customer might mean missing out on
that item’s sale revenue. Consequently, it is vital for classifiers to detect potential fraud
with precision and for online stores to showcase profitable items. Nevertheless, a key
challenge in cost-weighting is determining the appropriate costs. A selected cost might
hinder the classifier’s performance when another cost could have been more appropriate.

In this thesis, we examine the scenario of highly imbalanced binary classification. This
setting is represented using the same notations as before. Specifically, the sample space
in this context is given by Z = X×

{
−1, 1

}
. The positive class, which occurs with a lower

probability, is designated as the minority class i.e. A =
{
Z = (X,Y ) ∈ Z | Y = 1

}
. It

is also important to highlight that all proof techniques employed in this thesis remain
valid for a multiclassification setting. Our focus on binary classification is primarily
for notational simplicity.

1.3.1 Formulation of the Problems and Contributions

We consider empirical risk minimizers (ERM). The algorithm, in this context, is :

A
(

[n]
)

= arg min
g∈G

1

n

n∑
i=1

(
c+`(g, Z)1

{
Y = 1

}
+ c−`(g, Z)1

{
Y = −1

})
,

:= arg min
g∈G

1

n

n∑
i=1

`bal(g, Z).

Where c+ > 0 and c− > 0 denote the costs associated to the positive and negative
classes, respectively. By judiciously selecting c+ and c−, various imbalanced classifi-
cation metrics can be covered (see e.g. Menon et al. (2013a); Koyejo et al. (2014)).
For instance, by setting the loss to the hamming loss i.e. `(g, Z) = 1

{
g(X) 6= Y

}
,

c+ = 1 − α and c− = α where α = P (Z ∈ A) = P (Y = 1), the latter algorithm
minimizes the AM risk, a metric commonly used in imbalanced classification.
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Several theoretical works shed light (Menon et al., 2013a; Koyejo et al., 2014; Xu et al.,
2020a) on the consistency of cost-sensitive ERM. In other words, these papers study
the excess risk of the aforementioned algorithm, given by

R(bal)
[
A
(

[n]
)]
−R?

WhereR(bal)
[
A
(

[n]
)]

= E

[
`(bal)

(
A
(

[n]
)
, Z

)
| D
]
is the true balanced risk ofA

(
[n]
)
.

While R? = R(bal) [g?] and
g? ∈ arg min

g∈G
R(bal)[g].

In the latter references, they exhibit a rate of convergence of order Z
(

1
α
√
n

)
in the

best case scenario. However, in practical situations, especially in instances of absolute
rarity or relative rarity (Al-Stouhi and Reddy, 2015) the probability α can often satisfy
α ≤ 1/

√
n. This leads to a vacuous bound, causing the consistency results to become

invalid.

A topic closely associated, yet distinct from the problem at hand, is weighted ERM.
Its aim is to learn from data that has inherent biases (refer to e.g. Vogel et al. (2020);
Bertail et al. (2021) and the sources cited within). This essentially means there is a
disparity between the training and target distributions. One can perceive the imbal-
anced classification challenge as a specific case of this transfer learning scenario, where
the training set is skewed, and the objective is a balanced counterpart with evenly dis-
tributed class weights. A critical precondition in Bertail et al. (2021) postulates that the
target density, in relation to the source, must be finite. In our context, this translates
to assuming that p remains at a minimum limit. This is expressly stated in Vogel et al.
(2020), where key findings mandate that p > ε where ε is a predefined positive value.

The primary aim of this research is to address the aforementioned limitation, striving for
generalization guarantees for the balanced risk to remain acute even when p is exception-
ally small. Our goal is to determine upper limits for the discrepancies in the empirical
risk (and by extension, on the empirical risk minimizer) that align with contemporary
standards, substituting the sample size n with np, representing the average size of the
infrequent class. As per our understanding, the theoretical findings most aligned with
this objective include the normalized Vapnik-style inequalities (Theorem 1.11 in Lugosi
(2002)) and relative deviations (Section 5.1 in Boucheron et al. (2005)). Nonetheless,
the latter is limited to binary-valued functions and doesn’t seamlessly expand to the
general real-valued loss functions discussed in our study. Furthermore, they don’t of-
fer fast rates for imbalanced classification challenges, even though relative deviations
are instrumental for fast rates in standard classification, as outlined in Section 5 from
Boucheron et al. (2005). Also, the upper limits in the referenced materials incorporate
a log(n) component, seemingly conflicting with our intention to uniformly swap n with
np. Conclusively, we’ve yet to discover any theoretical evidence concerning imbalanced
classification that employs these bounds to achieve guarantees where dominant terms
are reliant on np rather than just n.

More formally, our two major contributions may be summarized as follows:



32
CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND

CONTRIBUTIONS

Standard learning rate We derive an error estimation probability bound for the
balanced risk applicable to VC function classes. This error scales at 1/

√
np, in contrast

to the usual rate of 1/
√
n seen in well-balanced scenarios or the 1/(p

√
n) observed in

prior imbalanced case studies (for instance, as cited in Xu et al. (2020c)). Practically,
our approach caters to scenarios where p is significantly smaller than 1 (indicating stark
class imbalance). Our upper bound showcases a pivotal enhancement by a factor of √p
when set against existing imbalanced classification works. By applying this boundary
to the k-nearest neighbor classification, we deduce a fresh consistency finding: if the
value of kp tends to +∞, then the nearest neighbor classifier remains consistent in a
relative rarity scenario.

The important improvement of√p is obtained by using a proper uniform concentration
inequality accounting for the low variance of `(g, Z)1

{
Y = 1

}
, more precisely we use

the following result.from Plassier et al. (2023)

Theorem. Let (Z,Z1, . . . , Zn) be an independent and identically distributed collection
of random variables in (S,S). Let G be a VC class of functions with parameters v ≥
1, A ≥ 1 and uniform envelope U ≥ supg∈G, x∈S |g(x)|. Let σ be such that σ2 ≥
supg∈G var(g(Z)) and σ ≤ 2U . For any n ≥ 1 and δ ∈ (0, 1), it holds, with probability
1− δ,

sup
g∈G

∣∣∣∣∣∣
n∑
i=1

{g(Zi)− E[g(Z)]}

∣∣∣∣∣∣ ≤ K ′
(
σ

√
vn log

(
K ′θ/δ

)
+ Uv log

(
K ′θ/δ

))
, (1.6)

with θ = AU/σ and K ′ > 0 a universal constant.

The latter theorem allows to show the consistency of the balanced k-nn classifier when
kp→∞ and allows to obtain the following convergence rate for empirical risk minimiz-
ers :

R(bal)
[
A
(

[n]
)]
−R? = O

(
log(1/δ)√

np

)
.

Fast learning rates We provide fast rates for empirical risk reduction methods when
supplemented with a traditional assumption known as the Bernstein condition. Specifi-
cally, we show a probability upper bound on the excess risk scaling at 1/(np). Formally,
we obtain the following convergence rate, with probability at least 1− δ

R(bal)
[
A
(

[n]
)]
−R? = O

(
log(1/δ)

np

)

This mirrors the rapid rate results in conventional balanced scenarios but with the
substitution of the complete sample size n by the number of elements in the minority
class np. To the best of our understanding, such fast rates are pioneering in the domain
of imbalanced classification studies.

As an example of application, we show that the Bernstein condition is verified for
constrained empirical risk minimization with any strongly convex function. This is
indeed not surprising since it is a well-known fact that regularization (or constrained
optimization) achieves better generalization (Koren and Levy, 2015; van Erven et al.,
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2015). Before concluding this section we recall the main ingredient for obtaining fast
rates (Bartlett et al., 2005) :

Theorem. Let F be a class of functions with ranges in [a, b] and assume that there are
some functional T : F → R+and some constant B such that for every f ∈ F ,Var[f ] ≤
T (f) ≤ BPf . Let ψ be a sub-root function and let r? be the fixed point of ψ, i.e. ψ(r?) =
r? . Assume that ψ satisfies, for any r ≥ r?,

ψ(r) ≥ BP
(
Rn{f ∈ F : T (f) ≤ r}

)
Then, with c1 = 704 and c2 = 26, for any K > 1 and every x > 0, with probability at
least 1− e−x,

∀f ∈ F Pf ≤ K

K − 1
Pnf +

c1K

B
r? +

x
(

11(b− a) + c2BK
)

n
.

Also, with probability at least 1− e−x,

∀f ∈ F Pnf ≤
K + 1

K
Pf +

c1K

B
r? +

x
(

11(b− a) + c2BK
)

n
.

Furthermore, if the functional T verifies T (αf) ≤ α2T (f) then the same inequalities
hold with c2 = 6 and c1 = 5.

1.4 Hypothesis transfer learning

Transfer learning has emerged as a key solution to the problem of data scarcity, espe-
cially in test scenarios. It works by using knowledge from a data-rich source domain
to boost learning in another related target domain. When there is not enough data in
certain environments, models can use transfer learning to pull insights from tasks where
data is abundant. This approach not only reduces the need for large datasets in the
target domain but also helps avoid some of the computational challenges often found in
traditional machine-learning methods. With transfer learning, we can navigate around
the usual problems caused by limited data.

From a theoretical standpoint, supervised machine learning operates on a foundational
assumption: the samples used for training and testing should come from the same prob-
ability distribution. However, in real-world applications, this assumption is frequently
challenged. Sometimes, the distributions for training and testing are different, though
they have some relation to one another. This specific scenario is termed as Domain
Adaptation (DA). Effective DA approaches often rely on using large amounts of un-
labeled data from both the original (source) and new (target) domains to adapt the
learning model. Previous research has deeply delved into the methods and theory be-
hind DA, emphasizing the importance of specific weighting parameters. But a practical
challenge emerges: to estimate these parameters accurately, one needs access to a sub-
stantial amount of unlabeled data from both involved domains. This becomes especially
complex and computationally demanding when multiple domains are in play or when
domains keep changing or expanding. In such contexts, it is crucial to continuously
gather and reassess unlabeled data across all domains.
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In response to the challenges presented by DA, the methodology of hypothesis trans-
fer learning (HTL) has been developed (Li and Bilmes, 2007; Orabona et al., 2009;
Kuzborskij and Orabona, 2013; Perrot and Habrard, 2015; Kuzborskij and Orabona,
2017; Du et al., 2017). The distinctive feature of HTL is its applicability when there
is limited or no direct access to the original source domain, or when the relationship
between source and target domains is complex. Importantly, HTL operates without
presupposing similarity between the source and target distributions, eliminating the
requirement to retain extensive source data.

In this thesis, we provide an exploration of HTL. Using the framework of Regularized
Empirical Risk Minimization (RERM), our analysis concentrates on binary classifica-
tion. An integral component of our study pertains to the examination of several sur-
rogate losses, pivotal in machine learning applications. Among these, the exponential
loss is notably employed in methodologies such as AdaBoost (Freund and Schapire,
1997b). Furthermore, our focus encompasses logistic, soft-plus, and mean squared error
(MSE) losses, among others. It is imperative to emphasize the classification calibration
of these surrogate losses (Zhang, 2004a; Bartlett et al., 2006b), which posits them as
convex upper bounds for classification error.

A limited number of studies offer theoretical assurances for RERM within the HTL
framework, predominantly focusing on the regression context. There has been a stability
analysis of the HTL algorithm in the context of RLS for regression by Kuzborskij and
Orabona (2013), but it is restricted to the least-squares loss. Subsequently, Kuzborskij
and Orabona (2017) explored smooth loss classes and achieved empirical risk statistical
rates, which aligns with certain stability guarantees. Nonetheless, the assumption of
smoothness is seen as stringent; it doesn’t hold for hypotheses derived from the ex-
ponential loss or is trivially true for those from the soft plus loss. Additionally, Du
et al. (2017) introduced a fresh algorithm for tailoring the source hypothesis for the
target domain. However, the theoretical assurances they highlighted come with several
robust assumptions, which are difficult to validate in real-world scenarios. The outlined
guarantees are influenced by numerous undisclosed parameters (more details are avail-
able in Section 5.3, where these assumptions are thoroughly reviewed). There are other
theoretical findings on HTL that aren’t framed within RERM, as referenced in Li and
Bilmes (2007); Morvant et al. (2012); Perrot and Habrard (2015); Dhouib and Redko
(2018). Yet, many of these results either hinge on a measure of complexity/distance
or are framed differently than classification. For instance, Perrot and Habrard (2015)
delves into algorithmic stability in metric learning, using Lipschitz loss functions to
examine the excess risk of certain algorithms. The bounds they derived, based on
the Lipschitz constant, are not straightforward and are not readily adaptable to many
standard classification losses.

In this work, we investigate the statistical risk of some transfer learning procedures ded-
icated to the binary classification task. To that end, we adopt the angle of algorithmic
stability that offers an appealing theoretical framework to analyze such a method. This
is the first work exploring algorithmic stability for HTL with the usual classification
loss functions.

Our work aims to use the notion of algorithmic stability to derive sharper bounds for
the HTL problem.
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1.4.1 Mathematical Formulation and Contributions

Hypothesis Transfer Learning (HTL) is formally described as the act of applying a
hypothesis, acquired from a source dataset, to a target domain without the require-
ment of raw source data or any interlink between the two domains. We denote the
source domain as GS and the target domain GT . From the target domain, we have n
i.i.d. observations, where n ∈ N and n ≥ 1. These are given as DT =

{
Z1, . . . , Zn

}
that belong to GT with an underlying distribution PT . From the source domain, the
hypothesis gS is derived from m observations DS = ZS1 , . . . , Z

S
m ∈ GS , where m ∈ N and

m ≥ 1. These observations are defined as under the distribution PS . The key aspect
of HTL is that we do not have access to the source domain’s raw observations; only
the resulting hypothesis is used. Often, n is significantly smaller than m. The focus
of this paper is on binary classification. Our domains combine a source/target variable
space, denoted as XS/XT , with the set

{
−1, 1

}
. Therefore, ZS = XS × {−1, 1} and

ZT = XT ×{−1, 1}. The aim is to use the hypothesis gS from the source domain GS to
enhance the performance of a classification algorithm on ZT . Specifically, the algorithm
is defined as:

A :
(
ZT
)n × GS → GT(
DT , gS

)
7→ gT .

We assume that `(g, Z) = φ
(
g(X)Y

)
for some non-negative convex function φ and that

GT is a reproducing kernel Hilbert space (RKHS) endowed with a kernel k. This thesis
analyses hypothesis transfer learning through RERM. In other words, we consider the
following algorithm A :

A(DT , hS) = ĝ(· ;DT ) + gS(·), (1.7)

where the function ĝ : Rd → R is obtained from the target set of data via the minimiza-
tion problem:

ĝ = arg min
g∈GT

1

n

n∑
i=1

φ

((
g
(
Xi

)
+ gS

(
Xi

))
Yi

)
+ λ‖g‖2k

= arg min
g∈GT

R̂
[
g + gS , [n]

]
+ λ‖g‖2k, (1.8)

In Chapter 5, we examine the statistical risk associated with hypothesis transfer learning
(HTL) in binary classification tasks, focusing on algorithmic stability as a theoretical
framework for analysis. This is the inaugural study to apply algorithmic stability to
HTL with standard classification loss functions. We present a detailed hypothesis
stability analysis of HTL in the classification context, applicable to any losses that
meet basic conditions. We confirm that our primary assumptions hold true for widely-
used classification losses and identify their specific constants. Utilizing these stability
insights, we explore the statistical dynamics of the generalization gap and excess risk in
HTL. We offer a clear, finite-sample analysis of these factors, emphasizing the statistical
characteristics of prevalent losses. More precisely, the magnitude of the obtained bounds
is directly related to the quality of gS on the target domain

(
represented by R[gS ]

)
instead of the complexity of the hypothesis class Ben-David et al. (2010); Zhang et al.
(2012); Cortes et al. (2015); Zhang et al. (2019). In particular, we show that, the RERM
HTL algorithm is hypothesis stable with stability parameter β satisfying
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β ≤ Ψ`(R
[
gS
]
)/n,

where Ψ` is a non decreasing function verifying Ψ`(0) = 0 and depends solely on `. De-
termining the function Ψ` for various loss functions ` provides insights into the behavior
of HTL when coupled with different cost functions. We compare these loss functions
in two distinct transfer scenarios: :

• Positive learning: where the source and target domains are sufficiently similar so
that R[gS ] ≈ 0.

• Negative learning: where the source hypothesis might adversely affect the target
task (R[gS ]→∞).
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I Chapter 2: A. Aghbalou, P. Bertail, F. Portier and A. Sabourin. Cross-
validation for Extreme Value Analysis. arXiv preprint 2202.00488, 2022. (sub-
mitted to a peer reviewed journal)

I Chapter 3: A. Aghbalou, F. Portier, A. Sabourin, C. Zhou. Tail inverse regres-
sion for dimension reduction with extreme response. In Bernoulli, 2024.

I Chapter 4: A. Aghbalou and F. Portier, A.sabourin. Sharp error bounds for im-
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bility. In International Conference on Machine Learning (ICML), pages 280-303,
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2.1 Introduction

Cross-validation (CV) is a most popular statistical learning tool for estimating the
generalization risk of an algorithm and for hyper-parameter or model selection. Despite
its widespread usage, the performance of CV depends to a large extent on the specific
task considered (risk estimation or model selection with various purposes), on the nature
of the statistical problem (regression, density estimation, . . . ) and on the specific CV
scheme (K-fold, leave-one-out, leave-p-out, . . . ) as discussed below in this introduction.

Extreme Value Analysis (EVA) makes no exception regarding the potential usefulness
of CV, particularly in statistical procedures relying on the principle of Empirical Risk
Minimization (ERM), equally referred to as empirical contrast minimization or M-
estimation, depending on the context. This includes in particular parametric inference
of multivariate tail dependence (Einmahl et al., 2012, 2018, 2016; Kiriliouk et al., 2019),
where CV could be naturally envisioned for evaluating goodness-of-fit or for choosing
between competing models. In the recent line of works concerned with dimension re-
duction in Multivariate Extremes (see the review by Engelke and Ivanovs (2021) and
the references therein) the question of hyper-parameters and sparsity level selection
cannot be avoided in practice. As an example, in Goix et al. (2016, 2017), the number
of subcones of Rd supporting the limit tail measure, or equivalently the cut-off level
below which the empirical mass is deemed negligible, must be chosen by the user. As
noted in Remark 5 in Goix et al. (2017) this can be recast as a penalized risk minimiza-
tion problem. In dimension reduction methods based on Principal Component Analysis
(Cooley and Thibaud, 2019b; Jiang et al., 2020; Drees and Sabourin, 2021) the dimen-
sion reduction space minimizes an empirical reconstruction risk and the dimension of
the output must again be chosen by the user. Here CV could be used to evaluate
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the reconstruction error as a natural alternative to the (optimistic) empirical risk com-
puted on the training set. Clustering approaches to dimension reduction constitute still
another example of ERM frameworks that have successfully been generalized to the
context of EVA (Janßen and Wan, 2020b; Jalalzai and Leluc, 2021) and where, among
others, the number of clusters should be chosen.

Beside dimension reduction methods, several statistical learning algorithms incorporat-
ing Extreme Value Theory (EVT) have been proposed over the past few years motivated
by essential issues such as risk management (Longin, 2000; Gkillas and Katsiampa,
2018), anomaly detection (Chiapino and Sabourin (2016); Thomas et al. (2017); Siffer
et al. (2017); Vignotto and Engelke (2020); Chiapino et al. (2020), see also Suboh and
Aziz (2020) and the references therein), labeling new classes in a open set problem (Rudd
et al., 2018), adversarial simulation (Bhatia et al., 2021), extreme quantile regression
based on Gradient Boosting (Velthoen et al., 2021), Regression Trees (Farkas et al.,
2021) or Generalized Random Forests (Gnecco et al., 2022). Most of these approaches
also come with tuning parameters, in addition to k which choice is known to be difficult.
Finally, in the supervised framework of classification in extreme regions (Jalalzai et al.,
2018, 2020), CV comes as a natural candidate for estimating the generalization risk of
the output or, in a high dimensional setting, for feature selection.

Despite the numerous potential applications of CV listed above in a far from exhaustive
manner, to our best knowledge the literature is silent about theoretical guarantees en-
joyed by CV in an EVA setting. From a mathematical point of view, how to generalize
existing theoretical results regarding CV in such a way that the obtained guarantees de-
pend on the number k of extremes, not the full sample size n? Recent works (Boucheron
and Thomas, 2012, 2015; Carpentier and Kim, 2015; Goix et al., 2015; Lhaut et al., 2021;
Clémençon et al., 2022) focus on finite-sample controls of the deviations of the empirical
measure in rare regions, with non-asymptotic upper bounds of the desired order 1/

√
k,

thus matching the typical asymptotic rates available from the Extreme Value literature
(see e.g. De Haan and Ferreira (2006), chap. 3,4). However the theoretical properties
of CV estimates are notoriously difficult to establish due to the lack of independence
between the different terms of the average involved in a CV scheme.

Purpose of this work. Our goal is to open the road to a finite-sample understanding
of the guarantees enjoyed by CV in algorithms dedicated to extreme values. To fix ideas,
the learning problems we have in mind involve i.i.d. data Zi, i ≤ n in a sample space
Z ⊂ Rd, and a low probability region A ⊂ Z, typically A = {z ∈ Z : ‖z‖ > tα} for
some (semi)-norm ‖ · ‖ and a large threshold tα chosen as the (1− α)-quantile of ‖Z‖
where α = k/n throughout this chapter. In such a context, it is natural to measure the
performance of an algorithm in terms of an expected loss, conditional to the rare event
‖Z‖ > tα. This generic setting encompasses in particular the problem of classification
in extreme regions (Jalalzai et al., 2018) which we take as our leading example, since
classification by means of ERM is a particularly illustrative statistical learning task.

We thus consider the problem of estimating the generalization risk of an ERM classifier,
conditional to a rare event (see Eq. 2.1 below). Our aim is to obtain sanity check
bounds (Kearns and Ron, 1999; Cornec, 2009, 2017) regarding the deviations of the
CV estimate, that is, bounds that are of the same order of magnitude as the ones
regarding the empirical risk itself, of order O(1/

√
nα) in our case, with multiplicative

constants depending on the complexity of the problem. It is worth mentioning at this
point that the naive method consisting in applying the same normalization to the risk
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and to the associated existing upper bounds on the CV error yields a vacuous bound.
Namely, dividing by α an upper bound of order O(1/

√
n) in order to analyse the case

of rare classes yields an order O(1/(α
√
n)) = O(

√
n/k) which may not even converge

to zero, e.g. if k = O(
√
n). This pitfall is a distinctive feature of statistical learning

in low probability regions already discussed in Goix et al. (2015); Lhaut et al. (2021)
regarding the deviations of the empirical risk.

In order to illustrate the significance of our findings we consider a logistic-LASSO regres-
sion algorithm trained on extremes observations ‖Z‖ ≥ tα, and we propose to choose
the level of the `1-norm constraint on the parameter by a standard K-fold CV proce-
dure. Such a sparsity-inducing classification algorithm is particularly attractive with
high dimensional covariates, as the curse of dimensionality is particularly problematic
in EVA due to to the reduced effective sample size k � n. Our results show that K-fold
permits to select a model within a finite collection in a risk consistent manner.

Related works regarding Cross-Validation. As mentioned above CV may serve
as a tool for (i) risk estimation, (ii) model selection. Sharp guarantees regarding the
former task are typically needed as an intermediate step in order to derive guarantees
for the latter task, as discussed e.g. in van der Vaart et al. (2006). The model selection
task itself may be envisioned from the perspective of (ii−a) estimation, where the goal
is to minimize the risk attached to the final output, and (ii − b) model identification,
where the goal is to select the ‘smallest’ possible ‘true’ model. In the present work
we consider mainly task (i). As a by-product, our results allow to derive minimal
guarantees regarding task (ii − a). For an in depth review of CV for model selection
and risk estimation we refer the reader to Arlot and Celisse (2010) and the reference
therein or Wager (2020); Bates et al. (2021) for recent discussions.

A popular working assumption in the statistical learning literature is algorithmic sta-
bility (Rogers and Wagner (1978); Devroye and Wagner (1979); Anthony and Holden
(1998); Kearns and Ron (1999); Bousquet and Elisseeff (2002)). In this chapter we
adopt instead the framework of ERM over a class of predictors with finite VC dimen-
sion in order to stay close to existing statistical learning viewpoints on EVT mentioned
above, leaving the question of stable algorithms to future research.

Our main concern here is risk estimation in a non asymptotic setting. In this con-
text Devroye and Wagner (1979); Anthony and Holden (1998); Kearns and Ron (1999)
show polynomial upper bounds on the leave-one-out (l.o.o.) error under various weak
stability assumptions, see also Cornec (2009, 2017). In addition, Kearns and Ron (1999)
(Lemma 4.2) show that ERM over a VC-class is in particular error stable. Notice that
exponential bounds for the l.o.o. can be derived under the stronger assumption of uni-
form stability as e.g. in Bousquet and Elisseeff (2002). In view of these facts it is
reasonable to expect no more than a polynomial upper bound in our ERM framework
on extreme regions for the l.o.o. and the leave-p-out (l.p.o.) without further assump-
tions. Concerning the K-fold scheme the literature is scarcer than for the l.o.o. regarding
upper bouds for risk estimation. To our best knowledge the only existing non asymp-
totic bounds in this respect are derived in Cornec (2009, 2017). In the latter reference
an upper bound is obtained for a wide range of CV schemes. The bound incorporates
a minimum between an exponential and a polynomial terms, involving respectively the
size of the validation and the training sets. This yields an exponential bound for the
K-fold since in the latter scheme the validation size is of the same order as the full
sample size, contrarily to the l.o.o. and l.p.o. . Both the exponential and polynomial
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upper bounds in the above references are sanity check guarantees, which do not prove
that the CV risk estimate outperforms neither the hold-out nor the training risk esti-
mate. However they prove that CV is a consistent approach for risk estimation, and
as a by-product, for model selection with an estimation purpose (task (ii− a)). This is
not necessarily the case for model selection with an identification purpose as discussed
in several papers such as e.g. Wager (2020).

Going beyond sanity check bounds for CV risk estimators remains an open challenge in
the general case. One natural question to ask is whether using several training/testing
folds improves upon the hold-out method (a single split) or upon using the empirical
risk on the training set itself. Although the dependence between the different folds
complicates the analysis, partial answers have been brought in various specific settings
such as density estimation (Arlot, 2008b; Arlot and Lerasle, 2016) or LASSO regression
(Homrighausen and McDonald, 2013; Xu et al., 2020a). Restricting the analysis to the
variance of the estimator, Blum et al. (1999) prove that the K-fold reduces the variance
and the amount of the latter is quantified in Kale et al. (2011); Kumar et al. (2013)
under stability assumptions. Such improved guarantees in the context of rare events
are left to future research.

Contributions. We provide three new results for CV-based risk estimation and model
selection in a rare region of probability α� 1:

(i) An exponential probability bound involving the size of the validation set, which
yields a sanity check bound in the context of rare events for the K-fold CV scheme
but not the l.p.o. scheme as the size of the validation set in this case remains constant,
equal to p.

(ii) A polynomial upper bound, which outperforms the exponential one in the case of
the l.p.o. because it only involves the size of the training set.
(iii) For the sake of illustration, we apply our exponential upper bound to the purpose
of model selection within a finite family of models in logistic-LASSO regression. In
particular we obtain an upper bound on the excess risk scaling as O(1/

√
nα) w.r.t the

sample size with a multiplicative factor depending logarithmically on the number of
candidate models.

Both our contributions (i) and (ii) achieve state-of-the-art guarantees for α = 1, up to
multiplicative constants and negligible terms. More precisely for α = 1 our exponential
(resp. polynomial) upper bound is of the same nature as the ones in Cornec (2017)
(resp. Kearns and Ron (1999); Cornec (2017)). However covering the case α � 1
requires different proof techniques accounting for the low variance (driven by α) of the
random variables at stake. In particular we use a Bernstein-type version of the bounded
difference inequality due to McDiarmid (1998), following in the footsteps of previous
statistical learning works devoted to EVT mentioned above in the spirit of Goix et al.
(2015); Lhaut et al. (2021). A distinctive challenge in the present work though is the
complicated nature of the variable of interest, that is the cross-validation risk which
involves a sum of dependent terms differently from the empirical risk studied in the
latter references.
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Outline. The statistical framework envisioned in this chapter is introduced in Sec-
tion 2.2. Our main results theorems 2.9 and 2.12 are presented respectively in Sec-
tion 2.3 and Section 2.4. Guarantees regarding K-fold for logistic-LASSO regression are
derived in Section 2.5. We illustrate the tightness of our bounds in numerical experi-
ments reported in Section 2.6. The supplementary material includes generic statistical
tools used in our proofs (Section 2.A), as well as intermediate technical results and
detailed proofs of our main results (Section 2.B).

2.2 Extreme values, extreme risk and cross-validation:
framework

2.2.1 Conditional risk in an extreme region

Consider a random element O valued in a sample space Z and a low probability region
A ⊂ Z such that P

(
Z ∈ A

)
= α with 0 < α� 1. The probabilistic behavior of Z given

that Z ∈ A is a main concern in Extreme Value Analysis. Conditioning upon Z ∈ A,
or alternatively rescaling the probability distribution by an appropriate sequence, is a
central idea in the asymptotic EVT literature related to the tail empirical processes, see
e.g. the review paper from Einmahl (1992) or the recent work from Bobbia et al. (2021)
and the references therein in relation with local empirical processes. Uniform controls
of the deviations of the empirical measure based on an i.i.d. sample Zi, i ≤ n over such
a region and, by extension, deviations of an empirical risk conditional to Z ∈ A, have
been analyzed in a non asymptotic setting in several works over the past few years, in
various statistical contexts, such as empirical estimation of the stable tails dependence
function (Goix et al., 2015) and of the angular measure (Clémençon et al., 2022), classi-
fication in extreme regions (Jalalzai et al., 2018), construction of Mass-Volume sets for
anomaly detection (Thomas et al., 2017), support recovery (Goix et al., 2017), princi-
pal component analysis (Drees and Sabourin, 2021), graphical models (Engelke et al.,
2021; Engelke and Volgushev, 2022). Recently Lhaut et al. (2021) compute universal
constants involved in the upper bounds. They also discuss various conditioning and
combinatoric arguments and concentration tools for such non-asymptotic control.

Here we take as a leading example the problem of ERM classification in extreme regions,
following in the footsteps of Jalalzai et al. (2018); Clémençon et al. (2022). In such a
context the sample space is Z = X × Y with X ⊂ Rd and Y = {−1,+1}. The low
probability region of interest is then A = {(x, y) ∈ Z : ‖x‖ ≥ tα} where tα is the 1− α
quantile of a norm ‖ · ‖ on X . Notice that in our setting, the probability α is known
(chosen by the user) whereas the threshold tα – thus also A – is unknown because the
law of X is unknown. Given a class G of discrimination rules g : X → R and a loss
function c : G × Z → R, the conditional risk of g ∈ G over the rare region A is

Rα(g) = E
[
c(g, Z) | Z ∈ A

]
. (2.1)

Remark 2.1 (Relevance of Rα for Extreme Value Analysis, existing works). As shown
in Jalalzai et al. (2018) for the 0 − 1 loss associated with binary classifiers, under
appropriate regular variation assumptions regarding the class distributions L(X|Y =
σ1), σ ∈ {+,−}, the conditional risk Rα of an angular classifier of the kind g(x) =
g̃(θ(x)), with θ(x) = ‖x‖−1x, converges as α→ 0 to an asymptotic risk R∞. The latter
is the out-of-sample risk of g in the extreme region.
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In practice the quantity of interest is not the risk of a fixed discrimination function g, but
the risk of the specific ĝ issued by an algorithm, also called learning rule, given training
data Dn = (Z1, . . . , Zn). Here and throughout, we assume that Dn is a collection
of independent and identically distributed random vectors with common distribution
P and Sn = {1, , . . . n} refers to the full index set. Formally, a learning rule can be
viewed as a function Ψ : tm≤nSm → G, where Sm is the family of subsets of indices in
{1, . . . , n}, and Ψ(S) = ĝ is the output of the rule trained on {Zi, i ∈ S}. The quantity
that we would like to estimate is the generalization risk of the learning rule trained on
Dn, Rα

(
Ψ(Sn)

)
.

Given a subsample S ⊂ {1, . . . , n}, for some fixed g, an empirical version of Rα(g)
based on S is

R̂α(g, S) =
1

αnS

∑
i∈S

c(g, Zi)1
{
‖Xi‖ > ‖X(bαnc)‖

}
, (2.2)

where nS = card(S) and
∥∥∥X(1)

∥∥∥ ≥ . . . ≥ ∥∥∥X(n)

∥∥∥ are the (reverse) order statistics of the

sample (
∥∥Xi

∥∥)i=1,...,n.

Remark 2.2 (Threshold choice). The random threshold ‖X(bαnc)‖ used for selecting
extreme observations in the risk estimate (2.2) is defined using the full index set Sn, not
the particular subsample S. An alternative strategy would be to let the random threshold
depend on the particular subsample S, using e.g. the bαnScth order statistic within S.
In the present work we limit ourselves to the analysis of CV estimates of the risk based
on the common threshold ‖X(bαnc)‖ which turns out to be convenient in our proofs, see
e.g. the argument leading to (2.27) in the Appendix. Whether it is possible to obtain
similar or better guarantees for the alternative strategy based on a variable threshold
remains an open question and would require in any case a substantial modification of
our proof techniques.

Equipped with a definition of an empirical risk R̂α(g, S) (Eq. 2.2) the hold-out estimator
of the risk Rα(Ψ(Sn)) based on a validation set V ⊂ {1, . . . , n} and a training set
T = {1, . . . , n}\V takes the simple form R̂α(Ψ(T ), V ). The CV strategy for estimating
Rα(Ψ(Sn)) consists in averaging such hold-out estimates over a family of validation sets
V1:K = (Vj)j=1,...,K , where Vj ⊂ {1, . . . , n}. Namely the CV estimator is

R̂CV,α(Ψ, V1:K) =
1

K

K∑
j=1

R̂α(Ψ(Tj), Vj), (2.3)

where Tj = {1, . . . , n}\Vj .

Remark 2.3 (Focus on the estimation error at fixed level α and bias term). The ERM
strategy proposed in Jalalzai et al. (2018); Clémençon et al. (2022) in order to choose
an appropriate classifier ĝ regarding R∞ consists in minimizing the empirical version
of the subasymptotic risk Rα, R̂α(g, Sn), where Sn is the full index set {1, . . . , n}. The
statistical guarantees obtained in these papers concern the uniform deviations of R̂α and
as a consequence the excess Rα-risk of the empirical risk minimizer ĝ. The bias term
R∞−Rα is left aside from their statistical analysis. However it is shown in Clémençon
et al. (2022) (Remark 3.3 and Appendix D) that for typical multivariate heavy-tailed
vectors such that multivariate Cauchy random variables, the biais is of order O(α) and
is thus negligible compared with deviation terms.
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In the present work we take a similar approach in that our main focus is on CV-based
estimation of Rα. We thus leave the bias term outside our scope. One benefit from this
strategy is that our work does not rely on any regular variation assumptions, leaving
open the possibility of applications to other contexts outside EVA where rare events
play a major role, such as anomaly detection or imbalanced classification.

Remark 2.4 (Binary versus continuous outputs, surrogate loss functions). In Jalalzai
et al. (2018); Clémençon et al. (2022) the analysis is limited to binary classifiers g(x) ∈
{−1, 1} and the 0 − 1 loss c(g, (x, y)) = 1

{
g(x) 6= y

}
. Extending their results to more

general cost functions such as convex surrogate losses would be an interesting avenue for
further research, leveraging ideas summarized in the review paper from Boucheron et al.
(2005), Section 4, and the references therein, in particular Zhang (2004b). This would
permit to cover the case of computationally realistic algorithms such as Support Vector
Machines or logistic regression. In the present work we take a step towards this end and
consider general real valued discrimination functions g with a bounded loss function c,
as made precise in our working assumptions 1 − 4 listed in Section 2.2.3. In practice,
in our illustrative example developed in Section 2.2.2 and Section 2.5, we consider a
constrained logistic regression problem of LASSO type. We analyse the deviations of the
CV estimate with respect to the (constrained) logistic expected loss itself. However we
do not relate the latter convex surrogate loss with the deviations of the 0 − 1 error, a
task which could be the subject of further work.

2.2.2 Motivating example: high-dimensional classification with
Logistic-LASSO loss

As a motivating example for our work, consider the typical problem of hyper-parameter
selection for high-dimensional classification. When the dimension d of the covariate
variable X is large, a well documented way to reduce the dimension of the predictor is
to add a non differentiable penalty term to a (convex) ERM problem, or equivalently
to solve a convex minimization problem under sparsity inducing constraints. We thus
consider a LASSO-type logistic regression problem with discrimination functions gβ
indexed by a d-dimensional parameter β. The findings of Jalalzai et al. (2018) suggest
restricting the attention to angular discrimination functions. In this context gβ(x) =
β>θ(x). Recall that θ(x) = ‖x‖−1x for some norm ‖ · ‖. In our experiments we shall
choose the sup-norm. The logistic loss function is then, for z = (x, y) ∈ Rd×{−1, 1} as

β̂t = Ψα,t(S) = arg min
g∈Gt

R̂α(g, S),

where Gt = {gβ, β ∈ Rd, ‖β‖1 ≤ t}

and R̂α(gβ, S) =
1

αnS

∑
i∈S

log

(
1 + exp

(
−β>θ(Xi)Yi

))
1
{
‖Xi‖ > ‖X(bαnc)‖

}
.

(2.4)

The learning rule Ψα,t thus defined is a particular instance of the general setting that
we consider under Assumptions 1– 4 presented in the next subsection.

Remark 2.5 (Extensions). The logistic loss and the `1 constraint (or penalty) are one of
many pairs (convex surrogate loss - penalty) commonly considered in statistical learning.
As an example, soft margin Support Vector Machines rely on the pair (hinge loss+ `2
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norm). We only consider in Section 2.5 the particular example of logistic regression
under `1 constraint, for the sake of concreteness and simplicity.

2.2.3 Working assumptions

Our main results hold under Assumptions 1 to 4 introduced below.

Assumption 1 (ERM algorithm). The learning rule denoted by Ψα, is an empirical
conditional risk minimizer for the probability level α,

Ψα(S) = arg min
g∈G

R̂α(g, S). (2.5)

For clarity reasons, we suppose further that n is divisible byK so that n/K is an integer.
This condition guarantees, in the case of K-fold cross validation, that all validation sets
have the same cardinal nV = n/K. We also need the sequence of validation/training
sets to satisfy a certain balance condition which is expressed below.

Assumption 2 (CV scheme balance condition). The sequence of validation sets V1, V2, . . . VK
satisfies

card(Vj) = nV ∀j ∈ J1,KK, (2.6)

for some nV ∈ J1, nK.Moreover it holds that

1

K

K∑
j=1

1
{
l ∈ Vj

}
=
nV
n

∀l ∈ J1, nK. (2.7)

The next lemma ensures that Assumption 2 holds true for the standard CV procedures
(K-fold and l.p.o.) and that an identity similar to (6.4) is also valid for the training sets
Tj . The proof is provided in Appendix 2.B.1.

Lemma 2.6. If K divides n, for the leave-one-out, the leave-p-out, and the K-fold
procedures, the validation sets V1:K satisfy Assumption 2. Also the the training sets
T1:K satisfy

1

K

K∑
j=1

1
{
l ∈ Tj

}
nT

=
1

n
∀l ∈ J1, nK.

Remark 2.7. The condition that K divides n is required for the K-fold CV only, in
order to ensure that card(Vj) = nV for all j. However straightforward extensions of
our results can be obtained in the case where K does not divide n at the price of some
notational complexity.

We now introduce two assumptions relative to the function class G and the cost function
c. They shall be useful to control the fluctuation of the underlying empirical process.
First we require the following standard complexity restriction on the family of functions
(x, y) 7→ c(g(x), y) when g lies in G.

Assumption 3 (finite VC dimension). The family G of classifiers and the cost function
c are such that the class of functions z 7→ c(g, z) = c(g(x), y) on Z has a finite VC-
dimension VG, i.e. the family of subgraphs

{
{(x, y, t) : t < c(g(x), y)} : t ∈ R, (x, y) ∈

Z, g ∈ G
}

has Vapnik dimension VG.
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This complexity assumption mainly allows us to use a uniform concentration inequality
from Giné and Guillou (2001), which requires that the covering number for the L2 norm
of this family of functions decrease polynomially (with exponent VG) (see their condition
(2.1)). We may thus as well assume the latter weaker condition, which is sometimes
easier to check in practice, instead of Assumption 3, without altering our results.

For simplicity we limit ourselves to a cost function bounded by 1. Our result may be
extended to any bounded cost function at the price of a multiplicative scaling factor.

Assumption 4 (Normalized cost function). The cost function c is non-negative and
bounded by 1,

0 ≤ c(g, Z) ≤ 1 ∀(g, Z) ∈ G × Z.

This hypothesis is clearly satisfied for the Hamming loss c(g, Z) = 1
{
g(X) 6= Y

}
.

Remark 2.8 (Boundedness assumption). The logistic loss considered in our motivating
example is not bounded in general.

However, in the context of classification in extreme regions, we consider angular clas-
sifiers, with a `1 constraint on the parameter β, which amounts to a boundedness as-
sumption on the loss. Indeed |β>θ| ≤ maxj≤d |θj |

∑
j≤d |βj |, whence, for any t > 0,

sup‖β‖1≤t,‖θ‖∞=1 |β>θ| ≤ t for any t > 0.

2.3 Exponential bounds for K-fold CV estimates in rare
regions

Our first main result Theorem 2.9 below holds true for any CV procedure under as-
sumptions 1 – 4. The leading term of the provided upper bound is O(

√
VG/(nV α)).

In the case of the K-fold 1/nV = O(1/n). Thus,the bound of Theorem 2.9 becomes
O(
√
VG log(1/δ)/(nα)). The latter bound is indeed a sanity check bound as it matches

(up to unknown multiplicative constants) the one relative to the empirical risk condi-
tional to a rare event established in Jalalzai et al. (2018), Th. 2, where k = nα.

Theorem 2.9 (Exponential CV bound for rare events). Under assumptions 1, 2, 3, 4,
we have, with probability 1− 15δ,∣∣∣∣∣R̂CV,α(Ψα, V1:K)−Rα

(
Ψα(Sn)

)∣∣∣∣∣ ≤ ECV (nT ,nV , α) +
20

3nα
log

(
1

δ

)

+ 20

√√√√ 2

nα
log

(
1

δ

)
,

where

ECV (nT , nV , α) = M
√
VG
(

1√
nV α

+
4√
nTα

)
+

5

nTα
,

and where M > 0 is a universal constant.

Proof [Sketch of the proof]
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Introduce the pseudo-empirical risk

R̃α(g, S) =
1

αnS

∑
i∈S

c(g, Zi)1
{
‖Xi‖ > tα

}
. (2.8)

Notice that when the distribution of ‖X‖ is unknown, R̃α is not observable and only R̂α
is a genuine statistic. However R̃α will serve as an intermediate quantity in the proofs.
Define the average pseudo-empirical risk of the family

(
Ψα(Tj)

)
0≤j≤K

by

R̃CV,α(Ψα, V1:K) =
1

K

K∑
j=1

R̃α(Ψα(Tj), Vj) (2.9)

and the average ‘true’ risk by

RCV,α(Ψα, V1:K) =
1

K

K∑
j=1

Rα(Ψα(Tj)). (2.10)

Using the previous quantities, write the following decomposition∣∣∣∣∣R̂CV,α(Ψα, V1:K)−Rα
(

Ψα(Sn)
)∣∣∣∣∣ ≤ Dtα + Dcv + Bias, (2.11)

with

Dtα = |R̂CV,α(Ψα, V1:K)− R̃CV,α(Ψα, V1:K)|, (2.12)

Dcv = |R̃CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K)|, (2.13)

Bias = |RCV,α(Ψα, V1:K)−Rα
(

Ψα(Sn)
)
|. (2.14)

The remainder of the proof (see Section 2.B.3) consists in deriving upper bounds for
each terms of the error decomposition (2.11), from which the result follows.

The term Dtα measures the deviation between the cross validation estimator when us-
ing the order statistics and the cross validation estimator when using the ‘true’ level
tα, which can be bounded using Bernstein inequality, taking advantage of the small
variance of the random indicator function 1

{
‖X‖ > tα

}
. The term Dcv measures the

deviations of R̃CV,α(Ψα, V1:K) from its mean. It is controlled by a uniform bound (over
the class G) on the deviations of the empirical risk evaluated on the validation sample.
To do so we leverage recent arguments leading to a bound on such deviations on low
probability regions (as e.g. in Goix et al. (2015); Jalalzai et al. (2018)). Finally the
term Bias is the bias of the cross validation procedure, the control of which relies on
the specific nature (ERM) of the considered learning algorithm. Indeed in this context
the bias may be upper bounded in terms of the supremum deviations of the empirical
risk evaluated on the training sets Tj .

Theorem 2.9 can be used to obtain exponential bounds for the K-fold CV estimate.
From Lemma 2.6, Assumption 2 regarding the sequence of masks V1:K holds true for
the K-fold CV procedure. Consequently Theorem 2.9 applies with nV = n/K and
nT = n − nV = K−1

K n. In the following corollary, V K-fold
1:K denote the sequence of

validation sets associated to K-fold.
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Corollary 2.10. Under the assumptions of Theorem 2.9, the K-fold CV estimate (with
K ≥ 2) for the conditional risk (2.1) satisfies with probability 1− 15δ,

∣∣∣∣∣R̂CV,α(Ψα, V
K-fold

1:K )−Rα
(

Ψα(Sn)
)∣∣∣∣∣ ≤ EK-fold(n,K, α) +

20

3nα
log

(
1

δ

)

+ 20

√√√√ 2

nα
log

(
1

δ

)
,

with,

EK-fold(n,K, α) = 5M

√
VGK
nα

+
5K

(K − 1)nα
.

Discussion. As mentioned in the introduction, for α = 1 the upper bound in Theo-
rem 2.9 and its application to the K-fold in Corollary 2.10 are of the same nature as
in Cornec (2017), Proposition 4.1, which apply to the same context as ours, i.e. ERM
over a hypothesis class of finite VC-dimension. Covering the case α� 1 requires special
proof techniques with a Bernstein-type inequality due to McDiarmid (1998) and recalled
in Proposition 2.17 in the supplement. Doing so improves by a factor

√
α over the naive

method consisting in diving both sides of the existing bounds by α. As discussed in the in-
troduction this naive method yields a potentially diverging bound as α = α(n) = k

n → 0.
Also the organization of our proof is different, in particular a key simplifying step is
the balance condition of the CV schemes which applies to the K-fold (Lemma 2.6), a
fact which (to our best knowledge) is not mentioned in the existing literature. Finally,
though Kumar et al. (2013) quantify the amount of variance reduction brought by the
K-fold, the bias term is left outside the analysis in this reference. We haven’t found any
comparable finite sample upper bound in the literature devoted to stable algorithms, a
natural question to ask since ERM over a VC class is error stable (Kearns and Ron,
1999).

Remark 2.11 (On the universal constants). A drawback of our results in the present
section and in the following one (Section 2.4) is the presence of universal constants in
our upper bounds. These unknown constants derive from our control of the Rademacher
averages using Giné and Guillou (2001), who themselves resort to chaining arguments.
This is a standard issue in statistical learning. In most cases these constants may
be replaced with additional logarithmic terms with respect to the sample size or may
be computed explicitly. For the empirical training risk in low probability regions these
improvements are respectively achieved in Lhaut et al. (2021) and in Clémençon et al.
(2022), Theorem A.1. We leave this question for further research regarding the CV risk.

Despite the satisfactory sanity check bound obtained thus far for the K-fold (Corol-
lary 2.10), note that the term O

(√
VG/(nV α)

)
in the upper bound of Theorem 2.9

does not even converge to 0 in the l.p.o. setting because the size nV of the validation
set remains constant, equal to p. Thus, Theorem 2.9 is not adapted to the latter type of
CV schemes. In the next section we obtain (Theorem 2.12) an alternative upper bound
involving only the size nT of the training set which allows to cover the l.p.o. case.
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2.4 Polynomial bounds for l.p.o. CV estimates in rare
regions

Theorem 2.9 provides trivial bounds for CV schemes with small test size. In contrast
our second main result (Theorem 2.12 below)

yields a sanity-check bound for a wider class of CV procedures, including leave-one-out
and leave-p-out. In particular, we show that, with high probability, the error is at most
O(
√
VG/(nTα)). Most –if not all– CV procedures satisfy 1/nT = O(1/n) and the latter

bound is thus of order O(
√
VG/(nα)).

Theorem 2.12 (Polynomial cross-validation bounds for rare events). Under assump-
tions 1, 2, 3, 4 one has with probability 1− 17δ,∣∣∣R̂CV,α(Ψα, V1:K)−Rα

(
Ψα(Sn)

)∣∣∣ ≤ E′CV (nT , α) +
1

δ
√
nTα

(5M
√
VG +M5),

where M,M5 > 0 are universal constants, M is the same as in Theorem 2.9 and

E′CV (nT , α) =
9M
√
VG√

αnT
+

9

nTα
.

Proof [Sketch of the proof] First write∣∣∣R̂CV,α (Ψα, V1:K)−Rα
(

Ψα(Sn)
)∣∣∣∣ ≤ Bias + |R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K)| ,

(2.15)

where Bias is defined by (2.14).

The upper bound for the term Bias obtained in the proof of Theorem 2.9 is of order
O(1/

√
nTα), see (2.37) in the supplement for details. Since 1/nT = O(1/n) in the

CV schemes that we consider, the latter bound is sufficient to obtain a sanity check
bound. However, in that proof, the term |R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K)| is upper
bounded by the sum Dtα+Dcv defined in (2.12) and (2.13). The probability upper bound
for the latter term involves a term of order O(1/

√
nV α), see (2.28) in the supplement,

which is not satisfactory for small nV . Therefore one needs an alternative control for
|R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K)|. The main ingredient to proceed is the following
Markov-type inequality

P(R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K) ≥ t) ≤
E
(
|R̂α

(
Ψα(Sn), Sn

)
−Rα(Ψα(Sn))|

)
t

+
E(Dtα + Bias)

t
, (2.16)

which holds true under the stipulated assumptions. The proof is deferred to the sup-
plement (Lemma 2.24).

It is shown in Section 2.B.5 from the supplement that E(Bias) and E(Dtα) are both upper
bounded by O(1/

√
nTα) (inequalities (2.44,2.45)). In addition the probability upper

bound on the supremum deviations on the rare region (Lemma 2.22 also used in the proof
of Theorem 2.9) shows that the latter quantity is sub-Gaussian, which yields (Vershynin
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(2018), Proposition 2.5.2) an upper bound for E
(
|R̂α(Ψα(Sn), Sn)−Rα(Ψα(Sn)|

)
of

the same order of magnitude as the other terms in the r.h.s. of (2.16).

The final step of the proof is to derive a probability upper bound for the opposite of the
l.h.s. of (2.16), that is RCV,α(Ψα, V1:K) − R̂CV,α(Ψα, V1:K). We use the fact (proved
in Lemma 2.23) that the CV risk estimate R̂CV,α(Ψα, V1:k) is always larger than the
empirical risk R̂α evaluated on its minimizer Ψα(Sn), thus

RCV,α(Ψα, V1:K)− R̂CV,α(Ψα, V1:K) ≤ RCV,α(Ψα, V1:K)− R̂α(Ψα(Sn), Sn)

≤ Bias + |Rα(Ψ(Sn))− R̂α(Ψα(Sn), Sn)|, (2.17)

where the last inequality follows from the definition of Bias in (2.14) and the triangle
inequality. From the proof of Theorem 2.9, Bias admits a probability upper bound
involving only n and nT (see (2.37) and (2.34). The second term in the r.h.s. of (2.17)
is less than the supremum deviations of the empirical risk R̂α, which shares the same
property (Lemma 2.22). Adding up the upper bounds for each term of the r.h.s. of
(2.16) and (2.17) concludes the proof, see Section 2.B.5 in the supplement for details.

Using Theorem 2.12 and following the same steps as in the proof of Corollary 2.10, we
obtain a sanity-check guarantee regarding leave-p-out estimates.

Corollary 2.13 (leave-p-out sanity check for rare events). Under the assumptions of
Theorem 2.12, the l.p.o. CV estimate for the conditional risk (2.1) satisfies with prob-
ability 1− 17δ,

|R̂CV,α(Ψα, V
lpo

1:K)−Rα
(

Ψα(Sn)
)
| ≤ Elpo(n, p, α) +

1

δ
√

(n− p)α
(5M

√
VG +M5),

with

Elpo(n, p, α) = 9M

√
VG

(n− p)α +
9

(n− p)α .

Discussion. As it is the case in Section 2.3, our polynomial bounds from Theorem 2.12
and Corollary 2.13 are of the same nature as the state-of-the art for α = 1, that is Kearns
and Ron (1999), Theorem 4.2, and Cornec (2017), Proposition 4.3. Again we improve
by a factor

√
α upon the naive method dividing existing bounds by a factor α. Concerning

the presence of unknown constants, see Remark 2.11. In addition to covering the case of
rare events, our results extend those of the latter reference in several directions, namely
they encompass the l.p.o. scheme whereas Kearns and Ron (1999) only consider the
l.o.o., and they apply to any bounded cost function, not only the Hamming loss. Also
the organisation of our proof is different, for example the risk decomposition (2.15) is
new.

Remark 2.14 (Tightness of the polynomial bound). A natural question to ask is
whether or not the polynomial rate (w.r.t. the probability δ) is tight concerning the
l.p.o. CV scheme. The answer is yes, in the ERM context, in the general case (that
is with a classical risk function and α = 1). Indeed Kearns and Ron (1999) show that,
without further assumptions on the algorithm Ψ and the cost function c, the bound 1/δ
can be attained. We conjecture that the same is true for α < 1, leaving this question for
further work.
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Remark 2.15 (Comparison between the bounds from theorems 2.9 and 2.12). Although
Theorem 2.12 also applies to the K-fold, the bound provided by Theorem 2.9 is sharper
for this particular CV scheme for small values of δ due to its exponential nature. In
other words Theorem 2.12 has a greater level of generality than Theorem 2.9 because
the upper bound in the latter involved nV , contrarily to the former. The price to pay is
a slower tail decay (polynomial versus exponential).

2.5 Application to logistic-LASSO regression

We now turn to an application of our results to high dimensional classification as in-
troduced in Section 2.2.2. Recall that the learning rule for fixed constraint level t > 0
takes the form (see Eq. 2.4)

Ψα,t(S) = arg min
β∈Bt

1

αn

∑
i∈S

c
(
gβ, (Xi, Yi)

)
1
{
‖Xi‖ > ‖X(bnαc)‖

}
.

Recall also the logistic loss with angular discrimination function, c(gβ, (x, y)) = log(1 +
exp(−β>θ(x)y)). In practice the aim of the parameter selection procedure is to choose
the ‘best’ parameter t∗ within a finite grid T ⊂ R+, regarding the risk of the associated
learning rule Ψα,t, that is

t∗ = arg min
t∈T

Rα
(

Ψα,t

(
Sn
))
.

In view of the exponential nature of the upper bound for K-fold CV obtained in Sec-
tion 2.3 compared to the polynomial bound for l.p.o. CV (Section 2.4) and because
K-fold is computationally faster than l.p.o. we consider a selection procedure based on
a K-fold CV estimate of Rα

(
Ψα,t

(
Sn
))

,

t̂ = arg min
t∈T

R̂CV

(
Ψα,t, V

K-fold
1:K

)
.

We obtain in Lemma 2.16 an upper bound in probability for the excess riskR
(

Ψα,t̂(Sn)
)
−

R
(

Ψα,t∗(Sn)
)
. Since this upper bound converges to 0 as α → 0 with αn → ∞, our

result ensures in particular the consistency of the selection procedure in extreme regions.

Lemma 2.16. Suppose that the sample space Z is bounded so that Assumption 4 holds.
Then, the excess risk Rα(Ψα,t̂(Sn))−Rα(Ψα,t∗(Sn)) verifies, with probability 1− 15δ,

Rα
(

Ψα,t̂

(
Sn
) )
−Rα

(
Ψα,t∗

(
Sn
))
≤

max(T )

[
2ETK-fold(n,K, α) +

40

3nα
log

(
|T |
δ

)
+ 40

√√√√ 2

nα
log

(
|T |
δ

)]
,

with

ETK-fold(n,K, α) = 5MT

√
(d+ 1)K

nα
+

5K

(K − 1)nα
,

for some universal constant MT > 0 depending only on T .
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Proof By definition of t̂, one has

R̂CV

(
Ψα,t̂, V

K-fold
1:K

)
≤ R̂CV

(
Ψα,t∗ , V

K-fold
1:K

)
.

It follows that,

R
(

Ψα,t̂

(
Sn
))
−R

(
Ψα,t∗

(
Sn
))
≤ R

(
Ψα,t̂

(
Sn
))
− R̂CV

(
Ψα,t̂, V

K-fold
1:K

)
+ R̂CV

(
Ψα,t∗ , V

K-fold
1:K

)
−R

(
Ψα,t∗

(
Sn
))

≤ 2 sup
t∈T

∣∣∣∣R̂CV

(
Ψα,t

(
Sn
)
, V K-fold

1:K

)
−R

(
Ψα,t

(
Sn
))∣∣∣∣ .

(2.18)

For fixed t ∈ T , all the required assumptions of Theorem 2.9 are met, except that the
cost function is not bounded by 1 but rather by t, thus also by max(T ). As explained in
Remark 2.8 our results still apply, up to multiplication of all upper bounds by a factor
max(T ). We may thus use Corollary 2.10 with VG = d + 1, so that with probability
1− 15δ,∣∣∣∣∣R̂CV,α(Ψα,t, V

K-fold
1:K )−Rα

(
Ψα,t(Sn)

)∣∣∣∣∣ ≤
max(T )

[
EtK-fold(n,K, α) +

20

3nα
log

(
1

δ

)
+ 20

√√√√ 2

nα
log

(
1

δ

)]
,

where Mt > 0 is a universal constant and

EtK-fold(n,K, α) = 5Mt

√
(d+ 1)K

nα
+

5K

(K − 1)nα
.

By setting MT = maxt∈T Mt, we obtain by union bound, with probability 1− 15δ,

sup
t∈T

∣∣∣∣∣R̂CV,α(Ψα,t,V
K-fold

1:K )−Rα
(

Ψα,t(Sn)
)∣∣∣∣∣ ≤

max(T )

[
ETK-fold(n,K, α) +

20

3nα
log

(
|T |
δ

)
+ 20

√√√√ 2

nα
log

(
|T |
δ

)]
.

(2.19)

Combining inequalities (2.18) and (2.19) yields the desired result.

2.6 Numerical Experiments

The aim of our experiments is to illustrate the tightness of our bounds. The question we
ask is whether the error (resp. excess risk) upper bound of order O(1/

√
nα) describes

accurately the behaviour of the CV error (resp. excess risk). Note that the problem
of obtaining lower bounds for the generalization risk of classification algorithms in ex-
treme regions remains to this date an open question in the statistical learning literature
dedicated to extremes. For simplicity we limit our experiments to the K-fold scheme
with K = 10.
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2.6.1 CV error for risk estimation

Experimental setting. We consider the simple setting of a one dimensional threshold-
based classifier (G = {sign(X−δ) | δ ∈ R}) minimizing the Hamming loss l(g, (X,Y )) =

1
{
g(X) 6= Y

}
. We investigate the risk estimation error of the CV estimator R̂CV,α(Ψα, V1:K)

defined in (2.3) for several values of α within the range
[
1%, 20%

]
. In practice we com-

pute R̂CV,α using a dataset Dn, of size n = 2.104 and evaluate the generalization risk
of the trained rule Ψα(Sn) on a test set (DTest , of size ntest = 2.106). We perform
nsimu = 104 experiments and we report the average and the upper 0.90 quantile of the
abolute error obtained over the nsimu experiments. In other words we monitor the

absolute generalization gap
∣∣∣R̂CV,α(Ψα, V1:K)−Rα(Ψα(Sn))

∣∣∣ approximated by the quan-

tity
∣∣∣R̂CV,α(Ψα, V1:K)− R̂α(Ψα(Dn),DTest)

∣∣∣ and we report a Monte-Carlo approxima-
tion of its expected value and its quantile of order 0.90 for different value of α.

Datasets. we generate a balanced binary classification dataset Zi = (Xi, Yi) ∈ Z =
R×{0, 1} with P(Y = 0) = P(Y = 1) = 1/2. Both classes are sampled from a t-student
distribution, with respective parameters (µi, σi, νi), i = 0, 1. We set µ0 = −µ1 = 1,
σ0 = 3

5 , σ1 = 3, and ν1 = ν2 = 1.5.

2.6.2 CV excess risk for model selection

We now describe the empirical analysis of the model selection upper bound presented
in Lemma 2.16.
Experimental setting. We consider the problem of tuning the penalty parameter of a
Lasso logistic regression model. Note that, instead of using the constrained formulation
of the Lasso (cf. Equation (2.4)) , we consider in our experiments the Lagrangian
formulation:

Ψα,λ(S) = arg min
β∈Rd

1

αnS

∑
i∈S

(
c
(
βTΘ

(
Xi

)
, Yi

)
+ λ‖β‖1

)
1
{
‖Xi‖ > ‖X(bαnc)‖

}
,

with penality parameter λ ranging in a finite logarithmic grid

∆ = {10i/30 − 1 | i ∈ J1, 30K}.

The reason for using the penalized formulation in practice is mainly a computational one:
the latter version can be solved by many standard optimization algorithms (stochastic
gradient descent for instance) contrarily to the constrained one that requires special
and time consuming optimization routines (see e.g. Lee et al. (2006); Homrighausen
and McDonald (2017)). Notice that we leave a gap between theory and practice to be
filled in further work. Indeed, analyzing the penalized Lasso requires different proof
techniques and more assumptions. For example, Homrighausen and McDonald (2017)
work under a realizability assumption while Chetverikov et al. (2021b) make some mo-
ment assumptions.
In the sequel, we study the excess risk of the model selected by K-fold cross valida-
tion Rα(Ψα,λ̂(Sn))−Rα(Ψα,λ∗(Sn)) for several values of α within the range

[
1%, 10%

]
.

Similarly to the previous experiment we select λ̂ using a dataset Dn of size n = 104,
then we use a test set Dtest of size ntest = 106 to estimate Rα and choose λ∗ accordingly



2.A. GENERIC TECHNICAL TOOLS 53

Figure 2.1 – K-fold CV risk estimation absolute error as a function of nα (logarithmic
scale): mean and upper quantile at level 0.90

. Finally, we report the average model selection excess risk and its corresponding 0.9
quantile for different values of α over nsimu = 104 Monte Carlo simulations.
Datasets. We generate a balanced binary classification dataset Zi = (Xi, Yi) ∈ Z =
R20 × {0, 1} with P(Y = 0) = P(Y = 1) = 1/2. Both classes are sampled from a t-
multivariate-student distribution, with respective sparse parameters (µi, σi, νi), i = 0, 1.
We set µ0 = −µ1 = (e5, 0, . . . , 0), σ0 = σ1 = 10I20, ν1 = ν2 = 1.5 and e5 = (1, . . . , 1) is
a 5 dimensional unit vector.

2.6.3 Results

Figure 2.1 displays the risk estimation error of the cross validation estimator R̂CV,α(Ψα, V1:K)
as a function of α on the logarithmic scale. As suggested by our theoretical findings,
the average error and its quantile indeed decrease at rate O(1/

√
nα) as a function of α.

This confirms that our bounds may be sharp up to multiplicative constants.
One must note that in the model selection case (Figure 2.2) the rate of convergence
appears to be faster than 1/

√
nα for values of nα ranging between 500 and 1000. This

is not surprising insofar as it corroborates the findings of many recent works where it
is established that the Lasso algorithm enjoys an algorithmic stability (Bousquet and
Elisseeff, 2002) property which induces fast rates for CV estimates (Celisse and Guedj,
2016; Abou-Moustafa and Szepesvári, 2019). For the smallest values of nα (less than
500) a slower rate is observed. This might be explained by the findings of Homrighausen
and McDonald (2013); Chetverikov et al. (2021a), who show that, outside the context
of extreme values, the rate of convergence for cross-validation estimates using k training
samples deteriorates as the value of c = ln(d)

ln(k) increases.

2.A Generic technical tools

We recall the following McDiarmid’s extension of Bernstein inequality (Theorem 3.8 in
McDiarmid (1998)).
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Figure 2.2 – K-fold CV excess risk as a function of nα (logarithmic scale): mean and
upper quantile at level 0.90

Proposition 2.17. For a sequence of observations (Z1, Z2, . . . , Zn) ∈ Zn and some
fixed values z1:l = (z1, z2, . . . , zl) and for some measurable function f : Zn → R, let
W = f(Z1, Z2, . . . , Zn) and define for l ∈ J1, nK:

1. fl(z1, z2, . . . , zl) = E
(
W | Z1 = z1, Z2 = z2, . . . , Zl = zl

)
,

2. ∆l(z1, z2, . . . , zl−1, zl) = fl(z1, z2, . . . , zl−1, zl)− fl−1(z1, z2 . . . , zl−1), (the positive
deviations)

3. D := maxl=1,...,n supz1,...,zi−1∈Z supz∈Z ∆l

(
z1, . . . , zl−1, z

)
, (the maximum posi-

tive deviation)

4. σ2
l (z1:l−1) = Var

[
∆l(Z1, Z2, . . . , Zl−1, Z

′) | Z1 = z1, Z2 = z2, . . . , Zl−1 = zl−1

]
, where

Z ′ is an independent copy of Zl,

5. σ2 = supz1:l−1∈Zl−1

∑n
l=1 σ

2
l (z1:l−1) (the maximum sum of variances).

Then we have

P(W − E
[
W
]
> t) ≤ exp

(
−t2

2(σ2 +Dt/3)

)
.

We also recall Proposition 2.5.2 from Vershynin (2018), which provides an upper bound
for the expectation of sub-Gaussian random variables.

Proposition 2.18. Let X be a real valued random variable and suppose that

P(X ≥ t) ≤ C1.exp(−t2/C2
2 ),

for some C1, C2 > 0. then it holds that

E(X) ≤M2C2,

where M2 > 0 is a universal constant depending only on C1.
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2.B Intermediate results and detailed proofs

2.B.1 Proof of Lemma 2.6

Since the leave-one-out is a special case of K-fold with K = n (or leave-p-out with
p = 1) it suffices to prove the statement concerning the cases of the leave-p-out and the
K-fold.

K-Fold. For this procedure, the validation sets is a partition of J1, nK:

K⋃
j=1

Vj = J1, nK and Vj
⋂
Vk = ∅ , ∀j 6= k ∈ J1,KK. (2.20)

Under the assumption that K divides n, the condition card(Vj) = n/K := nV for all
the validation sets Vj holds, as stipulated in (6.3). Thus we have

n =
K∑
j=1

card(Vj) = KnV . (2.21)

Furthermore, under (2.20), any index l ∈ J1, nK belongs to a unique validation test Vj′
and to all the train sets Tj = V c

j with j 6= j′. Hence, we both have


∑K

j=1 1
{
l ∈ Tj

}
= K − 1, and∑K

j=1 1
{
l ∈ Vj

}
= 1.

Using (2.21) and the fact that nT = n− nV = (K − 1)nV yields the desired result.

Leave-p-out. In the leave-p-out procedure, the sequence of validation sets is the fam-
ily of all subsamples Vj of Dn of size card(Vj) = p, thus K =

(
n
p

)
. On the other hand,

any index l ∈ J1, nK belongs to
(
n−1
p−1

)
validation sets. Indeed constructing a Vj such as

l ∈ Vj is equivalent to first picking l and then choosing p− 1 elements from J1, nK \ {l}.
Hence we have

K∑
j=1

1
{
l ∈ Vj

}
=

(
n− 1

p− 1

)
, ∀l ∈ J1, nK.

Using the identity n
(
n−1
p−1

)
= p
(
n
p

)
we obtain

1

KnV

K∑
j=1

1
{
l ∈ Vj

}
=

1

p

(
n

p

) K∑
j=1

1
{
l ∈ Vj

}
= 1/n.

A similar argument applies to the sequence T1:K , which completes the proof.
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2.B.2 Intermediate results for the proofs of theorems 2.9 and 2.12

In this section we gather the main intermediate results involved in the proofs of our
main results theorems 2.9 and 2.12, which are of interest in their own.

A key tool to our proofs is a Bernstein-type inequality relative to the deviation of a
generic random variable W = f(Z1, . . . , Zn) from its mean (McDiarmid (1998)) that
is recalled for convenience in section 2.A of this supplement (Proposition 2.17). The
control of the deviations involves both a maximum deviation term and a variance term.
We leverage this result to control the deviations of the pseudo-empirical risk R̃α defined
in (2.8) averaged over the K validation sets V1:K . These deviations are embodied by the
random variable W defined in Lemma 2.19, Equation (2.22), which is a key quantity
when analysing the deviations of any CV risk estimate. Controlling the deviations of
W is the main purpose of this section.

Lemma 2.19. Let Dn = (Z1, Z2, . . . , Zn) ∈ Zn be a sequence of random variables, and
let V1, V2, . . . VK be validation sets that verify Assumption 2 with size nV .Moreover, suppose
that assumptions 3 and 4 regarding the class G and c hold. Define

W =
1

K

K∑
j=1

sup
g∈G
|R̃α(g, Vj)−Rα(g)|, (2.22)

where R̃α is defined by Equation 2.8. Then the random variableW satisfies the Bernstein-
type inequality

P
(
W − E(W ) ≥ t

)
≤ exp

(
−nαt2

2(4 + t/3)

)
.

Proof We introduce for convenience the rescaled variable Wα = αW . Then Wα may
be written as

Wα =
1

K

K∑
j=1

 1

nV
sup
g∈G

∣∣∣∣∑
i∈Vj

c(g, Zi)1α(Xi)− E
[
c(g, Z)1α(X)

] ∣∣∣∣
 ,

where we use the shorthand notation 1α(X) = 1
{
‖X‖ ≥ tα

}
. We derive an upper

bound on P
(
Wα − E(Wα) > t

)
using Proposition 2.17. Namely we show that the max-

imum deviations term D and σ2 from the latter statement are respectively bounded by
D ≤ 1/n and σ2 ≤ 4α/n. To do so we compute explicitly the five quantities defined in
the satement of Proposition 2.17 in our particular context.
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1. The conditional expectations fl from Proposition 2.17 are (recall that zi = (xi, yi)),

fl(z1, z2, . . . , zl)

= E
(
Wα | Z1 = z1, Z2 = z2, . . . , Zl = zl

)
=

1

KnV

K∑
j=1

E

 sup
g∈G

∣∣∣∣∣∣
∑
i∈Vj,l

c(g, zi)1α(xi) +
∑

i∈Vj\Vj,l

c(g, Zi)1α(Xi)

− nV E
[
c(g, Z)1α(X)

] ∣∣∣∣∣∣


=
1

KnV

K∑
j=1

E

 sup
g∈G

∣∣∣hj,g (z1:l, Zl+1:n

) ∣∣∣
 ,

where Vj,l = Vj ∩ J1, lK are the validation indices which belong to the interval
J1, lK, and

hj,g

(
z1:l, Zl+1:n

)
=
∑
i∈Vj,l

c(g, zi)1α(xi)+
∑

i∈Vj\Vj,l

c(g, Zi)1α(Xi)−nV E
[
c(g, Z)1α(X)

]
.

2. Recall the definition of the positive deviations ∆l,

∆l(z1, z2, . . . , zl−1, zl) = fl(z1, z2, . . . , zl−1, zl)− fl−1(z1, z2 . . . , zl−1) .

In view of the expression for fl from step 1, we may thus write

∆l(z1:l) =
1

KnV

K∑
j=1

E

 sup
g∈G

∣∣∣hj,g (z1:l, Zl+1:n

) ∣∣∣− sup
g∈G

∣∣∣hj,g (z1:l−1, Zl:n

) ∣∣∣
 .

Now, notice that Vj,l = Vj,l−1 if l /∈ Vj and Vj,l = Vj,l−1 ∪ {l} otherwise. Hence

hj,g

(
z1:l, Zl+1:n

)
−hj,g

(
z1:l−1, Zl:n

)
= 1{l ∈ Vj}

(
c(g, zl)1α(xl)−c(g, Zl)1α(Xl)

)
.

Using the fact that, for any functions f, g, it holds that
∣∣∣ sup|f |−sup|g|

∣∣∣ ≤ sup|f−
g|, we obtain

|∆l(z1:l)| ≤
1

KnV

K∑
j=1

1{l ∈ Vj}E sup
g∈G

∣∣∣c(g, zl)1α(xl)− c(g, Zl)1α(Xl)
∣∣∣︸ ︷︷ ︸

(Assumption 4)≤1

 (2.23)

and deduce that

|∆l(z1:l)| ≤
1

KnV

K∑
j=1

1{l ∈ Vj}

(by Assumption 2 ) ≤ 1

n
.
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3. The maximum positive deviation is defined by

D := max
l=1,...,n

sup
z1,...,zi−1∈Z

sup
z∈Z

∆l

(
z1, . . . , zl−1, z

)
.

From the previous step, we immediately obtain

D ≤ 1/n.

4. Let Z ′ = (X ′, Y ′) be an independent copy of Z = (X,Y ) and let z1:l = (z1, z2, . . . , zl).
Recall the conditional variance term from the statement of Proposition 2.17,
σ2
l (z1:l−1) := Var

[
∆l(Z1, Z2, . . . , Zl−1, Z

′) | Z1 = z1, Z2 = z2, . . . , Zl−1 = zl−1

]
. Then

σ2
l may be upper bounded as follows,

σ2
l (z1:l−1) ≤ E

[
∆l(Z1, Z2, . . . , Zl−1, Z

′)2 | Z1 = z1, Z2 = z2, . . . , Zl−1 = zl−1

]
= E

[
∆l(z1, z2, . . . , zl−1, Z

′)2
]
.

Now using (2.23), write

σ2
l ≤

1

(KnV )2E


 K∑
j=1

1{l ∈ Vj}E
[

sup
g∈G
|c(g, Z ′)1α(X ′)− c(g, Zl)1α(Xl)| | Z ′

]
2


(|c| ≤ 1) ≤ (
1

KnV
)2E


 K∑
j=1

1{l ∈ Vj}E
[

sup
g∈G

1α(X ′) + 1α(Xl)︸ ︷︷ ︸
independent of g

| Z ′
]

2


= (
1

KnV
)2E


 K∑
j=1

1{l ∈ Vj} (1α(X ′) + α)︸ ︷︷ ︸
independent of j


2


≤ E
[
(1α(X ′) + α)2

] 1

KnV

K∑
j=1

1{l ∈ Vj}


2

= (α+ 3α2)

 1

KnV

K∑
j=1

1{l ∈ Vj}


2

(by (6.4)) =
α+ 3α2

n2

(α ≤ 1) ≤ 4α

n2 .

5. Finally we get σ2 =
∑n

l=1 supz1:l−1
σ2
l (z1:l−1) ≤ 4α

n .
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At this stage, applying proposition 2.17 gives

P(Wα − E
[
Wα

]
> t) ≤ exp

{ −nt2
2(4α+ t/3)

}
.

Therefore for W = Wα/α one obtains

P(W − E
[
W
]
> t) ≤ exp

{ −nαt2
2(4 + t/3)

}
.

To obtain a genuine probability bound on Z via the latter lemma, one also needs to
control the term E(Z). This is the purpose of the next lemma, the spirit of which is
similar to Lemma 14 in Goix et al. (2015). The main difference w.r.t. to the latter
reference is that we handle any bounded cost function (not only the Hamming loss),
using a bound for Rademacher averages from Giné and Guillou (2001) which applies in
this broader setting.

Lemma 2.20. In the setting of Lemma 2.19, W satisfies

E(W ) ≤ M
√
VG√

αnV
.

where M > 0 is a universal constant.

Proof

Notice first that, since the observations are i.i.d. ,

E

 1

K

K∑
j=1

sup
g∈G

∣∣∣∣∣R̃α(g, Vj)−Rα(g)

∣∣∣∣∣
 = E

sup
g∈G

∣∣∣∣∣R̃α(g, V1)−Rα(g)

∣∣∣∣∣
 .

That is, E(W ) = E(WV1), where for a subset of indices S = {1, . . . , nS}, we denote

WS = sup
g∈G

∣∣∣R̃α(g, S)−Rα(g)
∣∣∣.

In order to bound E
[
WS

]
defined above, we follow the same steps as in the proof of

Lemma 14 in Goix et al. (2015), where most arguments also hold true for a bounded
VC class of cost functions.

In particular, we use the symmetrization technique. Consider Rademacher random vari-
ables E = (ε1, ε2, . . . , εnS ) taking values in {−1, 1} and introduce the randomized process

WE = sup
g∈G

∣∣∣∣∣ 1

αnS

nS∑
i=1

εic(g, Zi)1
{
‖Xi‖ ≥ tα

}∣∣∣∣∣ .
It can be shown using the same classical steps as in the proof of Lemma 13 in Goix
et al. (2015) that
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E(WS) ≤ 2E(WE) .

The key argument to proceed is to condition the above expectation upon the number
of indices i such that ‖Xi‖ ≥ tα. This conditioning trick is a standard technique for
deriving non asymptotic bounds in the EVT framework (Goix et al. (2015); Lhaut
et al. (2021)). Introduce a random variable Zi,α, which has the same distribution as
(Z | ‖X‖ ≥ tα) and notice that

nS∑
i=1

εic(g, Zi)1
{
‖Xi‖ ≥ tα

}
∼
N∑
i=1

εic(g, Zi,α) ,

where N has a Binomial distribution B(nS , α). Equipped with these notations

E(WE) = E(φ(N )) ,

where

φ(N) = E sup
g∈G

∣∣∣∣∣ 1

αnS

N∑
i=1

εic(g, Zi,α)

∣∣∣∣∣ =
N

αnS
E sup
g∈G

1

N

∣∣∣∣∣
N∑
i=1

εic(g, Zi,α)

∣∣∣∣∣ .
Then by a classical Rademacher complexity arguments for finite VC-classes (see Giné
and Guillou (2001), Proposition 2.1),

E sup
g∈G

1

N

∣∣∣∣∣
N∑
i=1

εic(g, Zi,α)

∣∣∣∣∣ ≤ M ′1
√
VG√

N
+
M ′2VG
N

≤M ′
√
VG
N
,

for some universal constant M ′ > 0, whence

φ(N) ≤ N

αnS

M ′
√
VG√
N

=
M ′
√
VGN

αnS

By concavity we have E(
√
N) ≤

√
E(N) =

√
αnS , and we obtain

E(WS) ≤ 2E(WE) ≤
2M ′

√
VG√

nSα
.

The result follows.

The following probability upper bound for Z follows immediately by combining Lemma 2.19
and Lemma 2.20.

Corollary 2.21. In the setting of Lemma 2.19,

we have

P

W − M
√
VG√

αnV
≥ t

 ≤ exp

(
−nαt2

2(4 + t/3)

)
,

where W is defined in (2.22).
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To conclude this section, we extend Theorem 10 in Goix et al. (2015) bounding the
supremum deviations of the empirical measure on low probability regions, to handle the
case of any cost function c absolutely bounded by one.

Lemma 2.22. Recall the definitions of the risk Rα and its empirical version R̂α given
in Section 2.2 and introduce the (random) supremum deviations

W ′ = sup
g∈G
|R̂α(g, Sn)−Rα(g)|.

If G is a family of classifiers with finite VC-dimension and c a bounded cost function
with supg,z |c(g, z)| ≤ 1, then, the following Bernstein-type inequality holds,

P(W ′ −Q(n, α) ≥ t) ≤ 3 exp

(
−nαt2

2(4 + t/3)

)
,

where Q(n, α) = B(n, α) + 1
nα and B is defined by

B(n, α) =
M
√
VG√

αn
(2.24)

and M is a universal constant.

Proof Write W ′ ≤W1 +W2 with :

W1 = sup
g∈G
|R̂α(g, Sn)− R̃α(g, Sn)|,

W2 = sup
g∈G
|R̃α(g, Sn)−Rα(g)|.

Concerning W2, applying Corollary 2.21 with K = 1 , V1 = Sn, yields

P(W2 −B(n, α) ≥ t) ≤ exp

(
−nαt2

2(4 + t/3)

)
. (2.25)

We now focus on W1. Define

ui =

∣∣∣∣1{‖Xi‖ > ‖X(bαnc)‖
}
− 1

{
‖Xi‖ ≥ tα

}∣∣∣∣
and notice that W1 ≤ 1

nα
∑n

i=1 ui. It is known (see for instance the bound for the term
A in Jalalzai et al. (2018), page 12) that

1

nα

n∑
i=1

ui ≤
1

α

∣∣∣∣∣∣ 1n
n∑
i=1

1
{
‖X‖ ≥ tα

}
− α

∣∣∣∣∣∣+
1

nα
.

Now, by noticing that Var(1
{
‖X‖ ≥ tα

}
) ≤ α and using Bernstein’s inequality, we get

P

∣∣∣∣∣ 1n
n∑
i=1

1
{
‖X‖ ≥ tα

}
− α

∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−nt2

2(α+ t/3)

)

≤ 2 exp

(
−nt2

2(4α+ t/3)

)
.
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Finally, dividing by α, we get

P

(
1

nα

∣∣∣∣∣
n∑
i=1

1
{
‖X‖ ≥ tα

}
− α

∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
−nαt2

2(4 + t/3)

)
.

Therefore we finally obtain

P

 1

nα

n∑
i=1

ui − 1/nα ≥ t

 ≤ 2 exp

(
−nαt2

2(4 + t/3)

)
. (2.26)

The result follows using W ′ ≤W1 +W2 and W1 ≤ 1
nα
∑n

i=1 ui.

2.B.3 Detailed proof of Theorem 2.9

In view of the argument following the statement, we derive probability upper bounds
for the three terms Dtα , Dcv and Bias defined in equations (2.12, 2.13, 2.14).

Probability bound for Dtα (see (2.12)). Using the fact that the cost function
verifies 0 ≤ c ≤ 1, write

Dtα = |R̂CV,α(Ψα, V1:K)− R̃CV,α(Ψα, V1:K)| ≤ U,

where U = 1
KnV α

∑K
j=1

∑
i∈Vj ui and ui =

∣∣∣∣1{‖Xi‖ > ‖X(bαnc)‖
}
− 1

{
‖Xi‖ ≥ tα

}∣∣∣∣
as the proof of Lemma 2.22. Now notice that

U =
1

KnV α

K∑
j=1

n∑
i=1

ui1
{
i ∈ Vj

}

=
1

KnV α

n∑
i=1

ui

K∑
j=1

1
{
i ∈ Vj

}
=

1

nα

n∑
i=1

ui.

The last line follows from Assumption 2. Hence, using Inequality (2.26) from the proof
of Lemma 2.22, we obtain

P(Dtα − 1/nα ≥ t) ≤ 2 exp

(
−nαt2

2(4 + t/3)

)
. (2.27)

Probability bound for Dcv (see 2.13). First, notice that

Dcv = | 1

K

K∑
j=1

[
R̃α
(

Ψα(Tj), Vj

)
−Rα

(
Ψα(Tj)

) ]
|

≤ 1

K

K∑
j=1

sup
g∈G
|R̃α(g, Vj)−Rα(g)|.
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The r.h.s of the latter display is the quantity Z defined in Lemma 2.19, Equation 2.22.
As a consequence of this lemma,

P(Dcv −B(nV , α) ≥ t) ≤ exp

(
−nαt2

2(4 + t/3)

)
, (2.28)

with

B(nV , α) =
M
√
VG√

αnV
,

for some universal constant M > 0.

Probability bounds for Bias (see 2.14). We write

Bias =
1

K

∣∣∣∣∣∣∣
K∑
j=1

Rα(Ψα(Tj))−Rα
(

Ψα(Sn)
)
∣∣∣∣∣∣∣

≤ C1 + C2, (2.29)

with

C1 =
1

K

∣∣∣∣∣∣∣
K∑
j=1

(
Rα(Ψα(Tj))− R̂α(Ψα(Tj), Tj) + R̂α(Ψα(Tj), Tj)−R∗α

)∣∣∣∣∣∣∣ ,

C2 =

∣∣∣∣R∗α − R̂α(Ψα(Sn), Sn) + R̂α(Ψα(Sn), Sn)−Rα
(

Ψα(Sn)
)∣∣∣∣

and
R∗α = inf

g∈G
Rα(g).

Using the fact that R̂α(Ψα(Tj), Tj) = infg∈G R̂α(g, Tj) (Assumption 1) and for any real
functions h and f , |inf h− inf f | ≤ sup|h− f | , write

1

K

∣∣∣∣∣∣∣
K∑
j=1

(
R̂α(Ψα(Tj), Tj)−R∗α

)∣∣∣∣∣∣∣ =
1

K

∣∣∣∣∣∣∣
K∑
j=1

inf
g∈G
R̂α(g, Tj)− inf

g∈G
Rα(g)

∣∣∣∣∣∣∣
≤ 1

K

K∑
j=1

∣∣∣∣∣ inf
g∈G
R̂α(g, Tj)− inf

g∈G
Rα(g)

∣∣∣∣∣
≤ 1

K

K∑
j=1

sup
g∈G
|R̂α(g, Tj)−Rα(g)|.

Then, by using the triangle inequality, deduce that

C1 ≤
2

K

K∑
j=1

sup
g∈G
|R̂α(g, Tj)−Rα(g)|

≤ 2(W1 +W2), (2.30)
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with

W1 =
1

K

K∑
j=1

sup
g∈G
|R̂α(g, Tj)− R̃α(g, Tj)|,

W2 =
1

K

K∑
j=1

sup
g∈G
|R̃α(g, Tj)−Rα(g)|.

In order to bound Z2 we use the fact that the statements of Lemmas 2.19, 2.20 and
Corollary 2.21 still hold true if one substitutes the training sets Tj for the validation
sets Vj , and the training size nT for nV , as revealed by an inspection of the proofs.
The only difference between the two arguments is in steps 2 and 4 from the proof of

Lemma 2.19 where we use the identity 1
K

∑K
j=1

1
{
l ∈ Tj

}
nT = 1

n from Lemma 2.6 instead
of Identity (6.4). Thus we obtain, from the twin statement of Corollary 2.21,

P(W2 − 2B(nT , α) ≥ 2t) ≤ 2 exp

(
−nαt2

2(4 + t/3)

)
, (2.31)

where B(n, α) is defined in (2.24). Similarly the term W1 can be bounded following the
same argument as in the first paragraph (Probability bound for Dtα) up to replacing Vj
with Tj and nV with nT :

W1 ≤
1

KnTα

K∑
j=1

n∑
i=1

ui1
{
i ∈ Tj

}

=
1

KnTα

n∑
i=1

ui

K∑
j=1

1
{
i ∈ Tj

}
=

1

nα

n∑
i=1

ui,

where the last line follow from the claim after Assumption 2 ( 1
K

∑K
j=1 1

{
l ∈ Tj

}
= nT

n ).
This yields using similar arguments as before

P(W1 −
1

nα
≥ 2t) ≤ 4 exp

(
−nαt2

2(4 + t/3)

)
.

Using the fact that nT ≤ n it follows

P(W1 −
1

nTα
≥ 2t) ≤ 4 exp

(
−nαt2

2(4 + t/3)

)
. (2.32)

Decomposition (2.30) combined with inequalities (2.31), (2.32) leads to

P
(
C1 − 2Q(nT , α) ≥ 4t

)
≤ 6 exp

(
−nαt2

2(4 + t/3)

)
, (2.33)

with

Q(n, α) = B(n, α) +
1

nα

=
M
√
VG√

αn
+

1

nα
. (2.34)
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Using the same technique, one has

C2 ≤ 2 sup
g∈G
|R̂α(g, Sn)−Rα(g)|.

Then by Lemma 2.22, we obtain

P
(
C2 − 2Q(n, α) ≥ 4t

)
≤ 6 exp

(
−nαt2

2(4 + t/3)

)
. (2.35)

Moreover, notice that we have4B(nT , α) ≥ 2B(n, α) + 2B(nT , α),
4

nTα ≥
2

nTα + 2
nα.

Therefore we get
4Q(nT , α) ≥ 2Q(n, α) + 2Q(nT , α). (2.36)

Combining equations (2.33), (2.35), (2.36) and decomposition (2.29) yields

P
(

Bias− 4Q(nT , α) ≥ 8t
)
≤ 12 exp

(
−nαt2

2(4 + t/3)

)
. (2.37)

Assembling terms. Using equations (2.27), (2.28), (2.37) and the decomposition
(2.11), deduce the inequality

P

(∣∣∣R̂CV,α(Ψα, V1:K)−Rα
(

Ψα(Sn)
)∣∣∣−ECV (nT , nV , α) ≥ 10t

)
≤ 15 exp

(
−nαt2

2(4 + t/3)

)
,

(2.38)
with

ECV (nT , nV , α) = B(nV , α) + 4Q(nT , α) +
1

nTα

= M
√
VG(

1√
nV α

+
4√
nTα

) +
5

nTα
.

The last line follows, using the definitions of B (eq. 2.24) and Q (eq. 2.34).

By inverting inequality (2.38), one has, with probability 1− 15δ,∣∣∣∣∣R̂CV,α(Ψα, V1:K)−Rα
(

Ψα(Sn)
)∣∣∣∣∣ ≤ ECV (nT , nV , α) +

20

3nα
log(

1

δ
) + 20

√
2

nα
log(

1

δ
),

which is the desired result.

2.B.4 Intermediate results for the proof of Theorem 2.12

Lemma 2.23. Let Ψα be the ERM rule on the tail region of level 1−α defined in (2.5).
Given a dataset Dn = (Z1, Z2, . . . , Zn) ∈ Zn it holds that

R̂α(Ψα(Sn), Sn) ≤ R̂CV,α(Ψα, V1:K).

In other words the CV risk estimate of the ERM rule cannot be less than the empirical
risk evaluated on the full dataset.
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Proof The argument for α 6= 1 is the same as the one for α = 1 (standard ERM) which
may be found in Kearns and Ron (1999). We reproduce it for the sake of completeness.
By definition of Ψα(Sn), one has

∀j ∈ J1, nK , R̂α(Ψα(Tj), Sn) ≥ R̂α(Ψα(Sn), Sn),

since R̂α(g, Sn) = 1
n

(
nV R̂α(g, Vj) + nT R̂α(g, Tj)

)
, for g ∈ G. It follows that

1

n

nV R̂α(Ψα(Tj), Vj)︸ ︷︷ ︸
validation error

+nT R̂α(Ψα(Tj), Tj)︸ ︷︷ ︸
training error

 ≥ 1

n

(
nV R̂α(Ψα(Sn), Vj)

+ nT R̂α(Ψα(Sn), Tj)
)
.

Since Ψα(Tj) minimizes the training error on the j’th training set Tj , in particular we
have

R̂α(Ψα(Sn), Tj) ≥ R̂α(Ψα(Tj), Tj),

hence
R̂α(Ψα(Sn), Vj) ≤ R̂α(Ψα(Tj), Vj) , ∀j ∈ J1,KK. (2.39)

In addition the average empirical risk of Ψα(Sn) is equal to the empirical risk on the
full dataset, indeed

1

K

(
K∑
j=1

R̂α(Ψα(Sn), Vj)

)
=

1

KnV

(
K∑
j=1

∑
i∈Vj

c
(

Ψα(Sn), Oi)1

‖Xi‖ > ‖X
(bαnc

)‖

)

=
1

KnV

(
K∑
j=1

n∑
i=1

c
(

Ψα(Sn), Oi

)
1
{
i ∈ Vj

}
1
{
‖Xi‖ > ‖X(bαnc)‖

})

=
1

KnV

(
n∑
i=1

c
(

Ψα(Sn), Oi

)
1
{
‖Xi‖ > ‖X(bαnc)‖

}) K∑
j=1

1
{
i ∈ Vj

}
(By Assumption 2) = R̂α

(
Ψα(Sn), Sn

)
.

Thus by averaging Inequality (2.39), we get

R̂α(Ψα(Sn), Sn) ≤ R̂CV,α(Ψα, V1:K).

The following lemma is used in the proof of our second main result concerning l.p.o.
risk estimation, see Inequality (2.16). It is a generalization of Markov inequality that is
particularly useful for cross-validation estimates. Our proof shares similarities with the
proof of Theorem 4.1 in Kearns and Ron (1999) formulated under general algorithmic
stability assumptions.

Lemma 2.24. In the setting of Theorem 2.9, we have

P(R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K) ≥t) ≤
E(Dtα + Bias + |R̂α(Ψα(Sn), Sn)−Rα(Ψα(Sn))|)

t
,
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where Bias (resp Dtα) is defined by equation (2.14) (resp (2.12)).

Proof Set R̂CV,α = R̂CV,α(Ψα, V1:K),RCV,α = RCV,α(Ψα, V1:K) , R̂α = R̂α(Ψα(Sn), Sn),
Rα = Rα(Ψα(Sn)).
For any integrable real valued random variable L, and any t > 0 write

E
[
L
]

= P
(
L ≥ t

)
E
[
L |L ≥ t

]
+ E

[
L1
{
L < t

}]
.

Reorganising, we obtain the following generalized Markov inequality,

P
(
L ≥ t

)
=

E
[
L
]
− E

[
L1
{
L < t

}]
E
[
L |L ≥ t

] ≤ E(L)− E(L1
{
L < t

}
)

t
.

Letting L = R̂CV,α −RCV,α we obtain

P(R̂CV,α −RCV,α ≥ t) =
E(R̂CV,α −RCV,α)

t

−E
[
(R̂CV,α −RCV,α)1

{
R̂CV,α −RCV,α ≤ t

}]
t

. (2.40)

Using the fact that E(R̃CV,α −RCV,α) = 0 and that Dtα = |R̂CV,α − R̃CV,α|, one gets

E(R̂CV,α −RCV,α) = E(R̂CV,α − R̃CV,α)

≤ E(Dtα). (2.41)

Now using lemma 2.23 write

E
[
(RCV,α − R̂CV,α)1R̂CV,α−RCV,α≤t

]
≤ E

[
(RCV,α − R̂α)1R̂CV,α−RCV,α≤t

]
≤ E

[
|RCV,α − R̂α|1R̂CV,α−RCV,α≤t

]
≤ E

[
|RCV,α − R̂α|

]
≤ E

[
|RCV,α −Rα|

]
+ E

[
|Rα − R̂α|

]
= E

[
Bias

]
+ E

[
|Rα − R̂α|

]
. (2.42)

Where the Bias term in the last line is defined in (2.14). Combining inequality (2.40)
with equations (2.41) and (2.42) yields

P(R̂CV,α −RCV,α ≥ t) ≤
E(Dtα + Bias + |R̂α −Rα|)

t
,

which concludes the proof.
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2.B.5 Proof of Theorem 2.12

In view of the discussion following the statement of the theorem (namely the risk
decomposition (2.15) and the Markov-type inequality (2.16)) and the bound for the
term Bias obtained in (2.37), we only need to obtain bounds for the expectations
E
(
|R̂α(Ψα(Sn), Sn)−Rα(Ψα(Sn))|

)
, E(Dtα), and E(Bias) . The proof will then be

completed by combining together the different terms.

Bounding E(Dtα). By Equation (2.27), one has

P(Dtα −
1

nα
≥ t) ≤ exp

(
−nαt2

2(4 + t/3)

)
.

On the one hand, under Assumption 4 one has P(Dtα − 1
nα ≥ t) = 0 for t ≥ 2. On the

other hand, the following inequality holds,

∀t ≤ 2 , 2(4 + t/3) ≤ 10 .

Hence we may write, for t ≥ 0,

P(Dtα −
1

nα
≥ t) ≤ exp

(
−nαt2

10

)
. (2.43)

Therefore by Proposition 2.18, we get

E(Dtα) ≤ 1

nα
+

M1√
nα

≤ 1

nTα
+

M1√
nTα

, (2.44)

for some universal constant M1 > 0.

Bounding E(Bias). Using Eéquation (2.37) and reasoning as in the previous para-
graph leads to

E(Bias) ≤ 4Q(nT , α) +
M2√
nTα

, (2.45)

where Q(n, α) is defined by (2.34) and M2 > 0 is a universal constant, independent of
G,n and α.

Bounding E(|R̂α(Ψα(Sn), Sn)−Rα(Ψα(Sn))|). By Lemma 2.22 we obtain

P(
∣∣∣R̂α(Ψα(Sn), Sn)−Rα(Ψα(Sn))

∣∣∣−Q(n, α) ≥ t) ≤ 3 exp

(
−nαt2

2(4 + t/3)

)
. (2.46)

Then we get

E(
∣∣∣R̂α(Ψα(Sn),Sn)−Rα(Ψα(Sn))

∣∣∣)
≤ Q(n, α) +

M3√
nα

≤ Q(nT , α) +
M3√
nTα

, (2.47)
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for some universal constant M3 > 0.

Combining equations (2.44), (2.45), (2.47) with Lemma 2.24 gives

P(R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K) ≥ t) ≤
5Q(nT , α) + M4√

nTα

t
+

1/(nTα)

t
, (2.48)

where M4 = M1 + M2 + M3. The next step is to derive a probability bound for
RCV,α(Ψα, V1:K)− R̂CV,α(Ψα, V1:K). We have

P(RCV,α(Ψα, V1:K)− R̂CV,α(Ψα, V1:K)− 5Q(nT , α) ≥ 9t)

≤ P(RCV,α(Ψα, V1:K)− R̂α(Ψα(Sn), Sn)− 5Q(nT , α) ≥ 9t)

≤ P(RCV,α(Ψα, V1:K)−Rα(Ψα(Sn))− 4Q(nT , α) ≥ 8t)

+ P(Rα(Ψα(Sn))− R̂α(Ψα(Sn), Sn)−Q(nT , α) ≥ t)
≤ P(

∣∣∣R̂α(Ψα(Sn), Sn))−Rα(Ψα(Sn))
∣∣∣−Q(nT , α) ≥ t)

+ P(Bias− 4Q(nT , α) ≥ 8t)

(By (2.37) + (2.46)) ≤ 15 exp

(
−nαt2

2(4 + t/3)

)
. (2.49)

The first inequality follows from the fact that R̂CV,α(Ψα, V1:K) ≥ R̂α(Ψα(Sn), Sn)
(lemma 2.23). The second inequality is obtained by a union bound. The third in-
equality follows from the definition of Bias (eq. 2.14). Combining (2.48), (2.49) and
that

P(|X| − 5Q(nT , α) ≥ 9t) ≤ P(X − 5Q(nT , α) ≥ 9t) + P(−X − 5Q(nT , α) ≥ 9t)

≤ P(X ≥ 9t) + P(−X − 5Q(nT , α) ≥ 9t),

leads to

P

(∣∣∣R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K)
∣∣∣− 5Q(nT , α) ≥ 9t

)

≤ 5Q(nT , α)

t
+
M4/
√
nTα

t
+

(1/nTα)

t
+ 15 exp

(
−nαt2

2(4 + t/3)

)
. (2.50)

Finally, using (2.15), we get

P
(∣∣∣R̂CV,α(Ψα, V1:K)−Rα

(
Ψα(Sn)

)∣∣∣− 9Q(nT , α) ≥ 17t

)
≤ P(Bias− 4Q(nT , α) ≥ 8t)

+ P
(∣∣∣R̂CV,α(Ψα, V1:K)−RCV,α(Ψα, V1:K)

∣∣∣− 5Q(nT , α) ≥ 9t

)
(2.51)

≤ 5Q(nT , α) + (M4/
√
nTα)

t
+

1/(nTα)

t
+ 27 exp

(
−nαt2

2(4 + t/3)

)
. (2.52)

The last line follows from (2.37) and (2.50). Since for any t ≥ 2,

P
(∣∣∣R̂CV,α(Ψα, V1:K)−Rα

(
Ψα(Sn)

)∣∣∣− 9Q(nT , α) ≥ 17t

)
= 0
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we can restrict our attention to the case t ≤ 2, for which we have

27 exp

(
−nαt2

2(4 + t/3)

)
≤ 27 exp

(
−nαt2

10

)
.

Using that exp(−x) ≤ 1
x for x ≥ 0, we deduce that

27 exp

(
−nαt2

2(4 + t/3)

)
≤ 270

nαt2
.

Using the latter inequality and inverting (2.51), we get that with probability 1− 17δ,∣∣∣R̂CV,α(Ψα, V1:K)−Rα
(

Ψα(Sn)
)∣∣∣ ≤ 9Q(nT , α)+

5Q(nT , α) + (M4/
√
nTα) + (1/nTα)

δ

+

√
270

nTαδ
,

Using the fact that
√

1
δ
≤ 1
δ
(since δ ≤ 1), the latter inequality becomes:

|R̂CV,α(Ψα, V1:K)−Rα
(

Ψα(Sn)
)
| ≤ 9Q(nT , α) +

1

δ
√
nTα

(5Q(nT , α) +M5) +
1

δnTα
,

with M5 = M4 +
√

270. Replacing Q with its expression (Equation 2.34) gives the
desired result.

2.C Optimal classifier in extreme regions

The aim of this section is to extend the result in Jalalzai et al. (2018) (See Remark
2.1) to a wider class of losses. For the sake of brevity, we only introduce necessary
notations, more insights can be found in the original work. Suppose that the conditional
distribution of X given Y = 1 (resp. Y = −1) is regularly varying with index 1 and
exponent measure µ+ (resp. µ−) that is : for A ⊂ [0,∞]d\{0} a measurable set such
that 0 /∈ ∂A and µ+(∂A) 6= 0,

b(t)P
{
t−1X ∈ A | Y = 1

}
−→
t→∞

µ+(A),

for some function b(t) satisfying

∀x ∈ R ,
b(tx)

t
−−−−→
t→+∞

x−1.

We denote by Z∞ = (X∞, Y∞) an extreme observation drawn from the limit measures
: P(X∞ | Y = 1) = µ+, P(X∞ | Y = −1) = µ− and

P
(
Y∞ = 1

)
= p∞ := lim

t→∞
P
(
Y = 1 | ‖X‖ ≥ t

)
.

Furthermore, let η∞(x) = P(Y∞ = 1 | X∞ = x), Rt(g) = E
[
c(g,O) | ‖X‖ ≥ t

]
and

R∞
(
g
)

= lim sup
t→∞

Rt
(
g
)
. The function η∞ is constant along rays (see Jalalzai et al.

(2018)) that is η∞(tx) = η∞ (x) for all t ≥ 0, so that η∞(x) = η∞

(
Θ (x)

)
. In the
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following, we will use the latter property to show that the optimal predictor with respect
to R∞ is angular (depends only on the angle Θ). Before stating the main result of this
section, let’s recall a standard assumption in the EVT framework (Jalalzai et al., 2018;
Cai et al., 2011).

Assumption 5. The limiting regression function η∞ is continuous on S =
{
x ∈ X | ‖x‖ = 1

}
and

sup
θ∈S

∣∣∣η(Θ(tθ))− η∞(θ)
∣∣∣ −→
t→∞

0,

where η(x) = P(Y = 1 | X = x) is the standard regression function.

We further assume that :

∀z = (x, y) ∈ Z , c(g, z) = φ(g(x)y),

for some function φ so that

Rt(g) = E
[
η
(
X
)
φ
(
g(X)

)
+
(

1− η
(
X
))
φ
(
−g(X)

)]
. (2.53)

The next theorem allows to deduce that the optimal classifier g∗∞ is constant along rays.

Theorem 2.25. Suppose that g∗ = arg ming∈RX Rt(g) = a ◦ η for some function a.
Furthermore assume that Assumption 5 holds. Then, if

f(x) = xφ(a(x)) + (1− x)φ(−a(x))

is uniformly continuous on Range(η), one has,

g∗∞ = arg min
g∈RX

R∞(g) = a ◦ η∞.

In other words, the exists a discrimination function g∗∞ that minimizes the asymptotic
risk and depends on the angle of the input only.

Proof First notice that Rt(g∗) ≤ Rt(g) for all g ∈ RX . Thus by taking the limit
superior on both sides, it is clear that g∗ = arg ming∈RX R∞(g). It remains to show
that

lim
t→∞
Rt(g∗∞)−Rt(g∗) = 0

.

Now using Equation (2.53) write,

Rt(g∗∞)−Rt(g∗) =

∫
{‖x‖>t} f ◦ η(x)− f ◦ η∞(x)dP (x)

P{‖X‖ > t}
≤ At (2.54)

where At = sup{‖x‖≥t}

∣∣∣f ◦ η(x)− f ◦ η∞(x)
∣∣∣. On the other hand, since η∞ is constant

along rays, Assumption 5 is equivalent to

sup
{‖x‖≥t}

∣∣∣η(x)− η∞(x)
∣∣∣ −→
t→∞

0.
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Therefore, by using the uniform continuity of f , one obtains

At = sup
{‖x‖≥t}

∣∣∣f ◦ η(x)− f ◦ η∞(x)
∣∣∣ −→
t→∞

0.

Combining the last fact with Inequality (2.54) yields the desired result.

2.C.1 Examples

We present the main applications of Theorem 2.25, formally we focus on Logistic re-
gression (c(g, z) = φ(g(x)y) = log(1 + exp

(
−g(x)y

)
)) and SVM (c(g, z) = φ(g(x)y) =

max
(

0, 1− yg(x)
)
) losses.

Corollary 2.26 (Logistic Regression). Suppose that 0 < η1 ≤ η(x) ≤ η2 < 1 for all
x ∈ X . Then, under Assumption 5, for the logistic regression loss, one has,

g∗∞ = arg min
g∈RX

R∞(g) = ln

(
η∞

1− η∞

)
.

Proof The proof consists on verifying the assumptions of Theorem 2.25 and using the
well know fact (see e.g. Zhang (2004b)) that, for logistic regression, the bayes predictor
is given by g∗ = a ◦ η with

a(x) = ln

(
x

1− x

)
.

Furthermore, the function f defined in Theorem 2.25 is given by,

f(x) = xφ(a(x)) + (1− x)φ(−a(x))

= −x ln(x)− (1− x) ln(1− x)

which is uniformly continuous on
[
η1, η2

]
. Thus all conditions of Theorem 2.25 are

fulfilled and the proof is complete.

Mimicking the latter proof and using results from Bartlett et al. (2006a) yields the
following corollary

Corollary 2.27 (Support Vector Machine). Suppose that Assumption 5 holds, then for
the hinge loss (SVM), one has,

g∗∞ = arg min
g∈RX

R∞(g) = sign(2η − 1).

Proof For SVM, the function f defined in Theorem 2.25 writes as f(x) = 1− |2x− 1|
(see e.g. Zhang (2004b)), which is uniformly continuous. The rest of the proof is iden-
tical to the previous proof and thus omitted.
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3.1 Introduction

Dimension reduction is a crucial matter in supervised learning problems where the
goal is to predict a dependent variable Y ∈ R or summaries of it, when the dimension
p of the covariate vector X ∈ Rp is large. In this chapter we consider dimension
reduction for prediction of tail events, by which we mean events of the kind {Y > y},
for arbitrarily large values of y. This stylized statistical problem relates to a wide range
of practical applications such as supervised anomaly detection, system monitoring with
a large number of sensors, prediction of extreme weather conditions or financial risk
management. For instance, in financial risk management, a typical concern is to identify
risk factors, which will be further used to explain extreme events such as financial market
crashes, see e.g. Fama and French (1993, 2015). Risk factors are often lower dimensional
functionals based on a large number of stock returns. Identifying such risk factors that
can predict financial market crashes is therefore an example of dimension reduction for
the problem of predicting tail events.

Our focus on extreme values connects our work with the field of Extreme Value Theory
(EVT) which has been successfully applied to model tail events with potentially catas-
trophic impact. Statistical inference in this framework is performed using the most
extreme realizations of the random variable under consideration. We refer the inter-
ested reader to the monographs Beirlant et al. (2006); De Haan and Ferreira (2007);
Resnick (2013, 2007). Notice that the curse of dimensionality is particularly trouble-
some in extreme value analysis where only a small fraction of the data, reflected by the
low probability P

(
Y > y

)
, is used for inference. Before proceeding further we remark
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that the method proposed in this study, although motivated by and formulated in an
EVT framework, does not rely on the minimal assumptions typically required in EVT
such as a power law decay. It is in fact a local method related to any small range of Y
and as such, it could be easily adapted to tackle the problem of dimension reduction for
prediction of Y within low probability regions of other shapes. However in view of the
importance of applications towards risk management, we concentrate on this specific
tail region.

Dimension reduction in EVT. The subject of dimension reduction for extremes
has inspired numerous recent works. The vast majority of them are devoted to the
unsupervised setting, i.e. analyzing the extremes of a high dimensional random vector.
Such studies can be divided into the following categories: clustering methods (Chautru
(2015); Chiapino et al. (2019a); Janßen and Wan (2020a)), support identification, (Goix
et al. (2016, 2017); Chiapino and Sabourin (2016); Chiapino et al. (2019b); Simpson et al.
(2020); Meyer and Wintenberger (2019)), Principal Component Analysis of the angular
component of extremes (Cooley and Thibaud (2019a); Jiang et al. (2020); Drees and
Sabourin (2021)), and graphical models for extremes (Hitz and Evans (2016); Engelke
and Hitz (2020); Asenova et al. (2021)); see also Engelke and Ivanovs (2020) and the
references therein.

By contrast, our approach takes place in the supervised setting. Our main informal as-
sumption is that a low dimensional orthogonal projection PX is sufficient for predicting
extreme values of Y . In other words the extreme values of Y can be entirely explained
by a limited number of linear combinations of the components of X. In this setting,
the only existing works are, to our best knowledge, Gardes (2018) and Bousebata et al.
(2021). In Gardes (2018), the informal assumption emphasized above is made precise
by a specific notion of tail conditional independence, reported in Equation (3.6) below.
Dimension reduction is considered under this condition. Gardes (2018) demonstrates
the usefulness of such a reduction for statistical estimation of large conditional quantiles.
Even though we follow in the footsteps of Gardes (2018) in terms of informal goal, our
framework differs significantly from Gardes (2018)’s on several key aspects. First, the
specific definition of tail conditional independence that we propose (See Definition 3.4
in Section 3.3) is not equivalent to Gardes (2018)’s condition (3.6). We carry out an in-
depth comparison of both conditions and we show that neither one of them implies the
other, in Section B from the supplementary material Aghbalou et al. (2021). Second,
our assumption is motivated by a downstream task (predicting the occurrence of a tail
event) which is different from, although related to the one motivating Gardes (2018)
(estimation of extreme conditional quantiles). Third, the statistical guarantees brought
by Gardes (2018) are obtained under the assumption that the dimension reduction
space is already known. In the cited reference an estimation method is indeed proposed
for the dimension reduction space, however its statistical properties are only analyzed
via simulations. Instead, we bring statistical guarantees regarding the estimation of
a sufficient projection subspace itself. We discuss qualitatively the positive impact it
may have for prediction of tail events in Remark 3.5. Lastly, the computational cost of
TIREX depends only polynomially on the ambient dimension p, which is not the case
with the current estimation method in Gardes (2018), as discussed in Section 3.6.

Another study related to our work is the recently published paper Bousebata et al.
(2021), where the authors adopt a partial least square strategy to uncover the relation
between linear combinations of covariates and the extreme values of the target. Their
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model assumptions differ from ours substantially: the inverse regression model assumed
in Bousebata et al. (2021) implies a single-index relationship between extreme values
of the response and the covariates. In addition, the model requires regular variation of
the dependent variable Y and of the link function. Lastly, the model relies on finite
variance of Y . In contrast, our approach is somewhat ‘free’ from most restrictions on
the distribution of (X,Y ) except from the well-known linearity condition and constant
variance condition, typically needed for SIR. Such conditions concern only the distribu-
tion of the covariates. Since we do not impose regular variation, we can handle not only
thin-tailed but also extremely heavy-tailed dependent variables with no finite variance
or even mean.

Sufficient Dimension Reduction and inverse methods. The underlying assump-
tion of a sufficient linear projection subspace has been formalized under the notion of
Sufficient Dimension Reduction (SDR) space (Cook (2009)). Many classical approaches
to supervised dimension reduction rely on a linear regression model between X and
Y . This is the case e.g. for Principal component regression (Hotelling (1957)), Partial
least squares (Wold (1966)), Canonical correlation analysis (Thompson (1984)) or pe-
nalized methods with sparsity inducing regularization such as the Lasso (Jenatton et al.
(2011)). Differently, SDR builds upon a linear dimension reduction assumption: only a
small number of linear combinations of covariates is useful for predicting the dependent
variable. In other words, there exists a linear subspace E (an SDR space) of a moderate
dimension d ≤ p, such that

P
(
Y ≤ t

∣∣ X) = P(Y ≤ t|PX), ∀t ∈ R, almost surely, (3.1)

where P is the orthogonal projector on E, i.e. Y depends on X only through PX ∈
Rd. This framework relies heavily on the notion of conditional independence Dawid
(1979); Constantinou and Dawid (2017): Condition (3.1) characterizes the fact that Y
is conditionally independent from X given PX. One major advantage of this approach
is that it strikes a balance between interpretability of the dimension reduction based
on linear operations and flexibility of the generative model – no assumption is made
regarding the dependence structure between PX and Y .

Under the assumption that there exists a non trivial subspace E such that (3.1) holds,
a natural idea is to estimate such a subspace first, and then use only the variable PX to
predict Y , thus reducing the dimensionality of the regression problem. The estimation
problem based on SDR can also be viewed as a specific case of semi-parametric M-
estimation (Delecroix et al. (2006)). Alternatively, one may consider derivative based
methods, relying on the fact that the gradient of the regression curve belongs to E
(Härdle and Stoker (1989); Hristache et al. (2001); Xia et al. (2007); Dalalyan et al.
(2008)). Recently, the framework of Reproducing Kernel Hilbert Spaces (RKHS) has
been employed to estimate SDR spaces by means of covariance operators (Fukumizu
et al. (2004, 2009)).

The family of methods to which our work relates most is the inverse regression paradigm
initiated by Li (1991), including the Sliced Inverse Regression (SIR) strategy and its
second order variant Sliced Average Variance Estimate (SAVE) (Cook and Weisberg
(1991)). The main idea underlying these methods is that under appropriate assump-
tions the inverse regression curve E

[
X|Y

]
and its second moment variant – the columns

of the conditional covariance matrix VarX|Y – almost surely belong to the minimal
SDR. Cumulative slicing estimation (CUME), proposed in Zhu et al. (2010) and further
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analyzed in Portier (2016), aims at recovering the largest possible subspace of the min-
imal SDR. It is achieved by estimating the conditional expectation and variance of X,
conditioning on ‘slices’ of the target Y , in the form of 1

{
Y < y

}
, and then aggregating

such conditional expectations and variances by integration with respect to y.

A well-known restriction of the SIR strategy is that it relies on a so-called linearity
condition (LC) regarding the covariates, namely equation (3.2) in the next section, see
Hall and Li (1993) for a justification. The required condition is satisfied in particular if
the covariates form an elliptical random vector or are independent (Cook (2009); Eaton
(1986)). There are various extensions of SIR permitting to overcome this restriction.
Using RKHS, it has been proposed to transform the data in a way that LC is approxi-
mately satisfied (Wu (2008); Yeh et al. (2008)). Another possibility allowing to depart
from elliptical covariates is to apply the SIR methodology and its higher order variants
to score functions of the explanatory variables (Babichev et al. (2018)). Finally, the
high dimensional case p > n calls for regularization methods which permit in addition
to perform feature selection (Li and Yin (2008)). All these extensions are out of the
scope of the present work, in which we restrict ourselves to the original SIR and SAVE
methods, thus leaving room for several improvement in further works. For estimation
purposes we consider a variant of CUME.

Contributions and outline. Our contributions are twofold. First, we develop in
Section 3.3 a modified version of Gardes (2018)’s probabilistic setting regarding tail
conditional independence. In particular we explain in Remark 3.5 the relevance of
our definition for the purpose of predicting tail events and its connections to the sta-
tistical learning framework of imbalanced classification. We discuss thoroughly the
distinctions between the two alternative definitions for tail conditional independence in
Section 3.3.2, where we also provide examples of models satisfying one or the other.
Second, we show in Section 3.4 that our definition permits to extend inverse regres-
sion principles and methods to this extreme values setting (theorems 3.11, 3.16). We
derive an asymptotic analysis for our proposed estimation strategy TIREX stemming
from inverse regression, using specific tools from the theory of empirical processes (Sec-
tion 3.5). We illustrate the finite sample performance of TIREX with simulated and real
world data sets in Section 3.6, in particular we demonstrate empirically the usefulness
of TIREX for tail events prediction. The code developed for TIREX is available online
1 and some technical proofs and additional comments are deferred to the supplementary
material Aghbalou et al. (2021).

We start-off in Section 3.2 by recalling the necessary background regarding conditional
independence of random variables, SDR spaces, and inverse regression.

3.2 Background: dimension reduction space and Sliced
Inverse Regression

Conditional independence of random variables Y and V givenW is defined e.g. in Con-
stantinou and Dawid (2017) as follows: the conditional distribution of Y given (V,W )
is the same as the conditional distribution of Y given W , almost surely. Several char-

1https://github.com/anassag/TIREX

https://github.com/anassag/TIREX
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acterizations are recalled below, the equivalence of which are proved in Constantinou
and Dawid (2017), Proposition 2.3.

Definition 3.1 (conditional independence). Let Y, V,W be random variables defined
on a probability space (Ω,F ,P) and taking values in arbitrary measure spaces. The
variables Y and V are called conditionally independent given W , a property denoted by
Y ⊥⊥ V |W , if the equivalent conditions below are satisfied.

(CI-1) For all AY ∈ σ(Y ), P
(
Y ∈ A

∣∣ V,W ) = P
(
Y ∈ A

∣∣W ), almost surely.

(CI-2) For all real-valued functions f and g, measurable and bounded,

E
[
f(Y )g(V )

∣∣∣W] = E
[
f(Y )

∣∣∣W]E [g(V )
∣∣∣W] , a.s.

(CI-3) For any real-valued function g, measurable and bounded,

E
[
g(V )

∣∣∣ Y,W] = E
[
g(V )

∣∣∣W] , a.s.

Notice that the existence of regular versions of conditional probability distributions
is not required in Definition 3.1. However in this paper, Y is real valued, thus the
existence of such a regular version for the conditional distribution of Y given (V,W ) is
granted. As a consequence we may write, without additional precautions, expressions
of the kind ‘P

(
Y ∈ A

∣∣ V = v,W = w
)
’. The latter quantity is defined as the value of

the conditional probability kernel at point ((v, w), A).

In the context of supervised dimension reduction, we consider V = X and search for
a projection W = PX of X on a lower dimensional subspace E satisfying the above
conditions. We assume for simplicity that the covariance matrix Σ = CovX is invertible
and for ease of presentation we introduce a standardized covariate vector Z = Σ−1/2(X−
m) where m = E

[
X
]
. We consider in the remaining of this paper the problem of

regressing Y on Z, which amounts to assuming that both m and Σ are known, so that
the vector Z is observed. Thus Var

[
Z
]

= Ip and E
[
Z
]

= 0. An SDR space (Cook
(2009); Cook and Ni (2005)) is a subspace E of Rp such that Y ⊥⊥ Z

∣∣ PZ where P is the
orthogonal projection on E, which is equivalent to condition (3.1) in the introduction.
Our results easily extend to general covariates X (see e.g. Cook and Weisberg (1991))
at the price of an additional notational burden. Notice already that in terms of non-
standardized covariates X, a subspace Ẽ of Rp with associated orthogonal projector P̃
is an SDR space for the pair (X,Y ) if and only if Ẽ = Σ−1/2E where E is an SDR
space for Z.

A central space is an SDR subspace Ec for the pair (Z, Y ) of minimal dimension. In our
context of finite dimensional covariates a central space always exists since the ambient
space Rp itself is an SDR space. Uniqueness is not guaranteed in general but holds true
under mild assumptions ensuring that an intersection of SDR spaces is an SDR space
(see e.g. Portier and Delyon (2013), Theorem 1). In such a case one may refer without
ambiguity to the central space.

First and second order inverse methods, respectively named SIR (Li (1991)) and SAVE
(Cook and Weisberg (1991)) are two of many methods to estimate SDR spaces. Both
rely on the fact that under appropriate assumptions detailed below, first and second
moments of the covariate vector, conditioning upon the target, belong to an SDR space.
In the sequel, E is an SDR space, and P denotes the orthogonal projection on E. Then
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Q = Ip − P is the orthogonal projection on E⊥, the orthogonal complement of E. The
required conditions are the Linearity Condition (LC):

E
[
Z
∣∣ PZ] = PZ a.s. (3.2)

and the additional Constant Conditional Variance (CCV),

Var
[
Z | PZ

]
is constant a.s. (3.3)

Under both LC and CCV, we have that E
[
Var

[
Z|PZ

]]
= E

[
ZZT

]
−E

[
PZ(PZ)T

]
=

Ip−P and therefore the constant matrix in (3.3) is necessarily the projection Q = Ip−P
on the orthogonal complement of E.

Notice that LC and CCV depend on an unknown SDR space. Assuming that LC holds
for all orthogonal projectors is in fact equivalent to assuming that the covariate vector
Z is spherically symmetric, i.e. Z = ρU where ρ ⊥⊥ U , ρ is a non negative random
variable and U is uniformly distributed over the unit sphere of Rp, as proved in Eaton
(1986). Among spherical variables with finite second moment, CCV is equivalent to
being Gaussian ((Bryc, 2012, Theorem 4.1.4)).

The following proposition in Li (1991) encapsulates the main idea of SIR. We give below
the (classical) proof for the sake of completeness.

Proposition 3.2 (SIR principle). If E is an SDR space for which LC (3.2) is satisfied,
then Q(E

[
Z|Y

]
) = 0 a.s., that is, E

[
Z|Y

]
∈ E a.s.

Proof By the tower rule from conditional expectation,

E
[
Z
∣∣ Y ] = E

[
E
(
Z |Y, PZ

) ∣∣∣∣ Y ] = E
[
E(Z |PA)

∣∣∣ Y )
]

= E
[
PZ

∣∣ Y ] = P E
[
Z
∣∣ Y ]

where the second equality comes from conditional independence and the third one fol-
lows from the linearity condition (3.2). Thus QE

[
Z|Y

]
= 0.

The SIR method advocated first by Li (1991) consists in estimating first conditional
expectations Ch = E

[
Z
∣∣∣ Y ∈ I(h)

]
, h = 1, . . . ,H, where I(h), h = 1, . . . ,H are called

slices and form a partition of the sample range of Y (or the support of the density
function if Y is continuous). From Proposition 3.2, those estimates lie in the vicinity of
the SDR space. Next, performing a Principal Component Analysis (PCA) on the Ch’s,
one obtains a good approximation of E. More precisely, the SIR estimate of E is given
by the largest eigenvectors associated to the SIR matrix,

MSIR =

H∑
h=1

p−1
h ChC

T
h ,

where ph = P
(
Y ∈ I(h)

)
; see Li (1991). Various estimation procedures of SDR spaces

are proposed in Cook and Ni (2005); Zhu et al. (2010). In the latter reference, the
matrix

MCUME = E
[
m(Y )m(Y )T

]
, (3.4)
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with m(y) = E
[
Z1
{
Y ≤ y

}]
, is introduced as an alternative to the SIR matrix. One

advantage of this approach is that the slicing parameter h is no longer needed. In
addition the estimate of the matrix MCUME benefits from the aggregating effect of the
expectation sign which is typically associated with variance reduction.

A pitfall of SIR is that it is not guaranteed that the Ch’s span the entire space E, so
that SIR may be inconsistent. This may happen in particular when the regression func-
tion E

[
Y |Z

]
admits some symmetry properties (Li, 1991, Remark 4.5), a phenomenon

referred to as the SIR pathology. In this case, Li (1991) and Cook and Weisberg (1991)
recommend to use higher order moments such as the conditional variance of Z given Y
to obtain a second order matrix with wider range. This second order method requires
that CCV (3.3) is satisfied in addition to LC, in which case the following result holds.
Here and throughout, span(M) stands for the column space of matrix M .

Proposition 3.3 (SAVE principle). If E is an SDR space for which LC (3.2) and
CCV (3.3) are satisfied, then

Q

(
E
[
ZZ> |Y

]
− Ip

)
= 0 a.s.,

in other words span
(
E[ZZ> |Y ]− Ip) ⊂ E a.s.

Proof We reformulate here the arguments of Cook and Weisberg (1991) in our no-
tational framework for convenience. An immediate consequence of assumptions (3.2)
and (3.3) is that E

[
ZZT |PZ

]
= Q+ PZZTP . From a conditioning argument and the

conditional independence assumption, E
[
ZZT |Y

]
= Q+PE

[
ZZT |Y

]
P . Rearranging

gives E
[
ZZT |Y

]
− Ip = P (E

[
ZZT |Y

]
− Ip)P , thus Q(E

[
ZZT |Y

]
− Ip) = 0.

Notice that Propositions 3.2 and 3.3 together imply that Q(Var
[
Z
∣∣ Y ] − Ip) = 0.

Finally for estimation purpose the extension of the CUME method to the second or-
der framework is termed CUVE (cumulative variance estimation) by Zhu et al. (2010).
In the case of standardized covariates, it consists in estimating the matrix MCUVE =

E
[
W (Y )W (Y )>

]
, where W (y) = Var

[
Z1
{
Y ≤ y

}]
− FY (y)Ip is a second order mo-

ments matrix which column space is included in Ẽ. The latter fact is obtained by a
slight modification of the argument leading to the SAVE principle.

3.3 Tail conditional independence, Extreme SDR space

3.3.1 Definition for Tail Conditional Independence

The focus on the largest values of the target variable Y suggests to weaken the classical
definition of conditional independence, so that the equivalent conditions (CI-1)-(CI-3)
hold only for Y exceeding a high threshold tending to its right endpoint. Namely, in
a similar (but different) manner as in Gardes (2018) we define tail conditional inde-
pendence as a variant of condition (CI-1) from Definition 3.1. In the sequel the right
endpoint (i.e. the supremum) of the support of the random variable Y is denoted by
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y+. The limits as y → y+ as understood as the limits as y → y+, y < y+. We assume
that P

(
Y > y

)
−→ 0 as y → y+, in particular we exclude the case of point masses at y+.

Definition 3.4 (Tail Conditional Independence (TCI)). Let Y, V,W be random vari-
ables defined on (Ω,F ,P). We assume that Y is real valued, Borel measurable, while V
and W take their values in arbitrary measure spaces. We say that Y is tail conditionally
independent from V given W and write Y∞⊥⊥V |W , if

E
∣∣∣P (Y > y

∣∣ V,W )− P
(
Y > y

∣∣W ) ∣∣∣
P
(
Y > y

) −−−−→
y→y+

0. (3.5)

Contrary to conditional independence, tail conditional independence is not symmetric:
Y∞⊥⊥V

∣∣W does not imply that V∞⊥⊥Y
∣∣W .

In Gardes (2018)’s work, tail conditional independence is defined in a somewhat more
technical manner, see Definition 1 from the cited reference. However a necessary con-
dition (see Equation (2) in that paper) is the almost sure convergence of the σ(V,W )-
measurable ratio,

P
(
Y > y

∣∣ V,W )− P
(
Y > y

∣∣W )
P
(
Y > y

∣∣W ) −−−−→
y→y+

0, a.s. (3.6)

In the sequel we refer to our notion of tail conditional independence defined in (3.5)
as TCI, while we write TCI-G to refer to L. Gardes’ condition (3.6). Both definitions
are motivated by similar but different downstream tasks, namely prediction of extreme
values for TCI in connection to the AM risk criterion (see Remark 3.5 below), versus
estimation of large conditional quantiles (see Section 3.1 in Gardes (2018)).

In Subsection 3.3.2 below we work out a generic example where TCI holds and on this
occasion, we discuss briefly the differences between TCI and TCI-G. In order not to
interrupt the flow of ideas a more thorough comparison between the two definitions is
relegated to the supplementary (Section B).

In practice TCI allows for an extension of the SIR framework to handle extreme values
(Section 3.4). Whether it is possible to obtain a similar extension with TCI-G is an
open question. We conjecture a negative answer because our Tail Inverse Regression
principles theorems 3.11, 3.16 rely on a specific consequence of TCI, namely Property
(iii) from Proposition 3.7 below. In spirit our definition for TCI and the subsequent
Tail inverse regression framework developed in Section 3.4 below is compatible with
the main notions underlying graphical models for extremes (Engelke and Hitz (2020))
and One component regular variation (Hitz and Evans (2016)). These connections are
further detailed in Remarks 3.12 and 3.13 from Section 3.4.

Meanwhile the next remark sheds light on the relevance of the proposed definition of
TCI for statistical learning applications.

Remark 3.5 (TCI and Imbalanced Classification). Predicting exceedances over ar-
bitrarily high thresholds y may be viewed as a family of binary classification problems
indexed by y. Indeed for fixed y, consider the binary target T = 1

{
Y > y

}
with marginal

class probability π = πy = P
(
Y > y

)
. The goal is thus to predict T , by means of the

covariate vector X = (V,W ) where V ∈ Rp−d,W ∈ Rd. As y → y+, πy → 0. This is a
typical instance of class imbalance, a well documented potential issue in binary classi-
fication which has been the subject of several works in the statistical learning literature,
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see e.g. the recent papers Menon et al. (2013b) or Xu et al. (2020b) and the references
therein. A classifier is a binary function h defined on Rp. Given a family of candidate
classifiers h ∈ H the goal is to select a ‘good’ candidate based on a training set and
an appropriate notion of a theoretical risk and its empirical counterpart. When π is so
close to zero that the probability of a classification error P

(
h(X) 6= T, T = 1

)
is negligi-

ble compared with P
(
h(X) 6= T, T = 0

)
, the traditional 0−1 risk R(h) = P

(
h(X) 6= T

)
is driven by the latter term and tends to favor the trivial classifier h ≡ 0. One standard
approach aiming at granting more importance to the minority class when required by
the application context ( e.g. if the event {T = 1}, although rare, has an overwhelming
impact) is to consider the Arithmetic Mean Risk (AM risk in short), see e.g. Menon
et al. (2013b),

RAM(h) =
1

2

[
P
(
h(X) = 1

∣∣∣ T = 0
)

+ P
(
h(X) = 0

∣∣∣ T = 1
)]
. (3.7)

Generalizations to arbitrary weight vectors are considered in Xu et al. (2020b). In a
dimension reduction context consider the classes

H = {h : Rp → {0, 1}, measurable w.r.t. B(Rp)} ,
HW = {h ∈ H : ∀(v, w) ∈ Rp−d × Rd, h(v, w) = h̃(w), h̃ is measurable w.r.t. B(Rd)}.

Let us refer to the classification problem attached respectively to H and HW as the
full problem and the reduced problem. The Bayes classifier for each problem are
respectively minimizers of the AM risk over the full family H and the reduced one HW ,

h∗ ∈ arg min
h∈H

RAM(h) ; h∗W ∈ arg min
h∈HW

RAM(h).

The main ingredient of the subsequent analysis are the regression functions η(x) =
P
(
T = 1

∣∣ X = x
)
and ηW (w) = P

(
T = 1

∣∣W = w
)
. A modification of standard ar-

guments (see the supplementary material, Section A) yields explicit expressions for the
Bayes classifiers h∗(x) = 1

{
η(x) > π

}
, h∗W (x) = 1

{
ηW (w) > π

}
. In addition the

Bayes risks are

RAM(h∗) = E

[
min

(
η(X)

π
,
1− η(X)

1− π

)]
;

RAM(h∗W ) = E

[
min

(
ηW (W )

π
,
1− ηW (W )

1− π

)]
.

(3.8)

Because HW ⊂ H we must have RAM(h∗W ) ≥ RAM(h∗). The difference between the
two may be seen as a bias term: the price to pay for dimension reduction. Indeed for
any random choices ĥ ∈ H, ĥW ∈ HW , which are typically the outputs of a statistical
learning algorithm applied respectively to the full covariate space and the reduced one,
the excess risk for the reduced problem decomposes as

RAM(ĥW )−RAM(h∗) = RAM(ĥW )−RAM(h∗W )︸ ︷︷ ︸
A

+RAM(h∗W )−RAM(h∗)︸ ︷︷ ︸
B

.

The first term (A) in the right-hand side is the excess risk stemming from the particular
choice of the learning algorithm, which typically increases with the dimension of the input
W . In particular when p−d is large, the excess risk term A will be typically less than its
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counterpart in the full problem RAM(ĥ)−RAM(h∗). The second term (B) is the bias term
above mentioned. The bias-variance compromise is in favour of dimensionality reduction
via projection on the second variable W whenever A+B ≤ RAM(ĥ)−RAM(h∗).

We now derive an upper bound on the bias term B which is closely connected to our
definition of TCI. Notice that for any finite set X and any pair of real functions (f, g)
it holds that |minx∈X f(x) − minx∈X g(x)| ≤ maxx∈X |f(x) − g(x)|. This, combined
with (3.8) above and Jensen inequality, implies that

B = RAM(h∗W )−RAM(h∗) ≤ E
∣∣∣∣min

(
ηW (W )

π
,
1− ηW (W )

1− π

)
−min

(
η(X)

π
,
1− η(X)

1− π

)∣∣∣∣
≤ E

{
max

(
η(X)− ηW (W )

π
,
(1− η(X))− (1− ηW (W ))

1− π

)}
= E

∣∣∣∣η(X)− ηW (W )

π

∣∣∣∣, (3.9)

where the latter identity holds whenever π ≤ 1/2. Now, with T = 1
{
Y > y

}
,

E
∣∣∣∣η(X)− ηW (W )

π

∣∣∣∣ =

E
∣∣∣∣P (Y > y

∣∣ V,W )− P
(
Y > y

∣∣W ) ∣∣∣∣
P
(
Y > y

) .

One recognizes the TCI criterion in the latter expression. Thus TCI means that the
bias term B vanishes as y → y+, so that projection on W is relevant for the problem of
predicting the rare event {Y > y}, for large values of y. The cut-off value y above which
RAM(ĥW ) ≤ RAM(ĥ), that is A+B ≤ RAM(ĥ)−RAM(h∗) (in expectation or with high
probability), depends on two main factors: (i) the rate of convergence of By to zero and
(ii) the sensitivity of the learning algorithm to the curse of dimensionality for a given
sample size. Indeed both excess risks RAM(ĥ) − RAM(h∗) and RAM(ĥW ) − RAM(h∗W )
typically converge to zero (in expectation or in probability) with the sample size, at a
different rate which depends on the respective dimensions p, d. Precise quantification of
this cut-off point for specific learning algorithms and finite sample sizes is outside the
scope of the present work and left for future research.

3.3.2 Examples and discussion

In this section we provide a generic example based on a mixture model where the TCI
condition (3.5) is satisfied under mild assumptions. We discuss an alternative additive
model in Remark 3.6. We consider several particular instances of the generic mixture
model and on this occasion we discuss the similarities and differences between TCI
and the TCI-G condition (3.6) proposed in Gardes (2018). Some technical proofs are
deferred to Section B in the supplementary material, as well as additional comments,
examples and counter-examples allowing for a better understanding of the differences
between the two definitions.

Our leading example is constructed as follows: Let the target Y be distributed according
to a mixture

Y = BY1 + (1−B)Y2 ,

where B is a Bernoulli variable with parameter θ ∈ (0, 1), and Y1, Y2 are real variables
defined through their conditional survival functions

S1(y, V ) = P
(
Y1 > y

∣∣ V ) , S2(y,W ) = P
(
Y2 > y

∣∣W ) .
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Here, the covariate variables V,W are respectively valued in Rp−d and Rd with marginal
distributions that we denote by PV and PW . The full covariate vector is X = (V,W ) ∈
Rp. We assume that the variables (B, V,W ) are independent. Notice that independence
between V andW ensures that the Linearity Condition and Constant Conditional Vari-
ance condition are automatically satisfied. In this context, straightforward calculations
(as detailed in the supplementary material, Section B) show that∣∣∣P (Y > y

∣∣ V,W )− P
(
Y > y

∣∣W )∣∣∣
P
(
Y > y

) =
θ(S1(y, V )− S1(y))

θS1(y) + (1− θ)S2(y)
.

The TCI condition is that the expectancy of the above ratio vanishes as y → y+ and
it is not difficult to imagine several models for (Y1, V ) and (Y2,W ) for which it is the
case, as exemplified below.

Remark 3.6 (Variant: additive model). The mixture model described here is by no
means the only option to construct examples of variables(Y, V,W ) satisfying the TCI
assumption. Another natural example is an additive model Y = Y1 + Y2, where Y1

and Y2 are respectively driven by V and W , while Y1 has lighter tails than Y2. The
mathematical derivations are somewhat more intricate because convolutions are involved
instead of sums of distribution functions. However special cases can be worked out. In
the supplementary material we consider Y1 = V ∈ R, Y2 = Wζ ∈ R where ζ is heavy-
tailed and V,W have a compact support which is bounded away from 0 and we show that
TCI holds. More general statements might be obtained using results regarding sums of
regularly varying random variables (Jessen and Mikosch (2006)). We leave this question
to further works.

As an example in the generic mixture model described above, consider the case where
Y1 and Y2 are themselves defined as multiplicative mixtures

Y1 =

p−d∑
i=1

M
(1)
i Viεi , Y2 =

d∑
j=1

M
(2)
j Wjζj , (3.10)

where M1 = (M1
1 , . . . ,M

1
p−d) is a multinomial vector with weight parameter π1 =

(π1
1, . . . , π

1
p−d), that is

∑p−d
i=1 M

1
i = 1 and P(M1

i = 1) = π1
i ; M2 is as well a multinomial

variable with parameter π2 = (π2
1, . . . , π

2
d); and the variables εi, i ≤ p− d and ζj , j ≤ d

are multiplicative noises, with different tail behaviour. Assume for simplicity that all
εj ’s (resp. ζj ’s) share the same survival function Sε (resp. Sζ) and that for all s, t > 0,

lim
y→∞

Sε(s
−1y)/Sζ(t

−1y) = 0. (3.11)

Condition (3.11) is satisfied e.g. with Pareto noises, Sε(y) = y−α1 , Sζ(y) = y−α2 with
α1 > α2 > 0, or with Exponential versus Pareto noises, Sε(y) = e−α1y, Sζ(y) = y−α2 ,
α1, α2 > 0. The random vectorsM1,M2, ε, ζ, V,W are independent. Finally the covari-
ate vectors V and W are made of independent components Vi,Wj , with nonnegative,
bounded support included in an interval [a, b] with 0 ≤ a < b <∞.

In this generic example, Y1 has a lighter tail than Y2, so that it is the main risk factor
regarding large values of Y , and it is intuitively desirable for a formal definition of tail
conditional independence to be such that Y is tail conditionally independent from V
given W here.
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We now consider two special cases regarding the marginal distributions of the covariates
Vj ,Wj . recall that [a, b] contains the support of each Vi and each Wj .

(i) As a first go assume that a > 0. Then both TCI and TCI-G hold. The proof is
deferred to the supplementary material, Section B.4.

(ii) Assume now that a = 0, more specifically that each variable Vj ,Wj follows a
binary Bernoulli distribution with parameter τ ∈ (0, 1) (the choice of a common τ
merely simplifies the notations). In Section B.5 from the supplementary material
we show that TCI-G does not hold, while TCI does.

Notice that the difference between the two cases concerns only the marginal distribu-
tion of the covariate, namely whether P

(
Wj = 0

)
> 0 is key. This seemingly minor

variation results in fact in potential failure of TCI-G, while TCI remains true. The
main conclusions of our comparison between the two definitions (TCI and TCI-G) in
the supplementary material, Section B, may be summarized as follows.

1. Neither condition implies the other in general, except for discrete covariates where
TCI-G implies TCI.

2. TCI-G criterion concerns the additional information brought by V regarding the
probability of the event Y > y, after conditioning on W . The criterion is satisfied
if the additional information is negligible, for all possible values W = w, even
those values such that the conditional distribution of Y given W = w is shorter
tailed than the marginal distribution of Y . Indeed TCI-G is primarily designed
for quantile regression, and the focus is not on the tail of Y ’s distribution, but
instead on the tails of the conditional distributions of Y given W . This is the
informal reason why TCI-G is not satisfied in the example above, Case (ii).

3. In constrast TCI is designed for prediction of extreme values of Y . It is an in-
tegrated version of TCI-G with respect to the variable (V,W ), with a weight func-
tion granting more importance to w’s such that the ratio P

(
Y > y

∣∣W = w
)
/P
(
Y > y

)
is large as y → y+. In words, TCI is comparatively more sensitive to values w
such that the conditional probability given W = w of an exceedance Y > y is
large.

3.3.3 Technical consequences of TCI, parallel with traditional
conditional independence

Definition 3.4 implies equivalent weak formulations of the traditional conditions (CI-
1,CI-2,CI-3) reviewed in the background section.

Proposition 3.7. If Y∞⊥⊥V
∣∣W in the sense of Definition 3.4, then the following

equivalent conditions (i), (ii), (iii) hold.

(i) For any real-valued functions g and h, measurable and bounded, we have

E
[
g(V )h(W )

(
P
(
Y > y

∣∣ V,W )− P
(
Y > y

∣∣W ))]
P
(
Y > y

) −−−−→
y→y+

0.
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(ii) For any real-valued functions g and h, measurable and bounded, we have

E
[
h(W )

(
E
[
1
{
Y > y

}
g(V )

∣∣∣W]− E
[
1
{
Y > y

} ∣∣∣W]E [g(V )
∣∣∣W] )]

P
(
Y > y

) −−−−→
y→y+

0.

(iii) For any real-valued functions g and h, measurable and bounded, we have

E
[
h(W )1

{
Y > y

} (
E
[
g(V )

∣∣∣ Y,W]− E
[
g(V )

∣∣∣W])]
P
(
Y > y

) −−−−→
y→y+

0.

Remark 3.8 (Relevance of Proposition 3.7 for our purpose). From a technical perspec-
tive, Property (iii) in Proposition 3.7 is key to obtain the tail analogues of the SIR and
SAVE principles (Theorems 3.11, 3.16 in Section 3.4). This is not surprising insofar as
the traditional condition (CI-3) for conditional independence in Definition 3.1 is central
to prove the SIR/SAVE principles.

Whether the converse implication from Proposition 3.7 holds true in general, i.e. whether
Conditions (i), (ii), (iii) imply TCI remains an open question which is not directly
relevant for our purposes and thus left for future works.

Proof [Proof of Proposition 3.7]

We first show the equivalence (ii)⇔(iii) by proving that the left-hand sides of the two
conditions are identical. Indeed if g and h are bounded and measurable, then

E
[
h(W )1

{
Y > y

}
E
[
g(V )

∣∣∣ Y,W] ] =E
[
h(W )1

{
Y > y

}
g(V )

]
=E
[
h(W )E

[
1
{
Y > y

}
g(V )

∣∣∣W] ] ,
while

E
[
h(W )1

{
Y > y

}
(E
[
g(V )

∣∣∣W])] =E
[
h(W )E

[
1
{
Y > y

} ∣∣∣W]E [g(V )
∣∣∣W] ].

To show that (ii)⇒(i), note that

E
[
g(V )h(W )E

[
1
{
Y > y

} ∣∣∣ V,W] ] = E
[
g(V )h(W )1

{
Y > y

}]
= E

[
h(W )E

[
g(V )1

{
Y > y

} ∣∣∣W] ]
= E

[
h(W )E

[
g(V )

∣∣∣W]E [1{Y > y
} ∣∣∣W] ]+ r1(y)

= E
[
g(V )h(W )E

[
1
{
Y > y

} ∣∣∣W] ]+ r1(y),

where limy→y+ r1(y)/P
(
Y > y

)
= 0 by Condition (ii).

The argument for the converse implication (ii)⇐(i) is similar:

E
[
h(W )1

{
Y > y

}
g(V )

]
= E

[
h(W )E

[
1
{
Y > y

} ∣∣∣ V,W] g(V )

]
= E

[
h(W )E

[
1
{
Y > y

} ∣∣∣W] g(V )

]
+ r2(y),
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where limy→y+ r2(y)/P
(
Y > y

)
= 0 under condition (i).

Finally we show that Property (i) from Proposition 3.7 is satisfied under the TCI
assumption from Definition 3.4. Let g, h be bounded, measurable functions defined on
V,W respectively and let ‖g‖∞ and ‖h‖∞ denote their supremum norm. By Jensen’s
inequality,

P
(
Y > y

)−1

∣∣∣∣∣E
[
g(V )h(W )

(
P
(
Y > y

∣∣ V,W )− P
(
Y > y

∣∣W ))]∣∣∣∣∣
≤ ‖g‖∞‖h‖∞P

(
Y > y

)−1 E
∣∣∣∣P (Y > y

∣∣ V,W )− P
(
Y > y

∣∣W ) ∣∣∣∣ ,
where the right hand side tends to zero under Condition (3.5) from Definition 3.4.

3.3.4 Extreme dimension reduction spaces

In the context of statistical regression, we now define extreme sufficient dimension re-
duction subspaces in a similar fashion to the usual SDR spaces.

Definition 3.9 (Extreme SDR space and extreme central space).

• An extreme SDR space for the pair (Z, Y ) is a subspace Ee of Rp such that
Y∞⊥⊥Z

∣∣ PeZ , where Pe is the orthogonal projection on Ee. In other words Ee is
called an extreme SDR space whenever

E

∣∣∣∣∣P(Y > y|Z)− P(Y > y|PeZ)

P
(
Y > y

) ∣∣∣∣∣ −−−−→y→y+
0. (3.12)

• An extreme central space Ee,c for the pair (Z, Y ) is an extreme SDR space of
minimum dimension.

Investigating sufficient conditions ensuring uniqueness of an extreme central space is left
for future studies. Instead, in the present manuscript we shall consider an extreme SDR
space Ee and we shall show that under appropriate assumptions, inverse extreme regres-
sion objects, namely limits of conditional expectations E

[
Z
∣∣ Y > y

]
(Theorem 3.11)

and second order variants (Theorem 3.16) belong to Ee. In particular they belong to
any extreme central space.

Remark 3.10 (Relationship between the central space and its extreme counterpart).
Because Equation (3.12) holds true for any y ∈ R when Ee is chosen as a (non extreme)
SDR space for the pair (Z, Y ), any SDR space for (Z, Y ) is an extreme SDR space. Thus,
upon uniqueness of the central space Ec and the extreme central space Ee,c, it holds that
Ee,c ⊂ Ec. Examples of other dimension reduction subspaces more specific than Ec but
not related to the extreme value of Y include the central mean subspace (Cook and Li,
2002) and the central quantile subspace Christou (2020).
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3.4 Tail Inverse Regression

In the sequel, we consider an extreme SDR space Ee ⊂ Rp for the pair (Z, Y ) in the
sense of Definition 3.9. That is, we assume that Y∞⊥⊥Z

∣∣ PeZ as in Definition 3.4,
where Pe is the orthogonal projection on Ee. Also we define Qe = Ip − Pe. In order to
adapt the SIR strategy to this tail conditional independence framework, we show the
following result which is a ‘tail version’ of the SIR principle (Proposition 3.2). In the
remainder of this chapter let ‖ · ‖ denote any norm on a finite dimensional vector space.

Theorem 3.11 (TIREX1 principle). Assume the following conditions regarding the pair
(Z, Y ) and the extreme SDR space Ee.

1. (Uniform integrability):

The random variables g1,A(Z) = ‖Z‖1
{
‖Z‖ > A

}
, g2,A(Z) = E

[
‖Z‖1

{
‖Z‖ > A

} ∣∣∣∣ PeZ]
indexed by A ∈ R satisfy

lim
A→∞

lim sup
y→y+

E
[
gk,A(Z)

∣∣∣ Y > y
]

= 0, k = 1, 2 ; (3.13)

2. (LC) The standardized vector Z satisfies the linearity condition (3.2) relative
to Pe;

3. (Convergence of conditional expectations) For some ` ∈ Rp,

E
[
Z
∣∣ Y > y

]
−−−−→
y→y+

`. (3.14)

Then ` ∈ Ee.

Proof We need to show that Qe` = 0. By continuity of the projection operator Qe
it is enough to show that QeE

[
Z
∣∣ Y > y

]
→ 0 as y → y+. On the other hand the

linearity condition (LC) (3.2) ensures that QeE
[
Z
∣∣ PeZ] = QePeZ = 0 almost surely.

Thus letting py = P(Y > y) one may write

QeE
[
Z
∣∣ Y > y

]
= p−1

y QeE
[
Z1
{
Y > y

}]
= p−1

y E
[(
QeE

[
Z|PeZ, Y

]
−QeE

[
Z
∣∣ PeZ] )1{Y > y

}]
,

because the second term of the difference inside the expectation of the second line is
zero.

Let A > 0 and consider separately the case when Z ≤ A and Z > A, so that

QeE
[
Z1
{
Y > y

}]
= QeE

[(
E
[
Z1
{
‖Z‖ ≤ A

} ∣∣∣∣ PeZ, Y ]− E
[
Z1
{
‖Z‖ ≤ A

} ∣∣∣∣ PeZ])1{Y > y
}]

+QeE
[(

E
[
Z1
{
‖Z‖ > A

} ∣∣∣∣ PeZ, Y ]− E
[
Z1
{
‖Z‖ > A

} ∣∣∣∣ PeZ])1{Y > y
}]
.
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For the first term of the above display, using Condition (ii) of Proposition 3.7 with
h = 1 and g(Z) = Z1

{
‖Z‖ < A

}
, we obtain that

p−1
y QeE

[(
E
[
Z1
{
‖Z‖ ≤ A

} ∣∣∣∣ PeZ, Y ]− E
[
Z1
{
‖Z‖ ≤ A

} ∣∣∣∣ PeZ])1{Y > y
}]
−−−−→
y→y+

0.

(3.15)

For the second term corresponding to Z > A, we use that ‖Qez‖ ≤ ‖z‖, the Jensen
inequality and the triangular inequality, which yields∥∥∥∥QeE[(E [Z1{‖Z‖ > A

} ∣∣∣∣ PeZ, Y ]− E
[
Z1
{
‖Z‖ > A

} ∣∣∣∣ PeZ])1{Y > y
}]∥∥∥∥

≤ E
(
{E
[
‖Z‖1

{
‖Z‖ > A

} ∣∣∣∣ PeZ, Y ]+ E
[
‖Z‖1

{
‖Z‖ > A

} ∣∣∣∣ PeZ]}1{Y > y
})

= E
[
g1,A(Z)1

{
Y > y

}]
+ E

[
g2,A(Z)1

{
Y > y

}]
By (3.15) and the previous decomposition, we have shown that

lim sup
y→y+

‖QeE
[
Z|Y > y

]
‖ ≤ lim sup

y→y+
E
[
g1,A(Z)

∣∣∣ Y > y
]

+ lim sup
y→y+

E
[
g2,A(Z)|Y > y

]
.

By further letting A → ∞, by Assumption (3.13), the right-hand side is arbitrarily
small. This shows that limy→y+ QeE

[
Z
∣∣ Y > y

]
= 0 and the proof is complete.

Remark 3.12 (special case: Tail conditional distribution). A particular framework
justifying the existence of the limit ` (Condition (3.69) in the statement of Theorem 3.11)
is the following. Assume that the covariate Z admits a tail conditional distribution given
Y , in the sense that the distribution of Z conditional to Y > y converges as y → y+. In
other words assume that there is a probability distribution µ, that we may call the tail
conditional distribution of Z given Y , such that for all bounded, continuous function g
defined on Rp,

E
[
g(Z)

∣∣∣ Y > y
]
−−−−→
y→y+

µ(g) :=

∫
Rp
g dµ.

By virtue of Proposition 2.20 in Van der Vaart (1998), if the uniform integrability
condition (3.13) is satisfied regarding the functions g1,A and if Z admits a tail conditional
distribution µ relative to Y , then it holds that

E
[
Z
∣∣ Y > y

]
−−−−→
y→y+

mµ :=

∫
zdµ(z),

so that condition (3.69) automatically holds with ` = mµ.

Remark 3.13 (relationships with graphical models for extremes). The above notion of
tail conditional distribution reveals a connection between the present work and graphical
modeling approaches in EVT. Namely, assuming a tail conditional distribution of Z
given Y , and requiring in addition that the random variable Y is regularly varying, is
equivalent to assuming one-component regular variation of the pair (Y, Z), a concept
first introduced by Hitz and Evans (2016). See in particular their Theorem 1.4, where
the pair (X,Y ) plays the role of the pair (Y, Z) in the present work.
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The notion of conditional independence at extreme levels also plays an important role
in Engelke and Hitz (2020). However our work departs significantly from the latter, in
so far as the general context in the cited reference is that of unsupervised learning. All
considered variables play a symmetric role –there is no target variable nor covariate –,
and they rely on an assumption of joint multivariate regular variation of the considered
random vector which is by no means necessary in our context.

Remark 3.14 (Special case: extreme central space). Upon uniqueness of the extreme
central space Ee,c, under the assumptions of Theorem 3.11 we obtain that ` ∈ Ee,c.

Remark 3.15 (Sufficient condition for uniform integrability). Using the fact that for
any ε > 0, 1

{
‖Z‖ > A

}
≤ ‖Z‖ε/Aε, a sufficient condition for the uniform integrability

condition (3.13) is that

lim sup
y→y+

E
[
‖Z‖1+ε 1

{
Y > y

}]
P
(
Y > y

) <∞,

for some ε > 0.

A natural strategy in view of Theorem 3.11 is to consider empirical counterparts of the
conditional expectations E

[
Z
∣∣ Y > y

]
for large values of y so as to estimate the limit

value `, which belongs to any extreme SDR space. Asymptotic statistical guarantees for
this approach are derived in Section 3.5. However an obvious limitation of Theorem 3.11
is that it recovers a single direction within an extreme SDR space, namely the line
{t`, t ∈ R} in the case where ` 6= 0. If a unique extreme central space exists and
if this subspace is one dimensional, then indeed the generated line and the extreme
central space coincide. To consider situations where the minimum dimension of an
extreme SDR space is greater than one, we develop an extreme analogue of the SAVE
framework by considering conditional second order moments. The main result justifying
this approach is encapsulated in Theorem 3.16 below.

Theorem 3.16 (TIREX2 principle). Assume (Z, Y ) and the extreme SDR space Ee
satisfy the assumptions of Theorem 3.11 and that in addition,

1. (second order uniform integrability):

lim
A→∞

lim sup
y→y+

E
[
hk,A(Z)

∣∣∣ Y > y
]

= 0, k = 1, 2 , (3.16)

where h1,A(Z) = ‖Z‖21
{
‖Z‖ > A

}
and h2,A(Z) = E

[
‖Z‖21

{
‖Z‖ > A

} ∣∣∣∣ PeZ]
for A ∈ R;

2. (CCV) The standardized vector Z satisfies the constant variance condition (3.3)
relative to Pe;

3. (Convergence of conditional expectations) For some S ∈ Rp×p,

E
[
ZZ> |Y > y

]
−−−−→
y→y+

S + ``>. (3.17)

Then span(S − Ip) ⊂ Ee, i.e. Qe(S − Ip) = 0.
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Notice that the existence of ` = limE
[
Z
∣∣ Y > y

]
is part of the assumptions of Theo-

rem 3.11 and that in the latter framework, Qe``> = 0. Thus condition (3.71) is equiva-
lent to requiring that Var

[
Z
∣∣ Y > y

]
converges to some limit variance S as y → y+ and

the conclusion can be rephrased as Qe(E[ZZ> |Y > y ]− Ip )→ 0 as y → y+, or equiv-
alently Qe(Var

[
Z | Y > y

]
− Ip)→ 0. The technique of the proof is similar to that for

Theorem 3.11. The key is to observe that the Constant Conditional Variance assump-
tion allows to introduce a difference (E[ZZ> |PeZ, Y ]−E[ZZ> |PeZ] )1

{
Y > y

}
which

is asymptotically negligible because of the TCI assumption. The details are gathered
in the supplement, Section C.

3.5 Estimation

This section is devoted to the statistical implementation of our main results from Sec-
tion 3.4. Theorems 3.11 and 3.16 show that the quantities ` and S in the limits of
the two statements are key to estimate the extreme SDR space, because ` ∈ Ee and
span(S − Ip) ⊂ Ee. A natural first idea would be to use as an estimate an empirical
version of the quantities E[Z |Y > y ] or E[ZZ> |Y > y ] for a high threshold y grow-
ing with the sample size n. A typical choice of such a threshold is the quantile of Y
at a probability level 1 − k/n, where k = k(n) is an intermediate sequence such that
k(n) → ∞ and k(n)/n → 0 as n → ∞. Here we propose a refinement of this strategy
integrating out the latter quantities over varying quantiles at probability levels 1−uk/n
for u ∈ (0, 1). Such a refinement follows the proven approaches based on the CUME and
CUVE matrices described in the background section 3.2. For this purpose we introduce
and prove the asymptotic normality of the empirical processes associated with the first
and second order method, that are respectively the specialisation of the SIR/CUME
and the SAVE/CUVE processes to extreme regions of the target Y .

Even though the first order method is potentially less fruitful than the second order one
since the limit ` in Theorem 3.11 is a single vector, it helps build the intuition about
the statistical theory for both the first order and second order methods. In addition,
the first order method turns out to be more stable in some of our experiments.

Some notations are introduced in Section 3.5.1. We provide asymptotic theory for the
first and second order empirical processes in Section 3.5.2. Section 3.5.3 summarizes
the methods we suggest for estimating Ee.

3.5.1 Framework and notations

For any right-continuous cumulative distribution function H (be it empirical or not), we
shall denote by H− the left-continuous inverse of H, H−(u) = inf{x ∈ R : H(x) ≥ u}.
Recall that with these conventions, for u ∈ [0, 1] and x ∈ R, we have

H(x) ≥ u ⇐⇒ x ≥ H−(u). (3.18)

For any i.i.d. sample (Ti)i≤n associated with a real random variable T with cumulative
distribution H, we use the standard definition of the empirical distribution function,

Ĥ(x) = n−1
n∑
i=1

1
{
Ti ≤ x

}
. (3.19)
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For notational and mathematical convenience we shall work with the negative target
Ỹ = −Y and denote the c.d.f. of Ỹ as F , which we assume to be continuous in the
remainder of this chapter. For simplicity we write k instead of k(n) for the interme-
diate sequence defined at the beginning of this section, as is customary in extreme
value statistics. Consider the first order and second order inverse regression functions
Cn(u), Bn(u),

Cn(u) =
n

k
E
[
Z1
{
Ỹ < F−(uk/n)

}]
, (3.20)

Bn(u) =
n

k
E
[
(ZZ> − Ip)1

{
Ỹ < F−(uk/n)

}]
. (3.21)

The empirical versions of (3.20) and (3.21) based on an independent sample (Zi, Yi)
identically distributed as the pair (Z, Y ) are

Ĉn(u) =
1

k

n∑
i=1

Zi1
{
Ỹi ≤ F̂−(uk/n)

}
, (3.22)

B̂n(u) =
1

k

n∑
i=1

(ZiZ
>
i − Ip)1

{
Ỹi ≤ F̂−(uk/n)

}
. (3.23)

Extensions to the more realistic situation where the pair (X,Y ) is observed with the
mean and covariance of X unknown are gathered in Section E from the supplementary
.

3.5.2 Main result

The remainder of this section aims at establishing the weak convergence of the (tail) em-
pirical processes associated with TIREX, respectively

√
k(Ĉn(u)−Cn(u)) and

√
k(B̂n(u)−

Bn(u)) in the space of bounded functions `∞([0, 1]). This is achieved in Corollary 3.18.

A key point of our analysis, which follows from the continuity of F , is that the functions
Cn(u), Bn(u) and their estimates Ĉn(u), B̂n(u) are invariant under the transformation
U = F (Ỹ ). More precisely, with the latter notation, we have the following identities

Cn(u) =
n

k
E
[
Z1
{
U < uk/n

}]
, Bn(u) =

n

k
E
[

(ZZ> − Ip)1
{
U < uk/n

}
],

and the processes Ĉn(u), B̂n(u) remain the same when constructed from the initial
sample (Xi, Ỹi) or when constructed from the uniformized sample (Xi, Ui). Indeed for
u ∈ [0, 1], it holds that

1
{
Ỹi ≤ F̂−(uk/n)

}
= 1

{
Ui ≤ F̂−U (uk/n)

}
, a.s.,

where F̂U is the empirical distribution function associated with the uniform sample
U1, . . . , Un, see Fact D.1 in the supplementary material for a short proof. These facts
are a known feature of rank based estimators; see for instance Fermanian et al. (2004)
in the copula estimation context and Portier (2016) in the standard SIR context.

We now state our main result which is formulated in terms of a generic random pair
(V, Y ), an i.i.d. sample thereof (Vi, Yi), i ≤ n, and a measurable function h : Rr → Rq,
where Y is the response variable as above, the covariate V is a random vector of size
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r ∈ N∗ and h is such that the random vector h(V ) has finite second moments. Define

Dn(u) =
n

k
E
[
h(V )1

{
Ỹ < F−(uk/n)

}]
,

D̂n(u) =
1

k

n∑
i=1

h(Vi)1
{
Ỹi ≤ F̂−(uk/n)

}
.

Weak convergence of the TIREX1 and TIREX2 processes (Corollary 3.18) is obtained
upon setting V = Z and respectively hC(z) = z and hB(z) = vec(zz> − Ip), where for
any matrix M ∈ Rr×s, vec(M) denotes the vector of size r× s obtain by concatenating
the columns of M .

Theorem 3.17 (Tail empirical process for a generic pair (V, Y ) ). Suppose that the
distribution function F of Ỹ = −Y is continuous and that, letting U = F (Ỹ ), it holds
that

1. for any j ∈ {1, . . . , q}, the functions u 7→ E
[
h(V )j1

{
U ≤ u

}]
and u 7→ E

[
h(V )2

j1
{
U ≤ u

}]
are differentiable on (0, 1) with a continuous derivative at 0,

2. for all M ≥ 0, S(M) := limδ→0 E
[
h(V )h(V )>1

{
‖V ‖ ≥M

} ∣∣∣∣ U ≤ δ] exists and

is such that limM→∞ S(M) = 0,

3. as δ → 0, E
[
h(V )

∣∣∣ U ≤ δ] converges to a limit ν ∈ Rq.

Then we have as n→∞, k →∞, k/n→ 0,{√
k(D̂n(u)−Dn(u))

}
u∈[0,1]

 
{
W (u)

}
u∈[0,1]

,

where W is a Gaussian process with mean zero and covariance function

(s, t) 7→s ∧ t
(

Ξ− νν>
)
, (3.24)

with ν as in the 3textrd Condition of the statement and

Ξ = S(0) = lim
δ→0

E
[
h(V )h(V )>

∣∣∣ U ≤ δ] ∈ Rq×q. (3.25)

Corollary 3.18 (Weak convergence of the TIREX1 and TIREX2 processes). By choos-
ing the pair (V, Y ) = (Z, Y ) and assuming that the function hC(z) = z ( resp. hB(z) =
vec(zz>−Ip)) satisfies the assumptions of Theorem 3.17, the TIREX1 process

√
k(Ĉn(u)−

Cn(u)) ( resp. the TIREX2 process
√
k(B̂n(u)−Bn(u)) converges weakly in `∞(0, 1) to

a tight Gaussian process WC ( resp. WB) with covariance function given by (3.24) with
V = Z and h = hC ( resp. h = hB)

Proof [Proof of Theorem 3.17]

Consider the pseudo-empirical version of Dn(u),

D̃n(u) = k−1
n∑
i=1

h(Vi)1
{
Ui ≤ uk/n

}
= k−1

n∑
i=1

h(Vi)1
{
Ỹi ≤ F−(uk/n)

}
. (3.26)
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Notice that D̃n is not observed but serves as an intermediate quantity through the
following key identity:

D̂n(u) = D̃n

(
n

k
F̂−U (uk/n)

)
,

where F̂U is the empirical c.d.f. associated with the sample (Ui, i ≤ n). Introducing the
process

Γ̃(u) =
√
k
(
D̃n(u)−Dn(u)

)
, u ∈ [0, 1], (3.27)

we have the following decomposition

√
k(D̂n(u)−Dn(u)) = Γ̃

(
n

k
F̂−
(
uk/n

))
+
√
k

(
Dn

(
n

k
F̂−U

(
uk/n

))
−Dn(u)

)
.

(3.28)

In the remainder of the proof, we show that the first term can be replaced by Γ̃(u),
while the second term can be replaced by −νγ̂1(u) where γ̂1 is the tail empirical process
for uniform random variables,

γ̂1(u) =
√
k

(
n

k
F̂U (uk/n)− u

)
. (3.29)

Finally we show that the process (γ̂1(u), Γ̃(u))u∈[0,1] converges jointly to a Gaussian
process.

Intermediate results, uniform tail processes

The main tools that we use in our proof of Theorem 3.17 concern the weak convergence of
the tail empirical (quantile) process associated with a uniform response variables. Many
approaches have been considered to handle the behavior of such processes, see Csorgo
et al. (1986) for general empirical processes and Einmahl and Mason (1988) for the tail
version. For the sake of completeness we provide in the supplementary (Section D.3)
a different, direct proof of Lemma 3.19 below, relying on ‘classes of function changing
with n’ (Van Der Vaart and Wellner (1996))

Lemma 3.19. Under the assumptions of Theorem 3.17, the process Γ̃ defined in (3.27)
converges weakly in `∞(0, 1) to a tight Gaussian process W̃ with covariance function

(u1, u2) 7→ (u1 ∧ u2)Ξ ,

where Ξ is defined in (3.25)

An immediate consequence of Lemma 3.19, obtained upon setting V = Z and h(V ) = 1,
is the weak convergence of the tail empirical process for uniform random variables
introduced in (3.29).

Corollary 3.20. As n → ∞, k → ∞, and k/n → 0, the uniform tail empirical
process (3.29) weakly converges to a standard Brownian motion W1.
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Combining Corollary 3.20 and an appropriate variant of Vervaat’s lemma (see Sec-
tion D.2 from the supplementary material) we obtain in Section D.4 from the same
supplement, the following result.

Lemma 3.21. As n→∞, k →∞,

sup
u∈(0,1]

∣∣∣∣∣√k
(
n

k
F̂−U (uk/n)− u

)
+ γ̂1(u)

∣∣∣∣∣ = oP(1).

Separate and joint convergence in Decomposition (3.28)

We now show the following three relations: as n→∞,

sup
u∈(0,1]

∣∣∣∣Γ̃(nk F̂−U (uk/n)
)
− Γ̃(u)

∣∣∣∣ = oP(1), (3.30)

sup
u∈(0,1]

∣∣∣∣√k
(
Dn

(
n

k
F̂−U

(
uk/n

))
−Dn(u)

)
+ ν γ̂1(u)

∣∣∣∣ = oP(1), (3.31)(
γ̂1(u)

Γ̃(u)

)
 W ′(u), (3.32)

where W ′ is a centered Gaussian process on (0, 1] with covariance function (s, t) 7→
s ∧ t Ξ′. Here Ξ′ = S′(0) is the limit second moment matrix from Lemma 3.19 applied
to h′(V ) = (1, h(V )). More specifically, with this choice of h′, we have

Ξ′ =

(
1 ν>

ν Ξ

)
∈ R(q+1)×(q+1)

where Ξ = limδ→0 E [h(V )h(V )> |U ≤ δ ].

We first prove (3.30). From Lemma 3.19, the process Γ̃ is tight, whence asymptotically
equi-continuous, meaning that

lim
δ↓0

lim sup
n

P
(

sup
|s−t|≤δ

|Γ̃(s)− Γ̃(t)| > ε

)
= 0.

Also, from Lemma 3.21 and Corollary 3.20, supu∈(0,1] |(n/k)F̂−U (uk/n) − u| = oP(1).
Combining the two yields (3.30).

To prove (3.31), we apply the mean value theorem to get that

√
k

{
Dn

(
n

k
F̂−U

(
uk/n

))
−Dn(u)

)}

=
n√
k

{
E
[
h(V )1

{
{
}
U ≤ un}

]
un=F̂−U (uk/n)

− E
[
h(V )1

{
{
}
U ≤ uk/n}

]}

=
n√
k
g̃(Ũu,n)

{
F̂−U

(
uk/n

)
− uk/n

}
=
√
k g̃(Ũu,n)

{
n

k
F̂−U

(
uk/n

)
− u
}
,
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where g̃(x) is the derivative of x 7→ E
[
h(V )1

{
U ≤ x

}]
at point x and Ũu,n lies on

the line segment between F̂−U (uk/n) and uk/n. Lemma 3.21 and Corollary 3.20 imply
that Ũu,n → 0 in probability uniformly over u ∈ [0, 1], thus by continuity of g̃ at
0, g(Ũu,k) = g̃(0) + oP(1). We can further calculate g̃(0) based on Assumption 3 in
Theorem 3.17 as follows,

g̃(0) = lim
u→0

E
[
h(V )1

{
U ≤ u

}]
/u = lim

u→0
E
[
h(V )

∣∣∣ U ≤ u] = ν.

Therefore, the relation (3.31) is proved by applying Lemma 3.21, and the Slutsky’s
lemma. Finally, (3.32) follows from applying Lemma 3.19 to the function h′(V ) =
(1, h(V )).

Conclusion

By combining the decomposition in (3.28) with the relations (3.30)-(3.32), we obtain
that, as n→∞, {√

k
(
D̂n(u)−Dn(u)

)}
u∈[0,1]

 W := (−ν, Iq) W ′

which is a Gaussian process with covariance function

Σ(s, t) = s ∧ t (−ν, Iq)
(

1 ν>

ν Ξ

)(
−ν>
Iq

)
= s ∧ t

(
Ξ− νν>

)
.

3.5.3 Proposed estimation method

This section summarizes the main steps of the first and second order methods that we
propose based on the processes Ĉn and B̂n. We first introduce TIREX1 and TIREX2
matrices in parallel with the matrixMCUME defined in (3.4) in our framework, following
the integral based methods proposed by Zhu et al. (2010), see also Portier (2016). In
line with the CUME (3.4) matrix, we define

MTIREX1 =

∫ 1

0
Cn(u)Cn(u)> du ,

MTIREX2 =

∫ 1

0
Bn(u)Bn(u)> du ,

(3.33)

where Cn and Bn are defined in (3.20) and (3.21) respectively. We omit the dependency
of the matrices on n, k for convenience. An easy but important observation which
underlies our strategy for estimating an extreme SDR space is the following lemma.

Lemma 3.22 (Consistency of the TIREX matrices).
(i) Under the assumptions of Theorem 3.11,

MTIREX1 −→
1

3
``> as n→∞.
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(ii) Under the assumptions of Theorem 3.16,

MTIREX2 −→
1

3
(S − Ip + ``>)2 as n→∞.

Proof Under the assumptions of the first statement, for fixed u, Cn(u)Cn(u)> → u2``>

as n → ∞. The result follows by dominated convergence on (0, 1), which applies by
virtue of Condition (3.13). Indeed this uniform integrability assumption ensures that
for some constant A > 0, for n large enough, for all u ∈ (0, 1),

‖Cn(u)‖ =

∥∥∥∥uE[Z | Ỹ < F−(uk/n)
] ∥∥∥∥

≤ u(A+ E
[
‖Z‖1

{
‖Z‖ > A

}
| Ỹ < F−(uk/n)

]
≤ u(A+ 1).

The argument for the second statement is similar, up to a call to Condition (3.16)
instead of (3.13).

As a consequence of Lemma 3.22, both column spaces of MTIREX1 and MTIREX2 are
asymptotically included in Ee. The column space of MTIREX1 has dimension one while
that of MTIREX2 can be of any dimension not higher than that of Ee. We propose the
following estimation procedures based respectively on the processes Ĉn and B̂n.

TIREX1

1. Choose k � n and 1 ≤ d ≤ p.

2. Compute the estimated TIREX1 matrix, M̂TIREX1 =
∫ 1

0 Ĉn(u)Ĉ>n (u) du using the
identity given in (3.34).

3. Perform an eigen decomposition of M̂TIREX1 and keep the first d eigenvectors
(ei, i ≤ d).

4. ouptut: Êe = span({ei, i ≤ d}).

Choosing d > 1 is not immediately justified because the limit of MTIREX1 is a rank one
matrix ``>/3 as indicated in Lemma 3.22. However, empirical evidence suggests that
allowing d > 1 can be useful to recover more components among the extreme central
subspace basis. This is why we include this option in the algorithm.

TIREX2

1. Choose k � n and 1 ≤ d ≤ p.

2. Compute the estimated TIREX2 matrix, M̂TIREX2 =
∫ 1

0 B̂n(u)B̂>n (u) du using the
identity given in (3.35).

3. Perform an eigen decomposition of M̂TIREX2 and keep the first d eigenvectors
(ei, i ≤ d) associated with the highest eigen values.

4. ouptut: Êe = span({ei, i ≤ d})
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We make the following remarks regarding the relationships between our main theoretical
result Corollary 3.18 and the proposed estimation methods TIREX1 and TIREX2.

Remark 3.23 (Asymptotic normality of the TIREX matrices). The asymptotic nor-
mality of the random matrices

√
k(M̂TIREX1−MTIREX1) and

√
k(M̂TIREX2−MTIREX2)

could be obtained as a further consequence of Corollary 3.18 with straightforward cal-
culations. This can be achieved by using the Delta-method as in the proof of Portier
(2016), Proposition 5. For the sake of conciseness we leave the detailed proof to inter-
ested readers.

Remark 3.24 (Bias term). Notice that the TIREX matrices MTIREX are determin-
istic but subasymptotic quantities which depend on the the choice of the ratio k/n.
The ultimate goal in view of Lemma 3.22 would be to obtain the limit distribution of√
k(M̂TIREX1− 1

3``
>) and

√
k(M̂TIREX2− 1

3(S− Ip + ``>)). An obvious way to do so is
to assume that the bias terms

√
k(MTIREX1− 1

3``
>) and

√
k(MTIREX2− 1

3(S−Ip+``>))
converge to zero in probability, and use Slutsky’s lemma.

Remark 3.25 (Principal Component Analysis of the TIREX matrices). The output of
the TIREX methods is the eigen spaces of the estimated TIREX matrices. An important
final step is to show that such eigen spaces converges to the space spanned by the limits
1/3``> and 1/3(S − Ip + ``>). A possible starting point would be to use results from
perturbation theory, see e.g. (Zwald and Blanchard, 2005, Theorem 3) where the Frobe-
nius norm of the error is controlled by the inverse of a spectral gap.Since this problem
is left aside even in the traditional inverse regression literature we leave this question
to further research while demonstrating the performance of the TIREX algorithms by
numerical experiments.

Remark 3.26 (Choices of d, k). The choice of the intermediate sequence k of extreme
order statistics is a standard issue in extreme value statistics. In our experiments (Sec-
tion 3.6) we propose to choose k by cross-validation. Theoretical investigation regarding
this strategy is beyond the scope of this work. Similarly, the choice of d in the PCA
decomposition of the matrix M̂TIREX2 is a recurrent question in the PCA literature,
which is also left to further research. In practice a natural and widely used strategy is
an elbow method applied to the plot of the estimated eigen values. In the supervised
learning context, we recommend to choose d by cross-validation. More generally (out-
side the supervised learning context), testing for the rank of the underlying matrix is
a convenient method to infer the value of d. Such an approach has been succcessfully
employed in the SDR literature (Portier and Delyon, 2014) where the test statistics are
usually based on the eigenvalues amplitude. Finally recall that the limit of the matrix
MTIREX1 has rank one, so that the default choice of d = 1 in the first order method is
legitimate. Investigating theoretical guarantees for choosing the value of d in the TIREX
context is beyond the scope of this thesis and left for future work.

3.6 Experiments

This section focuses on the practical usefulness of TIREX for finite sample sizes based on
simulated and real data. We first give some details about the implementation of TIREX
(Section 3.6.1) and discuss its computational complexity. We discuss the improvement
brought by TIREX over the estimation method proposed by Gardes (2018). Second,
with synthetic datasets of various dimensions, we explore the estimation performance
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of TIREX1 and TIREX2 for various values of k, as measured by a distance between the
estimated and true extreme SDR spaces (Section 3.6.2). On this occasion we compare
the estimation performance of TIREX with that of its closest alternatives, namely
Gardes (2018)’s method, CUME and CUVE. Finally in Section 3.6.3 we compare TIREX
with several existing dimension reduction tools for predicting tail events on several real
data sets of relatively high dimension.

3.6.1 TIREX implementation

In a preliminary step common to all our experiments, the covariates are empirically
standardized and we set Ẑi = Σ̂−1/2(Xi − m̂) with m̂ = n−1

∑n
i=1Xi and Σ̂ =

n−1
∑n

i=1(Xi − m̂)(Xi − m̂)T . Working with empirically standardized covariates to
estimate an extreme SDR space Ee is equivalent to working with raw covariates to
estimate Ẽe = Σ−1/2Ee up to remainder terms of order OP(1/

√
n), see Section C in

Aghbalou et al. (2021). By abuse of notation we use the same symbols in the present
section to denote both the empirical processes constructed with the Ẑi’s and the Zi’s.

We start off by deriving an explicit, computationally efficient formula for the matri-
ces M̂TIREX1 and M̂TIREX2. Let (Ẑ(1), Y(1)), (Ẑ(2), Y(2)), . . . , (Ẑ(n), Y(n)) be such that
Y(1) ≥ · · · ≥ Y(n). From the definition of Ĉn, we have Ĉn(u) = 1

k

∑dkue
i=1 Ẑ(i). This im-

plies that Ĉn is piece-wise constant, more precisely for j ∈ {1, . . . , n}, whenever u ∈ ((j−
1)/k, j/k], we have kĈn(u) =

∑j
i=1 Ẑ(i) := Ŝj . Since M̂TIREX1 =

∑k
j=1

∫ j/k
(j−1)k Ĉn(u)Ĉn(u)>du,

it follows that

M̂TIREX1 =
1

k3

k∑
j=1

ŜjŜ
>
j . (3.34)

Evaluating the latter display requires O(n log(n)) operations for sorting the Y ’s values;
kd operations to compute the Ŝj , j = 1, . . . , k (because Ŝj can be deduced from Ŝj−1

with one operation); and O(kd2) operations to compute the matrix M̂TIREX1. The
overall cost is then of order n log(n) + kd2. Similar arguments regarding the second
order matrix M̂TIREX2 lead to the expression

M̂TIREX2 =
1

k3

k∑
j=1

T̂j T̂
T
j , (3.35)

with Tj =
∑j

i=1(Ẑ(i)Ẑ
T
(i) − Ip).

The final step is to perform an eigen-decomposition of the estimated matrix M̂TIREX1
(resp. M̂TIREX2). Given the alleged dimension d of Ee, the vector space generated by the
d eigen vectors associated to the d largest eigenvalues of the matrix (with multiplicities,
assuming uniqueness of the corresponding eigen space for simplicity) constitutes the
TIREX estimate Êe. The non standard SDR space can be estimated by multiplying
the obtained directions by Σ̂−1/2.

Computational complexity.

Evaluating (3.34) requires O(n log(n)) operations for sorting the Y ’s values; kp oper-
ations to compute the Ŝj , j = 1, . . . , k (because Ŝj can be deduced from Ŝj−1 with
one operation); and O(kp2) operations to compute the matrix M̂TIREX1. The overall
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cost is then of order n log(n) + kp2. Similarly the overall cost for M̂TIREX2 is of order
n log(n)+kp4. Finally the eigen-decompostion based on SVD requires O(p3) operations.

In contrast the estimation procedure proposed in Gardes (2018) relies on an optimization
strategy over a p − d-dimensional grid where d is the reduced dimension, and has an
important computational cost when d > 1 according to the author (see Sections 3.2
and 4.1 of the cited reference). The existing implementation of Gardes (2018)’s method
is restricted to d = 1 and the experiments conducted in that paper are limited to
p = 4. Whether it is possible to bypass the curse of dimensionality in Gardes (2018)’s
framework remains an open question. For these reasons we limit our comparison with
Gardes (2018)’s method in our experiments to low dimensional examples, Models A and
C, introduced below.

3.6.2 Performance for tail SDR estimation, synthetic data

We consider three particular instances of the mixture model presented in Section 3.3.2.
The heavy tailed noise variables ζj , j ≤ d follow identical Pareto distributions, P

(
ζj > t

)
=

t−α2 with α2 = 10. The short-tailed noise variables εj , j ≤ p − d are exponentially
distributed, P

(
εj > t

)
= e−α1t, t > 0, with rate parameter α1 = 10. The variables

(ζj , j ≤ d; εj , j ≤ p− d) are independent.

Model A. We consider Case (i) from the generic example (continuous covariates) with
θ = 0.5, a = 1, b = 10. For simplicity we take all covariate variables uniformly dis-
tributed over the interval [a, b] = [1, 10]. Recall that in this context, both TCI and
TCI-G hold. Then according to both definitions the d-dimensional subspace of Rp gen-
erated by the canonical basis vectors (ep−d+1, . . . , ep) is an extreme SDR space. We set
p = 2, d = 1.

Model B. Here we set p = 30, d = 5, all other setup remains unchanged comparing
with Model A.

Model C. We use the distribution described in Case (ii) from Section 3.3.2, where the
covariates are Bernoulli variables. In this context, TCI holds but TCI-G does not. We
set the Bernoulli parameter to τ = 0.5. To maintain the comparability between TIREX
and Gardes (2018) we set p = 2, d = 1.

Experimental setting.

The sample size is set to n = 104 for Models A and C, and to n = 105 for Model B.
The TIREX matrices following (3.34) and (3.35) are computed for 150 different values
of k within the range Jn/100, nK. The orthogonal projection on the subspace generated
by their first d eigen vectors constitutes our estimates P̂e. In other words we consider
for simplicity that d is known by the user, as discussed in Remark 3.26. The quality of
the estimator is measured by the squared Frobenius norm of the error, ‖P̂e−Pe‖2F . We
evaluate the squared bias ‖Pe − E[P̂e]‖2F , the variance E[‖P̂e − E[P̂e]‖2F ], and the MSE
E[‖P̂e−Pe‖2F ] using TIREX, based on N = 200 repetitions. Thus the maximum relative
error of the MSE estimate, i.e. the maximum standard deviation of the estimate divided
by the estimate itself, over all models and all values of k, is 0.11, which is sufficiently
small for a qualitative interpretation of the results.
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In addition we compare the relative performances of TIREX1 and Gardes (2018)’s
method for Models A and C. We leave TIREX2 outside the comparison because our
results (Figure 3.1) show that TIREX1 is a better option in this setting. To alleviate
the computational cost we perform only N = 100 repetitions and we estimate the
projectors for two values of k, namely k = n2/3 ≈ 464 as recommended in Gardes
(2018) and k = 2000 which is close to the value minimizing the MSE with TIREX1 for
both models, considering our results below.

Results. Figure 3.1 displays the squared bias, variance and MSE for TIREX1 and
TIREX2 as a function of k. The curves illustrate the typical bias-variance trade-off in
Extreme Value Analysis regarding the choice of k, and confirm the findings of Corol-
lary 3.18. Small values of k are associated with large variance, while large values result
in a large bias. Notice that choosing k = n with TIREX1 (resp. TIREX2) amounts to
applying the standard SIR method CUME (resp. CUVE). Our results show that the
MSE in this case is typically much larger (due to the bias) than with moderate k’s,
namely with k ≈ 2000 for n = 104 and k ≈ 15000 for n = 105.

In some cases, comparatively larger variances occur for k ≈ n/2. We interpret this
as an unstable transitional regime between two extremal behaviors: On the one hand,
for small values of k, only the very largest values of Y are selected. These are mostly
generated by the second component Y2 of the mixture model, the heavy-tailed one. On
the other hand when k is large, both components Y1, Y2 are equally involved in the
computation of MTIREX.

The variance attached to the second order method TIREX2 tends to be larger than that
of the first order method TIREX1. However, when the dimension of the extreme SDR
space is greater than one (Model B), TIREX1 fails to recover more than one direction,
and TIREX2 is preferable. This fact illustrates the conclusion of Theorem 3.11, see
also Lemma 3.22, where a single vector (or a rank-one matrix) is identified in the limit.
TIREX2 does not suffer from this flaw since the associated limit in Lemma 3.22 is a
matrix offering potentially more than one direction in the SDR space. As a conclusion,
one should definitely prefer TIREX1 over TIREX2 when the extreme values of Y are
known to be explained by a single linear combination of Z1, . . . , Zp. Otherwise it is nec-
essary to resort to TIREX2 to discover additional directions, even though the estimates
may have a higher variance.

Table 3.1 displays the results of the comparison with Gardes (2018)’s method in terms of
MSE and execution time. In Model A where Gardes (2018)’s assumptions are satisfied,
Gardes (2018)’s method performs better than TIREX for the two values of k considered.
However its execution time, even in this low dimensional setting is several orders of
magnitude higher than that of TIREX. In Model C, as suggested by the theory, Gardes
(2018)’s method fails to recover the tail SDR space (in the sense of TCI, not TCI-G).
By contrast, TIREX can recover the tail SDR space within very short execution time.

Model A, TIREX1 Model A, Gardes (2018) Model C, TIREX1 Model C, Gardes (2018)
k = 464 2.10−3 (2 s) 4.10−4 (6h) 4.10−3 (2.3 s) 1 (4.3h)

k = 2000 5.10−4 (1.7 s) 5.10−5 (6.5h) 9.10−4 (3.2 s) 0.8 (8.5h)

Table 3.1 – MSE for TIREX and Gardes (2018)’s method in Models A and C, 100 repli-
cations. Execution times on a standard laptop are in brackets, with h and s indicating
hour and second respectively.
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Figure 3.1 – Performance in terms of Frobenius norm of the error, as a function of k,
with TIREX1 (solid line) and TIREX2 (dotted line), in Models A,B,C. Mean squared
error, bias and variance computed over 100 repetitions.

3.6.3 Predicting tail events with TIREX on real datasets

We now investigate the relevance of TIREX as a dimension reduction tool for predicting
unusually large values of Y . As explained in Remark 3.5, this may be viewed as a
classification task: predict an exceedance {Y > y} with the help of p covariates X ∈
Rp. Reducing the dimension allows to escape the curse of the dimensionality using
the projected covariates, however it generally induces a bias which may influence the
(weighted) risk of an error. The most important observation in Remark 3.5 is that, if
Y∞⊥⊥X

∣∣ PeX , the bias term vanishes in the limit y → y+. Since TIREX aims precisely
at estimating Pe such that Y∞⊥⊥X

∣∣ PeX , a reasonable hope is that it would generally
perform better than other dimension reduction algorithms targeting different reduction
subspaces P 6= Pe that would not enjoy this property.

Experimental setting.

We follow a two-steps procedure: first, run a dimension reduction algorithm (TIREX
or another existing method) and project the covariates Xi on the estimated SDR space;
second apply a classification algorithm to predict the event Yi > y with the help of the
projected covariates. For all dimension reduction methods entering the comparison, the
dimension of the reduced subspace is set to d = 2.

Throughout our experiments the second step is fixed: We use a nearest neighbors algo-
rithm with a number of neighbors set to 5. In the end the performance of the competing
dimension reduction methods is measured in terms of the AM risk (3.7) and the AUC
(Area under the ROC Curve) of the nearest neighbors classifier trained on the reduced
covariates. The number of observations k in TIREX is selected based on 5-fold cross-
validation with the AUC criterion.
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Competitors.

TIREX is compared with several alternative methods using the full dataset for estima-
tion, not only the subset associated with the largest values of the target. Namely we
consider in a supervised setting the standard SDR estimates obtained with the CUME
and CUVE methods introduced in Section 3.2. In an unsupervised setting we consider
routinely used methods available in the Python Scikit-learn package Pedregosa et al.
(2011), namely Principal Component Analysis (PCA), Singular Value Decomposition
(SVD) which is a non-centered version of PCA, Locally Linear Embedding (LLE), and
Isomap (IMP). The latter two methods are non-linear generalizations of of PCA (Roweis
and Saul (2000), Tenenbaum et al. (2000), see also Chojnacki and Brooks (2009); Ben-
gio et al. (2003)) which are widely applied in many contexts such as data visualization
Elgammal and Lee (2004); Tenenbaum et al. (2000), or classification Vlachos et al.
(2002), among others. Considering the dimensions p ∈ J18, 103K of the datasets de-
scribed below, Gardes (2018)’s method for dimension reduction could not be included
in the comparison for the algorithmic complexity reasons described above.

Data sets.

Eight datasets are used. Three of them come from the UCI repository2: Residential
(372 apartment sale prices, with 103 covariates); crime (1994 per capita violent crimes
with 122 socio-economic covariates); Parkinsons (5875 voice recordings along with 25
attributes). Three other datasets come from the Delve repository3: Bank (8192 rejection
rates of different banks, with 32 features each);CompAct (8192 CPU’s times with 27
covariates); PUMA32 (8192 angular accelerations of a robot arm, with 32 attributes).
Finally, two other data are obtained from the LIACC repository4: Ailerons (13750
control action on the ailerons of an aircraft with 40 attributes) and Elevator (16559
control action on the elevators of an aircraft with 18 attributes).

Results.

For all datasets, y is chosen equal to the 0.98-quantile of the target (Yi)i=1,...,n except for
Residential where the 0.90-quantile has been used to counterbalance the small sample
size. The results in terms of AM risk and AUC are summarized in Tables 3.2 and 3.3
respectively. In the vast majority of cases, TIREX1 or TIREX2 performs better than
the other methods. On these examples, TIREX1 is often superior to TIREX2, which
indicates that the added flexibility introduced by the second order moments does not
compensate for the increased variance.

2https://archive.ics.uci.edu
3http://www.cs.toronto.edu/~delve/data/datasets.html
4https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

https://archive.ics.uci.edu
http://www.cs.toronto.edu/~delve/data/datasets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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TIREX1 TIREX2 CUME CUVE PCA SVD LLE IMP
Bank 0.434 0.378 0.42 0.392 0.418 0.474 0.486 0.432
Crime 0.412 0.5 0.471 0.47 0.502 0.469 0.47 0.5
CompAct 0.208 0.279 0.287 0.313 0.242 0.243 0.271 0.253
Residential 0.158 0.353 0.421 0.447 0.479 0.479 0.49 0.49
Parkinsons 0.252 0.346 0.268 0.346 0.469 0.469 0.455 0.47
Puma32 0.492 0.501 0.5 0.5 0.5 0.5 0.501 0.49
Elevators 0.446 0.446 0.471 0.463 0.5 0.5 0.5 0.5
Ailerons 0.307 0.329 0.314 0.33 0.498 0.499 0.498 0.501

Table 3.2 – AM risk of the nearest neighbors classifier with reduced covariates obtained
with different dimension reduction methods.

TIREX1 TIREX2 CUME CUVE PCA SVD LLE IMP
Bank 0.771 0.696 0.698 0.684 0.736 0.689 0.608 0.65
Crime 0.666 0.67 0.616 0.686 0.678 0.773 0.672 0.661
CompAct 0.893 0.887 0.899 0.871 0.876 0.874 0.868 0.885
Residential 0.902 0.827 0.674 0.745 0.667 0.659 0.666 0.694
Parkinsons 0.901 0.818 0.852 0.82 0.742 0.753 0.743 0.748
Puma32 0.711 0.578 0.616 0.515 0.587 0.577 0.537 0.547
Elevators 0.686 0.694 0.615 0.672 0.528 0.537 0.514 0.514
Ailerons 0.853 0.834 0.828 0.832 0.502 0.515 0.514 0.525

Table 3.3 – AUC of the nearest neighbors classifier with reduced covariates obtained
with different dimension reduction methods.

3.A Proofs for Remark 1

In this section, for the sake of completeness, we prove two facts regarding classification
with the AM risk in the full problem defined in Remark 3.5 from the current chapter.
First the classifier

h∗(x) = 1
{
η(x) > π

}
(3.36)

is a minimizer of the AM risk ; Second, the associated Bayes risk is given by

RAM(h∗) = E

[
min

(
η(X)

π
,
1− η(X)

1− π

)]
. (3.37)

We introduce the AM loss function

`AM(t̂, t) =
1

1− π1
{
t̂ = 1, t = 0

}
+

1

π
1
{
t̂ = 0, t = 1

}
so that for any classifier, RAM(h) = E

[
`AM(h(X), T )

]
. Consider now the conditional

AM risk

R̃AM(h, x) = E
[
`AM(h(X), T )

∣∣∣ X = x
]
,
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thus RAM(h) = E
[
R̃AM(h,X)

]
. We also have

R̃AM(h, x) =
1

1− π1
{
h(x) = 1

}
(1− η(x)) +

1

π
1
{
h(x) = 0

}
η(x)

=
1− η(x)

1− π + 1
{
h(x) = 0

}[η(x)

π
− 1− η(x)

1− π

]
. (3.38)

Also, the classifier in (3.36) may be written equivalently as h∗(x) = 1

{
η(x)
π > 1−η(x)

1−π

}
.

Thus for any classifier h, we may write the difference in conditional risks as

R̃AM(h, x)− R̃AM(h∗, x) =
η − π

π(1− π)

[
1
{
h(x) = 0

}
− 1

{
h∗(x) = 0

}]
=

∣∣∣∣∣ η − π
π(1− π)

∣∣∣∣∣1{h(x) 6= h∗(x)
}

The latter display is nonnegative, which shows that h∗ defined in (3.36) indeed minimizes
the AM risk. Turning to our second claim, notice that we may write, using (3.38),

R̃AM(h∗, x) =

η(x)/π if η(x)/π > (1− η(x))/(1− π)

(1− η(x))/(1− π) otherwise

= min

(
η(x)

π
,
1− η(X)

1− π

)
.

This proves (3.37).

3.B Proofs for Section 3.2 and additional comments

In this section we provide the full proofs regarding our examples and counter-examples
from Section 3.2 regarding the generic mixture model. On this occasion we conduct
a thorough comparison between the two definitions of tail conditional independence
TCI and TCI-G, see Equations (3.5) and (3.6). For convenience write S(y) = P(Y >
y);S(y,W ) = P(Y > y|W );S(y,W, V ) = P(Y > y|W,V ). The relevant quantities are
respectively the ratios

R(y, V,W ) =
S(y, V,W )− S(y,W )

S(y)
, and R̃(y, V,W ) =

S(y, V,W )− S(y,W )

S(y,W )
.

(3.39)
The TCI condition is that E|R(y, V,W )| → 0 as y → y+, whereas TCI-G means that
R̃(y, V,W )→ 0 as y → y+, almost surely. Notice already that our criterion (3.1) is an
integrated version of (3.2), with a weight function

ρ(y,W ) = S(y,W )/S(y), (3.40)

such that ρ(y,W ) ≥ 0 and E
[
ρ(y,W )

]
= 1 for all y. Namely, TCI means that

E
∣∣∣R̃(y, V,W )ρ(y,W )

∣∣∣ −−−−→
y→y+

0 (3.41)
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3.B.1 Additional notations regarding the generic mixture model
from Section 3.3.2

We introduce in the context of Section 3.3.2 the additional notations

S1(y) = P(Y1 > y) =

∫
S1(y, v) dPV (v) , S2(y) = P

(
Y2 > y

)
=

∫
S2(y, w) dPW (w).

With these notations, using the independence assumption regarding the pair (V,W ) we
may write

S(y, v, w) = θS1(y, v) + (1− θ)S2(y, w) ; S(y, w) = θS1(y) + (1− θ)S2(y, w) ;

S(y) = θS1(y) + (1− θ)S2(y).

Thus, the ratios R, R̃ defined at the beginning of this section and involved in TCI and
TCI-G write respectively

R(y, v, w) =
θ(S1(y, v)− S1(y))

θS1(y) + (1− θ)S2(y)
, R̃(y, v, w) =

θ(S1(y, v)− S1(y))

θS1(y) + (1− θ)S2(y, w)
.

(3.42)

Notice already that

|R(y, v, w)| ≤ θ

1− θ
S1(y, v) + S1(y)

S2(y)
, (3.43)

|R̃(y, v, w)| ≤ θ

1− θ

(
S1(y, v)

S2(y, w)
+

∫
S1(y, v′)

S2(y, w)
dPV (v′)

)
. (3.44)

Finally, specializing to the case where Y1 and Y2 follow the mixture model described in
the same section of the main chapter, the conditional survival functions for Y1, Y2 are,
for y > b,

S1(y, v) =

p−d∑
i=1

1
{
vi > 0

}
π1
i Sε(y/vi) , S2(y, w) =

d∑
j=1

1
{
wj > 0

}
π2
jSζ(y/wj)

(3.45)

We now discuss the main differences between the two definitions. Natural questions to
ask are (i) whether one definition is more appropriate than the other depending on the
context ; (ii) whether one condition is stronger than the other, possibly under additional
assumptions.

As for Question (i), in spirit, as reflected by the equivalent condition (3.41), TCI is
comparatively more sensitive to values W = w such that the conditional probability
of an exceedance Y > y is large, which is an appealing feature for identifying tail risk
factors as described in the introduction. On the other hand, one advantage of TCI-
G’s scaling is that the ratio R̃ introduced at the beginning of this section is a relative
deviation, which is arguably easily interpretable. However TCI-G’s criterion takes into
account all possible values w, even those such that the conditional distribution of Y
givenW = w is shorter tailed than the marginal distribution of Y . The focus in TCI-G
is not exactly on the tail of Y ’s distribution, but rather on the tails of the conditional
distributions of Y given W .

Before turning to Question (ii), we discuss the differences between the two conditions
in terms of mode of convergence.
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3.B.2 Convergence almost-surely or in expectation in TCI-G or
TCI

Almost sure convergence R̃(y, V,W )→ 0 as y → y+ implies E|R̃(y, V,W )| → 0. Indeed
by conditioning on W , we have E [R̃(y, V,W )] = 0 so that, denoting by z+ (resp.
z−) the negative (resp. positive) part of a real z, it holds that E [R̃(y, V,W )+] =
E [R̃(y, V,W )−]. As a consequence

E |R̃(y, V,W )| = 2E [R̃(y, V,W )−].

However for all y, v, w, R̃(y, v, w) ≥ −1 so that 0 ≤ R̃(y, V,W )− ≤ 1. By dominated
convergence, if Condition (3.2) holds, then also E [R̃(y, V,W )−] → 0, and the above
display implies that E |R̃(y, V,W )| converges to 0 as well. This argument is not valid
regarding the tail behaviour of R(y, V,W ) because it is not true that R(y, V,W ) ≥ −1
almost surely.

We are now ready to examine Question (ii), that is, whether one condition (TCI or
TCI-G) implies the other, in general or under simplifying assumptions.

3.B.3 Special case: discrete covariates with finite support

In order to build up the intuition, consider the special case where the covariates have a
finite support. This is a sensible assumption for real life applications where observations
are discretized.

We thus consider here finitely supported covariates V ∈ {v1, . . . , vm},W ∈ {w1, . . . , wn}.
Denote p(vi) = P(V = vi), p(wj) = P(W = wj), p(vi, wj) = P(V = vi,W = wj). As-
sume for simplicity that for all (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, we have p(vi, wj) > 0.

First, in this case, almost sure convergence and convergence in expectation are equiv-
alent for both ratios R and R̃ introduced at the beginning of this section. In other
words

E|R(y, V,W )| −−−−→
y→y+

0 ⇐⇒ |R(y, V,W )| −−−−→
y→y+

0, almost surely ; (3.46)

E|R̃(y, V,W )| −−−−→
y→y+

0 ⇐⇒ |R̃(y, V,W )| −−−−→
y→y+

0, almost surely . (3.47)

Indeed

E|R(y, V,W )| =
m∑
i=1

n∑
j=1

p(vi, wj)

∣∣∣∣S(y, vi, wj)− S(y, wj)

S(y)

∣∣∣∣.
The latter display converges to 0 as y → y+ if and only if each terms in the finite
summation does, that is, if and only if ∀(i, j), R(y, vi, wj)→ 0 as y → y+. This proves
(3.46), and the argument for (3.47) is similar.

Second, TCI-G implies TCI, meaning that our definition is weaker than Gardes (2018)’s
in this discrete setting. To see this, in view of the equivalence between L1 and almost
sure convergences, it is enough to show that the ratio R(y, vi, wj)/R̃(y, vi, wj) is uni-
formly upper bounded when y, i and j vary. However for all (y, i, j),

R(y, vi, wj)

R̃(y, vi, wj)
= ρ(y, wj) = S(y, wj)/S(y) =

S(y, wj)∑n
k=1 p(wk)S(y, wk)

≤ 1

p(wj)
≤ 1/min

k≤n
p(wk) <∞.

As a consequence, if R̃(y, V,W ) → 0 almost surely, then also R(y, V,W ) → 0 almost
surely as y → y+ and the result follows.



3.B. PROOFS FOR SECTION 3.2 AND ADDITIONAL COMMENTS 109

3.B.4 Example in the mixture model where both TCI and TCI-G
hold

We consider the setting of Section 3.3.2 from the main chapter, and in particular the
case where the lower bound of the support of each Wj is positive, a > 0.

We verify that the upper bounds (3.43) and (3.44) uniformly converge to 0. First, using
(3.45), we have

S1(y) + S1(y, v)

S2(y)
≤ 2

supv∈[a,b]p−d S1(y, v)

infw∈[a,b]d S2(y, w)
≤ 2

Sε(y/b)

Sζ(y/a)
,

where the right-hand-side converges to 0 as y → ∞ under Condition (3.7). Thus the
upper bound in (3.43) uniformly converges to 0 and TCI holds by dominated conver-
gence.

Turning to R̃, we also have

sup
(v,w)∈[a,b]p

S1(y, v)

S2(y, w)
≤

supv∈[a,b]p−d S1(y, v)

infw∈[a,b]d S2(y, w)
≤ Sε(y/b)

Sζ(y/a)
−−−→
y→∞

0.

Thus, by dominated convergence the right-hand-side of (3.44) converges to 0 as y →∞
so that TCI-G holds as well.

In the general case the situation is much more complex and it turns out that neither
condition implies the other, as revealed by the counter-examples constructed in the next
two subsections.

3.B.5 Counter-example in the mixture model where TCI holds but
TCI-G does not

In contrast to the latter subsection, we now consider the case where the support of
the Wj ’s includes 0, so that a = 0. Namely we take each variable Vj ,Wj following
a binary Bernoulli distribution with parameter τ ∈ (0, 1)Thus P

(
W = (0, . . . , 0)

)
=

(1− τ)d > 0. Notice already that the right-hand side of (3.44) is not bounded because
S2(y, w = (0, . . . , 0)) = 0 for y > 0. Also, from (3.42),

R̃(y, v, w = (0, . . . , 0)) =
S1(y, v)− S1(y)

S1(y)
.

In this specific example Y1 and Y2 have point masses at 0 and we have for y > 0, S1(y) =∑
j π

1
j τSε(y) = τSε(y) while for v1 = (1, . . . , 1), S1(y, v1) =

∑
j π

1
jSε(y) = Sε(y). Thus

in the above display, R̃(y, v1, 0) = (1− τ)/τ for all y > 1 and TCI-G does not hold.

Finally we show that TCI holds by examining the right-hand side of (3.43). The
argument above shows that

S1(y, v) + S1(y)

S2(y)
≤ (1 + τ)Sε(y)

τSζ(y)
.

This proves uniform convergence to 0 in (3.43) under Condition (3.7) and concludes the
argument.
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3.B.6 Counter-example where TCI-G holds but TCI does not

In this example we depart from the mixture model forming the basis of the two lat-
ter examples. The idea behind is to build the survival functions in such a way that
lim supy→∞ ρ(y,W ) =∞ (see (3.40) for the definition of ρ), with probability one, while
TCI-G holds.

In addition to the notations introduced at the beginning of this section, we introduce
the ratio

q(y, v, w) = S(y, v, w)/S(y, w).

Thus R̃(y, v, w) = q(y, v, w) − 1 and R(y, v, w) = (q(y, v, w) − 1)ρ(y, w). We denote
respectively by PW , PV,W the marginal distribution of W and the joint distribution of
(V,W ). Here we define V , W as independent uniform variables, PW = PV = U[−1/2,1/2]

and PV,W = PV ⊗PW . We shall build (S, ρ, q) such that h|q(y, V,W )−1| → 0 as y →∞,
almost surely, (so that TCI-G holds) while lim supE

[
|q(y, V,W )− 1|ρ(y,W )

]
> 0 as

y →∞ (so that TCI does not hold).

The functions S(y), q(y, v, w), ρ(y, w) define a joint distribution of (Y, V,W ) with no
mass at the right end point of Y if conditions (3.48) (3.49) and (3.50) below hold.

S is non-increasing , lim
y→y+

S(y) = 0, S(y) ≥ 0; (3.48)

PW -almost surely, the function y 7→ ρ(y,W )S(y) is non-increasing, and

lim
y→y+

ρ(y,W )S(y) = 0, ρ(y,W ) ≥ 0, E
[
ρ(y,W )

]
= 1 ,∀y; (3.49)

PV,W -almost surely, the function y 7→ q(y, V,W )ρ(y,W )S(y) is non-increasing, and

lim
y→y+

q(y, V,W )ρ(y,W )S(y) = 0, q(y, V,W ) ≥ 0, E
[
q(y, V,W )

∣∣∣W] = 1 , ∀y.
(3.50)

Construction of S(y), ρ(y, w)

We let S(y) = e−y, y ≥ 0, and we construct ρ such that P
(

lim supy→∞ ρ(y, w) =∞
)

=

1 while (3.49) is satisfied. To this end define for n ≥ 2, and 0 ≤ j ≤ n,

Ln =
∑

k<n,k≥2

k2 ; Ln,j = Ln + jn. (3.51)

Thus L2 = 0, L3 = 4, Ln ≤ n3 for n ≥ 2 and Ln,n = Ln+1. Also R+ = tn≥2 t0≤j<n
[Ln,j , Ln,j+1). Also for y ≥ 0, we denote by (n(y), j(y)) the unique pair of integers such
that y ∈ [Ln,j , Ln,j+1).

For n ≥ 2, 0 ≤ j < n, we define ρ(y, w) for y ∈ [Ln,j , Ln,j+1) and w ∈ [−1/2, 1/2] as
follows: let In,j = [1/2− (j + 1)/n, 1/2− j/n], then

ρ(y, w) = 1 + w +
n

4π
sin

(
π(y − Ln,j)/n

)[
1
{
w ∈ In,j

}
− 1

{
w /∈ In,j

}
/(n− 1)

]
.

(3.52)
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Notice that for all w ∈ [−1/2, 1/2], the function y 7→ ρ(y, w) is continuous. Also for all
w ∈ [−1/2, 1/2] we have lim supy ρ(y, w) = +∞. Indeed for any fixed n ≥ 2, let j such
that w ∈ In,j . Then letting

yn = Ln,j + n/2,

we have ρ(yn, w) = w + n/(4π) ≥ n/(4π) − 1/2. The sequence yn converges to ∞ and
is such that ρ(yn, w)→∞ as n→∞, which proves the claim.

We now verify that the conditions gathered in (3.49) hold.

1. First for all y ≥ 0,

E
[
ρ(y,W )

]
= 1 + E

[
W
]

+
n

4π
sin

(
π(y − Ln,j)/n

)[
1/n− (n− 1)/(n(n− 1))

]
= 1.

2. We show that for all y, ρ(y,W ) ≥ 1/3 almost surely. By construction, ρ(y,W ) ≥
1/2− n(y)

4(n(y)−1)π . Since m/(m− 1) ≤ 2 for m ≥ 2, we obtain

ρ(y,W ) ≥ 1/2− 2

4π
≥ 1/2− 1/6 = 1/3.

3. We now show that y 7→ S(y)ρ(y, w) is non increasing for all w ∈ [−1/2, 1/2].
Since both S and ρ are continuous functions of y, with derivatives from the right
which we denote respectively S′(y) and ρ′(y, w), we need to show that ρ′(y, w) <
−ρ(y, w)S′(y)/S(y). Here S′(y)/S(y) = −1, and from the above point we obtain
−ρ(y, w)S′(y)/S(y) ≥ 1/3. To conclude we show that

∀y ≥ 0, w ∈ [−1/2, 1/2], ρ′(y, w) ≤ 1/4.

Let y > 0 and (n, j) = (n(y), j(y)) as above. On the one hand if w ∈ In(y),j(y)

we have 0 ≤ ρ′(y,W ) ≤ 1/4. On the other hand if w /∈ In(y),j(y), we have
ρ′(y, w) < 0. In both cases ρ′(y, w) ≤ 1/4 ≤ 1/3 ≤ −ρ(y, w)S′(y)/S(y), which
conludes the argument.

4. Finally we verify that limy→∞ ρ(y,W )S(y) = 0, almost surely. To see this, notice
that for all y > 0, w ∈ [−1/2, 1/2], |ρ(y, w)| ≤ 3/2 + n(y)

4π . Now since Ln ≥ n2,
{n : Ln ≤ y} ⊂ {n : n2 ≤ y}, so that n(y) = sup{n : Ln ≤ y} ≤ sup{n : n2 ≤
y} ≤ √y. Thus |ρ(y, w)|e−y ≤ (3/2 +

√
y/(4π))e−y → 0 as y →∞.

Construction of q(y, v, w)

Recall n(y) from the beginning of the above paragraph. Define

q(y, v, w) =1 + v

[
1

{
w >

1

2
− 1

n(y)

}
+ 1

{
w ≤ 1

2
− 1

n(y)

}
exp

(
−
y +

⌈
1

1/2−w

⌉
4

)]
(3.53)

We now verify that the function y 7→ q(y, v, w)S(y, w) = S(y, v, w) is non increasing.
Notice already that all the other constraints gathered in (3.50) are satisfied. Since for
fixed (v, w), both y 7→ q(y, v, w) and y 7→ S(y, w) are continuous, it is enough to verify
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that the derivative from the right of y 7→ q(y, v, w)S(y, w) is negative or null, that is
(since q ≥ 1/2 is positive), we need to ensure that

q′(y, v, w)

q(y, v, w)
≤ −S

′(y, w)

S(y, w)
. (3.54)

With our definition of S(y, w) from Subsection 3.B.6,

−S′(y, w)/S(y, w) = (ρ(y, w)− ρ′(y, w))/ρ(y, w) = 1− ρ′(y, w)/ρ(y, w) ≥ 1− 1/4

1/3
= 1/4.

If we denote y(w) = y −
⌈

1
1/2−w

⌉
, we have

q′(y, v, w)/q(y, v, w) = −1

4
1

{
w ≤ 1

2
− 1

n(y)

}
v exp(−y(w)/4)/(1 + v exp(−y(w)/4)).

The above display is always less than 1/4 so that (3.54) holds for all y > 0 and
v, w ∈ [−1/2, 1/2] and (3.50) is satisfied. This fact combined with the argument in
Subsection 3.B.6 implies that the functions (S, ρ, q) define a proper joint distribution
for (Y, V,W ).

Conclusion

We have constructed a joint distribution for (Y, V,W ) in Sections 3.B.6, 3.B.6, such
that PV,W -almost surely, q(y, V,W ) → 1 as y → ∞, as can be seen immediately from
the definition of q in (3.53). Thus (Y, V,W ) satisfy TCI-G. However, for all n ≥ 0, let
yn = Ln + n/2 (see Subsection 3.B.6), so that by construction n(yn) = n. Notice that
In,0 = [1/2− 1/n, 1/2] and for w ∈ In,0, we have ρ(yn, w) = 1 +w+n/(4π) ≥ n/16 and
q(yn, v, w) = 1 + v. Thus

E
[
|R(yn, V,W )|

]
= E

[
|q(yn, V,W )− 1|ρ(yn,W )

]
≥ E

[
|q(yn, V,W )− 1|ρ(yn,W )1

{
W > 1/2− 1/n

}
|
]

= P
(
W > 1/2− 1/n

)
E
[
|q(yn, V,W )− 1|ρ(yn,W )

∣∣∣W ∈ In,0]
≥ 1

n
E
[
|V |n/16

]
≥ E

[
|V |
]
/16 = 1/64.

We have shown that lim supy→∞ E
[
|R(y,V,W )|

]
> 0, so that TCI does not hold, which

concludes the counter-example.

3.B.7 Additive Mixture Model (Remark 3.6)

We end this section devoted to examples with a full derivation of the additive mixture
example mentioned in Remark 3.6. We consider here an additive mixture Y = Y1 + Y2.
The first (light-tailed) component is Y1 = V ∈ [a, b] (−∞ < a < b < ∞) ; and the
second (heavy-tailed) one is Y2 = Wξ where W ∈ [c, d] with 0 < c < d < ∞, and ξ
has a continuous survival function Sξ(y) := 1−Fξ(y) satisfying q(y) = yαSξ(y)→ C as
y →∞, for some α,C > 0. In addition, we assume that V and W are independent.
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We show that TCI holds, that is Y∞⊥⊥V
∣∣W . Introducing the function

g(v, w, y) = w−αyαSξ[(y − v)/w],

we have that

sup
[v,w]∈[a,b]×[c,d]

∣∣∣g(v, w, y)− C|

= sup
v,w∈[a,b]×[c,d]

∣∣∣∣(1− v

y

)−α(y − v
w

)α
Sξ

[
y − v
w

]
− c
∣∣∣∣ −−−→y→∞

0.

(3.55)

The last limit relation follows from y−v
w → ∞ and 1 − v/y → 1, uniformly for v, w ∈

[a, b]× [c, d] as y →∞. We have that

P(Y > y|V,W ) = Sξ((y − V )/W ) = Wαy−αg(V,W, y)

P(Y > y|W ) = Wαy−α
∫ b

a
g(v,W, y)f1(v) dv,

P(Y > y) = y−α
∫ d

c

∫ b

a
wαg(v, w, y)f1(v)f2(w) dv dw.

Thus

P
(
Y > y|X

)
− P

(
Y > y|W

)
P
(
Y > y

) =

Wα

{
g(v,W, y)−

∫ b
a g(v,W, y)f1(v) dv

}
∫ d
c

∫ b
a w

αg(v, w, y)f1(v)f2(w) dv dw

By (3.55) and dominated convergence,
∫ d
c

∫ b
a g(v, w, y)f1(v)f2(w) dv dw → cE(Wα) as

y →∞. Regarding the numerator, Cauchy’s inequality implies that

E
∣∣∣∣Wα

{
g(v,W, y)−

∫ b

a
g(v,W, y)f1(v) dv

}∣∣∣∣
≤
√
EW 2α

√√√√E

{
g(v,W, y)−

∫ b

a
g(v,W, y)f1(v) dv

}2

.

The right-hand side tends to zero by noting that EW 2α < ∞ and applying the domi-
nated convergence theorem twice to the second term. The proof is complete.

3.C Proof of Theorem 2

We need to show that
QeE

[
ZZ> − I

∣∣∣ Y > y
]
−−−−→
y→y+

0. (3.56)

Notice first that from (LC) (2.1) and (CCV) (2.2) it holds that Qe(VarZ |PeZ − Ip) =
−QePe = 0. Thus also

QeE
[
ZZ> − Ip

∣∣∣ PeZ] = Qe(VarZ |PeZ − Ip) +QeE[Z |PeZ]E[Z |PeZ]> = QePe = 0.
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As a consequence

QeE
[
(ZZ> − Ip)1

{
Y > y

}]
= QeE

[
E
(

(ZZ> − Ip)1
{
Y > y

}
|PeZ, Y

)]

= QeE
[(

E
[
ZZ> − Ip

∣∣∣ PeZ, Y ]− E
[
ZZ> − Ip

∣∣∣ PeZ])1{Y > y
}]

= QeE
[(

E
[
ZZ>

∣∣∣ PeZ, Y ]− E
[
ZZ>

∣∣∣ PeZ])1{Y > y
}]

Thus in order to show (3.56) it is sufficient to show that for all pair (i, j) ∈ {1, . . . , p}2,
writing py = P

(
Y > y

)
,

p−1
y E

[(
E
[
ZiZj

∣∣∣ PeZ, Y ]− E
[
ZiZj

∣∣∣ PeZ])1{Y > y
}]
−−−−→
y→y+

0 (3.57)

Fixing i, j ≤ p and following the same path as in Theorem 3.11. We decompose the
left-hand side of (3.57) for any A > 0 as a sum C1(A, y) + C2(A, y) where

C1(A, y) = p−1
y E

[(
E
[
ZiZj1

{
‖Z‖ ≤ A

} ∣∣∣∣ PeZ, Y ]− . . .
. . .E

[
ZiZj1

{
‖Z‖ ≤ A

} ∣∣∣∣ PeZ])1{Y > y
}]

,

C2(A, y) = p−1
y E

[(
E
[
ZiZj1

{
‖Z‖ > A

} ∣∣∣∣ PeZ, Y ]− . . .
. . .E

[
ZiZj1

{
‖Z‖ > A

} ∣∣∣∣ PeZ])1{Y > y
}]
.

Point (iii) of Proposition 3 with h = 1 and g(Z) = ZiZj1
{
‖Z‖ ≤ A

}
ensures that

C1(A, y) → 0 as y → y+ for any fixed A. On the other hand, using that |ZiZj | ≤
1
2(|Zi|2 + |Zj |2) ≤ 1

2‖Z‖22 ≤ c‖Z‖2 for some constant c we may bound |C2(A, y)| as
follows,

|C2(A, y)| ≤ p−1
y cE

[
E
[
‖Z‖21

{
‖Z‖ > A

} ∣∣∣∣ PeZ, Y ]1{Y > y
}]

+ . . .

. . . p−1
y cE

[
E
[
‖Z‖21

{
‖Z‖ > A

} ∣∣∣∣ PeZ]1{Y > y
}]

= p−1
y c

(
E
[
‖Z‖21

{
‖Z‖ > A

}
1
{
Y > y

}]
+ E

(
E
[
‖Z‖21

{
‖Z‖ > A

} ∣∣∣∣ PeZ]1{Y > y
}))

= cE
[
h1,A(Z)

∣∣∣ Y > y
]

+ E
[
h2,A(Z)

∣∣∣ Y > y
]
.

Hence, in view of Condition (4.4) for any ε > 0 there exists some A > 0 such that

lim sup
y→y+

|C2(A, y)| ≤ ε,

whence lim supy→y+ |C2(A, y)| + |C1(A, y)| ≤ ε, which shows (3.57) and completes the
proof.
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3.D Proofs and auxiliary results for Section 5

3.D.1 Inverse of empirical c.d.f. ’s and order statistics

The following general fact is used on several occasions in our proofs:

Fact 3.D.1. For u ∈ (0, 1], Ĥ−(u) = T(dnue) and for z ∈ [0, n− 1]:

(Ĥ(Ti) < (z + 1)/n) ⇔ (Ti ≤ Ĥ−(z/n)).

Proof The first statement follows from the definition of Ĥ−. Thus, using (5.1),

Ĥ(Ti) < (z + 1)/n) ⇐⇒ Ti < Ĥ−((z + 1)/n) = T(dz+1e) = T(dze+1)

⇐⇒ Ti ≤ T(dze) = Ĥ−(z/n).

3.D.2 Vervaat’s Lemma

We quote Lemma 4.3 in Segers (2015), which is a variant of “Vervaat’s lemma”, i.e., the
functional delta method for the mapping sending a monotone function to its inverse.

Lemma 3.27. Let G : R→ [0, 1] be a continuous distribution function. Let 0 < rn →∞
and let Ĝn be a sequence of random distribution functions such that, in `∞(R), we have
rn(Ĝn − G)  β ◦ G, as n → ∞, where β is a random element of `∞([0, 1]) with
continuous trajectories. Then β(0) = β(1) = 0 almost surely and as n→∞,

sup
u∈[0,1]

rn|(G{Ĝ−n (u)} − u) + (Ĝn{G−(u)} − u)| = oP(1).

3.D.3 Proof of Lemma 1

Because we only need to show that for any u ∈ Rp, vT Γ̃  vT W̃ , to prove that Γ̃ is
asymptotically tight we may consider the case where q = 1, i.e., h(V ) ∈ R. Denoting

by ψ the derivative of x 7→ E
[
h(V )21

{
{U ≤ x}

}]
, there exist by assumption positive

constants (c0, δ0) such that for all δ ≤ δ0, ψ(δ) ≤ c0. Similarly, because we assume
the existence of Ξ = S(0) (Assumption 2 in Theorem 3), there exist positive constants
(c1, δ1) such that for all δ ≤ δ1, E[h(V )2 |U < δ1] ≤ c1. We assume in the following
argument that k/n ≤ δ0 ∧ δ1.

We apply Theorem 2.11.23 in Van Der Vaart and Wellner (1996) (Classes of functions
changing with n) with

fn,u(V,U) =

√
n

k
h(V )1

{
{U ≤ uk/n}

}
,

Fn = {fn,u : u ∈ [0, 1]},

Fn(V,U) =

√
n

k
|h(V )|1

{
{U ≤ k/n}

}
.
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We start by verifying equation 2.11.21 in Van Der Vaart and Wellner (1996). First, we
have

E
[
Fn(V,U)2

]
≤ c1.

Second, for any η > 0 and M > 0, it holds that (for n, k large enough)

E
[
Fn(V,U)21

{
{Fn(V,U) > η

√
n}
}]

=

(
n

k

)
E

[
|h(V )|21

{
{U ≤ k/n}

}
1

{
{|h(V )|1

{
{U ≤ k/n}

}
> η
√
k}
}]

≤
(
n

k

)
E
[
|h(V )|21

{
{U ≤ k/n}

}
1
{
{|h(V )| > η

√
k}
}]

≤
(
n

k

)
E
[
|h(V )|21

{
{U ≤ k/n}

}
1
{
{|h(V )| > M}

}]
.

Hence

lim sup
n→∞

E
[
Fn(V,U)21

{
{Fn(U) > η

√
n}
}]
≤ S(M).

But M is arbitrary so the latter display is arbitrarily small. Third, by the Mean Value
Theorem, whenever u ≤ t, ∃t̃ ∈ (u, t) such that

E
[
(fn,u(V,U)− fn,t(V,U))2

]
=

(
n

k

)
E
[
h(V )21

{
{uk/n ≤ U ≤ tk/n}

}]
= ψ(t̃k/n)(t− u)

≤ c0(t− u).

This implies that

sup
|u−t|≤δn

E
[
(fn,u(V,U)− fn,t(V,U))2

]
→ 0, as δn → 0.

It remains to check the entropy condition for the class Fn. Let 0 < ε < 1, and denote
by ui = iε, i = 0, . . . , N and uN+1 = 1 with N = b1/εc. Denote respectively by f+

n,u

and f−n,u the positive and negative parts of fn,u and by F+
n ,F−n the associated classes.

The functions (f+
n,ui) (resp. (f−n,ui)) forms an (ε, L2)-bracketing of F+

n (resp. F−n ), i.e.,
for any u ∈ [0, 1], there exists i such that

f+
n,ui ≤ f+

n,u ≤ f+
n,ui+1

,

and

E
[
(f+
n,ui+1

(V,U)− f+
n,ui(V,U))2

]
≤ c0ε.

Similar inequalities remain valid for F−n . Hence considering the functions fn,i = f+
n,ui −

f−n,ui+1
, we have that for u ∈ [ui, ui+1], i = 0, . . . , N ,

fn,u( · ) = f+
n,u( · )− f−n,u( · ) ∈ [fn,i( · ), fn,i+1( · )] ,

thus there exists C > 0 such that

N[ ](ε‖Fn‖L2(P ),Fn, L2(P )) ≤ C/ε2.
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The entropy condition is satisfied as for all δn → 0,∫ δn

0

√
logN[ ](ε‖Fn‖L2(P ),Fn, L2(P )) dε→ 0. (3.58)

Consequently, the process Γ̃ is tight. Finally the covariance functions at s ≤ t are given
by

CovΓ̃h(s), Γ̃h(t) = E
[
n/kh(V )h(V )>1

{
U ≤ sk/n

}]
− · · ·

n/kE
[
h(V )1

{
U ≤ sk/n

}]
E
[
h(V )1

{
U ≤ tk/n

}]
= sE

[
h(V )h(V )>

∣∣∣ U ≤ sk/n]− · · ·
k/n stE

[
h(V )

∣∣∣ U ≤ sk/n]E [h(V )
∣∣∣ U ≤ tk/n]

The first term in the right-hand side converges to s Ξ = (s∧ t) Ξ while the second term
goes to zero from Assumption 3 in Theorem 3’s statement. This concludes the proof.

3.D.4 Proof of Lemma 2

We apply Lemma 3.27 (Vervaat) to the distribution functions

Ĝn(u) =


0 for u < 0

F̂U (uk/n)/F̂U (k/n) for 0 ≤ u ≤ 1
1 for 1 < u

, G(u) =


0 for u < 0
u for 0 ≤ u ≤ 1
1 for 1 < u

.

The quantile functions of Ĝn and G are respectively, for any u ∈ [0, 1],

Ĝ−n (u) =
F̂−U (uF̂U (k/n))

k/n
, G−(u) = u,

Now we prove that the conditions of Lemma 3.27 are satisfied with rn =
√
k and β a

Brownian bridge with covariance function u1 ∧ u2 − u1u2. Define

an =
k/n

F̂U (k/n)

and write

√
k(Ĝn(u)− u) =

( √
k

F̂U (k/n)

)(
F̂U (uk/n)− uF̂U (k/n)

)
= an

√
k

(
n

k
F̂U (uk/n)− un

k
F̂U (k/n)

)
= an

√
k

(
(
n

k
F̂U (uk/n)− u)− u(

n

k
F̂U (k/n)− 1)

)
= an

(
γ̂1(u)− uγ̂1(1)

)
= anγ̂2(u),
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where γ̂1 is defined in (5.12) and

γ̂2(u) = γ̂1(u)− uγ̂1(1). (3.59)

Now use that an → 1 in probability and that supu∈[0,1] |γ̂2(u)| = OP(1) (both are
consequences of Corollary 2) to to conclude (invoking Slutsky’s lemma) that

√
k(Ĝn(u)− u) = γ̂2(u) + (an − 1)γ̂2(u)

= γ̂2(u) + oP(1), (3.60)

where the stochastic convergence oP(1) is uniform in u ∈ [0, 1]. In particular that√
k(Ĝn(u) − u) weakly converges to a Brownian bridge with covariance function u1 ∧

u2 − u1u2. The conclusion of Lemma 3.27 is that

sup
u∈(0,1]

∣∣∣γ̂3(u) +
√
k(Ĝn(u)− u)

∣∣∣ = oP(1),

with
γ̂3(u) =

√
k(Ĝ−n (u)−G−(u)) =

√
k

(
n

k
F̂−U (uF̂U (k/n))− u

)
. (3.61)

Consequently, using (3.60),

sup
u∈(0,1]

∣∣∣γ̂3(u) + γ̂2(u)
∣∣∣ = oP(1). (3.62)

Remark that
√
k
(

(n/k)F̂−U (uk/n)− u
)

= γ̂3(uan) + u
√
k(an − 1). (3.63)

and that, as γ̂1(1) =
√
k((n/k)F̂U (k/n)− 1),

√
k(an − 1) = −anγ̂1(1) (3.64)

Using the triangle inequality and (3.63), we get∣∣∣∣√k ((n/k)F̂−U (uk/n)− u
)

+ γ̂1(u)

∣∣∣∣
=
∣∣∣γ̂3(uan) + u

√
k(an − 1) + γ̂1(u)

∣∣∣
≤
∣∣∣γ̂3(uan) + γ̂2(uan)

∣∣∣+
∣∣∣u√k(an − 1) + γ̂1(u)− γ̂2(uan)

∣∣∣
=
∣∣∣γ̂3(uan) + γ̂2(uan)

∣∣∣+ |γ̂1(u)− γ̂1(uan)|,

where the last line is deduced from (3.64) and γ̂2(u) = γ̂1(u) − uγ̂1(1). Whenever
u ∈ [0, 1/2], we have, with probability going to 1, that uan ∈ [0, 1]. Moreover, because
an → 0 in probability, there exists δn → 0 such that the event |u−uan| ≤ |an| ≤ δn has
probability going to 1. On these events, it holds

sup
u∈(0,1/2]

∣∣∣γ̂3(uan) + γ̂2(uan)
∣∣∣ ≤ sup

u∈(0,1]

∣∣∣γ̂3(u) + γ̂2(u)
∣∣∣ = oP(1)

sup
u∈(0,1/2]

|γ̂1(u)− γ̂1(uan)| = sup
u∈(0,1],v∈(0,1],|u−v|≤δn

|γ̂1(u)− γ̂1(v)| = oP(1).

We have used (3.62) and the asymptotic equicontinuity of γ̂1. Consequently we have
shown that, whenever n→∞, k →∞, we have

sup
u∈(0,1/2]

∣∣∣∣√k ((n/k)F̂−U (uk/n)− u
)

+ γ̂1(u)

∣∣∣∣ = oP(1).

To obtain the stated result, apply this with 2k in place of k.
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3.E Extension to non-standardized covariates

In this section we extend our inverse regression framework to the case of non-standardized
covariates X. Section 3.E.1 recalls standard results for that matter. In Section 3.E.2 the
extensions of the TIREX1 and TIREX2 principles are presented. The proofs of these
results are omitted since they follow from classical arguments from non-standardized
covariates combined with our proofs with standardized covariates from Section 3. In
Section 3.E.3 we show that estimating the mean vector and covariance matrix for stan-
dardization does not change the asymptotic behavior of the latter tail processes.

3.E.1 SIR and SAVE principles with non-standardized covariates

We first recall some necessary background from the theory of inverse regression with
non-standardized covariates, as exposed e.g. in Cook and Weisberg (1991).

SDR spaces

Recall from Section 2 that in terms of non-standardized covariates X = m + Σ1/2Z, a
subspace Ẽ of Rp is a SDR space for the pair (X,Y ) if and only if Ẽ = Σ−1/2E where
E is a SDR space for the pair (Z, Y ). We denote in the sequel by P̃ the orthogonal
projector onto such a SDR space Ẽ and we define Q̃ = Ip − P̃ .

Linearity and constant variance conditions

Conditions LC (2.1) and CCV (2.2) regarding the standardized variable Z are respec-
tively equivalent to

E
[
X|P̃X

]
= b+BP̃X (3.65)

for some b ∈ Rp and B ∈ Rp×p, and

VarX|P̃X is constant a.s. (3.66)

SIR principle and CUME matrix

The extension of the SIR principle (Proposition 1) in terms of non-standardized covari-
ates, is that under condition (3.65), it holds that

Σ−1(E
[
X|Y

]
−m) ∈ Ẽ. (3.67)

As a consequence the CUME matrix defined in (2.3) must be replaced with the matrix
M̃CUME = E

[
m̃(Y )m̃(Y )T

]
, with

m̃(y) = E
[
(X −m)1

{
Y ≤ y

}]
,

in which case it holds that

span(M̃CUME) ⊂ ΣẼ = Σ1/2E.
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SAVE principle

The parallel statement of Proposition 2 is that under conditions (3.65) and (3.66), we
have

span(Σ−1(Var
[
X
∣∣ Y ]− Σ)) ⊂ Ẽ a.s., (3.68)

or equivalently span(Σ−1(E
[
(X −m)(X −m)> |Y

]
− Σ)) ⊂ Ẽ.

3.E.2 TIREX principles with non-standardized covariates

It follows from Definition 3 that Ee is an extreme SDR space for the pair (Z, Y ) if and
only if Ẽe = Σ−1/2Ee is an extreme SDR space for the pair (X,Y ), in the sense that,
denoting by P̃e the orthogonal projection on Ẽe, Y∞ ⊥⊥ X | P̃eX.

We now state the analogue statement to Theorem 1 in terms of the non-standardized
covariate X.

Proposition 3.28 (non-standardized TIREX1 principle). The assumptions of Theo-
rem 1 are equivalent to

1. limA→∞ lim supy→y+ E
[
g̃k,A(X)

∣∣∣ Y > y
]

= 0, k = 1, 2 where g̃1,A(X) = ‖X‖1
{
‖X‖ > A

}
and g̃2,A(X) = E

[
‖X‖1

{
‖X‖ > A

} ∣∣∣∣ P̃eX], where P̃e is the orthogonal projector

on Ẽe = Σ−1/2Ee.

2. The covariate vector satisfies the non-standardized Linearity Condition (3.65)

3. For some ˜̀∈ Rp, with m = E
[
X
]

E
[
X
∣∣ Y > y

]
−m −−−−→

y→y+
˜̀. (3.69)

In such a case ˜̀ = Σ1/2` where ` is the limit defined in Theorem 1 and the conclusion
is that

Σ−1 ˜̀∈ Ẽe.

Proposition 3.29 (non-standardized TIREX2 principle). Assume that (X,Y ) and
the extreme SDR space satisfy the assumptions of Proposition 3.28 (non-standardized
TIREX1 principle) and that in addition,

1. (second order uniform integrability):

lim
A→∞

lim sup
y→y+

E
[
h̃k,A(X)

∣∣∣ Y > y
]

= 0, k = 1, 2 , (3.70)

where h̃1,A(X) = ‖X‖21
{
‖X‖ > A

}
and h̃2,A(X) = E

[
‖X‖21

{
‖X‖ > A

} ∣∣∣∣ P̃eX],
2. (CCV) The covariate vector X satisfies the non-standardized constant variance

condition (3.66) relative to P̃e,
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3. (Convergence of conditional expectations) For some S̃ ∈ Rp×p,

E
[
XX>

∣∣∣ Y > y
]
−−−−→
y→y+

S̃ + ˜̀̀̃ >, (3.71)

where ˜̀ is the limit appearing in Proposition 3.28.

Then
span(Σ−1(S̃ − Σ)) ⊂ Ẽe,

i.e. Q̃eΣ−1(S̃ − Σ) = 0.

3.E.3 Estimation with non-standardized covariates

Consider the non-standardized versions of the matrices MTIREX1,MTIREX2 from Sec-
tion 5 defined as follows:

M̃TIREX1 =

∫ 1

0
Cmn (u)Cmn (u)> du , with

Cmn (u) =
n

k
E
[
(X −m)1

{
Ỹ < F−(uk/n)

}]
,

(3.72)

and

M̃TIREX2 =

∫ 1

0
Bm,Σ
n (u)Bm,Σ

n (u)> du , with

Bm,Σ
n (u) =

n

k
E
[(

(X −m)(X −m)> − Σ
)
1
{
Ỹ < F−(uk/n)

}]
.

(3.73)

In view of Propositions 3.28 and 3.29, under the same assumptions therein, span(M̃TIREX1)
and span(M̃TIREX2) become close to ΣẼe as n→∞, in the sense that

lim
n→∞

Q̃eΣ
−1M̃TIREX1 = lim

n→∞
Q̃eΣ

−1M̃TIREX2 = 0,

where Q̃e is the orthogonal projector on Ẽ⊥e .

Notice that we can write Cmn , B
m,Σ
n in terms of Cn, Bn as follows:

Cmn (u) = Σ1/2Cn(u)

Bm,Σ
n (u) = Σ1/2Bn(u)Σ1/2

(3.74)

Despite the apparent simplicity of (3.74), in the estimation step with unknown covari-
ate’s mean and covariance, one must replace m and Σ in Equations (3.72) and (3.73)
with some estimates, e.g. the empirical ones which we denote by m̂, Σ̂. Namely we
consider the processes

Ĉm̂n (u) =
1

k

n∑
i=1

(Xi − m̂)1
{
Ỹi ≤ F̂−(uk/n)

}
,

B̂m̂,Σ̂
n (u) =

1

k

n∑
i=1

(
(Xi − m̂)(Xi − m̂)> − Σ̂

)
1
{
Ỹi ≤ F̂−(uk/n)

}
]

(3.75)
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and define the non-standardized TIREX1 and TIREX2 tail empirical processes respec-
tively as

√
k

(
Ĉm̂n − Cmn

)
and
√
k

(
B̂m̂,Σ̂
n −Bm,Σ

n

)
. (3.76)

We assume that the conditions for the Central Limit Theorem regarding the estimators
m̂ and Σ̂ are met. For instance, we assume that X admits fourth order moments, an
assumption which is needed anyway for the weak convergence of the TIREX2 process,
see Corollary 1. Thus we work under the assumption that

m̂ = m+OP(1/
√
n) ; Σ̂ = Σ +OP(1/

√
n). (3.77)

Proposition 3.30 (Weak convergence of non-standardized TIREX processes). Under
Assumption (3.77),

1. The standardized TIREX1 process
√
k(Ĉn −Cn) converges weakly in `∞([0, 1]) to

a tight Gaussian process W1 if and only if its non-standardized version defined
in (3.76) converges weakly, in the same space, to the Gaussian process Σ1/2W1.

2. If weak convergence of the TIREX1 process holds true, then the standardized
TIREX2 process

√
k(B̂n −Bn) converges weakly in `∞([0, 1]) to a tight Gaussian

process W2 if and only if its non-standardized version defined in (3.76) converges
weakly, in the same space, to the Gaussian process Σ1/2W2Σ1/2.

Proof [Proof of Proposition 3.30]

1. Substituting X −m with Σ1/2Z we obtain

Ĉm̂(u) =
1

k

n∑
i=1

Σ1/2(Zi +m− m̂)1
{
Ỹi ≤ F̂−(uk/n)

}
= Σ1/2

{
Ĉn(u) + ∆n(u)(m− m̂)

}
(3.78)

where Ĉn is defined in (5.5) in terms of Z and

∆n(u) :=
n

k
F̂
(
F̂−(uk/n)

)
≤ n

k
F̂
(
F̂−(k/n)

)
=
n

k
F̂ (Ỹ(k)) = 1. (3.79)

Combining the latter upper bound, (3.78) and (3.74) we obtain

√
k
(
Ĉm̂n − Cmn

)
= Σ1/2

√
k(Ĉn(u)− Cn(u)) +Rn(u), (3.80)

where supu∈[0,1]Rn(u) = OP(
√
k/n) = oP(1) and the main term

√
k(Ĉn(u) −

Cn(u)) is the standardized TIREX1 process. The first assertion of the statement
follows from the Slutsky’s lemma.
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2. The argument for the second order method is similar though the computation is
more involved. We have

B̂m̂,Σ̂
n (u) = Σ1/2

{
1

k

∑
i≤n

((
Zi + Σ−1/2(m− m̂)

)(
Zi + Σ−1/2(m− m̂)

)>
− Σ−1/2Σ̂Σ−1/2

)
× · · ·

· · ·1
{
Ỹi ≤ F̂−(uk/n)

}}
Σ1/2

= Σ1/2
{
B̂n(u) +A1,n∆n(u) +A2,n(u)

}
Σ1/2

with ∆n(u) ≤ 1 as in (3.79) and

A1,n =
(
Ip − Σ−1/2Σ̂Σ−1/2

)
+ Σ−1/2(m− m̂)(m− m̂)>Σ−1/2 ,

A2,n = Σ−1/2(m− m̂)Ĉ>n (u) + Ĉn(u)(m− m̂)>Σ−1/2.

Under the assumption that the TIREX1 empirical process converges weakly we
have that supu Ĉn(u) = OP(1), and using (3.77) and (3.74) we obtain

√
k

(
B̂m̂,Σ̂
n (u)−Bm,Σ

n (u)

)
= Σ1/2

√
k

(
B̂n(u)−Bn(u)

)
Σ1/2 +R′n(u)

with supuR
′
n(u) = OP(

√
k/n) = oP(1). The second assertion follows.
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4.1 Introduction

Consider the problem of binary classification with covariate X and target Y ∈ {−1, 1}.
The flagship approach to this problem in statistical learning is Empirical Risk Mini-
mization (ERM), which produces approximate minimizers of R(g) = E

[
`(g(X), Y )

]
,

given a loss function ` and a family of candidate classifiers g ∈ G, with the help of
observed data. with classifier g, `g(X,Y ) = `(g(X), Y ). However, when the under-
lying distribution is imbalanced, that is p = P(Y = +1) is relatively small, mini-
mizing empirical version of R often leads to trivial classification rules for which the
majority class is always predicted, because minimizing R(g) in that case is similar to
minimizing E

[
`(g(X), Y ) |Y = −1

]
. Indeed by the law of total probabilities, R(g) =

pE
[
`(g(X), Y ) |Y = +1

]
+ (1− p)E

[
`(g(X), Y ) |Y = −1

]
and the former term is neg-

ligible with respect to the latter when p � 1. For this reason, even though standard
ERM approaches might enjoy satisfactory generalization properties over imbalanced
distributions, with respect to the standard risk R, they may lead to unpleasantly high
false negative rates and in general the average error on the minority class has no reason
to be small, as its contribution to the overall risk R is negligible. This is typically what
should be avoided in many applications when false negatives are of particular concern,
among which medical diagnosis or anomaly detection for aircraft engines, considering
the tremendous cost of an error regarding a positive example.

Bypassing the shortcoming described above is the main goal of many works regarding
imbalanced classification. The existing literature may be roughly divided into oversam-
pling approaches such as SMOTE and GAN (Chawla et al., 2002; Mariani et al., 2018),
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undersampling procedures (Liu et al., 2009; Triguero et al., 2015) and risk balancing
procedures also known as cost-sensitive learning (Scott, 2012; Xu et al., 2020c). Here
we focus on the latter approach which enjoys numerous benefits, including simplicity,
improved decision-making (Elkan, 2001a; Viaene and Dedene, 2005) , improved class
probability estimation (Wang et al., 2019a; Fu et al., 2022), better resource allocation
(Xiong et al., 2015; Ryu et al., 2017) and increased fairness (Menon and Williamson,
2018; Agarwal et al., 2018). By incorporating the varying costs of misclassification
into the learning process, it enables models to make more informed and accurate pre-
dictions for the minority class, leading to higher-quality predictions. Balancing the
risk consists of minimizing risk measures that differ significantly from the standard
empirical risk, by means of an appropriate weighting of the negative and positive er-
rors, in order to achieve a balance between the contributions of the positive and neg-
ative classes to the overall risk. In the present chapter we consider the balanced-risk,
Rbal(g) = E

[
`(g(X), Y ) |Y = +1

]
+ E

[
`(g(X), Y ) |Y = −1

]
. Other metrics might be

considered as detailed for instance in Table 1 in Menon et al. (2013a) which we do not
analyze here for the sake of conciseness, even though our techniques of proof may be
straightforwardly extended to handle these variants.

Empirical risk minimization based on the balanced risk is a natural idea, which is
widely exploited by practitioners and has demonstrated its practical relevance in several
operational contexts (Elkan, 2001b; Sun et al., 2007; Wang et al., 2016; Khan et al.,
2018; Pathak et al., 2022). From a theoretical perspective, class imbalance has been
the subject of several works. For instance, the consistency of the resulting classifier is
investigated in Koyejo et al. (2014). Several different risk measures and loss functions are
considered in Menon et al. (2013a) where results of asymptotic nature are established,
for fixed p > 0, as n→∞. Also in the recent work by Xu et al. (2020c), generalization
bounds are established for the imbalanced multi-class problem for a robust variant of
the balanced risk considered here. Their main results from the perspective of class
imbalance, is their Theorem 1 where the upper bound on the (robust) risk includes
a term scaling as 1/(p

√
n). A related subject is weighted ERM where the purpose

is to learn from biased data (see e.g. Vogel et al. (2020); Bertail et al. (2021) and
the references therein), that is, the training distribution and the target distribution
differ. The imbalanced classification problem may be seen as a particular instance of
this transfer learning problem, where the training distribution is imbalanced and the
target is a balanced version of it with equal class weights. A necessary assumption
in Bertail et al. (2021) is that the density of the target with respect to the source is
bounded, which in our context is equivalent to requiring that p is bounded away from 0,
an explicit assumption in Vogel et al. (2020) where the main results impose that p > ε
for some fixed ε > 0.

The common working assumption in the cited references that p is bounded from below,
renders their application disputable in concrete situations where the number of positive
examples is negligible with respect to a wealth of negative instances. To our best
knowledge the literature is silent regarding such a situation. More precisely, we have
not found neither asymptotic results covering the case where p depends on n in such a
way that p→ 0 as n→∞; nor finite sample bounds which would remain sharp even in
situations where p is much smaller than 1/

√
n. Such situations arise in many examples

in machine learning (see e.g. the motivating examples in the next section). However,
existing works assume that the sizes of both classes are of comparable magnitude, which
leaves a gap between theory and practice. A possible explanation is that existing works
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do not exploit the full potential of the low variance of the loss functions on the minority
class typically induced by boundedness assumptions combined with a low expected value
associated with a small p.

It is the main purpose of this work to overcome this bottleneck and obtain generaliza-
tion guarantees for the balanced risk which remain sharp even for very small p, that is,
under sever class imbalance. Our purpose is to obtain upper bounds on the deviations of
the empirical risk (and thus on the empirical risk minimizer) matching the state-of-the
art, up to replacing the sample size n with np, the mean size of the rare class. To our
best knowledge, the theoretical results which come closest to this goal are normalized
Vapnik-type inequalities (Theorem 1.11 in Lugosi (2002)) and relative deviations (Sec-
tion 5.1 in Boucheron et al. (2005)). However the latter results only apply to binary
valued functions and as such do not extend immediately to general real valued loss
functions which we consider in this chapter, nor do they yield fast rates for imbalanced
classification problems, although relative deviations play a key role in establishing fast
rates in standard classification as reviewed in Section 5 from Boucheron et al. (2005).
Also, as explained above, we have not found any theoretical result regarding imbal-
anced classification which would leverage these bounds in order to obtain guarantees
with leading terms depending on np instead of n.

Our main tools are (i) Bernstein-type concentration inequalities (that is, upper bounds
including a variance term) for empirical processes that are consequences of Talagrand
inequalities such as in Giné and Guillou (2001), (ii) fine controls of the expected devi-
ations of the supremum error in the vicinity of the Bayes classifier, by means of local
Rademacher complexities Bartlett et al. (2005); Bartlett and Mendelson (2006). Our
contributions are two-fold.
1. We establish an estimation error bound on the balanced risk which holds true for
VC classes of functions, which scales as 1/

√
np instead of the typical rate 1/

√
n in well-

balanced problem, or 1/(p
√
n) in existing works regarding the imbalanced case (e.g. as

in Xu et al. (2020c)). Thus, in practice, our setting encompasses the case where p� 1
(severe class imbalanced) and our upper bound constitutes a crucial improvement by
a factor √p compared with existing works in imbalanced classification. Applying the
previous bound to the k-nearest neighbor classification rule, we obtain the following new
consistency result: as soon as kp goes to infinity, the nearest neighbors classification
rule is consistent in case of relative rarity.
2. We obtain fast rates for empirical risk minimization procedures under an additional
classical assumption called a Bernstein condition. Namely we prove upper bounds on
the excess risk scaling as 1/(np), which matches fast rate results in the standard, bal-
anced case, up to replacing the full sample size n with the expected minority class size
np. To our best knowledge such fast rates are the first of their kind in the imbalanced
classification literature.

Outline. Some mathematical background about imbalanced classification and some
motivating examples are given in Section 4.2. In Section 4.3, we state our first non-
asymptotic bound on the estimation error over VC class of functions and consider appli-
cation to k-nearest neighbor classification rules. In Section 4.4, fast convergence rates
are obtained and an application to ERM is given. Finally, some numerical experiments
are provided in Section 4.5 to illustrate the theory developed in the chapter. All proofs
of the mathematical statements are in the appendix.
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4.2 Definition and notation

Consider a standard binary classification problem where random covariates X, defined
over a space X , are employed to distinguish between two classes defined by their labels
Y = 1 and Y = −1. The underlying probability measure is denoted by P and the
associated expectancy, by E. The law of (X,Y ) on the sample space X × Y := X ×{
−1, 1

}
, is denoted by P . We assume that the label Y = 1 corresponds to minority

class, i.e., p = P(Y = 1)� 1. In the sequel we assume that p > 0, even though p may
be arbitrarily small.

We adopt notation from empirical process theory. Given a measure µ on X × Y and
a real function f defined over X × Y, we denote µ(f) =

∫
fdµ. Then f = 1C for a

measurable set C, we may write interchangeably µ(f) = µ(1C) = µ(C). We denote by
P+ the conditional law of (X,Y ) given that Y = +1, thus

P+(f) =
E(f(X,Y )1

{
Y = 1

}
)

p
= E(f(X,Y ) | Y = 1).

In addition, we denote by Var+(f) the conditional variance of f(X,Y ) given that Y =
+1. The conditional distribution and variance P− and Var− are defined similarly,
conditional to Y = −1.

In this chapter we consider general discrimination functions (also called scores) g :
X → R and loss functions ` : R× {−1, 1} → R, and our results will hold under bound-
edness and Vapnik-type complexity assumptions detailed below in Sections 4.3, 4.4.
Given a score function g and a loss `, it is convenient to introduce the function `g :
(x, y) 7→ `(g(x), y). With this notation the (unbalanced) risk of the score function g is
R(g) = E[`g

(
X,Y

)
]. Notice that the standard 0 − 1 misclassification risk, R0−1(g) =

P
(
g(X) 6= Y

)
, is retrieved when g takes values in {−1, 1} and `(g(x), y) = 1

{
g(x) 6= y

}
,

or when g is real valued and `(g(x), y) = sign(−g(x)y). Allowing for more general
scores and losses is a standard approach in statistical learning allowing to bypass the
NP-hardness of the minimization problem associated with R0−1. Typically (although
this is not formally required for our results to hold), the function `g takes the form
`g(x, y) = φ

(
−g(x)y

)
, where φ is convex and differentiable with φ′(0) < 0 (Zhang,

2004b; Bartlett et al., 2006a). This ensures that the loss is classification calibrated and
that R(g) = E

[
`g
(
X,Y

)]
is a convex upper bound of R0−1(g). Various consistency

results ensuring that g? = arg ming∈RX R(g) = arg ming∈RX R0−1(g) can be found in
Bartlett et al. (2006a). Examples include the logistic (φ(u) = log(1+e−u)), exponential
(φ(u) = e−u), squared (φ(u) = (1− u)2), and hinge loss (φ(u) = max(0, 1− u)).

The balanced 0 − 1 risk is defined as R0−1
bal (g) = (P+(Y 6= g(X)) + P−(Y 6= g(X)))/2

and is referred to as the AM measure in existing literature (Menon et al., 2013a).
The minimizer of the latter risk, g?bal, is known as the balanced Bayes classifier. It
returns 1 when η(X) = P(Y = 1 |X) ≥ p and −1 otherwise (refer to Theorem 2 or
or Proposition 2 in Koyejo et al. (2014)). In the present work we consider a general
balanced risk allowing for a real-valued loss function `g, defined for g ∈ G as

Rbal(g) =
1

2

(
P+(`g) + P−(`g)

)
.
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Given an independent and identically distributed sample (Xi, Yi)1≤i≤n according to
P , we denote by Pn the empirical measure, Pn(f) = (1/n)

∑n
i=1 f(Xi, Yi), for any

measurable and real-valued function f on X × Y. While the standard risk estimate
is simply expressed as Pn(`g) for any g ∈ G, the balanced empirical risk is necessarily
defined in terms of empirical conditional measures,

Pn,+(f) =
Pn(f1

{
Y = 1

}
)

pn
,

where by convention Pn,+(f) = 0 when pn = Pn(Y = 1) = 0. The empirical measure of
the negative class, Pn,−, is defined in a similar manner. Finally the balanced empirical
risk considered in this thesis is

Rn,bal(g) =
1

2

(
Pn,+(`g) + Pn,−(`g)

)
.

Motivating Examples We now present two examples where the probability p → 0
as n→∞ :

1. The first example is the problem of contaminated data which is central in the
robustness literature. A common theoretical assumption is that the number of
anomalies n0 grows sub-linearly with the sample size, as discussed in (Xu et al.,
2012; Staerman et al., 2021a). In this context, n0 = na for some a < 1 and
consequently, p = na−1 → 0.

2. The second example pertains to Extreme Value Theory (EVT) (Resnick, 2013;
Goix et al., 2015; Jalalzai et al., 2018; Aghbalou et al., 2023). Consider a con-
tinuous positive random variable T , predicting exceedances over arbitrarily high
threshold t may be viewed as a binary classification problem. Indeed for fixed t,
consider the binary target Y = 1

{
T > t

}
− 1

{
T ≤ t

}
with marginal class prob-

ability p = P (T > t). The goal is thus to predict Y , by means of the covariate
vector X.

One major goal of EVT is to learn a classifcation model for extremely high tresh-
olds t. In practice, EVT based approaches set the threshold t as the 1 − α
quantile of T with α = k/n→ 0 and k = o(n). This approach essentially assumes
that the positive class consists of the k = o(n) largest observations of T so that
P (T > t) = P (Y = 1) = k/n→ 0.

4.3 Standard learning rates under relative rarity

4.3.1 Concentration bound

The primary goal of this chapter is to assess the error associated with estimating the
balanced risk Rbal(g) using the empirical balanced risk Rn,bal(g). Given the definition
of the balanced risk, the quantity of interest takes the form (Pn,+ − P+)(f), and a
similar analysis applies to (Pn,− − P−)(f).In this chapter we control the complexity of
the function class via the following notion of VC-complexity.
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Definition 4.1. The family of functions F is said to be of VC-type with constant
envelop U > 0 and parameter (v,A) if F is bounded by U and for any 0 < ε < 1 and
any probability measure Q on (S,S), we have

N
(
F , L2(Q), εU

)
≤ (A/ε)v.

The connection between the usual VC definition (Vapnik and Chervonenkis, 1971) and
Definition 4.1 can be directly established through Haussler’s inequality (Haussler, 1995),
which indicates that the covering number of a class of binary classifiers with VC dimen-
sion v (in the sense of Vapnik and Chervonenkis (1971)) is given by

N
(
ε,F , L2(Q), ε

)
≤ Cv(4e)vε−2v =

(
2
√
e(Cv)1/v

ε

)2v

,

for some universal constant C > 0. Thus a VC-class of functions in the sense of Vapnik
and Chervonenkis (1971) is necessarily a VC-type class in the sense of Definition 4.1.

Notice that within a class F with envelop U > 0, the following variance bounds are
automatically satisfied:

σ2
+, σ

2
− = sup

f∈F
Var+(f), sup

f∈F
Var−(f) ≤ U2.

The following theorem states a uniform generalization bound that incorporates the
probability of each class in such a way that the deviations of the empirical measures
are controlled by the expected number of examples in each class, np and n(1 − p).
Interestingly the deviations may be small even for small p, as soon as the product np is
large. The bound also incorporates the conditional variance of a class (σ2

+, σ
2
−), which

will play a key role in our application to nearest neighbors.

Theorem 4.2. Let F be of VC-type with constant envelop U and parameter (v,A). For
any n and δ such that

np ≥ max

[
U2

σ2
+

v log

(
K ′A/

(
2δ
√
p
))

, 8 log(1/δ)

]
we have with probability 1− δ,

sup
f∈F

∣∣∣Pn,+(f)− P+(f)
∣∣∣ ≤ 4K ′σ+

√
v

np
log
(
K ′A/(2δ

√
p)
)

For some universal constant K ′ > 0. We also have with probability 1− δ,

sup
f∈F

∣∣∣Pn,−(f) − P−(f)
∣∣∣ ≤ 4K ′σ−

√
v

n(1− p) log
(
K ′A/(2δ

√
(1− p))

)
.

Remark 4.3. This upper bound extends Theorem 1.11 in Lugosi (2002), which is lim-
ited to a binary class of functions characterized by finite shatter coefficients. The ex-
tension is possible by utilizing results from Plassier et al. (2023). It is crucial to rec-
ognize that all existing non-asymptotic statistical rates in the imbalanced classification
literature (Menon et al., 2013a; Koyejo et al., 2014; Xu et al., 2020c) follow the rate
1/(pn

√
n), leading to a trivial upper bound when pn ≤ 1/

√
n. In our analysis, the

upper bound remains consistent provided that npn → ∞, thereby emphasizing the mer-
its of using concentration inequalities incorporating the variance of the positive class
Var(f1

{
y = 1

}
) ≤ Up� 1.
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The next corollary, which derives from Theorem 4.2 together with standard arguments,
provides generalization guarantees for ERM algorithms based upon the balanced risk.
Namely it gives an upper bound on the excess risk of a minimizer of the balanced risk.
The proof is provided in the supplementary material for completeness.

Corollary 4.4. Suppose that {`g : g ∈ G} is VC-type with envelop U and parameter
v,A. Under the conditions of Theorem 4.2, we have, with probability 1− δ,

Rbal

(
ĝbal

)
≤ Rbal

(
g?bal

)
+ 4K ′σmax

√√√√√v log

(
K ′A/

(
2δ
√
p
))

np
,

where σmax = max
(
σ+, σ−

)
≤ U and K ′ > 0 is a universal constant.

The previous result shows that whenever np→∞, learning from ERM based on a VC
class of functions is consistent. Another application of our result pertains to k-nearest
neighbor classification algorithms. In this case the sharpness of our bound is fully
exploited by leveraging the variance term σ+. This is the subject of the next section.

4.3.2 Balanced k-nearest neighbor

In the context of imbalanced classification, we consider here a balanced version of the
standard k-nearest neighbor (k-NN for short) rule, which is designed in relation with
the balanced risk R∗bal(g). We establish the consistency of the balanced k-NN classifier
with respect to the balanced risk.

Let x ∈ Rd and ‖ · ‖ be the Euclidean norm on Rd. Denote by B(x, τ) the set of points
z ∈ Rd such that ‖x− z‖ ≤ τ . For n ≥ 1 and k ∈ {1, . . . , n}, the k-NN radius at x is
defined as

τ̂n,k,x := inf

τ ≥ 0 :

n∑
i=1

1B(x,τ)(Xi) ≥ k

 .

Let In(x) be the set of index i such that Xi ∈ B(x, τ̂n,k,x) and define the estimate of
the regression function η(x) as

η̂n(x) =
1

k

∑
i∈In(x)

1Yi=1.

While standard NN classification rule is a majority vote following η̂n(x), i.e., predict 1
whenever η̂n(x) ≥ 1/2, it is natural, in view of well known results recalled in Section 4.2,
to consider a balanced classifier ĝn for imbalanced data predicts 1 whenever η̂n(x) ≥ pn,
that is ĝn = sign(η̂n(x)/pn − 1).

The analysis of the k-NN classification rule is conducted for covariates X that admit a
density with respect to the Lebesgue measure. We will need in addition that the support
SX is well shaped and that the density is lower bounded. These standard regularity
conditions in the k-NN literature are recalled below.

(X1) The random variable X admits a density fX with compact support SX ⊂ Rd.
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(X2) There is c > 0 and T > 0 such that

∀τ ∈ (0, T ], ∀x ∈ SX , λ(SX ∩B(x, τ)) ≥ cλ(B(x, τ)),

where λ is the Lebesgue measure.

(X3) There is 0 < bX ≤ UX < +∞ such that

bX ≤ fX(x) ≤ UX , ∀x ∈ SX .

In light of Proposition 4.15 (stated in the supplement), we consider the estimation of
ν∗(x) := η(x)/p using the k-NN estimate η̂n/pn. The proof, which is postponed to
the supplementary file, crucially relies on arguments from the proof of our Theorem 4.2
combined with known results concerning the VC dimension of Euclidean balls (Wenocur
and Dudley, 1981).

Theorem 4.5. Suppose that (X1) (X2) and (X3) are fulfilled and that x 7→ η(x)/p is
L-Lipschitz on SX . Then whenever pn/ log(n)→∞, k/ log(n)→∞ and k/n→ 0, we
have, with probability 1,

sup
x∈X
|η̂n(x)/pn − ν∗(x)| = O


√

log(n)

kp
+

(
k

n

)1/d
 .

The consistency of the balanced k-NN with respect to the AM risk, encapsulated in the
next corollary, follows from Theorem 4.5 combined with an additional result (Proposi-
tion 4.15) relating the deviations of the empirical regression function with the excess
balanced risk.

Corollary 4.6. Suppose that (X1) (X2) and (X3) are fulfilled and that x 7→ η(x)/p is
L-Lipschitz on SX . Then whenever p ≤ 1/2, kp/ log(n) → ∞ and k/n → 0, we have,
with probability 1,

R∗bal(ĝn)→ R∗bal(g∗bal).

The principal interest of Corollary 4.6 is that the condition for consistency involves the
product of the number of neighbors k with the rare class probability p. The take-home
message is that learning nonparametric decision rules is possible with imbalanced data,
as soon as kp is large enough. In other words local averaging process should be done
carefully to ensure a sufficiently large expected number of neighbors from the rare class.

4.4 Fast rates under relative rarity

4.4.1 A concentration bound for balanced measures

We now state and prove a concentration inequality that is key to obtain fast convergence
rates for excess risk in the context of balanced ERM. Prior to stating this main result,
we define a weighted class F̃ as

F̃ =

{
1

2
fI1 +

1

2

p

1− pfI−1 | f ∈ F
}
,
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where Is(x, y) = 1
{
y = s

}
for (x, y) ∈ X × Y ans s ∈ {−1, 1}. Moreover, for a given

measure P , we denote a balanced counterpart of P as Pbal(f) = 1
2

(
P+(f) + P−(f)

)
.

Theorem 4.7. Suppose that F is of VC-type with envelop U ≥ 1 and parameter v,A ≥
1. Assume that there is some constant B such that for every f̃ ∈ F̃ , P

(
f̃2
)
≤ BPf̃ .

Then, with c1 = 5, c2 = 22U , for any K > 1 and every δ > 0, with probability at least
1− 3δ,

∀f ∈ F Pbal(f) ≤ K

K − 1
Pn,bal(f)

1 +

√
3 log(1/δ)

np

+
DK

B

log(An)2

np
+ UB,K

log(1/δ)

np
.

Also, with probability at least 1− 2δ,

∀f ∈ F Pn,bal(f)

1−
√

2 log(1/δ)

np

 ≤ K + 1

K
Pbal(f) +

DK

B

log(An)2

np
+ UB,K

log(1/δ)

np
,

where D = 8
1
v (v + 1)CAUC1C2, C > 0 is universal constant, C1 = 1/

√
log(8A),

C2 =
√

2
(

max(log(4AU)/ log(8A), 1) +
√

2
)
and UB,K = c2 + c1BK.

Proof [Sketch of proof]

The main tool for the proof is Theorem 3.3 in Bartlett et al. (2005) recalled for com-
pleteness in the supplementary material (Theorem 4.21). More precisely, the argument
from the cited reference relies heavily on a fixed point technique relative to a subroot
function upper bounding the a local variance term. We establish that the fixed point
r? involved in the argument satisfies an inequality of the form

r? ≤ O
(

log(A/r?)√
n

)
.

Using this inequality along with the latter theorem and Lemma 7 from Cucker et al.
(2002) yields, with high probability, for any f̃ ∈ F̃ ,

P (f̃) ≤ K

K − 1
Pn(f̃) +O

(
log(An)2

n

)
.

It remains to notice that in our context of imbalanced classification, for

f̃ =
1

2
fI1 +

1

2

p

1− pfI−1,

one has P (f̃) = pPbal(f). The result follows by an application of a Chernoff bound
(Theorem 4.12) The full proof can be found in the supplement, in Section 4.C.

Discussion. Similar proof techniques can be found in the standard classification liter-
ature, for example Corollary 3.7 in Bartlett et al. (2005). Nevertheless, this particular
work primarily concentrates on loss functions with binary values, namely

{
0, 1
}
. The
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proof is based upon the fact that these functions are positive, and it employs the con-
ventional definition of the VC dimension. In contrast, other existing works (e.g. The-
orem 2.12 in Bartlett and Mendelson (2006) or Example 7.2 in Giné and Koltchinskii
(2006)) demonstrate accelerated convergence rates for the typical empirical risk mini-
mizers, which do not extend to their balanced counterparts. The present result is more
general, as it is uniformly applicable to a broader range of bounded functions and encom-
passes a more extensive definition of the VC class. This notable extension facilitates
the establishment of fast convergence rates for the excess risk of (ML) algorithms em-
ployed in imbalanced classification scenarios, such as cost-sensitive logistic regression
and balanced boosting (Menon et al., 2013a; Koyejo et al., 2014; Tanha et al., 2020;
Xu et al., 2020c). In the next section we provide examples of algorithms verifying the
assumptions of Theorem 4.7.

As an application of Theorem 4.7, we derive fast rates for the excess risk of empirical risk
minimizers. The following assumption, known as the Bernstein condition, is a prevalent
concept within the fast rates literature (Bartlett and Mendelson, 2006; Klochkov and
Zhivotovskiy, 2021a).

Definition 4.8. We say that the triplet (G, P, `) satisfy the Bernstein condition if for
some B > 0 it holds that,

∀g ∈ G , E
[(
`g(X,Y )− `g?(X,Y )

)2
]
≤ B

(
R(g)−R(g?)

)
,

where g? = arg ming∈G R[g] = arg ming∈G E
[
`g(X,Y )

]
.

Set
˜̀
g = `gI1 +

p

1− p`gI−1,

and notice that Rbal

(
g
)

= E
[
˜̀
g(X,Y )

]
/p, so that

g?bal = arg min
g∈G

P (˜̀
g) = arg min

g∈G
Rbal

(
g
)
.

In the sequel we shall suppose that the latter condition holds for (G, P, ˜̀) in order to
apply Theorem 4.7 and obtain fast convergence rates for the excess risk. The proof is
deferred to the supplementary material.

Corollary 4.9. Suppose that F = {`g : g ∈ G} is VC, L-bounded and assume that
(F , P, ˜̀) satisfy the Bernstein condition for some B > 0. Then, for any δ > 0, we have
with probability 1− 4δ,

Rbal

(
ĝbal

)
≤ Rbal

(
g?bal

)
+
D

B

log(An)2

np
+

log(1/δ)
(
c2 + c1B

)
np

,

where the constants appearing in the latter inequality are the same as in Theorem 4.7.

In the following lemma, we provide a sufficient condition for the Bernstein assumption
(Definition 4.8). The proof and the definition of strongly convex function is given in
the supplement.
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Lemma 4.10. Suppose that the family G is a normed space. if g 7→ E
[
`g(X,Y )

]
is L-Lipschitz and λ-strongly convex, then (F , P, ˜̀) verifies the Bernstein assumption
(Definition 4.8) with B = 2L2/λ.

We conclude this section by an illustration of the significance of our results, through
the concrete example of a constrained empirical risk minimization problem over a linear
class of classifiers 1. We show that fast rates of convergence are achieved provided
that the covariate space X ∈ Rd is bounded and the loss is twice differentiable with a
second derivative lower bounded away from 0. More precisely, we make the following
assumption.

Assumption 6. The space X is bounded in Rd i.e. , there exists some ∆X > 0 such as
∀x ∈ X , ‖x‖ ≤ ∆X for a given norm ‖ · ‖. Furthermore, the family of classifier and the
loss function are chosen as Gu =

{
g(x) = βTx |

∥∥β∥∥ ≤ u} and `g(X,Y ) = φ(βTXY ),

where φ : R 7→ R is a twice differentiable function verifying inf |x|≤u∆X
φ
′′
(x) > λ for

some λ > 0.

An immediate implication of the aforementioned assumption is that, identifying g with
β, we have supx,y

∥∥∥ ∂
∂g `g(x, y)

∥∥∥ <∞ which ensures that the risk is Liptchitz. In addition
this assumption guarantees that the risk is λ-strongly convex with respect to g. The
following corollary is a direct consequence of Corollary 4.9 and guarantees fast rates of
convergence for constrained ERM, specifically for algorithms of the form ĝu,bal(x) = β̂Tu x
with

β̂u = arg min
‖β‖≤u

1

n

n∑
i=1

φ(βTXiYi)

(
1
{
Y = 1

}
pn

+
1
{
Y = −1

}
1− pn

)
. (4.1)

Corollary 4.11. Suppose that Assumption 6 holds for some λ > 0. Then the excess
risk of ĝu verifies, for any δ > 0, with probability 1− 4δ,

Rbal

(
ĝbal

)
−Rbal

(
g?bal

)
≤ Dλ

L′2
log(An)2

np
+

log(1/δ)
(
c2 + 2c1(L′2/λ)

)
np

,

where L′ = sup|x|≤u∆X
φ′(x).

Discussion. In the context of constrained logistic regression, where φ(x) = log(1+e−x),
the latter corollary yields fast convergence rates with constants and L′ = 1, along with
λ = e−u. Corollary 4.11 further establishes accelerated convergence rates for constrained
empirical balanced risk minimization with respect to losses such as mean squared error,
squared hinge, and exponential loss, among others. This outcome aligns with expecta-
tions, as constrained empirical risk minimization is equivalent to penalization (Lee et al.,
2006; Homrighausen and McDonald, 2017). Numerous studies have demonstrated the
effectiveness of penalization in achieving rapid convergence rates (Koren and Levy, 2015;
van Erven et al., 2015). This aspect is particularly significant in the present context, as
the standard convergence rate for imbalanced classification is 1/

√
np, and accelerating

the convergence rate leads to a more pronounced impact.
1Non-linear classifiers can be easily produced with the use of kernels.
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4.5 Numerical illustration

In this section, we provide, using synthetic data, a numerical illustration of the theoret-
ical results on k-NN classification (Corollary 4.6) and on logistic regression (Corollary
4.11). In both cases, a particular attention is given to highly imbalanced setting where
p = n−a for some 0 < a < 1. Due to space constraint, the real data based numerical
experiments are postponed to the supplementary file.

Synthetic dataset. In the two cases considered below, we use the following simple
data generation process. Consider the binary classification dataset (Xi, Yi)i=1,...,n such
that Xi ∈ R2 and Y ∈ {−1, 1}. For each i, the random variable Yi is such that
P (Yi = 1) = (1/na), for some a < 1. Then, having generated Yi = y, Xi is drawn
according to a t-multivariate-student distribution, with parameters (µy, σy, νy). We set
(µ−1, µ1) = ((0, 0), (1, 1)), σ1 = 3σ−1 = 3I and (ν−1, ν1) = (2.5, 1.1).

4.5.1 Balanced k-nearest neighbors

Corollary 4.6 gives conditions on k and p to ensure the consistency of the k-NN clas-
sification rule. The key condition on which we focus here is that kp should go to ∞.
This condition suggests the existence of a learning frontier on the set (k, p) above which
consistent learning is ensured. Here we validate empirically this result and we also pro-
vide numerical results to support the stronger conclusion that whenever kp is not large
enough (we are below the learning frontier), then k-NN is no longer consistent making
clear that the choice of the number of neighbors k should be made considering the value
of p.

The experiments setup is as follows. The training size is n = 1e4. We set p = 1/na and
k = nb, while varying a, b over the interval [1/4, 3/4] to cover different cases ranging
from pn → 0 to pn → ∞. The AM-risk for the classification error associated to the
balanced k-NN classifier (estimated with 20 simulations) is displayed as a function of
(k, p) in Figure 4.1.

Upon examining the figure, it is observed that the performance of the k-nearest neigh-
bors classifier mirrors that of a random guess, maintaining an AM risk near 0.5, when
kp is kept small. This observation illustrates (and extends) the conclusion of Corollary
4.6, supporting that consistency is obtained if (and only if) kp→∞.

4.5.2 Balanced ERM

Now, keeping in mind the fast convergence rate 1/(np) obtained in Corollary 4.11, our
goal is to show that such a rate is quite sharp as it can be recovered in practice.

We consider the simple setting of a linear classifier defined as β̂u = ĝ introduced in
Section 4.4 with logistic loss `g(X,Y ) = log(1 − e−g(X)Y ), g(X) = βTX and u = 10.
Here the sample size n is ranging over the grid [100, 1e4] and rare class probability
p = n−a while a ∈ {1/3, 1/2, 2/3}.
Some Monte Carlo simulation are needed to estimate g?bal. We use an 1e5 simulations
according to a well balanced data set (p = 1/2) so that the error computing g?bal is suf-
ficiently small. In addition, we use some more Monte Carlo simulation from a balanced
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n1/4 n1/2 n3/4

k

1/n1/4

1/n1/2

1/n3/4

pn

0.55

0.60

0.65

0.70

Figure 4.1 – Heatmap showing the AM risk of the balanced k-NN.

test dataset of size 1e4, to evaluate without bias the risk function Rbal. Based on this,
we can obtain both Rbal(g

?
bal) and Rbal(ĝ) so that an excess risk value can be obtained.

We perform nsimu = 1e4 experiments and we report the average and the upper 0.10
and 0.90 quantile of the absolute error obtained over the nsimu experiments.
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(a) pn = 1/n1/3.
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(c) pn = 1/n2/3.

Figure 4.2 – Excess risk (blue) of logistic regression for different sample size n and the
curve 1/np (orange). The blue area corresponds to the 0.9-confidence interval.

.

Figure 4.2 displays the excess risk as a function of the sample size n in a logarithmic
scale, for a ∈

{
1/3, 1/2, 2/3

}
. We notice that the excess risk vanishes in the same way as

the function n 7→ 1/np confirming the accuracy of the upper bound from Corollary 4.11.
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4.6 Conclusion

In this chapter, we have derived upper bounds for the balanced risk in highly imbal-
anced classification scenarios. Notably, our bounds remain consistent even under severe
class imbalance (p → 0), setting our work apart from existing studies in imbalanced
classification (Menon et al., 2013a; Koyejo et al., 2014; Xu et al., 2020c). Furthermore,
it is worth to highlight that this is the first study to achieve fast rates in imbalanced
classification, marking a significant advancement in the field.

Our findings corroborate that both risk-balancing approaches and cost-sensitive learning
are consistent across nearly all imbalanced classification scenarios. This aligns with
experimental works previously documented in the literature (Elkan, 2001b; Wang et al.,
2016; Khan et al., 2018; Wang et al., 2019a; Pathak et al., 2022). We also

Furthermore, the methodologies and proof techniques presented in this chapter are
adaptable to other imbalanced classification metrics beyond balanced classification. Po-
tential extensions include demonstrating consistency for metrics such as the F1 measure,
recall, and their respective variants.

4.A Auxiliary results

The following standard Chernoff inequality is stated and proven in Hagerup and Rüb
(1990).

Theorem 4.12. Let (Zi)i≥1 be a sequence of i.i.d. random variables valued in {0, 1}.
Set µ = nP (Z1) and S =

∑n
i=1 Zi. For any δ ∈ (0, 1) and all n ≥ 1, we have with

probability 1− δ:

S ≥

1−
√

2 log(1/δ)

µ

µ.

In addition, for any δ ∈ (0, 1) and n ≥ 1, we have with probability 1− δ:

S ≤

1 +

√
3 log(1/δ)

µ

µ.

The following is taken from Plassier et al. (2023) (see also Giné and Guillou (2001) for
similar uniform bound).

Theorem 4.13. Let (Z,Z1, . . . , Zn) be an independent and identically distributed ol-
lection of random variables in (S,S). Let G be a VC class of functions with parame-
ters v ≥ 1, A ≥ 1 and uniform envelope U ≥ supg∈G, x∈S |g(x)|. Let σ be such that
σ2 ≥ supg∈G var(g(Z)) and σ ≤ 2U . For any n ≥ 1 and δ ∈ (0, 1), it holds, with
probability 1− δ,

sup
g∈G

∣∣∣∣∣∣
n∑
i=1

{g(Zi)− E[g(Z)]}

∣∣∣∣∣∣ ≤ K ′
(
σ

√
vn log

(
K ′θ/δ

)
+ Uv log

(
K ′θ/δ

))
, (4.2)

with θ = AU/σ and K ′ > 0 a universal constant.
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Lemma 4.14. Suppose that F is of VC-type with envelop U and parameter (v,A), then

1. {fIC : f ∈ F} is of VC-type with envelop U and parameter (v,A).

2. {f − PC(f) : f ∈ F} is of VC-type with envelop 2U and parameter (2v,A).

Proof

Let Q be a probability measure on (S,S). Let (fk)k=1,...,K be the center of an εU -
covering of (F , Q). The first result follows from the fact that ‖f1C − fk1C‖L2(Q) ≤
‖f−fk‖L2(Q). Now let (f̃k)k=1,...,K be the center of an εU -covering of (F , PC). Consider
the covering induces by the centers (fk−PC(f̃j))1≤k,j≤K made of K2 elements. Suppose
that f ∈ F . Then there is k and j such that

‖(f − PC(f))− (fk − PC(f̃j)‖L2(Q) ≤ ‖f − fk‖L2(Q) + PC(f − f̃j)
≤ ‖f − fk‖L2(Q) + ‖f − f̃j‖L2(P )

≤ 2Uε.

Hence we have found a 2Uε-covering of size K2 which by assumption is smaller than
(A/ε)2v. This implies the second statement of the lemma.

The next lemma generalizes Theorem 17.1 from Biau and Devroye (2015) to the balanced
type classifiers.

Lemma 4.15. For any classifier g that writes g(x) = sign(ν(x)− 1), x ∈ X , we have

R∗bal(g)−R∗bal(g∗bal) = E

[
1g(X)6=g∗(X)

|η(X)− p|
p(1− p)

]
,

where g∗bal is the balanced Bayes classifier (introduced in Section 4.2). Furthermore,
whenever p ≤ 1/2,

R∗bal(g)−R∗bal(g∗bal) ≤ 2E
[∣∣∣ν(X)− ν∗(X)

∣∣∣]
where ν∗(x) = η(x)/p.

Proof The balanced risk writes as

R∗bal(g) = P+

(
ν(X) < 1

)
+ P−

(
ν(X) ≥ 1

)
= E

[
I(ν(X)<1)IY=1

p
+

I(ν(X)≥1)IY=−1

1− p

]
.

In addition, using a conditioning argument yields,

R∗bal(g) = E

[
I(ν(X)<1)η(X)

p
+

I(ν(X)≥1)(1− η(X))

1− p

]
.
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Similarly we have

R∗bal(g∗) = E

[
I(ν∗(X)<1)η(X)

p
+
1(ν∗(X)≥1)(1− η(X))

1− p

]
.

It follows that

R∗bal(g)−R∗bal(g∗) = E

[
Isign(ν∗(X)−1)6=sign(ν(X)−1)

|η(X)− p|
p(1− p)

]

= E

[
Ig∗(X)6=g(X)

|η(X)− p|
p(1− p)

]
,

This concludes the first part. For the second part, it remains to note that for any real
numbers (x, y)

sign(x− 1) 6= sign(y − 1) =⇒ |y − 1| ≤ |x− y|,

so that, using that ν∗ = η∗/p, we obtain

R∗bal(g)−R∗bal(g∗) = E

[
Isign(ν∗(X)−1)6=sign(ν(X)−1)

|η(X)− p|
p(1− p)

]

= E

[
Isign(ν∗(X)−1)6=sign(ν(X)−1)

|ν∗(X)− 1|
(1− p)

]

≤
E
[
|ν∗(X)− ν(X)|

]
1− p ,

but since p ≤ 1/2 we obtain the desired result.

4.B Standard rates proof

4.B.1 Proof of Theorem 4.2

Starting with

Pn,+
(
f
)
− P+

(
f
)

=

Pn

((
f − P+

(
f
))

1{Y=1}
)

pn
(4.3)

we focus on each term, denominator and numerator, separately. For the numerator,
the term

(
f − P+(f)

)
1{Y=1} has mean 0. In virtue of Lemma 4.14, the class (f −

P+(f))1{Y=1} is still bounded by 2U and is still VC with VC parameter (2v,A). As a
consequence, we can use Proposition 2 in Plassier et al. (2023), stated as Theorem 4.13
in the present supplementary file. The variance is bounded as follows

Var

((
f − P+(f)

)
1{Y=1}

)
≤ P

(
(f − P+(f))21{Y=1}

)
= Var+(f)p = σ2

+p,
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by definition of σ2
+. As a consequence, Theorem 4.13 gives that

Pn

((
f − P+(f)

)
1{Y=1}

)

≤ K ′

√
vσ2

+p

n
log

(
K ′A/

(
2δ
√
p
))

+
Uv

n
log

(
K ′A/

(
2δ
√
p
))

≤ 2K ′

√
vσ2

+p

n
log

(
K ′A/

(
2δ
√
p
))

,

where the last inequality has been obtained using the stated condition on n and δ. For
the denominator, using Theorem 4.12 we have that, with probability 1− δ,

pn
p
≥

1−
√

2 log(1/δ)

np

 ≥ 1/2

where the last inequality has been obtained using the condition on n and δ. Using the
union bound, we get, with probability 1− 2δ,

Pn

((
f − P+(f)

)
1{Y=1}

)
pn

≤ 4K ′

√
vσ2
F ,C
np

log

(
K ′A/

(
2δ
√
p
))

and the proof is complete.

4.B.2 Proof of Corollary 4.4

First, using the definition of ĝbal yields

Rn,bal

(
ĝbal

)
−Rn,bal

(
g∗bal

)
≤ 0,

So that,

Rbal(ĝbal)−R(g∗bal) ≤ Rbal(ĝbal)−Rn,bal(ĝbal)−
(
Rbal(g

∗
bal)−Rn,bal(g

∗
bal)
)

≤ sup
g∈G

∣∣∣Rbal(g)−Rn,bal(g)
∣∣∣

≤ sup
g∈G

∣∣∣Pn,−(g)− P−(g)
∣∣∣+ sup

g∈G

∣∣∣Pn,+(g)− P+(g)
∣∣∣ .

It remains to use Theorem 4.2 and the proof is complete.

4.B.3 Proof of Theorem 4.5

First we recall three results that will be useful in the proof. The following Lemma (Portier,
2021, Lemma 4) controls the size of the k-NN balls uniformly over all x ∈ SX .
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Lemma 4.16 (Portier (2021, Lemma 4)). Suppose that (X1) (X2) and (X3) hold true.
Then for all n ≥ 1, δ ∈ (0, 1) and 1 ≤ k ≤ n such that 24d log(12n/δ) ≤ k ≤
T dnbXcVd/2 , it holds, with probability at least 1− δ:

sup
x∈SX

τ̂n,k,x ≤ τn,k :=

(
2k

nbXcVd

)1/d

, (4.4)

where Vd = λ(B(0, 1)).

The following lemma is a simple consequence of Theorem 4.12.

Lemma 4.17. Let zn =
√

2 log(1/δ)/(np). We have with probability at least 1− δ,
p

pn
− 1 ≤ zn

1− zn
. (4.5)

The next lemma is a consequence of Theorem 4.13. Let

G = {g(Y,X) = (1Y=1 − η(X))I‖X−x‖≤τ : τ ≤ τn,k, x ∈ Rd}

which is of VC type as shown in Lemma 9 in Portier (2021) (see also Wenocur and
Dudley (1981)). Because SX is compact and η/p continuous, there exists C such that
η(x) ≤ pC for all x ∈ SX . The variance of each element in the class is bounded as

Var(g(Y,X)) ≤ E(1Y=1I‖X−x‖≤τ ) ≤
∫
η(z)I‖z−x‖≤τfX(z)dz ≤ CpUXτdn,kVd.

Injecting the previous variance bound (which is scales as pk/n) in the upper-bound
given in Theorem 4.13 we obtain the following statement.

Lemma 4.18. We have with probability at least 1− δ,

sup
g∈G

∣∣∣∣∣∣
n∑
i=1

g(Yi, Xi)

∣∣∣∣∣∣ ≤ C1(
√
kp log(C2/δ) + log(C2/δ)) (4.6)

where C1 and C2 are constants that does not depend on n, k and p (but on the dimension
d, the VC parameter of G, and the probability measure PX).

Define the event En as the union of (4.4), (4.5) and (4.6). By the previous three lemmas
and the union bound P (En) ≥ 1 − 3δ. In light of Borel-Cantelli Lemma we choose
δ = 1/n2 so that

∑
n(1−P (En)) is finite and the event lim infnEn has probability 1. It

then suffices to show that En implies that η̂n(x)/pn−ν∗(x) = O(
√

log(n)/kp+(k/n)1/d).
Note that under En, when n is large enough, by (4.5), p/pn ≤ 2. LetMi = 1Yi=1−η(Xi)
and Bi(x) = η(Xi)− η(x). We have

η̂n(x)

pn
− ν∗(x) =

∑
i∈In(x)Mi

kpn
+

∑
i∈In(x)Bi(x)

kpn
+ η(x)

(
1

pn
− 1

p

)
. (4.7)

On the event En, the function (Y,X) 7→ (1Y=1 − η(X))1‖X−x‖≤τ̂n,k,x belongs to the
space G. Consequently, the first term in (4.7) is smaller than

(kpn)−1 sup
g∈G

∣∣∣∣∣∣
n∑
i=1

g(Yi, Xi)

∣∣∣∣∣∣
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which by (4.5) and (4.6) is O(
√

log(n)/kp). Using the assumption that x 7→ η(x)/p is
L-Lipschitz we get that, on En, the second term in (4.7) is such that∑

i∈In(x)Bi(x)

kpn
≤ p

pn
Lτn,k,

which, using (4.5), isO((k/n)1/d). The third term in (4.7) is smaller than
(
η(x)/p

)(
p/pn − 1

)
which is, using again the Lipschitz assumption and (4.5), O(

√
log(n)/(np). The latter

bound is smaller than
√

log(n)/(kp) so it does not appear in the stated bound.

4.C Fast rates proofs

Before moving to the main proof we remind some necessary notions. First, let’s recall
the definitions of sub-root functions:

Definition 4.19. A function ψ : [0,∞) → [0,∞) is sub-root if it is nonnegative, non-
decreasing and if r 7→ ψ(r)/

√
r is nonincreasing for r > 0.

In the sequel, we will focus on a specific type of functions, given by:

φF (r) = P

(
Rn

{
f ∈ F | Pnf2 ≤ r

})
where Rn

(
F
)

= 1
n supf∈F

∑n
i=1 σif(Xi) denotes the empirical Rademacher complexity

for a given realisation of σi’s, Xi’s. The expectation in this formulation is with respect
to the budget of samples (Xi, Yi)1≤i≤n and the Rademacher chaos variables σi’s. Re-
member that σi ∈

{
−1, 1

}
and P (σi = ±1) = 1

2 .
At this point, it is important to mention that if we define G = star(F , 0) as the star-hull
of F centered around 0, that is,

G = star(F , 0) =
{
αf | α ∈ [0, 1], f ∈ F

}
,

then the function φG is sub-root (see e.g. Lemma 3.4 in Bartlett et al. (2005)). In the
next lemma we derive an upper bound for φG(2r), which is a crucial quantity in the
proof of Theorem 4.7.

Lemma 4.20. Let F be a class of functions that is VC-type with envelop U ≥ 1 and
parameter v,A ≥ 1. Set G to be the star-hull of F around 0. Then, the Rademacher
complexity φG(2r) verifies

φG(2r) = P

(
Rn

{
g ∈ G | Png2 ≤ 2r

})
≤ CD log

(
8AU

r

)√
v + 1

n

√
r.

Where D1 = 81/vCAUC1C2, C > 0 is a universal constant, C1 = 1√
log(8A)

and C2 =

√
2

(
max

(
log(4AU)
log(8A)

, 1

)
+
√

2

)
.
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Proof By definition of G, any element g ∈ G verifies Png2 ≤ U2, thus for r ≥ U2

2

the function φG(r) is constant. Therefore if the latter inequality holds for r ≤ U2

2 it
automatically extends to the case r ≥ U2

2 . Thus, in the sequel we assume that r ≤ U2

2 .

Using classical results (see e.g. the discussion following Lemma 7.3 in Van Handel (2014)
) one has, for some universal constant C > 0,

Pσ

[
Rn(G2r)

]
≤ C√

n

∫ ∞
0

√
logN

(
G2r, L2(Pn), ε

)
dε,

which yields,

P
(
Rn(G2r)

)
≤ P

(
C√
n

∫ ∞
0

√
logN

(
G2r, L2(Pn), ε

)
dε

)
,

where Gr =
{
g ∈ G | Png2 ≤ r

}
and C > 0 is a universal constant. By definition of Gr,

the covering number of the latter class verifies N
(
Gr, L2(Pn), ε

)
= 1 as soon as ε ≥ √r.

Therefore,

P
(
Rn(G2r)

)
≤ C√

n
P

∫ √2r

0

√
logN

(
G2r, L2(Pn), ε

)
dε


(G2r ⊂ G) ≤ C√

n
P

∫ √2r

0

√
logN

(
G, L2(Pn), ε

)
dε



≤ C√
n
P

∫
√

2r

0

√√√√√log

N (F , L2(Pn),
ε

2

)(
4

ε

)dε
 . (4.8)

Where the last line follows from Lemma 4.5 in Mendelson (2002). On the other hand,
using the VC assumption we obtain

∀ε ≤
√

2r , N
(
F , L2(Pn), ε

)
≤ 2

(
AU

ε

)v
.

So that

log

N (F , L2(Pn), ε/2
)(4

ε

) ≤ (v + 1) log

(AU)
v
v+1 81/v

ε


(
A ≥ 1 , U ≥ 1

)
≤ (v + 1) log

(
8AU

ε

)
.
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Therefore, Inequality (4.8) becomes

P
(
Rn(G2r)

)
≤ C

√
v + 1

n

∫ √2r

0

√√√√log

(
8AU

ε

)
dε

≤ CC1

√
v + 1

n

∫ √2r

0
log

(
8AU

ε

)
dε

≤ 81/vAUCC1

√
v + 1

n

∫ √2r/(81/vAU)2

0
log

(
1

ε

)
dε.

(
81/v ≤ 8

)
≤ 81/vAUCC1

√
v + 1

n

∫ √2r/(8AU)2

0
log

(
1

ε

)
dε.

Where C1 = 1√
log(8A)

> 0. Indeed, the second inequality follows since

∀r ≤ U2

2
, ∀ε ≤

√
2r ,

√√√√log

(
8AU√
ε

)
≤ C1 log

(
8AU√
ε

)
.

Besides,
∫

log
(

1
x

)
= −

∫
log(x) = x log

(
1
x

)
+ x which yields,

P
(
Rn(G2r)

)
≤ 81/vAUCC1C2 log

(
8AU

r

)√
v + 1

n

√
r. (4.9)

For some constant C2 =
√

2

(
max

(
log(4AU)
log(8A)

, 1

)
+
√

2

)
> 0. Indeed, by considering

the cases r ≥
√

2r, r ≤
√

2r and by simple algebra one has

∀r ≤ U2

2
,
√

2r log

(
8AU√

2r

)
+
√

2r ≤ C2

√
r log

(
8AU

r

)
.

In fact, r ≤
√

2r implies 1√
2r
≤ 1

r and r ≤ 2, so that
√
r log

(
8AU
r

)
≥ √r log

(
8AU√

2r

)
√
r log

(
8AU
r

)
≥ √r log

(
4AU

) .

On the other hand, r ≥
√

2r implies r ≥ 2. Now, remind that r ≤ U2

2 and write
log
(

8AU
r

)
≥ log

(
8A
)

log

(
8AU√

2r

)
≤ log

(
4AU

)
≤ log

(
4AU

)
log
(

8AU
r

)
/ log

(
8A
) ,

which yields the desired result.

The proof of Theorem 4.7 relies on applying Theorem 3.3 in Bartlett et al. (2005)
recalled for completeness below.
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Theorem 4.21. Let F be a class of functions with ranges in [a, b] and assume that
there are some functional T : F → R+and some constant B such that for every f ∈
F ,Var[f ] ≤ T (f) ≤ BPf . Let ψ be a sub-root function and let r? be the fixed point of
ψ, i.e. ψ(r?) = r? . Assume that ψ satisfies, for any r ≥ r?,

ψ(r) ≥ BP
(
Rn{f ∈ F : T (f) ≤ r}

)
Then, with c1 = 704 and c2 = 26, for any K > 1 and every x > 0, with probability at
least 1− e−x,

∀f ∈ F Pf ≤ K

K − 1
Pnf +

c1K

B
r? +

x
(

11(b− a) + c2BK
)

n
.

Also, with probability at least 1− e−x,

∀f ∈ F Pnf ≤
K + 1

K
Pf +

c1K

B
r? +

x
(

11(b− a) + c2BK
)

n
.

Furthermore if the functional T verifies T (αf) ≤ α2T (f) then the same inequalities
holds with c2 = 6 and c1 = 5.

Let us now demonstrate a direct corollary of Lemma 7 from Cucker et al. (2002),
which will enable us to establish an upper bound for the fixed point r? featured in the
aforementioned expression.

Corollary 4.22. Let x, s, q, a, b > 0 such as s ≥ q and xs ≤ axq + b. Then,

x ≤ max

(
(2a)

1
s−q , (2b)

1
s

)
.

Proof By Lemma 7 in Cucker et al. (2002) the equation xs− axq + b = 0 has a unique
solution x? verifying,

x? ≤ max

(
(2a)

1
s−q , (2b)

1
s

)
.

Furthermore , since s ≥ q the function x 7→ xs−axq + b is continuous negative at 0 and
positive at +∞. Therefore,

xs ≤ axq + b =⇒ x ≤ x?,

and the result follows.

To conclude this section, Let’s provide a useful lemma that establishes a connection
between the VC dimension of the class F̃ =

{
1
2fI1 + 1

2
p

1−pfI−1 | f ∈ F
}

and the VC
dimension of F .

Lemma 4.23. If a family F of functions is of VC-type with envelop U and parameter
(v,A), then if p ≤ 1

2 , the family F̃ =
{

1
2fI1 + 1

2
p

1−pfI−1 | f ∈ F
}
is also VC-type with

envelop U and parameter (v,A).
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Proof Let 0 < ε ≤ 1, p = P (C) and fk, k = 1, . . . , NF be an ε covering of F
for a norm ||. Take an element g of F̃ which writes g = 1

2fI1 + 1
2

p
1−pfI−1 for some

f ∈ F and notice that there exists some k such as
∥∥f − fk∥∥ ≤ ε. Thus, by setting

gk = 1
2fkI1 + 1

2
p

1−pfkI−1 ∈ F̃ , one has

∥∥g − gk∥∥ ≤ 1

2

∥∥fk − f∥∥+
1

2

p

1− p
∥∥∥(fk − f)

∥∥∥ ≤ ε(1

2
+

1

2

p

1− p

)
≤ ε.

Indeed p ≤ 1
2 implies p

1−p ≤ 1. The latter fact implies that the covering number of F
and F̃ is the same and the proof is complete.

4.C.1 Proof of Theorem 4.7

This proof follows a line of reasoning similar to the proofs of Corollary 3.7 in Bartlett
et al. (2005) and Theorem 2.12 in Bartlett and Mendelson (2006) which holds only for
the class of binary functions. The proof consists on using Theorem 4.21 and upper
bounding the term r∗ appearing in the display of the latter theorem. To do so set

F̃ =

{
1

2
fI1 +

1

2

p

1− pfI−1 | f ∈ F
}
,

and let G = star
(
F̃ , 0

)
. Now, consider the following sub-root function

ψG(r) = 10BUP

(
Rn

{
g ∈ G | Png2 ≤ 2r

})
+

11B2
U log(n) +B2

U

n
, (4.10)

with BU = max(B,U). Since F is VC, Lemma 4.23 allows to use Lemma 4.22 on G to
obtain

ψG(r) ≤ 10BUD1

√
v + 1

n

√
r log

(
8AU

r

)
+

11B2
U log(n) +B2

U

n
.

Now, remind that by definition ψG(r) ≥ B2
U
n thus r? = ψG(r?) ≥ B2

U
n ≥ U2

n and the
latter inequality becomes,

r? = ψG(r?) ≤ 10BUD1

√
v + 1

n

√
r? log

(
8An

U

)
+

11U2 log(n) + U2

n
.

So that by Corollary 4.22

r? ≤ 20BUD1
v + 1

n
log

(
8An

U

)2

. (4.11)

But, Corollary 2.2 in Bartlett et al. (2005) states that, for any r such as

r ≥ un := 10UP

(
Rn

{
g ∈ G | Png2 ≤ 2r

})
+

11U2 log(n)

n
,
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one has with probability 1− 1
n ,{

g ∈ G | Pg2 ≤ r
}
⊂
{
g ∈ G | Png2 ≤ 2r

}
.

On the other hand, by Assumption 4.8 the family G is U bounded. Therefore, one has
Rn

{
g ∈ G | Pg2 ≤ r

}
≤ U and for any r ≥ un,

P

(
Rn

{
g ∈ G | Pg2 ≤ r

})
≤
(

1− 1

n

)
P

(
Rn

{
g ∈ G | Png2 ≤ 2r

})
+
U

n
.

Remind that, by definition of ψG (cf. Equation (4.10)) one has ψG(r) ≥ un, so that for
any r ≥ ψG(r) ≥ un it holds

BP

(
Rn

{
g ∈ G | Pg2r

})
≤ BP

(
Rn

{
g ∈ G | Png2 ≤ 2r

})
+
BU

n(
B = max(B,U)

)
≤ BUP

(
Rn

{
g ∈ G | Png2 ≤ 2r

})
+
B2
U

n

≤ ψG(r).

Since ψG is subroot (as discussed in the introduction of the present section) Lemma 3.2
in the latter reference implies that :

r ≥ r? ⇐⇒ r ≥ ψG(r).

Thus one has,

∀r ≥ r? , ψG(r) ≥ BP
(
Rn

{
g ∈ G | Pg2 ≤ r

})
(4.12)(

F̃ ⊂ G
)
≥ BP

(
Rn

{
f ∈ F̃ | Pg2 ≤ r

})
. (4.13)

In addition, it holds that,

∀f̃ ∈ F̃ , var
[
f̃
]
≤ P

(
f̃2
)
≤ BP

(
f̃
)
.

It remains to use Theorem 4.21 combined with Inequality (4.11) to obtain, with c1 = 6,
c2 = 5, with probability 1− δ

∀f ∈ F P

(
1

2
fI1 +

1

2

p

1− pfI−1

)
≤ K

K − 1
Pn

(
1

2
fI1 +

1

2

p

1− pfI−1

)

+
c1K

B

D′ log(An)2

n
+

log(1/δ)
(
22U + c2BK

)
n

.
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WithD′ = 20BUD1(v+1). On the other hand, notice that for any f̃ = 1
2fI1+ 1

2
p

1−pfI−1

one has 1
pP
(
f̃
)

= Pbal(f) thus dividing by p the latter inequality yields,

∀f ∈ F Pbal(f) ≤ K

K − 1
× 1

2

(
1

p
Pn(fI1) +

1

1− pPn(fI−1)

)

+
c1K

B

D′ log(An)2

np
+

log(1/δ)
(
22U + c2BK

)
np

.

=
K

K − 1
× 1

2

(
Pn(f | Y = 1)

pn
p

+ Pn(f | Y = −1)
1− pn
1− p

)

+
c1K

B

D′ log(An)2

np
+

log(1/δ)
(
22U + c2BK

)
np

. (4.14)

Now notice that one has by Theorem 4.12, with probability 1− 2δ,
pn
p ≤ 1 +

√
3 log(1/δ)

np

1− pn
1− p ≤ 1 +

√
3 log(1/δ)
n(1− p) ≤ 1 +

√
3 log(1δ)

np

.

The last inequaliy follow since p ≤ 1
2 . Finally, by union bound and Inequality (4.14)

one has, with probability 1− 3δ,

∀f ∈ F Pbal(f) ≤ K

K − 1
Pn,bal(f)

1 +

√
3 log(1/δ)

np


+
DK

B

log(An)2

n
+

log(1/δ)
(
22U + c2BK

)
n

.

with D = c1(v + 1)D′ = C ′8
1
v (v + 1)AUC1C2, C ′ = 20c1 = 120. To show the second

part and to conclude the proof follow the same reasoning as before and use instead the
second statement of Theorem 4.21.

4.C.2 Proof of Corollary 4.9

The proof follows in a straightforward way from Theorem 4.7. Since Assumption 4.8
holds, we can apply Theorem 4.7 to the class of functions F1 = {`g− `g?bal : g ∈ G} and
obtain, with probability 1− 3δ,

∀g ∈ G Pbal(`g − `g?bal) ≤
K

K − 1
Pn,bal(`g − `g?bal)

1 +

√
3 log(1/δ)

np


+
DK

B

log(An)2

np
+

log(1/δ)
(
c2 + c1BK

)
np

.

In particular for ĝbal = arg ming∈G Rn,bal(g) = arg ming∈G Pn,bal(g), we have

Pn,bal

(
ĝbal − g?bal

)
= Pn,bal(ĝbal)− Pn,bal(g

?
bal) ≤ 0

and the result follows by reminding that Pbal(`ĝbal − `g?bal) = Rbal(ĝbal)−Rbal(g
?
bal) and

by taking K = 1.
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4.C.3 Proof of Lemma 4.10

By definition one has,

˜̀
g(X,Y ) = `g(X,Y )IA +

p

1− p`g(X,Y )IB,

confirming that, if g 7→ E
[
`g(X,Y )

]
is λ-strongly convex then g 7→ E

[
˜̀
g(X,Y )

]
is

pλ-strongly convex.

Note that g?bal minimizes E
[
˜̀
g(X,Y )

]
, which implies:

E
[
˜̀
g(X,Y )

]
− E

[
˜̀
g?bal

(X,Y )
]
≥ pλ

∥∥∥g − g?bal

∥∥∥2
.

Using the Lipschitz assumption, we obtain:

E

[(
˜̀
g(X,Y )− ˜̀

g?bal
(X,Y )

)2
]
≤ L2

(
P (IA) +

p2

(1− p)2
P (IB)

)∥∥∥g − g?bal

∥∥∥2
,

(p ≤ 1/2) ≤ 2pL2
∥∥∥g − g?bal

∥∥∥2
.

The proof is concluded by combining the above inequalities.

4.D Numerical experiments: Real world dataset

Our aim, just as in the main chapter, is to illustrate the decision boundary of the k-nn
classifiers on real-world datasets. To do so, we follow the same procedure as Section 4.5,
but instead of using synthetic data, we employ six real-world datasets (Pima, Breast,
Cardio, Sattelite, Annthyroid, Ionosphere) from the ODDS repository2. Figures 4.3 to
4.8 display the balanced accuracy (1−R0−1

bal ) of the balanced k-nn as function of (k, p),
we make the proportion of positive class p vary by randomly removing positive examples.
Similar to the findings on synthetic data, these experiments suggest that a large number
of neighbors k should be chosen relative to pn to ensure the consistency of the nearest
neighbors method. It’s important to note, however, that the learning boundary appears
somewhat more noisy than in the synthetic data case. This is indeed not surprising
since the number of examples available is significantly smaller in comparison to the
previous simulation.

2http://odds.cs.stonybrook.edu
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Figure 4.3 – Balanced accuracy heat
map for the Breast dataset.
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Figure 4.4 – Balanced accuracy heat
map for the Ionosphere dataset.
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Figure 4.5 – Balanced accuracy heat
map for the Pima dataset.
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Figure 4.6 – Balanced accuracy heat
map for the Annthyroid dataset.
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Figure 4.7 – Balanced accuracy heat
map for the Cardio dataset.
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Figure 4.8 – Balanced accuracy heat
map for the Satellite dataset.
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5.1 Introduction

Traditional supervised machine learning methods share the common assumption that
training data and test data are drawn from the same underlying distribution. How-
ever, this assumption is often too restrictive to hold in practice. In many real-world
applications, a hypothesis is learnt and deployed in different environments that exhibit
a distributional shift. A more realistic assumption is that the marginal distributions
of training (source) and testing (target) domains are different but related. This is the
framework of domain adaptation (DA), where the learner is provided little or no la-
beled data from the target domain but a large amount of data from the source domain.
This problem arises in various real-world applications like natural language processing
Dredze et al. (2007); Ruder et al. (2019), sentiment analysis Blitzer et al. (2007b); Liu
et al. (2019), robotics Zhang et al. (2012); Bousmalis et al. (2018) and many other areas.

Several works shed light on the theory of DA Blitzer et al. (2007a); Mansour et al.
(2009); Ben-David et al. (2010); Zhang et al. (2012); Cortes et al. (2015); Zhang et al.
(2019) and suggest schemes that generally rely on minimizing some similarity distances
between the source and the target domains. However, the theoretical analysis shows
that a DA procedure needs many unlabeled data from both domains to be efficient.
Besides, even when unlabeled data are abundant, minimizing a similarity distance can
be time-consuming in many scenarios.

To tackle this practical limitation, a new framework that relies only on the source hy-
pothesis was introduced, the so-called hypothesis transfer learning (HTL) Li and Bilmes
(2007); Orabona et al. (2009); Kuzborskij and Orabona (2013); Perrot and Habrard
(2015); Kuzborskij and Orabona (2017); Du et al. (2017). HTL is tailored to the sce-
narios where the user has no direct access to the source domain nor to the relatedness
between the source and target environments. As a direct consequence, HTL does not
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introduce any assumptions about the similarity between the source and target distribu-
tions. It has the advantage of not storing abundant source data in practice.

In this work, we analyze HTL through Regularized Empirical Risk Minimization (RERM)
in the binary classification framework. Our working assumptions encompass many
widely used surrogate losses, such as the exponential loss used by several boosting
algorithms like AdaBoost Freund and Schapire (1997b), the logistic loss, the softplus
loss, which serves as a smooth approximation of the hinge loss Dugas et al. (2000), the
mean squared error (MSE) and the squared hinge that represents the default losses
for least squares/modified least squares algorithms Rifkin et al. (2003). The attractive
quality of these surrogate losses is that they are classification calibrated Zhang (2004a);
Bartlett et al. (2006b). In other words, they represent a convex upper bound for the
classification error and minimizing the expected risk regarding a surrogate loss yields a
predictor with sound accuracy.

This chapter’s theoretical analysis uses the notion of algorithmic stability. Formally,
assuming that one has access to a small labeled set, we derive many complexity-free
generalisation bounds that depend only on the source hypothesis’s quality. In partic-
ular, such an analysis allows us to compare the behavior of different losses in different
scenarios and to answer some practical questions such as: which surrogate loss is recom-
mended when the source and target domains are related? Which surrogate loss is robust
to heavy distribution shift?

The notion of algorithmic stability and its consequences in learning theory has received
much attention since its introduction in Devroye and Wagner (1979). It allows obtain-
ing complexity-free generalization bounds for a large class of learning algorithms such
as k-nearest-neighbours Devroye and Wagner (1979), empirical risk minimizers Kearns
and Ron (1999), Support Vector Machine Bousquet and Elisseeff (2002), Bagging Elis-
seeff et al. (2005), RERM Zhang (2004a); Wibisono et al. (2009b), stochastic gradient
descent Hardt et al. (2016b), neural networks with a simple architecture Charles and Pa-
pailiopoulos (2018), to name but a few. For an exhaustive review of the different notions
of stability and their consequences on the generalization risk of a learning algorithm,
the reader is referred to Kutin and Niyogi (2002).

Only a few works derive theoretical guarantees for RERM in the HTL framework and
are all formalized in a regression setting. A stability analysis has been provided for the
HTL algorithm in the case of RLS for regression in Kuzborskij and Orabona (2013)
limited to the least-squares loss. Later, Kuzborskij and Orabona (2017) considered
the class of smooth losses and obtained statistical rates on the empirical risk, being a
particular case of the stability guarantees. However, this smoothness assumption may
be considered strong since it is not satisfied for hypotheses learnt from the exponential
loss or vacuously satisfied for hypotheses learnt from the softplus loss. Besides, Du
et al. (2017) proposed a novel algorithm to adapt the source hypothesis to the target
domain. Nonetheless, the theoretical guarantees they derived are obtained with several
strong assumptions, unverifiable in practice. The obtained bounds depend on many
unknown parameters (for further details, see Section 5.3, where all these assumptions
are explicitly listed and discussed). Other theoretical results studying HTL outside the
framework of RERM can be found Li and Bilmes (2007); Morvant et al. (2012); Perrot
and Habrard (2015); Dhouib and Redko (2018). However, most of these theoretical
results depend on a complexity/distance measure or/and are valid on a different frame-
work than classification. For example, Perrot and Habrard (2015) explores the notion
of algorithmic stability in metric learning with Lipschitz loss functions to study the
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excess risk of some algorithms. The obtained bounds are not intuitive as they depend
on the Lipschitz constant and cannot be easily extended to many usual classification
losses. Furthermore, the proof techniques in the latter work are far from ours.

On the other hand, when the source is known, many theoretical guarantees can be found
in the domain adaptation literature, see e.g. Mansour et al. (2009); Ben-David et al.
(2010); Zhang et al. (2012); Cortes et al. (2015) and Zhang et al. (2019), among others.
Their rates involve the complexity of the hypothesis class and the distance between
the source and the target distribution that may be unknown in practice and drastically
deteriorate the rates.

Another related subject is meta learning, broadly described as leveraging data from
pre-existing tasks to derive algorithms or representations that yield superior results on
unencountered tasks. Many theoretical works such as Khodak et al. (2019); Balcan
et al. (2019); Denevi et al. (2019) or Denevi et al. (2020) have studied this problem.
Yet, the obtained theoretical guarantees in the latter works depend on the smoothness
parameters of the loss function and the regularizers. The proof techniques from the
present chapter can be incorporated into the proof of the latter references to obtain
more sharp and intuitive learning bounds, that is, bounds exclusively depending on the
quality of the source hypothesis.

Contributions In this chapter, we investigate the statistical risk of the hypothesis
transfer learning procedure dedicated to the binary classification task. To that end, we
adopt the angle of algorithmic stability that offers an appealing theoretical framework
to analyze such a method. This is the first work exploring algorithmic stability for HTL
with the usual classification loss functions. In this chapter, we provide a (pointwise)
hypothesis stability analysis of the HTL in the classification framework for any losses
satisfying mild conditions. Furthermore, we show that our main assumptions are valid
for the most popular classification losses and derive their associated constants. Based
on these stability results, we investigate the statistical behavior of the generalization
gap and the excess risk of the HTL procedure. We provide an intuitive finite-sample
analysis of these quantities and highlight the statistical behavior of common losses.

5.2 Background and Preliminaries

In this section, we start by recalling the framework of Hypothesis transfer learning and
describe the concept of stability.

5.2.1 Hypothesis Transfer Learning

Considering the source and target domains, hypothesis transfer learning leverages the
learnt hypothesis with the source dataset, without having access to the raw source data
or any information between source and target domains, to solve a machine learning task
on the target domain. Formally, we denote by ZS and ZT the source and target domains
and assume that we have access to n ∈ N, n ≥ 1 i.i.d. observations DT = Z1, . . . , Zn ∈
ZT with a distribution PT lying in the target domain and a source hypothesis hS learnt
from m ∈ N,m ≥ 1 i.i.d. observations DS = ZS1 , . . . , Z

S
m ∈ ZS drawn from the source

distribution PS . In the HTL framework, we do not have access to the source observations
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but only to the resulting source hypothesis hS . It is worth noting that n� m in many
practical scenarios. In this chapter, we focus on the binary classification task. Therefore,
our domains consist of a Cartesian product of a source/target covariate space XS/XT
and the set {−1, 1}, i.e. ZS = XS × {−1, 1} and ZT = XT × {−1, 1}. In addition,
we assume that XT ⊂ XS ⊂ Rd. Consider two classes of hypotheses HS and HT , an
HTL algorithm aims to use a source hypothesis hS ∈ HS learnt on DS to improve the
performance of a classification algorithm over DT . Precisely, it is defined as a map

A :
(
ZT
)n ×HS → HT(
DT , hS

)
7→ hT .

Throughout the chapter, we assume that hS is given and fixed, and we use the shorthand
notation A(DT ) instead of A(DT , hS) for the sake of clarity.

Let ` : HT × ZT 7→ R+ denote a loss function so that `(hT , Z) is the error of hT ∈
HT on the observation Z = (X,Y ) ∈ ZT . In this work, we assume that `(hT , Z) =

φ
(
hT (X)Y

)
for some non negative convex function φ. The generalization risk of the

predictor A(DT ) is denoted by

R
[
A
(
DT
) ]

= EZ∼PT

[
`
(
A
(
DT
)
, Z
)]

= E
[
`
(
A
(
DT
)
, Z
)
| DT

]
.

Notice that the randomness in the latter expectation stems from the novel observation Z
only while the trained algorithm A(DT ) is fixed. Its empirical counterpart, the training
error of A

(
DT
)
writes as

R̂
[
A(DT )

]
=

1

n

n∑
i=1

`(A(DT ), Zi).

The latter estimate is known to be optimistic since most learning algorithms are con-
ceived to minimize the training loss. Thus, a more reliable estimate would be the deleted
estimate or the so-called leave-one-out (l.o.o.) estimate:

R̂loo

[
A(DT )

]
=

1

n

n∑
i=1

`

(
A(D\iT ), Zi

)
, (5.1)

where D\iT = DT \
{
Zi
}
denotes the dataset DT with the i’th element removed.

Remark 5.1 (accelerated l.o.o.). At first sight, one can notice that computing the
l.o.o. risk measure is a heavy task in practice since one needs to train the algorithm n
times. However, in our case, one can use the closed form formula of the l.o.o. estimate
for RERM algorithms derived in Wang et al. (2018).

5.2.2 Algorithmic Stability

In this part, we briefly recall important notions of stability that will be used in the
chapter. The notion of stability was first introduced in Devroye and Wagner (1979) to
derive non-asymptotic guarantees for the leave-one-out estimate. Let denote by [n] the
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set of indices {1, . . . , n}. The algorithm A is called stable if removing a training point
Zi, i ∈ [n], from the DT or replacing Zi with an independent observation Z ′ drawn
from the same distribution does not alter the risk of the output. Later, Bousquet and
Elisseeff (2002) introduced the strongest notion of stability, namely uniform stability, an
assumption used to derive probability upper bounds for the training error and the l.o.o.
estimate Bousquet and Elisseeff (2002); Elisseeff et al. (2005); Hardt et al. (2016b);
Bousquet et al. (2020); Klochkov and Zhivotovskiy (2021b). Equipped with the above
notations, uniform stability, also called leave-one-out stability, can be defined as follows.

Definition 5.2. The algorithm A is said to be β(n)-uniformly stable with respect to a
loss function ` if, for any i ∈ [n] and Z ∈ ZT , it holds:∣∣∣∣∣`(A(DT ), Z

)
− `
(
A(D\iT ), Z

)∣∣∣∣∣ ≤ β(n).

In practice, uniform stability may be too restrictive since the bound above must hold
for all Z, irrespective of its marginal distribution. While weaker, the following notion
of stability is still enough to control the leave-one-out deviations Devroye and Wagner
(1979); Bousquet and Elisseeff (2002); Elisseeff et al. (2005); Kuzborskij and Orabona
(2013).

Definition 5.3. The algorithm A has a hypothesis stability β(n) with respect to a loss
function ` if, for any i ∈ [n], it holds:∥∥∥∥∥`(A(DT ), Z

)
− `
(
A(D\iT ), Z

)∥∥∥∥∥
1

≤ β(n),

where
∥∥X∥∥

q
=

(
E
[∣∣X∣∣q])1/q

is the Lq norm of X.

We now recall a direct analogue of hypothesis stability: the pointwise hypothesis stabil-
ity. The latter property is used to derive PAC learning bounds for the training error
Bousquet and Elisseeff (2002); Elisseeff et al. (2005); Charles and Papailiopoulos (2018).

Definition 5.4. The algorithm A has a pointwise hypothesis stability γ(n) with respect
to a loss function ` if, for any i ∈ [n], it holds:∥∥∥∥∥`(A(DT ), Zi

)
− `
(
A(D\iT ), Zi

)∥∥∥∥∥
1

≤ γ(n).

Note that the approach based on stability does not refer to a complexity measure like
the VC dimension or the Rademacher complexity. There is no need to prove uniform
convergence, and the generalization error (cf. Equation 5.4.1 below) depends directly
on the stability parameter. Our work aims to use the notion of algorithmic stability to
derive sharper bounds for the HTL problem. More precisely, the magnitude of the ob-
tained bounds is directly related to the quality of hS on the target domain

(
represented

by R[hS ]
)

instead of the complexity of the hypothesis class Ben-David et al. (2010);
Zhang et al. (2012); Cortes et al. (2015); Zhang et al. (2019).
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5.2.3 Working Framework

This chapter analyses hypothesis transfer learning through regularised empirical risk
minimization (RERM). In particular, it includes the popular Regularized Least Squares
(RLS) with biased regularization (Orabona et al., 2009) that has been analyzed in
Kuzborskij and Orabona (2013) and Kuzborskij and Orabona (2017). Formally, we
consider the following algorithm A such that:

A(DT , hS) = ĥ(· ;DT ) + hS(·), (5.2)

where the function ĥ : Rd → R is obtained from the target set of data via the mini-
mization problem:

ĥ = arg min
h∈H

1

n

n∑
i=1

φ

((
h
(
Xi

)
+ hS

(
Xi

))
Yi

)
+ λ‖h‖2k

= arg min
h∈H

R̂(h+ hS) + λ‖h‖2k, (5.3)

with the family of hypotheses H being a reproducing kernel Hilbert space (RKHS)
endowed with a kernel k, an inner product 〈·, ·〉 and a norm ‖·‖k. The resulting map
arising from the HTL is the sum of the source hypothesis hS and the target hypothesis
ĥ where ĥ is learnt involving the source map.

It is worth noting that our analysis encompasses the least square with biased regulariza-
tion (Schölkopf et al., 2001; Orabona et al., 2009) commonly studied in transfer learning
(Kuzborskij and Orabona, 2013, 2017), briefly recalled below.

Remark 5.5 (link with RLS). The RLS with biased regularization is a particular
case of the proposed algorithm 5.2. Indeed, by choosing k as the linear kernel k(x1, x2) =

x>1 x2 and the loss φ(x) =
(
1− x

)2, it is equivalent to

A = ĥ+ hS ,

with ĥ(x) = û>x and

û = arg min
u∈Rd

1

n

n∑
i=1

(
u>Xi + hS(Xi)− Yi

)2
+ λ‖u‖22. (5.4)

Furthermore, if hS(x) = v>x is a linear classifier with v ∈ Rd, then

û = arg min
u∈Rd

1

n

n∑
i=1

(
u>Xi − Yi

)2
+ λ‖u− v‖22,

which is the original form of biased regularisation algorithms Schölkopf et al. (2001);
Orabona et al. (2009). See Appendix 5.A.1 for technical details.

5.3 Stability Analysis

The subsequent analysis requires technical assumptions, listed below. We assume that
the source hypothesis and the kernel k are bounded, as stated in the following assump-
tions.
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Assumption 7. The source hypothesis is bounded on the target space:

‖hS‖∞ = sup
x∈XT

|hS(x)| <∞.

Assumption 8. The kernel k is bounded:

sup
x1,x2∈XT

k(x1, x2) ≤ κ.

The boundness of the kernel is a common and mild assumption (see e.g. Bousquet and
Elisseeff, 2002; Zhang, 2004a; Wibisono et al., 2009b). It is satisfied by many usual
kernels like the Gaussian kernel and the sigmoid kernel. Furthermore, when XT is
bounded, then polynomial kernels are also bounded.

We now investigate the accuracy of the HTL proposed framework and provide general
stability results under slight assumptions. Furthermore, we show that these assumptions
are satisfied by most of the popular ML surrogate losses used in practice and derive
precisely the associated constants involved in our theoretical results.

5.3.1 Hypothesis Stability

This section analyzes the hypothesis stability of general surrogate ML losses for the
proposed HTL framework. To study the stability of Algorithm 5.2, we start by showing
that the solution of the optimization problem 5.3 lies in the sphere with a data-driven
radius, as stated in the following lemma.

Lemma 5.6. Suppose that Assumptions 7 and 8 are satisfied. Then the solution of
Equation (5.3) lies in the set

{
h ∈ H, ‖h‖∞ ≤ r̂λ

}
with

r̂λ = κ

√
αR̂

[
hS
]
,

where α = κ/λ .

Proof The proof is postponed in the Appendix 5.B.1.

This lemma ensures that the norm of the solution of the optimisation problem 5.3
decreases when the quality of hS increases. In the rest of the chapter, for a given index

i ∈ [n], we denote by r̂iλ = κ
√
αR̂\i

[
hS
]
, R̂\i the training error with the i’th sample

removed and ρ̂iλ = max
(
r̂λ, r̂

i
λ

)
.

Before stating our main theorem, we first require an additional assumption involving
the empirical radius obtained in Lemma 5.6.

Assumption 9. The function φ is differentiable and convex. Furthermore, ∀i ∈ [n], it
holds:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X ′)Y ′ + y′)φ′(hS(X)Y + y)
∣∣∣


≤ Ψ1

(
R
[
hS
])
,
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where Z = (X,Y ), Z ′ = (X ′, Y ′) are two samples drawn from PT independent of D\i
and Ψ1 is a decreasing function verifying Ψ1(0) = 0.

The bound stated in the theorem below reveals the generalisation properties of the
presented HTL procedure through the stability framework.

Proposition 5.7. Suppose that Assumptions 7, 8 and 9 are satisfied. Then the algo-
rithm A (cf. Equation (5.2)) is hypothesis stable with parameter

β(n) =

α

(
Ψ1

(
R
[
hS
])
∧ ‖φ′‖2∞

)
n

.

Proof The proof is postponed to the Appendix 5.B.2.

We obtain a stability rate of order O

Ψ1

(
R[hS]

)
α

n

 for any losses satisfying Assump-

tion 9. It naturally depends on the risk of the source classifier, where the expectation
is taken on the target data distribution. Therefore, the source task directly influences
the rate of the HTL classifier. The standard stability rate of RERM without trans-
fer learning (without source) is of order O(α/n), see Theorem 4.3 in Zhang (2004a)
or Theorem 3.5 in Wibisono et al. (2009b). A relevant source hypothesis allows us to
obtain faster rates than in standard RERM. Thus, one can directly notice the benefits
of using a good source hypothesis on the stability of RERM. The negative transfer,
i.e. the source hypothesis has a negative effect and deteriorates the target learner, is
analyzed and discussed in Section 5.4.1.

Remark 5.8 (Related Work). The only existing result studying hypothesis stability
in HTL is in Kuzborskij and Orabona (2013). However, the analysis is only in a regres-
sion framework with the mean squared error loss. The proof techniques in Kuzborskij
and Orabona (2013) rely heavily on the closed-form formulas of the ordinary least square
estimate, which does not hold in a general setting like ours. Furthermore, we obtain
equivalent (up to constants) stability rates as in Kuzborskij and Orabona (2013). More
details are given in Section 5.3.3 where we explicit constants Ψ1 for most of popular
losses.

Existing assumptions in DA and HTL literature Statistical guarantees obtained
in these fields generally assume that the loss function verifies a smoothness condition.
For example, in Mansour et al. (2009) and Cortes et al. (2015), their analysis supposes
that ` verifies the triangle inequality, which holds only for the MSE and squared hinge.
Moreover, the obtained upper bounds in these works depend on the complexity of H
and some discrepancy distances between the source and target distributions PS and
PT , which deteriorates the statistical rates. In Kuzborskij and Orabona (2017), they
suppose that the derivative of the loss is Lipschitz which is not the case for the exponen-
tial. Furthermore, even if the loss satisfies this smoothness assumption, their constants
depend heavily on the smoothness parameter, and it would yield vacuous bounds in
many practical situations. For example, the softplus function ψs(x) = s log(1 + e

1−x
s )

with small values of s serves as an approximation of the hinge loss max(0, 1− x) and is
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1/s Lipschitz. This function converges to the Hinge loss when s→ 0 and usual choices
of s are usually close to 0. Therefore, the Lipschitz constant of the derivative 1/s ver-
ifies 1/s � 1, and the bounds from Kuzborskij and Orabona (2017) become vacuous.
Besides, Du et al. (2017) made several assumptions about the true regression function
of both the source and target domains. To clarify, by the true regression function, f ,
we refer to the actual model denoted by Y = f(X). However, these assumptions are
challenging to empirically confirm due to their reliance on the real source and target
distributions, which generally remain unknown. Moreover, the theoretical guarantees
achieved depend on several constants, also derived from the true distribution, that
makes quantifying the bounds magnitude a complex task.

To our best knowledge, the vast majority of existing theoretical results from the HTL
literature have similar assumptions to those discussed above. However, in this work,
our assumptions are flexible: we only require the differentiability of the loss and a local
majorant of the derivative, which will make the analysis more flexible and more suited
for the usual classification losses.

To understand the intuition behind Assumption 9 notice that, when R[hS ] → 0,
φ(hS(X)Y ) approaches the minimum then φ′(hS(X)Y ) approaches 0 (in expectation).
Thus, the function Ψ1 can be seen as a function that dictates the rate of convergence
of the derivative to 0 as hS approaches the optimal hypothesis. One must note that
the latter assumption is verified for many loss functions, namely any loss satisfying the
following inequality |φ′(x)| ≤ Ψ(φ(x)) for some concave loss function Ψ. The function Ψ
effectively mediates between φ and φ′. As an example, in the context of Mean Squared
Error (MSE) loss, it is straightforwardly observable that |φ′(x)| ≤

√
φ(x). Thus φ′ is

directly linked to φ(x) via the square root function.

Remark 5.9 (score scaling). RERM for regression (cf. Equation 5.4) is equivalent
to fitting a predictor on the residuals Yi − hS(Xi). However, in the classification case,
if we follow the standard approach that hS : X 7→ Y = {−1, 1} is a binary classifier
Mansour et al. (2009); Cortes et al. (2015), then latter residuals are either 1 or 0.
Thus, this won’t provide enough information for many losses to improve the training.
To see this, see the example of the logistic loss and notice that φ(1) = log(1 + e−1) and
φ(−1) = log(1+e1). Therefore, in the best case scenario, R[hS ] = log(1+e−1), which is
far from the minimum (that is zero). To tackle this problem, we suggest taking the score
learned on the source, which is more informative, especially when the loss function used
to train the algorithm on the source has the same minimum as the loss used to train
on the target. Note that one can also think of transforming the score, for example, if
φ is the logistic loss φ(x) = log(1 + e−x) and hS ∈] − 1, 1[ we can use an increasing
transformation function to an interval ] − C,C[ with C >> 1 in order to adapt to the
target loss which is nearly 0 for large values x.

5.3.2 Pointwise Hypothesis Stability

To go further than the widely used hypothesis stability, we analyze our HTL problem
through the angle of pointwise hypothesis stability. Results presented in this part will
be the cornerstone of those shown in Section 5.4. To analyze the pointwise hypothesis
stability of Algorithm 5.2, we require a direct analogue of Assumption 9, involving the
data-driven radius provided in Lemma 5.6.
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Assumption 10. The function φ is differentiable and convex. Furthermore, ∀i ∈ [n],
it holds:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X)Y + y′)φ′(hS(X)Y + y)
∣∣∣


≤ Ψ2

(
R
[
hS
])
.

where Z = (X,Y ) is a sample drawn from PT independent of D\i and Ψ2 is a decreasing
function verifying Ψ2(0) = 0.

Under the latter assumption, the following proposition is obtained in a similar manner
to Proposition 5.7.

Proposition 5.10. Suppose that Assumptions 7, 8 and 10 are satisfied. Then the
algorithm A (cf. Equation (5.2)) is pointwise hypothesis stable with parameter

γ(n) =

α

(
Ψ2

(
R
[
hS
])
∧ ‖φ′‖2∞

)
n

.

Proof The proof is postponed to the Appendix 5.B.3.

Again, this result shows the benefits of using a good hypothesis on the pointwise hypoth-
esis stability of RERM. This stability result, combined with that of Proposition 5.7,
can be leveraged to propose new convergence results on the generalisation gap and the
excess risk of this HTL problem for a wide class of losses, as shown in Section 5.4.
In the sequel, we explicitly compute the functions Ψ1 and Ψ2 for many widely used
classification losses.

5.3.3 Deriving Constants for Popular Losses

As the results of Propositions 5.7 and 5.10 are general and stated for any losses satisfying
Assumptions 9 and 10, it is the purpose of this part to investigate our results with
widespread machine learning losses. To that end, we first show that these Assumptions
are satisfied for the most popular losses. Second, we derive constants involved in these
two statistical rates. In particular, we focus on the five following losses:

• Exponential: φ(x) = e−x.

• Logistic: φ(x) = log
(

1 + e−x
)
.

• Mean Squared Error: φ(x) = (1− x)2.

• Squared Hinge: φ(x) = max(0, 1− x)2.

• Softplus: φs(x) = s log

(
1 + e

1−x
s

)
, for some s > 0.

In the next proposition, we show that most of classical losses verifies Assumptions 9, 10
and we detail their associated functions Ψ1 and Ψ2.
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Loss Ψ1(x) Ψ2(x)

Sq. hinge 8x(4α+ 1) 8x(4α+ 1)
MSE 8x(4α+ 1) 8x(4α+ 1)
Exponential CSx

2e2αx MSCSxe
2αx

Logistic CSe
2αx(e

√
x − 1)2 CSe

2αx(e
√
x − 1)

Softplus CSe
2αx(e

√
x
s − 1)2 CSe

2αx(e
√

x
s − 1)

Table 5.1 – Examples of losses verifying Assumptions 9, 10 and their corresponding
functions. The constants MS and CS are given by MS = supz∈ZT `(hS , z), CS =

exp

{
2 + 2αMS

n +
4α2M2

S
n−1

}
.

Proposition 5.11. The exponential, logistic, squared hinge, MSE and softplus losses
satisfy Assumptions 9 and 10 with corresponding functions Ψ1 and Ψ2 listed in Table
5.1.

Proof The proof is postponed to the Appendix 5.B.4.

This result shows that bounds derived in Propositions 5.7 and 5.10 are therefore valid
under mild assumptions. Indeed, our results only require the kernel and the source
hypothesis to be bounded, classical in the HTL framework. Thus, we obtain the first
stability result in HTL without limiting assumptions, which remains valid in a practical
setting.

As shown in Table 5.1, functions Ψ1 and Ψ2 are linear for the square hinge and the MSE
losses. Besides, for the softplus and logistic losses, we have ‖φ′‖∞ = 1 and their stability
parameters capped by α/n. Thus, the impact of an irrelevant source hypothesis hS with
large R[hS ] remains negligible on the stability of RERM when using these losses. In
contrast, for the exponential loss, the functions Ψ1 and Ψ2 are roughly exponential,
and the corresponding convergence rate deteriorates quickly as R[hS ] increases. This is
indeed not surprising since a prediction in the wrong direction (sign(hS(X)) 6= Y ) would
increase the loss e−hS(X)Y exponentially fast. In the particular case of the MSE, we

obtain the same stability rateO
(
αR[hS ]

n

)
as in the regression framework Kuzborskij and

Orabona (2013). In the next section, we shall discuss the implications of these stability
rates on the generalization gap Hardt et al. (2016b); Charles and Papailiopoulos (2018),
cross-validation schemes and the excess risk of Algorithm 5.2.

5.4 Generalisation guarantees for HTL with surrogate
losses

In this part, we leverage the stability results provided in Section 5.3 in several statistical
errors commonly used.
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5.4.1 Generalization Gap

Here we investigate the accuracy of the algorithm A through the generalization gap.
Precisely, this gap is defined as the expected error between the empirical risk and the
theoretical risk of the algorithm A:

Egen = |E
[
R̂
[
A(DT )

]
−R

[
A(DT )

]]
|.

To discuss the impact of hS on the generalization gap, it suffices to analyse the stability
parameters β(n) and γ(n). Indeed, Egen is directly linked to these quantities, as stated
in the following theorem.

Theorem 5.12. Suppose that A has a hypothesis stability β(n) and a pointwise hypoth-
esis stability γ(n). Then, it holds:

Egen ≤ β(n) + γ(n).

Furthermore, suppose that Assumptions 7, 8, 9 and 10 are satisfied. Thus, β(n) and
γ(n) are given by Propositions 5.7 and 5.10 and the generalization gap of A (cf. Equa-
tion (5.2)) is upper-bounded as:

Egen ≤ α

(
Ψ1

(
R
[
hS
])

+ Ψ2

(
R
[
hS
]))
∧
(

2‖φ′‖2∞
)

n
.

Proof The proof is postponed to the Appendix 5.B.5.

When the source hypothesis is relevant, the riskR[hS ] is close to zero so that eR[hS ]−1 ≈
R[hS ] and eαR[hS ] ≈ 1. Equipped with Table 5.1, this theorem yields the following upper
bounds for Egen:

• MSE, Sq. hinge: Egen = O
(
αR[hS ]

n

)
.

• Logistic: Egen = O
(
α

√
R[hS ]∧2

n

)
.

• Softplus: Egen = O

α
(√
R[hS ]/s

)
∧2

n

.

• Exponential: Egen = O
(
αMSR[hS ]

n

)
.

Thus, if R[hS ] is small, the exponential, the squared hinge and the MSE losses have the
fastest generalization gap rate. Therefore, our analysis suggests that the user should
privilege using the latter losses if one disposes of a good hypothesis hS .

Negative learning The phenomenon of negative transfer occurs when the hypothesis
hS learned from the source domain has a detrimental effect on the target learner. In
such a case, training without using hS on the target domain would yield a better learner.
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We refer the reader to Weiss et al. (2016) and Wang et al. (2019b) for further details
about this topic. For the softplus and the logistic losses, the generalization gap remains
bounded by O(α/n) even if R[hS ] → ∞. As a consequence, Algorithm 5.2 with the
sofplus and logistic losses is robust to negative learning since the generalization gap
still achieves the same rate of convergence O(α/n) as a standard RERM algorithm
with no source information i.e. hS = 0 (see e.g. Zhang, 2004a; Wibisono et al., 2009b).
Finally, we must highlight that one should avoid using the exponential loss when the
source and target domains are unrelated due to the presence of the term eαR[hS ] in the
corresponding upper bound.

Remark 5.13 (cross validation procedures). The notion of stability has many
attractive qualities. In particular, it yields complexity-free bounds for cross-validation
methods. (see e.g. Bousquet and Elisseeff, 2002; Kumar et al., 2013; Celisse and Mary-
Huard, 2018). For example, one can easily show that

E

[∣∣∣∣R̂loo

[
A
(
DT
)]
−R

[
A
(
DT
)]∣∣∣∣
]
≤ β(n).

Proposition 5.7 shows that the quality of risk estimation with l.o.o. depends directly on
the quality of the source predictor hS. Note that the same conclusion holds for model
selection with l.o.o. cross-validation: Given a family of source hypotheses, the quality
of the model selection procedure depends directly on the quality of the provided learners
independently of the complexity of HT . Besides, using the same proof techniques, we can
show that Algorithm 5.2 is L2 stable with stability parameter depending on Ψ

(
R
[
hS
])
.

L2 stability is similar to hypothesis stability, where the L1 moment is replaced by the
L2 moment in Definition 5.3. The latter notion allows obtaining theoretical guarantees
regarding the K-fold and the l.o.o. schemes. It also derives asymptotic confidence inter-
vals for cross-validation procedures in risk estimation and model selection Bayle et al.
(2020); Austern and Zhou (2020b). In our particular case, Proposition 5.7 implies that
the tightness of the confidence intervals of cross-validation methods depends only on the
quality of hS.

5.4.2 Excess Risk

In this section we analyse the excess risk of Algorithm 5.2 defined as:

Eex = E
[
R
[
A
]
−R

[
h∗ + hS

]]
,

where h∗ = arg minh∈HR
[
hS + h

]
. To this end, we start by showing that Eex depends

on the upper bounds of the (pointwise) hypothesis stability and the regularization
parameter λ. Further, we derive precise finite-sample rates for the surrogate losses
introduced in Section 5.3.3.

Theorem 5.14. Suppose that ‖h∗‖k < ∞. Then, the excess risk of algorithm 5.2
verifies,

Eex ≤ γ(n) + β(n) + λ‖h∗‖2k.
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Making λ varying with the sample size n, we obtain various consistent bounds for differ-
ent losses. In the sequel, we assume that κ ≤ 1 and MS ≤ 1 to avoid notional burden.

When φ is either the MSE or the squared hinge and λ =

√
R[hS ]√

n
, it holds:

Eex ≤ O

√R[hS ]√
n

 .

Furthermore, if φ is the exponential loss and n ≥ M2
S ln(n)2

R[hS ] , picking λ = 4

√
R[hS ] ∧ 1
ln(n)

yields:

Eex ≤ O

√R[hS ] ∧ 1

ln(n)

 ,

otherwise picking λ = ln(n)2√
n

gives:

Eex ≤ O
(

ln(n)2

√
n

)
.

Suppose that the function φ is the logistic loss or the softplus. Then the choice λ = 1√
n

yields:

Eex ≤ O
(

1√
n

)
.

In particular, Theorem 5.14 yields the consistency of RERM. Furthermore, the Re-
mark 5.13 regarding the generalization gap still holds for the excess risk. First, when
R[hS ] is small, Algorithm 5.3 with MSE or squared hinge would have the fastest conver-
gence rate. Second, when R[hS ] is large compared to the sample size n, then the safest
option is to use the logistic or the softplus losses with λ = 1√

n
. Note that, if R[hS ] is

small an improved convergence rate
(

1/

√
−n ln

(
R[hs]

))
can be achieved for the latter

losses (see Appendix 5.B.6 for further details). Finally, Algorithm 5.2 with the expo-
nential loss is likely to suffer from negative learning. Indeed, if R[hS ] is large, one needs
a large amount of data to ensure the non-triviality of the rate R[hS ]/ ln(n). It is worth
noting that the rate of convergence with the exponential loss is naturally logarithmic
even without a source hypothesis; see, for instance, Corollary 4.1 and Theorem 4.4 in
Zhang (2004a). To conclude, using a good source hypothesis improves convergence rates
of RERM compared to those derived without transfer Zhang (2004a).

Remark 5.15 (on the universal consistency). If we assume that the kernel k
is non-polynomial, hS is continuous and the distribution of X ∈ XT is regular (see
e.g. Definition 4.2 in Zhang, 2004a). Then, one can use any universal approximation
theorem (see for instance Theorem 4.1 in Zhang, 2004a) to obtain

h∗ = arg min
h∈H

R
[
hS + h

]
= arg min

h∈L(XT ,R)
R
[
hS + h

]
,
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where L(XT ,R) is the space of real-valued functions defined on XT . The universal con-
sistency of A follows immediately from Theorem 5.14. Further, all the losses presented
in this chapter are classification calibrated (Bartlett et al., 2006b) meaning that:

arg min
h∈L(XT ,R)

R
[
h
]

= arg min
h∈L(XT ,R)

R0-1 [h] ,
where R0-1 [h] = PT

(
sign

(
h(X)

)
6= Y

)
is the usual classification accuracy. Thus,

minimizing the excess risk would likely yield a classifier with good accuracy.

5.5 Numerical experiments

We illustrate our analysis by providing some results using simulated data that aim to
underscore the robustness of each loss to negative learning scenarios. The experiment is
conducted as follows. A source domain is considered with random variables (XS , YS) ∈
R2 × {−1, 1}, where the positive and negative classes are respectively drawn from two
multivariate t-distributions T ((r, 0), 3I2, 2.5) and T ((−r, 0), 3I2, 2.5). We train a linear
classifier hS on a source dataset of size 10000 using the SVM algorithm.

To emphasize the impact of negative learning on each loss, we generate a smaller target
dataset of size 100. The distributions for positive and negative classes are given by
T (((r+d)cos(θ), (r+d)sin(θ)), I2, 2.5) and T ((−(r+d)cos(θ),−(r+d)sin(θ)), I2, 2.5),
respectively. For different values of θ, the target risk R

[
ĥ+ hs

]
of the analyzed RERM

algorithm (with λ = 1) trained on the small size dataset is estimated using a test set of
size 10000.

It is important to note that when θ = 0, it corresponds to the scenario of positive
learning since the decision boundaries of both domains are similar. On the other hand,
the case where θ = π corresponds to negative learning since the true decision functions
of the source and the target domain are pointing to opposite directions.

Figure 5.1 presents the median true risk of the HTL algorithm (cf. Equation 5.3) as
a function of θ for (r, d) = (5, 5) computed over 1000 simulations. The parameter s of
the softplus loss is set to 0.1. Consistent with our theoretical analysis, the softplus and
logistic functions exhibit significant robustness to negative transfer.

5.6 Conclusion

In this chapter, we study hypothesis transfer learning through the angle of Algorith-
mic Stability. Following the work of Kuzborskij and Orabona (2013), where hypothesis
stability is shown for the MSE in the regression setting, we derive similar hypothesis
stability rates in classification with general losses under slight assumptions. Further-
more, we show that our assumptions are satisfied for the most popular machine learning
losses, making our work valuable for practitioners. Moreover, we leverage our stability
results to provide finite-sample analysis on the generalization gap and the excess risk.
We show that HTL framework is efficient and explicit (fast) rates for these popular
losses. Our theoretical analysis will help practitioners better understand the benefits of
HTL and give insight into the loss choices.
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Figure 5.1 – Target risk of Algorithm 5.2 as a function of θ.

The proposed work is general and may fit with many other domains. Future work may
involve our analysis for different Machine Learning tasks where transfer learning pro-
cedures can be beneficial such as robust learning (Shafahi et al., 2020; Laforgue et al.,
2021; Staerman et al., 2021b), anomaly detection (Andrews et al., 2016; Chandola et al.,
2009; Staerman et al., 2020, 2022a), speech Campi et al. (2021, 2023), automatic lan-
guage generation (Staerman et al., 2021c; Golovanov et al., 2019), knowledge distillation
(Cho and Hariharan, 2019), events-based modelling Staerman et al. (2022b), fairness
Colombo et al. (2022b) or general neural-networks based tasks (Colombo et al., 2022a;
Picot et al., 2023; Darrin et al., 2023).

5.A preliminary results

In this section, we show some useful technical lemmas used in the subsequent proofs.

Lemma 5.16. Suppose that X,Y, Z are three mutually independent random variables
such that E(X) = E(Y ). Then it holds:

E
[
(X + Z)(Y + Z)

]
≤ 2

(
E
[
X
]2

+ E
[
Z2
])

.

Proof Since X,Y, Z are mutually independent one has the following identities,

E
[
(X + Z)(Y + Z)

]
= E

[
X
]
E
[
Y
]

+ E
[
X
]
E
[
Z
]

+ E
[
Z
]
E
[
Y
]

+ E
[
Z2
]

= E
[
X
]2

+ 2E
[
X
]
E
[
Z
]

+ E
[
Z2
]
.

Now, noticing that
(
E[Z]2 ≤ E[Z2]

)
we get:

E
[
X
]2

+ 2E
[
X
]
E
[
Z
]

+ E
[
Z2
]
≤ 2E

[
X
]2

+ E
[
Z
]2

+ E
[
Z2
]

≤ 2

(
E
[
X
]2

+ E
[
Z2
])

,

which is the desired result.
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In the sequel, we shall provide an upper bound for the exponential of τ̂ iλ defined as:

τ̂ iλ =

√√√√α

(
R̂\i[hS ] +

MS

n

)
, (5.5)

with MS = supz∈ZT `(hS , z) and

R̂\i[h] =
1

n− 1

∑
j 6=i

`(h, Zj), (5.6)

the training error of a hypothesis h with the i’th datum removed. The quantity τ̂ iλ will
serve as an upper bound of ρ̂iλ = max(r̂λ, r̂

i
λ) independent of the observation Zi ∈ DT .

Indeed, by definition:

τ̂ iλ ≥ r̂iλ =

√
α
(
R̂\i[hS ]

)
.

Moreover, it holds:

R̂
[
h
]
≤ R̂\i

[
h
]

+
`(h, Zi)

n
≤ R̂\i

[
h
]

+
MS

n
,

so that τ̂ iλ ≥ r̂iλ. Thus, we have τ̂ iλ ≥ ρ̂iλ.

Lemma 5.17. Let W1,W2, . . . ,Wn be a sequence of i.i.d. random variables bounded by
C > 0. Then one has

E
[
eµ̂
]
≤ eµ+C2

n ,

where µ = E
[
W1

]
and µ̂ = 1

n

∑n
i=1Wi.

Proof The proof follows in two steps. First, we apply Hoeffding’s inequality to obtain:

P
(
|µ̂− µ| ≥ t

)
≤ e

−nt2
C2 .

Second, applying Theorem 2.5.2 in Vershynin (2018) yields:

E
[
eµ̂−µ

]
≤ eC

2

n ,

which leads to the desired result.

Lemma 5.18. For all i ∈ [n] and p ∈ N, the quantity eτ̂ iλ verifies:

E
[
epτ̂

i
λ

]
≤ ep+

αpMS
n

+
α2p2M2

S
n−1 epαR[g].

Proof First, using the fact that
√
x ≤ x+ 1, one has:

eτ̂
i
λ ≤ epαR̂\i[hS]+α pMSn +p.
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Since pαR̂\i
[
hS
]

= 1
n− 1

∑
i 6=j pα`(h, Zi), applying Lemma 5.17 with Wi = pα`(h, Zi)

and C = pαMS yields the desired result.

To prove Propositions 5.7 and 5.10, we extend Theorem 4.3 in Zhang (2004a), that gives
an upper bound for standard RERM to the HTL framework. This extension leads to
the next lemma.

Lemma 5.19. The leave one out deviations of the algorithm A (cf. Equation (5.2))
verifies:

‖A
(
DT
)
−A

(
D\iT
)
‖k ≤

k
(
Xi, Xi

)1/2 ∣∣∣∣φ′ (A (DT , Xi

)
Yi

)∣∣∣∣
λn

.

Proof Since φ is convex, the Bregman divergence of φ is non negative. More precisely,

dφ(x, y) = φ(x)− φ(y)− (x− y)φ′(y) ≥ 0,

so that, for any Zi = (Xi, Yi) ∈ DT one has:

`

(
A
(
D\iT
)
, Zi

)
− dφ

(
A
(
D\iT , Xi

)
Yi,A

(
DT , Xi

)
Yi

)
≤ `

(
A
(
D\iT
)
, Zi

)
,

where A
(
DT , Xi

)
is the prediction of the input Xi by the algorithm A. Also, the term

on the left side in the above inequality can be written as follows:

`

(
A
(
D\iT
)
, Zi

)
−dφ

(
A
(
D\iT , Xi

)
Yi,A

(
DT , Xi

)
Yi

)
= `

(
A(DT ), Zi

)
+φ′

(
A(DT , Xi)Yi

)(
A
(
D\iT , Xi

)
−A

(
DT , Xi

))
Yi,

so that:

`
(
A(DT ), Zi

)
+ φ′

(
A(DT , Xi)Yi

)(
A
(
D\iT , Xi

)
−A

(
DT , Xi

))
Yi ≤ `

(
A(D\iT ), Zi

)
.

Thus, we get:

R̂\i
[
A
(
DT
)]

+ Si ≤ R̂\i
[
A
(
D\iT
)]

, (5.7)

where R̂\i is defined previously in Equation (5.6) and

Si =
1

n

∑
j 6=i

φ′
(
A(DT , Xj)Yj

)(
A
(
D\iT , Xj

)
−A(DT , Xj)

)
.

Let ĥ\i denote the solution of the optimization problem 5.3 with the i’th datum removed.
One gets by definition of A (cf. Equation (5.2)),

R̂\i
[
A
(
D\iT
)]

+ λ‖ĥ\i‖2k ≤ R̂\i
[
A
(
DT
)]

+ λ‖ĥ‖2k.
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Using (5.7), it yields:

Si ≤ λ
(
‖ĥ‖2k − ‖ĥ\i‖2k

)
≤ −λ‖ĥ− ĥ\i‖2k − 2λ〈ĥ, ĥ\i − ĥ〉,

where the second line follows from ‖x‖ − ‖y‖ = ‖x− y‖2 + 2〈x − y, y〉. Reverting the
inequality leads to:

λ‖ĥ− ĥ\i‖2k ≤ −
1

nT

∑
j∈T \i

φ′
(
A(DT , Xj)Yj

)
〈ĥ\i − ĥ, k

(
Xi, ·

)
〉 − 2λ〈ĥ, ĥ\i − ĥ〉

≤
∥∥∥∥∥ 1

nT

∑
j∈T \i

φ′
(
A(DT , Xj)Yj

)
k
(
Xi, ·

)
+ 2λg

∥∥∥∥∥
k

‖ĥ\i − ĥ‖k. (5.8)

The last inequalities hold because of the definition of Si:

Si =
1

n

∑
j 6=i

φ′
(
A(DT , Xj)Yj

)(
A
(
D\iT , Xj

)
−A(DT , Xj)

)

=
1

n

∑
j 6=i

φ′
(
A(DT , Xj)Yj

)(
ĥ\i
(
Xj

)
− ĥ

(
Xj

))
=

1

n

∑
j 6=i

φ′
(
A(DT , Xj)Yj

)
〈ĥ\i − ĥ, k(Xj , ·)〉.

On the other hand, since A(DT , Xj) = hS(Xj) + 〈ĥ, k(Xj , ·)〉 and by Theorem 3.1.20 in
Nesterov et al. (2018), we know that the following optimality condition holds:

1

n

n∑
j=1

φ′
(
A(DT , Xj)Yj

)
k
(
Xj , ·

)
+ 2λĥ = 0.

Therefore Inequality (5.8) becomes:

λ‖ĥ− ĥ\i‖2 ≤
∥∥∥∥∥ 1

n
φ′
(
A(T,Xi)Yi

)∥∥∥∥∥
k

‖k(Xi, ·)‖k‖ĥ\i − ĥ‖k.

it remains to remind that ‖k
(
Xi, ·

)
‖2 = k

(
Xi, Xi

)
and ‖A

(
DT
)
−A

(
D\iT
)
‖k =

‖ĥ\i − ĥ‖k to complete the proof.

Before highlighting the link between Algorithm 5.2 with RLS, let’s remind a useful
lemma (representer theorem) that allows simplifying the optimization problem 5.3 in
practice.

Lemma 5.20. The learning rule ĥ (cf. Equation 5.3) lies in the linear span in H of
the vectors

(
k
(
Xi, ·

))
1≤i≤n

, i.e.

ĥ ∈ HD,
with HD =

{∑n
1 αik

(
Xi, ·

)
| α1, . . . , αn ∈ R

}
.
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Proof Since HD is a finite dimensionnal subspace of H, any h ∈ H can be decomposed
as:

h = hD + h⊥,

with hD ∈ HD and h⊥ ⊥ HD. Furthermore using the fact that h(x) = 〈h, k(x, ·)〉k, for
all i ∈ [n], one obtains:

h(Xi) = 〈h, k(Xi, ·)Yi〉 = 〈hD, k(Xi, ·)Yi〉 = hD(Xi)Yi.

Thus, for any Zi ∈ DT , it holds:

`(h+hS , Zi) = φ

((
h(Xi) + hS(Xi)

)
Yi

)
= φ

((
hD
(
Xi

)
+ hS

(
Xi

))
Yi

)
= `(hD+hS , Zi),

which gives
R̂(h+ hS) = R̂(hD + hS).

On the other hand, by the Pythagorean theorem,

‖hD‖2k ≤ ‖h‖2k,
and

R̂(h+ hS) + λ‖hD‖2k ≤ R̂(hD + hS) + λ‖hD‖2k.
Thus, the solution of the minimization problem 5.3 must lie in HD.

5.A.1 Link with Least Squares with Biased Regularisation

To begin, it is a well know fact that, when the kernel k is linear then the RKHS space
consists of the set of linear classifiers:

H =
{
h(x) = u>x | u ∈ Rd

}
.

In this case, the solution of the optimization problem with the mean square loss `(h, Z) =
(1− h(X)Y )2, writes as ĥ = û>x with

û = arg min
u∈Rd

1

n

n∑
i=1

(
u>XiYi + hS(Xi)Yi − 1

)2
+ λ‖u‖22

= arg min
u∈Rd

1

n

n∑
i=1

Y 2
i

(
u>Xi + hS(Xi)−

1

Yi

)2

+ λ‖u‖22

= arg min
u∈Rd

1

n

n∑
i=1

(
u>Xi + hS(Xi)− Yi

)2
+ λ‖u‖22,

where the last inequality follows from the facts that Y 2
i = 1 and 1

Yi
= Yi. Furthermore,

if hS(x) = vTx for some v ∈ Rd one has:

û = arg min
u∈Rd

1

n

n∑
i=1

(
(u+ v)>Xi − Yi

)2
+ λ‖u‖22

= arg min
u∈Rd

1

n

n∑
i=1

(
u>Xi − Yi

)2
+ λ‖u− v‖22.

This is the original form of biased regularisation algorithms.
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5.B Technical proofs of the main results

Before starting the proof of our main results, we remind two properties of RKHS spaces
that are:

∀x, y ∈ XT , 〈k(y, ·), k(x, ·)〉 = k(x, y),

and
∀h ∈ H , ∀x ∈ XT , h(x) = 〈h, k(x, ·)〉.

Under Assumption 8, using Cauchy Schwartz-inequality yields:

∀h ∈ H , ‖h‖∞ ≤
√
κ‖h‖k.

5.B.1 Proof of Lemma 5.6

This lemma follows from our assumptions and a simple fact. Indeed, notice that by
definition of ĥ

R̂(ĥ+ hS) + λ‖ĥ‖2 ≤ R̂(0 + hS).

Furthermore, R̂(hS + ĥ) is non-negative since φ is non-negative which concludes the
proof.

5.B.2 Proof of Proposition 5.7

Let Z = (X,Y ) ∈ ZT and remind that, by definition of A, one has:∣∣∣∣∣∣`
(
A
(
DT
)
, Z
)
− `
(
A
(
D\iT
)
, Z

)∣∣∣∣∣∣ =

∣∣∣∣∣φ
((

ĥ(X) + hS(X)
)
Y

)
− φ

((
ĥ\i(X) + hS(X)

)
Y

)∣∣∣∣∣ ,
where ĥ is the solution of the optimization problem 5.3. Moreover, since φ is differen-
tiable, one can apply the mean value theory to obtain:∣∣∣∣∣∣`
(
A
(
DT
)
, Z
)
− `
(
A
(
D\iT
)
, Z

)∣∣∣∣∣∣ = |φ′
((

yD + hS(X)
)
Y

)
||ĥ(X)− ĥ\i(X)|

≤ √κ|φ′
((

yD + hS(X)
)
Y

)
|‖ĥ− ĥ\i‖k

=
√
κ|φ′

((
yD + hS(X)

)
Y

)
|‖A(DT )−A

(
D\iT
)
‖k,

for some |yD| ≤ max
(
ĥ(X), ĥ\i(X)

)
. By Lemma 5.6, we have |yD| ≤ ρ̂iλ = max

(
r̂λ, r̂

\i
λ

)
.

Now, Using Theorem 5.19 with Assumption 8 yields:

∣∣∣∣∣∣`
(
A
(
DT
)
, Z
)
− `
(
A
(
D\iT
)
, Z

)∣∣∣∣∣∣ ≤ κ
|φ′
((

yD + hS(X)
)
Y

)
φ′
((

ĥ(Xi) + hS(Xi)
)
Yi

)
|

λn
,

(5.9)
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which gives using the fact that ‖ĥ‖∞ ≤ r̂λ ≤ ρ̂λ:∣∣∣∣∣∣`
(
A
(
DT
)
, Z
)
− `
(
A
(
D\iT
)
, Z

)∣∣∣∣∣∣ ≤ sup
|y|,|y′|≤ρ̂iλ

α
∣∣∣φ′(hS(Xi)Yi + y)φ′(hS(X)Y + y′)

∣∣∣
n

,

(5.10)

with α = κ
λ
. Now, by taking the expectation and using the fact that φ verifies assump-

tion 9, Inequality (5.10) becomes:

E


∣∣∣∣∣∣`
(
A
(
DT
)
, Z
)
− `
(
A
(
D\iT
)
, Z

)∣∣∣∣∣∣
 ≤ αΨ1(R

[
hS
]
)

n
.

Besides, notice that by Equation (5.9),

∀DT ∈ ZnT , ∀Z ∈ ZT ,

∣∣∣∣∣∣`
(
A
(
DT
)
, Z
)
− `
(
A
(
D\iT
)
, Z

)∣∣∣∣∣∣ ≤ α‖φ
′‖2∞
n

.

It remains to take the expectation to complete the proof.

5.B.3 Proof of Proposition 5.10

The proof is similar to the previous one thus we will only give the key step: replace
Z = (X,Y ) by Zi = (Xi, Yi) in Equation (5.10) to obtain:

∣∣∣∣∣`(A (D) , Zi)− `
(
A
(
D\i
)
, Zi

)∣∣∣∣∣ ≤ sup
|y|,|y′|≤ρ̂iλ

α
∣∣∣φ′(hS(Xi)Yi + y)φ′(hS(Xi)Yi + y′)

∣∣∣
n

.

To conclude the proof, take the expectation of both sides of the last inequality and use
the Assumption 10.

5.B.4 proof of Proposition 5.11

First, let i ∈ [n] and |y|, |y′| ≤ ρ̂iλ. Furthermore let Z = (X,Y ) and Z = (X ′, Y ′) be
two observations independent of D\i. We start by showing that the MSE and squared
hinge verify Assumptions 9, 10 and explicit their corresponding function Ψ1,Ψ2 . To
do so, remind that: (

ρ̂iλ

)2
= max(r̂iλ, r̂λ)2

≤ (r̂iλ + r̂λ)2

≤ 2
(
r̂iλ

)2
+ 2

(
r̂λ
)2

= 2α
(
R̂+ R̂\i[hS ]

)
. (5.11)
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MSE

Recall the MSE loss φ(x) = (1− x)2. For all x ∈ R, one has:

|φ′(x+ y)| = 2|1− x− y|
≤ 2|1− x|+ 2|y|
≤ 2
√
φ(x) + 2ρ̂iλ. (5.12)

Thus,

sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X ′)Y ′ + y′)φ′(hS(X)Y + y)
∣∣∣ ≤ 4

(√
φ
(
hS(X ′)Y ′

)
+ ρ̂iλ

)(√
φ
(
hS(X)Y

)
+ ρ̂iλ

)
.

Taking the expectation of the latter inequality and using Lemma 5.16 with X =√
φ
(
hS(X ′)Y ′

)
, Y =

√
φ
(
hS(X)Y

)
and Z = ρ̂iλ yields:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X ′)Y ′ + y′)φ′(hS(X)Y + y)
∣∣∣
 ≤ 8

E

[√
φ
(
hS(X)Y

)]2

+ E

[(
ρ̂iλ

)2
]

(by Jensen’s Inequality) ≤ 8

E
[
φ
(
hS(X)Y

)]
+ E

[(
ρ̂iλ

)2
]

(
φ
(
hS(X)Y

)
= `(hS , Z)

)
≤ 8

R[hS ] + E

[(
ρ̂iλ

)2
]

(Inequality (5.11)) ≤ 8
(
R[hS ] + 4αR[hS ]

)
.

This means that the MSE verifies Assumption 9 with Ψ1(x) = 8x(1 + 4α). Now using
Inequality (5.12) again yields:

sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X)Y + y′)φ′(hS(X)Y + y)
∣∣∣ ≤ 4

(√
φ
(
hS(X)Y

)
+ ρ̂iλ

)2

.

By taking the expectation and mimicking the previous step one can show that the MSE
verifies Assumption 10 with Ψ2(x) = 8x(1 + 4α).

Squared hinge

First recall the loss function φ(x) = max
(
0, 1− x

)2
. By simple calculation we obtain:

|φ′(x+ y)| = 2 max
(
0, 1− x− y

)
.

On the other hand, one has:0 ≤ max(0, 1− x) + |y|,
1− x− y ≤ max(0, 1− x) + |y|.
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Thus, it holds:

|φ′(x+ y)| ≤ 2 max(0, 1− x) + 2|y|
≤ 2
√
φ(x) + 2ρ̂iλ.

The result follows using the same steps as in the MSE case.

Exponential

Recalling the loss function φ(x) = e−x, first notice that the exponential loss verifies:

|φ′(x+ y)| = e−xe−y = φ(x)e−y ≤ φ(x)eρ̂
i
λ ≤ φ(x)eτ̂

i
λ , (5.13)

where τ̂ iλ is given by Equation (5.5). Thus, we get:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X ′)Y ′ + y′)φ′(hS(X)Y + y)
∣∣∣
 ≤ E

[
φ(hS(X ′)Y ′)φ(hS(X)Y )e2τ̂ iλ

]

(Z ⊥⊥ Z ′ ⊥⊥ τ̂ iλ) ≤ R[hS ]2E
[
e2τ̂ iλ

]
.

(By Lemma 5.18 with p = 2) ≤ R[hS ]2e2+
2αMS
n

+
4α2M2

S
n−1 e2αR[g]

Thus the exponential loss verifies Assumption 9 with Ψ1(x) = CSx
2e2αx and CS =

e2+
2αMS
n

+
4α2M2

S
n−1 . Besides, using (5.13) again yields:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X)Y + y′)φ′(hS(X)Y + y)
∣∣∣
 ≤ E

[
φ(hS(X)Y )2e2τ̂ iλ

]

(MS = sup
Z∈ZT

`(hS , Z)) ≤MSE
[
φ(hS(X)Y )e2τ̂ iλ

]
(Z ⊥⊥ τ̂ iλ) ≤MSR[hS ]E

[
e2τ̂ iλ

]
(By Lemma 5.18 with p = 2) ≤MSR[hS ]e2+

2αMS
n

+
4α2M2

S
n−1 e2αR[g].

Therefore the exponential loss verifies Assumption 10 with Ψ2(x) = CSMSxe
2αx.

Logistic

Recall the loss function φ(x) = log(1 + e−x) and its derivative:

|φ′(x)| = e−x

e−x + 1
.
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Thus, we have:

|φ′(x+ y)| = e−x−y

e−x−y + 1

≤ e−ye−x

= e−y
(
eφ(x) − 1

)
≤ eρ̂iλ

(
eφ(x) − 1

)
≤ eτ̂ iλ

(
eφ(x) − 1

)
,

where the two last inequalities result from the facts that y ≤ ρ̂iλ and ρ̂iλ ≤ τ̂ iλ respectively.
Using the facts that ‖φ′‖∞ ≤ 1 and eτ̂ iλ ≤ 1, one obtains:

∣∣∣φ′(hS(X)Y + y)
∣∣∣ ≤ min

eτ̂ iλ (eφ(hS(X)Y
)
− 1

)
, 1


= min

(
eτ̂
i
λ

(
e`(hS ,Z) − 1

)
, 1

)
≤ min

(
eτ̂
i
λ

(
e`(hS ,Z) − 1

)
, eτ̂

i
λ

)
≤ eτ̂ iλ min

((
e`(hS ,Z) − 1

)
, 1

)
. (5.14)

The latter inequality yields:

sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X ′)Y ′ + y′)φ′(hS(X)Y + y)
∣∣∣ ≤ e2τ̂ iλ min

(
e`(hS ,Z) − 1, 1

)
min

(
e
`
(
hS ,Z

′
)
− 1, 1

)
.

Thus, since Z,Z ′ are independent of D\iT , they are also independent of τ̂ iλ. It follows:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X ′)Y ′ + y′)φ′(hS(X)Y + y)
∣∣∣
 ≤ E

[
e2τ̂ iλ

]
E
[
min

(
e`(hS ,Z) − 1, 1

)]2

(By Lemma 5.18) ≤ CSe2αR[hS ]E
[
min

(
e`(hS ,Z) − 1, 1

)]2

.

(5.15)

Now using the fact that:

e`(hS ,Z) − 1 ≤ 1 =⇒ `(hS , Z) ≤ 1 =⇒ `(hS , Z) ≤
√
`(hS , Z),

we have:

E
[
min

(
e`(hS ,Z) − 1, 1

)]
≤ E

[
min

(
e
√
`(hS ,Z) − 1, 1

)]
.

In addition, notice that:

(e
√
x − 1) ∧ 1 =

e
√
x − 1 if x ≤ ln(2)2,

1 otherwise,
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which is concave. Therefore, it holds:

E
[
min

(
e`(hS ,Z) − 1, 1

)]
≤ min

(
e
√
R[hS ] − 1, 1

)
.

To show that the logistic loss verifies Assumption 9 with Ψ1(x) = CSe
2αR[hS ](e

√
x−1)2,

it suffices to plug the latter inequality in (5.15). Now, using (5.14) again yields:

E

 sup
|y′|,|y|≤ρ̂iλ

∣∣∣φ′(hS(X)Y + y′)φ′(hS(X)Y + y)
∣∣∣
 ≤ E

[
e2τ̂ iλ min

(
e`(hS ,Z) − 1, 1

)2
]

≤ E
[
e2τ̂ iλ

]
E
[
min

(
e`(hS ,Z) − 1, 1

)]
.

Finally, using the same steps as before, we show that the logistic loss verifies Assump-
tion 10 with Ψ1(x) = CSe

2αR[hS ](e
√
x − 1).

Softplus

The proof is similar to that of the logistic loss and is left for the reader.

5.B.5 Proof of Theorem 5.12

First, notice that:

Egen = |E
[
R̂
[
A(DT )

]
−R

[
A(DT )

]]
| = |E

 1

n

n∑
i=1

`
(
A
(
DT
)
, Zi

)
− `

(
A
(
D\iT
)
, Z

)|
= |E

`(A (DT ) , Z1

)
− `

(
A
(
D\iT
)
, Z

)|.
Using triangle inequality and the fact that Z and Z1 have the same distributions, we
obtains:

Egen ≤ |E

`(A (DT ) , Z1

)
− `
(
A
(
D\iT
)
, Z1

)|+ |E
`(A(D\iT ) , Z1

)
− `

(
A
(
D\iT
)
, Z

)|
= |E

`(A (DT ) , Z1

)
− `
(
A
(
D\iT
)
, Z1

)|+ |E
`(A(D\iT ) , Z

)
− `

(
A
(
D\iT
)
, Z

)|.
The desired result follows from Propositions 5.7 and 5.10.

5.B.6 Proof of Theorem 5.14

First introduce
hλ = arg min

h∈H
R
[
hS + h

]
+ λ‖h‖2k,
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and write

R
[
A
]
−R[h∗ + hS ] = R

[
A
]
− R̂

[
A
]

+ R̂
[
A
]

+ λ‖f‖2k −R[hλ + hS ] +R[hλ + g′]−R[h∗ + hS ].

Now by rearranging and reminding that:

R̂
[
A
]

+ λ‖f‖2k ≤ R̂
[
hλ + hS

]
+ λ‖hλ‖2k,

we obtain:

R
[
A
]
−R[h∗ + hS ] ≤ R

[
A
]
− R̂

[
A
]

+ R̂
[
hλ + hS

]
−R[hλ + hS ]

+R[hλ + hS ] + λ‖hλ‖2k −R[h∗ + hS ].

For the first term notice that:

E
[
R
[
A
]
− R̂

[
A
]]
≤ Egen ≤ β(n) + γ(n).

Regarding the second term, since hλ is independent of DT we have:

E
[
R̂
[
hλ + hS

]
−R[hλ + hS ]

]
= 0.

Finally, notice that by definition of gλ that:

R[hλ + hS ] + λ‖hλ‖2k −R[h∗ + hS ] ≤ λ‖h∗‖2k.

Combining the latter four inequalities yields:

Eex = R
[
A
]
−R[h∗ + hS ] ≤ β(n) + γ(n) + λ‖h∗‖k, (5.16)

which concludes the first part. For the second part we shall use Table 5.1 and the fact
that

γ(n) + β(n) ≤ α

(
Ψ1

(
R
[
hS
])

+ Ψ2

(
R
[
hS
]))
∧
(

2‖φ′‖2∞
)

n
. (5.17)

MSE and Squared hinge

For these two losses, Ψ1(x) = Ψ2(x) = 8x(4α+ 1), so that by inequality (5.17) we get:

γ(n) + β(n) ≤ α16R
[
hS
]

(4α+ 1)

n

=
16κR

[
hS
]

(4
κ

λ
+ 1)

λn
.

Thus for small λ one has:

γ(n) + β(n) = O
(
R[hS ]

λ2n

)
.

To conclude, set λ =

√
R[hS ]√

n
and use Inequality (5.16) to obtain:

Eex = O

√R[hS ]√
n

 .
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Exponential

Using Table 5.1, remind that the functions Ψ1(x) and Ψ2 are given by: Ψ1(x) =
CSx

2e2αx , Ψ2(x) = CSMSxe
2αx with MS = supz∈ZT `(hS , z) and

CS = exp

{
2 +

2αMS

n
+

4α2M2
S

n− 1

}
= exp

{
2 +

2κMS

λn
+

4κ2M2
S

λ2(n− 1)

}
.

Assume that n ≥ max

(
M2
S ln(n)2

R[hS ] , 2

)
and λ = 4

√
R[hS ]∧1

ln(n) = 4

√
R[hS ]

ln(n) . The case where

R[hS ] ≥ 1 is similar and thus omitted. Now, write

n ≥ M2
S ln(n)2

R[hS ]
=
M2
S

λ2
=⇒ M2

S

λ2(n− 1)
≤ n

n− 1
≤ 2.

The latter condition also implies that MS
λn ≤ λ

MS
≤
√
R[hS ]

MS ln(n) ≤ 1
2MS

. By these two facts,
we deduce that CS can be bounded independently of n. Thus, using (5.17) yields:

γ(n) + β(n) ≤ α
CS

(
R[hS ]2 +MSR[hS ]

)
e2αR[hS ]

n
(5.18)

= ln(n)
CS

(
R[hS ]3/2 +MSR[hS ]1/2

)
(
√
n)κ
√
R[hS ]

n

= O

√R[hS ]√
n

 ,

where the two last inequalities follow from the facts that α = κ
λ = κ ln(n)√

R[hS ]
and κ ≤ 1. It

remains to use the (5.16) to conclude the first part. For the second part, set λ = ln(n)2√
n

and notice that, if n ≤ M2
S ln(n)2

R[hS ] then R[hS ] ≤ M2
S ln(n)2

n ≤M2
Sλ and αR[hs] ≤M2

Sκ ≤ 1.
Furthermore, the constant CS can be bounded independently of n with such a choice
of λ. Inequality (5.18) becomes:

γ(n) + β(n) = O
(
R[hS ]√
n ln(n)2

)
.

It remains to use Inequality (5.16) to complete the proof.

Logistic

For this loss, we have ‖φ′‖∞ = 1 and Inequality (5.17) becomes:

β(n) + γ(n) ≤ 2α

n
=

2κ

λn
≤ 2

λn
.

Thus, setting λ = 1√
n
and using Inequality (5.16) yields:
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Eex = O

√ 1

n

 .

Furthermore, if n ≥ 9 and R[hS ] ≤ 1√
n
≤ 1

e , then with the choice λ = 8√
−n ln(R[hS ])

one

has:

Eex = O

 1√
−n ln

(
R[hS ]

)
 .

Indeed, in the setting above, it leads to that:

eαR[hS ] = e
κ
λ
R[hS ] = e

κ
√
− ln(R[hs])

8

(κ ≤ 1) ≤ e
√
− ln(R[hs])

8(
− ln(R[hS ]) ≥ 1

)
≤ e

− ln(R[hs])
8 = R[hS ]−1/8,

and

e
2κMS
λn ≤ e 2

λn = e
−
√

ln(R[hS ])

4
√
n ≤ e

√
ln(n)
4n ≤ e1/4.

Besides, since n
n−1 ≤ 2,

e
4κMS
λ2n ≤ e

4
λ2(n−1) = e

− ln(R[hS ])(n)

16(n−1) ≤ R[hS ]−1/8.

Moreover, using Inequality (5.17) and Table 5.1 gives:

γ(n) + β(n) ≤ α
CSe
√
R[hS ]e2αR[hS ]

(
e
√
R[hS ] − 1

)
n

= κ

exp

{
2 +

2αMS

n
+

4α2M2
S

n− 1
+
√
R[hS ] + 2αR[hS ]

}(
e
√
R[hS ] − 1

)
λn

= O


√
− ln

(
R[hS ]

)(
e
√
R[hS ] − 1

)
R[hS ]1/4

√
n

 .

Now, since the function e
√
x − 1 ≤ 2

√
x for all x ≤ ln(2)2 and R[hS ] ≤ 1

n ≤ 1
3 ≤ ln(2)2

the latter inequality becomes:

γ(n) + β(n) = O


√
− ln

(
R[hS ]

)
R[hS ]1/4

√
n

 .

To conclude the proof notice that, for all x ≤ 1, we have ln(x−1/4) ≤ x−1/4 and thus
x1/4(− ln(x)) ≤ 4. This leads to :
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x1/4
√
− ln(x) ≤ 4√

− ln(x)
.

Therefore,

γ(n) + β(n) = O

 1√
−n ln

(
R[hS ]

)
 .

It remains to use Inequality (5.16) to complete the proof.

Softplus

For the softplus, the choice λ = 1/
√
n yields:

Eex = O

√ 1

n

 .

Furthermore, if n ≥ 9 and R[hS ] ≤ 1√
n

and 1
s ≤ − ln(R[hS ]), then with the choice

λ = 8√
−n ln(R[hS ])

, one has:

Eex = O

 1√
−sn ln

(
R[hS ]

)
 .

The proof is identical to the previous one and thus omitted.
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6.1 Introduction

Introduced in Stone (1974), cross-validation (CV) is a popular tool in statistics for
estimating the generalization risk of a learning algorithm. It is also the mainstream
approach for model and parameter selection. Despite its widespread use, it has been
shown in several contexts that CV schemes fail to select the correct model unless the test
fraction is negligible in front of the sample size. Unfortunately, this excludes the widely
used K-fold CV. This suboptimality has been pinned in the linear regression framework
by Burman (1989); Shao (1997); Yang (2007), then in other specific frameworks such
as density estimation (Arlot, 2008a) and classification (Yang, 2006). The theoretical
properties of CV procedures for model selection in wider settings are notoriously difficult
to establish and remain the subject of active research (Bayle et al., 2020; Wager, 2020).

To tackle the suboptimality of K-fold, Burman (1989); Fushiki (2011) have proposed
to add some debiasing correction terms to the K-fold CV estimate in order to im-
prove the convergence rate. However, the analysis conducted in these works is purely
asymptotic and focuses only on ordinary linear regression. More recently Arlot and
Lerasle (2016) conduct a non asymptotic study for the bias corrected K-fold in the
density estimation framework and show the benefits of such a correction. Nonetheless,
the latter study relies on closed-form formulas for risk estimates which are valid only
for histogram rules. To summarize, the statistical consistency of the debiased version
has been established only in specific frameworks pertaining to classical statistics. In
addition, to our best knowledge, the consistency of K-fold without correction has not
been proved nor disproved in the existing literature.
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The main purpose of this chapter is to establish non-asymptotic results (upper and
lower bounds) regarding the error of the K-fold risk estimate, under realistic assump-
tions which are valid for a wide class of modern algorithms (regularized empirical risk
minimization, neural networks, bagging, SGD, etc. . . ), namely an algorithmic stabil-
ity assumption discussed below. In other words, the question we seek to answer is as
follows:

• Is K-fold cross-validation consistent under algorithmic stability assumptions? If
not, how about the bias corrected K-fold?

The notion of algorithmic stability and its consequences in learning theory has received
much attention since its introduction in Devroye and Wagner (1979). This property
allows to obtain generalization bounds for a large class of a learning algorithms such as
k-nearest-neighbors (Devroye and Wagner, 1979), empirical risk minimizers (Kearns and
Ron, 1999), regularization networks (Bousquet and Elisseeff, 2001), bagging (Elisseeff
et al., 2005) to name but a few. For an exhaustive review of the different notions of
stability and their consequences on the generalization risk of a learning algorithms, the
reader is referred to Kutin and Niyogi (2002). Our working assumption in this chapter is
uniform stability, which encompasses many algorithms such as Support Vector Machine
(Bousquet and Elisseeff, 2002), regularized empirical risk minimization (Zhang, 2004a;
Wibisono et al., 2009a), stochastic gradient descent (Hardt et al., 2016a) and neural
networks with a simple architecture (Charles and Papailiopoulos, 2018).

Related Work on K-fold CV with Stable Learners. In Kale et al. (2011);
Kumar et al. (2013), K-fold CV for risk estimation is envisioned under stability as-
sumptions regarding the algorithm. It is shown that the K-fold risk estimate has a
much smaller variance than the simple hold-out estimate and the amount of variance
reduction is quantified. Another related work is Abou-Moustafa and Szepesvári (2017)
who builds upon a variant of algorithmic stability, namely Lq-stability to derive PAC
upper bounds for K-fold CV error estimates. Other results regarding the asymptotic
behavior of K-fold estimates can be found in Austern and Zhou (2020a); Bayle et al.
(2020).

However, none of the results mentioned above imply a universal upper bound regarding
the K-fold neither for risk estimation nor for model selection. Indeed their focus is on
the the variance term of the K-fold error, while they do not take into account the high
bias generally induced by this CV scheme (see Shao (1997); Arlot and Lerasle (2016)
for instance). To our best knowledge, the literature on algorithmic stability is silent
about the consistency of K-fold CV– the most widely used CV scheme – in a generic
stability setting. Filling this gap is the main purpose of the present chapter.

Contributions and Outline. We introduce the necessary background and notations
about CV risk estimation and algorithmic stability in Section 6.2. Section 6.3 is in-
tended to give some context about provable guarantees regarding K-fold CV scheme,
namely we state and prove a generic upper bound on the error of the generalization risk
estimate for uniformly stable algorithms. However, with realistic stability constants,
the obtained upper bound is not satisfactory, in so far as it does not vanish as the
sample size n→∞.
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Our main contributions are gathered in sections 6.4 to 6.6 and may be summarized as
follows:

1. One may wonder whether the looseness of the bound for the K-fold CV error is
just an artifact from our proof. We answer in the negative by deriving a lower
bound on the K-fold error (Section 6.4) in two different contexts, specifically,
regularized empirical risk minimization and stochastic gradient optimization. The
latter bound shows that under the uniform stability assumption alone, K-fold CV
is inefficient in so far as it can fail in estimating the generalization risk of a
uniformly stable algorithm.

2. We analyze a corrected K-fold procedure and prove a PAC generalization upper
bound covering the general case of uniformly stable learners. As a consequence,
the corrected version of the K-fold is shown to be efficient in contrast to the
standard version. The corrected K-fold scheme has been investigated in Burman
(1989, 1990); Fushiki (2011); Arlot and Lerasle (2016) in the particular frameworks
of ordinary linear regression and density estimation. Furthermore, the analysis
in the latter references relies on strong regularity assumptions (further details are
given in Section 6.5) which aren’t satisfied by many modern learning rules like
Support Vector Machine (SVM), stochastic gradient descent methods, bagging,
etc. Instead our upper bound covers the general case of uniformly stable learners.
As an example of application, we show that the debiased K-fold permits to select
a model within a finite collection in a risk consistent manner (Section 6.6). In
other words, the excess risk of the selected model tends to 0 as n→∞. Finally we
demonstrate empirically the added value of the debiased K-fold compared with
the standard one in terms of the test error of the selected model.

6.2 Background, notations and working assumptions

6.2.1 Notations

We place ourselves in the following general learning setting. One receives a collection
of independent and identically distributed random vectors D = (O1, . . . , On) lying in a
sample space Z, with common distribution P . For any n ∈ N, let [n] denote the set of
integers {1, 2, . . . , n}. Consider a class of predictors G and a loss function ` : G×Z → R,
so that `(g,O) be the error of g on the observation O ∈ Z. As an example, in the
supervised learning setting Z = X × Y, g is a mapping X → Y and for o = (x, y)
the loss function writes as `(g, o) = `(g(x), y). However our results are not limited to
the supervised setting. Given a subsample DT = {Oi | i ∈ T} indexed by T ⊂ [n]
and an algorithm (or learning rule) A, we denote by A(T ) ∈ G the predictor obtained
by training A on DT . We consider in this chapter deterministic algorithms, that is,
given a subsample DT , the output of the algorithm A(T ) is non random. We thereby
neglect the randomness brought e.g. by optimization routines. The case of random
algorithms can be covered at the price of additional notational burden. For the sake
of readability we restrict ourselves to deterministic algorithms in the main chapter and
show how to relax it in the supplementary (Section 6.D), in order to cover the case of
random algorithms such as stochastic gradient descent (SGD) or neural networks. This
extension is in particular necessary to one of our counter-examples (Section 6.8) where
we build a lower bound for the SGD algorithm.
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The generalization risk of the predictor A(T ) is then

R
[
A(T )

]
= E

[
`
(
A
(
T
)
, O
)
| DT

]
,

where O is independent from DT . Notice that the randomness in the latter expectation
stems from the novel observation O only while the trained algorithm A(T ) is fixed. The
quantity of interest here is the generalization risk of the learning rule trained on the full
dataset, R

[
A([n])

]
. The hold-out estimate of the latter involves a validation index set

V disjoint from T and writes as

R̂
[
A(T ), V

]
=

1

nV

∑
i∈V

`(A(T ), Oi),

where nV = card(V ).
Given a family of validation sets in [n], V1:K = (Vj)j=1,...,K , the K-fold CV estimator
of the generalization risk of A([n]) is

R̂CV

[
A, V1:K

]
=

1

K

K∑
j=1

R̂
[
A(Tj), Vj

]
, (6.1)

where Tj = [n]\Vj . For clarity reasons, we suppose further that n is divisible by K
so that n/K is an integer. This condition guarantees, that all validation sets have the
same cardinal nV = n/K.

6.2.2 Algorithmic Stability

An algorithm A is called stable if removing a training point Oi from DT (i ∈ T ) or
replacing Oi with an independent observation O′ drawn from the same distribution
does not change much the risk of the output. Formally, for i ∈ T ⊂ [n] as above, let
T \i = T \ {i}, so that A(T \i) is the output of A trained on DT \ {Oi}. Denote similarly
A(T i) the output of A trained on DT \ {Oi} ∪ {O′}. The notion of hypothesis stability
was first introduced in Devroye and Wagner (1979) to derive non asymptotic guarantees
for the leave-one-out CV (l.o.o.). In this chapter, we consider instead uniform stability,
an assumption used in Bousquet and Elisseeff (2002); Wibisono et al. (2009a); Hardt
et al. (2016a); Feldman and Vondrak (2019) to derive probability upper bounds for
the training error and l.o.o. estimates. With the above notations, uniform stability is
defined as follows.

Definition 6.1. An algorithm A is said to be (βt)1≤t≤n uniformly stable with respect
to a loss function ` if, for any T ⊂ [n], i ∈ T it holds that∣∣∣∣`(A(T ), O

)
− `

(
A(T \i), O

)∣∣∣∣ ≤ βnT , (6.2)

with P -probability one.

Many widely used Machine Learning algorithms are uniformly stable in the sense of
Definition 6.1. In particular βn ≤ C

n for SVM and least square regression with the usual
mean squared error, and for SVM classification with the soft margin loss (Bousquet and
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Elisseeff, 2002). Up to a minor definition of uniform stability accounting for randomness
(see Section 6.D in the supplement), many extensively used stochastic gradient methods
are also uniformly stable, such as e.g. SGD with convex and non convex losses (Hardt
et al., 2016a) or RGD (randomized coordinate descent) and SVRG (stochastic variance
reduced gradient method) with loss functions verifying the Polyak-Łojasiewicz condition
(Charles and Papailiopoulos, 2018).

The following simple fact concerns the effect of removing n′ training points on uniformly
stable algorithms.

Fact 6.2.1. Let A be a decision rule which is (βt)1≤t≤n uniformly stable, additionally
suppose that the sequence (βt)1≤t≤n is decreasing, then for any T ⊂ [n], one has,∣∣∣∣∣`

(
A
(

[n]
)
, O

)
− `
(
A(T ), O

)∣∣∣∣∣ ≤
n∑

i=nT+1

βi.

Remark 6.2. Definition 6.1 and Fact 6.2.1 play a key role in our proofs. Namely we
use Fact 6.2.1 to control the bias of the CV risk estimate and Definition 6.1 to derive a
probability upper bound on its deviations via McDiarmid’s inequality.

We also rely on the fact that the training and validation sets of K-fold CV verify a
certain balance condition.

Fact 6.2.2. For the K-fold CV the validation sets V1, V2, . . . VK satisfies

card(Vj) = nV ∀j ∈ J1,KK, (6.3)

for some nV ∈ J1, nK.Moreover it holds that

1

K

K∑
j=1

1
{
l ∈ Vj

}
=
nV
n

∀l ∈ [n]. (6.4)

Because Tj = [n]\Vj , if (6.4) holds, then the training sets Tj verify a similar equation,
that is,

1

K

K∑
j=1

1
{
l ∈ Tj

}
=
nT
n

∀l ∈ [n].

We prove Fact 6.2.2 in the supplement (Lemma 6.14).

Throughout this chapter we work under the following uniform stability assumption
combined with a boundedness assumption regarding the cost function.

Assumption 11 (Stable algorithm). The algorithm A is (βt)1≤t≤n uniformly stable
with respect to a cost function ` that satisfies

∀O ∈ Z , ∀T ⊂ [n],

∣∣∣∣`(A (T ) , O)∣∣∣∣ ≤ L.
6.3 Upper bounds for K-fold risk estimation

Our first result Theorem 6.3 is a generic upper bound on the error of the generalization
risk estimate for stable algorithms satisfying Assumption 11. Our upper bound is of
the same order of magnitude as existing results in the literature which apply to other
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contexts, e.g. in Bousquet and Elisseeff (2002) for l.o.o. CV or in Cornec (2017) for the
specific case empirical risk minimizers, although our techniques of proof are different.
The fact that the upper bound does not vanish with large sample sizes n with realistic
stability constants (Corollary 6.4) gives some context and motivates the rest of this
work.

Theorem 6.3. Consider a stable learning algorithm A satisfying Assumption 11. Then,
we have with probability 1− 2δ,∣∣∣∣∣R̂CV

[
A, V1:K

]
−R

[
A([n])

]∣∣∣∣∣ ≤
n∑

i=nT+1

βi

+ (4βnT nT + 2L)

√
log(1/δ)

2n
.

Where L is the upper bound on the cost function ` from Assumption 11.

Proof [Sketch of proof] Define the average risk of the family
(
A(DTj )

)
1≤j≤K

RCV
[
A, V1:K

]
=

1

K

K∑
j=1

R
[
A(Tj)

]
, (6.5)

then write the following decomposition

R̂CV

[
A, V1:K

]
−R

[
A([n])

]
= Dcv + Bias, (6.6)

with

Dcv = R̂CV

[
A, V1:K

]
−RCV

[
A, V1:K

]
, (6.7)

Bias = RCV
[
A, V1:K

]
−R

[
A([n])

]
. (6.8)

The proof consists in bounding each term of the above decomposition independently.
The term Dcv measure the deviations of R̂CV from its mean and it can be controlled
using McDiarmid’s inequality (Proposition 6.A.1). The second term Bias is controlled
using Fact 6.2.1. The detailed proof is deferred to the appendix.

As discussed in the background section 6.2.2, typical uniform stability constants βn for
standard algorithms satisfy βn ≤ C

n . In this case, Theorem 6.3 yields the following
corollary.

Corollary 6.4. Consider a stable learning algorithm A satisfying Assumption 11 with
stability parameter βn ≤ C

n . Then, we have with probability 1− 2δ,∣∣∣∣∣R̂CV

[
A, V1:K

]
−R

[
A([n])

]∣∣∣∣∣ ≤ C log

(
K

K − 1

)

+ (4C + 2L)

√
log(1/δ)

2n
,

wich does not converge to 0 as n→∞.
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Proof Recall that n
nT = K

K−1 and write

n∑
i=nT+1

βi ≤ C
n∑

i=nT+1

1

i
≤ C log

(
K

K − 1

)
.

The result follows from Theorem 6.3.

Remark 6.5 (Bias and Variance of K-fold CV). The two terms of the sum in the upper
bound of Theorem 6.3 correspond respectively to a variance and a bias term, namely Dcv

and Bias in the error decomposition (6.6).

On the one hand, the term (4βnT nT + 2L)

√
log(1/δ)

2n reflects the variance of the CV

procedure. When βn ≤ C
n it yields the usual rate 1/

√
n. On the other hand, the term∑n

i=nT+1 βi reflects the bias of K-fold CV. Contrarily to the variance term, it does not
vanish as n → ∞, even when βn ≤ C/n. Finally, Notice that, as the number of folds
K increases, the training size nT gets closer to the sample size n and the bias of K-fold
vanishes. However, for computational efficiency, increasing the number of folds is not
always desirable.

One may wonder whether the looseness of the bias term
∑n

i=nT+1 βi is just an artifact
from our proof. In the next theorem we answer in the negative by deriving a lower bound
for the K-fold. The latter bound shows that under the uniform stability assumption
alone, K-fold CV is inefficient in so far as it can fail in estimating the generalization
risk of a uniformly stable algorithm.

6.4 Lower bound for the K-fold error under algorithmic
stability

To construct lower bounds on K-fold CV error, we consider two families of algorithms
that satisfy the uniform stability hypothesis with parameter βn scaling as 1/n. Namely,
regularized empirical risk minimizers (RERM) and stochastic gradient descent (SGD).

6.4.1 Regularized Empirical Risk Minimization

The first counter-example that we build to prove a lower bound is formulated in a regres-
sion framework. In particular, we consider L2-regularized empirical risk minimization
(L2-RERM)

A = arg min
g∈G

 1

n

n∑
i=1

`
(
g,Oi

)
+ λn

∥∥g∥∥2

G

 , (6.9)

where ` is a convex loss function and G is a hypothesis space.
Under some mild assumptions on ` and the input space Z, an L2-RERM algorithm is
uniformly stable with βn ≤ C

n (see e.g. Zhang (2004a); Wibisono et al. (2009a); Liu
et al. (2017) for further details).
The next result confirms that uniform stability alone is not sufficient to ensure the
consistency of K-fold CV for RERM.
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Theorem 6.6 (Non vanishing lower bound on the K-fold error). Consider the regression
problem for a random pair O = (X,Y ) ∈ Z = X ×Y, loss function `(g, o) = (g(x)−y)2

and hypothesis class G consisting of linear predictors . Set M ≥ 1 and n ∈ J2, eM K.
Then, there exists an input space Z with distribution P and a regularization parameter
λn, such that the RERM algorithm A (Equation 6.9) satisfies Assumption 11 with L =
M and βn ≤ 2/n.
Furthermore the K-fold CV error satisfies,

E
[∣∣∣R̂CV

[
A, V1:K

]
− R

[
A([n])

] ∣∣∣] ≥
2 log

(
K

K − 1

)(
1− 1

M

)
,

and

E
[∣∣∣R̂CV

[
A, V1:K

]
−R

[
A([n])

] ∣∣∣] ≤ 2 log

(
K

K − 1

)
.

Proof [Sketch of proof] First set Z = X ×Y ⊂ R×R and consider the hypothesis class
of linear regressors,

G =
{
gb | b ∈ R

}
,

where gb(x) = bx for x ∈ R. With the loss `(gb, o) = (y − bx)2, it can be shown that
the solution to problem 6.9 writes as A

(
[n]
)

= gbn with

bn = f(λn), (6.10)

for some decreasing function f . Now, by carefully picking Z and λn we construct a
problem such that, for any O ∈ Z and T ⊂ T ′ ⊂ [n]

1. λn is decreasing.

2. `
(
A
(
T
)
, O
)
≥ `
(
A
(
T ′
)
, O
)
.

3. `
(
A(T \i), O

)
− `
(
A
(
T
)
, O
)
≤ f

(
λn
)
− f

(
λn−1

)
.

4. f(λn)− f(λn−1) ≤ 2
n.

The result easily follows from the three latter facts. For the detailed proof, the reader
is deferred to Appendix 6.C.2.

6.4.2 Stochastic Gradient Descent

In this section, we consider the SGD update rule

∀t ≥ 0 , At+1 = At − αt,n∇A`
(
At, Xit

)
, (6.11)
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where ∇A` denotes the derivative of ` with respect to the first argument, it is the index
picked by SGD at step t and αt,n ≥ 0 is the step size.
It is well known that SGD verifies the uniform stability assumption with respect to
many losses (Hardt et al., 2016a; Liu et al., 2017; Charles and Papailiopoulos, 2018).
For instance, when the loss function is convex, β smooth, and σ-Lipschitz, it has been
shown that SGD algorithm (Hardt et al., 2016a) is uniformly stable with parameter

βn ≤ 2σ2

n
∑t

k=1 αk,n.

Remark 6.7. For a fixed data sequence D, the output of SGD is random. Hence, the
definition of random uniform stability is introduced in Appendix 6.D and is slightly
different than Definition 6.1. However, most if not all the properties of determinis-
tic uniformly stable rules (discussed before) are preserved by random uniformly stable
learners (see e.g. Elisseeff et al. (2005); Hardt et al. (2016a); Liu et al. (2017)).

Theorem 6.8. Let M > 1 be a real number , 2 ≤ n ≤ eM an integer, and t ≥ 1 a
maximum number of iterations . Set the initialization A0 = 0. Then, There exists an
input space Z = X ×Y, a convex loss function ` and a sequence of step sizes (αk,n)k≤t
such as,

E
[∣∣∣R̂CV

[
At, V1:K

]
− R

[
At([n])

] ∣∣∣] ≥ 1

3
log

(
K

K − 1

)
.

Furthermore, At fulfills Assumption 11 with L = M and

βn ≤
3

n− 1

t∑
k=1

αk,n ≤
3M

n− 1
.

Proof The proof is deferred to the appendix (section 6.D.2).

Remark 6.9. In both examples, we suppose that the input is a binary random variable.
Such a restrictive setting serves as a corner case to derive lower bounds (Bousquet et al.,
2020; Zhang et al., 2022), suggesting the necessity of additional assumptions to ensure
the consistency of K-fold scheme.

Remark 6.10 (boundedness of n). With the current assumptions, the lower bounds
don’t ensure the inconsistency as the sample size n grows to infinity. However, Theorems
6.6 and 6.8 in their current state prove that, one cannot obtain a standard universal
vanishing upper bound on the expected estimation error of K-fold (E[errorCV]) which
would be valid for all sample spaces (Z), all distributions (P ) and all stable algorithms.
In other words, one cannot construct a function h(n) such that

∃n0 ∈ N , ∀n ≥ n0 , ∀(Z, P ),

∀A stable with parameter βn ≤
1

n
,E
[
errorCV

]
≤ h(n),

and h(n) −−−→
n→∞

0.
An additional remark that ought to be made: if we relax Assumption 11 into : "the
loss function `(A

(
[n]
)
, ·) is L log(n)-bounded and the algorithm A is log(n)

n uniformly
stable", then all the upper bounds from the present paper remain valid (up to a log(n)
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factor), in particular the upper bound on the bias-corrected K-fold estimation error
(Corollary 6.12 below). Furthermore, under this new assumption, the lower bound in
Theorem 6.8 is valid ∀n ∈ N, which yields the inconsistency of K-fold CV. More pre-
cisely, Theorem 6.8 becomes

∃(Z, P ),∀n0 ∈ N , ∀n ≥ n0 ,

∃A stable with parameter βn ≤
log(n)

n
, E
[
errorCV

]
≥ κ,

with κ = 1
3 log

(
K
K−1

)
. One must note that the additional log(n) factor in the upper

bound weakens the tightness of the lower bound, however this is compatible with existing
lower bounds from the stability literature (Bousquet et al., 2020).

Discussion. Theorems 6.6 and 6.8 reveals the suboptimality of K-fold CV in the gen-
eral stability framework for risk estimation. For the purpose of model selection, which
is arguably a harder problem, existing works have shown the suboptimality of K-fold
CV. For example, in a regression framework, under the linear model assumption, Yang
(2007) (See also Yang (2006) for classification problems) has shown that the usual K-fold
procedure may not select the best model. For efficient model selection, where the perfor-
mance is measured in terms of generalization risk of the selected model, Arlot (2008a)
shows (See Theorem 1 in the latter reference) that K-fold CV can be suboptimal, i.e. an
example is provided where the risk ratio between the selected model and the optimal one
is uniformly greater (for all n) than 1 + κ for some κ > 0. In Theorem 6.6 ( resp. 6.8)
of the present paper we show a stronger result, in so far as we consider the easier task of
risk estimation, and we show that K-fold CV with fixed K does not enjoy sanity-check
guarantees because for any n, there exists a regression ( resp. optimization) problem
where the error is at least 2 log( K

K−1)
(
resp. 1

3 log K
K−1

)
. It is worth mentioning at this

stage that even if the uniform stability ensures the low variance of K-fold (Kumar et al.
(2013); Bayle et al. (2020), etc.), it is not sufficient to control the bias.

In the next section, we show that adding correction terms (Burman, 1989) to K-fold CV
addresses the inconsistency issues underlined by Theorems 6.6 and 6.8. The resulting
CV scheme enjoys both the computational efficiency of the K-fold (compared with the
l.o.o.) and finite sample guarantees comparable to those of the l.o.o. in view of the
upper bound stated in Theorem 6.11.

6.5 Bias corrected K-fold with stable learners

A key ingredient of the lack of guarantee regarding the K-fold risk estimate is its bias
for finite sample sizes, an issue pointed out by Burman (1989) who proposes a corrected
version of the standard K-fold with a reduced bias, see also Burman (1990) for appli-
cations to model selection. In the present work we follow in the footsteps of Burman
(1989) and consider the same corrected CV estimate of the generalization risk

R̂corrCV

[
A, V1:K

]
= R̂CV

[
A, V1:K

]
+ R̂

[
A([n]), [n]

]
− 1

K

K∑
j=1

R̂
[
A(Tj), [n]

]
.

(6.12)
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The correcting term (second line in the above display) is the average difference between
R
[
A([n])

]
and the empirical risksR

[
A(Tj)

]
’s. In Burman (1989) the analysis is carried

out in an asymptotic framework and focuses on the asymptotic bias and variance of
the estimator for different CV schemes. The results are obtained under differentiability
assumptions regarding the loss function (See also the appendix section in Fushiki (2011)
where these assumptions are explicitly listed) which are typically not satisfied by SVM,
stochastic gradient methods or L1-regularized risk minimization algorithms. In Burman
(1990) the working assumption is that of a linear model and the specific task is ordinary
linear regression. In contrast, we conduct here a non asymptotic analysis (valid for any
sample size) which applies to any uniformly stable algorithm.

Theorem 6.11. Suppose that Assumption 11 holds. Then, we have, with probability
1− 6δ, ∣∣∣∣∣R̂corrCV

[
A, V1:K

]
−R

[
A([n])

]∣∣∣∣∣ ≤ 2
(
βn + βnT

)
+ 3(4βnT nT + 2L)

√
log(1/δ)

2n
.

Proof [Sketch of proof] By simple algebra write the corrected CV estimator as

R̂corrCV

[
A,V1:K

]
= R̂

[
A([n]), [n]

]
+
nT
nK

K∑
j=1

[
R̂
[
A(Tj), Vj

]
− R̂

[
A(Tj), Tj)

]]
.

From this, deduce the following error decomposition

R̂corrCV

[
A, V1:K

]
−R

[
A[n]

]
= DA[n]

+
nT
n

(Dcv −DA[T1:K ]),
(6.13)

where Dcv is defined in (6.7) and

DA[n] = R̂
[
A[n], [n]

]
−R

[
A[n]

]
, (6.14)

DA[T1:K ] =
1

K

K∑
j=1

(
R̂
[
A(Tj), Tj

]
−R

[
A(Tj)

])
. (6.15)

Notice the absence of a bias term in the above display, contrarily to the error decompo-
sition (6.6) for the standard CV estimate in the proof of Theorem 6.3. The remaining
technical arguments for bounding each term of the decomposition above are gathered in
the supplement. Namely, using McDiarmid’s inequality (Proposition 6.A.1), we derive
concentration bound both for Dcv as stated in Lemma 6.15 and for DA[T1:K ] as given
in Lemma 6.16. Finally the deviations of the empirical risk DA[n] are controlled using
Remark 6.17, a consequence of Lemma 6.16, in the supplement.

Theorem 6.11 yields immediately a consistent upper bound for the K-fold CV error
when βn ≤ C/n for some C > 0. For the proof it suffices to notice that nT = K−1

K n for
the K-fold scheme and to use that (2K − 1)/(K − 1) ≤ 3 whenever K ≥ 2.
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Corollary 6.12. Suppose that Assumption 11 holds with βn ≤ C
n , for some C > 0.

Then, for K ≥ 2, the error of the corrected K-fold CV estimate of the generalization
risk satisfies with probability at least 1− 6δ,∣∣∣∣∣R̂corrCV

[
A, V1:K

]
−R

[
A([n])

]∣∣∣∣∣ ≤ 6C

n

+ 3(4C + 2L)

√
log(1/δ)

2n
.

Discussion. Corollary 6.12 confirms the relevance of the bias corrected K-fold for risk
estimation in the broad context of uniformly stable learners satisfing βn ≤ C

n , such as
SVM, stochastic gradient methods or regularized empirical risk minimizers.

Our main results Theorem 6.11 and Corollary 6.12 concern the problem of risk estima-
tion by means of K-fold CV. However in practice, CV is widely used in the context of
model- or parameter selection. It is precisely the purpose of the next section to illustrate
how our results shed light on such practice. Namely we consider the practical problem
of selecting a penalty parameter among a finite collection of candidates for Support
Vector Regression and Classification.

6.6 Application to hyper-parameter selection and
numerical experiments

Selecting a penalty parameter in regularized empirical risk minimization algorithms
such as SVM’s may be viewed as a particular instance of a model selection problem,
where one identifies a model with an algorithm equipped with a particular choice of
regularization parameter. We start-off this section with a brief introduction to this
topic. We provide minimal theoretical guarantees (Proposition 6.13) regarding model
selection within a finite collection of models by means of the debiased K-fold procedure.
We describe our experimental setting in Subsections 6.6.2, 6.6.3 and we report our results
in Section 6.6.4.

6.6.1 Cross-Validation for Parameter Selection

Following the terminology of Arlot and Lerasle (2016), we consider here the problem
of efficient model selection, aiming at selecting a model for which the generalization
risk of the learnt predictor is close to the smallest possible risk. The goal of efficient
model selection is in general easier to attain than identification of the best possible
model. It is a known fact that cross-validation is in general sub-optimal for model
identification purpose. A major reason for this is that different models (or algorithms)
may have comparable performance. However if one aims only at selecting a model for
which the generalization risk is close to that of the optimal one, lack of identifiability
is not necessarily an issue anymore, which is precisely the approach we take here.

Model selection is a prominent topic in statistical learning theory which is by far too
broad to be extensively covered here. We refer the reader to the monograph of Massart
(2007). Cross-validation is one of several possible candidate methods for this problem,
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which has been the subject of a wealth of literature as discussed in the introduction,
see also Arlot and Celisse (2010) for a review.

Given a family of models (or algorithms) A(m) indexed by m ∈ M and a dataset D of
size n, an optimal model A(m∗) called an oracle is any model such that

A(m∗) ∈ arg min
m∈M

R
[
A(m)([n])

]
. (6.16)

Since the true risk is unknown, an empirical criterion must be used instead to select
an efficient model. One of the most popular tools for model selection is K-fold CV.
However, as discussed earlier, the latter procedure may not be consistent. To tackle
this issue, we propose to use the corrected K-fold and select a model Am̂ such that

A(m̂) ∈ arg min
m∈M

R̂corrKfold

[
A(m), V1:K

]
. (6.17)

Proposition 6.13 provides a sanity check guarantee regarding the consistency of the
corrected K-fold CV procedure for this purpose, in the form of an upper bound in
probability for the excess risk R

[
A(m̂)[n]

]
−R

[
A(m∗)([n])

]
. The result applies to the

case where the family of modelsM is finite.

Proposition 6.13. Let (A(m))m∈M be a family of algorithms where each learner A(m)

is (βm,t)1≤t≤n uniformly stable with respect to a loss function 0 ≤ `(g,O) ≤ L. Addi-
tionally, assume that,

∀m ∈M ; βm,t ≤
M

t
,

for some M > 0. Then one has, with probability at least 1− 6δ,

R
[
A(m̂)([n])

]
−R

[
A(m∗)([n])

]
≤ 12M

n

+ 6(4M + 2L)

√
log(|M|/δ)

n
.

Proof The proof consists in applying a union bound combined with the exponential
tail bound of Theorem 6.11, which yields a multiplicative constant which only depends
logarithmically on the number of models. The details are gathered in the supplementary
material, Section 6.18.

Discussion (bounded stability parameters βm,t’s). The assumption βm,t ≤ M
t for all

m is indeed verified in many applications. For example, in regularized SVM, where each
learner A(m) is trained using a regularization parameter λm, Bousquet and Elisseeff
(2002) show that βm,t = 1

t

√
C
λm

where C is a positive constant. Thus, if one performs

a grid search for λm on a grid [a, b] with a > 0, then βm,t ≤ 1
t

√
C
a for any λm ∈ [a, b].

In other words, since the search space is generally bounded, the boundedness assumption
regarding the βm,t’s is not too restrictive in practice.

6.6.2 Support Vector Machines and Experimental Setting

The aim of our experiments is to illustrate empirically the added value of the corrected
K-fold compared with the standard one in terms of efficiency in model selection. In
other words, we perform model selection with the K-fold and the corrected version that
we promote and we compare the generalization risks of the selected trained models.
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We consider a finite family of SVM regressors and classifiers trained with a regularization
parameter λm ranging in a finite grid in an interval [a, b], where m ∈ M a finite index
set. Namely we set [a, b] = [0.1, 100], and the grid is constructed with a constant step
size equal to ∆ = 0.1, so that

(λm)m∈M = {a+ j∆ | 0 ≤ j < 1000}.

In this SVM framework,

A(m)(T ) = arg min
f∈F

1

nT

∑
i∈T

`(f,Oi) + λm‖f‖2k

where F is a reproducing kernel Hilbert space with kernel k. The kernel k is chosen here
as the sigmoid kernel tanh(τ〈x, 〉). Following standard practice we set τ = 1

d , where d is
the dimension of the dataset. We use the quadratic loss for regression problems and the
hinge loss `(g, (x, y)) = (1 − yg(x))+ for classification, where (f(x))+ = max(0, f(x)).
Since the training datasets are bounded, we may consider that both these losses as
bounded as well. For both these losses the algorithm A(m) is Cn uniformly stable (see
Bousquet and Elisseeff (2002) for further details). The assumptions of Theorem 6.13
are thus satisfied, as pointed out in the discussion following the theorem’s statement.

6.6.3 Datasets

Eight reference datasets from UCI 1 are considered: four classification datasets and four
regression datasets listed below.

Regression datasets Real estate valuation (REV, 414 house price of unit area with
5 covariates); QSAR fish toxicity (906 toxic chemical concentration with 6 attributes);
Energy efficiency (EE, 768 heating loads with 8 features.); Concrete Compressive Strength
(CS, 1030 measure of the compressive strength with 8 attributes).

Classification datasets Ionosphere dataset (IO, 351 radar returns with 34 attributes),
Raisin dataset (RS, 900 Keciman/Besni raisin with 7 attributes), Audit risk dataset
(AR, 777 firm evaluation (fraudulent/non fraudulent) with 18 risk factors) and QSAR
bio degradation Data Set (BIODEG, 1055 chemicals categorization with 12 descriptive
features).

For each dataset one third of the data are removed (S) and reserved for testing, i.e. for
evaluating the generalization risk of the model selected using the remaining two thirds
(D). Let m̂Kf (resp. m̂Kf−corr) denote the model selected using K-fold CV (resp.
corrected K-fold CV) on the train set D. In other words

A(m̂Kf−corr) = arg min
m∈M

R̂corrKfold

[
A(m), V1:K

]
,

A(m̂Kf) = arg min
m∈M

R̂Kfold

[
A(m), V1:K

]
.

In the end, in line with Section 6.6, the performance of both models are compared
in terms of the mean squared error (or hinge loss for classification) and its estimated
standard deviation on the test set S.

1https://archive.ics.uci.edu

https://archive.ics.uci.edu
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6.6.4 Numerical Results

We use the implementation provided by the python library scikit-learn. Tables 6.1
and 6.2 gather the results obtained respectively with the regression and classification
datasets, for different numbers of folds K varying between 3 and 5. In all cases, the
model selected by the bias corrected K-fold has a lower generalization risk than the one
selected by the standard K-fold. As expected, the standard K-fold procedure behaves
generally better with K = 5 than with K = 3. Indeed larger values of K decrease the
bias of the K-fold CV. The benefit of the bias correction is thus all the more important
for small values of K.

Table 6.1 – Regression mean squared errors for the K-fold and the bias corrected K-fold
on various data sets. Estimated standard deviations are reported between parentheses.

Dataset K-fold Bias corrected K-fold

REV; K=3 74.198 (12.57) 68.958 (11.63)
K=4 74.189 (12.48) 68.958 (11.63)
K=5 73.359 (12.38) 68.958 (11.63)

EE; K=3 15.501 (1.81) 14.405 (1.86)
K=4 15.825 (1.84) 14.350 (1.77)
K=5 14.730 (1.73) 14.298 (1.79)

QSAR; K=3 1.183 (0.16) 1.035 (0.14)
K=4 1.112 (0.15) 1.035 (0.14)
K=5 1.112 (0.15) 1.035 (0.14)

CS; K=3 146.881 (13.81) 126.492(10.23)
K=4 144.195 (13.16) 124.205 (9.46)
K=5 137.060 (11.48) 123.641 (9.30)

Table 6.2 – Hinge losses for the K-fold and the bias corrected K-fold on various data
sets. Estimated standard deviations are reported between parentheses.

Dataset K-fold Bias corrected K-fold

RS; K=3 0.470 (0.048) 0.419 (0.038)
K=4 0.420 (0.039) 0.418 (0.039)
K=5 0.420 (0.039) 0.419 (0.038)

IO; K=3 0.454 (0.081) 0.414 (0.072)
K=4 0.447 (0.092) 0.425 (0.072)
K=5 0.477 (0.091) 0.464 (0.095)

BIODEG; K=3 0.361 (0.039) 0.357 (0.036)
K=4 0.363 (0.037) 0.357 (0.036)
K=5 0.381 (0.041) 0.357 (0.036)

AR; K=3 0.112 (0.023) 0.109 (0.021)
K=4 0.108 (0.027) 0.105 (0.025)
K=5 0.107 (0.025) 0.106 (0.024)
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6.7 Conclusion

This chapter demonstrates the limitations of the standard K-fold procedure for risk
estimation via a lower bound on its error with a uniformly stable learner. We show that
the corrected version of the K-fold for uniformly stable algorithms does not suffer the
same drawbacks through a sanity-check upper bound and leverage this result to obtain
guarantees regarding efficient model selection. This paves the way towards two possible
research directions. A relevant follow-up would be to relax our uniform stability as-
sumption in order to cover still a wider class of algorithms such as k-nearest-neighbors
(Devroye and Wagner, 1979), Adaboost (Freund and Schapire, 1997a) and Lasso regres-
sion (Celisse and Guedj, 2016). A second promising avenue would be to consider an
extension of the K-fold penalization proposed by Arlot and Lerasle (2016) to the class
of stable learners.

6.A Main taools

First we recall McDiarmid’s inequality (Theorem 3.1 in McDiarmid (1998)).

Proposition 6.A.1 (McDiarmid’s inequality). let Z = f(D) for some measurable func-
tion f and define

∆l(D, O′) = f(D)− f(Dl),
where Dl is obtained by replacing the l’th element of D by a sample O′ ∈ Z. In addi-
tion, suppose that

∀l ∈ [n] , sup
D∈Zn

sup
O′∈Z
|∆l(D, O′)| ≤ cl.

Then for any t ≥ 0,

P(Z − E(Z) ≥ t) ≤ exp

(
−2t2∑n
l=1 c

2
l

)
.

The following lemma guarantees that Fact 6.2.2 is verified for K-fold CV.

Lemma 6.14. For the K-fold procedure, the training samples T1:K and validation sam-
ples V1:K satisfy Fact 6.2.2 i.e

1

K

K∑
j=1

1
{
l ∈ Tj

}
nT

=
1

K

K∑
j=1

1
{
l ∈ Vj

}
nV

=
1

n
∀l ∈ J1, nK.

Proof

The validation sets of K-fold verify the following property

K⋃
j=1

Vj = J1, nK and Vj
⋂
Vk = ∅ , ∀j 6= k ∈ J1,KK. (6.18)

Under the hypothesis that card(Vj) = nV for all the validation sets, (6.18) implies that

n =
K∑
j=1

card(Vj) = KnV . (6.19)
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Furthermore, under (6.18), an index l ∈ J1, nK belongs to a unique validation test V ′j and
to all the train sets Tj = V c

j with j 6= j′. Hence, we have


∑K

j=1 1
{
l ∈ Tj

}
= K − 1,∑K

j=1 1
{
l ∈ Vj

}
= 1.

Using (6.18) and the fact that nT = n− nV = (K − 1)nV yields the desired result.

6.B Intermediate results

First we provide a concentration bound for Dcv which has been defined in (6.7) as

Dcv = R̂CV

[
A, V1:K

]
−RCV

[
A, V1:K

]
.

Lemma 6.15. Suppose that Assumption 11 holds. Then, we have

P(|Dcv| ≥ t) ≤ exp

(
−2nt2

(4βnT nT + 2L)2

)
.

Proof Let O′ ∈ X be an independent copy of O1, O2, . . . , On, for any l ∈ J1, nK define

∆l(D, O′) =
∣∣∣Dcv(D)−Dcv(Dl)

∣∣∣,
where Dl is obtained by replacing the l’th element of D by O′. Now we derive an upper
bound on P(|Dcv| ≥ t) using Proposition 6.A.1. Namely, we will bound the maximum

deviation of ∆l by ∆l ≤ 4βnT nT
n + L

n . To do so, write

Dcv = R̂CV

[
A, V1:K

]
−RCV

[
A, V1:K

]
=

1

Knval

K∑
j=1

∑
i∈Vj

(
`(A(Tj), Oi)− EO

[
`(A(Tj), O) | DTj )

])

=
1

Knval

K∑
j=1

∑
i∈Vj

h(A(Tj), Oi),

where the last is used to define h. For a training set Tj ⊂ [n], let A(Tj,l) denote the
algorithm A trained on the sequence DTj ,l = {Oi ∈ Dl | i ∈ Tj}. Note that, for all
DTj , o ∈ ZnT ×Z one has

`
(
A(Tj), o

)
= `
(
A(Tj,l), o

)
if l /∈ Tj ,∣∣∣∣∣`(A(Tj), o

)
− `
(
A(Tj,l), o

)∣∣∣∣∣ ≤ 2βnT otherwise.
(6.20)
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The first equation follows from the fact that DTj ,l = DTj if l /∈ Tj , indeed, if the training
set DTj doesn’t contain the index l then changing the l’th element of D won’t affect
DTj . The second inequality is obtained using the uniform stability of A. Furthermore,
using Equation 6.20 write

E

[
`
(
A(Tj), O

)
| DTj

]
= E

[
`
(
A(Tj,l), O

)
| DTj,l

]
if l /∈ Tj∣∣∣∣∣E[`(A(Tj), O

)
| DTj

]
− E

[
`
(
A(Tj,l), O

)
| DTj,l

]∣∣∣∣∣ ≤ 2βnT , otherwise.
(6.21)

Combining (6.21) and (6.20) gives|1
{
l ∈ Tj

}
(h(A(Tj), Oi))− h(A(Tj,l), Oi))| ≤ 4βnT ,

|1
{
l /∈ Tj

}
(h(A(Tj), Oi))− h(A(Tj,l), Oi))| ≤ 2L1

{
i = l

}
,

(6.22)

so that

|∆l(D, O′)| ≤
1

Knval

K∑
j=1

∑
i∈Vj

|h(A(Tj), Oi))− h(A(Tj,l), Oi))|

(From the fact that [n]\Tj = Vj) =
1

Knval

K∑
j=1

∑
i∈Vj

|h(A(Tj), Oi))− h(A(Tj,l), Oi))|
(
1
{
l ∈ Tj

}
+ 1

{
l ∈ Vj

})

(By Equation 6.22) ≤ 4βnT
K

K∑
j=1

1
{
l ∈ Tj

}
+

2L

nvalK

K∑
j=1

1
{
l ∈ Vj

}
(By Fact 6.2.2) ≤ 4βnT nT

n
+

2L

n
.

Using Mcdiarmid’s inequality ( Proposition 6.A.1) gives

P(Dcv ≥ t) ≤ exp

(
−2nt2

(4βnT nT + 2L)2

)
.

Symmetrically, one has,

P(Dcv ≤ −t) ≤ exp

(
−2nt2

(4βnT nT + 2L)2

)
.

Thus,

P(|Dcv| ≥ t) ≤ 2 exp

(
−2nt2

(4βnT nT + 2L)2

)
,

which is the desired result.

In the next lemma we obtain a similar concentration bound for the termDA[T1:K ] defined
in Eq 6.15 as

DA[T1:K ] =
1

K

K∑
j=1

(
R̂
[
A(Tj), Tj

]
−R

[
A(Tj)

])
.
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Lemma 6.16. Suppose that Assumption 11 holds. Then, one has,

P(|DA[T1:K ]| ≥ t+ 2βnT ) ≤ exp

(
−2nt2

(4βnT nT + 2L)2

)
,

where L is the upper bound of the cost function defined in Assumption 11.

Proof Though the proof bears resemblance with the one of Lemma 6.15, we provide
the full details details for compeleteness. We use McDiarmid’s inequality with f(D) =
DA[T1:K ], that is,

f(D) =
1

K

K∑
j=1

(
R̂
[
A(Tj), Tj

]
−R

[
A(Tj)

])

f(Dl) =
1

K

K∑
j=1

(
R̂
[
A(Tj,l), Tj,l

]
−R

[
A(Tj,l)

])
.

Since for l /∈ Tj , Tj = Tj,l, we find that

|∆l(D, O′)| ≤
1

KnT

K∑
j=1

1
{
l ∈ Tj

}(
R̂
[
A(Tj), Tj

]
− R̂

[
A(Tj,l), Tj,l

]
+R

[
A(Tj,l)

]
−R

[
A(Tj)

])

≤ 1

KnT

K∑
j=1

1
{
l ∈ Tj

}∑
i∈Tj

|h(A(Tj), Oi)− h(A(Tj,l), O
l
i)| ,

with h(A(T ), o) = `(A(T ), o) − EO
[
`(A(T ), O) | DT

]
and (Oli)i=1,...,n is the same as

(Oi)i=1,...,n except the l-th element, Ol, which is replaced by O′. Whenever l ∈ Tj , it
holds that

|`(A(Tj), Oi)− `(A(Tj,l), O
l
i)| = |`(A(Tj), Oi)− `(A(Tj,l), Oi)|1

{
i 6= l

}
+ |`(A(Tj), Ol)− `(A(Tj,l), O

′)|1
{
i = l

}
≤ 2βnT + L1

{
i = l

}
,

and that

E
[
|`(A(Tj), O)− `(A(Tj,l), O)| | DT , O′

]
≤ 2βnT .

It follows from the definition of h that

|h(A(Tj), Oi)− h(A(Tj,l), O
l
i)| ≤ 4βnT + 2L1

{
i = l

}
.

By using the identity 1
K
∑K

j=1 1
{
l ∈ Tj

}
= nT

n we get

∆l(D, O′) ≤
4βnT nT

n
+

2L

n
.

Thus by Mcdiarmid’s (Proposition 6.A.1), we obtain, for Z = f(D)− E[f(D)], that

P(Z ≥ t) ≤ exp

(
−2nt2

(4βnT nT + 2L)2

)
.
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Symmetrically, the event −Z ≥ t is subject to the same probability bound. It follows
that

P(|Z| ≥ t) ≤ 2 exp

(
−2nt2

(4βnT nT + 2L)2

)
. (6.23)

To derive an upper bound for E
[
DA[T1:K ]

]
, we use the fact that all the training sets

have the same length so that

E(DA[T1:K ]) = E
[
R
[
A(T1)

]
− R̂

[
A(T1), T1

]]
.

Then, we use Lemma 7 from Bousquet and Elisseeff (2002) ensuring that

∀T ⊂ [n] , E
[
R
[
A(T )

]
− R̂

[
A(T ), T

]]
= E

[
`
(
A(T ), O′

)
− `

(
A(T l), O′

)]
.

Where A(T l) is the learning rule A trained on the sample DT \ {Ol} ∪ {O′}. Replacing
the left side term by E

[
DA[T1:K ]

]
and using Definition 6.1 gives

|E
[
f(D)

]
| = |E

[
DA[T1:K ]

]
| ≤ 2βnT .

Since |f(D)| ≤ |Z|+ 2βnT , we simply use (6.23) to reach the conclusion.

Remark 6.17. Applying Lemma 6.16 with T = [n] and K = 1 gives the following
probability upper bound

P
(∣∣∣R̂[A([n]), [n]

]
−R

[
A([n])

]∣∣∣ ≥ t+ 2βn

)
≤ 2 exp

(
−2nt2

(2L+ 4βnn)2

)
.

Thus we retrieve the bound of Theorem 12 in Bousquet and Elisseeff (2002).

6.C Detailed proofs

6.C.1 Proof of Theorem 6.3

We proceed as described in the sketch of proof. Using Equation 6.6, write∣∣∣∣R̂CV

[
A, V1:K

]
−R

[
A([n])

]∣∣∣∣ ≤ |Dcv|+ |Bias|.

It remains to combine Lemma 6.15 with Fact 6.2.1 to obtain the desired result.

6.C.2 Proof of Theorem 6.6

Consider the regression problem for a random pair O = (X,Y ) consisting of a covariate
X = ε

M where ε is a Rademacher variable and a response Y = M signX for some
M > 1. Namely ε ∈

{
+1,−1

}
and P (ε = ±1) = 1/2.
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Now, let n ≤ eM and define the algorithm A as a regularized empirical risk minimizer,
more precisely A(D, X) = β̂

(
D
)
X with

β̂
(
D
)

= arg min
β∈R

1

n

n∑
i=1

(Yi − βXi)
2 + λn|β|2,

and λn = 1
log (n)

− 1
M2 .

Algorithmic Stability It’s easy to check that β̂ = XnYn
(Xn)2 + λn

where XnYn =

1
n

∑n
i=1XiYi. Moreover, using the fact that XiYi = 1, one obtains

β̂
(
D
)

=
1

1/M2 + λn
= log(n).

On the other hand, write

`
(
A
(
D
)
, O
)
− `
(
A(D\i), O

)
= (βn−1 − βn)X

(
2Y − (βn + βn−1)X

)
=
(
βn−1 − βn

)(
2− (βn + βn−1)

M2

)
,

=
(

log(n− 1)− log(n)
)(

2− log(n) + log(n− 1)

M2

)
,

where the second line follows from the fact thatXY = 1 and the last follows by replacing
β and λ by their expression.
To conclude this part, we use the fact that log(1 + x) ≤ x for all x ≤ 1, to obtain∣∣∣`(A (D) , O)− `(A(D\i), O

)∣∣∣ ≤ 2

n
.

Bias Lower Bound Using the same equation as before we have

`
(
A
(
D
)
, O
)
− `
(
A(DT ), O

)
=
(

log(nT )− log(n)
)(

2− log(n) + log(nT )

M2

)

= log(
K − 1

K
)

(
2− log(n) + log(nT )

M2

)
.

Thus, since nT ≤ n ≤ eM we obtain

R
[
A
(
DT
)]
−R

[
A
(
D
)]
≥ 2 log(

K

K − 1
)

(
1− 1

M

)
.
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It remains to notice that

E
[∣∣∣R̂CV

[
A, V1:K

]
−R

[
A[n]

] ∣∣∣] ≥ ∣∣∣∣∣E
[
R̂CV

[
A, V1:K

]
−R

[
A[n]

]]∣∣∣∣∣
= R

[
A
(
DT
)]
−R

[
A
(
D
)]
,

and the proof is complete.

6.C.3 Proof of Theorem 6.11

We proceed as described in the sketch of proof. First remind the error decomposition
6.13

R̂corrCV

[
A, V1:K

]
−R

[
A([n])

]
= DA[n] +

nT
n

(Dcv −DA[T1:K ]),

where Dcv, DA[T1:K ] and DA[n] are defined in 6.7, 6.15 and 6.14 respectively. Since
nT ≤ n, using the triangular inequality yields∣∣∣R̂corrCV

[
A, V1:K

]
−R

[
A[n]

] ∣∣∣ ≤ |DA[n]|+ |Dcv|+ |DA[T1:K ]|.

Combining lemma 6.15 and 6.16 regarding Dcv andDA[T1:K ] with Remark 6.17 regarding
DA[n], one obtains

P
(∣∣∣R̂corrCV

[
A, V1:K

]
−R

[
A[n]

] ∣∣∣ ≥ t+ 2(βnT + βn)

)
≤ P

(
|Dcv| ≥ t/3

)
+ P

(
|DA[n]| ≥ t/3 + 2βn

)
+ P

(
|DA[T1:K ]| ≥ t/3 + 2βnT

)
≤ 6 exp

(
−2nt2

9(4βnT nT + L)2

)
. (6.24)

By inverting, and using the assumption βt ≤ λ
t one gets, with probability 1− 6δ,

|R̂corrCV

[
A, V1:K

]
−R

[
A[n]

]
| ≤ 2λ(

1

n
+

1

nT
) + 3(4λ+ L)

√
log(1/δ)

2n
,

which is the desired result.

6.C.4 Proof of Theorem 6.13

The proof of Theorem 6.13 relies on the following proposition,

Proposition 6.18. Let (A(m))m∈M be a family of algorithms where each learner A(m)

is (βm,t)1≤i≤n uniform stable with respect to loss function 0 ≤ `(g,O) ≤ L. Additionally,
assume that, |M| <∞ and that

∀m ∈M ; βm,t ≤
M

t
,

for some M > 0. Then one has, with probability at least 1− 6δ,

sup
m∈M

∣∣∣∣∣R̂corrK-fold

[
A(m), V1:K

]
−R

[
A(m)([n])

]∣∣∣∣∣ ≤ 6M

n
+ 4(M + L)

√
log(|M|/δ)

n
.
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Proof Using Fact 6.2.2 for the K-fold scheme (nT = n(K − 1)/K with K ≥ 2), and
the fact that βm,n+βm,nT ≤ (M/n)((2K−1)/(K−1)) as well as (2K−1)/(K−1) ≤ 3,
one gets

∀m ∈M,P
(∣∣∣R̂corrK-fold

[
A(m), V1:K

]
−R

[
A(m)([n])

]∣∣∣ ≥ t+ (6M/n)

)
≤ 6 exp

(
−2nt2

9(4M + L)2

)
,

which gives by a union bound

P

(
sup
m∈M

∣∣∣R̂corrK-fold

[
A(m), V1:K

]
−R

[
A(m)([n])

]∣∣∣ ≥ t+ (6M/n)

)
≤ 6|M| exp

(
−2nt2

9(4M + L)2

)
.

Thus, by inverting, we obtain the desired result.

Proof of Theorem 6.13 First, using the definition of m̂ (eq. 6.17), write

R̂corrKfold

[
A(m̂), V1:K

]
− R̂corrKfold

[
A(m∗), V1:K

]
≤ 0.

It follows that

R
[
A(m̂)([n])

]
−R

[
A(m∗)([n])

]
≤ R

[
A(m̂)([n])

]
− R̂corrKfold

[
A(m̂), V1:K

]
+ R̂corrKfold

[
A(m∗), V1:K

]
−R

[
A(m∗)([n])

]
(6.25)

≤ 2 sup
m∈M

∣∣∣∣∣R̂corrK-fold

[
A(m), V1:K

]
−R

[
A(m)([n])

]∣∣∣∣∣.
It remains to use proposition 6.18 and the proof is complete.

6.D Uniform stability for randomized algorithms

In this section we generalize the results from the main chapter to the case of randomized
algorithms. Let us start with reminding the concept of uniform stability for randomized
learning algorithms introduced in Elisseeff et al. (2005).

Definition 6.19. An algorithm A is said to be (βt)1≤t≤n-uniform stable with respect to
a loss function ` if, for any D ∈ Zn, T ⊂ [n], i ∈ T and o ∈ Z, the following holds∣∣∣∣∣EA

[
`
(
A(T ), o

)]
− EA

[
`
(
A(T \i), o

)]∣∣∣∣∣ ≤ βnT . (6.26)

Where the randomness in the latter expectation stems from the algorithm A while the
observation o and the data sequence D are fixed. Equivalently,∣∣∣∣∣∣∣E

`(A(T ), O
)
− `

(
A(T \i), O

) ∣∣∣∣∣DT , O

∣∣∣∣∣∣∣ ≤ βnT . (6.27)

Note that a similar version of Fact 6.2.1 still holds, more precisely, one has
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Fact 6.D.1. Let A be a decision rule which is (βt)1≤t≤n uniformly stable, additionally
suppose that the sequence (βt)1≤t≤n is decreasing, then for any T ⊂ [n], and o ∈ Z, one
has ∣∣∣∣∣E

[
`
(
A([n]), o

)
− `
(
A(T ), o

)
| D
]∣∣∣∣∣ ≤

n∑
i=nT

βi.

6.D.1 Upper Bounds for K-fold CV under random uniform stability

We now derive upper bounds -in expectation- on the error induced by R̂CV and R̂corrCV .
As highlighted in Remark 6.5, the main problem with K-fold CV is it’s bias. Therefore,
for the sake of brevity, we will focus only on the expectation of the estimate .

Theorem 6.20. Suppose that A is (βt)1≤t≤n uniformly stable. Then we have∣∣∣∣∣E
[
R̂CV

[
A, V1:K

]
−R

[
A([n])

]]∣∣∣∣∣ ≤
n∑

i=nT

βi.

Proof First, by applying the tower rule one has

E
[
R̂CV

[
A, V1:K

]
−R

[
A([n])

]]
= E

 1

K

K∑
j=1

R̂
[
A(Tj), Vj

]
−R

[
A([n])

] 
=

1

K

K∑
j=1

E

[
E
[
R̂
[
A(Tj), Vj

]
| DTj

]
−R

[
A([n])

] ]

=
1

K

K∑
j=1

E
[
E
[
`(A(Tj , O) | DTj

]
−R

[
A([n])

] ]

=
1

K

K∑
j=1

E
[
E
[
`(A(Tj , O)− `(A([n], O)) | D

]]
.

(6.28)

The third line follows from the fact that `(A(T ), Oj) and `(A(T ), O) has the same law
for all j ∈ V . This indeed verified since all the training sets Tj ’s has the same length
and the Oj ’s are independent from DT . To obtain the desired result, it remains to
combine Equation 6.28 with fact 6.D.1.

Now let us prove that the bias corrected K-fold (cf. Eq (6.12)) has a vanishing bias for
randomized algorithms.

Theorem 6.21 (Corrected K-fold bias). Suppose that A is (βt)1≤t≤n uniformly stable
and βt ≤ λ

t , for some λ > 0. Then, we have∣∣∣∣∣E
[
R̂corrKfold

[
A, V1:K

]
−R

[
A([n])

]]∣∣∣∣∣ ≤ 2λ(2K − 1)

(K − 1)n
.
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Proof Combining the error decomposition (6.13) with the fact that nT = K−1
K n we

obtain
R̂corrKfold

[
A, V1:K

]
−R

[
A[n]

]
= DA[n] +

K − 1

K
(Dcv −DA[T1:K ]). (6.29)

Using Theorem 2.2 in Hardt et al. (2016a), one obtains the twin inequality∣∣∣∣E [DA[n]

]∣∣∣∣ ≤ 2βn∣∣∣∣E [DA[T1:K ]

]∣∣∣∣ ≤ 2βnT .

Since E
[
Dcv

]
= 0, Equation 6.29 combined with the triangular inequality gives∣∣∣∣∣E
[
R̂corrKfold

[
A, V1:K

]
−R

[
A([n])

]]∣∣∣∣∣ ≤ 2

(
βn +

(K − 1)βnT
K

)
≤ 2

(
βn + βnT

)
. (6.30)

It remains to use the assumption βt ≤ λ
t and the proof is complete.

We conclude this section by deriving an upper bound for the model selection problem,

Theorem 6.22. Let (A(m))m∈M be a family of algorithms where each learner A(m) is
(βm,t)1≤i≤n uniform stable with respect to loss function `. Additionally, assume that

βm,t ≤
M

t

for some M > 0. Then one has

E
[
R
[
A(m̂)([n])

]
−R

[
A(m∗)([n])

]]
≤ 4M(2K − 1)

(K − 1)n
,

where m∗ and m̂ are defined by Equations 6.16, 6.17 respectively.

Proof First, using Equation 6.30, one obtains, for all m ∈M,∣∣∣∣∣E
[
R̂corrKfold

[
A(m), V1:K

]
−R

[
A(m)([n])

]]∣∣∣∣∣ ≤ 2
(
βm,n + βm,nT

)
≤ 2M(2K − 1)

(K − 1)n
.

So that

sup
m∈M

∣∣∣∣∣E
[
R̂corrKfold

[
A(m), V1:K

]
−R

[
A(m)([n])

]]∣∣∣∣∣ ≤ 2M(2K − 1)

(K − 1)n
. (6.31)

On the other hand, Inequality 6.25 yields Thus, by Inequality 6.31, one has

E
[
R
[
A(m̂)([n])

]
−R

[
A(m∗)([n])

]]
≤ 4M(2K − 1)

(K − 1)n
,

which concludes the proof.
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6.D.2 Proof of Theorem 6.8

Following the line of Zhang et al. (2022), consider the following convex function ,

f(w, o) =
1

2
w>Aw − yx>w,

where A is a positive semi definite penalization matrix (PSD) in Rd×d with rank p < d,
w ∈ Rd and x, y ∈ Rd × R . Such a rank deficient penalization matrix can be found
in multiple contexts like fused lasso (Tibshirani and Taylor, 2011), fused ridge (Bilgrau
et al., 2020), etc.
In the next lemma, by picking carefully the input space X × Y and the distribution P,
we construct an example where we control exactly the amount of instability of SGD .
Theorem 6.8 follows directly from the following proposition.

Proposition 6.23. Let M > 1 , n ∈ J1, eM K . Suppose that O = (X,Y ) ∈ X × Y ={
v,−v

}
×
{

1
}
and P (X = v) = 2

3 where v is a unit vector in Rd such as Av = 0 .
For t ≥ 1, there exist a sequence of step sizes (αk,n)1≤k≤t , such as the SGD algorithm
(Definition 6.11) with ` = f and A0 = 0 verifies,

E
[∣∣∣R̂CV

[
A, V1:K

]
−R

[
A[n]

] ∣∣∣] ≥ log
(
K/K − 1

)
3

.

Furthermore SGD satisfies Assumption 11 with respect to ` with L = M and

βn ≤
3

n− 1

t∑
k=1

αk,n ≤
3M

n− 1
.

Proof Computing the gradient of f(·, o) for o = (x, y) yields,

∇wf(w, o) = Aw − yx.

Now set wt = At
(

[n]
)
and write using the definition of SGD (Equation 6.11) :

wt+1 =
(
I − αtA

)
wt + αt,nyXit. (6.32)

Thus by induction we obtain wt = θtv for some θt ∈ R. Consequently, Equation 6.32
yields,

wt+1 = wt + αt,nyXit,

so that,

wt =

t∑
k=1

αk,nyXit. (6.33)

Furthermore SGD picks Xit = v with probability n+/n where n+ (resp. n−) is the
number of samples such as X = v (resp. −v), hence

EA
[
wt
]

=
t∑

k=1

αk,n

(
n+

n
− n−

n

)
v. (6.34)
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On the other hand, since wt = θtv we obtain,

f(wt, o) = −yx>wt. (6.35)

Set w′t = A
(

[n]\j
)

and consider the case where j is such as Xj = v. Note that the
other case is similar and thus omitted. Since ‖v‖ = 1, one has by Equations 6.34 and
6.35

∀o ∈ Z,
∣∣∣∣∣EA

[
f
(
w′t, o

)]
− EAf

[(
wt, o

)]∣∣∣∣∣ =

∣∣∣∣∣∣n+ − n−
n

t∑
k=1

αk,n −
n+ − n− − 1

n− 1

t∑
k=1

αk,n−1

∣∣∣∣∣∣ .
Now for t ≥ 0 , take αk,n =

log(n)
t for all k ≤ t so that,

∀o ∈ Z,
∣∣∣∣∣EA

[
f
(
w′t, o

)]
− EAf

[(
wt, o

)]∣∣∣∣∣ =

∣∣∣∣∣n+ − n−
n

log(n)− n+ − n− − 1

n− 1
log(n− 1)

∣∣∣∣∣ ,
which yields by simple algebra

∀o ∈ Z ,
∣∣∣∣∣EA

[
f
(
w′t, o

)]
− EAf

[(
wt, o

)]∣∣∣∣∣ ≤ 2 log (n) + 1

n− 1

≤ 3 log(n)

n− 1

=
3

n− 1

t∑
k=1

αk,n

≤ 3M

n− 1
. (6.36)

Now, using Equations 6.33 and 6.35 and the expression of αk,n we get,

∀o ∈ Z , |f(wt, o)| =
t∑

k=1

αk,n = log(n) ≤M,

The latter equation combined with Equation 6.36 confirms that SGD verifies Assump-
tion 11with L = M and

βn ≤
3

n− 1

t∑
k=1

αk,n ≤
3M

n− 1
.

For the lower bound, let T ⊂ [n] and set wTt = At
(
T
)
. Using 6.34 yields

E
[
EA
[
wTt

]]
=

t∑
k=1

αk,nT
v

3
,

so that by 6.35 ,∣∣∣∣∣∣E
[
EA
[
f
(
wt, o

)]]
−
[
EA
[
f
(
wTt , o

)]]∣∣∣∣∣∣ =

∑t
k=1 αk,n −

∑t
k=1 αk,nT

3

(
αk,n = log(n)/t

)
=

log
(
K/K − 1

)
3

.
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It remains to notice that

E
[∣∣∣R̂CV

[
A, V1:K

]
−R

[
A[n]

] ∣∣∣] ≥ ∣∣∣∣∣E
[
R̂CV

[
A, V1:K

]
−R

[
A[n]

]]∣∣∣∣∣
=

∣∣∣∣R [A (DT )]−R [A (D)]∣∣∣∣ ,
and the proof is complete.



Conclusion

As we look towards the future of our research, two key areas stand out for further
exploration:

Algorithmic Stability as a Tool for Deriving Probability Upper Bounds in
EVT We aim to delve into the concept of algorithmic stability, investigating its po-
tential in deriving more refined and reliable probability upper bounds for EVT. This
approach may offer a novel perspective, differing from traditional complexity-based
measures, and could lead to sharper more interpretable bounds.

Optimizing Extreme Threshold α Through Cross-Validation Another promis-
ing direction for our research involves the use of cross-validation techniques to tune the
optimal extreme threshold α. This threshold is critical in predictions pertaining to
extreme regions. By leveraging cross-validation, we can potentially develop an adapt-
able approach, allowing for the adjustment of α in response to varying data sets and
prediction requirements.
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Titre : Analyse statistique des algorithmes dédiés aux événements rares
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totiques, validation croisée, apprentissage par transfert

Résumé : Cette thèse se concentre sur
l’établissement de garanties statistiques pour l’effi-
cacité des algorithmes d’apprentissage automatique
dans des environnements pauvres en données, en
particulier dans les contextes d’analyse des valeurs
extrêmes, d’apprentissage par transfert et de classi-
fication déséquilibrée. Nous développons des bornes
supérieures de probabilité qui servent de garanties
théoriques pour l’efficacité des algorithmes adaptés
à ces scénarios spécifiques. Notre approche com-
mence par une critique des méthodes statistiques
actuelles dans des contextes limités en données.
Nous identifions les limitations dans les cadres exis-
tants et introduisons de nouvelles bornes de proba-
bilité spécifiquement conçues pour fournir des garan-
ties de performance d’algorithme sous contrainte de
données. Ces bornes ne sont pas seulement rigou-

reuses sur le plan théorique, mais sont également
directement applicables aux défis pratiques de l’ap-
prentissage automatique. Nous validons nos résultats
théoriques avec des études empiriques dans chacun
des trois domaines ciblés. Les résultats confirment
que nos bornes dérivées sont efficaces pour certifier
l’efficacité des algorithmes dans la gestion des va-
leurs extrêmes, le transfert de connaissances dans
des domaines de données éparses et la classification
de jeux de données déséquilibrés. En conclusion, la
thèse fait progresser le domaine de l’apprentissage
statistique en four- nissant des garanties théoriques
précises pour la performance des algorithmes dans
des situations pauvres en données. Ce travail est
particulièrement pertinent pour les appli- cations où il
est critique de faire des inférences précises avec des
données limitées.

Title : A statistical analysis of algorithms dedicated for rare events

Keywords : Cross Validation, statistical learning theory, non-asymptotic error bounds, extreme value theory,
transfer learning

Abstract : This thesis focuses on establishing statis-
tical guarantees for the efficiency of machine learning
algorithms in data-scarce environments, particularly
within the contexts of extreme value analysis, trans-
fer learning, and imbalanced classification. We deve-
lop probability upper bounds that serve as theoreti-
cal assurances for the effectiveness of algorithms tai-
lored to these specific scenarios. Our approach be-
gins with a critique of current statistical methods in
data-limited set- tings. We identify limitations in exis-
ting frameworks and introduce new probability bounds
that are specifically designed to provide guarantees
for algorithm performance under data scarcity. These
bounds are not just theoretically rigorous but are also

di- rectly applicable to practical machine learning chal-
lenges. We validate our theoretical findings with em-
pirical studies in each of the three focused areas. The
results confirm that our derived bounds are effective
in certifying the effi- ciency of algorithms in hand-
ling extreme values, transferring knowledge in sparse
data domains, and classifying imbalanced datasets.
Conclusively, the thesis advances the field of statisti-
cal learning by providing precise theoretical guaran-
tees for the performance of algorithms in data-scarce
situations. This work is particularly relevant for appli-
cations where making accurate inferences with limited
data is critical.
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