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Abstract

Quantum computing is a rapidly developing field that has seen a huge amount of
interest in the last couple of decades due to its promise of revolutionizing several
domains of business and science. It presents a new way of doing computations
by making use of fundamental properties of quantum mechanics such as super-
position and entanglement. Combinatorial optimization, on the other hand, is
a field that is omnipresent in the industry and where small improvements can
have a significant impact. This thesis aims to tackle optimization problems using
quantum algorithms.

NP-hard optimization problems are not believed to be exactly solvable through
general polynomial time algorithms. Variational quantum algorithms (VQAs) to
address such combinatorial problems have been of great interest recently. Such
algorithms are heuristic and aim to obtain an approximate solution. The hard-
ware, however, is still in its infancy and the current Noisy Intermediate Scale
Quantum (NISQ) computers are not able to optimize industrially relevant prob-
lems. An issue with contemporary quantum optimization algorithms such as
the Quantum Approximate Optimization Algorithm (QAOA) is that they scale
linearly with problem size. To tackle this issue, we present the LogQ encoding,
using which we can design quantum variational algorithms that scale logarithmi-
cally with problem size – opening an avenue for treating optimization problems
of unprecedented scale on gate-based quantum computers. We show how this al-
gorithm can be applied to several combinatorial optimization problems such as
Maximum Cut, Minimum Partition, Maximum Clique and Maximum Weighted
Independent Set (MWIS). Subsequently, these algorithms are tested on a quan-
tum simulator with graph sizes of over a hundred nodes and on a real quantum
computer up to graph sizes of 256. To our knowledge, these constitute the largest
realistic combinatorial optimization problems ever run on a NISQ device, over-
coming previous problem sizes by almost tenfold.

Next, we apply the LogQ encoding to two use-cases for large companies such
as TotalEnergies. Fleet conversion is the process of transitioning a fleet of ve-
hicles to more sustainable and environmentally friendly alternatives. It is mod-
eled as a column generation scheme with the MWIS problem as the sub-problem
or worker problem. We use the LogQ method to solve the MWIS Workers and
demonstrate how quantum and classical solvers can be used together in a hybrid
manner to approach an industrial-sized use-case.

Mesh segmentation refers to the process of dividing a complex mesh (composed
of vertices, edges, and faces) into meaningful and semantically coherent parts
or regions. Mesh segmentation plays an important part in computer modeling,
which is extensively used in the core domains of TotalEnergies’ activities such
as Earth imaging, physical modeling for reservoirs, and others. We define the
problem as a graph optimization problem and use the LogQ encoding to solve it.
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Résumé
L’informatique quantique est un domaine en plein essor qui a suscité un intérêt
considérable au cours des deux dernières décennies en raison de sa promesse
de révolutionner plusieurs domaines. Il s’agit d’une nouvelle façon d’effectuer
des calculs en utilisant les propriétés fondamentales de la mécanique quantique
telles que la superposition et l’intrication. La recherche opérationelle et plus
particulièrement l’optimisation combinatoire, quant à elle, est un domaine om-
niprésent dans l’industrie où de petites améliorations peuvent avoir un impact
significatif. Cette thèse vise à résoudre des problèmes d’optimisation combina-
toire à l’aide d’algorithmes quantiques.

Les problèmes d’optimisation NP-difficiles ne sont pas considérés comme pou-
vant être résolus exactement par des algorithmes généraux en temps polyno-
mial. Les algorithmes quantiques variationnels (VQA en anglais) destinés à atta-
quer ces problèmes combinatoires ont récemment suscité une grande attention.
Ces algorithmes sont heuristiques et visent à obtenir une solution approchée.
Cependant, le matériel n’en est encore qu’à ses débuts et les ordinateurs quan-
tiques bruités de taille intermédiaire (NISQ en anglais) ne sont pas en mesure
d’optimiser les problèmes industriels. Les algorithmes d’optimisation quantique
contemporains, tel que le algorithme d’optimisation approchée quantique, Quan-
tum Approximate Optimization Algorithm (QAOA) en anglais, posent un prob-
lème : leur échelle est linéaire en fonction de la taille du problème. Pour dépasser
cette limite, nous présentons l’encodage LogQ, qui permet de concevoir des al-
gorithmes variationnels quantiques dont l’échelle est logarithmique avec la taille
du problème, ce qui ouvre la voie au traitement de problèmes d’optimisation
d’une ampleur sans précédent sur des ordinateurs quantiques à portes. Nous
montrons comment cet algorithme peut être appliqué sur plusieurs problèmes
d’optimisation combinatoire tels que Coupe Maximum, Partition Minimale, Clique
Maximale et Stable Maximum Pondéré (MWIS en anglais). Ces algorithmes sont
testés sur un simulateur quantique avec des graphes de plus d’une centaine de
nœuds et sur un véritable ordinateur quantique jusqu’à des graphes de taille 256.
À notre connaissance, il s’agit des plus grands problèmes réalistes d’optimisation
combinatoire jamais exécutés sur une machine NISQ à portes, dépassant souvent
de près de dix fois la taille des problèmes résolus précédemment.

Ensuite, nous appliquons le codage LogQ à deux cas d’utilisation pour de grandes
entreprises telles que TotalEnergies. Premier cas, la conversion de flotte de véhicules
est le processus de transition d’une flotte de véhicules vers des alternatives plus
durables et plus respectueuses de l’environnement. Il est modélisé comme un
schéma de génération de colonnes avec le problème MWIS comme sous-problème.
Nous utilisons la méthode LogQ pour résoudre le MWIS et démontrons com-
ment les solveurs quantiques et classiques peuvent être utilisés ensemble pour
aborder un cas d’utilisation de taille industrielle. Deuxième cas, la segmentation
de maillage fait référence au processus de division d’un maillage complexe (com-
posé de sommets, d’arêtes et de faces) en parties ou régions significatives et sé-
mantiquement cohérentes. La segmentation du maillage joue un rôle important
dans la modélisation informatique, qui est largement utilisée dans les domaines
clés des activités de TotalEnergies, tels que l’imagerie terrestre ou la modélisa-
tion physique des réservoirs. Nous définissons le problème comme un problème
d’optimisation de graphe et utilisons l’encodage LogQ pour le résoudre.
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Introduction

This thesis has been carried out under the joint supervision of TotalEnergies and LIRMM,
CNRS - Université de Montpellier. Its primary goal is to explore the field of quantum vari-
ational algorithms for combinatorial optimization problems and find interesting industrial
use cases for the same. Quantum computing is a rapidly developing field that has seen a
huge amount of interest in the last couple of decades due to its promise of revolutionizing
several domains of business and science. Optimization, on the other hand, is a field that is
omnipresent in the industry and where small improvements can have a significant impact.
This thesis aims to tackle optimization problems using quantum computing, straddling both
fields in equal measure.

Quantum Computing

Quantum physics has been a part of our daily lives for a long time. The so-called first
quantum revolution gave us devices such as the transistors, photovoltaic cells and lasers. To-
day, we cannot imagine our lives without these technologies which have wide-ranging ap-
plications such as medical imaging (MRI), TV displays (LEDs) and pretty much everything
in our digital lives (PCs, smartphones etc.). During the first quantum revolution we learned
to manipulate groups of quantum particles and exploit the interaction between light and
matter [1]. Currently we are said to be in the second quantum revolution where we manipulate
individual quantum objects such as the states of individual particles. The second quantum
revolution covers various applications such as quantum computing[2]–[4], quantum com-
munication [5], quantum cryptography [6], [7] and quantum metrology [8]. The scope of
this thesis is limited to quantum computing.

Quantum computing is a potentially disruptive field that could have applications in sev-
eral domains including financial modeling [9], [10], chemistry [11], [12] and optimization
[13], [14]. It is a field in which we try to perform numerical computations by exploiting the
quantum properties of nature. The unique properties of quantum states such as superposition
and entanglement require us to think about computation in a radically new manner.

While the seeds of quantum computing were sown during the 1970s and 1980s [15]–[17],
it is not until recently that there has been a significant advance in terms of quantum hard-
ware, which in turn has led to an immense growth in research on quantum algorithms. We
can now run quantum algorithms using high-level programming languages such as Python
on real quantum computers (albeit small and noisy) on cloud-based services. Access to
quantum hardware, however, remains expensive in terms of both time and money. This is
why we need to make sure that the code runs without any error before we run them on a
real quantum computer. Consequently, quantum simulators or emulators have become an
important part of quantum algorithm research. Quantum simulators are classical comput-
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8 Introduction

ers or supercomputers that produce exactly the same results a noiseless quantum computer
would produce, aiding in the testing process. Moreover, state-of-the-art simulators like the
Atos QLM also allow advanced options like noise simulation. In this thesis we use both
quantum simulators and real quantum hardware to validate our algorithms.

Operations Research and Combinatorial Optimization

Operations research (OR) is a field that provides a scientific and quantitative approach
for a management to take timely and effective decisions for their problems. OR is used to
define problems and to get solutions for various organizations like businesses, government
organizations and non-profits. It has applications in problems like inventory control, port-
folio management, production scheduling and vehicle routing, among others. All of these
problems entail the maximization or minimization of a certain quantity under certain con-
strains. Therefore the problems in OR are intrinsically problems of optimization.

Many optimization problems are considered to be hard, or NP-hard. For these problems,
we do not yet know an algorithm that solves it reasonably quickly. In mathematical terms,
this means that the time taken to solve the problem increases exponentially as the size of the
problem increases. We can however try to solve such NP-hard problems approximately, the
idea being that we get a good enough solution in a relatively short amount of time.

There are two types of challenges while solving optimization problems: a) time - they
can be hard to solve in a reasonably small amount of time, and b) size - as the size of the
problems get larger, they get more and more difficult to solve. In this thesis concentrate
mostly on the aspect of size. In other words, we present methods that could potentially
encode very large problems on a quantum computer. Since the problems we treat are NP-
Hard and are hence very difficult to solve as their size increases, the methods we propose
are also approximation methods.

Shortcomings of current quantum algorithms for optimization

Despite continuous innovation in quantum hardware year upon year, current quantum
computers are relatively limited in size. For example, in 2024, the largest available quan-
tum computer on the IBM cloud is ibm_torino, of size 133 qubits. The largest IBM quantum
computer, Condor, is of over 1000 qubits but unavailable for public use. Moreover, even
on a quantum computer with 133 qubits, it is practically impossible to run an algorithm
efficiently using all the qubits. This is due to several reasons, including errors like gate-
error and readout-error and more importantly, the sparse connectivity among the available
qubits, making it difficult to encode complex problems. The current era in quantum com-
puting therefore is referred to as the Noisy Intermediate Scale Quantum (NISQ) era.

Within the scope of optimization applications, there has been a growing interest in quan-
tum variational algorithms [18]–[22]. Among them, the Quantum Approximate Optimiza-
tion Algorithm (QAOA) has been heavily researched [13], [14], [23]. Despite its successes,
implementations of QAOA are generally limited to toy problems of very small size. This is
because QAOA scales linearly with problem size. This means that an optimization problem
of 200 variables requires about 200 qubits. For example, an undirected Traveling Salesman
Problem (TSP) of size 20 has 190 edges and with Miller-Tucker-Zemlin (MTZ) formulation
requires 191 variables. Solving this using QAOA would require 191 qubits. Addressing this
scalability challenge forms the central focus of this thesis.

A qubit-efficient quantum variational algorithm for optimization
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In this thesis, we first present a novel algorithm that uses logarithmically fewer qubits.
Using this algorithm, which we call the LogQ encoding, an optimization problem of size
200 can be encoded using only about 8 qubits (the exact number can vary depending upon
the actual problem). This approach opens an avenue for treating optimization problems of
unprecedented scale on universal gate-based quantum computers.

To begin with, we demonstrate the LogQ based algorithm for the MAXIMUM CUT prob-
lem, which is a graph-based optimization problem. The problem is encoded on the quantum
computer by taking inspiration from a formulation of the MAXIMUM CUT problem using
the Laplacian matrix of the associated graph. The algorithm consists of several parts includ-
ing the creation of the ansatz, decomposition of the Laplacian matrix into a string of Pauli
terms, and finally the calculation of the expectation value. All the steps of the algorithm are
explained in detail in a step-by-step calculation of a toy example.

Next, we aim to extend this algorithm to several other NP-hard problems. This is done
by two approaches:

1. By converting other NP-hard problems into the MAXIMUM CUT problem using poly-
nomial time reductions. In a 1972 paper, Richard Karp showed that we can reduce one
NP-complete problem to another NP-complete problem. Recent research has brought
forward a much larger set of NP-complete problems that can be connected to each
other via reductions. We use this idea to convert a number other problems to the
MAXIMUM CUT problems, such that finding the solution to the MAXIMUM CUT prob-
lem would be equivalent to finding the solution to the problem in question.

2. By formulating the problem as a Quadratic Unconstrained Binary Optimization (QUBO)
problem. The QUBO form is a generalization of Laplacian matrix formula used in the
case of the MAXIMUM CUT problem. Using this generalization, a much larger class of
problems can be tackled.

The performance of the algorithm is then benchmarked for several optimization prob-
lems against classical (non-quantum) optimization methods.

A hybrid quantum-assisted algorithm for the Fleet Conversion Problem

Having described the LogQ encoding, we then concentrate on its possible industrial use-
cases. The fleet conversion problem is a problem of transportation. It aims to reduce the
carbon emissions and cost of operating a fleet of vehicles for a given set of tours or trips.
This problem is first described as the graph coloring problem and then using the column
generation technique, it is written in terms of coordinator problems and worker problems
(sub-problems). We devise a hybrid method wherein the coordinator problems are solved
using the commercial solver Gurobi while the worker problems are solved by the quantum
solver based on the LogQ encoding. We then test our algorithm on synthetically generated
instances.

Mesh segmentation using LogQ encoding

The second use-case addressed in this thesis is that of Mesh Segmentation. This project
was carried out within the framework of the European Union funded project NExt Appli-
cationS of Quantum Computing (NEASQC) which aims to find industrial applications of
near-term quantum computers. Mesh segmentation using quantum variational algorithms
was one of the several use-cases identified by the NEASQC consortium.
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A numerical mesh is a set of faces, edges and connecting points that can be used to de-
scribe a 2D or 3D image or model. By segmenting a mesh we attempt to dissociate the var-
ious logical parts of an image. For example, a 3D model of human can be divided into seg-
ments such as arms, head etc. The segmentation of the numerical mesh plays an important
part in computer modeling, which is extensively used in the core domains of TotalEnergies’
activities such as Earth imaging, physical modeling for reservoirs, and others.

In order to tackle the problem of mesh segmentation using the LogQ encoding, this prob-
lem is first converted into a graph optimization problem. The problem is equivalent to find-
ing good clusters in a graph. A suitable objective function called modularity is defined in
order to find these clusters. The maximization of this objective function is carried using
LogQ. The results are then compared to KMeans, which is a classical clustering method.

Organization of the thesis

The thesis is organized as follows. Chapter 1 lays the foundation by introducing the ba-
sic concepts of quantum computing, optimization and contemporary quantum variational
algorithms for optimization, necessary to understand all subsequent chapters. It is followed
by chapter 2 which deals with the description and applications of the LogQ encoding and its
performance benchmarks. Chapter 3 and chapter 4 deal with the two use cases: fleet conver-
sion and mesh segmentation respectively. Finally, this thesis is concluded by summarizing
our complete work and give some perspectives for further research.



CHAPTER1

Background

This inaugural chapter is dedicated to establishing the foundational framework for the the-
sis. It is divided into three sections: 1) Elements of quantum computing, 2) Combinatorial
optimization and 3) Variational quantum algorithms for optimization. The first section intro-
duces the basic concepts and mathematical tools of quantum computing. This is followed by
a section describing the fundamentals of combinatorial optimization and various methods
to approach them. Finally, in the third section we combine the ideas of quantum computing
and combinatorial optimization and talk about variation quantum algorithms for optimiza-
tion, which is the main focus of this thesis.

1.1 Elements of quantum computing
In this section, we describe the basic concepts of quantum computing that are going to be
used throughout this thesis. The goal of this section shall not be to present a comprehen-
sive overview of quantum computing but rather to focus on the essential topics crucial for
understanding the thesis. For a more complete understanding see [1], [2]. We begin with
the qubits, the elementary building blocks of all quantum computers and then define all the
elements required to carry out computation on a universal gate-based quantum computer.

1.1.1 Qubit
Much like the classical bit which forms the basis of classical computation, the quantum bit
or qubit is at the heart of quantum computation. The classical bit can have 2 values, 0 and 1.
The qubit on the other hand can be 0, 1 and everything in between.

More precisely, instead of having values, a qubit is said to be in a specific state. Two of the
possible states of a qubit are |0⟩ and |1⟩. These are called the basis states or the computational
basis states of a qubit. In Dirac notation, the symbol |.⟩ is called the ket-vector or just a ket.
Dirac notation is the standard notation for quantum states and shall be used throughout this
thesis. As the name suggests, all the other states of a qubit are defined by these basis states.
A qubit can exist in any linear combination of the basis states. Let |ψ⟩ define the state of a
qubit, then it can be mathematically defined as:

|ψ⟩ = α |0⟩+ β |1⟩ (1.1)

11
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Figure 1.1: The Bloch Sphere representing a qubit in its 1-qubit Hilbert space.

where α and β are complex coefficients called the amplitudes. According to one of the fun-
damental postulates of quantum mechanics, the squared modulus of the amplitudes define
the probability to measure a certain basis state. This means that |α|2 and |β|2 represent the
probability of a qubit being in the state |0⟩ and |1⟩ respectively. Since the total probability is
always 1, the amplitudes are related by the equation:

|α|2 + |β|2 = 1 (1.2)

This relation is called the normalization condition. The existence of qubits in all the
intermediate states between 0 and 1 is called superposition.

The vector space created by a qubit (or a group of qubits, as we shall see in the next
section) is called the Hilbert Space. In figure 1.1, we see a graphical representation of this
space using the Bloch sphere. The qubit is in the state |ψ⟩ = cos θ

2 + eiφ sin θ
2 . In the figure,

the angles φ and θ define a point on the 3-dimensional sphere.
The state of a qubit can be represented equivalently as a column vector:

|ψ⟩ =
(

α
β

)
(1.3)

Since the state |0⟩ has α = 1 and β = 0 and the state |1⟩ has α = 0 and β = 1, the
computational basis states can be represented as:

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
(1.4)

1.1.2 Multi-qubit systems

The next step is to understand how multiple qubits behave together. Much like in classical
computation where we use several bits to store and process information, it is when we use
several qubits together when we discover the true strength of a quantum computer.

To understand multi-qubit system it is important to define the notion of tensor product.

Given two column vectors |V⟩ =

 v1
...

vdv

 ∈ Cdv and |W⟩ =

 w1
...

wdw

 ∈ Cdw , the tensor
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product between them is defined as:

|V⟩ ⊗ |W⟩ =



v1

 w1
...

wdw


...

vdv

 w1
...

wdw




(1.5)

The tensor product |V⟩ ⊗ |W⟩ has a dimension of dv × dw and is usually denoted by the
short form |VW⟩.

Tensor products can be carried out between matrices as well. Let there be two matrices
A ∈ Cp×q and B ∈ Cr×s. The tensor product them is defined as:

A⊗ B =

a11B ... a1qB
... . . . ...

ap1B ... apqB

 (1.6)

Let us start with the simplest case of multi-qubit systems. If we have 2 qubits |ψ1⟩ and
|ψ2⟩ such that:

|ψ1⟩ = α |0⟩+ β |1⟩ (1.7)

|ψ2⟩ = γ |0⟩+ δ |1⟩ (1.8)

then we can define a 2 qubit system as :

|ψ1⟩ ⊗ |ψ2⟩ = (α |0⟩+ β |1⟩)⊗ (γ |0⟩+ δ |1⟩) (1.9)
= αγ |00⟩+ αδ |01⟩+ βγ |10⟩+ βδ |11⟩ (1.10)
= c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩ (1.11)

where |00⟩ = |0⟩ ⊗ |0⟩ and so on. Generalizing from equation (1.11) we can write the
N-qubit state as:

|ψN⟩ =
2N−1

∑
i=0

ci |xi⟩ where xi ∈ {0, 1}⊗N (1.12)

which can also be represented as:

|ψN⟩ =


c0
c1
...

c2N−1

 (1.13)

We thus have a general N-qubit state in the computational basis. This N-qubit state
resides in a 2N × 2N dimensional Hilbert space.

A very interesting property of qubits is entanglement. Entanglement, in quantum me-
chanics, means that the state of a qubit is intrinsically linked to the state of another qubit. In
other words, they cannot be separated. This can be defined mathematically as:

|ψ1ψ2⟩ ̸= |ψ1⟩ ⊗ |ψ2⟩ (1.14)
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Entanglement has a huge impact on the number of coefficients required to define a multi-
qubit system. Let us take for example a 3-qubit state that is not entangled and therefore can
be expressed as:

|ψne
3 ⟩ = (c1 |0⟩+ c2 |1⟩)⊗ (c3 |0⟩+ c4 |1⟩)⊗ (c5 |0⟩+ c6 |1⟩) (1.15)

This state is defined by 6 coefficients. Now if we have a fully entangled 3-qubit system
we will have:

|ψe
3⟩ = c1 |000⟩+ c2 |001⟩+ c3 |010⟩+ c4 |011⟩+ c5 |100⟩+ c6 |101⟩+ c7 |110⟩+ c8 |111⟩

(1.16)
Here we require 8 coefficients to define that state. The entangled state requires more

coefficients and therefore there is no way to represent |ψe
3⟩ as a tensor product of the three

qubits. In general, an N-qubit state where the qubit are completely independent require 2N
coefficients whereas an N-qubit fully entangled state would require 2N qubits.

The Pauli matrices are fundamental in quantum mechanics and will be used throughout
this thesis. They are a set of three 2× 2 matrices as follows:

Name Symbol Matrix

Pauli X X
(

0 1
1 0

)
Pauli Y Y

(
0 −i
i 0

)
Pauli Z Z

(
1 0
0 −1

)
Table 1.1: List of Pauli Matrices

These three matrices are Hermitian, unitary and involutory. Together with the identity
matrix (I), they form a real vector space basis. In other words, any 2× 2 Hermitian matrix can
be represented as a linear combination of the Pauli matrices and the identity matrix in such
a way that all the coefficients are real.

1.1.3 Some important properties of Dirac algebra

In addition to the ket-vector, we also have the bra-vector which is the Hermitian conjugate of
the ket. This means that as the ket is a column vector, the bra is a row vector. Its elements
are the complex conjugates of the elements in the ket vector. Therefore:

⟨ψN| = |ψN⟩† =
(
c∗0 c∗1 .... c∗2N−1

)
(1.17)

Next, we define the concept of inner product where we just multiply a bra and a ket
vector. If we have two states |ψ⟩ and |ϕ⟩, the inner product is denoted as ⟨ψ|ϕ⟩. Let us take
for example the inner product of |ψN⟩ with itself:

⟨ψN|ψN⟩ =
(
c∗0 c∗1 .... c∗2N−1

)


c0
c1
.
.

c2N−1

 = c∗0c0 + c∗1c1 + ....c∗2N−1c2N−1 (1.18)
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Using the property of complex numbers zz∗ = |z|2 we can thus write:

⟨ψN|ψN⟩ = |c0|2 + |c1|2 + ....|c2N−1|2 = 1 (1.19)

It can be easily verified that ⟨0|0⟩ = ⟨1|1⟩ = 1 whereas ⟨0|1⟩ = ⟨1|0⟩ = 0. This is the
definition of orthogonality of a basis set.

Another important result can be obtained from the inner product ⟨0|ψ⟩.

⟨0|ψ⟩ = ⟨0| (α |0⟩+ β |1⟩) (1.20)
= α ⟨0|0⟩+ β ⟨0|1⟩ (1.21)
= α (1.22)

From this we can say the probability to find the state |ψ⟩ in the state |0⟩ is:

p(0) = |α|2 = | ⟨0|ψ⟩ |2 (1.23)

Similarly:
p(1) = |β|2 = | ⟨1|ψ⟩ |2 (1.24)

The inner products ⟨0|ψ⟩ and ⟨ψ|0⟩ are the complex conjugates of each other. This can be
shown as follows:

⟨ψ|0⟩ = (α∗ ⟨0|+ β∗ ⟨1|) |0⟩ (1.25)
= α∗ ⟨0|0⟩+ β∗ ⟨0|1⟩ (1.26)
= α∗ (1.27)

= ⟨0|ψ⟩∗ (1.28)

In general:
⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗ (1.29)

1.1.4 Quantum Gates and Circuits
Once we have prepared our quantum state, we need to be able to perform operations on
them so as to change the state. Just like we have classical gates like NOT, AND, OR, XOR
etc. which alter the state of classical bit, we have quantum gates that alter the state of a qubit.

Since our N-qubit state is an 2N × 1 matrix, and we want to perform an operation that
changes it to another state, and hence another 2N × 1 matrix, our operation is therefore a
2N × 2N matrix. For a single qubit, we will have quantum gates as matrices of size 2× 2, for
2 qubits they will be 4× 4 matrices and so on.

There are several standard gates used in gate-based quantum computing. The most com-
monly used ones are either 1 or 2-qubit gates. Single-qubit gates alter the state of, as their
name suggests, a single qubit. For example, the Pauli-X gate can be seen as the equivalent
of the classical NOT gate. In other words, it flips |0⟩ to |1⟩ and vice versa. Mathematically
this would appear as follows:

X |ψ⟩ = X(α |0⟩+ β |1⟩) = αX |0⟩+ βX |1⟩ = α |1⟩+ β |0⟩ (1.30)

Another important single-qubit gate is the Hadamard gate. This gate creates an equal
superposition of the basis states. This can be demonstrated as follows:

H |0⟩ = |0⟩+ |1⟩√
2

, H |1⟩ = |0⟩ − |1⟩√
2

(1.31)
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Gate Symbol Matrix

Pauli X X
(

0 1
1 0

)
Pauli Y Y

(
0 −i
i 0

)
Pauli Z Z

(
1 0
0 −1

)
Hadamard H 1√

2

(
1 1
1 −1

)
Phase Gate S

(
1 0
0 i

)
T Gate T

(
1 0
0 eiπ/4

)
RX Gate RX(θ)

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
RY Gate RY(θ)

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
RZ Gate RZ(θ)

(
e−iθ/2 0

0 eiθ/2

)

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


SWAP


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Toffoli



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Table 1.2: List of commonly used quantum gates

Both these gates, like all other single-qubit gates, create a rotation in Hilbert space. This
is quite straightforward to imagine since all gates take us from one point in the Hilbert space
(α, β) to another point (α∗, β∗).

Another type of gate is the two-qubit gate. These gates are extremely important in quan-
tum computing since these are the gates that introduce entanglement in the quantum state.
The idea of entanglement is that the state of on qubit is going to depend on another qubit.
The quintessential two-qubit gate is the controlled-NOT or the CNOT gate. In the CNOT
gate there is a control qubit and a target qubit. The state of the target qubit will change
depending upon the state of the control qubit, hence entangling them in the process.

If the state of the control is |0⟩ then the state of the target is left unchanged. When the
state of the control is |1⟩, the Pauli-X gate (i.e. the NOT gate as explained earlier) is applied
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to the second qubit. Since the single-qubit gates are rotations, we can see that CNOT gate is
a controlled rotation. There exists, therefore, a controlled version of every single qubit gate.

We can also have gates of over 2 qubits, but they are not as common as we usually
decompose gates of more than 2 qubits into a collection of 1-qubit and 2-qubit gates.

In Table 1.2 some of the most important gates are shown.
Having both qubits and a way to alter them, we can now combine them into a quantum

circuit. A quantum circuit begins with all the qubits being in the |0⟩ state by convention,
followed by several single-qubit and two-qubit gates. Finally all the qubits are measured to
give us the result of the quantum circuit. We will speak about measurement in more detail
in the following section. The diagram below demonstrates a simple quantum circuit of 3
qubits.

Gates

Measurement

q1 |0⟩ H

q2 |0⟩ X

q3 |0⟩ Y

1.1.5 Measurement, Observables and Expectation Value

In our quantum circuit, we started with the state |0⟩⊗N. After doing several operations we
have reached the final state, say |ψ⟩. Now we want to measure our qubits in order to know
this final state.

Measurement in quantum computing is always with respect to a measurement basis. In the
quantum computers, measurement is carried out in the computational basis which is also
called the Z-basis. The reason why it is called the Z-basis is because the computational basis

states |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
are the eigenvalues of the Pauli-Z matrix

(
1 0
0 −1

)
.

Reading the qubits once gives a bit-string of the same length as the number of qubits. But
this does not give any information regarding the state of the qubits. Rather, we need to read
the qubits several times and create a probability distribution of all the possible bit-strings,
as shown in figure 1.2.

Since the probabilities equal the square of amplitudes, we therefore have information
regarding the state of the system. This constitutes a single measurement in the Z-basis.
What we can also extract from this measurement is the energy of the system.

In order to calculate this, we can represent the Z matrix as follows:

Z =

(
1 0
0 −1

)
= |0⟩ ⟨0| − |1⟩ ⟨1| (1.32)



18 Chapter 1. Background

000 001 010 011 100 101 110 111

0

0.1

0.2

0.3

Possible qubit readouts

Pr
ob

ab
ili

ti
es

Figure 1.2: Example probability distribution for the measurement of a 3-qubit quantum cir-
cuit.

Then we can calculate ⟨ψ| Z |ψ⟩ as follows:

⟨ψ| Z |ψ⟩ = ⟨ψ| (|0⟩ ⟨0| − |1⟩ ⟨1|) |ψ⟩ (1.33)
= ⟨ψ|0⟩ ⟨0|ψ⟩ − ⟨ψ|1⟩ ⟨1|ψ⟩ (1.34)

= ⟨0|ψ⟩∗ ⟨0|ψ⟩ − ⟨1|ψ⟩∗ ⟨1|ψ⟩ (1.35)

= | ⟨0|ψ⟩ |2 + | ⟨1|ψ⟩ |2 (1.36)
= p(0)− p(1) (1.37)

Thus we get the energy of the system from the probability distribution. We can extend
the above result for an N-qubit system as:

⟨ψ| Z⊗N |ψ⟩ = ∑
x∈{0,1}2N

(−1)h(x)p(x) (1.38)

where x belongs to the set of all possible bit-string combinations, h(x) is the hamming
weight or the number of 1s in the bit-string x and p(x) is the probability of the bit-string
x as found in the probability distribution.

Different measurement basis

While the default measurement basis is Z, measurement can be done in any other com-
plete orthogonal basis set. A complete basis set is a set of states using which we can describe
all the other states. The computational basis states, for example, form a complete basis.

An orthogonal basis set can be defined for all Hermitian matrices. Let us say we have
a Hermitian matrix M. A matrix M is Hermitian when M† = M. A complete orthogonal
basis {|M1⟩ , |M2⟩ ...} can be defined where |Mi⟩ are the eigenvectors of M. Hence for every
eigenvector |Mi⟩:

M |Mi⟩ = λi |Mi⟩ (1.39)

where λi are the eigenvalues of M.
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Any matrix M can be represented in terms of its basis as follows:

M = ∑
i

αi |Mi⟩ ⟨Mi| (1.40)

Say we have a state |ψ⟩ which is defined in Z-basis:

|ψ⟩ = ∑
i

ai |xi⟩ , x ∈ {0, 1}2 (1.41)

We can represent it in terms of M-basis as follows:

|ψ⟩ = ∑
i

ai |Mi⟩ ⟨Mi|xi⟩ (1.42)

Equation (1.42) follows from the completeness theorem. The compleness theorem states
that for any complete orthogonal basis set:

∑
i
|Mi⟩ ⟨Mi| = I (1.43)

The equation (1.42) shows how we can go from one basis to another mathematically. This
can be replicated on a quantum computer using a set of quantum operations or gates V.

V ∑
i

ai |xi⟩ = ∑
i

bi |Mi⟩ (1.44)

It is very important to note that changing the basis does not change the state at all. It
is merely another way to represent the state. We can see that equation (1.41) and (1.42)
represents the same state |ψ⟩ using two different basis sets |xi⟩ and |Mi⟩.

Let us take an example to understand this. Say we want to represent our state in the

Pauli X-basis. The eigenvectors of the X matrix are |+⟩ = 1√
2

(
1
1

)
and |−⟩ = 1√

2

(
1
−1

)
.

Given a state in the computational basis, |ψ⟩ = a1 |0⟩+ a2 |1⟩, we would like to change
the basis to {|+⟩ , |−⟩}. To do this we choose the quantum operation V = H where H is the
Hadamard gate.

H |ψ⟩ = a1H |0⟩+ a2H |1⟩

= a1
|0⟩+ |1⟩√

2
+ a2
|0⟩ − |1⟩√

2
(1.45)

Since |+⟩ = |0⟩+|1⟩√
2

and |−⟩ = |0⟩−|1⟩√
2

, we have:

H |ψ⟩ = a1 |+⟩+ a2 |−⟩ (1.46)

Therefore by using the gate H, we change basis from Z to X.

Calculating the expectation value of any observable

This idea of an observable can be extended to any Hermitian matrix. For a Hermitian
matrix (observable) M, the expectation value can be defined as:

E =
⟨ψ|M|ψ⟩
⟨ψ|ψ⟩ (1.47)

where ⟨ψ|ψ⟩ is the normalization constant.
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As mentioned before, measuring the expectation value of Z means measuring in the Z-
basis or computational basis. Similarly, measuring the expectation value of any observable
M would mean measuring in the M basis.

Calculating the quantum operations V to convert any state from the computational basis
to a general M-basis is difficult. On the other hand, converting from the computational basis
to the X and Y basis are relatively straightforward. For this reason we decompose the matrix
M as a sum of Pauli strings. A Pauli string is a combination of Pauli matrices for example
I IXX, IXXX, XXYY etc for 4 qubits. Here IXXX = I ⊗ X⊗ X⊗ X and so on.

Let the matrix M be of size n× n. Note that n must be a power of 2. In the expression
⟨ψ|M|ψ⟩, when |ψ⟩ is a N-qubit state, it is a 2N element vector (equation (1.16)). Thus for
mathematical consistency M is necessarily a 2N × 2N matrix. Hence n = 2N or N = log2 n,
n being the size of the matrix and N being the number of qubits.

Let S = {I, X, Y, Z}N = {S1, S2, S3, S4}N be the set of Pauli matrices. We can consider
n to be a power of 2 without any loss of generality. If the size of the observable matrix is
n′ which is not a power of 2, we can easily convert it to a size of n = 2⌈log2(n

′)⌉, which is a
power of 2. The extra space in the matrix is filled with 0’s.

Consider the set J = {Si1 ⊗ Si2...⊗ SiN|i1, i2....iN ∈ {0, 1, 2, 3}}which consists of all tensor
product combinations of the Pauli matrices.

Then M can decomposed as:

M =
4N

∑
i=1

ci Ji (1.48)

The coefficients of the decomposition can be calculated using the following relation:

ci =
1
n

Tr(Ji ·M) (1.49)

Here the operator ’·’ refers to the dot product between two matrices and Tr() calculates
the trace of the resulting matrix. The trace of a matrix is the sum of its diagonal elements.
The observable therefore becomes:

M =
1
n

4N

∑
i=1

Tr(Ji ·M)Ji (1.50)

Once we have the decomposition of the observable matrix, the expectation value be-
comes a sum of the expectation values of all the terms.

⟨ψ|M |ψ⟩ = 1
n

4N

∑
i=1

Tr(Ji ·M) ⟨ψ| Ji |ψ⟩ (1.51)

We have now successfully decomposed the expectation of M into 4N expectation values
⟨ψ|Ji|ψ⟩, N being the number of qubits.

For every observable Ji, we need an operation Vi to change from the computational basis
to the Ji-basis. Table 1.3 that shows the operation V required to convert from computational
basis to Pauli basis:

When the measurement basis is I for a particular qubit, we do not measure that qubit.
For example, if Ji = IXYZ, we need to add the following set of gates at the end of the circuit
to convert to the required basis and calculate the expectation value:
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Basis V Measure
X H Yes
Y HS† Yes
Z I Yes
I I No

Table 1.3: Operators to convert from computational (Z) basis to Pauli basis.

I

H

S† H

I

We use the operations V according to table 1.3 for the Pauli basis and apply them to the
respective qubits. Once we have calculated the expectation value of every observable Ji,
we can use equation (1.51) to calculate the expectation value of M. Therefore, calculating
the expectation value of a matrix of size n× n requires, in the worst case, the calculation of
4N = 4log2 n = 22 log2 n = 2log2 n2

= O(n2) expectation values. For more information about
the calculation of expectation values refer to [24].

1.1.6 Quantum Hardware

Until now we have discussed the theory of quantum computing. While this thesis revolves
around the design of algorithms, it is also important of understand the quantum computers
they are aimed at.

The algorithms in this thesis are designed for gate-based quantum computers. Gate-
based quantum computers are simply quantum computers that handle the evolution of
quantum states and their measurement using quantum gates. Quantum annealing, a dif-
ferent paradigm of quantum computing, has also been researched upon significantly but
does not work on the concept of quantum gates. This paradigm of quantum computing is
beyond the scope of this thesis but more details on it can be found in [25].

The aim of any quantum computer is to be able to represent qubits, or in other words,
two different states of energy (or two different energy levels). In addition, it must be able to
handle and control precisely the interaction between these qubits. Today (in 2024), there are
several different technologies that are being used to develop quantum computers: supercon-
ducting qubits, ion-traps, neutral atoms, photonic qubits and topological qubits. Each have
their own advantages and disadvantages. A detailed review of all the types of quantum
hardware can be found in [1].

Superconducting qubit quantum computers are, at the moment, the most mature gate-
based quantum computers. IBM has developed superconducting quantum computers which
are available for use freely on their cloud. The largest size quantum computer the can be
used on the cloud today is ibm_torino with 133 qubits. Additionally, they have announced a
device with 1121 qubits, the IBM Condor, but it is not yet available for use publicly. All the
experiments on quantum hardware in this thesis have been performed using IBM quantum
computers.
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Figure 1.3: Qubit map of ibm_brisbane Quantum Computer

Figure 1.3 shows the qubit map of an IBM quantum computer of size 127. There are a
several things to notice here. Firstly, all the qubits are not connected to each other. Qubits
that are not connected to each other can still be used together using SWAP gates (see Table
1.2).

If, for example we needed to use a CNOT gate between the qubit 0 with the qubit 18, it
is possible with two SWAP gates. We swap qubits 18 and 14 using the SWAP gate, meaning
that qubit 14 now represents qubit 18. Now we apply the CNOT gate between the qubits 0
and 14. Finally use the SWAP gate again between qubits 14 and 18 to move them back to
their original place.

If we would like to connect qubits that are far apart, like for example qubit 0 and qubit
41, it would require a lot of SWAP gates and will increase significantly the depth of the
quantum circuit. Therefore, given a quantum circuit, it is important to choose the optimal
qubits such that the minimum number of SWAP gates are used. It is quite clear therefore
that a 127 qubit quantum circuit will not be very efficient here, given the sparse connection
between them.

The colors of the qubits depict their quality. The darker the shade of the qubit, the
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lower the qubit readout error. The readout error of ibm_brisbane ranges from 5 × 10−3 to
2.624 × 10−1. A readout error of 5 × 10−3 means that out of 1000 measurements, 5 mea-
surements are likely to be wrong. While this might seem relatively minuscule, one must
take into consideration that a quantum measurement involves the measurement of a qubit
several thousand times to get the probability distribution, and therefore the error becomes
significant.

Similarly, for the connections in the qubit map, a darker shade of blue depicts a better
quality of connection. The quality of connection is defined in terms of CNOT error. In other
words, what amount of error is introduced every time a CNOT gate is applied between
two qubits. The CNOT error of ibm_brisbane varies between 4.154× 10−3 and 1. A CNOT
error of 4.154× 10−3 means that 0.4154% error is introduced in the circuit (and hence will
reflect in the measurement) upon the application of every CNOT gate. A error of 1 (eq.
between qubits 62 and 63) means that there is 100% error and hence the qubits are effectively
disconnected.

CNOT errors grow in a multiplicative manner. Let’s say we have 5 CNOT gates in a
circuit, all with an error rate of 4.154× 10−3, the total error will be 1− (1− 4.154× 10−3)5 =
0.02 = 2%. Therefore it is important of have low depth circuits with fewer CNOTs in order
to get good results.

It is therefore in our interest to develop algorithms that use a low number of qubits as
well as CNOTs.

1.2 Combinatorial Optimization

In the previous section we saw the elements of quantum computing. In this section we
continue to build upon the components necessary to understand the thesis. Since the aim of
this thesis is to tackle combinatorial optimization problems using quantum computers, we
will now describe combinatorial optimization in detail.

The aim of any optimization problem is to find the minimum or the maximum value of
a given multi-variable function. It is usually accompanied by either equality or inequality
constraints on the variables. In combinatorial optimization, the variables in question are
discrete in nature.

Let us now introduce two combinatorial optimization problems: MAXIMUM CUT and
MAXIMUM INDEPENDENT SET.

MAXIMUM CUT

Given a weighted graph G(V, E, w) where V is the set of vertices, E is the set of edges
and w is the set of weights on the edges, the MAXIMUM CUT problem is defined as follows:

max C(x) = ∑
(i,j)∈E

i∈V,j∈V

1
2

wij(1− xixj), xi ∈ {1,−1} (1.52)

The goal is to maximize the weight of the edges having vertices in different subsets. This
is done by bi-partitioning the graph into two subsets such that xi = 1 is one subset and
xi = −1 is another. The function C(x) is to be maximized and is called the cost function or
objective function.

Consider this graph with vertices V ∈ {1, 2, 3, 4, 5, 6}, edges E ∈ {(1, 2), (1, 6), (3, 4),
(4, 5), (5, 6), (2, 6)} and edge weights w ∈ {1, 1, 1, 1, 1, 1}.

It has been partitioned into two sets of nodes {1, 3, 5} and {2, 4, 6}.
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This bi-partition represents the following solution: x = (1,−1, 1,−1, 1,−1). This solu-
tion means that we have x1 = 1 for the first node, x2 = −1 for the second node, and so on.
The values of 1 and −1 define a node to be in one set or another. Putting the values of x
in the equation (1.52), we get C(x) = 5. The aim of the optimization problem is to adjust
the values xi so as to maximize the value of C(x). Note that the complementary solution
x = (−1, 1,−1, 1,−1, 1) gives the same result.

The total number of possible solutions for a graph with n nodes is 2n, which is enormous.
For example, for just 20 nodes, there exist over 1 million possible solutions.

The MAXIMUM CUT problem, however does not have any constraints. This means that
any solution is a feasible solution. Even if we choose all the nodes in one set and let the
other set be a null set, it is still a solution. Most combinatorial optimization problems have
constraints. A good example of a constrained problem is the MAXIMUM INDEPENDENT SET
problem.

MAXIMUM INDEPENDENT SET

In a graph G(V, E), an independent set is a subset of vertices V′ ⊆ V such that ∀i, j ∈
V′, (i, j) /∈ E. In other words, none of the vertices in V′ have an edge between them. The
figure below shows an independent set (in red).
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6 7

The MAXIMUM INDEPENDENT SET problem seeks to maximize the size of the indepen-
dent set. In the above graph the size of the independent set {1, 3, 5} is 3. The maximum
independent set in this case is {1, 3, 5, 7}:

12

3

4 5

6 7
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A particularity of finding the maximum independent set is that the solution necessarily
needs to be an independent set. While {1, 3, 5} is not the optimal solution, it is a feasible
solution. But {2, 3, 5}, for example, is not admissible as a solution as it not even an indepen-
dent set, let alone the optimal one.

MAXIMUM INDEPENDENT SET can be formally defined as follows:

max C(x) = ∑
i∈V

xi (1.53)

s.t. xi + xj ≤ 1 (∀(i, j) ∈ E,∈ V, j ∈ V) (1.54)

xi ∈ {0, 1} (∀i ∈ V) (1.55)

The cost function (1.53) maximizes the size of the independent set while the constraint
(1.54) makes sure that the solution is an independent set. The weighted version of this
problem, MAXIMUM WEIGHTED INDEPENDENT SET, will be discussed in much more detail
in the next chapters.

1.2.1 NP-Hard Problems
Computational complexity theory, a branch of computer science focusing on the resources
needed to solve computational problems, introduces the concept of complexity classes such
as P, NP, NP-complete, and NP-hard for decision problems. A decision problem is a computa-
tional problem whose answer is either yes or no (also boolean 1 and 0).

P problems are the set of problems that can be solved in polynomial time. This means that
the time taken solve them will increase polynomially as the size of the input increases. NP
problems can be verified in polynomial time given the yes-solution. It is not known whether
P = NP and is one of the major unsolved problems of theoretical computer science. It is
widely believed that P ̸= NP. In that case, there exist problems in NP that cannot be solved
in polynomial time. NP-complete problems are problems that are at least as hard as the
hardest problems in NP. In other words, they are the hardest problems that can be verified
in polynomial time.

NP-hard problems are defined as problems that cannot be solved in polynomial time if
P ̸= NP. NP-Hard problems may or may not be verifiable in polynomial time. NP-complete
problems are at the intersection of NP-Hard and NP. Figure 1.4 shows the Venn diagram of
the complexity classes.

While, N, NP and NP-complete classes are only defined for decision problems, the def-
inition of NP-hard extends to optimization problems as well. Since only decision problems
can be NP-complete and all NP-complete problems are NP-hard as well, we can say without
the loss of generality that the optimization versions of the decision problems are NP-hard.

In this thesis we will deal with NP-hard optimization problems. The problems of MAXI-
MUM CUT and MAXIMUM WEIGHTED INDEPENDENT SET, explained in the previous section,
are known to be NP-hard. Their decision versions are, of course, NP-complete.

The decision version of MAXIMUM CUT is:
Input: A graph G(V, E, w), V being the set of vertices, E being the edges, and wij, (i, j) ∈ E

being the weights on the edges and a positive integer k.
Decision question: Is there a set S ⊆ V such that ∑(i,j)∈E

i∈S
j/∈S

wij ≥ k ?

So technically we would need to solve k + 1 such decision problems to solve the MAXI-
MUM CUT optimization problem. k of these problems will have a solution of yes while the
last problem will have a solution of no. The value of k for the last yes solution will be the
solution to the optimization problem.
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NP-Complete

P

NP-Hard

NP

Figure 1.4: Relation between the complexity classes if P ̸= NP

MAXIMUM CUT is one of 21 NP-complete problems shown by Karp in his paper in 1972
[26]. In this paper he showed how we can reduce one NP-complete problem to another.
Reducibility of a problem P to another problem P ′ means that there exists a polynomial
time algorithm to convert P to P ′. This would imply that given that we can solve P ′, we
can also solve P by converting it to P ′. A more recent paper compiles a set of 296 NP-
complete problems connected to each other via reductions, as shown in figure 1.5. Each
node refers to one problem. For example, MAXIMUM CUT is the node 264. For more details
about the problems refer to [27].

1.2.2 Integer Linear Programming

Combinatorial optimization problems can be tackled using Integer Programming. It is a
description of the optimization problem where the variables are integers. In this thesis we
concentrate on 0-1 Integer programming since the variables used in our problems are always
binary. As can be seen in figure 1.5, 0-1 Integer Programming decision problems are known
to be NP-complete, and therefore the optimization problems are NP-hard.

The simplest type of 0-1 integer programs are the Integer Linear Programs or ILPs. In
ILPs the objective function as well as the constraints are linear with respect to the binary
variable. An ILP with n variables and m constraints can be written in the following general
form:

Objective: max
n
∑

i=1
cixi

Constraints:

1. ∑
ij

aijxi ≤ bj, i ∈ {1, 2, 3 . . . n}, j ∈ {1, 2, 3 . . . m}

2. xi ∈ {0, 1}

where the constants a, b, c ∈ R.
A common strategy to tackle ILP problems is to relax the binary variables xi ∈ {0, 1}

such that they become continuous variables between 0 and 1: xi ∈ [0, 1]. This is called a
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Fig. 6. Digraph of transformations between NP-complete problems.

Step 3. Select an NP-complete problem B (target problem). In this case 2-Partition was selected since it is known to be
NP-complete [2,10].

Step 4. Define a formal language L2 (target language) for the NP-complete problem B. In this case, the alphabet
∑

=

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ‘‘{’’, ‘‘}’’, ‘‘, ’’, ‘‘; ’’, ‘‘ = ’’, ‘‘A’’, ‘‘P ’’, ‘‘R’’, ‘‘ − ’’} and a BNF grammar were defined. For example,
L2 = {2-PAR = {num; c1, c2, . . . , cnum}}.

Step 5. Construct a compiler (a computer program or set of programs that translates text written in a source language
into another target language, such as Lex, Flex, Yacc, or Bishop) that performs in polynomial time the transformation
1D-BPP≤P 2-PAR; i.e., use a compiler that takes as input a source language (L1) for obtaining a target language (L2), in
order to carry out the polynomial transformation from problem A to problem B (A≤P B). For this example, as a result of the
polynomial transformation using formal languages, 2-PAR = {6; 10, 20, 20, 10, 5, 5} was obtained.

Figure 1.5: Digraph of transformations between NP-Hard problems (taken from [27]).

linear programming integrality relaxation and the resulting problem is a linear program or
LP.

Linear programming is an optimization problem involving continuous variables, where
both the objective function and the constraints are linear in terms of the input variables.
Although LP does not strictly fall under combinatorial optimization, it is widely used as a
subroutine in various exact and approximate algorithms.

Various methods exist to solve the LPs. The simplex algorithm, proposed by George
Dantzig in 1947, is one of the most popular approaches to LP problems. A detailed de-
scription of this algorithm can be found in [28]. It is known that LP is in P (polynomially
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solvable).
Since the LP relaxes the variables to continuous variables, the LP solution consists of

fractional values. For a maximization problem, the optimal LP solution is the upper bound
to the original ILP. The percentage gap between the optimal LP solution and the optimal ILP
solution is called the integrality gap.

In order to generate an integer solution from the LP solution, the branch-and-bound method
can be used. A detailed description of branch-and-bound can be found in [29].

ILPs can be solved using commercial solvers like Gurobi or cplex. These solvers use the
simplex method, branch-and-bound and a variety of other methods to solve ILP problems.
Note that these problems are NP-hard and therefore we do not necessarily have an optimal
solution.

1.2.3 Approximation Algorithms
A problem being NP-Hard usually means that it is not possible to find the optimal solution
of the problem in a reasonable amount of time. These problems, therefore, need to be ap-
proached in another way. Instead of trying to find the optimal solution, we can try to find
a near-optimal solution relatively quickly. The solution hence found is thus approximate. An
algorithm that generates, in polynomial time, an approximate solution to an optimization
problem is called an approximation algorithm. Approximation algorithms may or may not
have a theoretical bound on their performance.

The ratio between the approximate solution and the optimal solution is known as ap-
proximation ratio α.

α =
Approximate Solution

Optimal Solution
(1.56)

For a maximization problem, α varies from 0 to 1, with a α = 1 denoting that the al-
gorithm found the exact solution. For a minimization problem, α ≥ 1. It is of course not
possible to find α unless we know the optimal solution of the optimization problem. This
quantity, however, is important in the formal analysis of an algorithm and can be used to
derive a performance guarantee.

A good example of an approximation algorithm with a performance guarantee is the
Christofides algorithm [30] for the traveling salesman problem, which is a minimization
problem. The algorithm has a bound of α = 1.5.

1.2.4 Quadratic Unconstrained Binary Optimization (QUBO)
QUBO is a way to model an optimization problem in such a way that the objective function
is quadratic and is free of any constraints. Note that if and only if the variables are binary,
QUBO also allows for linear terms. This is because if xi ∈ {0, 1}, xi = x2

i , therefore all the
linear terms can be converted into quadratic terms without the loss of generality.

A general QUBO optimization model has the following form:

max ∑
ij

cijxixj (1.57)

The above equation can also be written in matrix form as follows:

max
(
x1 x2 ... xn

)
c11 c12 ... c1n
c21 c22 ... c2n
... ... ... ...

cn1 cn2 ... cnn




x1
x2
...
xn

 (1.58)
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and hence eventually

max xTQx (1.59)

Q =


c11 c12 ... c1n
c21 c22 ... c2n
... ... ... ...

cn1 cn2 ... cnn

 (1.60)

The matrix Q is called the QUBO matrix.
While the QUBO formulation of a problem does not contain any constraints, it is nev-

ertheless possible to encode constraints in the objective function itself. Equality constraints
are modeled as a penalty terms. Let there be a maximization problem with the objective
function f where the constraints are given as follows:

∑
ij

aijxi = bj (1.61)

Then, in order to integrate the constraints into the objective function f , we write it as:

max
[

f − p(∑
ij

aijxi − bj)
2] (1.62)

Here p ∈ R+ is the strength of the penalty.
Note that if this a minimization problem with the same constraint, we need to add the

penalty instead of subtracting it.

min
[

f + p(∑
ij

aijxi − bj)
2] (1.63)

Inequality constraints can also be handled by various methods. For more information
refer to [31].

1.2.5 Goemans Williamson Algorithm
The Goemans Williamson (GW) algorithm [32] is an important approximation algorithm for
the MAXIMUM CUT problem. Since it is an approximation algorithm, it does not find an
exact solution but it is very efficient and has a theoretical lower bound on the solution. GW
is a semidefinite programming (SDP) algorithm. In SDP, the problem is stated in terms of
positive semidefinite matrices. It is a type of continuous optimization.

A matrix A is defined to be positive semidefinite (A ≽ 0) if and only if for a nonzero
vector x:

xT Ax ≥ 0 (1.64)

Positive semidefinite matrices have non-negative eigenvalues. Just like non negative
numbers, positive semidefinite numbers can have a square root. Therefore, a positive semidef-
inite matrix A can have a square root S such that:

STS = A (1.65)

This property is useful while defining the MAXIMUM CUT problem using positive semidef-
inite matrices. To begin, let us recall the objective function of MAXIMUM CUT from equation
(1.52).
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C(x) = ∑
(i,j)∈E

i∈V,j∈V

wij
1− xixj

2
, xi ∈ {−1, 1} (1.66)

The first step of the GW is to do an SDP relaxation of the variables. The variables xi can
be seen as being 1-dimensional vectors of unit-norm. In the SDP relaxation we allow xi to
be multidimensional vectors zi of unit-norm. More precisely, we assume that the vectors
zi belong to the |V|-dimensional unit-sphere S|V|, where S|V| = {y ∈ R|V|||y| = 1}. This
mapping is zi ∈ S|V| is bi-directional. Thus, given a matrix Z, we can recover the vectors zi.
This is explained in detail in the Chapter 1 of [33].

The matrix zTz represents a positive semidefinite matrix Z ≽ 0 where z is the square root
of Z. The elements of the Z are Zi,j = zT

i zj.
Replacing xixj by zT

i zj in equation (1.66), we have:

C(z) = ∑
(i,j)∈E

i∈V,j∈V

wij
1− zT

i zj

2
, zi ∈ S|V| (1.67)

The constraint zi ∈ S|V| can be represented as zT
i zi = Zi,i = 1 (see Chapter 1 in [33]).

Rewriting the problem in terms of the matrix Z, we have:

max C(Z) = ∑
(i,j)∈E

i∈V,j∈V

wij
1− Zi,j

2
(GW)

s.t. Zi,j ≽ 0 (∀i ∈ V, j ∈ V) (GW-1)

Zi,i = 1 (∀i ∈ V) (GW-2)

From the optimal solution of this problem Z∗ we can recover the optimal vectors z∗i and
hence extract a solution x∗ ∈ {−1, 1}|V| to our problem. This is done using a randomly
generated hyperplane that cuts the sphere S|V| in two. More precisely, this hyperplane is the
vector h ∈ R|V| and we can recover the two partitions as:

x∗ =

{
1 if hTz∗i ≥ 0
−1 otherwise

(1.68)

The GW algorithm for the MAXIMUM CUT problem provides solutions that are always
at least α = min

0≤θ≤π

2
π

θ
1−cos θ = 0.87856 times the optimal solution . This is proven in [32].

1.3 Variational Quantum Algorithms for Optimization

While quantum computers have shown significant promise for the future, a true quan-
tum speedup for practical applications is yet to be realized. We are currently in the Noisy
Intermediate-Scale Quantum (NISQ) era where the quantum computers are limited in terms
of number of qubits, connectivity and errors that limit quantum circuit depth. Since fault
tolerant quantum computers (FTQCs) could be years or even decades away, it is imperative
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that we research methodologies that could help us use the NISQ computers of today. Vari-
ational quantum algorithms (VQAs) have emerged as one of the foremost strategies to take
advantage of NISQ devices.

VQAs provide a general structure to solve a variety of problems, including but not lim-
ited to optimization problems. VQAs are based on the well-known variational method in
quantum mechanics. In quantum physics, we are often interested in finding the ground
state (minimum energy) of a quantum system. The variational method is a method to ap-
proximately find the ground state energy of a quantum state. It consists of taking a initial
quantum state (usually called the trial state), which depends on one or more parameters.
Then, by optimizing these parameters, the approximate ground state of the system is found.
Since this is a problem of minimization, any solution found shall be an upper bound of the
ground state energy.

Similarly, in a VQA we have a set of quantum operations (including the preparation of a
quantum state followed by the expectation value measurement of a certain observable) that
can be controlled using a set of parameters. Then, by optimizing these parameters, we can
minimize the expectation value. In the context of an optimization problem having a certain
cost function, the quantum operations need to be such that minimizing the expectation value
is equivalent to minimizing the cost function. While we are only talking about minimization
here to be coherent with the concept of finding the ground state, this does not lose generality
as a maximization problem can be easily posed as a minimization problem using a ’−’ sign.

In order to optimize the parameters, we use classical black-box optimizers. In every
iteration we alternate between a classical optimizer and the quantum computer. VQAs are
therefore hybrid quantum-classical algorithms.

The general structure of a VQA is as follows:

1. An initial quantum state |ψ⟩, also known as an ansatz, is prepared on the quantum
computer using a quantum circuit. To create the ansatz we start with the the N-qubit
state |0⟩⊗N and then apply a set of quantum gates (say U).

|ψ⟩ =

|0⟩

U
|0⟩

...
|0⟩

2. The expectation value of an observable H, ⟨ψ|H|ψ⟩ is then calculated on the quantum
computer. This can also be referred to as performing a measurement in the H basis as
described in section 1.1.5.

3. The expectation values hence calculated must depend on certain parameters. To that
end, the ansatz or the observable or both can be parameterized. Hence the expectation
value can be written as:

E(θ, ϕ) = ⟨ψ(θ)|H(ϕ)|ψ(θ)⟩ (1.69)

where θ ∈ Rp, ϕ ∈ Rq are vectors of size p and q.

4. In the classical black-box optimizer input the initial values of the parameters (θ0, ϕ0)
as well as the cost function (a function that calculates the expectation value E(θ, ϕ)).
The parameters of the expectation value are then adjusted in an iterative manner until
the expectation value is minimized.
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|0⟩

U(θ)
|0⟩

...

|0⟩
The Variational Ansatz

Calculate the expectation
value:
E(θ, ϕ) = ⟨ψ(θ)|H(ϕ)|ψ(θ)⟩)

Classical black-box optimizer to minimize E(θ, ϕ)

Best expectation value found:
E∗(θ∗, ϕ∗) = min E(θ, ϕ)
Perform post-processing to derive result.

END θ∗, ϕ∗

Updated θ, ϕ
E(θ, ϕ)

START

θ0, ϕ0

Figure 1.6: Diagrammatic representation of a VQA.

Figure 1.6 shows the general VQA structure diagrammatically.

1.3.1 Black-box optimizers

A important part of the VQAs are the classical black-box optimizers that are used to opti-
mize the parameters. The efficiency of the black-box optimizers play a significant role in
the performance of the VQA. Here, we will speak briefly about two different black-box op-
timizers that are used in this thesis: COBYLA and Genetic Algorithm. They are just two
examples of black-box optimizers used in VQAs. For a more complete outlook on these
classical optimizers refer to [18], [34].

COBYLA

Constrained Optimization BY Linear Approximations or COBYLA is a derivative-free
optimization algorithm that operates without gradient information. It was proposed by M.
J. D. Powell in 1994 [35]. It’s particularly useful when gradients are unavailable or expensive
to compute. This is helpful in the case of VQAs, where the function to optimize consists (at
least in part) of quantum circuits and therefore not a mathematical function whose deriva-
tive can be easily calculated.

COBYLA uses linear approximations to represent the cost function and the constraints.
These approximations are iteratively refined to converge to an optimal solution. Addition-
ally, COBYLA uses trust regions to make sure that the linear approximations remain valid.
The trust region defines a neighborhood around the current iterate (current point in the so-
lution space where the algorithm is located) within which the linear model is trusted to be a
reasonable approximation of the actual functions.
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COBLYA is deterministic, meaning that given a specific input (parameters and objective
function), it always generates the same result. It accepts real numbers as parameters and
parameter bounds need to be defined as constraints. It is known to handle both equality
and inequality constraints efficiently.

Genetic Algorithm

The Genetic Algorithm or GA is an evolutionary algorithm that takes inspiration from
natural selection and genetics. It is very useful for complex optimization problems where
the search space is large. Unlike COBYLA, GA is non-deterministic and incorporates ran-
domness during the algorithm run, leading to different outcomes across different runs, even
with the same initial conditions.

The genetic algorithm starts with a population of random candidate solutions to the op-
timization problem. The size of the population considered is defined as an input to the
algorithm. It proceeds to evolve the population over several iterations or rather generations.
The process of evolution of the candidate solutions is based on specific selection processes
based on several algorithm parameters. This selection process determines the following
generations of candidate solutions.

After several generations, the best solution is taken from all the candidates throughout
the generations. GAs are heuristics and therefore do not guarantee that the algorithm will
generate an optimal solution. The solution achieved therefore depends on the maximum
number of allowed generations, which is an input of the GA algorithm. For a more detailed
description of the GAs, refer to [36].

1.3.2 Quantum Approximate Optimization Algorithm

In this section we will talk about the Quantum Approximate Optimization Algorithm (QAOA),
one of the most studied VQAs for combinatorial optimization problems. The QAOA is a
hybrid quantum-classical optimization algorithm introduced by Edward Farhi and Jeffrey
Goldstone in 2014 [13]. QAOA uses a discretized simulation of Adiabatic Quantum Computa-
tion [37].

A general combinatorial optimization problem can be defined using n bits and m binary
clauses. The clauses are either True or False (1 or 0) and the objective is to find the optimal
binary vector of size n to maximize the number of True clauses. The optimization problem
is therefore:

max C(x) =
m

∑
i=1

Ci(x) (1.70)

where x = {x1, x2 . . . xn}. This problem is generally referred to as the MAXIMUM SAT-
ISFIABILITY problem. Following are the components of the QAOA algorithm for a general
combinatorial optimization problem.

The Variational Ansatz

The first step of a VQA is to create an ansatz. In the QAOA ansatz, we have three parts:
the inital state, the cost operator and the mixer operator. The number of qubits required
depends on the size of the problem. It is a usually a linear function of the problem size.
Here we will assume that we require N-qubits to carry out the QAOA algorithm.
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Initial State: The first component of the variational ansatz is an inital state. The ini-
tial state should be trivial to prepare. For QAOA this is a uniform superposition of all the
computational basis states. This is done by applying Hadamard gates on all the qubits.

|ψ0⟩ =

|0⟩ H

|0⟩ H
...
|0⟩ H

|ψ0⟩ = H⊗N |0⟩⊗N =
1√
2N ∑

x
|x⟩ , ∀x ∈ {0, 1}N (1.71)

Cost Operator: The next part is the unitary cost operator UC which encodes information
regarding the objective function. This is created using a cost Hamiltonian which encodes
C(x) as an operator HC that is diagonal in computational basis, such that for an N-qubit
state |ψ⟩:

HC |ψ⟩ = C(x) |ψ⟩ (1.72)

Using the cost Hamiltonian, we create the cost operator as follows.

UC(γ) = e−iγHC (1.73)

where γ ∈ [0, 2π] is a parameter or angle.
Mixer Operator: Finally we have the mixer operator UB. Similar to the cost operator, the

mixer operator contains the mixer Hamiltonian HB. The mixer operator is required to ex-
plore the entire solution space. While the cost operator helps in calculating the cost function,
the mixer operator helps the algorithm to move between the possible solutions. In QAOA
the mixer Hamiltonian is mathematically defined as:

HB =
n

∑
j=1

Xj (1.74)

where Xj is the Pauli-X operator acting on the jth qubit. The mixer operator is therefore:

UB(β) = e−iβHB =
n

∏
j=1

e−iβXj (1.75)

where β ∈ [0, π] is a parameter.
Ansatz: Using the initial state, the cost and the mixer operator (using equations (1.71),

(1.73) and (1.75)), we have the following ansatz:

|γ, β⟩ =

|0⟩ H

UC(γ) UB(β)
|0⟩ H

...

|0⟩ H
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Layer 1 Layer p E(γ, β)

. . .

. . .

. . .

. . .

|0⟩ H

UC(γ1) UB(β1) UC(γp) UB(βp)
|0⟩ H

...

|0⟩ H

Figure 1.7: Circuit to build the QAOA ansatz |γ, β⟩ and to calculate the expectation value
E(γ, β).

|γ, β⟩ = e−iβHB e−iγHC |ψ0⟩ (1.76)

Multi-layer Ansatz: The above ansatz is the single-layer QAOA ansatz. In fact, QAOA
can have p-layers. In every layer the cost and mixer Hamiltonians are applied repeatedly
and with different parameters. The p-layer QAOA ansatz is therefore:

|γ, β⟩ = |γ1 . . . γp, β1 . . . βp⟩ = e−iβp HB e−iγp HC . . . e−iβ2HB e−iγ2HC e−iβ1HB e−iγ1HC |ψ0⟩ (1.77)

Calculating the expectation value

Once the ansatz is prepared, the expectation value of the cost Hamiltonian HC is to be
measured, giving us the value of the cost function:

E(γ, β) =
⟨γ, β|HC|γ, β⟩
| ⟨γ, β|γ, β⟩ |2 (1.78)

Note that HC is diagonal so it can be described in the computational basis and hence it
suffices to simply measure the circuit in Z or computational basis. For a N-qubit system, the
above equation therefore becomes:

E(γ, β) =
⟨γ, β|Z⊗N|γ, β⟩
| ⟨γ, β|γ, β⟩ |2 (1.79)

The quantum circuit to calculate E(γ, β) is shown in figure 1.7.

Optimizing the expectation value

Finally, we maximize the cost function using a classical black-box optimizer such as a
genetic optimizer or COBYLA as explained previously. Each loop of the classical optimizer
consists of calculation an expectation value. QAOA is a heuristic algorithm and therefore
attempts to find an approximate solution to the optimization problem. There is, therefore
no proof of optimality and we take the best solution found.

E∗ = max E(γ, β) (1.80)
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The solution to the problem is then extracted from the probability distribution of the
quantum state at expectation value E∗.

QAOA for the MAXIMUM CUT problem

For a given problem, we only need to define the cost Hamiltonian and then the other
steps of the algorithm are fixed. For the MAXIMUM CUT problem on a graph G(V, E, w) as
defined in (1.52) the cost Hamiltonian is:

HC = ∑
(i,j)∈E

wij

2
(1− ZiZj) (1.81)

Since the QAOA algorithm was proposed in 2014, there has been a significant amount of
research carried out on the topic as there have been several extensions to QAOA. A detailed
review of several such extensions can be found in [38]. A detailed mathematical description
and analysis of QAOA can be found in [39].



CHAPTER2

The LogQ Encoding: Solving NP-Hard problems using exponentially
fewer qubits

2.1 Introduction

In chapter 1 we have seen the fundamental concepts of quantum computing, combinatorial
optimization and variational quantum algorithms. In this chapter, we combine these ideas
to present a novel quantum variational algorithm for a plethora of NP-hard combinatorial
optimization problems.

As explained in chapter 1, NP-hard optimization problems are problems that do not
have algorithms that can give an exact solution in polynomial time, whereas it is ’easy’ to
verify the solution if it is known [40]–[42]. While finding exact solutions to large problems is
difficult, there exist many algorithms that find approximate solutions to these problems [43]–
[46]. In the scope of quantum computing, a huge amount of research has been carried out
on hybrid quantum-classical algorithms [13], [14], [18]–[22], [47]–[52]. In such algorithms,
quantum circuit measurements are used in tandem with a classical optimization loop to
obtain an approximate solution.

The Quantum Approximate Optimization Algorithm (QAOA) [13], [23], [53]–[55], ex-
plained in detail in the previous chapter, is one of the most studied hybrid quantum-classical
algorithm. The QAOA, however, has a significant drawback that limits its scope of appli-
cation severely. As we increase the size of the optimization problem, the number of qubits
required to solve the problem using QAOA increases linearly [56]. This is a problem for
several reasons. Firstly, at the moment (mid-2024), the largest announced universal gate-
based quantum computer is IBM’s Condor device, containing 1121 qubits. The largest de-
vice available on their cloud-based platform is the IBM Torino having 133 qubits. Secondly,
all the qubits are not of the same quality and the larger the problem, the more likely it is to
obtain noisier results due to the presence of qubits with higher error rates. Thirdly, these
qubits are not all-in-all connected, meaning that in case of large sized problem, numerous
SWAP gates would have to be used in order to run the circuit, leading to more noise.

It is in this context that we introduce a new way to encode combinatorial optimization
problems on quantum computers [57]. This encoding, which we call the LogQ encoding,
allows us to represent much larger problems using a fairly small number of qubits. Therefore
a MAXIMUM CUT problem with a graph of n nodes can be represented using only ⌈log2 n⌉

37



38
Chapter 2. The LogQ Encoding: Solving NP-Hard problems using exponentially fewer

qubits

qubits.
While the LogQ encoding, like the QAOA, is a variational quantum algorithm, it is im-

portant to note that they are fundamentally different. While QAOA uses the Hilbert space
to expand in an exponential manner all of the 2n solution space at once, LogQ exploits the
compression power of the Hilbert space in a logarithmic way.

We start with describing the method introduced in [57] which is the LogQ encoding for
the MAXIMUM CUT problem. We then extend this algorithm to several other NP-hard prob-
lems. This is approached in two different ways, as demonstrated in the following sections.

The chapter is structured as follows. In section 2.2.1, we describe in detail the LogQ en-
coding of the MAXIMUM CUT problem on a quantum computer. In section 2.2.2, we show
how this algorithm can be applied on a variety of NP-hard problems by converting them,
directly or indirectly, to the MAXIMUM CUT problem. In section 2.2.3, we show how any
Quadratic Unconstrained Binary Optimization Problem (QUBO) problem can be treated us-
ing the LogQ encoding. In section 2.3, experimental results of all the methods described
in the previous sections are shown. Notably, we show quantum simulator results with
instances of sizes of over a hundred nodes/objects, as well as quantum hardware (QPU)
results for problem sizes up to 256.

This chapter is partly adapted from our work published in Physical Review A [58]. This
work was also presented in conferences ROADEF 2023 [59] and EU/ME conference 2023
[60].

2.2 Methods

2.2.1 A qubit-efficientMAXIMUM CUT Algorithm

Contemporary quantum optimization algorithms in general scale linearly with problem
size. This means that if the problem consists of an n node graph, the algorithm will re-
quire n qubits to solve the problem. Note that to solve a problem here implies to obtain
an approximate solution. Following Ref. [57], we present an algorithm that scales logarith-
mically with the problem size. For a problem of size n, the number of qubits required is
⌈log2 n⌉.

2.2.1.1 Description of the algorithm

Recall first the definition of MAXIMUM CUT:

MAXIMUM CUT

Input A weighted graph G(V, E, w).

Task Find x ∈ {1,−1}|V| that maximizes ∑ij wij
1− xixj

2
∀{(i, j) ∈ E}, where wij

are the weights on the edges.

Given a graph G(V, E), the MAXIMUM CUT can be represented using the Laplacian ma-
trix. The Laplacian matrix is defined as follows:

Lij =


degree(i) if i = j
−wij if i ̸= j and (i, j) ∈ E
0 otherwise

(2.1)
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Note that the degree here refers to the weighted degree. The weighted degree of a vertex
is the sum of weights of all edges containing the vertex.

The MAXIMUM CUT value is given by the following equation [61]:

C(x) =
1
4

xT Lx (2.2)

where L is the Laplacian matrix and x ∈ {1,−1}|V| is the bi-partition vector.
To see this let us take an example. Consider a graph G(V, E, w) such that V ∈ {1, 2, 3, 4, 5, 6},

E ∈ {(1, 2), (2, 6), (3, 4), (4, 5), (5, 6), (6, 1)} and w ∈ {3, 7, 4, 8, 2, 1} such that the weight of
the edge (1, 2) is 3 as so on.
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The Laplacian matrix of this graph is:

L =


4 −3 0 0 0 −1
−3 10 0 0 0 −7
0 0 4 −4 0 0
0 0 −4 12 −8 0
0 0 0 −8 10 −2
−1 −7 0 0 −2 10

 (2.3)

The graph is partitioned into 2 sets, the dark and the light colored vertices. The vector
x for this bi-partition can be written as 101010, putting the dark vertices as 1 and the light
vertices as 0. Note that we can also take the complimentary vector 010101 as it describes the
same bi-partition. Putting the values of x and L in equation (2.2), we have:

C =
[
1 0 1 0 1 0

]


4 −3 0 0 0 −1
−3 10 0 0 0 −7
0 0 4 −4 0 0
0 0 −4 12 −8 0
0 0 0 −8 10 −2
−1 −7 0 0 −2 10




1
0
1
0
1
0

 (2.4)

=
[
1 0 1 0 1 0

]


4
−3
4
−12
10
−3

 (2.5)

= 18 (2.6)
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Figure 2.1: The function R

It is quite straightforward to verify that the cut in the given bi-partition is indeed 18. The
edges with different vertex colors are (1, 2), (1, 6), (3, 4), (4, 5), (5, 6) whose weights add up
to 3 + 1 + 4 + 8 + 2 = 18.

Due to fact that the Laplacian is a Hermitian matrix, it resembles a Hamiltonian of an
actual physical system. The quantum analog of equation (2.2) is

C(θ1...θn) = 2N−2 ⟨Ψ(θ1...θn)| L |Ψ(θ1...θn)⟩ (2.7)

where L is the Laplacian matrix of the graph, |Ψ⟩ is the parameterized ansatz and θ =
{θ1....θn} are the variables to be optimized. If the size of the graph is n, then L is of size n× n
and |Ψ⟩ is a state of N = ⌈log2 n⌉ qubits. 2N−2 is the normalization constant.

We have designed a variational algorithm that finds a good approximation to the best
MAXIMUM CUT. Starting from the initial values of θ parameters, we call a quantum circuit
to evaluate the objective function (Algorithm 1) and run a classical black box optimization
loop over the θ parameters (Algorithm 2). As a result, we obtain θ∗ to evaluate the best
solution.

To evaluate the expectation value C on a quantum computer, first we need to create the
ansatz |Ψ(θ1...θn)⟩. In order to do this the following steps are required.
1. We define a function R(θk) as follows:

R(θk) =

{
0 if 0 ≤ θk < π

1 if π ≤ θk < 2π
(2.8)

Therefore,

exp(iπR(θk)) =

{
1 if 0 ≤ θk < π

−1 if π ≤ θk < 2π
(2.9)

The point of doing this is the variational need to optimize over angles in R. The function
R, shown in Figure 2.1, converts a continuous variable into a binary one, which is what
we need.
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2. Given a graph G(V, E) such that |V| = n and |E| = m, to create the ansatz we first define
the number of qubits required as follows:

N = ⌈log2 n⌉ (2.10)

When the number of nodes are not an exact power of 2, we can adjust L to be of size 2N

by adding null matrices of size 2N − |V|, O2N−|V|, as shown in line 3, Algorithm 1.
3. Create a quantum circuit and apply a Hadamard gate to all the qubits to achieve an equal

superposition of the states (lines 7 and 8, Algorithm 1).
4. To the circuit, apply a diagonal gate U (line 9, Algorithm 1) of the following form:

U(θ) =


eiπR(θ1) 0 0 ....

0 eiπR(θ2) 0 ....
.... .... .... ....
0 0 0 eiπR(θn)

 (2.11)

Therefore the final ansatz is:

|Ψ(θ)⟩ = U(θ)H⊗N |0⟩⊗N (2.12)

The state in the above equation is obtained in line 10 of Algorithm 1.
Having an ansatz, we can now define the Laplacian as an observable and evaluate the mea-
surement (as in equation 2.7) which is the energy of the system. Since the classical optimizer
minimizes the cost function we take the negative of the Laplacian matrix. Thus the final cost
function is:

C(θ) = −2N−2 ⟨Ψ(θ)| L |Ψ(θ)⟩ (2.13)

To evaluate this expectation value, the Laplacian matrix needs to be converted into a sum of
tensor products of Pauli matrices (line 4 Algorithm 1). This is because in order to calculate
the expectation value of L we need to express our quantum state in the L-basis. Converting
to a general basis like L can be difficult, but converting to Pauli basis is relatively straight-
forward. For more details, see section 1.1.5).

Using classical black-box meta optimizers such as COBYLA, Nelder-Mead or Genetic
Algorithm (as detailed in Algorithm 2), we then obtain

C∗(θ∗) = min C(θ) (2.14)

The final parameters obtained θ∗ gives the bi-partition vector, using equation (2.9).
The entire process is expressed in the Figure 2.2. We start the algorithm from the top left

corner box by creating a variational ansatz of N-qubits. In the top right corner box, this is
followed the by calculation of expectation value of the Hamiltonian H which in our case is
−L or the negative of the Laplacian matrix (H in the top right corner box is the Hamiltonian
and is not be confused with the Hadamard gate which is present in the variational ansatz).
Then we move down to the classical part where we run the classical black-box optimizer
loop in order to optimize the parameters. This optimization loop is shown in Algorithm 2.
The parameters are updated and fed back to the variational ansatz until the best solution is
found. At this point (bottom-most box), we take the final parameters and the value of the
cost function as our results, calculate bi-partition vector from the values of the parameters.

2.2.1.2 Step-by-step explanation of LogQ forMAXIMUM CUTwith an example

In this section we will give a step-by-step run-through of LogQ for the MAXIMUM CUT
problem for a given graph. Let the given graph be G(V, E, w) such that V ∈ {1, 2, 3, 4},
E ∈ {(1, 2), (1, 3), (2, 3), (3, 4)} and w ∈ {3, 1, 8, 4}.
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The Variational Ansatz 

Calculate the Expectation 
Value /Energy 

Classical optimization loop to minimize the 
expectation value: 

Update the parameters until the best value is 
reached. 

From the best parameters 
obtained, interpret the required 

partition vector. 
Classical Part: 
Algorithm 2 

Quantum Part: Algorithm 1 

N

Figure 2.2: Diagrammatic representation of the hybrid quantum-classical algorithm using
the LogQ encoding.

Algorithm 1: LogQ Encoding of MAXIMUM CUT: Building the Objective Function
Input: Laplacian matrix of a graph G(V, E)

1 L←Laplacian matrix of size |V| × |V|
2 N ← ⌈log2 |V|⌉

3 L∗ ←
[

L O2N−|V|
O2N−|V| O2N−|V|

]
4 H ← 1

n

4N

∑
i=1

Tr(Ji · L∗)Ji where J = {∏N
k=1 S⊗k}

5 θ ← List of |V| parameters
6 Function EvalCost(θ):
7 Q← Quantum Circuit of N qubits
8 Add Hadamard gate to each Qubit
9 U ← diagonal gate diag(θ, R)

10 Apply U to Q
11 F ← ExpectationValue(Q, H)

12 return 2|V|−2F
13
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Algorithm 2: LogQ Encoding of MAXIMUM CUT: Minimizing the Objective Func-
tion

Input: EvalCost(θ)
1 Function Optimizer(EvalCost(θ),θinitial):
2 repeat
3 θp ← θ at pth iteration
4 C ← EvalCost(θp)
5 if C is sufficiently good then
6 C∗ ← C
7 break
8 else
9 Update θp → θp+1

10 continue
11 end
12 return C∗
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The Laplacian matrix of this graph is:

L =


4 −3 −1 0
−3 11 −8 0
−1 −8 13 −4
0 0 −4 4

 (2.15)

Since the size of the problem is n = 4, we need log2 4 = 2 qubits. We create the initial
quantum circuit with 2 qubits as follows:

|ψ⟩ =
|0⟩ H

U(θ1, θ2, θ3, θ4)

|0⟩ H

The circuit above consists of 2 Hadamard gates and then a diagonal gate U. This diagonal
gate implements the following matrix as gate:

U =


eiπR(θ1) 0 0 0

0 eiπR(θ2) 0 0
0 0 eiπR(θ3) 0
0 0 0 eiπR(θ4)

 (2.16)



44
Chapter 2. The LogQ Encoding: Solving NP-Hard problems using exponentially fewer

qubits

This diagonal gate can be easily implemented in the qiskit Python package using the diag
function. The R, as explained before, is a simple function that converts a continuous variable
to a binary 0 or 1. Therefore we can consider R(θi) as a binary variable.

The exact gate to be implemented depends on the values of θi and hence R(θi). Let
θ = {θ1, θ2, θ3, θ4}. Let us take for example the case where θ = {0.5π, 1.4π, 1.7π, 0.8π}, such
that: R(θ) = {0, 1, 1, 0}. Then the gate to be implemented is:

U =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (2.17)

For this particular case the circuit becomes:

U

|0⟩ H Rz(π)

|0⟩ H

It can be verified that the above circuit does represent the diagonal gate U. This can be
done by multiplying the three matrices representing the gate. The first gate is the CNOT
followed by the Rz gate on the first qubit (this can be represented over two qubits a Rz ⊗ I
since there is nothing on the second qubit). Finally there is another CNOT. Note that the
CNOT here will be different from the CNOT gate shown in table 1.2. This is because here,
unlike in table 1.2, the first qubit is the target and the second qubit is the control.
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U =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

×(
e−iπ/2 0

0 eiπ/2

)
⊗

(
1 0
0 1

)
×


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.18)

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

×(
−i 0
0 i

)
⊗

(
1 0
0 1

)
×


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.19)

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



−i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 i




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.20)

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



−i 0 0 0
0 0 0 −i
0 0 i 0
0 i 0 0

 (2.21)

=


−i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −i

 (2.22)

= −i


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (2.23)

Which is exactly the same as the expression of U in equation 2.17 upto a global phase−i.
Note that a global phase does not change the resulting quantum state.

After constructing the above circuit, we need to calculate the expectation value of the
observable (defined in (2.24)), which in our case is the Laplacian matrix. To do this we
need to first convert the Laplacian matrix into a sum of Pauli strings. After converting the
Laplacian matrix, we get the following:

L = 8I I − 3.5IX + 0.5IZ− 0.5XI − 4XX− 0.5XZ− 4YY− 0.5ZI + 0.5ZX− 4ZZ (2.24)

Here IX = I ⊗ X, IZ = I ⊗ Z and so on are the tensor products between Pauli matrices.

To see that the Laplacian can be represented as in equation (2.24), we can compute the
expression as follows:
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L = 8
(

1 0
0 1

)
⊗

(
1 0
0 1

)
− 3.5

(
1 0
0 1

)
⊗

(
0 1
1 0

)
+ 0.5

(
1 0
0 1

)
⊗

(
1 0
0 −1

)
− 0.5

(
0 1
1 0

)
⊗

(
1 0
0 1

)
− 4.0

(
0 1
1 0

)
⊗

(
0 1
1 0

)
− 0.5

(
0 1
1 0

)
⊗

(
1 0
0 −1

)
− 4.0

(
0 −i
i 0

)
⊗

(
0 −i
i 0

)
− 0.5

(
1 0
0 −1

)
⊗

(
1 0
0 1

)
+ 0.5

(
1 0
0 −1

)
⊗

(
0 1
1 0

)
− 4.0

(
1 0
0 −1

)
⊗

(
1 0
0 −1

)
(2.25)

= 8


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 3.5


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

+ 0.5


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

− 0.5


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



− 4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

− 0.5


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

− 4


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0



− 0.5


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

+ 0.5


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

− 4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (2.26)

=


8 + 0.5− 0.5− 4 −3.5 + 0.5 −0.5− 0.5 −4 + 4
−3.5 + 0.5 8− 0.5− 0.5 + 4 −4− 4 −0.5 + 0.5
−0.5− 0.5 −4− 4 8 + 0.5 + 0.5 + 4 −3.5− 0.5
−4 + 4 −0.5 + 0.5 −3.5− 0.5 8− 0.5 + 0.5− 4

 (2.27)

=


4 −3 −1 0
−3 11 −8 0
−1 −8 13 −4
0 0 −4 4

 (2.28)

Therefore the expression gives the Laplacian matrix in equation (2.15).
The expectation value of the L, ⟨L⟩, is broken down into the expectation value of the

terms.

⟨L⟩ = 8 ⟨I I⟩ − 3.5 ⟨IX⟩+ 0.5 ⟨IZ⟩ − 0.5 ⟨XI⟩ − 4 ⟨XX⟩ − 0.5 ⟨XZ⟩ − 4 ⟨YY⟩ − 0.5 ⟨ZI⟩
+ 0.5 ⟨ZX⟩ − 4 ⟨ZZ⟩ (2.29)

There are 10 expectation values in this equation and for each expectation we need to
measure a different circuit. To do this we will need to use the Table 1.3 to see which gate we
need for each Pauli term. This is done for the change of basis, as explained in section 1.1.5.
For the term XX we use the H on both qubits, for XZ, H on the first qubit and nothing (I)
on the second qubit, and so on.

To calculate ⟨XZ⟩ we have this circuit:
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⟨XZ⟩ =

Basis Change

|0⟩ H
U(θ)

H

|0⟩ H

and for the ⟨YY⟩ we have:

⟨YY⟩ =

Basis Change

|0⟩ H
U(θ)

S† H

|0⟩ H S† H

and so on.
There will be 10 such circuits, one for every term. We can use equation (1.38) to calculate

the expectation value of each term. Hence we can calculate ⟨L⟩ by substituting the expec-
tation values of all the terms in equation 2.29. To get the actual value of the cost function
we need to finally multiply this by the normalization factor 2N−2 = 22−2 = 1 (N = 2 is the
number of qubits).

Let us go back to the example we considered before with θ = {0.5π, 1.4π, 1.7π, 0.8π}
and hence R(θ) = {0, 1, 1, 0}. This represents the bi-partition {1, 4} and {2, 3}.
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It is easy to see that the cost function here is 8 (3+1+4).
Let us calculate the expectation values of the different terms for this example. The circuit

and results for the XX term are shown in figures 2.3 and 2.4 respectively. The circuit and the
corresponding results are taken from the IBM Quantum platform.

Important note: The order of the qubits are inverted in the IBM platform visualization.
The states on the X-axis are actually in the order 00, 10, 01 and 11.

For two qubits the formula to calculate the expectation value from the probability distri-
bution is p(00)− p(01)− p(10) + p(11) (explained in section 1.1.5). p(00) is the probability
of 00 and so on.

So, from 2.4 we can calculate ⟨XX⟩ as 0− 0− 0 + 1 = 1.
Let us now calculate the term ⟨IX⟩. In this case we will only measure the second qubit.

The circuit and probability distribution are shown in figures 2.5 and 2.6 respectively. In
this case, since we only measured the second qubit we will calculate using the formula
p(0)− p(1) taking only the second qubit into account.
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Figure 2.3: Circuit to calculate ⟨XX⟩

Figure 2.4: Probability distribution for ⟨XX⟩.
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Figure 2.5: Circuit to calculate ⟨IX⟩

In figure 2.6, as mentioned before, the qubit labels are inverted so in fact the the state |01⟩
has a probability of 1. We measured only the second qubit and therefore p(1) = 1. Similarly,
p(0) = 0 and therefore ⟨IX⟩ = p(0)− p(1) = −1.

The term ⟨I I⟩ is trivial and is always 1 since ⟨ψ|I I|ψ⟩ = ⟨ψ|ψ⟩ = 1.
Similarly all the other terms are calculated as follows:

• ⟨IZ⟩ = 0.5− 0.5 = 0

• ⟨XI⟩ = 0− 1 = −1

• ⟨XZ⟩ = 0− 0.5− 0 + 0.5 = 0

• ⟨YY⟩ = 0.25− 0.25− 0.25 + 0.25 = 0
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Figure 2.6: Probability distribution for ⟨IX⟩.

• ⟨ZI⟩ = 0.5− 0.50 = 0

• ⟨ZX⟩ = 0− 0 + 0.5− 0.5 = 0

• ⟨ZZ⟩ = 0.25− 0.25− 0.25 + 0.25 = 0

Substituting these values in the equation (2.29), we have:

⟨L⟩ = 8× 1− 3.5× (−1) + 0.5× 0− 0.5× (−1)− 4× 1− 0.5× 0− 4× 0− 0.5× 0
+ 0.5× 0− 4× 1

= 8 + 3.5 + 0.5− 4
= 8 (2.30)

Finally multiply the normalization factor 2N−2 = 1. So 8× 1 = 8. This is exactly the cost
function expected for the parameters θ = {0.5π, 1.4π, 1.7π, 0.8π}.

This concludes the quantum part of the algorithm. We have a full quantum circuit that
depends on 4 parameters and generates the value of the cost function. Now we use a classi-
cal black box optimizer in order to optimize these parameters so that we get the best value
of the cost function. The input to the black box optimizer are the 4 values of θ, all initialized
to 0, and the objective function which is a Python function that creates the quantum circuit
and outputs the cost function as shown above.

After having optimized the parameters, we get back the set of 4 parameters. Figure 2.7
shows the screenshot of the results after the parameters are optimized for the instance in
this example. The optimized parameters are θ = {4.85, 2.69, 4.87, 2.19} which gives R(θ) =
{1, 0, 1, 0} (0 when less than π = 3.14).

This means that the solution to our problem is the bi-partition {1, 3} and {2, 4}. It can be
verified that the value of the cost function for this bi-partition is 15, which is also the value of
the cost function given by the Genetic Algorithm in Figure 2.7 (the value shown is −15 but
the negative sign is because we minimize the expectation value of −L which is equivalent
to maximizing the expectation value of L).
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Figure 2.7: Result after run on black-box optimizer, Genetic Algorithm in this case.

2.2.1.3 Complexity analysis of LogQ

LogQ helps us represent large problems (by current standards of quantum computing) on a
quantum computer. Algorithms like the QAOA, for example, require 128 qubits to represent
a 128-node MAXIMUM CUT problem. The same problem can be solved by LogQ using only
7 qubits. It therefore has the promise of being able to be applied to interesting and even
industrially relevant sizes using the currently available sizes of NISQ QCs.

Here we will try to analyse the time complexity of LogQ with respect to depth and den-
sity of the problem.

The number of CNOT gates required for the QAOA ansatz is p|E|, where p is the depth
of the algorithm and |E| is the number of edges in the graph. In the worse-case scenario, or
when the graph is a clique, |E| = |V|2.

The time taken to do a complete measurement will depend the number of Pauli terms
in the decomposition of the Hamiltonian matrix. This is because to evaluate every Pauli
term we require a separate circuit (see equation (1.51)). For a graph of size |V|, we will
need N = ⌈log2 |V|⌉ qubits. In the worst-case scenario we have 4N Pauli terms to measure.
Therefore, the complexity for a measurement will be O(4N). An increase in density of the
graph will increase the number of Pauli terms. Since N = ⌈log2 |V|⌉, the complexity is
therefore O(4(log2 |V|)) = O(|V|2).

Note that this is exactly the same complexity as if the expectation were calculated clas-
sically. For the vertex whose corresponding θ value is between [0, π], it is put into the first
partition. For vertex whose corresponding θ values are between [π, 2π], it is put into the
second partition. Then the expectation can be calculated if one considers whether all the
edges are cut or not. The process can be finished within O(V2).

However, for sparse matrices, much more efficient schemes to decompose the Hamilto-
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nian into m-summands and calculate the expectation values with less than m-queries to the
quantum computer exist (where m ≪ |V|2). On the decomposition side, an efficient way to
decompose sparse Hermitian matrices to sums of unitaries exist. This is described in detail
in Appendix A of Ref. [62]. Furthermore, an expectation value of a sum of m summands can
be obtained in less than m queries to the QPU, again for sparse operators. More details can
be seen in Ref. [63].

In order of calculate one expectation value, we need to evaluate O(|V|2) circuits. In a
single circuit the number of CNOTs is equal to |V| − 1, |V| being the number of vertices.
Hence we have a total of |V|3 CNOTs.

While QAOA has p|E| ≤ p
(
|V|2 − |V|

)
/2 number of CNOT gates, all our circuits are

of depth |V| which makes QAOA dramatically more sensitive to errors (because it has a
quadratically more CNOT gates). Moreover, for all practical purposes, p ≫ 1 [64], and
hence ∝ p|V|2 CNOTs could be comparable or even greater than our total of |V|3 CNOTs .

Finally, in our study to propose a new encoding compatible with NISQ, the search space
remains the same as that of the classical search space. A procedure to reduce the number
of variables has been presented in [57]. However, this method is beyond the scope of the
current work. Readers should also refer to followup studies [65] where the algorithm was
evaluated on the MAXIMUM CUT problem by using the alternating optimization procedure
[66] which scales polynomially in problem size. The analysis of this section is summarized
in Table 2.1.

Property LogQ QAOA Classical
Solutions handled simultaneously 1 2|V| 1

No. of Qubits ⌈log2 |V|⌉ |V| -
No. of CNOTs |V|3 p(|V|2 − |V|) -

Number of measurements |V|2 1 -
Circuit depth per measurement |V| p(|V|2 − |V|) -

Table 2.1: Comparison between LogQ, QAOA and Classical Algorithm.

2.2.2 Applying the algorithm to other NP-hard problems
A logical next step is to attempt to solve a variety of combinatorial optimisation problems
using the algorithm. In Karp’s paper from 1972 [26], he outlined how we can convert one
NP-complete problem into another. A more recent paper [27] lists numerous more such
reductions. Figure 2.8 shows a subset (a transformation family) of these reductions directly
or indirectly relating to MAXIMUM CUT. Here, we follow a similar logic to convert various
NP-hard problems to MAXIMUM CUT.

Note, however, that these conversions might not have a one-to-one scaling. For example,
an n variable MAXIMUM 2-SAT problem requires us to solve a 2n node MAXIMUM CUT
problem.

In Karp’s paper all the transitions are from one decision problem to another. Usually
in classical computing it would be considered trivial to convert a decision problem into
an optimisation one. However, our algorithm is inherently an optimisation algorithm and
moreover will give various results for a various runs. The point being, it will not respond
well to yes-no decision problems. Therefore, it is important to make reductions between the
optimisation versions. Moreover it is important to make sure that these conversions support
a wide definition of the problems (for example MAXIMUM 3-SAT instead of 3-SAT).

Following are some such polynomial-time reductions of NP-hard problems:
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Figure 2.8: Graph of MAXIMUM CUT transformation family for NP-complete problems.

2.2.2.1 MINIMUM PARTITION toMAXIMUM CUT
MINIMUM PARTITION

Input A set S = {w : w ∈ Z+}.
Task Find A ⊆ S that minimizes

| ∑
wk∈A

wk − ∑
wl /∈A

wl|.

This can be converted to the maximum cut problem in the following manner:
1. Create a graph such that there is a node for every number.
2. For every pair of nodes (i, j), connect them using an edge of weight wi ∗ wj.
3. The maximum cut value of this graph gives a bi-partition that is equivalent to the mini-

mum partition.
For example, if the input set S of the MINIMUM PARTITION problem is {2, 10, 4, 3} then

it is equivalent to the MAXIMUM CUT problem on the following graph:
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The solution to the MAXIMUM CUT instance above is {a, c, d} and {b} which gives the
value of the cost function as 90. This solution in turn gives the solution to the MINIMUM
PARTITION instance, which is {2, 4, 3} and {10}. The nodes {a, c, d} are equivalent to the
numbers {2, 4, 3} as can be seen in the figure above. The value of the cost function is 1
(10− (2 + 4 + 3)).

This conversion is n→ n in terms of number of variables and n→ n2 in terms of data.

2.2.2.2 MAXIMUM 2-SAT toMAXIMUM CUT

MAXIMUM 2-SAT

Input A set of m clauses C = {wpq(xp + xq) : xp, xq ∈ X ∪ X′} where X = {x :
x ∈ {0, 1}}, X′ = {x : x ∈ X} and wpq are the clause weights.

Task Find the variable assignment X that maximizes the combined weight of the
satisfied clauses.

The problem is said to be satisfiable if all the clauses are satisfied.
We can convert this problem into the maximum cut problem in the following manner:

1. In a graph, assign 2 nodes for every variable, one for the variable and another for the
complement of the variable. Hence there are 2|X| nodes in the graph.

2. Draw an edge between the nodes representing the variables and their complements. For
example connect x1 and x1, x2 and x2 and so on. Add a large edge weight equal to the
sum all clause weights. This is to make sure that the variables and their complements do
not fall in the same partition.

3. For every clause, add an edge between the respective nodes with edge weight as wpq.
4. The maximum cut of this graph is equivalent to the MAXIMUM 2-SAT solution.

Consider a 3-variable MAXIMUM 2-SAT problem with the following clauses and associ-
ated weights:

1. x1 + x2, 3 2. x1 + x3, 1 3. x2 + x3, 8

In order to convert it to the MAXIMUM CUT problem, we make the following graph:

x1

x2

x3

x1

x2

x3

12

12

12

3

8

1

The sum of the clause weights in 12. The weights of the edges between the variables and
their complements are therefore set to 12. Then there are edges between nodes according to
the clauses.

The solution to this MAXIMUM CUT instance is (in red):
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Here the value of the MAXIMUM CUT cost function is 48. From this we get the MAXIMUM
2-SAT solution as x1 = 1, x2 = 1, x3 = 0, which satisfies all the clauses and hence the value
of the cost function is the sum of the weights 8 + 3 + 1 = 12.

This conversion is n → 2n in terms of number of variables. A n variable MAXIMUM 2-
SAT translates to a 2n node MAXIMUM CUT. In terms of data this conversion is 3m→ m + n
(n being the number of variables and m the number of clauses).

2.2.2.3 MAXIMUM CLIQUE toMAXIMUM 2-SAT

MAXIMUM CLIQUE

Input A graph G(V, E).
Task Maximize |V′| in the graph {G′(V′, E′) : V′ ⊆ V, E′ ⊆ E, |E′| = |V′|(|V′|−1)

2 }.

It can be converted to the MAXIMUM 2-SAT problem in the following manner:
1. Consider a graph G(V, E) having vertices vi ∈ V. For each vertex vi add a variable xi.

Also an auxiliary variable z. We therefore have |V|+ 1 variables.
2. For every variable add the following 2 clauses: (xi + z) and (xi + z). Let us refer to these

clauses as Type A clauses.
3. Add the following clauses: (xi + xj) ∀ (i, j) /∈ E. We will refer to these clauses as clauses

of type B.
4. The clauses of type A ensure that the maximum number of nodes are selected and the

clauses of type B make sure that the selected subgraph is a clique.
5. To the type B clauses, add a large weight. Due to the nature of the algorithm and it’s

susceptibility to errors, we may get solutions that are not cliques at all. Moreover finding
a clique and maximizing it are 2 different problems and by adding weights we make sure
that they are not affected by one another.

6. The MAXIMUM 2-SAT problem is solved for this set of clauses. The partition of selected
variables form the MAXIMUM CLIQUE.
Consider the following input graph for the MAXIMUM CLIQUE problem:

12

3

4 5
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In order to convert it to the MAXIMUM 2-SAT problem we will need 6 variables of which
1 is an auxillary variable. The equivalent MAXIMUM 2-SAT problem will have the following
clauses:

1. Type A clauses and respective weights:

(a) x1 + z, 1
(b) x2 + z, 1
(c) x3 + z, 1
(d) x4 + z, 1

(e) x5 + z, 1
(f) x1 + z, 1
(g) x2 + z, 1
(h) x3 + z, 1

(i) x4 + z, 1

(j) x5 + z, 1

2. Type B clauses and respective weights:

(a) x1 + x4, 10
(b) x1 + x5, 10

(c) x2 + x4, 10
(d) x2 + x5, 10

(e) x3 + x5, 10

Here we have chosen the Type B clause weights to be the sum of all the Type A clause
weights. This is done the make sure that the Type B clauses are prioritized to generate a
feasible solution.

The solution the MAXIMUM 2-SAT problem above is x1 = x2 = x3 = z = 1, x4 = x5 = 0.
This solution satisfies all type B clauses and 8 type A clauses. This solution is also the
solution to the MAXIMUM CLIQUE problem (in red):

12

3

4 5

This conversion is n → n + 1 in terms of number of variables. A n variable MAXIMUM
CLIQUE translates to a n + 1 variable MAXIMUM 2-SAT. In terms of data this conversion is
n2 → 3m (n being the number of nodes of the graph and m the number of clauses of the
MAXIMUM 2-SAT problem).

Note that in order to write a MAXIMUM CLIQUE problem as a MAXIMUM CUT, one would
need to undergo 2 conversions. In that case a n variable MAXIMUM CLIQUE translates to a
2(n + 1) variable MAXIMUM CUT.

2.2.3 Generalizing the LogQ Encoding

The LogQ encoding solves, originally, the MAXIMUM CUT problem. Various conversions
are then used in order to solve other problems. Here, a second, more general approach,
shall be described, where any problem which can be written in the form of a Quadratic
Unconstrained Binary Optimization (QUBO) problem [31] can be solved. Instead of taking
the Laplacian matrix as the input, this algorithm takes as input the QUBO matrix of the
problem.
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Firstly, we define the QUBO matrix. To describe a problem as a QUBO, all the terms
in the objective function should be either linear or quadratic. Since the variables in the
objective function are binary, a linear term can be easily converted to a quadratic one, since
x2

i = xi ∀ x ∈ {0, 1}.
Consider the objective function of the following form:

P = ∑
ij

aijxixj (2.31)

It can be rewritten as:

P =
(
x1 x2 ... xn

)
a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...

an1 an2 ... ann




x1
x2
...
xn

 (2.32)

P = xTQx (2.33)

Q =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...

an1 an2 ... ann

 (2.34)

Q is the required QUBO matrix.
This matrix cannot be directly used in the algorithm. This is because in the original

MAXIMUM CUT algorithm, the variable used belongs to the set {1,−1} and not {0, 1}. To
make the equation mathematically consistent, we need to reformulate the QUBO matrix.

Let z ∈ {1,−1} and x ∈ {0, 1}, then x =
1− z

2
. Equation (2.31) therefore becomes:

P = ∑
i

aii
1− zi

2
+ ∑

ij
i ̸=j

aij
1− zi

2
1− zj

2
(2.35)

Note that in the first term
1− zi

2
has been used instead of

(
1− zi

2

)2

since x2
i = xi.

In the search for optimal values of parameters z we can eliminate the constant terms in
P as they only add a constant shift to the cost function. We can therefore simplify (2.35) as
follows:

P = ∑
i

aii
1− zi

2
+ ∑

ij
i ̸=j

aij
1− zi

2
1− zj

2
(2.36)

=
1
2 ∑

i
aii(1− zi) +

1
4 ∑

ij
i ̸=j

aij(1− zi − zj + zizj) (2.37)

= −1
2 ∑

i
aiizi +

1
4 ∑

ij
i ̸=j

aij(−zi − zj + zizj) (2.38)

The above cannot be represented in a matrix form similar to Eq. 2.34 since it has linear
terms that cannot be quadratized since z2

i ̸= zi.
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We therefore need to reformulate the problem. In this reformulation the linear terms
are represented in the off-diagonal terms instead of the diagonals. Let us have 2n variables
{z1, z2....z2n}where z1...zn ∈ {1,−1} and zn+1...z2n ∈ {1}. Then to represent a linear variable
zi, we can have the term zizi+n where zi+n = 1. The equation (2.38) can be rewritten as
follows:

P = −1
2 ∑

i
aiizizi+n +

1
4 ∑

ij
i ̸=j

aij(−zizi+n − zjzj+n + zizj) (2.39)

This is our reformulated QUBO, which we shall call the spin-QUBO (sQUBO). This is a
matrix of size 2n× 2n. It will require ⌈log2 2n⌉ = (1 + ⌈log2 n⌉) qubits, or, in other words, 1
more qubit than the original algorithm. Note that this is still an optimization problem of n
variables since the variables zn+1...z2n are fixed.

Given a QUBO matrix Q of size n, the sQUBO matrix will have the following structure:

P =

(
Q Dn
Dn 0n

)
(2.40)

Here Dn is a diagonal matrix of size n and 0n is a zero matrix of size n.
While the increase in the size of the matrix will increase the number of Pauli terms in

the decomposition, converting the QUBO into sQUBO does not affect the complexity signif-
icantly. In this case there are 4N = 4log2 2n = 22 log2 2n = 2log2 4n2

= 4n2 = O(n2) expectation
values.

Using our formulation, we propose that any problem that can be represented in a QUBO
format can be solved using the algorithm described in Algorithm 3.

Algorithm 3: LogQ Encoding of a QUBO problem: Building the Objective Function
Input: QUBO Matrix

1 Convert QUBO to sQUBO
2 Q←sQUBO
3 N ← ⌈log2 2n⌉

4 Q∗ ←
[

Q O2N−n
O2N−n O2N−n

]
5 H ← 1

n

4N

∑
i=1

Tr(Ji ·Q∗)Ji where J = {∏N
k=1 S⊗k}

6 θ ← List of n parameters
7 Function EvalCost(θ):
8 QC ← Quantum Circuit of N qubits
9 Add Hadamard gate to each Qubit

10 U ← diagonal gate diag(θ, R)
11 Apply U to QC
12 F ← ExpectationValue(Q, H)
13 return F
14
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2.2.3.1 MAXIMUMWEIGHTED INDEPENDENT SET using QUBO

MAXIMUM WEIGHTED INDEPENDENT SET

Input A graph G(V, E) with node weights wi
Task Find x ∈ {0, 1}|V| that maximizes ∑i wixi such that xi + xj ≤ 1 ∀ (i, j) ∈ E.

The MAXIMUM WEIGHTED INDEPENDENT SET problem consists of an objective function
and constraints. We can however incorporate the constraints in the objective function as
penalty terms. Let p be the magnitude of the penalty.

W = max
(

∑
i

wixi − p
(

∑
(i,j)∈E

xixj

))
(2.41)

Since xi is binary,

W = max
(

∑
i

wix2
i − p

(
∑

(i,j)∈E
xixj

))
(2.42)

Hence we have a QUBO matrix of the following form:

Qij =


wi if (i, j) ∈ E and i = j
− p

2 if (i, j) ∈ E and i ̸= j
0 if (i, j) /∈ E

(2.43)

Qij can now be used as input in Algorithm 3 to solve the problem.

2.2.4 Classical Models for Benchmarking

In order to assess the performance of our algorithm, we compare it with the results of classi-
cal optimization models. Following are the models used for the MAXIMUM CUT and MINI-
MUM PARTITION problems.

2.2.4.1 Integer Linear Program forMAXIMUM CUT Problem

The following model is taken from [67]. Given a graph G(V, E) such that V = {1, 2, 3, . . . n},
n = |V|, and Aij being the corresponding Adjacency matrix terms, we have
Objective : max ∑

1≤i≤j≤n
xij Aij

Constraints :
1. xij ≤ xik + xkj (∀i, j, k ∈ V)
2. xij + xik + xkj ≤ 2 (∀i, j, k ∈ V)
3. xij ∈ {0, 1}

2.2.4.2 Integer Quadratic Program forMINIMUM PARTITION Problem

Given a set S = {w : w ∈ Z+}, and A ⊆ S, we have

Variables : xi =

{
1 if wi ∈ A
0 if wi /∈ A

Objective : min
( n

∑
i=1

wixi −
n
∑

i=1
wi(1− xi)

)2
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2.3 Computational Results and Discussions
In this section we first show the performance of the algorithm for the MAXIMUM CUT prob-
lem. We compare the results of LogQ with the optimal solution achieved using an integer
linear program. We test LogQ on both a quantum simulator and real hardware. Then, the
effect of increasing graph density on performance is tested to surpass the sparse examples
found in the literature. Finally for MAXIMUM CUT, quantum simulator runs of up to 256
nodes are shown. Then we display the results of the MINIMUM PARTITION problem, which
has been solved by converting it to the MAXIMUM CUT problem.

Next, the results from the QUBO method are shown. The MINIMUM PARTITION prob-
lem is solved, this time using the QUBO method, and the results are compared with the
conversion method.

2.3.1 MAXIMUM CUT
We start by benchmarking the MAXIMUM CUT algorithm against classical methods such
as 0-1 integer linear programming and Goemans-Williamson method. All graph instances
in this section are generated using the f ast_gnp_random_graph() function of the networkx
Python package, with seed = 0 for all cases.
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Figure 2.9: a) Performance of the algorithm on a 32-Node graph instance. The QPU result
is based on a single run while the simulator results are based on 50 runs. b) The MAXI-
MUM CUT of 32-node graphs of varying densities. Optimizer used is Genetic Algorithm
(GA). Data is based on 50 runs for each instance and is normalized using the optimal result
obtained using ILP.

Figure 2.9a) shows the performance of the algorithm versus the optimal solution ob-
tained using an Integer Linear Program (see section 2.2.4.1). Two different classical optimiz-
ers have been used for the runs on the Quantum Simulator. We can see that both classical
optimizers give fairly similar results, 90.04% of the optimal for the genetic algorithm and
91.04% of the optimal for COBYLA. While the GA result varies with each run, the results
from COBYLA are the same in each run. This can be seen from the fact that the COBYLA
plot has a flat error bar. The result from the QPU is slightly worse (83.58% of the optimal), as
is expected due to the noise present in the current devices. Note that only a single instance
has been considered here as opposed to multiple. This is because running algorithms on real
hardware is extremely time consuming due to queue times (wait times).

In Figure 2.9b), 10 randomly generated 32-Node instances are tested with increasing
graph density. Here graph density implies the fraction of the total possible edges present
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Graph
Density

ILP GW Quantum
Simulator

Soln. Time(s) Soln. Time(s) Soln. Time(s) Approx. Ratio (%)
0.30 384 1075 371.4 0.94 343.9 280 89.6
0.35 443 623 428.7 1.00 400.8 272 90.4
0.40 499 997 486.2 1.01 454.3 270 91.0
0.45 556 3600 539.6 1.14 512.8 272 92.2

Table 2.2: 64-Node MAXIMUM CUT benchmarks for Quantum Simulator

Graph
Density

QPU
Soln. Time(s) Approx. Ratio (%)

0.30 282 383 73.4
0.35 365 439 82.4
0.40 380 393 76.1
0.45 446 518 80.2

Table 2.3: 64-Node MAXIMUM CUT benchmarks for QPU

in the graph. For each instance, data was collected for 50 runs, using Genetic Algorithm
as the classical optimizer. In addition, a 0-1 integer linear program (ILP) [67] was used to
obtain the optimal result of each of the instances. The ILP data is then used to normalize the
simulator data. Hence, the data is in the form of percentage of optimal value.

It is seen that the performance improves with an increase in the density of the problem.
This might be since in graphs of lower density, the choice including or not including one or
two nodes can have a relatively significant impact on the final cost function. For example,
the minimum, maximum and average cost function for density 0.1 is (30, 36, 32) and for 0.9
is (234, 243, 239). This shows that the variation of cost function is similar for both densities.
This higher instability is why we see a higher dispersion on the results in the lower densities.
The important point here is that the performance does not degrade with increasing density,
a property which will be useful in the sections to follow.

Graph
Density

128 Nodes 256 Nodes
GW
Mean

GW
Up-
per
Bound

Quantum
Solution

Ratio
with GW
Bound
(%)

GW
Mean

GW
Up-
per
Bound

Quantum
Solution

Ratio
with GW
Bound
(%)

0.3 1405.6 1567 1305 83.2 5543.5 6159 5066 82.2
0.4 1837.5 2045 1691 82.7 7264.1 8071 6736 83.5
0.5 2249.6 2489 2103 84.5 8120.3 9910 8367 84.4
0.6 2654.1 2981 2546 85.4 10615.1 11794 9967 84.5

Table 2.4: 128 and 256-Node MAXIMUM CUT benchmarks

In order to demonstrate the scalability of the algorithm, we further test the algorithm on
problem instances of 64, 128 and 256 nodes (6, 7 and 8 qubits respectively). For the case of 64
node graphs, as shown in Tables 2.2, each instance is run 10 times on the quantum simulator
and their mean and standard deviation are shown. The genetic optimizer (GA) is used for
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all obtained data. Table 2.5 shows the parameters of GA used in the algorithm runs. The ILP
model solved the problem up to optimality (0% gap) for instances with density 0.3, 0.35 and
0.4 while the instance with density 0.45 was solved for 1 hour with a gap of 1.4%. The ILP
was run using Gurobi optimizer (version 10.0.1 build v10.0.1rc0) on a computer with 32GB
RAM and Apple M2 Pro processor. Also shown are the results of Goemans Williamson
(GW) method [32]. Since this is an approximate method, a solution range is shown over 50
runs. We can see that for all cases, the quantum simulator results are nearly or over 90%
of the ILP-optimal cut. It is seen again that increase in graph density does not degrade the
performance. Table 2.3 shows the QPU results for the same 64 node instances. Figure 2.10
shows the GA convergence plot of one of the quantum simulator runs for an instance of size
64 and density 0.4.

GA Parameter Value
max_num_iteration 20

population_size 20
mutation_probability 0.1

elit_ratio 0.05
crossover_probability 0.5

parents_portion 0.3
crossover_type uniform

max_iteration_without_improv None

Table 2.5: Parameters of the Genetic Algorithm used in the MAXIMUM CUT, MINIMUM
PARTITION and MAXIMUM CLIQUE experiments

Figure 2.10: Convergence plot of the Genetic Algorithm for a 64-Node MAXIMUM CUT run
(on Quantum Simulator).
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For 128 and 256 nodes (Table 2.4 and 2.6), only the GW method is used for benchmarking.
This is because the ILP took longer than 2 days without converging (Gurobi optimizer) on
a PC. The GW mean is based on 50 runs. The quantum solution is compared to the GW
upper bound. The GW upper bound is calculated by dividing the worst solution of the GW
with 0.878. Table 2.4 shows results using a quantum simulator while Table 2.6 shows results
obtained using an IBM quantum computer. The ibmq_mumbai backend was used for the
instances of size 128 while the ibmq_guadalupe was used for the instance of size 256. The
results demonstrate the stability of the results (around 84% of the GW upper bound) as the
size increases. Figure 2.11 shows the coupling map of ibmq_mumbai.

Figure 2.11: Coupling map of ibmq_mumbai Quantum Computer.

It is highly time consuming to carry out each run on an IBM QPU due to the significant
wait times in addition to the inability to run multiple instances or runs simultaneously. This
is the reason we decided to demonstrate only one run per instance where possible. The aim
of the QPU runs is not to present a performance analysis of the QPU but merely indicative
of the current gap between the quantum simulator and the QPU.

Instance Q. Sol. GW Range % Diff.
Size=128, Density=0.4 1538 1796 - 1864 82.5 - 85.6
Size=128, Density=0.5 2022 2186 - 2271 89.0 - 92.5
Size=256, Density=0.5 8079 8701 - 8880 90.9 - 92.8

Table 2.6: 128 and 256-Node MAXIMUM CUT results using QPU with GA.

It is important to note that the number of GA iterations has a significant impact on the
quality of the solution. This is demonstrated in Figure 2.12 with the instances of size 128.
On the x-axis, we have the number of GA iterations while on the y-axis we have the MAXI-
MUM CUT values expressed as a % gap to the mean GW solution (shown in Table 2.4). The
solutions improve with an increase in GA iterations. It is expected that for a high enough
number of GA iterations, the gap should converge to 0%. However, this can be long and
therefore it is often needed to specify a maximum number of GA iterations allowed and
accept the best solution we get.

While all the instances tested here are a power of 2 to maximize the number of vertices
for a given number of qubits, the method works for any intermediate size. To demonstrate
this, Table 2.7 shows MAXIMUM CUT results for instances of size 50 on a quantum simulator.
The ILP solutions are optimal.
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Figure 2.12: Evolution of MAXIMUM CUT solutions with increasing GA iterations on 128-
Node instances.

Graph
Density

ILP Solution Quantum Simulator
Soln. Approx. Ratio (%)

0.30 238 217.5 91.4
0.40 302 284 94.0

Table 2.7: 50-Node MAXIMUM CUT results for Quantum Simulator. Data is an average over
10 runs.

2.3.2 MINIMUM PARTITION as a conversion fromMAXIMUM CUT

As described in Section 2.2.2.1, the number partitioning problem can be directly converted
into the MAXIMUM CUT problem. The graphs hence formed are weighted fully dense
graphs.

For the instances, all the numbers used were random integers between 1 and 100. Tests
were carried out on the quantum simulator as well as on real hardware from IBM. The
classical optimizer used is GA. Details of the GA parameters are given in Table 2.5.

The results of partition differences have been normalized in the following manner. For a
problem with N numbers, if the partition difference is p, then the normalised difference is

pnorm =
50N − p

50N
. All our numbers are random integers between 1 and 100, hence 50.5 on

an average. For simplicity we use 50 in pnorm.
The optimal value for each instance is obtained using the Integer Quadratic model de-

scribed in section 2.2.4.2.
Figure 2.13 displays the performance of 32, 64, and 128-number MINIMUM PARTITION

converted to MAXIMUM CUT. For instances of all sizes, we have a near-optimal mean value
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Figure 2.13: The difference between partition sets for 32, 64 and 128 Numbers. Each instance
was run on the quantum simulator with GA, 100 times for 32 numbers, 10 times for 64
numbers and 4 times for 128 numbers. The QPU data is the aggregate of single runs for
every 32 and 64 Number instance.

and a very small dispersion using the quantum simulator. Moreover, for problem sizes 32
and 64, despite the fact that the MINIMUM PARTITION problem leads to a complete graph
MAXIMUM CUT problem, actual QPUs are able to demonstrate an approximate solution of
good quality. This further shows that the performance of the algorithm is not adversely
affected by dense graphs.

All QPU runs in this section are done on ibmq_mumbai.

2.3.3 MAXIMUM CLIQUE as a conversion fromMAXIMUM CUT

The MAXIMUM CLIQUE problem can be converted to the MAXIMUM CUT problem by first
converting it to the MAXIMUM 2-SAT (2.2.2.2) and then from the MAXIMUM 2-SAT to MAX-
IMUM CUT (2.2.2.3).

After the conversion, a n-node MAXIMUM CLIQUE problem requires the solution of a
2(n + 1)-node MAXIMUM CUT. Table 2.8 shows results for various instances run on a quan-
tum simulator. The classical optimizer used is GA, whose Details of the GA parameters are
given in Table 2.5. The optimal solutions for all the instances are calculated using the numpy
package in python. It is seen that in half of the instances, the best solution is the optimal
solution. Note that we do not always find a feasible solution. In other words, the solution
found is not always a clique. In those cases, initially, a dense subgraph is output by the algo-
rithm and then we use post processing to remove the nodes with lowest degree iteratively
until the solution is a clique.

2.3.4 MAXIMUMWEIGHTED INDEPENDENT SET using QUBO method

In this section, results of the MAXIMUM WEIGHTED INDEPENDENT SET problem solved us-
ing the QUBO method (section 2.2.3.1) is presented.

For each figure the performance of the algorithm is shown. The data is normalized using
the optimal solution found using the commercial CPLEX solver (version 22.1.0).

Figure 2.14 shows the data for graphs of size 32, 64 and 128. The data for 32, 64 and
128 nodes is based on 50, 50 and 10 runs respectively. The data represented only takes
into account the feasible solutions produced. For graphs of size 32, the mean values for
all instances are above 80% and the best obtained result is optimal for every instance. For
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Instance (Size,
Density)

No. of
Qubits

Best Solu-
tion

Worst Solu-
tion

Average
Solution

Optimal
Solution

31, 0.3 6 4 3 3.38 4
31, 0.4 6 5 3 3.92 5
31, 0.5 6 6 3 4.46 6
31, 0.6 6 7 4 5.34 8
31, 0.7 6 8 5 6.26 9
63, 0.5 7 8 6 6.5 8
63, 0.6 7 8 6 7.2 10
63, 0.7 7 11 8 9.3 12

Table 2.8: MAXIMUM CLIQUE results using quantum simulator with GA. The data is based
on 50 runs and 10 runs for instances of size 31 and 63 respectively.

graphs of size 64, the mean values for all instances are above 60% and the best obtained
result is on an average over 80%. For 128-node graphs, the solutions are slightly degraded
in comparison. Note, however, that the data for 128-node instances is based only on a few
runs. Moreover, the performance also depends on the number of GA iterations used in the
algorithm run. The details of the GA parameters used are given in Table 2.9.

Genetic Algorithm Parameter Instance Size
32 64 128

max_num_iteration 50 100 200
population_size 20
mutation_probability 0.1
elit_ratio 0.05
crossover_probability 0.5
parents_portion 0.3
crossover_type uniform
max_iteration_without_improv None

Table 2.9: Parameters of the Genetic Algorithm used in the MAXIMUM WEIGHTED
INDEPENDENT SET experiments

Table 2.10 shows how the performance varies depending upon the number of GA it-
erations used. For this table, the MAXIMUM WEIGHTED INDEPENDENT SET Instance 4 of
size 64 has been taken. An increase in the number of GA iterations not only improves the
performance but also the percentage of feasible results.

2.3.5 A comparative study of time taken by the simulator and the QPU

In Table 2.11 and Figure 2.15, the time taken to run the algorithm for different MAXIMUM
CUT instance sizes is compared. While the quantum computer still takes a significant amount
of time to solve the problem, the time taken does not increase exponentially as in the case of
the simulator. As we move towards larger instances, we reach a point where it is quicker to
run a problem on a QPU than using a simulator.

Note that the QPU time here does not take into account the queue time or waiting time
for the QPU runs. The real-world time was several hours or even several days for the largest
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Figure 2.14: MAXIMUM WEIGHTED INDEPENDENT SET problem for 32, 64 and 128-node
graphs using a quantum simulator. Each instance was run on a quantum simulator with GA
50 times for graph sizes of 32 and 64 and 10 times for graph size of 128.

Size GA iter-
ations

Solution as %
of Optimum

% of Fea-
sible Solu-
tions

64 50 54.8 60
64 100 66.6 96
64 200 77.8 100

Table 2.10: MAXIMUM WEIGHTED INDEPENDENT SET results demonstrating the relation-
ship between GA iterations and performance. The Instance 4 of size 64 is used for this table.
The performances are an average over 10 runs.

run instance. This prevented us from running larger instances on the quantum computer.

N QPU(minutes) Quantum Simulator(minutes)
32 1.7 3
64 9 52

128 45 222
256 112 3202

Table 2.11: Data for time taken for various instance sizes in the the QPU and in the quantum
simulator

2.4 Conclusion

In this chapter, we investigated and further developed methods to logarithmically encode
combinatorial optimization problems on a quantum computer. We begin by explaining the
LogQ encoding for the MAXIMUM CUT problem in detail. To help readers better under-
stand the intricacies and novelty of the algorithm, we then demonstrate step-by-step all the
calculations related to a run of the algorithm on a small example. In order to analyze the
algorithm, we perform several runs of the LogQ algorithm for the MAXIMUM CUT problem
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Figure 2.15: Plot demonstrating the time taken by the quantum simulator versus the time
taken to solve the same instance on real hardware

with various instances, on the quantum simulator as well as real hardware, using different
classical optimizers like COBYLA and the genetic algorithm.

We then reformulate a number of NP-hard combinatorial optimization problems into the
MAXIMUM CUT problem, either directly or indirectly and solve it on a real quantum com-
puter. We take the MINIMUM PARTITION problem as an example and solve it by using a
reduction as mentioned in section 2.2.2.1. This is possible since the algorithm is largely un-
affected by increasing the density of the MAXIMUM CUT graph in question, since the MIN-
IMUM PARTITION problem converts into a weighted fully-dense graph. Some performance
benchmarks of the partition problem have been presented.

We then proceed to present a more general formulation inspired from the structure of
the MAXIMUM CUT algorithm. We see that instead of using the Laplacian, we can use the
QUBO matrix of a problem in order to solve it. We introduce the sQUBO representation of
the QUBO matrix for it to be compatible with the algorihtm. This therefore opens up the
applicability of the algorithm to a wide range of algorithms. The MAXIMUM WEIGHTED
INDEPENDENT SET problem is solved using its sQUBO matrix.

To our knowledge, it is the first time that graph problems of such sizes (256 MAXIMUM
CUT, 64 MINIMUM PARTITION) have been executed on real universal gate-based quantum
computers.





CHAPTER3

A Hybrid Quantum-assisted Column Generation Algorithm for Fleet
Conversion

3.1 Introduction

In the previous chapter, the LogQ encoding to solve various combinatorial optimization
problems was introduced. We showed that using this method we can encode instances of
much larger sizes with relatively small quantum computers. In this chapter, we aim to apply
this method to an industrial use case.

Fleet conversion is the process of transitioning a fleet of vehicles to more sustainable and
environmentally friendly alternatives. With the growing recognition of the detrimental ef-
fects of traditional fossil fuel powered vehicles on the environment and the need to mitigate
climate change, businesses and organizations are increasingly looking for ways to reduce
their carbon footprint and operate more efficiently. The transportation sector is one of the
largest contributors to greenhouse gas emissions, primarily due to their reliance on fossil
fuels. By transitioning fleets to electric or hybrid vehicles, large companies such as TotalEn-
ergies can significantly reduce their carbon emissions. Beyond the environmental benefits,
fleet conversion also offers compelling cost-saving opportunities for businesses.

In the fleet conversion problem, a certain number of tours need to be carried out between
several locations. In order to carry out these tours we have at our disposal several vehicles
of different models. Each vehicle model has an associated cost. On top of the capital expen-
diture corresponding to the purchase of one vehicle of one model, this cost may also capture
the environmental cost – e.g. the carbon footprint; the cost of operation – e.g. energy usage,
or both. The objective is to minimize the total cost of carrying out all the tours including cap-
ital and operational expenditures. Therefore, fleet conversion goes beyond simply choosing
the best possible vehicles and also incorporates sharing the same vehicles for multiple tours
when possible, thereby reducing the cost.

In chapter 2, the LogQ encoding to treat Quadratic Unconstrained Binary Optimization
(QUBO) [31], [68]–[70] problems using logarithmically fewer qubits has been demonstrated.
In this chapter, we use column generation [71]–[75] to describe our problem as a coordinator
problem and several sub-problems henceforth referred to as workers. The worker problem
in our case is the Maximum Weighted Independent Set (MWIS) problem which can be repre-
sented as a QUBO problem. We propose an algorithm that handles the coordinator problem

69
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using a commercial linear program solver Gurobi and the worker problems using a quan-
tum solver based on the LogQ encoding. In our experiments, we solve instances up to a size
of 64 tours using only 7 qubits to represent the MWIS workers. This shows that the method
is compatible with the quantum computers of the NISQ era.

The chapter is structured as follows. In section 3.2.1 the fleet conversion problem is
defined. In section 3.2.2 the problem is stated in the form of a graph problem followed by
section 3.2.3 where the column generation algorithm is described. In section 3.2.4 and 3.2.5,
we describe the quantum model to solve the sub-problems and how we can use the quantum
solver and classical solver together to develop a quantum-assisted algorithm. In section 3.3
we present the experimental results. In section 3.4 we present an extension to the algorithm
and finally in section 3.5 we have the discussion and conclusion.

The work presented in this chapter has been submitted in a journal and the preprint is
available in arxiv [76]. It has been also been presented in ROADEF 2024 [77].

3.2 Problem Statement and Methods
In this section, we present the Fleet Conversion Problem as well as its formulation as a
weighted graph coloring problem. We then reformulate the problem using the definition
of independent sets and build a column generation approach to solve it. The column gen-
eration approach uses sub-problems that compute max-weighted independent sets, further
brought together iteratively to build a global graph coloring solution. We then demonstrate
how a quantum algorithm can be crafted to solve these sub-problems and integrate the col-
umn generation procedure.

3.2.1 Statement
Let L be a set of locations, K a set of tours, V a set of available vehicle models, and C a set of
physical vehicles, henceforth referred to as color.

Notations

For any physical vehicle c of a certain model v, let us write v(c) := v. Tours are carried out
from one location to another. Let wk

v be the cost to assign a vehicle model v to any tour k.
Assigning a model v to a tour k means that the tour k has to be carried out by a physical
vehicle (color) from model v. To do so, some color c such that v(c) = v has to be assigned
to tour k. The cost wk

v captures the operational expenditures incurred by performing tour
k with a vehicle model v. Since every color belongs a specific vehicle model, let the cost to
assign the physical vehicle (color) c to any tour k be Γk

c := wk
v when v = v(c). We also define

a cost γv(c) > 0 for using a color c at least once. Clearly, γv represents the cost of purchase
of one physical vehicle of model v and we reasonably assume this cost is independent of the
color (all vehicles of the same model are equivalent). Thus, without risk of confusion, we
define γc := γv(c).

Each tour k ∈ K is described by the tuple (tk
d, tk

a, lk
d, lk

a , Ak), corresponding respectively
to the departure time, arrival time, departure location and arrival location, and a set of
authorized vehicle models of the tour. The time to travel from location i to location j (TTij)
can be computed using the distance matrix of the locations. This matrix is used to derive
the time needed to relocate any physical vehicle from the arrival location of a tour to the
departure location of another tour in case these tours are meant to be assigned to the same
color.
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Incompatibilities

In the Fleet Conversion Problem, we have two types of incompatibilities:

• tour-color incompatibilities: a tour k cannot be assigned to a color from a certain model
v. In practice, this incompatibility can model constraints in urban mobility such as
the forbidden penetration of internal combustion engines into low emission zones or
simply drivers’ personal preferences (manual vs automatic, plug-in hybrid vs electric,
etc). Let Ak be the set of authorized colors for tour k. Specifically, a color c can be
assigned to tour k ∈ K only if v(c) is in the set of allowed models Ak for that tour.

• tour-tour incompatibilities: two different tours cannot share the same color (physical
vehicle) because they occur at the same time, or because their departure and/or arrival
locations make it impossible to transition in an acceptable time without perturbing
the global schedule. Let I ⊂ (K

2) be the set of unordered couples with a tour-tour
incompatibility1.

First formulation

The aim of the Fleet Conversion Problem is to minimize the overall cost ∑c γcyc + ∑k,c Γk
c xk

c ,
where

xk
c =

{
1 if color c is assigned to tour k
0 otherwise, (3.1)

and

yc =

{
1 if color c is purchased
0 otherwise. (3.2)

This can be achieved by preferring colors c with low values of γc and also by assigning mul-
tiple compatible tours to a single color while choosing the minimal values of Γk

c if possible.
This is to be done in such a way that all tours within K are assigned to a compatible color.

Therefore, the Fleet Conversion Problem can be expressed as the following optimization
problem:

min ∑
c∈C

γcyc + ∑
k∈K,c∈C

Γk
c xk

c (3.3)

s.t. ∑
c

xk
c ≥ 1 (∀k ∈ K) (3.4)

xk
c ≤ yc (∀c ∈ C)(∀k ∈ K) (3.5)

xk
c + xk′

c ≤ 1 (∀{k, k′} ∈ I)(∀c ∈ C) (3.6)

xk
c = 0 (∀k ∈ K)(∀c ∈ C)(v(c) /∈ Ak) (3.7)

yc, xk
c ∈ {0, 1}. (3.8)

Equation (3.4) states that a tour k has to be assigned to at least one2 color, whereas Equa-
tion (3.5) forbids the assignment of tours to a color unless the color is purchased. Equa-

1For any set X and any integer n, (X
n) := {I ⊂ X| |I| = n}.

2In fact, exactly one would be more appropriate than at least one. However, as the variables xk
c are penalized

by a cost in the objective, the two formulations are actually equivalent and at optimum, this constraint is
actually active
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tion (3.6) forbids incompatible tours to share the same color and Equation (3.7) avoids tour-
color incompatibilities.

Problem (3.3)–(3.8) is thus a Mixed Integer Linear Program (MILP) that can be solved
with for instance a commercial solver. However, as it is notoriously NP-complete as from
|C| ≥ 3, solver time performance will worsen quickly with problem size. For this reason,
as a proof-of-concept, we reformulate Problem (3.3)–(3.8) and design an algorithm that will
scale better.

3.2.2 Formal description as a Graph Problem
Let G = (K, E) be a graph where the nodes of the graph are the tours and the edges
(k, k′) ∈ E of the graph denote the incompatibility of the tours k and k′. Note that the nodes
of the graph DO NOT represent a specific location but aggregate a complete tour (including
starting location, travel time, destination location). With the notations of the last paragraph,
this means that we let E := I . Two tours i and j are compatible if their time-windows do
not overlap and we have enough time to travel from the arrival location of tour i to the de-
parture location of tour j, without loss of generality if tour i occurs before tour j. Formally,
we define E = {(i, j)|∀i, j ∈ K, ti

a + TTij > tj
d}. For every tour k, we have a list of allowed

models Ak.
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Figure 3.1: Incompatibility Graph generated from the time windows of tours. The lines
represent the time windows of 7 tours. Colors blue, red and green are used to assign vehicles
to tours taking into account their incompatibility.

Figure 3.1 illustrates how an incompatibility graph can be constructed using time win-
dows of several tours, along with a possible coloring of the graph. For example, since the
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tour 3 overlaps with tours 2, 4 and 5, the node 3 has edges with node 2, 4 and 5. For a de-
tailed description of all the variables used in this section and the following section, see Table
3.1.

Definition 3.1 (Independent set) An independent set in G = (K, E) is a subset I ⊆ K, such that
for any two vertices k, k′ ∈ I, (k, k′) /∈ E. In other words, an independent set of our graph is a subset
of tours that are all compatible with each other to share colors.

With the definition of an independent set, the following fact is straightforward.

Fact 3.1 Let (x, y) be any solution of Problem (3.3)–(3.8). Then, for all c ∈ C such that yc = 1,
{k|xk

c = 1} forms an independent set of G.

An independent set I can be derived into an allocation (aI , cI), where cI ∈ C is a color and
aI is the indicator vector of set I: ak

I = 1, if k ∈ I, and 0 otherwise. For any independent set
I and color c, let ΓI,c := γc + ∑k∈I Γk

c denote the cost of allocation (aI , c). Here, we consider
only feasible allocations, specifically respecting tour-color compatibility. We can therefore
define the set of feasible allocations Λ formally as :

Λ = {(aI , cI)|I independent set of G| s.t. ∀k ∈ K, ak
I = 1⇒ v(cI) ∈ Ak}. (3.9)

For lighter notations, we refer to the element (aI , cI) ∈ Λ only as I ∈ Λ, keeping in mind
that the independent set I, considered as an allocation, comes with a color cI . In particular,
we keep in mind that if c ̸= c′, and even if v(c) = v(c′), (aI , c) and (aI , c′) are two different
allocations. Formally, let ΓI := ΓI,cI .

The problem can then be equivalently formulated as:

min ∑
I∈Λ

ΓI xI (3.10)

s.t. ∑
I∈Λ

ak
I xI ≥ 1 (∀k ∈ K) (3.11)

xI =

{
1, if independent set I chosen
0, otherwise

(3.12)

Note that constraint (3.11) is equivalent to the constraint (3.4). Also, beware that the
variables defined in equation (3.12) and equation (3.1) are not the same.

With the above reformulation, the problem looks considerably smaller. We have indeed
only one constraint per tour. However, we need to generate the set Λ in order to solve
this problem. The set Λ contains all the feasible independent sets of the graph, that is,
independent set of the graph coupled with colors that are compatible with all nodes therein.
Remember that if I is a non-empty independent set of G and c ̸= c′ are two different colors,
then (I, c) and (I, c′) are two distinct elements of Λ as they describe two different conversion
solutions. We thus have a very large number of variables xI . Nevertheless, it is clear that
only a small number of those variables should be non-zero at optimum. Indeed, at worst
(in terms of number of independent sets activated), no sharing of color is possible and each
tour has a dedicated vehicle, which corresponds to |K| variables xI activated. This is why
an interesting approach here is column generation, where independent sets are generated
dynamically while the solution converges to an optimum.
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3.2.3 The Column Generation Algorithm

In this paragraph, we design the column generation procedure to solve our problem. First,
we derive an extension of the problem that makes it always feasible. To do so, we permit
the algorithm to reject tours from the solution. Second, we relax all integrity constraints and
actually solve the LP-relaxation of our problem. Once an LP-optimal solution is found by the
column generation, one can summon any type of rounding algorithm to build (if needed)
an integer-feasible solution from the relaxed solution. For instance, see [78]. We focus this
work on the problem of finding the optimal LP-feasible solution for our problem.

Problem extension

For all k ∈ K, let rk be a binary variable that states whether tour k is rejected from the
solution or not:

rk =

{
1 if k is rejected
0 otherwise. (3.13)

Let R be a sufficiently large real number. We now consider the new optimization prob-
lem:

min ∑
I∈Λ

ΓI xI + R ∑
k∈K

rk (CP)

s.t. ∑
I∈Λ

ak
I xI + rk ≥ 1 (∀k ∈ K) (CP-1)

xI , rk ≥ 0 (∀I ∈ Λ)(∀k ∈ K) (CP-2)

When the binary constraints are enforced on xI and rk, and if R is sufficiently large, it
is clear that Problems (CP) and (3.10)–(3.11) are equivalent. The dual program [79] of (CP)
reads :

max ∑
k∈K

µk (D)

s.t. ∑
k∈K

ak
I µk ≤ ΓI (∀I ∈ Λ) (D-1)

µk ≥ 0 (∀k ∈ K) (D-2)

Restriction and generation

Let Λ′ ⊂ Λ be an arbitrary subset of allocations. One can form the primal dual pair of
problems:

min ∑
I∈Λ′

ΓI xI + R ∑
k∈K

rk (RCP)

s.t. ∑
I∈Λ′

ak
I xI + rk ≥ 1 (∀k ∈ K) (RCP-1)

xI , rk ≥ 0 (∀I ∈ Λ′)(∀k ∈ K) (RCP-2)
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max ∑
k∈K

µk (RD)

s.t. ∑
k∈K

ak
I µk ≤ ΓI (∀I ∈ Λ′) (RD-1)

µk ≥ 0 (∀k ∈ K) (RD-2)

Let F (resp. F′) denote the feasible set of (CP) (resp. (RCP)) and G (resp. G′) be the
feasible set of (D) (resp. (RD)). It is clear that F′ ⊂ F and G ⊂ G′. Furthermore, for any
Λ′ ⊂ Λ, (RCP) is linear, feasible and bounded. Therefore, strong-duality applies [79][80].
This means that (RCP) and (RD) are both feasible and a primal-dual pair of solutions (x′, µ′)
exists, where x′ solves (RCP), µ′ solves (RD). Furthermore, it means we have the equality:

∑
I∈Λ′

ΓI x′I + R ∑
k∈K

r′k = ∑
k∈K

µ′k. (3.14)

The column generation is based on the following fact:

Fact 3.2 Let Λ′ ⊂ Λ. Let (x∗, µ∗) and (x′, µ′) be primal-dual optimal couples for (CP)–(D) and
(RCP)–(RD) respectively. By definition:

• x∗ ∈ F

• x′ ∈ F′ ⊂ F

• µ∗ ∈ G ⊂ G′

• µ′ ∈ G′

Suppose that µ′ ∈ G.
Then, x′ ∈ F and x′ is optimal for (CP).

Indeed, if µ′ ∈ G, by definition of µ∗, we know that ∑k∈K µ′k ≤ ∑k∈K µ∗k . On the other
hand, as G ⊂ G′, by definition of µ′, we have ∑k∈K µ′k ≥ ∑k∈K µ∗k . Thus, we have equality.
By strong duality, this means that

∑
I∈Λ′

ΓI x′I + R ∑
k∈K

r′k = ∑
k∈K

µ′k (3.15)

= ∑
k∈K

µ∗k (3.16)

= ∑
I∈Λ′

ΓI x∗I + R ∑
k∈K

r∗k (3.17)

Therefore, if µ′ is feasible in (D), then x′ is an optimal solution of (CP).
For µ′ to be feasible in (D), the following constraint must hold:

∑
k

ak
I µ′k ≤ ΓI ∀ I ∈ Λ (3.18)

Therefore, the existence of violated constraints (3.18) means that the current x′ is not the
optimum and that new columns (allocations) can be added to improve the solution. We can
therefore try to find an independent set that minimizes the reduced cost ΓI − ∑

k
yk

I µ′k. If this

reduced cost is negative then the independent set I used to obtain this negative reduced cost
violates (3.18) and can therefore be added to the set of independent sets in RCP Λ′.
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For an allocation I, we have:
ΓI = ∑

k
ak

I Γk
cI

(3.19)

Therefore the reduced cost to minimize is:

σ = ΓI −∑
k

ak
I µ′k

= ∑
k

ak
I Γk

c −∑
k

ak
I µ′k

= ∑
k

ak
I(Γ

k
c − µ′k)

(3.20)

In order to convert this into a maximization problem, we can simply change the sign.
The problem therefore reads:

max σ = ∑
k

ak
I(µ
′
k − Γk

c) (3.21)

By definition, (ak
I)k∈K is a vector denoting an independent set, and µ′k − Γk

c can be seen
as numerical weights for every color c. This is therefore a Maximum Weighted Independent
Set problem. For the rest of the chapter, this problem will be our worker problem (WP). The
MWIS problem can be defined as follows.

max σ =∑
k

yk(µ
′
k − Γk

c) (WP)

s.t. yk + yj ≤ 1 (∀(k, j) ∈ E) (WP-1)

yk ∈ {0, 1} (∀k ∈ K) (WP-2)

A solution of Problem (WP) defines an allocation (aI , c) where I := {k ∈ K|yk = 1} and
ak

I = yk. Note that there is one worker problem per color, and, as in our problem, colors from
the same model are equivalent, there is actually one problem per vehicle model. Therefore,
each allocation produced by a worker represents a single physical vehicle (color) along with
all the tours assigned to it. Given the above problem definitions, we can define the algorithm
to solve RCP as described in Algorithm 4.

3.2.4 Quantum model for the MWIS problem
The MWIS problem can be represented in the form of a QUBO. Our problem in question is
the problem WP. For simplicity let µ′k − Γk

c = wk. The objective function is therefore ∑
k

ykwk.

The constraint (WP-1) can be incorporated into the objective function as a penalty [31] as
follows. The real number P is the penalty strength. Note that the variable y in this section is
not related to the other variables y that have appeared previously.

C = ∑
k

ykwk − P
(

∑
(i,j)∈E

yiyj

)
(3.22)

The transformation of the constraint (WP-1) into the penalty term can be understood
using the truth table shown in Table 3.2. When the constraint is violated (False), the value of
yiyk = 1 and hence the penalty term is added.
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Variables Description
k Denotes a tour
K Set of all tours
Ak Set of allowed vehicles for tour k
rk Binary variable that states whether tour k is rejected from the solution or not
R Large real number
xI Binary variable to decide whether the independent set I is in the solution
ΓI Cost of choosing the independent set I
ak

I vector denoting the independent set I. It is 1 if node k ∈ I and 0 otherwise
Λ Set of all feasible independent sets
µK Dual variable of xI
Λ′ Subset of feasible independent sets
x∗ Optimal solution of CP
µ∗ Optimal solution of D
x′ Optimal solution of RCP
µ′ Optimal solution of RD

Table 3.1: Description of variables and symbols

Algorithm 4: Column Generation algorithm for RCP
Input: Incompatibility graph G(K, E)

1 Define R such that R > max ΓI + 1
2 Λ′ ← ∅
3 while True do
4 Solve RCP and get primal dual couple (x′, µ′)
5 for every model v do
6 Solve WP
7 if σ > 0 then
8 Let the optimal solution be I = (yI , cI).
9 Λ′ ← Λ′ ∪ {I}.

10 end
11 end
12

13 if Λ′ has been modified then
14 continue
15 end
16 else
17 Current solution x′ is the optimal solution
18 break
19 end
20 end
21

22 Apply rounding algorithm to transform the relaxed solution x′ into a binary one.

Since, y ∈ {0, 1}, we can set y2
k = yk. Therefore:
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yi yj yi + yj yi + yj ≤ 1 yiyj
0 0 0 True 0
0 1 1 True 0
1 0 1 True 0
1 1 2 False 1

Table 3.2: Truth Table to demonstrate the equivalence of constraint (WP-1) and the penalty
term used.

C = ∑
k

y2
kwk − P

(
∑

(i,j)∈E
yiyj

)
(3.23)

Since C is in the form of a QUBO problem, we can represent it in the following form:

C = yTQy (3.24)

where y is the independent set vector and Q is the QUBO matrix.
As described in chapter 2, a QUBO problem can be represented on a quantum computer

using only a logarithmic number of qubits using the LogQ encoding. We shall use this
algorithm to solve WP. Following are some of the main aspects of the algorithm. Our main
aim here is to represent (3.24) on a quantum computer.

1. A N-qubit parameterized state |Ψ(θ)⟩ is created as follows:

|Ψ(θ)⟩ = U(θ)H⊗N |0⟩⊗N (3.25)

The equation above represents the application of N Hadamard gates on N qubits, all
initially in state |0⟩; followed by the application of a diagonal gate U(θ) which is of the
following form:

U(θ) =


eiπR(θ1) 0 0 ....

0 eiπR(θ2) 0 ....
.... .... .... ....
0 0 0 eiπR(θn)

 (3.26)

where

R(θk) =

{
0 if 0 ≤ θk < π

1 if π ≤ θk < 2π
(3.27)

Using (3.26) and (3.27) in (3.25), we have:

|Ψ(θ)⟩ =


eiπR(θ1)

eiπR(θ2)

......
eiπR(θn)

 (3.28)

|Ψ(θ)⟩ is therefore a vector whose terms belong to the set {1,−1}.
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2. Note that when we defined the QUBO in equation (3.24), the variables were y ∈ {0, 1}.
Since |Ψ(θ)⟩ ∈ {1,−1}, we need to define our QUBO matrix using variables z ∈
{1,−1}. This new matrix is then called the spin-QUBO or sQUBO as defined in [58].
We shall denote the sQUBO matrix as Q′, which is a matrix of size 2n× 2n.

Let z ∈ {1,−1} and y ∈ {0, 1}, then it is quite easy to verify that y =
1− z

2
. Using this

in equation (3.22), we have:

C = ∑
k

wk
1− zk

2
− P

(
∑

(i,j)∈E

1− zi

2
1− zj

2

)
(3.29)

In the search for optimal values of parameters z we can eliminate the constant terms in
C as they only add a constant shift to the cost function. We can therefore aggregate the
constant terms to an overall constant K. We can therefore simplify (3.29) as follows:

C = ∑
k

wk
1− zk

2
− P

(
∑

(i,j)∈E

1− zi

2
1− zj

2

)
(3.30)

=
1
2 ∑

k
wk(1− zk)−

P
4 ∑

ij
i ̸=j

(1− zi − zj + zizj) (3.31)

= −1
2 ∑

k
wkzk +

P
4 ∑

ij
i ̸=j

(zi + zj − zizj) + K (3.32)

The above cannot be represented as a QUBO matrix since it has linear terms which
cannot be quadratized since z2

i ̸= zi.

Hence, we need to reformulate the problem. In this reformulation the linear terms are
represented in the off-diagonal terms instead of the diagonals. Let us have 2n variables
{z1, z2....z2n} where z1...zn ∈ {1,−1} and zn+1...z2n ∈ {1}. Then to represent a linear
variable zi, we can have the term zizi+n where zi+n = 1. The equation (3.32) can be
rewritten as follows:

C = −1
2 ∑

k
wkzkzk+n +

P
4 ∑

ij
i ̸=j

(zizi+n + zjzj+n − zizj) + K (3.33)

This can now be written as:
C = zTQ′z + K (3.34)

This is the required Q′.

3. Equation (3.24) can have the following quantum equivalent:

C(θ) = − ⟨Ψ(θ)| Q′ |Ψ(θ)⟩ (3.35)

where θ = {θ1...θn} is a set of parameters and |Ψ(θ)⟩ is a parameterized ansatz that
represents that vector y. The interesting thing about this representation is that we need
only log n + 1 qubits to represent Q′ of size 2n× 2n. We put the negative sign as we
want to make it a minimization problem.
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4. Measure the expectation value (3.35) on a quantum computer or a simulator. In order
to calculate this expectation value we need to decomposeQ′ into a sum of Pauli strings
(see section 1.1.5).

5. Using a classical optimizer such as the genetic algorithm (GA), optimize the parame-
ters θ.

C∗(θ∗) = min C(θ) = −σ (3.36)

From the optimized parameters we can get the binary solution using:

yk =
1− exp(iπR(θk))

2
=

{
0 if 0 ≤ θk < π

1 if π ≤ θk < 2π
(3.37)

3.2.5 Quantum-assisted algorithm to solve the Coordinator Problem

We now have a quantum model to solve the WP . We will call this the Quantum Worker
Solver(QWS). To develop a quantum-assisted algorithm, the QWS is used together with a
classical worker solver (CWS) to reach the optimal solution. The aim is to use the QWS
together with the CWS where the CWS is used only when the QWS is not able to generate a
new column.

YES 

NO 

YES 

NO 

START 

END 

 

Run algorithm using 
Quantum Worker. 

New 
column 

generated? 

Solve Coordinator using 
generated column. 

Run algorithms using 
Classical Worker 

New 
column 

generated? 

Solve Coordinator using 
generated column. 

End Algorithm. The previous 
Coordinator solu@on is the op@mal 

solu@on. 

Figure 3.2: Progress of the quantum-assisted Algorithm

For every instance, we start the algorithm with the QWS as the worker. If the algorithm
is able to generate a new column we use it to solve the coordinator (RCP) and continue with
the optimization loop using the QWS. Note that generating a new column here means that
the MWIS solution found gives a positive σ (as in equation (3.21)), hence violating (3.18). In
case QWS is not able to generate a new column, we check whether the CWS can generate
a new column. If the CWS is able the generate a new column, we solve the RCP using this
new column and continue the optimization loop with the QWS. If even the CWS is unable
to generate a new column, we have the optimal solution to the problem as the previous
solution to the RCP obtained. This is explained diagrammatically in figure 3.2.

Using figure 3.2, we can modify Algorithm 4 to get Algorithm 5.
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Algorithm 5: Quantum-assisted Column Generation algorithm for RCP
Input: Incompatibility graph G(K, E)

1 Define R such that R > max ΓI + 1
2 Λ′ ← ∅
3 while True do
4 Solve RCP and get primal dual couple (x′, µ′)
5 for every model v do
6 Solve WP using QWS
7 if σ > 0 then
8 Let the optimal solution be I = (yI , cI).
9 Λ′ ← Λ′ ∪ {I}.

10 end
11 end
12

13 if Λ′ has been modified then
14 continue
15 end
16 else
17 for every model v do
18 Solve WP using CWS
19 if σ > 0 then
20 Let the optimal solution be I = (yI , cI).
21 Λ′ ← Λ′ ∪ {I}.
22 end
23 end
24 if Λ′ has been modified then
25 continue
26 end
27 else
28 Current solution x′ is the optimal solution
29 break
30 end
31 end
32 end
33

34 Apply rounding algorithm to transform the relaxed solution x′ into a binary one.

3.3 Experimental Results

In this section, we demonstrate experiments carried out using tours of sizes 32 and 64. Syn-
thetic data was generated with start and end times of tours as well as sets of allowed vehicles
for every tour. We decide to have five different vehicle types and the cardinality of the set
of allowed vehicles is 3. For simplicity, we do not generate location data. It can, however be
added easily which will only change the density of the incompatibility graph. All runs of
the quantum algorithm in this section are done using a quantum simulator.

In order to evaluate the contribution of the QWS, the number of successful quantum
solves is compared to the total number of successful solves. A successful solve means that
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Instance Size Number of Qubits Number of Instances Mean % of Quantum
Iterations

32 6 5 87.36
64 7 5 81.73

Table 3.3: Results for 32 and 64 Tours.

Instance Size
32 64

Solver used for RCP Gurobi
Solver used for CWS Gurobi
Classical optimizer used for
variational loop of QWS

Genetic algorithm (python
package: geneticalgorithm)

Penalty value 10 20
Average time taken to simulate
a complete run of the algorithm
on an instance

≈ 70 minutes ≈ 24 hours

Table 3.4: Supplementary information regarding the experiments

Genetic Algorithm Parameter Instance Size
32 64

max_num_iteration 50 100
population_size 20 40
mutation_probability 0.1
elit_ratio 0.05
crossover_probability 0.5
parents_portion 0.3
crossover_type uniform
max_iteration_without_improv None

Table 3.5: Parameters of the Genetic Algorithm used in the experiments

Instance Size No. of Qubits GA Population
Size

GA generations
for QWS

Estimated Time
(hours)

128 8 20 100 108
256 9 20 100 3500

Table 3.6: Estimated time for simulating instances of 128 and 256 Tours.

the QWS or CWS was able to generate a new column. In table 3.3, the number of quantum
solves is shown as a percentage of the total number of solves, averaged over all the instances.

Tables 3.4 and 3.5 give some important details regarding the experiments.
Figure 3.3 shows in detail complete runs of algorithm 5 for instances of size 32 and 64.

Each line represents an instance. We have 5 instances. For every instance, the first point of
a plot is a gray square. This is a quick greedy solution to the problem and is the starting
point of our algorithm. This greedy algorithm colors each node one by one, ensuring that
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neighboring nodes do not share the same color. This ensures that we already have a decent
solution to start with. As we go forward in the plots, we have blue diamonds and red pen-
tagons which signify the RCP solutions obtained using the QWS and the CWS respectively.
Finally we have the black hexagon which is the optimal point, where both the QWS and
CWS were not able generate a new column. The cost function has been normalized using

the formula :
(Current Solution)− (Optimal LP-feasible Solution)

Optimal LP-feasible Solution
.

The iterations of the algorithm are different from and not to be confused with the GA
generations of the QWS. The name max_num_iteration (as used in Tables 3.4 and 3.5) is the
parameter name for the number of generations in the python package.

Taking the instance with the blue dash-dotted line for 64 tours as an example, there are
16 iterations where the QWS was successful, 1 where QWS was unsuccessful and CWS was
successful and 1 where both QWS and CWS were unsuccessful. Note, however, that for
every iteration we called the QWS. Hence, there were a total of 18 QWS calls. Every QWS call
requires 5 MWIS solutions (one for each vehicle type) each requiring around 300 expectation
value measurements, hence the total number of expectation value measurements required
were of the order of 104. Even though the size was tractable to represent our problem, it was
therefore not feasible to run the algorithm on a quantum computer since every expectation
value measurement on an IBM quantum computer can take from a few seconds to a few
hours, depending upon the wait time (or queue time). In addition we were limited to a
size of 64 nodes for simulation since for 128 nodes and above, the simulation time was too
long to carry out experiments. We can see in Table 3.6 the estimated time that might be
required to potentially simulate instances of 128 and 256 tours. These estimates are given
considering the population-size and number of GA generations to be 20 and 100 respectively,
and considering that there are 25 algorithm iterations to converge to a solution. Here, the
QPU should have significant a time advantage over the simulators.

The algorithm is a heuristic and therefore might not have the same performance on every
run. This is shown in figure 3.4, where one specific instance of size 32 is run 5 times.

Finally, figures 3.5 and 3.6 show the result of a 32-tour instance. This is specifically the
instance denoted by a black solid line in figure 3.3. Figure 3.5 shows the incompatibility
graph and figure 3.6 shows the corresponding time-window diagram. The nodes in figure
3.5 do not refer of any specific location. The tour numbers from 0 to 31 are marked on the
time-window bars as well as the nodes. The 5 vehicles used to carry out all the tours are
marked using different colors.

3.4 Extension: Replacing CWS with better performing QWS

In the previous section, we have seen how the CWS is used when the QWS is not able
to generate a new column. The CWS therefore acts as a secondary check. An extension
to the algorithm can be to replace the CWS with a better performing QWS. We will call
this extension full-quantum to differentiate it from the hybrid quantum-assisted method
described before.

We have seen in Table 2.10 that the performance of the LogQ algorithm improves with
an increase in the number of GA generations. This can be further seen for a 64-tour fleet
conversion instance in figure 3.7. The run with 100 GA generations fails at iteration 7 and
requires the help of CWS to move forward. We can see that even iterations 8 and 9 require
the help of CWS to improve the cost function. For the run with 200 GA generations, the
algorithm is stuck at the same value of cost function (5250) and requires the help of CWS
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in iteration 5. However, in iteration 6 and 7 we can see that the algorithm could find an
improvement in the cost function without the help of the CWS.

We therefore propose an extension to the algorithm where the CWS is replaced by a
QWS with double the number of GA generations. This means that when the QWS will fail,
instead of running the classical Gurobi solver to check for improvements, we run the QWS
again, this time with double the number of GA generations, and therefore, a higher chance
to overcome a local minima if it the algorithm is stuck in one.

While this of course does not guarantee an optimal solution, it is a interesting strategy
if one does not wish to use the CWS. Figure 3.8 shows the results for a 64-Tour instance
with the CWS replaced by QWS with twice the number of GA generations. The results are
superposed on the algorithm run where the CWS was used.

The ’Best Solution found with Full-Quantum’ in the figure refers to the point where both
the QWS with 100 generations (QWS100) and the QWS with 200 generations (QWS200) fail
to generate a new column. In the hybrid quantum-assisted run (the blue line), QWS100 fails
in iteration 17 and the CWS is required to improve the cost function in iteration 18. In the
full-quantum run (the black line) the QWS100 fails in iteration 14 but QWS200 improves the
cost function in iteration 15. In this way, it can be seen that a QWS with higher number of
GA iterations can be used to help the algorithm if it is stuck in a local minima.

Thus, a combination of different GA generations can be used to further generalize this
technique of using secondary checks.

3.5 Discussion and Conclusion

In this chapter we have successfully demonstrated a quantum-assisted algorithm to solve
the Fleet Conversion problem. This shows firstly the advantage of having an algorithm that
scales logarithmically with the size of the problem. This trait of LogQ helped us model prob-
lems of sizes that are well outside the realm of what other quantum variational algorithms
can handle. Notably, our algorithm successfully handles instances that, albeit synthetic, rep-
resent realistic, non-trivial industrial problem sizes, which displays the potential utility of
leveraging quantum computing for solving complex optimization problems.

Secondly, it demonstrates the possibility of harnessing quantum algorithms in conjunc-
tion with classical solvers rather than being in competition with them. If the problem is
very resource intensive then instead of the using a full classical optimization, a part of the
computation can be transferred to the quantum computer, potentially reducing required
computational resources (logarithmic representation).

There remain, however, several drawbacks in the algorithm. Firstly, the algorithm re-
quires the decomposition of the Hamiltonian matrix into a sum of Pauli strings. The cost
of doing this using the method used here (as shown in section 1.1.5) increases significantly
with an increase in the number of qubits. Reducing the time to decompose the matrix could
reduce runtime by a large margin for larger instances.

Secondly, larger instances require a larger number of runs on the genetic algorithm and
therefore it quickly becomes infeasible to increase problem size. Even if we decide not to
increase the number of genetic algorithm runs, the quality of the QWS solution will degrade
resulting in more QWS calls, hence a higher number of iterations (considering we require
the same level of performance).

The success of the algorithm depends on the accuracy of the QWS solution. Worse QWS
solutions inadvertently lead to more QWS calls. Hence the runtime of the algorithm could
be quite sensitive to noise in potential runs on a quantum computer. The indicates that this
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algorithm would be suitable for small but fault tolerant quantum computers rather than
larger ones with higher levels of noise. Despite the fact that we are moving towards a large
number of physical qubits in the future, the availability of logical (fault-tolerant) qubits will
remain limited. Consequently, this approach will continue to be relevant.
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Figure 3.3: Full run of the algorithm for instances of 32 and 64 tours.



3.5. Discussion and Conclusion 87

0 2 4 6 8 10 12
Iterations

0

2

4

6

8

10

12

14

16
Op

tim
al

ity
 G

ap

Results - 32 Tours - Multiple Runs
Greedy Solution
Quantum Solves
Classical Solves
Optimal LP-feasible Solution

Figure 3.4: 5 full runs of the algorithm for an instance of size 32.

017

2326
1

11

7

13 21

2
14

27

19

3

15

25 29

18

8

49
20

22
24

31

5
10

12

30

6

16
28

Figure 3.5: Incompatibility graph for a 32-tour instance.



88
Chapter 3. A Hybrid Quantum-assisted Column Generation Algorithm for Fleet

Conversion

100 200 300 400 500 600 700
Time

1

2

3

4

5

Ve
hi

cle
s

0 211 13 15 16 20 22

517 2527 28 31

3 482126 30

7 12181923

1 6 91014 2429

Time-Window Diagram for 32 tours

Figure 3.6: Time-window diagram for a 32-tour instance.

0 2 4 6 8 10 12
Iterations

5100

5200

5300

5400

5500

Co
st

 Fu
nc

tio
n

Comparison of GA generations - 64 Tours
GA Generations=100
GA Generations=200
Greedy Solution
Quantum Solves
Classical Solves
Optimal LP-feasible Solution

Figure 3.7: Performance comparison between 100 and 200 GA generations for a 64-Tour
Instance.



3.5. Discussion and Conclusion 89

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Iterations

3900

4000

4100

4200

4300

Co
st

 Fu
nc

tio
n

Hybrid Quantum-assisted vs Full Quantum - 64 Tours
Hybrid Quantum-assisted
Classical Solves
Optimal LP-feasible Solution
Full-Quantum
Greedy Solution
Quantum Solves GA = 100
Quantum Solves GA = 200
Best Solution Found with Full Quantum

Figure 3.8: Comparison between the algorithm runs of the hybrid quantum-assisted vs full-
quantum versions - 64 Tours.





CHAPTER4

Mesh Segmentation using the LogQ encoding

In the previous chapter, we saw the application of the LogQ encoding for the problem of
fleet conversion, a problem in the domain of transportation. In this chapter, we focus on
another use-case of the LogQ encoding in the domain of computer modeling. This chapter
is based on work done in the context of a deliverable [81] for the Horizon 2020 NEASQC
project.

4.1 Background and Context of the Project
The work presented in this chapter represents our contribution to the Horizon 2020 project
NExt ApplicationS of Quantum Computing or ⟨NE|AS|QC⟩, funded by the European Union.
This project is aimed at investigating and developing applications of quantum comput-
ing, especially with Noisy Intermediate Scale Quantum (NISQ) computers. It is specifically
geared towards practical use-cases for industrial end-users.

The NEASQC project, with a budget of over 4 million euros, unites several academic
institutions as well as private companies including TotalEnergies. In order to showcase the
potential of near-term quantum computers, nine use cases from various fields have been
identified. These use-cases, divided into 3 axes, are as follows:

1. Symbolic AI and Graph Algorithmics

(a) Quantum Probabilistic Safety Assessment (QPSA)

(b) Quantum Natural Language Processing (QNLP)

(c) Quantum rule-based systems (QRBS) for breast-cancer detection

2. Machine Learning and Optimization

(a) HPC Mesh Segmentation

(b) Financial Applications

(c) Reinforcement learning for inventory management

(d) Hard optimization problems for smart charging of electric vehicles

3. Chemistry

91
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(a) Drug Discovery

(b) CO2 Recapture

The use-case 2(a), HPC Mesh Segmentation, was carried out at TotalEnergies. There were
two deliverables associated with this use-case. They were:

1. Benchmarking of a quantum algorithm for mesh segmentation against classical mesh
segmentation techniques such as KMeans.

2. Software package for mesh segmentation tasks.

This chapter will present the work done with respect to the first deliverable. It was
reviewed by three external members of the NEASQC consortium and made available on the
NEASQC website in April 2024 [81]. The software package, which combines codes of the
LogQ encoding as well as the implementation of the use-case, forms the second deliverable
and is to be delivered in October 2024.

4.2 Motivation
Nowadays, computer modeling plays a crucial role in the core domains of TotalEnergies’ ac-
tivities such as Earth imaging, physical modeling for reservoirs, and others. Consequently,
TotalEnergies is heavily investing in the development of new approaches and techniques
which could improve the quality and efficiency of the corresponding software. While some
efforts of the R&D group target independent improvements of software and algorithms,
some limitations are more global and concern the basic principles of numerical modeling.
One of these limitations is related to the discretized representation of the objects used in
computer modeling, e.g., the mesh. Before starting any realistic simulation, the numerical
mesh, which corresponds to a collection of edges, faces, and connecting points, has to be
pre-processed. This pre-processing, which largely simplifies further treatment, includes an
essential stage of dividing the mesh into meaningful parts. This process of splitting a nu-
merical mesh is called Mesh Segmentation. In this chapter we tackle the use-case of Mesh
Segmentation using the LogQ encoding.

One of the simplest types of meshes are triangular meshes. A triangular mesh consists
of a collection of triangles that together form a surface or solid representation of a 2D or
3D object. Each triangle is defined by its three vertices, and the entire mesh is formed by
connecting these vertices. Each node of the mesh has an associated color or property. In
this chapter we will use only 2D triangular meshes to simplify the representations. 3D mesh
problems, however, can follow the same procedure. In order to solve the problem of mesh
segmentation using our algorithm, we first need to convert it into a graph optimization
problem consisting of an objective function and constraints if necessary.

To do this we create a graph from the mesh. The vertices of the graph are the nodes
of the mesh and the edges of the graph are the sides of the triangle. The edges are then
weighted with a weight equal to the difference in color between the vertices. Hence we
have an edge-weighted graph.

Once we have a graph, we need to define an objective function that will help us get
the different segments of the mesh. Here we will use the maximization of modularity [82]
for meshing. Modularity is a measure of how well a network is split into different groups
or clusters. It helps us see if these groups have more connections within themselves than
we would expect just by random chance. We define the modularity objective function in
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the form of a QUBO problem and then use the LogQ encoding based algorithm to get the
solution.

This chapter is organized as follows. We start with describing the problem of mesh seg-
mentation in section 4.3, followed by its modelization as a graph problem in section 4.4. We
then explain in section 4.5 how we can define an objective function in order to perform mesh
segmentation from a given graph. In section 4.6 we provide an extension to definition of the
objective function followed by section 4.7 where we define the benchmarking metrics to be
used in the chapter. We show the benchmarking results of our algorithm with respect to the
KMeans algorithm in section 4.8 and finally in section 4.9 we have the conclusion.

4.3 Mesh Segmentation

A mesh is a representation of a surface or object formed by connecting vertices, edges, and
faces. Each face of the mesh is defined by the vertices and the edges connecting them.
Meshes are widely used in computer graphics and simulations because they provide a sim-
ple and efficient way to approximate complex surfaces. The vertices store positional infor-
mation (x, y, z coordinates), edges connect pairs of vertices, and faces define the surface
geometry. Figure 4.1 (taken from [83]) gives an example of an object and its corresponding
meshes. There are two meshes of the object shown in the example, one being a moderate
mesh and the other a coarse mesh. The coarse mesh incorporates a higher level of approxi-
mation.
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Fig. 1  Screw surface example and two different coarse meshes. The 
first meshes includes 464 triangles, resulting in an average mesh 
spacing of approximately 2.7 times the minimum curvature radius 

r
c
≈ 0.117 of the screw geometry. The coarser mesh is build of 32 tri-

angles, which results in h∕r
c
≈ 11

Figure 4.1: An example of 3D meshing of an object.

Mesh segmentation refers to the process of dividing a complex mesh (composed of ver-
tices, edges, and faces) into meaningful and semantically coherent parts or regions. The
goal is to identify and isolate distinct components within the mesh, which may correspond
to different objects, substructures, or functional units. Take for example figure 4.2, where a
3D geological surface is represented as a triangular mesh. It is then segmented into various
subdomains depending on specific properties.

Meshes can be in various types, such as triangle meshes, quadrilateral meshes, or polyg-
onal meshes, depending on the type of polygons used to construct the faces. In this chapter
we will deal with only 2D triangular meshes. A 2D mesh can be seen as a cross section of a
3D mesh.
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Figure 4.2: An example for the segmentation of a geological model represented as a triangu-
lar mesh (taken from [84]).

4.4 Mesh Segmentation as a graph optimization problem

In order to tackle the problem of mesh segmentation, we first convert it into a graph op-
timization problem. Figure 4.3 shows a 2D triangular mesh. It has 64 vertices and every
vertex has a color (or property) associated with it. The color is a number ranging from 10
to 110. In order to translate this problem of mesh segmentation into a graph problem, we
create a graph of 64 vertices having the same edges as the edges of the triangular mesh, as
shown in Figure 4.4. Then the edges of the graph are assigned weights equal to the differ-
ence in color between the vertices of the edge. The goal is to divide the graph into clusters
of vertices. The number of segments or clusters required needs to be specified.

4.5 Description of the Objective Function

Once the mesh is represented as an edge-weighted graph, we need to define an objective
function to divide it into segments. Here we will use the maximization of modularity [82]
as our objective.

Modularity is a measure to evaluate the quality of a partition of a network into communi-
ties or clusters (also called communities or groups). The idea of maximizing the modularity
is to maximize the number of connections between the vertices within clusters while having
sparse connections between vertices in different clusters.

Mathematical definition of Modularity

Consider an edge-weighted graph G(V, E, w) with weights wij, i, j ∈ V. Let the variable
xi ∈ {1,−1} decide whether the vertex i is in one subgroup or the other. Then its modularity
to maximize for division into 2 subgroups defined as follows :

M =
1

4m ∑
i,j∈V

(
Aij −

kik j

2m

)
δ(xi, xj) (4.1)

where:

1. k : weighted degree of vertex i



4.5. Description of the Objective Function 95

0 20 40 60 80 100
X

0

20

40

60

80

100
Y

20

30

40

50

60

70

80

90

100

Figure 4.3: 2D Triangular Mesh of Size 64

2. Aij : adjacency matrix of G

Aij =

{
wij if (i, j) ∈ E
0 if (i, j) /∈ E

(4.2)

3. 2m is the sum of the weights of all the vertices.

m =
1
2 ∑

i∈V
ki (4.3)

4. δ(xi, xj) is the Kronecker delta function. It is 1 if both vertices are in the same cluster
and 0 if they are in different clusters.

δ(xi, xj) =

{
1 if xi = xj

0 if xi ̸= xj
(4.4)

Since xi ∈ 1,−1, it can be modeled as:

δ(xi, xj) = 1 + xixj (4.5)

Hence,
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Figure 4.4: 2D Triangular Mesh of Size 64 as a Graph Problem

M =
1

4m ∑
i,j∈V

(
Aij −

kik j

2m

)
(1 + xixj) (4.6)

We can drop the constant factor in the above equation as it does not affect the optimiza-
tion process. Therefore we have the following expression for the objective function.

M =
1

4m ∑
i,j∈V

(
Aij −

kik j

2m

)
xixj (4.7)

Understanding the components of Modularity

For any two vertices, the modularity objective function aims to maximize the weight
between them if they are in the same cluster. All the components of the modularity
function are explained in detail below.

(a) The adjacency matrix Aij tells us the weight of the edge between the vertices i and
j. Aij = wij if there is an edge between the vertices i and j, else Aij = 0.

(b)
kikj
2m is the expected weight of the edges between vertices i and j for a random distri-
bution of the vertices.

(c) Aij −
kikj
2m therefore represents the difference between the actual weight between

i and j and the expected weight between them in case of a random assignment
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of vertices. A higher value of Aij −
kikj
2m would mean that there is more weight

between 2 edges than would be expected by chance.

(d) Finally we have the delta function that defines whether 2 vertices are in the same

cluster or not. Maximizing the product Aij −
kikj
2m δ(x,xj) maximizes the weights

between the nodes when they are in the same cluster, which is the goal of cluster-
ing.

Modularity as a QUBO

In order to be compatible with the LogQ encoding, modularity needs to be represented
in the form of a QUBO. Equation (4.7) is already in the form of a QUBO and can be written
as :

M =
1

4m
xTQx (4.8)

Qij = Aij −
kik j

2m
(4.9)

Q is the required QUBO matrix that can be used in LogQ.
In order to get more than two divisions, we use the algorithm repeatedly on the graph.

This method limits us to number of clusters which are a power of 2. The numerical results
of this chapter are only based on this method. The algorithm can however, be extended to
a general number of clusters as well by the generalization of the definition of modularity as
explained in the next section.

4.6 Modularity for more than two segments
The definition of modularity given above can generate only two segments and in order to
get multiple segments the process of bi-partition is done repeatedly. This method, however,
might not be the optimal method to get the best segments. Moreover, we are limited to only
sizes which are a power of 2. Therefore, it is important to generalize the objective function
for any number of segments.

Let there be c segments and let xip ∈ {1, 0} be the binary variable such that:

xip =

{
1 if vertex i belongs to the segment p
0 otherwise

(4.10)

Then we can redefine modularity for c segments as:

M =
1

4m

c

∑
p=1

∑
i,j∈V

(
Aij −

kik j

2m

)
xipxjp (4.11)

The delta function used in the previous formulation is replaced by xipxjp. This makes
sure that the only non zero terms are when both xip = xjp = 1, or in other words when both
vertices i and j are in cluster p.

In addition we need to add constraints to make sure that every vertex is only assigned to
a single cluster. These constraints can be written as:

c

∑
p=1

xip = 1, ∀i ∈ V (4.12)
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Unlike the case of bi-partition of the clusters, the optimization problem in this case is
a constrained one. Therefore, we need to include the constraints as penalty terms in the
objective function. The QUBO cost function to maximize therefore becomes:

C = 1
4m

c

∑
p=1

∑
i,j∈V

(
Aij −

kik j

2m

)
xipxjp − P

( c

∑
p=1

xip − 1
)2 (4.13)

P is a real number that denotes the strength of the penalty. It is generally set to be more
than the maximum value of the objective function (without the constraints). In this case that
is P = ∑i,j∈V wij.

In addition, the problem has been formulated using variables x ∈ {0, 1} and therefore,
using the method demonstrated in section 2.2.3, we need to convert from the QUBO to
sQUBO (QUBO with variables x ∈ {1,−1}).

For a mesh of size n, in order to divide it into c segments, the size of the QUBO matrix will
be nc× nc and subsequently the size of the sQUBO will be 2nc× 2nc. Therefore ⌈log2 2nc⌉
qubits are required to run the algorithm, as opposed to the bi-partition case where ⌈log2 n⌉
qubits are required. As mentioned before, only the bi-partition case is used to generate the
results of this chapter.

4.7 Metrics to evaluate the quality of the segments
In order to benchmark the LogQ-encoding based algorithm, we will use two metrics: rand
index and cut discrepancy. In both the measures, there is a predicted segmentation and a
ground truth segmentation. The ground truth segmentation is the result of the method used
as benchmark and the predicted segmentation is the result of the LogQ-based algorithm.
In this chapter the KMeans clustering algorithm [85] is used as the benchmark. The true
and predicted segmentations are lists of segment labels. Here we present the mathematical
description of the measures. The definitions are adapted from [86].

4.7.1 Rand Index
The Rand index is measure of similarity between two segmentations given by W.M.Rand
[87]. Given two segmentations, it evaluates the likelihood of a pair of nodes being either in
the same segment in both segmentations, or in different segments in both segmentations.

Let S1 and S2 be the two segmentations, s1
i and s2

i denote the segment label of node i in
S1 and S2 and N be the number of nodes of the mesh. In addition let:

Cij =

{
1 if s1

i = s1
j

0 otherwise
(4.14)

Pij =

{
1 if s2

i = s2
j

0 otherwise
(4.15)

Rand Index (RI) is then defined as:

RI(S1, S2) =

(
2
N

)−1

∑
i,j

i≤j

CijPij + (1− Cij)(1− Pij) (4.16)

where (
n
r

)
=

n!
r!(n− r)!

(4.17)
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4.7.2 Cut Discrepancy
Cut Discrepancy [88] is a metric used to compare the boundaries of two segmentations. It
does this by measuring how close the boundaries of one segmentation are to the boundaries
of another segmentation. Specifically, it sums up the distances from points on the predicted
segmentation boundaries to the nearest points on the ground truth boundaries, and vice
versa. This provides a measure of how similar the boundary placements are between the
two segmentations.

Let C1 and C2 be the sets of points on the segment boundaries of segmentations S1 and
S2. Let dG(p1, p2) be the distance between the points p1 ∈ C1 and p2 ∈ C2. The distance
between p1 ∈ C1 and the set C2 is defined as:

dG(p1, C2) = min (dG(p1, p2), ∀p2 ∈ C2) (4.18)

Directional Cut Discrepancy of S1 with respect to S2 is defined as:

DCD(S1 → S2) = mean(dG(p1, C2), ∀p1 ∈ C1) (4.19)

Finally, the cut discrepancy (CD) is defined as:

CD(S1, S2) =
DCD(S1→ S2) + DCD(S2 → S1)

avgRadius
(4.20)

Where avgRadius is the average distance from a point on the mesh boundary to centroid
of the mesh.

4.8 Results
In this section we show the results obtained for meshes of sizes 32, 64 and 128. The meshes
are generated synthetically using packages numpy and matplotlib on Python. Results of the
KMeans clustering method are used as a benchmark. KMeans clustering is also an NP-Hard
problem and therefore has exponential complexity. The KMeans algorithm of the scikit-
learn Python package is used here. This package uses Lloyd’s algorithm [89] as the default

algorithm and this is what was used here. The worst case complexity is given by O(n
k+2

p )
where n is the number of vertices, k is the number of segments and p is the number of
attributes. Here we have only one attribute for every node (color) so p = 1.

The quantum simulations as well as the classical algorithm runs are carried out using
the following computational resources: Chip: Apple M2 Pro, RAM: 32 GB. For the LogQ
runs, the meshes of sizes 32, 64 and 128 required 5, 6 and 7 qubits respectively. The genetic
algorithm is used as the classical optimizer for the variational loop in LogQ. The parameters
of the genetic algorithm such as the population size and the maximum number of iterations
have an impact on the quality of the solutions and the execution time. In order to choose
these parameters, one must consider a balance between execution time and the quality of
solution. Increasing the population size and number of iterations will improve the solution
up to a certain point after which it will stabilize. Conversely, augmenting these parameters
also leads to a linear increase in execution time. In our case, both the population size and
maximum number of iterations are set to 40.

In figures 4.5 and 4.6 we can visualize the mesh segmentation results for the instance of
size 128 for 8 segments, using KMeans and the LogQ algorithm respectively. We can see that
in KMeans it is perfectly separated into 8 different clusters while for the quantum algorithm
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Figure 4.5: Mesh Segmentation of 128-Node Mesh into 8 segments using KMeans

it is less consistent, with some of the clusters being a bit scattered. This might be due to the
repeated bi-partitioning and sometimes the algorithm has no choice but to split the clusters.

The benchmarks shown in tables 4.1, 4.2 and 4.3 are generated by comparing the seg-
ments generated by the LogQ algorithm and the segments generated by KMeans. For every
instance, we generate the segments using both LogQ and KMeans. Then, we consider the
KMeans solution to be the true segmentation and the LogQ solution to be the predicted
segmentation. Note that KMeans does not necessarily provide the optimal solution, but we
consider it as a classical benchmark.

For cut discrepancy, smaller values are better while for rand index, larger is better. The
Rand index ranges from 0 to 1, where 1 indicates perfect agreement between the two clusters,
and 0 indicates no agreement beyond what would be expected by random chance. Cut
discrepancy is the difference in normalized cuts between the two clusters. It varies from 0
to a positive number, 0 being the best.

Cut discrepancy depends heavily on the accuracy of boundaries. This is why as the
number of segments increases, it becomes harder to maintain a low cut discrepancy as the
precision of the boundary recognition plays an important role. For all 3 mesh sizes, the cut
discrepancy is close to 0 for k = 2 and gets significantly worse as we increase the number
of segments. This indicates that both KMeans and LogQ find a very similar boundary for
k = 2 and then the boundaries of the segments grow more and more different.

Rand index is actually getting better with higher number of segments. Therefore with
increasing number of segments while segment boundaries are not as consistent, as demon-
strated by the cut discrepancy, the number of pairs belonging to the same segment increases.
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Figure 4.6: Mesh Segmentation of 128-Node Mesh into 8 segments using LogQ

The main takeaway from the benchmarks is that the method works well for bi-partition
but the segment boundaries get worse with an increase in k. The results are quite disap-
pointing and further work is therefore required to improve the consistency of the segment
boundaries as the number of segments increase.

Number of
Segments

Cut Discrepancy Rand Index

2 0.004 0.22
4 0.08 0.4
8 0.77 0.62

Table 4.1: 32-Node Mesh Segmentation.

Number of
Segments

Cut Discrepancy Rand Index

2 0.002 0.05
4 0.03 0.17
8 0.36 0.37

Table 4.2: 64-Node Mesh Segmentation.



102 Chapter 4. Mesh Segmentation using the LogQ encoding

Number of
Segments

Cut Discrepancy Adjusted
Rand Index

2 0.0003 0.07
4 0.012 0.11
8 0.32 0.15

Table 4.3: 128-Node Mesh Segmentation.

While all the algorithm runs above were carried out using a quantum simulator, the
effect of noise of an actual quantum computer (from IBM) on the algorithm can be found
in chapter 2. In addition, a study demonstrating the time taken by the quantum simulator
versus the time taken to solve the same instance on real hardware is also shown in chapter
2. Even though this study is on another problem, this can help shed some light regarding
how the runtime of the algorithm evolves with increasing size.

4.9 Conclusion
In this chapter we try to carry out mesh segmentation using a quantum algorithm. Using
this algorithm we are able to perform mesh segmentation of size n using ⌈log2 n⌉ qubits.
This allows us to represent meshes of sizes up to 128 using only 7 qubits, something that
would have taken 128 qubits with QAOA. This would mean that with 20 qubits we can
reach a mesh size of 1 million which is around the industrial size of meshes. However, there
are certain challenges that need to be faced in order to do this. The main challenge is that
of the overhead due to Pauli decomposition. As shown in section 1.1.5, we need to calculate
the coefficients of n2 terms where n is the size of the mesh. For a mesh of size 1 million,
we will need to calculate 1012 terms. There is already some interesting research to mitigate
this issue. For example, much more efficient schemes to decompose the Hamiltonian and
calculate the expectation value exist but only for d-sparse matrices [62].

We benchmark LogQ against the well-known KMeans algorithm. Although the quan-
tum algorithm is able to find clusters, the quality of the results is far below that of KMeans
as the number of segments increase. This is understandable for several reasons. One is
the choice of objective function. The bi-partition version of modularity can do only two
partitions and therefore requires multiple iterations to get multiple clusters. This could in-
duce errors in the segmentation. A more appropriate and optimized objective function can
improve performance significantly. As explained in section 4.6, we can generalize the defini-
tion of modularity to be able to divide the mesh into any number of segments. This increases
the number of qubits required from ⌈log2 n⌉ to ⌈log2 2cn⌉. Alternatively, a totally different
measure like within-cluster variance can be used.

Secondly, the performance also depends on the population size and number of the it-
erations of genetic algorithm in our algorithm and hence on computation time. The com-
putation time increases linearly with the increase in either population size or number of
iterations or both. As mentioned in the previous section, it is important to find the right
balance between the performance and the computation time.

Nevertheless this serves as a first proof of concept on how the problem of mesh segmen-
tation can be tackled using a quantum variational algorithm.



Conclusion

In this thesis we investigate quantum variational algorithms for combinatorial optimization
problems. In addition, we also explore possible use-cases and tackled them using hybrid
quantum algorithms. We identify that the contemporary quantum algorithms for optimiza-
tion such as the Quantum Approximate Optimization algorithm (QAOA) scale linearly with
problem size, limiting their applications to very small toy problems.

We present a novel way to encode optimization problems on a gate-based quantum com-
puter such that the number of qubits required is reduced significantly - logarithmically, to
be exact. We call this encoding the LogQ encoding. We first present an algorithm using this
encoding for the MAXIMUM CUT problem. This is a good point to start because the MAXI-
MUM CUT problem has been of huge interest to the quantum computing community given
its resemblance to the Ising Model in physics [90].

In order for the encoding to be applied to use-cases, however, it is important for it to
be able to solve a wide range of problems. We therefore generalize the encoding using two
approaches. The first one is using polynomial reductions. In 1972, Karp showed that NP-
Hard problems are inter-convertible. We used this idea to convert other problems to the
MAXIMUM CUT problems either directly or indirectly. The second approach is to use the
Quadratic Unconstrained Binary Optimization (QUBO) matrix. We show that if an problem
can be written down as a QUBO, then it can be encoded using the LogQ encoding. The
QUBO in question must be Hermitian in order for it to be compatible with the quantum
computer. Therefore, for problems which are difficult to convert to MAXIMUM CUT or it is
very expensive (in terms of problem size) to do so, we can try to write it as a QUBO.

We benchmark LogQ against classical algorithms like Integer Linear Program and Goe-
mans Willamson algorithm (a semi-definite programming algorithm). Note that the algo-
rithms we present here are heuristic algorithm, like all variational algorithms. They do not,
therefore, possess any proof of optimality and have different results on every run. We there-
fore run our algorithm several times and provide the average result to provide a fair rep-
resentation of the performance. The experiments are carried out using both quantum sim-
ulators and IBM quantum computers up to graph sizes of 256. To our knowledge, these
constitute the largest realistic combinatorial optimization problems ever run on a NISQ de-
vice, overcoming previous problem sizes by almost tenfold.

We then present a column generation algorithm for the Fleet Conversion use-case. Col-
umn generation deconstructs the problem into a multi-level problem where there is a coor-
dinator or main problem and then there are sub-problems or worker problems. We use the
commercial solver Gurobi to solve the coordinator problems and our algorithm using the
LogQ encoding to solve the worker problems. This demonstrates that quantum algorithms
can be used in tandem with the existing state of the art classical algorithms rather than be-
ing in competition with on another. Not only that, the LogQ encoding allowed us to reach
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realistic problem sizes (up to 128 tours).
Finally we explore the problem of mesh segmentation. We represent the mesh as a graph

and convert the problem into a problem of graph clustering. We choose modularity as our
objective function and maximize it using the LogQ encoding. The results, however, were
disappointing when compared to the classical KMeans clustering algorithm.

Perspectives

Using the LogQ encoding, we could reach an impressive problem size of 256 on quantum
simulators as well as IBM quantum computers. There are, however, several factors due to
which we could not go further. Firstly the LogQ encoding requires the efficient decompo-
sition of the Hamiltonian matrix into Pauli strings. The method we apply is a brute force
method and takes a significant amount of time. Hence, future work on the algorithm should
incorporate efficient Pauli decomposition methods with the LogQ encoding. We have cited
previous work where there exist some efficient ways to decompose the matrix but only when
they are sparse.

Next, while we are able to reduce the number of qubits, the number of variables still
remain the same as in a classical algorithm and therefore we are in the same search space as
in a classical algorithm. A multi-solution approach to our encoding could be an interesting
avenue to explore. By adding N-qubits to the model, we can add 2N solutions that can be
treated simultaneously and then at every iteration only the best ones can be kept, leading to
a sort of quantum genetic algorithm.

Finally, The experiments on quantum computers are done only using the IBM quantum
computers and hence it could be useful to see how this encoding can be implemented on
other types of universal gate-based quantum computers.
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