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Résumé et mots clés

Dans un grand éventail d’applications allant des sciences du climat à la finance, des événements
extrêmes avec une probabilité loin d’être négligeable peuvent se produire, entraînant des con-
séquences désastreuses. Les extrêmes d’évènements climatiques tels que le vent, la température
et les précipitations peuvent profondément affecter les êtres humains et les écosystèmes, en-
traînant des événements tels que des inondations, des glissements de terrain ou des vagues de
chaleur. Lorsque l’emphase est mise sur l’étude de variables mesurées dans le temps sur un
grand nombre de stations ayant une localisation spécifique, comme les variables mentionnées
précédemment, le partitionnement de variables devient essentiel pour résumer et visualiser
des tendances spatiales, ce qui est crucial dans l’étude des événements extrêmes. Cette thèse
explore plusieurs modèles et méthodes pour partitionner les variables d’un processus stationnaire
multivarié, en se concentrant sur les dépendances extrémales.

Le chapitre 1 présente les concepts de modélisation de la dépendance via les copules, fonda-
mentales pour la dépendance extrême. La notion de variation régulière est introduite, essentielle
pour l’étude des extrêmes, et les processus faiblement dépendants sont abordés. Le partition-
nement est discuté à travers les paradigmes de séparation-proximité et de partitionnement basé
sur un modèle. Nous abordons aussi l’analyse non-asymptotique pour évaluer nos méthodes
dans des dimensions fixes.

Le chapitre 2 est à propos de la dépendance entre valeurs maximales est cruciale pour l’analyse
des risques. Utilisant la fonction de copule de valeur extrême et le madogramme, ce chapitre se
concentre sur l’estimation non paramétrique avec des données manquantes. Un théorème central
limite fonctionnel est établi, démontrant la convergence du madogramme vers un processus
Gaussien tendu. Des formules pour la variance asymptotique sont présentées, illustrées par une
étude numérique.

Le chapitre 3 propose les modèles asymptotiquement indépendants par blocs (AI-blocs) pour
le partitionnement de variables, définissant des clusters basés sur l’indépendance des maxima.
Un algorithme est introduit pour récupérer les clusters sans spécifier leur nombre à l’avance.
L’efficacité théorique de l’algorithme est démontrée, et une méthode de sélection de paramètre
basée sur les données est proposée. La méthode est appliquée à des données de neurosciences et
environnementales, démontrant son potentiel.

Le chapitre 4 adapte des techniques de partitionnement pour analyser des événements ex-
trêmes composites sur des données climatiques européennes. Les sous-régions présentant une
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dépendance des extrêmes de précipitations et de vitesse du vent sont identifiées en utilisant des
données ERA5 de 1979 à 2022. Les clusters obtenus sont spatialement concentrés, offrant une
compréhension approfondie de la distribution régionale des extrêmes. Les méthodes proposées
réduisent efficacement la taille des données tout en extrayant des informations cruciales sur les
événements extrêmes.

Le chapitre 5 propose une nouvelle méthode d’estimation pour les matrices dans un modèle
linéaire à facteurs latents, où chaque composante d’un vecteur aléatoire est exprimée par une
équation linéaire avec des facteurs et du bruit. Contrairement aux approches classiques basées
sur la normalité conjointe, nous supposons que les facteurs sont distribués selon des distributions
de Fréchet standards, ce qui permet une meilleure description de la dépendance extrémale. Une
méthode d’estimation est proposée garantissant une solution unique sous certaines conditions.
Une borne supérieure adaptative pour l’estimateur est fournie, adaptable à la dimension et au
nombre de facteurs.

Mots clés : Analyse non-asymptotique, Analyse probabiliste d’algorithmes, Modélisation
de la dépendance extrémale, Partitionnement de variables, Processus faiblement dépendant,
Processus stationnaire multivarié, Théorie des valeurs extrêmes, Variation régulière
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Abstract and keywords

In a wide range of applications, from climate science to finance, extreme events with a non-
negligible probability can occur, leading to disastrous consequences. Extremes in climatic events
such as wind, temperature, and precipitation can profoundly impact humans and ecosystems,
resulting in events like floods, landslides, or heatwaves. When the focus is on studying variables
measured over time at numerous specific locations, such as the previously mentioned variables,
partitioning these variables becomes essential to summarize and visualize spatial trends, which
is crucial in the study of extreme events. This thesis explores several models and methods for
partitioning the variables of a multivariate stationary process, focusing on extreme dependencies.

Chapter 1 introduces the concepts of modeling dependence through copulas, which are
fundamental for extreme dependence. The notion of regular variation, essential for studying
extremes, is introduced, and weakly dependent processes are discussed. Partitioning is examined
through the paradigms of separation-proximity and model-based clustering. Non-asymptotic
analysis is also addressed to evaluate our methods in fixed dimensions.

Chapter 2 study the dependence between maximum values is crucial for risk analysis. Using
the extreme value copula function and the madogram, this chapter focuses on non-parametric
estimation with missing data. A functional central limit theorem is established, demonstrating
the convergence of the madogram to a tight Gaussian process. Formulas for asymptotic variance
are presented, illustrated by a numerical study.

Chapter 3 proposes asymptotically independent block (AI-block) models for partitioning
variables, defining clusters based on the independence of maxima. An algorithm is introduced
to recover clusters without specifying their number in advance. Theoretical efficiency of the
algorithm is demonstrated, and a data-driven parameter selection method is proposed. The
method is applied to neuroscience and environmental data, showcasing its potential.

Chapter 4 adapts partitioning techniques to analyze composite extreme events in European
climate data. Sub-regions with dependencies in extreme precipitation and wind speed are
identified using ERA5 data from 1979 to 2022. The obtained clusters are spatially concentrated,
offering a deep understanding of the regional distribution of extremes. The proposed methods
efficiently reduce data size while extracting critical information on extreme events.

Chapter 5 proposes a new estimation method for matrices in a latent factor linear model,
where each component of a random vector is expressed by a linear equation with factors and
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noise. Unlike classical approaches based on joint normality, we assume factors are distributed
according to standard Fréchet distributions, allowing a better description of extreme dependence.
An estimation method is proposed, ensuring a unique solution under certain conditions. An
adaptive upper bound for the estimator is provided, adaptable to dimension and the number of
factors.

Keywords: Extremal dependence modeling, Extreme value theory, Multivariate stationary
process, Non-asymptotic analysis, Regular variation, Variables clustering, Weakly dependent
process
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Chapter 1

Introduction

1.1 A survival guide for high-dimensional extremal dependence
modeling

Notation

We introduce here notation that will be used throughout this and later chapters. Vector order
is taken componentwise, i.e., for x,y ∈ Rd we write x ≤ y if and only if x(j) ≤ y(j), 1 ≤ j ≤ d.
Multivariate intervals are defined as follows: for x,y ∈ Rd such that x ≤ y,

[x,y] = {x ∈ Rd : x(j) ≤ y(j), 1 ≤ j ≤ d}.

Open and semi-open intervals are defined similarly. For x ∈ RZ, we recall the notation∨
i∈Z

xi = max
i∈Z

xi,
∧
i∈Z

xi = min
i∈Z

xi.

For d-dimensional vectors x1, . . . ,xn, ∨di=1xi and ∧di=1xi denote componentwise maxima and
minima, respectively, i.e.,

n∨
i=1

xi =
(
∨ni=1x(1)

i , . . . ,∨ni=1x(d)
i

)
,

n∧
i=1

xi =
(
∧ni=1x(1)

i , . . . ,∧ni=1x(d)
i

)
.

For a set A ⊂ Rd and y > 0, we define the dilated set yA by

yA = {ya : a ∈ A}.

Given an arbitrary norm on Rd denoted || · ||, we define the open and closed balls and sphere
with center x ∈ Rd and radius r > 0 by

B(x, r) = {y ∈ Rd, ||x − y|| < r}, B̄(x, r) = {y ∈ Rd, ||x − y|| ≤ r}
S(x, r) = {y ∈ Rd, ||x − y|| = r}, Sd−1 = S(0, 1).

A sequence u ∈ RZ will be named as scaling if it is non negative, i.e., un > 0 for n ∈ Z and
non-decreasing, meaning that un ≤ un+1 for n ∈ Z.

1.1.1 Dependence modeling

In this introductory chapter, I have chosen to present to the reader methods of reasoning by
fully writing out certain proofs of results. This choice allows the reader to more easily grasp
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mathematical concepts by directly manipulating them. From my experience, understanding
of mathematics truly deepens when definitions are laid out and mathematical objects are
rigorously manipulated through the demonstration of theorems. Although this approach may
result in an increase in the length of the text, I align with one of N. Bourbaki’s principles -
avoiding paper savings - particularly when addressing beginners in a field. By analogy, learning
Latin does not involve studying fragments of tablets discovered during ancient excavations in
Rome, but rather through the reading of well-written texts whose meaning is clear. Similarly,
I have chosen to present proofs that highlight ideas rather than calculations. These proofs
may be exercises taken from existing works or proofs taken from these works, to which I have
possibly added elements to facilitate understanding.

In our discussion, we frequently have to consider random variables X(1), . . . , X(d) defined on a
shared probability space (Ω,F ,P). A d-dimensional random vector, denoted as X, serves as a
measurable mapping from Ω into Rd. The term “measurable” signifies that the inverse image

X−1(B) = {ω ∈ Ω, X(ω) ∈ B},

of every Borel set B in B(Rd) belongs to F . Considering X a random vector on the probability
space (Ω,F ,P), a probability measure PX can be defined on the measurable space (Rd,B(Rd))
by

∀B ∈ B(Rd), PX(B) := P
{

X−1(B)
}
.

The probability measure PX is referred to as the law or distribution of X. Independence, a
fondamental concept in probability theory, statistics, and numerous related fields, plays a
crucial role. The assumption of independence is a cornerstone in numerous statistical models.
As a simple illustration, consider the linear model Y = Xβ + ϵ under random design, which
often assumes, independence between X and ϵ. Describing this concept in terms of random
variables, X(1), . . . , X(d) defined on (Ω,F ,P) are deemed independent if, for every choice of d
Borel sets B(1), . . . , B(d), one has

P
{
X(1) ∈ B(1), . . . , X(d) ∈ B(d)

}
= P

{
∩dj=1(X(j) ∈ B(j))

}
= Πd

j=1P
{
X(j) ∈ B(j)

}
.

As commonly known, understanding the law of PX of a random vector X is facilitated by
knowledge of its distribution function. Let us commence by considering the case d = 1,
specifically when a single random variable X is in focus.

Definition 1.1.1. The distribution function FX of a random variable X on the probability
space (Ω,F ,P) is the function FX : R → [0, 1] defined by:

FX(x) = P {X ≤ x} ,

such that lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1.

The distribution function of a random variable can be characterised in terms of its analytical
properties.

Theorem 1.1.1. Let FX : R → [0, 1]. The following statements are equivalent:

(A) there is a probability space (Ω,F ,P) and a random variable X on it such that FX is the
distribution function of X;

2



1.1 A survival guide for high-dimensional extremal dependence modeling

(B) F satisfies the following properties:
(a) FX is continuous at the right at every point of R, i.e., for every x ∈ R, ℓ+(FX(x)) = FX(x);
(b) FX is increasing, i.e., FX(x) ≤ FX(x′) whenever x ≤ x′;
(c) FX satisfies the following limits

lim
x→−∞

FX(x) = 0, lim
x→∞

FX(x) = 1.

Under appropriate conditions, it becomes feasible to convert any random variable X into
another random variable U uniformly distributed over the interval [0, 1], denoted U ∼ U([0, 1]).
This transformation requires a suitable inverse of a distribution function, which is elucidated
below.

Definition 1.1.2. For a distribution function F : R 7→ [0, 1], the generalised inverse of F is
the function F← : [0, 1] → R given, for every x ∈]0, 1], by

F←(x) = inf {t ∈ R, F (t) ≥ x} ,

with F←(0) := inf {t ∈ R, F (t) > 0}.

The generalised inverse of a distribution function FX aligns with the standard inverse when FX
is both continuous and strictly increasing. For latter uses, we here define the quantile function
defined on [0, 1] of X,

QX(t) = F←(1 − t). (1.1)

Here, we gather a set of widely recognised properties associated with the generalised inverse of
a distribution function.

Theorem 1.1.2. Let FX be a distribution function and let F←X be its generalised inverse. Then

(a) F←X is increasing. In particular, if FX is continuous, then F←X is strictly increasing;
(b) F←X is left continuous on [0, 1];
(c) If x ∈ Ran(FX), FX(F←X (x)) = x. In particular, if FX is continuous, FX(F←X (x)) = x for

every x ∈ [0, 1];
(d) F←X (FX(x)) ≤ x for every x ∈ R. In particular, if FX is strictly increasing, then F←X (FX(x)) = x

for every x ∈ R;
(e) For every x ∈ R and t ∈ [0, 1], FX(x) ≥ t if, and only if, x ≥ F←X (t).

Thanks to these properties, the following classical result follows.

Theorem 1.1.3. Let X be a random variable on (Ω,F ,P) whose distribution function is given
by FX .

(a) If FX is continuous then FX ◦X is uniformly distributed on [0, 1].
(b) If U is a random variable that is uniformly distributed on [0, 1], then F←X ◦ U has distribution

function equal to FX .

Nevertheless, the statement mentioned above can be adapted to this general construction, as
presented in a exercise from Rio (1999).

3
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Theorem 1.1.4. Let X be a random variable on (Ω,F ,P) whose distribution function is given
by FX . Let δ be a random variable with uniform distribution over [0, 1], independent of X. Set

V = ℓ−(FX(X)) + δ(FX(X) − ℓ−(FX(X)).

Then V has the uniform distribution over [0, 1] and, almost surely F←(V ) = X.

Proof Let v(x, t) = ℓ−(FX(x))+t(FX(X)−ℓ−(FX(X))). The defined mapping v is measurable
with respect to B(R) ⊗ B([0, 1]). Hence V = v(X, δ) is a real-valued random variable. Let a be
any real in [0, 1]. Let us consider

b = ℓ+(F←X (x)) = sup{x ∈ R, FX(x) ≤ a}.

If FX is continuous at point b, then FX(b) = 0. In that case (v(x, t) ≤ a) if and only if
(x ≤ b), which ensures that P {v ≤ a} = FX(b) = a. If FX is not continuous at point b, then
a ∈ [ℓ−(FX(b)), FX(b)], which implies that

a = v(b, u) for some u ∈ [0, 1].

In that case, (v(x, t) ≤ a) if and only if either (x ≤ b) or (x = b and t ≤ u). Then

P {V ≤ a} = ℓ+(FX(b)) + u(FX(b) − ℓ+(FX(b))) = a.

Consequently, V has the uniform distribution over [0, 1]. Now, since FX(x) ≥ v(x, t) for any
t ∈ [0, 1], we have:

x ≥ F←X (v(x, t)) for any t ∈ [0, 1].

It follows that x ≥ F←X (V ) almost surely. Let Φ be the distribution function the standard
normal law. Since {F←X (V ) > x} if and only if {V > FX(x)}, we have:

E [Φ(F←X (V ))] =
∫
R
P {F←X (V ) > x} Φ′(x)dx =

∫
R
P {V > FX(x)} Φ′(x)dx

=
∫
R

(1 − FX(x))Φ′(x)dx = E [Φ(X)] .

It follows that E[Φ(X)] = E[Φ(F←X (V ))]. Since Φ(X) ≥ Φ(F←X (V )) almost surely, it implies
that Φ(X) = Φ(F←X (V )) almost surely. Hence X = F←X (V ) almost surely, which completes the
proof of the theorem.

The concept of a distribution function can be similarly defined in higher dimensions.

Definition 1.1.3. The distribution function of a random vector X = (X(1), . . . , X(d)) on the
probability space (Ω,F ,P) is defined by

FX(x(1), . . . , x(d)) = P
{
X(1) ≤ x(1), . . . , X(d) ≤ x(d)

}
for all x(1), . . . , x(d) in R.

We are now in a position to define the functions - copulae - that serve as the primary tools in
dependence modeling. The fundamental idea behind modeling stochastic dependence using
copulae is as follows: let X = (X(1), X(2)) be a random vector with continuous marginal
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1.1 A survival guide for high-dimensional extremal dependence modeling

distributions. The probability integral transform (see Theorem 1.1.4) applied to X(1) and
X(2) defines two random variables U (1) = FX(1)(X(1)) := F (1)(X(1)) and U (2) = FX(2)(X(2)) :=
F (2)(X(2)), and since the transforms are invertible, specifying the dependence between X(1)

and X(2) is the same as specifying the dependence between U (1) and U (2). Consequently, the
task of investigating stochastic dependence has been reduced to the problem of investigating
stochastic dependence with uniform marginals, which is the copula. Below, we provide the
formal definition of this mathematical object, building upon the previously mentioned intuition.

Definition 1.1.4. For every d ≥ 2, a d-dimensional copula is a d-dimensional distribution
function concentrated on [0, 1]d whose univariate marginals are uniformly distributed on [0, 1].

Remark 1.1.1. The term copula (plural copulae or copulas) is derived from the Latin word
for a link or tie that connects two different things. In linguistics, a copula refers to a word or
phrase that links the subject of a sentence to a predicate, as seen in examples like “the food
smells food” where smells is the copula. This linguistic application of the term “copula” was
the primary inspiration for Sklar to designate a function linking a multidimensional distribution
to its one-dimensional margins. The same concept can be alternatively labeled as “uniform
representation” (Kimeldorf and Sampson (1989)) or “dependence function” (see, for instance,
Deheuvels (1979); Galambos (1977); Hsing (1989)).

Every copula corresponds to a random vector U defined on an appropriate probability space,
where the joint distribution of U is represented by C. This probabilistic characterisation enables
the introduction of those fundamental examples of copulae.

Example 1.1.1 (The comonotonicity copula Md). Let U be a random variable defined on the
probability space (Ω,F ,P). Suppose that U is uniformly distributed on [0, 1]. Consider the
random vector U = (U, . . . , U). Then for every u ∈ [0, 1]d

P {U ≤ u} = P
{

U ≤ min(u(1), . . . , u(d))
}

= min(u(1), . . . , u(d)).

Thus the distribution function given, for every u ∈ [0, 1]d by

Md(u(1), . . . , u(d)) := min(u(1), . . . , u(d)),

is a copula, which will be called the comonotonicity copula.

Example 1.1.2 (The independence copula Πd). Let U (1), . . . , U (d) be independent random
variables defined on the probability space (Ω,F ,P). Suppose that each U (j) is uniformly
distributed on [0, 1]. Consider the random variable U = (U (1), . . . , U (d)). Then, for every
u ∈ [0, 1]d,

P {U ≤ u} = Πd
j=1P

{
U (j) ≤ u(j)

}
= Πd

j=1u
(j),

is a copula, which will be called the independence copula.

Example 1.1.3 (The countercomonotonicity copula W2). Let U be a random variable on the
probability space (Ω,F ,P). Suppose that U is uniformly distributed on [0, 1]. Consider the
random vector U = (U, 1 − U). Then for every u ∈ [0, 1]2,

P {U ≤ u} = P
{
U ≤ u(1), 1 − U ≤ u(2)

}
= max(0, u(1) + u(2) − 1).

5
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Thus the distribution function given, for every u ∈ [0, 1]2, by

W2(u(1), u(2)) := max(0, u(1) + u(2) − 1),

is a copula, which will be called the countercomonotonicity copula.

The motivation leading to the definition of copula is summarised in the well-known Sklar’s
theorem (Sklar (1959)), which forms the basis for most applications of copulae, it turns out
that relaxing the assumption of continuity of the marginals leads to non-uniqueness of the
associated copula.

Theorem 1.1.5. Let a random vector X = (X(1), . . . , X(d)) be given on a probability space
(Ω,F ,P), let FX(x) = P

{
X(1) ≤ x(1), . . . , X(d) ≤ x(d)

}
be the joint distribution function of X

and let F (j)(x(j)) := FX(j)(x(j)), j = 1, . . . , d, be its marginals. Then there exists a copula C
such that for every point x = (x(1), . . . , x(d)) ∈ Rd,

FX(x(1), . . . , x(d)) = C(F (1)(x(1)), . . . , F (d)(x(d))).

If the marginals F (1), . . . , F (d) are continuous, then the copula C is uniquely defined.

Proof To gain a nuanced understanding of the proof, we initially assume that all marginals F (j),
j = 1, . . . , d, are continuous. This condition will be leveraged later on. In view of the univariate
probability integral transformation (see Theorem 1.1.3), F (j) ◦X(j) is distributed uniformly
over [0, 1] for each j = 1, . . . , d. Thus the distribution function of (F (1) ◦X(1), . . . , F (d) ◦X(d))
has uniform univariate marginals and, hence, it is a copula. Moreover, for every point x ∈ Rd,
one has

FX(x) = P
{
X(1) ≤ x(1), . . . , X(d) ≤ x(d)

}
= P

{
F (1)(X(1)) ≤ F (1)(x(1)), . . . , F (d)(x(d)) ≤ F (d)(x(d))

}
= C(F (1)(x(1)), . . . , F (d)(x(d))),

which is the assertion.

Take F (j) as a not necessarily continuous function for j = 1, . . . , d, let δ be independent
of X and uniformly distributed on [0, 1]. For j = 1, . . . , d, consider the transformation
U (j) = ℓ−(F (j)(X(j))) + δ

(
F (j)(X(j)) − ℓ−(F (j)(X(j))

)
. According to Theorem 1.1.4, U (j) is

uniformly distributed over [0, 1] and X(j) = (F (j))←(U (j)) almost surely, j = 1, . . . , d. Thus,
defining C to be the distribution function of U = (U (1), . . . , U (d)) one has

FX = P
{

∩dj=1(X(j) ≤ x(j))
}

= P
{

∩dj=1

(
(F (j))←(U (j)) ≤ x(j)

)}
= P

{
∩dj=1

(
U (j) ≤ F (j)(x(j))

)}
= C(F (1)(x(1)), . . . , F (d)(x(d))).

This theorem first appeared in Sklar (1959), and its signifiance for the concept of stochastic
dependence cannot be overstated. Every joint distribution function, which inherently contains
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1.1 A survival guide for high-dimensional extremal dependence modeling

all information about the dependence of a random vector can be decomposed into a copula and
the marginal distributions. Since the marginals are incapable of explaining any dependence, the
dependence has to be entirely characterised by the copula. This is emphasised by the fact that
standard measures of dependence like Kendall’s τ or Spearman’s ρ are functions of copulae. In
the following proposition, we compile some fundamental properties of copulae. To this end, we
consider the function called the lower Fréchet-Hoeffding bound Wd : [0, 1]d → [0, 1] defined by:

Wd = max

0,
d∑
j=1

u(j) − (d− 1)

 .

Proposition 1.1.1. Let a random vector X = (X(1), . . . , X(d)) and FX be the joint distribution
function of X and let F (j), j = 1, . . . , d be its marginals and C its copula. Then the following
results hold:

(a) Fréchet-Hoeffding bound For every copula C and for every point u = (u(1), . . . , u(d)) ∈ [0, 1]d
one has

Wd(u) ≤ C(u) ≤ Md(u).

Irrespective of the dimension, the upper bound Md corresponds to perfect positive dependence
in the sense that U (j) is a strictly increasing function of U (1), . . . , U (j−1), U (j+1), . . . , U (d). In
dimension 2, W2 corresponds to perfect negative dependence and is a copula only for d = 2.

(b) Independence If F (1), . . . , F (d) are continuous, then X(1), . . . , X(d) are independent if and
only C(u) = Πd

j=1u
(j) = Πd(u).

(c) Lipschitz continuity C is Lipschitz-continuous with respect to the 1-norm on [0, 1]d

|C(u) − C(v)| ≤ ||u − v||1, ∀u,v ∈ [0, 1]d.

(d) Differentiability For all u(1), . . . , u(j−1), u(j+1), . . . , u(d) ∈ [0, 1], it holds that the partial
derivatives ∂jC(u) exists for λ-almost u(j). Furthermore 0 ≤ ∂jC(u) ≤ 1.

(e) Invariance under increasing transformations If F (1), . . . , F (d) are continuous and α(j), j =
1, . . . , d are strictly increasing, then the copula of (α(1) ◦X(1), . . . , α(d) ◦X(d)) is C.

(f) Spearman’s ρ, Kendall’s τ If F (1) and F (2) are continuous, then the Spearman’s ρ of X(1)

and X(2) is given by

ρ(X(1), X(2)) = ρ(C) = 12
∫

[0,1]2
C(u, v)dudv − 3.

The Kendall’s τ of X(1) and X(2) is given by

τ(X(1), X(2)) = τ(C) = 4
∫

[0,1]2
C(u, v)dudv − 1.

For detailed proofs of these results and a comprehensive understanding of copula theory, we
recommend consulting the following monographs: Durante and Sempi (2015) for mathematical
principles, Joe (2014) for insights on dependence modeling with copulae, and Nelsen (2006) for
an introduction to the theory and applications of copulae.
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1.1.2 Extremal dependence modeling

One approach to evaluate dependence is through sample (cross)-correlations. In extreme model-
ing, there is no guarantee that theoretical moments like correlations exist, but samples versions
will always be available. However, correlation is a somewhat basic measure of dependence,
really informative only between jointly Gaussian variables. It is simple but not subtle, as it
does not distinguish between large values and small values. In this section, we will formally
introduce the concept of tail dependence and embed it into the framework of copulae. Loosely
speakig, bivariate tail dependence is the amount of upper quadrant-tail of a bivariate distri-
bution. The concept is deeply related to multivariate extreme value theory, i.e., the limiting
distributions of componentwise maxima of i.i.d. d-variate random vectors. We will establish the
de Haan-Resnick representation theorem for so-called max-infinitely divisible random vectors.
The subsequent representation introduces common dependence function for tail dependence,
namely the stable tail dependence funtion and the Pickands dependence function.

Commencing with the work of Geffroy (1958, 1959) and Sibuya et al. (1960), consider a
two-dimensional vector X = (X(1), X(2)) with a joint distribution function FX, marginal
distributions F (1), F (2), and copula C. The subsequent definition introduces the common scalar
measure of tail dependence, namely the extremal correlation.

Definition 1.1.5. X(1) and X(2) are said to be tail dependent, extremally dependent or
asymptotically dependent if the tail dependence parameter

χ(1, 2) = lim
q→1

P
{
X(1) > (F (1))←(q)|X(2) > (F (2))←(q)

}
exists and is strictly positive. X(1) and X(2) are said to be tail independent, extremally
independent or asymptotically independent if χ(1, 2) = 0.

As one might anticipate, for continuous marginal distributions, tail dependence is a property of
the copula of X. If C̄(u) = u(1) + u(2) − 1 +C(1 − u(1), 1 − u(2)) denotes the survival copula of
X, a straightforward calculation based on the definition of conditional probabilities justifies the
following proposition.

Proposition 1.1.2. Let X = (X(1), X(2)) be continuous bivariate random vector, then

χ(1, 2) = lim
q→1

1 − 2q + C(q, q)
q

= lim
q→1

C̄(q, q)
q

.

In the following, we will explore the concept of extreme value within the framework of mul-
tivariate extreme value theory. It will be revealed that a fundamental condition of extreme
value theory, i.e., the cumulative distribution of the d-variate maxima of X converges to a
max-stable distribution equivalently stated as the max-domain of attraction assumption, is
sufficient for the extremal correlation to exist. It suffices that the copula of FX is in some
domain of attraction and this attractor will be called the extreme value copula. Furthermore,
the extreme value copula characterises the extremal dependence structure of X. We will further
showcase its connections to fundamental objects characterising the extremal dependence.
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Let Xi = (X(1)
i , . . . , X

(d)
i ), i = 1, . . . , n represent i.i.d. random vectors with a common

distribution function FX. The d-variate maximum is defined by
n∨
i=1

Xi =
(

n∨
i=1

X
(1)
i , . . . ,

n∨
i=1

X
(d)
i

)
,

it immediately falls down that

P
{

n∨
i=1

Xi − bn
an

≤ x
}

= FnX(anx + bn), (1.2)

for a certain vector an > 0 and bn.

The extreme value distributions correspond to all possible nondegenerate limits in Equation
(1.2). The only conceivable limit laws as n → ∞ are max-stable distribution functions, i.e,
distributions where:

Hn
X(bn + anx) = HX(x), ∀n ∈ N.

If HX is max-stable, then the marginals also exhibit this characteristic. This implies that a
multivariate max-stable distribution is continuous (according to (Falk et al., 2010, Lemma
2.2.6)). In the subsequent discussion, our primary focus is on max-stable distribution function
with standard Fréchet margins, denoted as H(j)

1 = e−x
−1 , x > 0, j = 1, . . . , d.

This standardisation in the univariate margins can always be accomplished through a straight-
forward transformation. If HX is max-stable with margins H(j), j = 1, . . . , d then:

HX
(
(H(1)

1 )←(H(1)(x(1))), . . . , (H(d)
1 )←(H(d)(x(d)))

)
,

defines a max-stable distribution function with margins H(j)
1 for any j = 1, . . . , d. Because of

its importance, we are going to give a first max-stable distribution function.

Lemma 1.1.1. For every K ∈ N, let Z(1), . . . , Z(K) be i.i.d. random variables with standard
Fréchet distribution functions. Let Aja > 0 for a = 1, . . . ,K and j = 1, . . . , d. Then

P
{

K∨
a=1

AjaZ
(a) ≤ x(j), j = 1, . . . , d

}
= e
−
{∑K

a=1

∨d

j=1
Aja

x(j)

}
, x ≥ 0. (1.3)

Thus obtaining a d-variate max-stable distribution function with Fréchet margins. If, in addition,

K∑
a=1

Aja = 1, j = 1, . . . , d

then the univariate margins are standard Fréchet.

Proof Notice that {
∨K
a=1AjaZ

(a) ≤ x(j)}, j = 1, . . . , d, if and only if {Z(a) ≤
∧d
j=1

x(j)

Aja
}, a =

1, . . . ,K. Thus (1.3) follows from the independence of Z(1), . . . , Z(K) and using (∧dj=1
x(j)

Aja
)−1 =

9



Introduction

∨d
j=1

Aja
x(j) . The max-stability is obvious. We see that the jth marginal H(j) is given by

H(j)(x) = e
−
{∑K

a=1
Aja

x(j)

}
, x > 0,

and hence, the assertion concerning the univariate margins holds.

Now, we broaden our framework from max-stable to max-infinitely divisible distribution
functions. A random vector X is max-infinitely divisible if, for every n ∈ N, it has the stochastic
representation:

X d=
n∨
i=1

X(n)
i ,

for some i.i.d. vectors X(n)
1 , . . . ,X(n)

n with distribution function Fn. The above equation can be
equivalently stated in terms of the distribution function with

FX = Fnn , ∀n ∈ N.

It is evident that FX is max-infinitely divisible if it is max-stable.

Consider a Borel measure Λ defined on the punctured d-dimensional Euclidean space E = Rd\{0},
where Λ is finite for all Borel sets that are away from the origin. Measures of Λ in this context
are fundamental as they provide a characterisation of max-infinitely divisible random vectors.
To simplify the discussion, let us focus on a d-dimensional max-infinitely divisible random
vector with Fréchet margins H(j)

α = e−x
−α , x > 0, j = 1, . . . , d, α > 0. The following theorem

articulates this result:

Theorem 1.1.6. Let X a random vector with joint distribution function HX and d ∈ N. Then
there is a 1-1 correspondence between

(A) Max-infinitely divisible random vector X on Rd with Fréchet margins H(j)
α (x) = e−x

−α, x > 0,
α > 0, j = 1, . . . , d.

(B) Borel measure ΛX on E+ = [0,∞)d \ {0} satisfying
(a) ΛX(E+ \ [0,x]) < ∞ for every x > 0.

This correspondence is given by

HX(x) =
{
e−ΛX(E+\[0,x]), x > 0
0 x ≤ 0.

(1.4)

A proof of a more general statement, but similar to the one mentioned above is provided by
(Resnick, 2008, Proposition 5.8). Now, suppose that X is max-stable with Fréchet marginals
H

(j)
α (x) = e−x

−α , then there exist an > 0 and bn ∈ Rd such that

HX(x) = Hn
X(anx + bn).

Since marginals are Fréchet, by taking x = (x(1),∞, . . . ,∞)

H(1)
α (x(1)) = (H(1)

α )n(anx(1) + bn),

10



1.1 A survival guide for high-dimensional extremal dependence modeling

which implies that a(1)
n = n1/α and b

(1)
n = 0. Then we deduce that a(j)

n = n1/α and b
(j)
n = 0 for

any j ∈ {1, . . . , d}. Thus, for any n ∈ N and x ∈ Rd, the following holds:

Hn
X(n1/αx) = HX(x).

This yields
H
n/m
X ((n/m)1/αx) = HX(x), n,m ∈ N,x > 0.

Choose now n,m such that n/m → tα. Then the continuity of H implies

Htα

X (tx) = HX(x), t > 0,x ∈ Rd.

From (1.4), we obtain for any x > 0 and any t > 0,

ΛX(E+ \ [0,x]) = tαΛX(E+ \ [0, tx]) = tαΛX(E+ \ t[0,x]).

This equation can be readily be extended to hold for all rectangles contained in E+. The
equality

ΛX(B) = tαΛX(tB), (1.5)

thus holds on a generalising class closed under intersections and is therefore true for any Borel
subset of E using Dynkin’s theorem. Denote by || · || an arbitrary norm of x ∈ Rd. From (1.5),
we obtain for any t > 0 and any Borel subset A of the unit sphere SE+ := {z ∈ E+ : ||z|| = 1}
in E+.

ΛX

({
x ∈ E+ : ||x|| ≥ t,

x
||x||

∈ A

})
= t−αΛX

({x
t

∈ E+ : ||x|| ≥ t,
x

||x||
∈ A

})
= t−αΛX

({
y ∈ E+ : ||y|| > 1, y

||y||

})
= t−αΦ(A),

where Φ is the spectral measure. Define the bijective function T as the transformation of a
vector onto its polar coordinates with the norm || · ||. From the above equation, we deduce that
the measure (TΛX)(B) = ΛX(T−1(B)) induced by ΛX and T , satisfies

(TΛX)([t,∞) ×A) = ΛX

({
x ∈ E+ : ||x|| ≥ t,

x
||x||

∈ A

})
= t−αΦ(A)

=
∫
A

∫
[t,∞)

α−1r−(α+1)drΦ(da) =
∫

[t,∞)×A
α−1r−(α+1)drΦ(da).

We have for an arbitrary vector z ∈ Rd

T (E+ \ [0,x]) = T
({

yE+ : y(j) > x(j), for some j = 1, . . . , d
})

=
{

(r,a) ∈ [0,∞) × SE+ : (ra(j)) > x(j), for some j = 1, . . . , d
}

=

(r,a) ∈ [0,∞) × SE+ : r >
d∧
j=1

x(j)

a(j)

 .

11
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Hence, we obtain

ΛX (E+ \ [0,x]) = (TΛX)T (E+ \ [0,x])

= (TΛX)

(r,a) ∈ [0,∞) × SE+ : r >
d∧
j=1

x(j)

a(j)


=
∫
SE+

∫
]
∧d

j=1
x(j)

a(j) ,∞[
α−1r−(α+1)drΦ(da)

=
∫
SE+

 1∧d
j=1

x(j)

a(j)

−α Φ(da) =
∫
SE+

 d∨
j=1

a(j)

x(j)

α Φ(da).

We have established, therefore, the de Haan-Resnick representation theorem that we state
below.

Theorem 1.1.7. Let X a d-dimensional random vector with joint distribution function HX.
The following statements are equivalent:

(a) HX is a multivariate extreme value distribution with Fréchet marginals H(j)
α (x) = e−x

−α , x > 0,
α > 0, j = 1, . . . , d.

(b) There exists a finite measure Φ on

SE+ = {y ∈ E+ : ||y|| = 1}

satisfying ∫
SE+

(a(j))αΦ(da) = 1, 1 ≤ j ≤ d

such that for x ∈ Rd+

HX(x) = exp

−
∫
SE+

 d∨
j=1

a(j)

x(j)

α Φ(da)

 .
The theorem mentioned above extends the assertion of Lemma 1.1.1 by incorporating in
Theorem 1.1.7 the measure Φ = ∑K

a=1 ||A·a||δ{A·a/||A·a||} with α = 1. When normalising all
marginals to standard Fréchet distribution, the stable tail dependence function is defined as
follows:

L(v(1), . . . , v(d)) = ΛX (E+ \ [0, 1/v]) =
∫
SE+

d∨
j=1

a(j)v(j)Φ(da).

Expressed in terms of the original max-stable distribution function HX, it is given by:

L(v(1), . . . , v(d)) = − lnHX
{

(H(1))←(e−v(1)), . . . , (H(d))←(e−v(d))
}
, v ∈ [0,∞)d.

Conversely, we can reconstruct a max-stable distribution function HX, from its margins H(j)

and its stable tail dependence function L through

− ln (HX(x)) = L
(
− ln

(
H(1)(x(1))

)
, . . . ,− ln

(
H(d)(x(d))

))
, x ∈ Rd.

12



1.1 A survival guide for high-dimensional extremal dependence modeling

A stable tail dependence function L has the following properties.

Proposition 1.1.3. Let X a multivariate extreme value distribution with Fréchet marginals
H

(j)
α (x) = e−x

−α, x > 0, α > 0, j = 1, . . . , d, with stable tail dependence function L. Then L
has the following properties.

(a) Homogeneity L(s·) = sL(·) for 0 < s < ∞;
(b) Groundedness L(e(j)) = 1 for j = 1, . . . , d, where e(j) is the unit vector in Rd.
(c) Fréchet-Hoeffding bounds

∨d
j=1 v

(j) ≤ L(v) ≤
∑d
j=1 v

(j) for v ∈ [0,∞)d. The upper and
lower Fréchet-Hoeffding bounds are itself valid stable tail dependence functions, the lower
bound corresponds to complete dependence HX(x) = ∧d

j=1H
(j)(x(j)), whereas the upper bound

corresponds to independence HX(x) = Πd
j=1H

(j)(x(j)).
(d) Convexity L is convex, that is L(λv + (1 − λ)w) ≤ λL(v) + (1 − λ)L(w) for λ ∈ (0, 1).

Note that, except for the bivariate case, properties (a)-(d) do not characterise the class of
stable tail dependence functions. That is, a function L satisfying properties (a)-(d) is not
necessarily a stable tail dependence function. To illustrate this with a counterexample in the
trivariate case, consider L(v(1), v(2), v(3)) = (v(1) +v(2))∨ (v(2) +v(3))∨ (v(1) +v(3)). It is evident
that properties (a)-(d) are fulfilled. However, L cannot be a stable tail dependence function
because L(1, 1, 0) = L(1, 0, 1) = L(0, 1, 1) = 2, which would imply pairwise independence and,
as we will show below, full independence. This is contradiction with L(1, 1, 1) = 2 ̸= 3.

Proposition 1.1.4. Suppose X has max-stable distribution. The following are equivalent:

(A) The components of X, namely X(1), . . . , X(d), are independent random variables, i.e.,

HX(x) = Πd
j=1H

(j)(x(j)), ∀x ∈ Rd.

(B) There exists y ∈ Rd with 0 < H(j)(y(j)) < 1 for all j = 1, . . . , d such that

HX(y) = Πd
j=1H

(j)(y(j)).

(C) The components of X are pairwise independent : for every 1 ≤ i ≤ j ≤ d

X(i) and X(j),

are independent random variables, i.e., ∀x ∈ Rd

H(i,j)(x(i,j)) = H(i)(x(i))H(j)(x(j)).

Proof We only show (A) ⇐⇒ (B). For a proof of (A) ⇐⇒ (C), see (Resnick, 2008, Corollary
5.25). The direct sense (A) =⇒ (B) is direct and holds more generally for a random vector X,
not necessarily max-stable. The direction (B) =⇒ (A) may be proved as follows. Denoting
v(j) = − lnH(j)(y(j)), we must have

∫
SE+


d∑
j=1

a(j)v(j) −
d∨
j=1

a(j)v(j)

Φ(da) = 0.

Since the integrand is non-negative, the Φ-measure of the set where it is positive must be zero.
But then, since 0 < v(j) < ∞ for all j = 1, . . . , d, the set {a ∈ SE+ , ∃1 ≤ i < j ≤ d, a(i) >

13
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0, a(j) > 0} must have Φ-measure zero. Consequently, Φ is concentrated on the complement
of the set above which is equal to {e(1), . . . , e(d)}. We must have Φ(e(j)) = 1 for j = 1, . . . , d,
which implies independence (see (Resnick, 2008, Corollary 5.25)).

From Theorem 1.1.7, we can deduce that a d-variate max-infinitely divisible distribution
function HX with standard Fréchet marginals H(j)

1 , j = 1, . . . , d can be expressed in terms of
the Pickands dependence function A : ∆d−1 → [0,∞), where the domain ∆d−1 is defined on
the (d− 1)-dimensional unit simplex:

∆d−1 :=

(w(1), . . . , w(d−1)) ∈ [0, 1]d−1 :
d−1∑
j=1

w(j) ≤ 1

 .
For x = (x(1), . . . , x(d)) ∈ [0,∞)d, x ̸= 0, we have

HX(x) = exp

−
∫
SE+

d∨
j=1

a(j)v(j)Φ(da)


= exp

−(v(1) + · · · + v(d))
∫
SE+

d∨
j=1

a(j) v(j)

v(1) + · · · + v(d) Φ(da)


= exp

{
−(v(1) + · · · + v(d))A

(
v(1)

v(1) + · · · + v(d) , . . . ,
v(d)

v(1) + · · · + v(d)

)}
,

where Φ is the spectral measure defined in Theorem 1.1.7 and

A(w(1), . . . , w(d−1)) =
∫
SE+

max

a(1)w(1), . . . , a(d−1)w(d−1), a(d)(1 −
d−1∑
j=1

w(j)))Φ(da)

 ,
is the Pickands dependence function.

If the random vector X follows the max-stable distribution function HX, then the scenarios
where A(w) = 1 and A(w) = max{w(1), . . . , w(d−1), 1 −

∑d−1
j=1 w

(j)} characterises the cases of
independence and complete dependence of the random variables X(1), . . . , X(d). Below, we
outline some important properties of the Pickands dependence function.

Proposition 1.1.5. Let X a max-stable random vector with a Pickands dependence function
A, then the latter function has the following properties.

(a) Continuity The Pickands dependence function is continuous.
(b) Groundedness A(e(j)) = 1 and the e(j), 1 ≤ j ≤ d− 1 are the extremal points of the convex

set ∆d−1.
(c) Fréchet-Hoeffding bounds 1

d ≤ max{w(1), . . . , w(d−1), 1 −
∑d−1
j=1 w

(j)} ≤ A(w) ≤ 1 for any
w ∈ ∆d−1.

(d) Convexity The function A is convex, that is, for w1,w2 ∈ ∆d−1 and λ ∈ [0, 1]

A(λw1 + (1 − λ)w2) ≤ λA(w1) + (1 − λ)A(w2)

14



1.1 A survival guide for high-dimensional extremal dependence modeling

(e) Extreme value copula - The copula function C∞ of the extreme value distribution HX, with
Pickands dependence function, the so-called extreme value copula, is

C∞(u) = HX
(
ln(u(1)), . . . , ln(u(d))

)

=
(
Πd
j=1u

(j)
)A

(
ln(u(1))∑d

j=1 lnu(j)
,...,

ln(u(d−1))∑d

j=1 lnu(j)

)
, u ∈ (0, 1]d.

We refer the reader to (Falk et al., 2010, Section 4.3) for a proof of these results.

The extreme value copula obviously satisfies for any t > 0

C∞(ut) = C∞(u)t,

which is a characterising property of extreme value copula (see Gudendorf and Segers (2010)
for an extensive overview). Take d = 2, we can notice that χ(1, 2) = 2(1 − A(1/2)) and thus,
the convexity of A implies that χ(1, 2) = 0 is equivalent to the condition A(z) = 1, z ∈ (0, 1).

1.1.3 Multivariate regularly varying random vectors

Up to this point, we have characterised the extremes of the multivariate random vector X
by examining the scale-normalised componentwise maxima of independent copies. Another
approach involves studying the distribution of the scale-normalized exceedances

u−1X|
d∨
j=1

X(j) > u,

of the random vector X, conditioned on the event that at least one component X(j) exceeds a
large threshold. We only mention this second approach without providing specific details (for a
more technical exposition, we refer to Rootzén and Tajvidi (2006)). The only conceivable limits
of these peak-over-threshold as u → ∞ are multivariate Pareto distributions. The probability
laws of these distributions are induced by a homogeneous measure ΛX on the (non-rectangular)
set L = E+ \ [0, 1]d and take the form PL(dy) = ΛX(dy)/ΛX(L). An apparent connection
between these two approaches is the exponent measure ΛX, which characterises the distribution
function of both multivariate max-stable distribution and multivariate Pareto distribution.
Indeed, this connection is established through a fundamental limiting result that links the two
approaches via regular variation.

In this section, we introduce the concept of regular variation for finite-dimensional random
vector. To do so, we employ the concept of vague convergence on E and utilise the exponent
measure, which characterises the extremal behaviour of the vector in a given sector of E . An
important characterisation of multivariate regularly varying random vectors is the dichotomy
between extremal dependence and extremal independence. We delve into the problem of
obtaining the limiting conditional distribution of the random vector given an extrem event.
When such limits exist, they can be used to define various extremal dependence measures,
which be of interest throughout this thesis.

Let Rd be endowed with its usual topology (defined by an arbitrary norm || · ||) which makes
it Polish, and the related Borel σ-field. Consider CK(Rd) the set of functions defined on Rd
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with compact support and Cb(Rd) the set of functions defined on Rd which are continuous
and bounded. There are numerous concepts of convergence of measures on a Polish space,
each characterised by a particular class of test functions. If we test convergence on bounded
continuous functions, then the sequence of measures (µn, n ∈ N) converge weakly to µ if

lim
n→∞

∫
Rd
f(x)µn(dx) =

∫
Rd
f(x)µ(dx), ∀f ∈ Cb(Rd).

If we choose continuous function with compact support, the classical notion of vague convergence
is recovered, i.e.,

lim
n→∞

∫
Rd
f(x)µn(dx) =

∫
Rd
f(x)µ(dx), ∀f ∈ CK(Rd).

These two notions of convergence of measures are equivalent in Rd provided that lim
n→∞

µn(Rd) =
µ(Rd). It appears that what really matters for vague convergence is the notion of bounded sets,
which is not a topological notion, but can be defined intrinsically without reference to a metric.

Definition 1.1.6. Let E be a set. A boundedness B on E is a collection of subsets of E, called
bounded sets, with the following properties,

(a) a finite union of bounded set is bounded;
(b) a subset of a bounded set is a bounded set.

Using this notion of boundedness, we may define the new notion of vague convergence due
to Hult and Lindskog (2006) and further developped by Lindskog et al. (2014); Segers et al.
(2017).

Definition 1.1.7.
• A set A is said to be separated from 0 if there exists an open set U such that 0 ∈ U and A ⊂ U c.
• The collection of all sets separated from 0 is a boundedness and denoted B0.
• A measure µ on Rd \ {0} is said to be B0-boundedly finite if µ(A) < ∞ for all Borel measurable

set A separated from 0.
• A sequence of B0-boundedly finite measures {µt, t ∈ T } (with T = N or T = R+) on E converges

B0-vaguely# to a measure µ on E , written µt
v#
→ µ, if

lim
t→∞

∫
Rd
f(x)dµt(x) =

∫
Rd
f(x)dµ(x),

for all bounded continuous functions f with B0-bounded support.

Many useful applications of weak convergence rely on the Portmanteau theorem. Next, we
derive the corresponding of this theorem translated for vague# convergence.

Theorem 1.1.8. Let {µn, n ∈ N} be a sequence of B0-boundedly finite measure. The following
statement are equivalent:

(A) µn
v#
→ µ;

(B) lim
n→∞

µn(A) = µ(A) for all bounded Borel sets such that µ(∂A) = 0;
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1.1 A survival guide for high-dimensional extremal dependence modeling

(C) for all bounded Borel sets,

µ(A◦) ≤ limµn(A) ≤ limµn(A) ≤ µ(Ā).

We can now define the regular variation of a random vector.

Definition 1.1.8. A d-dimensional positive random vector X is regularly varying if there exists
a non-zero B0-boundedly finite measure ΛX on E+, called an exponent measure of X, and a
scaling sequence {cn} such that the sequence of measure nP {cnX ∈ ·} converges B0-vaguely#

on Rd+ \ {0} to the measure ΛX.

Theorem 1.1.9. The following statements are equivalent:

(A) The vector X is regularly varying in the sense of Definition 1.1.8.
(B) There exists α > 0, a function g : (0,∞) → (0,∞) which is regularly varying at infinity with

index α, i.e., for t > 0
lim
x→∞

g(tx)
g(x) = tα,

and a B0-boundedly finite non-zero measure ΛX such that g(t)P
{
t−1X ∈ ·

}
converges B0-

vaguely# to ΛX as t → ∞.

If (A) and (B) hold, the sequence {cn} is regularly varying at infinity with index 1/α and the
measure ΛX is (−α)-homogeneous, i.e., for y > 0 and A separated from 0,

ΛX(yA) = y−αΛX(A).

We proceed with two elementary examples of regularly varying random vectors and provide
their exponent measures.

Example 1.1.4 (Independence). Assume that X represents a positive d-dimensional random
vector with independently and identically distributed regularly varying components. In this
context, the exponent measure ΛX concentrates on the axes. Opting for the selection cn =
QX(1)(1/n), whereQX(1) is defined in (1.1), produces the specific outcome:

ΛX(du(1), . . . , du(d)) =
d∑
j=1

δ0(du(1)) ⊗ · · · ⊗ Λα(du(j)) ⊗ · · · ⊗ δ0(du(d)),

where Λα(du) = αu−α−1du. In particular, for y > 0 and j = 1, . . . , d, ΛX({x : x(j) > y}) = y−α.
This means that only one of the d components X(1), . . . , X(d) can be extremely large at a time.

Example 1.1.5 (Total dependence). Assume we have a random vector X defined as X =
(X(1), . . . , X(1)), where X(1) exhibits regular variation with an index of α. Additionally, consider
positive constants v(j) for each components with j = 1, . . . , d. Now, with the specific choice of
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cn = QX(1)(1/n), where the quantile function QX(1) is defined in (1.1), we have

ΛX([0,v]c) = lim
n→∞

nP
{
X(1) > cnv

(j), for some j = 1, . . . , d}
}

=

 d∧
j=1

v(j)

−α =

 d∨
j=1

1
v(j)

α .
Thus we conclude that the exponent measure is concentrated on the line v(1) = · · · = v(d).

It is essential to highlight the connection between the exponent measure and the convergence
of scaled componentwise maxima. For sequences comprising i.i.d. random vectors with non-
negative components, this convergence aligns with the concept of multivariate regular variation.
This correlation elucidates the use of the term “exponent measure” in this context.

Theorem 1.1.10. Let Xi, i ≥ 1 be independent copies of the regularly varying vector X with
non-negative components and exponent measure ΛX associated to the scaling sequence {cn}.
Then for u ∈ E+,

lim
n→∞

P
{

n∨
i=1

Xi ≤ cnu
}

= e−ΛX([0,u]c).

Proof If Xi are i.i.d., then

P
{

n∨
i=1

Xi ≤ cnu
}

=
{

1 − n−1nP {X ∈ cn[0,u]c}
}n
.

The set [0,u]c is separated from 0 in Rd+ \ {0}, therefore

lim
n→∞

nP {X ∈ cn[0,u]c} = ΛX([0,u]c).

The limiting distribution which appears in Theorem 1.1.10 is indeed a max-stable distribution
since the componentwise maxima of a finite number of i.i.d. random vectors with this distribution
will again have the same distribution after scaling. This is an immediate consequence of the fact
that it is a limiting distribution of maxima. The marginal distributions are Fréchet distribution
with the distribution function

H(j)
α,c = e−c

αx−α , x ≥ 0,

where α > 0 is the tail index and the constant c > 0 will be referred to as its scale parameter.
Since if X(j) has distribution H

(j)
α,c, then c−1X(j) has distribution H

(j)
α,1 := H

(j)
α as detailed in

Section 1.1.2.

Now, we provide conditions for a transformation of a regularly varying vector g(X) to also be
regularly varying vector. Before delving into these conditions, it is pertinent ro recall a useful
lemma available in Lindskog et al. (2014).

Lemma 1.1.2. Let g : Rd → Rk be a measurable mapping and consider the following statements:

(a) The mapping g is continuous at 0Rd and g(0Rd) = 0Rk ;
(b) For every Borel set A with 0Rk /∈ A it holds that 0Rd /∈ g−1(A) in Rd;
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1.1 A survival guide for high-dimensional extremal dependence modeling

(c) For every ϵ > 0 there exists δ > 0 such that B(0Rd , δ) ⊂ g−1(B(0Rk , ϵ)).

Proof To prove (b) ⇐⇒ (c) notice that 0Rk /∈ A if and only if there exists ϵ > 0 such that
A ⊂ Rk \B(0Rk , ϵ) and that 0Rd /∈ g−1(A) if and only if there exists δ > 0 such that g−1(A) ⊂
Rd \ B(0Rd , δ). Hence (b) holds if and only if for every ϵ > 0, there exists δ > 0 such that
g−1(Rk\B(0Rk , ϵ)) ⊂ Rd\B(0Rd , δ) if and only if B(0, δ) ⊂ g−1(B(0Rk , ϵ)). Taking complements
shows that g−1(Rk \B(0Rk , ϵ)) ⊂ Rd \B(0Rd , δ) if and only if B(0Rd , δ) ⊂ g−1(B(0Rk , ϵ)).

To obtain (a) ⇐⇒ (c), note that (a) implies that for every ϵ > 0 there exists δ > 0 such
that g(B(0Rd , δ)) ⊂ B(0Rk , ϵ), which implies that g−1(g(B(0Rd , δ))) ⊂ g−1(B(0Rk , ϵ)). Since
g(g−1(B(0Rd , δ))) ⊂ B(0Rd , δ) holds for any g, it follows that (c) holds.

Now, (c) implies that for every ϵ > 0 there exists δ > 0 such that g(B(0Rd , δ)) ⊂ B(0Rk , δ))
which implies g−1(g(B(0Rd , δ))) ⊂ g−1(B(0Rk , δ)). Since B(0Rk , δ) ⊂ g−1(g(B(0Rk , δ))) holds
for any g it follows that (a) holds.

Proposition 1.1.6. Let X be a regularly varying random vector with tail index α, exponent
measure ΛX on Rd+ \ {0} associated to the scaling sequence {cn}. Let g be a continuous map
from Rd+ to Rk+ such that g(tx) = tγg(x) for some γ > 0. If the measure is not identically zero
on Rk+ \ {0}, then g(X) is regularly varying with tail index α/γ and exponent measure ΛX ◦ g−1

associated to the scaling sequence {cγn}

Proof Let Λn = nP{cnX−1 ∈ ·}. By hypothesis, Λn converges vaguely# to ΛX in Rd+ \ {0}.
The continuity and homogeneity of g implies that g(0Rd) = 0Rk . Let us consider a Borel set
A with 0Rk /∈ A and ΛX(g−1(∂A)) = 0. Since ∂g−1(A) ⊂ g−1(∂A) ∪ Dg, where Dg ⊂ Rd be
the set of discontinuity of g, we have ΛX(∂g−1(A)) ≤ ΛX(g−1(∂A)) + ΛX(Dg) = 0. Since
Λn v#

→ ΛX, ΛX(∂g−1(A)) = 0, and, by Lemma 1.1.2, 0Rd /∈ g−1(A), it follows by Theorem 1.1.8
that Λn(g−1(A)) v

#
→ ΛX(g−1(A)). Hence Λn ◦ g−1 v#

→ ΛX ◦ g−1. It suffices to identify the scaling
sequence. If ΛX ◦ g−1(∂B) = 0, the inclusion ∂(g−1(B)) ⊂ g−1(∂B) implies

lim
n→∞

nP
{
c−γn g(X) ∈ B

}
= lim

n→∞
nP
{
c−1
n X ∈ g−1(B)

}
= ΛX ◦ g−1(B).

Therefore, {cγn} is a scaling sequence for Λn ◦ g−1.

Corollary 1.1.1. Let Z = (Z(1), . . . , Z(K)) be a regularly varying random vector with tail index
α, exponent measure ΛZ associated to the scaling sequence {cn}. Let A be a d×K matrix with
positive entries. Then the vector(

K∨
a=1

A1aZ
(a), . . . ,

K∨
a=1

AdaZ
(a)
)
,

is regularly varying with tail index α.

Let us consider a set A that remains separated from zero. This separation implies the existence
of ϵ > 0, such that the complement of A encompasses a ball centered at zero with radious of ϵ.
This ϵ may vary based on the chosen norm but always exists. In this context, an exceedance
relative to A can be defined as the event X ∈ xA indicating that X > xϵ. This signifies not
only that X is large in the conventional sense but also concerning this specific choice of the
event A. There are various possible choices for A, let us mention for instance the following
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ones: 
d∨
j=1

x(j) > 1

 ,


d∧
j=1

x(j) > 1

 ,


d∑
j=1

x(j) > 1

 , {
Πd
j=1x

(j) > 1
}
,

and contributions (unions or intersections) of these events are also valid. In leveraging the
property of regular variation to analyse the exceedance X ∈ xA as x → ∞, it becomes necessary
to ensure that ΛX(A) > 0 in addition to ΛX(∂A) = 0. In this scenario, the regular variation
implies that as x → ∞,

P
{X
x

∈ · | X ∈ xA

}
v#

−→
n→∞

ΛX(A ∩ ·)
ΛX(A) . (1.6)

By employing the spectral decomposition of the exponent measure, see, e.g., Theorem 1.1.7,
this limit can be expressed in terms of the spectral measure. For all measurable subset B of E+,
we have:

ΛX(A ∩B)
ΛX(A) =

∫∞
0 αr−(α+1)dr

∫
SE+

1A∩B(ra)Φ(da)∫∞
0 αr−(α+1)dr

∫
SE+

1A(ra)Φ(da)
.

Instead of dividing by x in (1.6), an alternative is to opt for a norm in Rd and divide by
||X||. This leads to the following expression: for all measurable subsets of B of SE+ such that
ΛX(∂B) = 0,

lim
x→∞

P
{ X

||X||
∈ B | X ∈ xA

}
= ΛX(A ∩B∗)

ΛX(A) , (1.7)

where B∗ is the cone with base B, that is B∗ = {x ∈ Rd+ : X/||X|| ∈ B}. Choosing now
A = {x : ||x|| > 1}, we simply obtain

lim
x→∞

P
{ X

||X||
∈ B | ||X|| > x

}
= Φ(B). (1.8)

All these expressions are mathematically equivalent. However, from a statistical standpoint,
considering the specific problem and available data, one expression may prove to be more
practically relevant than the others.

A noteworthy scenario occurs when d ≥ 2, and the vector X = (X(1), . . . , X(d)) with the expo-
nent measure ΛX is divided into two subvectors: X = (X(1),X(2)), where X(1) = (X(1), . . . , X(h))
and X(2) = (X(h+1), . . . , X(d)) with h ∈ {1, . . . , d− 1}. Let C be a set separated from 0 in Rd+
such that ΛX(C × Rd−h+ ) > 0. According to Proposition 1.1.6, X(1) is regularly varying with
the exponent measure ΛX(·) = ΛX(· × Rd−h+ ). For such a set C we can explore the possibility
of conditioning on the event {X(1) ∈ xC}. Subsequently by taking a measurable set D in Rd−h+
such that ΛX(∂(C ×D)) = 0,

lim
x→∞

P
{

X(2)

x
∈ D | X(1) ∈ xC

}
= ΛX(C ×D)

ΛX(1)(C) .

The limits of this conditional probability for different choices of the set C, have been employed
as measure of extremal dependence. Heuristically, they quantify the tendency of some or all
components of the vector to be jointly extremely large. These measures are instrumental in
defining certain indices, particularly in applications such as climate sciences on risk managements.
In the following we introduce some of theses quantities.
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1.1 A survival guide for high-dimensional extremal dependence modeling

Extremal coefficient - Let X = (X(1), . . . , X(d)) be a regularly varying random vector and
with distribution HX and X(1) = (X(1), . . . , X(h)) a subvector of X and h ∈ {1, . . . , d− 1}. The
coefficients

θh = ΛX
(
(E+ \ [0, 1]h) × Rd−h+

)
= lim

x→∞
P
{
x−1X ∈ (E+ \ [0, 1]h) × Rd−h+

}
=
∫
Sd−1

h∨
j=1

a(j)Φ(da).

In particular, stronger extremal dependence corresponds to smaller extremal coefficients θh.
Clearly θ∅ = 0 and θ1 = 1, so that only relevant coefficient θh are those for which h ≥ 2.
We have 1 ≤ θh ≤ h, the upper and lower bounds correspond to independence and complete
dependence, respectively.

Extremal dependence measure - Let X = (X(1), . . . , X(d)) be a regularly varying random
vector. Since f(x) = Πd

j=1x
(j) is a continuous and bounded function on SE+ , applying weak

convergence in (1.8) yields

lim
x→∞

E
[
f

( X
||X||

)
| ||X|| > x

]
=
∫
SE+

Πd
j=1a

(j)Φ(da).

In particular, for a bivariate regularly varying random vector (X(1), X(2)), the expression on
the RHS is called the extremal dependence measure (EDM):

EDM(X(1), X(2)) =
∫
SE+

a(1)a(2)Φ(da).

We can interpret EDM as a covariance-like quantity, computed with respect to the spectral
measure. The EDM vanished whenever the spectral measure Φ is concentrated on the axes,
that is, in the case of extremal independence.

Extremal correlation - Let X = (X(1), X(2)) be a bivariate regularly varying random vector
in R2

+ with exponent measure ΛX. Choosing in particular C = D = (1,∞) in (1.7), then we
obtain the extremal correlation

χ(2, 1) = lim
x→∞

P
{
X(2) > x |X(1) > x

}
= ΛX ((1,∞) × (1,∞)) /ΛX(1) ((1,∞)) .

1.1.4 Weakly dependent random processes

To understand how the limiting distribution deviates, establishing upper bounds for algebraïc
moments or exponential inequalities of a partial sum of real-valued random variables is of prime
interest. One of the key steps in this process is to analyse the variance of this sum. While the
variance of the sum equals the sum of individual variances for independent random variables,
this statement does not hold true for dependent random variables, except for martingale
difference sequences. Let (Xk, k ∈ Z) be a sequence of random variables on the probability
space (Ω,F ,P) that is strictly stationary. Drawing inspiration from martingales, we can gain
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an intuition of weak dependence for the sequence (Xk, k ∈ Z) if for any k ∈ Z,

E [|E[Xk+n|X1, . . . , Xn]|] −→
n→∞

0. (1.9)

Indeed, martingale differences satisfy condition (1.9), as do mixingales differences sequences.
Gaussian sequences with pairwise correlation coefficients tending to zero, lacunary random
variables, and many others satisfy (1.9), either directly or in slightly modified form. This
definition serves reasonably well if one is interested in sums of the random variables X. However,
for statistics, this definition falls short. To understand why, consider (ξk, k ∈ Z) to be a
stationary sequence of real-valued random variables with common distribution function Fξ, the
fundamental components for the empirical process are the discontinuous random functions:

Xk := Xk(x, ω) = 1{ξk(ω)≤x} − Fξ(x), x ∈ R.

So, even if the sequence (ξk, k ∈ Z) satisfies relation (1.9), the function (Xk, k ∈ Z) may not.
In this section, we will outline the primary mixing conditions examined in this thesis and their
implications for covariance inequalities and coupling lemmas. Unlike condition (1.9), most of
these conditions do not assume the existence of a finite expectation. Let Fb

a denote the σ-field
generated by the random variables Xa, . . . , Xb when −∞ ≤ a < b ≤ ∞.

Definition 1.1.9.
• The sequence (Xk, k ∈ Z) is called strongly mixing if

α(n) := sup
{

|P{A ∩B} − P{A}P{B}| : A ∈ Fk
−∞, B ∈ F∞k+n, k ≥ 1

}
−→
n→∞

0.

• The sequence is called absolutely regular if

β(n) := sup
{∣∣∣PFk−∞⊗F∞k+n

(C) − PFk−∞ ⊗ PF∞
k+n

(C)
∣∣∣ : C ∈ Fk

−∞ ⊗ F∞k+n, k ≥ 1
}

−→
n→∞

0,

where PFk−∞⊗F∞k+n
to be defined on (Ω × Ω,Fk

−∞ ⊗ F∞k+n) is the image of P under the canonical
injection i from (Ω,F ,P) into (Ω × Ω,Fk

−∞ ⊗ F∞k+n,P) denoted by i(ω) = (ω, ω). Also, PFk−∞
(resp. PF∞

k+n
) is the restriction of P to Fk

−∞ (resp. F∞k+n).
• The sequence is called φ-mixing or uniformly mixing if

φ(n) := sup
{∣∣∣∣P(A ∩B) − P(A)P(B)

P(A)

∣∣∣∣ ; A ∈ Fk
−∞,P(A) > 0, B ∈ F∞k+n, k ≥ 1

}
−→
n→∞

0.

It is worth emphasising that all mixing coefficients, when regarded as a function of n, decrease
or remain constant. The strong mixing condition was introduced by Rosenblatt (1956b),
the β-mixing coefficient by Volkonskii and Rozanov (1959), and the φ-mixing coefficient by
Ibragimov (1962). The following relations between these coefficients are valid

2α(n) ≤ β(n) ≤ φ(n) ≤ 1,

hence a φ-mixing sequence is absolutely regular which is consequently strongly mixing. Here,
we provide few standard examples of weakly dependent processes.
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1.1 A survival guide for high-dimensional extremal dependence modeling

Example 1.1.6. A sequence (Xk, k ∈ Z) is called m-dependent if the σ-fields Fk
−∞ and F∞k+n

are independent for each k ≥ 1. Obviously, m-dependent sequences are α-mixing with α(k) = 0,
∀k ≥ n and α(k) > 0, ∀k < n.

Example 1.1.7. A sequence (Xk, k ∈ Z) be a strongly stationary Markov chains in an countable
space. If (Xk, k ∈ Z) is irreducible and aperiodic, then β(n) −→ 0, as n → ∞.

For two σ-fields A,B, we define

α(A,B) = sup {|P(A ∩B) − P(A)P(B)| : A ∈ A, B ∈ B} . (1.10)

Notice that α(A,B) measures the degree of dependence between the σ-fields A and B. Indeed,
for independent cases, α(A,B) = 0. Also, note that the mixing coefficients α(n) can be
expressed as α(n) = supk α(Fk

−∞,F∞k+n). For random variables X and Y , let σ(X) and σ(Y )
denote the σ-fields generated by them.

Lemma 1.1.3. Let X and Y be real-valued random variables. Then

|Cov(X,Y )| ≤ 4α(σ(X), σ(Y ))||X||∞||Y ||∞. (1.11)

Proof Without loss of generality we may assume that ||X||∞ = ||Y ||∞ = 1. Set A = σ(X)
and B = σ(Y ), and observe that

|Cov(X,Y )| = |E [X(E[Y |A] − E[Y ])] | ≤ E [|E[Y |A] − E[Y ]|]
= E[X1 (E[Y |A] − E[Y ])] = Cov(X1, Y ),

where X1 = sign(E[Y |A] − E[Y ]) is a A-measurable random variable and we can apply the
same argument again, now with roles of X1 and Y interchanged. In thiw way, we can get

|Cov(X1, Y )| ≤ |E[X1Y1] − E[X1]E[Y1]| = Cov(X1, Y1),

where Y1 = sign(E[X1|B] − E[X1]). Now set A = 1{X1=1} and B = 1{Y1=1}. Then

|Cov(X1, Y1)| ≤|P{A ∩B} − P{Ac ∩B} − P{A ∩Bc} + P{Ac ∩Bc}
− P{A}P{B} + P{Ac}P{B} + P{A}P{Bc} − P{Ac}P{Bc}|
≤ 4α(A,B).

The three inequalities together yields (1.11).

The following Lemma is due to Davydov (1970), the special case r = s to Ibragimov (1962).

Lemma 1.1.4. Let 1 ≤ p, q, t ≤ ∞ satisfy p−1 + q−1 + r−1 = 1 and let X and Y be real valued
random variables in Lp(A) and Lq(B), respectively. Then

|Cov(X,Y )| ≤ 10||X||p||Y ||qα(σ(X), σ(Y ))1/r.

For φ-mixing sequences, Ibragimov (1962) has given slightly stronger inequalities. In the
following, we state such an inequality given by Peligrad (1983).
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Lemma 1.1.5. Let 1 ≤ p, q ≤ ∞ satisfy p−1 + q−1 = 1 and let X and Y be real-valued random
variable in Lp(A) and Lq(B), respectively. Then

|Cov(X,Y )| ≤ 2φ(A,B)1/pφ(B,A)1/q||X||p||Y ||q. (1.12)

Proof The proof of (1.12) follows from classical approximation used in the construction of
Lebesgue’s integral. We approximate X and Y by X = ∑

i ai1Ai and Y = ∑
j bj1Bj , where

(Ai)i and (Bj)j are respectively, finite decompositions of Ω into disjoint elements of A and B.
For notational conveniency, let us denote cij = P{Bj |Ai} −P{Bj} and dij = P{Ai|Bj} −P{Ai}.
Using Hölder’s inequality, we obtain

|Cov(X,Y )| ≤
(∑

i

|ai|p1Ai

)1/p
∑

i

P{Ai}

∑
j

|bj | |cij |

q1/q

.

Using that ∑
j

|bj | |cij | =
∑
j

|bj | |cij |1/q |cij |1/p

and Hölder’s inequality, it stems down

|Cov(X,Y )| ≤ (E|X|p)1/p

∑
i

P{Ai}

∑
j

|bj |q|cij |

∑
j

|cij |q/p
1/q

≤ (E|X|p)1/p (E|Y |q)1/q max
i

∑
j

|cij |

1/p

max
j

(∑
i

|dij |
)1/q

.

If C+
i (or C−i ) is the union of those Bj for which cij is positive (or nonpositive) then∑

j

|cij | ≤ |P{C+
i |Ai} − P{C+

i }| + |P{C+
i |Ai} − P{C−i }| ≤ 2φ(A,B).

Similarly, ∑
i

|dij | ≤ 2φ(B,A).

So (1.12) holds for simple random variable, and by passing to the limit the inequality remains
valid for every X ∈ Lp(A) and Y ∈ Lq(B).

For most applications, the inequalities above are classical arguments. However, when striving
for results that are optimal or nearly optimal, shaper versions are necessary. Such inequalities
below are attributed to Rio (1993, 1999).

Theorem 1.1.11. Let X and Y be integrable real-valued random variables. Assume that XY
is integrable and let α = α(σ(X), σ(Y )) be defined by (1.10). Then

|Cov(X,Y )| ≤ 2
∫ α

0
Q|X|(u)Q|Y |(u)du ≤ 4

∫ α/2

0
Q|X|(u)Q|Y |(u)du.
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1.1 A survival guide for high-dimensional extremal dependence modeling

Conversely, for any symmetric distribution function FX and any α ∈ [0, 1/4], one can construct
random variables X and Y with respective distribution function FX such that α(σ(X), σ(Y )) ≤ α
and

Cov(X,Y ) ≥ 1
2

∫ α/2

0
Q2
|X|(u)du, (1.13)

provided that Q|X| is square integrable on [0, 1].

Proof We only prove the lower bound of the covariance in (1.13). To do it, let us construct a
pair (U, V ) of random variables with marginal distributions the uniform law over [0, 1], satisfying
α(σ(U), σ(V )) ≤ α and such that (1.13) holds true for (X,Y ) = (F←X (U), F←X (Y )). Let a be
any real in [0, 1/4], and (Z, T ) be a random variable with the uniform distribution over [0, 1]2.
Set

(U, V ) = 1{Z∈[0,1−a]}(Z, (1 − a)T ) + 1{Z∈]1−a,1]}(Z,Z).

Let u ∈ [0, 1], then P{U ≤ u} = P{Z ≤ u} = u. Now take v ∈ [0, 1], one can write

P{V ≤ v} = P{T ≤ v/(1 − a)}P{Z ≤ 1 − a} + P{1 − a < Z ≤ v}.

If v ≤ 1 − a, then {1 − a < Z ≤ v} = ∅ and we obtain P{V ≤ v} = v. If v > 1 − a, then
{T ≤ v/(1 − a)} = {T ≤ 1} and

P{V ≤ v} = 1 − a+ v − (1 − a) = v,

hence U, V are distributed uniformly over [0, 1]. We now prove that

α(σ(U), σ(V )) ≤ a− a2/2. (1.14)

Clearly,
||P(U,V ) − PU ⊗ PV ||TV = 4a− 2a2.

Since it is well known that ||P(U,V ) − PU ⊗ PV ||TV ≥ 4α(σ(U), σ(V )). Hence (1.14) holds true.
Next, let (X,Y ) = (F←X (U), F←X (V )). Since X (resp. Y ) is a measurable function of U (resp.
V ), α(σ(X), σ(Y )) ≤ α. Now

XY = F←X (Z)F←X (Z)1{Z∈]1−a,1]} + F←X (Z)F←X (T )1{Z∈[0,1−a]}.

Taking the expectation of the formula and we recall that Z and T are independent, we get that

E[XY ] =
∫ 1

1−a
(F←X (u))2du+ 1

1 − a

(∫ 1−a

0
F←X (u)du

)2
.

Using

E[XY ] − E[X]E[Y ] =
∫ 1

1−a
(F←X (u))2du+ 1

1 − a

(∫ 1−a

0
F←X (u)du

)2
−
(∫ 1

0
F←X (u)du

)2

≥
∫ 1

1−a
(F←X (u))2du+

(∫ 1−a

0
F←X (u)du

)2
−
(∫ 1

0
F←X (u)du

)2
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and since
∫ 1

0 F
←
X (u)du = 0
(∫ 1−a

0
F←X (u)du

)2
=
(∫ 1

0
F←X (u)du−

∫ 1

1−a
F←X (u)du

)2

=
(∫ 1

0
F←X (u)du

)2
+
(∫ 1

1−a
F←X (u)du

)2
.

Since X has a symmetric law, F←X (1 − u) = −F←X (u) = Q|X|(2u) for almost every u ∈ [0, 1/2[.
Hence, since

Cov(X,Y ) ≥
∫ a

0
Q2
|X|(u)du ≥

∫ α

0
Q2
|X|(u)du.

Let X and Y be real random variables on the same probability space. We say that X and Y
are partially coupled with probability p if

P{X = Y } = p. (1.15)

One of the most popular techniques to derive limit theorems for dependent process is to replace
the original sequence with one exhibiting finite range dependence. In this regard coupling
lemmas enable the substitution of the initial sequence after time zero with a new sequence that
is independent of the past before time zero. Below, we present coupling theorems for mixing
sequences. The complexity of the coupling hinges on the mixing condition. Here, we provide
coupling results for strongly mixing or absolutely regular sequences. For sequences of a random
variables satisfying β-mixing conditions, the new sequence is predominantly equal to the inital
sequence after time n. This result was independently obtained by Berbee (1979) and Goldstein
(1979). This result fails in the strong mixing case. Nevertheless, one can still derive weaker
results that are effective for real-valued random variables. We first state this result below.

Lemma 1.1.6. Let A be a σ-field on (Ω,F ,P) and X be a real valued random variable with
values in [a, b]. Let δ be a random uniform distribution over [0, 1], independent of the σ-field
generated by X and A. Then there exists a random variable X∗, with the same law as X,
independent of X such that

E[|X −X∗|] ≤ (b− a)α(A, σ(X)).

Furthermore, X∗ is measurable.

Proof Let FX be the distribution of X and FA be the conditional distribution function of X
given A, which is defined by FA(t) = P{X ≤ t | A}. Since δ is independent of A ∨ σ(X) and
has the uniform distribution over [0, 1], the random variable

V = ℓ−(FA(X)) + δ
(
FA(X) − ℓ−(FA(X))

)
,

has the uniform distribution over [0, 1], conditionnaly to A (the proof of this statement is
similar to the one given in Theorem 1.1.4). Hence V is independent of A and has the uniform
distribution over [0, 1]. Therefore

X∗ = F←X (V ),
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1.1 A survival guide for high-dimensional extremal dependence modeling

is independent of A and has the same distribution function as X. Furthermore

X = F←A (V ), a.s.,

whence
E[|X −X∗|] = E

[∫ 1

0
|F←A (v) − F←X (v)|dv

]
.

Since X takes values in [a, b],∫ 1

0
|F←A (v) − F←X (v)|dv =

∫ b

a
|FA(t) − FX(t)|dt.

Interchanging the integrals, we infer that

E[|X −X∗|] =
∫ b

a
E [|FA(t) − FX(t)] dt,

and, one can prove that

α(A, σ(X)) = sup
x

E [|P{X ≤ x | A} − P{X ≤ x}|] ,

and we obtain the result.

To obtain a coupling, we want to construct random variables X and Y on the same probability
space, under the condition that their dispersions are PX and PY , respectively, in such a way
that the probability p of partial coupling in (1.15) is as large as possible. We shall show that p
can be maximised. If this probability p is maximal, we say that X and Y are maximally couples.
We state the coupling lemma of Berbee (1979) for random variables satisfying a β-mixing
condition.

Theorem 1.1.12. Suppose on a probability space (Ω,F ,P), there is defined a pair (X,Y ) of
random variables, with values in Borel space A,B. The probability space can be extended with a
random variable X∗, independent of X, with the same distribution as X, such that

P{X ̸= X∗} = β(σ(X), σ(Y ))

while the dependence structure is not affected in the sense that

PZ|X,X∗,Y = PZ|X,Y ,

for any random variable Z defined on the original probability space with values in a Borel space.

Considering (Xk, k ∈ Z) a random sequence, starting from Theorem 1.1.12 we can construct by
induction a sequence of random variables (X̄i, i ≥ 0) such that

(a) For any i ≥ 0, the random variable Z̄i = (X̄iq+1, . . . , X̄iq+q) has the same distribution as
Ui = (Xiq+1, . . . , Xiq+q).

(b) The sequence (Z̄2i)i≥0 is i.i.d. and so is (Z̄2i+1)i≥0.
(c) For any i ≥ 0, P{Zi ̸= Z̄i} ≤ β(q).
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This construction is a classical technique extensively used in the literature see, e.g., Bücher and
Segers (2014); Doukhan et al. (1995a) or Chapter 3 and Chapter 4 in this thesis.

1.1.5 Clustering

In the framework of high-dimensional statistics, observations are more likely to come from
heterogeneous processes. A recipe for dealing with such heterogeneous data is to consider them as
an assemblage of several homogeneous datasets, corresponding to homogeneous “subpopulations”.
Then each subpopulation can be treated either independently or jointly. The main hurdle in
this approach is to recover the unknown subpopulations, which is the main goal of clustering
algorithms. Then each subpopulation can be treated either independently jointly. The main
hurdle in this approach is to recover the unknown subpopulations, which is the main goal
of clustering algorithms. The goal of cluster analysis is to find meaningful groups in data.
Typically, these groups will be internally cohesive and separated from one another within the
data. The purpose is to identify groups whose members share common characteristics that
distinguish them from members of other groups.

The methodology for clustering can be based on either a proximity-separation paradigm or on
statistical models. The proximity-separation paradigm is model-free and offers some easy-to-
understand algorithms. However, defining a clear “ground truth” objective in this perspective
and evaluating the performance of a given algorithm can be challenging. These developments
occured largely independently from mainstream statistics, which often relied on probability
distribution on the observations. Meanwhile, they left several practical questions unresolved,
such as specifying the number of clusters, and assessing uncertainty about a partition. The
statistical paradigm, based on probabilistic modeling, is more amenable to interpretation and
statistical analysis, and has the potential to address these questions. This thesis focus on this
approach. Assume that we have n data points X1, . . . ,Xn in a vectorial normed space (Rd, || · ||)
and let us denote

∀i ∈ {1, . . . , n}, Xi = (X(1)
i , . . . , X

(d)
i ) ∈ Rd, ∀j ∈ {1, . . . , d}, X(j) = (X(j)

1 , . . . , X(j)
n ) ∈ Rn,

and let the matrix of observations:

M = (X(j)
i )i=1,...,n,j=1,...,d ∈ Rn×d.

Informally, the goal of clustering is to find a partition G = {G1, . . . , GK} of the indices
{1, . . . , n} or {1, . . . , d}. We will refer to row clustering as the problem of clustering applied to
{X1, . . . ,Xn} ∈ Rd such that data points with indices within a group are similar, and those
with indices in different groups are different. The following simplified model, which stated that
points within a cluster have the same mean, gives a clear illustration of the above consideration.

For any point Xi belonging to a cluster Ga ∈ G, we have

E[Xi] = µa ∈ Rd.

The alternative framework will be designated as variable clustering, which concerns grouping
variables of X through X1, . . . ,Xn, n observations. In this setting, we aim to cluster entities
that might exhibit strong dependence within a cluster.
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1.1 A survival guide for high-dimensional extremal dependence modeling

Given the prevalence of proximity-separation in row clustering as observed in clustering literature
within extreme value theory, we shall provide a concise overview of two prominent algorithms
within this domain: the K-means algorithm and hierarchical clustering. Additionally, we will
introduce a model-based clustering approach within the Gaussian context and elucidate its
relationship with the K-means algorithm.

The K-means algorithm method prescribes a criterion for partitioning a collection of points
into K distinct groups. To achieve this, we start by selecting K cluster centres, denoted as
θ1, . . . , θK in such a way that the overall sum of squared distances from each point to its nearest
cluster center is minimised

Wn = 1
n

n∑
i=1

min
k=1,...,K

||Xi − θk||2. (1.16)

The K-means algorithm assigns each data point to its nearest cluster centre and aims to solve
the minimisation problem:

(θ̂1, . . . , θ̂K) ∈ arg min
(θ1,...,θK)∈Rd

1
n

n∑
i=1

min
k=1,...,K

||Xi − θk||2.

Then, the partition ĜK-means = {ĜK-means
1 , . . . , ĜK-means

K } is defined by

ĜK-means
k =

{
i ∈ {1, . . . , n} : d(xi, θk) = min

k=1,...,K
d(xi, θk)

}
.

Consider X1, . . . ,Xn a sample comprising i.i.d. observations drawn from an (unknown) distri-
bution PX. Pollard (1981) provides conditions that guarantee the almost sure convergence of
the cluster centres as the sample size n grows. Let Wn be a function dependent on a set of
cluster centres Θ and the empirical measure. In essence, the objective is to minimise W

W (Θ,Pn) =
∫

min
θ∈Θ

||x − θ||2PX(dx),

are all possible choices of the set Θ containing K (or fewer) elements. Let Θn be the set of
optimal clusters centres for the sample, then the following hold.

Theorem 1.1.13. Suppose that
∫

||x||2PX(dx) < ∞ and that for each k = 1, . . . ,K there is a
unique set Θ̄(k) for which W (Θ̄(k),P) = mk(P) where

mk(P) := inf{W (Θ,P) : Θ contains k or fewer points}.

Then Θn → Θ̄(k) a.s., and Wn(Θn,Pn) → mk(P) a.s. as n → ∞.

In general, solving the minimisation problem in K-means is NP-hard and even hard to approxi-
mate.

As demonstrated, the principle behind K-means is driven by optimisation. However, the
strategy in hierarchical clustering differs. The principle involes merging data points step-by-step
by merging the two closest groups of points at each iteration. Specifically, hierarchical clustering
algorithms proceeds by sequentially clustering data points, starting with each data point forming
its own singleton cluster and then iteratively merging them until a single cluster containing
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all data points is achieved. This process yields a series of nested clusterings. In hierarchical
clustering, the merging of points is straightforward: at each step, the algorithm merges the two
closes centres of the current clustering while keep the other clusters unchanged (see Algorithm
(HC) for more details). This necessitates the definition of a “distance” ℓ(G,G′) between clusters
G and G′, typically referred to as linkage. Some classical examples of linkage methods include:

• Single linkage: refers to the smallest distance between the points of two clusters

ℓsingle(G,G′) = min{||xi − xj ||, i ∈ G, j ∈ G′}.

• Complete linkage: corresponds to the largest distance between the point of two clusters:

ℓcomplete(G,G′) = max{||xi − xj ||, i ∈ G, j ∈ G′}.

• Average linkage: corresponds to the average distance between the points of the clusters G,G′:

ℓaverage(G,G′) = 1
|G||G′|

∑
i∈G,j∈G′

||xi − xj ||.

Algorithm (HC)
1: procedure HC(X1, . . . ,Xn,ℓ)
2: Initialisation: G(n) = {{1}, . . . , {n}}.
3: for t = n, . . . , 2 do
4: Find (â, b̂) ∈ arg min(a,b) ℓ(G

(n)
a , G

(n)
b );

5: Build G(t−1) by merging G(t)
â and G

(t)
b̂

. The other clusters are left unchanged
6: Return the n partitions G(1), . . . , G(n) of {1, . . . , n}.

We now confine our analysis to the Gaussian setting and let us consider the following model

Definition 1.1.10. Let X1, . . . ,Xn ∈ Rd be n observations such that:

(i) The observations X1, . . . ,Xn ∈ Rd are independent.
(ii) There exists a partition G∗ = {G∗1, . . . , G∗K} of {1, . . . , n}, and θ1, . . . , θK ∈ Rd, Σ1, . . . ,ΣK ∈

Rd×d such that
∀i ∈ G∗k, Xi ∼ N (θk,Σk).

The negative log-likelihood of the distribution N (θk,Σk) with respect to the observations
X1, . . . ,Xn is

1
2(Xi − θk)⊤Σ−1

k (Xi − θk) + 1
2 ln(|Σk|) + d

2 ln(2π)

so the maximum likelihood estimator of the partition G∗ is

ĜMV ∈ arg min
K∑
k=1

min
Σk∈S+

d

min
θk∈Rd

∑
i∈Gk

(
(Xi − θk)⊤Σ−1

k (Xi − θk) + ln(|Σk|)
)
, (1.17)

where S+
d is the set of d× d positive semi definite matrices and where the first minima is over

all partitions G of {1, . . . , n} into K groups.
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1.1 A survival guide for high-dimensional extremal dependence modeling

The maximum likelihood estimator faces several drawbacks. One concern relates to the
exponential growth in the cardinality of the set of partitions {1, . . . , n} into K groups, which
grows exponentially fast with n, approximately as Kn/K!. Consequently, the computational
expense of scanning the set of partitions of {1, . . . , n} into K groups becomes prohibitive,
rendering estimtion unfeasible for larger sample size. From a statistical perspective, the
estimation of Σk becomes unstable in high-dimensional settings, and even degenerates when d
exceeds n. To motivate the latter issue, a common approach is to consider setting all Σk to
σ2In in (1.17). Consequently (1.17) simplifies to K-means criterion in (1.16).

1.1.6 Mathematics of high dimension

Classical statistics provide a comprehensive theoretical framework for analysing data with a
small dimension d and a large number of observations n. Classical results meticulously describe
the asymptotic properties of estimators as n goes to infinity, while d remains constant, a context
where such analysis is relevant. In modern statistics, current data exhibit the opposite scenario
with a substantial number of dimensions alongside a sample size n either comparable to d or
significantly smaller. The traditional asymptotic analysis, where d is fixed and n approaches
to infinity, loses its relevance and can yield misleading results. An alternative approach is to
treat both n and d as they are and conduct a non-asymptotic analysis of the estimators. This
approach remains valid for any value of n and d, circumventing the pitfalls associated with
asymptotic analysis. As an illustration, let us consider the linear regression problem where we
are given observations Y and X that satisfy the following relationship:

Y = Xθ + ϵ,

where X ∈ Rn×d is a deterministic matrix, θ ∈ Rd is the unknown parameter that we want to
estimate and ϵ is an uncorrelated random vector with E[ϵi] ≤ σ2

i , i = 1, . . . , n. We consider the
global least squares estimator defined by

θ̂ ∈ arg min
θ∈Rd

||Y −Xθ||2.

One can show, if the model is not misspecified, the 2-expected loss of this estimator is bounded
by

E
[
||Xθ̂ −Xθ||2

]
≤ σ2Rank(X)

n
, Rank(X) ≤ min(n, d),

see, e.g., (Rigollet and Tsybakov, 2011, Lemma 3.1). When d > n, the above bound is equal to
σ2 whenever X is of full rank. Furthermore, it follows from the bound σ2 cannot be improved
when employing the least squares estimator for d > n. Consequently, the estimator lacks
statistical significance in high-dimensional scenarios, with the risk potentially failing to decrease
as the sample size n increases, a phenomenon commonly termed as the “curse of dimensionality”.
In extreme value analysis, estimation becomes even more challenging as it relies on the largest
observations of a sample, reducing the number of data points. This could elucidate why
multivariate extreme value theory has been limited to small dimensions (see, e.g., Einmahl
et al. (2018, 2012); Genest and Segers (2009)).

In order to quantify non-asymptotically the performance of an estimator, we need some tools
to replace the classical convergence theorems used in classical statistics. A typical example of
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convergence theorem is the central limit theorem, which describes the asymptotic convergence
of an empirical mean toward its expected value : for f : R → R and X1, . . . , Xn i.i.d. such that
σ2 = Var(f(X1)) < ∞, we have has n → ∞√

n

σ2

(
1
n

n∑
i=1

Xi − E[f(X1)]
)

d−→ Z, Z ∼ N (0, 1).

Informally, the gap between the empirical mean and the statistical mean tends to behave
approximately like

√
σ2/n when n is sufficiently large. By considering that f is Lipschitz

continuous with a Lipschitz constant L and X1, . . . , Xn i.i.d. random variables with finite
variance σ2, we proceed with the following analysis

lim
n→∞

P
{

1
n

n∑
i=1

f(Xi) − E[f(X1)] ≥ Lσ√
n
x

}
≤ P {Z ≥ x} ≤ e−x

2/2.

Such a Gaussian tail inequality provides much more precise control of the fluctuations of an
estimator. In this section, we begin the investigation of such concentration inequalities. A
simple, yet powerful method for bounding tail probabilities relies on Markov’s inequality for
positive random variables X:

P {X ≥ t} ≤
E[X1{X≥t}]

t
≤ E[X]

t
.

The relevance of this inequality is contingent upon E[X] < ∞, that is, X is integrable. Through
a more sophisticated approach, Markov’s inequality can be boosted, resulting in much more
precise estimates. Such improvements becomes feasible when X satisfies stronger integrability
criteria. If ϕ represents a non-decreasing and non-negative function defined on a (potentially
infinite) interval I ⊂ R, and X denotes a random variable with values in I, then Markov’s
inequality implies that for every t ∈ I, where ϕ(t) > 0

P {X ≥ t} ≤ P {ϕ(X) ≥ ϕ(t)} ≤ E[ϕ(X)]
ϕ(t) . (1.18)

The most prevalent applications of this principle is Chebyshev’s inequality derived by setting
ϕ(t) = t2 over I = (0,∞) and considering the random variable |X − E[X]|. In this scenario, we
obtain, provided that we have an upper bound on the variance

P {|X − E[X]| > t} ≤ V ar(X)
t2

.

However, this bound only diminishes at a rate of t−2, and we cannot achieve a Gaussian tail
bound using this approach. The Cramér-Chernoff method identifies the most optimal bound
for a tail probability through Markov’s inequality by employing an exponential ϕ(t) = eλt.

Lemma 1.1.7. Define the log-moment generating function of a random variable X and its
Legendre dual ψ∗ as

ψ(λ) := lnE
[
eλ(X−EX)

]
, ψ∗(t) = sup

λ>0
{λt− ψ(λ)} .
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1.1 A survival guide for high-dimensional extremal dependence modeling

Then P{X − EX ≥ t} ≤ e−ψ
∗(t) for all t ≥ 0.

Proof Using Markov’s inequality with an exponential function ϕ(t) = eλt in (1.18) gives

P {X − EX ≥ t} = P
{
eλ(X−EX) ≥ eλt

}
≤ e−λtE[eλ(X−EX)] = e−(λt−ψ(λ)).

As the LHS does not depend on the choice of λ > 0, we can optimise the RHS over λ to obtain
the statement of the lemma.

Remark 1.1.2. The usefulness of the Chernoff bound extends far beyond proving Gaussian
tails, as we will do below. One can derive many different tails behaviors in this manner.
However, the approach is only applicable if ψ(λ) remains finite, at least for λ in neighborhood
of 0. Consequently, to employ the Chernoff’s bound, the random method use powers instead of
exponentials in Markov’s inequality:

P {X − EX ≥ t} ≤ inf
p∈N

E[(X − EX)p+]
tp

.

Example 1.1.8 (Gaussian law). Let X ∼ N (0, σ2), one can compute E[eλX ] = eλ
2σ2/2 and

deduce that
ψ∗(t) = sup

λ>0

{
λt− λ2σ2

2

}
= − t2

2σ2 .

In particular, if X1, . . . , Xn are i.i.d. and distributed according to a Gaussian law with
expectancy µ and variance σ2, we can compute

∀t > 0 P

 1
n

n∑
i=1

Xi − µ >

√
2σ2t

n

 ≤ e−t.

Example 1.1.9 (Poisson Law). Let X ∼ P(θ), then E[eλX ] = e−θ
∑∞
k=0

eλkθk

k! = eθ(eλ−1). Since
E[X] = θ = Var(X), we obtain E[eλ(X−EX)] = eθ(eλ−1−λ). By denoting f(λ) = λt−θ(eλ−1−λ),
we obtain that

ψ∗(t) = sup
λ>0

f(λ) = (θ + t) ln
(

1 + t

θ

)
− t = θh

(
t

θ

)
,

with h(u) = (1 + u) ln(1 + u) − u. If X1, . . . , Xn are i.i.d. distributed according to a Poisson
random variable with parameter θ, then

∀t > 0, P
{

1
n

n∑
i=1

Xi − θ > t

}
≤ e−nθh(

t
θ ).

We can verify that

∀t > 0, h(t) ≥ t2

2(1 + t/3) ,

so we obtain
∀t > 0, P

{
1
n

n∑
i=1

Xi − θ > t

}
≤ e
− nt2

2(1+t/3) ,
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which also implies

∀t > 0, P

 1
n

n∑
i=1

Xi − θ >

√
2σ2t

n
+ 2t

3n

 ≤ e−t.

Example 1.1.10 (Gamma law). Let X ∼ Γ(a, b), we have EX = ab,VarX = ab2 and
∀λ ∈ (0, 1/b), E[eλX ] = 1/(1 − bλ)a. Then

∀λ ∈ (0, 1/b), E[eλ(X−EX)] = e−λab/(1 − bλ)a.

Let f(λ) = λt+λab+a ln(1 − bλ) and the value of f at this maximum gives t/b−ab(1 + t/(ab)).
If X1, . . . , Xn are i.i.d. with distribution Γ(a, b), we have ∑n

i=1Xi ∼ Γ(a, b), then

∀t > 0, P
{

1
n

n∑
i=1

Xi − ab > abt

}
≤ e−na(t−ln(1+t).

One can show that
t− ln(1 + t) =

∞∑
k=2

(−1)ktk
k

≤ t2

2(1 − t) .

So we finally obtain

∀t ∈ (0, 1), P
{

1
n

n∑
i=1

Xi − ab > abt

}
≤ e
− nat2

2(1−t) ,

which can be also rewritten as:

∀t > 0, P

 1
n

n∑
i=1

Xi − EX ≥

√
2σ2t

n
+ 2bt

n

 ≤ e−t.

Example 1.1.11 (Binomial law). Let X ∼ Bin(r, θ), we thus have ∀λ > 0, E[eλX ] = (1 − θ +
θeλ)r and E[eλ(X−EX)] = (e−λθ(1 − θ + θeλ))r. By setting f(λ) = λ(t+ rθ) − r ln(1 + θ + θeλ)
and computing its derivative, we have

f ′(λ) = t+ rθ − θreλ

1 − θ + θeλ
.

Hence f reaches its maximum at λ = ln[((rθ + t)(1 − θ))/(θ(r − rθ − t))] and f equals at this
value

(rθ + t) ln
[
rθ + t

rθ

]
+ (r(1 − θ) − t) ln

[
r(1 − θ) − t

r(1 − θ)

]
.

We introduce the Kullback-Leibler divergence between two Bernoulli with respective parameters
p, q, as KL(p, q) = p ln(p/q) + (1 − p) ln[(1 − p)/(1 − q)], we deduce that for any t ∈ (0, r(1 − θ)),
ψ∗(t) = rKL(θ + t/r, θ). Let X1, . . . , Xn be i.i.d. random variables with law Bin(r, θ), we have∑n
i=1Xi ∼ Bin(nr, θ) and

∀t > 0, P
{

1
n

n∑
i=1

Xi − rθ > t

}
≤ e−nrKL(θ+t/r,θ),
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1.1 A survival guide for high-dimensional extremal dependence modeling

and one can show
KL(θ + t/r, θ) ≥ (t/r)2

2θ(1 − θ) + t/r
,

hence
∀t > 0, P

{
1
n

n∑
i=1

Xi − rθ > t

}
≤ e
− nrt2

2θ(1−θ)+r .

So we can conclude that, for any t > 0,

P

 1
n

n∑
i=1

Xi − EX >

√
2σ2t

n
+ t

n

 ≤ e−t.

In any of these examples mentioned above, we observe that we obtain a deviation of the
following form:

∀t > 0, P

 1
n

n∑
i=1

Xi − EX >

√
2σ2t

n
+ C

t

n

 ≤ e−t, C > 0.

Equivalently,

∀t > 0, P
{

√
n
n−1∑n

i=1Xi − E[X]√
σ2

>
√

2t+ Ct√
σ2n

}
≤ e−t.

This type of result refines the central limit theorem by showing that the distribution of this
statistic deviate from 0 akin to a Gaussian, with a corrective term of order Ct

σ
√
n

, C > 0. We now
introduce a well-known condition that is sufficient to obtain concentration bounds behaving as
those of Gaussians.

Definition 1.1.11. Let X be a random variable. This random variable is called σ2-subGaussian
if its log-moment generating function satisfies the inequality

ψ(λ) ≤ λ2σ2

2 , ∀λ ∈ R.

So far, the sole example of subGaussian variables are Gaussians. One of the fundamental
findings regarding subGaussian is that every bounded random variable falls under the category
of subGaussian. This statement is made precise by Hoeffding’s Lemma. Even in this simple
setting, the proof provides a nontrivial illustration of the important roles of calculus in bounding
moment generating functions.

Lemma 1.1.8 (Hoeffding’s Lemma). Let a ≤ X ≤ b a.s. for some a, b ∈ R. Then
E[eλ(X−EX)] ≤ eλ

2(b−a)2/8, i.e., X is (b− a)2/4-subGaussian.

Proof We can assume without loss of generality that EX = 0. In this case, we have
ψ(λ) = lnE[eλX ], and we can readily compute

ψ′(λ) = E[XeλX ]
E[eλX ] , ψ′′(λ) = E[X2eλX ]

E[eλX ] −
[
E[XeλX ]
E[eλX ]

]2

.
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Thus ψ′′(λ) can be interpreted as the variance of the random variable X under the contorted
probability measures dQ = eλX/E[eλX ]dP. But

ψ′′(λ) = VarQ(X) ≤ EP

[(
X − (b− a)

2

)2]
≤ (b− a)2

4 ,

and the fundamental theorem of calculus yields

ψ(λ) =
∫ λ

0

∫ µ

0
ψ′′(s)ds ≤ λ2(b− a)2/8, using ψ(0) = 0 and ψ′(0) = EX = 0.

Hoeffding’s Lemma relies solely on the knowledge that the random variables are bounded and
does not require any additional information about them. However, when the variance of Xi is
small, then we get a sharper inequality. Before stating it, let us fix h1(x) = 1 + x+

√
1 + 2x.

Theorem 1.1.14. If X verifies the Bernstein’s condition, i.e., there exist v2 > 0, b ≥ 0 such
that

∀λ ∈ (0, 1/b), E[eλ(X−EX)] ≤ v2s2

2(1 − bs) ,

then

∀t > 0, P {X − EX > t} ≤ e−
v2
b2
h1( bt

v2 ), P
{
X − EX >

√
2v2t+ bt

}
≤ e−t.

Proof Let t > 0, we will apply Chernoff’s method and we define the function

ψ(λ) = λt− v2λ2

2(1 − bλ) = λ

(
t+ v2

2b

)
+ v2

2b2 − v2

2b2(1 − bλ)

which its maximum is equal to

ψ∗(t) = sup
λ>0

ψ(λ) = v2

b2

1 + bt

v2 −

√
1 + 2bt

v2

 = v2

b2 h1

(
bt

v2

)
.

So the first result is a consequence of Chernoff’s method. For the second results, we write

h1(x) = 1 + 2x
3 −

√
1 + 2x+ 1

2 =
(√

1 + 2x− 1
2

)2

,

such that for any u > 0, we have h1(x) = u if x ∈ [(1 +
√

2u)2 − 1]/2 =
√

2u + u. Then by
considering h−1

1 (u) =
√

2u+ 2u,

u = v2

b
h−1

1

(
b2u

v2

)
=

√
2v2u+ bu

and using the first result

∀u > 0, P
{
X − EX >

√
2v2u+ bu

}
≤ e−u.
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1.1 A survival guide for high-dimensional extremal dependence modeling

We will consider a direct improvement of these above inequalities that allow some dependence
between the random variables. Write

f(X1, . . . , Xn) − E [f(X1, . . . , Xn)] =
n∑
k=1

∆k,

where
∆k = E [f(X1, . . . , Xn)|X1, . . . , Xk] − E [f(X1, . . . , Xn)|X1, . . . , Xk−1]

are martingale differences. The following simple result, which exploits the nice behavior of the
exponential of a sum, could be viewed as an illustration of the entropy method (see (Boucheron
et al., 2013, Chapter 6)). This approach is commonly referred to as the martingale method and
the following lemma is due to Azuma (1967).

Lemma 1.1.9. Let {Fk}k≤n be any filtration, and let ∆1, . . . ,∆n be random variables that
satisfy the following properties for k = 1, . . . , n:

(i) Martingale difference property: ∆k is Fk and E [∆k|Fk−1] = 0.
(ii) Conditional subGaussian property: E

[
eλ∆k |Fk−1

]
≤ eλ

2σ2/2 a.s. for λ ≥ 0.

Then the sum
∑n
k=1 ∆k is subGaussian with variance proxy

∑n
k=1 σ

2
k.

Proof For any any 1 ≤ k ≤ n, we can compute,

E
[
eλ
∑k

i=1 ∆i

]
= E

[
eλ
∑k−1

i=1 ∆i

]
= E

[
eλ
∑k−1

i=1 ∆iE
[
eλ∆k |Fk−1

]]
≤ eλ

2σ2
k/2E

[
eλ
∑k−1

i=1 ∆i

]
.

It follows by induction that E
[
eλ
∑n

i=1 ∆i

]
≤ eλ

2
∑n

i=1 σ
2
i /2.

Combined with Hoeffding’s Lemma, we now obtain a classical result on the tail behavior of
sums of martingale differences.

Corollary 1.1.2 (Azuma-Hoeffding inequality). Let {Fk}k≤n be any filtration and ∆k, Ak, Bk
satisfy the following properties for k = 1, . . . , n:

(i) Martingale difference property: ∆k is Fk and E [∆k|Fk−1] = 0.
(ii) Predictable bounds: Ak, Bk are Fk−1 measurable and Ak ≤ ∆k ≤ Bk a.s.

Then
∑n
k=1 ∆k is subGaussian with variance proxy 1

4
∑n
k=1 ||Bk − Ak||2∞. In particular, we

obtain for every t > 0 the tail bound

P
{

n∑
k=1

∆k ≥ t

}
≤ exp

{
− 2t2∑n

k=1 ||Bk −Ak||2∞

}
.

Proof Applying Hoeffding’s Lemma (see Lemma 1.1.8) to ∆k conditionally on Fk−1 implies

E
[
eλ∆k |Fk−1

]
≤ eλ

2(Bk−Ak)2/8.

The result now follows from Lemma 1.1.8.
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Let us return to the case of functions f(X1, . . . , Xn) of independent random variables X1, . . . , Xn.
Using the Azuma-Hoeffding inequality, we readily obtain our first and simple subGaussian
concentration inequality. Denote by

Dif(x) := sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn) − inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

the “discrete derivatives”.

Theorem 1.1.15 (McDiarmid). For X1, . . . , Xn independent, f(X1, . . . , Xn) is subGaussian
with variance proxy 1

n

∑n
k=1 ||Dkf ||2∞. In particular

P {f(X1, . . . , Xn) − E [f(X1, . . . , Xn)] ≥ t} ≤ e
− 2t2∑n

k=1 ||Dkf ||
2
∞ .

Proof We write
f(X1, . . . , Xn) − E [f(X1, . . . , Xn)] =

n∑
k=1

∆k.

Note that Ak ≤ ∆k ≤ Bk with

Ak = E
[
inf
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) − f(X1, . . . , Xn)|X1, . . . , Xk−1

]
,

Bk = E
[
sup
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) − f(X1, . . . , Xn)|X1, . . . , Xk−1

]
,

where we have used the independendence of Xk and X1, . . . , Xk−1, Xk+1, . . . , Xn. The results
now follow immediately from the Azuma-Hoeffding inequality of Corollary 1.1.2 once we note
that |Bk −Ak| ≤ ||Dkf ||∞.

The main objective of the subsequent discussion is to broaden these inequalities to larger classes
of dependence sequences, such as α-mixing and φ-mixing processes. A Hoeffding type inequality,
which also extends the Azuma inequality Azuma (1967) for martingales to dependent sequences
an can be found in Rio (1999) and stated below:

Theorem 1.1.16 (Theorem 2.4 in Rio (1999)). Let (Xi, i ∈ Z) be a sequence of real-valued
bounded random variables and let (m1, . . . ,mn) be an n-tuple positive reals such that

sup
j∈{1,...,n}

||Xi||2∞ + 2||Xi

j∑
k=i+1

E[Xk|Fi]||∞

 ≤ mi for every i ∈ {1, . . . ,m} (a)

with the convention
∑i
k=i+1 E[Xk|Fi] = 0. Then, for any nonnegative integer p,

E
[
S2p
n

]
≤ (2p)!

2pp!

(
n∑
i=1

mu

)p
. (b)

Consequently, for any positive x,

P {|Sn| ≥ x} ≤
√
e exp

{
−x2/(2m1 + · · · + 2mn)

}
. (c)
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1.1 A survival guide for high-dimensional extremal dependence modeling

Using this theorem, we can provide a Hoeffding type inequality for uniformly mixing sequences
of bounded random variables.

Corollary 1.1.3. Let (Xk, k ∈ Z) be a sequence of centered and real-valued bounded random
variables. Set θn = 1 +∑k−1

i=1 φi and Mi = ||Xi||2∞. Then for any positive integer p,

E
[
S2p
n

]
≤ (2p)!

p!

(
θn
2

)p
(M1 + · · · +Mn)p . (a)

Next, for any positive x,

P {|Sn| ≥ x} ≤
√
e exp

{
−x2/(2θnM1 + · · · + 2θnMn)

}
. (b)

Proof Let us apply Theorem 1.1.16 to the sequence (Xk, k ∈ Z). By the Riesz-Fisher theorem,
there exists a random variable Y ∈ L1(Fi) such that ||Y ||1 = 1 and

||E[Xk|Fi]||∞ = |E [Y E[Xk|Fi]] | = |E [E[XkY |Fi]] |.

Using Equation (1.12) in Lemma 1.1.5 to obtain

||E[Xk|Fi]||∞ ≤ 2φ(σ(Xk),Fi)||X||∞||Y ||1 = 2φk−i||X||∞.

Hence, we may apply Theorem 1.1.16 with

mi = Mi + 4
n∑

k=i+1

√
MiMkφk−i.

Summing on i, we have

m1+· · ·+mn ≤
n∑
i=1

Mi+4
∑

1≤i<k≤n

√
MiMkφk−i ≤

n∑
i=1

Mi+2
∑

1≤i<k≤n
(Mi+Mk)φk−i ≤ θn

n∑
i=1

Mi.

The corollary follows from both Theorem 1.1.16 and the above upper bound.

We also state a Bernstein type inequality for strongly mixing sequence of centered and bounded
random variables satisfying for a certain c > 0

α(n) ≤ exp{−2cn}. (1.19)

Theorem 1.1.17 (Theorem 1 of Merlevède et al. (2009)). Let (Xk, k ∈ Z) be a sequence of
centered real valued random variables. Suppose that the sequence satisfies (1.19) and that there
exists a positive M such that sup

i≥1
||Xi||∞ ≤ M . Then there is positive constants C1 and C2

depending only on c such that for n ≥ 4 and t such that 0 < tC1M(lnn)(ln lnn) < 1, we have

lnE [exp{tSn}] ≤ C2t
2nM2

1 − C1tM(lnn)(ln lnn) .
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In terms of probabilities, there is a constant C3 depending on c such that for all n ≥ 4 and
x ≥ 0

P {|Sn| ≥ x} ≤ exp
{

− C3x
2

nM2 +Mx(lnn)(ln lnn)

}
.

We restate here the concentration bound by Kontorovich and Ramanan (2008), as adapted by
Mohri and Rostamizadeh (2010), to make it readily applicable to φ-mixing sequences.

Theorem 1.1.18 (Theorem 8 of Mohri and Rostamizadeh (2010)). Let f : Rn → R be a
measurable function. If f is ℓ-Lipschitz with respect to the Hamming distance for some ℓ > 0,
then the following holds for all ϵ > 0

P {|f(X1, . . . , Xn) − E[f(X1, . . . , Xn)]| ≥ t} ≤ 2 exp
{

− 2ϵ2
nℓ2||∆n||2∞

}
,

where ||∆n||∞ ≤ 1 + 2∑n
i=1 φi.

We present a new concentration inequality on the supremum of the uniform empirical process
Gn(t), i.e.,

Gn(t) = 1
n

n∑
i=1

1{ξi≤t},

subject to a suitable condition on the dependence of the sequence (ξk, k ∈ Z) where each is
uniformly distributed over the unit interval [0, 1]. This concentration inequality is significant
as it leads to a concentration result for empirical quantiles, which is commonly used in the
i.i.d. case in the peak-over-threshold framework (see (Shorack and Wellner, 2009, Inequality 1,
Chapter 11.3) for a statement of this concentration result and Engelke and Volgushev (2022);
Goix et al. (2015) for application of this concentration result in the extreme value litterature).
To our knowledge, such a result has not yet been established for mixing sequences. The specific
mixing condition under consideration is outlined below where the inspiration is taken from
Wintenberger (2010).

Condition (A). For all r ≥ 1 a coupling scheme in L∞(F) for (ξk, r+k ≤ k ≤ 2r+j−1), k ≥ 1,
exists when we can construct (ξ∗k, r+j ≤ k ≤ 2r+j−1) distributed as (ξk, r+k ≤ k ≤ 2r+j−1)
and independent of Fj such that:

sup
1≤j≤n−2r+1

2r+j−1∑
i=r+j

1{ξ∗i ̸=ξi} ≤ rδr, a.s., ∀r ≥ 1. (*)

Theorem 1.1.19. For any n ≥ 1, if there exists δk as in Condition (A) then for a ∈ [0, 1],
λ ≥ max{2, δk/a} and 1 ≤ k ≤ n,

P
{

sup
t∈[a,1]

Gn(t)
t

≥ λ

}
≤ e
−nah

(
1
2

(
λ− δk

a

))
,

where h(x) = x(ln(x) − 1) + 1.
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1.1 A survival guide for high-dimensional extremal dependence modeling

Proof We want to prove that

lnE [exp {tGn(a)}] ≤ δkt+ na(e2t/n − 1). (1.20)

To deal with the dependence, we first use the Bernstein’s block technique and Bernstein type of
estimates on the partial sums ∑n

i=1 1{ξi≤a}. Let us denote by Ij the j-th block of indices of size k,
i.e., {(j−1)k+1, jk} except the last block and let p be an integer such that 2p−1 ≤ k−1n ≤ 2p.
Denote S1 and S2 the sums of even and odd blocks defined as

S1 =
∑

i∈I2j ,1≤j≤p
1{ξi≤a}, and S2 =

∑
i∈I2j−1,1≤j≤p

1{ξi≤a}.

From Cauchy-Schwarz inequality, it holds

lnE [exp {tGn(a)}] ≤ 1
2

(
lnE

[
exp

{2t
n
S1

}]
+ lnE

[
exp

{2t
n
S2

}])
.

Now let us treat in detail the term depending on S1, the same argument applies identically to
S2. To prove (1.20), let us the L∞-coupling scheme and (A) to derive for all 1 ≤ m ≤ p:

||
∑
i∈I2m

1{ξi≤a} −
∑
i∈I2m

1{ξ∗i≤a}||∞ ≤
∑
i∈I2m

1{ξi ̸=ξ∗i } ≤ kδk,

where |Ij | = k for all 1 ≤ j ≤ 2p with 2p− 1 ≤ nk−1 ≤ 2p. Then for any t ≥ 0, we have

exp

2t
n

∑
i∈I2m

1{ξi≤a}

 ≤ e
2tk
n
δk exp

2t
n

∑
i∈I2m

1{ξ∗i≤a}

 , a.s.

for all 1 ≤ m ≤ p. Applying this inequality for m = p, we have

E
[
exp

{2t
n
S1

}]
= E

exp

2t
n

∑
1≤m≤p−1

∑
i∈I2m

1{ξi≤a}


E

exp

2t
n

∑
i∈I2p

1{ξi≤a}|F2(p−1)




≤ e
2tk
n
δkE

exp

2t
n

∑
i∈I1

1{ξ∗i≤a}


E

exp

2t
n

∑
1≤m≤p−1

∑
i∈I2m

1{ξa≤}


 .

Let us do the same reasoning recursively on m = p− 1, . . . , 2, to obtain finaly

lnE
[
exp{2t

n
S1}

]
≤ 2(p− 1)kδk

t

n
+ apk

(
e2t/n − 1

)
and the inequality follows from 2(p− 1)k ≤ n and pk ≤ n since nk−1 ≥ 2p− 1 and 2p− 1 ≥ p.
We hence obtain (1.20). Now using Chernoff’s bound and martingale inequality (see Shorack
and Wellner (2009) for details), then for every n and r ≥ 0

P
{

sup
t∈[a,1]

Gn(t)/t ≥ λ

}
≤ e−rλE

[
e
r
a
Gn(a)

]
≤ e−rλeδk

r
a

+na(e
2r
na−1),
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where the last inequality stems down from (1.20). By optimising with respect to r gives the
result.

Having defined all the necessary tools used in this thesis and having drawn some classical
developments stemming from these definitions, we now proceed to outline the thesis by presenting
its contribution within the literature.

1.2 Outline and contributions

Below we briefly outline and summarise the contributions of this thesis.

Chapter 2 The problem of missing data is pervasive across various fields, particularly in
environmental research, often stemming from instrument, commnication and processing errors.
In this chapter, we explore nonparametric approaches for evaluating extremal dependence when
variables are incompletely observed, following a missing mechanism dictated by the Missing
Completely At Random (MCAR) condition. Several methods for handling missing values within
the context of extremes have been proposed for univariate time series. However, handling
missing values when d ≥ 2 is still in early stages of development. The primary contribution of
this chapter is to provide estimators of the w-madogram, i.e.,

ν(w) = E

 d∨
j=1

{
F (j)(X(j))

}1/w(j)

− 1
d

d∑
j=1

{
F (j)(X(j))

}1/w(j)
 ,w ∈ ∆d−1

which involves variables that are partially observed. We then examine its theoretical properties
through an asymptotic analysis using the concept of the so-called hybrid copula estimator ĈHn
introduced by Segers (2015). Under certain high-level conditions, the hybrid copula estimator
is demonstrated to satisfy the following functional central limit theorem:(√

n(ĈHn (u) − C(u))
)

u∈[0,1]d
⇝ (Gn(u))u∈[0,1]d in ℓ∞([0, 1]d),

where G is a tight Gaussian process. Using the above convergence result, we generalise the
result for the madogram estimator, and hence, the madogram-based estimator of the Pickands
dependence function under the framework of missing data. We also demonstrate that a central
limit theorem holds when w is fixed. Furthermore, by extending the techniques Genest and
Segers (2009) to an arbitrary dimension d ≥ 2, we derive the asymptotic variance of this limiting
Gaussian which was unknown even in the framework of fully observed data.

The findings of this chapter have been considered as a publication for the Journal of Multivariate
Analysis, and the reference can be found below.

Alexis Boulin, Elena Di Bernardino, Thomas Laloë, Gwladys Toulemonde,
Non-parametric estimator of a multivariate madogram for missing-data
and extreme value framework, Journal of Multivariate Analysis, Volume
192, November 2022.

Chapter 3 One of the challenging issues in multivariate extreme values theory is the high-
dimensional setting, thereby calling for the use of learning methods to reduce dimensionality.
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1.2 Outline and contributions

The general idea of the proposed methods is to identify subsets of variables that can take their
largest values simultaneously, while the others do not. One of the first approaches proposed in
this is by Goix et al. (2016), who focus on the subsets Rα defined by

Rα := {v ≥ 0, ||v||∞ ≥ 1, v(j) > 0 for j ∈ α, v(j) = 0 for j /∈ α},

with α a nonempty subset of {1, . . . , d}. This is done using ϵ-thickened rectangles Rϵα defined
as:

Rϵα :=
{

v ≥ 0, ||v||∞, v(j) > ϵ for j ∈ α, v(j) ≤ ϵ for j /∈ α
}
.

The authors propose to estimate the quantity Λ(Rα) by

Λn(Rϵα) = 1
k

n∑
i=1

1{V̂i∈(n
k

)Rϵα},

where k = kn satisfies k → ∞, k/n → 0, when n → 0, and

V̂i =
(
(1 − F̂ (j)

n (X(j)
i ))−1

)
1≤j≤d

,

with F̂
(j)
n (x) = (1/n)∑n

i=1 1{X(j)
i ≤x}

. This procedure thus obtain an estimate M of the
representation

M = {Φ(Cα) : ∅ ≠ α ⊂ {1, . . . , d}} , Cα = SE+ ∩Rα,

where Φ is the spectral measure. The latter verifies the following non-asymptotic bound

sup
∅≠α⊂{1,...,d}

|M̂(α) − M(α)| ≤ Cd

√ ln(d/δ)
ϵk

+Mdϵ

+ biais(ϵ, k, n) (1.21)

with probability greater than 1 − δ holds.

The sparse representation by Goix et al. (2017) may result in a very large number of subsets Cα.
The idea proposed by Chiapino and Sabourin (2017) is an incremental-type algorithm called
CLEF, aimed at grouping together components that maybe large together. This algorithm
requires a tolerance parameter κ. Several variants of the CLEF algorithm have been proposed
by Chiapino et al. (2019). These approaches differ in their stopping criteria, which are based
on asymptotic results of the coefficient of tail dependence. Janßen and Wan (2020) propose an
approach based on k-means clustering by adaptating the spherical k-means clustering algorithm
to the extremal setting and construct a nonparametric estimator for the theoretical cluster
centres. While they provide a consistency result, a major point in this procedure remains the
choice of the number of clusters and a non-asymptotic analysis to better understand the effect
of the dimension d in the estimation process. To reduce dimension, Meyer and Wintenberger
(2021) propose a method based on the Euclidean projection onto the unit simplex which
introduces sparsity in the considered vector. These considerations lead to the definition of
sparse regular variation. The theoretical context established, Meyer and Wintenberger (2023)
provide a learning approach to identify subspaces Cα on which extreme events appear. For a
Borel subset of SE+ , we set
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pn(A) = P {π(X/an) ∈ A| ||X|| > an} , Tn(A) = 1
k

n∑
i=1

1{π(Xi/an)∈A,||X||an},

where π is the projection onto SE+ , it is shown that, in the worst cases, the following holds

sup
∅≠α⊂{1,...,d}

|Tn(Cα) − pn(Cα)| ≤ C

√
d ln(1/δ)

k
+ d ln(1/δ)

3k , (1.22)

with probability greater than 1 − δ.

For the non-asymptotic bounds provided (see Equations (1.21) and (1.22)), even though these
procedures are computationally efficient, we observe that in the high-dimensional setting, i.e.,
when d vary with n and d > n, the bound does not decrease as n grows in the worst cases,
hence loosing for their statistical efficiency. Even though such information is not yet available
for spherical k-means in Janßen and Wan (2020), this concern can be raised intuitively since
this procedure relies entirely of the spectral measure, which the estimation may suffer in the
high-dimensional setting (see (Clémençon et al., 2023, Theorem 3.1)).

In this chapter, we introduce a probabilistic framework called Asymptotic Independent block
models (AI-block) to tackle the problem of variable clustering towards extreme values of a
random vector. These models are built on the assumption that clusters of components of a
multivariate random vector are independent relative to their extremes. This approach offers
the advantage of being amenable to theoretical analysis, and we demonstrate that those models
are identifiable.

Subsequently, we motivate and develop an algorithm specifically tailored for these models,
where a tuning parameter need to be specified. We provide theoretical results and a data-driven
approach to calibrate this tuning parameter, which has been shown to be effective in numerical
experiments and applications. We analyse its performance in terms of exact cluster recovery
for sufficiently separated clusters, using a cluster separation metric. This metric quantifies
the difficulty of the statistical problem and is shown to decrease with k, the number of block
maxima, as long as ln(d) = o(k) indicating that our approach can handle high dimensions in
the worst cases. We investigate the issue in the context of non-parametric estimation over block
maxima of a multivariate stationary mixing random process, where the block length serves as a
tuning parameter.

By studying the asymptotic independence between random vectors, this chapter hints at a
new divergence measure that highlights the differences in extremal dependence structures for
asymptotically dependent and independent random vectors. This divergence will be of prime
interest for the next chapter, Chapter 4.

The content of this chapter derives from an ArXiv preprint and has been submitted for
consideration as an original article in the Journal of the American Statistical Association.
Currently, it has been resubmitted after a revision, and the link for access is provided below.

Alexis Boulin, Elena Di Bernardino, Thomas Laloë, Gwladys Toulemonde
(2023), High-dimensional variable clustering based on maxima of a weakly
dependent random process.
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1.2 Outline and contributions

Chapter 4 The occurence of extreme weather events is often exacerbated by the convergence
of distinct geographic factors and concurrent weather patterns. When these various processes
coalesce to yield a substantial impact, it is referred to as a compound event. In this chapter,
our main goal is to adapt clustering techniques to handle compound extreme events involving
both wind speed and precipitation in gridded climate data across Europe. To accomplish this,
we utilise daily precipitation totals and maximum wind speed data obtained from the ERA5
reanalysis dataset covering the period from 1979 to 2022. The resulting dataset comprises 6655
daily precipitation totals and maximum wind speed measurements, covering 91 × 116 grid cells
with the chosen spatial resolution, totaling 10556 grid cells for clustering.

In the field of high-dimensional extremes, researchers have made significant contributions
to identify hidden dependence structure of extremes of a random vector. While learning
dependence between univariate climate extreme events is a well-studied area, multivariate
compound extreme event at larger scales have received less attention. In this chapter, our
objective is to expand upon the AI block model given in Chapter 3 to tackle the challenge posed
by the considered environmental dataset. We hence introduced the concept of constrained AI
block model, compelling grid cells to represent a collection of univariate time series, i.e., a
random vector.

Our objective is the following: cluster a number of d = 10556 pixels across Europe based on
their asymptotic independence on compound precipitation and wind speed extremes where
data are relatively scarse, i.e., the sample size n = 6655. To efficiently implement a fast
algorithm designed for this model-based approach in such a high-dimensional setting, we employ
a divergence measure that highlights the differences in extremal dependence structures for
asymptotically dependent and independent random vectors. This divergence is linked to a
well-known quantity in Extreme Value Theory and can be consistently estimated, under some
mixing conditions, without the need of parametric assumptions.

When applied to our environmental dataset, this clustering procedure is efficient and produces
clusters that are spatially concentrated, which is a pattern commonly observed in spatial
processes. We also propose a simple method to better understand how the clustering is
influenced by both wind speed and precipitation. To further analyze the results, we make use
of a straightforward modification of our dissimilarity measure which allows us to comment on
the different clusterings obtained through various algorithms.

The two previous chapters considered only hard clustering, where each variable belongs to a
unique cluster and no others. However, when studying spatial processes, this hypothesis could
be too restrictive because extreme events at one location could be driven by different spatial
processes. This is the focus of the next chapter, where we propose to estimate the well-known
max-linear model by introducing a model-based clustering approach allowing for overlapping
clusters.

The outcomes of this chapter are accessible through a preprint on ArXiv and have been
submitted for publication in the Journal of the Royal Statistical Society, Series C. Presently,
the manuscript is undergoing revision. You can find the link below for accessing the preprint.

Alexis Boulin, Elena Di Bernardino, Thomas Laloë, Gwladys Toulemonde
(2023), Identifying regions of concomitant compound precipitation and
wind speed extremes over Europe.
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Chapter 5 In this chapter, our aim is to estimate the d×K loading matrix A, which might
exhibit sparsity and serves as the parameter for the decomposition of an observable random
vector X. This can be expressed as

X = AZ + E.

In this equation, Z represents and unobservable asymptotically independent random vector,
serving as an underlying factors. E ∈ Rd serves a noise vector with a tail that is lighter than
that of the associated factors. Furthermore, it exhibits independence from these factors. Per
the construction, the exponent measure ΛZ is

ΛZ =
K∑
a=1

δ0 ⊗ · · · ⊗ ΛZ(a) ⊗ · · · ⊗ δ0, ΛZ(a)(dy) = y−2dy.

Hence X is also regularly varying sharing the spectral measure Φ of the max-linear model (see
Lemma 1.1.1, i.e.,

Φ(·) =
K∑
a=1

||A·a||
δA·a

||A·a||
.

Estimating parameters in linear factor models poses a difficult task, primarily because there
is no spectral density that rules out standard maximum likelihood procedures. Janßen and
Wan (2020) introduce the spherical k-means designed for extremes employing its output to
estimate A·1/||A·1||, . . . , A·K/||A·K || and ||A·1||/w, . . . , ||A·K ||/w. This method faces limitations
in higher dimensions, grappling running time difficulties or curse of dimension. Moreover these
methods also assume that the number K is known a priori, a requirement that is often scarcely
fulfilled in practical scenario. Addressing this hurdle, additional methods, as proposed by
Avella-Medina et al. (2021, 2022), introduce a procedure coupled with the so-called screeplot
to aid in the selection of the elusive number K. Despite the practical utility of such an
approach, the theoretical underpinnings supporting these findings are still in their early stage
of development. To our current understanding, methods for estimating A in higher dimensions
have emerged specifically under the condition of a squared matrix A ∈ Rd×d. Notably, these
methods have found fruitful application in contexts characterised by moderate dimensions.
For instance, in Diricted Acyclic Graph, Klüppelberg and Krali (2021) have made noteworthy
contributions, while Kiriliouk and Zhou (2022) have demonstrated successful applications
of their estimator in environmental and financial dataset. Foremost, a critical lens on the
theoretical foundations reveals a reliance on a i.i.d. sample and the asymptotic framework in
the mentioned literature. The assumption of serial independence may face scrutiny when these
methods are extended to environmental datasets, where deviations from serial independence are
legitimately suspected. Moreover, the asymptotic framework, with a fixed arbitrary dimension
d while the sample size n → ∞, may offer limited insights into the performance of estimation
processes in high-dimensional setting, i.e., d vary with n and might even surpass the sample
size.

We propose a model-based clustering via A with the crucial distinction that the the covariance
matrix of X does not exists in our model. Within the framework of model (5.1), we consider
two components, namely X(i) and X(j) belonging to the vector X, as akin if they share a
non-zero association. This association is established through the intermediary of the matrix
A, connecting them to a common latent factor Z(a). Variables exhibiting this similarity are
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grouped together within the cluster denoted as Ga:

Ga = {j ∈ {1, . . . , d} : Aja ̸= 0}, for each a ∈ {1, . . . ,K}.

Given that X(j) can potentially be linked to multiple latent factors, the resulting clusters are
characterised by overlap. Under two conditions, the matrix A can be recovered solely through
bivariate measures, namely extremal correlation coefficients. We provide a sparse estimator Â of
A that is tailored to our model specification. Our approach follows the constructive techniques
used in our identifiability proofs. We place the theoretical study under considering exponentially
decaying strong mixing coefficients processes. The method, under the setting ln(d) = o(k)
with k, the number of block maxima, large enough and for an appropriate choice of the tuning
parameter, recovers the number of latent variables with high probability. We establish an
upper bound on ||Â−A||2 and we give guarantees for recovering the set of overlapping clusters
{Ga}1≤a≤K .

All the findings of this chapter are avalaible on a ArXiv preprint and are soon to be submitted,
the link is made accessible below:

Alexis Boulin (2024), Estimating Max-Stable Random Vectors with Dis-
crete Spectral Measure using Model-Based Clustering.

Appendices All chapters in this thesis include numerical results considering a wide variety of
dependencies. While software implementation of copulae has been extensively studied in R,
methods for working with copulae in Python are still limited. In Appendix E, we introduce the
package clayton, which provides an intuitive, user-friendly, and efficient way to sample from
copulae. This package is implemented in pure Python, making it easy to install and use. The
clayton package serves as a cornerstone for each numerical section in this manuscript.

This chapter has been recognised as an original contribution to the journal Computo. You can
access the link provided below for further details.

Alexis Boulin. 2023. “A Python Package for Sampling from Copulae:
Clayton.” Computo, January.
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Chapter 2

Non-parametric estimator of a
multivariate madogram for
missing-data and extreme value
framework

The findings of this chapter are based on the following work

Alexis Boulin, Elena Di Bernardino, Thomas Laloë, Gwladys Toulemonde,
Non-parametric estimator of a multivariate madogram for missing-data
and extreme value framework, Journal of Multivariate Analysis, Volume
192, November 2022.

Abstract.
The modeling of dependence between maxima is an important subject in several applications in
risk analysis. To this aim, the extreme value copula function, characterised via the madogram,
can be used as a margin-free description of the dependence structure. From a practical point of
view, the family of extreme value distributions is very rich and arise naturally as the limiting
distribution of properly normalised component-wise maxima. In this chapter, we investigate the
nonparametric estimation of the madogram where data are completely missing at random. We
provide the functional central limit theorem for the considered multivariate madrogram correctly
normalised, towards a tight Gaussian process for which the covariance function depends on the
probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are
illustrated in a finite sample setting with a simulation study. Our method is also illustrated on a
sparse dataset of annual maxima rainfall in Central Eastern Canada.

2.1 Introduction
Management of environmental ressources often requires the analysis of multivariate extreme
values. In climate studies, extreme events represent a major challenge due to their consequences.
The problem of missing data is present in many fields in particular in environmental research
(see Xia et al. (1999), or (Saunders et al., 2021, Section 2)), usually due to instruments,
communication and processing errors. In a time series setting, the observation periods of a
multivariate series could be different and overlap only partially. The problem of estimating
when unequal amounts of data are available to each variable is meaningful in many applications
for financial economics where data cannot be generated as neatly overlapping samples (see
Patton and Wiley (2006)). Missing values in dependence modeling is of a prime interest as the
nonparametric estimation of the empirical copula process has been tackled by Segers (2015)
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Non-Parametric Multivariate Madogram Estimator for Missing Data

under the Missing Completely At Random (MCAR) condition. In this paper, we consider
nonparametric methods for assessing extremal dependencies involving variables with missing
values under MCAR condition. We are particularly interested in the dependence structure of
multivariate extreme value distribution. Formally, this concept is defined as follows.

Let (Ω,A,P) be a probability space and X = (X(1), . . . , X(d)) be a d-dimensional random vector
with values in (Rd,B(Rd)), with d ≥ 2. This random vector has a joint distribution function
F and its margins are denoted by F (j)(x) = P{X(j) ≤ x} for all x ∈ R and j ∈ {1, . . . , d}. A
function C∞ : [0, 1]d → [0, 1] is called a d-dimensional copula if it is the restriction to [0, 1]d of
a distribution function whose margins are given by the uniform distribution on the interval
[0, 1]. Since the work of Sklar (1959), it is well known that every distribution function F can be
decomposed as F (x) = C(F (1)(x1), . . . , F (d)(x(d))), for all x ∈ Rd and the copula C is unique if
the marginals are continuous. Under the framework of extreme, the notion of copulas leads to
the so-called extreme value copulas. We will consider in the rest of the paper a d-dimensional
random vector X which distribution is a multivariate extreme value distribution F , i.e., its one
dimensional distributions are Generalised Extreme-Value (GEV) distributions and the copula
C∞ is an extreme value copula (see Gudendorf and Segers (2010) or Section 1.1.2 in Chapter
1), defined by

C∞(u) = exp
(
−L(− ln(u(1)), . . . ,− ln(u(d)))

)
, u ∈ (0, 1]d, (2.1)

with L : [0,∞)d → [0,∞) the stable tail dependence function which is convex, homoge-
neous of order one, namely L(cx(1), . . . , cx(d)) = cL(x(1), . . . , x(d)) for c > 0 and satisfies
max(x(1), . . . , x(d)) ≤ L(x(1), . . . , x(d)) ≤ x(1) + · · · + x(d), ∀(x(1), . . . , x(d)) ∈ [0,∞)d. Denote by
∆d−1 = {(w(1), . . . , w(d)) ∈ [0, 1]d : w(1) + · · ·+w(d) = 1} the unit simplex. By homogeneity, L is
characterised by the Pickands dependence function A : ∆d−1 → [1/d, 1], which is the restriction
of L to the unit simplex ∆d−1 :

L(x(1), . . . , x(d)) = (x(1) + · · · + x(d))A(w(1), . . . , w(d)), w(j) = x(j)

x(1) + · · · + x(d) , (2.2)

for j ∈ {2, . . . , d} and w(1) = 1 − w(2) − · · · − w(d) with (x(1), . . . , x(d)) ∈ [0,∞)d \ {0}. Notice
that, for every w ∈ ∆d−1 and u ∈]0, 1[

C∞(uw(1)
, . . . , uw

(d)) = uA(w). (2.3)

Based on the madogram concept from geostatistics, the λ-madogram is introduced in Naveau
et al. (2009) to capture bivariate extremal dependencies. The generalisation of the λ-madogram
was previously proposed by Fonseca et al. (2015) and Marcon et al. (2017), this quantity is
defined in the latter as:

ν(w) = E

 d∨
j=1

{
F (j)(X(j))

}1/w(j)

− 1
d

d∑
j=1

{
F (j)(X(j))

}1/w(j)
 , (2.4)

if w(j) = 0 and 0 < u < 1, then u1/w(j) = 0 by convention. The w-madogram can be
interpreted as the L1-distance between the maximum and the average of the uniform margins
F (1)(X(1)), . . . , F (d)(X(d)) elevated to the inverse of the corresponding weights w(1), . . . , w(d).
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2.1 Introduction

This quantity describes the dependence structure between extremes by its relation with the
Pickands dependence function as stated by the Proposition 2.2 of Marcon et al. (2017), namely

A(w) = ν(w) + c(w)
1 − ν(w) − c(w) , (2.5)

with c(w) = d−1∑d
j=1w

(j)/(1+w(j)). Through this relation, it contributes to the vast literature
of the estimation of the Pickands dependence function for bivariate extreme value copula (see
Pickands (1981), Deheuvels (1991), Capéraà et al. (1997) or Hall and Tajvidi (2000)) but also
multivariate extreme value copula, e.g., Gudendorf and Segers (2010). Also, a test for assessing
asymptotic independence in dimension d ≥ 2 has been designed based on the w-madogram
(see Guillou et al. (2018)). Several methods for handling missing values in the framework of
extremes have been proposed for univariate time series (see, e.g., Ferreira et al. (2021); Hall
and Scotto (2008)). However, handling missing values in the context of multivariate extreme
values with d ≥ 2 is still in their infancy.

Main results The main contribution of this paper is to give an estimator of the w-madogram
in (2.4) involving variables with missing values and to study its asymptotic properties. As far
as we know, only Guillou et al. (2014) detailed the variance for the madogram of a bivariate
random vector while taking the independent copula and found 1/90. In this paper we propose
improvements in three directions : we consider a general multidimensional case (d ≥ 2), we
deal with missing data and we consider a dependence structure given by an extreme value
copula. Thus, we present in Theorem 2.2.1 a functional central limit theorem that gives the
weak convergence for the considered multivariate madogram towards a tight Gaussian process
for which the covariance function depends on the probabilities of missing. When the trajectory
of our empirical process is fixed, we show in Proposition 2.2.1 the asymptotic normality of the
estimator of the multivariate madogram where explicit formula for the asymptotic variance is
also given. These results are transposed to the estimation of the Pickands dependence function
with missing data in Corollary 2.2.2 by the use of the functional delta method.

Notations The symbol ≜ means to be equal to. In order to shorten formulas, notations

u(j)(t) ≜ (u(1), . . . , u(j−1), t, u(j+1), . . . , u(d)),
u(jk)(s, t) ≜ (u(1), . . . , u(j−1), s, u(j+1), . . . , uk−1, t, uk+1, . . . , u

(d)),

will be adopted for s, t ∈ [0, 1], (u(1), . . . , u(j−1), u(j+1), . . . , u(d)) ∈ [0, 1]d−1 and j, k ∈ {1, . . . , d}
with j < k. The notation 1 (resp. 0) corresponds to the d-dimensional vector composed out of
1 (resp. 0). Similarly, we define 1(j)(s), 0(j)(s), 1(jk)(s, t) and 0(jk)(s, t) with the same idea of
previous notations of this paragraph.

The following notations are also used. Given X an arbitrary set, let ℓ∞(X ) denote the space of
bounded real-valued functions on X . For f : X → R, let ||f ||∞ = supx∈X |f(x)|. Here, we use
the abbreviation Q(f) =

∫
fdQ for a given measurable function f and signed measure Q. The

arrows a.s.→ , d→ denote almost sure convergence and convergence in distribution of random vectors.
Weak convergence of a sequence of maps will be understood in the sense of J.Hoffman-Jørgensen
(see Part 1 in van der Vaart and Wellner (1996)). Given that n ∈ N∗, X,Xn are maps from
(Ω,A,P) into a metric space X and that X is Borel measurable, (Xn)n≥1 is said to converge
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weakly to X if E∗f(Xn) → Ef(X) for every bounded continuous real-valued function f defined
on X , where E∗ denotes outer expectation in the event that Xn may not be Borel measurable.
In what follows, weak convergence is denoted by Xn ⇝ X.

The paper is organised as follows: We propose in Section 2.2 estimators of the w-madogram
suitable to the missing data framework. We state the weak convergence of the depicted
estimators. Explicit formula for the asymptotic variance are also given. In Section 2.3, we
illustrate the performance of the considered estimator in the finite-sample framework. Section
2.4 is devoted to apply our method on a dataset with missing data and non-concomittant record
periods of annual maxima rainfall in Central Eastern Canada. A discussion on our assumptions
and possible extensions of this work are presented in Section 2.4. All the proofs are postponed
to Appendix A.1.

2.2 Non parametric estimation of the Madogram with missing
data

We consider independent and identically distributed (i.i.d.) copies X1, . . . ,Xn of X. In presence
of missing data, we do not observe a complete vector Xi for i ∈ {1, . . . , n}. We introduce
Ii ∈ {0, 1}d which satisfies, ∀j ∈ {1, . . . , d}, I(j)

i = 0 if X(j)
i is not observed. To formalise

incomplete observations, we introduce the incomplete vector X̃i with values in the product
space ⊗d

j=1(R ∪ {NA}) (where NA denotes a missing data) such as

X̃
(j)
i = X

(j)
i I

(j)
i + NA(1 − I

(j)
i ), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.

We thus suppose that we observe a 2d-tuple such as

(Ii, X̃i), i ∈ {1, . . . , n}, (2.6)

i.e., at each i ∈ {1, . . . , n}, several entries may be missing. We also suppose that for all
i ∈ {1, . . . , n}, Ii are i.i.d copies from I = (I(1), . . . , I(d)) where I(j) is distributed according to a
Bernoulli random variable B(p(j)) with p(j) = P(I(j) = 1) for j ∈ {1, . . . , d}. We denote by p the
probability of observing completely a realization from X, that is p = P(I(1) = 1, . . . , I(d) = 1).
Let us now define the empirical cumulative distribution in case of missing data, we write for
notational convenience {X̃i ≤ x} ≜ {X̃(1)

i ≤ x(1), . . . , X̃
(d)
i ≤ x(d)} and n(j) = ∑n

i=1 I
(j)
i ,

F̂ (j)
n (x) =

∑n
i=1 1{X̃(j)

i ≤x}
I

(j)
i

n(j) , ∀x ∈ R, F̂n(x) =
∑n
i=1 1{X̃i≤x}Πd

j=1I
(j)
i∑n

i=1 Πd
j=1I

(j)
i

, ∀x ∈ Rd, (2.7)

where {X̃(j)
i ≤ x} = ∅ (resp. {X̃i ≤ x} = ∅) if X̃(j)

i = NA (resp. if there exists j ∈ {1, . . . , d}
such that X̃(j)

i = NA). The idea raised here is to estimate non parametrically the margins using
all available data of the corresponding series. To avoid dealing with points at the boundary of
the unit square, it is more convenient to work with scaled ranks (see for example Genest and
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2.2 Non parametric estimation of the Madogram with missing data

Segers (2009)) defined explicitely by

Ũi,j = n(j)

n(j) + 1
F̂ (j)
n (X̃(j)

i ) = 1
n(j) + 1

n∑
k=1

1{X̃(j)
k
≤X̃(j)

i }
I

(j)
i , j ∈ {1, . . . , d}. (2.8)

We recall the definition of the hybrid copula estimator introduced by Segers (2015)

ĈHn (u) = F̂n((F̂ (1)
n )←(u(1)), . . . , (F̂ (d)

n )←(u(d))), u ∈ [0, 1]d,

where (F̂ (j)
n )← is the generalised inverse function of F̂ (j)

n for j ∈ {1, . . . , d}, i.e., (F̂ (j)
n )←(u) =

inf{x ∈ R|F̂ (j)
n (x) ≥ u} with 0 < u < 1. The normalised estimation error of the hybrid copula

estimator is
CHn (u) =

√
n
(
ĈHn (u) − C∞(u)

)
, u ∈ [0, 1]d. (2.9)

On the condition that the first-order partial derivatives of the copula function C∞ exists and
are continuous on a subset of the unit hypercube, Segers (2012) obtained weak convergence of
the normalised estimation error of the classical empirical copula process (see Galambos (1977)).
To satisfy this condition, we introduce the following assumption as suggested in Segers (2012)
(see Example 5.3).

Condition A.
(i) The distribution function F has continuous margins F (1), . . . , F (d).

(ii) For every j ∈ {1, . . . , d}, the first-order partial derivative ℓ̇j of ℓ with respect to x(j) exists and
is continuous on the set {x ∈ [0,∞)d : x(j) > 0}.

The Condition A(i) guarantees that the representation F (x) = C∞(F (1)(x(1)), . . . , F (d)(x(d)))
is unique. Under the Condition A, the first-order partial derivatives of C∞ with respect to
u(j) denoted as Ċ(j)

∞ exists and are continuous on the set {u ∈ [0, 1]d : 0 < u(j) < 1}. We now
propose an estimator of the w-madogram defined in Equation (2.4) under a general context
with possible missing data.

Definition 2.2.1. Let (Ii, X̃i)ni=1 be a sample given by Equation (2.6), we define the hybrid
nonparametric estimator of the w-madogram in Equation (2.4) by

ν̂Hn (w) = 1∑n
i=1 Πd

j=1I
(j)
i

n∑
i=1

 d∨
j=1

(Ũ (j)
i )1/w(j) − 1

d

d∑
j=1

(Ũ (j)
i )1/w(j)

Πd
j=1I

(j)
i

 , (2.10)

where Ũi,j are scaled ranks defined as in Equation (2.8).

The intuitive idea here is to estimate the margins using all available data from the corresponding
variables and estimate ν(w) using only the overlapping data. Notice that in the complete data
framework, i.e. when p = 1 we retrieve a variation of the w-madogram such as defined in
Marcon et al. (2017), namely

ν̂n(w) = 1
n

n∑
i=1

 d∨
j=1

(Ũ (j)
i )1/w(j) − 1

d

d∑
j=1

(Ũ (j)
i )1/w(j)

 ,
with Ũ

(j)
i in {1/(n+ 1), . . . , n/(n+ 1)}.
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Note that the theoretical quantity defined in (2.4) does verify endpoint constraints, i.e. ν(e(j)) =
(d− 1)/2d for all j ∈ {1, . . . , d} where e(j) is the jth vector of the canonical basis.

Remark 2.2.1. Unlike ν, the estimator defined in (2.10) does not verify the endpoints
constraints. In addition, the variance at ej does not equal 0. Indeed, suppose that we evaluate
this statistic at w = e(j) as Ũ (j)

i ∈ (0, 1) for every i ∈ {1, . . . , n} and j ∈ {1, . . . , d} we obtain
the following estimator

ν̂Hn (ej) = 1∑n
i=1 Πd

j=1I
(j)
i

n∑
i=1

[
Ũ

(j)
i − 1

d
Ũ

(j)
i

]
Πd
j=1I

(j)
i .

In this situation, the sample
(
Ũ

(1)
i , . . . , Ũ

(j−1)
i , Ũ

(j+1)
i , . . . , Ũ

(d)
i

)n
i=1

is taken into account

through the indicators sequence (I(1)
i , . . . , I

(j−1)
i , I

(j+1)
i , . . . , I

(d)
i )ni=1 and induces a supplemen-

tary variance when estimating.

Proceeding as in Naveau et al. (2009) for the bivariate case and complete data framework,
we propose below a modified estimator which satisfies the endpoint constraints in the general
multivariate framework with possible missing data.

Definition 2.2.2. Let (Ii, X̃i)ni=1 be a sample given by Equation (2.6) and ν̂Hn (w) be as in (2.10).
Given continuous functions λ(1), . . . , λ(d) : ∆d−1 → R verifying λ(j)(e(k)) = δjk (the Kronecker
delta) for j, k ∈ {1, . . . , d}, we define the hybrid corrected estimator of the w-madogram by

ν̂H∗n (w) = ν̂Hn (w)

−
d∑
j=1

λ(j)(w)(d− 1)
d

 1∑n
i=1 Πd

j=1I
(j)
i

n∑
i=1

(
(Ũ (j)

i )1/w(j)Πd
j=1I

(j)
i

)
− w(j)

1 + w(j)

 . (2.11)

Remark 2.2.2. One has often that endpoint corrections do not have an impact to the
asymptotic behavior with complete data framework and unknown margins (see Section 2.3 and
2.4 of Genest and Segers (2009)). That is not always the case in the missing data framework
and this feature is of interest as discussed in Remark 2.2.1.

In the following we prove a functional central limit theorem (see Theorem 2.2.1) concerning the
weak convergence of the following processes

√
n
(
ν̂Hn (w) − ν(w)

)
w∈∆d−1

,
√
n
(
ν̂H∗n (w) − ν(w)

)
w∈∆d−1

. (2.12)

Before presenting this result, we introduce below a specific assumption on the missing mechanism.

Condition B. We suppose that for all i ∈ {1, . . . , n}, the vector Ii and Xi are independent,
i.e., the data are missing completely at random (MCAR).

Without missing data, the weak convergence of the normalised estimation error of the empirical
copula process has been proved by Fermanian et al. (2004) under a more restrictive condition
than Condition A. The difference being that C∞ should be continuously differentiable on the
closed hypercube. Denoting by D([0, 1]2) the Skorokhod space, this statement makes use of
previous results on the Hadamard differentiability of the map ϕ : D([0, 1]2) → ℓ∞([0, 1]2) which
transforms the cumulative distribution function F into its copula function C∞ (see also Lemma
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2.2 Non parametric estimation of the Madogram with missing data

3.9.28 from van der Vaart and Wellner (1996)). With the hybrid copula estimator, we need a
technical assumption in order to guarantee the weak convergence of the process CHn in (2.9)
(see Segers (2015)). We note for convenience marginal distributions and quantile functions into
vector valued functions F(d) and (F(d))←:

F(d)(x) = (F (1)(x(1)), . . . , F (d)(x(d))), x ∈ Rd,

(F(d))←(u) = ((F (1))←(u(1)), . . . , (F (d))←(u(d))), u ∈ [0, 1]d.

Condition C. In the space ℓ∞(Rd) ⊗ (ℓ∞(R), . . . , ℓ∞(R)) equipped with the topology of
uniform convergence, we have the joint weak convergence(√

n(F̂n − F );
√
n(F̂ (1)

n − F (1)), . . . ,
√
n(F̂ (d)

n − F (d))
)
⇝
(
α ◦ F(d), β(1) ◦ F (1), . . . , β(d) ◦ F (d)

)
where the stochastic processes α and β(j), j ∈ {1, . . . , d} take values in ℓ∞([0, 1]d) and ℓ∞([0, 1])
respectively, and are such that α ◦ F and β(j) ◦ F (j) have continuous trajectories on [−∞,∞]d
and [−∞,∞] almost surely.

Under Conditions A and C, the stochastic process CHn in (2.9) converges weakly to the tight
Gaussian process SC∞ defined by

SC∞(u) = α(u) −
d∑
j=1

Ċ(j)
∞ (u)β(j)(u(j)), ∀u ∈ [0, 1]d. (2.13)

Lemma A.1.1 in Appendix A.1 states that the estimator F̂n of the joint distribution and
estimators of margins F̂ (j)

n defined in Equation (2.7) verify Condition C (see Appendix A.1 for
details). We now have all tools in hand to consider the weak convergence of the stochastic pro-
cesses in Equation (2.12). We note by {X ≤ (F(d))←(u)} = {X(1) ≤ (F (1))←(u(1)), . . . , X(d) ≤
(F (d))←(u(d))}.

Theorem 2.2.1. Let G to be a tight Gaussian process and continuous functions λ(1), . . . , λ(d) :
∆d−1 → R verifying λ(j)(ek) = δjk. If C∞ is an extreme value copula with Pickands dependence
function A and under Conditions A and B, we have the weak convergence in ℓ∞(∆d−1) for
hybrid estimators defined in Equations (2.10) and (2.11), as n → ∞,

√
n
(
ν̂Hn (w) − ν(w)

)
w∈∆d−1

⇝
(1
d

d∑
j=1

∫
[0,1]

α(1(j)(xw(j))) − β(j)(xw(j))dx

−
∫

[0,1]
SC∞(xw(1)

, . . . , xw
(d))dx

)
w∈∆d−1

,

√
n
(
ν̂H∗n (w) − ν(w)

)
w∈∆d−1

⇝
(1
d

d∑
j=1

(1 + λ(j)(w)(d− 1))
∫

[0,1]
α(1(j)(xw(j))) − β(j)(xw(j))dx

−
∫

[0,1]
SC∞(xw(1)

, . . . , xw
(d))dx

)
w∈∆d−1

,
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where SC∞ is defined in (2.13), α(u) = p−1G(1{X≤F←
d

(u),I=1}−C∞(u)1{I=1}) and β(j)(u(j)) =
(p(j))−1G(1{X(j)≤(F (j))←(u(j)),I(j)=1} − u(j)1{I(j)=1}) for j ∈ {1, . . . , d} and u ∈ [0, 1]d. For
(u,v, v(k)) ∈ [0, 1]2d+1, for j ∈ {1, . . . , d} and j < k the covariance functions of the processes α
and β(j) are given by

cov
(
β(j)(u(j)), β(j)(v(j))

)
= (p(j))−1

(
u(j) ∧ v(j) − u(j)v(j)

)
,

cov
(
β(j)(u(j)), β(k)(v(k))

)
= p(jk)

p(j)p(k)

(
C∞(1(j,k)(u(j), v(k))) − u(j)v(k)

)
,

and

cov (α(u), α(v)) = p−1 (C∞(u ∧ v) − C∞(u)C∞(u)) ,

cov
(
α(u), β(j)(v(j))

)
= (p(j))−1

(
C∞(uj(u(j) ∧ v(j))) − C∞(u)v(j)

)
,

where u ∧ v denotes the vector of componentwise minima and p(jk) = P(I(j) = 1, I(k) = 1).

We use empirical process arguments formulated in van der Vaart and Wellner (1996) to establish
such a result. The following proposition states the asymptotic distribution of the estimators
and gives explicit formula for the asymptotic variances for a fixed element of the unit simplex
∆d−1.

Proposition 2.2.1. Let p = (p(1), . . . , p(d), p) and w ∈ ∆d−1, under the framework of Theorem
2.2.1, we have
√
n
(
ν̂Hn (w) − ν(w)

)
d→

n→∞
N
(
0,SH(p,w)

)
,

√
n
(
ν̂H∗n (w) − ν(w)

)
d→

n→∞
N
(
0,SH∗(p,w)

)
.

Moreover the asymptotic variances are given by

SH(p,w) =
1
d2

d∑
j=1

(p−1 − (p(j))−1)σ2
j (w) + σ

2
d+1(p,w)

+
2
d2

∑
j<k

(
p
−1 − (p(j))−1 − (p(k))−1 +

p(jk)

p(j)p(k)

)
σjk(w)

−
2
d

d∑
j=1

(p−1 − (p(j))−1)σ(1)
j

(w) +
2
d

d∑
j=1

d∑
k=1

(
(p(k))−1 −

p(jk)

p(j)p(k)

)
σ

(2)
jk

(w),

and

SH∗(p,w) =
1
d2

d∑
j=1

(p−1 − (p(j))−1)(1 + λ
(j)(w)(d− 1))2

σ
2
j (w) + σ

2
d+1(p,w)

+
2
d2

∑
j<k

(
p
−1 − (p(j))−1 − (p(k))−1 +

p(jk)

p(j)p(k)

)
(1 + λ

(j)(w)(d− 1))(1 + λ
(k)(w)(d− 1))σjk(w)

−
2
d

d∑
j=1

(p−1 − (p(j))−1)(1 + λ
(j)(w)(d− 1))σ(1)

j
(w)

+
2
d

d∑
j=1

d∑
k=1

(
(p(k))−1 −

p(jk)

p(j)p(k)

)
(1 + λ

(j)(w)(d− 1))σ(2)
jk

(w),
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where explicit expressions of the functions σ2
j for j ∈ {1, . . . , d}, σ2

d+1, σjk with j < k, σ(1)
j with

j ∈ {1, . . . , d}, σ(2)
jk for j, k ∈ {1, . . . , d} are detailed in the proof for the sake of readibility.

Considering the special case of independent copula, Corollary 2.2.1 below gives a closed form of
the limit variance which no longer depends on the Pickands dependence function.

Corollary 2.2.1. In the framework of Theorem 2.2.1 and if C∞(u) = Πd
j=1u

(j), then the
functions σ2

d+1, σ(1)
j with j ∈ {1, . . . , d}, have the following forms, for w ∈ ∆d−1 :

σ2
d+1(p,w) = 1

4

 1
3p −

d∑
j=1

(p(j))−1 w(j)

4 − w(j)

 ,
σ

(1)
j (w) = 1

2

[1
3 − 1

1 + w(j)

]
+ w(j)

3(1 + w(j))(3 + w(j))
,

and σjk for j < k, σ(2)
jk for j < k and σ(2)

kj with k < j are constants and equal to 0.

Remark 2.2.3. From our knowledge, only Guillou et al. (2014) gave an explicit value of the
variance for the madogram of a bivariate random vector considering the independent copula.
The result stated in Corollary 2.2.1 is not an extension of this result because the hypothesis
w ∈ ∆d−1 is crucial. Nevertheless, the same techniques used to prove Proposition 2.2.1 can be
applied to show a similar explicit formula of the asymptotic variance for an extension of the
madogram in Guillou et al. (2014) for d ≥ 2.

Weak consistency of our estimators directly comes down from Proposition 2.2.1. We are
nonetheless able to state the strong consistency only under Condition B.

Proposition 2.2.2 (Strong consistency). Let (Ii, X̃i)ni=1 an i.i.d sample given by Equation
(2.6). Under Condition B for a fixed w ∈ ∆d−1, it holds that

ν̂Hn (w) a.s.−→
n→∞

ν(w), ν̂H∗n (w) a.s.−→
n→∞

ν(w).

For the rest of this section, we use our previous results to state some properties of the Pickands
estimator in the missing data framework.

It is a common knowledge that the w-madogram is of main interest to construct of the Pickands
dependence function. Indeed, given Equation (2.5), one can define an estimator of the Pickands
dependence function by estimating the w-madogram and using it as a plug-in estimator. Most
interesting properties of the w-madogram such as strong consistency and the weak convergence
are thus translated for the Pickands estimator using continuous mapping theorem and the
Delta method. In the missing data framework we define the following estimator.

Definition 2.2.3. Let (Ii, X̃i)ni=1 be a samble given by (2.6), the hybrid nonparametric
estimator of the Pickands dependence function is defined as

ÂH∗n (w) = ν̂H∗n (w) + c(w)
1 − ν̂H∗n (w) − c(w) , (2.14)

where ν̂H∗n (w) defined in Equation (2.11) and c(w) = d−1∑d
j=1w

(j)/(1 + w(j)).
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Using the results of Marcon et al. (2017) (namely, Theorem 2.4), Proposition 2.2.1 and
Proposition 2.2.2 of this paper, we state the following corollary.

Corollary 2.2.2. Let p = (p(1), . . . , p(d), p) and (Ii, X̃i)ni=1 be a samble given by (2.6). For
w ∈ ∆d−1, if C∞ is an extreme value copula with Pickands dependence function and under
Condition B, it holds that

ÂH∗n (w) a.s.−→
n→∞

A(w).

Furthermore, if C∞ additionally verifies Conditions A (i) and A(ii), we obtain

√
n
(

ÂH∗n (w) − A(w)
)

d−→
n→∞

N (0,V(p,w)) ,

where the closed formula of the asymptoptic variance is V(p,w) = (1 + A(w))4SH∗(p,w), with
SH∗(p,w) as in Proposition 2.2.1.

2.3 Numerical results

In this section we verify our findings concerning the closed formula of the asymptotic variances
through a simulation study. To do so, we compare empirical counterparts of the asymptotic
variances computed out with Monte Carlo simulations with the explicit asymptotic variances
given by Proposition 2.2.1. Our simulation studies are implemented using Python programming
language and all the codes are available online via the link https://github.com/Aleboul/missing
heading to a Github repository.

2.3.1 Presentation of the models

We present here the six models (M1 to M6) used for this simulation study. The d-dimensional
Gumbel and the asymmetric logistic models are considered in models M1 and M2 below, the
remaining ones (models M3 to M6) concern only the bivariate case.

M1 The symmetric logistic, or Gumbel model Gumbel (1960a) is defined by the following
Pickands dependence function

A(w(1), . . . , w(d)) =

 d∑
j=1

(
w(j)

)θ1/θ

,

with θ ∈ [1,∞). We retrieve the independent case when θ = 1 and the dependence between
the variables is stronger as θ goes to infinity. The restriction to d = 2 is immediate from
the definition.

M2 Let B be the set of all nonempty subsets of {1, . . . , d} and B1 = {b ∈ B, |b| = 1}, where
|b| denotes the number of elements in the set b. The asymmetric logistic model in
Tawn (1990) is defined by the following Pickands dependence function

A(w(1), . . . , w(d)) =
∑
b∈B

∑
j∈b

(θj,bw(j))θb
1/θb

,
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where θb ∈ [1,∞) for all b ∈ B \ B1, and the asymmetry parameters θj,b ∈ [0, 1] for all
b ∈ B and j ∈ b. The model should verify the following constrains ∑b∈B(j) θj,b = 1 for
j ∈ {1, . . . , d} where B(j) = {b ∈ B, j ∈ b} and if θb = 1 for every b ∈ B \B1, then θj,b = 0
∀j ∈ b. The model contains 2d − d− 1 dependence parameters and d(2d−1 − 1) asymmetry
parameters. In case of d = 2, we go back to the asymmetric logistic model in Tawn (1988),
namely

A(w) = (1 − ψ1)w + (1 − ψ2)(1 − w) +
[
(ψ1w)θ + (ψ2(1 − w))θ

]1/θ
,

with θ ∈ [1,∞), ψ1, ψ2 ∈ [0, 1]. For d = 3, the Pickands dependence function is expressed
as

A(w) =α1w
(1) + ψ1w

(2) + ϕ1w
(3) +

(
(α2w

(1))θ1 + (ψ2w
(2))θ1

)1/θ1

+
(
(α3w

(2))θ2 + (ϕ2w
(3))θ2

)1/θ2 +
(
(ψ3w

(2))θ3 + (ϕ3w
(3))θ3

)1/θ3

+
(
(α4w

(1))θ4 + (ψ4w
(2))θ4 + (ϕ4w

(3))θ4
)1/θ4

,

where α = (α1, . . . , α4),ψ = (ψ1, . . . , ψ4),ϕ = (ϕ1, . . . , ϕ4) are all elements of ∆3.
M3 The asymmetric negative logistic model in Joe (1990) is defined via

A(w) = 1 −
[
(ψ1(1 − w))−θ + (ψ2w)−θ

]−1/θ
,

with parameters θ ∈ (0,∞), ψ1, ψ2 ∈ (0, 1]. The special case ψ1 = ψ2 = 1 returns the
Galambos model Oliveira and Galambos (1977).

M4 The asymmetric mixed model in Tawn (1988) corresponds to

A(w) = 1 − (θ + κ)w + θw2 + κw3,

with parameters θ and κ satisfying θ ≥ 0, θ + 3κ ≥ 0, θ + κ ≤ 1, θ + 2κ ≤ 1. The special
case κ = 0 and θ ∈ [0, 1] yields the symmetric mixed model. In the symmetric mixed
model, when θ = 0, we recover the independent copula.

M5 The model of Hüsler and Reiss in Hüsler and Reiss (1989) is given by the Pickands
dependence function

A(t) = (1 − t)Φ
(
θ + 1

2θ ln
(1 − t

t

))
+ tΦ

(
θ + 1

2θ ln
(

t

1 − t

))
,

where θ ∈ (0,∞) and Φ is the standard normal distribution function. As θ goes to 0+, the
dependence between the two variables increases. When θ goes to infinity, we are in case of
near independence.

M6 The Student t-EV model in Demarta and McNeil (2005) is given by

A(w) = wtν+1(zw) + (1 − w)tν+1(z1−w),
with zw = (1 + ν)1/2[{w/(1 − w)}1/ν − θ](1 − θ2)−1/2,
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and parameters ν > 0, and θ ∈ (−1, 1), where tν+1 is the distribution function of a
Student-t random variable with ν + 1 degrees of freedom.

2.3.2 Description of numerical experiments

For each numerical experiment, the endpoint-corrected w-madogram estimator in (2.11) is
computed using λ(j)(w) = w(j). The study consists in three different experiments (E1, E2
and E3). For all experiments, the empirical counterpart of the asymptotic variance given
by Proposition 2.2.1 is computed out through a given grid of the simplex ∆d−1. For a given
element w of this grid, niter ∈ N \ {0} random samples of size n are generated from the models
M1 to M6 given above. By using these samples we estimate the associated w-madogram. We
thus compute the empirical variance of the normalised estimation error namely,

EHn (w) ≜ V̂ ar
(√

n
(
ν̂H
n (w) − ν(w)

))
, EH∗n (w) ≜ V̂ ar

(√
n
(
ν̂H∗
n (w) − ν(w)

))
, (2.15)

where ν̂H
n and ν̂H∗

n are the vectors composed out of the niter hybrid and corrected estimators
(see Equations (2.10) and (2.11)) of the w-madogram, respectively. We also define the Mean
Integrated Squared Error (MISE) between EHn and SH the asymptotic variance computed in
Proposition 2.2.1 (resp. between EH∗n and SH∗), that is

MISEH ≜ E
[∫

∆d−1

(
EHn (w) − SH(p,w)

)2
dw
]
, (2.16)

MISEH∗ ≜ E
[∫

∆d−1

(
EH∗n (w) − SH∗(p,w)

)2
dw
]
. (2.17)

E1 We set d = 2. A Monte Carlo study is implemented here to illustrate Proposition 2.2.1 in
finite-sample setting with missing data. We consider M2, M3, M4, M5 and M6 where
we fix niter = 300 and n = 1024. The chosen grid is {1/200, . . . , 199/200} and we take
p(1) = p2 = 0.75. We estimate MISEH in (2.16) by

M̂ISE
H
n = 1

10

10∑
l=1

1
199

199∑
k=1

(
EHn,l

(
k

200

)
− SH

(
p, k

200

))2
,

with EHn,l, l ∈ {1, . . . , 10} is the empirical counterpart of SH taking the empirical variance of
30 estimators ν̂Hn (w) where w = (k/200, 1 − k/200) and k ∈ {1, . . . , 199}. Each estimator
of the w-madogram is computed out through a random sample with n = 1024. By using
the second equation in (2.16), the estimator M̂ISE

H∗
n is defined similarly.

E2 We fix d = 3 and we consider M1 and M2 with niter = 100 and n = 512. We set the
dependence parameter as θ = 1 and θ = 2 for the first model. For the second one we take
α = (0.4, 0.3, 0.1, 0.2), ψ = (0.1, 0.2, 0.4, 0.3), ϕ = (0.6, 0.1, 0.1, 0.2) and θ = (θ1, . . . , θ4) =
(0.6, 0.5, 0.8, 0.3) as the dependence parameter. We take p(1) = p2 = p3 = 0.9 and thus
p = 0.729, pij = 0.81 with i, j ∈ {1, 2, 3} and i < j. We grid the [0, 1]2 cube into 10000
points at same distance from each other and we only keep those with w(2) + w(3) < 1.0
where w(2) and w(3) are in the grid of the cube, we set w(1) = 1 −w(2) −w(3). Let ∆n

d−1 be
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199 points uniformly sampled from ∆2 and niter = 300, Equation (2.16) is estimated with

M̂ISE
H
n = 1

10

10∑
l=1

1
199

∑
k∈∆n

d−1

(
EHn,l (k) − SH (p, k)

)2
,

where EHn,l, l ∈ {1, . . . , 10} is the empirical counterpart of SH taking the empirical variance
of 30 estimators ν̂Hn (w) with w ∈ ∆n

d−1. Each estimator of the w-madogram is computed
out through a random sample with n = 512. Again, M̂ISE

H∗
n is defined in a similar way.

E3 In this experiment, we aim to show that our conclusions are verified in a high dimension
setting. We compute empirical counterpart of the asymptotic variance for a varying
dimension d and we compare its value to the theoretical one given by Proposition 2.2.1.
Furthermore, as the probability of observing a complete row decrease quickly with respect
to the dimension d, i.e. p = (p(1))−d, we set that there is no missing data. We consider the
symmetric logistic model with dependence parameter θ = 2. We sample 300 points from
the unit simplex ∆d−1 and we compute the following quantity

δHn (w) ≜

∣∣∣EHn (w) − SH(1,w)
∣∣∣

SH(1,w) , (2.18)

where EHn is computed from niter = 100 estimators of the w-madogram with sample size
n ∈ {216, 512, 1024}. The results are collected for several values of d ∈ {5, 10, . . . , 40}.

Note that for Experiments E1 and E2, the missing mechanism is such as I(1), . . . , I(d) are
pairwise independent and p(j) = p(1), ∀j ∈ {1, . . . , d}. The independence setup corresponds to
the worst scenario where the missingness of one variable does not influence the missingness of
the other variables. A contrario, if we suppose that I(1), . . . , I(d) are strongly dependent, i.e.
none or all entries are missing, we then estimate a statistic on a sample of average length p× n
and we are turning back to inference in a complete data framework with a reduced sample
size. This is also readily seen from the closed formula in Proposition 2.2.1, indeed in a strongly
dependent setting we have p = p(1), so the asymptotic variance is reduced to the complete data
framework up to a multiplicative factor.

2.3.3 Results of experiments

Results of Experiment E1 are depicted in Figure 2.1. For all panels, empirical counterparts
given by Equation (2.15) (points) fit the theoretical values exhibited from Proposition 2.2.1
(solid lines). For the hybrid estimator, as discussed in Remark 2.2.1, both empirical and
theoretical values of the asymptotic variance are different from zero for each w ∈ {{0}, {1}}.
The corrected version provides this feature and also modifies the shape of the curve (see Remark
2.2.2). Indeed the asymptotic behavior of the hybrid and the corrected estimators are different
in the missing data framework. Notice that, in terms of variance, we do not have a strict
dominance from one estimator to another.

Results for Experiment E2 are depicted in Figures 2.2 and 2.3. In Figure 2.2, empirical
counterparts given by Equation (2.15) are depicted with points and closed expressions of the
asymptotic variance given by Proposition 2.2.1 are drawn by a surface. Figure 2.3 presents the
same studies differently by showing the level sets associated to the surfaces of Figure 2.2. As in
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(e) HR (M5, θ = 1.0)
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(f) tEV (M6, θ = 0.8, ν = 0.2)

Fig. 2.1 EHn in red and EH∗n in green (see (2.15)) as a function of w, of the asymptotic variances
of the estimators of the w-madogram for six extreme-value copula models. The empirical
variances are based on 300 samples of size n = 1024. Solid lines are the theoretical value given
by Proposition 2.2.1.
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Experiment E1, empirical counterparts given by the points fits the surface. Also, for the first
row of Figure 2.2, we see that if w ∈ {{e(1)}, {e(2)}, {e(3)}} then both theoretical and empirical
counterparts are different from zero while this feature no longer applies in the second row with
the introduction of the corrected version. In this two figures, we see that EHn and EH∗n and their
empirical counterparts are close.
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Fig. 2.2 EHn (first row) and EH∗n (second row) given by (2.15) as a function of w-madogram.
The empirical variances are based on 100 samples of size n = 512. Empirical counterparts
are represented with points and theoretical values given by Proposition 2.2.1 are drawn by a
surface.

In order to quantify errors in Figures 2.1 and 2.2, in Table 2.1 are displayed M̂ISE
H
n and

M̂ISE
H∗
n for the corresponding models in Experiments E1 and E2 to appreciate the proximity

between the terms EHn and SH (respectively for the corrected terms EH∗n and SH∗). As indicated
by Figures 2.1 and 2.2, errors in Table 2.1 are close to zero.

E1 E2

MISE (×10−5) GAL ANL ASL ASM HR tEV IND LOG ASL

M̂ISE
H
n 2.49 8.10 2.43 1.85 1.89 1.93 2.93 1.31 3.40

M̂ISE
H∗
n 2.77 7.02 2.04 1.94 1.96 1.93 1.95 1.57 2.91

Table 2.1 Estimation of MISEH and MISEH∗ (×10−5) defined in (2.16) for Experiment E1
in the sixth first columns and E2 in the last three columns.

63



Non-Parametric Multivariate Madogram Estimator for Missing Data
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Fig. 2.3 Level sets of EHn and EH∗n , as a function of w, of the asymptotic variances of the
estimators of the w-madogram. We present the level sets corresponding to sufaces of Fig 2.2.
On the left panel is represented the theoretical value given by Proposition 2.2.1 while on the
right the empirical counterpart is given.

Figure 2.4 illustrates the results of Experiment E3 where we have drawn boxplots for Equation
(2.18). Not surprisingly, we observe that both the size of the boxplots and the median value
are increasing with d. However, this augmentation drops as the sample size n increases and
seems to appear reasonable. A limitation (due to computation time issues) of this figure is that
the number of points on the simplex is constant (= 300) as a function of the dimension.

2.4 Extremal dependence rainfall analysis via hybrid madogram
In climate studies, extreme events such as heavy precipitations represent major challenge since
damages from extreme weather events may have heavy consequences in both economic and
human terms. Their spatial characteristics are of a prime interest and w-madogram and its
estimator studied in this paper (see Equation (2.10)) are able to capture those characteristics. A
seminal application which bridges extreme value theory and geostatistics is the study of extreme
rainfall since we expect spatial dependence among the recording weather stations. Precisely, we
observe daily precipitation at station j ∈ {1, . . . , d} over n years. Concerning extreme events,
one cannot use directly the observation for inference and we focus on block maxima. The block
maxima approach is based on the observation of a sample of block maxima Xi = (X(1)

i , . . . , X
(d)
i )

where X(j)
i corresponds to the maximum at station j ∈ {1, . . . , d} within the ith disjoint block

of observation. A block could be either hourly, daily or annual for example. Consistent to our
approach, we do not observe Xi but an incomplete vector X̃i ∈

⊗d
j=1(R+ ∪ NA). Our main

goal is to estimate the extremal dependence between maxima of groups of station. This will be
done for several clusters within which similar climate characteristics are envisaged leading to
dependence among extremes.

For each cluster, we compute the corrected hybrid madogram in Equation (2.10). This quantity
is used to estimate the extremal coefficient (see for instance Smith (1990)), using the relation
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Fig. 2.4 Boxplots for δHn for different values of d and n.

between the Pickands and the madogram given in Equation (2.5), defined by

θ = dA
(1
d
, . . . ,

1
d

)
. (2.19)

This satisfies the condition 1 ≤ θ ≤ d, where the lower and upper bounds represent the case of
complete positive dependence and independence among the extremes, respectively. Since its
upper bound depends on d, the extremal coefficient can, alas, only be used to compare clusters
of the same size. In each cluster, the extremal coefficient in (2.19) is estimated by θ̂n = d ÂH∗n
where ÂH∗n is given in Definition 2.2.3.

We illustrate the proposed methodology on rainfall data measured in millimimeter registred
in 95 stations in Center Eastern Canada for a duration of 24 hours publicly available in the
section engineering climate datasets of the Government of Canada website. Annual maxima
precipitations for a 24-hour duration are recorded from 1914 to 2017. The location of stations in
Fig. 2.5 are given in the WGS84 coordinate space in order to have Euclidean distance between
the stations and taking account of the geodesic geometry of the Earth. A specific characteristic
of the considered rainfall data is the sparsity of the recorded data, i.e., a lot of recordings are
missing (see Palacios-Rodriguez et al. (2023) for details). Four stations were removed of the
analysis due to a tiny coverage of the observation period. As the measurements are maxima over
a long period of time, it is reasonable to assume that they come from a multivariate extreme
value distribution see Equation (2.1). The dataset we consider in this section and codes are
available in https://github.com/Aleboul/missing.
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Non-Parametric Multivariate Madogram Estimator for Missing Data

With the remaining 91 stations, we compare the extremal dependence between several groups of
stations as it has been done by Marcon et al. (2017) (see Section 5) for France using a dataset
with complete observations. We emphasize that the comparison of the extremal coefficient is
solely relevant when clusters are of the same size. Thus, clusters were obtained by running
the constrained k-means algorithm on the station coordinates (see for instance Bradley et al.
(2000)) by forcing clusters of the same size : d = 7 or d = 13, i.e., 13 groups of 7 stations and
vice versa. As overlapping data naturally decrease as the size of clusters increases, the case of
cluster size d = 13 cannot be considered here. Among the 13 clusters of size d = 7, we only
keep those having at least 10 overlapping annual maxima within the cluster which results on 7
remaining clusters depicted in Figure 2.5a. The estimated coefficient range is between 3.88,
indicating strong dependence, and 5.07, indicating medium dependence (see Figure 2.5b).
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(a) Resulting clusters using constrained k-means
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(b) Values of the extremal coefficient for each cluster

Fig. 2.5 Analysis of Canadian annual rainfall maxima in the period 1914-2017. (a) Spatial
representation of the 7 selected clusters obtained via the constrained k-means algorithm. (b)
Clusters of 49 weather stations and their estimated extremal coefficients (with d = 7) obtained
with the corrected version of the hybrid madogram.

Our estimations suggest an acute dependence among extremes in clusters 1-3 in Figure 2.5a.
We can observe in Figure 2.5b that extreme precipitations are more likely to be dependent
in the central coastal Atlantic region, a contrario, one can notice a weak dependence among
extreme values in the scattered clusters in the north of the region.

2.5 Conclusions

A method based on madograms to estimate multivariate extremal dependencies with allowing
missing data has been developed in this paper. Under the MCAR hypothesis, we studied
the asymptotic behaviour for the proposed estimators. This approach is of interest to study
spatio-temporal process ponctually observed as observations may not overlap. Moreover, we
have derived closed expressions of their respective asymptotic variances for a fixed element in
the simplex. Numerical results in a finite sample setting give further evidences to our theoretical
results and on performances of the proposed estimators of the madogram in the missing data
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setting. Finally, we applied our approach to the study of extremal dependencies of annual
maxima of daily rainfall in Central Eastern Canada.

As for future work, an interesting improvement could be to lower the MCAR assumption on
the misssing data. Indeed, estimating nonparametrically the empirical copula process with
missing data outside this framework is still unexplored. As a starting point, semiparametric
inference for copula and copula based-regression allowing missing data under Missing At
Random (MAR) mechanism have been studied by Hamori et al. (2019) and Hamori et al.
(2020).

Another interesting direction could also be to build a dissimiliraty measure based on the
bivariate w-madogram for clustering. This approach was already tackled by Bernard et al.
(2013), Bador et al. (2015) and Saunders et al. (2021) to partition respectively France, Europe
and Australia with respect to extreme observations using the sole madogram. The idea here
could be to use the infimum or the integral over w ∈ (0, 1) of the bivariate w-madogram as a
dissimilarity measure and to show its strong consistency in the sense formulated by Pollard
(1981). One limitation of our application is that clusters of same size is mandatory to compare
the estimated extremal coefficient between clusters in Equation (2.19). This feature stems
from the bounds of the Pickands dependence function which depends on the dimension of the
extremal random vector. Further investigations are thus needed to interpret extremal coefficient
between clusters of different sizes, e.g., to assess asymptotic independence between two extremal
random vectors.
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Appendix A

Proofs of Chapter 2

A.1 Proofs

A.1.1 Proofs of main results

For the rest of this section, we will write, for notational convenience, N = ∑n
i=1 Πd

j=1I
(j)
i .

The following proof gives arguments used to establish the functional central limit theorem of
our processes defined in Equation (2.12). Before going into details, we need an intermediary
lemma to assert that the empirical cumulative distribution functions in case of missing data
verify Assumption C and give covariance functions of the asymptotic processes α and β(j) with
j ∈ {1, . . . , d}. This result comes down from Segers (2015) (see Example 3.5) where the result
was proved for bivariate random variables but the higher dimension is directly obtained using
same arguments.

Lemma A.1.1. Let (
√
n(F̂n −F );

√
n(F̂ (1)

n −F (1)), . . . ,
√
n(F̂ (d)

n −F (d))) with F̂n and F̂ (j)
n for

j ∈ {1, . . . , d} as in (2.7). Then Assumption C is satisfied with

β(j)(u(j)) = (p(j))−1G
(
1{X(j)≤(F (j))←(u(j)),I(j)=1} − u(j)1{I(j)=1}

)
, j ∈ {1, . . . , d},

α(u) = p−1G
(
1{X≤(F(d))←(u),I=1} − C∞(u)1{I=1}

)
,

where G is a tight Gaussian process. Furthermore the covariance functions of the processes
β(j)(u(j)), α(u), for (u,v, v(k)) ∈ [0, 1]2d+1, j ∈ {1, . . . , d} and j < k, are given by

cov
(
β(j)(u(j)), β(j)(v(j))

)
= (p(j))−1

(
u(j) ∧ v(j) − u(j)v(j)

)
,

cov
(
β(j)(u(j)), β(k)(v(k))

)
= p(jk)

p(j)p(k)

(
C∞(1(jk)(u(j), v(k))) − u(j)v(k)

)
,

cov (α(u), α(v)) = p−1 (C∞(u ∧ v) − C∞(u)C∞(u)) ,

cov
(
α(u), β(j)(v(j))

)
= (p(j))−1

(
C∞(u(j)(u(j) ∧ v(j))) − C∞(u)v(j)

)
,

where u ∧ v denotes the vector of componentwise minima and p(jk) = P(I(j) = 1, I(k) = 1).

Proof of Lemma A.1.1 is postponed to A.1.2.

Proof of Theorem 2.2.1 First, let us define the rank-corrected hybrid copula process suited
with our estimator and its associated empirical copula process by

ĈRn (u) = 1∑n
i=1 Πd

j=1I
(j)
i

n∑
i=1

Πd
j=11

{
Ũ

(j)
i ≤u(j)

}I(j)
i , CRn =

√
n
(
ĈRn − C∞

)
.
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Proofs of Chapter 2

One can show that
sup

u∈[0,1]d

∣∣∣ĈHn (u) − CRn (u)
∣∣∣ ≤ 2d

np̂n
,

with p̂n = n−1∑n
i=1 Πd

j=1I
(j)
i . Note that p̂n converges in probability to p ∈]0, 1] which implies

that the difference between ĈHn and ĈRn is asymptotically negligible. Details for the proof are
given solely for the estimator ν̂H∗n as the weak convergence for ν̂Hn is obtained similarly via an
adequate continuous transformation of ν̂Hn with ĈRn . Using that E[F (j)(X(j))α] = (1 + α)−1 for
α ̸= −1, we can write ν(w) as :

ν(w) =E

 d∨
j=1

{
F (j)(X(j))

}1/w(j)

− 1
d

d∑
j=1

{
F (j)(X(j))

}1/w(j)


+
d∑
j=1

λ(j)(w)(d− 1)
d

(
w(j)

1 + w(j) − E
[{
F (j)(X(j))

}1/w(j)])

=E

 d∨
j=1

{
F (j)(X(j))

}1/w(j)
− 1

d

d∑
j=1

(1 + λ(j)(w)(d− 1))E
[{
F (j)(X(j))

}1/w(j)]
+ a(w),

with a(w) = (d− 1)d−1∑d
j=1 λ

(j)(w)w(j)/(1 +w(j)). Let us note by gw the function defined as

gw : [0, 1]d → [0, 1], u 7→
d∨
j=1

(u(j))1/w(j) − 1
d

d∑
j=1

(1 + λ(j)(w)(d− 1))(u(j))1/w(j)
.

One can write our estimator of the w-madogram and the theoretical w-madogram in missing
data framework as an integral with respect to the rank-corrected hybrid copula estimator and
the copula function, respectively. We thus have:

ν̂H∗n (w) = 1
N

n∑
i=1

gw
(
Ũ

(1)
i , . . . , Ũ

(d)
i )

)
Πd
j=1I

(j)
i + a(w) =

∫
[0,1]d

gw (u) dĈRn (u) + a(w),

ν(w) =
∫

[0,1]d
gw (u) dC(u) + a(w).

We obtain, proceeding as in Theorem 2.4 of Marcon et al. (2017) :

√
n
(
ν̂H∗n (w) − ν(w)

)
=1
d

d∑
j=1

(
1 + λ(j)(w)(d− 1)

) ∫
[0,1]

CRn (1(j)(xw(j)))dx

−
∫

[0,1]
CRn

(
xw

(1)
, . . . , xw

(d))
dx,

where 1(j)(u) denotes the vector composed out of 1 except for the jth component where u
does stand and with CHn in (2.9). Consider the function ϕ : ℓ∞([0, 1]d) → ℓ∞(∆d−1), f 7→ ϕ(f),
defined by

(ϕ)(f)(w) = 1
d

d∑
j=1

(1 + λ(j)(w)(d− 1))
∫

[0,1]
f(1(j)(xw(j)))dx−

∫
[0,1]

f(xw(1)
, . . . , xw

(d))dx.
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This function is linear and bounded thus continuous. The continous mapping theorem (see,
e.g., Theorem 1.3.6 of van der Vaart and Wellner (1996)) implies, as n → ∞

√
n(ν̂H∗n − ν) = ϕ(CRn )⇝ ϕ(SC∞),

in ℓ∞(∆d−1). Recall that SC∞ is the asymptotic process where CHn does converge in the sense of
the weak convergence in ℓ∞(∆d−1) and is defined by SC∞(u) = α(u) −

∑d
j=1 β

(j)(u(j))Ċ(j)
∞ (u)

with u ∈ [0, 1]d and α and β(j) are processes defined in Lemma A.1.1. We note that
SC∞(1(j)(xw(j))) = α(1(j)(xw(j))) − β(j)(u(j)) and we obtain our statement.

The asymptotic normality of our estimators directly comes down from being a linear transfor-
mation of a tight Gaussian process for w ∈ ∆d−1. The proof below uses technical arguments to
exhibit the closed expressions of the asymptotic variances of the Gaussian limit distributions of
our estimators in Equation (2.10) and (2.11). Furthermore, this proof strengthen our choice of
the definition of the corrected estimator. Indeed, the chosen form of the corrected estimator
makes computations more tractable as we only have to compute terms for the hybrid estimator
and to multiply those by different factors. Two tools make the computation feasible. The first
one is the form exhibited by Equation (2.2) which transforms a double integral with respect to
the trajectory of the copula function as the double integral of a power function. When this trick
is not possible, again the expression of the extreme value copula with respect to the Pickands
dependence function is of main interest. Indeed, with some substitutions, we are able to express
the double integrals as the integral with respect to the Pickands dependence function using the
following equality :

−
∫

[0,1]
wα ln(w) dw = 1

(α+ 1)2 ,

where α ̸= −1.

Proof of Proposition 2.2.1 Recall that p = (p(1), . . . , p(d), p). By definition the asymptotic
variance SH(p,w) for a fixed w ∈ ∆d−1 is given by

SH(p,w) ≜ V ar

1
d

d∑
j=1

∫
[0,1]

α(1(j)(xw(j))) − β(j)(xw(j))dx−
∫

[0,1]
SC∞(xw(1)

, . . . , xw
(d))dx

 .
Using properties of the variance operator, we thus obtain

SH(p,w) =
1
d2

d∑
j=1

V ar

(∫
[0,1]

α(1(j)(xw
(j)

))− β(j)(xw
(j)

)dx

)
+ V ar

(∫
[0,1]

SC∞ (xw
(1)
, . . . , x

w(d)
)dx

)
+

2
d2

∑
j<k

cov

(∫
[0,1]

α(1(j)(xw
(j)

))− β(j)(xw
(j)

)dx,

∫
[0,1]

α(1(k)(xw
(k)

))− β(k)(xw
(k)

)dx

)

−
2
d

d∑
j=1

cov

(∫
[0,1]

α(1(j)(xw
(j)

))− β(j)(xw
(j)

)dx,

∫
[0,1]

α(xw
(1)
, . . . , x

w(d)
)dx

)

+
2
d

d∑
j=1

d∑
k=1

cov

(∫
[0,1]

α(1(j)(xw
(j)

))− β(j)(xw
(j)

)dx,

∫
[0,1]

β
(k)(xw

(k)
)Ċ(k)
∞ (xw

(1)
, . . . , x

w(d)
)dx

)
.
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By definition of the covariance functions of α , β(j) with j ∈ {1, . . . , d} given in Lemma A.1.1,
we have

V ar

(∫
[0,1]

α(1(j)(xw(j))) − β(j)(xw(j))dx
)

=
(
p−1 − (p(j))−1

)
σ2
j (w),

V ar

(∫
[0,1]

SC∞(xw(1)
, . . . , xw

(d))dx
)

= σ2
d+1(p,w),

cov

(∫
[0,1]

α(1(j)(xw(j))) − β(j)(xw(j))dx,
∫

[0,1]
α(1(k)(xw(k))) − β(k)(xw(k))dx

)
=(

p−1 − (p(j))−1 − (p(k))−1 + p(jk)

p(j)p(k)

)
σjk(w),

cov

(∫
[0,1]

α(1(j)(xw(j))) − β(j)(xw(j))dx,
∫

[0,1]
α(xw(1)

, . . . , xw
(d))dx

)
=
(
p−1 − (p(j))−1

)
σ

(1)
j (w),

cov

(∫
[0,1]

α(1(j)(xw(j))) − β(j)(xw(j))dx,
∫

[0,1]
β(k)(xw(k))Ċ(k)

∞ (xw(1)
, . . . , xw

(d))dx
)

=
(

(p(k))−1 − p(jk)

p(j)p(k)

)
σ

(2)
jk (w).

We first show in details the closed form for σ2
d+1, the other forms are given without explanations

as the technical tools used are those used for σ2
d+1. Proceding as before, we decompose this

quantity as a linear combination of the variance (the squared term γ2
1 and γ2

j for j ∈ {1, . . . , d})
and the covariance terms (γ1j and τjk) with the probabilities of missing. The explicit formula
of these quantities will be defined below. We set

σ2
d+1(p,w) = p−1γ2

1(w) +
d∑
j=1

(p(j))−1γ2
j (w) − 2

d∑
j=1

(p(j))−1γ1j(w) + 2
∑
j<k

p(jk)

p(j)p(k) τjk(w). (A.1)

Let us exhibit a useful form of the partial derivatives of the extreme value copula. We have
∀j ∈ {1, . . . , d} :

Ċ(j)
∞ (u) = C(u)

u(j)

·
Lj(− ln(u1), . . . ,− ln(ud)).

Furthermore, as L(x1, . . . , xd) is homogeneous of degree 1, the partial derivative L̇j(x1, . . . , xd)
is homogeneous of degree 0 for j ∈ {1, . . . , d}. We thus obtain a suitable form of the partial
derivatives of the extreme value copula for u ∈]0, 1[ and w ∈ ∆d−1 :

Ċ(j)
∞ (uw(1)

, . . . , uw
(d)) = uA(w)

uw
(j)

·
Lj(−w(1) ln(u), . . . ,−w(d) ln(u)) = uA(w)

uw
(j)

·
Lj(−w(1), . . . ,−w(d))

= uA(w)

uw
(j) µ

(j)(w),
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where µ(j)(w) ≜ L̇j(−w(1), . . . ,−w(d)). Now, using linearity of the integral and the definition
of the covariance function of α, we obtain

p−1γ2
1(w) ≜ E

[∫
[0,1]

α(uw(1)
, . . . , uw

(d))du
∫

[0,1]
α(vw(1)

, . . . , vw
(d))dv

]

= 2
p

∫
[0,1]

∫
[0,v]

uA(w)(1 − vA(w))duv.

Let us compute

γ2
1(w) = 2

∫
[0,1]

∫
[0,v]

uA(w)(1 − vA(w))duv = 1
(1 + A(w))2

A(w)
2 + A(w) .

The quantity γ2
j (w) is defined by the following

(p(j))−1
γ

2
j (w) ≜ E

[∫
[0,1]

β
(j)(uw

(j)
)Ċ(j)
∞ (uw

(1)
, . . . , u

w(d)
)du

∫
[0,1]

β
(j)(uw

(j)
)Ċ(j)
∞ (vw

(1)
, . . . , v

w(d)
)dv
]

=
2

p(j)

∫
[0,1]

∫
[0,v]

u
w(j)

(1− vw
(j)

)µ(j)(w)µ(j)(w)uA(w)−w(j)
v

A(w)−w(j)
duv.

It is clear that

γ2
j (w) = 2

∫
[0,1]

∫
[0,v]

uw
(j)(1 − vw

(j))µ(j)(w)µ(j)(w)uA(w)−w(j)
vA(w)−w(j)

duv

=
(
µ(j)(w)

1 + A(w)

)2
w(j)

2A(w) + 1 + 1 − w(j) .

We now deal with cross product terms, the first we define is

(p(j))−1
γ1j(w) ≜ E

[∫
[0,1]

α(uw
(1)
, . . . , u

w(d)
)du

∫
[0,1]

β
(j)(vw

(j)
)Ċ(j)
∞ (vw

(1)
, . . . , v

w(d)
)dv
]

= (p(j))−1

∫
[0,1]2

(
C∞(uw

(1)
, . . . , (u ∧ v)w

(j)
, . . . , u

w(d)
)− uA(w)

v
w(j)
)
Ċ

(j)
∞ (vw

(1)
, . . . , v

w(d)
)duv.

Under the rectangle [0, 1] × [0, v], we have

γ1j(w) =
∫

[0,1]×[0,v]

(
C∞(uw(1)

, . . . , uw
(j)
, . . . , uw

(d)) − uA(w)vw
(j))

Ċ(j)
∞ (vw(1)

, . . . , vw
(d))duv

=
∫

[0,1]×[0,v]
uA(w)(1 − vw

(j))vA(w)−w(j)
µ(j)(w)duv

= µ(j)(w)
2(1 + A(w))2

w(j)

2A(w) + 1 + (1 − w(j))
.

Under the rectangle [0, 1] × [0, u], we have for the right term∫
[0,1]×[0,u]

uA(w)vw
(j)
vA(w)−w(j)

µ(j)(w)dvu = µ(j)(w)
2(1 + A(w))2 .
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For the left term, by definition, we have∫
[0,1]×[0,u]

C∞(uw(1)
, . . . , vw

(j)
, . . . , uw

(d))Ċ(j)
∞ (vw(1)

, . . . , vw
(d))dvu.

Let us consider the substitution x = vw
(j) and y = u1−w(j) , we obtain

1
w(j)(1 − w(j))

∫
[0,1]

∫
[0,yw(j)/(1−w(j))]

[
C∞

(
yw

(1)/(1−w(j)), . . . , x, . . . , yw
(d)/(1−w(j))

)]
×[

Ċ(j)
∞

(
xw

(1)/w(j)
, . . . , xw

(d)/w(j))
x(1−w(j))/w(j)

yw
(j)/(1−w(j))

]
dxy.

Let us compute the quantity

Ċ(j)
∞ (xw(1)/w(j)

, . . . , xw
(d)/w(j)) = C∞(xw(1)/w(j)

, . . . , xw
(d)/w(j))

x
µ(j)(w).

Using Equation (2.1), we have

C∞(xw(1)/w(j)
, . . . , xw

(d)/w(j)) = exp
(

−L
(

− ln(x)
w(j) w

(1), . . . ,
ln(x)
w(j) w

(d)
))

= exp
(

− ln(x)
w(j) L

(
−w(1), . . . ,−w(d)

))
= xA(w)/w(j) = xA(j)(w),

where we use the homogeneity of order one of L and that −L(−w(1), . . . ,−w(d)) = A(w) as
stated by the identity of Equation (2.2) and that w ∈ ∆d−1. Now, consider the substitution
x = w1−s and y = ws, the jacobian of this transformation is given by − ln(w), we have

− µ(j)(w)
w(j)(1 − w(j))

∫
[0,1]

∫
[0,1−w(j)]

[
C∞

(
wsw

(1)/(1−w(j)), . . . , w1−s, . . . , wsw
(d)/(1−w(j))

)]
×
[
w

(1−s)
[

A(j)(w)+ 1−w(j)

w(j) −1
]

+s w(j)

1−w(j) ln(w)
]
dsw,

where we note by A(j)(w) ≜ A(w)/w(j) with j ∈ {1, . . . , d}. We now compute the quantity

C∞
(
wsw

(1)/(1−w(j)), . . . , w1−s, . . . , wsw
(d)/(1−w(j))

)
.

Using the same techniques as above, we have that the latter is equal to

exp
(

−L
(

− sw(1)

1 − w(j) ln(w), . . . ,−(1 − s) ln(w), . . . ,− sw(d)

1 − w(j) ln(w)
))

= exp
(

− ln(w)L
(

− sw(1)

1 − w(j) , . . . ,−(1 − s), . . . ,− sw(d)

1 − w(j)

))
.

Now, using that w ∈ ∆d−1, remark that s∑i ̸=j wi/(1 − w(j)) = s, we have, using Equation
(2.2)

−L
(

− sw(1)

1 − w(j) , . . . ,−(1 − s), . . . ,− sw(d)

1 − w(j)

)
= A

(
z(j)(1 − s)

)
,
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where z = (sw(1)/(1 − w(j)), . . . , sw(d)/(1 − w(j))). So we have

γ1j(w) = −
µ(j)(w)

w(j)(1− w(j))

∫
[0,1−w(j)]

∫
[0,1]

w

A
(

z(j)(1−s)
)

+(1−s)

(
A(j)(w)+ 1−w(j)

w(j) −1

)
+s w(j)

1−w(j)
ln(w)dws

=
µ(j)(w)

w(j)(1− w(j))

∫
[0,1−w(j)]

[
A
(

z(j)(1− s)
)

+ (1− s)
(

A(j)(w) +
1− w(j)

w(j)
− 1
)

+ s
w(j)

1− w(j)
+ 1
]−2

ds.

No further simplifications can be obtained. For j < k, let us define the quantity τjk such as

p(jk)

p(j)p(k)
τjk(w) ≜ E

[∫
[0,1]

β
(j)(uw

(j)
)Ċ(j)
∞ (uw

(1)
, . . . , u

w(d)
)du

∫
[0,1]

β
(k)(vw

(k)
)Ċ(k)
∞ (vw

(1)
, . . . , v

w(d)
)dv
]
. (A.2)

Again, we have

τjk(w) =

∫
[0,1]2

(
C∞(1(jk)(uw

(j)
, v
w(j)

))− uw
(j)
v
w(j)
)
Ċ

(j)
∞ (uw

(1)
, . . . , u

w(d)
)Ċ(k)
∞ (vw

(1)
, . . . , v

w(d)
)duv.

We set x = uw
(j) and y = vw

(k) , the left side becomes

1
w(j)w(k)

∫
[0,1]2

[
C∞(1(jk)(x, y))

]
×
[
Ċ(j)
∞ (xw(1)/w(j)

, . . . , xw
(d)/w(j))

]
×
[
Ċ(k)
∞ (yw(1)/w(k)

, . . . , yw
(d)/w(k))x(1−w(j))/w(j)

y(1−w(k))/w(k)]
dxy

= µ(j)(w)µ(k)(w)
w(j)w(k)

∫
[0,1]2

C∞(1(jk)(x, y))xA(j)(w)+(1−w(j))/w(j)−1yA(k)(w)+(1−w(k))/w(k)−1dxy.

Now, we set x = w1−s and y = ws and we obtain

τjk(w) = µ(j)(w)µ(k)(w)
w(j)w(k)

∫
[0,1]

[
A(0(jk)(1 − s, s))

+(1 − s)
(

A(j)(w) + 1 − w(j)

w(j) − 1
)

+ s

(
A(k)(w) + 1 − w(k)

w(k) − 1
)

+ 1
]−2

ds.

The right side of Equation (A.2) is given by∫
[0,1]2

uw
(j)
vw

(k)
Ċ(j)
∞ (uw(1)

, . . . , uw
(d))Ċ(k)

∞ (vw(1)
, . . . , vw

(d))duv = µ(j)(w)µ(k)(w)
(1 + A(w))2 .

Hence the result for σ2
d+1(w). Using the same techniques, we show that for j ∈ {1, . . . , d}

σ2
j (w) =

∫
[0,1]2

(u ∧ v)w(j) − uw
(j)
vw

(j)
duv = 1

(1 + w(j))2
w(j)

2 + w(j) .
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For j < k, we compute

σjk(w) =

∫
[0,1]2

C∞(1(jk)(uw
(j)
, v
w(k)

))− uw
(j)
v
w(k)

duv

=
1

w(j)w(k)

∫
[0,1]

[
A(0(jk)(1− s, s)) + (1− s)

1− w(j)

w(j)
+ s

1− w(k)

w(k)
+ 1
]−2

ds−
1

1 + w(j)
1

1 + w(k)
.

Let j ∈ {1, . . . , d}, thus

σ
(1)
j (w) =

∫
[0,1]2

C∞
(
uw

(1)
, . . . , (u ∧ v)w(j)

, . . . , uw
(d))− C∞(uw(1)

, . . . , uw
(d))vw(j)

ds

= 1
w(j)(1 − w(j))

∫
[0,1]

[
A(z(j)(1 − s)) + (1 − s)1 − w(j)

w(j) + s
w(j)

1 − w(j) + 1
]−2

ds

+ 1
1 + A(w)

[ 1
2 + A(w) − 1

1 + w(j)

]
.

Now, for σ(2)
jk , we have to consider three cases :

• if j = k, we directly have

σ
(2)
jk (w) = 0,

• if j < k, we obtain

σ
(2)
jk

(w) =
µ(k)(w)

w(j)w(k)

∫
[0,1]

[
A(0(jk)(1− s, s)) + (1− s)

1− w(j)

w(j)
+ s

(
A(k)(w) +

1− w(k)

w(k)
− 1
)

+ 1
]−2

ds−
µ(k)(w)
1 + A(w)

1

1 + w(j)
,

• if j > k, we have

σ
(2)
jk

(w) =
µ(k)(w)

w(j)w(k)

∫
[0,1]

[
A(0(kj)(1− s, s)) + s

1− w(j)

w(j)
+ (1− s)

(
A(k)(w) +

1− w(k)

w(k)
− 1
)

+ 1
]−2

ds−
µ(k)(w)
1 + A(w)

1

1 + w(j)
.

Hence the statement.

The following lines will give some details to establish the explicit formula of the asymptotic
variance when we suppose that components of the random vector X are independent. In this
framework, we have that µ(j)(w) = 1 for every j ∈ {1, . . . , d} and thus Ċ(j)

∞ (uw(1)
, . . . , uw

(d)) =
u1−w(j) . Furthermore, in the independent case, most of the integrals are reduced to zero.

Proof of Corollary 2.2.1 In the term σ2
d+1 given in Equation (A.1), only the terms γ2

1 , γ2
j

and γ1j matter because, in the independent case :

τjk(w) =
∫

[0,1]2

(
uw

(j)
vw

(k) − uw
(j)
vw

(k))
Ċ(j)
∞ (uw(1)

, . . . , uw
(d))Ċ(k)

∞ (vw(1)
, . . . , vw

(d))duv = 0.

For γ1j , we have to compute

γ1j(w) = 2
∫

[0,1]×[0,v]
u(1 − vw

(j))v1−w(j)
duv = 1

4
w(j)

4 − w(j) .
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For γ2
1 and γ2

j , we just have to set A(w) = 1 in their respective expressions to obtain :

γ2
1(w) = 1

12 , γ2
j = 1

4
w(j)

4 − w(j) .

We thus have

σ2
d+1(p,w) = 1

4

 1
3p −

d∑
j=1

(p(j))−1 w(j)

4 − w(j)

 .
Other computations follow from the same arguments.

We are now going to prove Proposition 2.2.2. The strong consistency of the our estimators will
be established in a two-step process : first, we prove the strong consistency of the estimator
νn(w) which is the nonparametric estimator of the w-madogram with known margins and,
second, we show that the limit of

sup
j∈{1,...,d}

sup
i∈{1,...,n}

∣∣∣∣(Ũ (j)
i )1/w(j) −

{
F (j)(X̃(j)

i )
}1/w(j)∣∣∣∣ ,

is zero almost surely. Before going into the main arguments, we need the following lemma.

Lemma A.1.2. We have, ∀i ∈ {1, . . . , n}∣∣∣∣∣∣
d∨
j=1

(Ũ (j)
i )1/w(j) −

d∨
j=1

{
F (j)(X(j))

}1/w(j)

∣∣∣∣∣∣ ≤ sup
j∈{1,...,d}

∣∣∣∣ (Ũ (j)
i )1/w(j) −

{
F (j)(X(j))

}1/w(j)
∣∣∣∣ .

The proof of Lemma A.1.2 is postponed to Section A.1.2.

Proof of Proposition 2.2.2 We prove it for ν̂Hn (w) as the strong consistency for ν̂H∗n (w)
uses the same arguments. The estimator ν̂Hn (w) in (2.10) is strongly consistent since it holds∣∣∣ν̂Hn (w) − ν(w)

∣∣∣ =
∣∣∣ν̂Hn (w) − νn(w) + νn(w) − ν(w)

∣∣∣ ≤
∣∣∣ν̂Hn (w) − νn(w)

∣∣∣+ |νn(w) − ν(w)| ,

where

νn(w) = 1
N

n∑
i=1

 d∨
j=1

{
F (j)(X̃(j)

i )
}1/w(j)

− 1
d

d∑
j=1

{
F (j)(X̃(j)

i )
}1/w(j)

Πd
j=1I

(j)
i

 .
By direct application of Condition B and the law of large number, we have that

|νn(w) − ν(w)| a.s.→
n→∞

0
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For the second term, we write :

∣∣∣ν̂Hn (w) − ν(w)
∣∣∣ ≤ 1

N

n∑
i=1

∣∣∣∣∣∣
d∨
j=1

(Ũ (j)
i )1/w(j) −

d∨
j=1

{
F (j)(X̃(j)

i )
}1/w(j)

∣∣∣∣∣∣Πd
j=1I

(j)
i

+ 1
Nd

n∑
i=1

d∑
j=1

∣∣∣∣(Ũ (j)
i )1/w(j) −

{
F (j)(X̃(j)

i )
}1/w(j)∣∣∣∣Πd

j=1I
(j)
i

≤2 sup
j∈{1,...,d}

sup
i∈{1,...,n}

∣∣∣∣(Ũ (j)
i )1/w(j) −

{
F (j)(X̃(j)

i )
}1/w(j)∣∣∣∣ ,

where we used Lemma A.1.2 to obtain the second inequality. The right term converges almost
surely to zero by Glivenko-Cantelli Theorem and the uniform continuity of x 7→ x1/w(j) on
[0, 1].

Finally, we give some elements to establish Corollary 2.2.2. The strong consistency follows
directly from the stability of the almost surely convergence through a continuous fuction. The
weak convergence comes down from the functional Delta method (see, e.g., Theorem 3.9.4 of
van der Vaart and Wellner (1996)) and from result in Proposition 2.2.1.

Proof of Corollary 2.2.2 Applying the functional Delta method, we have as n → ∞,

√
n
(

ÂH∗n (w)− A(w)
)
⇝ − (1 + A(w))2

{
1
d

d∑
j=1

(
1 + λ

(j)(w)(d− 1)
)∫

[0,1]

α(1(j)(xw
(j)

))− β(j)(xw
(j)

)dx

−

∫
[0,1]

SC∞ (xw
(1)
, . . . , x

w(d)
dx)
}

w∈∆d−1

.

For a fixed w ∈ ∆d−1, as a linear transformation of a tight Gaussian process, it follows that
√
n
(

ÂH∗n (w) − A(w)
)

d→
n→∞

N (0,V(p,w)) ,

with, by definition

V(p,w) ≜ V ar
(
− (1 + A(w))2

{
1
d

d∑
j=1

(
1 + λ

(j)(w)(d− 1)
)∫

[0,1]

α(1(j)(xw
(j)

))− β(j)(xw
(j)

)dx

−

∫
[0,1]

SC∞ (xw
(1)
, . . . , x

w(d)
)
}
dx

)
= (1 + A(w))4SH∗(p,w),

where we used Proposition 2.2.1 to conclude.

A.1.2 Proofs of auxiliary results

Proof of Lemma A.1.1 Following Segers (2015) Example 3.5, we consider the functions
from {0, 1}d × Rd into R : for x ∈ Rd, and j ∈ {1, . . . , d}

F (j)(I,X) = 1{I(j)=1}, gj,x(j)(I,X) = 1{X(j)≤x(j),I(j)=1}, fd+1 = Πd
j=1F

(j), gd+1,x = Πd
j=1gj,x(j) .
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Let P denote the common distribution of the tuple (I,X). The collection of functions

F = {f1, . . . , fd, fd+1} ∪
d⋃
j=1

{gj,x(j) , x(j) ∈ R} ∪ {gd+1,x,x ∈ Rd}

is a finite union of VC-classes and thus P -Donsker (for more information, see Chapter 2.6 of
van der Vaart and Wellner (1996)). The empirical process Gn defined by

Gn(f) =
√
n

(
1
n

n∑
i=1

f(Ii,Xi) − E[f(Ii,Xi)]
)
, f ∈ F ,

converges in ℓ∞(F) to a P -brownian bridge G. For x ∈ Rd,

F̂ (j)
n (x(j)) =

p(j)F (j)(x(j)) + n−1/2Gngj,x(j)

p(j) + n−1/2Gnfj
,

F̂n(x) = pF (x) + n−1/2Gngd+1,x
p+ n−1/2Gnfd+1

.

We obtain for the second one

p
(
F̂n(x) − F (x)

)
= n−1/2

(
Gn(gd+1,x) − F̂n(x)Gn(fd+1)

)
= n−1/2 (Gn(gd+1,x − F (x)fd+1)) − n−1/2Gn(fd+1)(F̂n(x) − F (x)).

We thus have
√
n
(
F̂n(x) − F (x)

)
= p−1 (Gn(gd+1,x − F (x)fd+1)) − p−1Gn(fd+1)(F̂n(x) − F (x)).

Applying the central limit theorem and Condition B gives that Gn(fd+1) d→ N (0,P(fd+1 −
Pfd+1)2), the law of large numbers gives also F̂n(x) − F (x) = ◦P(1). Using Slutsky’s lemma
gives us √

n
(
F̂n(x) − F (x)

)
= p−1 (Gn(gd+1,x − F (x)fd+1)) + ◦P(1).

Similar reasoning might be applied to the margins, as a consequence, Condition C is fulfilled
with for u ∈ [0, 1]d,

β(j)(u(j)) = (p(j))−1G
(
gj,(F (j))←(u(j)) − u(j)F (j)

)
,

α(u) = p−1G
(
gd+1,(F(d))←(u) − C∞(u)fd+1

)
.

Let us compute one covariance function, the method still the same for the others, without loss
of generality, suppose that j < k, we have for u(j), v(k) ∈ [0, 1]
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cov(β(j)(u(j)), β(k)(v(k))) = E
[

(p(j))−1G
(
g
j,(F (j))←(u(j))

− u(j)
F

(j)
)

(p(k))−1G
(
g
k,(F (k))←(v(k))

− v(k)
fk

)]
=

1

p(j)p(k)
E
[
G
(
g
j,(F (j))←(u(j))

− u(j)
F

(j)
)
G
(
g
k,(F (k))←(v(j))

− v(k)
fk

)]
=

1

p(j)p(k)
P
{
X

(j) ≤ (F (j))←(u(j)), X(k) ≤ (F (k))←(v(k)), I(j) = 1, I(k) = 1
}

−
p(jk)

p(j)p(k)
u

(j)
v

(k)

=
1

p(j)p(k)
P
{
X

(j) ≤ (F (j))←(u(j)), X(k) ≤ (F (k))←(v(k))
}

P
{
I

(j) = 1, I(k) = 1
}

−
p(jk)

p(j)p(k)
u

(j)
v

(k)

=
p(jk)

p(j)p(k)

(
C∞(1(jk)(u(j)

, v
(k)))− u(j)

v
(k)
)
.

Hence the result.

Proof of Lemma A.1.2 The lemma becomes trivial once we write, ∀i ∈ {1, . . . , n} and
j ∈ {1, . . . , d}

(Ũ (j)
i )1/w(j) =

{
F (j)(X(j))

}1/w(j)

+ (Ũ (j)
i )1/w(j) −

{
F (j)(X(j))

}1/w(j)

≤
{
F (j)(X(j))

}1/w(j)

+ sup
j∈{1,...,d}

∣∣∣∣(Ũ (j)
i )1/w(j) −

{
F (j)(X(j))

}1/w(j) ∣∣∣∣
≤

d∨
j=1

{
F (j)(X(j))

}1/w(j)

+ sup
j∈{1,...,d}

∣∣∣∣(Ũ (j)
i )1/w(j) −

{
F (j)(X(j))

}1/w(j) ∣∣∣∣ .
Taking the max over j ∈ {1, . . . , d} gives

d∨
j=1

(Ũ (j)
i )1/w(j) −

d∨
j=1

{
F (j)(X(j))

}1/w(j)

≤ sup
j∈{1,...,d}

∣∣∣∣(Ũ (j)
i )1/w(j) −

{
F (j)(X(j))

}1/w(j) ∣∣∣∣ .
Moreover, by symmetry of Ũ (j)

i and F (j), the second one follows similarly.
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Chapter 3

High-dimensional variable
clustering based on maxima of a
weakly dependent random process

This chapter is based on work currently under revision for publication in an international
peer-reviewed journal.

Alexis Boulin, Elena Di Bernardino, Thomas Laloë, Gwladys Toulemonde
(2023), High-dimensional variable clustering based on maxima of a weakly
dependent random process.

Abstract.
We propose a new class of models for variable clustering called Asymptotic Independent block (AI-
block) models, which defines population-level clusters based on the independence of the maxima of
a multivariate stationary mixing random process among clusters. This class of models is identifiable,
meaning that there exists a maximal element with a partial order between partitions, allowing for
statistical inference. We also present an algorithm depending on a tuning parameter that recovers
the clusters of variables without specifying the number of clusters a priori. Our work provides
some theoretical insights into the consistency of our algorithm, demonstrating that under certain
conditions it can effectively identify clusters in the data with a computational complexity that
is polynomial in the dimension. A data-driven selection method for the tuning parameter is also
proposed. To further illustrate the significance of our work, we applied our method to neuroscience
and environmental real-datasets. These applications highlight the potential and versatility of the
proposed approach.

3.1 Introduction
Motivation Multivariate extremes arise when two or more extreme events occur simultaneously.
These events are of prime interest to assess natural hazard, stemming from heavy rainfall, wind
storms and earthquakes since they are driven by joint extremes of several of meteorological
variables. Results from multivariate extreme value theory show that the possible dependence
structure of extremes satisfy certain constraints. Indeed, the dependence structure may be
described in various equivalent ways (Beirlant et al. (2004)): by the exponent measure (Balkema
and Resnick (1977)), by the Pickands dependence function (Pickands (1981)), by the stable tail
dependence function (Huang (1992)), by the madogram (Naveau et al. (2009), Chapter 2), and
by the extreme value copula (Gudendorf and Segers (2010)).

While the modeling of univariate and low-dimensional extreme events has been well-studied,
it remains a challenge to model multivariate extremes, particularly when multiple rare events
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may occur simultaneously. Recent research in this area has focused on connecting the study of
multivariate extremes to modern statistical and machine learning techniques. The general idea of
the proposed methods is to identify groups of variables that may become large without affecting
the others, also referred to as extreme direction. Goix et al. (2016) focus on identifying extreme
directions, thus providing a sparse representation of the extremal dependence. Chiapino et al.
(2019) proposed an incremental-type algorithm for scenarios with a high number of extreme
directions. Janßen and Wan (2020) identify extreme directions by adapting the spherical K-
means (sKmeans) clustering algorithm to the extremal setting and construct a nonparametric
estimator for the theoretical cluster centers. Lastly, Meyer and Wintenberger (2021, 2023) frame
extreme directions within what they call sparse regular variation. Our work is aligned with
these directions of research as we propose a clustering algorithm for learning the dependence
structure of multivariate extremes and, withal, to bridge important ideas from modern statistics
and machine learning to the framework of extreme-value theory.

It is possible to perform clustering on X1, . . . ,Xn, where n is the number of observations of
a random vector X ∈ Rd, through two different approaches: by partitioning the set of row
indices {1, . . . , n} or by partitioning the set of column indices {1, . . . , d}. The first problem is
known as the data clustering problem, while the second is called the variable clustering problem,
which is the focus of this paper. In data clustering, observations are drawn from a mixture
distribution, and clusters correspond to different realizations of the mixing distribution, which
is a distribution over all of Rd.

The problem of variable clustering (see, e.g., Bunea et al. (2020)) involves grouping similar
components of a random vector X = (X(1), . . . , X(d)) into clusters. The goal is to recover these
clusters from observations X1, . . . ,Xn. Instead of clustering similar observations based on a
dissimilarity measure, the focus is on defining cluster models that correspond to subsets of the
components X(j) of X ∈ Rd. The goal is to cluster similar variables such that variables within
the same cluster are more similar to each other than they are to variables in other clusters.
Variable clustering is of particular interest in the study of weather extremes, with examples
in the literature on regionalization (Bador et al. (2015); Bernard et al. (2013); Saunders et al.
(2021)), where spatial phenomena are observed at a limited number of sites. A specific case
of interest is clustering these sites according to their extremal dependencies. This can be
done using techniques such as k-means or hierarchical clustering with a dissimilarity measure
designed for extremes. However, the statistical properties of these procedures have not been
extensively studied, and it is not currently known which probabilistic models on X can be
estimated using these techniques. In this paper, we consider model-based clustering, where the
population-level clusters are well-defined, offering interpretability and a benchmark to evaluate
the performance of a specific clustering algorithm.

The assumption that data are realizations of independent and identically distributed (i.i.d.)
random variables is a fundamental assumption in statistical theory and modeling. However,
this assumption is often unrealistic for modern datasets or the study of time series. Developing
methods and theory to handle departures from this assumption is an important area of research
in statistics. One common approach is to assume that the data are drawn from a multivariate
stationary and mixing random process, which implies that the dependence between observations
weakens over the trajectory. This assumption is widely used in the study of non-i.i.d. processes.
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3.2 A model for variable clustering

Our contribution is twofold. First, we develop a probabilistic setting for Asymptotic Independent
block (AI-block) models to address the problem of clustering extreme values of the target
vector. These models are based on the assumption that clusters of components of a multivariate
random process are independent relative to their extremes. This approach has the added
benefit of being amenable to theoretical analysis, and we show that these models are identifiable
(see Theorem 3.2.1). Second, we motivate and derive an algorithm specifically designed for
these models (see Algorithm (ECO)). We analyze its performance in terms of exact cluster
recovery for minimally separated clusters, using a cluster separation metric (see Theorem 3.3.1).
The issue is investigated in the context of nonparametric estimation over block maxima of a
multivariate stationary mixing random process, where the block length is a tuning parameter.

Notations All bold letters x correspond to vectors in Rd. Let O = {Og}g=1,...,G be a partition
of {1, . . . , d} into G groups and let s : {1, . . . , d} → {1, . . . , G} be a variable index assignment
function, thus Og = {a ∈ 1, . . . , d : s(a) = g} = {ig,1, . . . , ig,dg} with d1 + · · · + dG = d. Using
these notations, the variable X(ig,ℓ) should be read as the ℓth element from the gth cluster.
By considering B ⊆ {1, . . . , d}, we denote the |B|-subvector of x by x(B) = (x(j))j ∈ B. We
denote by X ∈ Rd a random vector with cumulative distribution function H and X(B) a random
subvector of X with marginal distribution H(B) whose domain is R|B|. Remark that when
B = {1, . . . , d}, one has H = H(B). Classical inequalities of vectors such as x > 0 should be
understood componentwise. The notation δx corresponds to the Dirac measure at x. Let X(Og),
g ∈ {1, . . . , G} be random vectors with X = (X(O1), . . . ,X(OG)), we recall that X(O1), . . . ,X(OG)

are independent if and only if H(x) = ΠG
g=1H

(Og)
(
x(Og)

)
,x ∈ Rd.

Structure of the chapter In Section 3.2, we provide background on extreme-value theory
and describe the probabilistic framework of AI-block models. We show that these models are
identifiable and provide a series of equivalent characterizations. In Section 3.3, we develop a
new clustering algorithm for AI-block models and prove that it can recover the target partition
with high probability under mixing conditions over the random process. We provide a process
that satisfies our probabilistic and statistical assumptions in Section 3.4. We illustrate the
finite sample performance of our approach on simulated datasets in Section 3.5. To exemplify
further motivation for our research, we applied our method to real-data from neuroscience and
environmental sciences, as discussed in Section 3.6.

3.2 A model for variable clustering

3.2.1 Background setting

Consider Zt = (Z(1)
t , . . . , Z

(d)
t ), where t ∈ Z is a strictly stationary multivariate random

process. Let Mm = (M (1)
m , . . . ,M

(d)
m ) be the vector of component-wise maxima, where

M (j)m = max i = 1, . . . ,mZ(j)
i . Consider a random vector X = (X(1), . . . , X(d)) with cu-

mulative distribution function H. A normalizing function a on R is a non-decreasing, right
continuous function that goes to ±∞ as x → ±∞. In extreme value theory (see, for example,
the monograph of Beirlant et al. (2004)), a fundamental problem is to characterize the limit
distribution H in the following limit:

lim
m→∞

P {Mm ≤ am(x)} = H(x), (3.1)
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where am = (a(1)
m , . . . , a

(d)
m ) with a

(j)
m , 1 ≤ j ≤ d are normalizing functions and H is a non-

degenerate distribution. Typically, H is an extreme value distribution, and X is a max-stable
random vector with generalized extreme value margins. In this case, we can write:

P {X ≤ x} = exp {−Λ(E \ [0,x])} ,

where Λ is a Radon measure on the punctured cone E = [0,∞)d \ 0. When (3.1) holds with
H an extreme value distribution, the process (Zt, t ∈ Z) is said to be in the max-domain
of attraction of the random vector X with cumulative distribution function H, denoted as
L((Zt, t ∈ Z)) ∈ D(H), where L((Zt, t ∈ Z)) is the law of the stationary time series (Zt, t ∈ Z)
on (Rd)Z. In our context of a dependent process (Zt, t ∈ Z), the limit in (3.1) will in general
be different from a multivariate extreme value distribution, see, e.g., (Bücher and Segers,
2014, Section 4.1), and further conditions over the regularity (or mixing conditions, please
refer to Section 1.1.4 for definitions) are thus needed to obtain a multivariate extreme value
distribution. In particular, if the random process (Zt, t ∈ Z) is β-mixing, then (3.1) holds with
H a multivariate extreme value distribution.

The max-domain of attraction can be described in the language of copulae. Subsequently, we
assume that the marginals of Z(1)

1 , . . . , Z
(d)
1 are continuous and we denote by Cm the unique

copula associated with Mm. More precisely, the max-domain of attraction condition in Equation
(3.1) is equivalent to a max-domain of attraction condition on the levels of copulae (see Condition
A below) and a max-domain of attraction for each margin.

Condition A. There exists a copula C∞ such that

lim
m→∞

Cm(u) = C∞(u), u ∈ [0, 1]d.

Specifically, when Equation (3.1) holds, Condition A is satisfied, and consequently, the copula
associated with H is C∞. Typically, the limit C∞ is an extreme value copula, that is, the
copula C∞ is max-stable C∞(u1/s)s = C∞(u), for all s > 0 and it can be expressed as follows
for u ∈ [0, 1]d:

C∞(u) = exp
{

−L
(
− ln(u(1)), . . . ,− ln(u(d))

)}
,

where L : [0,∞]d → [0,∞] is the associated stable tail dependence function (see Gudendorf and
Segers (2010) for an overview of extreme value copulae). However, C∞ is in general different
from the extreme value copula, denoted C iid

∞ , obtained when the process (Zt, t ∈ Z) is serially
independent (see, e.g., (Bücher and Segers, 2014, Section 4.1)).

As L is an homogeneous function of order 1, i.e., L(az) = aL(z) for all a > 0, we have, for all
z ∈ [0,∞)d,

L(z) = (z(1) + · · · + z(d))A(t),

with t(j) = z(j)/(z(1) + · · · + z(d)) for j ∈ {2, . . . , d}, t(1) = 1 − (t(2) + · · · + t(d)), and A is the
restriction of L into the d-dimensional unit simplex, viz.

∆d−1 = {(v(1), . . . , v(d)) ∈ [0, 1]d : v(1) + · · · + v(d) = 1}.

The function A is known as the Pickands dependence function and is often used to quantify
the extremal dependence among the elements of X. Indeed, A satisfies the constraints 1/d ≤
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max(t(1), . . . , t(d)) ≤ A(t) ≤ 1 for all t ∈ ∆d−1, with lower and upper bounds corresponding to
the complete dependence and independence among maxima. For the latter, it is commonly
said that the stationary random process (Zt, t ∈ Z) exhibits asymptotic independence, i.e.,
the multivariate extreme value distribution H in the max-domain of attraction is equal to the
product of its marginal extreme value distributions.

3.2.2 Proposed AI-block models

In this paper, our main focus is to identify disjoint groups of variables that may simultaneously
be large without affecting the other groups. We thus introduce a novel class of models called
AI-block models for variable clustering. These models define population-level clusters as groups
of variables that exhibit dependence within clusters but extremes are independent from variables
in other clusters. Formally, these variables can be partitioned into an unknown number, denoted
as G, of clusters represented by O = {O1, . . . , OG}. Within each cluster, the variables display
dependence, while the clusters themselves are asymptotically independent. In this section, our
primary focus is on the identifiability of the model, specifically addressing the existence of a
unique maximal element according to a specific partial order on the partition. We provide an
explicit construction of this maximal element, which represents the thinnest partition where
the desired property holds. This maximal element serves as a target for statistical inference
within our framework.

In a different framework, consider X(O1), . . . ,X(OG) be arbitrary random subvectors with
marginal copulae C(O1), . . . , C(OG) respectively. Independence between random vectors holds
if and only if the underlying copula of X = (X(O1), . . . ,X(Og)) is the product of the marginal
copulae. This statement also holds for marginal extreme value copulae C(O1)

∞ , . . . , C
(OG)
∞ with

the property that the copula of X is again an extreme value copula.

Proposition 3.2.1. Let X(O1), . . . ,X(OG) be independent extreme value random vectors with
extreme value copulae C(O1)

∞ , . . . , C
(OG)
∞ . Then the function C∞ defined as

C∞ : [0, 1]d −→ [0, 1]
u 7−→ ΠG

g=1C
(Og)
∞ (u(ig,1), . . . , u(ig,dg )),

is an extreme value copula associated to the random vector X = (X(O1), . . . ,X(OG)).

As a result, a random vector X that exhibits (asymptotic) independence between extreme-valued
subvectors therefore inherits this extreme-valued property. Using the definitions and notations
so far introduced in this work, we now present the definition of our model.

Definition 3.2.1 (Asymptotic Independent-block model). Let (Zt, t ∈ Z) be a d-variate
stationary random process and X a random vector with cumulative distribution function H,
a multivariate extreme value distribution with copula C∞. The random process (Zt, t ∈ Z)
is said to follow an AI-block model if L((Zt, t ∈ Z)) ∈ D(H) and there exists a partition
O = {O1, . . . , OG} of {1, . . . , d} with C∞(u) = ΠG

g=1C
(Og)
∞ (u(Og)).

Notice that, when G = 1, the definition of AI-block models thus reduces to L((Zt, t ∈ Z)) ∈
D(H).
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Following Bunea et al. (2020), we introduce the following notation in our framework. We say
that (Zt, t ∈ Z) follows an AI-block model with a partition O, denoted L((Zt, t ∈ Z)) ∼ O.
We define the set O((Zt, t ∈ Z)) = {O : O is a partition of {1, . . . , d} and L((Zt, t ∈ Z)) ∼ O},
which is nonempty and finite, and therefore has maximal elements. We introduce a partial
order on partitions as follows: let O = {Og}g and {Sg′}g′ be two partitions of {1, . . . , d}. We
say that S is a sub-partition of O if, for each g′, there exists g such that Sg′ ⊆ Og. We define
the partial order ≤ between two partitions O and S of {1, . . . , d} as follows:

O ≤ S, if S is a sub-partition of O. (3.2)

For any partition O = {Og}1≤g≤G, we write a
O∼ b where a, b ∈ {1, . . . , d} if there exists

g ∈ {1, . . . , G} such that a, b ∈ Og.

Definition 3.2.2. For any two partitions O,S of {1, . . . , d}, we define O ∩ S as the partition
induced by the equivalence relation a

O∩S∼ b if and only if a O∼ b and a
S∼ b.

Checking that a O∩S∼ b is an equivalence relation is straightforward. With this definition, we
have the following interesting properties that lead to the desired result, the identifiability of
AI-block models.

Theorem 3.2.1. Let (Zt, t ∈ Z) be a stationary random process. The following properties hold:

(i) Consider O ≤ S. Then L((Zt, t ∈ Z)) ∼ S implies L((Zt, t ∈ Z)) ∼ O,
(ii) O ≤ O ∩ S and S ≤ O ∩ S,

(iii) L((Zt, t ∈ Z)) ∼ O and L((Zt, t ∈ Z)) ∼ S is equivalent to L((Zt, t ∈ Z)) ∼ O ∩ S,
(iv) The set O((Zt, t ∈ Z)) has a unique maximum Ō, with respect to the partition partial order ≤

in (3.2).

The proof demonstrates that, for any partition such that L((Zt, t ∈ Z)) follows an AI-block
model, there exists a maximal partition, denoted by Ō, and its structure is intrinsic to
the definition of the extreme random vector X. This partition, which represents the thinnest
partition where L((Zt, t ∈ Z)) is asymptotically independent per block, matches our expectations
for a reasonable clustering target in these models. Also, a careful reading of the proof shows
that this statement can also hold for the setting of mutually independent random vectors.

3.2.3 Extremal dependence structure for AI-block models

In extreme value theory, independence between the components X(1), . . . , X(d) of an random
vector with extreme value distribution H can be characterized in a useful way: according to
(Takahashi, 1994, Theorem 2.2), total independence of X is equivalent to the existence of a vector
p = (p(1), . . . , p(d)) ∈ Rd such that H(p) = H(1)(p(1)) . . . H(d)(p(d)). This characterization were
extended for the independence of a multivariate extreme value distribution to its multivariate
marginals from (Ferreira, 2011, Proposition 2.1), i.e., it holds that H(x) = ΠG

g=1H
(Og)(x(Og))

for every x ∈ Rd if and only if there exists p ∈ Rd such that 0 < H(Og)(p(Og)) < 1 for every
g ∈ {1, . . . , G} and H(p) = ΠG

g=1H
(Og)(p(Og)). An alternative proof of this result, which

involves the spectral measure, along with additional characterizations of extremal dependence
structures in AI-block models, is presented in Appendix B.2.1. One direct application of this
result in AI-block models is that X(O1), . . . ,X(OG) are independent if and only if L (1, . . . , 1) =∑G
g=1 L

(Og)
(
1(Og)

)
.
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3.2 A model for variable clustering

Definition 3.2.3 (Sum of Extremal COefficients (SECO)). The extremal coefficient of a
random vector X with copula C∞ is defined as (see Smith (1990)):

θ := θ({1,...,d}) = L(1, . . . , 1), (3.3)

where L is the stable tail dependence function. For a partition O = {O1, . . . , OG} of {1, . . . , d},
we define θ(Og) = L(Og)(1(Og)), as the extremal coefficient of the subvectors X(Og) where
dg = |Og| is the size of the set Og and L(Og) is the stable tail dependence function associated
to C(Og)

∞ . Using these coefficients, we define the following quantity SECO as

SECO(O) =
G∑
g=1

θ(Og) − θ. (3.4)

The extremal coefficient satisfies 1 ≤ θ ≤ d where the lower and upper bounds correspond to
the complete dependence and independence among maxima, respectively. The Sum of Extremal
Coefficient (SECO) serves as a quantitative measure that assesses how much the sum of extremal
coefficients for subvectors X(Og) deviates from the extremal coefficient of the full vector X.
When the SECO equals 0, it signifies that the subvectors X(O1), . . . ,X(OG) form an independent
partition (see (Ferreira, 2011, Proposition 2.1)). In other words, these subvectors exhibit
asymptotic independence, irrespective of any underlying distributional assumptions. Therefore,
the SECO, as defined in Equation (3.4), is a valuable tool for capturing the asymptotic
independent block structure of the random vector X, and it offers the dual advantages of
computational feasibility and being free from parametric assumptions, as discussed in Section
3.3.4.

Additionally, we establish a condition based on the extremal dependence of each cluster, which
allows us to introduce a straightforward yet robust algorithm. This algorithm facilitates the
comparison of pairwise extreme dependence between vector components, enabling us to draw
informed conclusions about the dependence structures using only pairwise comparisons. It
provides a practical means of assessing and quantifying the relationships among the various
components of the vector, aiding in the analysis of complex high-dimensional data.

Condition B. For every g ∈ {1, . . . , G}, the extreme value random subvector X(Ōg) of X
where the latter is given in Definition 3.2.1 and Ōg is the maximal element of O((Zt, t ∈ Z)) in
Theorem 3.2.1, exhibits dependence between all of its components.

One sufficient condition to satisfy Condition B is to suppose that the exponent measure of
the random subvector X(Ōg) has nonnegative Lebesgue densities on the nonnegative orthant
[0,∞)dg \{0(Ōg)}, for every g ∈ {1, . . . , G} (see, e.g., Engelke and Hitz (2020) and the associated
discussions). This condition implies that components within a cluster are simultaneously large.
Various classes of tractable extreme value distributions satisfy Condition B. These popular
models, commonly used for statistical inference, include the asymmetric logistic model (Tawn
(1990)), the asymmetric Dirichlet model (Coles and Tawn (1991)), the pairwise Beta model
(Cooley et al. (2010)) or the Hüsler Reiss model (Hüsler and Reiss (1989)).
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3.3 Consistent estimation of minimaly separated clusters

3.3.1 Multivariate tail coefficient

Throughout this section, assume that we observe one excerpt Z1 . . . ,Zn from a d-dimensional
stationary random process (Zt, t ∈ Z) that satisfies Definition 3.2.1. The sample of size n of
(Zt, t ∈ Z) is divided into k blocks of length m, so that k = ⌊n/m⌋, the integer part of n/m
and there may be a remaining block of length n− km. For the i-th block, the maximum value
in the j-th component is denoted by

M
(j)
m,i = max

{
Z

(j)
t : t ∈ (im−m, im] ∩ Z

}
.

Let us denote by Mm,i = (M (1)
m,i, . . . ,M

(d)
m,i) the vector of the componentwise maxima in the i-th

block. For a fixed block length m, the sequence of block maxima (Mm,i)i forms a stationary
process that exhibits the same regularity of the process (Zt, t ∈ Z). The distribution functions
of block maxima are denoted by

Fm(x) = P {Mm,1 ≤ x} , F (j)
m (X(j)) = P

{
M

(j)
m,1 ≤ X(j)

}
,

with x ∈ Rd and j ∈ {1, . . . , d}. Denote by U (j)
m,1 = F

(j)
m (M (j)

m,1) the unobservable uniform margin
of M (j)

m,1 with j ∈ {1, . . . , d}. Let Cm be the unique (as the margins of Mm,1 are continuous)
copula of Fm. Then, from Condition A, Cm is in the domain-of-attraction of a copula C∞.
By (Hsing, 1989, Theorem 4.2), C∞ is an extreme value copula if the time series (Zt, t ∈ Z) is
β-mixing.

One way to measure tail dependence for a d-dimensional extreme value random vector is through
the use of the extremal coefficient, as defined in Equation (3.3). According to Schlather and
Tawn (2002), the coefficient θ can be interpreted as the number of independent variables that
are involved in the given random vector. Let x ∈ R and θm(x) be the extremal coefficient for
the vector of maxima Mm,1, which is defined by the following relation:

P


d∨
j=1

U
(j)
m,1 ≤ x

 = P{U (1)
m,1 ≤ x}θm(x).

Under Condition A, the coefficient θm(x) of the componentwise maxima Mm,1 converges to
the extremal coefficient θ of the random vector X, that is:

θm(x) −→
m→∞

θ, ∀x ∈ R.

It is worth noting that θ is a constant since X is a multivariate extreme value distribution. To
generalize the bivariate madogram for the random vectors Mm,1 we follow the same approach
as in Chapter 2 and define:

νm = E

 d∨
j=1

U
(j)
m,1 − 1

d

d∑
j=1

U
(j)
m,1

 , ν = E

 d∨
j=1

H(j)(X(j)) − 1
d

d∑
j=1

H(j)(X(j))

 . (3.5)
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Condition A implies that the distribution of Mm,1 converges to a multivariate extreme distri-
bution with copula C∞. A common approach for estimating the extremal coefficient in this
scenario consists of supposing that the sample follows exactly the extreme value distribution
and to consider θm(x) := θm where the latter quantity is defined as the pre-asymptotic extremal
coefficient (see, for example, Engelke and Volgushev (2022) for a similar terminology) which is
constant for every x. Thus, we have

θm = 1/2 + νm
1/2 − νm

, 1 ≤ θm ≤ d.

One issue with the pre-asymptotic extremal coefficient is that it is misspecified, as extreme
value distributions only arise in the limit as the block size m tends to infinity, while in practice
we must use a finite sample size. We study this misspecification error in Section 3.3.3. A plug-in
estimation process can be obtained using:

θ̂n,m = 1/2 + ν̂n,m
1/2 − ν̂n,m

, (3.6)

where ν̂n,m is an estimate of νm obtained using:

ν̂n,m = 1
k

k∑
i=1

 d∨
j=1

Û
(j)
n,m,i − 1

d

d∑
j=1

Û
(j)
n,m,i

 , (3.7)

and (Û (j)
n,m,1, . . . , Û

(j)
n,m,k) are the empirical counterparts of (U (j)

m,1, . . . , U
(j)
m,k) or, equivalently,

scaled ranks of the sample. A data-driven method for selection the block size m is still lacking
in the literature. To the best of our knowledge, only Zou et al. (2021) propose a method in
the multivariate time series setting for selecting m through bias correction using sliding-block
maxima, which is out of the scope of the paper. In the following, we provide non-asymptotic
bounds for the error |ν̂n,m − νm|.

Proposition 3.3.1. Let (Zt, t ∈ Z) be a stationary process with algebraic φ-mixing distribution,
φ(n) ≤ λn−ζ where λ > 0, and ζ > 1. Then the following concentration bound holds

P
{

|ν̂n,m − νm| ≥ C1k
−1/2 + C2k

−1 + t
}

≤ (d+ 2
√
e) exp

{
− t2k

C3

}
,

where k is the number of block maxima and C1, C2 and C3 are constants depending only on ζ
and λ.

The proof of Proposition 3.3.1, along with all proofs of the mathematical results derived
in Section 3.3 may be found in Appendix B.1.2 in the supplementary material. The non-
asymptotic analysis in Proposition 3.3.1 is stringent and requires the use of φ-mixing in order
to apply Hoeffding and McDiarmid inequalities in a setting where observations are not serially
independent (see (Boucheron et al., 2013, Section 2)). However, tail bounds can also be
established under β-mixing coefficients. One can also use Bernstein inequalities for α-mixing
sequences with a more stringent condition, namely exponentially decaying α-mixing, using the
main theorem in Merlevède et al. (2009).
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3.3.2 Inference in AI-block models

In this section, we present an adapted version of the algorithm developed in Bunea et al. (2020)
for clustering variables based on a metric on their covariances, named as CORD. Our adaptation
involves the use of the extremal correlation as a measure of dependence between the extremes
of two variables.

The SECO in Equation (3.4) can be written in the bivariate setting as

χ(a, b) := SECO({a, b}) = 2 − θ(a, b), (3.8)

where for notational convenience, θ(a, b) := θ({a,b}) is the bivariate extremal coefficient between
X(a) and X(b) as defined in Equation (3.3). In fact, the bivariate SECO is exactly equal to the
extremal correlation χ defined in Coles et al. (1999). This metric has a range between 0 and
1, with the boundary cases representing asymptotic independence and comonotonic extremal
dependence, respectively. In an AI-block model, the statement

X(Og) ⊥⊥ X(Oh), g ̸= h,

is equivalent to
χ(a, b) = χ(b, a) = 0, ∀a ∈ Og, ∀ b ∈ Oh, g ̸= h. (3.9)

Thus using Condition B and Equation (3.9), where the first condition can be equivalently stated
using extremal correlation as:

a
Ō∼ b =⇒ χ(a, s) > 0, χ(b, s) > 0, where s ∈ {1, . . . , d} such that a Ō∼ s and b

Ō∼ s,

the extremal correlation is a sufficient statistic to recover clusters in an AI-block model. Indeed,
Equation (3.9) reveals:

a
Ō
̸∼ b =⇒ χ(a, b) = 0.

Consequently, in an AI-block model, two variables X(a) and X(b) are considered part of the
same cluster under Condition B if and only if χ(a, b) > 0. For the estimation procedure, using
tools introduced in the previous section, we give a sample version of the extremal correlation
associated to M (a)

m,1 and M
(b)
m,1 by

χ̂n,m(a, b) = 2 − θ̂n,m(a, b), a, b ∈ {1, . . . , d},

where θ̂n,m(a, b) is the sampling version defined in (3.6) of θ(a, b). With some technical
arguments, a concentration result estimate follows directly from Proposition 3.3.1.

We can represent the matrix of all extremal correlations as X = [χ(a, b)]a=1,...,d,b=1,...,d. Addi-
tionally, we introduce its empirical counterpart, denoted as X̂ . This version, X̂ incorporates
elements χ̂n,m(a, b) for pairs (a, b) ∈ {1, . . . , d}2. We present an algorithm, named ECO (Ex-
tremal COrrelation), which estimates the partition Ō using a dissimilarity metric based on
the extremal correlation. This algorithm, outlined in Algorithm (ECO), does not require the
specification of the number of groups G, as it is automatically estimated by the procedure. The
algorithm complexity for computing the k vectors Ûn,m,i = (Û (1)

n,m,i, . . . , Û
(d)
n,m,i) for i ∈ {1, . . . , k}

is of order O(dk ln(k)). Given the empirical ranks, computing X̂ and performing the algorithm
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require O(d2 ∨ dk ln(k)) and O(d3) computations, respectively. So the overall complexity of the
estimation procedure is O(d2(d ∨ k ln(k)))).

Algorithm (ECO) Clustering procedure for AI-block models

1: procedure ECO(S, τ , X̂ )
2: Initialize: S = {1, . . . , d}, χ̂n,m(a, b) for a, b ∈ {1, . . . , d} and l = 0
3: while S ̸= ∅ do
4: l = l + 1
5: if |S| = 1 then
6: Ôl = S

7: if |S| > 1 then
8: (al, bl) = arg max

a,b∈S
χ̂n,m(a, b)

9: if χ̂n,m(al, bl) ≤ τ then
10: Ôl = {al}
11: if χ̂n,m(al, bl) > τ then
12: Ôl = {s ∈ S : χ̂n,m(al, s) ∧ χ̂n,m(bl, s) ≥ τ}
13: S = S \ Ôl
14: return Ô = (Ôl)l

In B.2.2, we provide conditions under the regularity of the process ensuring that our algorithm is
asymptotically consistent. These conditions involve β-mixing coefficients which are less stringent
than φ-mixing used in the next section. Unlike in asymptotic analysis where the choice of
the threshold becomes trivial, in a non-asymptotic framework, the algorithm’s performance is
influenced by the parameter τ . In a non-asymptotic framework, when τ ≈ 0, the algorithm
is prone to identifying the sole cluster as {1, . . . , d}, while a value of τ ≈ 1 suggests that the
algorithm is likely to return the largest partition {{1}, . . . , {d}}. Thus, the parameter τ serves
as a threshold that determines the algorithm’s tolerance to differentiate between the noise in
the inference and the signal indicating asymptotic dependence. This discriminatory capability
depends on factors such as the sample size n, the dimension d, and the proximity between the
sub-asymptotic framework and the maximum domain of attraction. Consequently, selecting
an appropriate threshold τ becomes a critical consideration. However, this challenge can be
addressed through a non-asymptotic analysis of the algorithm, which we will discuss in the
following section.

3.3.3 Estimation in growing dimensions

We provide consistency results for our algorithm, allowing estimation in the case of growing
dimensions, by adding non asymptotic bounds on the probability of consistently estimating
the maximal element Ō of an AI-block model. Furthermore, this result provides an answer for
how to leverage τ in Algorithm (ECO). The difficulty of clustering in AI-block models can be
assessed via the size of the Minimal Extremal COrrelation (MECO) separation between two
variables in a same cluster:

MECO(X ) := min
a
Ō∼b
χ(a, b).
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In AI-block models, with Condition B, we always have MECO(X ) > η with η = 0. However, a
large value of η will be needed for retrieving consistently the partition Ō stationary observations.
We are now ready to state the main result of this section.

Theorem 3.3.1. We consider (Zt, t ∈ Z) be a d-multivariate stationary process following a AI-
block model given in Definition 3.2.1 satisfying Condition B and algebraic φ-mixing distribution,
φ(n) ≤ λn−ζ where λ > 0 and ζ > 1 Define

dm = max
a̸=b

|χm(a, b) − χ(a, b)| .

Let (τ, η) be parameters fulfilling

τ ≥ dm + C1k
−1/2 + C2k

−1 + C3

√
(1 + γ) ln(d)

k
,

η ≥ dm + C1k
−1/2 + C2k

−1 + C3

√
(1 + γ) ln(d)

k
+ τ,

where C1, C2, C3 are universal constants depending only on λ and ζ, k is the number of block
maxima, and γ > 0. For a given X and its corresponding estimator X̂ , if MECO(X ) > η, then
the output of Algorithm (ECO) is consistent, i.e.,

P
{
Ô = Ō

}
≥ 1 − 2(1 +

√
e)d−2γ .

The analysis of Algorithm (ECO) can be separated into two distinct components: an analytic
part that provides conditions ensuring Ô = Ō, as detailed in Lemma B.1.2, and a stochastic
part that deals with concentration results for χ̂n,m in Proposition 3.3.1, directly stated in the
proof of Theorem 3.3.1. In Section 3.4, we provide an example of a mixing process that satisfies
all the conditions stated in Theorem 3.3.1. As Theorem 3.3.1 is not concerned with asymptotics,
we did not actually assume Condition A. A link between Mm and X is implicitly provided
through the bias term dm which measures the distance between χm(a, b) and χ(a, b). This
quantity vanishes when Condition A holds as m → ∞.

Some comments on the implications of Theorem 3.3.1 are in order. On a high level, larger
dimension d and bias dm lead to a higher threshold τ . The effects of the dimension d and the
bias dm are intuitive: larger dimension or more bias make the partition recovery problem more
difficult. It is clear that the partition recovery problem becomes more difficult as the dimension
or bias increases. This is reflected in the bound of the MECO value below which distinguish
between noise and asymptotic independence is impossible by our algorithm. Thus, whereas the
dimension d increases, the dependence between each component should be stronger in order to
distinguish between the two. In other words, for alternatives that are sufficiently separated
from the asymptotic independence case, the algorithm will be able to distinguish between
asymptotic independence and noise at the

√
ln(d)k−1 scale. For a more quantitative discussion,

our algorithm is able to recover clusters when the data dimension scales at a polynomial rate,
i.e., d = o(np), with p > 0 as η in Theorem 3.3.1 decreases with increasing n.
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The order of the threshold τ involves known quantity such as d and k and a unknown parameter
dm. For the latter, there is no simple manner to choose optimally this parameter, as there is
no simple way to determine how fast is the convergence to the asymptotic extreme behavior,
or how far into the tail the asymptotic block dependence structure appears. In particular,
Condition A does not contain any information about the rate of convergence of Cm to C∞.
More precise statements about this rate can be made with second order conditions. Let a
regularly varying function Ψ : N → (0,∞) with coefficient of regular variation ρΨ < 0 and a
continuous non-zero function S on [0, 1]d such that

Cm(u) − C∞(u) = Ψ(m)S(u) + o(Ψ(m)), for m → ∞, (3.10)

uniformly in u ∈ [0, 1]d (see, e.g., Bücher et al. (2019); Zou et al. (2021) for a proper introduction
to this condition). In this case, we can show that dm = O(Ψ(m)). In the typical case
Ψ(m) = c tρΨ with c > 0, choosing m proportional to n1/(1−ρΨ) leads to the optimal convergence
rate nρΨ/(1−2ρΨ) (see Drees and Huang (1998)). However, there is no simple way to know in
advance or infer the value of ρΨ and, in practice, it is advisable to use a data-driven procedure
to select the threshold.

3.3.4 Data-driven selection of the threshold parameter

The performance of Algorithm (ECO) depends crucially on the value of the threshold parameter
τ . This threshold involves known quantities such as d and k and a unknown parameter dm (see
Theorem 3.3.1). For the latter, there is no simple manner to choose optimally this parameter,
as there is no simple way to determine how fast is the convergence to the asymptotic extreme
behavior, or how far into the tail the asymptotic block dependence structure appears. Second
order conditions, which are commonly used in the literature to ensure convergence to the stable
tail dependence function at a certain rate, are theoretically relevant (see Dombry and Ferreira
(2019); Einmahl et al. (2012); Fougères et al. (2015)for examples). However, finding the optimal
value for the block length parameter remains a challenging task.

In practice, it is advisable to use a data-driven procedure to select the threshold in Algorithm
(ECO). The idea is to use the SECO criteria presented in Equation (3.4). Let L((Zt, t ∈ Z)) ∼ O,
given a partition Ô = {Ôg}g, we know from Ferreira (2011) that the SECO similarity given by
(3.4) is equal to 0 if and only if Ô ≤ Ō. We thus construct a loss function given by the SECO
where we evaluate its value over a grid of the τ values. The value of τ for which the SECO
similarity has minimum values is also the value of τ for which we have consistent recovery of
our clusters. The based estimator of the SECO in (3.4) is thus defined as

ŜECOn,m(Ô) =
∑
g

θ̂(Ôg)
n,m − θ̂n,m. (3.11)

Let Ô be a collection of partitions computed with Algorithm (ECO), by varying τ around
its theoretical optimal value, of order (dm +

√
ln(d)k−1), on a fine grid. For any Ô ∈ Ô, we

evaluate ŜECOn,m in (3.11). In practice, the ŜECO(Ô) could be minimal for several values of
τ . For example, if we incorrectly group all the components of the random vector into a single
cluster. Therefore, we recommend retaining the partition obtained for the minimal value of
ŜECO(Ô) associated with the largest parameter τ , which results in the thinnest partition of the
variables of the random vector. Proposition 3.3.2 offers theoretical support for this procedure.
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Proposition 3.3.2. We consider (Zt, t ∈ Z) to be a d-multivariate stationary process following
an AI-block model given in Definition 3.2.1 with algebraic φ-mixing distribution, φ(n) ≤ λn−ζ

where λ > 0 and ζ > 1. Let Ō = {Ō1, . . . , ŌG} be the thinnest partition given by Theorem 3.2.1
with corresponding sizes d1, . . . , dG. Let Ô = {Ô1, . . . , ÔI} be any partition of {1, . . . , d} with
corresponding sizes d1, . . . , dI . Define

Dm = max


∣∣∣∣∣∣
G∑
g=1

θ(Ōg)
m −

G∑
g=1

θ(Ōg)

∣∣∣∣∣∣ ,
∣∣∣∣∣
I∑
i=1

θ(Ôi)
m −

I∑
i=1

θ(Ôi)
∣∣∣∣∣
 ,

Then, there exists a constant c > 0, such that, if Ô ̸≤ Ō and

SECO(Ô) > 2

Dm + c

√
ln(d)
k

max(G, I) max(∨Gg=1d
2
g,∨Ii=1d

2
i )

 , (3.12)

it holds that
E[ŜECOn,m(Ō)] < E[ŜECOn,m(Ô)].

However, the bound presented in Equation (3.12) is overly pessimistic since it exhibits polynomial
growth with respect to cluster sizes. Nevertheless, when we consider the scenario where n → ∞
with d fixed, then under Condition A, this condition simplifies to SECO(Ô) > 0, which
holds true for every Ô ̸≤ Ō (see Appendix B.2.2 in the supplementary material). Therefore,
despite the pessimistic nature of this bound, the asymptotic relevance of choosing the threshold
parameter based on data-driven approaches remains intact. Additionally, numerical studies
provide support for the effectiveness of SECO as an appropriate criterion for determining the
threshold parameter for a suitable number of data and for important cluster sizes (see Section
5.5). Furthermore, we establish the weak convergence of an estimator for SECO(O) when
L((Zt, t ∈ Z)) ∼ O (we refer to Appendix B.3.2 for detailed information).

3.4 Hypotheses discussion for a multivariate random persistent
process

A trivial example of an AI-block model is given by a partition O such that L((Z(Og)
t , t ∈ Z)) ∈

D(H(Og)) for g ∈ {1, . . . , G} and L((Z(O1)
t , t ∈ Z)), . . . ,L((Z(OG)

t , t ∈ Z)) are independent. In
this simple model, the peculiar dependence structure under study is not inherent of large values
of the stationary law of the process.

More interestingly, in this section we will focus on a process where the dependence between
clusters disappears in the distribution tails. To this aim, we recall here a φ-algebraically mixing
process. The interested reader is referred for instance to Bücher and Segers (2014). We show
that Conditions A and B hold with a bit more work.

Let D denote a copula and consider i.i.d d-dimensional random vectors Z0, ξ1, ξ2, . . . from D
and independent Bernoulli random variables I1, I2, . . . i.i.d. with P{It = 1} = p ∈ (0, 1]. For
t = 1, 2, . . . , define the stationary random process (Zt, t ∈ Z) by

Zt = ξtδ1(It) +Zt−1δ0(It), (3.13)
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3.4 Hypotheses discussion for a multivariate random persistent process

where we suppose without loss of generality that the process is defined for all t ∈ Z using
stationarity. The persistence of the process (Zt, t ∈ Z) arises from repeatable values in (3.13).
From this persistence, (Zt, t ∈ Z) is φ-mixing with coefficient of order O((1 − p)n) (Bücher and
Segers, 2014, Lemma B.1), hence algebraically mixing.

Assuming that the copula D belongs to the (i.i.d.) copula domain of attraction of an extreme
value copula D(iid)

∞ , denoted as

Dm(u) = {D(u1/m)}m −→ D(iid)
∞ (u), (m → ∞).

Here, Dm represents the copula of the componentwise block maximum of size m based on the
serially independent sequence (ξt, t ∈ N).

According to (Bücher and Segers, 2014, Proposition 4.1), if Cm denotes the copula of the
componentwise block maximum of size m based on the sequence (Zt, t ∈ N), then

Cm(u) −→
m→∞

D(iid)
∞ (u), u ∈ [0, 1]d.

This implies that Condition A is satisfied.

Consider the multivariate outer power transform of a Clayton copula with parameters θ > 0
and β ≥ 1, defined as:

D(u; θ, β) =

1 +


d∑
j=1

({u(j)}−θ − 1)β


1/β

−1/θ

, u ∈ [0, 1]d.

The copula of multivariate componentwise maxima of an i.i.d. sample of size m from a
continuous distribution with copula D(·; θ, β) is given by:

{
D
(
{u(1)}1/m, . . . , {u(d)}1/m; θ, β

)}m
= D

(
u(1), . . . , u(d); θ/m, β

)
, (3.14)

As m → ∞, this copula converges to the Logistic copula with shape parameter β ≥ 1:

D(iid)
∞ (u) = D(u;β) = lim

m→∞
D
(
u(1), . . . , u(d); θ/m, β

)
= exp

−


d∑
j=1

(− ln u(j))β


1/β
 ,

uniformly in u ∈ [0, 1]d. This result, originally stated in (Bücher and Segers, 2014, Proposition
4.3) for the bivariate case, can be extended to an arbitrary dimension without further arguments.
Now, consider the following nested Archimedean copula given by:

D
(
D(O1)(u(O1); θ, β1), . . . , D(OG)(u(Og); θ, βG); θ, β0

)
. (3.15)

We aim to show that this copula is in the domain of attraction of an AI-block model. That is
the purpose of the proposition stated below.
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Proposition 3.4.1. Consider 1 ≤ β0 ≤ min{β1, . . . , βG}, then the nested Archimedean copula
given in (3.15) is in the copula domain of attraction of an extreme value copula given by

D
(
D(O1)(u(O1);β1), . . . , D(OG)(u(OG);βG);β0

)
.

In particular, taking β0 = 1 gives an AI-block model where extreme value random vectors X(Og)

correspond to a Logistic copula with parameter shape βg.

From the last conclusion of Proposition 3.4.1, we obtain Condition A, that is (Zt, t ∈ Z) in
(3.13) is in max-domain of attraction of an AI-block model. Noticing that the exponent measure
of each cluster is absolutely continuous with respect to the Lebesgue measure, Condition B is
thus valid.

Remark 3.4.1. Notice that, using results from Bücher and Segers (2014); Zou et al. (2021), in
the i.i.d. case, i.e. p = 1, there exists an auxiliary function ΨD for Dm with ΨD(m) = O(m−1).
By using considerations after Equation (3.10), we thus obtain dm = O(m−1).

3.5 Numerical examples

3.5.1 Numerical results

In this section, we investigate the finite-sample performance of our algorithm to retrieve clusters
in AI-block models. The results in this section can be reproduced using the code made available
at https://github.com/Aleboul/ai_block_model. We consider a number of AI-block models of
increasing complexity. We design three resulting partitions in the limit model C∞:

E1 C∞ is composed of two blocks O1 and O2, of equal lengths where C(O1)
∞ and C

(O2)
∞ are

Logistic extreme value copulae with parameters set to β1 = β2 = 10/7.
E2 C∞ is composed of G = 5 blocks of random sample sizes d1, . . . , d5 from a multinomial

distribution with parameter qg = 0.5g for g ∈ {1, . . . , 4} and q5 = 1−
∑4
g=1 qg. Each random

vector is distributed according to a Logistic distribution where parameters βg = 10/7 for
g ∈ {1, . . . , 5}.

E3 We consider the same model as E2 where we add 5 singletons. Then we have 10 resulting
clusters. Model with singletons are known to be the hardest model to recover in the
clustering literature.

We consider here observations from the model described in Equation (3.13) n Section 3.4. Here,
the copula D is derived from a nested Archimedean copula, as indicated in Equation (3.15).
Specifically, the outer Power Clayton copula with a parameter β0 = 1 serves as the “mother”
copula, while the outer Power Clayton copula with parameters β1 = · · · = βG = 10/7 act as
the “child” copulae. It is worth noting that the copula Dm does not fall under the category of
an extreme value copula. This can be observed by considering two observations, u(i) and u(j),
belonging to the same cluster O1. In this case, the nested Archimedean copula presented in
Equation (3.15) takes the following form:

D(O1)(1, u(i), u(j),1; θ, β1),

96

https://github.com/Aleboul/ai_block_model


3.5 Numerical examples

where the margins for the indices outside of i and j are considered as 1. Consequently, the
dependence is determined by an outer Power Clayton copula that does not exhibit max-stability.
Similarly, when i and j belong to different clusters, the nested Archimedean copula in Equation
(3.15) follows the expression:

D(1, u(i), u(j),1; θ, 1),

representing a Clayton copula. It is worth noting that indices in different clusters exhibit
dependence when the max-domain of attraction is not yet reached. This framework is particularly
relevant as it allows us to evaluate the effectiveness of the proposed method in estimating the
extremal dependence structure. We set θ = 1 for every copula, as it does not alter the domain
of attraction. Based on Proposition 3.4.1 and Proposition 4.1 of Bücher and Segers (2014),
we know that Cm falls within the max domain of attraction of the corresponding copula C∞
defined in Experiments E1-E3. In other words, it represents an AI-block model with a Logistic
dependence structure for the marginals. We simulate them using the method proposed by the
copula R package (Marius Hofert and Martin Mächler (2011)). The goal of our algorithm is to
cluster d variables in Rn. Several simulation frameworks are considered and detailed in the
following.

F1 We first investigate the choice of the intermediate sequence m of the block length used for
estimation. We let m ∈ {3, 6, . . . , 30} with a fixed sample size n = 10000 and k = ⌊n/m⌋.

F2 We compute the performance of the structure learning method for varying sample size n.
Since the value of m which is required for consistent estimation is unknown in practice we
choose m = 20.

F3 We show the relationship between the average SECO and exact recovery rate of the method
presented in Section 3.3.4. We use the case n = 16000, k = 800 and d = 1600 to study the
“large k, large d” of our approach.

In the simulation study, we use the fixed threshold α = 2 × (1/m+
√

ln(d)/k) for F1 and F2
since our theoretical results given in Theorem 3.3.1 suggest the usage of a threshold proportional
dm +

√
ln(d)/k and we can show, in the i.i.d. settings (where p = 1) that dm = O(1/m) (see

details in Section B.1.2). For Framework F3, we vary α around its theoretical optimal value, on
a fine grid. The specific parameter setting we employ involves setting p = 0.9, which is further
detailed below and illustrated in Figure 3.1.

Results. Figure 3.1 states all the results we obtain from each experiment and framework
considered in this numerical section. We plot the exact recovery rate for Algorithm (ECO) with
dimensions d = 200 and d = 1600. Each experiment is performed using p = 0.9. As expected,
the performance of our algorithm in Framework F1 (see Figure 3.1, first row) is initially
increasing in m, reaches a peak, and then decreases. This phenomenon depicts a trade-off
between bias and the accuracy of inference. Indeed, a large block’s length m induces a lesser
bias as we reach the domain of attraction. However, the number of blocks k is consequently
decreasing and implies a high variance for the inference process. These joint phenomena explain
the parabolic form of the exact recovery rate for our algorithms for d ∈ {200, 1600}. Considering
the Framework F2 the performance of our algorithm is better as the number of block-maxima
increases (see Figure 3.1, second row).

A classical pitfall for learning algorithms is high dimensional settings. Here, when the dimension
increases from 200 to 1600, our algorithm consistently reports the maximal element Ō with
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a reasonable number of blocks. This is in accordance with our theoretical findings, as the
difficulty of clustering in AI-block models, as quantified by η in Theorem 3.3.1, scales at a rate
of
√

ln(d)k−1. This rate has a moderate impact on the dimension d. In Framework F3, the
numerical studies in Figure 3.1 (third row) show that the optimal ranges of τ value, for high
exact recovery percentages, are also associated with low average SECO losses. This supports
our data-driven choice of τ provided in Section 3.3.4.

3.5.2 Comparison with competitors

In this section, we examine the performance of approximate recovery of clusters of (ECO)
compared to DAMEX (Goix et al. (2016)), CLEF (Chiapino et al. (2019)), sKmeans (Janßen
and Wan (2020)), MUSCLE (Meyer and Wintenberger (2023)) in terms of the Adjusted Rand
Index (ARI). The ARI is a continuous metric ranging from -1 to 1 used to compare two
partitions of a set. An ARI value of 1 indicates identical partitions, while random partitions
typically yield a value close to zero. Negative values occur for adversarial partitions, indicating
that two elements that should be together fall into different groups more often than expected
at random. The results in this section can be reproduced using the code made available at
https://github.com/Aleboul/ai_block_model.

The setup We consider the discrete-time d-variate moving maxima process (Yt, t ∈ Z) of order
p ∈ N given by

Y
(a)
t =

p∨
ℓ=0

ρℓϵ
(a)
t+ℓ, (t ∈ Z, a = 1, . . . ,K), ρ ∈ (0, 1). (3.16)

Here (ϵt, t ∈ Z) is an i.i.d. sequence of K-dimensional random vectors having a Clayton
copula dependence function with parameter equal to unity and standard Pareto margins. Let
us consider (Zt, t ∈ Z) as Zt = AYt + Et, where A = (Aja)j=1,...,d,a=1,...,K ∈ [0, 1]d×K be a
coefficient matrix with rows sums to ∑K

a=1Aja = 1 for all j = 1, . . . , d and Et serves as a vector
of noise, independent of Yt with a tail that is lighter than Yt, for any t ∈ Z. Specifically,
taking Et to be a multivariate Gaussian vector with the identity as its covariance matrix verifies
this tail condition and is considered in this section. Then, the considered process (Zt, t ∈ Z)
is in the max-domain of attraction of a max-linear model (see Chapter 5 for details). The
extreme directions of this model are the sets Ja = {j ∈ {1, . . . , d}, Aja > 0}, for a = 1, . . . ,K.
Moreover, this model can also be linked to AI-block models through the matrix A by considering
L = {L1, . . . LG} a partition of {1, . . . ,K}, then the clusters

Og = {j ∈ {1, . . . , d}, ∃!g ∈ {1, . . . , G}, Aja ̸= 0, a ∈ Lg},

constitute an asymptotic independent partition of {1, . . . , d}, hence an AI-block model. More-
over, we specifically have in this setting ⋃a∈Lg Ja = Og. This equation also supports a merging
step for procedures that learn extreme directions to achieve clustering in AI-block models. In
the experiments, we specifically merge two extreme directions if they share a common variable.
We design the extremal dependence using the matrix A in two Experiments E4 and E5. In
each of these experiments, we consider two different frameworks F4 and F5. They are described
below:
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Fig. 3.1 Simulation results with p = 0.9. From top to bottom: Framework F1, Framework F2,
Framework F3. From left to right: Experiment E1, Experiment E2, Experiment E3. Exact
recovery rate for our algorithm (red, diamond points) for Frameworks F1 and F2 across 100
runs. Dotted lines correspond to d = 200, solid lines to d = 1600. The threshold τ is taken as
2×(1/m+

√
ln(d)/k). For Framework F3, average SECO losses (red solid lines, diamonds points)

and exact recovery percentages (blue dotted lines, diamond points) across 100 simulations. For
better illustration, the SECO losses are standardized first by subtracting the minimal SECO
loss in each figure, and the standardized SECO losses plus 1 are then plotted on the logarithmic
scale.
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E4 Few large clusters: We set K = 100, with 5 clusters associated with groups of columns
Lg = {20 × g + 1, . . . , 20 × (g + 1)} where g = 0, . . . , 4. These groups contain respectively
(6, 5, 4, 3, 2) × C entities, where C is a positive integer.

E5 Many small clusters: We set K = 100 × C, with 5 × C clusters corresponding to the group
of columns Lg = {20×k×c+1, . . . , 20× (k+1)×c} where k ∈ {0, 1, 2, 3, 4}, c ∈ {1, . . . , C},
g = (k + 1) × C so that G equals 5 × C with C is a positive integer.

F4 We consider a framework where Condition B holds: rows of A, denoted as Aj·, with j ∈ Og,
are sampled uniformly over the unit simplex R(Lg)

+ . We investigate the performance of
the algorithms with varying d and n. We let C range over {1, 2, 4, 8, 16, 32}, resulting in
d ∈ {20, 40, 80, 160, 320} and using n ∈ {2000, 3000, . . . , 10000}.

F5 In this scenario, we explore a framework where Condition B fails. Let s ∈ {3, . . . , 20}
represents the sparsity index. Then, for j ∈ Og, the rows of the matrix A are uniformly
sampled from a random subset of Lg of size s over the unit simplex in Rs+. In this setup, we
enforce clusters to be asymptotically dependent by ensuring that at least one association is
shared between any pairs of variables, not necessarily the same association, so that Condition
B fails. We let C range over {1, 2, 4, 8, 16, 32}, resulting in d ∈ {20, 40, 80, 160, 320} and
using s ∈ {3, 4, . . . , 20} with a fixed n = 5000.

We present and provide commentary on the results for specific values of d and n; results for
other values are available upon request.

Calibrating parameters. The tuning parameter τ of (ECO) is selected by the data-driven
approach described in Section 3.3.4 where the block size is taken to be m = 20. In CLEF
and DAMEX, the threshold was chosen by trial and error using the associated Adjusted Rand
Index (ARI) with respect to the ground truth (which is unknown in practice) in the interval
(0, 1). Thus, ϵ = 0.3 and κ = 0.2 were selected for CLEF and DAMEX, respectively. The
selected number of extremes is the one used by the authors, i.e., k = ⌊

√
n⌋. The MUSCLE

algorithm is fully adaptative and does not require specifying any parameters. We exclude the
first extreme direction from the merging step because it is always associated with the trivial
direction {1, . . . , d}, a phenomenon previously observed in Meyer and Wintenberger (2023)
(Appendix 2).

Since sKmeans does not directly perform variable clustering, we gather the estimated centroids
ŵa ∈ Rd, a = 1, . . . , G. We then threshold them by τ . Variables that remain positive represent
groups of variables that are extremes together. Since this threshold parameter changes with
the structure of A, several values of τ must be chosen. Specifically, τ was selected from
{0.15, 0.1, 0.05, 0.05, 0.04, 0.025, 0.02} for Experiment E4 and set to τ = 0.15 for Experiment
E5 where, for each, we set the true number of clusters (unknown in practice) to G = 5 in
Experiment E4 and G = 5 × C in Experiment E5.

Figure 3.2 provides a diagnostic plot to set the threshold τ for the sorted estimated centroids
ŵ

(j)
a with j = 1, . . . , d in Experiment E5. In cases where d = 20, the gap between components

that are extreme together and those that are not is clear, but it narrows as the dimension
increases.

Results and discussion Figure 3.3 illustrates the numerical results on the approximate recovery
of clusters using ARI in Framework F4, considering Experiments E4 and E5. We were able to
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3.5 Numerical examples
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Fig. 3.2 Sorted centroïds ŵ(j)
a in Experiment E5 with j = 1, . . . , d for d ∈ {20, 40, 80}, a =

1, . . . , G with G ∈ {5, 10, 20} and n = 10000.

run the CLEF algorithm for small values of d in Experiment E4, specifically for d ∈ {20, 40},
before encountering memory limitations for larger dimensions. As sKmeans cannot be performed
when there are fewer extreme observations than the desired number of clusters, some data are
missing in Experiment E5.
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(a) Experiment E4 with Framework F4
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(b) Experiment E5 with Framework F4

Fig. 3.3 Panel a (resp. Panel b) depicts numerical results for Experiment E4 (resp. E5) coupled
with Framework F4 for n ∈ {2000, 3000, . . . , 10000} and d ∈ {40, 320}.

All algorithms demonstrate an increase in performance as the number n of observations
increases. However, with increasing dimensionality, we observe decreasing performance for
DAMEX, MUSCLE, and sKmeans, indicating difficulties in recovering extreme directions in
higher dimensions. As expected, Algorithm (ECO) remains robust to the rise in dimensionality,
even for smaller values of n. Since the CLEF algorithm constructs asymptotically dependent
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pairs, triplets, quadruplets, and so on, it is anticipated that in Experiment E5 the procedure
operates without memory limitations, given that the maximum cluster size is 6. Figure 3.4
presents the numerical results on approximate recovery of clusters using Adjusted Rand Index
(ARI) in Framework F5, considering both Experiments E4 and E5. The selected threshold
for sKmeans is directly linked to the structure of the matrix A. Due to the complexity of
determining this threshold within this context, this procedure is excluded in Framework F5.
Additionally, the CLEF algorithm requires a large amount of memory, and the procedure fails
to run for a sparsity index greater than 11 when d = 160 in Experiment E4, which explains
missing points in panel a of Figure 3.4 . As anticipated, our procedure demonstrates decreasing

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
s

0.0

0.2

0.4

0.6

0.8

1.0

A
R

I

Algorithm
ECO
CLEF
DAMEX
MUSCLE

d
20
160

(a) Experiment E4 with Framework F5
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(b) Experiment E5 with Framework F5

Fig. 3.4 Panel a (resp. Panel b) depicts numerical results for Experiment E4 (resp. E5) coupled
with Framework F5 for n = 5000 and d ∈ {20, 160}, with the sparsity index s ∈ {3, 4, . . . , 20}.

performance as the sparsity index decreases, given its heavy reliance on Condition B. When
this conditions fails, our procedure recovers clusters that are too sparse. Surprisingly, other
algorithms also exhibit sensitivity to the sparsity index s and display a similar declining trend.
Notably, the (ECO) algorithm remains the most robust procedure to increasing dimensions
in both experiments, while both DAMEX and MUSCLE show declining performance. We
now provide a more nuanced discussion of the CLEF algorithm. In Experiment E4, both
in Framework F4 and F5, the CLEF algorithm demonstrates better performance in higher
dimensions. This phenomenon can be explained by considering that one cluster may contain
many variables that exhibit asymptotic dependence. Consequently, by construction, the CLEF
algorithm is more likely to identify “good candidates” of pairs, triplets, quadruplets, and so on,
that are indeed asymptotically dependent. Thus, the merging step we introduce to construct
the cluster is more likely to yield the desired outcome. This explanation is coherent with
Experiment E4, where clusters have a constant size. In this case, we observe that CLEF shows
a decreasing performance in higher dimensions.
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3.6 Real-data applications

3.6 Real-data applications

3.6.1 Clustering brain extreme from EEG channel data

Epilepsy, a significant neurological disorder, manifests as recurring unprovoked seizures. These
seizures represent uncontrolled and abnormal electricity activity in the brain, posing a negative
impact on one’s quality of life and potentially triggering comorbid conditions like depression
and anxiety. During a seizure episode, the patient may experience a loss of muscle control,
which can result in accidents and injuries (see Strzelczyk et al. (2023)).

One essential tool used in the diagnosis of epilepsy is the electroencephalogram (EEGs). EEGs
are utilized to measure the electrical activity of the brain by employing a uniform array of
electrodes. Each EEG channel is formed by calculating the potential difference between two
electrodes and captures the combined potential of millions of neurons. The EEG plays a crucial
role in capturing the intricate brain activity, especially during epileptic seizures, and requires
analysis using statistical models. Currently, most analysis methods rely on Gaussian models
that focus on the central tendencies of the data distribution (see, for example, Embleton et al.
(2020); Ombao et al. (2005)). However, a significant limitation of these approaches is their
disregard for the fact that neuronal oscillations exhibit non-Gaussian probability distributions
with heavy tails. To address this limitation, we employ AI-block models as a comprehensive
framework to overcome the limitations of light-tailed Gaussian models and investigate the
extreme neural behavior during an epileptic seizure.

The dataset used to evaluate our method comprises of 916 hours of continuous scalp EEG data
sampled at a rate of 256 Hz. This dataset were recorded from a total of 23 pediatric patients
at Children’s Hospital Boston, see, e.g., Shoeb (2009). We focus the analysis on the Patient
number 5 which is the first patient where 40 hours of continuous scalp EEG were sampled
without interruption. Throughout the recordings, the patient experienced a total of five events
that were identified as clinical seizures by medical professionals. The pediatric EEG data used
in this paper is contained within the CHB-MIT database, which can be downloaded from:
https://physionet.org/content/chbmit/1.0.0/.

For each non-seizure and seizure events, we follow the same specific processing pipeline. First,
we calculate the block maxima, then calibrate the threshold using the SECO metric, as is
suggested in Section 3.3.4. Finally, we perform the clustering task (see Algorithm (ECO)) using
this adjusted threshold.

In the case of non-seizure records, we compute the block maxima using a block duration of 4
minutes. Figure 3.5a illustrates the relationship between the SECO and the threshold τ . Two
notable local minima are observed at τ = 0.24 and τ = 0.4. We execute the algorithm for
both values and present the results for τ = 0.4 since these results are better suited to AI-block
models. Indeed, we obtain three clusters that demonstrate extreme dependence within the
clusters while displaying weak extreme dependence in the block’s off-diagonal (refer to Figure
3.5b). The spatial organisation of channel clusters is depicted in Figure 3.5c.

Regarding seizure events, as the time series spans only 558 seconds, we compute block maxima
with a length of 5 seconds. Considering the heavy-tailed nature of oscillations during a seizure,
we believe that the limited length of the block used would not introduce a significant bias
with respect to the domain of attraction. Figure 3.5d shows that the SECO is monotonically
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increasing. Thus, the optimal selected threshold is the lowest value (in this case, τ = 0.1),
which results in the minimal cluster {1, . . . , d}. This phenomenon is also reflected, in the
extremal correlation matrix, where each channel exhibits strong pairwise extremal dependence
with other channels. Consequently, the neurological disorder of the studied Patient 5 manifests
simultaneous extremes across all channels, indicating generalized seizures with inter-channel
communication.
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Fig. 3.5 Clustering analysis on extreme brain activity derived from EEG channel data. The
results are presented in the first and second rows, representing non-seizure and seizure events,
respectively. The first column illustrates the behavior of the SECO metric as it relates to the
threshold level, τ . The second column showcases the resulting clustering performed on the
extremal correlation matrix using the optimal value of τ . Finally, the third column provides a
spatial organisation of the clustered channels.

3.6.2 Extremes on river network

To demonstrate the novel regionalization method described in this paper, we employed bi-
weekly maximum river discharge data, specifically, records collected over 14-day intervals,
measured in (m3/s). This dataset were sourced from a network of 1123 gauging stations
strategically positioned across European rivers. The European Flood Awareness System
(EFAS) provided these data, and they are accessible free of charge via the following website
https://cds.climate.copernicus.eu/. EFAS primarily relies on a distributed hydrological model
that operates on a grid-based system, focusing on extreme river basins. The model integrates
various medium-range weather forecasts, including comprehensive sets from the Ensemble
Prediction System (EPS). The dataset was generated by inputting gridded observational pre-
cipitation data, with a resolution of 5 × 5 km, into the LISFLOOD hydrological model across
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the EFAS domain. The temporal resolution utilized was a 24-hour time step, covering a span
over 50 years.

For the calibration of the LISFLOOD within the EFAS framework, a total of 1137 stations
from 215 different catchments across the Pan-European EFAS domain were used. From this
list of stations with available coordinates, we extracted time-series data from the nearest cell
where EFAS data were accessible. However, in this pre-processing step, stations from Albania
had to be excluded as the extracted time series were identical for those stations. Additionally,
calibration stations from Iceland and Israel were removed since they were located far outside
the domain. As a result, we were left with 1123 gauging stations, covering 10898 observed days
of river discharge between 1991 and 2020. The biweekly block maxima approach yielded 783
observations.

Following the pipeline described in Section 3.6.1, in Figure 3.6a, the SECO is depicted as it
evolves in relation to the threshold τ . The minimum value is attained at τ = 0.25. Using
this data-driven threshold, the Algorithm (ECO) is applied, resulting in 17 clusters, with
11 clusters comprising fewer than 20 stations. Figure 3.6b presents the resulting extremal
correlation matrix, with clusters visually highlighted by squares. Within the clusters, there
is evidence of asymptotic dependence, while moderate asymptotic dependence is observed in
the off block-diagonal. Figure 3.6c provides a spatial representation of three main clusters.
Notably, the clusters exhibit spatial concentration, despite the algorithm being unaware of their
spatial dispersion. Overall, distinct clusters representing western, central, and northern Europe
can be identified. It is crucial to emphasize that the northern Europe cluster includes stations
situated in the Alps and the Pyrenees, which are geographically distant from the Scandinavian
peninsula. Despite the geographical separation, these regions share mountainous terrain, and
the simultaneous occurrence of extreme river discharges may be attributed to snow melting.

3.7 Conclusions

Our main focus in this work was to develop and analyze an algorithm for recovering clusters
in AI-block models, and to understand how the dependence structure of maxima impacts the
difficulty of clustering in these models. This is particularly challenging when we are dealing
with high-dimensional data and weakly dependent observations that are sub-asymptotically
distributed. In order to better understand these phenomena, we ask stronger assumptions
about the extremal dependence structure in our theoretical analysis. Specifically, we assume
the asymptotic independence between blocks, which is the central assumption of AI-block
models. This assumption enables us to examine the impact of the dependence structure and
develop an efficient algorithm for recovering clusters in AI-block models. By employing this
procedure, we can recover the clusters with high probability by employing a threshold that
scales logarithmically with the dimension d. However, it remains important to explore the
optimal achievable rate for recovering AI-block models.

In this paper, we find a bound for the minimal extremal correlation separation η > 0. A further
goal is to find the minimum value η∗ below which it is impossible, with high probability, to
exactly recover Ō by any method. This question can be formally expressed using Le Cam’s
theory as follows:

inf
Ô

sup
X∈X(η)

PX (Ô ̸= Ō) ≥ constant > 0, ∀ η < η∗,
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Fig. 3.6 Clustering analysis on extreme river discharges on EFAS data. The first panel illustrates
the behavior of the SECO metric as it relates to the threshold level, τ . The second panel
showcases the resulting clustering performed on the extremal correlation matrix using the
optimal value of τ . Finally, the third one provides a spatial representation of the clustered
stations.

with X(η) = {X ,MECO(X ) > η} and the infimum is taken over all possible estimators. One
possible direction to obtain such a result is to follow methods introduced by Drees (2001) for
risk bounds of extreme value index. An interesting consequence of this result is to determine
whether our procedure is optimal (in a minimax sense), i.e., whether the order of η∗ and the
one found in Theorem 3.3.1 are the same.
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Appendix B

Proofs of Chapter 3

B.1 Proofs of main results

In the subsequent section of our materials, we employ the notation (1,x(B),1) having its jth
component equal to x(j)1{j∈B} + 1{j /∈B}. In a similar way, we note (0,x(B),0) the vector in Rd

which equals x(j) if j ∈ B and 0 otherwise.

In the subsequent section of our materials, we employ the notation (1,x(B),1) having its jth
component equal to x(j)1{j∈B} + 1{j /∈B}. In a similar way, we note (0,x(B),0) the vector in Rd

which equals x(j) if j ∈ B and 0 otherwise.

B.1.1 Proofs of Section 3.2

In Proposition 3.2.1, we prove that the function introduced in Section 3.2.2 is an extreme value
copula. We do this by showing that its margins are distributed uniformly on the unit interval
[0,1] and that it is max-stable, which is a defining characteristic of extreme value copulae.

Proof of Proposition 3.2.1 We first show that C∞ is a copula function. It is clear that
C∞(u) ∈ [0, 1] for every u ∈ [0, 1]d. We check that its univariate margins are uniformly
distributed on [0, 1]. Without loss of generality, take u(i1,1) ∈ [0, 1] and let us compute

C∞(1, . . . , u(i1,1), . . . , 1) = C(O1)
∞ (u(i1,1), 1, . . . , 1) = u(i1,1).

So C∞ is a copula function. We now have to prove that C∞ is an extreme value copula. We
recall that C∞ is an extreme value copula if and only if C∞ is max-stable, that is for every
m ≥ 1

C∞(u(1), . . . , u(d)) = C∞({u(1)}1/m, . . . , {u(d)}1/m)m.

By definition, we have

C∞({u(1)}1/m, . . . , {u(d)}1/m)m = ΠG
g=1

{
C(Og)
∞

(
{u(ig,1)}1/m, . . . , {u(ig,dg )}1/m

)}m
.

Using that C(O1)
∞ , . . . , C

(OG)
∞ are extreme value copulae, thus max stable, we obtain

C∞({u(1)}1/m, . . . , {u(d)}1/m)m = ΠG
g=1C

(Og)
∞

(
u(ig,1), . . . , u(ig,dg )

)
= C∞(u(1), . . . , u(d)).

Thus C∞ is an extreme value copula. Finally, we prove that C∞ is the copula of the random
vector X = (X(O1), . . . ,X(OG)), that is

P {X ≤ x} = C∞(H(1)(x(1)), . . . ,H(d)(x(d))), x ∈ Rd.
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Proofs of Chapter 3

Using mutual independence between random vectors, we have

P {X ≤ x} = ΠG
g=1P

{
X(ig,1) ≤ x(ig,1), . . . , X(ig,dg ) ≤ x(ig,dg )

}
= ΠG

g=1C
(Og)
∞

(
H(ig,1)(x(ig,1)), . . . ,H(ig,dg )(x(ig,dg ))

)
= C∞(H(1)(x(1)), . . . ,H(d)(x(d))).

Hence the result.

Theorem 3.2.1, proved below, establishes several fundamental properties of the set O((Zt, t ∈
Z)), including the fact that subpartitions of an element O ∈ O((Zt, t ∈ Z)) also belong to
O((Zt, t ∈ Z)) (item (i)), the ordering of partitions and their intersections (item (ii)) and the
stability of the intersection of two elements O,S ∈ O((Zt, t ∈ Z)) (item (iii)). Using these
results, the theorem also provides an explicit construction of the unique maximal element Ō of
O((Zt, t ∈ Z)) (see item (iv)).

Proof of Theorem 3.2.1 For (i), if L((Zt, t ∈ Z)) ∼ S, then there exist a random vector
X with extreme value distribution H such that L((Zt, t ∈ Z)) ∈ D(H) and a partition S =
{S1, . . . , SG} of {1, . . . , d} which induces mutually independent random vectors X(S1), . . . ,X(SG).
As S is a sub-partition of O, it also generates a partition where vectors are mutually independent.

Now let us prove (ii), take g ∈ {1, . . . , G} and a, b ∈ (O ∩ S)g, in particular a O∼ b, thus there
exists g′ ∈ {1, . . . , G′} such that a, b ∈ Og′ . The following inclusion (O ∩ S)g ⊆ Og′ is hence
obtained and the second statement follows.

The third result (iii) comes down from the definition for the direct sense and by (i) and
(ii) for the reverse one. We now go to the last item of the theorem, i.e. item (iv). The set
O((Zt, t ∈ Z)) is non-empty since the trivial partition O = {1, . . . , d} belongs to O((Zt, t ∈ Z)).
It is also a finite set, and we can enumerate it O((Zt, t ∈ Z)) = {O1, . . . , OM}. Define the
sequence O′1, . . . , O′M recursively according to

• O′1 = O1,
• O′g = Og ∩O′g−1 for g = 2, . . . ,M .

According to (iii), we have that by induction O′1, . . . O
′
M ∈ O((Zt, t ∈ Z)). In addition, we

have both O′g−1 ≤ O′g and Og ≤ O′g, so by induction O1, . . . , Og ≤ O′g. Hence the partition
Ō := O′M = O1 ∩ · · · ∩OM−1 is the maximum of O((Zt, t ∈ Z)).

Remark B.1.1. The examination of the proof of Theorem 3.2.1 reveals that many arguments
may also apply to the scenario of mutually independent random vectors.

B.1.2 Proofs of Section 3.3

Denote by Con,m the empirical estimator of the copula Cm based on the (unobservable) sample
(U (j)

m,1, . . . , U
(j)
m,k) for j ∈ {1, . . . , d}. In Proposition 3.3.1 we state a concentration inequality for

the madogram estimator. This inequality is obtained through two main steps, that are using
classical concentration inequalities, such as Hoeffding and McDiarmid inequalites and chaining
arguments in our specific framework of multivariate mixing random process. In the following,
C1, C2 and C3 denote universal constants whose values could change from line to line of the
proof.
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B.1 Proofs of main results

Proof of Proposition 3.3.1 Let us define the following quantity

ν̂on,m = 1
k

k∑
i=1

 d∨
j=1

U
(j)
m,i − 1

d

d∑
j=1

U
(j)
m,i

 , (B.1)

that is the madogram estimated through the sample Um,1, . . . ,Um,k. Then, the following
bound is given:

|ν̂n,m − νm| ≤
∣∣∣ν̂n,m − ν̂on,m

∣∣∣+ ∣∣∣ν̂on,m − νm
∣∣∣ .

For the second term, using the triangle inequality, we obtain

∣∣∣ν̂on,m − νm
∣∣∣ ≤

∣∣∣∣∣∣1k
k∑
i=1


d∨
j=1

U
(j)
m,i − E

 d∨
j=1

U
(j)
m,i


∣∣∣∣∣∣+

∣∣∣∣∣∣1k
k∑
i=1

1
d

d∑
j=1

U
(j)
m,i − E

1
d

d∑
j=1

U
(j)
m,i


∣∣∣∣∣∣

≜ E1 + E2,

and for the first term,∣∣∣ν̂n,m − ν̂on,m

∣∣∣ ≤ 2 sup
j∈{1,...,d}

sup
x∈R

∣∣∣F̂ (j)
n,m(x) − F (j)

m (x)
∣∣∣ ≜ E3.

The rest of this proof is devoted to control each term: E1, E2 and E3. Notice that the sequences
(∨dj=1 U

(j)
n,m,i)ki=1, (d−1∑d

j=1 U
(j)
n,m,i)ki=1 and (1{M(j)

n,m,i≤x}
)ki=1 share the same mixing regularity as

(Zt)t∈Z as measurable transformation of this process. Thus, they are in particular algebraically
φ-mixing.

Control of the term E1. For every i ∈ {1, . . . , k}, we have that ||
∨d
j=1 U

(j)
n,m,i||∞ ≤ 1, by apply-

ing the Hoeffding’s inequality for algebraically φ-mixing sequences (see (Rio, 2017, Corollary
2.1)) we can control the following event, for t > 0,

P {E1 ≥ t} ≤
√
e exp

{
− t2k

2(1 + 4∑k−1
i=1 φ(i))

}
.

The term in the numerator can be bounded as

1 + 4
k∑
i=1

φ(k) ≤ 1 + 4
k∑
i=1

λi−ζ ≤ 1 + 4λ
(

1 +
∫ k

1
x−ζdx

)
= 1 + 4λ

(
1 + k1−ζ − 1

1 − ζ

)
.

Using the assumption ζ > 1, we can upper bound k1−ζ by 1 and obtain

1 + 4λ
(

1 + k1−ζ − 1
1 − ζ

)
≤ 1 + 4λ

(
1 + 1

ζ − 1

)
= 1 + 4λζ

ζ − 1 .

We thus obtain
P
{
E1 ≥ t

3

}
≤

√
e exp

{
− t2k

C3

}
,

where C3 > 0 is a constant depending on ζ and λ.
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Control of the term E2. This control is obtained with the same arguments used for E1. Thus,
we obtain, for t > 0,

P
{
E2 ≥ t

3

}
≤

√
e exp

{
− t2k

C3

}
.

Control of the term E3. This bound is more technical. Before proceeding, we introduce some
notations. For every j ∈ {1, . . . , d}, we define

α(j)
n,m =

(
P(j)
n,m − P(j)

m

)
, β(j)

n,m(x) = α(j)
n,m(] − ∞, x]), x ∈ R,

where P(j)
n,m corresponds to the empirical measure for the sample (M (j)

m,1, . . . ,M
(j)
m,k) and P(j)

m is
the law of the random variable M (j)

m . To control the term E3, we introduce chaining arguments
as used in the proof of Proposition 7.1 of Rio (2017). Let be j ∈ {1, . . . , d} fixed and N be
some positive integer to be chosen later. For any real x such that F (j)

m (x) ̸= 0 and F (j)
m (x) ̸= 1,

let us write F (j)
m (x) in base 2 :

F (j)
m (x) =

N∑
l=1

bl(x)2−l + rN (x), with rN (x) ∈ [0, 2−N [

where bl = 0 or bl = 1. For any L in [1, . . . , N ], set

ΠL(x) =
L∑
l=1

bl(x)2−l and iL = ΠL(x)2L.

Let the reals (xL)L be chosen in such a way that F (j)
m (xL) = ΠL(x). With these notations

β(j)
n,m(x) =β(j)

n,m(Π1(x)) + β(j)
n,m(x) − β(j)

n,m(ΠN (x))

+
N∑
L=2

[
β(j)
n,m(ΠL(x)) − β(j)

n,m(ΠL−1(x))
]
.

Let the reals xL,i be defined by F (j)
m (xL,i) = i2−L. Using the above equality, we get that

sup
x∈R

∣∣∣β(j)
n,m(x)

∣∣∣ ≤
N∑
L=1

∆L + ∆∗N ,

with
∆L = sup

i∈[1,2L]

∣∣∣α(j)
n,m(]xL,i−1, xL,i])

∣∣∣ and ∆∗N = sup
x∈R

∣∣∣α(j)
n,m(]ΠN (x), x])

∣∣∣ .
From the inequalities

−2−N ≤ α(j)
n,m(]ΠN (x), x]) ≤ α(j)

n,m(]ΠN (x),ΠN (x) + 2−N ]) + 2−N ,

110



B.1 Proofs of main results

we get that

∆∗N ≤ ∆N + 2−N and E
[
sup
x∈R

|β(j)
n,m(x)|

]
≤ 2

N∑
L=1

||∆L||1 + 2−N ,

where ||∆L||1 is the L1-norm of ∆L. Let N be the natural number such that 2N−1 < k ≤ 2N .
For this choice of N , we obtain

E
[
sup
x∈R

|β(j)
n,m(x)|

]
≤ 2

N∑
L=1

||∆L||1 + k−1.

Hence, using (Rio, 2017, Lemma 7.1) (where we divide by
√
k the considering inequality in the

lemma), we obtain that

E
[
sup
x∈R

|β(j)
n,m(x)|

]
≤ 2 C0√

k

N∑
L=1

(
2−

(ζ−1)2

(4ζ)2

)L
+ k−1

≤ 2√
k

C0

1 − 2−
(ζ−1)2
(4ζ)2

+ k−1 ≜ C1k
−1/2 + k−1,

where C0 and C1 are constants depending on ζ and λ.

Now, fix x ∈ R and denote by Φ : Rk 7→ [0, 1], the function defined by

Φ(x1, . . . , xk) = sup
x∈R

∣∣∣∣∣1k
k∑
i=1

1{xi≤x} − F (j)
m (x)

∣∣∣∣∣ .
For x,y ∈ Rk, we obtain with some calculations:

|Φ(x) − Φ(y)| ≤ sup
x∈R

1
k

k∑
i=1

∣∣∣1{xi≤x} − 1{yi≤x}

∣∣∣ ≤ 1
k

k∑
i=1

1{xi ̸=yi}.

Thus, Φ is k−1-Lipschitz with respect to the Hamming distance. Under algebraically φ-mixing
process, we may apply (Mohri and Rostamizadeh, 2010, Theorem 8) with (M (j)

m,1, . . . ,M
(j)
m,k),

we obtain with probability at least 1 − exp{−2t2k/||∆k||2∞} where ||∆k||∞ ≤ 1 + 4∑k
i=1 φ(i)

sup
x∈R

∣∣∣F̂ (j)
n,m(x) − F (j)

m (x)
∣∣∣ ≤ E

[
sup
x∈R

∣∣∣β(j)
n,m(x)

∣∣∣]+ t

3 ≤ C1k
−1/2 + C2k

−1 + t

3 .

Thus, for a sufficiently large C3, with probability at most exp{−t2k/C3}

sup
x∈R

∣∣∣F̂ (j)
n,m(x) − F (j)

m (x)
∣∣∣ ≥ C1k

−1/2 + k−1 + t

3 .

Using Bonferroni inequality

P
{
E3 ≥ t

3

}
≤ dP

{
sup
x∈R

∣∣∣F̂ (j)
n,m(x) − F (j)

m (x)
∣∣∣ ≥ t

}
,
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we thus obtain a control bound for E3. Assembling all the controls obtained for E1, E2 and E3,
we obtain the desired result.

The proof of Theorem 3.3.1 needs the following results : (1) an upper bound over the quantity
|θ̂n,m(a, b) − θm(a, b)| with respect to |ν̂n,m(a, b) − νm(a, b)| to use the concentration inequality
introduced in Proposition 3.3.1, (2) exhibit an event such that {Ô = Ō}. Lemmas B.1.1 and
B.1.2 below address these two questions. Then, taking benefits of these results, we show that
the probability of the exhibited event such that {Ô = Ō} holds with high probability, as stated
in Theorem 3.3.1.

Lemma B.1.1. Consider a pair (a, b) ∈ {1, . . . , d}2, the following inequality holds:

|θ̂n,m(a, b) − θm(a, b)| ≤ 9|ν̂n,m(a, b) − νm(a, b)|.

Proof of Lemma B.1.1 We may write the respective quantities as θ = f(ν(a, b)) and
θ̂n,m = f(ν̂n,m(a, b)) where f is a function defined as follows,

f : [0, 1/6] → [1, 2]
x 7→ 1/2+x

1/2−x ,

with f(x) ∈ [1, 2] by definition of the pre-asymptotic extremal coefficient θm. The domain of
this function is restricted to the interval [0, 1/6] because we have f(x) ≤ 2, or

x+ 1
2 ≤ 1 − 2x,

which holds if x ≤ 1/6. The inequality f(x) ≥ 1 gives the positivity of the domain. In particular,
x < 1/2 and thus 2−1 − x ≥ 3−1 > 0. Taking derivative of f , we find that

|f ′(x)| = 1
(1/2 − x)2 ≤ 32, x ∈ [0, 1/6] .

Therefore, f is 9-Lipschitz continuous and we have

|θ̂n,m(a, b) − θm(a, b)| = |f(ν̂n,m(a, b)) − f(νm(a, b))| ≤ 9|ν̂n,m(a, b) − νm(a, b)|.

This completes the proof.

Lemma B.1.2. Consider the AI-block model in Definition 3.2.1. Define

κ = sup
a,b∈{1,...,d}

|χ̂n,m(a, b) − χ(a, b)|.

Consider parameters (τ, η) fulfilling

τ ≥ κ, η ≥ κ+ τ. (B.2)

If MECO(X ) > η, then Algorithm (ECO) yields Ô = Ō.
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Proof of Lemma B.1.2 If a
Ō
̸∼ b, then χ(a, b) = 0 and

χ̂n,m(a, b) = χ̂n,m(a, b) − χ(a, b) ≤ κ ≤ τ.

Now, if a Ō∼ b, if X ∈ X(η) then χ(a, b) > κ+ τ and

κ+ τ < χ(a, b) − χ̂n,m(a, b) + χ̂n,m(a, b),

and thus χ̂n,m(a, b) > τ . In particular, under (B.2) and the separation condition MECO(X ) > η,
we have

a
Ō∼ b ⇐⇒ χ̂n,m(a, b) > τ. (B.3)

Let us prove the lemma by induction on the algorithm step l. We consider the algorithm at
some step l − 1 and assume that the algorithm was consistent up to this step, i.e. Ôj = Ōj for
j = 1, . . . , l − 1.

If χ̂n,m(al, bl) ≤ τ , then according to (B.3), no b ∈ S is in the same group of al. Since the
algorithm has been consistent up to this step l, it means that al is a singleton and Ôl = {al}.

If χ̂n,m(al, bl) > τ , then al
Ō∼ b according to (B.3). Furthermore, the equivalence implies that

Ôl = S ∩ Ōl. Since the algorithm has been consistent up to this step, we have Ôl = Ōl. To
conclude, the algorithm remains consistent at the step l and the result follows by induction.

Proof of Theorem 3.3.1 We have that for t > 0 :

P
{

sup
a,b∈{1,...,d}

|θ̂n,m(a, b) − θm(a, b)| ≥ t

}
≤ d2P

{
|θ̂n,m(a, b) − θm(a, b)| ≥ t

}
.

With probability at least 1 − 2(1 +
√
e)d2 exp{−t2k/C3}, and by using Proposition 3.3.1 and

Lemma B.1.1, one has

sup
a,b∈{1,...,d}

∣∣∣θ̂n,m(a, b) − θ(a, b)
∣∣∣ ≤ dm + C1k

−1/2 + C2k
−1 + t,

By considering δ ∈]0, 1[ and solve the following equation

δ

d2 = 2(1 +
√
e) exp

{
−kt2

C3

}
,

with respect to t gives that the event

sup
a,b∈{1,...,d}

∣∣∣θ̂n,m(a, b) − θ(a, b)
∣∣∣ ≥ dm + C1k

−1/2 + C2k
−1 + C3

√√√√1
k

ln
(

2(1 +
√
e)d2

δ

)
,

is of probability at most δ. Now, taking δ = 2(1 +
√
e)d−2γ , with γ > 0, we have
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sup
a,b∈{1,...,d}

∣∣∣θ̂n,m(a, b) − θ(a, b)
∣∣∣ ≤ dm + C1k

−1/2 + C2k
−1 + C3

√
(1 + γ) ln(d)

k
,

with probability at least 1 − 2(1 +
√
e)d−2γ for C3 sufficiently large. The result then follows

from Lemma B.1.2 along with Condition B and algebraically φ-mixing random process, since

P

κ ≤ dm + C1k
−1/2 + C2k

−1 + C3

√
(1 + γ) ln(d)

k

 ≥ 1 − 2(1 +
√
e)d−2γ ,

and MECO(X ) > η by assumption.

Therein, we prove the argument that were stated without proof in the paragraph next to
Theorem 3.3.1. A condition of order two were introduced and we have state that dm = O(Ψm)
can be shown. We propose a proof of this statement below.

Proof of dm = O(Ψ(m)) Take a ̸= b fixed, we have, using Lemma B.1.1

|χm(a, b) − χ(a, b)| = |θm(a, b) − θ(a, b)| ≤ 9 |νm(a, b) − ν(a, b)| ,

where νm(a, b) (resp. ν(a, b)) is the madogram computed between M (a)
m and M (b)

m (resp. between
X(a) and X(b)) and we use Lemma B.1.1 to obtain the inequality. Using the results of Lemma
1 of Marcon et al. (2017), we have

νm(a, b) − ν(a, b) = 1
2

(∫
[0,1]

(Cm − C∞)(1, x(a),1)dx(a) +
∫

[0,1]
(Cm − C∞)(1, x(b),1)dx(b)

)

−
∫

[0,1]
(Cm − C∞)(1, . . . , x︸︷︷︸

ath index

, 1, . . . , 1, x︸︷︷︸
bth index

, . . . , 1)dx,

where the integration is taken respectively for the a-th, b-th and a,b-th components. Hence

|νm(a, b) − ν(a, b)| ≤ 1
2

∫
[0,1]

|(Cm − C∞)(1, x(a),1)|dx(a)

+ 1
2

∫
[0,1]

|(Cm − C∞)(1, x(b),1)|dx(b)

+
∫

[0,1]
|(Cm − C∞)(1, . . . , x︸︷︷︸

ath index

, 1, . . . , 1, x︸︷︷︸
bth index

, . . . , 1)|dx.

Using the second order condition in Equation (3.10) we obtain that |Cm − C∞|(u) = O(Ψm),
uniformly in u ∈ [0, 1]d. Hence the statement.

Now, we prove the theoretical result giving support to our cross validation process.
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Proof of Proposition 3.3.2 Using triangle inequality several times, we may obtain the
following bound

ŜECOn,m(Ō) − ŜECOn,m(Ô) ≤ 2Dm + |
G∑
g=1

θ̂(Ōg)
n,m −

G∑
g=1

θ(Ōg)
m |

+ |
I∑
i=1

θ̂(Ôi)
n,m −

I∑
i=1

θ(Ôi)
m | + SECO(Ō) − SECO(Ô)

=: 2Dm + E1 + E2 + SECO(Ō) − SECO(Ô).

Taking expectancy, we now have

E[ŜECOn,m(Ō) − ŜECOn,m(Ô)] ≤ 2Dm + E[E1] + E[E2] + SECO(Ō) − SECO(Ô).

Using the same tool involved in the proof of Lemma B.1.1, we can show

|θ̂(Ōg)
n,m − θ̂(Ōg)

m | ≤ (dg + 1)2|ν̂(Ōg)
n,m − ν̂(Ōg)

m |,

Thus, using concentration bounds in Proposition 3.3.1, there exists a universal constant K1 > 0
independent of n, k,m, t such that

P
{

|θ̂(Ōg)
n,m − θ̂(Ōg)

m | ≥ t
}

≤ dg exp
{

− t2k

K1d4
g

}
.

Now,

P

|
G∑
g=1

θ̂(Ōg)
n,m −

G∑
g=1

θ(Ōg)
m | ≥ t

 ≤
G∑
g=1

P
{

|θ̂(Ōg)
n,m − θ̂(Ōg)

m | ≥ t

G

}

≤ d exp
{

− t2k

K1G2 ∨Gg=1 d
4
g

}

Thus, for every δ > 0, one obtains

E[E1]2 ≤ E[E2
1 ] ≤ δ +

∫ ∞
δ

P
{
E1 > t1/2

}
dt ≤ δ + d

∫ ∞
δ

exp
{

− t

2σ2

}
dt,

where σ2 = K1G2∨Gg=1d
4
g

2k . Set δ = 2σ2 ln(d), we can obtain

E[E1]2 ≤ δ + 2σ2 = c2 ln(d)G2 ∨Gg=1 d
4
g

k

with c > 0. Same results hold for E[E2] with corresponding sizes, thus

E[ŜECOn,m(Ō) − ŜECOn,m(Ô)] ≤ 2

Dm + c

√
ln(d)
k

max(G, I) max(∨Gg=1d
2
g,∨Ii=1d

2
i )


+ SECO(Ō) − SECO(Ô),
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which is strictly negative by assumption.

B.1.3 Proofs of Section 3.4

In the following we prove that the model introduced in Section 3.4 is in the domain of attraction
of an AI-block model. This comes down from some elementary algebra where the fundamental
argument is given by (Bücher and Segers, 2014, Proposition 4.2), from which the inspiration
for the model was drawn thereof.

Proof of Proposition 3.4.1 We aim to show that the following quantity∣∣∣∣D (D(O1)({u(O1)}1/m; θ, β1), . . . , D({u(OG)}1/m; θ, βG); θ, β0
)m

−D
(
D(O1)(u(O1);β1), . . . , D(OG)(u(OG);βG);β0

) ∣∣∣∣,
converges to 0 uniformly in u ∈ [0, 1]d. Using Equation (3.14) in the main article, the latter
term is equal to

E0,m :=
∣∣∣∣D (D(O1)(u(O1); θ/m, β1)1/m, . . . , D(OG)(u(OG); θ/m, βG)1/m; θ, β0

)m
−D

(
D(O1)(u(O1);β1), . . . , D(OG)(u(OG);βG);β0

) ∣∣∣∣.
Thus

E0,m ≤
∣∣∣∣D (D(O1)(u(O1); θ/m, β1)1/m, . . . , D(OG)(u(OG); θ/m, βG)1/m; θ, β0

)m
−D

(
D(O1)(u(O1); θ/m, β1), . . . , D(OG)(u(OG); θ/m, βG);β0

) ∣∣∣∣
+
∣∣∣∣D (D(O1)(u(O1); θ/m, β1), . . . , D(OG)(u(OG); θ/m, βG);β0

)
−D

(
D(O1)(u(O1);β1), . . . , D(OG)(u(OG);βG);β0

) ∣∣∣∣
=: E1,m + E2,m.

As D(·; θ/m, β0) converges uniformly to D(·, β0), then, uniformly in u ∈ [0, 1]d, E1,m −→
m→∞

0.
Now, using Lipschitz property of the copula function, one has

E2,m ≤
G∑
g=1

∣∣∣D(Og)(u(Og); θ/m, βg) −D(Og)(u(Og);βg)
∣∣∣ ,

which converges almost surely to 0 as m → ∞. The limiting copula is an extreme value copula
by β0 ≤ min{β1, . . . , βG}, see Example 3.8 of Hofert et al. (2018). Hence the result.
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B.2 Additional results

B.2.1 Additional results of Section 3.2

Let Z ≥ 0 be a random vector, and for simplicity, let’s assume that it has heavy-tailed marginal
distributions with a common tail-index α > 0. There are two distinct yet closely related classical
approaches for describing the extreme values of the multivariate distribution of Z.

The first approach focuses on scale-normalized componentwise maxima:

c−1
n

n∨
i=1

Zi,

where Zi are independent copies of Z, and cn is a scaling sequence. The limiting results are
typically derived under the assumption of independence for the sake of consistency. However,
they hold under more general conditions, such as mixing conditions (see, e.g., Hsing (1989)).
The only possible limit laws for such maxima are max-stable distributions with the following
distribution function:

lim
n→∞

P
{

n∨
i=1

Zi ≤ cnu
}

= e−Λ([0,u]c), u ∈ Rd + \0,

where the exponent measure Λ is (−α)-homogeneous.

The second approach examines the distribution of scale-normalized exceedances:

u−1 Z |
d∨
j=1

Z(j) > u,

which considers conditioning on the event that at least one component Z(j) exceeds a high
threshold u. The only possible limits of these peak-over-thresholds as u → ∞ are multivariate
Pareto distributions (Rootzén and Tajvidi (2006)). The probability laws of these distributions
are induced by a homogeneous measure Λ on the set L = E \ [0, 1]d, where E = [0,∞)d \ 0.
The probability measure takes the form:

PL(dy) = Λ(dy)
Λ(L) .

The exponent measure serves as a clear connection between these two approaches, as it
characterizes the distribution function for both cases. In fact, the connection arises from a
fundamental limiting result that establishes a link between the two approaches through regular
variation. This result has been elegantly presented in Theorem 2.1.6 and Equation (2.3.1) in
Kulik and Soulier (2020). As in the main text, let us denote by X the random vector with
extreme value distribution H(x) = e−Λ(E\[0,x]). The following proposition provides the form
of the exponent measure when the random vectors X(O1), . . . ,X(OG) are independent, and it
establishes the connection between AI-block models for the two approaches.

Proposition B.2.1. Suppose X is a random vector having extreme value distribution H with
exponent measure Λ concentrating on E \ [0,x] where E = [0,∞)d \ {0} and x > 0. The
following properties are equivalent:
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(i) The vectors X(O1), . . . ,X(OG) are independent.
(ii) The vectors are blockwise independent: for every 1 ≤ g < h ≤ G

X(Og) and X(Oh), are independent random vectors.

(iii) The exponent measure Λ concentrates on

G⋃
g=1

{0}d1 × · · · ×]0,∞[dg× · · · × {0}dG , (B.4)

so that for x > 0,

Λ

 ⋃
1≤g<h≤G

{
y ∈ E,∃a ∈ Og, ∃b ∈ Oh, y

(a) > x(a), y(b) > x(b)
} = 0.

These conditions generalize straightforwardly those stated in Proposition 5.24 of Resnick (2008)
(see Exercise 5.5.1 of the book aforementioned or the Lemma in Strokorb (2020)).

Proof of Proposition B.2.1 We will establish the result proceeding as (iii) =⇒ (i) =⇒
(ii) =⇒ (iii) where we directly have (i) =⇒ (ii). Now for (iii) =⇒ (i), suppose Λ

concentrates on the set (B.4). Then for x > 0, noting Ag(x) = {y ∈ E,∃a ∈ Og, y
(a) > x(a)}

for g ∈ {1, . . . , G}, we obtain

− lnH(x) = Λ(E \ [0,x]) = Λ

 G⋃
g=1

Ag(x)


=

G∑
g=1

Λ(Ag(x)) +
G∑
g=2

(−1)g+1 ∑
1≤i1<i2<···<il≤G

Λ(Ai1(x) ∩ · · · ∩Ail(x)),

so that because of Equation (B.4),

− lnH(x) =
G∑
g=1

Λ(Ag(x)),

and we have H(x) = ΠG
g=1 exp

{
−Λ

(
{y ∈ E,∃a ∈ Og, y

(a) > x(a)}
)}

= ΠG
g=1H

(Og)(x(Og)).

Thus H is a written as a product of the G distributions corresponding to random vectors
X(O1), . . . ,X(OG), as desired.

It remains to show (ii) =⇒ (iii). Set Q(Og)(x(Og)) = − lnP{X(Og) ≤ x(Og)} for g ∈ {1, . . . , G}.
We have for x > 0 that blockwise independence implies, with g ̸= h,

Q(Og)(x(Og)) +Q(Oh)(x(Oh)) = − lnP{X(Og) ≤ x(Og),X(Oh) ≤ x(Oh)}.

Since H(x) = exp{−Λ(E \ [0,x])} for x > 0, we have
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Q(Og)(x(Og)) +Q(Oh)(x(Oh)) = Λ({y,∃a ∈ Og, y
(a) > x(a)} ∪ {y, ∃b ∈ Oh, y

(b) > x(b)})
= Λ({y,∃a ∈ Og, y

(a) > x(a)}) + Λ({x, ∃b ∈ Oh, y
(b) > x(b)})

− Λ({y, ∃a ∈ Og,∃b ∈ Oh, y
(a) > x(a), y(b) > x(b)})

= Q(Og)(x(Og)) +Q(Oh)(x(Oh))
− Λ({y,∃a ∈ Og,∃b ∈ Oh, y

(a) > x(a), y(b) > x(b)}),

and thus
Λ({y, ∃a ∈ Og, ∃b ∈ Oh, y

(a) > x(a), y(b) > x(b)}) = 0,

so that (iii) holds. This is equivalent to Λ concentrates on the set in Equation (B.4).

If X is a random vector with multivariate extreme value distribution H then its extreme value
copula, denoted as, C∞ is written as:

C∞(u) = exp
{

−L
(
− ln(u(1)), . . . ,− ln(u(d))

)}
,

where L is the stable tail dependence function. This function captures the tail dependence
structure of the random vector and can be expressed as a specific integral with respect to the
exponent measure (we refer to Section 8 of Beirlant et al. (2004)). In the context of AI-block
models, the tail dependence function takes the following form:

L
(
z(1), . . . , z(d)

)
=

G∑
g=1

L(Og)
(
z(Og)

)
, z ∈ [0,∞)d, (B.5)

where L(O1), . . . , L(OG) are the corresponding stable tail dependence functions with copulae
C

(O1)
∞ , . . . , C

(OG)
∞ , respectively. This model is a specific form of the nested extreme value copula,

as mentioned in the remark below and discussed in further detail in Hofert et al. (2018).

Remark B.2.1. Equation (B.5) can be rewritten as

L(z) = LΠ
(
L(O1)

(
z(O1)

)
, . . . , L(OG)

(
z(OG)

))
,

where LΠ(z(1), . . . , z(G)) = ∑G
g=1 z

(g) is a stable tail dependence function corresponding to
asymptotic independence. According to Proposition 3.2.1, C∞ is an extreme value copula.
Therefore, it follows that C∞, which has the representation

C∞(u) = CΠ
(
C(O1)
∞ (u(O1)), . . . , C(OG)

∞ (u(OG))
)
, CΠ = ΠG

g=1u
(g),

is also a nested extreme value copula, as defined in Hofert et al. (2018).

Equation (B.5) can be restricted to the simplex, allowing us to express the stable tail dependence
function in terms of the Pickands dependence function. Specifically, the Pickands dependence
function A can be written as a convex combination of the Pickands dependence functions
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A(O1), . . . ,A(OG) as follows:

A(t(1), . . . , t(d)) = 1
z(1) + · · · + z(d)

 G∑
g=1

(z(ig,1) + · · · + z(ig,dg ))A(Og)(t(Og))


=

G∑
g=1

w(Og)(t)A(Og)(t(Og)) =: A(O)(t(1), . . . , t(d)), (B.6)

with t(j) = z(j)/(z(1) + · · · + z(d)) for j ∈ {2, . . . , d} and t(1) = 1 − (t(2) + · · · + t(d)), w(Og)(t) =
(z(ig,1) + · · · + z(ig,dg ))/(z(1) + · · · + z(d)) for g ∈ {2, . . . , G} and w(O1)(t) = 1 − (w(O2)(t) +
· · · + w(OG)(t)), t(Og) = (t(ig,1), . . . , t(ig,dg )) where t(ig,ℓ) = z(ig,ℓ)/(z(ig,1) + · · · + z(ig,dg )) and
(ig,ℓ) designates the ℓth variable in the gth cluster for ℓ ∈ {1, . . . , dg} and g ∈ {1, . . . , G}. As
a convex combination of Pickands dependence functions, A is itself a Pickands dependence
function (see (Falk et al., 2010, Page 123)).

In the context of independence between extreme random variables, it is well-known that the
inequality A(t) ≤ 1 holds for t ∈ ∆d−1, where A is the Pickands dependence function and
equality stands if and only if the random variables are independent. This result extends to the
case of random vectors, with the former case being a special case where d1 = · · · = dG = 1.

Proposition B.2.2. Consider a random vector X ∈ Rd with copula C∞ and Pickands depen-
dence function A. Let A(O) be as defined in (B.6). For all t ∈ ∆d−1, we have:(

A(O) − A
)

(t) ≥ 0,

with equality if and only if X(O1), . . . ,X(OG) are independent.

We provide two methods for establishing this result: the first leverages the convexity and
homogeneity of order one of the stable tail dependence function, while the second takes
advantage of the associativity of random vectors having extreme value distribution H.

Proof of Proposition B.2.2 For the first method, the stable tail dependence function L is
subadditive as an homogeneous convex function under a cone, i.e.,

L(x + y) ≤ L(x) + L(y),

for every x,y ∈ [0,∞)d. In particular, we obtain by induction on G

L

 G∑
g=1

x(g)

 ≤
G∑
g=1

L(x(g)),

where x(g) ∈ [0,∞)d and g ∈ {1, . . . , G}. Consider now z(Og) = (0, z(ig,1), . . . , z(ig,dg ),0), we
directly obtain using the equation above

L(z) = L

 G∑
g=1

z(Og)

 ≤
G∑
g=1

L(z(Og)) =
G∑
g=1

L(Og)(z(ig,1), . . . , z(ig,dg )).
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Translating the above inequality in terms of Pickands dependence function results on

A(t) ≤
G∑
g=1

1
z(1) + · · · + z(d)L

(Og)(z(ig,1), . . . , z(ig,dg ))

=
G∑
g=1

z(ig,1) + · · · + z(ig,dg )
z(1) + · · · + z(d) A(Og)(t(ig,1), . . . , t(ig,dg )),

where t(i) = z(i)/(z(1) + · · · + z(d)). Hence the result.

We can also prove this result by using the associativity of extreme-value distributions (see
(Marshall and Olkin, 1983, Proposition 5.1) or (Resnick, 2008, Section 5.4.1)), i.e.,

E [f(X)g(X)] ≥ E [f(X)]E [g(X)] ,

for every increasing (or decreasing) functions f, g. By induction on G ∈ N∗,

E
[
ΠG
g=1f

(g)(X)
]

≥ ΠG
g=1E

[
f (g)(X)

]
. (B.7)

Take f (g)(x) = 1{]−∞,x(Og)]} for each g ∈ {1, . . . G}, thus Equation (B.7) gives

C(H(1)(x(1)), . . . ,H(d)(x(d))) ≥ ΠG
g=1C

(Og)
(
H(Og)

(
x(Og)

))
,

which can be restated in terms of stable tail dependence function as

L(z) ≤
G∑
g=1

L(Og)(z(Og)).

We obtain the statement expressing this inequality with Pickands dependence function. Finally,
notice that (B.7) with f (g)(x) = 1{]−∞,x(Og)]} for each g ∈ {1, . . . G} holds as an equality if and
only if X(O1), . . . ,X(OG) are independent random vectors.

In the following paragraph, we give another proof of the extension of the results found in
Takahashi (1987, 1994) made by (Ferreira, 2011, Proposition 2.1). Before going into details,
we recall some useful expression of the dependence structure of extreme closely related to the
notion of regular variation.

Let X be a regularly varying random vector in Rd+ with exponent measure Λ which is (−α)-
homogeneous, i.e. for y > 0 and A separated from 0, that is there exists an open set U such
that 0 ∈ U and U c ⊂ A, we have

Λ(yA) = y−αΛ(A).

Using the homogeneity of the exponent measure, we may define a probability measure Φ on
Θ = Sd ∩ [0,∞) where Sd = {x ∈ Rd, ||x|| = 1} called the spectral measure associated to the
norm || · || and defined by

Φ(B) = Λ
(
z ∈ E : ||z|| > 1, z||z||−1 ∈ B

)
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for any Borel subset B of Θ (for a proper introduction to these notions, see (Resnick, 2008,
Section 5.1) or (Kulik and Soulier, 2020, Section 2.2)). The measure Φ is called the spectral
measure. It is uniquely determined by the exponent measure Λ and the chosen norm. The
homogeneity of Λ implies :

Λ
(
z ∈ E : ||z|| > r, z||z||−1 ∈ B

)
= r−1Φ(B),

for 0 < r < ∞.

Proposition B.2.3. Let X be a regularly varying random vector in Rd+ with exponent measure
Λ. Consider O = {O1, . . . , Og} be a partition of {1, . . . , d}, then the following are equivalent:

(i) Let Λ(Og) be the restriction of the exponent measure to R(Og)
+ , we have

Λ =
G∑
g=1

δ0 ⊗ · · · ⊗ Λ(Og) ⊗ · · · ⊗ δ0.

(ii) The spectral measure Φ associated to the exponent measure Λ verifies

Φ =
G∑
g=1

δ0 ⊗ · · · ⊗ Φ(Og) ⊗ · · · ⊗ δ0 =: ΦΠ, (B.8)

where Φ(Og)(B) := Φ(Θ(Og) ∩B) where B is a borel set of Θ and

Θ(Og) =
{

w ∈ Θ, w(j) > 0 if and only if j ∈ Og
}

for g ∈ {1, . . . , G}.
(iii) There exists a v ∈ (0,∞)d such that

∫
Θ

d∨
j=1

w(j)v(j)Φ(dw) =
G∑
g=1

∫
Θ(Og)

∨
j∈Og

w(j)v(j)Φ(Og)(dw(Og)). (B.9)

Proof of Proposition B.2.3 The equivalence between (i) and (ii) falls down from definitions.
The implication (ii) =⇒ (iii) is trivial. We show now (iii) =⇒ (ii) Notice that for every Borel
set B of Θ, we have

Φ(B) =
G∑
g=1

Φ(B ∩ Θ(Og)) + Φ
(
B ∩ (Θ \ ∪Gg=1Θ(Og))

)
≥

G∑
g=1

Φ(B ∩ Θ(Og)) = ΦΠ(B).

The identity in Equation (B.9) can be rewritten as

∫
Θ

d∨
j=1

w(j)v(j)(Φ − ΦΠ)(dw) = 0.
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From above, we know that (Φ − ΦΠ) defined a positive measure. For every Borel set B of Θ,
we have ∫

B

d∨
j=1

w(j)v(j)(Φ − ΦΠ)(dw) ≤
∫

Θ

d∨
j=1

w(j)v(j)(Φ − ΦΠ)(dw) = 0.

Since the function w 7→
∨d
j=1w

(j)v(j) is strictly positive, continuous and defined on a compact
set, we have that ∨dj=1w

(j)v(j) ≥ c for a certain constant c strictly positive and we obtain

c(Φ − ΦΠ)(B) ≤
∫
B

d∨
j=1

w(j)v(j)(Φ − ΦΠ)(dw) = 0.

The following identity is obtained
Φ(B) = ΦΠ(B),

since B is taken arbitrary from the Borelian of Θ, we conclude.

One can notice that the integrals defined in (B.9) can be rewritten with the help of stable tail
dependence function, that is

L
(
v(1), . . . , v(d)

)
=

G∑
g=1

L(Og)
(
v(Og)

)
, v ∈ [0,∞)d,

since for every v ∈ [0,∞)d

L(v) =
∫

Θ

d∨
j=1

w(j)v(j)Φ(dw).

B.2.2 Additional results of Section 3.3

To establish the strong consistency of the estimator ν̂n,m in (3.7), certain conditions on the
mixing coefficients must be satisfied.

Condition C. Let mn = o(n). The series ∑n≥1 β(mn) is convergent, where β is defined in
Section 1.1.4.

For the sake of notational simplicity, we will write m = mn, k = kn. The convergence of the
series of β-mixing coefficients in Condition C is necessary to obtain the strong consistency of
ν̂n,m, and it can be achieved through the sufficiency condition of the Glivencko-Cantelli lemma
for almost sure convergence.

Proposition B.2.4. Let (Zt, t ∈ Z) be a stationary multivariate random process. Under
Conditions A and C, the madogram estimator in (3.7) is strongly consistent, i.e.,

|ν̂n,m − ν| a.s.−→
n→∞

0,

with ν the theoretical madogram of the random vector X with copula C∞ given in (3.5).

Let Con,m be the empirical estimator of the copula Cm based on the (unobservable) sample
(U (j)

m,1, . . . , U
(j)
m,k) for j ∈ {1, . . . , d}. The proof of Proposition B.2.4 will use twice Lemma B.3.1,
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which shows that ||Con,m − C||∞ converges almost surely to 0. The proof of this lemma is
postponed to B.3.1 of supplementary results.

Proof of Proposition B.2.4 We aim to show the following convergence

|ν̂n,m − ν| a.s.−→
n→∞

0.

Following Lemma A.1 of Marcon et al. (2017), we can show that

ν̂on,m − ν = ϕ(Con,m − C∞),

where ν̂on,m given in (B.1) and ϕ : ℓ∞([0, 1]d) → ℓ∞(∆d−1), f 7→ ϕ(f) defined by

ϕ(f) = 1
d

d∑
j=1

∫
[0,1]

f(1, . . . , 1, u︸︷︷︸
j-th component

, 1, . . . , 1)du−
∫

[0,1]
f(u, . . . , u)du.

Using Conditions A and C, by Lemma B.3.1 in B.3.1, as ||Con,m − C∞||∞ converges almost
surely to 0, we obtain that ∣∣∣ν̂on,m − ν

∣∣∣ a.s.−→
n→∞

0. (B.10)

Furthermore, using the chain of inequalities and again Lemma B.3.1 in B.3.1,∣∣∣ν̂n,m − ν̂on,m

∣∣∣ ≤ 2 sup
j∈{1,...,d}

sup
x∈R

∣∣∣F̂ (j)
n,m(x) − F (j)

m (x)
∣∣∣

≤ 2 sup
j∈{1,...,d}

sup
u∈[0,1]

∣∣∣∣∣1k
k∑
i=1

1{U(j)
m,i≤u}

− u

∣∣∣∣∣ .
Then we obtain that ∣∣∣ν̂n,m − ν̂on,m

∣∣∣ a.s.−→
n→∞

0. (B.11)

Now, write
|ν̂n,m − ν| ≤

∣∣∣ν̂n,m − νon,m

∣∣∣+ ∣∣∣ν̂on,m − ν
∣∣∣ ,

and use Equations (B.10) and (B.11) to obtain the statement.

The strong consistency of the madogram in Proposition B.2.4 could be extended to the α-mixing
case. We present here the strong consistency of our procedure when the dimension d is fixed
the sample size n grows at infinity. The main technicality of the proof has already been tackled
in Proposition B.2.4 and we state the precise formulation of this theorem below.

Theorem B.2.1. Consider the AI-block model as defined in Definition 3.2.1 under Condition B
and (Zt, t ∈ Z) be a stationary multivariate random process. For a given X and its corresponding
estimator X̂ , if Conditions A, C holds, then taking τ = 0

lim
n→∞

P
{
Ô = Ō

}
= 1.

Proof of Theorem B.2.1 If a and b are not in the same cluster according to Ō, i.e. a
Ō
̸∼ b,

then χ(a, b) = 0. Therefore, using Proposition B.2.4 along with Conditions A and C, we can
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conclude that almost surely
lim
n→∞

χ̂n,m(a, b) = 0 ≤ τ.

Now, if a Ō∼ b, then χ(a, b) > 0 and again by Propositions B.2.4 and Conditions A, C, we obtain

lim
n→∞

χ̂n,m(a, b) = χ(a, b) > 0,

where the the strict positiveness is obtain through Condition B, hence

a
Ō∼ b ⇐⇒ lim

n→∞
χ̂n,m(a, b) > τ.

Let us prove Theorem B.2.1 by induction on the algorithm step l. We consider the algorithm
at some step l − 1 and assume that the algorithm was consistent up to this step, i.e. Ôj = Ōj
for j = 1, . . . , l − 1.

If lim
n→∞

χ̂n,m(al, bl) = 0, then no b ∈ S is in the same group of al. Since the algorithm has been
consistent up to this step l, it means that al is a singleton and Ôl = {al}.

If lim
n→∞

χ̂n,m(al, bl) > τ , then al
Ō∼ b. The equivalence above implies that Ôl = S ∩ Ōl. Since

the algorithm has been consistent up until this step, we know that Ôl = Ōl. Therefore, the
algorithm remains consistent at step l with probability tending to one as n → ∞, and Theorem
B.2.1 follows by induction.

B.3 Further results

B.3.1 A usefull Glivenko-Cantelli result for the copula with known margins
in a weakly dependent setting

In this section, we will prove an important auxiliary result: the empirical copula estimator
Ĉon,m based on the weakly dependent sample Um,1, . . . ,Um,k is uniformly strongly consistent
towards the extreme value copula C. This result is a main tool to obtain important results in
the paper such as Proposition B.2.4, Theorem B.2.1. For that purpose, the Berbee’s coupling
lemma is of prime interest (see, e.g., (Rio, 2017, Chapter 5)) which gives an approximation of
the original process by conveniently defined independent random variables.

Lemma B.3.1. Under conditions of Proposition B.2.4, we have

||Con,m − C||∞
a.s.−→
n→∞

0.

Lemma B.3.1 Using triangle inequality, one obtain the following bound

||Con,m − C||∞ ≤ ||Con,m − Cm||∞ + ||Cm − C||∞. (B.12)

As {Cm, n ∈ N} is an equicontinuous class of functions (for every m, Cm is a copula hence
a 1-Lipschitz function), defined on the compact set [0, 1]d (by Tychonov’s theorem) which
converges pointwise to C by Condition A. Then the convergence is uniform over [0, 1]d. Thus
the second term of the RHS of Equation (B.12) converges to 0 almost surely.
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Now, let us prove that ||Con,m − Cm||∞ converges almost surely to 0. By Berbee’s coupling
lemma (see (Rio, 2017, Theorem 6.1) or (Bücher and Segers, 2014, Theorem 3.1) for similar
applications), we can construct inductively a sequence (Z̄im+1, . . . , Z̄im+m)i≥0 such that the
following three properties hold:

(i) (Z̄im+1, . . . , Z̄im+m) d= (Zim+1, . . . ,Zim+m) for any i ≥ 0;
(ii) both (Z̄2im+1, . . . , Z̄2im+m)i≥0 and (Z̄(2i+1)m+1, . . . , Z̄(2i+1)m+m)i≥0 sequences are independent

and identically distributed;
(iii) P{(Z̄im+1, . . . , Z̄im+m) ̸= (Zim+1, . . . ,Zim+m)} ≤ β(m).

Let C̄on,m and Ūm,i be defined analogously to Con,m and Um,i respectively but with Z1, . . . ,Zn
replaced with Z̄1, . . . , Z̄n. Now write

Con,m(u) = C̄on,m(u) +
{
Con,m(u) − C̄on,m(u)

}
. (B.13)

We will show below that the term under brackets converges uniformly to 0 almost surely. Write
C̄on,m(u) = C̄o,odd

n,m (u) + C̄o,even
n,m (u) where C̄o,odd

n,m (u) and C̄o,even
n,m (u) are defined as sums over the

odd and even summands of C̄on,m(u), respectively. Since both of these sums are based on i.i.d.
summands by properties (i) and (ii), we have ||C̄on,m − Cm||∞

a.s.−→
n→∞

0 using Glivenko-Cantelli
(see (van der Vaart and Wellner, 1996, Chapter 2.5)).

It remains to control the term under brackets on the right hand side of Equation (B.13), we
have that

∣∣∣Con,m(u) − C̄on,m(u)
∣∣∣ ≤ 1

k

k∑
i=1

∣∣∣1{Ūm,i≤u} − 1{Um,i≤u}

∣∣∣
≤ 1
k

k∑
i=1

1{(Z̄im+1,...,Z̄im+m )̸=(Zim+1,...,Zim+m)}.

Hence, using Markov’s inequality and property (iii), we have

P
{

sup
u∈[0,1]d

∣∣∣C̄on,m(u) − Con,m(u)
∣∣∣ > ϵ

}
≤ β(m)

ϵ
.

Thus by Condition C,

∑
n≥1

P
{

sup
u∈[0,1]d

∣∣∣C̄on,m(u) − Con,m(u)
∣∣∣ > ϵ

}
< ∞.

Applying Borel-Cantelli gives the desired convergence to 0 almost surely of the term under
bracket in Equation (B.13). Gathering all results gives that the term ||Con,m −Cm||∞ converges
almost surely to 0. Hence the statement using Equation (B.12).

B.3.2 Weak convergence of an estimator of A(O) − A

We now state conditions on the block size m and the number of blocks k, as in Bücher and
Segers (2014), to demonstrate the weak convergence of the empirical copula process based on
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the (unobservable) sample (U (j)
n,m,1, . . . , U

(j)
n,m,k) for every j ∈ {1, . . . , d} under mixing conditions.

An additional condition will be required within the theorem to establish the weak convergence
of the rank-based copula estimator under the same mixing conditions.

Condition F . There exists a positive integer sequence ℓn such that the following statement
holds:

(i) mn → ∞ and mn = o(n)
(ii) ℓn → ∞ and ℓn = o(mn)
(iii) knα(ℓn) = o(1) and (mn/ℓn)α(ℓn) = o(1)
(iv)

√
knβ(mn) = o(1)

We recall that both m and k depends on n. Also, for notational convenience, we will write in the
following ℓn = ℓ. Note that Condition F (iii) guarantees that the limit C is an extreme value
copula by (Hsing, 1989, Theorem 4.2). As usual, the weak convergence of the empirical copula
process stems down from the finite dimensional convergence and the asymptotic tightness of
the process which then hold from Condition F (iii) and (iv) respectively. In order to apply
Hadamard’s differentiability to obtain the weak convergence of the empirical copula based on
the sample’s scaled ranks, we need a classical condition over the derivatives of the limit copula
stated as follows.

Condition G. For any j ∈ {1, . . . , d}, the jth first order partial derivative Ċ(j) = ∂C/∂u(j)

exists and is continuous on {u ∈ [0, 1]d, u(j) ∈ (0, 1)}.

The estimator of the Pickands dependence function that we present is based on the madogram
concept (Cooley et al. (2006); Marcon et al. (2017)), a notion borrowed from geostatistics in
order to capture the spatial dependence structure. Our estimator is defined as

Ân,m(t) = ν̂n,m(t) + c(t)
1 − ν̂n,m(t) − c(t) ,

where

ν̂n,m(t) = 1
k

k∑
i=1

 d∨
j=1

{
Û

(j)
n,m,j

}1/t(j)

− 1
d

d∑
j=1

{
Û

(j)
n,m,i

}1/t(j)
 , c(t) = 1

d

d∑
j=1

t(j)

1 + t(j)
,

and Û (j)
n,m,i = F̂

(j)
n,m(M (j)

m,i) corresponds to ranks scaled by k−1. By convention, here u1/0 = 0 for
u ∈ (0, 1). Let g ∈ {1, . . . , G} and define

Â(Og)
n,m

(
t(Og)

)
= Ân,m

(
0, t(Og),0

)
the empirical Pickands dependence function associated to the k-th subvector of Xp. We consider
the empirical process of the difference between estimates of the Pickands dependence functions
of subvectors X(Og), g ∈ {1, . . . , G}, and the estimator of the Pickands dependence function of
X:

EnG(t) =
√
k
(

Â(O)
n,m(t) − Ân,m(t)

)
,

where Â(O)
n,m(t) = ∑G

g=1w
(Og)(t)Â(Og)

n,m (t(Og)). Noticing that multiplying the above process by d
and taking t = (d−1, . . . , d−1) gives
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√
kŜECO(O) =

√
k

 G∑
g=1

θ̂(Og)
n,m − θ̂n,m

 .
Hence, the weak convergence of the above empirical process will immediately comes down from
the one of the empirical process in EnG, as stated in the theorem below.

Theorem B.3.1. Consider the AI-block model in Definition 3.2.1 with a given partition O,
i.e., A = A(O) where the latter is defined in Equation (B.6). Under Conditions A, F , G and√
k(Cm −C)⇝ Γ, the empirical process EnG converges weakly in ℓ∞(∆d−1) to a tight Gaussian

process having representation

EG(t) = (1 + A(t))2
∫

[0,1]
(NC∞ + Γ)(ut(1)

, . . . , ut
(d))du

−
G∑
g=1

w(Og)(t)
(
1 + A(Og)(t(Og))

)2 ∫
[0,1]

(NC∞ + Γ)(1, ut
(ig,1)

, . . . , ut
(ig,dg )

,1)du,

where NC∞ is a continuous tight Gaussian process with representation

NC∞(u(1), . . . , u(d)) = BC∞(u(1), . . . , u(d)) −
d∑
j=1

Ċ(j)
∞ (u(1), . . . , u(d))BC∞(1, u(j),1),

and BC∞ is a continuous tight Gaussian process with covariance function

Cov(BC∞(u), BC∞(v)) = C∞(u ∧ v) − C∞(u)C∞(v) = CΠ(u ∧ v) − CΠ(u)CΠ(v),

where CΠ(u(Og)) = ΠG
g=1C

(Og)
∞ (u(Og)).

Theorem B.3.1 The proof is straightforward, notice that by the triangle diagram in Figure B.1

EnG = ψ ◦ ϕ
(√

k(Ân,m − A)
)
,

where ϕ is detailed as

ϕ : ℓ∞(∆d−1) → ℓ∞(∆d−1) ⊗ (ℓ∞(∆d−1), . . . , ℓ∞(∆d−1))
x 7→ (x, ϕ1(x), . . . , ϕG(x)),

with for every g ∈ {1, . . . , G}

ϕg : ℓ∞(∆d−1) → ℓ∞(Sd)
x 7→ w(Og)(t(1), . . . , t(G))x(0, t(ig,1), . . . , t(ig,dg ),0),

and also

ψ : ℓ∞(∆d−1) ⊗ (ℓ∞(∆d−1), . . . , ℓ∞(∆d−1)) → ℓ∞(∆d−1)
(x, ϕ1(x), . . . , ϕG(x)) 7→

∑G
g=1 ϕg(x) − x.
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B.3 Further results

√
k
(

Ân,m − A
)

EnG

(√
k
(

Ân,m − A
)

;w(O1)√k
(

Â(O1)
n,m − A(O1)

)
, . . . , w(OG)√k

(
Â(OG)
n,m − A(OG)

))ϕ
ψ

Fig. B.1 Commutative diagram of composition of function.

The function ϕg is a linear and bounded function hence continuous for every g, it follows that ϕ
is continuous since each coordinate functions is continuous. As a linear and bounded function,
ψ is also a continuous function. Noticing that,

(Cm − C∞)(1, u,1) = 0, ∀n ∈ N,

where m is the block length for a sample size n. We thus have
√
k(Cm − C∞)(1, u,1) −→

n→∞
0.

Therefore Γ(1, u,1) = 0. Combining this equality with Corollary 3.6 of Bücher and Segers
(2014) and the same techniques as in the proof of Theorem 2.4 in Marcon et al. (2017), we
obtain along with Conditions A, F , G

√
k(Ân,m(t) − A(t))⇝ −

(
1 + Ân,m(t))

)2 ∫
[0,1]

(NC∞ + Γ)(ut(1)
, . . . , ut

(d))du.

Applying the continuous mapping theorem for the weak convergence in ℓ∞(∆d−1) (Theorem
1.3.6 of van der Vaart and Wellner (1996)) leads the result.
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Chapter 4

Identifying regions of concomitant
compound precipitation and wind
speed extremes over Europe

This chapter is based on work currently under revision for publication in an international
peer-reviewed journal.

Alexis Boulin, Elena Di Bernardino, Thomas Laloë, Gwladys Toulemonde
(2023), Identifying regions of concomitant compound precipitation and
wind speed extremes over Europe.

Abstract.
The task of simplifying the complex spatio-temporal variables associated with climate modeling is
of utmost importance and comes with significant challenges. In this research, our primary objective
is to tailor clustering techniques to handle compound extreme events within gridded climate data
across Europe. Specifically, we intend to identify subregions that display asymptotic independence
concerning compound precipitation and wind speed extremes. To achieve this, we utilise daily
precipitation sums and daily maximum wind speed data derived from the ERA5 reanalysis dataset
spanning from 1979 to 2022. Our approach hinges on a tuning parameter and the application of
a divergence measure to spotlight disparities in extremal dependence structures without relying
on specific parametric assumptions. We propose a data-driven approach to determine the tuning
parameter. This enables us to generate clusters that are spatially concentrated, which can provide
more insightful information about the regional distribution of compound precipitation and wind
speed extremes. In the process, we aim to elucidate the respective roles of extreme precipitation and
wind speed in the resulting clusters. The proposed method is able to extract valuable information
about extreme compound events while also significantly reducing the size of the dataset within
reasonable computational timeframes.

4.1 Introduction

The occurrence of extreme weather events is often exacerbated by the convergence of distinct
geographic factors and concurrent weather patterns, resulting in profound disruptions and
extensive damage to society. Catastrophic climate phenomena such as floods, wildfires, and
heatwaves frequently manifest due to the simultaneous intensification of multiple interacting
processes. When these various processes coalesce to yield a substantial impact, it is referred to as
a compound event. Among the primary manifestations of extreme weather, heavy precipitation
and robust surface winds hold central positions, exerting adverse effects on both the natural
world and human society. Extratropical cyclones, along with their associated wind patterns
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and storm surges, contribute significantly to economic and insured losses resulting from natural
calamities in Europe. Furthermore, they disrupt transportation, trade, and energy supply
systems, often leading to human casualties (refer to, for instance, Pinto et al. (2012); Schwierz
et al. (2010)). To mitigate these impacts, it is important to better understand the dependence
structure of extreme weather events. However, modeling such complex scenarios, where multiple
rare events occur simultaneously, can be incredibly challenging, especially with high-dimensional
climate datasets that exhibit heavy tails.
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Fig. 4.1 Proportion of the total precipitation or wind speed in the ERA5 dataset that exceed
their respective 0.9th quantiles.

Considered ERA5 dataset Large ensemble simulations present a unique opportunity for
gaining deeper insights into the spatial regionalisation of compound precipitation and wind
extremes. This is primarily because these simulations provide a more accurate representation
of local-scale processes compared to global ensembles and do so without being hindered by data
limitations. However, such simulations need to be interpreted with care as it is often largely
unknown how well the employed models represent observed compound events (Zscheischler
et al. (2021)), and differences might be large between models. In our endeavor to regionalize
compound precipitation and wind speed, we turn to the ERA5 dataset (Hersbach et al. (2018)).
This dataset allows us to investigate the correlation between daily cumulative precipitation
and daily peak wind speeds throughout the extended winter between season, spanning from
November to March, across Europe, for the period between 1979 and 2022. ERA5 offers a
comprehensive record of atmospheric conditions, land surface characteristics, and ocean wave
patterns, spanning from 1950 to the present day. It is worth noting that ERA5 supersedes the
previous ERA-interim reanalysis, which began in 1979 and was initiated in 2006.
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4.1 Introduction

ERA5 has benefited from significant advancements in model physics, core dynamics, and data
assimilation techniques developed over the past decade. Produced using 4D-Var data assimilation
technology within model cycle 41r2 (Cy41r2), ERA5 incorporates improved parameterization
schemes (Hersbach et al. (2020)). The dataset is available at a spatial resolution of 0.25◦
(approximately 27-28 km) on a regular grid. Our specific focus lies within the region defined
by [−15◦E, 42.5◦E] × [30◦N, 75◦N ], which encompasses Europe. We remap the original hourly
data to a regularly spaced grid with a 0.5◦ spatial resolution, allowing us to compute daily
precipitation totals and daily maximum wind speeds. We selected the 0.5◦ spatial resolution
due to its ability to facilitate calculations within a reasonable timeframe while maintaining
manageable storage requirements. The need for remapping can be circumvented with more
extensive computing resources. The resulting dataset comprises 6655 daily precipitation totals
and maximum wind speed measurements, covering 91 × 116 grid cells with the chosen spatial
resolution, totaling 10556 grid cells for clustering. To illustrate, Fig. 4.1 provides a visualization
of the proportion of grid cells where either wind speed or precipitation exceed a significant
threshold. As observed in both panels, there is a noticeable spatial variation in these proportions.
In the following, we introduce some notations to describe the spatio-temporal process under
consideration.

Consider a spatio-temporal random field denoted as (Z(s)
n , s ∈ D ⊂ R2, n ∈ N). Here, Z(s)

n =
(Z(s,1)

n , Z
(s,2)
n ) represents the vector of daily total precipitation and wind speed maxima at

location s on day n. We assume that Z(s)
n is identically distributed over n for each location s in

the domain D. Now, let’s suppose that we have observations available at d spatial locations
for each time n. We can represent these observations as Zn = (Z(1)

n , . . . ,Z(d)
n ), where Zn is

random vector with stationary law Z = (Z(1), . . . ,Z(d)). Each Z(j) is a random vector with
two dimensions, corresponding to precipitation and wind speed. In the given dataset, each
variable represents a location on a grid pixel scale and is characterised by multiple features that
can exhibit extreme behavior when considered together. This implies that clustering methods
designed to analyze the dependence structure should consider spatial extremal dependence
across different locations. In the following discussion, we will review some studies that aim to
understand the dependence structure of potentially high-dimensional random vectors.

Related literature In the field of high-dimensional extremes, researchers have made significant
contributions to address the challenges associated with vectors that have univariate random
margins, with a focus on unsupervised techniques such as support identification (see, e.g., Goix
et al. (2017); Meyer and Wintenberger (2021)), Principal Component Analysis of the angular
measure of extremes (Cooley and Thibaud (2019); Drees and Sabourin (2021)), graphical models
for extremes (Asenova et al. (2021); Engelke and Hitz (2020); Hitz and Evans (2016)) and
clustering methods (Janßen and Wan (2020) or Chapter 3). These methods can help identify
hidden spatial patterns and sub-regions where variables are dependent on their extremes, which
is crucial for regionalisation tasks.

Over the years, a number of clustering approaches have been suggested, with a focus on
extremes, based on a comparison between univariate distributions. For instance, Bernard et al.
(2013) analysed weekly maxima of precipitation in France and developed a clustering algorithm
on a proper distance, the madogram, justified by Extreme Value Theory (EVT). The same
approach was used in Bador et al. (2015) to evaluate the bias of climate model simulations of
temperature maxima over Europe. In Durante et al. (2015), a four-step clustering procedure was
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presented that considered a pairwise conditional Spearman’s correlation coefficient, extracted
from daily-log-returns of the adjusted stock price, as a measure of tail dependence. Pappadà
et al. (2018) investigated spatial sub-regions (clusters) of flood risk behavior in the Po river
basin in Italy using a copula-based Agglomerative Hierarchical Clustering. In the paper by
Maume-Deschamps et al. (2023), they introduce a modified spectral clustering algorithm
designed for analyzing spatial extreme events. This algorithm combines spectral clustering with
the concept of extremal concurrence probability, as proposed by Dombry et al. (2018). The goal
of this approach is to determine whether a max-stable process exhibits a stationary dependence
structure or not. Chapter 3 proposed a class of models, the Asymptotic Independent block
(AI block) models, for variable clustering, which defines population-level clusters based on
the independence of extremes between clusters. They exhibited an algorithm that compares
the extremal dependence of univariate distributions at different locations and showed that it
recovers the thinnest partition such that extremes between groups of random variables are
mutually independent with high probability.

While regional analysis of univariate climate extreme events is a well-studied area of research,
multivariate compound extreme events at larger scales have received less attention. Although the
widely known Kullback-Leibler divergence has been adapted for use in the context of compound
extreme events, it has been primarily employed to cluster data based on their bivariate extreme
behavior (as demonstrated in Vignotto et al. (2021)) and to analyze compound weather and
climate events (as discussed in Zscheischler et al. (2021)). However, this metric primarily
summarises the differences in distribution between two sets of random variables when at least
one of their components is extreme, and it does not quantify deviations from asymptotic
independence. recognising sub-regions characterised by concurrent extreme precipitation and
wind speed events is essential for improving extreme event modeling. This is particularly
evident in works like Chatelain et al. (2020) and Engelke and Hitz (2020), which rely on the
assumption of asymptotic dependence in the data. Such insights are crucial for the development
of strategies to mitigate the impacts of these extreme events.

Proposed methodology. In this paper, our objective is to expand upon the AI block model
as introduced in Chapter 3 to tackle the challenges posed by this environmental dataset. We
depart from the assumption that clusters of pixels are mutually independent univariate time
series, with regard to their extremes. Instead, we shift to a framework where a collection of
univariate time series is recorded for each pixels, with a particular emphasis on their extreme
behavior. To tackle this intrinsic problem, we introduce the concept of constrained AI block
model, compelling pixels represent a collection of univariate time series. This concept comes
into play in our environmental problematic which concerns phenomena like precipitation and
wind speed extremes recorded at a specific geographic locations represented as pixels within a
large ensemble dataset.

Our objective is the following: cluster a number of d = 10556 pixels across Europe based on
their asymptotic independence on compound precipitation and wind speed extremes where
data are relatively scarse, i.e., the sample size n = 6655. To efficiently implement a fast
algorithm designed for this model-based approach in such a high-dimensional setting, we employ
a divergence measure that highlights the differences in extremal dependence structures for
asymptotically dependent and independent random vectors. Noticeably, this divergence measure
adheres to several axioms that makes it a valid measure of dependence (De Keyser and Gijbels
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(2023a,b)) and also a coherent measure (Scarsini (1984)). Furthermore, this divergence is linked
to a well-known quantity in Extreme Value Theory and can be consistently estimated without
the need of parametric assumptions. This consistent estimation is possible under the condition
of weak mixing conditions to stay within the scope of our application where departures from
the independence assumption are strongly suspected.

The algorithm requires the specification of a tuning parameter, and we suggest an approach
based on data to determine its value. When applied to our environmental dataset, this clustering
procedure is efficient and produces clusters that are spatially concentrated, which is a pattern
commonly observed in spatial processes. Furthermore, we leverage the interpretability of
classical AI block models to gain insights into the role of precipitation and wind speed extremes
in the compound partition. In other words, we use this approach to understand how the
clustering is influenced by both wind speed and precipitation. To further analyse the results,
we make use of a straightforward modification of our dissimilarity measure. This modification
allows us to comment on the different clusterings obtained through various algorithms and
provide valuable insights into our proposed methodology.

4.2 A clustering algorithm for compound extreme events

4.2.1 A measure for evaluating dependence between compound extremes

We consider a high-dimensional random vector Z = (Z(1), . . . ,Z(d)) with law F having d
marginal random vectors Z(j) = (Z(j,1), . . . , Z(j,pj)) for j = 1, . . . , d. To accommodate vectors
of different sizes which will be useful later, we introduce a different notation from the one
given in the introduction. Each Z(j) contains pj marginal univariate random variables Z(j,ℓ) for
ℓ = 1, . . . , pj . In this framework Z has q = p1 + · · · + pd marginal univariate random variables.

We call for convenience a function u on R a normalising function if u is non-decreasing, right
continuous, and u(x) → ±∞ as x → ±∞. For a stationary sequence (Zn, n ∈ N) of Z, we
say that the distribution F belongs to the max-domain of attraction of the Extreme Value
Distribution (EVD) H if the following convergence result holds for properly normalised maxima:

P
{

n∨
i=1

Zi ≤ un(x)
}

−→
n→∞

H(x), x ∈ Rq, (4.1)

where un(x) = (u(1,1)
n (x(1,1)), . . . , u(1,p1)

n (x(1,1)), . . . , u(d,pd)
n (x(d,pd))) is a q-dimensional vector of

normalising functions. The margins H(1,1), . . . ,H(d,pd) of H must be univariate extreme value
distributions and the dependence structure of H is determined by the relation

− lnH(x) = L
(
− lnH(1,1)(x(1,1)), . . . ,− lnH(d,pd)(x(d,pd))

)
, (4.2)

for all points x such that H(j,ℓ)(x(j,ℓ)) > 0 for all j = 1, . . . , d, ℓ = 1, . . . , pj . The convergence
result in (4.1) with the relation in (4.2) holds under mild assumptions on the dependence
between Z1, . . . ,Zn, making the study of time series relevant within the framework of EVT.
The stable tail dependence function L : [0,∞)q → [0,∞) can be retrieved from the distribution
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function F via

L(x) = lim
t→0

t−1P
{
F (1,1)(Z(1,1)) > 1 − tx(1,1) or . . . or F (d,pd)(Z(d,pd)) > 1 − tx(d,pd)

}
. (4.3)

We assume that the random vector Z is in the max-domain of attraction of an EVD, denoted as
H. Moreover, we aim that the extremal dependence can be modelled using an AI block model
(see Chapter 3) where the definition is recalled below.

Definition 4.2.1 (Asymptotic Independent block model). Let (Zn, n ∈ N) be a q-variate
stationary random sequence with law F in the max domain of attraction of H. The random
sequence (Zn, n ∈ N) is said to follow an AI block model if there exists a partition O = {Og}Gg=1
of {1, . . . , q} with |Og| = dg and marginal extreme value distributions H(Og) : Rdg → [0, 1] such
that H = ΠG

g=1H
(Og).

The constrained AI block model requires improvements to the methods proposed in Chapter 3,
which uses extremal correlation to detect asymptotic independence between random variables,
to correctly identify the hidden partition. Asymptotic independence is a concept that describes
the relationship between extremes of two random variables, denoted Z(a) and Z(b). Each
variable has its own cumulative distribution function, denoted F (a) and F (b), respectively. The
extremal correlation, denoted as χ(a, b), between these two random variables is formally stated
by

χ(a, b) = lim
t→0

P
{
F (a)(Z(a)) > 1 − t|F (b)(Z(b)) > 1 − t

}
.

The extremal correlation represents the probability of one variable being extreme given that the
other is also extreme. If the extremal correlation coefficient χ(a, b) is in the range of (0, 1], then
Z(a) and Z(b) are said to be asymptotically dependent. Otherwise, if χ(a, b) = 0, the variables
are asymptotically independent. For instance, the well-known bivariate Gaussian distribution
with correlation coefficient ρ ∈ [−1, 1) satisfies χ(a, b) = 0.

An extension beyond the bivariate case involves examining two groups of random variables.
In Chapter 3, a new metric called Sum of Extremal COefficient (SECO) was introduced. To
better understand the definition of the metric, the necessary notations for extremal coefficients
of an extremal random vector with possibly different sizes are presented below:

θ(1, . . . , d) = lim
t→0

t−1P
{

max
j=1,...,d

max
ℓ=1,...,pj

F (j,ℓ)(Z(j,ℓ)) > 1 − t

}
(4.4)

θ(j) = lim
t→0

t−1P
{

max
ℓ=1,...,pj

F (j,ℓ)(Z(j,ℓ)) > 1 − t

}
, j = 1, . . . , d. (4.5)

Then, θ(j) corresponds to the extremal coefficient associated to the jth marginal random vector
X(j). The SECO metric is defined as the difference between the sum of the extremal coefficients
of the d marginal random vectors Z(j) and the extremal coefficient of the entire vector, that is,
formally stated

SECO(Z(1), . . . ,Z(d)) =
d∑
j=1

θ(j) − θ(1, . . . , d). (4.6)
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The SECO metric is always positive and quantifies the deviation from asymptotic independence
between the d groups of variables. Indeed, Proposition B.2.3 in Chapter 3, Ferreira (2011)
showed that the SECO metric is equal to zero if and only if the d groups of variables are
independent extreme value random vectors. Moreover, the bivariate SECO between Z(j) and
Z(k) simplifies to the extremal correlation when these are random variables. Recently, De Keyser
and Gijbels (2023b) developed an axiomatic framework to quantify dependence between multiple
groups of random variables of possibly different sizes. For self-consistency, we recall them
in Appendix C.1 and we show that the SECO metric defined in (4.6) satisfies most of the
stated axioms (see Lemma C.1.1 in Appendix C.1). Also, we are interested in determining
whether SECO remains coherent (as defined in Durante and Sempi (2015); Scarsini (1984))
when comparing two random vectors with the same dimension, which occurs when pa = pb. In
Appendix C.2, we examine the coherence of the SECO in nested extreme value copulae, which
were introduced in Hofert et al. (2018). A further objective is to investigate how SECO behaves
in specific nested models.

4.2.2 Clustering for compound extremes

In this section, we introduce a modified version of the ECO algorithm as presented in Chapter
3, which is capable of clustering compound extremes.

To introduce flexibility in AI block models and bring notations into our application, we
consider Z(j)

i , i = 1, . . . , n, j = 1, . . . , d, which are extracted from d pixels. We assume
that each observation is distributed according to F which is in the max-domain of attraction
an constrained AI block model as defined in Section 4.2.1. Any deviation from asymptotic
independence between two pixels can then be measured by the empirical counterpart version
of the SECO in (4.6). The empirical counterpart of the SECO between two pixels a and b is
defined as:

ŜECO(Z(a),Z(b)) = θ̂(a) + θ̂(b) − θ̂(a, b), (4.7)

In this case study, we consider d = 10556 pixels. For each pixel j = 1, . . . , d, we define a
bivariate random vector Z(j) = (Z(j,1), Z(j,2)), where, as a convention in this paper, Z(j,1) and
Z(j,2) represent the stationary distributions of daily total precipitation and wind speed maxima
at location j, respectively. Hence, to stick in this context, θ̂(a, b) is the empirical counterpart
of the extremal coefficient for the joint vector (Z(a),Z(b)), and θ̂(j) is the empirical counterpart
of the extremal coefficient for the random vector Z(j), j ∈ {a, b}, i.e.,

θ̂(a, b) = 1
k

n∑
i=1

1{R(a,1)
i >n−k+0.5 or R(a,2)

i >n−k+0.5 or R(b,1)
i >n−k+0.5 or R(b,2)

i >n−k+0.5} (4.8)

θ̂(j) = 1
k

n∑
i=1

1{R(j,1)
i >n−k+0.5 or R(j,2)

i >n−k+0.5}, j = a, b, (4.9)

where R(j,ℓ)
i denote the rank of Z(j,ℓ)

i among Z(j,ℓ)
1 , . . . , Z

(j,ℓ)
n , j = a, b, ℓ = 1, 2. The notation

described above can be easily extended to pixels of varying sizes or to a number a pixels greater
than 2. However, for the sake of clarity in notation and to maintain consistency with our
application, we focus on the scenario where pixels consist of bivariate time series. The statistic
in Equation (4.7) gauges the strength of dependence between two pixels by counting how often
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one of the pixels is extreme in terms of either precipitation or wind speed, while adjusted for
the number of times a component is extreme in at least one of the pixels.

Classical non-parametric estimators of the extremal coefficient, as demonstrated in equation
(4.8), is only relevant when the number of variables is less than the number of observations,
meaning d ≤ n. Indeed, in Appendix C.3 (see Lemma C.3.1 and Lemma C.3.2), we exhibit
bounds which show limitations that classical estimators of the extremal dependence structure
face, preventing them from encompassing the full range of extremal dependence structures. In
high-dimensional scenarios where the number of variables exceeds the number of observations
(d > n), classical estimators may fail to identify asymptotic independence in extremes. This is
particularly relevant for a generalised version estimator in (4.9) for an arbitrary number d of
variables. This phenomenon can also be observed in other estimators, such as the madogram,
and other rank-based estimators of the tail dependence structure may suffer from the same issue.
Therefore, caution must be exercised when dealing with high-dimensional data, particularly by
taking a lower number of extremes (determined by the parameter k), as advised by the upper
bound which is equal to n/k. This approach allows for a wider range of values with the cost of
a greater variance.

Nonetheless, while the dimension is arbitrary, the empirical estimator of the extremal coefficient
in (4.9) is consistent and the asymptotic deviation is well-understood (see, for instance, Drees and
Huang (1998); Einmahl et al. (2012)) in the standard assumption of independent observations. In
Appendix C.4, Proposition C.4.1, we present arguments regarding the consistence of the proposed
estimator of the SECO which goes beyond this classical setup of independent observations.

If Z(a) and Z(b) are asymptotically independent, there is no guarantee that an extreme event in
one vector will be accompanied by an extreme event in the other vector, then the statistic in
(4.7) will converge in probability to zero (see Appendix C.4, Proposition C.4.1). On the other
hand, if Z(a) and Z(b) are asymptotically comonotone, then the SECO reduces to θ̂(a) = θ̂(b)
almost surely, since an extreme event in one vector will always be accompanied by an extreme
event in the other vector. Additionally, the lower and upper bounds of ŜECO(a, b) is given by:

0 ≤ ŜECO(a, b) ≤ min{θ̂(a), θ̂(b)} a.s., (4.10)

where the upper one is reached when Z(a) and Z(b) are asymptotically comonotone. The
resulting matrix, denoted by Θ̂, is a d× d matrix where each entry is given by

Θ̂(a, b) = ŜECO(a, b)/min{θ̂(a), θ̂(b)}, a, b ∈ {1, . . . , d}, (4.11)

which is the normalised SECO metric.

The algorithm that we present in this section takes as input the matrix Θ̂ in (4.11). This
enables the division of d objects of interest into the thinnest partition possible such that
mutual asymptotic independence holds between clusters. Algorithm (CAICE) summarises the
procedure for clustering asymptotically independent compound extreme events. As detailed
in Chapter 3 for the Algorithm ECO which is similar to the above algorithm (CAICE), the
overall complexity of the estimation procedure is O(d2(d ∨ n ln(n)))).

The τ threshold is the only hyper-parameter in the (CAICE) Algorithm, and its selection is
important in obtaining an effective partitioning. A useful tool for choosing an appropriate
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Algorithm (CAICE) Clustering procedure for AI block models with compound extreme

1: procedure CAICE(S, τ , Θ̂)
2: Initialise: S = {1, . . . , d}, Θ̂(a, b) for a, b ∈ {1, . . . , d} and l = 0
3: while S ̸= ∅ do
4: l = l + 1
5: if |S| = 1 then
6: Ôl = S

7: if |S| > 1 then
8: (al, bl) = arg max

a,b∈S
Θ̂(a, b)

9: if Θ̂(al, bl) ≤ τ then
10: Ôl = {al}
11: if Θ̂(al, bl) > τ then
12: Ôl = {s ∈ S : Θ̂(al, s) ∧ Θ̂(bl, s) ≥ τ}
13: S = S \ Ôl
14: return Ô = (Ôl)l

threshold is the SECO value for the resulting partition, which has been recommended in
Chapter 3, Section 3.3.4. This metric measures the divergence between the sum of the extremal
coefficients of each cluster and the extremal coefficient of the entire vector (see (4.6) with
group of different sizes). An effective partitioning is achieved when this metric is minimised,
ideally for a moderate value of the threshold τ . By identifying the threshold that results in
the lowest SECO value, one can establish a partition of pixels, ensuring that their clusters are
asymptotically independent from each other.

4.3 Detecting concomitant extremes of compound precipitation
and wind

4.3.1 Non-serially independent

To statistically assert departures from serial independence of multivariate time series, we
conducted a randomness test as proposed by Genest and Remillard (2004) and Ghoudi et al.
(2001). We use the methodology presented in Kojadinovic and Holmes (2009) and extended in
Kojadinovic and Yan (2011) to detect serial dependence in continuous multivariate time series.
Briefly, let Z1,Z2, . . . be d-dimensional random vectors. We chose an integer k > 1, and for
u ∈ [0, 1]dk, the vector u{j} is defined as follows:

u
(i)
{j} = (u(i) − 1)1{i∈{(j−1)q+1,...,jq}} + 1,

We form the dk-dimensional random vector Zi = (Zi, . . . ,Zi+k−1), with i = 1, . . . , n. The serial
independence empirical copula process in the multivariate setting thus write

√
n
(
Csn(u) − Πd

j=1C
s
n(u{j})

)
, (4.12)
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where Csn is the serial empirical copula process computed with Z1, . . . ,Zn. Under the hypothesis
of serial independence, one can establish the asymptotic behavior of (4.12) to a tight Gaussian
process. To obtain potentially powerful test obtained above from the empirical process,
Kojadinovic and Yan (2011) derived 2k−1 − 1 tests statistic based on a Möbius decomposition
of the process in (4.12) in the continuous multivariate time series setting. Those tests are
implemented in the copula R package (Yan (2007)).

Due to computational limitations, we only considered three 3 × 3 pixels, at different locations,
covering the initial 304 days of the study, which represented the two first years of observation.
We analysed precipitation and wind separately and the resulting dependogram is depicted
in Fig. 4 in Appendix C.6. It is notable that most of the “subsets of lags” exhibited serial
dependence. The function multSerialIndepTest computed three p-values, all of which provided
robust evidence against serial independence. Furthermore, the decreasing trend of the computed
statistic implied that the dependence was weakening for observations further apart. These
results align with the mixing conditions stated in Appendix C.4.
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Fig. 4.2 Estimator of the extremal correlation within pixels, focusing on the daily sum of
precipitation and wind speed maxima, χ̂ in Equation (4.13), maps for the 100 largest values
(k = 100).

4.3.2 Exploratory analysis

Extreme values of daily precipitation and wind speed maxima may occur together, and we aim
to understand the spatial variability of this relationship. To identify regions for which extrema
are non-concomitant between them, we consider the peak over threshold approach, which are
values that lie above a certain value (see, for instance, Beirlant et al. (2006); De Haan and
Ferreira (2006); Resnick (2007) for an overall introduction to classical statistical methods in
EVT). We conduct an exploratory analysis of the extremal dependence structure between the
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two variables within pixels. The estimated χ coefficient is defined by

χ̂(a) = 1
k

n∑
i=1

1{R(a,1)
i >n−k+0.5,R(a,2)

i >n−k+0.5}, (4.13)

where R(a,ℓ)
i denotes the rank of Z(a,ℓ)

i among Z(a,ℓ)
1 , . . . , Z

(a,ℓ)
n , ℓ = 1, 2. The estimated extremal

coefficient between the variables reveals the highest co-occurrences in regions along the western
coasts of Portugal, Spain, France, the UK, and Norway, as well as the northeastern coast of
the Mediterranean (Fig. 4.2). Conversely, the smallest co-occurrences are observed on the
eastern coasts of the UK, Sweden, and Spain, over the northwestern coast of the Mediterranean,
and around the Carpathian and southeastern Norwegian mountain ranges. These results are
consistent with prior research (see, e.g., Martius et al. (2016)).

The low co-occurrence over eastern Norway and Spain may be attributed to the orographic
enhancement of rain on the windward side of a mountain and the drying of the air as it reaches
the lee (Martius et al. (2016)). This could also explain the high co-occurrences over the eastern
coasts of the Mediterranean, where cyclones from the Mediterranean storm track may arrive
perpendicularly to the mountains on the western coast of Italy and the eastern coasts of the
Adriatic Sea (Owen et al. (2021)). Additionally, the Cierzo winds may be responsible for the
low co-occurrence to the south of the Pyrenees (Martius et al. (2016)).

Nevertheless, the aforementioned analysis only considers extreme behavior within individual
pixels. To dig deeper, we take a further step by using the empirical SECO outlined in Equation
(4.7) to explore interactions between pixels. Noteworthy, the empirical SECO does not inherently
include spatial distances between pixels. As shown in Fig. 4.3, we observe strong or moderate
dependence between extremes for locations that are close to each other, while locations that are
far apart have a normalised SECO near zero, indicating that extremes are weakly dependent or
independent. The number of points per pixel highlights that most pixels are widely separated,
with Euclidean distances between 20 to 40, and have small SECO values, indicating weak
dependence or independence between compound extremes of two pixels. Therefore, even though
it is not explicitly designed for this purpose, in the case of this specific dataset, the empirical
SECO captures significant spatial information. This information could be highly valuable for
comprehending the spatial patterns of precipitation and wind speed in Europe.

In this context, our aim is to gain a deeper understanding of the spatial patterns of extreme
total precipitation and wind speed maxima across Europe. To broaden our analysis of extremal
pattern within pixels, we propose employing the clustering algorithm described in (CAICE)
to group pixels while considering the extremal dependence of precipitation and wind speed
between pixels.

4.3.3 Clustering with constrained AI block models

To delineate Europe into distinct regions that are mutually independent in compound weather
extremes, we employ the clustering algorithm (CAICE). Additionally, we employ a data-driven
approach for selecting a suitable threshold, as elaborated below. Our initial step involves
working with the matrix Θ̂ derived from Equation (4.11). The resultant clustering outcome is
contingent on the value of τ . Once Algorithm (CAICE) has been applied, we will denote the
resulting partition as Ô(τ) = {Ôg}Gg=1 of the set {1, . . . , d}. Each cluster is characterised by a
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Fig. 4.3 Pairwise SECO as a function of distance between sites.

respective cardinality of dg. As depicted in Figure 4.3, even a small τ value within Algorithm
(CAICE) can effectively partition the sub-regions of Europe. Nevertheless, a more rigorous
approach to selecting the threshold value τ need to be discussed.

Let us introduce the random vector Y(g)
τ , composed of the variable index within Ôg. This

means that Y(g)
τ is a (2dg)-dimensional random vector, considering two variables for each pixel

in our case study. Moving forward, we can define the empirical SECO for groups of random
vectors, which might have varying sizes within the given partition, using the following equation:

ŜECO(Y(1)
τ , . . . ,Y(G)

τ ) =
G∑
g=1

θ̂(g) − θ̂(1, . . . , d). (4.14)

The estimator mentioned above varies with τ due to its reliance on the partition Ô(τ). As
outlined in Appendix 3.3.4 of Chapter 3, the values of τ that minimise SECO also ensure
consistent recovery of our groups. For more details, we refer to Proposition 3.3.2 in Chapter 3.
To address this, we construct a loss function, denoted as L, over a grid of τ values denoted as
∆, as follows:

L(τ) = ln
(

1 +
(

ŜECO
(
Y(1)
τ , . . . ,Y(G)

τ

)
− min

τ∈∆
ŜECO

(
Y(1)
τ , . . . ,Y(G)

τ

)))
, τ ∈ ∆. (4.15)

In our current high-dimensional context, where we have n = 6655 daily observations and
d = 10556 pixels (n < d), estimating the extremal coefficient for the entire vector θ(1, . . . , d)
encounters an upper bound that prevents it from reaching its theoretical maximum of d, as
discussed in Appendix 4.2.2. However, the loss function L in equation (4.15) remains unaffected
by this bias since it is mitigated by the subtraction operation. Nonetheless, it is essential to
be mindful of this bias when computing L for partitions with larger clusters, which typically
occurs for smaller values of τ . Therefore, we recommend reducing the number of extremes to
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Fig. 4.4 Value of the function L(τ) in (4.15) for different values of τ ∈ ∆ =
{0.05, 0.0525, . . . , 0.12} in Panel a. Partitions of the SECO similarity matrix with thresh-
old τ = 0.08 in Panel b. Squares represent the clusters of variables.

k = 30 when evaluating L. This adjustment widens the range of values used for estimating the
extremal coefficient from higher values, but it comes at the expense of increased variance in the
estimation process.

The value of L with different values of τ with ∆ = {0.05, 0.0525, . . . , 0.12} suggests that the
best partitioning is found for τ = 0.08 (Fig. 4.4, Panel a). For this threshold, we obtain 22
clusters with 3 of them having less than 10 entities. We report the clustered SECO matrix
defined in (4.11) in Fig. 4.4, Panel b.

4.3.4 Results

In Fig. 4.5, we present the twelve largest clusters obtained with the partition setting τ = 0.08.
Our algorithm effectively identifies sub-regions with strong dependence within clusters, as
well as near-independence or independence among compound extremes of daily precipitation
and wind speed maxima in different clusters. The most prominent cluster, the fourth one,
encompasses the North Sea and the Baltic Sea, which are connected basins. The North Sea is a
marginal basin of the North Atlantic, and a shallow connection to the Baltic Sea exists through
the Skagerrak and Kattegat regions. This area is particularly important for climate sciences
and hydrology, and has inspired several works (see, for example, Andrée et al. (2022); Gröger
et al. (2019); Wang et al. (2015)). Another interesting area is the ninth cluster, consisting of
the southwestern Black Sea, the Levantine Basin, and the southeast of the Anatolian peninsula.
The Levantine Basin is known to be one of the windiest areas of the Mediterranean Sea,
and the spatial distribution of the Levantine Basin in Figure 2 of Soukissian et al. (2018)
outlines the geometry of this cluster. Additionally, extreme storm situations typically occur
in December-January in the southwestern part of the Black Sea (Divinsky et al. (2020)). To
the best of our knowledge, there are no studies on the tail dependence structure of climate
variables in the southwestern Black Sea and the Levantine Basin. Furthermore, our algorithm
sometimes distinguishes between the extremal behavior of land and sea, as illustrated by the
first and sixth clusters for the Norwegian Sea and the Atlantic Ocean, respectively.
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Fig. 4.5 Representation of the 12 largest clusters of the partition of the SECO matrix between
pixels with Algorithm (CAICE) and threshold τ = 0.08. Number of each cluster is depicted
inside the cluster.

Identifying regions with simultaneous extreme events can be valuable for statistical modeling,
and the method proposed here can address this question effectively. However, it is important
to understand whether wind or precipitation is more important for the resulting clustering. To
investigate this, a similar clustering process was applied separately to daily total precipitation
and wind speed maxima using the extremal correlation as a dissimilarity. The resulting
partitions are denoted by, ÔP, and ÔW with an adapted threshold τ . We will denote by ÔPW

the resulting partition for compound daily total precipitation and wind speed maxima. The
figures depicting the results for the individual variables can be found in Fig. 5 in Appendix C.6.

The adapted threshold for the partition ÔP is τ = 0.09, resulting in 70 medium-sized clusters.
For daily wind speed maxima, the optimal clustering ÔW is obtained by setting τ = 0.07,
resulting in 24 clusters. Upon visual inspection, our algorithmic partitioning reveals mosaic
block patterns along the diagonal, while no clear patterns could be discerned from the off-
diagonal. Additionally, the off-diagonal showcases moderate asymptotic dependence between
groups or asymptotic independence, indicating that the resulting clustering aligns with the
purpose of AI block models. The clusters for daily wind speed maxima are larger than those
for daily total precipitation, which supports previous studies indicating that heavy gusts have
a larger spatial impact than precipitation events (see, for example, Pfahl and Wernli (2012);
Raveh-Rubin and Wernli (2015)). With regard to spatial precipitation, several studies have
shown that dependence tends to weaken for the largest observations (Lalancette et al. (2021);
Le et al. (2018)). This knowledge could explain why there are a large number of clusters with
only a few entities for the clustering of daily total precipitation.

To compare different clustering methods, we use the Adjusted Rand Index (ARI), a popular
measure used in clustering analysis (see, for instance, Hubert and Arabie (1985); Rand (1971)).
To summarise, the ARI gives a concordance score between two different partitions. It takes
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values between 0 and 1 and the closer to 1, the more similar the partitions. For more details
about its computation, we refer the reader to Appendix C.5 of the supplementary materials.
Computing the ARI between ÔPW and ÔW (resp, ÔPW and ÔP ), we obtain

ARI
(
ÔPW , ÔW

)
= 0.5, ARI

(
ÔPW , ÔP

)
= 0.3.

An ARI value of 0 indicates that the two sets are completely random and have nothing in
common, while a value of 1 indicates a perfect match between the two partitions. In this
case, the ARI value of 0.5 between the clustering of compound daily total precipitation and
wind speed maxima and the clustering of the sole wind speed suggests that there is moderate
similarity between the two sets, implying that there are fewer matching data points or clusters
between them. In light of these results, we can conclude that the clustering of compound
extreme is induced by both variables with a little more emphasis driven by wind speed maxima.

4.3.5 Alternative clustering method using SECO

In equation (4.11), Θ̂ can be envisioned as a similarity matrix, and 1−Θ̂ as a dissimilarity matrix.
This dissimilarity metric is smaller (or larger) for compound extremes that are dependent (or
independent) between two pixels. The upper bound of the dissimilarity metric is 1, which is
reached when the compound extremes are independent. Thus, it is possible to perform classical
method of clustering using this dissimilarity matrix. In particular, we have chosen to explore
two different methods: a quantization-based approach and a Hierarchical clustering. These two
approach requiring a specification of the number of clusters (unknown in practice), we use the
“silhouette coefficient” developed by, Rousseeuw (1987) and which compares the tightness of
clusters with their dissociation. In practice, the number of clusters, denoted as K, is determined
by selecting the maximum average silhouette coefficient.

Quantization, also known as lossy data compression in information theory, involves the task of
substituting data with an efficient and compact representation that allows for the reconstruction
of the original observations with a certain degree of accuracy. A clustering problem can be
viewed as an optimal quantization process aimed at minimising a specific loss function (for
example, see Banerjee et al. (2005) or (Linder, 2002, p. 15)). To generate clusters through the
optimal quantization process, we utilised the algorithm described in references Laloë (2010) and
Laloë (2021), setting arbitrary the number of clusters to K = 10 as the silhouette coefficient
did not provide a suitable number of clusters.

The process of hierarchical clustering begins with a basic partition, initially comprising of d
individual data points where each pixel stands alone as its own cluster. Subsequently, the
data is grouped together incrementally, with clusters gradually merging until a single cluster
encompassing all variables is achieved. At each step, the algorithm combines the two closest
cluster centers according to a specific definition (for more details, refer to (Giraud, 2021, Chapter
12)), while keeping other clusters unchanged. For this approach, the silhouette coefficient leads
us to set K = 25.

The resulting partitions for this two methods are depicted in Figure 4.6, and the clustered
matrices can be found in Fig. 6 and Fig. 7 for further visualizations, in Appendix C.6. Notably,
the clusters obtained through the quantization-based approach in the northern regions bear a
resemblance to those obtained through Algorithm (CAICE). For instance, clusters 3, 5, and
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Fig. 4.6 In Panel a is depicted the representation of the partition obtained through quantization-
based approach with K = 10. In Panel b a similar representation for the 12 largest clusters is
proposed through hierarchical clustering approach with K = 25. These clusters were generated
based on data related to daily total precipitation and wind speed maxima extremes from 10556
pixels. Number of each cluster is depicted inside the cluster.

8 in Figure 4.6, Panel a, are closely similar to clusters 2, 4, and 6 in Figure 4.5 as identified
through the (CAICE) Algorithm. Furthermore, as observed in the (CAICE) Algorithm, the
quantization-based approach effectively distinguishes extreme behaviors between land and sea.
This distinction is apparent in clusters 2 and 8 in Figure 4.6, Panel a. These findings suggest
the uniqueness of the SECO similarity measure in extracting valuable spatial information.
One notable difference between the hierarchical clustering and Algorithm (CAICE) is that
the clusters obtained through hierarchical clustering are smaller and depict stronger cross-
dependencies. This phenomenon can be explained by the fact that some clusters which are
separate in the hierarchical clustering partition are combined in the output of Algorithm
(CAICE). For instance, in Fig. 4.6, Panel b, most of pixels of clusters 4 and 5 in the hierarchical
clustering are combined into a single cluster in Algorithm (CAICE), the fourth one in Fig. 4.5.
This suggests that compound extremes of those clusters are dependent, but smaller groups in
the northern and Baltic Sea areas observe more concomitant extremes. Below, we investigate a
hierarchical clustering of the fourth cluster given by Algorithm (CAICE) to inquiry whether or
not we obtain a similar partition given by cluster 4 and 5 obtained in the hierarchical clustering.

Fig. 4.7 displays the results of hierarchical clustering analysis on the most prominent cluster,
i.e., cluster 4 from the output of Algorithm (CAICE). The analysis is performed on a reduced
dataset, and the number of clusters is calibrated using the silhouette coefficient Rousseeuw
(1987), with the maximum value obtained for K = 3 (see Fig. 8). The resulting matrix, Θ̂,
reveals a strong dependence among compound extremes, indicating the presence of a whole
asymptotic dependent vector with three distinct blocks with more concomitant compound
extremes.

These results reveal intriguing patterns of co-occurring wind and precipitation extremes. The
third cluster in Fig. 4.7, which represents central-eastern Europe, is spatially coherent and
having no access to the sea. The first cluster is connected to the North Sea and consists of
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Fig. 4.7 Representation of the 3 clusters of the partition of the 1868 pixels of the fourth cluster
of the partition given by Algorithm (CAICE) using extremes of daily total precipitation and
wind speed maxima. Number of each cluster is depicted inside the cluster.

western European countries (except Scotland). The second cluster comprises Scandinavian
countries and the Baltic Sea, with a shallow connection to the North Sea. Notably, the North
Sea’s section belonging to this area corresponds to the Fladen Ground, the deepest part of the
North Sea in the Scottish sector.

We also observe a similar partition given by the hierarchical clustering among all locations,
where the North Sea is separated from the Baltic Sea. However, there is a difference in the
Fladen Ground’s classification, which is in different clusters for the hierarchical clustering
among all pixels belonging to the North Sea cluster, see cluster 5 in Fig. 4.6b, and to the Baltic
Sea cluster for the hierarchical clustering applied to the reduced dataset, see cluster 2 in Fig.
4.7.

4.4 Conclusion and perspectives

Clustering spatial pixels is highly significant as it allows for a better comprehension of the
inherent spatial pattern of a relevant physical phenomenon, enhances the accuracy of statistical
procedures in situations where data is limited, and helps to identify regions where joint preventive
measures can be taken to mitigate the impact of weather-related risks.

Traditionally, climate science research has focused on analysing single drivers or univariate
dangers, which simplifies the complex dynamics of climate and its consequences. However, in
reality, climate hazards often interact, leading to compound extremes. Therefore, statistical
analyses that consider multiple hazards simultaneously are needed. In this paper, our goal
is to identify subregions in Europe that demonstrate asymptotic independence concerning
compound precipitation and wind speed extremes. In simpler terms, we want to find areas
where two distinct subregions cannot experience concurrent compound extremes. To achieve
this, we introduce a multivariate extreme value measure known as the SECO metric. This
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metric helps us quantify the extent to which random vectors of varying sizes deviate from
asymptotic independence. We not only introduce this metric but also demonstrate the reliability
of a non-parametric estimator for it, even in scenarios that go beyond the typical setup of
independent observations. Building on this, we propose an algorithm specifically tailored for
constrained AI block model. This model ensures that pixels represent collections of univariate
time series. Our algorithm allows us to pinpoint the largest partition where compound extremes
exhibit independence over Europe. Interestingly, we uncover specific geographical patterns
without relying on positional information, and it is worth noting that we do not need to
pre-determine the number of clusters.

The proposed methodology can be extended to the case where the dataset has more than two
variables, denoted as p > 2. Furthermore, the methodology can also be extended to pixels
with varying lengths of recorded time series, all the while preserving the concept of asymptotic
independence. However, caution should be taken when interpreting the results in terms of
coherence, or it may not be appropriate at all.

A major issue highlighted in this paper is how to estimate the dependence structure in high-
dimensional datasets, where the number of variables is greater than the number of observations.
As explained in Appendix C.3, traditional estimators are not able to accurately recover the
dependence structure of an extreme value random vector if its margins are not sufficiently
dependent, quantified by the condition L(x) ≥ n/k for x ∈ Rq where n is the number of
observations and k the number of considered extremes. However, extreme value data are often
scarce, making the high-dimensional setting common, except in certain cases.
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Appendix C

Supplementary materials of
Chapter 4

C.1 Axioms for a valid dependence measure

In this section, we recall the axiomatic framework to quantify dependence between multiple
groups of random variables of possibly different sizes De Keyser and Gijbels (2023b). We recall
that we consider a random vector Z with distribution F that is in the max domain of attraction
of an multivariate extreme value distribution H. Plausible axioms, for a valid dependence
measure of a random vector X with cumulat, denoted as D(X), are as follows

(A1) For every permutation π of X(1), . . . , X(d): D(X) = D(π(X)); and for every permutation πj of
X(j,1), . . . , X(j,pj), for j ∈ {1, . . . , d}, it holds:

D(X) = D(X(1), . . . , π(j)(X(j)), . . . ,X(d)).

(A2) 0 ≤ D(X) ≤ 1.
(A3) D(X) = 0 if and only if X(1), . . . ,X(d) are mutually independent.
(A4) D(X(1), . . . ,X(d),X(d+1)) with equality if and only if X(d+1) is independent of (X(1), . . . ,X(d)).
(A5) D(X) is well defined for any q-dimensional random vector X and is a functional of solely the

copula C of X.
(A6) Let T (j,ℓ) for j = 1 . . . , d and ℓ = 1, . . . , pj be strictly increasing, continuous transformations.

Then
D(T(1)(X(1)), . . . ,T(d)(X(d))) = D(X(1), . . . ,X(d)),

where T(j) = (T (j,1)(X(j,1)), . . . , T (j,pj)(X(j,pj))) for j = 1, . . . , d.
(A7) Let T (j,ℓ) be a strictly decreasing, continuous transformation for a fixed j ∈ {1, . . . , d} and a

fixed ℓ ∈ {1, . . . , pj}. Then

D(X(1), . . . , T (j,ℓ)(X(j)), . . . ,X(d)) = D(X(1), . . . ,X(d)),

where T (j,ℓ)(X(j)) = (X(j,1), . . . , T (j,ℓ)(X(j,ℓ)), . . . , X(j,pi)).
(A8) Let (Xn)n∈N be a sequence of q-dimensional reduction random vectors having copulas (Cn)n∈N,

then
lim
n→∞

D(Xn) = D(X)

if Cn → C uniformly, where C denotes the copula of X.
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Having those necessary materials, we now detail below which axioms hold for the SECO metric
to measure the dependence among extreme of random vectors.

Proposition C.1.1. Let SECO be the metric defined in (4.6). Then, it satisfies the system of
axioms (A1), (A2) with the following bounds

0 ≤ SECO(Z(1), . . . ,Z(d)) ≤ min
j=1,...,d

∑
k ̸=j

θ(k)

 ,
(A3), (A4), (A5), (A6) and (A8) stated in De Keyser and Gijbels (2023b).

Proof The reason why Property (A1) holds is due to the fact that the set union and addition
of numbers are commutative. Proposition B.2.2 and Proposition B.2.3 from Chapter 3 imply
the results stated about (A2) for the lower bound and (A3), where the latter is related to
asymptotic independence. To obtain the upper bound, it is observed that

0 ≤ θ(1, . . . , d) ≤ min{θ(1), . . . , θ(d)}.

For property ((A4)), the inequality

SECO(Z(1), . . . ,Z(d),Z(d+1)) ≥ SECO(Z(1), . . . ,Z(d))

can be rewritten as
θ(1, . . . , d) + θ(d+ 1) ≥ θ(1, . . . , d, d+ 1),

which holds true by Proposition B.2.2 of Chapter 3. Moreover, this inequality holds as an
equality if and only if Z(d+1) is asymptotically independent of (Z(1), . . . ,Z(d)), according to
Proposition B.2.3 of Chapter 3.

We have for every u ∈ (0, 1),

θ(1, . . . , d) = ln (C∞(u, . . . , u)) / ln(u),

where C∞ is the extreme value of copula of H which is the max-domain attractor of F , the
distribution of Z, i.e.,

C∞(u(1,1), . . . , u(d,pd)) = exp
{

−L
(
− ln u(1,1), . . . ,− ln u(d,pd)

)}
.

Hence (A5) and (A6) are fulfilled. Let (Zn)n∈N be a sequence of random vector, for each n,
suppose that Zn is in the max-domain of attraction of a random vector Hn an extreme value
distribution with extreme value copula Cn. Suppose that the sequence of extreme value copulae
(Cn)n∈N converges uniformly to C∞, where C∞ is the extreme value copula of H, an extreme
value distribution. Then, for every u ∈ (0, 1), we have the pointwise convergence:

Cn(u) → C∞(u), n → ∞.

Thus, as ln : (0, 1) → R− is continuous, we have

ln(Cn(u)) → ln(C∞(u)), n → ∞.
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Then
SECO(Z(1)

n , . . . ,Z(d)
n ) → SECO(Z(1), . . . ,Z(d)), n → ∞.

C.2 A coherent measure for extreme value random vectors

In this section, we borrow the notation previously introduced in the specific case where d = 2
and pa = pb = p. Let Z and W be two random vectors with marginal random vectors Z(a)

and Z(b) (resp. W(a) and W(b)), each having p components. We set q = 2p. Assume that Z
and W are in the max-domain of attraction of two extreme value distributions having stable
tail dependence function LZ and LW. Here, LZ and LW are nested, and for x ∈ [0,∞)q,
x(a) = (x(a,1), . . . , x(a,p)),x(b) = (x(b,1), . . . , x(b,p)), we have

LZ(x) = L
(0)
Z

(
L

(a)
Z (x(a)), L(b)

Z (x(b))
)
, LW(x) = L

(0)
W

(
L

(a)
W (x(a)), L(b)

W(x(b))
)
,

where L(0)
Z and L(j)

Z , j = a, b, are the “mother” and “childrens” stable tail dependence function,
respectively. The stable tail dependence functions L(0)

W and L
(j)
W , j = a, b, are defined similarly.

The SECO for these two models thus reduces to

SECO(Z(a),Z(b)) = L
(a)
Z (1(a)) + L

(b)
Z (1(b)) − L

(0)
Z

(
L

(a)
Z (1(a)), L(b)

Z (1(b))
)
,

SECO(W(a),W(b)) = L
(a)
W (1(a)) + L

(b)
W(1(b)) − L

(0)
W

(
L

(a)
W (1(a)), L(b)

W(1(b))
)

Taking advantage of the definition introduced by Scarsini (1984), we say that Z is more
concordant in levels of extremes than W if for every possible value of x ∈ Rq, L(0)

Z (x) ≤ L
(0)
W (x).

Now, let’s suppose that Z and W have the same marginal extremal dependence structure,
which means that their stable tail dependence functions are the same for both components, i.e.,

L
(a)
Z (x(a)) = L

(a)
W (x(a)), L

(a)
Z (x(a)) = L

(b)
W(x(b)), x ∈ Rq.

Thus, we have

SECO(Z(a),Z(b)) − SECO(W(a),W(b)) =

L
(0)
W

(
L

(a)
W (1(a)), L(b)

W(1(b))
)

− L
(0)
Z

(
L

(a)
W (1(a)), L(b)

W(1(b))
)

which is positive. Thus the SECO is a coherent measure given the marginal random vector’s
dependence structure is the same.

To better understand the behaviour of the SECO, we will consider two specific nested models:
the nested Gumbel and Hüsler-Reiss models, for which p = 2 and d = 2. For these models, we
will analyse the corresponding stable tail dependence functions.

LGu(x1, x2) =
(
x

1/α
1 + x

1/α
2

)α
, LHR(x1, x2) = Φ

(
λ

2 + x2 − x1
λ

)
x1 + Φ

(
λ

2 + x1 − x2
λ

)
x2,
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with α ∈ (0, 1], λ ∈ (0,∞) and Φ denotes the cumulative distribution function of a standard
normal random variable. The first stable tail dependence function is known as the Gumbel (or
Logistic) distribution introduced by Gumbel (1960b), the parameter α represent the strength of
dependence: if α → 0, then the two random variables are comonotone while if α = 1 it reduces
to independence. The second stable tail dependence function is the Hüsler Reiss distribution
(Hüsler and Reiss (1989)), both asymptotic comonotony and independence are depicted by the
respective limits λ → 0 and λ → ∞.

For the nested Gumbel model, the SECO is equal to

2αa + 2αb −
(
2αa/α0 + 2αb/α0

)α0
. (C.1)

This equation involves the parameters α0, αa, and αb, which correspond to the mother, the
first, and the second random vector margins, respectively. In Fig. 1 are depicted level sets
of (C.1) and the normalised version, i.e., (C.1) divided by min{2αa , 2αb}, according to α0 for
different dependence structure between the marginal random vectors. Additionally, we can also
calculate the SECO for the Hüsler-Reiss nested model which equals to

θ(a) + θ(b) −
[
Φ
(
λ0
2 + θ(b) − θ(a)

λ0

)
θ(a) + Φ

(
λ0
2 + θ(a) − θ(b)

λ0

)
θ(b)

]
, (C.2)

where θ(j) = 2Φ(λj/2), j = a, b are the extremal coefficients and includes several parameters
such as λa, λb, and λ0 which correspond to the first, the second random vector margins and
the mother respectively. In Fig. 2, we represent level sets of (C.2) and the normalised version
of (C.2), that is divided by min{θ(a), θ(b)}, the bound found in Proposition C.1.1.

1
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Fig. 1 Level sets of the SECO for the nested Logistic model (see (C.1)) in Panel 1a and
the normalised SECO in Panel 1b for α0 ∈ {0.91, 0.93, 0.95, 0.97, 0.99} and α1, α2 range in
{0.01, 0.02, . . . , 0.9}. The coherence property ensures that the level sets are arranged in ascending
order based on the values of α0.
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Fig. 2 Level sets of the SECO for the nested Hüsler-Reiss model (see (C.2)) in Panel 2a
and the normalised SECO in Panel 2b for λ0 ∈ {6.0, 6.25, 6.5, 6.75, 7.0} and λ1, λ2 range
in {0.01, 0.02, . . . , 6.0}. The coherence property ensures that the level sets are arranged in
ascending order based on the values of λ0.

In both Fig. 1 and Fig. 2, the behaviour of SECO exhibits similarities, particularly in relation
to the level sets. These level sets are characterised by their monotonicity, whereby the level
set’s height increases with the degree of dependence among the marginal random vectors. In
other words, the greater the dependence between the marginal random vectors, the higher
the level set will be. Additionally, the SECO demonstrates monotonicity through α1, α2 (or
alternatively, λ1, λ2), whereby the value of the SECO increases as the random variables in the
marginal random vectors become more concordant. In simpler terms, the more closely related
the random variables are, the higher the SECO will be. Moving on to the normalised SECO,
we observe that the highest values are attained when the random variables within the marginal
random vectors display asymmetric behaviour, meaning that one variable is comonotonic while
the other is independent. Conversely, the lowest values are obtained when both variables share
the same dependence structure.

C.3 Incompleteness tail dependence structure estimation in
high dimension

Throughout the section, assume that we have Z1, . . . ,Zn independent and identically distributed
observations of the d-dimensional random vector Z, which is in the max-domain of attraction
of H, an EVD where each of the components of Z are asymptotically independent. Let R(j)

n,i

denote the rank of Z(j)
i among Z

(j)
1 , . . . , Z

(j)
n , i = 1, . . . , n, j = 1, . . . , d. For k ∈ {1, . . . , n},

define a nonparametric estimator of θ, the extremal coefficient by

θ̂EKS
n,k := 1

k

n∑
i=1

1{R(1)
n,i>n+0.5−k or ... or R(d)

n,i>n+0.5−k},
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see Einmahl et al. (2012).

Lemma C.3.1. For k ∈ {1, . . . , n} we have

θ̂EKS
n,k ≤ n

k

Proof The upper bound is trivial since
n∑
i=1

1{R(1)
n,i>n+0.5−k or ... or R(d)

n,i>n+0.5−k} ≤ n.

Now, let us divide the sample of size n of Z into k blocks of length m, so that k = n/m (where
we suppose, without loss of generality that m divide n). For the ith block, the maximum value
in the j-component is denoted by

M
(j)
m,i = max{Z(j)

t : t ∈ (im−m, im]}.

Let R(j)
n,m,i denote the rank of M (j)

m,i among M (j)
m,1, . . . ,M

(j)
m,j , i = 1, . . . , n, j = 1, . . . , d. Define a

non parametric estimator of the multivariate madogram

ν̂n,m := 1
k

k∑
i=1

 d∨
j=1

R
(j)
n,m,i

k + 1 − 1
d

d∑
j=1

R
(j)
n,m,i

(k + 1)



Lemma C.3.2. For m ∈ {1, . . . , n}, we have

ν̂n,m ≤ k

k + 1 − 1
2 .

Consequently,
θ̂MAD
n,m ≤ n

m
.

Proof One can easily deduce the following upper bound

d∨
j=1

R
(j)
n,m,i

k + 1 ≤ k

k + 1 .

Thus we obtain that

ν̂n,m ≤ k

k + 1 − 1
k

1
d

d∑
j=1

k∑
i=1

R
(j)
n,m,i

k + 1 .

The right hand side of the equation is equal to

1
k

1
d

d∑
j=1

k∑
i=1

R
(j)
n,m,i

k + 1 = 1
k

1
d

d∑
j=1

k(k + 1)
2(k + 1) = 1

2 .
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Let us consider the following function

f :
[
0, k

k + 1 − 1
2

]
→ R

x 7→ 0.5 + x

0.5 − x
.

Since it is an nondecreasing function, we must have

θ̂MAD
n,m ≤ f

(
k

k + 1 − 1
2

)
= n

m

The consequence of both lemmas is that the nonparametric and the madogram-based estimator
of the extremal coefficient can only recover values in the following range:

1 ≤ θ̂EKS
n,k ≤ n

k
, 1 ≤ θ̂MAD

n,m ≤ n

m
.

If we suppose that d > n/k or d > n/m, then both estimators cannot expect to retrieve
dependencies above the threholds stated by our two lemmas. In particular, in high dimension,
i.e., when d > n, these estimators are unable to detect asymptotic independence. Indeed, in
cases where the d variables are asymptotically independent, extremes occur in one variable
without influencing extremes in the others. Thus, when d > n, it is highly probable to observe a
rank that is greater than n−k+0.5 for at least one variable and this occurs for every observation
i = 1, . . . , n. Since this happens for every observation i = 1, . . . , n, the characteristic function
is (with high probability) always equal to one, resulting in an overall extremal coefficient equal
to n/k when taking the sum. However, in high dimensions, this cannot be equal to d, the value
taken in asymptotic independence.

To illustrate these findings, we consider the following numerical setup. Consider as the sample
size n ∈ {100, 150, . . . , 1000} and the high dimensional setting given by d = n1.25 where we
want to estimate the extremal coefficient of the random vector of Z where its components
are asymptotically independent. In this setup, we know that the theoretical value of θ is
given by d. When studying the dependence structure of extreme events, we face the “curse of
dimensionality” in two ways. Firstly, traditional estimators do not cover the full spectrum of
possible values. Secondly, in order to expand the range of values, one may need to reduce the
number of extremes considered, denoted by k, or decrease the size of block maxima, denoted
by m. However, this may lead to an increase in variance or a decrease in bias, depending on
the estimator used.

In Fig. 3, the bias of the estimator is clearly depicted. For each value of n, both estimators
reach their upper bounds, that is θ̂EKS

n,k = n/k and θ̂MAD
n,m = n/m.

C.4 Consistent estimation of SECO
Consider a q-dimensional random vector Z = (Z(1,1), . . . , Z(d,pd)), where p1 + · · · + pd = q.
This vector has a joint cumulative distribution function (c.d.f.) denoted as F , and each of
its components has continuous marginal c.d.f.s F (1,1), . . . , F (d,pd). The copula, denoted as C,
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Fig. 3 Estimator θ̂EKS
n,k (Panel 3a, black dots) and θ̂MAD

n,m (Panel 3b, black dots) according to
different values of n ∈ {100, 150, . . . , 1000} and d = n1.25. The theoretical value of the extremal
coefficient is depicted in grey dots. For both estimators, we took k = m = 50.

associated with F (or equivalently, with Z) is defined as the c.d.f. of another random vector U =
(U (1,1), . . . , U (d,pd)). These random variables U are obtained through the marginal application
of the probability integral transform, meaning that U (j,ℓ) = F (j,ℓ)(Z(j,ℓ)) for j = 1, . . . , d and
ℓ = p1, . . . , pd. Notably, the marginal c.d.f.s of the copula C are uniformly distributed on the
interval [0, 1]. According to Sklar’s theorem, the copula C is a unique function that satisfies
the following relationship for all x = (x(1,1), . . . , x(d,pd)) ∈ Rq:

F (x(1,1), . . . , x(d,pd)) = C
{
F (1,1)(x(1,1)), . . . , F (d,pd)(x(d,pd))

}
.

In simpler terms, this equation describes how the joint distribution F can be represented in
terms of the copula C and the marginal distributions F (j,ℓ).

Now, let us consider a sequence of observed data, Zi for i = 1, . . . , n, which represents a
stationary time series. Importantly, each Zi follows the same distribution as Z. Set Ui =
(U (1,1)

i , . . . , U
(d,pd)
i ) ∼ C with U

(j,ℓ)
i = F (j,ℓ)(Z(j,ℓ)

i ). Define

α(j)
n (u) =

√
n
(
G(j)
n (u) − u

)
, G(j)

n (u) = n−1
n∑
i=1

1{U(j)
i ≤u}

,

denote the (unobservable) empirical processes based on U1, . . . ,Un.

For any sequence (Zn, n ∈ N), let

Fk = σ(Zn, n ≤ k), and Gk = σ(Zn, n ≥ k),

be the natural filtration and "reverse" filtration of the sequence (Zn, n ∈ N). Define
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β(A1,A2) = sup 1
2

∑
i,j∈I×J

|P(Ai ∩Bj) − P(Ai)P(Bj)|,

where the sup is taken over all finite (Ai)i∈I and (Bj)j∈J of Ω with the sets Ai (resp. Bj) in
the sigma field A1 (resp. A2). The β-mixing (or completely regular) coefficient is defined as

β(ℓ) = sup
n∈N

β(Fn,Gn+ℓ). (C.3)

For the formulation of the consistency result for our estimator of the SECO, we need a couple
of conditions over the regularity of the sequence (Zn, n ∈ N) which are the following:

Condition A. There exists an intermediary sequence m = mn such that mn = o(n) and
β(mn) → 0 as n → ∞, where β is defined in (C.3).

Condition B. There exists some θ1 ∈ (0, 1/2] such that, for all µ ∈ (0, θ1] and all sequences
δn → 0, we have

Mn(δn, µ) := sup
|u−v|≤δn

|α(j)
n (u) − α

(j)
n (v)|

max{|u− v|µ, n−µ}
= oP(1), j = 1, . . . , d

Condition B can, for instance, be verified in the i.i.d. case with θ1 = 1/2 or for β-mixing
sequence with β(n) = o(an) as n → ∞ for some a ∈ (0, 1), see Proposition 4.4 of Berghaus
et al. (2017). Here we state the proposition that the actual appendix is devoted to prove.

Proposition C.4.1. Let k = kn be an intermediary sequence. Provided that k → ∞, k/n → 0
as n → ∞, under the regularity condition over the sequence (Zn, n ∈ N) stated by Condition A
and Condition B and Z is in the max-domain of attraction of H, then

ŜECO(Z(a),Z(b)) P−→
n→∞

SECO(Z(a),Z(b)).

Proof Since convergence in probability remains stable through addition and subtraction, our
task is to establish the consistency of each component: θ̂(a), θ̂(b), and θ̂(a, b). We address this
concern in Lemma C.4.1 below, where, without loss of generality, we focus on demonstrating
the consistency of θ̂(a). Also, without loss of generality, we study the following estimator

θ̂(a) = 1
k

n∑
i=1

1{F̂ (a,1)
n (Z(a,1)

i )>1−k/n or ... or F̂ (a,p)
n (Z(a,p)

i )>1−k/n}, (C.4)

where F̂ (a,ℓ)
n denotes the empirical distribution function of Z(a,ℓ)

1 , . . . , Z
(a,ℓ)
n for ℓ = 1, . . . , pa.

This estimator mirrors the one presented in (4.8), with the exception that we employ uniform
margins instead of ranks, and we omit the constant factor of 1/2, which, crucially, does not
alter the estimator’s asymptotic behavior.

Lemma C.4.1. Under the conditions of Proposition C.4.1, we have

θ̂(a) = θq(a) + oP(1),
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with
θt(a) = P

{
F (a,1)(Z(a,1)) > 1 − t or . . . or F (a,p)(Z(a,pa)) > 1 − t

}
/t,

and lim
t→0

θt(a) = θ(a).

Proof Without confusions, we set in this proof pa = p and that Z = (Z(1), . . . , Z(p)) :=
(Z(a,1), . . . , Z(a,p)) is a p-dimensional random vector. We begin by introducting some useful
notations. In the same spirit, define the random variable U (j)

i = F (j)(Z(j)
i ) (here Z(j)

i denote the
jth entry of the vector Zi) and the vectors Ui := (U (1)

i , . . . , U
(p)
i ) with stationary distribution

C. Denote by Ĝ
(j)
n the empirical distribution of U (j)

1 , . . . , U
(j)
n . Define the vector Ĝ←n (x) =

((Ĝ(1)
n )←(x(1)), . . . , (Ĝ(p)

n )←(x(p))), the function

Con(x) = 1
n

n∑
i=1

1{U(1)
i ≤x(1),...,U

(p)
i ≤x(p)}

and
Ĉn

(
1 − kx

n

)
:= Con

(
Ĝ←n

(
1 − kx

n

))
Note that the estimator θ̂ depends only on the marginals ranks of Z(j)

i with j = 1, . . . , p; thus
we have almost surely

|θ̂(a) − θt(a)| =
∣∣∣∣nk Ĉn(1 − k/n, . . . , 1 − k/n) − t−1C(1 − t, . . . , 1 − t)

∣∣∣∣
Standard arguments gives that under k → ∞ and k/n → t ∈ (0, 1) and n → ∞, the right hand
side of the latter equation is equal to∣∣∣∣nk

(
Ĉn

(
1 − k

n
, . . . , 1 − k

n

)
− C

(
1 − k

n
, . . . , 1 − k

n

))∣∣∣∣+ oP(1).

Now, we can bound the first term by
n

k

∣∣∣Con(Ĝ←n (1 − k1/n)) − C(Ĝ←n (1 − k1/n))
∣∣∣+ n

k

∣∣∣C(Ĝ←n (1 − k1/n)) − C(1 − k1/n)
∣∣∣ .

Using Lipschitz continuity of C, we obtain the following upper bound:

n

k
||Con − C||∞ + n

k

d∑
j=1

||u(j)
n ||∞ (C.5)

where || · ||∞ is the uniform norm and u
(j)
n (u) = (Ĝ(j)

n )←(u) − u, u ∈ [0, 1].

By Berbee’s coupling Lemma (Bücher and Segers (2014); Doukhan et al. (1995b)), one can
construct inductively a sequence (Z̄im+1, . . . , Z̄im+m)i≥0 such that the following three properties
hold:

(i) (Z̄im+1, . . . , Z̄im+m) d= (Zim+1, . . . ,Zim+m) for any i ≥ 0;
(ii) both (Z̄2im+1, . . . , Z̄2im+m)i≥0 and (Z̄(2i+1)m+1, . . . , Z̄(2i+1)m+m)i≥0 sequences are independent

and identically distributed;
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(iii) P{(Z̄im+1, . . . , Z̄im+m) ̸= (Zim+1, . . . ,Zim+m)} ≤ β(m).

Let C̄on be defined analogously to Con but with Z1, . . . ,Zn replaced by Z̄1, . . . , Z̄n. Now write

Con(u) − C(u) =
{
Con(u) − C̄on(u)

}
+ oP(1). (C.6)

The term in brackets in the right hand side is oP(1) uniformly in u, since

|Con(u) − C̄on(u)| ≤ 1
n

n∑
i=1

1{Z̄i ̸=Zi}.

Hence by Markov’s inequality, for any ϵ > 0

P
{

sup
u∈[0,1]q

∣∣∣Con(u) − C̄n(u)
∣∣∣ > ϵ

}
≤ β(m)

ϵ
.

By Condition A, we obtain that the first summand in brackets in (C.6) is oP(1) as n → ∞,
uniformly in u ∈ [0, 1]q. We obtain that

||Con − C||∞ = oP(1).

We also have

sup
u∈[0,1]

|u(j)
n (u)| ≤ sup

u∈[0,1]
|α(j)
n (u)| +

n supu∈[0,1] |Ĝ(j)
n (u) − Ĝ

(j)
n (u−)| − 1

n
.

To understand this, we start by recognizing that the maximum of either α(j)
n (·) or −α(j)

n (·), and
consequently, |α(j)

n (·)|, must occur at one of the discontinuities in Ĝ
(j)
n . These discontinuities

correspond to the values {U (j)
i:n , 1 ≤ i ≤ n}, where U (j)

1:n ≤ · · · ≤ U
(j)
n:n represent the order

statistics. Hence, the quantity

n× (u(j)
n (i/n) + α(j)

n (U (j)
i:n )) (C.7)

is equal to the highest count of U (j)
i that are equal to U (j)

i:n minus 1. Assuming there are no ties
among U (j)

1 , . . . , U
(j)
n (which, for example, happens in the i.i.d. case), this expression equals 1.

Consequently, we derive the classical identity for the uniform quantile process, as outlined in
(Csörgő, 1983, Section 1.4) or (Shorack and Wellner, 2009, Chapter 3).

sup
0≤u≤1

|α(j)
n (u)| = sup

0≤u≤1
|u(j)
n (u)|.

In the general case, Equation (C.7) is limited above by the maximum count of U (j)
i which are

equal minus 1. It is worth noting that this maximum count can be expressed as

n× sup
u∈[0,1]

|Ĝ(j)
n (u) − Ĝ(j)

n (u−)|.
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We have, following the proof of lemma 4.6 in Berghaus et al. (2017)

sup
u∈[0,1]

|Ĝ(j)
n (u) − Ĝ(j)

n (u−)| ≤ sup
u,v∈[0,1],|u−v|≤1/n

|Ĝ(j)
n (u) − Ĝ(j)

n (v)|

≤ sup
u,v∈[0,1],|u−v|≤1/n

|Ĝ(j)
n (u) − Ĝ(j)

n (v) − (u− v)| + 1
n

≤ 1√
n

sup
u,v∈[0,1],|u−v|≤1/n

|α(j)
n (u) − α(j)

n (v)| + 1
n
.

Using Condition B, the above term is oP(n−1/2−µ) for µ ∈ (0, θ1) and θ1 ∈ [0, 1/2]. Additionally,
using ||Con − C||∞ = oP(1), we obtain

||u(j)
n ||∞ = oP(1).

Thus, ∀t ∈ (0, 1)
θ̂n(a) = θt(a) + oP(1).

Since F is in the max-domain of attraction of H, we have

θ(a) = lim
t→0

θt(a).

Hence the result of the lemma.

Since convergence in probability is reliably preserved under continuous transformations, we
attain the outcomes outlined in Proposition C.4.1.

C.5 Definition of the Adjusted Rand Index (ARI)
The ARI is computed as follows: Let O = {Og}g=1,...,G and S = {Sh}h=1,...,H be two partitions
with d entities, and let dgh be the number of entities in cluster Og in partition O and in cluster
Sh in partition S. Denote by dg· (resp. d·h) the number of entities in cluster Og (resp. Sh) in
partition O (resp. S). The ARI is evaluated using the following expressions:

r0 =
G∑
g=1

H∑
h=1

(
dgh
2

)
, r1 =

G∑
g=1

(
dg·
2

)
, r2 =

G∑
g=1

(
d·h
2

)
, r3 = 2r1r2

d(d− 1) ,

ARI(O,S) = r0 − r3
0.5(r1 + r2) − r3

,

where
(n
k

)
is the binomial coefficient.
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Fig. 4 The dependogram provides a concise summary of randomness test results conducted
on daily total precipitation and wind speed maxima in the ERA5 dataset. This study covers
three European regions, examining 304 days of observations across nine distinct pixels. The
first column displays a map with each row representing an area and the nine pixels marked
by red squares. Test statistics are represented by bars, and critical values are depicted by
dotted horizontal lines. The dependogram columns focus on pairwise, three-wise, and four-wise
randomness tests with a lag of 4.
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Fig. 5 Value of the function L for different values of τ ∈ ∆ = {0.05, 0.0525, . . . , 0.12} in Panels
5a (Precipitation) and 5b (Wind). Partitions of the extremal correlation similarity matrix with
threshold τ = 0.09 for Panel 5c (Precipitation) and τ = 0.07 5d (Wind). Squares represent
the clusters of variables. Representation of the 12 largest clusters (in decreasing order) of the
partition of the extremal correlation matrix of total precipitation and wind speed maxima with
threshold τ = 0.09 and τ = 0.07, respectively in Panels 5e and 5f. Number of each cluster is
depicted at the top-left corner of the corresponding panel.
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Fig. 6 Boxplots of the silhouette coefficients for different values of K using the quantization-based
algorithm. Thick lines indicate the median, boxes the interquartile range and whiskers the
full range of the distribution. Partitions of the SECO similarity matrix with K = 10 for the
quantization-based approach. Squares represent the clusters of variables.
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Fig. 7 Boxplots of the silhouette coefficients for different values of K using the hierarchical
clustering algorithm. Thick lines indicate the median, boxes the interquartile range and
whiskers the full range of the distribution. The average silhouette is depicted by the dotted
line. Partitions of the SECO similarity matrix with K = 25. Squares represent the clusters of
variables.
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Fig. 8 Boxplots of the silhouette coefficients for different values of K performed by a hierarchical
clustering algorithm on the fourth partition given by Algorithm (ECO). Thick lines indicate
the median, boxes the interquartile range and whiskers the full range of the distribution. The
average silhouette is depicted by the dotted line. The clustered matrix SECO is represent in
Panel 8b where squares represent the clusters.
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Chapter 5

Estimating Regularly Varying
Random Vectors with Discrete
Spectral Measure using
Model-Based Clustering

This chapter is based on the following work, which will soon be submitted:

Alexis Boulin (2024), Estimating Max-Stable Random Vectors with Dis-
crete Spectral Measure using Model-Based Clustering.

Abstract.
This study introduces a novel estimation method for the entries and structure of a matrix A in the
linear factor model X = AZ + E. This is applied to an observable vector X ∈ Rd with Z ∈ RK ,
a vector composed of independently regularly varying random variables, and lighter tail noise
E ∈ Rd. This leads to max-linear models treated in classical multivariate extreme value theory. The
spectral measure of the regularly varying random vector X is subsequently discrete and completely
characterised by the matrix A. It follows that the behaviour of its maxima can be modelled by a
max-stable random vector with discrete spectral measure. Every max-stable random vector with
discrete spectral measure can be written as a max-linear model. Each row of the matrix A is
supposed to be both scaled and sparse. Additionally, the value of K is not known a priori. The
problem of identifying the matrix A from its matrix of pairwise extremal correlation is addressed.
In the presence of pure variables, which are elements of X linked, through A, to a single latent
factor, the matrix A can be reconstructed from the extremal correlation matrix. Our proofs of
identifiability are constructive and pave the way for our innovative estimation for determining the
number of factors K and the matrix A from n weakly dependent observations on X. We apply the
suggested method to weekly maxima rainfall and wildfires to illustrate its applicability.

5.1 Introduction

In this current study, our aim is to estimate the d×K loading matrix A, which might exhibit
sparsity, and serves as the parameter for the decomposition of an observable random vector X.
This can be expressed as

X = AZ + E. (5.1)

In this equation, Z represents an unobservable, K-dimensional random vector, serving as an
underlying latent factor, E ∈ Rd as a unobservable random noise. The precise count of factors,
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K, remains undisclosed and both d and K are permitted to increase and be larger than n, the
number of observations. To establish the foundation of our framework inside extreme value
theory, we assume that Z comprises of asymptotic independent random variables characterised
by a tail index α, for the purposes of our study, we will set this tail index to a fixed value of α
equal to unity. As per the construction, the vector Z is regularly varying with the subsequent
exponent measure

ΛZ =
K∑
k=1

δ0 ⊗ · · · ⊗ ΛZ(k) ⊗ · · · ⊗ δ0, ΛZ(k)(dy) = y−2dy.

The random noise vector E ∈ Rd is postulated to possess a distribution with a tail that is
lighter than that of the associated factors. Hence, X is also regularly varying which can be
equivalently described by the existence of an angular measure Φ where the following weak
convergence holds true on the positive unit sphere for an arbitrary norm || · || on Rd,

lim
x→∞

P
{ X

∥X∥
∈ · | ∥X∥ > x

}
= Φ(·),

where Φ has the discrete representation

Φ(·) =
K∑
k=1

∥A·k∥δ A·k
∥A·k∥

(·), (5.2)

with δx(·) the Dirac measure that puts unit mass at x and A·k is the kth column of the matrix
A. Taking X1, . . . ,Xm, m i.i.d. replications of X in (5.1), it follows that, see for example
(Kulik and Soulier, 2020, Theorem 2.1.6) for details,

lim
m→∞

P
{

m∨
i=1

c−1
m X

(j)
i ≤ x(j), j = 1, . . . , d

}
= e
−
∑K

a=1

∨d

j=1
Aja

x(j) , x ≥ 0,

where cm is a scaling sequence. The limiting distribution on the right is max-stable, which
means there exist am > 0 and bm such that Hm(amx + bm) = H(x) for any m ∈ N with H a
cumulative distribution function. Furthermore, under our model in (5.1) it has the property of
having a discrete angular measure. Throughout this chapter, we will refer to a random vector
with a max-stable distribution as a max-stable random vector.

The expression (5.1) can also be considered as a linear adaptation of the max-linear models,
sharing the same angular measure Φ. This essentially follows from the fact that the ratio of the
probabilities of the sum and the maximum of the AijZ(j) exceeding x tends to 1 as x → ∞
(see (Embrechts et al., 2013, page 38) or (Kulik and Soulier, 2020, Example 2.2.8, Example
2.2.9)). Each max-stable distribution with a discrete spectral measure is inherently max-linear,
see (Fougères et al., 2013, Section 3.1). The max-linear model, in turn, is dense in the class of
d-dimensional multivariate extreme value distribution (Fougères et al. (2013)). Consequently,
any multivariate max-stable vector can be finely approximated through a max-linear model
provided that K is large. Additionally, Cooley and Thibaud (2019) established the existence of
a finite natural number, denoted as q ∈ N, such that the tail pairwise dependence matrix ΣX for
any multivariate regularly varying random vector X with a tail index α = 2 is equivalent to that
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of a max-linear model with q factors. This equivalence is expressed through the relationship
ΣX = AA⊤.

Corresponding max-linear models, have also been explored in the field of time series for extremes
Davis and Resnick (1989); Hall et al. (2002). More recently, they have found applications
in the domain of structural equation models Gissibl and Klüppelberg (2018); Klüppelberg
and Lauritzen (2019), as well as in the context of clustering extremes Avella-Medina et al.
(2021, 2022); Janßen and Wan (2020). Factor models of this kind find widespread use across
diverse applications. For instance, they are often employed to represent underlying factors that
influence financial returns (Cui and Zhang (2018)) as well in environmental sciences (Kiriliouk
and Zhou (2022)).

Outline of the literature. Estimating parameters in linear factor models poses a difficult task,
primarily because there is no spectral density that rules out standard maximum likelihood
procedures. Instead, Einmahl et al. (2012) and Einmahl et al. (2018) opt for a least square
estimator based on the stable tail dependence function to tackle this task. Avella-Medina et al.
(2021); Janßen and Wan (2020) propose spectral clustering algorithms designed for extremes
employing its output to estimate A·1/||A·1||, . . . , A·K/||A·K || and ||A·1||/w, . . . , ||A·K ||/w. These
parameters characterise the angular measure of the linear factor model. However, this approach
falls short in estimating the matrix A which can be crucial for practical interpretation and
computing failure sets (see Section 5.6.1). Additionally, these methods face limitations in
higher dimensions, grappling running time difficulties or curse of dimension. Moreover these
methods also assume that the number K is known a priori, a requirement that is often scarcely
fulfilled in practical scenario. Addressing this hurdle, additional methods, as proposed by
Avella-Medina et al. (2021, 2022), introduce a procedure coupled with the so-called screeplot
to aid in the selection of the elusive number K. Despite the practical utility of such an
approach, the theoretical underpinnings supporting these findings are still in their early stage
of development. To our current understanding, methods for estimating A in higher dimensions
have emerged specifically under the condition of a squared matrix A ∈ Rd×d. Notably, these
methods have found fruitful application in contexts characterised by moderate dimensions.
For instance, in Diricted Acyclic Graph, Klüppelberg and Krali (2021) have made noteworthy
contributions, while Kiriliouk and Zhou (2022) have demonstrated successful applications of
their estimator in environmental and financial dataset. However, it is crucial to acknowledge
that these achievements are contingent upon the specific conditions and dimensions involved.
A noteworthy recent paper worth emphasising is Zhang et al. (2023). The paper investigates
minimax risk bounds for estimators of the spectral measure in multivariate linear factor models,
particularly when the number of latent factors K exceeds the dimension d and the latter is
fixed. Foremost, a critical lens on the theoretical foundations reveals a reliance on a i.i.d.
sample and the asymptotic framework in the mentioned literature. The assumption of serial
independence may face scrutiny when these methods are extended to environmental datasets,
where deviations from serial independence are legitimately suspected. Moreover, the asymptotic
framework, with a fixed arbitrary dimension d while the sample size n → ∞, may offer limited
insights into the performance of estimation processes in high-dimensional setting, i.e., d vary
with n and might even surpass the sample size.

Our contribution. Drawing inspiration of Bing et al. (2020), we propose a model-based
clustering via A with the crucial distinction that the covariance matrix of X does not exist in
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our model. Within the framework of model (5.1), we consider two components, namely X(i) and
X(j) belonging to the vector X, as akin if they share a non-zero association. This association is
established through the intermediary of the matrix A, connecting them to a common latent
factor Z(a). Variables exhibiting this similarity are grouped together within the cluster denoted
as Ga:

Ga = {j ∈ {1, . . . , d} : Aja ̸= 0}, for each a ∈ {1, . . . ,K}. (5.3)

Given that X(j) can potentially be linked to multiple latent factors, the resulting clusters are
characterised by overlap. In terms of terminology, groups that may become large without
the others are called extreme directions. More precisely, if J ⊂ {1, . . . , d} is such that the
components (X(j))j∈J can be large simultaneously while the other components (X(j))j∈[d]\J are
small, then J defines an extreme direction (see Simpson et al. (2020) for a precise definition).
By examining (Mourahib et al., 2023, Example 3.7), one can observe that soft clusters in
Equation (5.3) also represent the extreme directions.

In this endeavor, our focus centers on presenting a model-based clustering approach through
the utilisation of A. It is worth noting, however, that the definition of A within model (5.1)
lacks uniqueness without imposing additional constraints. To address this, we contemplate a
variant of model (5.1) where in every rows of A undergoes scaling. To be specific, we posit the
following assumption:

Condition (i).
∑K
a=1Aja = 1.

The weights Ai1, . . . , AiK indicate the degree to which component align with each cluster. This
condition dives our model into both hard and soft clustering.

Condition (i), if not explicitly specified, fails to guarantee the identifiability of A in model (5.1)
solely based on the extremal correlation matrix of X. For a more comprehensive understanding,
we refer to the insights provided in Remark 5.2.2. Additionally, to employ the model effectively
for clustering purposes, it is important to circumvent the trivial scenario where each component
X(j) is associated with all latent factors. To adress this concern, we permit the row of
Aj· = (Aj1, . . . , AjK) to exhibit sparsity for j in the range of {1, . . . , d}. However, it is
noteworthy that this property is not required for establishing the identifiability of A.

Furthermore, relying solely on Condition (i) is insufficient to guarantee the uniqueness of A
within model (5.1), see Remark 5.2.3 hereafter.

We term the following condition, denoted as (ii), the “pure variable assumption”. In simple
terms, this assumption posits the presence of at least one pure variables X(j), among the
components of X. These pure variables are uniquely associated with a single latent factor and
no other.

Condition (ii). For every a ∈ {1, . . . ,K}, there exists at least one indice j ∈ {1, . . . , d} such
that Aja = 1 and Ajb = 0, ∀b ̸= a.

Cluster denoted as Ga, established in accordance with Equation (5.3), derive their definition
from the unobservable factor Z(a). In this context, a pure variable X(j) serves as an observable
representation of Z(a), contributing to the elucidation of the ambiguous nature of cluster Ga.
Moreover, a more stringent version of Condition (ii) has a rich history, specifically
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Condition (ii’). For every a ∈ {1, . . . ,K}, there exist at least one known indice j ∈ {1, . . . , d}
such that Aja = 1 and Ajb = 0, ∀b ̸= a.

This condition stands out as one of the few interpretable parametrisations of A, effectively
eliminating the ambiguity associated with latent factors. In psychology, the variables generated
purely through the parametrisation as referred to as factorial simple items (McDonald (1999)).
A comparable condition find its roots in the topic modeling literature, where the identifiability
of topics is assured under the assumption that anchor words exists, i.e., words that exclusively
appear in one topic. In hydrology, the concept of pure variables was utilised to pinpoint
catchments stations as representatives of pollution sources in (Tolosana-Delgado et al., 2005,
page 700). In section 5.2, we demonstrate that, under Conditions (i) and (ii), the matrix A
can be recovered solely through the use of bivariate measures, namely extremal correlations.
In Section 5.3, we develop (SCRAM), a new soft clustering algorithm specifically for linear
factor model that estimate the loading matrix A and the overlapping groups. We provide a
sparse estimator Â of A that is tailored to our model specifications. Our approach follows the
constructive techniques used in our identifiability proofs. We first construct an estimator Î, an
estimator of the pure variable set I, and K̂, an estimator of the number of clusters K. These
are used to estimate the rows in A corresponding to pure variables. The remaining rows of A
are estimated via an easily implementable program that is tailored to this problem. We base
our theoretical study on mixing conditions over the studied process. These conditions make
explicit the independence between “past” and “future”; meaning that the “past” is progressively
forgotten. Mixing conditions are consequently more adapted to work in areas like finance
or climate sciences where history is of considerable importance. To make this more precise,
we consider processes with exponentially decaying strong mixing coefficients, as introduced
in Section 5.4. The algorithm (SCRAM) recovers the number of latent variables with high
probability under a strong signal condition in Section 5.4.1. We establish an upper bound
on the L2 norm (L2(Â, A), as defined in Section 5.4.2) for the matrix A specified by model
(5.1) and subject to Conditions (i)-(ii), as discussed in Section 5.4.2. A control of cluster or,
equivalently stated, extreme direction recovery is also given in Section 5.4.2.

Notations All bold letters x correspond to vector in Rd. The notation δx corresponds to
the Dirac measure at x. Throughout this paper, we are concerned with a simple undirected
graph G = (V,E) with a finite set V of vertices and a finite set E of unordered pairs (v, w)
of distinct vertices, called edges, we denote by Ē its complementary adjacent matrix. A pair
of vertices v and w are said to be adjacent if (v, w) ∈ E. For the subset W ⊆ V of vertices,
G(W ) = (W,E(W )) with E(W ) = {(v, w) ∈ W × W |(v, w) ∈ E} is called a subgraph of
G = (V,E) induces by W . Given the subset Q ⊆ V of vertices, the induced subgraph G(Q)
is said to be complete if (v, w) ∈ E for all v, w ∈ Q with v ̸= w. In this case, we may simply
state that Q is complete subgraph. A complete subgraph is also called a clique. A clique is
maximum if its cardinality is the largest among all the cliques of the graph.

5.2 Identifiability

Within this section, we present a demonstration that the allocation matrix A, as defined by model
(5.1) and subject to conditions (i)-(ii), is identifiable, within the exception of multiplication by
a permutation matrix.
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As per the construction, the vector Z is regularly varying, it possesses an extremal correlation
matrix represented by IK , the identity matrix. Consequently, we deduce that the vector X also
follows a pattern of regular variation, leading to the presence of an extremal correlation matrix
denoted as X = [χ(i, j)]i=1,...,d;j=1,...,d, where

χ(i, j) = lim
x→∞

P{X(i) > x,X(j) > x}
P{X(j) > x}

.

The subsequent theorem is poised to demonstrate that the extremal correlation matrix can be
elegantly formulated using exclusively the loading matrix A. However, before going further,
we introduce a novel matrix operation defined over matrices A ∈ Mp,K(R) and B ∈ MK,q(R).
Here, the notation Mp,q(R) refers to the collection of matrices encompassing p rows and q
columns, with coefficients in the real number domain.

Definition 5.2.1. We call ⊙ the application:

⊙ : Mp,K(R) × MK,q(R) −→ Mp,q(R)
(aik, bmj) 7→ cij ,

where
cij = ai1 ∧ b1j + · · · + ciK ∧ bKj .

With all the essential tools at our disposal, we are ready to present the ensuing fundamental
theorem.

Theorem 5.2.1. Let X defined in (5.1) and A satisfies Condition (i). Then X is regularly
varying and its extremal correlation X can be written as

X = A⊙A⊤,

with

χ(i, j) =
K∑
k=1

Aik ∧Ajk.

For any loading matrix A that adheres to model (5.1), we can subdivide the set [d] = {1, . . . , d}
into two distinct non-overlapping segments: I and its complement, designated as J . Within
each row Ai· of AI , there exists precisely at least one value a ∈ [K] for which Aia = 1. We
assign the term “pure variable set” to I, while J corresponds to the “non-pure variable set”. To
be more specific, for any given matrix A, the pure variable set is outlined as follows

I(A) = ∪Ka=1Ia, Ia := {i ∈ [d] : Aia = 1, Aib = 0 ∀b ̸= a}. (5.4)

In Equation (5.4), we use the notation I(A) to underscore that the pure variables set finds its
definition in relation to matrix A. Moving forward, we will omit this explicit statement whenever
there is no ambiguity. Additionally, it is worth mentioning that the sets I := {Ia}1≤a≤K
constitute a partition of the pure variable set I.

To establish the identifiability of matrix A, our task is simplified by focusing on distinct
identifiability of AI and AJ , each with allowance for a transformation by a permutation matrix.
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With respect to the definition of AI , its identifiability is assured as long as the partition of the
pure variable set I remains identifiable. The heart of the challenge lies in the identifiability of
set I and the inherent issue of distinguishing between I and J , based solely on the distribution
of the vector X. This stands as the central hurdle of the problem. Theorem 5.2.2 holds a
central position in our discussion. In the first part (a), it offers both a necessary and sufficient
description of the set [K] by examining the extremal correlation matrix X . In the second part
(b), it provides a necessary and sufficient characterisation of the set I when the cardinality of
Ia is greater than one. Finally, in the third part (c), it illustrates that both the set I and its
partition into subsets I = {Ia}1≤a≤K can be successfully identified. Let

Mi = max
j∈[d]\{i}

χ(i, j) (5.5)

denote the greatest value among the entries of row i of matrix X excluding χ(i, i) = 1.
Additionally, let Si represent the index set for which Mi reaches its maximum

Si = {j ∈ [d] \ {i}, χ(i, j) = Mi}. (5.6)

Theorem 5.2.2. Assume that model (5.1) and conditions (i)-(ii) hold. Then:

(a) The set [K] is any maximum clique of the undirected graph G = (V,E) where V = [d] and
(i, j) ∈ E if χ(i, j) = 0.

(b) Let i ∈ Ia, a ∈ [K] and |Ia| ≥ 2, then

j ∈ Ia ⇐⇒ χ(i, j) = 1 for any j ∈ Si.

(c) The pure variable set I can be determined uniquely from X . Moreover its partition I =
{Ia}1≤a≤K is unique and can be determined from X up to label permutations.

Remark 5.2.1. It is crucial to emphasise that the identification of recursive max-linear models
on a Directed Acyclic Graph involves examining the extremal correlation matrix and the initial
nodes V0, specifically, the nodes without parent connections (see Section 4.3 of Gissibl et al.
(2018)). Furthermore the set V0 can be determined from the tail dependence matrix since it is a
maximum clique of the undirected graph G = (V,E) where V = [d], and (i, j) ∈ E if χ(i, j) = 0
(refer to (Gissibl et al., 2018, Theorem 2.7)), akin to the characterisation provided in Theorem
5.2.2 (a) to identify the set [K].

The decision problem of the maximum clique problem is one of the first 21 NP-complete
problems, as introduced by Karp in his influential paper on computational complexity (Karp
(1972)). This problem is known for its exponential complexity as the number of vertices increases
in the worst cases. However, in the real world, many graphs tend to be sparse, meaning they
have low degrees of connectivity (as noted in works by Buchanan et al. (2014); Eppstein et al.
(2010)). This sparsity property allows for more efficient algorithms to solve the maximum clique
problem in sparse graphs compared to general graphs.

In our framework, we have made the implicit practical assumption that the rows of the matrix
A are sparse. Consequently, the complement of the adjacency matrix E, denoted as Ē, in the
graph defined in Theorem 5.2.2 (a), is also sparse. In this context, a faster method to find a
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maximum clique is presented through the following binary problem:

max
x(i)

d∑
i=1

x(i)

s.t. x(i) + x(j) ≤ 1, ∀(i, j) ∈ Ē

x(i) ∈ {0, 1}, i = 1, . . . , d.

In this edge-based formulation, any valid solution defines a clique C in the graph G as follows:
a vertex i belongs to the clique if xi = 1, and otherwise xi = 0. In our numerical studies, the
use of this problem accelerated the estimation process, reducing computation time from minutes
to seconds for large dimensions. In situations where the sparsity of matrix A is less emphasised,
attention shifts to the adjacency matrix E which now becomes sparse. In such instances,
well-known algorithms efficiently operates on the graph E. An excellent demonstration of this
efficiency is found in the classical algorithm authored by Bron and Kerbosch (1973). For a more
in-depth understanding of these intricacies, a comprehensive exploration awaits in Appendix
D.1.

The identifiability of the allocation matrix A and that of the collection of clusters G =
{G1, . . . , GK} in (5.4) use the results of Theorem 5.2.2 in crucial ways. We state the result in
Theorem 5.2.3 below.

Theorem 5.2.3. Assume that model (5.1) and conditions (i)-(ii) hold, A can be uniquely
recovered from X = A⊙A⊤, up to column permutations. This implies that the associated soft
clusters Ga, for 1 ≤ a ≤ K, are identifiable, up to label switching.

Remark 5.2.2. If Condition (i) is replaced with

K∑
a=1

Aja ≤ 1,

then the loading matrix is no longer identifiable from X . Indeed, consider X = AZ and X̃ = ÃZ
with Ã = λA for some λ ∈ (0, 1) and A verifies Condition (i). By Theorem 5.2.1, we have

X = A⊙A⊤,

and using the same tools involved in the proof of Theorem 5.2.1, we have

χ̃(i, j) = lim
x→∞

P{X̃j > x, X̃j > x}
P{X̃i > x}

=
∑K
k=1(λAik) ∧ (λAjk)∑K

k=1(λAik)
= Aik ∧Ajk.

Thus X = X̃ , and we cannot recover A from the extremal correlation matrix.

Remark 5.2.3. We show that the pure variable assumption stated in Condition (ii) is needed
for the identifiability of A with the extremal correlation, up to a permutation. Consider the
specific example where d = 3 and K = 2

A(1) =

0.7 0.3
0.3 0.7
0.5 0.5

 .
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Then with some computations using Theorem 5.2.1, we obtain that the extremal correlation of
X is equal to

X =

 1 0.6 0.8
0.6 1 0.8
0.8 0.8 1

 .
Now taking

A(2) =

0.8 0.2
0.4 0.6
0.6 0.4

 ,
leads the same extremal correlation matrix. Thus, if A does not satisfy (ii), A is generally not
identifiable with the extremal correlation matrix.

5.3 Estimation

Suppose that (Xt, t ∈ Z) = (X(1)
t , . . . , X

(d)
t , t ∈ Z) is a multivariate strictly stationary process,

and that (Xt, t = 1 . . . , n) is observable data. Let m ∈ {1, . . . , n} be a block size parameter
and, for i = 1, . . . , k and j = 1, . . . , d, let M (j)

m,i = max{X(j)
t : t ∈ [(i − 1)m, . . . , im]} be the

maximum of the ith block observations in the jth coordinate. For x = (x(1), . . . , x(d)), let

Mm,i = (M (1)
m,i, . . . ,M

(d)
m,i),

F (j)
m (x) = P{M (j)

m,1 ≤ x},

Fm(x) = (F (1)
m (x(1)), . . . F (d)

m (x(d))),

U
(j)
m,i = F (j)

m (M (j)
m,i),

Um,i = (U (1)
m,i, . . . , U

(d)
m,i).

Subsequently, we assume that the marginals of X(1)
1 , . . . , X

(d)
1 are continuous. In that case, the

marginals of Mm,1 are continuous as well and

Cm(u) = P{U (1)
m,1 ≤ u}, u ∈ [0, 1]d,

is the unique copula associated with Mm,1. Let us consider the following set ∆d−1 =
{(w(1), . . . , w(d)) ∈ [0,∞)d : ∑d

j=1w
(j) = 1} which is the unit simplex in Rd. Throughout, we

shall work under the following data generative process.

Definition 5.3.1 (Data generative process). Let (Xt, t ∈ Z) be a multivariate strictly stationary
random process and (Xt, t = 1, . . . , n) its observable data. Let m ∈ {1, . . . , n} and Cm the
copula of Mm,1 such that Cm is positive quadrant dependent, meaning that

Cm(u) ≥ Πd
j=1u

(j), u ∈ [0, 1]d. (5.7)

There exist a copula C∞, a finite Borel measure Φ on the unit positive sphere as defined in
equation (5.2) such that

lim
m→∞

Cm(u) = C∞(u), u ∈ [0, 1]d, (5.8)
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where
C∞(u) = exp

{
−L

(
− ln(u(1)), . . . ,− ln(u(d))

)}
and the stable tail dependence function L : [0,∞)d → [0,∞) is described by

L(z(1), . . . , z(d)) =
K∑
a=1

d∨
j=1

Ajaz
(j).

Since extreme value copulae are positive quadrant dependent (see, e.g., (Resnick, 2008, Section
5.8)), it is expected that in practice Cm, i.e., a proxy to C∞ will also verify this property for
a sufficiently large m. The max-domain of attraction in (5.8) and the definition of the stable
tail dependence function indicate that our observations are in the max-domain of attraction
of a max-stable distribution with discrete angular measure. Then, this discrete max-stable
distribution is characterised by a vector of latent factors Z ∈ RK and a matrix A ∈ Rd×K that
we want to estimate. As we will see, we will provide in Section 5.4 a non-asymptotic analysis of
our estimator, which is valid for any d, n, m and k. Such an analysis avoids the need to have
the max-domain of attraction condition given in Equation (5.8) to derive the main bound of
the estimator’s risk. However, an implicit link between Cm and C∞ will be given through a
bias term, which is expected to be smaller with respect to the block’s length if (5.8) is satisfied
in the data. Nonetheless, for presentation purposes, our statistical findings will be presented
with this condition satisfied.

Our estimation procedure is inspired from Bing et al. (2020) and consists of the following four
steps:

(a) Estimate the number of clusters K, the pure variable set I and the partition I;
(b) Estimate AI , the submatrix of A with rows Ai· that correspond to i ∈ I;
(c) Estimate AJ , the submatrix of A with rows Aj· that correspond to j ∈ J ;
(d) Estimate the overlapping clusters G = {G1, . . . , GK}.

5.3.1 Estimation of I and I

In the context of our analysis, we need to estimate the submatrices, denoted as AI and AJ ,
separately. To begin with AI , we initiate the estimation process by determining [K], which
subsequently allows us to identify I and its partition, denoted as I = {I1, . . . , IK}. This
partition can be uniquely constructed from the extremal correlation matrix X , as demonstrated
in Theorem 5.2.2. To perform this step, we employ the constructive proof provided by Theorem
5.2.2, substituting the unknown X with its sampled counterpart, referred to as the extremal
correlation matrix:

X̂ = [χ̂n,m(i, j)]i=1,...,d,j=1,...,d.

The quantity χ̂n,m(i, j) is the sampling version of the pre-asymptotic extremal correlation,
χm(i, j) between M

(i)
m,1 and M

(j)
m,1 using block-maxima approach, i.e.,

χm(i, j) = 2 − 0.5 + νm(i, j)
0.5 − νm(i, j) , νm(i, j) = 1

2E
[
|U (i)
m,1 − U

(j)
m,1|

]
.
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The quantity νm(i, j) is the bivariate madogram (Cooley et al. (2006)) between M (i)
m,1 and M (j)

m,1.
Since νm(i, j) ≥ 0, it stems down that χm(i, j) ≤ 1 and given that Cm satisfies (5.7), we have
νm(i, j) ≤ 1/6, implying that χm(i, j) ≥ 0. These last quantities can be approached with the
empirical madogram using the following relationship:

χ̂n,m(i, j) = 2 − 0.5 + ν̂n,m(i, j)
0.5 − ν̂n,m(i, j) ,

where ν̂n,m(i, j) is the bivariate empirical estimator of the madogram which can be easily
generalised by applying the equality |a − b|/2 = max(a, b) − (a + b)/2 with its multivariate
counterpart

ν̂n,m({1, . . . , d}) = 1
k

k∑
i=1

 d∨
j=1

Û
(j)
n,m,i − 1

d

d∑
j=1

Û
(j)
n,m,i

 .
Here, we have standardised the marginals by ranking the observed block maxima componentwise.
For a given value x ∈ R, j = 1, . . . , d, and block size m, we define:

F̂ (j)
n,m(x) = 1

k + 1

k∑
i=1

1{M(j)
m,i≤x}

,

and we consider observable pseudo-observations of U (j)
m,i as follows:

Û
(j)
n,m,i = F̂ (j)

n,m(M (j)
m,i).

To elaborate on our approach, we construct a graph denoted as G = (V,E), where the vertex
set is represented as V = [d]. We utilise the sample version of part (a) of Theorem 5.2.2 to
identify the largest vector that is asymptotically independent. Using this set of indices, we then
employ the sample version of part (b) of Theorem 5.2.2 to determine whether a specific index
j qualifies as a pure variable. If an index is not categorised as pure, we include it in the set
that estimates J . However, if it is deemed pure, we retain the estimated set Ŝi, as defined in
(5.6), of indices j ≠ i that are strongly associated, through their extremal correlations, with i.
Subsequently, we utilise the constructive proof of part (c) of Theorem 5.2.2 to declare that
Ŝi ∪ i = Î(i) serves as an estimator for one of the partition sets within I.

For a comprehensive understanding of the algorithm, including the specification of a tuning
parameter denoted as δ, please refer to Algorithm (PureVar) in Appendix D.2. The discussion
pertaining to the tuning parameter δ will be presented in detail in Section 5.4.1.

5.3.2 Estimation of the allocation matrix A and soft clusters.

Based on the estimators Î, K̂, and Î = {Î1, . . . , ÎK̂} obtained from Algorithm (PureVar), we
estimate the matrix AI . This estimation takes the form of a matrix with dimensions |Î| × K̂,
where each row corresponding to an index i in Î contains K̂ − 1 zeros and one entry equal to 1.
This procedure induces the following estimator of AI

Âka = Âla = 1, for k, l ∈ Îa, a ∈ [K̂]. (5.9)
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We continue by estimating the matrix AJ , row by row. To explain our approach, we first outline
the structure of each row, denoted as Aj·, within the matrix AJ , for j ∈ J . We should note
that each Aj· satisfies sparsity conditions and ∑K

a=1Aja = 1, as stipulated by Condition (i). To
simplify the exposition, we rearrange X and A as follows

X =
[

XII XIJ

XJI XJJ

]
, A =

[
AI
AJ

]
.

Model (5.1) and Theorem 5.2.1 imply the following decomposition of the extremal correlation
matrix of X

X =
[

XII XIJ

XJI XJJ

]
=
[
AI ⊙A⊤I AI ⊙A⊤J
A⊤J ⊙AI AJ ⊙A⊤J

]
.

In particular, XIJ = AI ⊙A⊤J . Thus for each i ∈ Ia with some a ∈ [K] and j ∈ J , we have

χ(i, j) = Aja.

Averaging the above display over all i ∈ Ia yields

1
|Ia|

∑
i∈Ia

χ(i, j) = Aja.

Hence

β(j) := Aj· =

 1
|I1|

∑
i∈I1

χ(i, j), . . . , 1
|IK |

∑
i∈IK

χ(i, j)

 ,
which can be estimated from the data as follows. For each j ∈ Ĵ , we denote an estimator for
the a-th element of β(j) using a simple approach. This estimator is represented as follows

χ̄(j) =

 1
|Î1|

∑
i∈Î1

χ̂n,m(i, j), . . . , 1
|ÎK̂ |

∑
i∈ÎK̂

χ̂n,m(i, j)

 .
It is important to note that this estimator is neither sparse nor an element of the unit simplex.
Given the value χ̄(j), our objective is to determine a Euclidean projection of χ̄(j) that lies within
the space B0(s) = {β ∈ RK̂ ,

∑K̂
j=1 1{β(j) ̸=0} ≤ s}, i.e., vectors with at most s non-zero entries,

and the unit simplex ∆K̂−1 = {β ∈ RK̂ , β(j) ≥ 0,∑K̂
j=1 β

(j) = 1} :

P(β̂(j)) ∈ argmin
β:β∈B0(s)∩∆K̂−1

||β − χ̄(j)||2. (5.10)

Kyrillidis et al. (2013) have demonstrated the feasibility of computing such a projection efficiently,
using a simple greedy algorithm. This algorithm is outlined in (HTSP) (Hard Thresholding and
Simplex Projector), and it involves two main steps: first, identifying the support of β̂(j), and
then determining these values associated with this support. Consequently, in order to construct
an estimator for the support, we select only the coordinates indexed by a where χ̄(j)

a exceeds a

176



5.4 Statistical guarantees

threshold δ. This selection results in a sparse estimator for β(j)
a as follows

β̄(j)
a = χ̄(j)

a 1{χ̄(j)
a >δ}, a = 1, . . . , K̂.

This estimator β̄(j) is often referred to as the hard thresholding estimator, where δ > 0 represents
the threshold value. However, it is essential to note that the estimator β̄(j) does not inherently
belong to the unit simplex. To address this, we can obtain an alternative estimator, denoted as
β̂(j), by projecting β̄(j) onto the unit simplex within the K̂-dimensional space. The projection
operation onto the unit simplex is achieved by utilising a specific mathematical operator, and
this operator is defined as

(P∆K̂−1
(β))j = [β(j) − τ ]+, τ := 1

ρ

( ρ∑
i=1

β(j) − 1
)
,

for ρ := max{k, β(j) > 1
k (∑k

j=1w
(j) − 1)}. Hence, by denoting Ŝ = supp(β̄(j)), we obtain

β̂(j)
∣∣∣
Ŝ

= P∆K̂−1

(
β̄(j)

∣∣∣
Ŝ

)
, β̂(j)

∣∣∣
Ŝc

= 0 (5.11)

Next, we construct the matrix ÂĴ with rows corresponding to the estimators β̂(j) for each
j ∈ Ĵ . Our final estimator, denoted Â, for the matrix A, is obtained by concatenating ÂÎ and
ÂĴ . The statistical properties of the final estimator are examined in Section 5.4, where we also
provide detailed specifications of the tuning parameter necessary for its development.

Recalling the definition of groups in (5.3), the soft clusters are estimated by

Ĝ = {Ĝ1, . . . , ĜK̂}, Ĝa =
{
i ∈ [d] : Âia ̸= 0

}
, for each a ∈ [K̂]. (5.12)

Variables X(j) that are associated (via Â) with the same latent factor Z(a) are therefore placed
in the same group Ĝa. We demonstrate in Section 5.4.2 that the overlapping clusters or extreme
directions can be controlled with high probability.

5.4 Statistical guarantees

This section serves a dual purpose. Firstly, we derive a bound akin to Bernstein’s inequality
for the uniform norm of the sampled version of the extremal correlation. This is achieved
by utilising a sequence of dependent and strictly stationary random variables denoted as
(Xt, t ∈ Z). Secondly, we employ the developed techniques to investigate statistical guarantees
for the following aspects:

(a) The estimated number of clusters, denoted as K̂;
(b) The estimated pure variable set Î and its corresponding estimated partition Î;
(c) The estimated allocation matrix Â and its adjustment to account for the unknown sparsity of

rows in matrix A;
(d) Guarantees to recover overlapping clusters / extreme directions in terms of Total False Positive

Proportion (TFPP) and Total False Negative Proportion (TFNP).

177



Estimating Random Vectors with Discrete Spectral Measure via Clustering

We recall the definition of strongly mixing sequences, introduced by Rosenblatt (1956a): For
any two σ-algebras A and B, we define the α-mixing coefficient by

α(A,B) = sup
A∈A,B∈B

|P(A ∩B) − P(A)P(B)|.

Let (Xt, t ∈ Z) be a sequence of real-valued random variables defined on (Ω,A,P). This
sequence will be called strongly mixing if

α(n) := sup
k≥1

α(Fk,Gk+n) → 0 asn → ∞, (5.13)

where Fj := σ(Xi, i ≤ j) and Gj := σ(Xi, i ≥ j) for j ≥ 1. Throughout, we assume the sequence
(Xt, t ∈ Z) has exponentially decaying strong mixing coefficients, that is

α(n) ≤ exp{−2cn}, (5.14)

for a certain c > 0. Our first result is the following exponential inequality.

Theorem 5.4.1. Let (Xt, t ∈ Z) be a sequence of stationary random variables with exponential
decaying strong mixing coefficients given in (5.14). Then, there are constants c0 > 0 and c1 > 0
which depend only on c such that

P

 sup
1≤i<j≤d

|χ̂n,m(i, j) − χm(i, j)| ≥ c1

√ ln (kd)
k

+ ln(k) ln ln(k) ln(kd)
k

 ≤ d−c0 ,

where n, m ∈ {1, . . . , n} denote respectively the sample and the block size, k = ⌊n/m⌋ ≥ 4 and
χm(i, j) ∈ [0, 1] is the pre-asymptotic extremal correlation between M

(i)
m,1 and M (j)

m,1.

In the context of our section, let us introduce some mathematical notations and concepts.
Consider the quantity χ(i, j), which represents the extremal correlation between X(i) and X(j),
within the max-domain of attraction as specified by Equation (5.8). We also define a crucial
parameter denoted as:

dm = sup
1≤i<j≤d

|χm(i, j) − χ(i, j)|,

where χm(i, j) is the pre-asymptotic extremal correlation between M
(i)
m,1 and M

(j)
m,1. This

parameter characterises the explicit bias between the subasymptotic framework and the max-
domain of attraction. It essentially quantifies the rate at which the system converges to its
asymptotic extreme behavior. Additionally, we introduce the following new event:

E = E(δ) :=
{

sup
1≤i<j≤d

|χ̂n,m(i, j) − χ(i, j)| ≤ δ

}
. (5.15)

Now, we state that

δ = dm + c1

√ ln (kd)
k

+ ln(k) ln ln(k) ln(kd)
k

 , (5.16)
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for some absolute constant c1 > 0. Furthermore, we require that ln(d) = o(k). This condition
ensures, with the additional max-domain of attraction in (5.8), that δ = o(1) provided that
m = o(n). Taking c1 > 0 large enough, Theorem 5.4.1 guarantees that E holds with high
probability:

P(E) ≥ 1 − d−c0 ,

for some positive constant c0 > 0. The order of the threshold δ involves known quantity such
as d, k and a unknown parameter dm. For the latter, there is no simple manner to choose
optimally this parameter, as there is no simple way to determine how fast is the convergence to
the asymptotic extreme behavior, or how far into the tail the asymptotic dependence structure
appears. In particular, Equation (5.8) does not contain any information about the rate of
convergence of Cm to C∞. More precise statements about this rate can be made with second
order conditions. Let a regularly varying function Ψ : N → (0,∞) with coefficient of regular
variation ρΨ < 0 and a continuous non-zero function S on [0, 1]d such that

Cm(u) − C∞(u) = Ψ(m)S(u) + o(Ψ(m)), for m → ∞, (5.17)

uniformly in u ∈ [0, 1]d (see, e.g., Bücher et al. (2019) for a proper introduction to this condition).
In this case, we can show that dm = O(Ψ(m)).

5.4.1 Statistical guarantees for K̂, Î and Î.

We now move forward with the analysis of the statistical performance of our estimator, denoted
as Î, which aims to estimate I. Alongside this estimation, we also consider its associated
partition. This particular problem falls within the broader category of pattern recovery problems.
It is well established that, given sufficiently strong signal conditions, we can reasonably expect
that Î = I with a high level of confidence. These conditions are stated below

Condition (SSC). Let I = {Ia}1≤a≤K .

(SSC1) ∀k /∈ I, Aka < 1 − 2δ, ∀a ∈ [K];
(SSC2) ∀k /∈ I, ∃a, b ∈ [K] such that Aka > 2δ and Akb > 2δ.

In Theorem 5.4.2, we establish a critical result that provides a high-confidence guarantees for
recovery of K, I and I under the condition (SSC). This theorem has several key implications.
In the first aspect of these implications, our theorem demonstrate that, with high probability,
the estimated set Î is equal to the set of pure variables I. This implies that our procedure
correctly identifies these fundamental variables. Ambiguous variables X(j) with j /∈ I that
exhibit associations with multiple latent factors not exceeding the 1 − 2δ threshold, as dictated
by Condition (SSC1), are deliberately excluded from Î. This exclusion is crucial to maintain
the accuracy of our method. In the construction of the graph G in part (a) of Theorem 5.2.2,
Condition (SSC2) guarantees that only ambiguous variables are excluded from a maximum
clique of G. This is of utmost importance because it ensures that the number of cluster K is
determined accurately.

Theorem 5.4.2. Let (Xt, t ∈ Z) be a sequence of stationary random variables with exponential
decaying strong mixing coefficients given in (5.14), satisfying the data generative process given
in Definition 5.3.1. Under Conditions (i)-(ii) and Condition (SSC), then

(a) K̂ = K;
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(b) I = Î.

Moreover, there exists a label permutation π of the set {1, . . . ,K} such that the output Î =
{Îa}1≤a≤K from Algorithm (PureVar) satisfies

(c) Iπ(a) = Îπ(a).

All results hold with probability larger than 1 − d−c0 for a positive constant c0.

5.4.2 Statistical guarantees for Â

In this section, we present and discuss the statistical properties of the estimator Â and its
control over the relationship between the support of A and the support of Â. It is worth noting
that δ is defined in Equation (5.15) and the estimator of A relies solely on this tuning parameter.
Theorem 5.4.3 established an adaptative finite sample upper bound for exponentially decaying
α-mixing observations. Both d and K are allowed to grow with n. We consider the loss function
for two d×K matrices A,A′ as

L2(A,A′) := min
P∈SK

||AP −A′||∞,2 (5.18)

where SK is the group of all K ×K permutation matrices and

||A||∞,2 := max
1≤j≤d

||Aj·||2 = max
1≤j≤d

 K∑
j=1

|Aij |2
1/2

;

for a generic matrix A ∈ Rd×K . Finally given δ in (5.16), we define

J1 = {j ∈ J : for any a ∈ [K] with Aja ̸= 0, Aja > 2δ}. (5.19)

Theorem 5.4.3. Assume the conditions in Theorem 5.4.2 hold. Set s = max
j∈[d]

||Aj·||0, s(j) =∑K
a=1 1{Aja>0} and t(j) = ∑K

a=1 1{Aja≤2δ} for each j ∈ J . Then for the estimator Â the
following holds.

(a) An upper bound:
L2(Â, A) ≤ 4

√
sδ,

(b) A guarantee for support recovery:

supp(AJ1) ⊆ supp(Â) ⊆ supp(A),

(c) Cluster recovery:

TFPP (Ĝ) =
∑
j∈[d],a∈[K] 1{Aja=0,Âja>0}∑

j∈[d],a∈[K] 1{Aja=0}
= 0,

TFNP (Ĝ) =
∑
j∈[d],a∈[K] 1{Aja>0,Âja=0}∑

j∈[d],a∈[K] 1{Aja>0}
≤

∑
j∈J\J1 t(j)

|I| +∑
j∈J s(j)

,

with probability larger than 1 − d−c0 for a positive constant c0.
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Some comments on the above results are in order. On a high level, larger dimensions d, larger
values of dm lead to a larger bound. The effects of dimension d and bias dm are intuitive: larger
dimensions or more bias make the matrix recovery problem more difficult. The dependence
on the number of latent factors K is implicitly conveyed through the sparsity index s, and its
impact on the bound is also straightforward: the sparser the matrix, the better the bound.

It is important to note that the dimension d is permitted to grow as ln(d) = o(k), while the
procedure still preserving an accurate estimation of A under additional assumptions. Specifically,
it is required that m = o(n) and Cm verifies Equation (5.17) for which there exists a constant
KΨ independent of d such that dm ≤ KΨΨ(m) for m large enough. In particular, if the
dimension ln(d) is varying exponentially with k, the bound in Theorem 5.4.3 (a) using this
procedure is not meaningful in the worst cases, meaning that the distance L2(Â, A) does not
decrease when the sample size n grows. Additionally, we have demonstrate that Â possesses
another desirable property, namely variable selection, or exact recovery sparsity pattern for row
j ∈ J1.

To the best of our knowledge, the estimation of identifiable sparse loading matrices A and
overlapping clusters (or termed equivalently as extreme directions) in the model (5.1), meeting
Conditions (i)-(ii), when both I and K are unknown, has not been explored in existing literature.
Our results fill this gap in the research landscape. However, there is an extensive body of
literature on related problems, as outlined in the introduction.

5.5 Numerical results

5.5.1 A data-driven selection method for the tuning parameter

Theorems 5.4.2-5.4.3 outline the theoretical rate of δ, but only up to constants. Below, we
propose a method for selecting δ based only on data. We opt for a finely tuned grid of
values δℓ = cℓ(dm +

√
ln(d)/k) with 1 ≤ ℓ ≤ M as suggested by (5.16) for k sufficiently large

and omitting log factors in k. This selection process involves varying the proportionality
constants cℓ. For each δℓ chosen, we determine the number of clusters K̂(ℓ) using Algorithm
(SCRAM), and the corresponding matrix, Â(ℓ). We denote the associated overlapping clusters
as Ĝ(ℓ) = {Ĝ1(ℓ), . . . , ĜK̂(ℓ)(ℓ)}. Define

L(Ĝ(ℓ)) =
d∑
j=1

∑
a∈[K̂(ℓ)]

(
Âja(ℓ) − χ̂n,m(j, a)1{Âja(ℓ)>0}

)2
. (5.20)

We then proceed to select δ⋆ as the value of δℓ that minimises the criteria in (5.20). This leads
to data-driven selection of δ⋆ = c⋆(dm +

√
ln(d)/k). While our choice may not be optimal in

certain challenging scenarios, it provides effective data-based guidelines for our comparative
analysis in Section 5.5.3 and real-world data evaluation in Section 5.6.

5.5.2 Performance of the proposed methodology in finite sample setting

In this section, we investigate the finite-sample performance of our algorithm to estimate the
matrix A in a linear factor model described in (5.1) by means of a simulation study.
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The setup. As a time series model, we consider the discrete-time, d-variate moving maxima
process (Zt, t ∈ Z) of order p ∈ N given by

Z
(a)
t =

p∨
ℓ=0

ρℓϵ
(a)
t+ℓ, (t ∈ Z, a = 1, . . . ,K), ρ ∈ (0, 1). (5.21)

Here (ϵt, t ∈ Z) is an i.i.d. sequence of K-dimensional random vectors having the following
distribution

P {ϵ1 ≤ x} = φ←
(
φ(P (x(1))) + · · · + φ(P (x(K)))

)
, x ∈ RK ,

where φ is the Archimedean generator φ : [0, 1] → [0,∞], φ← its generalised inverse and
P (x) = 1 − 1/x for x ≥ 1 is the cumulative distribution function of a standard Pareto random
variable. We assume the existence of the limit of

lim
s→0

φ(1 − st)
φ(1 − s) = t, t ∈ (0,∞), (5.22)

i.e., the upper tail exhibits asymptotic independence. In Appendix D.6 (as seen in Proposition
D.6.1), we demonstrate that the maxima of (Zt, t ∈ Z) belong to the maximum domain of
attraction of independent Fréchet distributions. Consequently, the related process verifies the
max-domain of attraction (5.8)

Xt = AZt + Et, (5.23)

where Et represents independent and identically distributed replications of a lighter tail
distributions. Noteworthy, since (Zt, t ∈ Z) is p-dependent, the overall process (Xt, t ∈ Z) is
α-mixing.

We generate the data in the following way. We set the number of clusters K to be 20 and
simulate the latent variables Z = (Z(1), . . . , Z(K)) from (5.21) and φ = (t−1 − 1). The error
terms E(1)

i , . . . , E
(d)
i are independently generate from a standard normal distribution. To speed

up the simulation process, we set the first 20 rows of A as pure variables. This means these
rows are predetermined and do not change during the process so that the best permutation
matrix that achieves the best estimation error is the identity. To generate AJ , for any j ∈ J ,
we randomly assign the cardinality sj of the support Aj· to a number in {2, 3, 4}, with equal
probability. Then, we randomly select the support from the set {1, 2, . . . ,K} with a cardinality
equal to sj . We then sample U1, . . . , Usj uniformly over the segment [0.35, 0.65]. Finally, we
assign the value of variables in the support as the corresponding sampled value divided by the
sum of all sampled values for variables in the support. Thus, we can generate X according to
the model in (5.23) and setting ρ = 0.8 and p = 2.

The target values. Our simulation study aims at investigating the performance of our algorithm
to recover the number of latent variables K and the performance of Â as estimators of A. When
the number of clusters is correctly identified, we compute the norm L2(Â, A) in (5.18).

Calibrating parameters. In practice, based on Equation (5.16), we recommend the following
choice, for sufficiently large k, and omitting logarithmic terms in k with dm = c2/m as a rule of
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thumb (see Appendix D.6 for technical details of this heuristic):

δ = c2
m

+ c1

√
ln(d)
k

,

and set c1 = 1.2 and c2 = 1.0 in Algorithm (SCRAM). We have found that these choices for
c1 and c2 not only yield good overall performance but are also robust with respect to the
dimension d, the block’s length m and the numbler of blocks k.

Results and discussion. Figure 5.1, Panel a present simulation results on exact recovery rate
of number of clusters K and estimation error L2(Â, A) in the case of a fixed m = 15 and with
varying k ∈ {300, 500, 700, 1000}. The shape of the functions are as expected; the estimation
error decreases when the number of blocks k increases from 300 to 1000, which is in line with our
theoretical results. The simulations are conducted on an Ubuntu system version 22.04 with 2.5
GHz Intel Core i7 CPU and 32 GB memory. Even with d = 1000 and k = 1000, the computing
time of our method for each simulation is around 5 seconds. In Figure 5.1, Panel b, we present
simulation results on exact recovery rate of the number of cluster K̂ and estimation error
L2(Â, A) with a fixed sample size n = 5000. We plot these two quantities against the number
of blocks k. From the picture, we see that, as expected, the performance of the estimator
is first decreasing in k while it increases after a certain threshold. This phenomenom is an
illustration of the bias-variance tradeoff that runs is the choice of the corresponding block
length. Regarding the exact recovery rate and the performance of the estimator, we observe a
rather good performance for a value of k = 700, corresponding to block length m = 7.
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Fig. 5.1 In Panel a, simulation results on exact recovery rate of number of clusters K (in red)
of I and L2(Â, A) (in green) with fixed m = 20 and varying d ∈ {200, 400, 600, 800, 1000}. In
Panel b, simulations results on exact recovery rate (in blue) of I and L2(Â, A) (in red) for fixed
n = 5000 and varying number of blocks and d ∈ {200, 400, 600, 800, 1000}.

Finally, within Table 5.1, we display the parameter δ⋆ which minimises the average of the
criteria in (5.20) using the data-driven selection method proposed in Section 5.5.1 over 50 runs
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with different numbers of block maxima k and dimensions d. Additionally, we give the average
ERR over these 50 runs. These results provide support for this criterion in selecting δ, yielding
favorable outcomes in terms of ERR. However, it is also evident that this criterion may not be
optimal in certain difficult scenarios, particularly for large values of d and small values of k.

k / d c⋆ / ERR
200 400 600 800 1000

300 (1.2, 1) (1.13, 1) (1.05, 0.98) (1, 0.92) (0.985, 0.86)
500 (1.41, 1) (1.38, 1) (1.3, 1) (1.28, 1) (1.29, 1)
700 (1.63, 1) (1.6, 1) (1.5, 1) (1.47, 1) (1.33, 1)
1000 (1.83, 1) (1.64, 1) (1.74, 1) (1.69, 1) (1.35, 1)

Table 5.1 Data-driven selection of c⋆ using the average criterion (5.20) and Exact Recovery
Rate (ERR) of latent factors K = K̂ over 50 runs with varying k ∈ {300, 500, 700, 1000} and
d ∈ {200, 400, 600, 800, 1000}.

5.5.3 Numerical comparisons

In this section, we analyse how well our method performs in recovering extreme directions in
contrast to DAMEX (Goix et al. (2017)), and its efficiency for estimating normalised columns
A·k/||A·k|| =: ak, k ∈ [K] compare to sKmeans (Janßen and Wan (2020)). Other algorithms
(namely, Chiapino et al. (2019); Fomichov and Ivanovs (2022); Meyer and Wintenberger (2023))
in the literature were also considered; however, since they suffer from computational weaknesses
or yield poor performance where X is decomposed as a linear factor model described in (5.1)
under Conditions (i)-(ii), they are omitted from the presentation of the results. We borrow
the identical setup of a moving-maxima process as in Section 5.5.2, we hence moved to an
elucidation of the target values.

Target values. Our simulation study aims to investigate the performance of our algorithm in
determining the number of extreme directons and assessing its performance, when K̂ = K, using
the TFPP and TFNP metrics compared to the DAMEX Algorithm. Additionally, we assess
the disparity between the true centroids a1, . . . ,aK and the estimated centroids â1, . . . , âK as
produced by both our procedure and sKmeans when K̂ = K by:

D({a1, . . . ,aK}, {â1, . . . , âK}) = min
π

√√√√ K∑
k=1

||âπ(k) − ak||22, (5.24)

where the min is taken over all permutation π of {1, . . . ,K}. By the definition of (5.24), the
number of factors in the experiment is reduced to K = 6 due to memory limitations.

Results and Discussion. Figure 5.2, Panels a-c depict results on exact recovery rate of the
number of clusters K, TFNP and TFPP for both Algorithms (SCRAM) and DAMEX over 50
simulations. The exact recovery rate of Algorithm of (SCRAM) is always better than the one
of DAMEX for any configurations of d and n. Moreover, our procedure appears to be more
resilient than DAMEX to a decrease in the sample size n and an increase in the dimension d.
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5.5 Numerical results

However, when the number of latent factors is correctly retrieved by DAMEX Algorithm, it
exhibits a better performance than (SCRAM) in terms of TFNP and TFPP. The average value
of D({a1, . . . ,aK}, {â1, . . . , âK}) over 50 realisations for different values of d and n are show
in Figure 5.2, Panel d. It can be seen that the locations of the points of mass of the spectral
measure are most precisely estimated by (SCRAM) Algorithm.
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Fig. 5.2 Results of numerical comparisons between (SCRAM) Algorithm (in blue) and DAMEX
Algorithm (in pink) in Panels a-c. Comparison of D({a1, . . . ,aK}, {â1, . . . , âK}) between
(SCRAM) Algorithm (in blue) and sKmeans (in pink) are given in Panel d.

Calibrating parameters. In the (SCRAM), the parameter δ is selected using the method
proposed in Section 5.5.1. To fasten computations, we utilise the simulation outcomes detailed
in Section 5.5.2, selecting δ⋆ as the threshold that minimises the average value of the criteria
across 50 iterations given in Table 5.1. In the DAMEX Algorithm, we adopt the approach
recommended by the authors, selecting the ⌊

√
n⌋ largest values. Due to the propensity of the

DAMEX Algorithm to return numerous extreme directions for many ϵ values (tuning parameter
of the DAMEX Algorithm), we opt to merge overlapping directions. This adjustement is
crucial for enabling the DAMEX Algorithm to accurately recover the true number of latent
factors. Furthermore, we determine ϵ through trial and error using the exact recovery rate of
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K (post-merging step) as a benchmark, and settle on ϵ = 0.3. Calibrating parameters of the
sKmeans algorithm is relatively straightforward. We simply select the ⌊

√
n⌋ largest values and

we designate the true number of latent factors K = 6 (which is typically unknown in practice)
as the number of clusters.

5.6 Applications

5.6.1 Extreme precipitations in France
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Fig. 5.3 In Panel a, we show the clusters for the Corsica latent variable. Panel b displays
clusters for the western latent variable. Panel c shows clusters for the eastern latent variable.
Finally, Panel d depicts clusters for the southern latent variable. The strength of association is
indicated by the size and color intensity of each square.

In our analysis, we focus on weekly maxima of hourly precipitation recorded at 92 weather
stations in France during the fall season, spanning from September to November, for the years
1993 to 2011, resulting in 228 block maxima. This dataset was provided by Météo-France and
has been previously used in Bernard et al. (2013). The selection of stations was based on their
data quality and ensuring a relatively uniform coverage of France.
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We use the process described in Section 5.5.1 to choose the tuning parameter δ. The entire
process recommends using cℓ ≈ 0.82 as the most suitable threshold value for our analysis.
Employing the designated threshold, we unveil four latent variables situated in the western,
eastern, southern regions of metropolitan France and Corsica. It is crucial to highlight that
our process operates solely based on rainfall records, devoid of any geographical information.
Consequently, discerning consistent spatial structures from just rainfall measurements is not a
straightforward outcome. Spatial representation of clusters are depicted in Figure 5.3. The
Corsican cluster highlighted in Figure 5.3, Panel a, where the pure variable is located at Ajaccio,
exhibits a strong association within the island, while other associations rapidly decline on
the mainland of France. The western area above Bordeaux, indicated in Figure 5.3 Panel b,
exhibits robust dependencies with the central region around Paris. However, beyond these
regions, the associations with the latent variable rapidly decrease. Symmetrically, the eastern
region, spanning from Lyon and covering the Vosges mountains, Alsace, the Franche-Comté
and regions in northeastern France, depicted in Figure 5.3 Panel c, displays dependencies with
the central regions while diminishing rapidly outside this area. In contrast, the western cluster
shows a broader distribution spanning accross the entire country. The southern cluster, in
Figure 5.3 Panel d, showcases spatial dependencies over Corsica and Mediterranean cities.
These associations rapidly fell-off, resulting in the formation of a less spread-out cluster. The
clustering results for locations align quite close with Bernard et al. (2013); Maume-Deschamps
et al. (2023) dividing France into north and south regions. The key distinction lies in our
clusters being overlapping, providing a more nuanced understanding of the variability of each
location’s affiliation to a cluster. It is noteworthy that the farther a location is from the pure
variable, the lesser the corresponding affiliation.

Except for the corsican cluster, the interpretation of the resulting clusters seems straightforward.
The extreme rainfall in northern France can be attributed to disturbances originating from
the Atlantic, impacting regions like Brittany, Paris, and other northern areas. In the southern
regions of France, particularly during the fall, intense rainfall events typically arise from
southern winds compelling warm and moist air to interact with the mountainous terrain of
the Pyrénées, Cévennes, and Alps. This interaction often leads to the development of severe
thunderstorms. While these events can be quite localised, they frequently impact a substantial
portion of the Mediterranean coastal area. In the eastern regions, despite the presence of
various microclimates, the Vosges moutains serve a delineation between the temperate oceanic
climate in the western part and the continental climate in the eastern part, particularly in the
Upper Rhine Bassin.

Since the exponent measure of the linear factor model X in equation (5.1) is discrete, calculating
probabilities of extreme events, denoted as P{X ∈ C} for a set of interest C, becomes a
straightforward task. In our environmental dataset, determining regions and probabilities as

Ca(x) = ∪j∈Ga{y(j) > x(j)}, pa(x) = P{X ∈ Ca(x)}, a ∈ {1, 2, 3}

is a common approach, especially when an extreme event at any location could potentially
result in a climatological catastrophe. Letting Âjℓ be the element of the estimated Â, one can
show that

p̂a(x) =
3∑
ℓ=1

max
j∈Ga

Âjℓ
x(j) , a ∈ {1, 2, 3}.
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Fig. 5.4 Approximations of p̂a concerning precipitation in millimeters are illustrated through
straight lines in blue, green, red and yellow representing the corsican, western, eastern and
southern clusters, respectively. Empirical estimations are portrayed with dashed lines, mirroring
the color code for their respective clusters.

In Figure 5.4, we illustrate p̂a(x) where x is selected within the range of 50 to 100 mm for
precipitation. The obtained estimation are of the same magnitude of those of (Kiriliouk and
Zhou, 2022, Appendix B) for Switzerland. A comparison with empirical estimates reveals that
the latter tends to underestimate the probability of heavy rainfall events. Moreover, the linear
factor model exhibits the capability to extrapolate, maintaining informative values even as the
empirical estimates plummet to zero, losing their informativeness.

5.6.2 Wildfires in French Mediterranean

Our case study focuses on the southeastern part of France, covering an area of 80500 km2.
This region, prone to wildfires, encompasses a broad range of bioclimatic, environmental, and
anthropogenic gradients. Approximately 60% of study area consists of easily ignitable forested
areas or vegetation types, such as shrubland and other natural herbaceous vegetation. Wildfires
face challenges in spreading through the various available cover types. The observation period
for this study is 1995-2018, specifically during the extended summer months (June-October).
Gridded weather reanalysis data from the SAFRAN model of Météo-France, with an 8km
resolution, is utilised for analysis. This dataset has also undergone extensive examination in
Koh et al. (2023), from which we obtain the data.

Understanding the joint impact of variables like temperature, precipitation, and wind speed on
fire activity patterns is highly intricate. Various meteorological indices on fire activity patterns
have been developed, including the widely used unitless Fire Weather Index (FWI), originally
designed for Canadian forests. Typically, FWI values are directly interpreted and used for fire
danger mapping. However, our approach involves studying its spatial variability through a linear
factor model. In our methodology, we extract monthly maxima of FWI during the extended
summer months over the 1143 pixels, resulting in 100 observations. Through a data-driven
approach to select the threshold, as explained in Section 5.5.1, we choose δ⋆ ≈ 0.1765 to obtain
two latent factors (see Figure 5.5. These factors are directly interpretable in terms of elevation
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Fig. 5.5 In Panel a, we show the spatial cluster for the first latent variable. Panel b displays
the spatial cluster for the second latent variable. The strength of association is indicated by
the size and color intensity of each square.

(refer to Figure 5.5 Panel a and Figure 5.5 Panel b). Indeed, the first cluster demonstrates a
strong association within mountainous areas (Western Alps, Corsica, and Pyrénées), while the
second exhibits associations within lowlands prone to fire activity (Fréjaville and Curt (2015))
and heatwaves (Ruffault et al. (2016)), mid-elevation hinterlands, and foothills.

5.7 Discussion

We have introduced a comprehensive methodology for estimating the parameters of a discrete
spectral measure of a max-stable distribution. Our approach lies into model-based clustering
and proves to be both rapid and convenient, particularly suited for moderate dimensions.
Additionally, we have provided statistical assurances for our method, ensuring favorable outcomes
even in high dimensions where the relationship between the dimensionality, represented by d,
and the sample size, denoted as n, may vary and potentially result in larger d values. These
results are robust, grounded in general conditions that span a diverse array of applications. Our
methodology however does not accommodate multivariate regularly varying distributions with
an unknown tail index α. Instead of the considered framework, let Z consists of independent
regularly varying random variables with a known tail index α, then Theorem 5.2.1 can be
reformulated as

X = Ā⊙ Ā⊤,

where Ā represents the standardised loading matrix of X, that is

Ā = (Āja)d×K =
(

Aαja∑K
a=1A

α
ja

)
j=1...,d,a=1,...,K

.
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Then, the entire proposed procure applies to Ā as long as the pure variable condition is satisfied,
namely Condition (ii). Setting the scaling condition ∑K

a=1A
α
ja = 1 for any j = 1, . . . , d, we can,

however estimate the stable-tail dependence function of X, as it is expressed as

L(z(1), . . . , z(d)) =
K∑
a=1

∨
j=1,...,d

(
Ajaz

(j)
)α
, z(1), . . . , z(d) > 0.

However, estimating the matrix A now requires the estimation of the tail index α, demanding
more intricate technical details within our non-asymptotic framework with weakly dependent
observations. This aspect remain of significant interest for applications. Indeed, since marginal
standardisation does not impact dependence modeling, it is a common practice to separate
marginal and dependence modeling. This involves standardising each marginal to a common
distribution and then focusing solely on modeling the dependence structure. However, in certain
applications where the goal is to estimate failure regions of the form {

∑d
j=1 v

(j)X(j) > x} with
x being large and ∑d

j=1 v
(j) = 1, v(j) > 0, such an approach may be suboptimal. In these cases,

it is necessary to directly model the original vector X. These failure regions are particularly
relevant in climate applications, as demonstrated by Kiriliouk and Naveau (2020) and Kiriliouk
and Zhou (2022).

One can also consider the contaminated linear factor model

X = AZ + ση,

where A ∈ Rd×K satisfies Condition (i), Z = (Z(1), . . . , Z(K)) is a K-dimensional vector with
i.i.d. standard Fréchet distributed components, σ > 0 regulates the signal-to-noise ratio and η
is a common factor noise distributed as a standard Fréchet. The standardised loading matrix Ā
of X is expressed as:

Ā =
(
Aja + σ

1 + σ

)
j=1...,d,a=1,...,K

.

The current challenge is that Theorem 5.2.2 (a) no longer applies since

χ(i, j) = σ

1 + σ
̸= 0, i ∈ Ia, j ∈ Ib, b ̸= a.

So, we can no longer recover latent factors using pairwise asymptotic independence obtained
from the proposed model in (5.1). However, taking a ∈ [K] with |Ia| ≥ 2, it is readily verified
that

χ(i, k) = Aka + σ

1 + σ
< 1 = χ(i, j)

for any k /∈ Ia and i, j ∈ Ia. Thus, a procedure to identify [K] is possible using the more
stringent condition

Condition (ii”). For any a ∈ {1, . . . ,K}, there exist at least two indices j ∈ {1, . . . , d} such
that Aja = 1 and Ajb = 0, ∀b ̸= a.

Without knowledge of σ, the matrix A can be recovered up to a multiplication constant (and
by multiplication by a permutation matrix). It is also crucial to emphasise that such Condition
(ii”) paves the way to reduce the computational complexity of our procedure method.
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A possible extension of the methodology is matrix-valued data, which has become increasingly
prevalent in many applications. Most existing clustering methods for this type of data are
tailored to the mean model and do not account for the (extremal) dependence structure of the
variables. To extract information from the extremal dependence structure for clustering, we
can propose a new latent variable model for the variables arranged in matrix form, with some
unknown loading matrices representing the clusters for rows and columns.

Drawing an analogy with the linear factor model studied in this paper, assume the variables
are stacked as a random matrix X ∈ Rp×q which follows the decomposition

X = AZB⊤ + E,

where Z ∈ RK1×K2 is a latent variable matrix which is regularly varying, meaning that there
exist a scaling sequence {cn} and a measure ΛZ on MK1,K2(R+) such that the following vague
convergence holds:

nP
{
c−1
n Z ∈ ·

}
v−→

n→∞
ΛZ(·).

A ∈ Rp×K1 and B ∈ Rq×K2 are the unknown loading matrices for the rows and the columns,
respectively. E ∈ Rp×q represents the random noise matrix with entries having lighter tails.
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Appendix D

Supplementary materials of
Chapter 5

D.1 Investigation into the computation time of clique algorithm

In this section, we explore the computation time required to identify a clique using the extremal
correlation matrix, irrespective of whether the matrix is sparse or not. To achieve this, we
examine the approach outlined in the main paper, which involves the following binary problem,

max
x(i)

d∑
i=1

x(i)

s.t. x(i) + x(j) ≤ 1, ∀(i, j) ∈ Ē

x(i) ∈ {0, 1}, i = 1, . . . , d,

and the Bron-Kerbosh algorithm (Bron and Kerbosch (1973)). The matrix A is constructed as
follows: we designate the initial rows to comprise the first 20 pure variables. For generating
AJ , where j ∈ J , we randomly choose the support from the set 1, 2, . . . , 20 with a sparsity
s ∈ {2, 3, . . . , 15}. Subsequently, we form the extremal correlation matrix X = A ⊙ A⊤ and
investigate a clique using the two aforementioned methods in 20 replications. We examine three
scenarios with varying dimensions, denoted as d ∈ {100, 200, 300}. We denote the time spent
recovering the clique through the adjacency matrix E computed with the extremal correlation
matrix X as TBK for the Bron-Kerbosch algorithm and TMILP for the binary problem. The
results are illustrated in Figure D.1. For a concise interpretation of the numerical results, when
d = 300 and s = 3, the binary problem is 768 times faster than the Bron-Kerbosch algorithm,
and conversely, the Bron-Kerbosch algorithm is 100 times faster when s = 15.

As anticipated, when the sparsity s is low (s < 4), the binary problem proves to be the most
effective in recovering the maximum clique, whereas the Bron-Kerbosch algorithm exhibits
superior performance for a sparsity index s ≥ 4. Regardless of the dimension, the (log) average
ratio is decreasing and shows a rapid deceleration when s ≥ 4. The contrast between the two
methods becomes more pronounced with increasing considered dimensions.

D.2 Algorithm

We give below the specifics of Algorithm (PureVar) motivated in Section (5.3), the Algorithm
(HTSP) and summarize our final algorithm in Algorithm (SCRAM) (Soft Clustering lineaR
fActor Model).
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Fig. D.1 Average ratio TBK/TMILP in seconds set to the log scale with respect to the sparsity
degree s ∈ {2, 3, . . . , 15} and d ∈ {100, 200, 300}.

Algorithm (PureVar)

1: procedure PureVar(X̂ ,δ)
2: Initialize: I = ∅
3: Construct the graph G = (V,E) where V = [d] and (i, j) ∈ E if χ̂n,m(i, j) ≤ δ
4: Find a maximum clique, Ḡ, of G
5: for i ∈ Ḡ do
6: Î(i) = {j ∈ [d] \ {i} : 1 − χ̂n,m(i, j) ≤ δ}
7: Î(i) = Î(i) ∪ {i}
8: Î = MERGE(Î(i), Î)
9: Return Î and K̂ as the number of sets in Î

Algorithm (MERGE)

1: procedure MERGE(Î(i),Î)
2: for G ∈ Î do
3: if G ∩ Î(i) ̸= ∅ then
4: G = G ∩ Î(i)

5: Return Î
6: Î(i) ∈ Î
7: Return Î
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Algorithm (HTSP)

1: procedure HTSP(X̂ ,δ, Î)
2: for j ∈ [d] \ Î do
3: χ̄(j) =

(
1
|Îa|

∑
i∈Îa χ̂n,m(i, j)

)
a=1,...,K̂

4: β̄(j) =
(
χ̄

(j)
a 1{χ̄(j)

a >δ}

)
a=1,...,K̂

5: Ŝ = supp(β̄(j))
6: β̂(j)

∣∣∣
Ŝ

= P∆K̂−1
( β̄(j)

∣∣∣
Ŝ

), β̂(j)
∣∣∣
Ŝc

= 0

Algorithm (SCRAM)

1: procedure SCRAM(X̂ , the tuning parameter δ)
2: Apply Algorithm (PureVar) to obtain the number of clusters K̂, the estimated set of

pure variables Î and its partition of Î.
3: Estimate AI by ÂÎ from (5.9).
4: Estimate AJ by ÂĴ applying Algorithm (HTSP). Combine ÂÎ with ÂĴ to obtain Â.
5: Estimate fuzzy clusters Ĝ = {Ĝ1, . . . , ĜK} from (5.12) by using Â.
6: Output Â and Ĝ.

D.3 Proofs of Section 5.2

Proof of Theorem 5.2.1 Let i, j ∈ {1, . . . , d} be arbitrary with i ̸= j. Define Y (i) =∑K
a=1AiaZ

(a) and Y (j) = ∑K
a=1AjaZ

(a). Note that Y and X have the same exponent measure
since they differ only by a sum of a random variable with a lighter tail (see, e.g., (Kulik and
Soulier, 2020, Lemma 1.3.2)). So we only have to compute bivariate extremal correlations for
Y to obtain those of X. In order to obtain bivariate regular variation of Y(i,j) = (Y (i), Y (j)),
consider the map ψ from RK+ → [0,∞)2 defined by

ψ(z(1), . . . , z(K)) =
(

K∑
a=1

Aiaz
(a),

K∑
a=1

Ajaz
(a)
)
.

For a measurable subset A of R2, separated from 0, we obtain by corollary 2.1.14 of Kulik and
Soulier (2020):

ΛY(i,j)(A) = ΛZ ◦ ψ−1(A) =
K∑
a=1

δ0 ⊗ · · · ⊗ ΛZ(a) ⊗ · · · ⊗ δ0 ◦ ψ−1(A)

=
K∑
a=1

∫ ∞
0

1A(Aias,Ajas)s−2ds.
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Applying to A = (1,∞) × (1,∞) and A = (1,∞) × R+, we get respectively

ΛY(i,j)((1,∞) × (1,∞)) = ΛZ ◦ ψ−1(A) =
K∑
a=1

∫ ∞
0

1(1,∞)×(1,∞)(Aias,Ajas)s−2ds

=
K∑
a=1

∫ ∞
0

1{s>1/Aia,s>1/Aja}s
−2ds

=
K∑
a=1

(
1
Aia

∨ 1
Aja

)−1

=
K∑
a=1

(Aia ∧Aja),

and

ΛY(i,j)((1,∞) × R+) =
K∑
a=1

Aia = 1.

Thus

χ(i, j) = lim
x→∞

P{Y (i) > x, Y (j) > x}
P{Y (i) > x}

=
ΛY(i,j)((1,∞) × (1,∞))

ΛY(i,j)((1,∞) × R+) =
K∑
a=1

Aia ∧Aja.

We know state and prove two lemmata that are crucial for the main results of this section. All
results are proved under the condition that model (5.1) and Conditions (i)-(ii) hold.

Lemma D.3.1. For any a ∈ [K], i ∈ Ia and |Ia| ≥ 2 we have

1. χ(i, j) = 1 for all j ∈ Ia,
2. χ(i, j) < 1 for all j /∈ Ia.

Proof of Lemma D.3.1 For any given i ∈ {1, . . . , d}, we define the set s(i) := {1 ≤ a ≤ K :
Aia ̸= 0}. For any i ∈ Ia and j ̸= i, we have

χ(i, j) =
∑
a∈s(i)

Aia ∧Aja = Aja ≤ 1,

we observe that we have equality in the above display for j ∈ Ia and strict inequality for j /∈ Ia
which proves the lemma.

Lemma D.3.2. We have Si ∪ {i} = Ia and Mi = 1 for any i ∈ Ia, with |Ia| ≥ 2 and a ∈ [K].

Proof of Lemma D.3.2 Lemma D.3.1 implies that, for any i ∈ Ia, Mi = 1 and Si = Ia \ {i}
which proves the lemma.

Proof of Theorem 5.2.2

Proof of (a) By condition (ii), for any a ∈ [K], there exists ia ∈ [d] such that X(ia) =
Z(a) + E(ia). By its very nature under the model (5.1), the vector (X(i1), . . . , X(iK)) is the
largest vector being asymptotically independent, i.e.,

χ(i, j) = 0, ∀i, j ∈ {i1, . . . , iK}, (D.1)
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see (Resnick, 2008, Proposition 5.24). Let us construct the simple undirected graph G = (V,E)
with a finite set of vertices V = [d] and a finite set of ordered pairs (i, j) of edges such that
(i, j) ∈ E if χ(i, j) = 0. Through this construction of G, the search for a maximum clique in G
is equivalent to searching for a set of indices, denoted as {i1, . . . , iK}, satisfying equation (D.1).
Consequently, we established (a).

Proof of (b) Consider any j ∈ [d] with Mi = 1 for i ∈ Ia. Since |Ia| ≥ 2, by Lemma D.3.1,
the maximum is achieved for any pairs j, k ∈ Ia. However, if j /∈ Ia, we have χ(j, k) < 1 for all
k ̸= j. Hence j ∈ Ia and this conclude the proof of the sufficiency part. It remains to prove the
necessity part.

Let i ∈ Ia for some a ∈ [K] and j ∈ Ia∩Si. Since j ∈ Si and |Ia| ≥ 2, we have χ(i, j) = Mi = 1,
as a result of Lemma D.3.2, which proves (b).

Proof of (c) We start with the following construction approach. Let N = [d] be the set of all
variables indices and O = ∅. Let Mi and Si be defined in (5.5) and (5.6), respectively.

(1) Construct the undirected graph G = (V,E) where (i, j) ∈ E if χ(i, j) = 0.
(2) Find a maximum clique of G denoted as Ḡ.
(3) Choose i ∈ Q and calculate Mi and Si.
(a) If Mi = 1, set I(i) = Si ∪ {i}, O = O ∪ {i} and Q \ {i}.
(b) Otherwise, replace Q by Q \ {i}.
(4) Repeat Step (3) until Q = ∅.

We show that {I(i) : i ∈ O} = I. Let i ∈ O be arbitrary fixed. By (a) and (b) of Theorem
5.2.2, we have i ∈ I. Thus, there exists a ∈ [K] such that i ∈ Ia. If |Ia| ≥ 2, by Lemma D.3.2,
i ∈ Ia implies Ia = Si ∪ {i} = I(i). On the other hand, let a ∈ [K] be arbitrary fixed. By
condition (ii), there exists, at least one i ∈ Ia. If |Ia| = 1, then by (a), we have I(i) = Ia. If
|Ia| ≥ 2 and j ∈ Ia, then χ(i, j) = 1 and j ∈ Si, once again, by Lemma D.3.2, Si ∪ {i} = Ia,
that is I(i) = Ia.

Proof of Theorem 5.2.3

Theorem 5.2.2 establishes that the set X uniquely determines both I and its partition I, with
the exception of potential permutations of labels. When we have I and its partition mathcalI
available, represented as {I1, . . . , IK}, for any index i belonging to I, there exists a single integer
1 ≤ a ≤ K such that i ∈ Ia. We then construct a row vector Ai· of dimension K, akin to the
canonical basis ea in RK , where the element at position a equals 1, and all other elements are
0. Consequently, the matrix AI , which has dimensions |I| ×K and is composed of rows Ai·, is
uniquely determined, except for possible multiplications by permutation matrices.

We show below that AJ is also identifiable up to a signed permutation matrix. We begin by
observing that, for each i ∈ Ik for some k ∈ [K] and any j ∈ J , Model (5.1) implies

χ(i, j) =
∑
a∈s(i)

Aia ∧Aja = Ajk
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and, after averaging over all i ∈ Ik,

Ajk = 1
|Ik|

∑
i∈Ik

χ(i, j).

Repeating this for every k ∈ [K], we obtain the formula

Aj· =

 1
|I1|

∑
i∈I1

χ(i, j), . . . , 1
|IK |

∑
i∈IK

χ(i, j)

 ,
for each j ∈ J , which shows that AJ can be determined uniquely from X up to a permutation.
Therefore, AJ is identifiable which concludes the proof.

D.4 Proof of Section 5.3

For the sake of notations, we set ν̂n,m({1, . . . , d}) := ν̂n,m.

Lemma D.4.1. Let (Xt, t ∈ Z) satisfies the conditions in Theorem 5.4.1. Choose a c2 ∈ (0,∞),
and let z = y − k−c2 for any y ≥ k−c2. Then for k ≥ 4, there is a constant c1 > 0 such that

P
{

|ν̂n,m − νm| ≥ y + 1
k + 1

}
≤ (2d+ 1) exp

{
− c1kz

2

1 + z ln k(ln ln k) + c2 ln k
}
.

Proof Since for every j ∈ {1, . . . , d}, U (j)
m,1 is uniformly distributed under the unit segment,

we directly obtain

E

1
d

d∑
j=1

U
(j)
m,1

 = 1
2 .

Furthermore, by simple computations, and using the very nature of scaled ranks, we have

1
k

k∑
i=1

1
d

d∑
j=1

Û
(j)
n,m,i = 1

k

k∑
i=1

1
d

d∑
j=1

i

k + 1 = 1
2 .

Hence, the desired quantity that we want to control can be simply rewritten as:

|ν̂n,m − νm| =

∣∣∣∣∣∣1k
k∑
i=1

 d∨
j=1

Û
(j)
n,m,i − E

d∨
j=1

U
(j)
m,i

∣∣∣∣∣∣ .
Introduce by Ũ (j)

n,m,i the scaled ranks using the factor k (instead of k+ 1 for Û (j)
n,m,i), j = 1, . . . , d,

i = 1, . . . , k. Direct computation gives

|ν̂n,m − νm| ≤ 1
k + 1 +

∣∣∣∣∣∣1k
k∑
i=1

 d∨
j=1

Ũ
(j)
n,m,i − E

d∨
j=1

U
(j)
m,i

∣∣∣∣∣∣ .
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The remaining term can be upper bounded by

E1 + E2 :=

∣∣∣∣∣∣1k
k∑
i=1

 d∨
j=1

Ũ
(j)
n,m,i −

d∨
j=1

U
(j)
m,i

∣∣∣∣∣∣+
∣∣∣∣∣∣1k

k∑
i=1

 d∨
j=1

U
(j)
m,i − E

d∨
j=1

U
(j)
m,i

∣∣∣∣∣∣ .
Furthermore, E1 is upper bounded by the following well-known quantity

E1 ≤ sup
j∈{1,...,d}

sup
i∈{1,...,k}

∣∣∣Ũ (j)
n,m,i − U

(j)
m,i

∣∣∣ ≤ sup
j∈{1,...,d}

sup
x∈R

∣∣∣F̂ (j)
n,m(x) − F (j)

m (x)
∣∣∣ .

Thus, applying union bound and Lemma D.7.3 to E1 and Lemma D.7.2 to E2 (taking n = k in
the statement of both lemmas), we deduce the result.

In the proof of Theorem 5.4.1, for the sake of simplicity in presentation, we make the blanket
assumption that ν̂n,m(i, j) ≤ 1/6 (since, by construction, ν̂n,m(i, j) ≥ 0), so that, using Lemma
B.1.1 in Chapter 3,

|χ̂n,m(i, j) − χm(i, j)| ≤ 9|ν̂n,m(i, j) − νm(i, j)|.

If the assumption does not hold, one can introduce the estimator χ̃n,m(i, j) = max(χ̂n,m(i, j), 0)
and ν̃n,m(i, j) = min(ν̂n,m(i, j), 1/6). Notice that these estimators are, by construction, projec-
tion estimators since:

χ̃n,m(i, j) = arg min
x∈[0,1]

|χ̂n,m(i, j) − x|, ν̃n,m(i, j) = arg min
x∈[0,1/6]

|ν̂n,m(i, j) − x|.

Consequently, we obtain the same bound given in Theorem 5.4.1 for |χ̃n,m(i, j) −χm(i, j)| using
the following arguments:

χ̃n,m(i, j) = max
(

2 − 0.5 + ν̂n,m(i, j)
0.5 − ν̂n,m(i, j) , 0

)
= max (f(ν̂n,m(i, j)), f(1/6)) = f(ν̃n,m(i, j)),

where

f : [0, 1/6] → [0, 1]

x 7→ 2 − 0.5 + x

0.5 − x
,

which is nonincreasing and 9-Lipschitz by Lemma B.1.1 in Chapter 3. By definition χm(i, j) =
max(χm(i, j), 0). We obtain

|χ̃n,m(i, j) − χm(i, j)| = |f(min(ν̂m(i, j), 1/6)) − f(min(νm(i, j), 1/6))|
≤ 9|ν̃n,m(i, j) − νm(i, j)|,

and using that

|ν̃n,m(i, j) − νm(i, j)| = | min(ν̂n,m(i, j), 1/6) − min(νm(i, j), 1/6)| ≤ |ν̂n,m(i, j) − νm(i, j)|,
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using either min(x, y) = x+y−|x−y|
2 or the projection onto a convex set is 1-Lipschitz to

obtain the last inequality. we manage to obtain the same bound for |χ̃n,m(i, j) − χm(i, j)| as
|χ̂n,m(i, j) − χm(i, j)| as stated.

Proof of Theorem 5.4.1 Taking Lemma D.4.1 with d = 2 and c2 = 1, we obtain

P
{

|ν̂n,m(i, j) − νm(i, j)| ≥ y + 1
k + 1

}
≤ 5 exp

{
− c1kz

2

1 + z ln k(ln ln k) + ln k
}
,

where z = y − k−1. Now taking

z = c1


√√√√ ln

(
k
δ

)
k

+
ln k ln ln(k) ln

(
k
δ

)
k

 , (D.2)

it implies that with probability at least 1 − δ

|ν̂n,m(i, j) − νm(i, j)| ≤ c1


√√√√ ln

(
k
δ

)
k

+
ln k ln ln(k) ln

(
k
δ

)
k

+ 1
k + 1 + 1

k
.

Using now Lemma B.1.1 in Chapter 3, stating that,

|χ̂n,m(i, j) − χm(i, j)| ≤ 9|ν̂n,m(i, j) − νm(i, j)|,

and we obtain that with probability at least 1 − d−c0 through a union bound

sup
1≤i<j≤d

|χ̂n,m(i, j) − χm(i, j)| ≤ c1

√ ln (kd)
k

+ ln k ln ln(k) ln (kd)
k

 ,
for a sufficiently large constant c1, thus the desired result.

D.5 Proof of Section 5.4

D.5.1 Proof of Section 5.4.1

Lemma D.5.1. Under Condition (SSC), for any i ∈ Ia with some a ∈ [K], the following
inequalities hold on the event

(A1) χ̂n,m(i, j) ≤ δ for all j ∈ Ib for some b ∈ [K] with b ̸= a;
(A2) 1 − χ̂n,m(i, j) ≤ δ for all j ∈ Ib;
(A3) 1 − χ̂n,m(i, k) > δ for all k /∈ Ia.

Proof For the entire proof, we work under the event E defined in (5.15). To prove (A1), we
observe that for any j ∈ Ib, with b ∈ [K] and b ̸= a, χ(i, j) = 0, whence

χ̂n,m(i, j) ≤ χ(i, j) + δ = δ.

So (A1) holds.
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To prove (A2), taking j ∈ Ia gives χ(i, j) = 1, then

1 − χ̂n,m(i, j) ≤ 1 − χ(i, j) + δ = δ,

and hence (A2) holds.

To obtain (A3), for k /∈ Ia, Condition (SSC1) implies

χ(i, j) = Aka < 1 − 2δ.

Next, we obtain
1 − χ̂n,m(i, j) ≥ 1 − δ − χ(i, j) = 1 − δ −Aka > δ.

Proof of Theorem 5.4.2 We work on the event E throughout the proof. Without loss of
generality, we assume that the label permutation π is the identity. Following Bing et al. (2020),
we start by point out that the three following claims are sufficient to prove (a)-(c). Let [K̂]
and Î(i) be respectively the set of integers in the maximum clique Ḡ of G given in Step 4 of
Algorithm (PureVar) and the set defined in Step 6 of Algorithm (PureVar).

(1) For any i ∈ J , we have Pure(i) = False;
(2) For any i ∈ Ia and a ∈ [K], we have Pure(i) = True, Ia = Î(i).

To prove (1), let i ∈ J be fixed. We first prove that Pure(i) = False under Î(i) ∩ I ≠ ∅. Under
this hypothesis, we have [K̂] ⊆ [K] and no variables i ∈ J belongs to [K̂] by Step 4 of Algorithm
(PureVar). Now, if i was taken at Step 6 of Algorithm (PureVar), then by Î(i) ∩ I ̸= ∅, there
exists b ∈ [K] and j ∈ Ib such that

1 − χ̂n,m(i, j) ≤ δ,

which is prevented from (A3) of Lemma D.5.1. This shows that for any i ∈ J , if Î(i) ∩ I ̸= ∅,
then Pure(i) = False.

Therefore to complete the proof of (1), we show Î(i) ∩ I ̸= ∅ is impossible when i ∈ J , under
our assumptions. By construction of the algorithm, we have to verify that no i ∈ J belongs
to i ∈ [K̂] in Step 4 of Algorithm (PureVar). We have, using (A1) of Lemma D.5.1, for every
k ∈ Ia and j ∈ Ib with a, b ∈ [K]

χ̂n,m(k, j) ≤ δ.

Hence [K] is a clique and [K] ⊆ [K̂]. Now suppose i ∈ [K̂] while i ∈ J , then we have

χ̂n,m(i, j) ≤ δ for any j ∈ [K̂], j ̸= i. (D.3)

Take k ∈ Ia∗ and j ∈ Ib∗ for a∗, b∗ ∈ [K] such that Aia∗ > 2δ and Aib∗ > 2δ where the existence
of such indices in [K] is guaranteed by Condition (SSC2). We hence obtain

χ(i, k) =
∑
a∈s(i)

Aia ∧Aka ≥ Aia∗ ∧Aka∗ = Aia∗
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where the last inequality follows from k ∈ Ia∗ . Hence,

χ(i, k) > Aia∗ > 2δ

where the last inequality stems down from Condition (SSC2). Then, under E ,

χ̂n,m(i, k) ≥ χ(i, k) − δ > δ.

The same arguments hold for j ∈ Ib∗ and hence

χ̂n,m(i, k) > δ and χ̂n,m(i, j) > δ,

which contradicts (D.3) and guarantees that Î(i) ∩ I = ∅ is impossible when i ∈ J . Indeed, the
maximum clique that we can obtain from Step 4 of Algorithm (PureVar) is [K̂] \ {i} by the
above inequality.

To prove (2), since Î(i) ∩ I ̸= ∅ with i ∈ Ia under E from the discussion of (1), then the
statement of (2) should only be verified at step 6 of the algorithm since only pure variables
are gathered at step 4 of the algorithm. Now, from step 6 of Algorithm (PureVar), we have to
show that

1 − χ̂n,m(i, j) ≤ δ,

for any j ∈ Î(i) and j ∈ Ia. Since i ∈ Ia, (A2) in Lemma D.5.1 states that the above inequality
stands. Thus we have shown that for any i ∈ Ia, Pure(i) = True. We conclude the proof.

D.5.2 Proof of Section 5.4.2

Proof of Theorem 5.4.3

Proof of (a) The proof of Theorem 5.4.3, item (a) implies two steps:

(S1) We write Ā = AP , and prove the first error bound for ÂÎ − ĀÎ .;
(S2) We prove the error bounds ÂĴ − ĀĴ .

For ease of the notation and without loss of generality, we make the blanket assumption that
the permutation matrix P is the identity so that Ā = A for the remainder of the proof. Let
s(j) = ||Aj·||0 for j = 1, . . . , d. For the first step (S1), from the construction of ÂÎ and parts
(a)-(c) in Theorem 5.4.2, we have for any i ∈ Îa and the definition of I implies Aia = 1. Then

||ÂÎ −AÎ ||∞ = max
j∈Î

||Âj· −Aj·||∞ = 0

Then for any j ∈ Î, we have
||Âj· −Aj·||2 = 0.

For the second step of the proof (S2), we will make use of the results of the Lemma stated here
first and proved at the end of this section.

Lemma D.5.2. Under the conditions of Theorem 5.4.3, on the event E, we have β(j)
a = 0

implies β̄(j)
a = 0, for any j ∈ Ĵ and a ∈ [K̂].
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Let us head into the proof of (S2). For each j ∈ Ĵ , we have by the very nature of our estimator:

||Âj· −Aj·||2 = ||β̂(j) − β(j)||2 ≤ ||β̄(j) − β(j)||2 + ||β̂(j) − β̄(j)||2.

Because this is a projection

|| β̂(j)
∣∣∣
Ŝ

− β̄(j)
∣∣∣
Ŝ

||2 ≤ || β(j)
∣∣∣
Ŝ

− β̄(j)
∣∣∣
Ŝ

||2,

hence
||β̂(j) − β̄(j)||2 ≤ ||β(j) − β̄(j)||2.

Then
||Âj· −Aj·||2 = ||β̂(j) − β(j)||2 ≤ 2||β̄(j) − β(j)||2.

Furthermore, we can show that
||β̄(j) − β(j)||∞ ≤ 2δ,

indeed, for any a ∈ {1, . . . ,K} with χ̄
(j)
a > δ we have

|β̄(j)
a − β(j)

a | =

∣∣∣∣∣∣ 1
|Îa|

∑
i∈Îa

χ̂n,m(i, j) −Aja

∣∣∣∣∣∣ ≤ 1
|Îa|

∑
i∈Îa

|χ̂n,m(i, j) −Aja| .

By Theorem 5.4.2, Î = I, then if i ∈ Ia, then Aja = χ(i, j) and as we are on the event E , we
obtain that

|χ̂n,m(i, j) − χ(i, j)| ≤ δ.

Thus,
|β̄(j)
a − β(j)

a | ≤ 2δ,

whenever a ∈ {1, . . . ,K} with χ̄(j)
a > δ. Now take a ∈ {1, . . . ,K} such that χ̄(j)

a ≤ δ, we obtain

|β̄(j)
a − β(j)

a | = Aja.

If i ∈ Ia, then χ(i, j) = Aja and under the event E , we obtain

Aja ≤ χ̂n,m(i, j) + δ.

Then for any i ∈ Ia

Aja ≤ 1
|Îa|

∑
i∈Îa

χ̂n,m(i, j) + δ = χ̄(j)
a + δ ≤ 2δ.

Hence, we have, as stated
||β̄(j) − β(j)||∞ ≤ 2δ.

Then following Lemma D.5.2 and using K̂ = K on the event E gives

||β̄(j) − β(j)||2 =
(

K∑
a=1

|β̄(j)
a − β(j)

a |2
)1/2

=

 ∑
a∈s(j)

|β̄(j)
a − β(j)

a |2
1/2

≤ 2
√
s(j)δ.

This completes the proof of the last step and of Theorem 5.4.3 (a).
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Proof of (b). In the initial stage of the proof, let us demonstrate that, under the event E

supp(β̂(j)) = supp(β̄(j)), ∀j ∈ {1, . . . , d}. (D.4)

Through our initial construction, we immediately obtain that β̂(j)
a = 0 whenever β̄(j)

a = 0 for
any a ∈ [K̂]. Now, let us consider any a ∈ [K̂] with β̄(j)

a > 0, a condition equivalent to β̄(j)
a > δ.

Our task is to establish that β̄(j)
a > τ where

τ := 1
ρ

( ρ∑
a=1

β̄(j)
a − 1

)
and ρ = max

{
p ∈ supp(β̄(j)) : β̄(j)

p >
1
p

( p∑
a=1

β̄(j)
a − 1

)}
.

Let us show that p = supp(β̄(j)). Indeed for any a ∈ supp(β̄(j))

β̄(j)
a = 1

|Îa|

∑
i∈Îa

χ̂n,m(i, j).

If i ∈ Ia, then χ(i, j) = Aja and we obtain the following inequality under the event E

χ̂n,m(i, j) ≤ Aja + δ.

We obtain simultaneously

χ̂n,m(i, j) ≤ Aja + δ, ∀i ∈ Îa, β̄(j)
a ≤ Aja + δ, a ∈ supp(β̄(j)).

Summing across all instances of a ∈ supp(β̄(j)) and employing Condition (i),
p∑
a=1

β̄(j)
a ≤ 1 + pδ,

this leads us to achieve
1
p

( p∑
a=1

β̄(j)
a − 1

)
≤ δ.

Building upon our initial assumption, we can express

β̄(j)
a > δ ≥ 1

p

( p∑
a=1

β̄(j)
a − 1

)
.

From this, we can infer ρ = supp(β̄(j)) but also β̄(j)
a > τ , hence β̂(j)

a > 0. We obtain the result
of the initial stage stated in (D.4).

Let us remember that Lemma D.5.2 suggests supp(β̄(j)) ⊆ supp(β(j)), and by the initial stage
of the proof (see Equation (D.4)), we infer supp(β̂(j)) ⊆ supp(β(j)) for any j ∈ Ĵ . Hence
supp(ÂĴ) ⊆ supp(AĴ). Furthermore Theorem 5.4.2 provides the result that Îa = Ia for all
a ∈ [K̂]. From the way we construct ÂÎ , we have supp(ÂÎ) ⊆ supp(AÎ). Therefore, we have
proved supp(Â) ⊆ supp(A).

On the contrary, considering any j ∈ J1, we have the knowledge that β(j)
a > 2δ for every

a ∈ supp(β(j)). Exploiting this insight and the additional observation that |χ̄(j)
a − β

(j)
a | ≤ δ, we
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deduce
|χ̄(j)
a | ≥ |β(j)

a | − |χ̄(j)
a − β(j)

a | > δ,

which implies β̄(j)
a > 0, hence supp(β(j)) ⊆ supp(β̄(j)) with j ∈ J1. Using the initial stage of

the proof, we have supp(AJ1) ⊆ supp(ÂJ1).

Proof of (c). The proof is in the same line of (Bing et al., 2020, Theorem 7), we recall it for
consistency. We first show that TFPP (Ĝ) = 0. From the result of part (b), we know that
supp(Â) ⊆ supp(A). Thus, ∑

j∈[d],a∈[K]
1{Aja=0,Âja>0},

which implies TFPP (Ĝ) = 0. In order to prove the result of TFNP (Ĝ), observe∑
j∈[d],a∈[K]

1{Aja>0} = |I| +
∑
j∈J

s(j),

with s(j) = ||Aj·||0 for each j ∈ J . For a given I, we partition [d] = I ∪ J1 ∪ (J \ J1). Theorem
5.4.2 implies that Î = I and from the way we construct ÂÎ , we have∑

j∈I
1{Âja>0,Aja=0} = 0.

Next, we consider the set J1. Part (b) gives supp(AJ1) = supp(ÂJ1) which yields∑
j∈J1,a∈[K]

1{Âja>0,Aja=0} = 0.

Finally, we consider the set J \ J1. By examining the proof of part (b), we have necessarily
Âja > 0 if Aja > 2δ for any j ∈ J1, and a ∈ [K]. Thus,∑

j∈J\J1,a∈[K]
1{Aja>0,Âja=0} ≤

∑
j∈J\J1

t(j).

We hence obtain by combining the above inequalities

TFNP (Ĝ) = (Ĝ) =
∑
j∈[d],a∈[K] 1{Aja>0,Âja=0}∑

j∈[d],a∈[K] 1{Aja>0}
≤

∑
j∈J\J1 t(j)

|I| +∑
j∈J s(j)

≤
∑
j∈J1 t(j)

|I| +∑
j∈J s(j)

.

To conclude this section, we give below the proof of the intermediary result used in the proof.

Proof of Lemma D.5.2 Suppose that β(j)
a = 0, which implies, by definition, Aja = 0. Now

take i ∈ Ia, we thus have under E

χ̂n,m(i, j) ≤ χ(i, j) + δ = Aja + δ ≤ 2δ.
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We thus obtain, under the event E and β
(j)
a = 0, that

χ̄(j)
a = 1

|Îa|

∑
i∈Îa

χ̂n,m(i, j) ≤ 2δ

and we obtain
β̄(j)
a = 0.

D.6 Proofs of Section 5.5

Denote in this section by M
(a)
n the maximum of Z(a)

i , 1 ≤ i ≤ n and 1 ≤ a ≤ K. Also, for
convenience, we call a function u on R a normalizing function if u is non-decreasing, right
continuous, and u(x) → ±∞, as x → ±∞.

Proposition D.6.1. Suppose (Zt, t ∈ Z) is a moving maxima process of order p as described
in (5.21) where margins of ϵ1 are standard Pareto with an Archimedean copula function with
upper tail equal to 1, see (5.22), then there exist sequences u(a)

n , 1 ≤ a ≤ K, such that

P
{
M (a)
n ≤ u(a)

n (x(a)), 1 ≤ a ≤ K
}

→ ΠK
a=1e

− 1
x(a) , x ∈ (0,∞)K .

Proof This result is a direct application of (Hsing, 1989, Theorem 5.2) where most prominent
arguments are taking from Examples in (Hsing, 1989, Section 6). For definitions of conditions
D(un(x(1)), . . . , un(x(K))) and D

′′(un(x(1)), . . . , un(x(K))), we also refer to Hsing (1989). For
u

(a)
n (x) = nx(1−ρp+1)

1−ρ , n ≥ 1, x ∈ R, we obtain

P
{
M (a)
n ≤ u(a)

n (x)
}

=
(
Πp
ℓ=0P

{
ϵ
(a)
1 ≤ ρ−ℓun(x)

})n
=
(

Πp
ℓ=0

(
1 − ρℓ(1 − ρ)

nx(1 − ρp+1)

))n
.

Noticing that

Πp
ℓ=0

(
1 − ρℓ(1 − ρ)

nx(1 − ρp+1)

)
= exp

{ p∑
ℓ=0

ln
(

1 − ρℓ(1 − ρ)
nx(1 − ρp+1)

)}
,

and using exp{x} = 1 + x+O(x2) and ln(1 − x) = −x+O(x2) as x → 0, we obtain that

Πp
ℓ=0

(
1 − ρℓ(1 − ρ)

nx(1 − ρp+1)

)
= 1 − 1

nx
+O

( 1
n2

)
,

hence
P
{
M (a)
n ≤ u(a)

n (x)
}

−→
n→∞

e−
1
x1{x≥0}.

Furthermore, since σ(Zt, t ≤ 0) and σ(Zt, t ≥ p+ 1) are two independent σ-fields, the condition
D(un(x(1)), . . . , un(x(K))) holds immediately for (Zt, t ∈ Z) for each x ∈ Rd. Thus, it suffices to
show that the condition D

′′(un(x(1)), . . . , un(x(K))) holds for each x ∈ (0,∞)K . For any fixed
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x ∈ (0,∞)K , one obtains simply the estimate

1 − Πi−1
ℓ=0P

{
ϵ1,1 ≤ ρ−ℓun(x(1))

}
= 1 − ρi

1 − ρp+1nx1
+O

( 1
n2

)
,

1 − Πp
ℓ=p−i+1P

{
ϵ1,2 ≤ ρ−ℓun(x(2))

}
= ρp−i+1(1 − ρi)

1 − ρp+1nx2
+O

( 1
n2

)
.

Now, by (5.22), one can obtain the following estimate:

1−Πp
ℓ=p−i+1P

{
ϵ1,1 ≤ ρ−ℓ−iun(x(1)), ϵ1,2 ≤ ρ−ℓun(x(2))

}
= ρi(1 − ρp−i+1)

(1 − ρp+1)nx1
+ (1 − ρp−i+1)

(1 − ρp+1)nx2
+O

( 1
n2

)
,

(D.5)
for all n. Indeed

1 − P
{
ϵ1,1 ≤ ρ−ℓ−iun(x(1)), ϵ1,2 ≤ ρ−ℓun(x(2))

}
=

1 − φ←
(
φ

(
1 − ρℓ+i(1 − ρ)

(1 − ρp+1)nx1

)
+ φ

(
1 − ρℓ(1 − ρ)

(1 − ρp+1)nx2

))
=

n

n
×

1 − φ←

φ(1 − 1
n

)


φ
(
1 − ρℓ+i(1−ρ)

(1−ρp+1)nx1

)
φ(1 − 1

n)
+
φ
(
1 − ρℓ(1−ρ)

(1−ρp+1)nx2

)
φ(1 − 1

n)



 .

The function x 7→ 1/φ(1 − 1/x) is regularly varying at infinity with index 1. Therefore, its
inverse function, the function t 7→ 1/(1 − φ←(1/t)) is regularly varying at infinity with index 1
((Bingham et al., 1989, Theorem 1.5.12)), and thus the function 1 − φ← is regularly varying at
zero with index 1. We also have

φ
(
1 − ρℓ+i(1−ρ)

(1−ρp+1)nx1

)
φ(1 − 1

n)
−→
n→∞

ρℓ+i(1 − ρ)
x1

,
φ
(
1 − ρℓ(1−ρ)

(1−ρp+1)nx2

)
φ(1 − 1

n)
−→
n→∞

ρℓ(1 − ρ)
x2

.

By the uniform convergence theorem ((Bingham et al., 1989, Theorem 1.5.2)), the below term

n×

1 − φ←

φ(1 − 1
n

)


φ
(
1 − ρℓ+i(1−ρ)

(1−ρp+1)nx1

)
φ(1 − 1

n)
+
φ
(
1 − ρℓ(1−ρ)

(1−ρp+1)nx2

)
φ(1 − 1

n)





converges to
ρℓ+i(1 − ρ)

x1
+ ρℓ(1 − ρ)

x2
.

And then, after elementary estimation, we obtain (D.5). Hence for 1 ≤ i ≤ p, we have

P
{
Z

(1)
1 > un(x(1)), Z(2)

i > un(x2))
}

=

1 − P
{
Z

(1)
1 ≤ un(x(1))

}
− P

{
Z

(2)
1 ≤ un(x(2))

}
+ P

{
Z

(1)
1 ≤ un(x(1)), Z(2)

i ≤ un(x(2))
}

=

1 − Πp
ℓ=0P

{
ϵ
(1)
1 ≤ ρ−ℓun(x(1))

}
− Πp

ℓ=0P
{
ϵ
(2)
1 ≤ ρ−ℓun(x(2))

}
+ Πi−1

ℓ=0P
{
ϵ
(1)
1 ≤ ρ−ℓun(x(1))

}
×

Πp−i
ℓ=0P

{
ϵ
(1)
1 ≤ ρ−ℓ−iun(x(1)), ϵ(2)

1 ≤ ρ−ℓun(x(2))
}

Πp
ℓ=p−i+1P

{
ϵ
(2)
1 ≤ ρ−ℓun(x(2))

}
= O

( 1
n2

)
.
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Since for i > p, we trivially obtain that

P
{
Z

(1)
1 > un(x(1)), Z(2)

i > un(x(2))
}

= O

( 1
n2

)
,

and noticing that ϵ(1)
i and ϵ(2)

i are playing symmetric role to ϵ(j)i and ϵ(k)
i for 1 ≤ j < k ≤ K, one

concludes from this that the condition D
′′(un(x(1)), . . . , un(x(K))) holds for each x ∈ (0,∞)K .

Hence, applying (Hsing, 1989, Theorem 5.2), we obtain the result.

We give below technical details on the heuristics dm = O(1/m) made in Section 5.5. Let us
consider the model in (5.1) without noise, i.e., X = AZ. For θ > 0, the Clayton copula is
defined as

Cθ(u, v) =
[
1 + {(u−θ − 1) + (v−θ − 1)}

]−1/θ
, (u, v) ∈ [0, 1]2.

The copula of the pair of componentwise maxima of an i.i.d. sample of size m from continuous
distribution with copula Cθ is equal to

{Cθ(u1/m, v1/m)}m = Cθ/m(u, v).

For establishing the heuristic, consider a, b ∈ [K] with a ̸= b and i ∈ Ia, j ∈ Ib. Let C(i,j)
m

denote the copula between the pair M (i)
m and M

(j)
m . Remember that these maxima are drawn

from Pareto distributions, appropriately scaled in the independent setting by m. Denote C(i,j)
∞

the extreme value copula between two independent standard Fréchet. The pre-asymptotic
madogram is hence defined by

νm(i, j) = 1
2 −

∫ 1

0
C(i,j)
m (u, u)du = 1

2 −
∫ 1

0
C

(i,j)
θ

(
u1/m, u1/m

)m
du

= 1
2 −

∫ 1

0
C

(i,j)
θ/m(u, u)du.

Using the same computations, we obtain for the madogram

ν(i, j) = 1
2 −

∫ 1

0
C(i,j)
∞ (v, v)dv.

Since Cθ is positive lower orthant dependent for any θ > 0, it follows that Cθ/m is positive
lower orthant dependent for any m ≥ 1 and θ > 0. We hence obtain that νm(i, j) ∈ [0, 1/6] and
using that the function f(x) = (0.5 + x)/(0.5 − x) is Lipschitz for x ∈ [0, 1/6], we obtain

|χm(i, j) − χ(i, j)| =
∣∣∣∣0.5 + νm(i, j)
0.5 − νm(i, j) − 0.5 + ν(i, j)

0.5 − ν(i, j)

∣∣∣∣ ≤ 9|νm(i, j) − ν(i, j)|.

Now

|νm(i, j) − ν(i, j)| =
∣∣∣∣ ∫ 1

0
C

(i,j)
θ/m (u, u) du−

∫ 1

0
C(i,j)
∞ (u, u)du

∣∣∣∣.
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Now, applying (Bücher and Segers, 2014, Proposition 4.3), we obtain∫ 1

0

∣∣∣C(i,j)
θ/m(u, u) − C(i,j)

∞ (u, u)
∣∣∣ dv ≤ sup

u,v∈[0,1]2

∣∣∣C(i,j)
θ/m(u, v) − C(i,j)

∞ (u, v)
∣∣∣ = O

( 1
m

)
.

D.7 Supplementary Lemmata

Lemma D.7.1. Let X = X1 + X2 where both X1 and X2 are regularly varying with respective
exponent measures ΛX1, ΛX2 and the following tail balance condition holds:

lim
x→∞

P {||X2|| > x}
P {||X1|| > x}

= 0. (D.6)

Then X is regularly varying with exponent measure ΛX given by

ΛX = ΛX1 .

Under Condition (D.6) one may expect that the tail behavior of X is mainly influenced by that
of X1.

Proof Without loss of generality, we suppose that X1 is regularly varying with tail index α
equal to unity. We must prove that the sequence of measure {Λx} defined by

Λx(·) = P
{
x−1(X1,X2) ∈ ·

}
/P {||X1|| > x} ,

is the only possible limit along a subsequence by applying (Kulik and Soulier, 2020, Lemma
B.1.29) and that the measure Λ(X1,X2) defined by Λ(X1,X2) = ΛX1 ⊗ δ0 is the only possible
limit along a subsequence by applying (Kulik and Soulier, 2020, Lemma B.1.31). Let f be a
bounded uniformly continuous function with support in A1 × Rd with A1 separated from zero.
Fix ϵ > 0. Then there exists ||x2|| ≤ η which implies ||f(x1,x2) − f(x1, 0)|| ≤ ϵ. By Condition
(D.6) and since A1 is separated from zero, we have

lim
x→∞

Λx(f) = lim
x→∞

E
[
f(x−1(X1,X2))1{||X2||>ηx}

]
/P {||X1|| > x}

= lim
x→∞

E
[
f(x−1(X1,X2))1{||X2||>ηx}

]
P {||X2|| > x}

lim
x→∞

P {||X2|| > x}
P {||X1|| > x}

= 0.

For every η > 0, since ||X1|| and ||X2|| are both regularly varying conserving the same tail
index, the assumption implies

lim
x→∞

P {||X2|| > ηx}
P {||X1|| > x}

= lim
x→∞

P {||X2|| > ηx}
P {||X1|| > ηx}

lim
x→∞

P {||X1|| > ηx}
P {||X1|| > x}

= 0 × η−1 = 0.
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Then,

lim sup
x→∞

E
[
||f(x−1(X1,X2) − f(x−1(X1, 0)||

]
/P {||X1|| > x}

≤ lim sup
x→∞

E
[
||f(x−1(X1,X2)) − f(x−1(X1, 0))||1{||X2||≤ηx}

]
/P {||X1|| > x}

+ lim sup
x→∞

E
[
||f(x−1(X1,X2)) − f(x−1(X1, 0))||1{||X2||>ηx}

]
/P {||X1|| > x} ≤ ϵ.

Since ϵ is arbitrary and δ0 ⊗ ΛX2(f) = 0, this proves that

lim
x→∞

Λ(X1,X2)(f) = lim
x→∞

E
[
f(x−1(X1, 0))

]
/P {||X1|| > x}

= ΛX1 ⊗ δ0(f) = Λ(X1,X2)(f).

If now f(x2,x2) = g(x2) with g a continuous function with support separated from zero, then
ΛX1 ⊗ δ0 = 0 and

lim
x→∞

Λx(f) = lim
x→∞

E
[
f(x−1(X2,X2))

]
/P {||X1|| > x} = lim

x→∞
E
[
g(x−1X2)

]
/P {||X1|| > x}

= lim
x→∞

P {||X2|| > x}
P {||X1|| > x}

lim
x→∞

E
[
g(x−1X2)

]
P {||X2|| > x}

= 0 × ΛX2(f) = Λ(X1,X2)(f).

This proves that ΛX = ΛX1 ⊗ δ0 is the only possible limit for the sequence {Λx} along
any subsequence. We must now prove that {Λ}x is relatively compact. Define Un =
{(x1,x2) : ||x1|| + ||x2|| > en}. The sets Un, n ∈ Z satisfy the assumptions of (Kulik and
Soulier, 2020, Lemma B.1.29). This proves that the sequence {Λx} is relatively compact and
we conclude that Λx v#

→ Λ(X1,X2). We directly obtain that for any A ∈ B(Rd) separated from 0

ΛX1+X2(A) = ΛX1(A),

hence the result.

We recall the following Bernstein inequality from Merlevède et al. (2009) and Lemma S.2 in
Cordoni and Sancetta (2023) where we recall the proof of the second for consistency purposes.

Lemma D.7.2. Let (Yt)t≥1, be a sequence of mean zero, stationary random variables whose
absolute values is uniformly bounded by ȳ < ∞, and with exponential decaying strong mixing
coefficients. Then for n ≥ 4 and z ≥ 0, there is a constant c1 > 0, depending only on the mixing
coefficient and such that

P
{∣∣∣∣∣ 1n

n∑
i=1

Yi

∣∣∣∣∣ ≥ z

}
≤ exp

{
− c1nz

2

ȳ2 + zȳ lnn(ln lnn)

}

Lemma D.7.3. Under the assumptions of Lemma D.7.2, choose a c2 ∈ (0,∞), and let
z := y − n−c2 for any y ≥ n−c2. Then there is a constant c1 ≥ 0 such that

P
{

sup
x∈R

∣∣∣F̂n(x) − F (x)
∣∣∣ ≥ y

}
≤ 2 exp

{
− c1nz

2

1 + z lnn(ln lnn) + c2 ln(n)
}
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Proof Using standard techniques, we replace the supremum by the maximum over a finite
number of elements. We then apply Lemma D.7.2.

To do so, for fixed but arbitrary ϵ > 0, we construct intervals [xLℓ , xUℓ ] with ℓ = 1, 2, . . . , N(ϵ),
such that |F (x) − F (z)| ≤ ϵ for x, z ∈ [xLℓ , xUℓ ]. Fix an arbitrary ϵ > 0 and divide interval
[0, 1] into N(ϵ) ≥ ϵ−1, some positive integer to be chosen later, intervals [tℓ−1, tℓ[ where
0 = t0 < t1 < · · · < tN(ϵ) = 1 such that tℓ − tℓ−1 ≤ ϵ. Now, take N(ϵ) the smallest integer
greater than or equal to ϵ−1. Define variables −∞ ≤ xL1 ≤ xL2 ≤ · · · ≤ xLN(ϵ) = ∞ as
xLℓ := inf {x ∈ R, F (x) ≥ tℓ−1}. Similarly define variables −∞ ≤ xU1 ≤ xU2 ≤ · · · ≤ xUN(ϵ)

= ∞
as xUℓ := sup {x ∈ R : F (x) ≤ tℓ}. This construction has the aforementioned properties. Note
that we can have [xLℓ , xUℓ ] equal to a singleton, i.e., xLℓ = xUℓ if there are discontinuities in F
and such that discontinuities are larger than ϵ.

From the fact that F (x) and F̂n(x) are monotonically increasing, we have that F (xLℓ ) ≤ F (x) ≤
F (xUℓ ) and F̂n(xLℓ ) ≤ F̂n(x) ≤ F̂n(xUℓ ) for x ∈ [xLℓ , xUℓ ]. Also recall that EF̂n(x) = F (x). In
consequence

F̂n(x) − F (x) ≤ F̂n(xUℓ ) − F (xLℓ ) ≤ F̂n(xUℓ ) − F (xUℓ ) + ϵ,

F̂n(x) − F (x) ≥ F̂n(xLℓ ) − F (xUℓ ) ≥ F̂n(xLℓ ) − F (xLℓ ) − ϵ.

using monotonicity and the fact |F (xUℓ ) − F (xLℓ )| ≤ ϵ by construction. And thus for any x

F̂n(xLℓ ) − F (xLℓ ) − ϵ ≤ F̂n(x) − F (x) ≤ Fn(xUℓ ) − F (xUℓ ) + ϵ.

Hence, for any x

|F̂n(x) − F (x)| ≤ max
ℓ∈{1,...,N(ϵ)−1}

max
{

|F̂n(xUℓ ) − F (xUℓ )|, |F̂n(xLℓ ) − F (xLℓ )|
}

+ ϵ

Since it holds for any x, we obtain

sup
x∈[0,1]

|F̂n(x) − F (x)| ≤ max
ℓ∈{1,...,N(ϵ)−1}

max
{

|F̂n(xUℓ ) − F (xUℓ )|, |F̂n(xLℓ ) − F (xLℓ )|
}

+ ϵ.

Set ϵ = n−c2 . Using union bound and apply Lemma D.7.2 twice with Yi = (1 − E)1{Xi≤x} for
arbitrary, but fixed x, and z = y − ϵ = y − n−c2 .
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Chapter 6

Conclusion and perspectives

Dependent measurements exhibiting extremes in a high-dimensional setting are prevalent in
various statistical and machine learning applications. Despite their common occurrence, many
extremal multivariate analysis methods overlook this type of data and adhere to the i.i.d. and
“n goes to infinity, d fixed” framework. This thesis has focused on developing, studying, and
practically applied methods for variable clustering of a strictly stationary multivariate mixing
process in high dimensions.

We have primarily introduced two novel methods for variable clustering. The first method
is a hard clustering algorithm (referred to as Algorithm (ECO)) for a specific model-based
clustering where a partition of the set {1, . . . , d} is desired, and clusters are defined as groups
of variables that are mutually independent with respect to their extremes. The second method
is a soft clustering approach (referred to as Algorithm (SCRAM)) designed to estimate the
entries of linear factor models, a classical model used to study dependence in large dimensions.
An added specificity here is that latent factors could exhibit extreme behavior and clusters, i.e.,
groups that are attached to a same latent factor are permitted to overlap.

Theoretical guarantees for these two algorithms were provided, assuming fixed values of d and
n, and considering various mixing conditions. Additionally, all proposed methods rely solely
on bivariate measures, specifically the extremal correlation (see Definition 1.1.5 in Chapter
1). This reliance on bivariate measures is the primary reason why our procedure has a finite
sample bound dependent on the logarithm of the dimension d.

All proposed methods have been implemented and demonstrated in practice, showing promising
results in climate sciences. Furthermore, I believe that these methods could be valuable in other
fields as well. I encourage readers to explore potential applications beyond climate sciences and
finance.

To conclude, I would like to share a non-mathematical perspective on the challenges faced by
statistical sciences. In essence, there seems to be a trilemma, where it is difficult for a statistical
method to simultaneously possess all three of the following qualities:

• Flexibility;
• Statistical efficiency in high dimensions;
• Interpretability.

Flexibility refers to a method’s capacity to adapt and accurately represent our observations.
Methods that can precisely fit our data are considered flexible, while those that struggle to
do so are seen as not flexible. A method is deemed statistically efficient in high dimensions if
it can maintain meaningful outcomes even when the number of features (dimensions) exceeds
the number of observations. Interpretability, on the other hand, relates to the extent to which
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Density Estimator

Nonparametric Regression

Sparse-Coordinate Regression

Linear Factor Models

Neural Network
Random ForestsFlexibility High Dimension

Interpretability

Fig. 6.1 The concept of the impossible trilemma in statistical sciences can be illustrated using
a diagram with labeled edges representing different statistical methods. We have methods that
prioritise flexibility and interpretability (shown in blue). Methods that excel in high-dimensional
settings and are flexible (depicted in green) sacrifice interpretability. Methods that prioritise
interpretability and efficiency in high dimensions (shown in green) lack the flexibility to adapt
to complex data patterns.

a human can understand and consistently predict the model’s outputs. Figure 6.1 depicts
this trade-off. On one side, we some examples of have methods that prioritise flexibility and
interpretability (shown in blue). However, these methods are unable to achieve efficiency in
high dimensions. Conversely, methods that excel in high-dimensional settings and are flexible
(depicted in green) sacrifice interpretability. Finally, methods that prioritise interpretability
and efficiency in high dimensions (shown in red) lack the flexibility to adapt to complex data
patterns. Regarding the two methods proposed in this PhD thesis, they belong to the red
side of the trilemma diagram. Both AI-block in Chapter 3 models and linear factor models in
Chapter 5 are interpretable and scalable in high dimensions. However, they lack flexibility in
adapting to very complex data patterns.

Now, we present some perspectives currently under study. In Section 6.1, we derive a result
similar to Theorem 1.1.13 in Chapter 1 for the strong consistency of the K-means using
madogram. This result has been stated at the early stages of my PhD, prompted by the
recognition of this method’s prominence in applied sciences (see the references thereafter).
However, when it comes to variable clustering, I find that this method will always have limitations.
Theoretically speaking, as mentioned in Section 1.1.5 in Chapter 1, the statistical study of
K-means is somehow linked to the problem of clustering a mixture of isotropic Gaussians, which
has led to extensive literature in both statistics and machine learning. While this framework is
beyond the scope of variable clustering (as it mainly concerns data clustering) and extreme
value theory (since it involves Gaussians), several authors have considered K-means using the
angular measure Φ and demonstrated its connection with linear factor models. However, I
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strongly doubt its efficiency in a high-dimensional setting based on our knowledge about its
concentration (see Clémençon et al. (2023)). Given the significance of this result, a brief note
will be written to share this finding without extensive elaboration. The spirit of Section 6.2
and Section 6.3 is more connected to the manuscript. The Section 6.2 is mainly driven by the
thirst to obtain a minimax risk for an estimator inside a class of multivariate models suited for
extremes. An attempt was made to tackle the class of Linear Factor models in Chapter 5, yet
certain obstacles persist, rendering it an ongoing endeavor. Nonetheless, a successful endeavor
has been achieved for a different yet somewhat related area: the linear regression model with
regularly varying design. A surprising result emerges as we obtain that the optimal rate is
n−1, mirroring that attained for classical linear regression with uniform noise, as seen in, for
instance, Yi and Neykov (2024). This stands in stark contrast to the considerably slower n−1/2

rate for Ordinary Least Squares (OLS), which is optimal for Gaussian noise. The idea driven
by Section 6.3 marks a paradigm shift within this manuscript. Throughout this manuscript, we
have always assumed a strictly stationary process, which is, in practice, inaccurate. The idea
presented in Section 6.3 is to develop a test to detect changepoints in the extremal dependence
structure of a random vector when its angular measure is discrete, in the spirit of Chapter 5.

6.1 Strong Consistency of madogram-based K-means under
mixing conditions

The K-means procedure is a way to identify distinct groups within a population. This procedure
involves partitioning a set of data into G groups (to be consistent with our notation). To
do this, we first choose cluster centers ψ1, . . . , ψG for the points Z1, . . . ,Zn ∈ Rd in order to
minimise

Wn := 1
n

n∑
i=1

min
g∈{1,...,G}

D(Zi, ψg),

where D : Rd × Rd → [0,∞) is a distance function or, more generally, a dissimilarity function
in Rd. The motivation is to identify cluster centers such that distances of the observations to
their nearest cluster center are minimised. Accordingly, all observations which are closest to
the same cluster center are viewed as belonging to the same group.

While the original version of K-means uses the Euclidean distance, several alternatives choices
of distances have been suggested. As the extremal dependence structure can be described with
the angular measure Φ (see Resnick (2008), section 5 for details), a natural way to measure
the distance between two points is by their angle. This corresponds to the spherical K-means
clustering which is described as follow: for a given integer G, solve the following optimization
problem

1
n

n∑
i=1

min
g∈{1,...,G}

D(Yi, ψg),

with Yi, i.i.d. observations from Y, a random variable living on the unit sphere with law Φ.
Consistency results with i.i.d. observations and for sufficiently many large observations had
been proved for this algorithm in Janßen and Wan (2020). The consistency result gives that
the centroids obtained by minimising the program above are close to the true centroids of the
angular distribution.
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In the framework of Bador et al. (2015); Bernard et al. (2013); Saunders et al. (2021), the
madogram is considered as a dissimilarity measure. This criterion can be read in the present
context of block maxima method as

Wn = 1
k

k∑
i=1

min
g∈{1,...,G}

1
2
∣∣∣Ûn,m,i − ψg

∣∣∣ =
∫

[0,1]d
min

g∈{1,...,G}

1
2 |u − ψg| dĈn,m(u),

where Ĉn,m is the empirical copula of the pseudo-observations (Û (1)
n,m,i, . . . , Û

(d)
n,m,i) of the uniform

margins of the componentwise maxima (M (1)
m,1, . . . ,M

(d)
m,1) defined as

Ĉn,m(u) = 1
k

k∑
i=1

1{Ûn,m,i≤u}, u ∈ [0, 1]d. (6.1)

For a copula Cm of (M (1)
m,1, . . . ,M

(d)
m,1) in the max-domain of attraction of an extreme value

copula C∞, let Ψ = {ψ1, . . . , ψG}, be a set of cluster centers with ψg ∈ Rd, g ∈ {1, . . . , G} and
consider the averaged distance from any observation to the closest element of Ψ as

W (Ψ, C) =
∫

[0,1]d
min
ψ∈Ψ

1
2 |u − ψ|dC∞(u).

To the best of our knowledge, consistency results for K-means procedure using the madogram
have not yet been established. The following proposition tries to bridge this gap.

Proposition 6.1.1. Let (Zt, t ∈ Z) be a stationary multivariate random process with continuous
univariate margins such that Cm(u) → C∞(u) for u ∈ [0, 1]d and Condition C in Chapter 3
hold. For each Ĉn,m in (6.1) and a given value G ∈ N, denote by Ψn

G a random set which
minimises

W (Ψ, Ĉn,m) =
∫

[0,1]d
min
ψ∈Ψ

1
2 |u − ψ|dĈn,m(u),

among all sets Ψ ⊂ [0, 1]d with at most G elements. Accordingly, let us define ΨG the optimal
set when we replace Ĉn,m by C∞ and assume that for a given value of G, the set ΨG is uniquely
determined. Thus Ψn

G converges almost surely to ΨG as n → ∞.

From Proposition 6.1.1, the madogram seems to be a relevant dissimilarity to estimate the set
of theoretical cluster centers with respect to the extreme value copula of X.

6.2 Estimating Sparse Linear Regression with Randomly Vary-
ing Design

Consider a vector of positive coefficients denoted as A, represented as A = (A(1), . . . , A(d)).
The relationship between the observed random variables Y and Z(j) is implicitly established
through the linear representation

Y = A⊤Z + ξ, A ∈ Rd+, (6.2)
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where Z is a regularly varying random vector with tail index α and ξ ∈ Rn is a random vector
with lighter tail index, independent of Z.

Extreme-value theory has gained considerable traction in the field of research. However, there
remains a scarcity of statistical methodologies capable of deciphering the intricate structure of
complex extreme events. While low-dimensional models, along with their associated methods
and theories, abound in the fields, the exploration of high-dimensional models has been notably
limited. In recent years, a significant surge of interest has emerged in the theory of estimation
within high-dimensional statistical models, particularly in various sparsity scenarios. The
primary impetus behind sparse estimation lies in the observation that, in numerous practical
applications, the number of variables far exceeds the number of available observations. A
classical illustration of sparse estimation in traditional statistics is the challenge of estimating a
sparse regression vector from a collection of linear measurements (see, for example, Bickel et al.
(2009); Bunea et al. (2007); Lounici (2008)).

These notions of sparsity can be defined in terms of ℓ0-balls, defined as:

B0(s) :=

v = (v(j))j=1,...,d ∈ Rd :
d∑
j=1

1{v(j) ̸=0} ≤ s

 ,
where s < ∞ is a given constant. This ball corresponds to the set of vectors v with at most s
non-zero elements.

In this current discussion, we delve into the max-linear regression model with a focus on sparsity,
where only a few elements, of size s, of A in (6.2) hold non-zero values. The rationale behind
this model is twofold: The linear relationship enables factors to engage in competition with
each other. In the domain of risk analysis, the risk of loss manifests as the sum of numerous
individual risks, representing whichever risk is the most significant. Consequently, the sparsity
assumption within this context implies that only a limited number of factors can contribute to
the overall risk. This, coupled with the linear structure, offers a level of interpretability that
surpasses many other model structures in the field.

The minimax rate of convergence characterises the fundamental limitation of the estimation
accuracy. It also captures the interdependence between the different parameters in the model.
There is an rich line of work of such fundamental limits (see, for example, Tsybakov (2008)).
However, the concept of minimax rates in extreme-value theory is inherently tied to parsimony.
A major focus in the present section is on derivation of lower bounds in linear regression model
where the design is regularly varying, which is a key step in establishing minimax optimal rates
of convergence. We quantify the estimation error by the norm || · ||2. We establish minimax
lower bounds to quantify the statistical optimality of certain estimation procedures. In this
view, we are interested in the worst-case performance of estimation procedures for the model
(6.2) over a family of vectors A. In particular, we define the class of models as follows

Definition 6.2.1. We define a class of models

Y = A⊤Z + ξ,
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where A ∈ B0(s), Z admits a density with respect to the Lebesgue measure given by pZ(z) =
αdΠd

j=1(1 + z(j))−(α+1), α > 1, which corresponds to a product of Pareto with the same tail
index. Also, the Lebesgue-density of ξ, denoted by pξ, verifies:

Condition (A). ∫
R
pξ(u− t) ln

(
pξ(u− t)
pξ(u)

)
du ≤ p∗t, ∀t ∈ R+

where 0 < p∗ < ∞.

We start by establishing the minimax lower bounds for estimation of vector over B0(s) (Theorem
6.2.1). We denote by inf̂

A
the infimum over all estimators Â with values in Rd+, PnX the n-fold

product measure of probability measure PnX, and EnX the expectation with respect to PnX.

Theorem 6.2.1. Let d ≥ 2 and s ≥ 1 with s ≤ 4d/5. Suppose that we observe Xi = (Yi,Zi) n
i.i.d. pairs in the class of models given in Definition (6.2.1). Then under Condition (A),

(i)

inf̂
A

sup
A∈B0(s)

PnX
{

||Â−A||2 ≥ C

√
s

n2 ln(d/s)
}

≥ β,

(ii)

inf̂
A

sup
A∈B0(s)

EnX
[
||Â−A||2

]
≥ C̃

√
s

n2 ln(d/s),

where 0 < β < 1, C > 0, and C̃ > 0 are absolute constants.

6.3 Changepoint Detection for High-Dimensional Extremal De-
pendence

In contexts where data are collected over time, one of the simplest generalisations of an
independent and identically distributed data stream is provided by changepoint models. In
this framework, we make the hypothese that our data may be segmented into two shorter,
homogeneous series, taking the structure of a linear factor models studied in Chapter 5,

Xt = AtZt + Et, At ∈ Rd×K , t = 1, . . . , n (6.3)

Of course, the structural break, or changepoint between these series is often of interest in
applications. This can be formulated as the following hypothesis testing problem

H0 : A1 = · · · = An v.s. H1 : A(1) := A1 = · · · = An1 ̸= An1+1 = · · · = An =: A(2),

where n1 is the possible but unknown changepoint location. In the case of a single changepoint,
(6.3) reduces to:

Xt = A(1)Zt1{t≤n1} +A(2)Zt1{t>n1} + Et, t = 1, . . . , n.

Denote by ||A||(k) = ∑k
ℓ=1 σℓ(A) the Ky-Fan(k) norm of a matrix A ∈ Rd×K where k ≤ K

and σℓ(A) denotes the ℓ-th largest singular value of A. For observations X1, . . . ,Xn ∈ Rd, we
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denote the corresponding sample matrix using just the observations 1, . . . , n1 and n1 + 1, . . . , n
as Â(1)

n1 and Â
(2)
n1 respectively. A test statistic to test H0 against H1 could be of the following

form:
T = max

n1=2,...,n−2
max

s=1,...,K

√
n||Â(1)

n1 − Â(2)
n1 ||(k). (6.4)

The concept involves conducting a mathematical analysis to establish asymptotic power, which
would offer insights into the performance of the statistic T in (6.4) based on Ky-Fan(k) norms.
Two scenarios could be considered: (1) when d is fixed as n tends to infinity, and (2) when d
tends to infinity as n tends to infinity.

Designing methods to detect changepoints in the extremal dependence structure is of great
interest in the context of climate change. Such methods are needed to address the challenges
posed by processes that go beyond the stationarity of observed data. This is highlighted in
studies such as Gonzalez et al. (2023); Naveau et al. (2014); Naveau and Thao (2022).
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Appendix E

A Python Package for Sampling
from Copulae

This chapter has been recognised as an original contribution to a scientific journal:

Alexis Boulin. 2023. “A Python Package for Sampling from Copulae:
Clayton.” Computo, January.

Abstract.
The package clayton is designed to be intuitive, user-friendly, and efficient. It offers a wide range of
copula models, including Archimedean, Elliptical, and Extreme. The package is implemented in
pure Python, making it easy to install and use. In addition, we provide detailed documentation
and examples to help users get started quickly. We also conduct a performance comparison with
existing R packages, demonstrating the efficiency of our implementation. The clayton package is a
valuable tool for researchers and practitioners working with copulas in Python.

E.1 Introduction

Modeling dependence relations between random variables is a topic of interest in probability
theory and statistics. The most popular approach is based on the second moment of the under-
lying random variables, namely, the covariance. It is well known that only linear dependence
can be captured by the covariance and it is only characteristic for a few models, e.g., the
multivariate normal distribution or binary random variables. As a beneficial alternative to
dependence, the concept of copulas, going back Sklar (1959), has drawn a lot of attention. The
copula C : [0, 1]d → [0, 1] of a random vector X = (X0, . . . , Xd−1) with d ≥ 2 allows us to
separate the effect of dependence from the effect of the marginal distribution, such that:

P {X0 ≤ x0, . . . , Xd−1 ≤ xd−1} = C (P{X0 ≤ x0}, . . . ,P{Xd−1 ≤ xd−1}) ,

where (x0, . . . , xd−1) ∈ Rd. The main consequence of this identity is that the copula completely
characterizes the stochastic dependence between the margins of X.

In other words, copulae allow us to model marginal distributions and dependence structure
separately. Furthermore, motivated by Sklar’s theorem, the problem of investigating stochastic
dependence is reduced to the study of multivariate distribution functions under the unit
hypercube [0, 1]d with uniform margins. The theory of copulae has been of prime interest for
many applied fields of science, such as quantitative finance (Patton (2012)) or environmental
sciences (Mishra and Singh (2011)). This increasing number of applications has led to a
demand for statistical methods. For example, semiparametric estimation (Genest et al. (1995)),
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nonparametric estimation (Fermanian et al. (2004)) of copulae or nonparametric estimation of
conditional copulae (Gijbels et al. (2015); Portier and Segers (2018)) have been investigated.
These results are established for a fixed arbitrary dimension d ≥ 2, but several investigations
(e.g. Einmahl and Lin (2006); Einmahl and Segers (2021)) are done for functional data for the
tail copula, which captures dependence in the upper tail.

Software implementation of copulas has been extensively studied in R, for example in the
packages Jun Yan (2007); Schepsmeier et al. (2019); Stephenson (2002). However, methods
for working with copulas in Python are still limited. As far as we know, copula-dedicated
packages in Python are mainly designed for modeling, such as Alvarez et al. (2021) and Bock
and Chapman (2021). These packages use maximum likelihood methods to estimate the copula
parameters from observed data and generate synthetic data using the estimated copula model.
Other packages provide sampling methods for copulas, but they are typically restricted to the
bivariate case and the conditional simulation method (see, for example, Baudin et al. (2017)).
Additionally, these packages often only consider Archimedean and elliptical copulas, and do
not include the extreme value class in arbitrary dimensions d ≥ 2 (Nicolas (2022)). In this
paper, we propose to implement a wide range of copulas, including the extreme value class, in
arbitrary fixed dimension d ≥ 2.

Through this paper we adopt the following notational conventions: all the indices will start
at 0 as in Python. Consider (Ω,A,P) a probability space and let X = (X0, . . . , Xd−1) be a d-
dimensional random vector with values in (Rd,B(Rd)), with d ≥ 2 and B(Rd) the Borel σ-algebra
of Rd. This random vector has a joint distribution F with copula C and its margins are denoted
by Fj(x) = P{Xj ≤ x} for all x ∈ R and j ∈ {0, . . . , d− 1}. Denote by U = (U0, . . . , Ud−1) a d
random vector with copula C and uniform margins. All bold letters x will denote a vector of
Rd.

The clayton package, whose Python code can be found in this GitHub repository, uses object-
oriented features of the Python language. The package contains classes for Archimedean,
elliptical, and extreme value copulas. In section E.2, we briefly describe the classes defined in
the package. Section E.3 presents methods for generating random vectors. In section E.4, we
apply the clayton package to model pairwise dependence between maxima. Section E.5 discusses
potential improvements to the package and provides concluding remarks. The appendices from
E.6 to E.10 define and illustrate all the parametric copula models implemented in the package.

E.2 Classes

The clayton package defines three main classes: Multivariate, Archimedean, and Extreme.
The Multivariate class is designed for defining multivariate copulas (including the bivariate
case) and is located at the highest level of the code architecture. It contains methods for
instantiating a copula object or for sampling from a copula with desired margins using inversion
methods, for example. The Archimedean and Extreme classes are children of the Multivari-
ate class and represent copulas from the Archimedean and extreme value families, respectively.
The Gaussian and Student classes represent elliptical copulas. This hierarchical structure is
relevant theoretically, as Archimedean and extreme value copulas are studied independently
(see, for example, Charpentier and Segers (2009) and Genest and Segers (2009)), and practically,
as they contain effective sampling methods. However, the Gaussian and Student classes are
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Multivariate

Archimedean

Clayton

φ, φ←, φ̇

Frank

Extreme

Logistic

A, Ȧ

Asymmetric Logistic

Gaussian

Student

Fig. E.1 The figure shows a object diagram that structures the code. The Multivariate class
serves as the root and is used to instantiate all its child classes Archimedean, Extreme,
Gaussian, and Student in red. The blue-colored classes correspond to various parametric
copula models, and the green-colored classes represent examples of methods. Symbols φ,φ←, φ̇
correspond to the generator function, its inverse, and its derivative, respectively, while A, Ȧ
refer to the Pickands dependence function and its derivative.

split, as the most effective sampling algorithms are specific to each and cannot be generalized
in a broader elliptical class.

The architecture of the code is shown in Figure E.1. At the third level of the architecture, we
find important parametric models of Archimedean and extreme value copulas (depicted as blue
in the figure). These parametric models contain methods such as the generator function φ (see
Section E.2.1) for Archimedean copulas and the Pickands dependence function A (see Section
E.2.2) for extreme value copulas (depicted as green in the figure). We provide a brief overview
of Archimedean copulas and some of their properties in high-dimensional spaces in Section
E.2.1. A characterization of extreme value copulas is given in Section E.2.2. The sections from
E.6 to E.10 define and illustrate all the copula models implemented in the package.

E.2.1 The Archimedean class

Let φ be a generator that is a strictly decreasing, convex function from [0, 1] to [0,∞] such that
φ(1) = 0 and φ(0) = ∞. We denote the generalized inverse of φ by φ←. Consider the following
equation:

C(u) = φ←(φ(u0) + · · · + φ(ud−1)). (E.1)

If this relation holds and C is a copula function, then C is called an Archimedean copula. A
necessary condition for (E.1) to be a copula is that the generator φ is a d-monotonic function,
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i.e., it is differentiable up to the order d and its derivatives satisfy

(−1)k (φ)(k) (x) ≥ 0, k ∈ {1, . . . , d} (E.2)

for x ∈ (0,∞) (see Corollary 2.1 of McNeil and Nešlehová (2009)). Note that d-monotonic
Archimedean inverse generators do not necessarily generate Archimedean copulas in dimensions
higher than d (see McNeil and Nešlehová (2009)). As a result, some Archimedean subclasses
are only implemented for the bivariate case as they do not generate an Archimedean copula in
higher dimensions. In the bivariate case, (E.2) can be interpreted as φ being a convex function.

The clayton package implements common one-parameter families of Archimedean copulas, such
as the Clayton (Clayton (1978)), Gumbel (Gumbel (1960a)), Joe (Joe (1997)), Frank (Frank
(1979)), and AMH (Ali et al. (1978)) copulas for the multivariate case. It is worth noting
that all Archimedean copulas are symmetric, and in dimensions 3 or higher, only positive
associations are allowed. For the specific bivariate case, the package also implements other
families, such as those numbered from 4.2.9 to 4.2.15 and 4.2.22 in Section 4.2 of Nelsen (2006).
Definitions and illustrations of these parametric copula models can be found in appendices E.6
and E.8.

E.2.2 The Extreme class

Investigating the notion of copulae within the framework of multivariate extreme value theory
leads to the extreme value copulae (see Gudendorf and Segers (2010) for an overview) defined
as

C(u) = exp (−L(− ln(u0), . . . ,− ln(ud−1))) , u ∈ (0, 1]d, (E.3)

where L : [0,∞)d → [0,∞) the stable tail dependence function which is convex, homogeneous of
order one, namely L(cx) = cL(x) for c > 0 and satisfies max(x0, . . . , xd−1) ≤ L(x0, . . . , xd−1) ≤
x0 + · · ·+xd−1, ∀x ∈ [0,∞)d. Let ∆d−1 = {w ∈ [0, 1]d : w0 + · · ·+wd−1 = 1} be the unit simplex.
The Pickands dependence function A : ∆d−1 → [1/d, 1] characterizes L by its homogeneity,
which is the restriction of L to the unit simplex ∆d−1:

L(x0, . . . , xd−1) = (x0 + · · · + xd−1)A(w0, . . . , wd−1), wj = xj
x0 + · · · + xd−1

, (E.4)

for j ∈ {1, . . . , d − 1} and w0 = 1 − w1 − · · · − wd−1 with x ∈ [0,∞)d \ {0}. The Pickands
dependence function characterizes the extremal dependence structure of an extreme value
random vector and verifies max{w0, . . . , wd−1} ≤ A(w0, . . . , wd−1) ≤ 1 where the lower bound
corresponds to comonotonicity and the upper bound corresponds to independence. Estimating
this function is an active area of research, with many compelling studies having been conducted
on the topic (see, for example, Bücher et al. (2011); Gudendorf and Segers (2010)).

From a practical point of view, the family of extreme value copulae is very rich and arises natu-
rally as the limiting distribution of properly normalised componentwise maxima. Furthermore,
it contains a rich variety of parametric models and allows asymmetric dependence, that is, for
the bivariate case:

C(u0, u1) ̸= C(u1, u0).

In the multivariate framework, the logistic copula (or Gumbel, see Gumbel (1960a)), the
asymmetric logistic copula (Tawn (1990)), the Hüsler and Reiss distribution (Hüsler and
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Reiss (1989)), the t-EV copula (Demarta and McNeil (2005)), Bilogistic model (Smith (1990))
are implemented. It’s worth noting that the logistic copula is the sole model that is both
Archimedean and extreme value. The library includes bivariate extreme value copulae such as
are asymmetric negative logistic (Joe (1990)), asymmetric mixed (Tawn (1988)). The reader is
again invited to read from E.7 to E.9 for precise definitions of these models.

E.3 Random vector generator

We propose a Python-based implementation of a random vector generator that is capable of
generating random vectors from a wide variety of copulas. The clayton package requires a few
external libraries in order to function properly. These libraries are commonly used in scientific
Python programming and are easy to install.

The required libraries are:

• numpy version 1.6.1 or newer. This is the fundamental package for scientific computing, it
contains linear algebra functions and matrix / vector objects (Harris et al. (2020)).

• scipy version 1.7.1 or newer. A library of open-source software for mathematics, science and
engineering (Virtanen et al. (2020)).

The clayton package provides two methods for generating random vectors: sample_unimargin
and sample. The first method generates a sample where the margins are uniformly distributed
on the unit interval [0, 1], while the second method generates a sample from the chosen margins.

In Section E.3.1, we present an algorithm that uses the conditioning method to sample from a
copula. This method is very general and can be used for any copula that is sufficiently smooth
(see Equations (E.5) and (E.6) below). However, the practical infeasibility of the algorithm in
dimensions higher than 2 and the computational intensity of numerical inversion call for more
efficient ways to sample in higher dimensions. The purpose of Section E.3.2 is to present such
methods and to provide details on the methods used in the clayton package. In each section,
we provide examples of code to illustrate how to instantiate a copula and how to sample with
clayton.

In the following sections, we will use Python code that assumes that the following packages
have been loaded:

>>> import clayton
>>> from clayton.rng import base, evd, archimedean, monte_carlo
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.stats import norm, expon
>>> np.random.seed(42)

E.3.1 The bivariate case

In this subsection, we address the problem of generating a bivariate sample from a specified
joint distribution with d = 2. Suppose that we want to sample a bivariate random vector X
with copula C. In the case where the components are independent, the sampling procedure is
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straightforward: we can independently sample X0 and X1. However, in the general case where
the copula is not the independence copula, this approach is not applicable.

One solution to this problem is to use the conditioning method to sample from the copula. This
method relies on the fact that given (U0, U1) with copula C, the conditonal law of U1 given U0
is written as:

cu0(u1) ≜ P {U1 ≤ u1|U0 = u0} = ∂C(u0, u1)
∂u0

. (E.5)

This allows us to first sample U0 from a uniform distribution on the unit interval, and then
to use the copula to generate U1 given U0. Finally, we can transform the resulting sample
(U0, U1) into the original space by applying the inverse marginal distributions F−1

0 and F−1
1

to U0 and U1 respectively. Thus, an algorithm for sampling bivariate copulas is given in
Algorithm 8. Algorithm 8 presents a procedure for generating a bivariate sample from a copula.
The algorithm takes as input the length of the sample n, as well as the parameters of the
copula (θ, ψ1, ψ2). The output is a bivariate sample from the desired copula model, denoted
(u(1)

0 , u
(1)
1 ), . . . , (u(n)

0 , u
(n)
1 ). This algorithm is applicable as long as the copula has a first partial

derivative with respect to its first component.

Algorithm 8 Conditional sampling from a copula
1: Data: sample’s length n.
2: Parameter of the copula θ, ψ1, ψ2.
3: Result: Bivariate sample from the desired copula model {(u(1)

0 , u
(1)
1 ), . . . , (u(n)

0 , u
(n)
1 )}.

4: procedure sampling(n, θ, ψ1, ψ2)
5: Generate two independent uniform random observations on the [0, 1] segment u0 and t1.
6: Set u1 = c←u0(t1) where c←u0 denotes the generalized inverse of cu0 .
7: The desired pair is (u0, u1).

For step 6 of the algorithm, we need to find u1 ∈ [0, 1] such that cu0(u1) − t1 = 0 holds. This u1
always exists because for every u ∈]0, 1[, we have 0 ≤ cu0(u) ≤ 1, and the function u 7→ cu0(u)
is increasing (see Theorem 2.2.7 of Nelsen (2006) for a proof). This step can be solved using the
brentq function from the scipy package. A sufficient condition for a copula to have a first partial
derivative with respect to its first component in the Archimedean and extreme value cases is
that the generator φ and the Pickands dependence function A are continuously differentiable
on ]0, 1[, respectively. In this case, the first partial derivatives of the copula are given by:

∂C

∂u0
(u0, u1) = φ′(u0)

φ′(C(u0, u1)) , (u0, u1) ∈]0, 1[2,

∂C

∂u0
(u0, u1) = C(u0, u1)

u0
µ(t), (u0, u1) ∈]0, 1[2,

where t = ln(u1)/ ln(u0u1) ∈ (0, 1) and µ(t) = A(t) − tA ′(t).

We now have all the necessary theoretical tools to give details on how the clayton package
is designed. The file base.py contains the Multivariate class and the sample method to
generate random numbers from X with copula C. To do so, we use the inversion method that
is to sample from U using Algorithm 8 and we compose the corresponding uniform margins
by F←j . Equation (E.5) indicates that the sole knowledge of A and φ and their respective
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derivatives are needed in order to perform the sixth step of Algorithm 8. For that purpose,
cond_sim method located inside Archimedean and Extreme classes performs Algorithm 8.
Then each child of the bivariate Archimedean (resp. Extreme) class is thus defined by its
generator φ (resp. A), it’s derivative φ′ (resp. A ′) and it’s inverse φ← as emphasized in greed
in Figure E.1. Namely, we perform Algorithm 8 for the Archimedean subclasses Frank, AMH,
Clayton (when θ < 0 for the previous three), Nelsen_9, Nelsen_10, Nelsen_11, Nelsen_12,
Nelsen_13, Nelsen_14, Nelsen_15 and Nelsen_22. For the Extreme class, such algorithm is
performed for the AsyNegLog and AsyMix. For other models, faster algorithms are known and
thus implemented, we refer to Section E.3.2 for details.

The following code illustrates the random vector generation for a bivariate Archimedean copula.
By defining the parameter of the copula and the sample’s length, the constructor for this copula
is available and can be called using the Clayton method, such as:

>>> n_sample, theta = 1024, -0.5
>>> copula = archimedean.Clayton(theta=theta, n_sample=n_sample)

To obtain a sample with uniform margins and a Clayton copula, we can use the sample_unimargin
method, as follows:

>>> sample = copula.sample_unimargin()

Here, the sample object is a numpy array with 2 columns and 1024 rows, where each row
contains a realization from a Clayton copula (see Figure E.2).
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x 1

Fig. E.2 Scatterplot of a sample from a Clayton copula (θ = −0.5).
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E.3.2 The multivariate case

We will now address the generation of multivariate Archimedean and Extreme value copulae
proposed in the Clayton package. In the multivariate case, the link between partial derivatives
and the conditional law remains. Indeed, let (U0, . . . , Ud−1) be a d-dimensional random vector
with uniform margins and copula C. The conditional distribution of Uk given the values of
U0, . . . , Uk−1 is

P {Uk ≤ uk|U0 = u0, . . . , Uk−1 = uk−1} = ∂k−1C(u0, . . . , uk, 1, . . . , 1)/∂u0 . . . ∂uk−1
∂k−1C(u0, . . . , uk−1, 1, . . . , 1)/∂u0 . . . ∂uk−1

, (E.6)

for k ∈ 1, . . . , d− 1. The conditional simulation algorithm may be written as follows.

1. Generate d independent uniform random on [0, 1] variates v0, . . . , vd−1.
2. Set u0 = v0.
3. For k = 1, . . . , d − 1, evaluate the inverse of the conditional distribution given by Equation

(E.6) at vk, to generate uk.

Nevertheless, the evaluation of the inverse conditional distribution becomes increasingly compli-
cated as the dimension d increases. Furthermore, it can be difficult for some models to derive a
closed form of Equation (E.6) that makes it impossible to implement it in a general algorithm
with only the dimension d as an input. For multivariate Archimedean copulas, McNeil and
Nešlehová (2009) give a method to generate a random vector from the d-dimensional copula C
with generator φ (see Section 5.2 of McNeil and Nešlehová (2009)). A stochastic representation
for Archimedean copulas generated by a d-monotone generator is given by

U = (φ←(RS1), . . . , φ←(RSd)) ∼ C, (E.7)

where R ∼ FR, the radial distribution which is independent of S and S is distributed uniformly
in the unit simplex ∆d−1. One challenging aspect of this algorithm is to have an accurate
evaluation of the radial distribution of the Archimedean copula and thus to numerically inverse
this distribution. The associated radial distribution for the Clayton copula is given in Example
3.3 McNeil and Nešlehová (2009) while those of the Joe, AMH, Gumbel and Frank copulas
are given in Hofert et al. (2012). In general, one can use numerical inversion algorithms for
computing the inverse of the radial distribution, however it will lead to spurious numerical errors.
Other algorithms exist when the generator is known to be the Laplace-Stieltjes transform,
denoted as LS, of some positive random variables (see Frees and Valdez (1998); Marshall and
Olkin (1988)). This positive random variable is often referenced as the frailty distribution. In
this framework, Archimedean copulas allow for the stochastic representation

U = (φ←(E1/V ), . . . , φ←(Ed/V )) ∼ C, (E.8)

with V ∼ F = LS−1[φ←] the frailty and E1, . . . , Ed are distributed i.i.d. according to a
standard exponential and independent of V . Algorithm 9 presents a procedure for generating
a multivariate sample from an Archimedean copula where the frailty distribution is known.
The algorithm takes as an input the length of the sample n, as well as the parameter of
the copula θ. The output is a d-variate sample from the desired copula model, denoted
{(u(1)

0 , . . . , u
(1)
d−1), . . . , (u(n)

0 , . . . , u
(n)
d−1).
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Algorithm 9 Sampling from Archimedean copula using frailty distribution
1: Data: sample’s length n.
2: Parameter of the copula θ.
3: Result: multivariate sample from the desired copula model.
4: procedure sampling(n, θ)
5: Sample V ∼ F = LS−1[φ←].
6: Sample E1, . . . , Ed

i.i.d.∼ E(1), independent of V .
7: Return U = (φ←(E1/V ), . . . , φ←(Ed/V )).

In this framework, we define _frailty_sim method defined inside the Archimedean class
which performs Algorithm 9. Then, each Archimedean copula is defined by the generator φ,
it’s inverse φ← and the frailty distribution denoted as LS−1[φ←] as long as we know the frailty.
This is the case for Joe, Clayton, AMH or Frank.

For the extreme value case, algorithms have been proposed, as in Stephenson (2003) (see
Algorithms 2.1 and 2.2), who proposes sampling methods for the Gumbel and the asymmetric
logistic model. These algorithms are implemented in the clayton package. Note that these
algorithms are model-specific, thus the sample_unimargin method is exceptionally located in
the corresponding child of the multivariate Extreme class. Another procedure designed by
Dombry et al. (2016) to sample from multivariate extreme value models using extremal functions
(see Algorithm 2 of the reference cited above) is also of prime interest. For the implemented
models using this algorithm, namely Hüsler-Reiss, tEV, Bilogistic and Dirichlet models, a
method called _rextfunc is located inside each classes which allows to generate an observation
from the according law of the extremal function.

Samples from the Gaussian and Student copula are directly given by Algorithm 5.9 and
5.10 respectively of Alexander J. McNeil (2005). As each algorithm is model specific, the
sample_unimargin method is located inside the Gaussian and Student classes.

We present how to construct a multivariate Archimedean copula and to generate random vectors
from this model. Introducing the parameters of the copula, we appeal the following lines to
construct our copula object:

>>> d, theta, n_sample = 3, 2.0, 1024
>>> copula = archimedean.Clayton(theta=theta, n_sample=n_sample,
>>> dim=d)

We now call the sample_unimargin method to obtain randomly generated vectors.

sample = copula.sample_unimargin()

We thus represent in three dimensions in Figure E.3.

E.4 Case study: modeling pairwise dependence between spatial
maximas with missing data

We now proceed to a case study where we use our Python package to assess, under a finite
sample framework, the asymptotic properties of an estimator of the λ-madogram when data
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Fig. E.3 Scatterplot of a sample from a Clayton copula (θ = 2.0).

are completely missing at random (MCAR). This case study comes from numerical results of
Chapter 2. The λ-madogram belongs to a family of estimators, namely the madogram, which
is of prime interest in environmental sciences, as it is designed to model pairwise dependence
between maxima in space. See, for example, Bador et al. (2015); Bernard et al. (2013); Saunders
et al. (2021), where the madogram was used as a dissimilarity measure to perform clustering. In
several fields, such as econometrics (Wooldridge (2007)) or survey theory (Boistard et al. (2016)),
the MCAR hypothesis appears to be a strong hypothesis, but in environmental research, this
hypothesis is more realistic, as the missingness of one observation is usually due to instruments,
communication, and processing errors that may be reasonably supposed to be independent of
the quantity of interest. In Section E.4.1, we define objects and properties of interest, while in
Section E.4.2, we describe a detailed tutorial in Python and with the clayton package to compare
the asymptotic variance with an empirical counterpart of the λ-madogram with λ = 0.5.

E.4.1 Background

It was emphasized that the possible dependence between maxima can be described with the
extreme value copula. This function is completely characterized by the Pickands dependence
function (see Equation (E.4)), which is equivalent to the λ-madogram introduced by Naveau
et al. (2009) and defined as

ν(λ) = E
[∣∣∣F0(X0)1/λ − F1(X1)1/(1−λ)

∣∣∣] , (E.9)

with λ ∈ (0, 1), and if λ = 0 and 0 < u < 1, then u1/λ = 0 by convention. The λ-madogram
took its inspiration from the extensively used geostatistics tool, the variogram (see Chapter 1.3
of Gaetan and Guyon (2008) for a definition and some classical properties). The λ-madogram
can be interpreted as the L1-distance between the uniform margins elevated to the inverse
of the corresponding weights λ and 1 − λ. This quantity describes the dependence structure
between extremes by its relation with the Pickands dependence function. If we suppose that C
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is an extreme value copula as in Equation (E.3), we have

A(λ) = ν(λ) + c(λ)
1 − ν(λ) − c(λ) , (E.10)

with c(λ) = 2−1(λ/(1 − λ) + (1 − λ)/λ) (see Proposition 3 of Marcon et al. (2017) for details).

We consider independent and identically distributed i.i.d. copies X1, . . . ,Xn of X. In the
presence of missing data, we do not observe a complete vector Xi for i ∈ {1, . . . , n}. We
introduce Ii ∈ {0, 1}2 which satisfies, ∀j ∈ {0, 1}, Ii,j = 0 if Xi,j is not observed. To formalize
incomplete observations, we introduce the incomplete vector X̃i with values in the product
space ⊗2

j=1(R ∪ {NA}) such as

X̃i,j = Xi,jIi,j + NA(1 − Ii,j), i ∈ {1, . . . , n}, j ∈ {0, . . . , d− 1}.

We thus suppose that we observe a 4-tuple such as

(Ii, X̃i), i ∈ {1, . . . , n}, (E.11)

i.e. at each i ∈ {1, . . . , n}, several entries may be missing. We also suppose that for all
i ∈ {1, . . . , n}, Ii are i.i.d copies from I = (I0, I1) where Ij is distributed according to a
Bernoulli random variable B(pj) with pj = P(Ij = 1) for j ∈ {0, 1}. We denote by p the
probability of observing completely a realization from X, that is p = P(I0 = 1, I1 = 1). In
Chapter 2, hybrid and corrected estimators, respectively denoted as ν̂Hn and ν̂H∗n , are proposed
to estimate nonparametrically the λ-madogram in presence of missing data completely at
random. Furthermore, a closed expression of their asymptotic variances for λ ∈]0, 1[ is also
given. This result is summarized in the following proposition.

Proposition E.4.1 (Proposition 2.2.1 in Chapter 2). Let (Ii, X̃i)ni=1 be a sample given by
(E.11). For λ ∈]0, 1[, if C is an extreme value copula in (E.3) with Pickands dependence
function A, we have

EHn (λ) ≜
√
n
(
ν̂Hn (λ) − ν(λ)

)
d→

n→∞
N
(
0,SH(p0, p1, p, λ)

)
,

EH∗n (λ) ≜
√
n
(
ν̂H∗n (λ) − ν(λ)

)
d→

n→∞
N
(
0,SH∗(p0, p1, p, λ)

)
,

where ν(λ) is defined in (E.9), SH(p0, p1, p, λ) and SH∗(p0, p1, p, λ) are the asymptotic variances
of the random variables where the closed expression is given in 2.2.1 in Chapter 2.

E.4.2 Numerical results

Benefiting from generating data with clayton we are thus able, with Monte Carlo simulation,
to assess theoretical results given by Proposition E.4.1 in a finite sample setting. For that
purpose, we implement a MonteCarlo class (in monte_carlo.py file) which contains some
methods to perform some Monte Carlo iterations for a given extreme value copula. Now, we set
up parameters to sample our bivariate dataset. For this subsection, we choose the asymmetric
negative logistic model (see Section E.7 for a definition) with parameters θ = 10, ψ1 = 0.1, ψ2 =
1.0.
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>>> n_sample = 1024
>>> theta, psi1, psi2 = 10, 0.1, 1.0

We choose the standard normal and exponential as margins. To simulate this sample, the
following lines should be typed:

>>> copula = evd.AsyNegLog(theta=theta, psi1=psi1, psi2=psi2,
>>> n_sample=n_sample)
>>> sample = copula.sample(inv_cdf=[norm.ppf, expon.ppf])

The 1024 × 2 array sample contains 1024 realization of the asymmetric negative logistic
model where the first column is distributed according to a standard normal random variable
and the second column as a standard exponential. This distribution is depicted in Figure E.4.
To obtain it, one needs the following lines of command:

>>> fig, ax = plt.subplots()
>>> ax.scatter(sample[:,0], sample[:,1],
>>> edgecolors='#6F6F6F', color='#C5C5C5', s=5)
>>> ax.set_xlabel(r'$x_0$')
>>> ax.set_ylabel(r'$x_1$')
>>> plt.show()

3 2 1 0 1 2 3
x0

0

2

4

6

8

x 1

Fig. E.4 A realization from the asymmetric negative logistic model with Gaussian and
Exponent margins and parameters θ = 10, ψ1 = 0.1, ψ2 = 1.0 and sample’s length n = 1024.

Before going into further details, we will present the missing mechanism. Let V0 and V1 be
random variables uniformly distributed under the ]0, 1[ segment with copula C(V0,V1). We set
I0 = 1{V0≤p0} and I1 = 1{V1≤p1}. It is thus immediate that I0 ∼ B(p0) and I1 ∼ B(p1) and
p ≜ P{I0 = 1, I1 = 1} = C(V0,V1)(p0, p1). For our illustration, we will take C(V0,V1) as a Joe
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copula with parameter θ = 2.0 (we refer to Section E.6 for a definition of this copula). For
this copula, it is more likely to observe a realization v0 ≥ 0.8 from V0 if v1 ≥ 0.8 from V1. If
we observe v1 < 0.8, the realization v0 is close to being independent of v1. In climate studies,
extreme events could damage the recording instrument in the surrounding regions where they
occur, thus the missingness of one variable may depend on others. We initialize the copula
C(V0,V1) with the following line:

>>> copula_miss = archimedean.Joe(theta=2.0, n_sample=n_sample)

For a given λ ∈]0, 1[, we now want to estimate a λ-madogram with a sample from the asymmetric
negative logistic model, where some observations are missing due to the missing mechanism
described above. We will repeat this step several times to compute an empirical counterpart of
the asymptotic variance. The MonteCarlo object has been designed for this purpose: we specify
the number of iterations niter (take niter = 1024), the chosen extreme value copula (asymmetric
negative logistic model), the missing mechanism (described by C(V0,V1) and p0 = p1 = 0.9), and
λ (noted w). We can write the following lines of code:

>>> u = np.array([0.9, 0.9])
>>> n_iter, P, w = 256, [[u[0], copula_miss._c(
>>> u)], [copula_miss._c(u), u[1]]], np.array([0.5, 0.5])
>>> monte = monte_carlo.MonteCarlo(n_iter=n_iter, n_sample=n_sample,
>>> copula=copula, copula_miss=copula_miss, weight=w, matp=P)

The MonteCarlo object is thus initialized with all parameters needed. We may use the simu
method to generate a DataFrame (a Pandas object) composed out 1024 rows and 3 columns.
Each row contains an estimate of the λ-madogram, ν̂H∗n in Proposition E.4.1 (FMado), the
sample length n (n) and the normalized estimation error (scaled). We thus call the simu
method.

>>> df_wmado = monte.simu(inv_cdf = [norm.ppf, expon.ppf], corr = True)
>>> print(df_wmado.head())

FMado n scaled
0 0.147648 512.0 -0.140255
1 0.160095 512.0 -0.141402
2 0.159303 512.0 0.123480
3 0.156156 512.0 0.052269
4 0.152242 512.0 -0.036300

Where corr=True specifies that we compute the corrected estimator, ν̂H∗n in Proposition E.4.1.
Now, using the var_mado method defined inside in the Extreme class, we obtain the asymptotic
variance for the given model and parameters from the missing mechanism. We obtain this
quantity as follows

>>> var_mado = copula.var_mado(w, p=copula_miss._c(u), P=P, corr=True)
>>> print(var_mado)
0.015417245591834503

We propose here to check numerically the asymptotic normality with variance SH∗ of the
normalized estimation error of the corrected estimator. We have all data in hand and the
asymptotic variance was computed by lines above. We thus write:
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>>> fig, ax = plt.subplots()
>>> sigma = np.sqrt(var_mado)
>>> x = np.linspace(min(df_wmado['scaled']), max(df_wmado['scaled']), 1000)
>>> gauss = gauss_function(x, 0, sigma)
>>> sns.displot(data=df_wmado, x="scaled", color='#C5C5C5', kind='hist',
>>> stat='density', common_norm=False, alpha=0.5, fill=True,
>>> linewidth=1.5, bins = 32)
>>> plt.plot(x,gauss, color = 'darkblue')
>>> plt.show()

Result of these lines might be found in Figure E.5.
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Fig. E.5 Histogram of EH∗n in Proposition E.4.1 where the solid line is the density of a centered
Gaussian with variance SH∗.

E.5 Discussion

E.5.1 Comparison of clayton with R packages

To compare clayton to existing packages in R, we consider the copula package (Kojadinovic and
Yan (2010)) and mev (Belzile et al. (2022)) for sampling from Archimedean and multivariate
extreme value distributions, respectively. To run the experiment, we use two computer clusters.
The first cluster consists of five nodes, each with two 18-core Xeon Gold 3.1 GHz processors
and 192 GB of memory, with 2933 MHz per socket. The second cluster has two CPU sockets,
each containing a Xeon Platinum 8268 2.90 GHz processor with 24 cores. These configurations
provide a significant amount of computational power and are well-suited for handling complex,
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data-intensive tasks. We use the first cluster to install the copula package and sample from the
Clayton, Frank, and Joe models. We consider an increasing dimension d ∈ {50, 100, . . . , 1600}
for a fixed sample size of n = 1000. We use the second cluster to install the mev package and
call some of its methods to sample from the Husler Reiss, Logistic, and TEV distributions.
Sampling from the latter is fast, but sampling from the two others is time consuming. Therefore,
we only consider dimensions d ∈ {25, 50, . . . , 250} for a fixed sample size of n = 1000.
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Fig. E.6 Comparison results. Time spent (in seconds) to sample from the corresponding models
with respect to the dimension d. The left panel shows the results for sampling from Clayton,
Frank and Joe using clayton in Python and copula in R. The right panel shows the results for
sampling from HuslerReiss, Logistic and TEV by clayton in Python and mev in R. In both
cases, 1000 vectors are generated for each model.

The figure shows the results of a comparison between the clayton and copula packages in R, and
the mev package in Python. The comparison shows that the clayton package is more efficient
at sampling from Clayton, Frank and Joe copulae than the copula package. The gap in
efficiency may be due to the choice of algorithms used in the clayton package, which uses frailty
distributions. The time required for sampling increases linearly with the dimension for the
clayton package, but shows a more erratic behavior for the copula package.

When comparing the clayton and mev packages, it is clear that mev is more efficient. This
is likely due to the fact that mev is written in C++, while clayton is written in Python. The
mev package uses the algorithm of Stephenson (2003) to sample from the Logistic distribution,
which is more efficient than the algorithm using frailty distributions used in clayton.

E.5.2 Conclusion

This paper presents the construction and some implementations of the Python package clayton
for random copula sampling. This is a seminal work in the field of software implementation of
copula modeling in Python and there is much more potential for growth. It is hoped that the
potential diffusion of the software through those who need it may bring further implementations
for multivariate modeling with copulas under Python. For example, choosing a copula to fit the
data is an important but difficult problem. A robust approach to estimating copulas has been
investigated recently by Alquier et al. (2020) using Maximum Mean Discrepancy. In relation to
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our example, semiparametric estimation of copulas with missing data could be of great interest,
as proposed by Hamori et al. (2019).

Additionally, implementation of the algorithm proposed by McNeil and Nešlehová (2009) for
generating random vectors for Archimedean copulas has been tackled, but as expected, numerical
inversion gives spurious results, especially when the parameter θ and the dimension d are high.
Furthermore, as the support of the radial distribution is contained in the real line, numerical
inversion leads to increased computational time. Further investigation is needed in order to
generate random vectors from classical Archimedan models using the radial distribution.

A direction of improvement for the clayton package is dependence modeling with Vine copulas,
which have recently been a tool of high interest in the machine learning community (see, e.g.,
Carrera et al. (2016); Gonçalves et al. (2016); Lopez-Paz et al. (2013); Veeramachaneni et al.
(2015) or Sun et al. (2019)). This highlights the need for dependence modeling with copulas in
Python, as a significant part of the machine learning community uses this language. In relation
to this paper, Vine copulas may be useful for modeling dependencies between extreme events,
as suggested by Nolde and Wadsworth (2021); Simpson et al. (2021). Furthermore, other copula
models could be implemented to model further dependencies. These implementations will
expand the scope of dependence modeling with Python and provide high-quality, usable tools
for anyone who needs them.
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Table E.1 Bivariate Archimedean models in clayton module.
Name φ(t) Constraints Figure

Clayton 1
θ

(t−θ − 1) θ ∈ [−1,∞) \ {0}
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t
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Frank − ln( e
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e−θ−1

) θ ∈ R \ {0}

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0
u 1

θ = −8

Joe − ln(1− (1− t)θ) θ ∈ [1,∞)

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 2

Nelsen n°9 ln(1− θ ln(t)) θ ∈]0, 1]

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 1

Nelsen n°10 ln(2t−θ − 1) θ ∈]0, 1]

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 1

251



A Python Package for Sampling from Copulae

Table E.2 Bivariate archimedean models in clayton module.
Name φ(t) Constraints Figure

Nelsen n°11 ln(2− tθ) θ ∈]0, 0.5]

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 1.5

Nelsen n°12 ( 1
t
− 1)θ θ ∈]0,∞) \ {0}

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 1.5

Nelsen n°13 (1− ln(t))θ − 1 θ ∈]0,∞[

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 2

Nelsen n°14 (t−
1
θ − 1)θ θ ∈]1,∞)

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 5

Nelsen n°15 (1− t
1
θ )θ [1,∞)

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 1.5

Nelsen n°22 arcsin(1− tθ) θ ∈ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0
u0

0.0

0.2

0.4

0.6

0.8

1.0

u 1

θ = 0.5

252



E.7 Implemented bivariate extreme models

E.7 Implemented bivariate extreme models

Table E.3 Bivariate extreme models in clayton module.
Name A(w) Constraints Figure
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E.8 Multivariate Archimedean copulae

Table E.4 Multivariate archimedean models in clayton module.
Name φ(t) Constraints Figure
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0.6

0.8

1.0

θ = 0.5

Frank − ln( e
−θt−1
e−θ−1

) θ ∈ R \ {0}

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0

0.2
0.4

0.6
0.8

1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

θ = 8

Joe − ln(1− (1− t)θ) θ ∈ [1,∞)

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0

0.2
0.4

0.6
0.8

1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

θ = 2
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E.9 Multivariate extreme models
Before giving the main details, we introduce some notations. Let B be the set of all nonempty
subsets of {1, . . . , d} and B1 = {b ∈ B, |b| = 1}, where |b| denotes the number of elements in
thet set b. We note by B(j) = {b ∈ B, j ∈ b}. For d = 3, the Pickands is expressed as

A(w) =α1w1 + ψ1w2 + ϕ1w3 +
(
(α2w1)θ1 + (ψ2w2)θ1

)1/θ1 +
(
(α3w2)θ2 + (ϕ2w3)θ2

)1/θ2

+
(
(ψ3w2)θ3 + (ϕ3w3)θ3

)1/θ3 +
(
(α4w1)θ4 + (ψ4w2)θ4 + (ϕ4w3)θ4

)1/θ4
,

where α = (α1, . . . , α4),ψ = (ψ1, . . . , ψ4),ϕ = (ϕ1, . . . , ϕ4) are all elements of ∆3. We take
α = (0.4, 0.3, 0.1, 0.2), ψ = (0.1, 0.2, 0.4, 0.3), ϕ = (0.6, 0.1, 0.1, 0.2) and θ = (θ1, . . . , θ4) =
(0.6, 0.5, 0.8, 0.3) as the dependence parameter.

The Dirichlet model is a mixture of m Dirichlet densities, that is

h(w) =
m∑
k=1

θk
Γ(∑d

j=1 σkj)
Πd
j=1Γ(σkj)

Πd
j=1w

σkj−1
j ,

with ∑m
k=1 θk = 1, σkj > 0 for k ∈ {1, . . . ,m} and j ∈ {1, . . . , d}. Let D ∈ [0,∞)(d−1)×(d−1)

denotes the space of symmetric strictly conditionnaly negative definite matrices that is

Dk =
{

Γ ∈ [0,∞)k×k : a⊤Γa < 0 for all a ∈ Rk \ {0} with
d−1∑
j=1

aj = 0,

Γii = 0,Γij = Γji, 1 ≤ i, j ≤ k
}
.

For any 2 ≤ k ≤ d consider m′ = (m1, . . . ,mk) with 1 ≤ m1 < · · · < mk ≤ d define

Σ(k)
m = 2

(
Γmimk + Γmjmk − Γmimj

)
mimj ̸=mk

∈ [0,∞)(d−1)×(d−1).

Furthermore, note S(·|Σ(k)
m ) denote the survival function of a normal random vector with mean

vector 0 and covariance matrix Σ(k). We now define :

hkm(y) =
∫ ∞
yk

S
(
(yi − z + 2Γmimk)k−1

i=1 |Γkm
)
e−zdz

for 2 ≤ k ≤ d. We denote by Σ(k) the summation over all k-vectors m = (m1, . . . ,mk) with
1 ≤ m1 < · · · < mk ≤ d.
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Table E.5 Multivariate extreme models in clayton module.
Name A(w) Constraints Figure

Logistic
(∑d

j=1
w

1
θ
j

)θ
θ ∈]0, 1]

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0

0.2
0.4

0.6
0.8

1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

θ = 0.5

Asy. Log.
∑

b∈B
(
∑

j∈b
(ψj,bwj)

1
θb )θb

θb ∈]0, 1] ∀b ∈ B \ B1,
ψj,b ∈ [0, 1] ∀b ∈ B ∀j ∈ b,∑
b∈B(j)

ψj,b = 1, j ∈ [[d− 1]],

θb = 1 ∀b ∈ B \ B1 =⇒
ψj,b = 0 ∀j ∈ b.

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0

0.2
0.4

0.6
0.8

1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

Dirichlet Not specified

∑m

k=1
θk = 1,

σkj > 0, k ∈ {1, . . . ,m},
j ∈ {1, . . . , d}

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0

0.2
0.4

0.6
0.8

1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

θ = (1/3, 1/3, 1/3)

Σ =

(
2 1 1
1 2 1
1 1 2

)

Hüsler Reiss
∑d

k=1
(−1)k+1×

Σ(k)hkm(um1 , . . . , umk )
Γ ∈ Dd

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0

0.2
0.4

0.6
0.8

1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

Γ =

(
0 3 3
3 0 3
3 3 0

)
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E.10 Multivariate elliptical dependencies
Let X ∼ Ed(µ,Σ, ψ) be an elliptical distributed random vector with cumulative distribution
F and marginal F0, . . . , Fd−1. Then, the copula C of F is called an elliptical copula. We
denote by ϕ the standard normal distribution function and ϕΣ the joint distribution function
of X ∼ Nd(0,Σ), where 0 is the d-dimensional vector composed out of 0. In the same way, we
note tθ the distribution function of a standard univariate distribution t distribution and by tθ,Σ
the joint distribution function of the vector X ∼ td(θ,0,Σ). A d squared matrix Σ is said to be
positively semi definite if for all u ∈ Rd we have :

u⊤Σu ≥ 0

Table E.6 Multivariate elliptical models in clayton module.
Name C Constraints Figure

Gaussian ϕΣ(ϕ←(u0), . . . , ϕ←(ud−1)) Σ PSD

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0
0.2

0.4
0.6

0.8
1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

ρ = 0.71

Student tθ,Σ(t←
θ

(u0), . . . , t←
θ

(ud−1)) θ > 0, Σ PSD

u0

0.0
0.2

0.4
0.6

0.8
1.0

u 1

0.0
0.2

0.4
0.6

0.8
1.0

u 2

0.0

0.2

0.4

0.6

0.8

1.0

ρ = 0.71
θ = 4
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