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1Introduction

1.1 Crowdsourcing in computer vision

Following the deep learning revolution, models with millions if not billions of parameters
to optimize are trained nowadays. And to do so, we need to increase the size of our
training datasets. The issue is, that in a training set in supervised classification (and we
will mainly consider image classification for the rest of this work), the images need to
come with a label to train from. While research has been conducted on inferring this
label from the data itself, in the classical supervised learning datasets these labels have
been collected and shared at some point during the creation of the dataset.

Figure 1.1 Crowdsourcing can be used to create datasets, but also relieves the tension experts
receive in evaluating new data. By using a crowd of workers, many tasks can be labeled without
needing expert evaluation.

The task of collecting data to create a dataset for image classification has been more
and more linked with web-scrapping (Rhodes et al., 2015). However, it has been shown
numerous times that labeling mistakes do happen with this data collection strategy
(Northcutt et al., 2021a; Vasudevan et al., 2022). In other fields of research, as healthcare
providers, images might not come from the web but are collected between multiple
locations – like hospital scanners. When trying to classify a scanner as "presence or
absence of tumors", it is often a field expert that provides the label. This yields a major



2 Chapter 1 Introduction

drawback: such healthcare providers can’t label thousands of images. In this case, the
power of the crowd can be used to label the scans and provide some level of uncertainty.
This is then to the data scientists, in collaboration with experts, to determine which
workers were useful in the experiment, and which were not, and then only ask experts
to label the most ambiguous scans – which would represent only a small fraction of the
original dataset (as illustrated in Figure 1.1).

1.1.1 Crowdsourcing is all over

This collaboration between citizens and scientists is not a niche, but quite often it goes
unnoticed. Using crowdsourcing to collect data has been used in medical science, video
recommendation systems, and so many other fields of research and development. We
wish to show a – non-exhaustive and not ordered – list of such projects relying on human
interactions to collect data, not just for image classification:

• Pl@ntNet: plant species recognition application (Barthélémy et al., 2011),

• Eyewire: a game to map retina’s neurons (Tinati et al., 2017),

• Tournesol: public interest YouTube video recommendation system (Hoang et al.,
2021),

• ChatGPT: evaluate and correct prompt quality (OpenAI, 2023),

• Duolingo: traduction corrections and improvements1,

• RTR: photovoltaic panels segmentation in images (Kasmi et al., 2023),

• Twitter/X via Birdwatch: identify misleading information (Wojcik et al., 2022),

• Spotify2, TripAdvisor3, SNCF4,. . .

With this list, we showcase the large domains of applications of keeping humans –
and citizens – in the loop, and thus the need for more research on crowdsourcing settings,
strategies and implications. In this thesis, we mainly focus on the image classification
setting.

1https://www.theguardian.com/education/2014/aug/27/luis-von-ahn-ceo-duolingo-
interview

2https://community.spotify.com/t5/Content-Questions/Shutting-down-Line-In/td-
p/4557664

3https://www.kingigilbert.com/crowdsourcing-tripadvisor/
4https://www.usine-digitale.fr/article/tranquilien-quand-open-data-et-crowdsourcing-

profitent-aux-voyageurs-franciliens.N200017

https://www.theguardian.com/education/2014/aug/27/luis-von-ahn-ceo-duolingo-interview
https://www.theguardian.com/education/2014/aug/27/luis-von-ahn-ceo-duolingo-interview
https://community.spotify.com/t5/Content-Questions/Shutting-down-Line-In/td-p/4557664
https://community.spotify.com/t5/Content-Questions/Shutting-down-Line-In/td-p/4557664
https://www.kingigilbert.com/crowdsourcing-tripadvisor/
https://www.usine-digitale.fr/article/tranquilien-quand-open-data-et-crowdsourcing-profitent-aux-voyageurs-franciliens.N200017
https://www.usine-digitale.fr/article/tranquilien-quand-open-data-et-crowdsourcing-profitent-aux-voyageurs-franciliens.N200017
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1.1.2 The Pl@ntNet project

Created by Alexis Joly and Pierre Bonnet, Pl@ntNet (Barthélémy et al., 2011) is the
meeting of two communities – botanists and computer scientists – to identify plant species
from photos taken on the spot. The project’s birth began in 2008, released its first web
application in 2011, mobile application in 2013 and received in 2020 the prize Prix de
l’innovation Inria – Académie des sciences – Dassault Systèmes.

20212011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1.2 Timeline of the Pl@ntNet project

The Pl@ntNet system can be interpreted as follows. A user records an observation
(an image or group of images from the same plant) and sends a query for identification.
The current version of Pl@ntNet’s computer vision model (referred to as Pl@ntNet’s AI
model and detailed in Chapter 4) makes a prediction and outputs the most probable
species. The user can then agree with the AI model, or input another species. With the
predicted probabilities, similar observations with indicated species are shown to the user
to help them make their decision. The observation is then shared (based on the user’s
consent) with the community and can be voted on by other users.

Once the observation is registered, it can be revised at any time by other users.
Currently, Pl@ntNet records over 50K species, 6M registered users and 21M observations
spread across 77 floras. Over a billion image queries have been made, and the application
has been downloaded over 10M times on Google AppStore. In total, more than 22M
votes have been cast internationally. Each publicly shared observation presents, as in
Figure 1.4 with an associated author, the current votes and the state of the current
species determination. On the platform, users can vote for a malformed label, if the
picture is about a leaf, a flower, a fruit, the bark, the habit or other. In this thesis, we
only consider the species determination, not the other votes.
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User

Plant

Pl@ntnet

app

Obs.

Recognized

species

Training data 

Predictions

Machine learning

Figure 1.3 Pl@ntNet pipeline from the observation taken in the field to the active training of
the computer vision model.

(a) Identification webpage. The observation is com-
posed of two pictures, one of the organ (left) and the
other of the flower (right).

(b) User vision of current model pre-
dictions. Examples for each species are
proposed for visual comparison.

Figure 1.4 Example of an observation from the Pl@ntNet online interface. The user shown is
the author of the observation. We record the initial submitted species name, and the different
votes (here 5 users agree on the label determination). If the pictures in an observation do not
contain the same plant, users can vote for a malformed label. By clicking on the icon near the
identification field, users can see the current computer vision model prediction.
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When voting, users are shown the current computer vision prediction on the observa-
tion – as shown in Figure 1.4b. This prediction influences users’ votes, but also contains
information. At the time of writing, Pl@ntNet’s computer vision model is a DINOv2
(Oquab et al., 2024) transformer-based network. It uses contrastive learning (Waida
et al., 2023) i.e., representing similar images as close embedding to learn similar features
for similar observations and then is finetuned in a classical supervised learning fashion.

In Chapter 4, we present the Pl@ntNet label aggregation strategy, but also how we
can incorporate model predictions into the label aggregation. Taking into account the
network’s vote is a delicate matter, as we don’t want the AI to become overconfident in
its prediction by relying mostly on its predictions and discarding human votes. Human
expertise being the main goal of the platform, we want to keep humans in the loop,
especially botanical experts to keep improving end-users plant identifications.

1.1.3 Regarding ethics in crowdsourcing

Crowdsourcing tasks are useful and have led to advances in research and applications.
The issue is that not all crowdsourcing platforms have the same impact, and we know
that there is still room for improvements to have more ethical crowdsourcing in general.
We do not wish or pretend in any way to provide a fully extended analysis of ethics in
this area of work. However, conducting a thesis around crowdsourced datasets without
discussing worker considerations and working conditions would overlook the "where and
how" the data was obtained which is not innocuous. We only offer a discussion around
the ethics that should be continued until further improvements are implemented.

As stated in Schmidt and Computing (2013), crowdsourcing and worker exploitation
are closely related in practice. Exploitation in itself is a loaded word, and we shall use
the definition from Mayer (2007):

Exploiters, I will show, always inflict losses of a relative sort on
disadvantaged parties. They do harm to their victims, even when
their interactions are mutually advantageous, by failing to benefit
the disadvantaged party as fairness requires.

Mayer (2007) further classifies the exploitation into three subsets viewed from the fairness
principle:

• exploiters do not benefit their victims at all,

• exploiters do not benefit their victims sufficiently,

• exploiters do not benefit their victims authentically.

In the case of part of the security system of ChatGPT (OpenAI, 2023), OpenAI hired
the company Sama to outsource examples of potential hate speech text, violence etc.,
and label them. This labeling was done by Kenyan workers in 2021, paid between 1$.32
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and 2$ an hour5. Here the exploiters do not benefit their victims sufficiently considering
the wage6.

Even more recently, Toloka7, one of the largest crowdsourcing platforms, owned by
Yandex, has been found collaborating with NTechLab and Tevian – both sanctioned
under the EU’s human rights regime in July 2023 for contributing to the oppression
and detention of protestors in Russia8. Workers were not aware of the use of their
annotations when drawing bounding boxes around people in images or labeling actions
from surveillance videos. As the data was used to train facial recognition technology
and employed for repression – monitoring and detention of journalists and activists in
support of Alexei Navalny for example – the EU Council found Tevian and NTechLab
to be responsible for providing technical or material support for serious human rights
violations in Russia, including arbitrary arrests or detentions, and violations or abuses
of freedom of peaceful assembly and of association9. According to Annex I to Regulation
(EU) 2020/1998, direct exchange of resources with these companies is thus prohibited
and sanctioned. Further investigations are currently happening, however, the use of
crowdsourcing data in this context is a clear example of possible malicious exploitations
of knowledge and participation of workers.

The legal protection is also limited per the unusual working framework. At the
European Union level, the Joint Research Centre (JRC) and the European Commis-
sion’s Science and knowledge service published a report10 to help policymakers in their
decisions stating that "current labour law framework is not aptly suited to govern new
working patterns and should be revised, either on legislative or interpretative level". This
report stresses that "from a purely legal point of view, ’digital platform-enabled labour’
does not even exist, in the sense that it is not a sort of watertight dimension of the
economy and the labour market’" as this is a very heterogeneous active field of work with
difficult generalizations and conflicting perspectives between scholars, commentators and
lawmakers.

Data privacy has also been of concern with the growing popularity of some platforms.
In Lease et al. (2013), Personal Identity Identification (PII) exposure factors have been
identified on the Amazon Mechanical Platform – that is considered by many as fully
anonymous. On this platform, each worker is assigned a unique identification string of
both letters and numbers. This string was provided in the final dataset and sometimes

5https://time.com/6247678/openai-chatgpt-kenya-workers/
6There is currently no universal minimum wage in Kenya, however in 2022 a cashier would earn in

average 309.06Ksh/hour in Nairobi i.e., around $2.14/hour: https://africapay.org/kenya/salary/
minimum-wages/2182-cities-nairobi-mombasa-and-kisumu

7https://toloka.ai/
8https://www.thebureauinvestigates.com/stories/2024-03-27/paid-pennies-to-train-

tools-of-repression-the-humans-behind-moscows-state-surveillance/
9https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1495

10https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112243/jrc112243_
legal_framework_digital_labour_platforms_final.pdf

https://time.com/6247678/openai-chatgpt-kenya-workers/
https://africapay.org/kenya/salary/minimum-wages/2182-cities-nairobi-mombasa-and-kisumu
https://africapay.org/kenya/salary/minimum-wages/2182-cities-nairobi-mombasa-and-kisumu
https://toloka.ai/
https://www.thebureauinvestigates.com/stories/2024-03-27/paid-pennies-to-train-tools-of-repression-the-humans-behind-moscows-state-surveillance/
https://www.thebureauinvestigates.com/stories/2024-03-27/paid-pennies-to-train-tools-of-repression-the-humans-behind-moscows-state-surveillance/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1495
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112243/jrc112243_legal_framework_digital_labour_platforms_final.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112243/jrc112243_legal_framework_digital_labour_platforms_final.pdf


1.2 Problematic and thesis organization 7

released publicly – as a dataset or in figures as in Gao et al. (2015). However, this string
added to a specific URL was11 the access to the worker profile. Access to the profile
meant access to names, ages, location, wish lists for purchases, and other demographic
information.

Finally, we might wonder: if paid crowdsourcing brings such social and law-related
issues, what about unpaid crowdsourcing – used in Pl@ntNet? And once again, we fall
back to a case-by-case situation with the lack of regulations in this area. New questions
about vigilantism have risen with crowdsourcing platforms like BlueServo12 in Texas or
EuropeanBorderWatch13. These platforms allow users to watch surveillance cameras
near borders and monitor suspicious criminal activities – immigration related mainly. As
stated in Schmidt and Computing (2013), "this certainly brings up all kinds of ethical
questions regarding the motives of those watching and reporting, the effect on those who
should be paid doing these jobs and regarding those being named and shamed, potentially
innocently, by a vigilant cyber mob". Unpaid crowdsourcing also often comes in the form
of games to keep workers in the loop and gather more data. Rogl (2016) states that
with this new form of labor, the risk is for workers not to be able to separate their
work from these side leisure leading to problems in evaluating their working worth and
compensation. Following the classification of exploitation, the question is: does this form
of unpaid work fall into one of the three subsets, does it benefit the workers? In Nyström
(2021), an evaluation experiment was designed to evaluate gamified tasks: the Darkness
of Gamification Evaluation System. Previous work such as Pirkkalainen and Salo (2016)
identified four darkness phenomena: information overload, technostress, IT anxiety, and
IT addiction. Nyström (2021) concludes that gamification "could contribute to all four,
thus, the designing of gamification is crucial to avoid darkness that impacts the user
negatively".

Within this thesis, we did not conduct any new crowdsourcing experiments. We used
datasets from other research projects publicly available. The Pl@ntNet data collection
process – explained in Chapter 4 – is a form of unpaid crowdsourcing where users know
that their participation helps current research (known as explicit crowdsourcing, see
Appendix A for more details).

1.2 Problematic and thesis organization

1.2.1 Organization of the thesis

In this thesis, we deal with image classification problems in crowdsourcing. The main
setting we consider is: How to learn from crowdsourced labels? As this is a large problem

11currently this privacy seems to have been fixed, but it was identified in 2012 and was still active in 2019
https://www.reddit.com/r/mturk/comments/bb16w8/separate_account_for_selling_on_amazon/

12https://www.blueservo.net/
13http://www.europeanborderwatch.org/

https://www.reddit.com/r/mturk/comments/bb16w8/separate_account_for_selling_on_amazon/
https://www.blueservo.net/
http://www.europeanborderwatch.org/
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we want to focus on the data quality we learn our classifiers from, especially in a context
with few labels given per task. The literature has mainly considered modeling workers
abilities and faults (Dawid and Skene, 1979; Raykar and Yu, 2011; Sinha et al., 2018;
Rodrigues and Pereira, 2018), but very few models incorporate the tasks’ difficulty
(Whitehill et al., 2009; Chu et al., 2021). Moreover, when this difficulty is taken into
account, it is often done without considering the actual images, only the answered labels
(Whitehill et al., 2009). In this work, we first propose in Chapter 2 to identify ambiguous
tasks in training datasets from the crowdsourced labels and the actual image with a
metric called the WAUM (Weighted Areas Under the Margin) introduced in (Lefort et al.,
2024). Defining what is a difficult task proves to be a challenge in itself. An informal
definition of a difficult task is given in (Angelova, 2004):

Difficult examples are those which obstruct the learning process
or mislead the learning algorithm or those which are impossible to
reconcile with the rest of the examples. Defining difficult examples
cannot be done without the learning model or the generating distri-
bution.

In this work, we focus on the tempering of the learning process. Our WAUM heavily
relies on how easy it is for current models to learn a given task. Furthermore, identifying
possible ambiguous tasks lets us better explore large crowdsourced datasets and consider
strategies to improve learning performance. In addition, the work of Merler et al. (2004)
and more recently Pleiss et al. (2020) show significant learning performance of models after
pruning most unreliable tasks from the datasets. We show that similar improvements can
be made in the crowdsourcing setting. In Chapter 3, we present our open-source python
library peerannot to ease and help standardize how to deal with crowdsourced datasets
in image classification. We handle label aggregation strategies, learning strategies and
identification processes of ambiguous tasks and/or poorly performing workers. We also
propose a framework to evaluate multiple datasets and aggregation strategies with the
Benchopt library. Finally, we compare in Chapter 4 label aggregation strategies on a
large subset of Pl@ntNet’s south-western European database we released. This subset is
challenging as it contains more than 6 million tasks and over 800 thousand workers with
a large number of classes (> 104). We investigate Pl@ntNet’s current label aggregation
strategy performance and how we can improve it using the currently running computer
vision model predictions.

1.2.2 Notation

Classical supervised setting. Let us first reconsider classical supervised learning in
a classification setting. A dataset D = {(xi, y

⋆
i )}ni=1 is composed of n tasks xi ∈ X and

labels y⋆
i ∈ Y. In image classification, X is classically the space of RGB images and

Y is the set of possible labels. The possible labels are encoded as numbers, thus in a
classification problem with K classes, Y = [K] = {1, . . . ,K}. The cardinal of the set Y



1.2 Problematic and thesis organization 9

is written as |Y| = K. To classify images, we need a classifier denoted C. Then, given a
task xi ∈ X , C(xi) ∈ RK represents the vector of scores. To transform these scores into
probabilities, we use the most standard strategy and apply the softmax function σ(·),
defined for any z ∈ RK as:

σ(z) =
(

ezk∑
ℓ∈[K] e

zℓ

)
k∈[K]

.

The probabilities predicted by the classifier sorted in decreasing order are

σ(C(xi))[1] ≥ σ(C(xi))[2] ≥ · · · ≥ σ(C(xi))[K] ,

where σ(C(xi))[1] represents the probability of the predicted class. The indicator function is
denoted 1(·). The simplex of dimension K−1 is written as ∆K = {p ∈ RK

+ |
∑K

k=1 pk = 1}.
And finally, given a vector z ∈ RK , we denote the normalization operator N such that
N(z) = z/

∑
k∈[K] zk.

Figure 1.5 Crowdsourcing notation on a toy example. There are n = 3 tasks to classify into
K = 2 groups. Only worker w4 answers all tasks. Only the task x1 is answered by all workers.
The workerload of w2 is |T (w2)| = |{1, 2}| = 2. The feedback effort on x3 is |A(x3)| = |{3, 4}| = 2.

Crowdsourcing setting. With crowdsourced data, the ground truth y⋆
i of a task xi is

unknown. Instead, there is a crowd of nworker ∈ N⋆ labeling the ntask training tasks – we
assume access to a classical test and validation set. Each worker wj , j ∈ [nworker] answers
at least one task by giving a label denoted y

(j)
i ∈ [K]. The task/label pairs (xi, y

(j)
i )

are assumed to be generated – not i.i.d as it is worker-dependent – by an unknown
probability distribution P. The set of workers answering the task xi is denoted by

A(xi) = {j ∈ [nworker] : wj answered xi} . (1.1)

We call feedback effort the number of labels collected for a given task: |A(xi)|. Note
that the feedback effort can not exceed the total number of workers nworker.
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Similarly, one can adopt a worker point of view: the set of tasks answered by a worker
wj is denoted

T (wj) = {i ∈ [ntask] : wj answered xi} . (1.2)

The cardinal |T (wj)| is called the workerload of wj . The final dataset can then be
decomposed as:

Dtrain :=
⋃

i∈[ntask]

{
(xi, (y(j)

i )) for j ∈ A(xi)
}

=
⋃

j∈[nworker]

{
(xi, (y(j)

i )) for i ∈ T (wj)
}
.

(1.3)
Note that we use the index notation i for the tasks and j for the workers in the
crowdsourcing experiments.

We created in Appendix C a table of the different strategies we will use in this thesis
and a short explanation of their specificities.

1.2.3 Existing label aggregation strategies

If the goal of the crowdsourcing experiment is to associate a label with a task in the
training set, then we need to aggregate the collected labels into a single one. This
aggregation step can lead to two types of labels:

• hard labels: the aggregated label ŷi ∈ [K] represents a single class – it can be seen
as a Dirac distribution over Y.

• soft labels: the aggregated label ŷi ∈ ∆K is a probability distribution over Y that
is not necessarily a Dirac. This type of label keeps more of the uncertainty for the
learning procedure.

Note that if the aggregation step produces a soft label, it is always possible to produce a
hard label taking the mode of the distribution – i.e., using the argmax function.

In the following, we present classical aggregation strategies. This is not an ex-
haustive list, only models we mostly use for comparison. Assume that a dataset(
xi, {y(j)

i }j∈A(xi)
)

i∈[ntask]
is available. We only need to consider the proposed labels

– i.e., the tasks xi are not used. These models – and more – are available in the library
peerannot using the aggregate command shown in Figure 1.6.

Majority vote (MV)

The majority vote strategy is the simplest mechanism to create a label from multiple
answers. It consists of collecting the votes and taking the most answered category. In the
case of a draw, a random choice in the most answered choices is applied: this can lead to
some variability in the results due to the stochastic nature of this choice. More formally:
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Figure 1.6 pipleine of crowdsourcing experiments. The data is collected. We identify poorly
performing workers and/or ambiguous tasks. Then labels are aggregated to be used in a supervised
learning setting. If the tasks are available and the goal is to learn a predictor, deep-learning-based
strategies can be used to learn the confusion model and the classifier at the same time.

∀i ∈ [ntask], ŷMV
i = argmax

k∈[K]

 ∑
j∈A(xi)

1(y(j)
i = k)


k∈[K]

. (1.4)

The main drawback of the majority vote is the lack of consideration of workers’
abilities. Intrinsically, this aggregation strategy assumes that all workers are equal.
However, experiments have shown that this is not true (Snow et al., 2008; Vuurens et al.,
2011). The MV strategy is one of the most theoretically studied thanks to its simplicity.
Wang and Zhou (2015) found that the label error rate decreases exponentially with
the number of workers selected for each task. This assumes that the worker quality is
bounded and the workers are selected uniformly in the crowd. In the same work, they
also provide similar results with worker quality characterized by their specificity – true
negative rate – and sensitivity – true positive rate – with Gaussian-like assumptions
instead of bounded qualities. Another issue with the MV strategy is that by taking
the mode of the votes’ distribution, the labeling uncertainty completely disappears (see
Figure 1.7).

Furthermore, the majority vote is sensitive to a specific type of attack on the data:
spams. A spammer is defined as a worker whose answers are given independently of
the underlying ground truth (Raykar and Yu, 2011). For example, in plant species
classification one worker can label all images as a type of rose. Another common example



12 Chapter 1 Introduction

Class1 Class2 Class3 Class4
0.0

0.2

0.4

0.6

0.8

1.0

Vo
tin

g 
Di

st
rib

ut
io

n

Consensus

Class1 Class2 Class3 Class4
Classes

Two Class Ambiguity

Class1 Class2 Class3 Class4

Uniform Ambiguity

Figure 1.7 Three different configurations where the MV strategy can lead to the same label.
When there is consensus there is no ambiguity to select the label. However, ambiguities can
happen differently. There can be ambiguities between all classes or between a subset of classes.

is a random choice over the K possible classes. More formally:

∀i ∈ [ntask],∀(k, c) ∈ [K]2, P(y(j)
i = k |y⋆

i = c) = P(y(j)
i = k) . (1.5)

Vuurens et al. (2011) discusses how critical it is to identify spammers to improve labeling
quality. They show through several simulation settings that even with trapping systems,
the majority vote is still sensitive to spam.

In practice, the MV strategy is most often used as a baseline strategy. Note that
some taskmasters improved majority vote accuracy using prevention systems that are
not considered throughout this work. Hoang et al. (2021) for example uses a vouching
system where volunteer workers can be approved via specific institutional email domains.
Khattak (2017) and Peterson et al. (2019) use trapping sets – i.e., separate set of tasks
where a ground truth is known. This set is considered to evaluate worker abilities and
identify poorly performing workers, or potential spammers. Vuurens et al. (2011) showed
that these sets lead to still sensitive decisions regarding other types of spammers.

Naive Soft (NS)

To compensate for the loss of uncertainty of the MV strategy, the simplest solution is
not to consider the mode of the voting distribution but to keep the full distribution as a
label. The Naive Soft (NS) strategy creates a simple soft label in the simplex from the
frequency of votes for each class, using the normalization operator N:

∀i ∈ [ntask], ŷNS
i = N

 ∑
j∈A(xi)

1(y(j)
i = k)


k∈[K]

. (1.6)

Recent work (Collins et al., 2022) showed that with enough votes collected, naive
soft labels do lead in general to better probability outputs in predictions (in terms of
calibration error – see the ECE error in Section 1.2.5 for more details) compared to hard
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labels. However, this strategy still considers every worker equal in front of the tasks
proposed like the MV, thus does not alleviate any ability score, for example not to be
corrupted by spammers.

Dawid and Skene (DS)

The Dawid and Skene’s (DS) strategy (Dawid and Skene, 1979) introduced a framework
where each worker is represented by its confusions. This way, it is the first strategy to take
into account worker abilities for each possible class. Through their model, they estimate
simultaneously the worker confusion and the tasks’ soft label. With its theoretical
guarantees (Gao and Zhou, 2013) and its flexibility in the sense that it is easy to modify
it to take into account data specificities (Passonneau and Carpenter, 2014; Servajean
et al., 2017; Sinha et al., 2018), the DS strategy remains a strong competitor in many
cases.

Figure 1.8 Bayesian plate diagram representation of the DS model. Only the labels {y(j)
i }i,j are

observed. Latent variables to estimate are the true labels (y⋆
i )i. Parameters are the prevalence ρ

of each class and the confusion matrices {π(j)}j for each worker. The underlying task features
(xi)i are not considered.

The keystone of DS is the modeling of the workers’ answers. Each worker is associated
to its confusion matrix π(j) ∈ RK×K such that the (k, ℓ)-entry represents the probability
for worker wj to answer ℓ ∈ [K] when the ground truth is k ∈ [K]. Then, we assume
that each worker’s answer is drawn from a multinomial distribution over the kth row of
its confusion matrix. More formally:

(y(j)
i |y⋆

i = k) ∼M
(
π

(j)
k,•

)
(1.7)

Given the probabilistic model, we wish to maximize the likelihood concerning the
confusion matrices, the prevalence of each class in the dataset and the underlying true
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labels. Assume that the ground truths are sampled from a multinomial distribution
parameterized by the class prevalence ρ ∈ ∆K – i.e., for k ∈ [K], P(y⋆

i = k) = ρk, and
that workers answer independently from one another. Denote Ti,k = 1(y⋆

i = k) the
indicator of the true label. Then the maximum likelihood estimation of the DS model
writes:

arg max
ρ,π,T

∏
i∈[ntask]

∏
k∈[K]

[
ρk

∏
j∈[nworker]

∏
ℓ∈[K]

(
π

(j)
k,ℓ

)1{y
(j)
i

=ℓ}
]Ti,k

. (1.8)

Construction of the DS likelihood

Given a single task i with true label y⋆
i = k and one worker wj , then responses of

worker j follow a multinomial distribution by Equation (1.7) and the likelihood of
the observed data {y(j)

i }i,j is proportional to:

∏
ℓ∈[K]

(
π

(j)
k,ℓ

)1
{y

(j)
i

=ℓ} .

Then, conditionally on the true label being k – i.e., Ti,k = 1 and for k′ ̸= k,
Ti,k′ = 0, we can use the workers’ independence assumption to consider multiple
workers: ∏

j∈[nworker]

∏
ℓ∈[K]

(
π

(j)
k,ℓ

)1
{y

(j)
i

=ℓ} .

Removing the conditional assumption on the true label, we take into account the
class prior contained in the prevalence vector ρ:

∏
k∈[K]

ρk

∏
j∈[nworker]

∏
ℓ∈[K]

(
π

(j)
k,ℓ

)1
{y

(j)
i

=ℓ}

Ti,k

.

Finally, as all tasks are independent, we obtain Equation (1.8) by multiplying over
the task index.

Note that the likelihood in Equation (1.8) can not be maximized directly. In practice
we are not given the complete data set, but incomplete data where the true labels are
unknown. Using the expectation-maximization (EM) algorithm (Dempster et al., 1977),
we can define a recursive procedure to estimate ρ, π = {π(j)}j and T = {Ti,k}i,k:

• Assuming that T is known, compute ρ and π.

• Assuming that ρ and π are known, compute T .

Because we can not use the complete data, we consider the expected value under the
posterior distribution of the latent variable to maximize (EM steps).
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With T known: Denote Y = {y(j)
i }i,j for readability. The logarithm of the likelihood

function writes:

log Lik(π, ρ|T, Y ) =
∑

i

∑
k

Ti,k log(ρk) +
∑

j

∑
ℓ

1{y
(j)
i =ℓ} log(π(j)

k,ℓ)

 .

To compute π and ρ knowing T , we use the Lagrangian multipliers method. Let
λ = {λ(j)}j the Lagrange multipliers for the constraint

∑
ℓ π

(j)
k,ℓ = 1 – sum of probabilities

for each row of confusion matrices equals 1 – and η the Lagrange multiplier for the
constraint

∑
k ρk = 1 – the prevalence must sum to 1. Then the full Lagrangian L writes:

L(π, ρ, λ, η) = log Lik(π, ρ|T, Y ) + η
∑

i

[∑
k

Ti,k log(ρk)− 1
]

+
∑

j

λj

∑
ℓ

[
π

(j)
k,ℓ − 1

]
.

• Differentiation with respect to π(j)
k,ℓ , (k, ℓ) ∈ [K]2:

∂L
∂π

(j)
k,ℓ

=
∑

i

Ti,k

π
(j)
k,ℓ

1{y
(j)
i =ℓ} − λj ,

and setting it to zero leads to:

π
(j)
k,ℓ = 1

λj

∑
i

Ti,k1{y
(j)
i =ℓ} . (1.9)

• Differentiation with respect to ρk, k ∈ [K]:

∂L
∂ρk

=
∑

i

Ti,k

ρk
− η ,

and setting the derivative to zero leads to:

ρk = 1
η

∑
i

Ti,k . (1.10)

• Differentiating with respect to λj and η recovers the constraints conditions. Taking
into account the constraints we finally obtain:

λj =
∑
ℓ′

∑
i

Ti,k1{y
(j)
i =ℓ′} and η = ntask (1.11)

Combining Equation (1.11) with Equation (1.9) and Equation (1.10), we obtain the
update rule for π and ρ with T known.
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Update rule for T : We now estimate T with π and ρ known using Bayes formula.
Recall that Ti,k represents the posterior probability of task i to belong in class k given
the observed labels Y , the class prevalence ρ and the confusions π. Then:

P(Ti,k = 1|Y, π, ρ) ∝ P(Y, Ti,k = 1|π, ρ)

∝ P(Ti,k = 1|ρ)P({y(j)
i }j |π, Ti,k = 1)

∝ ρk

∏
j

∏
ℓ

(
π

(j)
k,ℓ

)1
{y

(j)
i

=ℓ} . (1.12)

Using our updates rules, we can now write the full EM optimization for the DS model
in Algorithm 1.

Algorithm 1 Expectation-Maximization (EM) for Dawid and Skene Model
1: Initialization: ∀i ∈ [ntask],∀ℓ ∈ [K], Ti,ℓ = 1

|A(xi)|
∑

j∈A(xi) 1{y
(j)
i =ℓ}

2: while Not converged do
3: Get π and ρ assuming T s are known

4: ∀(ℓ, k) ∈ [K]2, π(j)
ℓ,k ←

∑
i∈[ntask] Ti,ℓ•1

{y
(j)
i

=k}∑
k′∈[K]

∑
i′∈[ntask] Ti′,ℓ•1

{y
(j)
i′ =k′}

5: ∀ℓ ∈ [K], ρℓ ← 1
ntask

∑
i∈[ntask] Ti,ℓ

6: Estimate T s knowing π and ρ

7: ∀(i, ℓ),∈ [ntask]× [K], Tiℓ ←
∏

j∈A(xi)

∏
k∈[K] ρℓ·

(
π

(j)
ℓ,k

)1{y
(j)
i

=k}

∑
ℓ′∈[K]

∏
j′∈A(xi)

∏
k′∈[K] ρℓ′ ·

(
π

(j′)
ℓ′k′

)1{y
(j′)
i

=k′}

At this point, a few clarifications are needed for Algorithm 1. The initialization used
for the estimated labels T is the NS strategy Section 1.2.3, Page 12, however, other
initialization exist and are discussed in Dawid and Skene (1979). Numerically, as there is
no single optimum, discrepancies in results might happen. Furthermore, let us discuss
the stopping criterion. Given a precision ϵ > 0, a possible criterion to stop is if, between
two consecutive iterates, the likelihood did not go further than ϵ in absolute value. Other
criteria could be applied, like relative error instead of absolute, but often do not impact
results by much as the convergence is generally reached in few steps.

Weighted with Dawid and Skene (WDS)

The DS model, by design, often leads to soft labels (Ti,•)i with very low entropy distri-
bution – i.e., close to Dirac distributions. Indeed, the T variable represents indicator
functions for belonging to a given class. To keep more uncertainty, one possibility is to
shift our focus to only consider the diagonal of the confusion matrices estimated in the
DS model. Each term on the diagonal represents the ability of the worker to answer
correctly the underlying label. Using this DS diagonal, we obtain a weighted majority
vote denoted WDS:
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ŷWDS
i =

 ∑
j∈A(xi)

π
(j)
k,k1{y

(j)
i =k}


k∈[K]

. (1.13)

Generative model of Labels, Abilities, and Difficulties (GLAD)

Figure 1.9 Bayesian plate diagram representation of the GLAD model. Only the labels {y(j)
i }i,j

are observed. Latent variables to estimate are the true labels (y⋆
i )i. Parameters are the worker

ability αj and the task difficulty βi. The underlying task features (xi)i are not considered.

While DS-like models focused on evaluating workers’ confusion, Whitehill et al. (2009)
introduced GLAD to take into account two sources of error: the worker’s ability and the
task’s difficulty. The worker ability is defined as a parameter αj ∈ R. The larger the more
reliable a worker is. When αj = 0, the worker answers randomly, whereas when αj < 0,
the worker is adversarial and switches labels. The task difficulty is denoted using the
parameter βi ∈ R⋆

+. If βi ≃ 0, the task is almost impossible to classify correctly. When
βi is large, the task is easy to classify. GLAD’s model is based on a logistic regression.
Indeed, the model assumes that the probability for a worker to answer correctly the label
y⋆

i = k is generated by a sigmoid function sig:

P(y(j)
i = k|y⋆

i = k, αj , βi) = sig(αjβi) = 1
1 + e−αjβi

. (1.14)

Equation (1.14) implies that the log-odds to label correctly a task is defined as αjβi: a
bilinear function of the worker’s ability and the task difficulty. Figure 1.9 represents the
plate diagram representation of the model and shows that there is no causal structure
between the true labels y⋆

i and the parameters αj or βi.
To estimate the worker’s abilities and task difficulties, we use the maximum likelihood

estimator. We also assume that errors are uniform across possible other labels. Then the
likelihood is proportional to:

∏
i∈[ntask]

∏
k∈[K]

P(y⋆
i = k)

∏
j∈[nworker]

( 1
K − 1 (1− sig(αjβi))

)1−1
{y

(j)
i

=k} sig(αjβi)
1

{y
(j)
i

=k} .

(1.15)
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Construction of the GLAD likelihood

Given a single task i with true label y⋆
i = k and one worker wj , then responses of

worker j follow a Bernoulli distribution to be correct by Equation (1.14) and the
likelihood of the observed data {y(j)

i }i,j is proportional to:

sig(αjβi)
1

{y
(j)
i

=k}
( 1
K − 1 (1− sig(αjβi))

)1−1
{y

(j)
i

=k}
.

Then, using the workers’ independence assumption to consider multiple workers:

∏
j∈[nworker]

sig(αjβi)
1

{y
(j)
i

=k}
( 1
K − 1 (1− sig(αjβi))

)1−1
{y

(j)
i

=k}
.

Removing the conditional assumption on the true label:

∏
k∈[K]

P(y⋆
i = k)

∏
j∈[nworker]

sig(αjβi)
1

{y
(j)
i

=k}
( 1
K − 1 (1− sig(αjβi))

)1−1
{y

(j)
i

=k}
.

Finally, as all tasks are independent, we obtain Equation (1.15) by multiplying
over the task index.

The likelihood is maximized using the EM algorithm. However, due to the lack of
analytical solutions in the maximization step, we also compute the derivatives of the
auxiliary function to maximize it using a first-order optimization method (like gradient
descent). Let us compute the auxiliary function Q and its gradient for α and β. Denote
Y = {y(j)

i }i,j , Y ⋆ = {y⋆
i }i and pk = P(y⋆

i = k|Y, αold, βold) the latest estimation of the
posterior distribution available, then:

Q(α, β) = E [logP(Y, Y ⋆|α, β)] =
∑

i

E [logP(y⋆
i )] +

∑
i,j

E
[
logP(y(j)

i |y
⋆
i , αj , βi)

]
=
∑
i,k

pk logP(y⋆
i = k) +

∑
i,j,k

pk logP(y(j)
i |y

⋆
i = k, αj , βi) . (1.16)

Taking the derivative for αj :

∂Q

∂αj
=
∑
i,k

pk ∂

∂αj

[
1{y

(j)
i =k} log sig(αjβi) +

(
1− 1{y

(j)
i =k}

)
(log sig(αjβi)− log(K − 1))

]

=
∑
i,k

pk
[
1{y

(j)
i =k}βi (1− sig(αjβi))−

(
1− 1{y

(j)
i =k}

)
βisig(αjβi)

]

=
∑
i,k

pkβi

(
1{y

(j)
i =k} − sig(αjβi)

)
,
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Algorithm 2 GLAD (EM version)
Input: Dtrain: crowdsourced dataset
Output:α = {αj}j∈[nworker]: worker abilities, β = {βi}i∈[ntask]: task difficulties, aggregated
labels

1: while Likelihood not converged do
2: //Estimate probability of y⋆

i :
3: ∀i ∈ [ntask], P(y⋆

i |{y
(j)
i }i, α, βi) ∝ P(y⋆

i )
∏

j P(y(j)
i |y⋆

i , αj , βi)
4: //Maximization step:
5: Maximize auxiliary function Q(α, β) in Equation (1.16) w.r.t α and β

using that for x ∈ R, sig(x) = 1− sig(−x). Symmetrical reasoning leads to:

∂Q

∂βi
=
∑
j,k

pkαj

(
1{y

(j)
i =k} − sig(αjβi)

)
.

The posterior probability for the ground truth labels can be computed directly using
the plate diagram in Figure 1.9, Equation (1.14) and Bayes’ theorem:

P(y⋆
i |Y, α, β) ∝ P(y⋆

i |α, βi)P(Yj |y⋆
i , α, βi)

∝ P(y⋆
i )

∏
j∈A(xi)

P(y(j)
i |y

⋆
i , αj , βi) . (1.17)

Aggregations that are not considered. In this work, we do not consider modifying
the data collection model, only the aggregation strategy. However, it is important
to note that the data collection model can be modified to improve the quality of the
labels. For example, Khattak (2017) uses trapping sets to evaluate workers and reweight
their involvement in the final aggregation step. Other work such as Chamberlain et al.
(2018) considers a validation process to improve crowdsourced data quality to balance
the need for more labels. In opposition to the Annotation Mode on their platform
Phrase Detectives, users have access to a Validation Mode where they can have
access to tasks, and agree or disagree with answers. Hoang et al. (2021) uses a vouching
system where volunteer workers can be approved via specific institutional email domains.
Aggregation strategies that rely on these data collection models are not considered in
this work.

1.2.4 Integrating crowdsourcing in the neural network’s architecture

In the era of deep learning, it is only expected to find new ways to introduce crowd-
sourcing into neural network architectures. Incorporating layers taking into account the
crowd/tasks pairing in the architecture leads to a neural network able to be trained on
crowdsourced data. The newly obtained classifier function denoted f in this part, is used
to predict labels of unseen images. Yet, contrary to models seen in Section 1.2.3, these
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strategies are only used for prediction and not for aggregating labels for each task. We
thus not only need the crowdsourced labels but also the associated tasks and a set of
unseen data to validate/test the model on.

CrowdLayer and its matrix weights strategy (MW)-version

From Rodrigues and Pereira (2018), CrowdLayer is an end-to-end strategy in the crowd-
sourcing setting. From the output of a neural network, a new layer called crowd layer
is added to take into account worker specificities. The main classifier thus becomes
globally shared, and the new layer is the only worker-aware layer. As multiple variants
of CrowdLayer can exist, we only considered in this paper the matrix weights (MW)
strategy that is akin to the DS model. Denoting z = f(xi) the output of the neural
network classifier f for a given task xi labeled by a worker wj , the added layer multiplies
z by a matrix of weights W j ∈ RK×K . This matrix of weights per worker takes into
account the local confusion of each worker. In practice, the forward pass F on a task xi

annotated by worker wj using CrowdLayer computes F (xi, wj) = W jσ(f(xi)).
Also note that in practice, other CrowdLayer strategies are available (using a single

scalar instead of a matrix for example) and that the MW strategy can be used with a
regularization term to avoid overfitting on the workers’ specificities (Tanno et al., 2019).

Common Noise Adaptation Layers (CoNAL)

CrowdLayer takes into account worker-specific confusion matrices. CoNAL (Chu et al.,
2021) generalizes this setting by creating a global confusion matrix W g ∈ RK×K in
addition to the local ones W j ∈ RK×K for j ∈ [nworker] working all together with the
classifier f . Given a worker wj , the confusion is global with weight ωj

i ∈ [0, 1] and local
with weight 1− ωj

i . The final distribution output used to compute the loss is given by:

pout(xi, wj) = ωj
iW

gf(xi) + (1− ωj
i )W jf(xi) .

As is, CoNAL local matrices tend to aggregate themselves onto the global matrix. To
avoid this phenomenon, a regularization term in the loss can be added, leading to the
final loss:

L(W g, {W j}j∈[nworker]) = 1
ntask

∑
i∈[ntask]

∑
j∈[nworker]

H
(
y

(j)
i , pout(xi, wj)

)
− λ

∑
j∈[nworker]

∥W g −W j∥2 ,

with λ the regularization hyperparameter and H the crossentropy loss. The larger λ, the
farther local confusion weights are from the shared confusion.



1.2 Problematic and thesis organization 21

1.2.5 Evaluation metrics.

Throughout this thesis, we evaluate our results using different metrics depending on the
data available.

In classical supervised learning settings, performance metrics consider an evaluation
between an estimation ŷ of the true label y⋆ for each task. This true label is available and
was chosen by the authors of the dataset following a data collection process (scraping,
expert knowledge, etc.). There can be noise in this truth, but it is assumed to be minimal
(Northcutt et al., 2021b). This issue with crowdsourced datasets is that the ground
truth is supposed to be unknown. To alleviate this problem, authors often release a
subset of the data with true labels to evaluate the performance of the different strategies.
For example: the CIFAR-10H (Peterson et al., 2019) crowdsourced dataset is based on
the CIFAR-10 dataset, a classical supervised learning dataset. Note that the original
labels in CIFAR-10 also come from a crowdsourcing experiment (and were validated
manually according to the appendices of the original paper). At the end of the data
collection, the authors decided to consider their labels as ground truth to be able to
evaluate the performance of their model. In Chapter 2 and Chapter 3, all ground truth
labels used were released by the original authors of the datasets with the associated
crowdsourced answers. These standard benchmarking datasets do not represent the
real-world crowdsourcing setting where the ground truth is unknown but are useful to
evaluate performance.

In the practical application presented in Chapter 4, we released a new crowdsourced
dataset from Pl@ntNet with more than 6M images to label. To obtain performance
scores, we collected the votes of 98 botanical experts and considered them as the ground
truth y⋆. Images labeled by the experts compose the test set. Having these true labels on
a subset of the data lets us evaluate the performance of different strategies in a real-world
crowdsourcing setting. Note however that this choice to consider an expert’s vote as
ground truth can impact the evaluation and be debated. The full pipeline to create this
dataset is detailed in Chapter 4.

Now that we know how to access ground truth labels – either released by authors
or collected and then considered as true following a decision rule – we can define the
evaluation metrics used in this thesis. There are two main types of metrics: those
evaluating the aggregation strategy – e.g. MV, NS – and those evaluating the prediction
of a model – e.g. CoNAL, CrowdLayer. Aggregation strategies consist on estimating the
true label y⋆ from the workers’ votes {y(j)

i }i,j on a set of tasks. Prediction strategies
consist of training a model on tasks and their associated votes and then predicting the
label of unseen tasks.

• If a dataset D of n tasks is only composed of the answered labels – i.e., the images
are not available: the crowdsourcing strategies consist in estimating the label y⋆

i

with an aggregated label ŷi. To evaluate the aggregation method, we use the
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training recovery accuracy Acctrain defined as:

Acctrain(ŷ, y⋆;D) = 1
n

n∑
i=1

1(ŷi = y⋆
i ) . (1.18)

• If the dataset is composed of both the answered labels and the associated images:
we can learn the parameters of a classifier and ask this classifier to make predictions
of a separate test set of ntest images with known true labels y⋆. We thus record
the test accuracy and the expected calibration error as in Guo et al. (2017). The
test accuracy is defined as:

Acctest(ŷ, y⋆,D) = 1
ntest

ntest∑
i=1

1(ŷi = y⋆
i ) . (1.19)

The expected calibration error is a metric introduced in Naeini et al. (2015) that
addresses the reliability of the predicted probabilities by a model. It is known
that many machine learning models (Guo et al., 2017) are not well calibrated. A
model is said calibrated if, for example in a binary classification problem with
smiling and not smiling faces, out of all the tasks smiling that have an estimated
probability p̂ ∈ [0, 1] to be classified as smiling, there is indeed a portion p̂ that are
smiling. More formally, let us partition the [0, 1] interval into M equally spaced
bins I1, . . . , IM . Let Bm be the set of tasks xi with predicted probability falling in
bin Im for m ∈ [M ]. Then, in each bin we can look at the accuracy of the model:

acc(Bm) = 1
|Bm|

∑
i∈Bm

1(ŷi = y⋆
i ) , (1.20)

and at the confidence of the model:

conf(Bm) = 1
|Bm|

∑
i∈Bm

σ(C(xi))[1] . (1.21)

The average discrepancy between these two metrics is the expected calibration
error (ECE):

ECE =
M∑

m=1

|Bm|
ntest

|acc(Bm)− conf(Bm)| ∈ [0, 1] . (1.22)

A model perfectly calibrated has an ECE null and the worse calibration happens
with an ECE of 1. Note that in practice, we use M = 15 bins to partition the
interval [0, 1]. Other calibration metrics exist (Kumar et al., 2019; Wongon et al.,
2020) to alleviate some issues like the metric’s bias (Gruber and Buettner, 2022).



1.2 Problematic and thesis organization 23

1.2.6 Some classical open access crowdsourcing datasets.

There are few crowdsourced datasets openly available online that released both the votes
{y(j)

i }i,j with the tasks (xi)i, and with a (partial) ground truth to evaluate from. We
present here three of them that are often used in the literature. The CIFAR-10H (Peterson
et al., 2019) dataset has been proposed to reflect human perceptual uncertainty in (a
subpart of) the classical CIFAR-10 dataset. Each worker has annotated a large number
of (seemingly easy) tasks, thus leading to few disagreements. The LabelMe and Music
datasets (Rodrigues et al., 2014, 2017) have very few votes per task, leading to more
ambiguous vote distributions.

The CIFAR-10H dataset

Introduced by Peterson et al. (2019), the crowdsourced dataset CIFAR-10H attempts
to recapture the human labeling noise present when creating the dataset. We have
transformed this dataset, mainly by creating a validation set. The training set for
our version of CIFAR-10H consists of the first 9500 test images from CIFAR-10, hence
|Dtrain| = 9500. The validation set is then composed of the last 500 images from the
training set of CIFAR-10 meaning |Dtest| = 500. The test set consists of the whole
training set from CIFAR-10, so |Dtest| = 50000. The crowdsourcing experimentation
involved nworker = 2571 workers on Amazon Mechanical Turk. Workers had to choose
one label for each presented image among the K = 10 labels of CIFAR-10: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck. Each worker labeled
200 tasks (and was paid $1.50 for that): 20 for each original category. Answering time was
also measured for each worker14. The CIFAR-10H released annotating effort is balanced:
each task has been labeled by 50 workers on average.
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Figure 1.10 CIFAR-10H: dataset visualization

From Figure 1.10, we can see that the creation of a validation set leads to some
(small) imbalances in the load per worker and feedback effort distribution. The entropy

14Note that attention checks occurred every 20 trial for each worker, for tasks whose labels were
known. They have been removed from the dataset since the corresponding images are not available.
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distribution peaks around 0, meaning that the tasks are not very ambiguous – most tasks
are easy to classify and workers agree.

The LabelMe dataset

Another real dataset in the crowdsourced image classification field that can be used is the
LabelMe crowdsourced dataset created by Rodrigues and Pereira (2018). This dataset
consists of ntask = 1000 training images dispatched among K = 8 classes: highway,
insidecity, tallbuilding, street, forest, coast, mountain or open country. The
validation set has 500 images and the test set has 1188 images. The whole training tasks
have been labeled by nworker = 59 workers, each task having between one and three given
(crowdsourced) labels. In particular, 42 tasks have been labeled only once, 369 tasks
have been labeled twice and 589 received three labels. This is a way sparser labeling
setting than the CIFAR-10H dataset.

Also, note that the LabelMe dataset has classes that overlap and thus lead to intrinsic
ambiguities. This is the reason why the CoNAL strategy was introduced by Chu et al.
(2021), see details in Section 1.2.4. For example, the classes highway, insidecity,
street and tallbuilding are overlapping for some tasks: some cities have streets with
tall buildings, leading to confusion.
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Figure 1.11 LabelMe: dataset visualization

From Figure 1.11, we can see that there are only up to three labels per task, leading
to sparser votes per task. Most workers answered few tasks, leading to a peak in the load
per worker distribution. There is also a vast consensus on tasks with a high peak for the
entropy distribution near 0. However, in this peak are also counted the tasks with only
one label that the entropy can not separate.

The Music dataset

Rodrigues et al. (2014) released a crowdsourced dataset of audio files. The goal of this
classification task was to decide the genre of 30-second musical excerpts. Number of
tasks is ntask = 700. The nworker = 44 workers had K = 10 possible labels: blues,
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classical, country, disco, hiphop, jazz, metal, pop, reggae and rock. Each audio
file was labeled by between 1 and 7 workers. To test the results, a dataset of 299 labeled
clips is used (originally 300, but one file is known to be corrupted). Instead of working
with the original audio files, we have used Mel spectrograms, openly available15, to rely
on standard neural networks architecture for image classification.
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Figure 1.12 Music: dataset visualization

From Figure 1.12 we observe that each task received up to 7 labels. Around 7.5%
of those tasks were annotated by a single worker. Hence the entropy can not be used
to detect the ambiguity for them. Most workers labeled few tasks, and some outliers
labeled more than 300 music recordings.

1.2.7 Résumé en français

Alors que les ensembles de données de classification sont composés d’un nombre croissant
d’éléments, le besoin d’expertise humaine pour les étiqueter est toujours présent. Les
plateformes d’apprentissage participatif sont un moyen de recueillir les commentaires
d’experts à faible coût. Cependant, la qualité de ces étiquettes n’est pas toujours garantie.
Dans cette thèse, nous nous concentrons sur le problème de l’ambiguïté des étiquettes dans
l’apprentissage participatif. L’ambiguïté des étiquettes a principalement deux sources : la
capacité du travailleur et la difficulté de la tâche. Nous présentons tout d’abord un nouvel
indicateur, le WAUM (aire sous la marge pondérée), pour détecter les tâches ambiguës
confiées aux travailleurs. Basé sur le AUM existant dans le cadre supervisé classique,
il nous permet d’explorer de grands ensembles de données tout en nous concentrant
sur les tâches qui pourraient nécessiter une expertise plus pertinente ou qui devraient
être éliminées de l’ensemble de données actuel. Nous présentons ensuite une nouvelle
bibliothèque python open-source, PeerAnnot, que nous avons développée pour traiter les
ensembles de données en apprentissage participatif dans la classification d’images. Nous
avons créé une référence d’état de performance dans la bibliothèque Benchopt pour évaluer
nos stratégies d’agrégation d’étiquettes afin d’obtenir des résultats plus reproductibles.

15https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?

datasetId=568973

https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?datasetId=568973
https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-genre-classification?datasetId=568973
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Enfin, nous présentons une étude de cas sur l’ensemble de données Pl@ntNet, où nous
évaluons l’état actuel de la stratégie d’agrégation d’étiquettes de la plateforme et proposons
des moyens de l’améliorer. Ce contexte avec un grand nombre de tâches, d’experts et
de classes est très difficile pour les stratégies d’agrégation d’apprentissage participatif
actuelles. Nous faisons état de performances systématiquement supérieures à celles de
nos concurrents et proposons une nouvelle stratégie d’agrégation qui pourrait être utilisée
à l’avenir pour améliorer la qualité de l’ensemble de données Pl@ntNet. Nous publions
également ce grand ensemble de données de commentaires d’experts qui pourrait être
utilisé pour améliorer la qualité des méthodes d’agrégation actuelles et fournir un nouveau
point de référence.

1.3 Introduction: apprentissage participatif en classification d’images

Suite à la révolution de l’apprentissage profond, on entraîne aujourd’hui des modèles
avec des millions voire des milliards de paramètres à optimiser. Et pour ce faire, nous
avons besoin d’augmenter la taille de nos ensembles de données d’entraînement. Le
problème est que dans un ensemble d’entraînement en classification supervisée (et nous
considérerons principalement la classification d’images pour le reste de ce travail), les
images doivent être accompagnées d’une étiquette à partir de laquelle l’entraînement est
effectué. Bien que des recherches aient été menéees sur l’inférence de cette étiquette à
partir des données elles-mêmes, dans les ensembles de données classiques d’apprentissage
supervisé, ces étiquettes ont été collectées et partagées à un moment donné au cours de
la création de l’ensemble de données.

Figure 1.13 L’apprentissage participatif peut être utilisé pour créer des ensembles de données,
mais il permet également de soulager la tension que subissent les experts lorsqu’ils évaluent de
nouvelles données. En faisant appel à une foule de travailleurs, de nombreuses tâches peuvent
être étiquetées sans nécessiter l’évaluation d’un expert.

La tâche consistant à collecter des données afin de créer un ensemble de données pour



1.3 Introduction: apprentissage participatif en classification d’images 27

la classification des images a été de plus en plus associée à l’extraction automatique de
données en ligne (Rhodes et al., 2015). Toutefois, il a été démontré à de nombreuses
reprises que cette stratégie de collecte de données entraîne des erreurs d’étiquetage
(Northcutt et al., 2021a; Vasudevan et al., 2022). Dans d’autres domaines de recherche,
comme les prestataires de soins de santé, les images ne proviennent pas nécessairement du
web mais sont collectées à plusieurs endroits, comme les scanners des hôpitaux. Lorsqu’il
s’agit de classer un scanner comme "présence ou absence de tumeurs", c’est souvent un
expert sur le terrain qui fournit l’étiquette. Cependant, ces professionnels de la santé
ne peuvent pas étiqueter des milliers d’images. Dans ce cas, la puissance de la foule
peut être utilisée pour étiqueter les scanners et fournir un certain niveau d’incertitude.
Il appartient alors au scientifique des données, en collaboration avec les experts, de
déterminer quels travailleurs ont été utiles dans l’expérience et lesquels ne l’ont pas été,
puis de demander aux experts d’étiqueter uniquement les scans les plus ambigus - qui ne
représenteraient qu’une petite fraction de l’ensemble de données original (comme illustré
dans Figure 1.1).

1.3.1 Le crowdsourcing est partout

Cette collaboration entre citoyens et scientifiques n’est pas une niche technique, mais elle
passe souvent inaperçue. L’utilisation du crowdsourcing pour collecter des données a été
utilisée en médecine, dans les systèmes de recommandation vidéo, et dans bien d’autres
domaines de la recherche et du développement. Nous souhaitons présenter une liste - non
exhaustive et non ordonnée - de ces projets qui s’appuient sur les interactions humaines
pour collecter des données, et pas seulement pour la classification d’images :

• Pl@ntNet : application de reconnaissance des espèces végétales (Barthélémy et al.,
2011),

• Eyewire : un jeu pour cartographier les neurones de la rétine (Tinati et al., 2017),

• Tournesol : système de recommandation de vidéos d’intérêt public sur YouTube
(Hoang et al., 2021), (OpenAI, 2023), (OpenAI, 2023), (OpenAI, 2023), (OpenAI,
2023),

• Duolingo : corrections de traduction et améliorations,

• RTR : segmentation des panneaux photovoltaïques dans les images (Kasmi et al.,
2023),

• Twitter/X via Birdwatch : identifier les informations trompeuses (Wojcik et al.,
2022),

• Spotify, TripAdvisor, SNCF,. . .
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Avec cette liste, nous mettons en évidence les vastes domaines d’application qui
permettent aux humains - et aux citoyens - de rester dans la boucle, et donc la nécessité
de poursuivre les recherches sur les paramètres, les stratégies et les implications du crowd-
sourcing. Dans cette thèse, nous nous concentrons principalement sur la classification
d’images.

1.3.2 Le projet Pl@ntNet

Créé par Alexis Joly et Pierre Bonnet, Pl@ntNet (Barthélémy et al., 2011) est la rencontre
de deux communautés – les botanistes et l’informatique – pour identifier des espèces
végétales à partir de photos prises sur le vif. Le projet est né en 2008, a sorti sa première
application web en 2011, son application mobile en 2013 et a reçu en 2020 le prix Prix de
l’innovation Inria - Académie des sciences - Dassault Systèmes.

20212011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1.14 Timeline du projet Pl@ntNet

Le système Pl@ntNet peut être interprété comme suit. Un utilisateur enregistre une
observation (une image ou un groupe d’images de la même plante) et envoie une requête
d’identification. La version actuelle du modèle de vision par ordinateur de Pl@ntNet
(appelé modèle IA de Pl@ntNet et détaillé dans Chapter 4) fait une prédiction et fournit
l’espèce la plus probable. L’utilisateur peut alors approuver le modèle d’IA ou saisir une
autre espèce. Avec les probabilités prédites, des observations similaires avec les espèces
indiquées sont montrées à l’utilisateur pour l’aider à prendre sa décision. L’observation
est ensuite partagée (avec l’accord de l’utilisateur) avec la communauté et peut faire
l’objet d’un vote de la part des autres utilisateurs/

Une fois l’observation enregistrée, elle peut être révisée à tout moment par d’autres
utilisateurs. Actuellement, Pl@ntNet enregistre plus de 50K espèces, 6M utilisateurs
enregistrés et 21M observations réparties sur 77 flores. Plus d’un milliard de requêtes
d’images ont été effectuées et l’application a été téléchargée plus de 10 millions de
fois sur Google AppStore. Au total, plus de 22 millions de votes ont été exprimés au
niveau international. Chaque observation partagée publiquement présente, comme dans
Figure 1.4 avec un auteur associé, les votes actuels et l’état de la détermination actuelle de
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User  expertise from
label aggregation strategy

Figure 1.15 Pl@ntNet pipeline from the observation taken in the field to the active training of
the computer vision model.

l’espèce. Sur la plateforme, les utilisateurs peuvent voter pour une étiquette malformée,
si l’image concerne une feuille, une fleur, un fruit, l’écorce, le port ou autre. Dans cette
thèse, nous ne prenons en compte que la détermination de l’espèce, et non les autres
votes.

Lors du vote, les utilisateurs voient apparaître la prédiction actuelle de vision par
ordinateur sur l’observation – comme indiqué dans Figure 1.4b. Cette prédiction influence
le vote des utilisateurs, mais contient également des informations. Au moment de
la rédaction de ce document, le modèle de vision par ordinateur de Pl@ntNet est
un réseau DINOv2 (Oquab et al., 2024) basé sur des transformateurs. En utilisant
l’apprentissage contrastif (Waida et al., 2023) i.e. représentant des images similaires sous
forme d’encastrement proche pour apprendre des caractéristiques similaires pour des
observations similaires, puis en utilisant l’apprentissage supervisé pour affiner le modèle.

Dans le Chapitre 4, nous présentons la stratégie d’agrégation des étiquettes de
Pl@ntNet, mais aussi la manière dont nous pouvons incorporer les prédictions du modèle
dans l’agrégation des étiquettes. La prise en compte du vote du réseau est une question
délicate, car nous ne voulons pas que l’IA devienne trop confiante dans ses prédictions en
s’appuyant principalement sur ses prédictions et en écartant les votes humains. L’expertise
humaine étant l’objectif principal de la plateforme, nous voulons garder les humains
dans la boucle, en particulier les experts botaniques, afin de continuer à améliorer les
identifications de plantes des utilisateurs finaux.
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(a) Identification webpage. L’observation est com-
posée de deux images, l’une de l’organe (à gauche) et
l’autre de la fleur (à droite).

(b) Vision de l’utilisateur sur les prédic-
tions du modèle actuel. Des exemples
pour chaque espèce sont proposés à des
fins de comparaison visuelle.

Figure 1.16 Exemple d’observation à partir de l’interface en ligne de Pl@ntNet. L’utilisateur
représenté est l’auteur de l’observation. Nous enregistrons le nom de l’espèce initialement soumis,
ainsi que les différents votes (ici, 5 utilisateurs sont d’accord sur la détermination de l’étiquette).
Si les images d’une observation ne contiennent pas la même plante, les utilisateurs peuvent
voter pour une étiquette malformée. En cliquant sur l’icône près du champ d’identification, les
utilisateurs peuvent voir la prédiction actuelle du modèle de vision par ordinateur.
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Key points – Identify ambiguous tasks

1. We know that datasets with better quality will lead to better models.
It is famously a complicated task to explore big datasets and find am-
biguous tasks in a classical supervised setting. What can we do for
crowdsourced datasets?

2. While entropy or variance-based methods in distribution votes are useful
to retrieve tasks that lead to very noisy decisions, they are not fit in
settings with few votes per task. And even less fitted to settings where a
task can be labeled by a single worker. Can we still exploit these tasks?

Contributions – Weighted Area Under the Margin

3. Following the literature on label noise, we adapt the AUM by Pleiss
et al. (2020) into the AUMC and WAUM, two strategies to identify
ambiguous tasks in datasets. The first is the baseline and directly falls
back to the classical AUM using a majority vote. The WAUM intro-
duces a trust score in the balance not to use poorly performing workers’
answers.

4. We provide a simple guideline: pruning most ambiguous tasks from
the dataset, and reporting computer vision classifier performance with
and without pruning on simulated and three real datasets: CIFAR-10H,
LabelMe and Music.
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2.1 Do we know what is in our training sets?

While our datasets are getting larger and larger every year, one question naturally
arises: What is the quality of our training sets? Indeed, small datasets can easily be
looked at, but thousands of images – if not millions – represent herculean human work
without assistance. Mistakes happen, and the quality of the data is not always perfect
(Figure 2.1).

(a) y⋆ = cat in CIFAR-
10 (Krizhevsky and Hinton,
2009)

(b) y⋆ = tshirt in Quick-
draw

(c) y⋆ = 6 in MNIST (Deng,
2012)

Figure 2.1 Three examples of labeling mistakes in classical classification datasets. The label can
be wrong (CIFAR-10 and Quickdraw) or the task can be too ambiguous to classify (MNIST).

Data quality is linked with model performance (Budach et al., 2022), looking for
outliers to prune or weight differently during the learning procedure is not new (Angelova,
2004). In this chapter, we first present the Area Under the Margin (AUM): a statistic
from Pleiss et al. (2020) that uses model’s iterates score prediction to detect unreliable
training data points in the classically supervised learning setting. Then, we propose
to extend the AUM to the crowdsourcing setting with the Weighted Areas Under the
Margin (WAUM). We show that the WAUM allows the identification of ambiguous
tasks in crowdsourced datasets, and pruning a portion of those tasks leads to better test
performance overall.
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2.1.1 Detect labeling errors in classical datasets

In classically supervised learning settings, training sets, tasks are paired up with a single
label: Dtrain := {(xi, yi)}i∈[ntask]. This label has been assigned either automatically or
via human decision. Thus, the task might be mislabeled. We can see a mislabeled task
as a task that is difficult to classify for the classifier given this wrong label. The AUM
from Pleiss et al. (2020) allows us to identify tasks that are the most difficult to classify
from the dataset.

More formally, the AUM of a task (xi, yi) from a training set Dtrain given a classifier
C and a number of training epochs T > 0 is defined as:

AUM (x, y;Dtrain) = 1
T

T∑
t=1

[
σ(t)

y (x)− σ(t)
[2] (x)

]
. (2.1)

The AUM averages over time how far the score for the given class is from the most
predicted other class by the classifier. This is an average over time of the prediction
margin. It is classic to look at this margin in the literature to bound test error. For
example, Bartlett et al. (1998) showed that test error is dependent on the margin’s
distribution over the training set, even with zero error reached during training. However,
the AUM does not consider the margin given a trained classifier but looks at the early
dynamics in the training procedure. Pleiss et al. (2020) use an average of margins over
logit scores, while we rather consider the average of margin after a softmax step in
Equation (2.1), to temper scaling issues, as advocated by Ju et al. (2018) in ensemble
learning. Moreover, we consider the margin introduced by Yang and Koyejo (2020) since
the corresponding hinge loss has better theoretical properties than the one used in the
original AUM, especially in top-k settings1 (Lapin et al., 2016; Yang and Koyejo, 2020;
Garcin et al., 2022). However, one could easily consider the original margin with few
differences in practice for top-1 classification. The algorithm to compute the AUM is
detailed in Algorithm 3.

This early dynamic, and by association the hyperparameter T > 0, is necessary as it
is well known that modern neural networks classifiers can memorize the data and even
classify correctly random tasks because of the hyperparametrization (Maennel et al.,
2020). Memorization is a necessary phenomenon for training a neural network: we need
the classifier to memorize patterns. But what we wish to consider the least in the AUM
is the unintended memorization (Maennel et al., 2020) that can happen early and is
difficult to temper – even with strategies like dropout or weight decay. And in Zhang
et al. (2021), they show – among other results – that true labels are learned faster than
random labels by neural networks classifier. This early training dynamic in the prediction
logits can thus be used as a proxy to identify possible mislabeled data.

1For top-k, consider σ
(t)
[k+1](x) instead of σ

(t)
[2] (x) in (2.1).
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(a) Mislabeled image: AUM≪ 0 (b) Correct label: AUM≫ 0

(c) Confusion: the image is either a four or a nine cut-out
with true label y⋆

i = 9, the AUM is closer to zero indicating
high ambiguity in learning classes

Figure 2.2 Three examples from the MNIST dataset to illustrate the behavior of the AUM: if
the sample is mislabeled the AUM is low as the classifier disagrees with the given label. Note that
if T > 0 is too high the memorization kicks in and the AUM increases again. When the sample is
correctly labeled the AUM increases over training. When the sample is ambiguous, the AUM is
closer to 0. Results are from a 2-layer convolution network with max-pooling. Training is done in
T = 30 epochs using Adam optimizer with a learning rate set to 0.01 and batches of 100 samples.

Note that there exist other algorithms to learn from mislabeled data, such as Confident
Learning (Northcutt et al., 2021b) using by CleanLab2. Confident Learning does not
correct the label nor does it re-weight the data. It estimates the joint distribution between
the given and unknown latent labels with class-conditional noise and then prunes samples
by class with a threshold of the average predicted probability for the samples in the given
class. With the AUM, we can also correct the label during training – even though we
will not consider this application for this work.

We recall in Algorithm 3 how to compute the AUM in practice for a given training set
Dtrain. This step is used within the WAUM (label aggregation step). Overall, considering
a model, computing the AUM requires an additional cost: T training epochs are needed
to record the margins’ evolution for each task. This usually represents less than twice

2https://cleanlab.ai/

https://cleanlab.ai/
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the original time budget. We recall that σ(t)(xi) is the softmax output of the predicted
scores for the task xi at iteration t.

Algorithm 3 AUM algorithm
Input: Dtrain = (xi, yi)i∈[ntask]: training set with ntask task/label couples, T ∈ N:
number of epochs
for t = 1, . . . , T do

Train the neural network for the tth epoch, using Dtrain
for i ∈ [ntask] do

Record softmax output σ(t)(xi) ∈ ∆K−1
Compute margin M (t)(xi, yi) = σ

(t)
yi (xi)− σ(t)

[2] (xi)
∀i ∈ [ntask], AUM(xi, yi;Dtrain) = 1

T

∑
t∈[T ]M

(t)(xi, yi)

2.2 The WAUM: extending the AUM to the crowdsourcing setting

In this work, we aim at identifying ambiguous tasks from their associated features, hence
discarding hurtful tasks (such as the ones illustrated on Figure 2.4) following the pipeline
presented in Figure 2.3. First, we collect the crowdsourced labels, then identify ambiguous
tasks and prune them, and finally train a classifier on the pruned dataset.

Figure 2.3 Learning with crowdsourcing labels: from label collection with a crowd to training
on a pruned dataset. High ambiguity from either crowd workers or tasks intrinsic difficulty can
lead to mislabeled data and harm generalization performance. To illustrate our notation, here
the set of tasks annotated by worker w3 is T (w3) = {1, 3} while the set of workers annotating
task x3 is A(x3) = {1, 3, 4}.

Recent works on data-cleaning in supervised learning (Han et al., 2019; Pleiss et al.,
2020; Northcutt et al., 2021b) have shown that some images might be too corrupted or too
ambiguous to be labeled by humans. Hence, one should not consider these tasks for label
aggregation or learning since they might reduce generalization power; see for instance
(Pleiss et al., 2020). Throughout this work, we consider the ambiguity of a task with the
informal definition proposed by Angelova (2004) that fit standard learning frameworks:
“Difficult examples are those which obstruct the learning process or mislead the learning
algorithm or those which are impossible to reconcile with the rest of the examples”. This
definition links back to how Pleiss et al. (2020) detects corrupted samples using the
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area under the margin (AUM) during the training steps of a machine learning classifier.
However, it is important to notice that, in this context, the task ambiguity is inherent to
the classifier architecture, and thus might not exactly overlap with human-level difficulty.

Image #6750
CIFAR-10 label: deer
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(a) Label deer is meaning-
less here, and workers are con-
fused with all other labels.

Image #7681
CIFAR-10 label: airplane
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(b) Label airplane is easy
to identify (unanimity among
workers).

Image #9246
CIFAR-10 label: cat
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(c) Label cat often confused
with horns of a wild deer

Figure 2.4 Three images from CIFAR-10H dataset (Peterson et al., 2019), with the empirical
distribution of workers’ labels (soft labels): the airplane image (a) is easy, while the landscape
(b) is ambiguous due to the image’s poor quality. The last image (c) looks like a black cat face
often perceived as the horns of a deer.

While the AUM shows results of identifying different types of sample difficulty by
averaging the margin during T > 0 training epochs, there is no direct way to apply it
to the crowdsourcing setting. Indeed, the AUM needs, by definition, a hard label yi to
consider the assigned-label score C(xi)yi and also to consider the second biggest score for
a class different than yi. In the crowdsourcing setting however, there is no direct hard
label ŷi from the multiple answers {y(j)

i }j∈A(xi) to a task xi.
A naive transformation to apply the AUM in a crowdsourcing setting is to consider

the majority voting aggregation. Equation (2.1) simply becomes:

AUMC
(
xi,
{
y

(j)
i

}
j∈A(xi)

;Dtrain

)
= 1
T

T∑
t=1

[
σ

(t)
ŷMV

i

(xi)− σ(t)
[2] (xi)

]
. (2.2)

The AUMC strategy lacks the worker abilities and task difficulty. There is no worker-
specific margin, the MV aggregation strategy removed the worker-specific information
from the AUM. In the following, we introduce the WAUM: a statistic that generalizes
the AUM to the crowdsourcing setting by aggregating worker-specific margins into a
weighted average to consider both worker abilities and task difficulty.

Out-of-Model-Scope and task difficulty.

Identifying ambiguous tasks in a training set seems close to the Out-Of-Distribution
(OOD) detection problem – when we aim at detecting data that is not from the same
distribution as our training set (Schorn and Gauerhof, 2020; Wang et al., 2022). Given a
new data point, a monitoring system is built to detect if that point comes from the same
distribution as the data used to train a model or whether it deviates significantly from
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that distribution. Similarly, recent works argue that the Out-Of-Model-Scope (OMS)
detection problem is a more general problem than OOD detection (Granese et al., 2021;
Guérin et al., 2023). Given a model, we construct its scope as the set of data where the
model is correct. A monitor is built so that, given a new task, we can detect if the model
is suited or not to classify it. It is a model-dependent problem, and the scope is defined
by the model’s architecture and training data, contrary to the OOD problem which is
only dependent on the training data.

However, both the OOD and the OMS detection problems are not the same as
identifying ambiguous tasks in our setting. Indeed, OOD detection relies on testing
whether the task is from the same distribution as the training set without a network.
The OMS detection relies on testing whether the task is in the trained model scope at
evaluation time. We consider with the AUM, and the WAUM, the task difficulty in the
training set, given a new model, how to identify ambiguous tasks before the evaluation
step.

2.2.1 Definition and construction of the WAUM

We thus introduce the Weighted Area Under the Margin (WAUM), a generalization to the
crowdsourcing setting of the Area Under the Margin (AUM) by Pleiss et al. (2020). We
essentially combine task difficulty scores with worker abilities scores, but we measure the
task difficulty by incorporating feature information. The AUM is a confidence indicator
in an assigned label defined for each training task. It is computed as an average of
margins over scores obtained along the learning steps. The AUM reflects how a learning
procedure struggles to classify a task to an assigned label. The AUM is well suited when
training a neural network (where the steps are training epochs) or other iterative methods.
For instance, it has led to better network calibration (Park and Caragea, 2022) using
MixUp strategy (Zhang et al., 2018), i.e. mixing tasks identified as simple and difficult
by the AUM. The WAUM, our extension of the AUM, aims at identifying ambiguous
data points in crowdsourced datasets, so one can prune ambiguous tasks that degrade
the generalization. It is a weighted average of workers AUM, where the weights reflect
trust scores based on task difficulty and workers’ ability.

Given several training epochs T > 0 and a classifier C for a crowdsourced training
set Dtrain, we write the WAUM as a weighted average of worker specific AUM. Let
s(j)(xi) ∈ [0, 1] be a trust factor in the answer of worker wj for task xi. The WAUM is
then defined as:

WAUM(xi) =

∑
j∈A(xi)

s(j)(xi)AUM
(
xi, y

(j)
i

)
∑

j′∈A(xi)
s(j′)(xi)

. (2.3)

It is a weighted average of AUMs over each worker’s answer with a per task weighting
score s(j)(xi) based on workers’ abilities. This score considers the impact of the AUM for
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each answer since it is more informative if the AUM indicates uncertainty for an expert
than for a non-expert.

The scores s(j) are obtained à la Servajean et al. (2017): each worker has an estimated
confusion matrix π̂(j) ∈ RK×K . Note that the vector diag(π̂(j)) ∈ RK represents the
probability for worker wj to answer correctly to each label. With a neural network
classifier, we estimate the probability for the input xi ∈ Xtrain to belong in each category
by σ(T )(xi), i.e. the probability estimate at the last epoch. As a trust factor, we propose
the inner product between the diagonal of the confusion matrix and the softmax vector:

s(j)(xi) =
〈
diag(π̂(j)), σ(T )(xi)

〉
∈ [0, 1] . (2.4)

The scores control the weight of each worker in Equation (2.3). This choice of weight
is inspired by the bilinear scoring system of GLAD (Whitehill et al., 2009), as detailed
hereafter. The closer to one, the more we trust the worker for the given task. The score
s(j)(xi) can be seen as a multidimensional version of GLAD’s trust score. Indeed, in
GLAD, the trust score is modeled as the product αjβi, with αj ∈ R (resp. βi ∈ (0,+∞))
representing worker ability (resp. task difficulty). In Equation (2.4), the diagonal of the
confusion matrix π̂(j) represents the worker’s ability and the softmax the task difficulty.

Construction of the WAUM

Given a single task xi and a worker wj ∈ A(xi), a possible measure of label
ambiguity is the AUM:

AUM
(
xi, y

(j)
i

)
= 1
T

T∑
t=1

[
σ

(t)
y

(j)
i

(xi)− σ(t)
[2] (xi)

]
.

Extending to multiple workers (wj)j∈A(xi), a naive extension (other than the
AUMC) would be to average the AUM over workers:

W̃AUM
(
xi, {y(j)

i }j
)

= 1
|A(xi)|

∑
j∈A(xi)

[
1
T

T∑
t=1

[
σ

(t)
y

(j)
i

(xi)− σ(t)
[2] (xi)

]]
.

However, by doing so the averaged ambiguity does not consider the worker per-
formance. If the worker performs poorly, they should not contribute much to
the overall task ambiguity. Hence the proposition is to use a weight s(j)(xi) that
considers both the worker and the task. Instead of the classical average, we thus
obtain the weighted average defined in Equation (2.3).

Why variance or entropy-based identifications are not always suited.

The natural choice instead of the WAUM would be to use the entropy of the votes to
detect ambiguous tasks. However, the entropy of the votes is not always suited for
difficulty identification. Indeed, when large amounts of votes per task are available, the



2.2 The WAUM: extending the AUM to the crowdsourcing setting 41

entropy of the votes and the WAUM coincide well, as in Figure 2.5(a). Yet, when votes
are scarce, as in Figure 2.5(b) and (c), entropy becomes irrelevant while our introduced
WAUM remains useful.
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(a) CIFAR-10H dataset.

−0.2 −0.1 0.0 0.1 0.2 0.3
WAUM

0.0

0.5

1.0

1.5

2.0

E
nt

ro
py

(b) LabelMe dataset.
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(c) Music dataset.

Figure 2.5 Entropy of votes vs. WAUM for CIFAR-10H, LabelMe, and Music, each point
representing a task/image. When large amounts of votes per task are available, WAUM and
entropy ranking coincide well, as in (a). Yet, when votes are scarce, as in (b) and (c), entropy
becomes irrelevant while our introduced WAUM remains useful. Indeed, tasks with few votes
can benefit from feedback obtained for a similar one. And for the LabelMe dataset in particular,
there are only up to three votes available per task, thus only four different values of the entropy
possible, making it irrelevant in such cases for modeling task difficulty.

Dataset Pruning and hyperparameter tuning.

Our procedure (Algorithm 4) proceeds as follows. We initialize our method by estimating
the confusion matrices for all workers. For each worker wj , the AUM is computed for its
labeled tasks, and so is its worker-dependent trust scores s(j)(xi) with Equation (2.4)
during the training phase of a classifier. The WAUM in Equation (2.3) is then computed
for each task. The most ambiguous tasks, the ones whose WAUM are below a threshold,
are then discarded, and the associated pruned dataset Dpruned is output. We consider
for the pruning threshold a quantile of order α ∈ [0, 1] of the WAUM scores. The
hyperparameter α (proportion of training data points pruned) can be chosen on a
validation set, yet choosing α ∈ {0.1, 0.05, 0.01} has led to satisfactory results in all
our experiments. Note that the same pruning procedure can be applied to AUMC for
comparison. Both the AUMC and WAUM inherit the hyperparameter T > 0 from the
original AUM. Following the recommendations from Pleiss et al. (2020), we need T

large enough for stability and T not too big to avoid overfitting the data. In practice, a
guideline given is to train until the first learning rate scheduler drops to only keep the
beginning of the scores trajectories without finetuning. The main assumptions to identify
ambiguous tasks is thus not to over-train the neural network in the WAUM (or AUMC)
step, and to be able to run a DS-like algorithm to recover the diagonal of the confusion
matrix for Equation (2.4).
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Algorithm 4 WAUM (Weighted Area Under the Margin).
Input: Dtrain: tasks and crowdsourced labels, α ∈ [0, 1]: proportion of training points
pruned, T ∈ N: number of epochs, Est: Estimation procedure for the confusion matrices
Output: pruned dataset Dpruned

1: Get confusion matrix {π̂(j)}j∈[nworker] from Est

2: Train a classifier for T epochs on
(
xi, y

(j)
i

)
i,j

3: for j ∈ [nworker] do
4: Get AUM(xi, y

(j)
i ;Dtrain) using Equation (2.1) for i ∈ T (wj)

5: Get trust scores s(j)(xi) using Equation (2.4) for i ∈ T (wj)
6: for each task x ∈ Xtrain do
7: Compute WAUM(x) using Equation (2.3)
8: Get qα (WAUM(xi))i∈[ntask], α-quantile threshold
9: Dpruned =

{(
xi,
(
y

(j)
i

)
j∈A(xi)

)
:WAUM(xi) ≥ qα, xi ∈ Xtrain

}

Refined initialization: estimating confusion matrices.

By default, we rely on the Est=DS algorithm to get workers’ confusion matrices, but
other estimates are possible: DS might suffer from the curse of dimensionality when the
number K of classes is large (K2 coefficients needed per worker).

Training on the pruned dataset.

Once a pruned dataset Dpruned has been obtained thanks to the WAUM, one can create
soft labels through an aggregation step, and use them to train a classifier. Aggregated
soft labels contain information regarding human uncertainty, and could often be less
noisy than NS labels. They can help improve model calibration (Wen et al., 2021; Zhong
et al., 2021), a property useful for interpretation (Jiang et al., 2012; Kumar et al., 2019).
Concerning the classifier training, note that it can differ from the one used to compute
the WAUM. We train a neural network whose architecture is dataset dependent and that
can differ from the one used in Algorithm 4 (it is the case for instance for the LabelMe
dataset). For an aggregation technique agg, we write the full training method on the
pruned dataset created from the WAUM: agg + WAUM and instantiate several choices
in our experiments. For comparison, we write agg + AUMC the training method on the
pruned dataset created from the AUMC.

2.2.2 Evaluating the WAUM

Our first experiments focus on multi-class classification datasets with a large number of
votes per task. We consider first a simulated dataset to investigate the WAUM and the
pruning hyperparameter α. Then, with the real CIFAR-10H dataset from Peterson et al.
(2019) we compare label aggregation-based procedures with and without pruning using
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the AUMC or the WAUM. Finally, we run our experiments on the LabelMe dataset from
Rodrigues and Pereira (2018) and Music dataset from Rodrigues et al. (2014), both real
crowdsourced datasets with few labels answered per task. For each aggregation scheme
considered, we train a neural network on the soft labels (or hard labels for MV) obtained
after the aggregation step. We compare our WAUM scheme with several other strategies
like GLAD (feature-blind) or CoNAL (feature-aware) with and without pruning from the
AUMC identification step. For CoNAL, two regularization levels are considered: λ = 0
and λ = 10−4 (λ controls the distance between the global and the individual confusion
matrices). More simulations and an overview of the methods compared are available in
Section 2.2.3.

Metrics investigated.

After training, we report two performance metrics on a test set Dtest: top-1 accuracy
and expected calibration error (ECE) (with M = 15 bins as in Guo et al. (2017)). The
ECE measures the discrepancy between the predicted probabilities and the probabilities
of the underlying distribution. For ease of reporting results, we display the score 1−ECE
(hence, the higher the better, and the closer to 1, the better the calibration). Reported
errors represent standard deviations over the repeated experiments (10 repetitions on
simulated datasets and 5 for real datasets).

Implementation details.

For simulations, the training is performed with a three dense layers artificial neural network
(an MLP with three layers) (30, 20, 20) with batch size set to 64. Workers are simulated
with scikit-learn (Pedregosa et al., 2011) classical classifiers. For CIFAR-10H the
Resnet-18 (He et al., 2016) architecture is chosen with batch size set to 64. We minimize
the cross-entropy loss and use when available a validation step to avoid overfitting. For
optimization, we consider an SGD solver with 150 training epochs, an initial learning
rate of 0.1, decreasing it by a factor 10 at epochs 50 and 100. The WAUM and AUMC
are computed with the same parameters for T = 50 epochs. Other hyperparameters
for Pytorch’s (Paszke et al., 2019) SGD are momentum=0.9 and weight_decay=5e-4. For
the LabelMe and Music datasets, we use the Adam optimizer with a learning rate set to
0.005 and default hyperparameters. On these two datasets, the WAUM and AUMC are
computed using a more classical Resnet-50 for T = 500 epochs and the same optimization
settings. The architecture used for train and test steps is a pre-trained VGG-16 combined
with two dense layers as described in Rodrigues and Pereira (2018) to reproduce original
experiments on the LabelMe dataset. This architecture differs from the one used to
recover the pruned set. Indeed, contrary to the modified VGG-16, the Resnet-50 could
be fully pre-trained. The general stability of pre-trained Resnets, thanks to the residuals
connections, allows us to compute the WAUM and AUMC with way fewer epochs (each
being also with a lower computational cost) compared to VGGs (He et al., 2016). As there
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are few tasks, we use data augmentation with random flipping, shearing and dropout
(0.5) for 1000 epochs. Experiments were executed with Nvidia RTX 2080 and Quadro
T2000 GPUs. Chapter 3 presents more details on the code used with the peerannot
library. Source codes are available at https://github.com/peerannot/peerannot. The
WAUM and AUMC sources are available in the identification module.

2.2.3 Results on simulated datasets

To explore the behavior of the WAUM, we first consider two sets of simulated datasets.
The first set represents a scenario where there is some ambiguity in the tasks and one
worker performs poorly and adds more ambiguity. The WAUM is used to mitigate
the impact of the poor worker and remove some tasks too ambiguous. The second set
represents a scenario where the task’s ambiguity is inherent to the data structure, and
pruning should be avoided.

Three circles simulation
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Figure 2.6 three_circles: One realization of Table 2.1 varying the aggregation strategy.
Training labels are provided from Figure 2.8 and predictions on the test set are from three dense
layers’ artificial neural network (30, 20, 20) trained on the aggregated soft labels. For ease of
visualization, the color displayed for each task represents the most likely class. Red points are
pruned from training by WAUM with threshold α = 0.1. Here, we have ntask = 525. WAUM
method as in Table 2.1 uses WDS labels.

We simulate three cloud points (to represent K = 3 classes) using scikit-learn’s
function two_circles; see Figure 2.8. The nworker = 3 workers are standard classifiers:
w1 is a linear Support Vector Machine Classifier (linear SVC), w2 is an SVM with RBF
kernel (SVC), and w3 is a gradient boosted classifier (GBM). Data is split between train
(70%) and test (30%) for a total of 750 points and each simulated worker votes for all
tasks, i.e. for all x ∈ Xtrain, |A(x)| = nworker = 3, leading to ntask = 525 tasks (points).
The performance reported in Table 2.1 is averaged over 10 repetitions.

A disagreement area is identified in the northeast area of the dataset (see Figure 2.8).
Table 2.1 also shows that pruning too little data (α small) or too much (α large)
can mitigate the performance. In Figure 2.7, we show the impact of the pruning

https://github.com/peerannot/peerannot
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Figure 2.7 Influence of α on the pruning step. Red dots indicate data points pruned from
the training set, at level qα in the WAUM (see line 10 in Algorithm 4). We consider (α ∈
{10−3, 10−2, 10−1, 0.25}). The neural network used for predictions is three dense layers (30, 20, 20),
as for other simulated experiments. Training labels are from the WDS + WAUM strategy with
performance reported in Table 2.1. The more we prune data, the worse the neural network can
learn from the training dataset. However, removing the tasks with high disagreement noise helps
to generalize.
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Figure 2.8 three_circles: one realization of simulated workers w1, w2, w3, with their AUM,
normalized trust scores s(j) (left) and WAUM distributions (right) for α = 0.1. Worker w1
has less impact on the final WAUM in the disagreement area. Note also that for worker w1
(LinearSVC), the region with low AUM values recovers the usual classifier’s margin around the
decision boundary.

hyperparameter α. The closer α is to 1, the more training tasks are pruned from the
training set (and the worse the performance).

Two moons simulation

This dataset is introduced as a case where pruning is not recommended, to illustrate the
limitations of the worker-wise WAUM method. The two_moons simulation framework
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Strategy Acctest ECE

MV 0.73± 0.03 0.13± 0.03
NS 0.70± 0.02 0.18± 0.02
DS 0.75± 0.07 0.22± 0.08
GLAD 0.58± 0.02 0.36± 0.02
WDS 0.81± 0.04 0.17± 0.03
WDS + AUMC(α = 10−1) 0.81± 0.02 0.17± 0.01
WDS + WAUM(α = 10−2) 0.80± 0.04 0.17± 0.01
WDS + WAUM(α = 10−1) 0.83± 0.03 0.19± 0.04
WDS + WAUM(α = 0.25) 0.69± 0.02 0.19± 0.02

Table 2.1 three_circles: Aggregation and learning performance presented in Figure 2.6
(ntask = 525 tasks, |A(x)| = nworker = 3, 10 repetitions). Errors represented are standard
deviations. Note that the best worker, w3, reaches 0.84 on test accuracy.

showcases the difference between relevant ambiguity in a dataset and an artificial one.
This dataset is created using make_moons function from scikit-learn. We simulate
ntask = 500 points, a noise ε = 0.2 and use a test split of 0.3.

Figure 2.9 two_moons dataset: simulated workers with associated AUM and normalized trust
scores. The hyperparameter α is set to 0.1 for the worker-wise WAUM. Notice that the SVC
classifier is mostly wrong (since we only train for one epoch for this worker), inducing a lower
trust score overall.
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Figure 2.10 two_moons dataset: One realization of Table 2.2 varying the aggregation strategy.
Label predictions on train/test sets provided by a three dense layers’ artificial neural network
(30, 20, 20) trained on smooth labeled obtained after aggregating the crowdsourced labels (as in
Figure 2.9). Points in red are pruned from the training set in the worker-wise WAUM aggregation.
The α hyperparameter is set to 0.1. Each point represents a task xi, and its color is the probability
of belonging in class 1. One can visualize the ambiguity in the soft training aggregated labels,
but also in the resulting predictions by the neural network. Errors represented are standard
deviations.

Table 2.2 Training and test accuracy depending on the aggregation method used for the
two_moons’s dataset with ntask = 500 points used for training a three dense layers’ artificial
neural network (30, 20, 20). For reference, the best worker is w3 with a training accuracy of 0.923
and a test accuracy of 0.900.

Aggregation Acctest ECE

MV 0.894± 0.002 0.098± 0.004
NS 0.887± 0.002 0.217± 0.010
DS 0.867± 0.000 0.126± 0.001
GLAD 0.872± 0.006 0.107± 0.004
WDS + WAUM(α = 10−3) 0.875± 0.002 0.088± 0.012
WDS + WAUM(α = 10−2) 0.874± 0.002 0.092± 0.011
WDS + WAUM(α = 10−1) 0.870± 0.003 0.101± 0.020
WDS + WAUM(α = 0.25) 0.829± 0.006 0.135± 0.011

As can be observed with Figure 2.9 and Figure 2.10, the difficulty of this dataset
comes from the two shapes leaning into one another. However, this intrinsic difficulty is
not due to noise but is inherent to the data. In this case, removing the hardest tasks
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means removing points at the edges of the crescents, and those are important in the
data’s structure. From Table 2.2, we observe that learning on naive soft labeling leads
to better performance than other aggregations. But with these workers, no aggregation
produced labels capturing the shape of the data.

2.2.4 Results on real datasets

In this section, we investigate three popular crowdsourced datasets: CIFAR-10H, LabelMe
and Music. The first one, CIFAR-10H (Peterson et al., 2019), is a curated dataset with
many votes per task while LabelMe (Rodrigues and Pereira, 2018) and Music (Rodrigues
et al., 2014) datasets are more challenging, having fewer labels per task. This low number
of votes per task, especially for LabelMe can lead to erroneous MV labels which then
impact the quality of the AUMC. In this context, the label distribution’s entropy is also
a poor choice to identify hard tasks as can be seen in Figure 2.5. Indeed, with up to
three labels, the entropy can only take four different values and thus is no help in ranking
the difficulty of 1000 tasks.

To prune only a few tasks, we choose α = 1% for CIFAR-10H and LabelMe datasets.
For the Music dataset, α = 5% leads to better generalization performance; considering
the dataset size and complexity, picking α = 0.1 would lead to worse performance.
Ablation studies by architecture are performed on CIFAR-10H and LabelMe datasets in
Figure 2.16 to show consistent improvement in performance by using the WAUM to
prune ambiguous data.

CIFAR-10H dataset.

The training part of CIFAR-10H consists of the 10 000 tasks extracted from the test set
of the classical CIFAR-10 dataset (Krizhevsky and Hinton, 2009), and K = 10. A total
of nworker = 2571 workers participated on the Amazon Mechanical Turk platform, each
labeling 200 images (20 from each original class), leading to approximately 50 answers per
task. We have randomly extracted 500 tasks for a validation set (hence ntrain = 9500).
This dataset is notoriously more curated (Aitchison, 2021) than a common dataset in the
field: most difficult tasks were identified and removed at the creation of the CIFAR-10
dataset, resulting in few ambiguities. Section 2.2.4 shows that in this simple setting,
our data pruning strategy is still relevant, with the choice α = 0.01. Images with worst
WAUM for each class are presented in Figure 2.11.

Furthermore, the WAUM leads to better generalization performance than the vanilla
DS model and the pruning with AUMC. Overall, we show that there is a gain in
performance obtained by using a pruning preprocessing step compared to training the
classifier on the aggregated labels for the full training set. There is consistently an
improvement in using the WAUM pruning – which weights the margins by worker and
tasks – over the naive AUMC which does not use reweighing.
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Figure 2.11 CIFAR-10H: 10 worst images for WAUM scores, by labels given in CIFAR-10. The
rows represent the labels airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. Images in red can be particularly hard to classify as they are not typical examples of their
label. Comparison with the AUMC and the AUM are available in Figure 2.17 Section 1.2.6.

CIFAR-10H is a relatively well-curated dataset, and we observe in Section 2.2.4 that
in this case, simple aggregation methods already perform well, in particular NS. Over the
2571 workers, less than 20 are identified as spammers using Raykar and Yu (2011) but
note that most difficult tasks were removed when creating the original CIFAR-10 dataset.
We refer to the "labeler instruction sheet" of Krizhevsky and Hinton (2009, Appendix C)
for more information about the directives given to workers.

LabelMe dataset.

This dataset consists in classifying 1000 images in K = 8 categories. In total 77 workers
are reported in the dataset (though only 59 of them answered any task at all). Each task
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Strategy Acctest(%) 1 − ECE

MV 69.53 ± 0.84 0.825 ± 0.00
MV + AUMC 71.12 ± 1.12 0.836 ± 0.01
MV + WAUM 72.34 ± 1.01 0.814 ± 0.02
NS 72.14 ± 2.74 0.868 ± 0.03
NS + AUMC 71.80 ± 2.12 0.838 ± 0.00
NS + WAUM 72.21 ± 1.82 0.829 ± 0.00
DS 70.26 ± 0.93 0.827 ± 0.00
DS + AUMC 70.43 ± 1.10 0.833 ± 0.02
DS + WAUM 72.71 ± 0.98 0.814 ± 0.02
GLAD 70.28 ± 0.88 0.838 ± 0.01
GLAD + AUMC 70.42 ± 1.23 0.830 ± 0.01
GLAD + WAUM 71.93 ± 1.12 0.812 ± 0.02
WDS 72.49 ± 0.48 0.868 ± 0.00
WDS + AUMC 72.47 ± 0.45 0.866 ± 0.00
WDS + WAUM 72.67 ± 0.59 0.868 ± 0.00

Table 2.3 CIFAR-10H: performance of a ResNet-18 by label-aggregation crowdsourcing strategy
(α = 0.01). Errors represented are standard deviations.
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(a) Label street.
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(b) Label tallbuilding.

Figure 2.12 LabelMe dataset: Worst WAUM for classes (top) and the associated voting distri-
bution for each image (bottom). (a) Label street (b) Label tallbuilding. Even if the two
tasks are very similar, because the workers are different the associated proposed labels can differ
and add noise during training.

has between 1 and 3 labels. A validation set of 500 images and a test set of 1188 images
are available.

We observe in Figure 2.13 that the WAUM improves the final test accuracy when
combined with the CoNAL network with regularization. Note that the LabelMe dataset
has classes that overlap and thus lead to intrinsic ambiguities. This is the reason why the
CoNAL strategy was introduced by Chu et al. (2021): modeling common confusions helps
the network’s decision, so it was expected for the CoNAL to perform well. Combined with
our WAUM, additional gains are obtained on both metrics. The vanilla strategy, either
for aggregation or learning, can be improved using a pruning preprocessing step. However,
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Figure 2.13 Ablation study on LabelMe using the VGG backbone: α = 0.01. Errors are Gaussian
confidence intervals at 95%.

Figure 2.14 LabelMe: top-10 worst images detected by the WAUM (with labels row-ordered
from top to bottom: highway, insidecity, street, tallbuilding). Overlapping classes lead
to labeling confusion and learning difficulties for both the workers and the neural network.

between the AUMC and the WAUM, we show a consistent improvement in using the
WAUM that considers weights for the workers individually. For example, the classes
highway, insidecity, street and tallbuilding (in rows) are overlapping for some
tasks: cities have streets with tall buildings, leading to confusion shown in Figure 2.14.
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Figure 2.15 Ablation study on Music using the VGG backbone: α = 0.05. Errors are Gaussian
confidence intervals at 95%.

Music dataset.

This dataset differs from LabelMe and CIFAR-10H as it consists in classifying 1000
recordings of 30 seconds into K = 10 music genres. All the 44 workers involved voted
for at least one music, resulting in up to 7 labels per task. Instead of classifying the
original audio files, we use the associated Mel spectrograms following the methodology
considered by Dong (2018) to retrieve an image classification setting. Though the benefits
are not as striking as before on test accuracy, the ECE is slightly improved by combining
our WAUM with CoNAL as can be seen in Figure 2.15. Moreover, we show constant
improvement of the test generalization performance using the WAUM preprocessing
either in accuracy or in calibration.

Among other interesting discoveries, the WAUM helped us detect that the music Zydeco
Honky Tonk by Buckwheat Zydeco was labeled as classical, country or pop by the
workers, though it is a blues standard. Another example is Caught in the middle by
Dio classified (with the same number of votes) as rock, jazz, or country though it is
a metal song. One last example detected: the music Patches by Clarence Carter is
stored in the disco00020.wav file. The true label is supposed to be disco, while the
workers have provided the following labels: two have chosen rock, two blues, one pop
and another one proposed country. The actual genre of this music is country-soul, so
both the true label and five out of six workers are incorrect.
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WAUM sensitivity to the neural network architecture.
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Figure 2.16 Performance obtained by training on the pruned dataset from the WAUM prepro-
cessing step on CIFAR-10H and LabelMe. We consider multiple neural network architectures –
ResNet-18, ResNet-34 or VGG-16 with batch normalization and two supplementary dense layers.
We show that performance in accuracy is improved in most cases. Calibration performance in
terms of ECE fluctuates depending on the architecture considered, especially for the CIFAR-10H
dataset. Using the WAUM with CoNAL on the LabelMe dataset, we obtain the best performance
both in accuracy and calibration.

In the following, we explore the architecture’s impact on the generalization perfor-
mance using the WAUM preprocessing. We compare three architectures, a VGG-16 with
two dense layers added from Rodrigues and Pereira (2018), a Resnet-18 and a Resnet-34.
We show in Figure 2.16 that depending on the network used, performance varies, but the
WAUM step improves generalization performance in most cases (and does not worsen it).

Qualitative comparison between AUM, AUMC and WAUM

In Figure 2.17, we provide a qualitative view of the most ambiguous tasks detected using
the classical AUM, the AUMC Equation (2.2) and the introduced WAUM Equation (2.3)
on the CIFAR-10H dataset.

Margin comparison

In the AUM, AUMC and WAUM formulae, we consider a margin from Yang and Koyejo
(2020) (denoted ψ5 in the original article) that has better theoretical properties for top-k
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(a) WAUM crowdsourced
identification

(b) AUMC crowdsourced
identification

(c) AUM ground truth iden-
tification

Figure 2.17 Comparison of the worse images detected by the WAUM, AUMC and classical
AUM preprocessing step. Identification was computed with a ResNet-18 for 50 epochs using the
parameters described in Section 1.2.5. Each row represents the class given by the unobserved
ground truth label from the CIFAR-10 dataset. Only the AUM uses the ground truth label, other
methods are based on the crowdsourced labels only. Images framed in red can be hard to classify.

classification but that is not the margin proposed in Pleiss et al. (2020) (ψ1). Indeed,
our margin in the AUM is written as:

σ(t)
yi

(xi)− σ(t)
[2] (xi) ,

instead of
σ(t)

yi
(xi)−max

k ̸=yi

σ
(t)
k (xi) .

Using the CIFAR-10H dataset, we can compare the identified tasks using each margin.
Note that in the library used (and described in Chapter 3) switching from the original
margin to the top-k based margin is executed with the argument use_pleiss=True or
use_pleiss=False with the WAUM, AUM and AUMC. A comparison of the images
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with the lowest AUM is provided in Figure 2.20. A similar visual comparison on the
CIFAR-10H dataset is provided in Figure 2.23.

Figure 2.18 Lowest AUM with ψ1 margin Figure 2.19 Lowest AUM with ψ5 margin

Figure 2.20 Comparison of the images with lowest AUM in CIFAR-10H dataset using the margin
from Pleiss et al. (2020) (ψ1) or the margin for top-1 classification from Yang and Koyejo (2020)
(ψ5). Both margins yield similar results.

Figure 2.21 Lowest WAUM with ψ1 Figure 2.22 Lowest WAUM with ψ5

Figure 2.23 Comparison of the images with lowest WAUM in CIFAR-10H dataset using the
margin from Pleiss et al. (2020) (ψ1) or the margin for top-1 classification from Yang and Koyejo
(2020) (ψ5). Both margins also lead to similar results.

Furthermore, we provide an ablation study on top-2 accuracy scores using the WAUM
with ψ1 or ψ5 margin on the LabelMe dataset in Table 2.4. We use the cross entropy
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loss during the training phase. With ψ5, the top-2 margin writes σ(t)
yi (xi)− σ(t)

[3] (xi) as
indicated in Section 2.2.1. We compute the top-2 accuracy i.e. the accuracy in recovering
the true label as the first or second predicted label by the classifier. However, note
that this dataset has K = 8 classes, hence we do not report top-5 accuracy as all
strategies perform similarly. We notice that performance on this dataset is similar for
most strategies between the two margins used for pruning.

Table 2.4 Top-2 Accuracy comparison on the LabelMe dataset using the modified VGG-16
backbone and the same hyperparameters as in Section 2.2.2. Results are averaged over 5
repetitions, and errors are standard deviations.

Strategy Top-2 no pruning Top-2 WAUM(ψ1) Top-2 WAUM(ψ5)
MV 91.25± 2.01 91.17± 2.12 92.02± 2.08
NS 90.92± 1.53 90.41± 2.77 89.91± 1.08
DS 89.98± 1.12 90.24± 0.92 91.41± 0.99
GLAD 90.78± 0.98 91.34± 1.59 90.49± 0.38
WDS 89.56± 1.76 90.82± 1.81 91.16± 2.78
CrowdLayer 87.45± 2.03 88.33± 1.49 88.57± 2.51
CoNAL(λ = 0) 92.34± 0.74 89.49± 0.53 94.30± 1.32
CoNAL(λ = 10−4) 91.68± 1.01 94.10± 0.9 94.93± 0.76

Limitations and assumptions

First, concerning the weights s(j)
i (reflecting the trust in the image/worker interaction),

we rely on confusion matrices {π̂(j)}j∈[nworker]. The DS model (Dawid and Skene, 1979)
can be naturally used to estimate such matrices π(j) ∈ RK×K for each worker wj . Yet,
the quadratic number of parameters (w.r.t. K) to be estimated for each worker can
create convergence issues for the vanilla DS model when K is large. But as stated in
Section 2.2.1, any model that can estimate confusion matrices can be considered for the
WAUM’s computation. We detail below some possible variants, that could help compute
the confusion matrices used in the WAUM for the trust score computation.

• Sinha et al. (2018) accelerated the vanilla DS by constraining the estimated labels’
distribution to be a Dirac mass. Hence, predicted labels are hard labels. This leads
to worse calibration errors than vanilla DS but preserves the same accuracy.

• Passonneau and Carpenter (2014) introduced Dirichlet priors on the confusion
matrices’ rows and the prevalence ρ to incorporate previously known information
on the workers in the model (from other experiments).

• Servajean et al. (2017) exploited the sparsity of the confusion matrices to cope with
a large K.
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• Imamura et al. (2018) estimated with variational inference L ≪ nworker clusters
of workers, constraining at most L different confusion matrices. This reduces the
number of parameters required from K2 × nworker to K2 × L.

Pruning and i.i.d assumption. The pruning at preprocessing can induce a distortion
in the training data distribution. A usual assumption made on learning problems is that
the task/label pairs are i.i.d. However, by removing some of the hardest tasks, the new
dataset Dpruned contains tasks that are not independent anymore. We should also keep
in mind that Ilyas et al. (2022) have shown that in the standard datasets, the data is not
i.i.d to begin with.

2.3 Conclusion

In this chapter, we investigate crowdsourcing aggregation models and how judging
systems may impact generalization performance. Most models consider the ambiguity
from the workers’ perspective (very few consider the difficulty of the task itself) and
evaluate workers on hard tasks that might be too ambiguous to be relevant, leading to a
performance drop. Using a popular model (DS), we develop the WAUM, a flexible feature-
aware metric that can identify hard tasks and improves generalization performance over
vanilla strategies and naive pruning AUMC that both extend the existing AUM to the
crowdsourcing setting. It also yields a fair evaluation of workers’ abilities and supports
recent research on data pruning in supervised datasets. Independently of pruning, the
WAUM allows identifying early the images that need extra labeling efforts or that are
impossible to correctly label.

Extension of the WAUM to more general learning tasks (e.g top-k classification,
Section 2.2.4) would be natural, including sequential label. Indeed, the WAUM could
help to identify tasks requiring additional expertise and guide how to allocate more
experts/workers for such identified tasks. However, there is a community need for openly
available datasets with both tasks and votes for such evaluation.
Broader Impact Statement. As this work proposes a method to prune tasks from
training datasets based on human-derived data, we remind that pruning based on learning
difficulty can induce a learning bias for the model. To mitigate this, only pruning a small
portion of the dataset can help avoid any class with a small number of representatives to
be removed of the dataset. Also, in this paper, we only remove tasks that are difficult to
classify, we do not remove workers from the dataset. In particular, there is no repercussion
on their pay, and by only evaluating them on tasks that are not detected as ambiguous,
we evaluate their abilities on fairer tasks.
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Key points – Community based data but what about codes. . .

1. Reproducibility has been a demand from the scientific community.
With crowdsourcing, the coupling of the label-gathering step and the
aggregation is key to creating a classical supervised learning dataset.
Different label aggregation strategies can lead to widely different results.
Releasing publicly available datasets’ original version with collected
labels would lead to better data quality and better understanding of
aggregation strategies.

2. More than the data itself, as the crowdsourcing community is made of
researchers with very diverse backgrounds, new models arise quickly. In
multiple coding languages (if any) and with personalized data formats.
We need formatting propositions that can handle large datasets, are
easily accessible and understandable.

3. Aggregation strategies are often EM-based with a two-step procedure
repeated. While performance is an important decision factor in using
one strategy over another, how much time it takes to run is essential.
Especially with large datasets, we find memory scaling issues or a time
complexity that forbids usage in applications.

Contributions – peerannot and Benchopt

4. We propose a new python library peerannot fully documented. An
identify module lets users identify ambiguous tasks from datasets
using a wide range of strategies. The aggregate module performs la-
bel aggregation strategies. The aggregate-deep module uses learning
strategies that are deep-learning based and have inserted the aggrega-
tion step inside the network’s architecture. The train module allows
to train classifiers from aggregated labels. Our library comes with data
templates and examples available at http://peerannot.github.io

5. We created a crowdsourcing benchmark in the BenchOpt library to
easily compare time performance on label aggregation strategies across
libraries, on publicly available datasets.

http://peerannot.github.io
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3.1 peerannot: Open access for crowdsourcing strategies in python

The experiments ran in Chapter 2 made us realize key points in the field of crowdsourcing.
The first one is that the data is often not released in a format that is easily usable – when
released. The second is that most of the time, the code is not released – or partially
released without functions and easy access to run new experiments, or also scattered with
each their different programming language (python, R, stan, java,. . . ). The third is that
existing libraries to handle crowdsourcing data lack implemented strategies to identify
poorly performing workers and/or ambiguous tasks. Thus, we created the peerannot
library.

Crowdsourced datasets induce at least three major challenges to which we contribute
with peerannot:

1. How to aggregate multiple labels into a single label from crowdsourced
tasks? This occurs, for example, when dealing with a single dataset that has been
labeled by multiple workers with disagreements. This is also encountered with
other scoring issues such as polls, reviews, peer-grading, etc. In our framework, this
is treated with the aggregate command, which given multiple labels, infers a label.
From aggregated labels, a classifier can then be trained using the train command.

2. How to learn a classifier from crowdsourced datasets? Where the first
question is bound by aggregating multiple labels into a single one, this considers the
case where we do not need a single label to train on, but instead train a classifier
on the crowdsourced data, with the motivation to perform well on a testing set.
This end-to-end vision is common in machine learning; however, it requires the
actual tasks (the images, texts, videos, etc.) to train on – and in crowdsourced
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datasets publicly available, they are not always available. This is treated with the
aggregate-deep command that runs strategies where the aggregation has been
transformed into a deep learning optimization problem.

3. How to identify good workers in the crowd and difficult tasks? When
multiple answers are given to a single task, looking for who to trust for which type
of task becomes necessary to estimate the labels or later train a model with as few
noise sources as possible. The module identify uses different scoring metrics to
create a worker and/or task evaluation.

The library peerannot addresses these practical questions within a reproducible
setting and an easy-to-follow pipeline presented in Figure 3.1. Indeed, the complexity of
experiments often leads to a lack of transparency and reproducible results for simulations
and real datasets. We propose standard simulation settings with explicit implementation
parameters that can be shared. For real datasets, peerannot is compatible with standard
neural network architectures from the Torchvision (Marcel and Rodriguez, 2010) library
and Pytorch (Paszke et al., 2019), allowing a flexible framework with easy-to-share
scripts to reproduce experiments.

Figure 3.1 Pipeline on how to handle crowdsourced datasets with peerannot. After collecting
the data, the identify module helps find poorly performing workers and/or ambiguous tasks.
Those can be pruned to recover a cleaned set. Then, the aggregate module can be used to infer
a label from multiple labels. The aggregate-deep module can be used to train a classifier from
the crowdsourced labels without aggregation. Finally, the train module can be used to train a
classifier from aggregated labels.
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3.1.1 Presenting the peerannot library usage

The peerannot library is available on https://peerannot.github.io/ and can be
installed using pip:

1 $ pip install peerannot

When installed, it comes with both a python Application Programming Interface
(API) and a Command Line Interface (CLI). Note that the python API is the main
interface to use the library, and the CLI is a wrapper around the python API to make it
easier to use for non-programmers. Moreover, the CLI can be used in a python program
in interactive cells using the ! character to run the shell commands indicated by the
dollar sign $.

Dataset standardization

Crowdsourced datasets come in various forms. To store crowdsourcing datasets efficiently
and in a standardized way, peerannot proposes the following structure, where each
dataset corresponds to a folder. Let us set up a toy dataset example to understand the
data structure and how to store it.

datasetname

train

...

images

...

val

test

metadata.json

answers.json

Figure 3.2 Template of a dataset folder in peerannot. Collected votes are in answers.json, all
necessary information on the dataset are in metadata.json. Tasks are either in the train, val
or test folders. test tasks are assumed to have an associated ground truth label.

The answers.json file stores the different votes for each task as described in Figure 3.3.
This .json is the rosetta stone between the task IDs and the images. It contains the
tasks’ id, the workers’s id and the proposed label for each given vote. Furthermore,

https://peerannot.github.io/
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storing labels in a dictionary is more memory-friendly than having an array of size
(ntask, nworker) and writing y(j)

i = −1 when the worker wj did not see the task xi and
y

(j)
i ∈ [K] otherwise.

Figure 3.3 Data storage for the toy-data crowdsourced dataset, a binary classification problem
(K = 2, smiling/not smiling) on recognizing smiling emoticons. On the left how peerannot stores
the data, and on the right the raw data.

Finally, a metadata.json file includes relevant information related to the crowdsourc-
ing experiment such as the number of workers, the number of tasks, etc. For example, a
minimal metadata.json file for the toy dataset presented in Figure 3.3 is:

1 {

2 "name": "toy-data",

3 "n_classes": 2,

4 "n_workers": 4,

5 "n_tasks": 3

6 }

The toy-data example dataset is available as an example in the peerannot repository.
Classical datasets in crowdsourcing such as CIFAR-10H (Peterson et al., 2019) and LabelMe
(Rodrigues et al., 2014) can be installed directly using peerannot. To install them, run
the install command from peerannot:

1 $ peerannot install ./datasets/labelme/labelme.py

2 $ peerannot install ./datasets/cifar10H/cifar10h.py

For both CIFAR-10H and LabelMe, the dataset was originally released for standard
supervised learning (classification). Both datasets have been reannotated by a crowd of
workers.

Other popular formats

Other popular storage formats currently exist. For example, the crowd-kit library1 uses
a dataframe where each row specifies the 3-uplet (task, worker, label). This format is

1https://github.com/Toloka/crowd-kit

https://github.com/Toloka/crowd-kit
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close to the json one, easily switchable between the two. However, it suffers from the
redundancy of the task ID. More discussion on the crowd-kit library is available in
Section 3.2.

The LabelMe dataset labels are stored in a dense matrix of size (ntask, nworker), where
each entry is the label given by the worker for the task. This format is not memory
efficient for a large number of tasks or workers. Especially if workers do not get to label
all tasks.

On a more practical note, the json format has the advantage of being easily readable
and writable by humans and is also easily convertible to a data frame. It is also easy to
use for python, SQL and JavaScript. As large crowdsourcing web platforms use requests
in JavaScript to send and receive data, the json format is a motivating choice for these
applications.

3.1.2 Label agggregation with peerannot

In addition to the classical MV, NS, DS, GLAD aggregation strategies presented in
Section 1.2.3, peerannot proposes a growing number of aggregation strategies to fit
different needs. The full list is available by running the command:

1 $ peerannot agginfo

For example, the Worker Clustered DS model (DSWC) by Imamura et al. (2018)
is based on the DS model. Each worker belongs to one of the L ≤ nworker clusters.
This strategy highly reduces the number of parameters. In the original DS strategy,
there are K2 × nworker parameters to estimate for the confusion matrices. The DSWC
strategy has K2 × L+ L parameters to estimate. Indeed, there are L confusion matrices
Λ = {Λ1, . . . ,ΛL} of size K × K and the confusion matrix of a cluster is assumed
drawn from a multinomial distribution with weights (τ1, . . . , τL) ∈ ∆L over Λ such that
P(π(j) = Λℓ) = τℓ for ℓ ∈ [L].
Structure of a label aggregation strategy. All of the label aggregation strategies
are stored in the peerannot.models module. Each strategy is a class object in its own
python file. It inherits from the CrowdModel class template and is defined with at least
three methods:

• run(): includes the optimization procedure to obtain needed weights (e.g. the EM
algorithm for DS). It is only needed for optimization-based strategies.

• get_probas(): returns the soft labels output for each task after running the run
method, – if available, otherwise it returns the hard labels.

• get_answers(): returns the hard labels output for each task after running the run
method.
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Example of a label aggregation strategy. For example, let us consider minimal
working examples (MWE) for the NS and the DS strategies. The first in Listing 1 is a
non-parametric strategy without any optimization algorithm, and the second in Listing 11
in Appendix B is an EM-based parametric strategy.

1 from ..template import CrowdModel

2 import numpy as np
3

4

5 class NaiveSoft(CrowdModel):
6 def __init__(self, answers, n_classes=2, **kwargs):

7 super().__init__(answers)

8 self.n_classes = n_classes

9

10 def get_probas(self):

11 baseline = np.zeros((len(self.answers), self.n_classes))

12 for task_id in list(self.answers.keys()):

13 task = self.answers[task_id]

14 for vote in list(task.values()):

15 baseline[task_id, vote] += 1

16 self.baseline = baseline

17 return baseline / baseline.sum(axis=1).reshape(-1, 1)

18

19 def get_answers(self):

20 return np.vectorize(self.converter.inv_labels.get)(

21 np.argmax(self.get_probas(), axis=1)

22 )

Listing 1 MWE for the NS label aggregation in peerannot.

If a new user wants to add their strategy, they can follow the same structure and
add it to the peerannot library. The strategy will then be available for all users to use
through a pull request. Then, the Benchopt library can access it to provide comparisons
with other strategies easily shared (see Section 3.2).

3.1.3 Compare label aggregation strategies with simulated datasets

Using the peerannot library, we can easily simulate crowdsourced answers for classifica-
tion settings. Hereafter, we present two settings: one where workers answer independently,
and another where mistakes are correlated. Another setting where the mistakes are
dependent on the task’s difficulty level is available in Appendix B.
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Simulated independent mistakes

The independent mistakes setting considers that each worker wj answers follows a
multinomial distribution with weights given at the row y⋆

i of their confusion matrix
π(j) ∈ RK×K . Each confusion row in the confusion matrix is generated uniformly in the
simplex. Then, we make the matrix diagonally dominant (to represent non-adversarial
workers) by switching the diagonal term with the maximum value by row. Answers are
independent of one another as each matrix is generated independently and each worker
answers independently of other workers. In this setting, the DS model is expected to
perform better with enough data as we are simulating data from its assumed noise model.

We simulate in Listing 2 ntask = 200 tasks and nworker = 30 workers. The number
of classes is K = 5. Each task xi receives |A(xi)| = 10 labels. With 200 tasks and
30 workers, asking for 10 labels leads to around 200×10

30 ≃ 67 tasks per worker (with
variations due to randomness in the assignations as seen in Figure 3.4). Note that in
practice achieving this result is not straightforward as workers can not label 67 images
without specific motivation (games, money rewards, etc.).

1 $ peerannot simulate --n-worker=30 --n-task=200 --n-classes=5 \
2 --strategy independent-confusion \
3 --feedback=10 --seed 0 \
4 --folder ./simus/independent

Listing 2 Simulation of independent mistakes in peerannot.

Figure 3.4 Distribution of the number of tasks given per worker (left) and number of labels per
task (right) in the independent mistakes setting.

With the obtained answers, we can look at the aforementioned aggregation strategies’
performance. The peerannot aggregate command takes as input the path to the data
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folder and the aggregation strategy --strategy/-s. Other arguments are available and
described in the --help description.

1 for strat in [

2 "MV", "NaiveSoft", "DS", "GLAD", "DSWC[L=5]", "DSWC[L=10]"

3 ]:

4 ! peerannot aggregate ./simus/independent/ -s {strat}

Listing 3 Running aggregation strategies on the independent mistakes simulated dataset.

Table 3.1 AccTrain metric on simulated independent mistakes considering classical feature-blind
label aggregation strategies.

Strategy MV GLAD DS DSWC[L=5] DSWC[L=10] NS
AccTrain 0.765 0.775 0.890 0.775 0.770 0.760

As expected by the simulation framework, Table 3.2 fits the DS model, thus leading
to better accuracy in retrieving the simulated labels for the DS strategy. The MV and
NS aggregations
Remark. peerannot can also simulate datasets with an imbalanced number of votes
chosen uniformly at random between 1 and the number of workers available. For example:

1 $ peerannot simulate --n-worker=30 --n-task=200 --n-classes=5 \
2 --strategy independent-confusion \
3 --imbalance-votes \
4 --seed 0 \
5 --folder ./simus/independent-imbalanced/

Listing 4 Simulation of independent mistakes in peerannot with an imbalance in the number of
votes per task.

With the obtained answers, we can look at the aforementioned aggregation strategies
performance:

1 for strat in [

2 "MV", "NaiveSoft", "DS", "GLAD", "DSWC[L=5]", "DSWC[L=10]"

3 ]:

4 ! peerannot aggregate ./simus/independent-imbalanced/ -s {strat}

Listing 5 Running aggregation strategies on the independent mistakes simulated dataset.
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Figure 3.5 Distribution of the number of tasks given per worker (left) and the number of labels
per task (right) in the independent mistakes setting with voting imbalance enabled.

Table 3.2 AccTrain metric on simulated independent mistakes, with votes imbalance, considering
classical feature-blind label aggregation strategies.

Strategy MV GLAD DS DSWC[L=5] DSWC[L=10] NS
AccTrain 0.830 0.810 0.895 0.845 0.840 0.830

While more realistic, working with an imbalanced number of votes per task can lead
to disrupting orders of performance for some strategies (here GLAD is outperformed by
other strategies).

Simulated correlated mistakes

The correlated mistakes are also known as the student-teacher or junior-expert setting
(Cao et al., 2019). Consider that the crowd of workers is divided into two categories:
teachers and students (with nteacher + nstudent = nworker). Each student is randomly
assigned to one teacher at the beginning of the experiment. We generate the confusion
matrices of each teacher and the students share the same confusion matrix as their
associated teacher. Hence, clustering strategies are expected to perform best in this
context. Then, they all answer independently, following a multinomial distribution with
weights given at the row y⋆

i of their confusion matrix π(j) ∈ RK×K .

We simulate ntask = 200 tasks and nworker = 30 with 80% of students in the crowd.
There are K = 5 possible classes. Each task receives |A(xi)| = 10 labels. And, with the
obtained answers, we can look at the aforementioned aggregation strategies’ performance:
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1 $ peerannot simulate --n-worker=30 --n-task=200 --n-classes=5 \
2 --strategy student-teacher \
3 --ratio 0.8 \
4 --feedback=10 --seed 0 \
5 --folder ./simus/student_teacher

Listing 6 Simulation of independent mistakes in peerannot with an imbalance in the number of
votes per task.

Figure 3.6 Distribution of the number of tasks given per worker (left) and the number of labels
per task (right) in the correlated mistakes setting.

Table 3.3 AccTrain metric on simulated correlated mistakes considering classical feature-blind
label aggregation strategies.

Strategy MV GLAD DS DSWC[L=5] DSWC[L=10] NS
AccTrain 0.705 0.645 0.755 0.795 0.815 0.690

With Table 3.3, we see that with correlated data (24 students and 6 teachers), using
5 confusion matrices with DSWC[L=5] outperforms the vanilla DS strategy that does not
consider the correlations. The best-performing method here estimates only 10 confusion
matrices (instead of 30 for the vanilla DS model).

To summarize our simulations, we see that depending on workers answering strategies,
different latent variable models perform best. However, these are unknown outside of
a simulation framework, thus if we want to obtain labels from multiple responses, we
need to investigate multiple models. This can be done easily with peerannot as we
demonstrated using the aggregate module. However, one might not want to generate a
label, simply learn a classifier to predict labels on unseen data. This leads us to another
module part of peerannot.
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More on confusion matrices in simulation settings

Moreover, the concept of confusion matrices has been commonly used to represent worker
abilities. Let us remind that a confusion matrix π(j) ∈ RK×K of a worker wj is defined
such that π(j)

k,ℓ = P(y(j)
i = ℓ|y⋆

i = k). These quantities need to be estimated since no
true label is available in a crowd-sourced scenario. In practice, the confusion matrix of
each worker is estimated via an aggregation strategy like Dawid and Skene’s (Dawid and
Skene, 1979) presented in Section 1.2.3.

Figure 3.7 Three types of profiles of worker confusion matrices simulated with peerannot.
The spammer answers independently of the true label. Expert workers identify classes without
mistakes. In practice common workers are good for some classes but might confuse two (or more)
labels. All workers are simulated using the peerannot simulate command.

In Figure 3.7, we illustrate multiple workers’ profiles (as reflected by their confusion
matrix) on a simulated scenario where the ground truth is available. For that, we generate
toy datasets with the simulate command from peerannot. In particular, we display a
type of worker that can hurt data quality: the spammer. Raykar and Yu (2011) defined
a spammer as a worker that answers independently of the true label:

∀k ∈ [K], P(y(j)
i = k|y⋆

i ) = P(y(j)
i = k) . (3.1)

Each row of the confusion matrix represents the label’s probability distribution given
a true label. Hence, the spammer has a confusion matrix with near-identical rows –
potentially not uniform. Apart from the spammer, common mistakes often involve
workers mixing up one or several classes. Expert workers have a confusion matrix close
to the identity matrix.

3.1.4 Learning from crowdsourced tasks with peerannot

The peerannot library has also integrated end-to-end learning strategies in the aggregate-deep
module. Such strategies include CrowdLayer and CoNAL presented in Section 1.2.4.
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Let us use peerannot to train a VGG-16 with two dense layers on the LabelMe dataset.
This model is called modellabelme in the peerannot library as this modification was
introduced to reach state-of-the-art performance in Chu et al. (2021). Other models from
the torchvision library can be used, such as Resnets, Alexnet etc. The aggregate-deep
command takes as input the path to the data folder, --output-name/-o is the name
for the output file, --n-classes/-K the number of classes, --strategy/-s the learning
strategy to perform (e.g., CrowdLayer or CoNAL), the backbone classifier in --model
and then optimization hyperparameters for pytorch described with more details using
the peerannot aggregate-deep --help command as shown in Listing 7.

1 for strat in ["MV", "NaiveSoft", "DS", "GLAD"]:

2 !peerannot aggregate ./labelme/ -s {strat}

3 !peerannot train ./labelme -o labelme_${strat} \

4 -K 8 \

5 --labels=./labelme/labels/labels_labelme_${strat}.npy \

6 --model modellabelme \

7 --n-epochs 500 \

8 -m 50 -m 150 -m 250 --scheduler=multistep \

9 --lr=0.01 --num-workers=8 \

10 --pretrained \

11 --data-augmentation \

12 --optimizer=adam \

13 --batch-size=32 --img-size=224 \

14 --seed=1

15

16 for strat in ["CrowdLayer", "CoNAL[scale=0]", "CoNAL[scale=1e-4]"]:

17 !peerannot aggregate-deep ./labelme \

18 -o labelme_${strat} \

19 --answers ./labelme/answers.json \

20 -s ${strat} \

21 --model modellabelme \

22 --pretrained \

23 --n-classes=8 \

24 --n-epochs=500 \

25 --lr=0.001 -m 300 -m 400 --scheduler=multistep \

26 --batch-size=228 --img-size=224 \

27 --optimizer=adam \

28 --num-workers=8 \

29 --data-augmentation \

30 --seed=1

Listing 7 Command to learn from image classification tasks with crowdsourced labels using
peerannot. Learning from tasks can be achieved by first aggregating labels, then, training a
model. Or with end-to-end strategies calling the aggregate-deep command.
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Strategy AccTest ECE
DS 81.061 0.189
MV 85.606 0.143
NS 86.448 0.136
CrowdLayer 87.205 0.117
GLAD 87.542 0.124
CoNAL[scale=0] 88.468 0.115
CoNAL[scale=1e-4] 88.889 0.112

Table 3.4 Generalization performance on LabelMe dataset depending on the learning strategy
from the crowdsourced labels. The network used is a VGG-16 with two dense layers for all
methods.

As we can see, CoNAL strategy performs best. In this case, it is expected behavior
as CoNAL was created for the LabelMe dataset. However, using peerannot we can look
into why modeling common confusion returns better results with this dataset.
To do so, we can explore the datasets from two points of view: worker-wise or task-wise
in Section 3.1.5.

3.1.5 Identifying tasks difficulty and worker abilities

If a dataset requires crowdsourcing to be labeled, it is because expert knowledge is long
and costly to obtain. In the era of big data, where datasets are built using web scraping
(or using a platform like Amazon Mechanical Turk2), citizen science is popular as it is an
easy way to produce many labels.

However, mistakes and confusion happen during these experiments. Sometimes
involuntarily (e.g., because the task is too hard or the worker is unable to differentiate
between two classes) and sometimes voluntarily (e.g., the worker is a spammer).

Underlying all the learning models and aggregation strategies, the cornerstone of
crowdsourcing is evaluating the trust we put in each worker depending on the presented
task. And with the gamification of crowdsourcing (Servajean et al., 2016; Tinati et al.,
2017), it has become essential to find scoring metrics both for workers and tasks to keep
citizens in the loop so to speak. This is the purpose of the identification module in
peerannot.

Our test cases are both the CIFAR-10H dataset and the LabelMe dataset to compare
the worker and task evaluation depending on the number of votes collected. Indeed, the
LabelMe dataset has only up to three votes per task whereas CIFAR-10H accounts for
nearly fifty votes per task.

2https://www.mturk.com/

https://www.mturk.com/
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Exploring tasks’ difficulty

To explore the tasks’ intrinsic difficulty, we propose to compare three scoring metrics:

• the entropy of the NS distribution: the entropy measures the inherent uncertainty
of the distribution to the possible outcomes. It is reliable with a big enough and
not adversarial crowd. More formally:

∀i ∈ [ntask], Entropy(ŷNS
i ) = −

∑
k∈[K]

(ŷNS
i )k log

(
(ŷNS

i )k

)
.

• GLAD’s scoring: by construction, Whitehill et al. (2009) introduced a scalar
coefficient to score the difficulty of a task.

• the Weighted Area Under the Margins (WAUM): introduced by Lefort et al. (2024)
and presented in Chapter 2, this weighted area under the margins indicates how
difficult it is for a classifier C to learn a task’s label. This procedure is done with a
budget of T > 0 epochs. Given the crowdsourced labels and the trust we have in
each worker denoted s(j)(xi) > 0, the WAUM of a given task xi ∈ X and a set of
crowdsourced labels {y(j)

i }j ∈ [K]|A(xi)| is defined as:

WAUM(xi) := 1
|A(xi)|

∑
j∈A(xi)

s(j)(xi)
{

1
T

T∑
t=1

σ(C(xi))y
(j)
i

− σ(C(xi))[2]

}
,

where we remind that C(xi)[2] is the second largest probability output by the
classifier C for the task xi.
The weights s(j)(xi) are computed à la Servajean et al. (2017):

∀j ∈ [nworker],∀i ∈ [ntask], s(j)(xi) =
〈
σ(C(xi)), diag(π(j))

〉
,

where π̂(j) is the estimated confusion matrix of worker wj (by default, the estimation
provided by DS).

The WAUM is a generalization of the AUM by Pleiss et al. (2020) to the crowdsourcing
setting. A high WAUM indicates a high trust in the task classification by the network
given the crowd labels. A low WAUM indicates difficulty for the network to classify the
task into the given classes (taking into consideration the trust we have in each worker for
the task considered). Where other methods only consider the labels and not directly the
tasks, the WAUM directly considers the learning trajectories to identify ambiguous tasks.
One pitfall of the WAUM is that it is dependent on the architecture used.

Note that each of these statistics could prove useful in different contexts. The entropy
is irrelevant in settings with few labels per task (small |A(xi)|). For instance, it is
uninformative for the LabelMe dataset. The WAUM can handle any number of labels,
but the larger the better. However, as it uses a deep learning classifier, the WAUM
needs the tasks (xi)i in addition to the proposed labels while the other strategies are
feature-blind.
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Results on the CIFAR-10H dataset. First, let us consider a dataset with a large number
of tasks, annotations and workers: the CIFAR-10H dataset by Peterson et al. (2019).

1 $ peerannot identify ./datasets/cifar10H -s entropy -K 10 \
2 --labels ./ datasets/cifar10H/answers.json

3 $ peerannot aggregate ./datasets/cifar10H/ -s GLAD

4 $ peerannot identify ./datasets/cifar10H/ -K 10 \
5 --method WAUM \
6 --labels ./datasets/cifar10H/answers.json \
7 --model resnet34 \
8 --n-epochs 100 --lr=0.01 --img-size=32 \
9 --maxiter-DS=50 \

10 --pretrained

11

Listing 8 Command to identify ambiguous tasks on the CIFAR-10H dataset using peerannot.

Figure 3.8 Most difficult tasks sorted by class from MV aggregation identified depending on the
strategy used (entropy, GLAD or WAUM) using a Resnet34. We only display the truck class.
All class results are available interactively in the main paper at https://computo.sfds.asso.
fr/published-202402-lefort-peerannot/.

https://computo.sfds.asso.fr/published-202402-lefort-peerannot/
https://computo.sfds.asso.fr/published-202402-lefort-peerannot/
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The entropy, GLAD’s difficulty, and WAUM’s difficulty each show different images
as exhibited in the interactive Figure. While the entropy and GLAD output similar
tasks, in this case, the WAUM often differs. We can also observe an ambiguity induced
by the labels in the truck category in Figure 3.8, with the presence of a trailer that is
technically a mixup between a car and a truck.

Figure 3.9 Most difficult tasks sorted by class from MV aggregation identified depending on the
strategy used (entropy, GLAD or WAUM) using a VGG-16 model with two dense layers. We
only display the opencountry class. All class results are available interactively in the main paper
at https://computo.sfds.asso.fr/published-202402-lefort-peerannot/.

Results on the LabelMe dataset. As for the LabelMe dataset, one difficulty in evalu-
ating tasks’ intrinsic difficulty is that there is a limited amount of votes available per
task. Hence, the entropy in the distribution of the votes is no longer a reliable metric,
and we need to rely on other models.

Now, let us compare the tasks’ difficulty distribution depending on the strategy
considered using peerannot. Note that in this experiment, because the number of labels
given per task is in {1, 2, 3}, the entropy only takes four values. In particular, tasks with
only one label all have a null entropy, so not just consensual tasks. The MV is also not
suited in this case because of the low number of votes per task.

The underlying difficulty of these tasks mainly comes from the overlap in possible

https://computo.sfds.asso.fr/published-202402-lefort-peerannot/
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labels. For example, tallbuildings are most often found insidecities, and so are
streets. In the opencountry we find forests, river-coasts and mountains.

Identification of worker reliability

From the labels, we can explore different worker evaluation scores sj ∈ R. GLAD’s
strategy estimates a reliability scalar coefficient sj = αj per worker. With strategies
looking to estimate confusion matrices, we investigate two scoring rules for workers:

• The trace of the confusion matrix: the closer to K the better the worker:

∀j ∈ [nworker], sj = Trace(π(j)) .

• The closeness to spammer metric (Raykar and Yu, 2011) (also called spammer
score) that is the Frobenius norm between the estimated confusion matrix π̂(j) and
the closest rank-1 matrix. Denote e the vector of ones in RK .

∀j ∈ [nworker], sj = ∥π(j) − eu⊤
j ∥2F

with uj = arg min
u∈RK ,uj⊤e=1

∥π(j) − eu⊤∥2F .

Solving this problem and standardizing the result in [0, 1] gives the spammer score:

∀j ∈ [nworker], sj = 1
K(K − 1)

∑
1≤k<k′≤K

∑
ℓ∈[k]

(π(j)
k,ℓ − π

(j)
k′,ℓ)

2 .

The further to zero the better the worker. On the contrary, the closer to zero, the
more likely it is for the worker to be a spammer. This score separates spammers
from common workers and experts (with profiles as presented in Figure 3.7).

When the tasks are available, confusion-matrix-based deep learning models can also
be used. We thus add to the comparison the trace of the confusion matrices with
CrowdLayer and CoNAL on the LabelMe datasets. For CoNAL, we only consider the
trace of the confusion matrix π(j) in the pairwise comparison. Moreover, for CrowdLayer
and CoNAL we show in Figure 3.11 the weights learned without the softmax operation by
row to keep the comparison as simple as possible with the actual outputs of the model.

Comparisons in Figure 3.10 and Figure 3.11 are plotted pairwise between the eval-
uated metrics. Each point represents a worker. Each off-diagonal plot shows the joint
distribution between the scores of the y-axis row and the x-axis column. They allow us
to visualize the relationship between these two variables. The main diagonal represents
the (smoothed) marginal distribution of the score of the considered column.
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Results on CIFAR-10H workers. The CIFAR-10H dataset has few disagreements
among workers. However, these strategies disagree on the ranking of good against best
workers as they do not measure the same properties. We can use peerannot as shown in
Listing 9 to identify worker reliability on the CIFAR-10H dataset with different strategies.

1 ! peerannot aggregate ./datasets/cifar10H/ -s GLAD

2 for method in ["trace_confusion", "spam_score"]:

3 ! peerannot identify ./datasets/cifar10H/ \
4 --n-classes=10 \
5 -s {method} \
6 --labels ./datasets/cifar10H/answers.json

Listing 9 Command to identify worker reliability on the CIFAR-10H dataset using peerannot.

Figure 3.10 Comparison of ability scores by workers for the CIFAR-10H dataset. All metrics
computed identify the same poorly performing workers. A mass of good and expert workers can
be seen as the dataset presents few disagreements, thus few data to discriminate expert workers
from the others.
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From Figure 3.10, we can see that in this dataset, different methods easily separate
the worst workers from the rest of the crowd (workers in the left tail of the distribution).
Note that as different metrics investigate different properties, the best workers are not
the same depending on the method used. However, overall all strategies agree on the
worst workers in this case.
Results on LabelMe workers. Finally, let us evaluate workers for the LabelMe dataset.
Because of the lack of data (up to 3 labels per task), ranking workers is more difficult
than in the CIFAR-10H dataset.

Figure 3.11 With few labels per task, workers are more difficult to rank. It is more difficult to
separate workers with their abilities in this crowd. Hence the importance of investigating the
generalization performance of the methods presented in the previous section.

We can see in Figure 3.11 that the number of labels available by task highly impacts
the worker evaluation scores. The spam score, DS model and CoNAL all show similar
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results in the distribution shape (bimodal distribution) whereas GLAD and CrowdLayer
are more concentrated. However, this does not account for the ranking of a given worker
by the methods considered. The exploration of the dataset lets us look at different scores,
but generalization performance presented in Section 3.1.4 should also be considered in
crowdsourcing. This difference in worker evaluation scores indeed further highlights the
importance of using multiple test metrics to compare the model’s prediction performance
in crowdsourcing. Poorly performing workers could be removed from the dataset with
naive strategies like MV or NS. However, some label aggregation strategies like DS
or GLAD can sometimes use adversarial votes as information – for example in binary
classification, with a worker answering always the opposite label the confusion matrix
retrieves the true label. We have seen that the library peerannot allows users to explore
the datasets, both in terms of tasks and of workers, and easily compare predictive
performance in this setting.

In practice, the data exploration step can be used to detect possible ambiguities in
the dataset’s tasks, but also remove answers from spammers to improve the data quality
as shown in Figure 1.6. The easy access to the different strategies allows the user to
decide if, for their collected dataset, there is a need for more recent deep-learning-based
strategies to improve the results. This is the case for the LabelMe dataset. Otherwise, the
user can decide that standard aggregation-based crowdsourcing strategies are sufficient
and for example, if there are plenty of votes per task like in CIFAR-10H, that the entropy
of the vote distribution is a criterion that identified enough ambiguous tasks for their case.
As often, not a single strategy works best for all datasets, hence the need to perform
easy comparisons with peerannot.

3.1.6 Case study with bird sound classification

Figure 3.12 Distribution of the number of tasks given per worker (left) and of the number of
labels per task (right) in the Audio Birds letters dataset.
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We shared our results on the classical CIFAR-10H and LabelMe datasets. More
recently, Lehikoinen et al. (2023) developed a platform for bird sound classification. They
released the data for the following crowdsourcing experiment. Given the sample of the
audio of a species (denoted as a letter on their web portal), users were presented with a
new audio sample (the candidate). The question is as follows: "Is the species vocalizing
in the candidate the same as the species in the letter?" The answer is a binary yes or
no (K = 2). In total, nworker = 205 workers labeled ntask = 79 592 candidates. Each
task received between 1 and 77 annotations. Workers answered between 1 and 30 759
tasks (only one worker achieved that record, and 23% of the workers answered 100 tasks).
There is no test set available as is in the original dataset. However, to have an idea of
the level of performance of the label aggregation strategies, we use the fact that workers
reported their level of expertise between 1 and 4. The latter corresponds to "I am a bird
researcher or professional birdwatcher". This generates a test set of 13 041 tasks where
the expert label is used as the current truth. This test set is only used to compute the
AccTrain metric. Note that we do not perform deep-learning methods as the tasks of
comparing the birds from two audio files and designing specific architectures to match
this framework are out of the scope of this work.

We then can run our aggregation strategies, and from @tbl-birds we see that strategies
reach the same levels of label recovery, however naive they are. Indeed, most tasks have
very few disagreements. Note that NS and MV performance difference comes from the
random tie-breakers in case of equalities.

Table 3.5 AccTrain metric on simulated correlated mistakes considering classical feature-blind
label aggregation strategies.

Strategy MV DS GLAD NS
AccTrain 0.954 0.946 0.950 0.960

We can explore what tasks lead to the most disagreements depending on the entropy
criterion or GLAD’s difficulty-estimated latent variable. Using the entropy criterion, the
most difficult tasks (highest entropy) and GLAD’s difficulty, we recover the index of the
most ambiguous tasks. As we work with audio files, we can listen to the most ambiguous
tasks and see if they are indeed difficult to classify. Audio records of such identified tasks
are made available at https://computo.sfds.asso.fr/published-202402-lefort-
peerannot/#case-study-with-bird-sound-classification.

• Entropy: we obtain the candidate MRG18_20180514_000000_203.mp3 that was to
be compared with the letter HLO15_20180515_021439_31.mp3 (one worker agrees
and another disagrees). And the candidate MRG24_20180512_000000_437.mp3 that
was to be compared with the letter HLO12_20180511_150153_42.mp3 (one worker
agrees and another disagrees)

https://computo.sfds.asso.fr/published-202402-lefort-peerannot/#case-study-with-bird-sound-classification
https://computo.sfds.asso.fr/published-202402-lefort-peerannot/#case-study-with-bird-sound-classification
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• GLAD: we obtain the candidate HLO04_20180511_034424_15.mp3 that was to be
compared with the letter MRG11_20180519_000000_506.mp3 (53 votes, 29 agreeing
and 24 disagreeing). And the candidate MRG27_20180512_000000_597.mp3 that
was to be compared with the letter HLO01_20180601_080126_30.mp3 (43 votes, 23
agreeing and 20 disagreeing).

In this dataset, a single task with two different votes has the highest entropy. GLAD’s
coefficient lets us explore tasks with multiple votes where workers were split.

We can also explore the dataset from a worker’s point of view and visualize workers’
performance and how many are identified as poorly performing. This gives us an idea of
the level of noise in the answers.

Figure 3.13 Comparison of ability scores by workers for the birds audio dataset. Most workers
do seem to perform similarly, with very little noise voluntarily induced.

From Figure 3.13, we notice that very few workers are identified as spammers and
that different worker identification strategies seem to perform similarly. This is consistent
with the high level of agreement between workers in this dataset.
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One of the closing statements of Lehikoinen et al. (2023) is "we learned lessons for
how to better implement similar citizen science projects in the future". On one hand,
identifying the most ambiguous tasks can help by saving only these tasks to the most
expert workers and acquiring better data. On the other hand, combining the task
difficulty with the worker ability performance metrics could help to create personal feeds
of tasks to label and generate more worker participation. Finally, the label aggregation
step can lead to training classifiers with better labels. We hope that allowing easy
access thanks to the peerannot library to each of those steps can indeed help to better
implement citizen science projects and use the collected data.

3.1.7 Conclusion on peerannot

We introduced peerannot, a library to handle crowdsourced datasets. This library
enables both easy label aggregation and direct training strategies with classical state-of-
the-art classifiers. The identification module of the library allows exploring the collected
data from both the tasks and the workers’ point of view for better scorings and data
cleaning procedures. Our library also comes with templated datasets to better share
crowdsourced datasets. Going beyond templating, it helps the crowdsourcing community
to have openly accessible strategies to test, compare and improve to develop common
strategies to analyze more and more common crowdsourced datasets.

We hope that this library helps reproducibility in the crowdsourcing community and
also standardizes training from crowdsourced datasets. New strategies can easily be
incorporated into the open-source code available on GitHub3. Finally, as peerannot
is mostly directed to handle classification datasets, one of our future works would be
to consider other peerannot modules to handle crowdsourcing for object detection,
segmentation and even worker evaluation in other contexts like peer-grading.

3.2 Benchmarking aggregation strategies with Benchopt

The Benchopt library is an open-source benchmarking tool for optimization algorithms.
It is designed to provide a fair comparison of optimization algorithms on a wide range of
problems. The machine learning community has created platforms to release datasets
(OpenML (Vanschoren et al., 2013) or DataHub4), reproducibility challenges 5 and journals
(like Rescience6 or Computo7) to counteract the reproducibility crisis (Baker, 2016).
However, the optimization community has not yet developed a standard benchmarking
tool to compare optimization algorithms. This is where Benchopt comes in.

3https://github.com/peerannot/peerannot
4https://datahub.io/
5https://reproml.org/
6https://rescience.github.io/
7https://computo.sfds.asso.fr

https://github.com/peerannot/peerannot
https://datahub.io/
https://reproml.org/
https://rescience.github.io/
https://computo.sfds.asso.fr
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3.2.1 How does it work?

Starting from an input dataset D and an objective function f , the Benchopt library
considers problems of the form:

arg min
θ∈Θ

f(θ,D,Λ) ,

where Λ is a set of hyperparameters and Θ is the feasible set for θ: the parameters
in the objective. Following the iteration sequence {θk}k generated by an optimization
algorithm, the library computes the performance of the algorithm on the problem.
Multiple objectives f1, f2, . . . can be monitored, but only one is used in the optimization
problem.

The library is designed to be modular and to allow easy integration of new optimization
algorithms and new problems. It is not scipy-like an optimization module with a fixed
set of methods, but rather a framework to compare them on a wide range of problems,
add new ones and share them. Hardware components (number of CPUs, number of
threads, GPU type, platform – Linux version – and libraries’ version like numpy’s) are
also stored for each benchmark.

Workflow

Each benchmark is defined by three objects. Each of them is defined as a class object in
the benchopt library:

• Objective: the objective function to minimize (or maximize), its hyperparameters
Λ and the set of possible parameters Θ. The objective defines the performance
metrics to track along the optimization sequence.

• Datasets: the data D to be used in the objective function. The dataset can be
a simple toy dataset or a real-world dataset. It is defined separately from the
objective to be modulable. Datasets also define how to load and preprocess the
data.

• Solvers: the optimization algorithms to compare. Each solver is defined by its
hyperparameters and outputs a sequence of parameters {θk}k.

Datasets, solvers and objectives are compatible with hyperparameter settings. Solvers
can have step sizes. Datasets can come with different versions or, in the case of simulations,
different noise levels. Objectives can have different regularizations etc. Then, for each
combination of dataset, solver and objective, the library computes the performance of
the solver on the objective using the dataset. These metrics are stored in a parquet file –
similar to a csv – and then produce interactive figures using plotly. The full pipeline is
described in Figure 3.15.
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benchmark

datasets

dataset1.py

dataset2.py
...

solvers

solver1.py

solver2.py

...

objective.py

Figure 3.14 Template of a benchmark folder in Benchopt.

.PARQUET

Figure 3.15 Example of a benchmarking result with Benchopt. The library allows to compare
the performance of different solvers on a given objective function. Results are stored in a parquet
file as visualized using interactive plotly webpage. They can also be shared with the community
using the benchopt publish command. Solvers in Python, Julia and R are currently supported.

Benchmark structure and dependency relation. As the main goal of the library is
to compare solvers on different objectives, the dependency relation between the three
classes is crucial.

• Datasets are instantiated with a .get_data() method that returns the data D.

• Objectives are instantiated with a .get_objective() method that returns all
objects necessary for solvers to run. They also have a .set_data() method that
takes as arguments the keys of the dictionary returned by .get_data(). It specifies
how the data is used to compute the objective. Finally, the .evaluate_result()
method computes the objective.

• Solvers are defined with a .set_objective() method that takes as arguments the
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keys of the dictionary returned by .get_objective(). It is the main communi-
cation between the objective and the solver. The .run() method computes the
sequence of parameters {θk}k following a sampling strategy and a stopping criterion
(discussed hereafter). Finally, the .get_result() returns the estimated solution
by the solver to the objective.

1

2

4

3

Figure 3.16 Dependency relation between datasets, solvers and objective objects. The three
classes are the core of the Benchopt library and communicate to run the optimization problem
and monitor the performance on multiple datasets. First, the data from Datasets are passed to
the Objective class. Then, the objective communicates this data for the solver to be instantiated
and run. Finally, the solver returns the sequence of parameters {θk}k to the objective to compute
the performance metrics.

Iterations and stopping criteria

To evaluate each solver’s performance, the library needs to define when to compute said
performance during the iterative procedure. If done for each iterate, the cost of the
benchmarking procedure can be high. Moreover, when to stop the optimization (using
early stopping (Prechelt, 2002)) in the optimization procedure is a crucial question. Some
solvers do not converge for intrinsic reasons on some datasets. The library needs to be
able to handle these cases and not let a solver run indefinitely.
Iterates sampling. The sampling for which the performance is computed is de-
fined by the solver.sampling_strategy attribute. It can either be "iteration" or
"tolerance" depending on the way the solver itself is implemented (see Figure 3.17).

• iteration sampling: if the sampling strategy is set to iteration, the performance
is computed for iterates of the solver following a geometrical growth sequence of
parameter ρ = 1.5. Starting from the first iterate, the next stopping iterate iterstop
is computed as:

iterstop = max(iterstop + 1, int(ρiterstop)) .
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1 def gd(grad, x0, lr, maxiter):

2 x = x0

3 for i in range(maxiter):

4 # Compute gradient

5 g = grad(x)

6 # Update parameters

7 theta -= lr * g

8 return theta

Example of gradient descent implementation
based on the number of iterations.

1 def gd(grad, x0, lr, epsilon):

2 x = x0

3 norm_g = np.inf

4 while norm_g > epsilon:

5 # Compute gradient

6 g = grad(x)

7 # Update parameters

8 theta -= lr * g

9 # Update gradient norm

10 norm_g = np.sum(g**2)

11 return theta

Example of gradient descent implementation
based on a threshold on the gradient’s norm.

Figure 3.17 Two examples of gradient descent implementations. The first one is based on the
number of iterations and the second one on a threshold on the gradient’s norm. In practice, both
criteria are often combined.

• tolerance sampling: if the sampling strategy is set to tolerance, the performance
is computed for iterates of the solver reaching a tolerance threshold. This threshold
sequence follows a geometrical sequence of parameter ρ = 1.5. Starting from 1, the
next stopping threshold threshstop is computed when:

threshstop = min
(

1,max
( iterstop

ρ
, 10−15

))
.

Note that if no difference is observed between two consecutive objective calls (the
variation of the objective is zero), then ρ is increased by a factor of 1.2. This is to avoid
computing the same objective multiple times and obtaining a flat curve. This growth
can be manually changed if needed8.
Stopping criterion. The stopping criterion is defined by the solver.stopping_criterion
attribute. There are three possible stopping criteria and two fail-safes implemented in
Benchopt:

• Sufficient Decrease Criterion: defined by a tolerance ε and a patience p ∈ N. The
solver is stopped when the relative decrease of the objective is less than ε for p
evaluated samples.

• Sufficient Progress Criterion: defined by a tolerance ε and a patience p ∈ N. The
solver is stopped when the objective has not decreased by more than ε for p
evaluated samples.

8https://benchopt.github.io/user_guide/performance_curves.html#changing-the-strategy-
to-grow-the-computational-budget-stop-val

https://benchopt.github.io/user_guide/performance_curves.html#changing-the-strategy-to-grow-the-computational-budget-stop-val
https://benchopt.github.io/user_guide/performance_curves.html#changing-the-strategy-to-grow-the-computational-budget-stop-val
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• Single Run Criterion: the performance is evaluated only once at a given value.

The fail-safes are a maximum number of solver runs and a maximum time to run the
solver. They are set to 10 and 100 seconds by default, respectively.

3.2.2 Case study: benchmarking aggregation strategies in crowdsourcing

Let us run the Benchopt library to compare the performance of different label aggregation
strategies on multiple datasets. We compare results from strategies within peerannot,
crowd-kit and the Fast DS algorithms presented in Sinha et al. (2018). A description of
datasets, new solvers and more points of comparison between peerannot and crowd-kit
is provided hereafter.

Datasets and solvers information

The list of all datasets compared in Figure 3.18 is available in Table 3.6. We use
Krippendorff’s α ∈ [0, 1] (Krippendorff, 1980) to measure the consistency in votes for
each dataset. A value over 0.8 means a reliable dataset, between 0.6 and 0.8 the worker’s
answer includes inconsistencies. A low value indicates high levels of disagreement and
possibly unreliable data without the proper strategies according to Krippendorff (2004).

More formally, denoting Do the observed disagreement and De the expected disagree-
ment, Krippendorff’s α is defined as:

α = 1− Do

De
, (3.2)

with Do the observed disagreement and De the expected disagreement. In a classification
setting, this formula writes:

α =

(n− 1)
∑

c∈[K]
oc,c −

∑
c∈[K]

nc(nc − 1)

n(n− 1)−
∑

c∈[K]
nc(nc − 1)

, (3.3)

with n =
∑

c∈[K] nc, and nc =
∑

k oc,k for k ∈ [K] and

oc,k =
∑

i∈[ntask]

1
|A(xi)| − 1 |{(c, k)-pairs in task i}| .

In addition to presented solvers, we add in the comparison the Fast-DS solvers (Sinha
et al., 2018), KOS (Karger et al., 2011), the Multi-Annotator Competence Estimation
(MACE) (Hovy et al., 2013) and Worker Agreement with Aggregate (WAWA) 9.

9https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-
with-Aggregate-Wawa

https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa
https://success.appen.com/hc/en-us/articles/202703205-Calculating-Worker-Agreement-with-Aggregate-Wawa
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Figure 3.18 AccTrain score against computational time depending on the crowdsourced dataset
and solver.
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Table 3.6 Dataset information

Dataset nworker ntask K Krippendorff’s α
AudioBirds (Lehikoinen et al., 2023) 205 79 592 2 0.810
bluebirds (Welinder et al., 2010) 39 108 2 0.126
relevance-2 7 138 99 319 2 0.262
CIFAR-10H (Peterson et al., 2019) 2 571 1000 10 0.910
LabelMe (Rodrigues et al., 2014) 77 1000 8 0.677
Music (Rodrigues et al., 2017) 44 700 10 0.301

Computing Krippendorff’s α

Let us consider a toy example with a dataset of ntask = 5 tasks and nworker = 3
workers with K = 3 classes. Some workers do not get to answer some of the tasks.
The votes are given as:

Worker j / Task i 1 2 3 4 5
1 1 1 2 1
2 0 1 0
3 0 2 2 0
4 0 1 2 2

|A(xi)| 3 3 2 3 4

The class-coincidence matrix associated to this dataset is:

Classes c 0 1 2 nc

0 o0,0 o0,1 o0,2 n0
1 o1,0 o1,1 o1,2 n1
2 o2,0 o2,1 o2,2 n2

⇐⇒

Classes c 0 1 2 nc

0 11
3

2
3

2
3 5

1 2
3 3 4

3 5
2 2

3
4
3 3 5

Let us detail two examples:

• o0,0: In the first task there are 6 pairs of (0, 0) agreements over 3 answers. In
the tasks 2, 3, 4 there are no votes for class 0. And for task 5 there are 2 pairs
of (0, 0) agreements over 4 answers. Hence o0,0 = 6

3−1 + 2
4−1 = 6

2 + 2
3 = 11

3 .

• o2,1: In the tasks 1, 3 and 4 there are no (2, 1) disagreements. In task 2 there
are 2 pairs of (2, 1) disagreements over 3 answers. And in task 5 there is 1 pair
of (2, 1) disagreements over 4 answers. Hence o2,1 = 2

3−1 + 1
4−1 = 2

2 + 1
3 = 4

3 .

Finally, we use Equation (3.3) and obtain with n = 5 + 5 + 5 = 15:

α =
(n− 1)

(
11
3 + 3 + 3

)
− (5(5− 1) + 5(5− 1) + 5(5− 1))

n(n− 1)− (5(5− 1) + 5(5− 1) + 5(5− 1))
≃ 0.502 .

Hence this data is quite unreliable.
Note that in settings other than classical classification (e.g. ranking) the coincidence
matrix might not be symmetrical. See Krippendorff (1980) for forms of α expression
instead of Equation (3.3).
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Let us present the additional label aggregation strategies briefly. The PlantNet
aggregation is presented in detail in Chapter 4.
WAWA. This strategy, also known as the inter-rater agreement, weights each user by
how much they agree with the MV labels on average. More formally, given a task i:

WAWA(i,D) = arg max
k∈[K]

∑
j∈A(xi)

βj1(y(j)
i = k)

with βj = 1
|{y(j)

i′ }i′ |

ntask∑
i′=1

1
(
y

(j)
i′ = MV(i′, {y(j)

i′ }j)
)
.

Note that even if they are not iterative strategies WAWA and WDS can still be shown
in Benchopt. However, the performance is computed at the end of the aggregation process,
and only the first point of the curve should be considered. Indeed, the second point is an
artifact from Benchopt’s stopping criterion (the patience) described in Section 3.2.1.

Figure 3.19 Bayesian plate diagram representation of the MACE model. Only the labels {y(j)
i }i,j

are observed. Latent variables to estimate are the true labels (y⋆
i ), the spamming state (Si,j)i,j ,

the probability to spam (θj)j and the worker behavior when spamming (ξj)j .

MACE (Hovy et al., 2013). The MACE strategy has been designed to be more robust
against spammers. Contrary to the definition of spammers by Raykar and Yu (2011),
they here consider spam as a state of the worker.

Each worker can be spamming on each task. The probability for a worker to spam a
task is given by a Bernoulli distribution with parameter 1− θj ∈ [0, 1]. Thus, denoting
Si,j the spamming state of worker j on task i, the probability of the worker to spam
the task is drawn as Si,j ∼ B(1− θj). If a worker is not spamming (Si,j = 0) then they
answer the correct underlying label y⋆

i . If not, their answer is drawn at random from a
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multinomial distribution with parameter ξj ∈ ∆K proper to each worker. For a given
worker j0, the distribution ξj0 indicates what is their behavior when they are spamming.

The associated likelihood – maximized using the EM algorithm as in DS – writes:

P({y(j)
i }i,j |θ, ξ) =

∑
y⋆∈[K]ntask

∑
S∈{0,1}ntask×nworker

ntask∏
i=1

P(y⋆
i )

nworker∏
j=1

P(Si,j |θj)P(y(j)
i |Si,j , y

⋆
i , ξj)

 .

In Figure 3.19, we represent the associated bayesian plate diagram.

KOS (Karger et al., 2011). Only set for binary classification y⋆
i ∈ {±1}, the KOS

strategy is from a graph-theory perspective. Denote G([ntask] ∪ [nworker], E) the graph
where edge (i, j) is connected if worker j has answered task i. The neighborhood of a
task i is denoted ∂i and the same with index j for workers. On each edge is stored the
label answered by worker j for task i: y(j)

i ∈ [K].

The KOS strategy estimates how much a worker is reliable by how much their answers
are consistent with the answers of their neighbors and the likelihood of a task having
y⋆

i = 1. Both pieces of information are propagated into the graph as messages. The
final label is then estimated by the sign of the sum of the messages received by the task
weighted by the workers’ reliability.

A task message denoted xi→j is the log-likelihood of the task i having y⋆
i = 1. A

worker message denoted yj→i is the reliability of worker j. Both messages have scalar
values. After random initialization, the messages are updated iteratively until convergence
following the equations:

xi→j ←
∑

j′∈∂i\{j}
y

(j′)
i yj′→i ∀(i, j) ∈ E

yj→i ←
∑

i′∈∂j\{i}
y

(j)
i′ xi′→j ∀(i, j) ∈ E .

Finally, the estimated label is computed as:

∀i ∈ [ntask], ŷKOS
i = sign

∑
j∈∂i

y
(j)
i yj→i

 .
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Visualizing KOS.

Let us consider the binary answers:

Worker j / Task i 1 2 3 4 5
1 1 1 -1 1
2 -1 1 1
3 1 1 1 1
4 -1 1 -1 -1

The associated graph representing workers in blue and tasks in red is:

Each task sends a message xi→j

to each worker who answered them.
Each worker sends a message yj→i to
each task they answered.
For example, task 5 sends messages
to workers 4, 3, 2 and 1
Thus ∂5 = {1, 2, 3, 4}.
Worker 4 sends messages to tasks
1, 3, 4 and 5.
Thus ∂4 = {1, 3, 4, 5}.

At a given step, the reliability of worker 4 concerning their answer to task 5 is thus
updated as follows:

y4→5 =
∑

i′∈∂4\{5}
y

(4)
i′ xi′→4 = −1× x1→4 + 1× x3→4 + (−1)× x4→4 + (−1)× x5→4 .

Fast-DS (Sinha et al., 2018). As the DS strategy is known to have a high computa-
tional cost, Sinha et al. (2018) proposed a faster version of the DS strategy. The Fast-DS
strategy is based on the same principle as DS, but the computation of the posterior
distribution on the estimated ground truth is restricted as a Dirac distribution. Note
that this does not alleviate the memory issue of the DS strategy – the K2 × nworker
parameters to estimate for the confusion matrices. Under the assumption that there is
only a single label per task – which is the case in this thesis – this hard version of the
DS strategy claims to be faster than the original DS strategy while achieving similar
performance in accuracy.

More formally, following the DS notation from Section 1.2.3 the Fast-DS method
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adds the following step in the ground truth estimation:

Ti,k =


1 if k = arg max

k′∈[K]
P
(
y⋆

i = k′|{y(j)
i }j∈A(xi)

)
0 otherwise

.

The quantity P
(
y⋆

i = k′|{y(j)
i }j∈A(xi)

)
is estimated using Baye’s theorem.

However, empirical results show that the Fast-DS strategy with this hard decision can
reach lower accuracy. To alleviate this convergence issue, Sinha et al. (2018) proposed to
use a hybrid version of the Fast-DS strategy. The hybrid strategy is defined as:

• Run the classical DS algorithm first to estimate the marginal class likelihood
ρ ∈ ∆K at each iterate.

• When the absolute difference between two consecutive iterates of ρ is lower than a
given threshold, switch to the hard version of the DS strategy.

This hybrid strategy allows having a softer control on the label estimation at the beginning
and better exploring the latent variable’s space. Finishing with hard labels allows faster
convergence. However, in practice this gain – as seen in Figure 3.18 – can be mitigated
by the implementation of the DS strategy.
Results interpretation. Running Benchopt evaluation, we obtain Figure 3.18 showing
the accuracy of the different label aggregation strategies against the computational time.
Depending on the dataset, some solvers – i.e. label aggregation strategy – are more
suited and less computationally expansive than others.

For example, on the BlueBirds dataset, peerannot’s DS strategy is the fastest
to reach the best accuracy. It is followed by the Fast-DS and then crowd-kit’s DS
aggregation. As the α value is very low (α = 0.126), the dataset is unreliable. Hence,
strategies that are specific to some workers’ behaviors – KOS for spammers, GLAD for
ambiguous tasks – are not suited and the DS strategy seems to be the best choice.

In the case of datasets with a high level of agreement (α > 0.8) – in AudioBirds
and CIFAR-10H – all strategies reach the level of performance. Notice that GLAD is
again slower than most strategies (this conclusion can be seen in most cases). For those
datasets, the simpler the strategy, the faster the same level of accuracy.

For the Music dataset, the best performance is achieved by the fastest method in
this case: WAWA (with similar time computation between peerannot and crowd-kit).
And finally, for the LabelMe dataset, the best performance is achieved by the DS-based
strategies. WAWA aggregation underperforms: as shown in Figure 1.11, the tasks have
very few labels and are ambiguous with the class overlap.

Overall, the Pl@ntNet strategy does not perform better than other label aggregation
strategies. This is because the algorithm is not suited for such crowdsourced datasets. It
is based on the assumption that the number of possible classes is high to evaluate the
worker’s reliability. This is not the case in the datasets we consider. We have at most
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K = 10. Hence why in Chapter 4 we released a large subset of Pl@ntNet’s database to
evaluate this strategy on a more suitable dataset.

More comparison between peerannot and crowd-kit.

Both peerannot and crowd-kit are open-source libraries to handle crowdsourced
datasets. While crowd-kit proposes segmentation and regression crowdsourcing strate-
gies, peerannot is focused on classification tasks. The learning strategies (CrowdLayer
and CoNAL) are available in both libraries, and each library has label aggregations
strategies with some in common (MV, GLAD, DS, WAWA) and some library-specific
(Pl@ntNet, WDS, KOS, MACE). However, the main difference between the two libraries
is the identification step. So let us focus on this.

At the time of writing crowd-kit proposes four strategies to explore crowdsourced
datasets:

• Krippendorff’s α: to measure the consistency in votes for each dataset (also available
in peerannot).

• The consistency: Averaged posterior distribution of a label determination from
workers’ estimated reliability.

• The uncertainty: the entropy of the distribution of the votes (also available in
peerannot).

• The accuracy of aggregates: the accuracy of a subset of worker’s answers from
aggregated labels (if the subset of workers is all workers and the aggregated label
is the MV label, this simplifies as the weight of users in WAWA).

In peerannot, we added:

• The AUMC: deep learning based ambiguity score on tasks via MV aggregation
(see Chapter 2).

• The WAUM: deep learning based ambiguity score on tasks via weighted Areas
Under the Margin (see Chapter 2).

• The spam score (Raykar and Yu, 2011): distance between the estimated confusion
matrix and the closest rank-1 matrix for each worker. This allows identifying
potential spammers.

• The trace confusion: sum of the diagonal terms of the DS confusion matrices.
Indicates the level of reliability per worker for their answered label. The closer the
trace to K, the more reliable the worker.
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The peerannot library also supports top-k classification metrics for deep-learning
methods. We provide the train command to train deep learning models from TorchVision
on the dataset and evaluate their accuracy and calibration if a test set is available. This
allows users to have a fully end-to-end pipeline:

• identify potential ambiguous tasks / bad workers,

• aggregate the labels and train a computer vision network,

• or directly train a computer vision network with deep-learning-based strategies to
handle crowdsourced tasks.

Keeping the same framework from beginning to end, based on PyTorch, allows for a
more seamless integration of the crowdsourcing pipeline in existing projects.

As we will see in Chapter 4, the peerannot library is more suited for classification
tasks with a high number of classes, tasks and/or workers. Indeed, for the dataset we
will consider, none of the aggregation strategies from crowd-kit could be run due to
memory issues that are directly linked to the data format choice.

3.3 Conclusion

We presented the peerannot library: an open-source python library to handle crowd-
sourced datasets. This library is designed to be modular and to allow easy integration of
new label aggregation strategies, learning strategies and identification strategies on new
datasets.

To produce fair and reproducible comparisons of label aggregation strategies’ per-
formance, we added a new benchmark to the Benchopt library. This benchmark for
crowdsourcing in classification problems allows us to compare the performance of dif-
ferent label aggregations depending on the ambiguity of a dataset. We showed that
the peerannot library is a good candidate to handle crowdsourced datasets against
standalone openly available methods (FDS) or other libraries like crowd-kit.





4Crowdsourcing strategies in Pl@ntNet
citizen based learning platform

Key points – Crowdsourcing plant species

1. Aiding botanists in plant species identification is a challenging task.
Species are often visually close and their identification requires expert
knowledge.

2. Pl@ntNet is a citizen science platform that allows users to upload im-
ages of plants and receive a list of possible species.

3. The collaborative aspect of Pl@ntNet allows users to vote on the species
they think are present in the image and contribute to new labeled data,
which is then used to train a computer vision and help new identifica-
tions.

Contributions – Exploration of
Pl@ntNet label aggregation strategy

4. We release and evaluate the current Pl@ntNet label aggregation and
compare it to other strategies.

5. We release a subset of Pl@ntNet with images url and collected labels in
the South Western European Flora of more than 6 million observations
and 800 thousand users in a large-scale classification setting.

6. We discuss how to integrate the current model’s predictions in the votes
aggregation. This is a challenging task due to the iterative aspect of
Pl@ntNet: the current data helps train the next generation of models
iteratively.
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While crowdsourcing is advertised to collect a large number of data easily, with
strategies to mitigate the noise, openly available datasets are still scarce and with a low
number of classes (K ≤ 10 in general). In this chapter, we focus on the Pl@ntNet platform,
a citizen science platform for plant species recognition. One of the challenges in this
classification setting is the large number of possible species (K > 104). After presenting
the platform and voting system, we will investigate the current label aggregation strategy
in Pl@ntNet. We compare it with other strategies that can handle this large number
of classes, workers and tasks. Finally, we propose to improve the current algorithm by
taking advantage of the Pl@ntNet pipeline.

Note that in previous chapters, the crowdsourcing experiments concerned workers
paid to answer multiple tasks. In Pl@ntNet, contributions are made by volunteers and
the tasks are not paid. We thus slightly adapt the vocabulary used in this chapter to
reflect this difference. People voting are called users. The tasks are observations of plants
(detailed in Section 4.1.2) for which we wish to identify the species.

4.1 Crowdsourcing for plant species identification

Computer vision models are a great aid in plant species recognition in the field (Vidal
et al., 2021; Mäder et al., 2021; Borowiec et al., 2022). However, to train them one needs
large annotated datasets. These datasets are usually created thanks to crowdsourcing,
but citizen science approaches, collecting both reliable and useful information (Brown
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and Williams, 2019; Wright et al., 2021), tend to be more and more popular. Among
existing plant recognition applications, the Pl@ntNet citizen science platform (Affouard
et al., 2017) enables global data collection by allowing users to upload and annotate plant
observations (Bonnet et al., 2020).

We first introduce the problem of labeling a plant observation and the complexity
of plant taxonomy. Then, we present the Pl@ntNet platform and its voting interface.
Finally, we discuss the current label aggregation strategy and propose ways to improve it.

4.1.1 Plant taxonomy generalities

First, we need to understand the complexity of plant taxonomy. Our goal here is to
briefly present this taxonomy. Plants are divided following a hierarchy, from the most
general to the most specific ranks of taxa: kingdom, division, class, order, family, genus,
and species according to the International Code of Nomenclature for algae, fungi, and
plants (ICN) (Turland et al., 2018). Each of these units of biological classification is
called a taxon (taxa in plural). Further secondary ranks also exist (tribe, subspecies,
variety, form) but we will focus on the main ones.

Roughly, an example of taxonomy levels is:

• Kingdom: separates plants from animals, fungi, and bacteria – e.g Plantae.

• Division: separates spore (angiosperms) or seed (gymnosperms) reproduction with
specific characteristics. There are 14 plant divisions in total.

• Class: Angiosperms are divided into Monocotyledons(grasses, yuccas, etc.) and
Dicotyledons (angiosperms with pair of leaves).

• Order: Group of families with common characteristics – e.g Cucurbitales (generally
ends with -ales).

• Family: Plants with similar flower, fruit and seed structures – e.g Begonaias and
Allies.

• Genus (genera in plural): First part of the plant’s scientific name (capitalized and
italicized) – e.g Begonia.

• Species: a group of organisms capable of producing fertile offspring – e.g Begonia
ferox. If the species is unknown it is called sp. or spp. for plural.

In the case a plant is a hybrid a cross between two species is added – it is written
with an × as in Begonia × semperflorens. The position of the × indicates if it is the
hybridization between two genera or species. For example, the ×Agroelymus hajastanica
is the hybridization of the Agropyron cristatum and the Elymus repens – note that
the genera are aggregating into a resulting genus. Similarly to the ×, a + is used to
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Figure 4.1 Begonia ferox: a species from the Begonia genus of the Begoniaceae family of the
Cucurbitales order.

indicate a transplant chimera between two plants. For example, the + Laburnocytisus
adamii results of the transplant of two individuals with different genera: the Laburnum
anagyroides and the Cytisus purpureus.

Checklists and referentials

The plant name is generally composed of only two parts: the genus and the species. In
this work, we do not consider vernacular names – the common names of plants – as they
can vary from one region to another. Botanists have created checklists of accepted plant
species.

One of the largest is the International Plant Names Index (IPNI) (IPN, 2024). The
IPNI is a database of the published names and indicates which names are validly published.
It does not take into account the taxonomic status of the names – the chronological
changes and synonymity. The World Checklist of Vascular Plants (WCVP) (Govaerts
et al., 2021) is an international collaborative database of taxa that provides the latest
nomenclatural and taxonomic information on vascular plants – clubmosses, horsetails,
ferns, gymnosperms (including conifers), and angiosperms (flowering plants). The data
from WCVP is the backbone for Plants Of the World Online (POWO)1 which is an
interface to access more information on individual species as their distribution for example.

There are multiple other checklists and databases such as The Plant List (TPL)
(Pla, 2013), the Catalogue of Life (CoL) (Cachuela-palacio, 2006), Leipzig Catalogue of
Vascular Plants (LCVP) (Freiberg et al., 2020) etc. For a more exhaustive comparison of
these databases we refer the reader to Schellenberger Costa et al. (2023). The Global
Biodiversity Information Facility (GBIF) (Telenius, 2011) is an openly accessible network
of shared knowledge about biodiversity on Earth. They currently regroup 105 different
sources of taxonomy2.

These checklists are the backbone of any botanical project as they provide a reference
for the species names, their taxonomic status, and synonymic contributions. Synonyms

1https://powo.science.kew.org
2https://www.gbif.org/fr/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c

https://powo.science.kew.org
https://www.gbif.org/fr/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c
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are not rare in plant taxonomy and can be due to different reasons such as the same
species being described by different botanists, at different times, in different regions of the
world. As an example, in WCVP there are 357 347 plant species and 565 200 synonyms
for those species.

Moreover, note that checklists might not always cover all the species and synonyms
from one another. For example, the Pilosella officinarum Vaill. is listed in POWO with
161 possible synonyms – 141 accepted synonyms and 20 illegitimate – while in the GBIF
it is listed with 241 possible synonyms. In the Pl@ntNet database, synonyms are only
considered at the species level, resulting in 22 possible accepted synonyms for this species.

Figure 4.2 Regional areas at level 2: subcontinental botanical regions of the world.

The international system groups areas of the world at different levels to record
plant distributions and have standardized comparisons. This system is called the World
Geographical Scheme for Recording Plant Distributions (WGSRPD) (Brummitt et al.,
2001). The first level represents the nine botanical continents – Europe, Africa, Asia-
Temperate, Asia-Tropica, Australasia, Pacific, Northern America, Southern America and
Antarctic. The second level is the subcontinental regions of the world – see Figure 4.2
for a representation. It divides each botanical continent between 2 and 10 subdivisions.
For example, Europe is divided into Northern, Middle, Southwestern, Southeastern and
Eastern Europe. Levels 3 and 4 include states, provinces or botanical areas. In Pl@ntNet,
level 2 is used to filter the species that can be observed in a given area and adapt the
models’ predictions. In addition, users can specify to which flora – either a level 2
subdivision or a Pl@ntNet project like "Useful plants" or "World Flora" – they wish to
associate their contribution.
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Figure 4.3 Quadrats used in the field to estimate the abundance of species. They are often in
a hard rectangle shape material like wood or soft with meters of ribbon to delimit the surface.
(©Pierre Bonnet)

4.1.2 What is a plant observation?

Contrary to classical datasets, Pl@ntNet observations are not a single image but a set of
images taken by a user in the field. A single image of a plant might not be enough to
identify the species. More images of different parts of the plant – leaves, flowers, fruits,
etc. – are needed to correctly identify the species and mimic a botanist’s behavior while
it is surely not the same and we can not replace such expertise.

Observation of a Scabiosa columbaria L.
(©Llandrich anna)

Observation of a Knautia arvensis (L.)
Coult. (©Francois Mansour)

Figure 4.4 Two observations of different species known to be difficult to identify from one
another: a Scabiosa columbaria L. and a Knautia arvensis (L.) Coult. The flowers are visually
close, but the leaves from the bottom view on the Scabiosa and the structural differences in the
second photo allow a clear identification.

In the field, some recommendations include3 but are not limited to:

• the type of plant: a shrub, an herb, a fern, etc.

• physical traits of the plant – height, color range, hairy (length, width), texture
(velvety, rough, smooth), is it stingy, thorny? etc.

3https://ibis.geog.ubc.ca/biodiversity/eflora/identification.html

https://ibis.geog.ubc.ca/biodiversity/eflora/identification.html
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• position and number of leaves, flowers (symmetrical, shape), fruits or seeds (size,
flesh), etc.

• blooming period

• the type of bark – smooth, rough, flaky, color, color changes depending on the
season

• the roots – if safely available for both the identifier and the identified plant – to
see rooted stems, rhizomes, bulbs or tubers. A horizontal expansion of the roots
can be a sign of a rhizome.

• the aroma (minty, pungent)

• grown habits – bushy, sprawling around, erected, vine-like

• other species around, abundance of the species

• . . .

Once these criteria are gathered, the botanist can identify possible species. To filter
out the possible species, the botanist will also consider the habitat – sand, marshes, rocky
fields – the elevation – sea level, mountain – and the region to narrow the confusion. The
use of a determination key can also help the identification.

In practice, botanists use quadrats – plots of ground of a specific size – to count the
number of species in a given area and estimate the abundance of each species. Such
quadrats are shown in Figure 4.3.

Most of these criteria (like the aroma, texture or habitat), can be difficult or even
impossible yet to be gathered from multiple images, and much less from a single one.
Hence, the use of multiple images is crucial to correctly identify the species or at least
narrow down the possible species. Botanists will observe multiple organs (flower, fruit,
leaf), from different angles (a flower from the bottom view can have specific traits not
visible from the side). These characteristics can be transmitted via multiple images for
the same observation. We give an example in Figure 4.4 of two species that are visually
close but can be distinguished using multiple images in the same observation.

4.1.3 Presenting the voting interface

Author contribution.

In Pl@ntNet, an observation is a set of images taken by a user in the field. The author
user can then upload these images to the platform. The platform will then propose a list
of possible species for the observation with the associated predicted probabilities and
other images that are close-looking to the picture taken. The author can then vote on
the species they think are present in the observation as illustrated in Figure 4.5.
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Observation of a plant which necessi-
tates identification (©Tanguy Lefort).
The image is sent to Pl@ntNet’s com-
puter vision model for identification.
A similarity search is performed to
present similar pictures for each pro-
posed species. Pl@ntNet identification results

Figure 4.5 From an image query, Pl@ntNet outputs possible species. For visual aid, close-looking
images are also shown for each proposed species. The user can then click on the compare picture
button to make their choice. Then, the user can vote on the species by clicking on the It’s
the right species button. Here the probability of the Epipremnum aureum (Linden & André)
G.S.Bunting to be the right species is 65% – also known as Pothos aureus Linden & André.

The vote is guided by the computer vision model predictions (see Section 4.1.4) and
other pictures are selected via a similarity search algorithm. This similarity search is
important as the same species can have different visual presentations at multiple stages
of its life cycle. The similarity search is based on the features from the last layer of
Pl@ntNet’s network. These features are hashed using the Random Maximum Margin
Hashing algorithm (Joly and Buisson, 2011) and then an approximate k-nearest neighbors
is applied (Joly and Buisson, 2008).

If a user disagrees with the model’s predictions, they can enter the name of the species
freely in the input box as shown in Figure 4.6. The user input is guided by the name of
possible species in the currently selected flora.

The author can also input any text freely – hence adding possible noisy votes. At this
stage, there is no filter performed on the existence of the given species in the database.
The author can also share the location of the observation, and add additional inputs in a
specific reserved field – the habitat, the aroma or any other feature they would like to
share. Some users unfortunately might mistake the different fields and input information



4.1 Crowdsourcing for plant species identification 105

Figure 4.6 The author can select one of the model’s predicted species or input freely the name
of a species. The user input is guided by the name of possible species in the currently selected
flora (here World Flora). Note that by clicking on the gear icon, a user can change the flora.

as the species name, a cleaning step is thus a necessary step in the platform.

Other users contributions.

Once the observation is shared online, it is time for others to enter the collaborative
playground. Any user can visit the identify Pl@ntNet platform and vote on observations.
The view is as presented in Figure 4.7.

The initial author determination – if existing – is shown, with the current prediction.
In the suggested name box, all registered species votes are shown with the number of
agreements. In Figure 4.7, 5 different users voted: 3 for the species Vesalea grandifolia
Villarreal Hua Feng Wang & Landrein, 1 for the Zabelia triflora (R.Br. ex Wall.) Makino
ex Hisauti & H.Hara and one user voted for undertermined – meaning they could not
identify the species or there is not enough information provided to their knowledge to
identify the species. There is a field for a new vote, where the user is guided to propose an
existing species but can enter any text freely. By clicking on the Pl@ntNet icon next to
it, the model’s predictions are shown with the associated probabilities and close-looking
examples to guide the identification as in Figure 4.5.

In addition to the species, users (as authors) can vote on the organ shown in the
image(s). The organs can be a leaf, flower, fruit, bark, habit (form in which the plant
grows) or other. Users can approve or disapprove the quality of the image – if the plant
is not correctly visible, the image is blurry, or the organ is not visible. If there is no plant
in the image, they can also flag it with the no plant button.
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Figure 4.7 View of observations as a user (©Pavlos). The current prediction is shown, with the
initial species proposed. Suggestions from other users are on the right, with a field to propose
your thoughts or accept someone else’s. Anyone can vote for the organ shown in the image – in
this case, users agree on the flower. The quality is accepted by 2 users and there is no vote to
reject the observation based on the fact there is no plant in the actual image.

In the upper-right section of the presented observation, the user can see if the
observation was associated with any geolocalisation, if the observation is considered as
valid by the Pl@ntNet algorithm and if it was reviewed by others. The valid status is
given by the Pl@ntNet algorithm presented in Section 4.2.1 and is a proxy for the quality
of the observation.

The iNaturalist platform uses a research grade status to indicate the quality of the
observation4:

• there is a picture or recording of sound,

• the genus and/or species name of the organism are specified,

• the GPS coordinates are associated,

• the observation is timed and dated,
4https://www.inaturalist.org/posts/39072-research-grade

https://www.inaturalist.org/posts/39072-research-grade
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• the observatory is identified,

• there is at least a 2/3 agreement consensus by users on the identified species.

In Pl@ntNet, the data quality is monitored by this valid status that depends on the
estimated reliability of a user and the agreement of the community on the observation.
We explain in more detail the algorithm used to estimate the reliability of a user in
Section 4.2.1.

What is not an observation.

Until now, we described what is an observation. So, let us show examples of what isn’t
an observation.

A drawing is not a plant
(©Katyykk)

A fungus is not in
the Plantae kingdom
(©eugenio perez perez)

A video game tree (Minecraft version
of a birch tree) is not a real plant.
(©PA0L0_D1_B3LL0)

Figure 4.8 Three examples of images that are not plant observations.

More generally, drawings – even realistic – of plants or photos of images of plants
are not considered plant observations. The same goes for fungi, which are not part of
the Plantae kingdom and thus are not identified by Pl@ntNet. Finally, images of video
games – even if they represent plants – are not considered plant observations. We show
examples of these in Figure 4.8. Photos of people, animals, pornographic images or any
other object that is not a plant are also not considered plant observations. These images
are flagged, removed from the platform and are not used to train the models.

Another possible issue is the presence of multiple species in the same observation.
These observations are flagged as malformed, we provide an example in Figure 4.9. Users
can cast their vote to indicate that the observation is malformed and should not be
considered.

4.1.4 A step in a bigger pipeline

The gathering and aggregation of votes is only a part of the Pl@ntNet pipeline. Schema-
tized in Figure 4.10, the Pl@ntNet system is a positive loop between curating the data
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Figure 4.9 Malformed observation: each image is associated with a different species (©Leonardi
Liberati).

and training a computer vision model. The label aggregation algorithm is presented in
detail in Section 4.2. Let us briefly address the computer vision model part.

Model training.

At the time of writing, the model in use in Pl@ntNet is DINOv2 (Oquab et al., 2024) a
transformer-based network, trained on Jean-Zay cluster generally every 2 to 3 months5.
The training steps have evolved in the past years. In the next paragraphs, we present
in a non-exhaustive way the pipeline (presented in Figure 4.11) for the current model
training.

The first step is to gather the data from the Pl@ntNet platform and aggregate the
labels as presented later in Section 4.2. Then, a first cleaning step is performed to remove
the noisy labels – species not in any botanical checklist such as WCVP – and only keep
valid observations. Roughly speaking, valid observations are observations that are
considered reliable by the Pl@ntNet algorithm thanks to enough users’ expertise and
agreement in votes. In addition to species, the organ is also kept for training.

The data is then cleaned by collected species. In each species let us consider there
are nk ∈ N observations, the valid observations with the most user weight are selected,
and then they randomly select min(nk, n) observations, with n ∈ N∗.

5or sooner if improvements are noticed by J-C Lombardo whom I’m most grateful for the details
given about the Pl@ntNet training and testing pipeline.
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Figure 4.10 Pl@ntNet system of human-AI interaction for plant species recognition. Users take
their plant observations in the Pl@ntNet application. A prediction is output by the AI model.
Users can validate the prediction or propose another species. The whole votes collection is used
to evaluate user expertise and actively revise observations identifications.

On the side, a neural network binary classifier is trained on another dataset to detect
if the observation comes from a herbarium or not (binary classification). This classifier
is then used to filter out the herbarium observations from the dataset. Herbarium
observations are only used for rare species to populate classes with few observations.
They are not used if there are enough in-the-wild observations as they might not be
representative of a real observation.

From the selected observations, the observations constitute a highly imbalanced
dataset. This imbalance is necessary as plant species’ presence is not balanced in the
real world. Additional data is then collected from partners – botanic gardens, GBIF,
etc. – to get information on organs, species, diseases and other relevant information. The
additional data is not used to balance the dataset, only to provide more information
and populate some species – but the imbalance is kept. All partner’s observations are
standardized (resize and compression).

As users can freely upload observations, the observations might not be plant obser-
vations (as in Figure 4.8). There are 20 rejection classes, including but not limited to
homosapiens (presence of a hand, foot or face), dogs, cats, fungi (presence of a fungus),
no plant (no plant in the image), drawing (presence of a drawing), screenshot (the image
is not a photo taken by the user), objects (presence of an object), genitalia, etc. The
rejection classes are used to filter out the observations that are not plant observations
but also can provide feedback to the user. For example, if a face is present in the photo
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Figure 4.11 Pl@ntNet pipeline: the steps to train a neural network from the collaboratively
annotated data. The algorithm presented in Section 4.2 is used to get labels and a validity
indicator. Subsampling and data from partners are then combined to get a labeled dataset to
train the current DINOv2 model. Evaluation is performed on the generated test set and additional
private test sets.

taken, the system will warn the user that they might want to retake the photo without
the face. Note that not all rejections provide feedback to the user, some are used to filter
out the observations (like the genitalia class) and train the Pl@ntNet model to detect
images that should not be classified as plants.

The rejection classes are added to the species classes and so is the associated data.
The data is then split into a training, validation and test set. The test set is about 1% of
the filtered data. The split is stratified by species and organ. Then the model is trained.

Before the latest model version, the training was done in two steps. First, the model
was trained on species recognition, then frozen, and then finetuned on organ recognition.
Now, the current model is trained directly for multitask classification. In addition to
species and organ recognition, diseases (on plants and crops), the genus, the family and
some cultivars (sublevel of taxonomy) of interest for other Pl@ntNet projects are also
predicted. Denoting L• the loss related to the classification task •, the multitask loss
Lmultitask to minimize is of the form:

Lmultitask = λ1Lspecies + λ2Lorgan + λ3Lgenus + λ4Lfamily + λ5Ldisease + λ5Lcultivars + . . . ,

with (λp)p the importance weights in the loss, and λ1 > λp′ for p′ > 1 as the species
determination is the main task for the model. Let us focus on the species determination
as it is the main application of this thesis. To take into account the imbalance in the
dataset, the species determination loss is weighted by the inverse of the class frequency.
Note that other losses are also considered in recent work from the Pl@ntNet team (Garcin
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et al., 2022). Transformation on images such as rotation, cropping and flipping are
applied. Label smoothing is used as it is known to improve the uncertainty estimation of
the model.
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Figure 4.12 Learning rate schedule with a cosine annealing strategy with warm restarts. The
learning rate at epoch t depends on the number of epochs in the initial cycle T0 and the cycle length
factor Tmult. The initial learning if ηmax = 0.1 and the minimal learning rate is ηmin = 10−3.

Unlike in Chapter 2, the learning rate is scheduled with a cosine annealing strategy
with warm restarts (Loshchilov and Hutter, 2016) and not a multistep strategy. Given
an initial learning rate η0 = ηmax > 0, a minimal learning rate ηmin > 0, the number of
epochs in a cycle T0 and the current number of epochs in the cycle Tcurr, the learning
rate is updated at each iteration t as:

ηt = ηmin + 1
2(ηmax − ηmin)

(
1 + cos

{
Tcurr

T0
π

})
.

In practice, the cycle size is increased by a factor of Tmult > 0 at each restart – see
Figure 4.12 for a visualization of the learning rate scheduled with such a scheduler. Thus,
denoting NTcurr the number of restarts before the current iteration Tcurr, the scheduler
becomes:

ηt = ηmin + 1
2(ηmax − ηmin)

(
1 + cos

{
Tcurr

T
NTcurr
mult T0

π

})
.

This scheduler is known to help improve convergence and performance. Indeed, the
smooth variation helps the optimization process to escape local minima and explore the
parameter space more effectively. Moreover, thanks to the periodic restarts, the model is
forced to explore different regions of the optimization landscape. This can prevent the
model from getting stuck in suboptimal solutions and encourages better exploration of
the parameter space.
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Model evaluation.

The model is evaluated on multiple test sets. A first test set is inherited from the
train-validation-test stratified split. It represents 1% of the data and is used to check the
performance on Pl@ntNet and the partner’s data. Other test sets are used to evaluate
the model on specific tasks and species recognitions. Those safe sets contain unreleased
and curated data that are only to be used for the evaluation of this model.

On the model characteristics.

The current Pl@ntNet model – DINOv2 (Oquab et al., 2024) – is a transformer-based
network (Dosovitskiy et al., 2020). The former models used were a BEiT (Bao et al., 2021)
– also transformer-based – and an InceptionV3 (Szegedy et al., 2015) – a convolutional
neural network. Hereafter, we briefly describe the DINOv2 model characteristics.

In essence, the DINOv2 model is part of the DINO family: a family of models that
combines self-supervised learning and knowledge distillation. More details about DINOv2
are available in the original paper (Oquab et al., 2024) and the work before (Caron et al.,
2021).

On one hand, knowledge distillation is performed by training a student model to
mimic a teacher model. Given an input image, both networks predict a feature embedding
vector and the KL divergence loss between the two predictions is minimized. On the
other hand, the self-supervised aspect allows the training of a network without labels
first and then finetuning it on a supervised dataset. To achieve this, contrastive learning
is used: the goal is for the model to minimize the distance between similar pairs of data
and maximize the distance for dissimilar ones.

So how does DINOv2 combine both concepts? First, note that the contrastive learning
step is hidden in the embedding representation of the images (Caron et al., 2020). Then,
we can simplify DINOv2 into three main objectives:

• Image-level objective: cropped images are fed to a ViT-H/16 transformer – a vision
transformer that divides images into 16 patches (4× 4 grid) that is pretrained here
on the ImageNet-22K dataset – to produce embeddings. The student network is
trained on the embeddings to mimic the teacher network.

• Patch-level objective: The DINO teacher network only sees the image-level embed-
dings. The student network is trained to predict the teacher’s embeddings from
both the image and the patches’ embeddings. This forces the student to learn
helpful parts of the image to predict the teacher’s embeddings.

• Additional objectives: several (non-exhaustively) other regularization terms are
added to the objective such as KoLeo regularization of ℓ2 normed embeddings from
the same batch to spread them uniformly in the feature space, Sinkhorn-Knopp
batch normalization (used but not necessary considering their ablation study) etc.
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Note that, we consider embeddings, but a final softmax operator is used to consider
distributions and compute cross-entropy loss between teacher and student predictions.
However, as both networks do not have access to class labels yet, cross-entropy minimiza-
tion is done to align the teacher and student embeddings. Note that additional tricks are
performed to prevent the teacher and student networks from collapsing. There are four
main tricks used:

• Untying weights: as the model head is much smaller than the patch-level architec-
ture, the head can overfit the image-level data while the patches are underfitted.
Untying the weights of the head and the patch-level architecture helps to prevent
this.

• resolution adaptation during training to prevent the loss of small objects, this is
especially important in Pl@ntNet as small details on plants can help differentiate
species. Note that Pl@ntNet images use a 518× 518 resolution.

• EMA (exponential moving average): to stabilize the teacher network and prevent
collapsing predictions from the student, the teacher network is an exponentially
weighted average of the student. Roughly, the update at epoch t of DINOv2’s
teacher weights is θt ← λθt + (1− λ)θs with λ > 0 exponential weight (that follows
a cosine schedule from 0.996 and 1 during training), θt the teacher weights and θs

the student’s.

• centering and sharpening: both tricks – while intuitively opposing – can help avoid
collapsing to uniform or Dirac distributions in the feature space. Centering the
teacher embeddings before the softmax operator helps to prevent one feature from
dominating the others. Sharpening is done by scaling the teacher’s embeddings in
the softmax. Intuitively, the teacher has access to the full image and thus should
be more confident than the student who mostly sees patches. Thus the teacher
distribution should peak for the current (unknown) target class. By combining
both, the teacher’s distribution is non-trivial. This allows Pl@ntNet’s network to
keep some uncertainty in the predictions.

Finally, once this self-supervised learning is done, the model is finetuned on the
Pl@ntNet dataset with aggregated labels and can identify plant species and more. Note
that some patch-level operations were removed in Pl@ntNet in order not to classify an
image based on a single patch – e.g. an image of a flower next to a genitalia should not
be classified as a flower, but a rejection. The next step in this thesis is thus to detail the
label aggregation strategy, compare it to existing (and scaling) ones, and propose ways
to improve it.
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4.2 Pl@ntNet’s label aggregation strategy

As we discussed in Section 4.1, plant species identification is a task that requires skills
to recognize morphological traits (shapes, measurements, environments and specific
characteristics). A large number of users with diverse skills have participated in gathering
plant observations and helped improve the training dataset of our computer vision model.
Their participation is based on votes that they can cast on others’ observations, or by
the initial species determination of their observation. The quality of each vote is then
processed by the algorithm presented in Section 4.2.1.

At the time of writing, this participatory approach has resulted in the collection of
over 20 million observations, belonging to almost 46 000 species, by more than 6 million
users worldwide. In total, more than 25 million of images are shared in these observations.

Other citizen science projects such as iNaturalist (Van Horn et al., 2018) or eBird
(Sullivan et al., 2009) use a similar approach to collect data, but differ in their label
aggregation strategy. The iNaturalist project, with more than 2.5 million users, records
the votes at different taxonomic levels. The resulting label is the aggregation of at
least two votes on a species-level identification (or coarser or finer taxonomic level). A
taxon requires at least two-thirds agreements among identifiers and all users have the
same weight in the decision-making. Over time, a taxon can be further refined by the
community, debated or revoked. eBird handles taxon quality control by using a checklist
in each region for observers. Quality control on the checklist is performed and, combined
with user knowledge – number of species and checklist submitted, number of flagged
observations, discussions among local experts – the species observation is accepted. The
eBird project also showed that monitoring species accumulation from observers can help
to sort their skills (Kelling et al., 2015). While they consider the species accumulation by
hours spent on each collected observation, we present a strategy that takes into account
the entire history of observations of the observer.

4.2.1 Presentation of the algorithm

Pl@ntNet label aggregation strategy relies on estimating the number of correctly
identified species for each user. Similar to other strategies, we rely on an EM-based
iterative procedure (Dempster et al., 1977) to estimate consecutively the users’ skills and
each observation’s species. The detailed iterative algorithm is provided in Algorithm 5.

The label aggregation strategy generates a trust indicator (si) on the observation that
can reveal whether an observation is valid or not. Notice that in Algorithm 5 we value 10
times more authored observations than voting on other’s observations – if a user proposes
a new observation with a label (species name) it is more useful than proposing a label by
clicking. Indeed, being on the field leads to more information on the environment and a
better determination of the species. Finally, note that an identified species is exclusively
identified as an author – part of nauthor

j in Algorithm 5 – or as click – part of nvote
j – to
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Algorithm 5 Pl@ntNet iterative weighted majority vote
Input: Votes as (j, y(j)

i )i∈[ntask],j∈[nuser] for each observation xi ∈ X and user j answering
the voted species y(j)

i , accuracy threshold θacc, confidence threshold θconf, weight function
f , initial weight γ > 0
Ouptput: Estimated labels ŷi and validity indicator si for each observation
i

1: Initialize ŷi = MV
(
{y(j)

i }j
)

for each observation i ∈ [ntask]
2: Initialize user weights as wj = γ for each user j ∈ [nuser]
3: while not converged do
4: for each observation i ∈ [ntask] do
5: Compute label confidence: confi(ŷi) =

∑
j∈A(xi)wj1(y(j)

i = ŷi)
6: Compute label accuracy: acci(ŷi) = confi(ŷi)/

∑
k∈[K] confi(k)

7: Compute validity indicator: si = 1(acci(ŷi) ≥ θacc and conf i(ŷi) ≥ θconf)
8: for each user j ∈ [nuser] do
9: Compute the number of valid identified species for authoring observations:

nauthor
j = |{y(j)

i ∈ [K] | y(j)
i = ŷi, si = 1,Author(i) = j}|

10: Compute the number of identified species by voting on other’s observations:

nvote
j = |{y(j)

i ∈ [K] | y(j)
i = ŷi,Author(i) ̸= j}|

11: Compute the rounding number of identified species per user:

nj = Round
(
nauthor

j + 1
10n

vote
j

)

12: Transform number of estimated species per user into trust score: wj = f(nj)
13: Update estimated labels with a weighted majority vote

∀i ∈ [ntask], ŷi = arg max
k∈[K]

∑
u∈A(xi)

wj1(y(j)
i = k)

avoid redundant skills. The final number of species identified by users is the aggregation
of these two terms: nj = Round

(
nauthor

j + 1
10n

vote
j

)
.

The weight function f shown in Figure 4.13 is a non-decreasing function that maps
the number of identified species nj to a trust score in the form of:

wj = f(nj) = nα
j − n

β
j + γ , (4.1)
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Figure 4.13 Weight function in Equation (4.1) used to map the number of identified species
to a trust score in the Pl@ntNet label aggregation strategy. A new user starts with a weight of
f(0) = f(1) = γ ≃ 0.74. The user confidence threshold θconf = 2 requires a user to have identified
at least nj = 8 species to become self-validating. The parameters α = 0.5, β = 0.2 and γ ≃ 0.74
are used in practice.

where α, β ∈ R⋆
+ are hyperparameters that were calibrated internally to fit prior knowledge

and γ > 0 is the constant representing the initial weight of each user. In practice, we
use α = 0.5, β = 0.2 and γ = log(2.1) ≃ 0.74 in the weight function. This function is
sub-linear (O(√nj)) but with two regimes. The goal of Equation (4.1) is to separate
new users from experts and then help sort multiple experts. This is modeled by the two
regimes of the weight function. In the first regime which corresponds to new users with
low nj , the term in the power of β decreases the weight. We chose an initial weight wj = γ

such that a user has a weight equal to 1 (rounding to two decimals) with two different
identifications. This separates the users who only come once to test the application from
others. In the second regime with a higher number of identified species, the term to the
power of β becomes negligible and we tend to the square root function. The sub-linear
scale allows for reducing discrepancies between people who have identified a comparable
number of species (and thus have presumably comparable expertise). As for the two
thresholds that control the level of uncertainty accepted for a given label, they are set
to θconf = 2 to control the total weight on an observation and θacc = 0.7 to control the
agreement between users given their expertise.

Users are said self-validating when they are trusted enough so that their proposed
label single-handedly makes an observation valid (si = 1). From Algorithm 5, we see that
this is verified when their weight wj is greater than the level θconf. Indeed, with a single
label we obtain confi(ŷi) = wj > θconf and acci(ŷi) = 1 > θacc. In practice, this means
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that an experienced user who has collected enough weight can validate any observation
without any other user’s vote. Note that this identification can later be invalidated by
other users with enough weight thanks to the accuracy threshold θaccs.

4.2.2 Introducing a subset of Pl@ntNet to evaluate the current strategy

To compare the different label aggregation strategies on large-scale datasets, we introduce
a subset of the Pl@ntNet database focused on Southwestern European flora observations
– Baleares, Corsica, France, Portugal, Sardegna and Spain – from 2017 to October 2023.
In total, 9 005 108 votes are cast by nuser = 823 251 users on 6 699 593 observations
after two cleaning steps on the voted species. The first one is a filtering step. We only
keep the votes with plant species belonging to the World Checklist of Vascular Plants
(WCVP) (Govaerts, 2023). For the second step, according to Kew’s Royal Botanical
Garden, we matched synonyms to their backbone species if the species is part of the
k-southwestern-europe checklist from Plants of the World Online (POWO, 2024) (POWO)
system. Note that there are plant species listed in the accepted species from WCVP
that are not in the k-southwestern-europe POWO checklist. As there is a possible taxon
ambiguity in this case – multiple species possible for a given synonym depending on
the referential – we leave the proposed label untouched. The dataset is available at
https://zenodo.org/records/10782465.

In the following, denote K the number of species within the dataset. We will
consider multiple subsets of one large released dataset. We index the observations by
i ∈ [n•] = {1, . . . , n•} where D• is the considered dataset composed of n• observations and
their associated votes. For a given subset we do not address the number of observations
(previously called tasks) as ntask but as n•. For example, the full south-western European
flora dataset from Pl@ntNet of nSWE = 6 699 593 observations is denoted DSWE. Other
subsets are presented in Figure 4.14. Each user j has a unique identifier used as an index,
and we denote A(xi) the set of users that have voted on observation xi. The vote of user
j on observation i is denoted y(j)

i ∈ [K] is a free text field. Estimated labels are denoted
ŷi ∈ [K] – we only consider hard labels. Each observation i is created by an author j
stored in Author(i).

Creation of an evaluation set in a crowdsourcing setting.

To evaluate the performance of a label aggregation strategy, it is necessary to know
the ground truth on a subset of the data. However, in the context of crowdsourced
data, there is no known truth for the observations. The sheer volume of data makes it
impossible to ask botanical experts to create such ground truth for the whole database.
Moreover, identifying species from images is much less accurate than identifying them in
the field, due to the partial information contained in the image (Experts, 2018).

Instead of asking experts to label a subset of the data, we rather identify botanical
experts in the Pl@ntNet user database and consider their determinations as ground truth.

https://zenodo.org/records/10782465
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Figure 4.14 Log-scales distribution of the observations in the South-West European Flora subset
from the Pl@ntNet database. Note that the (sub-)datasets introduced are nested: DSWE ⊃
Dexpert ⊃ Dmultiple votes ⊃ Ddisagreement. Dexpert and the following subsets contain observations
that received at least one vote from one of the experts.

We asked botanical-known experts to reference other experts who could have a Pl@ntNet
account to create a list of expert users. To these we have added TelaBotanica (Heaton
et al., 2010) users with registered confirmed botanical experience from their account and
that are also Pl@ntNet users that participated in the South-Western Europe flora subset.
In total, 98 Pl@ntNet users were identified as botanical experts. Observations with at
least one vote from one of these experts constitute our test set denoted Dexpert. The
answers of these experts are considered ground truth labels and used to evaluate strategies’
performance. Despite our selection process of supposedly ‘indisputable’ experts, a few
observations in the test set still end up with contradictory labels (4 observations in total).
As they represent a very small percentage, we simply removed them from Dexpert.

Our evaluation set Dexpert is finally composed of 26 811 observations which received
at least one vote from one of the experts. Despite the large number of users, not all
observations obtain multiple annotations. Indeed, 310 564 users were single-time voters
(meaning they interacted with the system only once). The lack of votes is a large
component of difficulty in the Pl@ntNet database, as there is a high imbalance of the
distribution of votes between observations as represented in Figure 4.15b. There is a high
concentration of votes for a small percentage of the observations as shown in Figure 4.15a.
Of these evaluation data, 17 125 received more than two identifications and are stored
in Dmultiple votes. Then, 1 263 have more than two votes with at least one disagreement
between users and are stored in Ddisagreement. Figure 4.14 shows the distribution of
observations from DSWE to the finer and more ambiguous Ddisagreement.



4.2 Pl@ntNet’s label aggregation strategy 119

(a) Relationship between the number of observa-
tions per user and the variety of species proposed
per user. Each point represents a concentration
of users in the SWE flora subset. 310,564 users
proposed a single vote.

(b) Lorenz curves representing the
imbalance distribution of the num-
ber of votes in the South-West Euro-
pean Flora subset from the Pl@ntNet
database. This imbalance is mitigated
but kept in the created test set.

Figure 4.15 Pl@ntNet activity summary in the SWE flora subset. (A): The majority of users
have proposed a small number of observations and species. However, some users have proposed a
large number of observations and species. (B): In a perfectly balanced dataset, the Lorenz curve
would be the diagonal – 50% of the votes would be for 50% of the observations. In practice, there
is a high imbalance of the distribution of votes between observations – 80% of the observations
are represented by 10% of votes. In total, 5.90% of the users are self-validating(50 446 users in
SWE flora subset).

Evaluated aggregation strategies.

Plant species label aggregation is a challenging task due to the large number of species
K = 11 425. Hence, many classical strategies in the label aggregation literature such
as Dawid and Skene’s (Dawid and Skene, 1979) and other variations (Passonneau and
Carpenter, 2014; Sinha et al., 2018) are not applicable as they require estimating a
K ×K confusion matrix for each user. For the considered dataset DSWE, this would
result in 11 4252 × 823 251 ≈ 1014 parameters to estimate. Similar issues occur for other
label aggregation strategies (Whitehill et al., 2009; Hovy et al., 2013; Ma and Olshevsky,
2020). We do not consider deep-learning-based crowdsourcing strategies as Rodrigues
and Pereira (2018); Chu et al. (2021) or Lefort et al. (2024) as they require training a
neural network from crowdsourced labels, but do not output aggregated labels on the
training set. In the Pl@ntNet application, we need to propose one or multiple species
for each observation to users. To overcome these issues, we consider the following label
aggregation strategies that can scale with K and the number of users:

• Majority Vote (MV): it selects the most answered label and is the most common
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aggregation strategy. More formally, given an observation i:

MV(i, {y(j)
i }j) = arg max

k∈[K]

∑
j∈A(xi)

1(y(j)
i = k) .

• Worker Agreement With Aggregate (WAWA): this strategy, also known as
the inter-rater agreement, weights each user by how much they agree with the MV
labels on average. More formally, given an observation i:

WAWA(i,DSWE) = arg max
k∈[K]

∑
j∈A(xi)

wj1(y(j)
i = k)

with wj = 1
|{y(j)

i′ }i′ |

nSWE∑
i′=1

1
(
y

(j)
i′ = MV(i′, {y(j)

i′ }j)
)
.

As there is no observation filter for the MV and WAWA, we consider that for all
observation i, si = 1 for these two strategies.

• TwoThird: The TwoThird aggregation generates a label for observations with at
least two votes. The estimated label represents the one with at least two-thirds of
the majority in agreement. Every user has the same weight in the aggregation. It
is part of the iNaturalist’s label aggregation system (Van Horn et al., 2018). More
formally:

TwoThird(i, {y(j)
i }j) =

MV(i, {y(j)
i }j) if si = 1

undefined otherwise

with si = 1

max
k∈[K]

1
|A(xi)|

∑
j∈A(xi)

1(y(j)
i = k) ≥ 2

3

 .

Evaluation metrics.

To evaluate the label aggregation strategies, we use the following label recovery accuracy
computed on the evaluation datasets:

Acc(ŷ, y;D•) = 1
n•

n•∑
i=1

1(ŷi = yi)1(si = 1) ,

with ŷ = (ŷi)i the estimated labels onD• ∈ {Dexpert,Dmultiple votes,Ddisagreement}, y = (yi)i

the associated experts labels, considered as ground truth. When the aggregation strategy
indicates the observation as invalid (si = 0 for Pl@ntNet and TwoThird), this metric
considers the sample as wrongly classified. Precision and recall scores are also computed
to respectively measure the correctness of the observations indicated as valid and the
ability to recover the ground truth observations in the valid set. We take into account the
species imbalance by using a macro-average for these metrics. This treats rare species as
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equally important to common ones. Denoting respectively TPk, FPk and FNk the true
positives, false positives and false negatives related to the species k, the macro averaged
precision and recall write

Precisionmacro = 1
K

K∑
k=1

TPk

TPk + FPk
and Recallmacro = 1

K

K∑
k=1

TPk

TPk + FNk
.

As both the Pl@ntNet and the TwoThird strategies can invalidate some of the
observations, we also compute the proportion of observations removed from the whole
dataset (whereas previous metrics are computed on the evaluation dataset). This
complementary metric allows measuring the proportion of samples "lost" for the training
of the AI model after the aggregation step. In practice, filtering data might remove some
noisy samples from the dataset. Yet, in general, the more samples are filtered, the fewer
ones to train the neural network training. Finally, we also consider the proportion of
species retrieved by the aggregation strategies on Dexpert,Dmultiple votes and Ddisagreement.
This is a critical consideration because if a species identified by experts is absent from
the aggregated data, the neural network trained on this data will be unable to make
predictions for that very species.

We evaluate the label recovery Acc of each strategy on Dexpert,Dmultiple votes and
Ddisagreement (see also Figure 4.14): the test set where experts have provided at least one
vote (Dexpert), its subset of observations with at least 2 votes and one from an expert
(Dmultiple votes) and its subset of observations with at least 2 votes, one from an expert,
and one disagreement (Ddisagreement). The latter is the most challenging as it contains
the observations with the most ambiguity. We selected these subsets to investigate the
label aggregation strategies’ performance depending on the ambiguity level.

4.2.3 Results on label aggregations

Accuracy of the aggregation strategies.

We begin by evaluating the accuracy of the label aggregation strategies on the set
of observations labeled by experts, Dexpert. Figure 4.16 shows how many predicted
labels match the experts answers on Dmultiple votes and Ddisagreement. More importantly,
we compare this quantity with the proportion of species retrieved by the aggregation
strategy. We observe that the data filtering from the TwoThird strategy – requiring
at least two third of agreements – highly degrades performance with respect to other
strategies. On Dexpert, MV reaches 97% of accuracy, WAWA 98%, TwoThird 60% and
Pl@ntNet 99%. To differentiate between the best-performing strategies, we need to look
at more ambiguous observations like those in Dmultiple votes and Ddisagreement. In highly
ambiguous frameworks, the WAWA strategy outperforms the MV one. However, overall
the Pl@ntNet aggregation is more often in adequation with the experts and retrieves
almost 90% of plant species identified by experts in highly ambiguous datasets against
73% for WAWA, 71% for MV and only 41% for TwoThird.
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(a) Accuracy on Dmultiple votes w.r.t. to the
proportion of classes recovered

(b) Accuracy on Ddisagreement w.r.t. the pro-
portion of classes recovered

Figure 4.16 Accuracy of the aggregation strategies w.r.t. the proportion of classes (species)
retrieved on subsets with at least two votes – either agreeing (A) or with at least one disagreeing
vote (B). The Pl@ntNet aggregation is more accurate, especially in a highly ambiguous setting
(B). The TwoThird data filter highly impacts how many classes are kept in the dataset and the
overall accuracy in both settings. WAWA and MV perform similarly with a benefit for WAWA
when skill evaluation is needed.

Precision and recall.

To better evaluate each aggregation strategy, we compute the macro precision and recall
metrics for each species. Results are shown in Figure 4.17a. The observations filter
(si = 0) for the TwoThird strategy highly impacts its ability to identify most of the
positive observations for a given species. While this agreement threshold filter is created
to keep as few noisy samples as possible in research-graded (data quality indicator for
research database usage in TwoThird) observations, TwoThird obtains better precision
than MV and WAWA but Pl@ntNet’s precision shows significant improvement. WAWA
strategy outperforms a naive MV aggregation showing that, indeed, weighing users
can lead to better performance. Pl@ntNet strategy outperforms all others by several
orders of magnitude. Weighing users based on their number of identified species is both
interpretable and effective. The observation filter does not negatively impact the recall.

Volume of valid data.

The community labels are aggregated to generate training data for the AI model. The
more data the better, however, we need to filter out observations with low visual quality
or potentially mislabeled. This is the reason for the validity indicator si in the TwoThird
and Pl@ntNet strategies. On DSWE, Figure 4.17b shows how much data is kept for
later training. MV and WAWA keep all proposed observation for training – including
potential noisy ones. TwoThird filters out most observations to keep nearly 1.5 million
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(a) Precision and recall of label aggregation
strategies on Ddisagreement.

(b) Number of observations in DSWE indicated
as valid for training (si = 1).

Figure 4.17 (A): TwoThird strategy has better precision than MV and WAWA strategies, with
lower recall because of the heavy filter on the validity of observations. Pl@ntNet aggregation
strategy obtains the best precision and recall and outperforms other strategies. (B): TwoThird
performance drop can be explained in part by the high proportion of data considered invalid.
Note that MV and WAWA strategies do not invalidate any observation, hence keeping potentially
mislabeled or low-quality observations. Pl@ntNet achieves a balance between filtering out
observations and achieving high performance.

(representing 23.43% of the total observations). Pl@ntNet finds an improved balance
between filtering invalid observations and keeping enough data for training.

Figure 4.18 Examples of invalid (si = 0) and valid (si = 1) observations using the Pl@ntNet
strategy described in Algorithm 5.
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Qualitative results on Pl@ntNet observation filter

In this section, we show some examples of observations invalidated by the Pl@ntNet
strategy (see Figure 4.18). Invalid observations often come from the lack of user partici-
pation with other’s observations. Causes of disagreements from users can occur from a
multitude of factors – blurriness, multiple species in the same observation, the distance
from the plant does not allow precise identification, etc. Valid observations, as shown in
the second row of Figure 4.18 are zoomed in on the plant’s flower, leaf or organ to help
the identification process.

4.3 On the choice of the weight function

The current weight determination function in Pl@ntNet is based on the number of species
identified by the user:

wj = f(nj) = n0.5
j − n0.2

j + γ . (4.2)

The confidence threshold is set such that with nj = 8 a user becomes self-validating.
One can argue that a simplification could be made of such a function to simplify both
the computation and the interpretability. We propose to explore simple monotonous
functions of the number of identified species. And for each weight function f , we adapt
the θconf such that θconf ≃ f(8).

The simplification constraints are:

• interpretability: we need to understand easily the link between the weight and the
number of identified species

• closeness to the current weights: the new weight functions should not modify the
current general behavior in order not to impact the platform

• performance: the new weight functions should not degrade the performance of the
label aggregation strategy

• collaborative correction: the new weight function should allow an expert to correct
erroneous answers from multiple low-weight users. Similarly, multiple low-weight
users’ votes should be able to correct votes from a non-expert user.

Table 4.1 Weight functions tested, the associated confidence threshold θconf and the accuracy
performance on Ddisagreement.

Function f(nj) n0.5
j − n0.2

j + γ (current) nj + γ n0.5
j + γ n0.75

j + γ n2
j + γ log(nj) + γ

θconf 2 8.75 3.6 5.5 64.75 2.82
Acc(ŷ, y,Ddisagreement) 0.781 0.779 0.782 0.779 0.777 0.721
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Figure 4.19 Visualisation of the different functions tested for the weight determination.

The first conclusion when running the label aggregation with the weight functions
from Table 4.1 is that except for the log transformation, all weight functions lead to
similar performance. For example, the label recovery accuracy Acc on Ddisagreement is
given in Table 4.1.
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Figure 4.20 Zoomed empirical CDF of the weights obtained after running Pl@ntNet’s label
aggregation strategy with the weight functions tested in Table 4.1. The log transformation result
is represented for the sake of completeness.

As performance is similar between the different weight functions other than the
logarithmic one – similar conclusions are observed for the other evaluation subsets – let
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us look at how the weight functions spread users’ weights. To do so, we plot the empirical
cumulative distributive function (CDF) of the weights per function tested. As the scales
vary between the obtained weights, we use a minmax scaling to compare the CDFs with
weights in [0, 1]. More formally, for each vector of weight obtained, we compute:

CDFw(t) = 1
nuser

nuser∑
j=1

1 (w̃j ≤ t) , ∀t ∈ [0, 1]

with, w̃ = w −minj(wj)
maxj(wj)−minj(wj) .

From Figure 4.20, we observe the following:

• The high concentration of low-weighted users creates the visible steps, then in the
second phase there are a lot of users spread with weights close to each other leading
to the smooth portion of the CDF.

• To mimic the current weight function, the most appropriate functions are f(nj) =
n0.75

j + γ for low weighted users and f(nj) = n0.5
j + γ for the high weighted users.

The asymptotic behavior is expected: n0.5
j − n0.2

j + γ ∼
nj→+∞

n0.5
j .

• The square transformation spreads users the most, however, it might not be
appropriate in practice as the superlinear behavior means that it is easy to become
a high-weighted user and difficult for users to correct mistakes.

• On a side note, we can observe a reason why the log transformation is not suited.
Users are close to one another – the weights are not spread – meaning that an
expert with a high number of identified species is easily contradicted by a few users
with few identified species.

In conclusion, the current weight function could be simplified as f(nj) = n0.5
j + γ or

f(nj) = n0.75
j + γ. Both yield similar results and spread of user weights. To keep the

asymptotic behavior, the square root transformation is the most suited. Test deployments
on the full database could help in practice differentiate between the two candidates.
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An example of why log and square are not suited for collaborative correction?

Let us ignore the γ term for simplicity in the following examples.

• Log transformation: expert knowledge is not represented correctly as
low-weight users can easily overweight an expert.

Consider an expert with nexpert = 80 identified species and 3 users u1, u2
and u3 with n1 = 3, n2 = 5 and n3 = 6 identified species. Then:

wexpert = log(80) = log(8) + log(10) ≃ 4.38
< 4.50 ≃ log(3) + log(5) + log(6)
< wu1 + wu2 + wu3 .

• Square transformation: An expert aided by multiple self-validating users
might not correct another expert with similar knowledge.

Take two experts e1 and e2 such that ne1 = 102 and ne2 = 100. Those experts
should have close weights are their number of identified species is close. If
expert e2 wants to correct e1, they can not do so with 5 other users u1, . . . , u5
that are self-validating (i.e. with at least 8 identified species):

we1 = 1022 = 10404 > 10320 = 1002 + 5× 82 = we2 +
5∑

j=1
wuj .

Hence, the square and log transformation should not be considered for such a task.

4.3.1 On the choice of the weight in the weight function

Currently, the weight of user j, denoted by wj > 0 is computed from the estimated
number of identified species nj . This choice does not penalize users who either/both:

• might have correctly identified a species a one point and now have lost this ability,

• are self-validating – more than 8 identified species – and produce new wrong
identifications.

This is a common issue in crowdsourcing systems where users can have a high reputation
but still make mistakes. To mitigate this issue, classically in crowdsourcing, the votes of
other users are used to correct the mistakes and a time-dependency can be introduced to
the weights.
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Penalize the mistakes

As we do not have a skill evolution metric to create a time dependency in the votes, let
us consider ways to penalize the mistakes of users. We compare the following strategies:

• Vanilla: the number of identified species is not penalized.

• Difference: the number of identified species is penalized by the number of wrongly
identified species. The weight writes:

wj = f(ñj) = f(min(nj − nj,invalid, 0))

with nj,invalid = Round
(
nauthor

j,invalid + 1
10n

vote
j,invalid

)
the number of wrongly identified

species by user j either by vote or new observation. The quantity nauthor
j,invalid = |{y(j)

i ∈
[K] | y(j)

i ̸= ŷi, s1 = 1,Author(i) = j} represents wrong identifications on authored
valid observations. The same applies for nvote

j,invalid for votes on all observations.
Conceptually, one’s weight is great if they have more correct identifications than
wrong ones.

• Ratio: the number of identified species is penalized by the number of different
proposed species. The weight writes:

wj = f(ñj) = f

(
nj

nproposed
nj

)
,

with nproposed = |{y(j)
i ∈ [K]}| the number of different proposed species by user j.

Morally, the ratio nj

nproposed
∈ [0, 1] represents the proportion of identified species

among the proposed ones. If a user proposes a lot of different species, they should
be correct otherwise this diversity could be seen as spam votes.

• Accuracy: similar to the WAWA strategy, we also consider weighting nj by the
accuracy of worker j:

wj = f(ñj) = f

([
1

|{y(j)
i′ }i′ |

nSWE∑
i′=1

1
(
y

(j)
i′ = MV(i′, {y(j)

i′ }j)
)]
nj

)
.

Morally, a user-identified species can not be trusted if other users need to correct
them too often.

In Figure 4.21, we observe that the new weight functions do not outperform the current
system. The Accuracy reweighting is the closest to the Vanilla strategy. Hereafter, we
discuss the reasons why the new weight functions do not outperform the current system
and possible perspectives.
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(a) Accuracy on Ddisagreement w.r.t. to the
proportion of classes retrieved

(b) Macro recall w.r.t the macro precision on
Ddisagreement.

Figure 4.21 Accuracy, proportion of classes retrieved, precision and recall on Ddisagreement
depending on the new computation of the weights. The Accuracy reweighting is the closest
to the Vanilla performance. Note that, no newly proposed method outperforms the Vanilla
strategy.

Discussion.

First, consider that from a user perspective modifying the weights comes at a high
cost: one might feel that their contributions are not valued if we penalize mistakes and
participate less. But the goal of Pl@ntNet is also to get quality labels to output reliable
predictions.

Several issues can be considered and possibly mitigated in the previously proposed
methodology to modify the user’s weight:

• Data sparsity. A user that is self-validating can validate their observation. If
they propose a new species, their identification becomes valid and increases their
weight even though there is no feedback on their knowledge of these new species.
And if a self-validating user proposes multiple identification incorrect, only other
votes can invalidate them. This is both a strength and weakness of crowdsourcing:
we need to trust the users to some extent and interactions between users on the
same observation to estimate their reliability. Observations with a single label
are more likely to be mislabeled. In the SWE subset, 24.08% of the observations
have only one label (1 613 354 observations). These votes are not reviewed by the
community and can only be trusted to some extent. And 62.28% of the users
only voted once (512 687 users). These users have a weight close to zero and their
observations are not valid in a vast majority.

• Corrections and penalizations. First, mistakes from users that are not self-
validating are less impactful in the system as they are easily fixed. Until someone
agrees with the vote there is not enough weight to validate the observation (thanks
to the θconf threshold). However, for self-validating users, the mistakes are more
impactful as they can validate their observations and gain weight more easily. If
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we penalize their participation by weights like WAWA’s based on their accuracy we
can think of at least three possibilities:

– Classical accuracy: but as most of their observation has only their vote
(and are not corrected) they have a small penalty that does not influence
performance (see Figure 4.21). And also they are not incentivized to vote on
others’ observations as they might decrease in weight with these interactions.

– Accuracy on reviewed valid observations: we could consider the accuracy
of the user on observations currently valid (si = 1) and with at least two
votes. Given a user j, denote their set of observations with at least two votes
D(j)

reviewed,valid = {i ; |{y(j)
i }i| ≥ 2 and si = 1}.

The main issue is that if an observation is corrected with a disagreeing vote,
for it to be valid the θacc threshold needs to be reached. This is hard to
meet. For example, consider a vote by a user with n1 = 30 identified species.
If another user answers a contradicting vote, they should have at least 141
identified species to validate the observation with the θacc threshold. For two
contradicting users, we can plot the minimal number of identified species for
the users to validate the observation with the θacc threshold in Figure 4.22.
Each user must have at least n2 = n3 = 40 identified species to validate their
correction if n1 = 30, or they can compensate each other knowledge (see
Figure 4.22). This requirement is hardly met in practice, leading to a similar
accuracy for users.
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Figure 4.22 Minimal number of identified species n2 and n3 for two users to validate an
observation with a common disagreeing vote if the author has n1 = 30 identified species. The
θacc threshold is f(n2)+f(n3)

f(n1)+f(n2)+f(n3) and must be greater than θacc = 0.7.

In a more general setting, this can be seen as an optimization problem with
constraints:

arg min
n∈Rd+1

+

∥n∥22 s.t.
∑

j≥1 nj∑
j≥0 nj

− θacc ≥ 0 ,
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where n ∈ Rd+1
+ is the vector of the number of identified species for d+ 1 users:

n0 for the author of the vote to correct and (nj)j≥1 for the d others trying
to correct it. This problem can be solved numerically using scipy.optimize
library for example for any dimension.

– Accuracy on reviewed observations: we can relax the latter condition and con-
sider all observations and no condition on the validity. Given a user j, denote
their set of observations with at least two votes D(j)

reviewed = {i ; |{y(j)
i }i| ≥ 2}.

The reviewed accuracy of user j writes:

Accreviewed({y(j)
i }j , y;DSWE) = 1

|D(j)
reviewed|

∑
i∈D(j)

reviewed

1(y(j)
i = yi) .

However, in practice, this still does not outperform the Vanilla weight. This
can be explained as there are few observations with multiple votes and a
disagreement in DSWE (67 962 observations, representing 1.01% of the dataset).
Fewer of these observations have a ground truth label (Ddisagreement) so we
might not see the impact of such weight even on a such large subset dataset
of Pl@ntNet.

To conclude this discussion on the penalization of the mistakes, we can say that the
current weight function is a good compromise between the number of identified species
and the quality of the identifications. Penalizing the mistakes is not straightforward and
the current system is already quite efficient. The main issue is the lack of interactions
between users on the same observation. With more interactions in the future, we could
reconsider these penalizations to improve the quality of the data – and the code will be
able to do so.

So, if the issue is the lack of votes, we need to incentivize users to vote on others’
observations. This could be done using a recommendation system for users. This
recommendation system should take into account both some sense of skills (the currently
identified species, or at least their family), the current weight (a vote from a new user is
not very useful against an expert), and an exploration part to help users discover new
species. In the meantime, the lack of votes can be mitigated by the current Pl@ntNet
computer vision predictions’.

4.4 Integrating model predictions in the aggregation

While we restricted ourselves to the SWE subset, Pl@ntNet’s data is collected inter-
nationally. The more correctly identified observations are added to the training set,
the better the prediction of the trained model for end-users. This classifier is trained
from valid observations and aggregated labels (see Figure 4.10 and Section 4.1.4). At
the time of writing, the model in use in Pl@ntNet is DINOv2 (Oquab et al., 2024) a
transformer-based network. However, note that some observations from DSWE have been
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processed by an earlier version of Pl@ntNet’s AI: either an InceptionV3 (Szegedy et al.,
2015) or a BEIT (Bao et al., 2021) classifier. We can use the classifiers to generate votes.
For an observation i, the AI vote is denoted yAI

i ∈ [K]. The probability output in the
classifier’s predicted species is denoted P(yAI

i ).

4.4.1 Possible strategies

If we consider the trained model as any other user, denoted as AI as user, the previously
presented label aggregations are available. However, with the Pl@ntNet aggregation
algorithm, the AI weight increases drastically and overpowers human users. This would
mean the next Pl@ntNet model is mostly trained on the predictions of the previous
one. This defeats the purpose of a cooperative active learning system and the human-AI
interaction. It would result in a dangerous feedback loop, and possible mode collapse.
Thus, we explore alternative ways of integrating the AI votes in the aggregation algorithm:

• AI as user: This is the naive approach we just described. The AI is considered
as any other user in the database. The total number of users is thus raised to
nuser + 1.

• Fixed weight AI: Give a fixed weight wAI = 1.7 > 0 to the AI. The weight
is below the threshold θconf so that it can not self-validate its predictions. The
confidence writes

confi(ŷi) =
∑

j∈A(xi)
wj1(y(j)

i = ŷi) + wAI1(yAI
i = k) . (4.3)

The final estimated label becomes

ŷi = arg max
k∈[K]

∑
j∈A(xi)

wj1(y(j)
i = k) + wAI1(yAI

i = k) . (4.4)

• Invalidating AI: The AI is considered as a user with a fixed weight and can
only participate in invalidating identifications i.e. have si = 0. This translates as
the confidence updated as in Equation (4.3) but the final Weighted MV remains
unchanged from Algorithm 5.

• Confident AI: The AI is considered a user with a fixed weight and can only
participate if the confidence in its prediction P(yAI

i ) is over a threshold θscore ∈ [0, 1].
The confidence writes

conf i(ŷi) =
∑

j∈A(xi)
wj1(y(j)

i = ŷi) + wAI1(y(j)
i = ŷi, P(yAI

i ) ≥ θscore) . (4.5)

The final estimated label becomes

ŷi = arg max
k∈[K]

∑
j∈A(xi)

wj1(y(j)
i = k) + wAI1(yAI

i = k, P(yAI
i ) ≥ θscore) . (4.6)
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4.4.2 On the choice of the AI weight.

The AI has a fixed weight wAI > 0 for the Fixed weight AI, the Invalidating AI and the
Confident AI strategies. The choice of this weight must meet several constraints. First,
we would like to avoid the AI votes to be self-validating as it would validate all the AI
predictions on a large part of the database, thus we must have wAI < θconf in Algorithm 5.
We also want the AI votes to help clean the database by invalidating some observations
from low-weight users (with weight 0< wlow ≤ θconf). Thus wlow/(wlow + wAI) < θacc.
Hence, our constraints read: wAI < θconf

wlow
wlow+wAI

< θacc
. (4.7)

Taking the extreme case where a user becomes self-validating: wlow = θconf , we obtain
that wAI > θconf

(
1−θacc

θacc

)
. And using the first condition in Equation (4.7), we obtain the

bounds
θconf

(1− θacc
θacc

)
< wAI < θconf (⇐⇒ 0.85 < wAI < 2) . (4.8)

As more than a million observations from our dataset only have two votes, one way
to choose the AI weight is to consider that the AI can invalidate two erroneous non-
experts that would both have just enough weights to make the observation valid: 1.95 =
wlow < 2. Then, the AI weight should be greater than their cumulated confidence:
wAI > 2wlow

(
1−θacc

θacc

)
. We finally take the upper rounded value wAI = 1.70 (which

satisfies Equation (4.8)).

4.4.3 Results on integrating the AI in the aggregation

The current trained neural network model in Pl@ntNet’s system can make predictions
based on its training on the Pl@ntNet database (across different floras). We compare
the four following strategies – AI as user, fixed weight AI, invalidating AI and
confident AI, presented in Section 4.4.1 to integrate the AI vote into the Pl@ntNet
label aggregation strategy. For the confident AI strategy, we evaluate multiple thresholds
θscore. Note that if θscore = 0 the AI votes for all observations and if θscore = 1 the AI does
not vote and we recover the performance of the current Pl@ntNet aggregation strategy
presented in Algorithm 5. We see in Figure 4.23 that the confident AI strategy with
θscore = 0.7 seems to perform best and keep the most data in both DSWE and Dexpert.

4.4.4 Can we trust our current predicted probabilities?

As for the inclusion of the AI vote, some concerns should be raised. First, as the AI
model is trained from the aggregated labels and observations, integrating its vote should
not make the AI predictions run out of control. If we consider the AI as a user, as we
are in iterative training, the system fails to learn from the human labels. However, using
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Figure 4.23 Performance in label recovery and number of observations marked as valid depending
on how the AI vote is integrated. MV, WAWA and Pl@ntNet strategy without AI vote are used
as reference. The best-performing strategy overall is confident AI with θscore = 0.7. We also see
that when θscore tends to 1, we recover the vanilla Pl@ntNet aggregation strategy.

the AI vote to invalidate the data with a fixed weight can help clean the database, and
with enough weight other users can switch its validity back. However, this would not
help in switching the wrong label. To do so, we investigate in Section 4.4.1 to only
consider a fixed weight label with enough confidence from the AI model. We observe
that this strategy leads to better performance. As we use the output probabilities we
should discuss the calibration of our network too.

Calibration is the measure of how close the output confidence is to the true probability
(Niculescu-Mizil and Caruana, 2005). Currently, the Pl@ntNet AI is not calibrated using
post-processing methods (Platt, 1999; Guo et al., 2017). We discuss hereafter the
calibration of the current AI model and possible guidelines for further integration of AI
votes.

From Figure 4.24a, we see that currently, Pl@ntNet AI is underconfident. Meaning
that it consistently underestimates its confidence and outputs to users more uncertainty
than it should. One factor that can influence the results is that the calibration is computed
on the test set where experts either authored or voted on observations. Botanical experts
have more experience with taking pictures of plants and better equipment than the average
citizen. Thus, the observation quality – and subsequently the probability distribution
output by the AI – can be biased. Another factor known for leading to such suboptimal
predictions is the data augmentation (Kapoor et al., 2022). As the model trains on
multiple versions of each original sample with multiple distortions, these variations can
become unrepresentative of the underlying sample distribution and cause unnecessary
prediction difficulties. The data augmentation is used to mitigate the species imbalance
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(b) Reliability diagram of Pl@ntNet AI on
Ddisagreement

Figure 4.24 Reliability diagrams for the Pl@ntNet AI on the expert dataset and on the
more ambiguous Ddisagreement subset. The AI is overall underconfident (A). However, on more
ambiguous observations it is overconfident for observations leading to high predicted probabilities
(B).

of the database.

However, this imbalance is also known to lead to miscalibrations in predictions
(Ao et al., 2023). On Figure 4.24b, we see that for ambiguous observations (where
users disagree), the AI is overconfident in its highest predictions – which represents
half of the dataset – and underconfident in the other half. These different calibration
behaviors inform us that, if a given strategy should incorporate the AI votes in the
label aggregation based on the output probabilities, we need to be able to rely on such
probabilities. Therefore, even if the confident AI strategy leads to the best performance
in Section 4.4.1, it should not be used directly without recalibration of the model – using
for example temperature scaling (Guo et al., 2017). In future work, more study is needed
to investigate the confidence gap of the model and the observations’ ambiguity from users’
labels. The current large-scale and interpretable aggregation strategy from Pl@ntNet
already outperforms others without the AI votes.
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4.5 Conclusion

We demonstrated that collaborative identification of plant species can effectively be used
to obtain expert-level labels. Releasing a large subset of millions of observations and
thousands of users from the Pl@ntNet organization, we investigate a label aggregation
strategy that weighs user answers based on their estimated number of species correctly
identified without using prior expert knowledge. Many strategies used previously either
do not scale to the magnitude of the current databases – either Pl@ntNet, iNaturalist or
eBird – or are outperformed by our aggregation.

Our strategy weighs users based on the number of correctly identified species. This
weight is interpretable and shows the diversity of the user’s skill set. It can be directly
applied to other crowdsourced frameworks with a high number of classes like TwoThird
or eBird. The values for both hyperparameters θconf and θacc which respectively handle
the cumulated weight on observation and the agreement level for the given label can be
applied as is.

Note that Pl@ntNet’s label control system heavily rests on visual analysis of the
observations and inter-user agreements. Additional metadata such as geolocation, date,
phenological stage or visual description can be registered in Pl@ntNet and help identify
the plant’s species but are currently not directly taken into account for user evaluation.
Such information – in particular spatial information – could also be used to generate
more interaction between users and collect more votes through possible common interests.
In addition, users are helped by the system with images similar to the identification
proposed in a given checklist. The additional information could guide users in their vote –
for example by notifying a possible incoherence between the current botanical knowledge
on a species and the metadata entered (such as the altitude, the distance to the sea, a
species not known to survive in a given botanical area).

We also investigated the integration of the AI votes in the aggregation strategy. We
concluded that a strategy involving a threshold on the prediction could be integrated, on
the condition that the predicted probabilities are calibrated beforehand.
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5.1 Conclusion

In this thesis, we considered the problem of image classification via crowdsourced labels.
First, we proposed a novel method – the WAUM – to identify possibly ambiguous
images in a crowdsourced dataset. We showed qualitatively and quantitatively that the
WAUM can help enhance computer vision model performance on crowdsourced datasets
by identifying the tasks to remove. It is another step towards the automation of the
data-cleaning process in crowdsourced datasets.

Second, we introduced the peerannot library to handle crowdsourced datasets in
image classification settings. Our open-source library is designed to be user-friendly and
efficient, and it provides a set of tools to preprocess, analyze, and train computer vision
models from crowdsourced datasets. We also created a benchmark in the benchopt
library for label aggregation strategies so that the community can easily compare their
methods on crowdsourced datasets.

Finally, we considered the Pl@ntNet project framework and evaluated the performance
of their label aggregation strategy on a newly released dataset. Very few label aggregation
strategies can be run on a dataset with such a large number of tasks, workers and classes.
Experimental results showed that the Pl@ntNet label aggregation strategy performs
best in this setting. We also proposed different strategies to improve it, and the current
solution found is to use the probability output of Pl@ntNet’s model as prior knowledge
in the label aggregation strategy – with a threshold on the probability considered.

5.2 Discussion and limits

We investigated crowdsourcing in a classification framework at different scales:

• Small to medium scale with the WAUM method.

• Large scale with the Pl@ntNet project.

The peerannot library was designed to handle these different scales. This thesis is a
step towards the automation of the data-cleaning process in crowdsourced datasets. We
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propose tools to help researchers handle crowdsourced datasets and improve the quality
of the data, within a reproducible framework.

We evaluated and created a framework to explore tasks and workers in crowdsourced
datasets. There are several limitations to our work:

• We did not consider a shift in the data distribution that could come from temporal
changes, users learning new skills, etc. In our setting, the database is considered
static, and the aggregation is run after the data collection. However, in practice,
the data collection process is ongoing, and the data distribution could change over
time. This is the case for example in Chapter 4 with the Pl@ntNet project. Users
contribute to the platform over time, and the quality of the annotations/engagement
could change.

• We did not consider running new experiments to collect more data, especially in
Chapter 4. Platforms such as zooniverse1 allow researchers to collect data and
annotations from users. This could be used to collect more data and improve the
quality of the annotations. However, our goal was to evaluate the current label
aggregation strategy with the current available data from the platform. Acquiring
new votes on an alternative platform would change the distribution of the votes we
evaluate and would not be comparable to the current label aggregation strategy
released. Also, the votes’ imbalance is one of the big challenges in Pl@ntNet:
mitigating this effect could help improve other strategies’ performance, at the cost
of not being representative of what happens currently in practice.

However, one point of interest that is addressed briefly in this thesis is the way
the annotations were collected. We shall expand on this point as we did not run new
experiments but could be of interest. The datasets used in this thesis were collected with
different processes:

• CIFAR-10H, Music and LabelMe: workers were asked to annotate the tasks by
clicking on one of the labels proposed

• Pl@ntNet: users are guided by the AI prediction, visual feedback (to compare
other observations from the proposed label) and textual feedback (if they propose
another species, a list of auto-completed species appears).

The first datasets have a constrained set of labels. Workers could have other answers
and not find the labels proposed in the list. For example, the image of a camper van
could be annotated as a car or a truck. Workers could not click on both or say "I don’t
know". This is a limitation of the dataset and could be improved by allowing workers to
propose other labels or to say "I don’t know". This would help to have a more accurate
representation of the ambiguity in the dataset. In the Pl@ntNet project, users can propose

1https://zooniverse.org/

https://zooniverse.org/
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other labels in a text input field. This can be seen as an unconstrained input. But the
list of labels is constrained to the species known in POWO (or at least we use a filter
not to consider other inputs). This could be seen as a semi-constrained contribution (or
guided input). Research (Chamberlain et al., 2020; Oppenlaender et al., 2020) has shown
that unconstrained input could help gather more feedback from the users (regarding the
interface, the answers proposed, etc.). Especially, in Chapter 2 we use the WAUM to find
ambiguous tasks in small to medium size datasets. On large datasets, unconstrained input
could help identify those tasks directly or build a framework to include them differently
– e.g. to add a tag. However, the cost is that the information gathered from users can
become more complex to analyze and require specific data preprocessing steps that are
not considered in this thesis. Also, we should keep in mind that the more freedom the
user has, the more complex the data collection process becomes. And users can prefer to
have a constrained (or semi-constrained) input to have a more straightforward annotation
process, especially if they have a monetization incentive and are required to do a large
amount of annotations per day as (partial or total) income.

5.3 Perspectives

Each work presented in the chapters of this thesis has immediate and long-term perspec-
tives that we detail below.

5.3.1 WAUM project.

The WAUM method is a weighted average. The weights are currently relying on the
DS confusion matrices, which prevents them from being used in a setting with a large
number of classes. A long-term perspective would be to consider other weights, that do
not rely on DS strategies, to make the WAUM method usable in a large number of class
settings. Preferably weights that can be theoretically evaluated to have performance
guarantees.

In the shorter term, the current way to use the WAUM method is to remove the tasks
with the WAUM below a quantile α ∈ R. This is class-agnostic and, in highly imbalanced
settings, could remove a class entirely from the training set. A by-class quantile sequence
(αk)k∈[K] could be introduced to only prune a few tasks per class and not globally. This
would create a finer exploration of ambiguity in the training set.

5.3.2 Peerannot project.

We created the peerannot library to handle crowdsourced datasets in image classification
settings. The current modules of peerannot allow users to identify poorly performing
workers, and ambiguous tasks, to train computer vision models from aggregated labels,
or to train a model that directly handles crowdsourced data. The library is designed
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to be user-friendly and efficient, and we hope that it will be used by the community to
handle crowdsourced datasets.

In the short term, we plan to add more functionalities and strategies to the library.
For example, the more flexible the input data, the more users can use the library.

In the longer term, peerannot has been created as an organization to provide multiple
modules for other crowdsourced frameworks. Having a module to consider reinforcement
learning for data collection strategies would be a great addition to the library. Indeed, in
this thesis, we focused on how to handle collected data. However, the data collection
process is also crucial in crowdsourced settings. Having a tool to evaluate the influence
of actions and recommender systems for crowdsourced platforms would help researchers
design better data collection strategies. This proactive approach would be a great addition
to the library and could mitigate problems encountered later in the training pipeline.

5.3.3 Pl@ntNet project.

Finally, with the Pl@ntNet project, we evaluated the performance of their label aggrega-
tion strategy on a newly released dataset and proposed different strategies to improve
it. The current solution found is to use the probability output of Pl@ntNet’s model as
prior knowledge in the label aggregation strategy – with a threshold on the probability
considered. While this solution could help in practice, before deploying it, we need to
recalibrate the current model to have a better probability estimation. Indeed, if the
strategy considers the probability output as the threshold, this probability should be
well-calibrated to have a good performance.

In a longer term, the Pl@ntNet project is a citizen science project with a large number
of users. However, we saw in practice that a large number of users contribute very few
times to the platform. Related to the former perspective, a recommender system could be
used to recommend tasks to users and have them engage more in the annotation process.
The main difficulty is to provide users with tasks that are not too difficult for them, and
that could be interesting for them to annotate, with very little knowledge about most
users. Furthermore, the recommender system should also consider the quality of the
annotations provided by the users to recommend tasks to them. And, the recommender
system should be run on the fly with very little computation time to provide users with
tasks to annotate directly on the smartphone application. More engagement would also
help the overall quality of the Pl@ntNet computer vision model if it is not noisy, thus
the label aggregation strategy should in parallel be updated to consider the engagement
of each user with the recommendations. And, of course it would be better if there could
be theoretically guaranteed on the performance of the recommender system or at least
simulations of such processes.



AA quick travel in the history of
crowdsourcing

A.1 History of crowdsourcing

Crowdsourcing in its most general form is not new. We have records of large crowdsourcing
experiments leading to high achievements in socio-economics fields and even playing
parts in wars. Let us consider one historical example.

One of the eldest and most impactful happened in 1848 and is reported extensively in
Hearn (2002). Led by Matthew Fontaine Maury (an oceanographer between many other
titles), the U.S. Naval Observatory distributed free copies of his book Wind and Current
Charts which described how to effectively reduce time travel at sea, see Figure A.1 –
shippers knew that every day saved at sea cut costs and lessened the danger of losing ships,
cargoes and crews. In return, Maury asked sailors to record standardized logs and return
them to him at the U.S. Naval Observatory. This form came with a ten-page instruction
pamphlet on how to interpret the charts and how to fill out the logs. The experiment
ran for years, and even at the early beginning shipmasters wanted to increase their profit
and participate: By September, the logs began flowing into the observatory, and Maury
and his staff were busy trying to handle the volume. Collecting this information led to
reducing the Rio de Janeiro - New York was then fifty-five days and was reduced to
twenty-three in 1853. They simplified and extended the charts with the full support of
Navy captains and merchant companies like Forbes of Boston and Robert C. Wright of
Baltimore for their sailors to fill out these forms. More importantly, they noticed some
sailors did not use the charts correctly, and this helped prove the importance of taking
into account winds and currents at sea. The newly collected data also helped create
monthly recommendation charts for sailors.

But the history of Maury’s logs implications did not stop at currents and winds. In
1851, they released charts showing the distribution of sperm whales in oceans for each
season – an example is shown in Figure A.2. These tracks were used by whalers, but also
during the Civil War by confederates to track Union ships that captured and harvested
animals 1. This disrupted the North’s economy as sperm whale’s oil was popular for

1https://www.nytimes.com/1865/08/27/archives/the-pirate-shenandoah-her-cruise-in-the-
arctic-seas-wholesale.html

https://www.nytimes.com/1865/08/27/archives/the-pirate-shenandoah-her-cruise-in-the-arctic-seas-wholesale.html
https://www.nytimes.com/1865/08/27/archives/the-pirate-shenandoah-her-cruise-in-the-arctic-seas-wholesale.html


142 Appendix A A quick travel in the history of crowdsourcing

Figure A.1 Extract of the first edition of Wind and Current Chart of the North-Atlantic (1848)
by Matthew Fontaine Maury. The brushes show the direction wind blows and their strength. The
currents are shown with arrows. We can also see the water temperatures around the Chesapeake
Bay.

soaps, lubricants and also as light sources 2.

Figure A.2 Whale chart by Matthew Fontaine Maury from 1851, series F showing the distribution
of sperm whales across oceans.

A.2 Defining crowdsourcing

Even though crowdsourcing isn’t new, this is not the case for its proposed definition.
Because of its large possibilities of applications and the increasingly extensive use of the

2https://www.nytimes.com/2008/08/03/nyregion/03towns.html

https://www.nytimes.com/2008/08/03/nyregion/03towns.html
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internet to conduct crowdsourcing experiments, there are multiple definitions of the term.
One of the first was recorded in 2006 by two journalists at Wired, Jeff Howe and

Mark Robinson:
Simply defined, crowdsourcing represents the act of a company
or institution taking a function once performed by employees and
outsourcing it to an undefined (and generally large) network of
people in the form of an open call. This can take the form of
peer-production (when the job is performed collaboratively), but is
also often undertaken by sole individuals. The crucial prerequisite
is the use of the open call format and the large network of potential
laborers.

Later, Howe proposed to divide it into two definitions3:

• The White Paper Version: Crowdsourcing is the act of taking
a job traditionally performed by a designated agent (usually
an employee) and outsourcing it to an undefined, generally
large group of people in the form of an open call.

• The Soundbyte Version: The application of Open Source
principles to fields outside of software.

With the increasing use and misuse of the word crowdsourcing, Estellés-Arolas and
González-Ladrón-de Guevara (2012) provided a broader internet-based definition that
was extracted from merging definitions from forty papers – from a database of journal
and conference papers about crowdsourcing containing 209 papers. The definition is as
follows:

Crowdsourcing is a type of participative online activity in which
an individual, an institution, a non-profit organization, or company
proposes to a group of individuals of varying knowledge, heterogene-
ity, and number, via a flexible open call, the voluntary undertaking
of a task. The undertaking of the task, of variable complexity and
modularity, and in which the crowd should participate bringing their
work, money, knowledge and/or experience, always entails mutual
benefit. The user will receive the satisfaction of a given type of need,
be it economic, social recognition, self-esteem, or the development
of individual skills, while the crowdsourcer will obtain and utilize
to their advantage that what the user has brought to the venture,
whose form will depend on the type of activity undertaken.

One of their criteria was to explicitly take into account the "internet" factor to define
modern crowdsourcing, thus this does not apply to experiments like Matthew Fontaine

3https://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

https://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
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Maury’s (Appendix A.1). However, in the context of this thesis, and given how the vast
majority of crowdsourcing experiments are nowadays used thanks to the internet, this
definition is sufficient for our research purposes.

More importantly, the definition of crowdsourcing does not include peer production.
These two are often mixed up, but experts (Brabham, 2013) differentiate them with
multiple criteria – the most important being the guidelines. Let us take from Brabham
(2013) the example of one of the largest peer-production projects: Wikipedia. It can not
be considered a crowdsourcing project as there is no guideline given on what should be
in an article or how it should be structured. There is also no vertical control. Wikipedia
is controlled via peer assessments, so it is a horizontal control through dialogues. In a
crowdsourcing experiment, a crowdsourcer (company, laboratory,. . . ) provides the task(s)
and what should be done to complete them. This can be as simple as Describe the image
or click on the bike, or more complicated like can the second part of the proposition be
inferred from the first part? but the main point is that there is a clear guideline given
directly to the worker to complete the task(s) at hand.

A.3 Explicit and implicit crowdsourcing

From the multiple definitions of the term crowdsourcing, we see that broad implications
lead to multi-faceted types of work. More than the task itself to be completed, it is
important to record how the tasks were presented to workers. We know from Appendix A.2
that a guideline plays a crucial part in the experiment. However, a guideline can hide the
purpose of an experiment. So crowdsourcing has been divided between two categories
(Andro and Saleh, 2017):

• implicit crowdsourcing: recourse to involuntary work by Internet users,

• explicit crowdsourcing: recourse to voluntary work from voluntary Internet users.

A famous example of implicit crowdsourcing tasks is the reCAPTCHA created by Luis
von Ahn. The principle is simple, we need to archive old books, and sometimes text
recognition systems can not recognize the words – for numerous reasons such that, and
not exhaustive, paper quality, symbols and calligraphy, overlapping words – and those
words are given to write out to people on the internet just as ordinary security systems
(see Figure A.3). Most of the time, there are two CAPTCHAs to solve, one for control and
then the actual task. During the whole solving time, the worker does not know that they
are solving an actual problem for a crowdsourcer, hence the implicit. Multiple other
examples for each are presented in Appendix A.4 with a more detailed classification of
crowdsourcing tasks.
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Figure A.3 Example of reCAPTCHA from 2014 for word recognition tasks. The word here is
morning and the control word upon.

A.4 Current ways to classify and run experiments

Defining types of crowdsourcing is not the same as defining types of crowds. In Kazai
et al. (2011) created five worker profiles: spammer, sloppy, incompetent, competent, and
diligent. In Martineau (2012) workers are classified as communal, lurkers, utilizers and
aspirers. This quest for worker profile identification is still an active field of research.

But taking a step back in this problem, Brabham (2013) proposes a typology to
classify crowdsourcing experiments: not tasks nor workers.

• knowledge discovery and management: find and collect standardized information
– e.g Flag association application to register discrimination and act of violence
against LGBTQ+ people for the French government4,

• broadcast search: solve empirical problems – e.g coding challenges as Kaggle

• peer-vetted creative production: create and select creatives ideas – e.g Threadless5

allow its community to create designs for shirts or prints and then puts them to a
vote each week,

• Distributed-human-intelligence tasking; analyze large amounts of information – e.g
label images or part of images like Pl@ntNet.

In practice, running a crowdsourcing experiment has been eased up by platforms
such as Amazon Mechanical Turk6 or Toloka7. These marketplaces allow to conduct
of a paid experiment – ethical considerations apart (and discussed in section 1.1.3) –
that is planned with extensive parametrization. The data labeling is outsourced so you
don’t need to think about the resource allocations. They also have algorithms (some like

4https://www.flagasso.com/
5https://www.threadless.com/
6https://mkturk.com/
7https://toloka.yandex.com

https://www.flagasso.com/
https://www.threadless.com/
https://mkturk.com/
https://toloka.yandex.com
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Raykar and Yu (2011) that we discuss in Chapter 3) to detect unreliable workers to have
better data.

Figure A.4 Example of ESP game image (from https://edutechwiki.unige.ch). The image
represents four sheep laying in the grass. The first worker proposes sheep and then sheep at
the second round. Note that to avoid having the same labels by multiple workers for the images,
taboo words were introduced. In this case, workers were forbidden to answer the words peace
and lay to describe the image. Not every image had taboo words.

However, paying workers is not the only way to collect crowdsourced data. The
gamification of crowdsourcing tasks has proved to be quite efficient with experiments like
Eyewire (Tinati et al., 2017), ThePlantGame (Servajean et al., 2016), etc. Luis Von Ahn
(the CAPTCHA creator) was one of the first researchers on GWAPs (Games With A Purpose).
He famously also founded in 2004 the ESP (ExtraSensory Perception) game (Von Ahn
and Dabbish, 2005) to create metadata on images – presented in Figure A.4. Two players
are paired up randomly and shown the same image. They can not communicate, but
they each can provide a single word to describe the image presented. Once they both
provide the same word, the game stops. They have 2 minutes and 30 seconds to label 15
images. At one point, they can both choose to pass on a single image. A license was
bought by Google to create the Google Image Labeler8 from 2006 to 2011.

We have seen paid workers and playing workers, but sometimes workers just participate
voluntarily without any second motivation from the crowdsourcer. This is the case in
Pl@ntNet where the workers’ only gain in participating is providing more data to improve
the model’s prediction for the community. Here, the gain is scientific and the participation
is based on providing better tools for the community – a sense of having participated to
help others. RTE, France also created a crowdsourcing platform9 to identify photovoltaic
panels on images and delimit their area of occupancy (Kasmi et al., 2023).

8http://news.bbc.co.uk/2/hi/technology/7395751.stm
9https://www.bdpv.fr/_BDapPV/

https://edutechwiki.unige.ch
http://news.bbc.co.uk/2/hi/technology/7395751.stm
https://www.bdpv.fr/_BDapPV/
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In short, with crowdsourcing, we can classify workers, types of tasks/experimentation
and the incentives to make workers answer those tasks. Each of these parts can play a
role in the data collection process and quality of said data.





BPeerannot appendix

B.1 Code structure to implement the DS model

In peerannot, iterative label aggregation strategies need a .run() method. We present
an example of such a structure with the DS model in Listing 11.

B.2 Simulated mistakes with discrete difficulty levels on tasks

For an additional experiment, we consider the so-called discrete difficulty setting presented
in Whitehill et al. (2009). Contrary to other simulations, we here consider that workers
belong to two levels of abilities: good or bad and tasks have two levels of difficulties: easy
or hard. The keyword ratio-diff indicates the prevalence of each level of difficulty of
tasks as:

ratio-diff = P(easy)
P(hard) , with P(easy) + P(hard) = 1 .

Tasks that are easy are answered correctly by every assigned worker. Tasks that are
hard are answered following the confusion matrix assigned to each worker. Each worker
then answers independently to the presented tasks.

We simulate 200 tasks and 100 workers with 35% of good workers and 50% of easy
tasks (ratio-diff= 1). There are K = 5 classes. Each task receives |A(xi)| = 10 votes.

1 $ peerannot simulate --n-worker=100 --n-task=200 \
2 --n-classes=5 \
3 --strategy discrete-difficulty \
4 --ratio 0.35 \
5 --ratio-diff 1 \
6 --feedback 10 \
7 --seed 0 \
8 --folder ./simus/discrete_difficulty

Listing 10 Simulation of discrete difficulty levels crowdsourced datasets in peerannot.

Finally, in this setting involving task difficulty coefficients, the only strategy that
involves a latent variable for the task difficulty, knowing GLAD, outperforms the other
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Table B.1 AccTrain metric on simulated mistakes made when tasks are associated with a
difficulty level considering classical feature-blind label aggregation strategies.

Strategy MV GLAD DS DSWC[L=2] DSWC[L=5] NS
AccTrain 0.815 0.845 0.810 0.600 0.660 0.790

strategies (see Table B.1). Note that in this case, creating clusters of answers leads to
worse decisions than an MV aggregation.

Figure B.1 Distribution of the number of tasks given per worker (left) and of the number of
labels per task (right) in the setting with simulated discrete difficulty levels.
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1 class Dawid_Skene(CrowdModel):
2 def __init__(self, answers, n_classes, **kwargs):

3 super().__init__(answers)

4 ...

5

6 def get_crowd_matrix(self):

7 ... # Convert json answers to tensor (task, worker, label)

8

9 def init_T(self):

10 ... # Initialize the confusion matrices

11

12 def m_step(self):

13 """Maximizing log likelihood

14 Returns:

15 p: (p_j)_j class marginals

16 pi: confusion matrices

17 """

18 ...

19

20 def e_step(self):

21 """Estimate indicator variables

22 Returns:

23 T: New estimate for the labels (n_task, n_worker)

24 """

25 ...

26

27 def log_likelihood(self):

28 ... # Compute the log likelihood of the model

29

30 def run(self, epsilon=1e-6, maxiter=50):

31 self.get_crowd_matrix()

32 self.init_T()

33 k, eps, ll = 0, np.inf, []

34 while k < maxiter and eps > epsilon:

35 self.m_step()

36 self.e_step()

37 likeli = self.log_likelihood()

38 ll.append(likeli)

39 if len(ll) >= 2:

40 eps = np.abs(ll[-1] - ll[-2])

41 k += 1

42

43 def get_probas(self):

44 return self.T

45

46 def get_answers(self):

47 return np.vectorize(self.converter.inv_labels.get)(

48 np.argmax(self.get_probas(), axis=1)

49 )

Listing 11 MWE for the DS label aggregation in peerannot.





CTable of strategies used

Here, we provide a table resuming the strategies used in the experiments presented in
this thesis and some of their specificities.

Strategy Type Full name Paper In short
MV aggregate Majority vote – –
NS aggregate Naive soft – Frequency of votes
DS aggregate Dawid and Skene’s Dawid and

Skene (1979)
Model worker with con-
fusion matrix

WDS aggregate Weighted with Dawid
and Skene’s

– Use DS diagonal to rep-
resent worker abilities

Fast-DS aggregate Fast Dawid and
Skene’s

Sinha et al.
(2018)

DS aggregate with Dirac
representation of the es-
timated labels

GLAD aggregate Generative models of
Labels, Abilities and
Difficulties

Whitehill et al.
(2009)

Models task difficulty
and worker ability as
scalar values

DSWC aggregate Dawid and Skene’s
with Worker cluster-
ing

Imamura et al.
(2018)

Clustered DS model over
the workers

WAWA aggregate Worker Agreement
With Aggregate

Appen Worker ability is the ac-
curacy against MV la-
bels

MACE aggregate Multi-Annotator
Competence Estima-
tion

Hovy et al.
(2013)

Worker ability is the ac-
curacy against MV la-
bels

KOS aggregate Karger, Oh and Shah Karger et al.
(2011)

Binary classification us-
ing graph representation

TwoThird aggregate – – Label with at least two
votes and a two-third of
consensus is accepted
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CrowdLayer inference – Rodrigues and
Pereira (2018)

Confusion matrices as a
new layer in the neural
network

CoNAL inference Common Noise Adap-
tation Layers

Chu et al.
(2021)

Local confusion and
shared confusion as new
layers

AUM identify
(task)

Area Under the Mar-
gin

Pleiss et al.
(2020)

Identify ambiguous
tasks in classical super-
vised setting

AUMC identify
(task)

Area Under the Mar-
gin for crowdsourcing

Lefort et al.
(2024)

Identify ambiguous
tasks with MV aggrega-
tion

WAUM identify
(task)

Weighted Area Un-
der the Margin

Lefort et al.
(2024)

Identify ambiguous
tasks relative to worker
abilities

Entropy identify
(task)

– – Identify worker abilities
with entropy of NS la-
bels

Spam Score identify
(worker)

– Raykar and Yu
(2011)

Identify spammers via
DS matrices

Trace confusion identify
(worker)

– – Identify poor workers
via DS matrices’ trace

Krippendorff’s α identify
(dataset)

– Krippendorff
(1980)

Identify unreliable
crowdsourced datasets
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Abstract

While classification datasets are composed of more and more data, the need for human expertise to
label them is still present. Crowdsourcing platforms are a way to gather expert feedback at a low cost.
However, the quality of these labels is not always guaranteed. In this thesis, we focus on the problem of
label ambiguity in crowdsourcing. Label ambiguity has mostly two sources: the worker’s ability and the
task’s difficulty. We first present a new indicator, the WAUM (Weighted Area Under the Magin), to detect
ambiguous tasks given to workers. Based on the existing AUM in the classical supervised setting, this lets
us explore large datasets while focusing on tasks that might require more relevant expertise or should be
discarded from the actual dataset. We then present a new open-source python library, PeerAnnot, that
we developed to handle crowdsourced datasets in image classification. We created a benchmark in the
Benchopt library to evaluate our label aggregation strategies for more reproducible results. Finally, we
present a case study on the Pl@ntNet dataset, where we evaluate the current state of the platform’s label
aggregation strategy and propose ways to improve it. This setting with a large number of tasks, experts
and classes is highly challenging for current crowdsourcing aggregation strategies. We report consistently
better performance against competitors and propose a new aggregation strategy that could be used in
the future to improve the quality of the Pl@ntNet dataset. We also release this large dataset of expert
feedback that could be used to improve the quality of the current aggregation methods and provide a new
benchmark.

Abstract

Alors que les jeux de données de classification sont composés d’un nombre croissant de données, le
besoin d’expertise humaine pour les étiqueter est toujours présent. Les plateformes de crowdsourcing sont
un moyen de recueillir les commentaires d’experts à faible coût. Cependant, la qualité de ces étiquettes
n’est pas toujours garantie. Dans cette thèse, nous nous concentrons sur le problème de l’ambiguïté des
étiquettes dans le crowdsourcing. L’ambiguïté des étiquettes a principalement deux sources : la capacité
du travailleur et la difficulté de la tâche. Nous présentons tout d’abord un nouvel indicateur, le WAUM
(Weighted Area Under the Magin), pour détecter les tâches ambiguës confiées aux travailleurs. Basé sur
le AUM existant dans le cadre supervisé classique, il nous permet d’explorer de grands jeux de données
tout en nous concentrant sur les tâches qui pourraient nécessiter une expertise plus pertinente ou qui
devraient être éliminées du jeu de données actuel. Nous présentons ensuite une nouvelle bibliothèque
python open-source, PeerAnnot, développée pour traiter les jeux de données crowdsourcées dans la
classification d’images. Nous avons créé un benchmark dans la bibliothèque Benchopt pour évaluer nos
stratégies d’agrégation d’étiquettes afin d’obtenir des résultats reproductibles facilement. Enfin, nous
présentons une étude de cas sur l’ensemble de données Pl@ntNet, où nous évaluons l’état actuel de la
stratégie d’agrégation d’étiquettes de la plateforme et proposons des moyens de l’améliorer. Ce contexte
avec un grand nombre de tâches, d’experts et de classes est très difficile pour les stratégies d’agrégation
de crowdsourcing actuelles. Nous faisons état de performances constamment supérieures à celles de nos
concurrents et proposons une nouvelle stratégie d’agrégation qui pourrait être utilisée à l’avenir pour
améliorer la qualité de l’ensemble de données Pl@ntNet. Nous publions également en plus de ce grand jeu
de données, des annotations d’experts qui pourraientt être utilisées pour améliorer la qualité des méthodes
d’agrégation actuelles et fournir un nouveau point de référence.
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