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A B S T R A C T

Ranking and comparing arise in many real life applications, such as
sports tournaments or recommendation systems. In these domains,
datasets are composed of pairwise comparisons between a collection
of items that can also be summarized into a comparison graph. Many
parametric statistical models for ranking were introduced, such as
the Bradley-Terry-Luce model, where the items are supposed to have
a latent strength. The ranking are then derived from this strengths.
Numerous estimation algorithms have been analyzed over the past
decades, for example the maximum-likelihood or the spectral method.
However, most of them do not account for the temporal aspect of
the data. Indeed, ranking and personal preferences can evolve over
time. In order to include temporality, we will consider a sequence of
comparison graphs, or dynamic graphs, that gathers data at different
time instances.

We will first study an extension of the BTL model to this dynamic
setting, introduced by Bong et al. under a local Lipschitz assump-
tion on the strengths. Our algorithm is based on a nearest-neighbor
approach and on the Rank Centrality algorithm, a classic estimation
method in the static case. We will show ℓ2 and ℓ∞ bounds for our es-
timator and show our algorithm performance on both synthetic and
real data.

In a second part, we will introduce a dynamic version of the Translation-
Synchronization model under a global smoothness assumption. We
will propose two estimators, one based on a smoothness-penalized
least squares approach and the other based on projection onto the
low frequency eigenspace of a suitable smoothness operator. We will
show that both method give consistent estimators. We also display
the performance of our algorithms on synthetic and real datasets.

R É S U M É

Le classement et les comparaisons apparaissent dans de nombreuses
applications de la vie de tous les jours, telles que les tournois sportifs
ou les systèmes de recommandation. Dans ces domaines, les don-
nées sont souvent composées de comparaisons appairées entre un en-
semble d’objets, qui peuvent être résumées dans un graphe de com-
paraison. De nombreux modèles paramétriques pour les problèmes
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de classement ont été introduits, tels que le modèle de Bradley-Terry-
Luce (BTL), dans lequel on suppose que les objets possèdent une qua-
lité sous-jacente. Le classement est ensuite déduit des scores de qua-
lité. De nombreux algorithmes d’estimation ont été analysés ces der-
nières années, comme l’algorithme de maximum de vraisemblance
ou une méthode spectrale. Cependant, les classements et préférences
personnelles peuvent évoluer avec le temps. Afin de prendre cela en
compte, nous allons considérer une suite de graphes de comparaison,
ou un graphe dynamique, qui rassemble les données à divers points
de temps.

Nous allons d’abord étudier une extension du modèle BTL au cas
dynamique, introduit par Bong et al. en supposant que les scores de
qualités sont Lipschitz. Notre algorithme est basé sur la méthode des
plus proches voisins et sur l’algorithme de Rank Centrality, méthode
d’estimation bien connue dans le cas statique. Nous fournissons des
bornes ℓ2 et ℓ∞ pour notre estimateur et montrons les performances
de notre algorithme sur des données réelles et synthétiques.

Dans un second temps, nous introduirons une version dynamique
du modèle de Translation-Synchronisation sous une une hypothèse
globale de régularité. Nous proposerons deux estimateurs, le premier
basé sur une approche des moindres carrés avec une pénalité tradui-
sant la régularité, et le deuxième basé sur la projection sur l’espace
des vecteurs propres de basse fréquence d’un opérateur de régularité
approprié. Nous montrerons que ces deux méthodes donnent des es-
timateurs consistants. Nous montrerons à nouveau les performances
de nos algorithmes sur des données réelles et synthétiques.
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I N T R O D U C T I O N

Ranking and comparing are a part of everyday life, whether it is to
choose which movie to watch, which football team to bet on or which
candidate to elect. Although easy to do on a small amount of items,
it is much more difficult for the brain to perform such a task for tens
or hundreds of candidates. That is why algorithms and estimation
methods on ranking were introduced.

statistical approach of ranking

A ranking on a collection of n items simply consists of a permuation
of the integers 1, . . . ,n, indicating the order of preference or qualities
of the items of interest. Hence, the simplest model for ranking is the
uniform model, where all the n! permutations are equally probable.
However, this model does not fit most of the real life applications
as sports tournaments or recommendation systems, because some of
the items to rank are significantly better than others. Different non-
uniform models have then been introduced, based either on order
statistics [44], pairwise comparisons [5], distances between permuta-
tions [11], or stagewise decompositions of the ranking process [15].
We will focus in this thesis on models based on pairwise compar-
isons. We observe data in the form of pairwise comparisons between
the items to rank, indicating preferences between the compared items.
These comparisons can then be presented as a graph, as shown in Fig-
ure 2, where we present the preferences over a set of movies.

Figure 2: Comparison graph over a set of 5 movies. Arrow points
to the preferred movie between the pair.

1
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In particular, we will focus on the Bradley-Terry-Luce model [5] (or
BTL for short). This model has already been studied extensively in the
case of a single comparison graph, through regularized maximum-
likelihood estimation (abbreviated as MLE)[9] but also through a
spectral method, namely Rank Centrality [36], and the Least Squares
method [18]. Note that optimal bounds on the ℓ2 and ℓ∞ error rates
were recently achieved by Chen et al. [9] in this static setting.

dynamic ranking

Ranking is by nature a dynamic problem, as personal preferences
evolve with time. It can be a result of the evolution of personal taste
but it is also dependent on the apparition (or disparition) of new
items to rank. Indeed, the movie industry is perpetually evolving, as
new movies come out each week and filming technologies become
more advanced. Hence, personal preferences change as one ages. We
can also think about football competitions, that possess a promotion
system between different leagues. Then, a team which does not per-
form will be relegated to a different league and can no longer play
against the top teams. These different dynamic aspects of the data
have been the motivation for the introduction of dynamic ranking
models, especially based on sports related data. However, most of
the papers do not conduct a theoretical analysis of the models. Our
motivation in this thesis was to fill this gap by studying extensions of
static ranking models to the dynamic case.

Figure 3: Sequence of comparison graphs representing every FIFA
World Cup.

In the dynamic setting, data consist of a sequence of comparison
graph as in Figure 3 instead of a single comparison graph. Hence
to study dynamic ranking models, a classical idea is to consider ob-
servations at different timepoints and to aggregate them in a single
graph. Indeed, assuming that the intrinsinc qualities of an item evolve
smoothly with time, the comparison results at close timepoints will
be similar. This idea has been used in the theoretical work of Bong et
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al [4]. They proposed a dynamic version of the BTL model and a reg-
ularized MLE algorithm. We propose something similar in Chapter
2.

translation synchronization

Synchronization problems have many applications, as clocks synchro-
nization in wireless systems, computer vision or clustering. In such
problems, the goal is to recover group elements gi ∈ G given noisy
pairwise informations gig−1j , where g−1j denotes the group inverse.
Different applications correspond to different groups G, examples be-
ing Z2 for clustering or R for clocks synchronization. Interestingly,
these problems can also be linked to ranking. By mapping the ranks
1, . . . ,n to the angles of the upper semi-circle [0, 2π], one can then use
the results of Singer [43] on Angular Synchronization, for G = SO(2).
This observation is the foundation of the Sync-Rank algorithm [10].
Although not studied theoretically, this algorithm performs particu-
larly well on real datasets. Another interesting model is the Trans-
lation Synchronization model, where G = R. Considering that each
item possess an underlying strength, one can then derive a ranking
of the items by ranking their strengths. Then, the Translation Syn-
chronization model posits that observations are noisy version of the
strength differences. One can then recover a ranking by estimating
the strenght if each item. This model was studied by Huang et al. [21],
there exist no extension of this model to the dynamic setting. We pro-
pose in Chapter 3 a dynamic Translation Synchronization model and
algorithms for estimating the latent strengths.

outline of the thesis

In this thesis, we consider different models for dynamic ranking and
provide a thorough theoretical analysis for each of them.

In Chapter 1, we will introduce the main models and methods this
manuscript is based on. We will first present static models for ranking,
with a particuliar focus on the Bradley-Terry-Luce model, as we will
study its extension to the dynamic setting later on. We then shift our
focus to dynamic extensions of classical models. Finally, we present
Synchronization problems and some estimation methods. We focus
specifically on Angular Synchronization, as ranks can be mapped to
angles on the upper half circle. It is the basis of the Sync-Rank algo-
rithm, developped by Cucuringu [10]. We also detail the Translation
Synchronization model, that we extend to the dynamic case in Chap-
ter 3.

Chapter 2 describes the work around the Dynamic BTL model. We
study an analogous model to Bong et al. [4] under a smoothness as-
sumption on the items strengths. Our idea is to aggregate the tempo-
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ral information using a nearest neighbour approach, only using data
collected at suitably close timepoint from our time of estimation t. We
then average this information and create a single comparison graph,
to which we apply the static Rank Centrality method [36]. We detail
the model and the estimation method in Section 2.1. We then pro-
vide a theoretical analysis of this model and derive ℓ2 and ℓ∞ error
bounds. We conclude this chapter with experiments on synthetic and
real datasets, disclosing the performance of our algorithm.

We present in Chapter 3 a Dynamic Translation Synchronization
model, derived from the static Translation Synchronization model
[21]. We analyse this model under a global smoothness assumption,
assuming that the quadratic variation of the strengths is upper bounded.
We provide two estimators, inspired by the Laplacian smoothing and
Laplacian eigenmaps estimators [40]. The first one can be studied by
solving a smoothness penalized least squares problem (see Section
3.3). The second estimator is obtained via a two-step process, that
enforces the smoothness by projecting the estimator onto a "smooth
space" (see Section 3.4). We provide for both estimators ℓ2 error bounds
and also conduct experiments on synthetic and real datasets to dis-
play the performance of our estimators.

Finally, we present perspectives for future works in Chapter 4.
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1
B A C K G R O U N D O N R A N K I N G A N D
S Y N C H R O N I Z AT I O N

In this Chapter, we provide an overview of the literature on rank-
ing and synchornization problems. We present models of interest
for ranking, in particular the Bradley-Terry-Luce model and associ-
ated estimation methods. We then describe the problem of dynamic
ranking and the corresponding state-of-the art models and methods.
Finally, we present the synchronization problem and how it can be
realted to ranking.

1.1 introduction to ranking in the static case

1.1.1 Pairwise comparisons

Models on ranking based on pairwise comparisons are popular as
they reflect the majority of the datasets existing in real life. Indeed,
in order to rank objects, a natural way to do so is to compare them
directly by pairs, as done in sports tournaments for example. In ad-
dition, pairwise comparison data naturally reduce the bias contained
in ranking information, as shown in [1]. As a matter of fact, asking
reviewers to rank n items directly is similar to asking them to give
scores to each item (e.g. between 1 and 5 stars); such scores being
relative. This level of relativity does not exist in pairwise data.

Although not always the case, the majority of models based on pair-
wise comparisons are parametric models. It is assumed that each item
has some latent strength, representing their intrinsinc qualities, and
on which the probability of pairwise preferences depends. To study
such models, the tool of choice is usually graph theory as the data can
be represented as a comparison graph G([n],E). The vertices of this
graph denote the items and the edges E indicate whether two items
were compared or not. Some estimation methods used for these mod-
els rely heavily on this graph structure, such as the Rank Centrality
method [36] or the weighted least-squares algorithm of Hendrickx et
al [18].

1.1.2 BTL model and estimation methods

Ranking models were first introduced in the statistical and psycho-
logical literature. Amongst the more popular models, most of them
assume that the pairwise observations yij are independent random
vectors such that

5



6 background on ranking and synchronization

yij = αij + εij,

with αij the expected result for a comparison of the pair {i, j} and
εij denoting the noise. The noise variables εij are supposed to be
independent random variables. In 1929, a binomial version of this
model was introduced by Zermelo [48], which has then been popu-
larized by Bradley and Terry [5] and Luce [30]. Let us then detail this
model, called Bradley-Terry-Luce model. We suppose that item i has
a latent strength w∗

i ∈ R+. The probabilities of preference are given
as follows.

P(item i preferred to item j) :=
w∗
i

w∗
i +w

∗
j

. (1.1.1)

Then, for each pair of compared items (i, j), we perform L indepen-
dent comparisons denoted y(l)ij for l ∈ [L]. The BTL model posits that

y
(l)
ij are independent Bernoulli variables with probability w∗

i

w∗
i+w

∗
j
. In

the following, we will consider their empirical mean yij = 1
L

∑L
l=1 y

(l)
ij .

In order to estimate the ranks, one then only need to estimate the la-
tent strengths w∗

i . This problem has already been thoroughly studied
via MLE estimation [9] but also through other methods, such as the
spectral method [36] or least-squares methods [18]. Let us describe
briefly each method and the theoretical guarantees obtained for each
of them.

maximum likelihood estimation. As a state of the art method
of inference, the MLE was the first method used to analyse the BTL
model in the original article [5]. The negative log-likelihood associ-
ated with this problem is written as follows.

L(w,y) = −
∑

(i,j)∈ #»
E

yij log
wi

wi +wj
+ (1− yij) log

wj

wi +wj
. (1.1.2)

This problem was studied for a general connected comparison graph
as well as for Erdös-Renyi graphs 1G ∼ G(n,p). Let us denote ŵ
the maximum likelihood estimator of the true BTL weights w∗ and
dmax,dmin the maximal and minimal degree of the comparison graph.

The analysis of the Erdös-Renyi case has been refined over the years
until 2019, when Chen et al. [9] provided optimal error bounds under

1 An Erdös-Renyi graph G ∼ G(n,p) is a random graph with n vertices in which each
pair of vertices {i, j} are connected by an edge with probability p.
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the assumption that the comparison graph is connected. In particular,
they showed that with high probability,

∥log ŵ− logw∗∥22 ⩽ O
(
1

pL

)
and ∥log ŵ− logw∗∥2∞ ⩽ O

(
logn
npL

)
.

(1.1.3)

In the general case, Li et al. [29] have recently shown that with high
probability,

∥log ŵ− logw∗∥22 ≲
dmaxn

L
and ∥log ŵ− logw∗∥∞ ≲

√
ndmax

L
+

√
nd2max

Ld2min

(1.1.4)

They also provide a minimax ℓ∞ bound, that matches the upper
bound (1.1.3) in the specific case of Erdös-Renyi graphs. Note that for
Erdös-Renyi graphs, (1.1.4) do not achieve the same optimal bounds
as (1.1.3).

rank centrality. Negahban et al. [36] introduced in 2015 a
spectral method, named Rank Centrality, to study the BTL model.
The main idea is to build a transition matrix using the observations
yij and then to consider its leading left eigenvector as an estimator of
the normalized weights. Then, denoting π∗ = w∗

∥w∗∥1
the normalized

vector of true scores, and π̂ its estimate and assuming that each com-
parison between two items has been performed L times (for L large
enough), it holds with high probability (w.h.p) that [8, 9]

∥π̂− π∗∥2
∥π∗∥2

≲
1√
npL

and
∥π̂− π∗∥∞
∥π∗∥∞ ≲

√
logn
npL

.

As for the MLE, Rank Centrality estimation achieves optimal guar-
antees in this setting.

Neghaban et al. [36] also provided error bounds for a general con-
nected graph G. Denoting dmax the maximum degree of a vertex in G,
it holds w.h.p. that for L large enough,

∥π̂− π∗∥2
∥π∗∥2

≲

√
logn
Ldmax

.

least-square method. The BTL model was also recently stud-
ied by Hendrickx et al. [18] using a weigthed least-squares algorithm.
Denoting V̂ij =

yij
yji

+
yji
yij

+ 2 to be the estimated variance of the
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observations log yijyji , their method consists in solving the following
weighted least-squares problem.

argmin
w∈Rn

∑
(i,j)∈E

(
log yijyji − log wiwj

)2
√
V̂ij

. (1.1.5)

Denoting Lγ the Laplacian of the observation graph Gwith weights
γij = 1

(w∗
i+w

∗
j )
2 on edge {i, j}, and L

†
γ its Moore-Penrose inverse, it

holds with high probability that

E[sin2(ŵ,w∗)] ≲
Tr(L†γ)

L ∥w∗∥22
.

This result also comes with a matching lower bound on the estima-
tion error, up to absolute constants.

1.1.3 Other models

Although BTL is one of the most popular models for ranking, other
parametric models have also been studied in the literature. Two pop-
ular models are the Plackett-Luce model and the Thurstone model.

plackett-luce model . Recall that w∗
i denotes the strength of

an item i, the discrete Plackett-Luce model [31] posits that for any
item i, the probability of prefering item i over any alternatives in a
set A is given by

P(i|A) =
w∗
i∑

j∈Aw
∗
j

.

As for the BTL model, it has been thoroughly studied via Maxi-
mum Likelihood estimation [22] and spectral estimation [26], show-
ing that both estimators are consistent.

thurstone model . Another state of the art model for ranking is
the Thurstone model, introduced in 1927 [44]. This model posits that
the probabilities of preference are Gaussian functions of the weights
w∗
i . A throrough analysis of this model was provided by Ennis [13]

for various behavioral tasks, including ranking. It has been shown
that maximum likelihood estimation and spectral method provide
consistent estimators in this setting [13].

non parametric models . All the aformentionned models are
parametric models, which present some limitations. Indeed, paramet-
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ric models often fail to fit accurately to real life data. Moreover, the
MLE algorithm of Chen et al. [9] estimates accurately the weights un-
der some regularity conditions that are not satisfy in real life dataset.
Thus, non parametric models were introduced more recently to anal-
yse ranking problems. These models often rely on the notion of strong
stochastic transitivity (SST), as in the works of Shah et al. [42],[41].
This assumption implies the existence of an underlying ranking of
the items such that if the items i, j, l are ranked in this order, then it
holds that

P(item i preferred to j) ⩾ P(item i preferred to l).

Under this assumption, they provide guarantees on the recovery
of the probability of preferences, achieving the same rate as in stan-
dard parametric models. However in this setting, it is non-trivial to
compute the minimax-optimal estimator.

1.2 dynamic ranking

Most of the domains involving ranking can be related to dynamic
datasets. Indeed, think about sports results, or individual preferences
and opinons, they all vary along with time. However, the majority of
the work revolving around ranking ignores this temporal component
and focuses on the case of a unique time of observation, hence us-
ing a single comparison graph. To include time in a more dynamic
setting, different models have been considered, mostly motivated by
sports datasets (NFL, NBA, chess, etc.). These models are for the most
part simple extensions of classical models for ranking, applied to a se-
quence of observation graphs. More precisely, Figure 4 shows how to
extend a classical parametric model M to the dynamic setting, where
Gt denotes the graph of observations at time t, and w(t) are the pa-
rameters influencing the result of the comparisons at time t.

Figure 4: Extension of the model M to a dynamic setting.

Some works adapt classical ranking model, such as the BTL model
[7],[17], the win-lose score [34] or the Poisson log-linear model [12].
Another considered approach was to use Bayesian inference on sev-
eral datasets including the NBA and male tennis [32]. Glickman [16]
proposed a predictive state-space model for NFL results. Note that
none of these works provide statistical guarantees for the proposed
methods but show how they perform on real datasets. From a theoret-
ical point of view, very few articles have analyzed ranking models for
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different dynamic settings. The main works proposed extensions of
existing static models following the principle of Figure 4. Moreover,
they also defined precisely how to incorporate the temporal aspect of
the data as assumptions on the time evolution of the model parame-
ters. Let us describe two of the principal works done in this direction.

dynamic btl model . Bong et al. [4] proposed a smoothly evolv-
ing dynamic BTL model, which is an extended version of the static
BTL model presented in (1.1.1). They consider the logit2 version of
the BTL model

logit (P(i beats j at time t)) = β∗
i (t) −β

∗
j (t) (1.2.1)

where β∗(t) represents the vector of scores at time t with w∗(t) =

exp(β∗(t)). In this setting, the grid T of observations can be non-
uniform, and the number of comparisons Lij(t) made for each pair
{i, j} at each time t ∈ [0, 1] can vary. The pairwise comparison data
at each time t ′ ∈ T are gathered into a matrix X(t ′) where Xij(t ′) is
the number of times i beat j at time t ′. In order to use the tempo-
ral aspect of the data, they smooth the data using a kernel function.
More precisely, to estimate the ranks at time t, they first compute the
smoothed data as

X̃(t) =

T∑
t ′=0

Wh(t
′, t)X(t ′)

where Wh is a kernel function with bandwidth h. Then, β∗ is esti-
mated by minimizing the negative log-likelihood, i.e.,

argmin
β:

∑n
i=1βi=0

R̂(β; t) ≡ argmin
β:

∑n
i=1βi=0

 ∑
i,j:i ̸=j

X̃ij(t) log
(
1+ exp(βj(t) −βi(t))

)
(1.2.2)

using a proximal gradient descent algorithm. If the matrix |X̃(t)| of
entrywise absolute values of X̃(t) is considered to be the adjacency
matrix of a weighted directed graph, then the strong connectivity of
this graph is sufficient for the unique existence of the solution of
(1.2.2). The main assumptions needed for their theoretical analysis
are the following.

• The probabilities P(i beats j at time t) are Lispchitz functions of
time t ∈ [0, 1] for all i ̸= j ∈ [n] (same as Assumption 1).

• Each pair of teams {i, j} has been compared at least at one time
point t ′ ∈ T. Translated to our notation, this means that the
union graph ∪t ′∈TGt ′ is complete.

2 logit(x) = ln
(
x
1−x

)
for x ∈]0, 1[
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Bong et al. derive bounds in the ℓ∞ norm for estimating β∗. For a

bandwidth h ≳
(

logn
T

) 1
3
, denoting β̂(t) to be the “MLE” estimator3

(i.e., the solution of (1.2.2)), it is shown [4, Theorem 5.2] that with
high probability,

∥∥β̂(t) −β∗(t)
∥∥∞ ≲ δh(t) +

(
logn
nT

) 1
3

where δh(t) is denoted to be a discrepancy parameter in [4], and is
small when all the teams play the same number of games at all times.
Additionally, they also derive a rate for the uniform error over all

time instants t ∈ [0, 1]. For h ≳
(

log(nT3)
T

) 1
3
, it is shown [4, Theorem

5.3] that with high probability,

sup
t∈[0,1]

∥∥β̂(t) −β(t)∥∥∞ ≲ sup
t∈[0,1]

δh(t) +

(
log(nT)
T

) 1
3

.

We will study in Chapter 2 a similar smoothly evolving dynamic
BTL model using a spectral algorithm. Note that in our work, we will
require analoguous assumptions as in [4]. More precisely, we assume
that the probabilities are Lipschitz functions of time, as done by Bong
et al. [4]. We also suppose that the union of the comparison graphs
needs to be sufficiently connected(see more details in Section 2.1.)

non-transitive matrix recovery [28]. Another important
work in the dynamic setting is that of Li and Wakin [28]. In this work,
they recover the pairwise comparison matrix X(T) from noisy linear
measurements of the matrices X(t) for i ∈ [T ]. They assume that the
matrix X(t) depends on two matrices S(t), gathering the factors influ-
encing the outcomes at time t.

X(t) = S(t)Q⊤ −QS(t)⊤ ∀t ∈ [T ].

The matrix Q contains information on factors that do not depend on
time. The time-dependent data are contained in the matrix S(t) and
evolve under the following generative model.

St = St−1 + Et ∀t ∈ [T ]

3 Note that (1.2.2) is not the MLE for the dynamic BTL model with Lipschitz evolving
win/loss probabilities (Assumption 1). It is in fact the MLE for the static BTL model,
applied to the kernel-smoothed observations.
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where Et is an innovation matrix with i.i.d. centered Gaussian entries.
In the case of a single factor (r = 1) with Q ∈ Rn being the all ones
vector, the observations are for each pair of items {i, j},

Xij(t) = st,i − st,j ∀t ∈ [T ].

The outcomes of the comparisons, as in the BTL, only depend on the
strength of each item at time t. Then by recovering the matrix X(T),
one can subsequently also derive a ranking of the items (see for eg.,
[49]). Denoting M to be the number of measurements available at
each time t and X̂(T) the estimation of X computed as the solution of
an optimization problem, it holds with high probability that

∥∥X(T) − X̂(T)∥∥2
F
≲ max

(
n2
√

logn
MT

,
n3 logn
MT

)
.

1.3 synchronization problem

As discussed in the Introduction, synchronization has many appli-
cations such as computer vision or clocks synchronization but also
ranking. Let us discuss here in more details the problem of Angular
Synchronization [43] and of Translation Synchronization [21] as both
of them are linked to ranking.

1.3.1 Angular Synchronization

Angular synchronization was first introduced and analyzed by Singer
[43] as the problem of synchronization over the group G = SO(2). In
this problem, the goal is to recover angles from noisy measurements
of angles differences. More precisely, denoting θ∗1, . . . , θ∗n ∈ [0, 2π] to
be the true angles, the angle differences θij are obtained as follows.

θij = (θ∗i − θ
∗
j + εij) mod 2π,

where εij denotes the noise. Then, to estimate the values θ∗i , one
needs to solve the maximization problem,

max
x∈Cn

xHAx (1.3.1)

where xH denotes the conjugate transpose of x, Aij = eιθij1{i,j}∈E

and Cn := {z ∈ Cn | |zi| = 1∀i}. Several relaxation of this NP-hard
problem were proven to be efficient in the recovery of θ∗, such as
the semi-definite programming relaxation (SDP) or the spectral relax-
ation [3]. Note that X = xxH is Hermitian positive semidefinite, has
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unit diagonal entries and is of rank one. Hence, dropping the rank
constraint, the SDP relaxation of (1.3.1) can be written as

max
X∈Cn×n

Tr(AX). (1.3.2)

It has been shown [3] that if (1.3.2) admits a solution of rank 1, then
this solution is a consistant estimate of a solution of (1.3.1) under a
Wiegner noise model.

Another method used to solve (1.3.1) is to solve the following relax-
ation.

max
∥x∥2=n

xHAx. (1.3.3)

The solution of (1.3.3) is the top eigenvector of A. Singer [43] has
shown that this eigenvector was an accurate estimate of the vector
eιθ

∗
.

sync-rank . Synchronization over SO(2) has been related to rank-
ing as ranks {1, . . . ,n} can be mapped to the half-circle [O,π]. Hence,
the rank differences can also be interpreted as angles differences,
which is the exact setting of angular synchronization. This method,
called SyncRank, has been computationally studied in [10]. The main
idea is to create a matrix from the pairwise observations of angle
differences θij. We denote

Aij =

{
eιθij if {i, j} ∈ E

0 otherwise.

Then one obtains the estimates v̂i = eιθ̂i as the normalized top
eigenvector of A (as suggested by the works of Singer [43]). One
can then extract the estimated angles θ̂i, and then the corresponding
ranks r̂. The final estimation of the ranks will be the circular permu-
tation of r̂ that minimizes the number of upsets with respect to the
observations.

This method, although performant on data, has not yet been stud-
ied from a theoretical point of view. It is also important to note that
there exist no dynamic version of the Sync-Rank algorithm.

1.3.2 Translation Synchronization

In the setting of Translation Synchronization, the ranks can be mapped
to the real line R, corresponding to strength of each item. The least-
squares approach of Hendrickx et al. [19],[18] is related to Transla-
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tion Synchronization as the BTL model can we linked to this problem.
Indeed, equation (1.1.5) can be seen as translation synchronization
problem (see Remark 6 in Chapter 3 for more details) where the goal
is to estimate the probabilities

logit (P (i prefered to j)) = logw∗
i − logw∗

j . (1.3.4)

As recalled in Section 2.1.2, they provide minimax rate and compu-
tational guarantees for their algorithm.

The problem of Translation Synchronization has been analyzed by
Huang et al. [21]. The model posits that pairwise observations yij are
noisy measurements of the strength differences w∗

i −w
∗
j .

yij = w
∗
i −w

∗
j + εij. (1.3.5)

They propose an iterative algorithm that solves a truncated least-
squares problem at each step, with a geometrically decaying trunca-
tion parameter. They provide ℓ∞ bounds for the case of deterministic
noise as well as for random biased noise. Note that for deterministic
noise, it is shown that the estimation error is only bounded by the
level of noise (up to constants), hence leading to exact recovery of
the weights in the noiseless case. It is also shown that their method
performs well on the Netflix Prize dataset.

We will study a dynamic version of this Translation Synchroniza-
tion problem in the spirit of Figure 4, by applying the static model
(1.3.5) at each time t in Chapter 3. In order to use the temporal aspect
of the data, we will also assume that the weightsw∗

i (t) satisfy a global
smoothness assumption (see Assumption 2), so that the quadratic
variation of the strengths is upper bounded.

denoising smooth signals over a graph . We will propose
in Chapter 3 two algorithms that jointly recover the weights. Our tech-
niques are inspired from the literature on signal denoising in graphs.
In particular, we draw inspiration from [40], where the authors con-
sider a single graph G = ([n],E), a ground truth signal x∗ ∈ Rn and
study the problem of estimating x∗ under the observation model

y = x∗ + ϵ, (1.3.6)

where ϵ is centered random noise. Denoting L to be the unnormalized
Laplacian matrix of G, it is assumed that the quadratic variation of x∗

(i.e., x∗TLx∗) is not large which means that the signal does not change
quickly between neighboring vertices. This is directly linked to our
smoothness assumption above. It is also equivalent to saying that x∗

lies close to the subspace spanned by the eigenvectors corresponding
to the small eigenvalues of L (i.e., the ‘low frequency’ part of L). In
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[40], the authors show for sufficiently smooth x∗ and with G assumed
to be the grid graph that linear estimators such as Laplacian smoothing
and Laplacian eigenmaps attain the minimax rate for estimating x∗ in
the ℓ2 norm. We will introduce in Chapter 3 two estimators for the
Dynamic TranSync model that are related to the Laplacian smoothing
and Laplacian eigenmaps estimators.





2
D Y N A M I C R A N K I N G W I T H T H E B T L M O D E L

In this chapter, we will study the dynamic Bradley-Terry-Luce model,
introduced in Bong et al [4] (see (1.2.1), under a local smoothness as-
sumption. We will adapt the classic Rank Centrality algorithm to the
dynamic setting and provide ℓ2 and ℓ∞ error bounds on our estima-
tor. Section 2.1 presents the dynamic BTL setup and our algorithm.
We gather our main results in Section 2.2 and describe the ℓ2 and
ℓ∞ analysis in Sections 2.3 and 2.4. Our theoretical results are then
illustrated through experiments presented in Section 2.5.

2.1 problem setup and algorithm

notation For any probability vector π ∈ Rn with strictly positive

entries, we define the vector norm ∥x∥π =
√∑n

i=1 πix
2
i . For a matrix

A, the corresponding induced matrix norm is then defined as ∥A∥π =

sup∥x∥π=1
∥∥x⊤A∥∥

π
. Note that some simple inequalities follow from

these definitions.

√
πmin ∥x∥2 ⩽ ∥x∥π ⩽

√
πmax ∥x∥2 and

√
πmin

πmax
∥A∥2 ⩽ ∥A∥π ⩽

√
πmax

πmin
∥A∥2 .

(2.1.1)

2.1.1 BTL model in a dynamic setting

Let us formally introduce our model for dynamic pairwise compar-
isons, inspired by the Bradley-Terry-Luce (BTL) model. We consider
a set of items [n] = {1, 2, . . . ,n}, with a certain quality at each time t ∈
[0, 1], represented by the weight vector w∗

t = (w∗
t,1, . . . ,w∗

t,n)
⊤ ∈ Rn

with w∗
t,i > 0 for each i ∈ [n].

Our data consists of pairwise comparisons on this set of items at
times t ′ on a regular grid T :=

{
i
T | i = 0, . . . , T

}
. The outcomes at

each t ′ ∈ T are gathered into an undirected comparison graph Gt ′ =
([n],Et ′) where Et ′ is the set of edges. While the set of items [n] is
supposed to be the same throughout, the compared items, i.e. the set
of edges Et ′ can change with time.

To model such data, we use the BTL model at each time t ′ ∈ T.
This model posits that the probability that an item j wins over an
item i is proportional to its strength. At each t ′ ∈ T, for each pair of
compared items {i, j} ∈ Et ′ , we perform L independent comparisons.

17
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Their outcomes are independent Bernoulli variables, defined for l ∈
{1, . . . ,L} by y(l)ij (t

′) where

P(y
(l)
ij (t

′) = 1) =
w∗
t ′,j

w∗
t ′,i +w

∗
t ′,j

.

The proportion of times j won over i at time t ′ is given by yij(t ′) =

1
L

L∑
l=1

y
(l)
ij (t

′) and the corresponding true proportion is denoted by

(for any t ∈ [0, 1])

y∗ij(t) := E[yij(t)] =
w∗
t,j

w∗
t,i +w

∗
t,j

∀i ̸= j.

smooth evolution of pairwise outcomes . Our goal is to
recover w∗

t at any time t ∈ [0, 1]. Suppose for the moment that t is on
the grid, then if Gt is connected, w∗

t is identifiable up to a positive
scaling. However in our dynamic setting Gt can be very sparse, and
is not necessarily connected. Therefore for meaningful recovery of
w∗
t , we need to make additional assumptions on the evolution of the

pairwise outcomes over time. To this end, we make the following
smoothness assumption.

Assumption 1 (Lipschitz smoothness). There exists M ⩾ 0 such that

|y∗ij(t) − y
∗
ij(t

′)| ⩽M|t− t ′| ∀t, t ′ ∈ [0, 1], i ̸= j ∈ [n]. (2.1.2)

This assumption suggests that the pairwise outcomes at nearby
time instants are similar, hence it is plausible that w∗

t (at any t ∈ [0, 1])
could be estimated by utilizing the data lying in a neighborhood of t.
To formalize this intuition, let us define a neighborhood at any time
t by

Nδ(t) :=

{
t ′ ∈ T | |t− t ′| ⩽

δ

T

}
. (2.1.3)

where δ ∈ [0, T ]. Note that if δ < 1
2 , then there exists some values of

t for which Nδ(t) is empty; hence we will consider δ ∈ [1/2, T ]. It is
easy to verify that δ ⩽ |Nδ(t)| ⩽ 4δ for all t ∈ [0, 1].

neighborhood graph . For any time t ∈ [0, 1], the data con-
tained in the neighborhood Nδ(t) can be gathered into a union graph,
defined as Gδ(t) = ([n],Eδ(t)) where Eδ(t) = ∪t ′∈Nδ(t)Et ′ . The max-
imum and minimum degree of a vertex in Gδ(t) will be denoted by
dmax,δ(t) and dmin,δ(t) respectively. For each i ̸= j, it will also be use-
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ful to denote the time instants in Nδ(t) where i and j are compared
as

Nij,δ(t) =
{
t ′ ∈ Nδ(t)| {i, j} ∈ Et ′

}
,

along with the quantities

Nmax,δ(t) = max
{i,j}∈Eδ(t)

|Nij,δ(t)| and Nmin,δ(t) = min
{i,j}∈Eδ(t)

|Nij,δ(t)|.

Note that alternatively,

Eδ(t) =
{
{i, j} : i ̸= j, |Nij,δ(t)| ⩾ 1

}
.

general recovery idea . Given the above setup, a general idea
for recovering w∗

t is to first form the union graph Gδ(t), and to then
compute the statistics

ȳij(t) :=
1

|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

yij(t
′) for {i, j} ∈ Eδ(t). (2.1.4)

Suppose for convenience that L → ∞, we have for each {i, j} ∈ Eδ(t)

that

ȳij(t)
L→∞−−−→ ȳ∗ij(t) =

1

|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

y∗ij(t
′).

Due to Assumption 1 we know that∣∣ȳ∗ij(t) − y∗ij(t)∣∣ ⩽Mδ/T , for {i, j} ∈ Eδ(t),

hence if δ = o(T), then for each {i, j} ∈ Eδ(t), we have that ȳ∗ij(t) con-
verges to y∗ij(t) as T → ∞. Moreover, if the corresponding sequence
of graphs Gδ(t) is connected, the identifiability of w∗

t (up to a posi-
tive scaling) is ensured. The connectivity requirement on Gδ(t) is of
course much weaker than requiring the individual graph(s) to be con-
nected, which is also a key difference between the static and dynamic
settings. Also note that the computed statistcs ȳij(t) are nearest neigh-
bor estimators as they average the data over a suitable neighborhood
of t. More generally, one could also compute ȳij(t) via kernel smooth-
ing as considered in [4]. As will be shown later, even if L = 1, consis-

tent recovery of w∗
t is possible provided that δ = o(T), δ T→∞−→ ∞ and

that every {i, j} ∈ Eδ(t) satisfies |Nij,δ(t)|
T→∞−→ ∞.

With the above discussion in mind, a general scheme for recover-
ing w∗

t for any given t ∈ [0, 1] would be to first form Gδ(t) for a
suitable choice of the parameter δ, then compute the statistics ȳij(t)
as in (2.1.4), and finally apply any existing method for the static case
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using the comparison graph Gδ(t) and the data (ȳij(t)){i,j}∈Eδ(t). We
will focus on the Rank Centrality algorithm of Negahban et al. [36] –
a popular spectral algorithm known to achieve state of the art perfor-
mance – and adapt it to our dynamic setting.

2.1.2 Spectral dynamic ranking

The Rank Centrality [36] method is based on the connection between
pairwise comparisons and a random walk on a directed graph. In
the static case, a faithful estimation of the weight vector is given by
the stationary distribution of the Markov chain induced by a suitably
constructed transition matrix. In the dynamic setting, this method
can be adapted for estimating w∗

t by now constructing the transition
matrix using Gδ(t) and the data (ȳij(t)){i,j}∈Eδ(t), as in (2.1.4).

More precisely, we define a transition matrix P̂(t) on this graph
using (ȳij(t)){i,j}∈Eδ(t), with

P̂ij(t) =



ȳij(t)
dδ(t)

= 1
dδ(t)

 1
|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

yij(t
′)

 if {i, j} ∈ Eδ(t)

1− 1
dδ(t)

∑
k̸=i

1

|Nik,δ(t)|

∑
t ′∈Nik,δ(t)

yik(t
′)

 if i = j

0 otherwise
(2.1.5)

where dδ(t) ⩾ dmax,δ(t) is a suitably chosen normalization term.
Then, one can easily verify that at each time t, P̂(t) is a transition
matrix (P̂(t) is stochastic) corresponding to a Markov chain on a fi-
nite state space. Thus there always exists at least one stationary dis-
tribution associated to P̂(t). Moreover, stochastic matrices admit 1 as
leading eigenvalue and so a candidate as the stationary distribution
is its leading left eigenvector, i.e.

π̂(t)⊤ = π̂(t)⊤P̂(t).

Besides, the vector of true weights w∗
t we want to recover can be

seen as the stationary distribution of a transition matrix on the union
graph. Specifically, denoting π∗(t) =

w∗
t∑n

i=1w
∗
t,i

, one can easily show

that π∗(t) is the stationary distribution of the transition matrix

P̄ij(t) =


1

dδ(t)

w∗
t,j

w∗
t,i+w

∗
t,j

if {i, j} ∈ Eδ(t)

1− 1
dδ(t)

∑
k̸=i

w∗
t,k

w∗
t,i +w

∗
t,k

if i = j

0 otherwise

(2.1.6)
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since P̄(t) and π∗(t) verify the detailed balance equation of reversibil-
ity [27]

P̄ij(t)π
∗
i (t) = P̄ji(t)π

∗
j (t) ∀i, j ∈ [n].

One can reasonably expect π̂(t) to be close to π∗(t) as they are sta-
tionary distributions of P̂(t) and P̄(t) respectively, the latter of which
are expected to be close. Indeed, one has the following bias-variance
trade-off

P̂(t) − P̄(t) = P̂(t) − E[P̂(t)]︸ ︷︷ ︸
variance

+ E[P̂(t)] − P̄(t)︸ ︷︷ ︸
bias

.

where the variance term is typically expected to decrease with δ (due
to averaging over Nδ(t)) while the bias term will scale as O(δ/T)
(due to the smoothness assumption 1). Hence for a suitably chosen
δ = o(T) we will then have (for n, T large enough) P̂(t) ≈ P̄(t), which
implies π̂(t) ≈ π∗(t).

Remark 1. For meaningful recovery, the vector π∗(t) clearly has to be
unique. This is the case if the associated Markov chain is irreducible which
in turn is ensured by the connectivity of the underlying graph (here, the
union graph Gδ(t)) and the strict positivity of the weights on its edges [27].
The condition on the weights is guaranteed in our setup since P̄ij(t) > 0 for
each {i, j} ∈ Eδ(t) (indeed, w∗

t,i > 0 for each t ∈ [0, 1] and i ∈ [n]).

Based on the above discussion we can outline the steps of our
method for ranking in the dynamic setting in the form of Algorithm
1. Our goal now is to establish conditions under which π̂(t) is close

Algorithm 1 Spectral algorithm for dynamic ranking (Dynamic Rank
Centrality)

1: Input: Grid T ⊂ [0, 1], and a given time t ∈ [0, 1]. For each
t ′ ∈ T: comparison graph Gt ′ , results of comparisons as statis-
tics (yij(t

′)){i,j}∈Et ′
.

2: Form the neighbourhood graph Gδ(t) = ([n],Eδ(t)) where
Eδ(t) = ∪t ′∈Nδ(t)Et ′ , and Nδ(t) is as in (2.1.3).

3: Compute the transition matrix P̂(t) as in (2.1.5) with dδ(t) ⩾
dmax,δ(t).

4: Compute the leading left eigenvector π̂(t) of P̂(t).
5: Output: π̂(t) ∈ Rn.

to π∗(t) under the ℓ2 and ℓ∞ norms. These results are summarized in
the next section. In particular, we will strive to establish consistency
results (i.e., the error approaching zero) when the grid size T → ∞.

additional definitions . Before proceeding, we need to de-
fine some additional quantities, some being related to the union
graph Gδ(t), which will appear in the following sections. Let Lδ(t) =
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D−1
δ (t)Aδ(t) denote the random walk Laplacian of Gδ(t) [6] , where

Dδ(t) is the diagonal matrix of vertex degrees, and Aδ(t) is its adja-
cency matrix. We denote ξδ(t) = 1− λmax(Lδ(t)) where

λmax(Lδ(t)) := max {λ2(Lδ(t)),−λn(Lδ(t))} ,

is the second largest eigenvalue (in absolute value) of Lδ(t). Note
that Lδ(t) has real eigenvalues since it is similar to the symmetric
Laplacian D−1/2

δ (t)Aδ(t)D
−1/2
δ (t). Let us also denote

b(t) := max
i,j∈[n]

w∗
t,i

w∗
t,j

for all t ∈ [0, 1]

where we will require that b(t) is finite for each t ∈ [0, 1].

2.2 main results

In Section 2.2.1, we present bounds on the ℓ2 error ∥π̂(t) − π∗(t)∥2,
while Section 2.2.2 contains our bounds on the ℓ∞ error ∥π̂(t) − π∗(t)∥∞.
A summary of the notation used in the paper is outlined in tabular
form in Section 2.7.

2.2.1 ℓ2 error bound

For a given sequence of graphs (G(t ′))t ′∈T , the following theorem
provides an explicit ℓ2 error bound (holding w.h.p) which in partic-
ular highlights the dependence on parameters related to the union
graph Gδ(t), the grid size T and the neighborhood size δ. The proofs
of results in this section are outlined in Section 2.3.

Theorem 1. For any given t ∈ [0, 1], suppose that δ ∈ [12 , T ] is such
that n ⩾ c1 logn and ξδ(t) > 0 for some constant c1 > 0. Choosing
dδ(t) ⩾ dmax,δ(t), there exist constants C̃1 ⩾ 15, C̃2 ⩾ 1 such that if

C̃1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

+ 4
Mδ|Eδ(t)|

Tdmax,δ(t)
⩽
ξδ(t)dmin,δ(t)

8dδ(t)b7/2(t)
, (2.2.1)

then it holds with probability at least 1−O(n−10) that

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

⩽ 32
Mδ|Eδ(t)|b

7/2(t)dδ(t)

Tξδ(t)dmin,δ(t)dmax,δ(t)
(2.2.2)

+ 8C̃2
b9/2(t)

ξδ(t)dmin,δ(t)

√
Nmax,δ(t)dmax,δ(t)

LN2min,δ(t)
.

Let us make the following observations.

1. The first term in the RHS of (2.2.2) corresponds to the bias and
arises from the regularity assumption 1, while the second term
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therein is the variance term. Moreover, note that the error de-
pends on δ – either explicitly, or through certain quantities such
as dmax,δ(t),Nmin,δ(t) etc. In order to obtain a more explicit de-
pendence in terms of δ, we will need to make specific assump-
tions on the graphs Gt ′ , t ′ ∈ T. Below, we will consider the
setting where the graphs are Erdös-Renyi graphs and derive ex-
plicit conditions on δ that lead to consistency with respect to
T .

2. The condition (2.2.1) arises from the eigenvector perturbation
result in [9, Theorem 5.1] which requires the noise term (i.e.,
P̂(t) − P̄(t)) to be small compared to the spectral gap of P̄(t)
(i.e., 1− λmax(P̄(t))), see (2.3.5).

3. In the static case, we have t = t ′ for some t ′ ∈ T and only the
graph Gt ′ is observed. Then M = 0 and δ = 1/2, so Nmin,δ(t),
Nmax,δ(t) ≡ 1. Denoting dmin(t),dmax(t), ξ(t) to be the corre-
sponding quantities with the δ suffix suppressed, condition (2.2.1)
is satisfied for L large enough. Moreover, the error bound is then

O(
b9/2(t)

ξ(t)dmin(t)

√
dmax(t)
L ) which matches the ℓ2 bound of Negah-

ban et al. [36, Theorem 1] with the
√

logn factor therein re-
moved, but with an extra b2(t) factor.

Remark 2. The term Nmax,δ(t) is admittedly counterintuitive and is an ar-
tifact of the proof technique. In particular, this occurs due to certain concen-
tration inequalities used within the proof (e.g., Lemma 3). To our knowledge,
similar issues would arise in the static case for analyzing the Rank Central-
ity method if each comparison {i, j} was made Lij times. This would occur,
for instance, in the proof of [36, Lemma 3] due to Hoeffding’s inequality, in
which case both the minimum and maximum of the Lij’s would appear in
the bounds.

Now we consider the important case where the comparison graphs
are Erdös-Renyi graphs, i.e., Gt ′ = G(n,p(t ′)) for each t ′ ∈ T. It
is easily seen that the union graph Gδ(t) is also then Erdös-Renyi
denoted by G(n,pδ(t)) where pδ(t) is given by

pδ(t) = 1−
∏

t ′∈Nδ(t)

(1− p(t ′)). (2.2.3)

In this setting, the bound in Theorem 1 can be simplfied using con-
centration results for parameters related to Gδ(t) (see Lemma 21).
Specifically, we have that if pδ(t) ≳ logn/n, then w.h.p

npδ(t)

2
⩽ dmax,δ(t),dmin,δ(t) ⩽

3npδ(t)

2
; ξδ(t) ⩾

1

2
; |Eδ(t)| ⩽ 2n

2pδ(t).

In particular, we will choose the normalization factor dδ(t) = 3npδ(t)
which is a valid choice (w.h.p). Lemma 21 also states that if
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pδ,sum(t) :=
∑
t ′∈Nδ(t)

p(t ′) ≳ logn, then Nmax,δ(t),Nmin,δ(t) ≍
pδ,sum(t) w.h.p. These considerations lead to the following simpli-
fication of Theorem 1.

Theorem 2. Suppose that Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ T so that Gδ(t) ∼
G(n,pδ(t)) (for any given t ∈ [0, 1]) with pδ(t) as in (2.2.3), and denote
pδ,sum(t) :=

∑
t ′∈Nδ(t)

p(t ′). Choosing dδ(t) = 3npδ(t), let δ ∈ [12 , T ]
be such that n ⩾ c1 logn, npδ(t) ⩾ c0 logn, and pδ,sum(t) ⩾ c2 logn
with constant c1 > 0 as in Theorem 1, and constants c0, c2 ⩾ 1. Then for
constants C̃1, C̃2 as in Theorem 1, if

2C̃1

√
logn

Lnpδ(t)pδ,sum(t)
+ 16

Mδn

T
⩽

1

96b7/2(t)
(2.2.4)

holds, we have with probability at least 1−O(n−10) that

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

⩽ 1536
Mδnb7/2(t)

T

+ 64C̃2b
9/2(t)

√
3

Lnpδ(t)pδ,sum(t)
.

The following remarks are in order.

1. As can be seen, the bias term is O(nδT ) while the variance term
scales as O( 1√

Lnpδ(t)pδ,sum(t)
). Hence if pδ,sum(t) grows with δ,

then the variance error will reduce as δ increases. Furthermore,
if δ = o(T) and δ increases with T then it would imply that
the LHS of (2.2.4) decreases with T , and hence (2.2.4) will be
satisfied for T sufficiently large.

2. In the static case we observe a single comparison graph Gt ′

(for t ′ ∈ T) with t = t ′. Thus pδ,sum(t) ≡ 1 and the condition
pδ,sum(t) ≳ logn is not needed, while pδ(t) = p(t). Hence, if
p(t) ≳ logn

n and L is suitably large, the ℓ2 error is bounded by
O( 1√

Lnp(t)
), which corresponds to the bound obtained by Chen

et al. [9, Theorem 5.2]. So our result is coherent with existing
results for the static case for Erdös-Renyi graphs.

3. The choice dδ(t) = 3npδ(t) ensures that dmax,δ(t) ⩽ dδ(t) w.h.p.
In fact, we could have chosen dδ(t) to be a constant (⩾ 1) mul-
tiple of dmax,δ(t) as well. However for the ℓ∞ analysis later on,
it will be crucial to choose dδ(t) as a constant times npδ(t) for
technical reasons arising in the analysis. Similar considerations
for the choice of the normalization factor exist in the static set-
ting as well (see [8, 9]). Note that this choice of dδ(t) requires
us to know pδ(t), but in case we don’t know pδ(t) in practice,
we can instead use its empirical estimate which can be easily
computed.
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We now derive an appropriate choice for δ that leads to an ℓ2 error
rate of O(T−1/3). To this end, we first need to explicitly show the
dependence on δ for pδ(t),pδ,sum(t). Let us assume for simplicity
that

pmin := min
t ′∈T

p(t ′) > 0. (2.2.5)

Since δ ⩽ |Nδ(t)| ⩽ 4δ, we have for all t ∈ [0, 1] that pδ,sum(t) ⩾ δpmin.
Besides, as shown in Proposition 4, pδ(t) ≳ min {1, δpmin}. Hence if
δpmin ≳ logn then it implies

pδ,sum(t) ≳ logn and pδ(t) ≳ 1 (⩾ logn/n)

meaning that the conditions on pδ(t) and pδ,sum(t) in Theorem 2 are
satisfied.

Remark 3. The condition pδ,sum(t) ≳ logn is needed to ensure that
Nmin,δ(t),Nmax,δ(t) concentrate around pδ,sum(t), as shown in Lemma
21. This is in fact a strong condition as requiring δpmin ≳ logn imposes
that the union graph Gδ(t) is complete (see proof of Lemma 21). We will
show in Section 2.2.3 how to weaken this assumption.

Corollary 1. Under the same notations as in Theorem 2, for all t ∈ [0, 1]
suppose that n ≳ logn and pmin is as in (2.2.5).

Choosing δ = min
{

(b(t))
2
3

(2M)
2
3n(Lpmin)

1
3

T2/3, T
}

and dδ(t) = 3npδ(t), if T

is such that δ ≳ logn
pmin

and

1

b7/2(t)
≳

√
logn
Lnpmin

max
{
(2M)1/3n1/2(Lpmin)

1/6

b1/3(t)T1/3
,
1√
T

}
+Mnmin

{
b2/3(t)

(2M)2/3n(Lpmin)1/3T1/3
, 1
}

,

then with probability at least 1−O(n−10),

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

≲Mnb7/2(t)min
{

b2/3(t)

(2M)2/3n(Lpmin)1/3T1/3
, 1
}

+
b9/2(t)√
Lnpmin

max
{
(2M)1/3n1/2(Lpmin)

1/6

b1/3(t)T1/3
,
1√
T

}
.

The following observations are useful to note.

1. When M > 0, Corollary 1 states that for δ ≍ T2/3, if n, T are
large enough (thus ensuring that all the stated conditions are
satisfied)), then w.h.p ∥π̂(t) − π∗(t)∥2 = O(T−1/3). This matches
the rate for the pointwise risk for estimating univariate Lips-
chitz functions (see for e.g. [37, Theorem 1.3.1]).
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2. If M = 0 then δ = T which makes sense since y∗ij(t) is a con-
stant function for each i ̸= j. Indeed, the problem is then the
same as the setting where the comparison graph is ∪t ′∈TGt ′ ,
and we observe (a potentially different number of) i.i.d pair-
wise outcomes for each given edge in this graph. In this case,
the corollary states that provided T is large enough, the ℓ2 error

is ≲ b9/2(t)√
LnpminT

. This is logically faster than the T−1/3 nonpara-
metric rate, and is analogous to the optimal ℓ2 bound for Erdös
Renyi graphs in the static setting (see [9, Theorem 5.2]).

2.2.2 ℓ∞ error bound

We now discuss our results for bounding the ℓ∞ error ∥π̂(t) − π∗(t)∥∞
at any given time t. Such bounds are particularly desirable in the
context of ranking as they lead to guarantees for recovering the ranks
of the items. We will assume that all the comparison graphs (at each
t ′ ∈ T) are Erdös-Renyi graphs. The following theorem is the ℓ∞
counterpart of Theorem 2, the proofs of results in this section are
outlined in Section 2.4.

Theorem 3. Under the notation and assumptions of Theorem 2, there exists
a constant C̃3 ⩾ 1 such that if additionally

96b
5
2 (t)

(
4Mδ

T
+ C̃3

√
logn
npδ(t)

)
⩽
1

2
, (2.2.6)

then there exist constants C̃4, C̃5, C̃6 ⩾ 1 such that with probability at least
1−O(n−9),

∥π̂(t) − π∗(t)∥∞
∥π∗(t)∥∞ ⩽

(
C̃5γn,δ(t)

√
logn

Lnpδ(t)pδ,sum(t)
+ C̃6

Mnδb
7
2 (t)

T

)

× 12bmax,δ(t)

1− C̃4bmax,δ(t)
√

logn
npδ(t)

,

where γn,δ(t) := (1+
b
5
2 (t)√
logn

max{b2(t), logn√
npδ(t)

}), bmax,δ(t) := maxt ′∈Nδ(t) b(t
′).

As before for Theorem 2, let us interpret Theorem 3 for the static
setting where t = t ′ for some t ′ ∈ T, and only Gt ′ is observed. Then
Theorem 3 states that if np(t) ≳ b5(t) logn, and n,L are large enough,
then w.h.p, the ℓ∞ error is

∥π̂(t) − π∗(t)∥∞
∥π∗(t)∥∞ ≲ b(t)

(
1+

b
5
2 (t)√
logn

max{b2(t),
logn√
np(t)

}

)√
logn
Lnp(t)

.

Hence if b(t) = O(1) then the bound is O(
√

logn
Lnp(t)) which matches

the corresponding bound of Chen et al. [9, Theorem 3].
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Let us now denote

bmax := max
t ′∈[0,1]

b(t ′), γn(t) :=

(
1+

b
5
2 (t)√
logn

max{b2(t),
logn√
n

}

)
(2.2.7)

so that bmax,δ(t) ⩽ bmax. Since pδ(t) ≳ 1 provided that δpmin ≳ logn,
hence γn,δ(t) ≲ γn(t).

Remark 4. Suppose that for every t ∈ [0, 1] and i ̸= j, y∗ij(t) > y∗min, with
y∗min ∈ (0, 12). Then one can show that b(t) is a Lipschitz function with
constant M

y∗2
min

. Note that

1

y∗ij(t)
=

w∗
t,j

w∗
t,i +w

∗
t,j

=⇒ bmax =
1

y∗min
− 1.

Hence, if y∗min ≳ 1, then bmax = O(1) and consequently for every t ′ ∈ [0, 1],
b(t ′) = O(1).

Then as for the ℓ2 case, one can derive a value for δ that leads to a
ℓ∞ error rate of T−

1
3 .

Corollary 2. Under the same notations as in Theorem 3, for all t ∈ [0, 1]
suppose that n ≳ logn, pmin is as in (2.2.5) and bmax,γn(t) are as as in

(2.2.7). Choosing δ = min
{

(γn(t))
2
3 (logn)

1
3

(2M)
2
3nb

7
3 (t)(Lpmin)

1
3

T2/3, T
}

and dδ(t) =

3npδ(t), if T is such that δ ≳ logn
pmin

and

min

{(
(γn(t))

2
3 (M logn)

1
3

2
2
3nb

7
3 (t)(Lpmin)

1
3

)
1

T1/3
,M

}
+

√
logn
n

≲
1

b5/2(t)
,

then with probability at least 1−O(n−9),

∥π̂(t) − π∗(t)∥∞
∥π∗(t)∥∞ ≲

 bmax

1− bmax

√
logn
n


×

[
Mnb7/2(t)min

{
γ
2/3
n (t)(logn)1/3

(2M)2/3nb7/3(t)(Lpmin)1/3T1/3
, 1

}

+ γn(t)

√
logn
Lnpmin

max

{
(2M)1/3n1/2b7/6(t)(Lpmin)

1/6

γ
1/3
n (t)(logn)1/6T1/3

,
1√
T

}]
.

Note that when M > 0 and bmax = O(1), which implies that
b(t) = O(1) and γn(t) = O(1) (see Remark 4), then Corollary 2

asserts that for δ = Θ(T2/3), if n, T are large enough, then w.h.p
∥π̂(t) − π∗(t)∥∞ = O(T−1/3). This matches the rate for the pointwise
risk for estimating univariate Lipschitz functions (see for e.g. [37, The-
orem 1.3.1]).
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2.2.3 Different construction of Gδ(t)

As noted in Remark 3, the condition pδ,sum(t) ≳ logn appearing in
the results of Sections 2.2.1, 2.2.2 is quite strict as it implicitly imposes
that the union graph Gδ(t) is complete. Indeed, this condition comes
from our need to bound the quantities |Nij,δ(t)| with high probability
(see Lemma 21). It appears to be difficult to get meaningful concen-
tration bounds on Nmin,δ(t),Nmax,δ(t) in the sparser regime where
δpmin = o(logn).

One way to avoid these difficulties is to construct a graph such
that |Nij,δ(t)| is already controlled for any i ̸= j. To this end, we will
consider the graph G̃δ(t) = G([n], Ẽδ(t)) in Algorithm 1 where

Ẽδ(t) :=

{
{i, j} : |Nij,δ(t)| ∈

[
max

(
1,
pδ,sum(t)

2

)
, max

(
2pδ,sum(t), 6 log

4

δpmin

)]}
.

(2.2.8)

Lemma 1. Suppose that there exist pmin > 0 and pmax <
1
2 such that

for any t ′ ∈ T, pmin ⩽ p(t ′) ⩽ pmax. Let G̃δ(t) = G([n], Ẽδ(t)) be
constructed as in (2.2.8). Then G̃δ(t) ∼ G(n, p̃δ(t)), and the following is
true.

1. If δpmin ⩾ 3, then p̃δ(t) ⩾ 1− 2e−
1
4 (hence G̃δ(t) is dense) and

Ẽδ(t) :=

{
{i, j} : |Nij,δ(t)| ∈

[
pδ,sum(t)

2
, 2pδ,sum(t)

]}
.

2. If δpmax ⩽ 1
8 , then p̃δ(t) ∈

[
δpmin
4 , 8δpmax

]
and

Ẽδ(t) :=

{
{i, j} : |Nij,δ(t)| ∈

[
1, 6 log

4

δpmin

]}
.

The proof of Lemma 1 is outlined in Section 2.10. We now show
how this can be used to obtain error bounds in the regimes where
δpmin = o(logn). For simplicity, we will only show this for the ℓ2
error, but the idea can be used in an analogous manner to obtain ℓ∞
bounds as well1.

As for the simple union graph Gδ(t), one can introduce analoguous
notations for some specific quantities related to the graph G̃δ(t). Let
us denote d̃min,δ(t) (resp. d̃max,δ(t)) to be the minimal (resp. maximal)
vertex degree in G̃δ(t), and ξ̃δ(t) to be the spectral gap of the random
walk Laplacian of G̃δ(t). Also, let

Ñmin,δ(t) := min
{i,j}∈Ẽδ(t)

|Nij,δ(t)| and Ñmax,δ(t) := max
{i,j}∈Ẽδ(t)

|Nij,δ(t)|.

1 This is omitted due to space considerations.
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Then choosing d̃δ(t) = 3np̃δ(t), one can employ Algorithm 1 using
the data gathered in G̃δ(t), and consequently derive error bounds
for the cases δpmin ≳ 1 (dense regime) and δpmax ≲ 1 (sparse regime).
Note that if Ẽδ(t) is non-empty – which will happen w.h.p – it implies
lower (resp. upper) bounds on Ñmin,δ(t) (resp. Ñmax,δ(t)) from (2.2.8).

Remark 5. To construct G̃δ(t) in practice, we would need to estimate p(t ′)
for each t ′ ∈ T in order to have estimates for pδ,sum(t) and pmin. This was
not the case when working with the union graph Gδ(t).

Theorem 4 (Dense regime). Suppose that n ≳ logn andGt ′ ∼ G(n,p(t ′))
for all t ′ ∈ T so that G̃δ(t) ∼ G(n, p̃δ(t)). Choosing d̃δ(t) = 3np̃δ(t) in
Algorithm 1 with the graph G̃δ(t) and δ = min

{
T , T2/3b2/3(t)

n(2M)2/3(Lpmin)1/3

}
,

if T is such that δpmin ⩾ 3 and

1

b7/2(t)
≳

√
logn
Lnpmin

max
{
(2M)1/3n1/2(Lpmin)

1/6

b1/3(t)T1/3
,
1√
T

}
+Mnmin

{
b2/3(t)

(2M)2/3n(Lpmin)1/3T1/3
, 1
}

,

then with probability at least 1−O(n−10),

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

≲Mnb7/2(t)min
{

b2/3(t)

(2M)2/3n(Lpmin)1/3T1/3
, 1
}

+
b9/2(t)√
Lnpmin

max
{
(2M)1/3n1/2(Lpmin)

1/6

b1/3(t)T1/3
,
1√
T

}
.

Proof. The proof of this theorem is analoguous to the proof of Corol-
lary 1. We simply use Lemma 1 (first part) and Lemma 21 for the
new union graph G̃δ(t) in order to bound d̃min,δ(t), d̃max,δ(t), ξ̃δ(t),
Ñmin,δ(t), Ñmax,δ(t) and |Ẽδ(t)|, w.h.p.

Observe that Theorem 4 gives the same error bound as in Corollary
1, but with the relatively milder condition δpmin ≳ 1. From Lemma 1,
note that this means that G̃δ(t) is still dense. The following theorem
provides an error bound in a sparser regime where logn

npmin
≲ δ ≲ 1

pmax
.

Theorem 5 (Sparse regime). Suppose that n ≳ logn andGt ′ ∼ G(n,p(t ′))
for all t ′ ∈ T so that G̃δ(t) ∼ G(n, p̃δ(t)). Choosing d̃δ(t) = 3np̃δ(t) in
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Algorithm 1 with the graph G̃δ(t) and δ = min
{
T , T

2/3b2/3(t)(logn)1/3

n(2M)2/3(Lpmin)1/3

}
,

if T is such that logn
npmin

≲ δ ≲ 1
pmax

and

1

b7/2(t)
≳

logn√
Lnpmin

max
{
(2M)1/3n1/2(Lpmin)

1/6

b1/3(t)T1/3(logn)1/6
,
1√
T

}
(2.2.9)

+Mnmin

{
b2/3(t)(logn)1/3

(2M)2/3n(Lpmin)1/3T1/3
, 1

}
,

then with probability at least 1−O(n−10),

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

≲Mnb7/2(t)min

{
b2/3(t)(logn)1/3

(2M)2/3n(Lpmin)1/3T1/3
, 1

}

+ b9/2(t)

√
logn
Lnpmin

max
{
(2M)1/3n1/2(Lpmin)

1/6

b1/3(t)T1/3(logn)1/6
,
1√
T

}
.

Proof. Similar proof technique as Corollary 1 using Lemmas 1 and 21

for G̃δ(t).

The above error bound has an extra (logn)1/3 factor as compared
to that of Corollary 1, however the dependence on T is unchanged.
The condition logn

npmin
≲ δ ≲ 1

pmax
implies both a lower and an upper

bound on T , and is of course feasible provided pmin and pmax are of
the same order. Let us instantiate Theorems 4 and 5 on an example to
see the conditions therein more clearly.

Example 1. Let us choose L = 1, b(t) ≍ 1, M ≍ 1 and pmin,pmax ≍ 1
n .

1. (Theorem 5) For δ =
T2/3(logn)1/3

n2/3
, if n(logn)5/2 ≲ T ≲

√
n5

logn ,
then it holds with high probability that

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

≲

(
n logn
T

)1/3
.

2. (Theorem 4) For δ = (Tn)
2/3, if T ≳ n5/2, then it holds with high

probability that

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

≲
(n
T

)1/3
.
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2.3 ℓ2 -analysis of the spectral estimator

We now describe the main ideas that lead to the ℓ2 bound in Theorem
1. We will essentially proceed in three steps following the ideas in [9].

∥π̂(t) − π∗(t)∥2
(i)

⩽
1√

π∗min(t)
∥π̂(t) − π∗(t)∥π∗(t)

(ii)

⩽
8dδ(t)b

7/2(t)

ξδ(t)dmin,δ(t)

∥∥∥π∗(t)⊤(P̂(t) − P̄(t))∥∥∥
2

(2.3.1)
(iii)

⩽
8dδ(t)b

7/2(t)

ξδ(t)dmin,δ(t)
(2.3.2)

×

(
4
Mδ|Eδ(t)|

Tdmax,δ(t)
+ C̃2

√
Nmax,δ(t)dmax,δ(t)b2(t)

Ld2δ(t)N
2
min,δ(t)

)
∥π∗(t)∥2 .

(2.3.3)

(i) The first step is easy to verify, due to the definition of the norm
∥.∥π∗(t)

∥π∗(t) − π̂(t)∥2π∗(t) =

n∑
i=1

π∗i (t)(π
∗
i (t)− π̂i(t))

2 ⩾ π∗min(t) ∥π∗(t) − π̂(t)∥
2
2 .

(ii) This is given by the combination of Lemmas 2, 3 and 4 which in
turn are derived using [9, Theorem 8] and [36, Lemma 6].

(iii) For this step, we can decompose P̂(t) − P̄(t) = ∆(t) +∆1(t) as in
(2.3.6). Then one has to bound

∥∥π∗(t)⊤∆(t)∥∥
2

and
∥∥π∗(t)⊤∆1(t)∥∥2.

The second term is completely deterministic and can be bounded
using Assumption 1. A bound on

∥∥π∗(t)⊤∆(t)∥∥
2

is found follow-
ing the same steps as in the proof of [8, Theorem 9].

2.3.1 Proof of Theorem 1

A bound on ∥π∗(t) − π̂(t)∥π∗(t) is given by [9, Theorem 8], which is
recalled in Section 4.1.1. Denoting λmax(P̄(t)) to be the second largest
eigenvalue of P̄(t) in absolute value, i.e.,

λmax(P̄(t)) = max
{
λ2(P̄(t)),−λn(P̄(t))

}
,

this theorem gives the bound

∥π̂(t) − π∗(t)∥π∗(t) ⩽

∥∥π∗(t)⊤(P̂(t) − P̄(t))∥∥
2

1− λmax(P̄(t)) −
∥∥P̂(t) − P̄(t)∥∥

π∗(t)

(2.3.4)
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provided that the following condition holds.∥∥P̂(t) − P̄(t)∥∥
π∗(t)

< 1− λmax(P̄(t)). (2.3.5)

First let us note that these eigenvalues are real, and so (2.3.5) is well
defined. Indeed, denoting Π∗(t) = diag(π∗(t)) and S = Π∗(t)1/2P̄(t)Π∗(t)−1/2,
S is similar to P̄(t), and S is symmetric due to the reversibility of P̄(t).

To prove (2.3.5), we will use results similar to [36, Lemma’s 3, 4].
The main idea is to write the following decomposition

P̂(t) = P̄(t) + P̂(t) − P̂∗(t)︸ ︷︷ ︸
∆(t)

+ P̂∗(t) − P̄(t)︸ ︷︷ ︸
∆1(t)

(2.3.6)

where P̂∗(t) = EP̂(t) whose entries are given by

P̂∗ij(t) =



1

dδ(t)

 1

|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

w∗
t ′,j

w∗
t ′,i +w

∗
t ′,j

 if {i, j} ∈ Eδ(t)

1−
1

dδ(t)

∑
k̸=i

1

|Nik,δ(t)|

∑
t ′∈Nik,δ(t)

w∗
t ′,k

w∗
t ′,i +w

∗
t ′,k

if i = j

0 otherwise.

We now provide bounds on ∥∆1(t)∥2 and ∥∆(t)∥2 in Lemma’s 2 and
3 respectively. The proofs of all results in this section are outlined in
Section 2.8.

Lemma 2 (Bound on ∥∆1(t)∥2). It holds that ∥∆1(t)∥2 ⩽ 4
Mδ|Eδ(t)|
Tdmax,δ(t)

.

Lemma 3 (Bound on ∥∆(t)∥2). There exists a constant C̃1 ⩾ 15 such that

∥∆(t)∥2 ⩽ C̃1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

with probability at least 1−O(n−10).

The proof of Lemma 2 follows from the smoothness condition in
Assumption 1, while the proof of Lemma 3 follows the proof steps
of [36, Lemma 3]. Next, we show that if ξδ(t) > 0 (which implies
that Gδ(t) is connected) and if the perturbation

∥∥P̂(t) − P̄(t)∥∥
2

is suf-
ficiently small, then we can ensure (2.3.5).

Lemma 4. Denoting ρ(t) = λmax(P̄(t))+
∥∥P̂(t) − P̄(t)∥∥

2

√
π∗

max(t)
π∗

min(t)
, recall

that ξδ(t) = λmax(Lδ(t)) (where Lδ(t) is the Laplacian of Gδ(t)) and
b(t) := maxi,j

w∗
t,i

w∗
t,j

=
π∗

max(t)
π∗

min(t)
. If ξδ(t) > 0 and dδ(t) ⩾ dmax,δ(t), then

we have that 1− λmax(P̄(t)) ⩾
ξδ(t)dmin,δ(t)

4dδ(t)b3(t)
. Moreover, if

∥∥P̂(t) − P̄(t)∥∥
2
⩽
ξδ(t)dmin,δ(t)

8dδ(t)b7/2(t)
(2.3.7)
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then it holds that

1− ρ(t) ⩾
ξδ(t)dmin,δ(t)

8dδ(t)b3(t)
> 0.

The statement is analogous to that of [36, Lemma 4]. The bound
on 1− λmax(P̄(t)) is clearly the crucial statement, and requires using
[36, Lemma 6]. We remark in passing that the dependence on b(t) is
b3(t) in Lemma 4, we could not verify the dependence stated in [36,
Lemma 6] (which is b2(t)). For completeness, we outline the proof of
Lemma 4 in Section 2.8.

Condition (2.3.7) is ensured via Lemma’s 2 and 3 (with high prob-
ability) whenever (2.2.1) holds. Then, (2.1.1) readily implies that

1− λmax(P̄(t)) −
∥∥P̂(t) − P̄(t)∥∥

π∗(t)
⩾ 1− ρ(t) ⩾

ξδ(t)dmin,δ(t)

8dδ(t)b3(t)
> 0,

(2.3.8)

thus ensuring (2.3.5). Using (2.3.4) and (2.3.8) we finally obtain (2.3.1)
as follows.

∥π̂(t) − π∗(t)∥π∗(t) ⩽
8dδ(t)b

3(t)

ξδ(t)dmin,δ(t)

∥∥∥π∗(t)⊤(P̂(t) − P̄(t))∥∥∥
π∗(t)

⩽
8dδ(t)b

7/2(t)

ξδ(t)dmin,δ(t)

∥∥∥π∗(t)⊤(P̂(t) − P̄(t))∥∥∥
2

(2.3.9)

where the last inequality uses (2.1.1).
Finally, we can bound

∥∥π∗(t)⊤(P̂(t) − P̄(t))∥∥
2

using the decomposi-
tion in (2.3.6) along with the triangular inequality, leading to∥∥∥π∗(t)⊤(P̂(t) − P̄(t))∥∥∥

2
⩽
∥∥∥π∗(t)⊤∆(t)∥∥∥

2
+
∥∥∥π∗(t)⊤∆1(t)∥∥∥

2
.

Bounds on
∥∥π∗(t)⊤∆(t)∥∥

2
and

∥∥π∗(t)⊤∆1(t)∥∥2 are provided in the
following lemma’s.

Lemma 5.∥∥∥π∗(t)⊤∆1(t)∥∥∥
2
⩽ ∥π∗(t)∥2 ∥∆1(t)∥2 ⩽ 4

Mδ|Eδ(t)|

Tdmax,δ(t)
∥π∗(t)∥2 . (2.3.10)

The statement follows directly from Lemma 2.

Lemma 6. There exist constants c1 > 0, C̃2 ⩾ 1 such that if n ⩾ c1 logn
then with probability at least 1−O(n−10), we have that

∥∥∥π∗(t)⊤∆(t)∥∥∥
2
⩽ C̃2

√
Nmax,δ(t)dmax,δ(t)b2(t)

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥2 .
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The proof of Lemma 6 follows the ideas in the proof of [9, Theorem
9]. Applying these bounds in (2.3.9) finally leads to the stated bound
in Theorem 1.

2.3.2 Proof of Theorem 2

This theorem follows directly from Theorem 1 and from the pro-
preties of Erdös-Renyi graphs gathered in Lemma 21. Using (2.2.4)
and Lemma 21 along with the choice dδ(t) = 3npδ(t), it holds with
probability at least 1−O(n−10) that

C̃1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

+ 4
Mδ|Eδ(t)|

Tdmax,δ(t)
⩽2C̃1

√
logn

Lnpδ(t)pδ,sum(t)
+ 16

Mδn

T

⩽
1

96b
7
2 (t)

⩽
ξδ(t)dmin,δ(t)

8dδ(t)b
7
2 (t)

.

Hence, condition (2.2.1) is satisfied with high probability and Theo-
rem 1 implies that

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

⩽ 32
Mδ|Eδ(t)|dδ(t)b

7/2(t)

Tξδ(t)dmin,δ(t)dmax,δ(t)
+ 8C̃2

b9/2(t)

ξδ(t)dmin,δ(t)

√
Nmax,δ(t)dmax,δ(t)

LN2min,δ(t)
.

Again, using Lemma 21, we can simplify the above bound so that
with probability at least 1−O(n−10),

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

⩽ 1536
Mδn2pδ(t)b

7/2(t)

Tnpδ(t)
+ 64C̃2

b9/2(t)

npδ(t)

√
3pδ,sum(t)npδ(t)

Lp2δ,sum(t)

⩽ 1536
Mδnb7/2(t)

T
+ 64C̃2b

9/2(t)

√
3

Lnpδ(t)pδ,sum(t)
.

2.3.3 Proof of Corollary 1

Since pδ,sum(t) ⩾ pminδ, therefore the condition δ ≳ logn
pmin

implies
pδ,sum(t) ≳ logn, as well as pδ(t) ≳ 1 (due to Proposition 4), thus
satisfying the requirements of Theorem 2. Additionally, δ is required
to satisfy δ ⩽ T , and also condition (2.2.4), i.e.,√

logn
Lnδpmin

+
Mδn

T
≲

1

b
7
2 (t)

. (2.3.11)
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If δ satisfies the three aforementioned conditions, and if n ≳ logn,
we have with probability at least 1−O(n−10) the ℓ2 bound

∥π̂(t) − π∗(t)∥2
∥π∗(t)∥2

≲
Mδnb

7
2 (t)

T
+

b
9
2 (t)√

Lnδpmin
. (2.3.12)

The optimal choice of δ ∈ (0, T ] that minimizes the RHS of (2.3.12) is
easily verified to be

δ∗ = min

{
(b(t)T)

2
3

(2M)
2
3n(Lpmin)

1
3

, T

}
.

Now it remains to ensure that δ∗ satisfies the previously stated con-
ditions on δ. Clearly δ∗ ⩽ T , and condition (2.3.11) are equivalent to
the stated conditions on T in the corollary. Hence provided δ ≍ δ∗, T
satisfies the stated conditions, and n ≳ logn, we arrive at the stated
ℓ2 bound in the corollary.

2.4 ℓ∞ -analysis of the spectral estimator

The main goal of this section is to present the steps of the proof of
Theorem 3. We will follow the steps of the analysis carried out by
Chen et al. [9], and adapt it to our setting. The proofs of all results
from this section are provided in Section 2.9.

As π̂(t) and π∗(t) are stationary distributions of the transition ma-
trices P̂(t) and P̄(t), then denoting P.m to be the mth column of a
matrix P, it holds for all m ∈ [n] that,

π̂m(t) − π∗m(t) =
(
π̂(t)⊤P̂(t)

)
m

−
(
π∗(t)⊤P̄(t)

)
m

= π̂(t)⊤P̂.m(t) − π∗(t)⊤P̄.m(t)

= π∗(t)⊤(P̂.m(t) − P̄.m(t)) + (π̂(t) − π∗(t))⊤P̂.m(t)

= π∗(t)⊤(P̂.m(t) − P̂∗.m(t))︸ ︷︷ ︸
:=Im0

+ π∗(t)⊤(P̂∗.m(t) − P̄.m(t))︸ ︷︷ ︸
:=Im1

+ (π̂m(t) − π∗m(t))P̂mm(t)︸ ︷︷ ︸
:=Im2

+
∑
j:j̸=m

(π̂j(t) − π
∗
j (t))P̂jm(t).

Let us first focus on bounding
∣∣Im0 ∣∣ , ∣∣Im1 ∣∣ and

∣∣Im2 ∣∣. The last term will
be treated carefully due to the occurrence of some statistical depen-
dencies therein. Since P̂∗(t) = E[P̂(t)], hence

∣∣Im0 ∣∣ can be bounded
using Hoeffding’s inequality.
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Lemma 7. Suppose that npδ(t) ⩾ c0 logn and pδ,sum(t) ⩾ c2 logn for
constants c0, c2 ⩾ 1 from Lemma 21. Then there exists a constant C1 ⩾ 1

such that with probability at least 1−O(n−9),

|Im0 | ⩽ C1

√
logn

Lnpδ(t)pδ,sum(t)
∥π∗(t)∥∞ ∀m ∈ [n]. (2.4.1)

The second term Im1 can be bounded easily using Assumption 1.

Lemma 8. With probability at least 1−O(n−10), we have

|Im1 | ⩽
2Mδ

T
∥π∗(t)∥∞ ∀m ∈ [n]. (2.4.2)

The next lemma shows that with high probability,
∣∣Im2 ∣∣ ≲ ∥π̂(t) − π∗(t)∥∞

for all m ∈ [n].

Lemma 9. Recall that bmax,δ(t) = maxt∈Nδ(t) b(t) and suppose that
npδ(t) ⩾ c0 logn and pδ,sum(t) ⩾ c2 logn for constants c0, c2 ⩾ 1

from Lemma 21. Then there exists a constant C2 ⩾ 1 such that it holds with
probability at least 1−O(n−9) that

|Im2 | ⩽

(
1−

1

12bmax,δ(t)
+C2

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π̂(t) − π∗(t)∥∞ ∀m ∈ [n].

(2.4.3)

The last term to bound is more difficult to handle due to the sta-
tistical dependency between π̂(t) and P̂(t). The idea is then to use
the same “leave-one-out” trick as in [9] and introduce a new matrix
P̂(m)(t) with entries given by (for all i ̸= j)

P̂
(m)
ij (t) =

 P̂ij(t) if i ̸= m, j ̸= m
pδ(t)
dδ(t)

w∗
t,j

w∗
t,j+w

∗
t,i

if i = m or j = m.

To ensure that P̂(m)(t) is a transition matrix, its diagonal entries are
defined as

P̂
(m)
ii (t) = 1−

∑
k̸=i

P̂
(m)
ik (t).

Here, the mth line and column of P̂(t) have been replaced by their
expectation, unconditionally of the union graph Gδ(t). Let us denote
π̂(m)(t) to be the leading left eigenvector of P̂(m)(t). This vector is
now statistically independent of the connectivity and the pairwise
comparison outputs involving the mth item, and one can reasonably
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expect that it is close to π∗(t). Hence, we can decompose the last term
as ∑

j:j̸=m

(
π̂j(t) − π

∗
j (t)

)
P̂jm(t) =

∑
j:j̸=m

(
π̂j(t) − π̂

(m)
j (t)

)
P̂jm(t)︸ ︷︷ ︸

:=Im3

+
∑
j:j̸=m

(
π̂
(m)
j (t) − π∗j (t)

)
P̂jm(t)︸ ︷︷ ︸

:=Im4

.

To bound
∣∣Im3 ∣∣, note that the Cauchy-Schwarz inequality implies

|Im3 | ⩽
√ ∑
j:j̸=m

P̂jm(t)2
∥∥∥π̂(t) − π̂(m)(t)

∥∥∥
2

.

Since for all j ̸= m, P̂jm(t) ⩽ 1
dδ(t)

, hence
∣∣Im3 ∣∣ ⩽ √

dmax,δ(t)

dδ(t)

∥∥π̂(t) − π̂(m)(t)
∥∥
2

.

The important step now is to bound
∥∥π̂(t) − π̂(m)(t)

∥∥
2

since dmax,δ(t) ⩽
dδ(t) w.h.p (when Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t)) due to Lemma
21. This is shown in the following lemma.

Lemma 10. Suppose that npδ(t) ⩾ c0 logn and pδ,sum(t) ⩾ c2 logn for
constants c0, c2 ⩾ 1 from Lemma 21. Then there exist constants C3,C6 ⩾ 1
such that if

96b
5
2 (t)

(
4Mδ

T
+C3

√
logn
npδ(t)

)
⩽
1

2
, (2.4.4)

then it holds with probability at least 1−O(n−9) that for all m ∈ [n],

∥∥∥π̂(m)(t) − π̂(t)
∥∥∥
2
⩽ 192b

5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞+∥π̂(t) − π∗(t)∥∞ .

Consequently, we have with probability at least 1 − O(n−9) that for all
m ∈ [n],

|Im3 | ⩽ 192
b
5
2 (t)√
3npδ(t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞+

1√
3npδ(t)

∥π̂(t) − π∗(t)∥∞ .

(2.4.5)

Finally, we can bound
∣∣Im4 ∣∣ using the statistical independence be-

tween π̂(m)(t) and P̂.m(t), P̂m.(t).

Lemma 11. Suppose that npδ(t) ⩾ c0 logn and pδ,sum(t) ⩾ c2 logn for
constants c0, c2 ⩾ 1 from Lemma 21; n ⩾ c1 logn for the constant c1 > 0
in Theorem 1, and that condition (2.2.4) of Theorem 2 holds. Then there exist
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constants C7,C8,C9 ⩾ 1 such that with probability at least 1−O(n−9),
we have for all m ∈ [n],

|Im4 | ⩽

C7Mnδb 72 (t)T
+C8

b
5
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{
b2(t), logn√

npδ(t)
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 ∥π∗(t)∥∞

+C9

√
logn
npδ(t)

∥π̂(t) − π∗(t)∥∞ .

2.4.1 Proof of Theorem 3

As seen in Section 2.4, the bound in Theorem 3 follows from the
combination of the bounds on Im0 , Im1 , Im2 , Im3 , and Im4 . Note that we
can identify two types of terms in these bounds – those depending on
∥π∗(t)∥∞ and the ones which depend on ∥π̂(t) − π∗(t)∥∞. Then, our
bound can be written as

∥π̂(t) − π∗(t)∥∞ ⩽ α ∥π∗(t)∥∞ +β ∥π̂(t) − π∗(t)∥∞
where β < 1, which in turn implies ∥π̂(t)−π∗(t)∥∞

∥π∗(t)∥∞ ⩽ α
1−β .

We can lower bound the term 1−β as

1−β =1−
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( since pδ,sum(t) ⩾ logn)

(2.4.6)

for some constant C̃ ⩾ 1.
Concerning the terms in α, one can divide them in two groups

depending on whether they depend on T or not. The sum of the
terms depending on T is

2Mδ

T
+ 768

Mδb
5
2 (t)

T
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+C7
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7
2 (t)
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⩽ C̃6
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2 (t)

T
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for some constant C̃6 ⩾ 1. Furthermore, the sum of the terms which
are independent of T is

(
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for some constant C̃5 ⩾ 1, since npδ(t) ⩾ logn. Thus we arrive at the
bound

α ⩽ C̃5γn,δ(t)

√
logn

Lnpδ(t)pδ,sum(t)
+ C̃6

Mnδb
7
2 (t)

T
. (2.4.7)

Combining (2.4.6) and (2.4.7), we readily arrive at the stated bound in
Theorem 3.

2.4.2 Proof of Corollary 2

As in the proof of Corollary 1, since pδ,sum(t) ⩾ pminδ, the condition δ ≳
logn
pmin

implies pδ,sum(t) ≳ logn and pδ(t) ≳ 1. Moreover, δ has to statisfy
δ ⩽ T and condition (2.2.6), i.e.

Mδ

T
+

√
logn
n

≲
1

b
5
2 (t)

.

If δ satisfies these assumptions and if n ≳ logn, we have with probability
at least 1−O(n−9),

∥π̂(t) − π∗(t)∥∞
∥π∗(t)∥∞ ≲

bmax

1− bmax
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(2.4.8)

The optimal choice of δ ∈ (0, T ] minimizing the RHS of (2.4.8) is given by

δ∗ = min

{
(γn(t)T)

2
3 (logn)

1
3

(2M)
2
3nb

7
3 (t)(Lpmin)

1
3

, T

}
.

It now remains to check that δ∗ satisfies the aforementioned conditions on
δ. Clearly δ∗ ⩽ T while δ∗ ≳ logn

pmin
and condition (2.2.6) are ensured for the

stated conditions on T . Hence, for δ ≍ δ∗, if T satisfies the stated conditions
and n ≳ logn, we arrive at the stated expression for the ℓ∞ error bound in
the corollary.
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2.5 experiments

We now empirically evaluate the performance of our method via numerical
experiments2 on synthetic data, and on a real dataset. We will in particular
compare our method with the MLE approach of Bong et al. [4], as it is for
now the only other method we are aware of that theoretically analyzes a
‘smoothly evolving’ dynamic BTL model as us.

2.5.1 Synthetic data

The synthetic data is generated as follows.

1. For i ∈ [n], we simulate the strength of item i across the grid w∗
i ∈

R|T| using the same gaussian process GP(µi,Σi) as in [4].

• µi = (µi(0), . . . ,µi(T)) with µi(t) ∼ N(0, 0.1) for all t ∈ T, and

• Σi is a Toeplitz symmetric matrix, with its coefficients in the first
row defined as Σi,1t = 1− t

T+1 .

We then define w∗
i = exp (GP(µi,Σi)) ∈ R|T| for each i ∈ [n].

2. For all t ∈ T, we simulate an Erdös-Renyi comparison graphG(n,p(t))
with p(t) chosen randomly from the interval [ 1n , logn

n ]. We check that
the union graph of all the data on the grid T is connected. Indeed, it
is a sufficient condition for the existence at all times t ∈ [0, 1] of a δ
such that the union graph Gδ(t) is connected (which is required for
the ranking recovery).

3. For all t ∈ T, for all 1 ⩽ i < j ⩽ n and for all l ∈ [L], we draw the

outcomes of the comparisons as y(l)ij (t) ∼ B
(

w∗
t,j

w∗
t,i+w

∗
t,j

)
and define

y
(l)
ji (t) = 1− y

(l)
ij (t).

Starting with an initial value of δ as in Corollary 1 (δ ≈ T 23 ), we increase its
value till the union graph Gδ(t) is connected. We then recover the weight
vectors w∗

t for all t ∈ T using Algorithm 1. This process is repeated over 60
Monte Carlo runs.

Apart from the MLE approach [4], we also evaluate against an adaptation
of the simple Borda Count method from the static setting to the dynamic
setup. Let us describe briefly those two methods.

mle method. The analysis of Bong et al [4] relies on a kernel smooth-
ing of the data followed by a maximum likelihood estimation. We choose the
bandwidth parameter h = T−3/4 for the kernel smoothing, as suggested in
their synthetic experiments3. An alternative is to use a cross-validation pro-
cedure to tune h, but we avoid this method for computational reasons (see
Tables 1, 2).

borda count. This method, analysed by Ammar and Shah [1] in the
static case, gives a score to each item based on its win rate. To estimate the

2 Code available at : https://github.com/karle-eglantine/Dynamic_Rank_

Centrality
3 see their GitHub repository https://github.com/shamindras/bttv-aistats2020

https://github.com/karle-eglantine/Dynamic_Rank_Centrality
https://github.com/karle-eglantine/Dynamic_Rank_Centrality
https://github.com/shamindras/bttv-aistats2020
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scores at time t in our dynamic setup, we compute the win rate of each item
i using the neighborhood Nδ(t) as

s(t, i) =

∑
t ′∈Nδ(t)

Number of times i has won at time t ′∑
t ′∈Nδ(t)

Number of times i has been compared at time t ′
.

The scores (s(t, i))i∈[n] then yield a ranking of the items at time t (the higher
the winrate for an item, the better its rank). Note that the neighborhood
used to compute these scores is the same neighborhood used in the DRC
estimation. Hence, the parameter δ is chosen as its theoretical optimal value
δ∗ ≃ T2/3.

ranking error . In order to compare the rankings produced by these
three methods, we compute for all them an estimation error with the error
metric defined by Negahban [36]. Let π∗ = w∗

∥w∗∥1
denote the normalized

true weight vector and σ denote an estimated ranking, with σi < σj ⇔ i is
better than j. The error metric is then defined4 as follows.

Dπ∗(σ) =

√√√√ 1

2n ∥π∗∥22

∑
i<j

(π∗i − π
∗
j )
21(π∗

i−π
∗
j )(σi−σj)>0

.

It has been shown in [36, Lemma 1] that this error criterion is related to the
ℓ2 error that we have bounded in Theorem 1. If the ranking σ comes from a
weight vector π̂, then

Dπ∗(σ) ⩽
∥π∗ − π̂∥2
∥π∗∥2

. (2.5.1)

Although (2.5.1) doesn’t necessarily require π̂ to satisfy ∥π̂∥1 = 1, we will
impose this in what follows since π̂ will be the strength estimates returned
by the methods being compared.

results . The results are summarized below.

1. In Figure 5, we consider T ranging from 10 to 150, fix L = 5 and take
n = 100 or n = 400. We plot the mean ℓ2 error ∥π∗ − π̂∥2 versus T
for our Algorithm 1 (dubbed DRC for Dynamic Rank Centrality), as
well as the MLE method (since Borda Count is not designed for recov-
ering the latent weight vector w∗). One can observe that the ℓ2 error
decreases with T for both DRC and MLE and they achieve similar per-
formance, which is consistent with the theoretical results developed
in the present paper, and in [4]. The error bars illustrate that the vari-
ance of the errors typically decreases with T . We note that the error
curves for n = 400 are lower than those for n = 100, and the variance
of the errors are also slightly smaller for n = 400.

2. We show in Figure 6 the evolution of the mean ranking error Dπ∗(σ)

as a function of T , where for each T the mean is taken across all time
instants in T, and all Monte Carlo runs. We compute this error for
the DRC, MLE and Borda Count methods, with σ,π denoting the es-

4 The quantities π∗, σ and π̂ are obviously defined at the time instant t where the
estimation is being carried out, however we suppress the dependence on t for ease
of exposition.
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timated ranks and weights by these algorithms. Using (2.5.1), this im-
plies that Dπ∗(σ) should decrease with T which is what we observe
in Figure 6a. As for the ℓ2 error, MLE and DRC have similar perfor-
mance. The Borda Count method performs well for rank recovery, as
its error is only slightly worse than the other methods.

3. We plot the evolution of the ℓ∞ error ∥π∗ − π̂∥∞ versus T for n = 100

and n = 400 in Figure 7. We observe that the errors decrease with T ,
as shown theoretically, and that both MLE and DRC methods perform
similarly.

4. In Figure 8, we show that the optimal value derived theoretically for
δ is close to the numerically optimal δ. The minimal ℓ2 error is indeed
obtained for δ close to δ∗ ≃ T2/3.

5. As the DRC and MLE methods performs similarly in term of the es-
timation error, it is of interest to look at their computational cost. We
track the running time of both methods, for different values of n and
T , as shown in Tables 1 and 2. We can see that the DRC method is
far quicker than the MLE. Indeed, the MLE method solves an opti-
misation problem via a gradient descent algorithm whereas the DRC
method only solves an eigenvalue problem.

(a) Evolution of the ℓ2 error for n = 100 (b) Evolution of the ℓ2 error for n = 400

Figure 5: Evolution of the ℓ2 error with T for Dynamic Rank
Centrality, the MLE and Borda Count method for n = 100 and
n = 400. The results are averaged over the grid T as well as 60
Monte Carlo runs.

2.5.2 Real dataset: NFL data

We now evaluate our method on a real dataset which consists of the results
of National Football League (NFL) games for each season between 2009 and
2015, that are available in the nflWAR package [47]. The aim is to recover
the ranking of the n = 32 teams at the end of each season, which contains
T = 16 rounds. The dataset is hence composed of 16 comparison graphs
with 32 nodes each, and comparison outcomes (yij(t))i,j,t, where yij(t) = 1
if team j beat team i during in round t. We fit our model to this data by
estimating the underlying strengths (and therefore the ranks) of the teams,
at the end of a season. To do so, we tune the parameter δ using a Leave-One-
Out Cross-Validation (LOOCV) procedure, described below.
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(a) Evolution of the error metric Dw(σ) for
n = 100

(b) Evolution of the error metric Dw(σ) for
n = 400

Figure 6: Evolution of the errors Dw(σ) with T for Dynamic
Rank Centrality, the MLE and Borda Count method for n = 100
and n = 400. The results are averaged over the grid T as well as
60 Monte Carlo runs.

(a) n = 100 (b) n = 400

Figure 7: Evolution of the ℓ∞ error with T for Dynamic Rank
Centrality and MLE method for n = 100 and n = 400. The
results are averaged over the grid T as well as 60 Monte Carlo
runs.

T 10 20 30 40 50

DRC 0.48±0.01 0.97±0.02 1.53±0.02 2.13±0.03 2.83±0.04

MLE 2.17±0.84 3.69±0.52 6.06±0.72 9.14±1.23 12.2±2.42

T 60 70 80 90 100

DRC 3.61±0.03 4.44±0.05 5.36±0.07 6.44±0.07 7.38±0.66

MLE 15.67±3.2 21.61±4.16 34.62±20.68 27.35±3.08 39.5±15.93

T 110 120 130 140 150

DRC 8.25±0.14 9.52±0.14 10.38±0.18 11.85±0.13 13.2±0.19

MLE 56.86±38.95 48.69±9.54 50.27±4.35 55.93±2.62 65.99±5.97

Table 1: Average running time and associated standard devia-
tions (in seconds) of DRC and MLE methods for n = 100. Re-
sults are averaged over 20 Monte Carlo runs.
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(a) n = 100 (b) n = 400

Figure 8: Performance of the Dynamic Rank Centrality method
for different value of parameter δ, with T = 100, n = 100 and
n = 400. We highlight in red on the x-axis the theoretical optimal
value of parameter δ = T2/3. The results are averaged over the
grid T as well as 20 Monte Carlo runs.

T 10 20 30 40 50

DRC 5.41± 0.41 10.21±0.06 16.07±1.86 20.93±0.18 26.56± 0.18

MLE 37.04±35.7 68.92±16.68 130.84±39.06 148.84±27.88 251.99±175.51

T 60 70 80 90 100

DRC 32.58±0.40 39.55±1.52 46.24±1.33 53.25± 0.65 59.58±2.28

MLE 292.74±93.97 337.47±50.92 553.51±306.46 583.90±297.78 551.54± 56.71

Table 2: Average running time and associated standard devia-
tions (in seconds) of DRC and MLE methods for n = 400. Re-
sults are averaged over 15 Monte Carlo runs.

1. Fix a list of potential values of δ and compute for each of them the
associated estimates of the strength π̂ at the end of the season.

2. For every possible values of δ, repeat the following steps several times.

• Select randomly a game during the season, identified by a time
t and the pair of compared teams {i, j}.

• Consider the dataset obtained by removing the outcome yij(t)
of this game. Use this dataset to compute the estimated strength
π̃(t) at this time t.

• Compute the prediction error
∥∥∥yij(t) − π̃j(t)

π̃j(t)+π̃i(t)

∥∥∥
2

.

We then compute the mean of these prediction errors for each value
of δ.

3. Finally, we select δ∗ which has the smallest mean prediction error,
and take as our estimate of the strengths at the end of the season the
associated vector π̂.

An analogous LOOCV procedure is performed in the MLE approach [4] to
tune the bandwidth parameter h.

We then compare our estimated ranking with the ones obtained by the
MLE method, the Borda Count method and also with the ELO ratings. The
latter are reputed to be relevant estimations of the teams qualities and are
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also openly available [35]. Using the ELO ratings as ground truth, we as-
sess the performance of the methods by comparing the estimated top 10

teams and by computing the correlation between the ELO rankings and the
estimated ranks as well as correlations between the ELO ratings and the
estimated strengths.

top 10 teams . Figure 9 contains the estimation of the top 10 teams by
all the methods, for the seasons 2011 to 2015. Considering the ELO ranks as
the true ranks, one can observe that the DRC and MLE methods perform
similarly, as a majority of the top 10 teams are recovered for each season. The
Borda Count does not perform as well as it did on synthetic data; we can
observe that it recovers the same ranks for several teams. This is explained
by the fact that in this dataset, each team plays a small number of games,
and thus the win rates take a finite (and small) number of values. However,
it still recovers a large fraction of the top 10 teams.

Figure 9: The top 10 teams for seasons 2011 to 2015, using ELO
ranks, DRC, the MLE, and Borda Count. Teams highlighted in
yellow for a particular recovery method are teams appearing in
the top 10 list for ELO rankings. Teams highlighted in green are
recovered at the same rank as in the ELO rankings.

correlation with elo rankings . As all of the methods estimate
the ranking of the teams, one can also compute the Kendall rank correlation5

5 The Kendall rank correlation [25] between two rankings x,y ∈ {1, . . . ,n} is defined
as

τ :=
2

n(n− 1)

∑
i<j

sign(xi − xj)sign(yi − yj).

• If τ = 1, x and y are the same.

• If τ = −1, x and y are reversed.

• If τ = 0, the correlation between x and y is no better than the correlation
between 2 random rankings.
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between the estimated rankings of each method with the ELO ranking (con-
sidered as the true ranks). The results, gathered in Table 3, show that the
methods have similar performance.

2011 2012 2013 2014 2015

DRC -0.092 0.104 0.116 0.245 -0.201

MLE -0.052 0.161 0.125 0.125 -0.084

Borda 0.1 0.104 0.08 0.209 -0.036

Table 3: Kendall rank correlations between the ELO ranks and
the estimated ranks by DRC, MLE and Borda Count methods at
the end of each seasons. All of the methods perform similarly.

correlation with elo ratings . The ELO ratings provide a vec-
tor of underlying ground truth strengths for each team. Then, as the DRC
and MLE methods estimate the underlying strengths, one can also compute
the correlation between the estimated strengths and the ELO ratings (all nor-
malized such that their ℓ1 norm is 1). These results are gathered in Table 4

and show that the DRC performs much better than the MLE for all seasons.
In particular, it shows that even if the ranks are not perfectly recovered, the
estimated strengths by DRC are positively correlated with the ELO ratings.

2011 2012 2013 2014 2015

DRC 0.425 0.518 0.284 0.478 0.414

MLE 0.092 -0.237 -0.337 -0.026 0.002

Table 4: Correlations between the normalized ELO ratings and
the DRC and MLE estimated strengths at the end of each seasons.
Note here that DRC performs much better than the MLE.

2.6 comparison with related work

We now provide a detailed discussion with closely related work for dynamic
ranking. As mentioned in Section 1.2, existing theoretical results for the
dynamic ranking setup are limited, and the only works we are aware of are
the recent results of Bong et al. [4] and of Li and Wakin [28]. We now discuss
the results of Bong et al in comparison to our work, as both works focus on
a dynamic version of the BTL model. The dynamic BTL model studied by
Bong et al. [4] is closely related to the one we presented in Section 2.1. Let
us recall their model (see Section 1.2 for more details).

logit (P(i beats j at time t)) = β∗i (t) −β
∗
j (t)

where β∗(t) represents the vector of scores at time twithw∗(t) = exp(β∗(t)).
The main differences with our model are that (a) the grid T can be non-
uniform, and (b) the number of comparisons Lij(t) made for each pair {i, j}
at each time t ∈ [0, 1] can vary. We assumed the grid T to be uniform only for
simplicity, our analysis can be easily extended to handle the non-uniform
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setting as long as T is “sufficiently regular”. Similarly, one could poten-
tially extend our analysis to handle varying number of comparisons Lij(t),
although the current proof technique will lead to the presence of the maxi-
mum of the Lij(t)’s (recall Remark 2). The assumption Lij(t) = L was only
made for simplicity in the proofs as is typically done for the static setting
(see for eg., [8, Remark 3]). The main assumptions needed for their theoreti-
cal analysis are the following.

• The probabilities P(i beats j at time t) are Lispchitz functions of time
t ∈ [0, 1] for all i ̸= j ∈ [n] (same as Assumption 1 in this chapter).

• Each pair of teams {i, j} has been compared at least at one time point
t ′ ∈ T. Translated to our notation, this means that the union graph
∪t ′∈TGt ′ is complete.

We remark that this last assumption is a stronger assumption than the
connectivity assumption on the union graph Gδ(t) that we required in our
analysis.

Let us recall the ℓ∞ bounds they obtained in order to compare them with
our results. Denoting β̂(t) to be the “MLE” estimator (i.e., the solution of
(1.2.2)), then

• for a bandwidth h ≳
(

logn
T

) 1
3 , it holds w.h.p. [4, Theorem 5.2]

∥∥β̂(t) −β∗(t)∥∥∞ ≲ δh(t) +

(
logn
nT

) 1
3

;

• for h ≳
(

log(nT3)
T

) 1
3

, it holds w.h.p. [4, Theorem 5.3]

sup
t∈[0,1]

∥∥β̂(t) −β(t)∥∥∞ ≲ sup
t∈[0,1]

δh(t) +

(
log(nT)
T

) 1
3

.

Note that they also recover the T−1/3 rate for pointwise estimation of Lips-
chitz functions.

While we provide pointwise estimation error bounds for any given t ∈
[0, 1], it is also possible to extend our results to obtain error bounds holding
uniformly over all t ∈ [0, 1]. The first main idea here would be to observe
that there are O(T) different number of neighborhoods in the construction
of P̂(t) in (2.1.5), which implies that there are O(T) different possible values
of π̂(t) over all t ∈ [0, 1]. Secondly, one can verify that π∗(t) is a Lipschitz
function of t. These two facts together with a union bound argument can be
used to establish ℓ2 and ℓ∞ bounds holding uniformly over t ∈ [0, 1], with
probability at least 1−O(Tn−c) where c is a suitably large constant. In our
analysis, we had taken c to be 10 (resp. 9) for the ℓ2 (resp. ℓ∞) analysis, but
it can be any suitably large value, at the expense of worsening the other
constants in the accompanying theorems in Section 2.2.

2.7 summary of notation
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Symbol Definition

T Uniform grid of [0, 1], with size T + 1.

Gt ′ = ([n],Et ′) Undirected comparison graph at time t ′ ∈ T

w∗
t ∈ Rn Ground-truth strengths at time t ∈ [0, 1]

y∗ij(t) and yij(t)
(resp. population and empirical) Fraction of times j beats i
at time t

M Lipschitz constant of y∗ij(t)

L
Number of independent comparisons made for each {i, j} ∈
Et ′

Nδ(t) Neighborhood of size δ, see (2.1.3)

Nij,δ(t) {t ′ ∈ Nδ(t)| {i, j} ∈ Et ′}

Gδ(t) = ([n],Eδ(t)) “Union graph” where Eδ(t) =
{
{i, j} : i ̸= j, |Nij,δ(t)| ⩾ 1

}
Nmax,δ(t) and Nmin,δ(t)

Nmax,δ(t) = max{i,j}∈Eδ(t) |Nij,δ(t)| and Nmin,δ(t) =
min{i,j}∈Eδ(t) |Nij,δ(t)|

P̂(t), P̄(t) ∈ Rn×n
Empirical and population transition matrices resp., see
(2.1.5) and (2.1.6)

π̂(t),π∗(t) ∈ Rn Stationary distributions of P̂(t) and P̄(t) resp.

dmax,δ(t),dmin,δ(t) Maximum (resp. minimum) degree of Gδ(t)

dδ(t) (⩾ dmax,δ(t)) Normalization term in (2.1.5)

b(t) maxi,j∈[n]
w∗
t,i

w∗
t,j

for all t ∈ [0, 1]

bmax,δ(t) maxt ′∈Nδ(t) b(t
′)

Lδ(t) Random walk Laplacian of Gδ(t)

ξδ(t)
ξδ(t) = 1 − λmax(Lδ(t)) where λmax(Lδ(t)) is the second
largest eigenvalue (in absolute value) of Lδ(t)

Gt ′ = G(n,p(t ′)) Erdös-Renyi graph at t ′ ∈ T with parameter p(t ′) ∈ [0, 1]

pδ(t) 1−
∏
t ′∈Nδ(t)

(1− p(t ′)), see (2.2.3)

pδ,sum(t)
∑
t ′∈Nδ(t)

p(t ′)

pmin,pmax pmin := mint ′∈T p(t
′) and pmax := maxt ′∈T p(t

′)

Table 5: Summary of symbols used throughout the chapter along
with their definitions.

2.8 proofs of results in section 2 .3

2.8.1 Proof of Lemma 2

Recall that the entries of ∆1(t) are given by

∆1,ij(t) =



1

dδ(t)|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

(
y∗ij(t

′) − y∗ij(t)
)

if {i, j} ∈ Eδ(t),

−
∑
k̸=i

∆1,ik(t) if i = j,

0 otherwise.
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Let us denote D1(t) to be the diagonal matrix containing the elements
∆1,ii(t) and ∆1(t) = ∆1(t) −D1(t). As D1(t) is diagonal, we then have

∥∆1(t)∥2 ⩽ ∥D1(t)∥2 +
∥∥∆1(t)∥∥2 ⩽ max

i

∣∣∆1,ii(t)
∣∣+ ∥∥∆1(t)∥∥F .

Let us first bound
∥∥∆1(t)∥∥F. Assumption 1 implies that for any {i, j} ∈ Eδ(t),∣∣∆1,ij(t)

∣∣ ⩽ 1

dδ(t)|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

∣∣∣y∗ij(t ′) − y∗ij(t)∣∣∣
⩽

1

dδ(t)|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

M
∣∣t ′ − t∣∣

⩽
Mδ

Tdδ(t)
,

which in turn implies
∥∥∆1(t)∥∥F ⩽ 2

M|Eδ(t)|δ
Tdδ(t)

. In order to bound ∥D1(t)∥2,
we simply note that

∣∣D1,ii(t)
∣∣ =

∣∣∣∣∣∣−
∑
j̸=i

∆1,ij(t)

∣∣∣∣∣∣ ⩽ dmax,δ(t)max
j̸=i

∣∣∆1,ij(t)
∣∣ ⩽ dmax,δ(t)

Mδ

Tdδ(t)
⩽
Mδ

T

since dδ(t) ⩾ dmax,δ(t). Hence ∥D1(t)∥2 ⩽ Mδ
T , and so

∥∆1(t)∥2 ⩽
Mδ

T

(
1+ 2

|Eδ(t)|

dδ(t)

)
⩽
Mδ

T

(
1+ 2

|Eδ(t)|

dmax,δ(t)

)
⩽ 4

Mδ|Eδ(t)|

Tdmax,δ(t)
,

since 1 ⩽ 2 |Eδ(t)|
dmax,δ(t)

.

□

2.8.2 Proof of Lemma 3

Our goal is to bound ∥∆(t)∥2 for the random matrix ∆(t) = P̂(t) − P̄(t),
whose entries are

∆ij(t) =



1

dδ(t)|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

(
yij(t

′) − y∗ij(t
′)
)

if {i, j} ∈ Eδ(t)

−
∑
k̸=i

∆ik(t) if i = j

0 otherwise.

Once again ∆(t) can be decomposed as ∆(t) = D(t) +∆(t) where D(t) is a
diagonal matrix and ∆(t) contains its off-diagonal coefficients. Since

∥∆(t)∥2 ⩽ ∥D(t)∥2 +
∥∥∆(t)∥∥

2
,

we will bound ∥D(t)∥2 and
∥∥∆(t)∥∥

2
using ideas from the proof of [36,

Lemma 3].
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2.8.2.1 Bound on ∥D(t)∥2

The matrix D(t) is diagonal, hence ∥D(t)∥2 = maxi∈[n] |Dii(t)| where the
diagonal entries are given by

Dii(t) = −
∑
k̸=i

∑
t ′∈Nik,δ(t)

L∑
l=1

1

L|Nik,δ(t)|dδ(t)
(y

(l)
ik (t

′) − y∗ik(t
′)).

This is a sum of at most Ldmax,δ(t)Nmax,δ(t) independent and centered vari-

ables, which almost surely lie in the interval
[
− 1
Ldδ(t)Nmin,δ(t)

, 1
Ldδ(t)Nmin,δ(t)

]
.

Thus, by applying Hoeffding’s inequality (see Theorem 13 in Section 4.1.1)
we obtain for any s > 0

P (|Dii(t)| > s) ⩽ 2 exp

(
−
2s2L2d2δ(t)N

2
min,δ(t)

4Ldmax,δ(t)Nmax,δ(t)

)
= 2 exp

(
−
Ld2δ(t)N

2
min,δ(t)s

2

2Nmax,δ(t)dmax,δ(t)

)

which implies via a union bound that

P(∥D(t)∥2 > s) ⩽ 2n exp

(
−
Ld2δ(t)N

2
min,δ(t)s

2

2Nmax,δ(t)dmax,δ(t)

)
.

Choosing s = c1
√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

where c1 ⩾ 2 is a constant, we have

that

∥D(t)∥2 ⩽ c1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

with probability at least 1− 2n1−
c2
1
2 .

2.8.2.2 Bound on
∥∥∆(t)∥∥

2
when dmax,δ(t)Nmax,δ(t) ⩽ logn

In order to bound
∥∥∆(t)∥∥

2
, we first recall the standard inequality ∥M∥2 ⩽√

∥M∥1 ∥M∥∞, and also ∥M∥1 =
∥∥M⊤∥∥∞. Since ∆(t) is skew-symmetric, it

follows that ∥∥∆(t)∥∥
2
⩽
√∥∥∆(t)∥∥

1

∥∥∆(t)⊤∥∥
1
⩽
∥∥∆(t)∥∥

1
.

Our aim now is to bound
∥∥∆(t)∥∥

1
. Recall that for every i ̸= j,

∆ij(t) =


1

dδ(t)|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

(
yij(t

′) − y∗ij(t
′)
)

if {i, j} ∈ Eδ(t)

0 otherwise.

Now denoting for all i,

Ri(t) =
∑
j̸=i

∑
t ′∈Nij,δ(t)

∣∣∣∣∣
L∑
l=1

1

Ldδ(t)|Nij,δ(t)|
y
(l)
ij (t

′) − y∗ij(t
′)

∣∣∣∣∣ ,
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clearly
∥∥∆∥∥

2
⩽ maxi∈[n]

∑n
j=1

∣∣∆ij(t)∣∣ ⩽ maxi∈[n] Ri(t) (since ∆ii(t) = 0).
In order to bound Ri(t) for any given i ∈ [n], let us first denote

Si =
{
(ξ

(i)
jt ′ ){i,j}∈Et ′ ,t ′∈Nij,δ(t)

| ξ
(i)
jt ′ ∈ {−1, 1}

}
.

Since the random variables
ξ
(i)

jt ′
|Nij,δ(t)|

(
y
(l)
ij (t

′) − y∗ij(t
′)
)

lie almost surely in

the interval [− 1
Nmin,δ(t)

, 1
Nmin,δ(t)

], we obtain via a simple union bound argu-
ment, along with Hoeffding’s inequality, that

P(Ri(t) > s) ⩽
∑

ξ(i)∈Si

P

∑
j̸=i

∑
t ′∈Nij,δ(t)

ξ
(i)
jt ′

L∑
l=1

1

Ldδ(t)|Nij,δ(t)|
(y

(l)
ij (t

′) − y∗ij(t
′)) > s


⩽

∑
ξ(i)∈Si

P

∑
j̸=i

∑
t ′∈Nij,δ(t)

ξ
(i)
jt ′

L∑
l=1

1

|Nij,δ(t)|
(y

(l)
ij (t

′) − y∗ij(t
′)) > Ldδ(t)s


⩽

∑
ξ(i)∈Si

exp

(
−
L2d2δ(t)N

2
min,δ(t)s

2

2Ldmax,δ(t)Nmax,δ(t)

)

⩽
∑

ξ(i)∈Si

exp

(
−
Ld2δ(t)N

2
min,δ(t)s

2

2dmax,δ(t)Nmax,δ(t)

)
.

Since |Si| ⩽ 2dmax,δ(t)Nmax,δ(t) for each i ∈ [n], we obtain

P(Ri(t) > s) ⩽ 2
dmax,δ(t)Nmax,δ(t) exp

(
−
Ld2δ(t)N

2
min,δ(t)s

2

2dmax,δ(t)Nmax,δ(t)

)

= exp

(
dδ(t)Nmax,δ(t) ln 2−

Ld2δ(t)N
2
min,δ(t)s

2

2dmax,δ(t)Nmax,δ(t)

)
.

Applying a union bound over [n] now leads to

P(
∥∥∆(t)∥∥

2
> s) ⩽ n exp

(
dmax,δ(t)Nmax,δ(t) ln 2−

Ld2δ(t)N
2
min,δ(t)s

2

2dmax,δ(t)Nmax,δ(t)

)
.

Finally, since dmax,δ(t)Nmax,δ(t) ⩽ logn by assumption we obtain for any
constant c2 > 2 that

P

(∥∥∆(t)∥∥
2
> c2

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

)
⩽ n2−

c2
2
2 .

2.8.2.3 Bound on
∥∥∆(t)∥∥

2
when dmax,δ(t)Nmax,δ(t) ⩾ logn

In this case, we will use Bernstein’s inequality for random matrices (see
Theorem 14 in Section 4.1.1). For each i < j ∈ [n], let Zij,l(t ′) be a n× n
matrix with all entries equal to zero except for Zij,lij (t ′) and Zij,lji (t ′) defined
as follows.

Z
ij,l
ij (t ′) =

C
(l)
ij (t

′)

Ldδ(t)|Nij,δ(t)|
and Z

ij,l
ji (t ′) = −

C
(l)
ij (t

′)

Ldδ(t)|Nij,δ(t)|
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where C(l)
ij (t

′) = y
(l)
ij (t

′) − y∗ij(t
′) if {i, j} ∈ Eδ(t), which is a centered

Bernoulli variable, and C(l)
ij (t

′) = 0 otherwise. Hence, E[Zij,l(t ′)] = 0. Now
we can write

∆(t) =
∑
i<j

{i,j}∈Eδ(t)

∑
t ′∈Nij,δ(t)

L∑
l=1

Zij,l(t ′).

To apply Bernstein’s inequality, we first note that
∥∥Zij,l(t ′)∥∥

2
is uniformly

bounded for all t ′, i, j.

∥∥∥Zij,l(t ′)∥∥∥
2
⩽
∥∥∥Zij,l(t ′)∥∥∥

F
=

√
2
∣∣∣C(l)
ij (t

′)
∣∣∣

Ldδ(t)|Nij,δ(t)|
⩽

√
2

Ldδ(t)Nmin,δ(t)
=: B.

Since Zij,l(t ′) are skew-symmmetric and independent matrices, we also
have that

ν =
∥∥∥E[∆(t)∆(t)⊤]

∥∥∥
2
=

∥∥∥∥∥∥∥∥
∑
i<j

{i,j}∈Eδ(t)

∑
t ′∈Nij,δ(t)

L∑
l=1

−E[Zij,l(t ′)2]

∥∥∥∥∥∥∥∥
2

.

The matrix (Zij,l(t ′))2 only has two non-zero entries, which are at the lo-

cations (i, i) and (j, j), and they are equal to −
C

(l)
ij (t ′)2

L2d2δ(t)|Nij,δ(t)|
2 . Then its

expectation (which also has only two non zero entries) satisfies

−E[Zij,l(t ′)2]i,i = −E[Zij,l(t ′)2]j,j =
E[C

(l)
ij (t

′)2]

L2d2δ(t)|Nij,δ(t)|
2
⩽

Var(C
(l)
ij (t

′))

L2d2δ(t)N
2
min,δ(t)

⩽
1

4L2d2δ(t)N
2
min,δ(t)

.

since Var(C(l)
ij (t

′)) = y∗ij(t
′)(1− y∗ij(t

′)) ⩽ 1/4. Furthermore, E[∆(t)∆(t)⊤]

is a diagonal matrix with positive entries, hence

ν = max
k∈[n]

∣∣∣∣∣∣∣∣
 ∑

i<j
{i,j}∈Eδ(t)

∑
t ′∈Nij,δ(t)

L∑
l=1

−E[Zij(t ′)2]


kk

∣∣∣∣∣∣∣∣
⩽
Ldmax,δ(t)Nmax,δ(t)

4L2d2δ(t)N
2
min,δ(t)

=
Nmax,δ(t)dmax,δ(t)

4Ld2δ(t)N
2
min,δ(t)

.

Finally applying Bernstein’s inequality, it holds for any s > 0 that

P(
∥∥∆(t)∥∥

2
> s) ⩽ 2n exp

(
−

3s2

6ν+ 2Bs

)

⩽ 2n exp

−
3s2

6Nmax,δ(t)dmax,δ(t)

4Ld2δ(t)N
2
min,δ(t)

+ 2s
√
2

Ldδ(t)Nmin,δ(t)


⩽ 2n exp

(
−

6Ld2δ(t)N
2
min,δ(t)s

2

3Nmax,δ(t)dmax,δ(t) + 4
√
2Nmin,δ(t)dδ(t)s

)
.
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Choosing s = c3

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

for a constant c3 ⩾ 2 and since

dmax,δ(t)Nmax,δ(t) ⩾ logn by assumption, it holds that

P

(∥∥∆(t)∥∥
2
> c3

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

)
⩽ 2n

1−
6c2
3

3+4
√
2c3 . (2.8.1)

Finally, we observe that up to a multiplicative constant, the bounds for
∥D(t)∥2 and

∥∥∆(t)∥∥
2

are the same. Thus, for constants c1, c2, c3 ⩾ 2, we
have

∥∆(t)∥2 ⩽ (c1 + max {c2, c3})

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

.

with probability at least 1− 2n1−
c2
1
2 − max

{
n2−

c2
2
2 , 2n

1−
6c2
3

3+4
√
2c3

}
. In sim-

pler words, there exists a constant C̃1 ⩾ 15 such that with probability at
least 1−O(n−10),

∥∆(t)∥2 ⩽ C̃1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

. (2.8.2)

□

2.8.3 Proof of Lemma 4

The steps below follow the proof of [36, Lemma 4] and are provided for
completeness. We will first show 1− λmax(P̄(t)) ⩾

ξδ(t)dmin,δ(t)

4dδ(t)b3(t)
using [36,

Lemma 6]. To this end, let us denote Qij(t) = 1
di(t)

1{i,j}∈Eδ(t)
where di(t)

denotes the degree of the ith vertex in Gδ(t) and 1 is an indicator variable.
Clearly, Q(t) has a unique stationary distribution as it is irreducible (since
Gδ(t) is connected), defined as µi(t) =

di(t)∑n
j=1 dj(t)

. It satisfies the detailed

balanced equations of reversibility

µi(t)Qij(t) = µj(t)Qji(t).

Using [36, Lemma 6], we obtain

1− λmax(P̄(t))

1− λmax(Q(t))
⩾
α

β
with α = min

{i,j}∈Eδ(t)

π∗i (t)P̄ij(t)

µi(t)Qij(t)
, β = max

i

π∗i (t)

µi(t)
.

(2.8.3)

Note that the transition matrixQ is equal to the Laplacian Lδ(t) of the graph
Gδ(t) and so 1− λmax(Q(t)) = ξδ(t)(t). We now need to suitably bound α
and β.

Denoting di(t) to be the degree of node i in Gδ(t), clearly
∑n
j=1 dj(t) =

2|Eδ(t)|. Hence we have

µi(t)Qij(t) =
1∑n

k=1 dk(t)
⩽

1

|Eδ(t)|
for {i, j} ∈ Eδ(t) and µi(t) =

di(t)

2|Eδ(t)|
⩾
dmin,δ(t)

2|Eδ(t)|
for i ∈ [n]
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It is also easy to see that

π∗i (t)P̄ij(t) ⩾
1

2dδ(t)nb2(t)
for {i, j} ∈ Eδ(t), and π∗i (t) ⩽

b(t)

n
for i ∈ [n]

thus leading to the bounds

α ⩾
|Eδ(t)|

2dδ(t)nb2(t)
and β ⩽

2b(t)|Eδ(t)|

ndmin,δ(t)
.

Plugging this in (2.8.3) leads to

1− λmax(P̄(t)) ⩾
ξδ(t)|Eδ(t)|ndmin,δ(t)

4dδ(t)nb3(t)|Eδ(t)|
⩾
ξδ(t)dmin,δ(t)

4dδ(t)b3(t)
> 0

which together with (2.3.7) readily leads to the stated lower bound on 1−
ρ(t).

□

2.8.4 Proof of Lemma 6

We will bound
∥∥π∗(t)⊤∆(t)∥∥

2
, using the same ideas as in the proof of [9,

Theorem 9]. Recall that the entries of ∆(t) are given by

∆ij(t) =



1

dδ(t)|Nij,δ(t)|

∑
t ′∈Nij,δ(t)

(yij(t
′) − y∗ij(t

′)) if {i, j} ∈ Eδ(t),

−
∑
k̸=i

∆ik(t) if i = j,

0 otherwise.

Let ∆l(t) denote the lower triangular part of ∆(t) and ∆u(t) its upper tri-
angular part, both having zeros on the diagonal. Let us define the diagonal
matrices

∆diag,l(t) = −diag

∑
j<i

∆ij(t)


i=1...n

and ∆diag,u(t) = −diag

∑
j>i

∆ij(t)


i=1...n

.

(2.8.4)

Note that both these matrices have independent entries. The matrix ∆(t) is
now decomposed as

∆(t) = ∆l(t) +∆u(t) +∆diag,l(t) +∆diag,u(t)

and the triangle inequality implies∥∥∥π∗(t)⊤∆(t)∥∥∥
2
⩽
∥∥∥π∗(t)⊤∆l(t)∥∥∥

2︸ ︷︷ ︸
=Il

+
∥∥∥π∗(t)⊤∆u(t)∥∥∥

2︸ ︷︷ ︸
=Iu

+
∥∥∥π∗(t)⊤∆diag,l(t)

∥∥∥
2︸ ︷︷ ︸

=Idiag,l

+
∥∥∥π∗(t)⊤∆diag,u(t)

∥∥∥
2︸ ︷︷ ︸

=Idiag,u

. (2.8.5)
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The goal is to bound each of these terms separately, using the same method
for all of them. Let us describe the steps for the first term Il =

∥∥π∗(t)⊤∆l(t)∥∥
2

.
For all j ∈ [n],

[
π∗(t)⊤∆l(t)

]
j
=

n∑
i=1

π∗i (t)∆
l
ij(t) =

∑
i>j

π∗i (t)∆ij(t).

For any pair {i, j} ∈ Eδ(t), ∆ij(t) is a sum of at most LNmax,δ(t) indepen-
dent centered random variables, thus

[
π∗(t)⊤∆l(t)

]
j

is a sum of at most
LNmax,δ(t)d

l
j(t) independent centered random variables, where dlj(t) is de-

fined as
dlj(t) := |{i ∈ [n] | {i, j} ∈ Eδ(t) and i > j}|.

By applying Hoeffding’s inequality we obtain for any s > 0,

P(

∣∣∣∣[π∗(t)⊤∆l(t)]j
∣∣∣∣ > s) ⩽ 2 exp

(
−

2L2N2min,δ(t)d
2
δ(t)s

2

4LNmax,δ(t)d
l
j(t) ∥π∗(t)∥

2∞
)

⩽ 2 exp

(
−

LN2min,δ(t)d
2
δ(t)s

2

2Nmax,δ(t)d
l
j(t) ∥π∗(t)∥

2∞
)

.

Hence,
[
π∗(t)⊤∆l(t)

]
j

can be seen as a sub-Gaussian random variable
with sub-Gaussian norm at most c1σj with c1 > 0 a constant, and σ2j =

2dlj(t)Nmax,δ(t)∥π∗(t)∥2∞
Ld2δ(t)N

2
min,δ(t)

. As dlj(t) < dmax,δ(t), it holds that

σ2j ⩽ 2
Nmax,δ(t)dmax,δ(t)

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥2∞
Denoting σ2 = 2c1

Nmax,δ(t)dmax,δ(t)

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥2∞, then we see that π∗(t)⊤∆l(t)

is a random vector with independent, centered σ- sub-gaussian entries. Then,

I2l =
∥∥∥π∗(t)⊤∆l(t)∥∥∥2

2
=

n∑
j=1

[π∗(t)⊤∆l(t)]2j

is a quadratic form of a sub-gaussian vector, so its expectation satisfies
E[I2l ] ⩽ c2nσ

2 for some constant c2 > 0.
Using the Hanson-Wright inequality [39, Theorem 1.1], we have for any

s > 0 that

P(|I2l −E[I2l ]| > s) ⩽ 2 exp
(
−c3min

(
s2

σ4n
,
s

σ2

))
= 2 exp

(
−c3

s

σ2
min

( s

σ2n
, 1
))

for c3 > 0 a constant. Choosing s =
√
C1
c3
σ2
√
n lognwith C1 ⩾ 1 a constant,

note that s
nσ2

=
√
C1
c3

√
logn
n ⩽ 1 if n ⩾ C1

c3
logn, and so,

P

(
|I2l − E[I2l ]| >

√
C1
c3
σ2
√
n logn

)
⩽ 2 exp−C1 logn = 2n−C1 .
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Then, it holds with probability atleast 1−O(n−C1) that

I2l ⩽ E[I2l ] + σ
2
√
n logn

⩽ c2nσ
2 +

√
C1
c3
σ2
√
n logn

⩽ nσ2(c2 +

√
C1
c3

√
logn
n

)

⩽ C2
nNmax,δ(t)dmax,δ(t)

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥2∞
⩽ C2

Nmax,δ(t)dmax,δ(t)b
2(t)

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥22

as ∥π∗(t)∥22 ⩾ nπ∗min(t)
2 ⩾ n

b2(t)
π∗max(t)

2 = n
b2(t)

∥π∗(t)∥2∞.

The same analysis leads to the same bound for I2u, I2diag,l, I
2
diag,u. Thus

for any constant C1 ⩾ 1, there exists a constant C2 ⩾ 1 such that it holds
with probability greater than 1−O(n−C1) that

∥∥∥π∗(t)⊤∆(t)∥∥∥
2
⩽ C2b(t)

√
Nmax,δ(t)dmax,δ(t)

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥2 . (2.8.6)

2.9 proofs of results in section 2 .4

The proofs are largely inspired from the proofs in [9, Section C], which are
adapted to our problem setup.

2.9.1 Proof of Lemma 7

Consider any given collection of graphs (Gt ′)t ′∈Nδ(t). Then following the
same ideas as in [9, Lemma 2], we have for any given m ∈ [n] that

Im0 =

n∑
j=1

π∗j (t)(P̂jm(t) − P̂∗jm(t))

=
∑
j:j̸=m

π∗j (t)(P̂jm(t) − P̂∗jm(t)) + π∗m(t)(P̂mm(t) − P̂∗mm(t))

=
∑
j:j̸=m

(π∗j (t) + π
∗
m(t))(P̂jm(t) − P̂∗jm(t))

=
∑
j:j̸=m

(π∗j (t) + π
∗
m(t))

∑
t ′∈Njm,δ(t)

L∑
l=1

y(l)jm(t ′) − y∗jm(t ′)

Ldδ(t)|Njm,δ(t)|

 .

Applying Hoeffding’s inequality, it holds for any constant C1 ⩾ 2,

P(|Im0 | > C1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

∥π∗(t)∥∞) ⩽ 2n−
C2
1
2 .

If Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t), then using Lemma 21, it holds with
probability at least 1 −O(n−10) that Nmax,δ(t)dmax,δ(t)

d2δ(t)N
2
min,δ(t)

⩽ 4
3npδ(t)pδ,sum(t) .
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Hence after a union bound over [n], we conclude that there exists a suitably
large constant C2 ⩾ 1 such that

P

(
∀m ∈ [n] : |Im0 | > C2

√
logn

Lnpδ(t)pδ,sum(t)
∥π∗(t)∥∞

)
⩽ O(n−9).

□

2.9.2 Proof of Lemma 8

For any given collection of graphs (Gt ′)t ′∈Nδ(t), recall that the entries of
P̂∗(t) − P̄(t) have already been bounded in the proof of Lemma 2 as follows

∣∣∣P̂∗ij(t) − P̄ij(t)∣∣∣ ⩽


Mδ
Tdδ(t)

if i ̸= j, {i, j} ∈ Eδ(t)

Mδ
T if i = j

0 otherwise.

(2.9.1)

This implies for all m ∈ [n] that

|Im1 | =

∣∣∣∣∣∣
∑
j:j ̸=m

π∗j (t)(P̂
∗
jm(t) − P̄jm(t)

∣∣∣∣∣∣ ⩽ ∥π∗(t)∥∞
(
dmax,δ(t)

Mδ

Tdδ(t)
+
Mδ

T

)
.

Due to Lemma 21, we know that 3npδ(t) = dδ(t) ⩾ dmax,δ(t) holds with
probability at least 1−O(n−10). This leads to the statement in Lemma 8.

□

2.9.3 Proof of Lemma 9

We will follow the steps in [9, Lemma 3]. Recalling that Im2 = (π̂m(t) − π∗m(t)) P̂mm(t),
let us bound P̂mm(t) using the decomposition

P̂mm(t) =
(
P̂mm(t) − P̂∗mm(t)

)
+ P̂∗mm(t).

For any given collection of graphs (Gt ′)t ′∈Nδ(t), note that

P̂mm(t)− P̂∗mm(t) = −
1

Ldδ(t)

∑
j:j ̸=m

∑
t ′∈Njm,δ(t)

L∑
l=1

1

|Njm,δ(t)|

(
y
(l)
mj(t

′) − y∗mj(t
′)
)

is a sum of independent, centered random variables. Then Hoeffding’s in-
equality implies for each m ∈ [n],

P

(∣∣P̂mm(t) − P̂∗mm(t)
∣∣ > C1√Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

)
⩽ 2n−

C2
1
2

for any constant C1 ⩾ 2.
If Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t), then once again combining this

result with Lemma 21, we see (after a union bound over [n]) that there
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exists a suitably large constant C2 ⩾ 1 such that with probability at least
1−O(n−9),

∣∣P̂mm(t) − P̂∗mm(t)
∣∣ ⩽ C2

√
logn

Lnpδ(t)pδ,sum(t)
, ∀m ∈ [n].

Now we bound
∣∣P̂∗mm(t)

∣∣. Recalling that bmax,δ(t) = maxt ′∈Nδ(t) b(t
′) and

b(t ′) = maxi,j∈[n]

w∗
t ′ ,i

w∗
t ′ ,j

, we have for any given collection of graphs (Gt ′)t ′∈Nδ(t)

that all m ∈ [n],

P̂∗mm(t) = 1−
∑
j:j̸=m

1

dδ(t)|Njm,δ(t)|

∑
t ′∈Njm,δ(t)

y∗mj(t
′)

= 1−
∑
j:j̸=m

∑
t ′∈Njm,δ(t)

1

dδ(t)|Njm,δ(t)|

(
w∗
t ′j

w∗
t ′j +w

∗
t ′m

)

⩽ 1−
∑
j:j̸=m

∑
t ′∈Njm,δ(t)

1

dδ(t)|Njm,δ(t)|

(
1

1+ b(t ′)

)

⩽ 1−
dmin,δ(t)

dδ(t)

1

2bmax,δ(t)
.

If Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t), then we have using Lemma 21 that
dmin,δ(t) ⩾ npδ(t)/2 with probability at least 1−O(n−10), this in turn im-
plies that

∣∣P̂∗mm(t)
∣∣ ⩽ 1− 1

12bmax,δ(t)
for all m ∈ [n].

Hence, we conclude that there exists a suitably large constant C2 ⩾ 1

such that with probability at least 1−O(n−9),

|Im2 | ⩽

(
1−

1

12bmax,δ(t)
+C2

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π̂(t) − π∗(t)∥∞ , ∀m ∈ [n].

□

2.9.4 Proof of Lemma 10

This proof follows the lines of the proof of [9, Lemma 4]. Consider any given
collection of graphs (Gt ′)t ′∈Nδ(t). Using the properties of ∥.∥π∗(t) in (2.1.1)
and Theorem 11 with the matrices P̂(t), P̂(m)(t), P̄(t), it holds for all m ∈ [n]

that

∥∥∥π̂(t) − π̂(m)(t)
∥∥∥
2
⩽

∥∥∥π̂(m)(t)⊤(P̂(m)(t) − P̂(t))
∥∥∥
π∗(t)√

π∗min(t)
(
1− λmax(P̄(t)) −

∥∥P̂(t) − P̄(t)∥∥
π∗(t)

)
⩽

√
π∗max(t)

π∗min(t)

(
8dδ(t)b

3(t)

ξδ(t)dmin,δ(t)

)∥∥∥π̂(m)(t)⊤(P̂(m)(t) − P̂(t))
∥∥∥
2

(2.9.2)

where we used (2.3.8).
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In order to bound
∥∥∥π̂(m)(t)⊤

(
P̂(m)(t) − P̂(t)

)∥∥∥
2

, we need to get rid of

the statistical dependency between P̂(m)(t) and π̂(m)(t). To do so, let us
introduce P̂(m),G(t), defined for i ̸= j as

P̂
(m),G
ij (t) =

 P̂ij(t) if i ̸= m, j ̸= m
1

dδ(t)

w∗
t,j

w∗
t,j+w

∗
t,i
1{i,j}∈Eδ(t)

if i = m or j = m.

Its diagonal entries are defined as

P̂
(m),G
ii (t) = 1−

∑
k:k̸=i

P̂
(m),G
ik (t)

to ensure that P̂(m),G(t) is a transition matrix. Note that the mth line and
columns of P̂(m)(t) are the expectations of those in P̂(m),G(t). Moreover,
P̂
(m),G
.m (t) = P̄.m(t) and P̂(m),G

m. (t) = P̄m.(t). Now starting with the decom-
position

π̂(m)(t)⊤(P̂(m)(t)− P̂(t)) = π̂(m)(t)⊤
(
P̂(t) − P̂(m),G(t)

)
︸ ︷︷ ︸

Jm1

+ π̂(m)(t)⊤
(
P̂(m),G(t) − P̂(m)(t)

)
︸ ︷︷ ︸

Jm2

we will separately bound
∥∥Jm1 ∥∥2,

∥∥Jm2 ∥∥2.

2.9.4.1 Bound on
∥∥Jm1 ∥∥2

Consider any given collection of graphs (Gt ′)t ′∈Nδ(t). Since P̂(m),G
.m (t) =

P̄.m(t), we have the decomposition

Jm1,m =

n∑
j=1

π̂
(m)
j (t)

(
P̂jm(t) − P̄jm(t)

)
=

∑
j:j̸=m

π̂
(m)
j (t)

(
P̂jm(t) − P̄jm(t)

)
+ π̂

(m)
m (t)

(
P̂mm(t) − P̄mm(t)

)
=

∑
j:j̸=m

(π̂
(m)
j (t) + π̂

(m)
m (t))

(
P̂jm(t) − P̄jm(t)

)
=

∑
j:j̸=m

(π̂
(m)
j (t) + π̂

(m)
m (t))

(
P̂jm(t) − P̂∗jm(t)

)
+

∑
j:j̸=m

(π̂
(m)
j (t) + π̂

(m)
m (t))

(
P̂∗jm(t) − P̄jm(t)

)
.

Since π̂(m)(t) is independent of (P̂jm(t) − P̂∗jm(t))j̸=m, the first term can be
bounded using Hoeffding’s inequality as

P

∣∣∣∣∣∣
∑
j:j ̸=m

(π̂
(m)
j (t) + π̂

(m)
m (t))

(
P̂jm(t) − P̂∗jm(t)

)∣∣∣∣∣∣ > C1
∥∥∥π̂(m)(t)

∥∥∥∞
√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

 ⩽ 2n−
C2
1
2

for any constant C1 ⩾ 2. Moreover, due to (2.9.1), we have for all m that

∑
j:j̸=m

(π̂
(m)
j (t)+ π̂

(m)
m (t))

(
P̂∗jm(t) − P̄jm(t)

)
⩽ 2dmax,δ(t)

(
Mδ

Tdδ(t)

)∥∥∥π̂(m)(t)
∥∥∥∞ .
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Hence for any given m ∈ [n], it holds with probability at least 1−O(n−
C2
1
2 )

that

∣∣Jm1,m
∣∣ ⩽ (2dmax,δ(t)Mδ

Tdδ(t)
+C1

√
Nmax,δ(t)dmax,δ(t) logn

Ld2δ(t)N
2
min,δ(t)

)∥∥∥π̂(m)(t)
∥∥∥∞ .

(2.9.3)

Let us now bound the other coefficients of Jm1 . For any j ̸= m,

Jm1,j =
∑
i:i ̸=j

π̂
(m)
i (t)(P̂ij(t) − P̂

(m),G
ij (t)) + π̂

(m)
j (t)

(
P̂jj(t) − P̂

(m),G
jj (t)

)
=π̂

(m)
m (t)

(
P̂mj(t) − P̂

(m),G
mj (t)

)
+ π̂

(m)
j (t)

(
P̂jj(t) − P̂

(m),G
jj (t)

)
=(π̂

(m)
m (t) + π̂

(m)
j (t))

(
P̂mj(t) − P̂

∗
mj(t) + P̂

∗
mj(t) − P̄mj(t)

)
=⇒

∣∣∣Jm1,j

∣∣∣ ⩽ 2
∥∥∥π̂(m)(t)

∥∥∥∞
(∣∣∣P̂mj(t) − P̂∗mj(t)∣∣∣+ Mδ

Tdδ(t)

)
where we used (2.9.1) and the fact that the mth rows of P̂(m),G(t) and P̄(t)
are identical. Using Hoeffding’s inequality and a union bound, we have

P

(
max
j ̸=m

∣∣∣P̂mj(t) − P̂∗mj(t)∣∣∣ > C2
√
Nmax,δ(t) logn
Ld2δ(t)N

2
min,δ(t)

)
⩽ 2n1−

C2
2
2

for any constant C2 ⩾ 2. Hence, for any j ̸= m, we have with probability at

least 1−O(n1−
C2
2
2 ) that

∣∣∣Jm1,j

∣∣∣ ⩽
 2

∥∥∥π̂(m)(t)
∥∥∥∞
(

Mδ
Tdδ(t)

+C2

√
Nmax,δ(t) logn
Ld2δ(t)N

2
min,δ(t)

)
if {j,m} ∈ Eδ(t)

0 otherwise.

(2.9.4)

Finally combining (2.9.3), (2.9.4) along with Lemma 21, we see after taking
a union bound over [n] that when Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t), then
there exists a suitably large constant C3 ⩾ 1 such that with probability at
least 1−O(n−9),

∥Jm1 ∥2 ⩽

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)∥∥∥π̂(m)(t)
∥∥∥∞ ∀m ∈ [n].

(2.9.5)

2.9.4.2 Bound on
∥∥Jm2 ∥∥2

Consider again any given collection of graphs (Gt ′)t ′∈Nδ(t). Note that the
off-diagonal entries of P̂(m)(t) − P̂(m),G(t) are non zero if and only if they
belong to the mth row /column. Then for i ̸= j with i = m or j = m, we
have (

P̂(m)(t) − P̂(m),G(t)
)
ij

=
1

dδ(t)

(
pδ(t) − 1{i,j}∈Eδ(t)

)
y∗ij(t)
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Moreover, the diagonal entries are given as

(
P̂(m)(t) − P̂(m),G(t)

)
ii

=

 − 1
dδ(t)

∑
j:j̸=m

(
pδ(t) − 1{m,j}∈Eδ(t)

)
y∗mj(t) if i = m

− 1
dδ(t)

(
pδ(t) − 1{i,m}∈Eδ(t)

)
y∗im(t) if i ̸= m.

Let us first show that π∗(t)⊤
(
P̂(m)(t) − P̂(m),G(t)

)
= 0 by considering the

cases below.

1. For any j ̸= m,

[
π∗(t)⊤

(
P̂(m)(t) − P̂(m),G(t)

)]
j
=
π∗m(t)

dδ(t)
(pδ(t) − 1{m,j}∈Eδ(t)

)y∗mj(t)

−
π∗j (t)

dδ(t)
(pδ(t) − 1{j,m}∈Eδ(t)

)y∗jm(t)

=
pδ(t) − 1{m,j}∈Eδ(t)

dδ(t)

(
π∗m(t)y∗mj(t) − π

∗
j (t)y

∗
jm(t)

)
=0.

This equality comes from the definition of π∗(t) and y∗jm(t).

2. For j = m,[
π∗(t)⊤

(
P̂(m)(t) − P̂(m),G(t)

)]
m

=−
π∗m(t)

dδ(t)

∑
k:k̸=m

(pδ(t) − 1{m,k}∈Eδ(t)
)y∗mk(t) +

1

dδ(t)

∑
k:k̸=m

π∗k(t)(pδ(t) − 1{k,m}∈Eδ(t)
)y∗km(t)

=
1

dδ(t)

∑
k:k̸=m

(
pδ(t) − 1{k,m}∈Eδ(t)

)
(π∗k(t)y

∗
km(t) − π∗m(t)y∗mk(t))

=0.

Hence, π∗(t)⊤
(
P̂(m)(t) − P̂(m),G(t)

)
= 0 and it holds that

Jm2 =
(
π̂(m)(t) − π∗(t)

)⊤ (
P̂(m)(t) − P̂(m),G(t)

)
.

Now for j ̸= m,∣∣∣Jm2,j

∣∣∣ = ∣∣∣∣(π̂(m)
m (t) − π∗m(t)

)(pδ(t) − 1{m,j}∈Eδ(t)

dδ(t)

)
y∗mj(t) −

(
π̂
(m)
j (t) − π∗j (t)

)(pδ(t) − 1{j,m}∈Eδ(t)

dδ(t)

)
y∗jm(t)

∣∣∣∣
⩽


4

dδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ if {j,m} ∈ Eδ(t)

2
pδ(t)
dδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ if {j,m} /∈ Eδ(t).
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Moreover, we can bound
∣∣∣Jm2,m

∣∣∣ as follows.

∣∣Jm2,m
∣∣ =
∣∣∣∣∣∣−
(
π̂
(m)
m (t) − π∗m(t)

) ∑
j:j̸=m

1

dδ(t)

(
pδ(t) − 1{m,j}∈Eδ(t)

)
y∗mj(t)

+
∑
j:j̸=m

(
π̂
(m)
j (t) − π∗j (t)

) 1

dδ(t)

(
pδ(t) − 1{j,m}∈Eδ(t)

)
y∗jm(t)

∣∣∣∣∣∣
⩽ |Jm3 |+ |Jm4 |

where

Jm3 =
∑
j:j ̸=m

(
π̂
(m)
m (t) − π∗m(t)

) 1

dδ(t)

(
pδ(t) − 1{m,j}∈Eδ(t)

)
y∗mj(t),

and

Jm4 =
∑
j:j ̸=m

(
π̂
(m)
j (t) − π∗j (t)

) 1

dδ(t)

(
pδ(t) − 1{j,m}∈Eδ(t)

)
y∗jm(t).

WhenGt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t), then denoting ξ(m)
j =

(
π̂
(m)
m (t) − π∗m(t)

)
y∗
mj(t)

dδ(t)
,

a bound on Jm3 can be given by Bernstein’s inequality, introducing the ran-
dom variables Z(m)

j = ξ
(m)
j (pδ(t) − 1{j,m}∈Eδ(t)

). Since for all j ̸= m,

∣∣∣Z(m)
j

∣∣∣ ⩽ 1

dδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ , E[Z

(m)
j ]2 ⩽

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥2∞

d2δ(t)
pδ(t)

hence there exists a constant c ⩾ 2 such that it holds with probability at
least 1− 2n−3c/2 that

|Jm3 | ⩽ c

√
npδ(t) logn+ logn

dδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ . (2.9.6)

The same bound holds for
∣∣Jm4 ∣∣. Using Lemma 21, we then see that there

exists a suitably large constant C4 ⩾ 1 such that with probability at least
1−O(n−10),

∥Jm2 ∥2 ⩽

(
C4

√
npδ(t) logn+ logn

dδ(t)
+
4
√
dδ(t)

dδ(t)
+
2pδ(t)

√
n

dδ(t)

)∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ .

Taking the union bound over [n] and performing a minor simplification of
the previous bound, we finally observe that with with probability at least
1−O(n−9),

∥Jm2 ∥2 ⩽ C5

√
logn
npδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ ∀m ∈ [n]. (2.9.7)

for some suitably large constant C5 ⩾ 1.
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2.9.4.3 Putting it together

Using Lemma 21, we know that with probability at least 1−O(n−10),√
π∗max(t)

π∗min(t)

(
8dδ(t)b

3(t)

ξδ(t)dmin,δ(t)

)
⩽ 96b

7
2 (t). (2.9.8)

Finally, combining (2.9.2), (2.9.5), (2.9.7) and (2.9.8), we have that with prob-
ability at least 1−O(n−9), it holds for all m ∈ [n],∥∥∥π̂(m)(t) − π̂(t)

∥∥∥
2
⩽96b

5
2 (t)(∥Jm1 ∥2 + ∥Jm2 ∥2)

⩽96b
5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)∥∥∥π̂(m)(t)
∥∥∥∞

+ 96C5b
5
2 (t)

√
logn
npδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞

⩽96b
5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞

+ 96b
5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)
+C5

√
logn
npδ(t)

)
×
∥∥∥π̂(m)(t) − π∗(t)

∥∥∥∞
⩽96b

5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞

+ 96b
5
2 (t)

(
4Mδ

T
+C6

√
logn
npδ(t)

)∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞

for some suitably large constant C6 ⩾ 1. Condition (2.4.4) further implies
that for all m ∈ [n],

∥∥∥π̂(m)(t) − π̂(t)
∥∥∥
2
⩽ 96b

5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞+

1

2

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ .

Finally, the triangular inequality∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ ⩽

∥∥∥π̂(m)(t) − π̂(t)
∥∥∥
2
+ ∥π̂(t) − π∗(t)∥∞

implies that∥∥∥π̂(m)(t) − π̂(t)
∥∥∥
2

⩽96b
5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞ +

1

2

(∥∥∥π̂(m)(t) − π̂(t)
∥∥∥
2
+ ∥π̂(t) − π∗(t)∥∞)

⩽192b
5
2 (t)

(
4Mδ

T
+C3

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞ + ∥π̂(t) − π∗(t)∥∞ .
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2.9.5 Proof of Lemma 11

Since we follow the same steps as in [8], let us introduce some new notations
in our particular setup. For all t ∈ T, all i ̸= j and all l ∈ [L], let us denote

ỹ
(l)
ij (t) ∼ B

(
y∗ij(t)

)
and ỹij(t) =

1

L

L∑
l=1

ỹ
(l)
ij (t). (2.9.9)

so for all t ′ ∈ Nδ(t), we have

yij(t
′) = ỹij(t

′)1{i,j}∈Et ′
⩽ ỹij(t

′)1{i,j}∈Eδ(t)
.

Then
∣∣Im4 ∣∣ can be bounded as

|Im4 | =

∣∣∣∣∣∣
∑
j:j ̸=m

(
π̂
(m)
j (t) − π∗j (t)

) 1

Ldδ(t)|Njm,δ(t)|

∑
t ′∈Njm,δ(t)

L∑
l=1

y
(l)
jm(t ′)

∣∣∣∣∣∣
⩽

∑
j:j̸=m

∣∣∣π̂(m)
j (t) − π∗j (t)

∣∣∣
 1

Ldδ(t)|Njm,δ(t)|

∑
t ′∈Njm,δ(t)

L∑
l=1

ỹ
(l)
jm(t ′)

 1{j,m}∈Eδ(t)

⩽
Nmax,δ(t)

Nmin,δ(t)

∑
j:j̸=m

1

dδ(t)

∣∣∣π̂(m)
j (t) − π∗j (t)

∣∣∣ 1{j,m}∈Eδ(t)
.

When Gt ′ ∼ G(n,p(t ′)) for all t ′ ∈ Nδ(t), then we know from Lemma 21

that

Nmax,δ(t)

Nmin,δ(t)
⩽ 4 (2.9.10)

holds with probability at least 1−O(n−10). Hence, to bound
∣∣Im4 ∣∣, it suffices

to bound
Im5 :=

∑
j:j̸=m

1

dδ(t)

∣∣∣π̂(m)
j (t) − π∗j (t)

∣∣∣ 1{j,m}∈Eδ(t)
.

To this end, let us first denote G(m)
δ (t) to be the union graph Gδ(t) where

the item m has been removed, and ỹ(t) to be the variables computed in
(2.9.9). Then we have by triangle inequality that

Im5 ⩽ E[Im5 |G
(m)
δ (t), ỹ] +

∣∣∣Im5 − E[Im5 |G
(m)
δ (t), ỹ]

∣∣∣ . (2.9.11)

The expectation can be bound using Cauchy-Schwarz inequality.

E[Im5 |G
(m)
δ (t), ỹ] =

∑
j̸=m

1

dδ(t)

∣∣∣π̂(m)
j (t) − π∗j (t)

∣∣∣pδ(t)
⩽

√
npδ(t)

dδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥
2

⩽
1

3
√
n

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥
2

⩽
1

3
√
n

∥∥∥π̂(m)(t) − π̂(t)
∥∥∥
2
+

1

3
√
n
∥π̂(t) − π∗(t)∥2 .
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A bound on the first term is given by Lemma 10 and by Theorem 2 for the
second term. Hence there exist constants C3, C̃2 ⩾ 1 so that with probability
at least 1−O(n−9), we have for all m ∈ [n] that

E[Im5 |G
(m)
δ (t), ỹ]

⩽64b
5
2 (t)

(
4Mδ

T
√
n
+C3

√
logn

Ln2pδ(t)pδ,sum(t)

)
∥π∗(t)∥∞ +

1

3
√
n
∥π̂(t) − π∗(t)∥∞

+
1√
n

(
521

Mδnb
7
2 (t)

T
+ 64C̃2b

9
2 (t)

√
1

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥2

⩽64b
5
2 (t)

(
4Mδ

T
√
n
+C3

√
logn

Ln2pδ(t)pδ,sum(t)

)
∥π∗(t)∥∞ +

1

3
√
n
∥π̂(t) − π∗(t)∥∞

+

(
512

Mδnb
7
2 (t)

T
+ 64C̃2b

9
2 (t)

√
1

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞

⩽

(
C ′
3

Mnδb
7
2 (t)

T
+C ′

4

b
9
2 (t)√

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞ +

1

3
√
n
∥π̂(t) − π∗(t)∥∞

(2.9.12)

for some constants C ′
3,C ′

4 ⩾ 1.
To bound the deviation term in (2.9.11), we will use Bernstein’s inequality.

Then, there exists a constant c ⩾ 1 such that for every m ∈ [n],

P

(∣∣∣Im5 − E[Im5 |G
(m)
δ (t), ỹ]

∣∣∣ ⩾ c√npδ(t) logn+ logn
dδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞
)

⩽ 2n−10.

Hence using a union bound over [n], we see that there exists a suitably large
constant c ′ ⩾ 1 so that with probability at least 1−O(n−9),

∣∣∣Im5 − E[Im5 |G
(m)
δ (t), ỹ]

∣∣∣ ⩽ c ′√ logn
npδ(t)

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ ∀m ∈ [n].

(2.9.13)

It remains to bound
∥∥∥π̂(m)(t) − π∗(t)

∥∥∥∞. Using Lemma 10 along with the
triangular inequality∥∥∥π̂(m)(t) − π∗(t)

∥∥∥∞ ⩽
∥∥∥π̂(m)(t) − π̂(t)

∥∥∥
2
+ ∥π̂(t) − π∗(t)∥∞ ,

we have that with probability at least 1−O(n−9),

∥∥∥π̂(m)(t) − π∗(t)
∥∥∥∞ ⩽ 192b
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4Mδ
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Lnpδ(t)pδ,sum(t)
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∥π∗(t)∥∞+2 ∥π̂(t) − π∗(t)∥∞ .

Upon plugging this in (2.9.13), the latter simplifies to∣∣∣Im5 − E[Im5 |G
(m)
δ (t), ỹ]

∣∣∣
⩽ C ′′

3

√
logn
npδ(t)

∥π̂(t) − π∗(t)∥∞ +C ′′
4b
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logn
npδ(t)

(
4Mδ

T
+

√
logn

Lnpδ(t)pδ,sum(t)

)
∥π∗(t)∥∞

(2.9.14)
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for some constants C ′′
3 ,C ′′

4 ⩾ 1.
Finally, combining (2.9.10), (2.9.11), (2.9.12) and (2.9.14), we conclude that

with probability at least 1−O(n−9), it holds for all m ∈ [n] that

|Im4 | ⩽

C7Mnδb 72 (t)T
+C8

b
5
2 (t)max

{
b2(t), logn√

npδ(t)

}
√
Lnpδ(t)pδ,sum(t)

 ∥π∗(t)∥∞ +C9

√
logn
npδ(t)

∥π̂(t) − π∗(t)∥∞

for some constants C7,C8,C9 ⩾ 1.

2.10 proof of lemma 1

Since |Nij,δ(t)| are i.i.d random variables for each i < j, hence G̃δ(t) is
distributed as an Erdös-Renyi graph with probability p̃δ(t) defined as

p̃δ(t) = P

(∣∣N12,δ(t)
∣∣ ∈ [max

{
1,
pδ,sum(t)

2

}
, max

{
2pδ,sum(t), 6 log

4

δpmin

}])
.

Note that δpmin ⩽ |Nδ(t)|pmin ⩽ pδ,sum(t) ⩽ |Nδ(t)|pmax ⩽ 4δpmax, thus it
follows that

• if δpmin ⩾ 3, then Ẽδ(t) :=
{
{i, j} : |Nij,δ(t)| ∈

[
pδ,sum(t)

2 , 2pδ,sum(t)
]}

;

• if δpmax ⩽ 1
8 , then Ẽδ(t) :=

{
{i, j} : |Nij,δ(t)| ∈

[
1, 6 log 4

δpmin

]}
.

Let us now bound p̃δ(t) in each case using Chernoff bounds (see Theorem
12).

• If δpmin ≳ 1, then Chernoff’s bound implies that p̃δ(t) ⩾ 1−2e−
pδ,sum(t)

12 ⩾
1− 2e−1/4.

• If δpmax <
1
8 , then

p̃δ(t) = P

(∣∣N12,δ(t)
∣∣ ∈ [1, 6 log

4

δpmin

])
= pδ(t)−P

(∣∣N12,δ(t)
∣∣ > 6 log

4

δpmin

)
.

(2.10.1)

Using Chernoff’s bound, it holds that

P

(∣∣N12,δ(t)
∣∣ > 6 log

4

δpmin

)
⩽
δpmin

4
. (2.10.2)

Moreover, δpmax <
1
8 implies that pδ,sum(t) ⩽ 1

2 , and so, one can
bound pδ(t) using Proposition 3 as follows.

δpmin

2
⩽ 1− e−δpmin ⩽ pδ(t) ⩽ 1− e

−8δpmax ⩽ 8δpmax. (2.10.3)

Finally, combining (2.10.1),(2.10.2) and (2.10.3), it holds that p̃δ(t) ⩾
δpmin
4 . The upper bound on p̃δ(t) comes from (2.10.3) and the fact that

p̃δ(t) ⩽ pδ(t).



3
D Y N A M I C R A N K I N G A N D T R A N S L AT I O N
S Y N C H R O N I Z AT I O N

In this chapter we consider the problem of estimating the latent strengths
of a set of n items from noisy pairwise measurements in a dynamic setting.
In particular, we propose a dynamic version of the TranSync model [21]
by placing a global smoothness assumption on the evolution of the latent
strengths. We propose and analyze two estimators for this problem and
obtain ℓ2 estimation error rates for the same. Experiment results on both
synthetic data and real data sets are presented.

3.1 problem setup and algorithms

3.1.1 The Dynamic TranSync model

Let us introduce formally our model for dynamic pairwise comparisons,
inspired by the TranSync model [21]. Our data consists of pairwise com-
parisons on a set of items [n] = {1, 2, . . . ,n} at different times t ∈ T ={
k
T |k = 0, . . . , T

}
, where T is a uniform grid on the interval [0, 1]. At each

time t ∈ T, we denote the observed comparison graph Gt = ([n],Et) where
Et is the set of undirected edges. It will be useful to denote

# »

Et = {(i, j)| {i, j} ∈
Et, i < j} as the corresponding set of directed edges. We assume that the set
of items [n] is the same throughout, but the set of compared items Et can
change with time.

To model our data, we use the TranSync model at each time twhich posits
that the outcome of a comparison between two items is solely determined
by their strengths. The strengths of the items at time t are represented by
the vector z∗t = (z∗t,1, . . . , z∗t,n)

⊤ ∈ Rn. For each t ∈ T and for every pair of
items {i, j} ∈ Et, we obtain a noisy measurement of the strength difference
z∗t,i − z

∗
t,j

yij(t) = z
∗
t,i − z

∗
t,j + ϵij(t), (3.1.1)

where ϵij(t) are i.i.d. centered subgaussian random variables with ψ2 norm∥∥ϵij(t)∥∥2ψ2 = σ2 [46]. Let us denote x∗(t) ∈ R|Et| where

x∗ij(t) = z
∗
t,i − z

∗
t,j, {i, j} ∈ Et

and x∗ to be formed by column-wise stacking as

x∗ =


x∗(0)

x∗(1)
...

x∗(T)

 .

Remark 6 (BTL model). A well-studied model in ranking problems is the BTL
model [5], and it has recently been extended to a dynamic setting [4, 24]. It posits
that at each time t, the probability that an item is preferred to another item only

67
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depends on their strengths. If w∗
t,i is the strength of item i at time t, the quan-

tity
w∗
t,i

w∗
t,i+w

∗
t,j

represents the probability that i beats j at time t. More precisely,

considering z∗t,i = lnw∗
t,i, it states that

logit (P(i preferred at j at time t)) = z∗t,i − z
∗
t,j,

where logit(x) = ln x
1−x for x ∈ (0, 1). At each time t ∈ T and for each pair {i, j} ∈

Et, the observations are L Bernoulli random variables with parameter equal to the
probability that i is preferred to j at time t. Then, taking ỹij(t) as the mean of all

the observations corresponding to this triplet (t, i, j), the fraction Rij(t) :=
ỹij(t)

ỹji(t)

can be viewed as a noisy measurement of
w∗
t,i

w∗
t,j

. Indeed, it was shown in [18] for the

analogous static case (we drop t from the notation) with Rij :=
ỹij
ỹji

that

lnRij = lnw∗
i − lnw∗

j + ϵ̃(w
∗
i ,w∗

j ,yij) (3.1.2)

where the RHS of (3.1.2) consists of terms in the Taylor expansion of the ln function.
Note that the noise in the observations (captured by ϵ̃ in (3.1.2)) is no longer zero-
mean, contrary to the Dynamic TranSync model, which can introduce some bias in
the estimation.

Remark 7 (Outliers model). Another well-known model in group synchroniza-
tion is the outliers model [43]. It posits that for any pair of compared items {i, j}, we
observe either the true strength difference or random noise. In our setting, one can
introduce the following analogous version of this model,

yij(t) = (z∗t,i − z
∗
t,j)Xij(t) + (1−Xij(t))ϵij(t)

where ϵij(t) ∼ N(0, 1) and Xij(t) ∼ B(η), η ∈]0, 1[, denotes the probability of
observing the true strength difference, independent of ϵij(t). Note that in this model,
observations are not centered around x∗(t), contrary to (3.1.1). However, we can
rewrite yij(t) as

yij(t) = yij(t) − E[yij(t)] + E[yij(t)]

= ηx∗ij(t) + (1−Xij(t))ϵij(t) + (Xij(t) − η)x
∗
ij(t)︸ ︷︷ ︸

0−mean, subgaussian

which is similar to (3.1.1), but with an additional bias since E[yij(t)] ̸= x∗ij(t). This
suggests that the analysis of the outliers model could potentially be done following
a similar strategy to ours, although the presence of the bias term would likely make
the analysis more cumbersome. Note that η is unknown, hence one can not use it
directly in the estimation procedure.

Finally, we mention that since t = k/T for an integer 0 ⩽ k ⩽ T , we will
often interchangeably use t and k for indexing purposes.

smooth evolution of weights . As discussed in the introduction,
we will assume that the weights z∗t do not change, in an appropriate sense,
too quickly with t. Since each z∗t is only identifiable up to a constant shift,
the smoothness assumption that we impose needs to be invariant to such
transformations. The assumption we make is as follows.
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Assumption 2 (Global ℓ2 smoothness). Let C ∈ Rn×(
n
2) to be the edge inci-

dence matrix of the complete graph Kn. We assume that

T−1∑
k=0

∥∥∥C⊤(z∗k − z
∗
k+1)

∥∥∥2
2
⩽ ST . (3.1.3)

The above assumption states that the vector C⊤z∗t ∈ R(n2) does not change
too quickly “on average”, and is analogous to the usual notion of quadratic
variation of a function. The regime ST = O(T) is uninteresting of course,
what we are interested in is the situation where ST = o(T). Also note that
(3.1.3) is invariant to a constant shift of z∗t , as desired. We will then aim
to estimate the ‘block-centered’ version of the vector z∗ ∈ Rn(T+1), where
each block z∗t is shifted by an additive constant such that

1

n

n∑
i=1

z∗t,i = 0 ∀ t ∈ T.

In what follows, we will assume w.l.o.g that z∗ is block-centered. Finally,
denoting M ∈ R(T+1)×T to be the incidence matrix of the path graph on
T + 1 vertices and E =M⊤ ⊗C⊤, we can write (3.1.3) as

T−1∑
k=0

∥∥∥C⊤(z∗k − z
∗
k+1)

∥∥∥2
2
= ∥Ez∗∥22 = z∗

⊤
E⊤Ez∗ ⩽ ST .

Hence z∗ lies close to the null space of E⊤E, i.e. N(E⊤E), where this closeness
is captured by ST .

Remark 8 (Other smoothness assumptions and error guarantees). Local smooth-
ness assumptions have been studied in the literature for other related models, leading
to recovery guarantees at a given time t (see [4, 24] for dynamic BTL model and
also [28] for a non-transitive model with autoregressive noise). Here, we propose a
weaker global smoothness assumption, which fits better some real-life data sets, as
it allows for jumps in the smoothness. However, under a weaker global assumption,
the error guarantees one can provide will also be of the global type, and relatively
weaker compared to the local ones. In this work, we will bound the MSE for estimat-
ing z∗.

3.1.2 Smoothness-constrained estimators

In the Dynamic TranSync model (3.1.1), observations are noisy measure-
ments of strength differences with zero-mean noise. A classical approach
for recovering the strength vector z∗ is to solve the following linear system

yij(t) = zt,j − zt,i, ∀t ∈ T, {i, j} ∈ Et (3.1.4)

in the least-squares sense. To reflect the temporal smoothness of the data,
we need to take into account the smoothness constraints from Assumption
2. We will consider two different approaches to incorporate these constraints
in (3.1.4).
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smoothness-penalized least squares . A typical approach for
incorporating constraints into a least squares problem involves adding them
as a penalty term. Hence, an estimator ẑ of the strength vector is given as a
solution of the following problem.

ẑ = argmin
z0,...,zT∈Rn

z⊤k 1n=0

∑
t∈T

∑
(i,j)∈ # »

Et

(
yij(t) − (zt,i − zt,j)

)2
+λ

T−1∑
k=0

∥∥∥CT (zk − zk+1)∥∥∥2
2

.

(3.1.5)

The penalty term promotes smooth solutions and the estimate ẑ ∈ Rn(T+1)

is formed by column stacking ẑ0, . . . , ẑT ∈ Rn. If λ = 0, then each esti-
mate ẑk only uses the information available at this time instant, through
Gk. Hence, the error ∥z∗ − ẑ∥22 will typically grow linearly with T (large
variance). On the other hand, if λ is very large, then the estimate ẑ will be
very ‘smooth’ meaning that ẑk will be similar for all k. Hence, the error
∥z∗ − ẑ∥22 will typically have a large bias. Therefore an intermediate choice
of the parameter λ is important to achieve the right bias-variance trade-off.

Remark 9 (Laplacian smoothing). Note that the above estimator has similarities
with the Laplacian smoothing estimator [40] for the model in (1.3.6), where an
estimate x̂ of x∗ is obtained as

x̂ = argmin
x

∥y− x∥22 + x
⊤Lx.

Indeed, the Dynamic TranSync model can be compared with the setting in [40] by
considering each of the graphs Gt as the vertices of a path graph, for which informa-
tion is available as the vector of observations y(t) at time t. This motivates solving
the penalized least-square problem in (3.1.5) using the smoothness assumption in
(3.1.3) as the penalty term. Unlike Laplacian smoothing, the penalty in our case
does not involve a Laplacian matrix.

projection method. Our second approach consists of the following
two-stage estimator.

1. Step 1: For each t ∈ T, we compute žt ∈ Rn as the (minimum ℓ2 norm)
least-squares solution of (3.1.4), and form ž ∈ Rn(T+1) by column-
stacking ž0, . . . , žT .

2. Step 2: Let Vτ be the space generated by the eigenvectors of E⊤E cor-
responding to eigenvalues smaller than a threshold τ > 0, and let PVτ
be the projection matrix on Vτ. Then, the estimator for z∗ is defined
as

ẑ = PVτ ž. (3.1.6)

As will be seen later due to the form of N(E⊤E), it will hold that each block
ẑk ∈ Rn satisfies ẑ⊤k 1n = 0 for k = 0, . . . , T .

Remark 10 (Laplacian eigenmaps). The above estimator is constructed in a simi-
lar fashion as the Laplacian eigenmaps estimator [40] for the model (1.3.6), which is
obtained by projection of the observations y onto the space spanned by the smallest
eigenvectors (i.e., corresponding to the smallest eigenvalues) of the Laplacian L. In
our setting, we do not have direct information on the vertices so we replace it by
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a least-squares solution of (3.1.4) in Step 1. Moreover, we construct the projection
matrix using the smallest eigenvectors of E⊤E since z∗ lies close to N(E⊤E).

3.2 main results

Here we present our main results, namely Theorems A and B, which cor-
respond to theoretical guarantees for the estimation error of the proposed
estimators ẑ and z̃, based on smoothness-penalized least squares and the
projection method respectively. We choose to write the results in this section
in a stylized form for better readability, highlighting the rates with respect
to the time parameter T and hiding the dependency on the rest of the pa-
rameters, which will be later made explicit in Sections 3.3 and 3.4. Our
theoretical results hold under the assumption that each comparison graph
Gt is connected, but this is essentially for technical reasons and we believe
this requirement can be relaxed, see Remarks 12 and 13 for a more detailed
discussion. Simulation results in Section 3.7.1 show that the MSE goes to
zero for both the estimators (as T increases) even in the very sparse regime
where individual Gt’s may be disconnected.

Theorem A (Smoothness-penalized least squares). Let ẑ ∈ Rn(T+1) be the
estimator defined in (3.1.5) where the data is generated by the model (3.1.1) with
subgaussian noise parameter σ2 and with z∗ ∈ Rn(T+1) as the ground truth vector
of strength parameters. Suppose additionally that Gt is connected for each t ∈ T.
Under Assumption 2, if λ = σ

4
5 ( TST )

2/5, it holds with probability larger than 1− δ

∥ẑ− z∗∥22 ⩽ T4/5S1/5T ΨLS
(
n,σ, δ

)
+Ψ ′

LS
(
n,σ, δ

)
.

Here, ΨLS(·) and Ψ ′
LS(·) are functions of the parameters of the problem.

A more formal version of this theorem is given by Theorem 6 in Section
3.3, where the functions ΨLS(·), Ψ ′

LS(·) are made explicit, up to universal
constants.

Theorem B (Projection method). Let ẑ ∈ Rn(T+1) be the estimator defined in
(3.1.6). Assume that each comparison graph in the sequence (Gk)Tk=0 is connected.
If τ = σ−

4
3 (STT )2/3, then it holds with probability larger than 1− δ that

∥ẑ− z∗∥22 ⩽ T2/3S1/3T ΨProj
(
n,σ, δ

)
+Ψ ′

Proj
(
n,σ, δ

)
where ΨProj(·) and Ψ ′

Proj(·) are functions of the parameters of the problem.

For a more formal statement of the previous theorem (with the explicit
ΨProj,Ψ ′

Proj), we direct the reader to Theorem 10 in Section 3.4. Observe that
in the case ST = O(T), the error in both theorems is of order O(T), which
is to be expected, since in this case the smoothness constraint is always
satisfied and the statement becomes vacuous. When ST = o(T), we see for
both estimators that the mean squared error

1

T + 1
∥ẑ− z∗∥22 =

1

T + 1

T+1∑
k=0

∥ẑk − z∗k∥
2
2 = o(1) as T → ∞.

However the bound in Theorem B is better than that in Theorem A in terms
of dependence on T , when ST = o(T). This is due to technical difficulties
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arising during the control of the bias term in the proof of Theorem A, since
(Gk)

T
k=0 is allowed to be any sequence of connected graphs. In spite of this,

we are able to obtain the same error-rate as Theorem B under additional as-
sumptions. More specifically, in Theorem 6 we assume that the comparison
graphs are non-evolving (see Assumption 3) and obtain a rate that matches
that of Theorem B. In Theorem 8, we prove that if the comparison graphs
are connected and possibly evolving, and an additional technical condition
holds, then we again recover the rate of the projection estimator.

Remark 11 (Error rates – Lipschitz smoothness). When ST = O(1/T), then
∥ẑ− z∗∥22 = O(T1/3) for Theorem B, which matches the optimal rate for estimating
a Lipschitz function on [0, 1] over a uniform grid, w.r.t the squared (empirical) L2-
norm [37, Thm.1.3.1]. Indeed, let fi : [0, 1] → R be Lipschitz functions for i =
1, . . . ,n and define f(t) = (f1(t), . . . , fn(t))⊤ for each t ∈ [0, 1]. Then consider
the case where z∗ is defined as

z∗t,i := fi(t) −
1⊤f(t)
n

; i ∈ [n], t ∈ T.

Clearly, z∗ is block-wise centered and satisfies Assumption 2 with ST = O(1/T).

3.3 smoothness-penalized least squares estimator analysis

In this section we obtain theoretical guarantees for the error of the estimator
ẑ given in (3.1.5). The results in this section will build towards proving
Theorem A, starting from the special case when all the graphs are equal
in Section 3.3.1. Before proceeding, we introduce some notation that will
appear in the analysis.

notation. Let us denote by Qk the incidence matrix of the graph Gk
and Q will denote the n(T + 1)×

∑T
k=0 |Ek| block diagonal matrix where

the blocks on the diagonal are the matrices Qk. Similarly, we define the
Laplacian at time t = k/T by Lk := QkQ

⊤
k and L will be defined as the

stacked Laplacian, which is the n(T + 1)× n(T + 1) block diagonal matrix
with blocks Lk on the main diagonal. We define, for λ > 0, the regular-
ized Laplacian matrix L(λ) := L+ λE⊤E. Let us also define notation for the
eigenpairs of matrices CC⊤,MM⊤ and Lk.

• (λj, vj)nj=1 denotes the eigenpairs of CC⊤. Observe that vn = 1
n1n

and (vj)
n−1
j=1 can be any orthonormal basis of span(1n)⊥. In addition,

we have λj = n− 1 for 1 ⩽ j ⩽ n− 1 and λn = 0.

• (µk,uk)Tk=0 denotes the eigenpairs of MM⊤ (path graph on T + 1

vertices), with µ0 ⩾ µ1 ⩾ µ2 ⩾ · · · ⩾ µT−1 > µT = 0. Note that
uT = span(1T+1).

• (αk,j,ak,j)
n
j=1 denotes the eigenpairs of Lk, with αk,1 ⩾ αk,2 ⩾ · · · ⩾

αk,n = 0 for all k = 0, . . . , T .

Now, the estimator ẑ defined in (3.1.5) can be equivalently defined as a
solution of

min
z∈Rn(T+1),
z⊤k 1n=0

∥∥∥Q⊤z− y
∥∥∥2
2
+ λ ∥Ez∥22 . (3.3.1)
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For the unconstrained problem, the solutions of (3.3.1) satisfy

L(λ)z = Qy. (3.3.2)

The following lemma provides conditions under which the null space N(L(λ)) =

span {ek ⊗ 1n}Tk=0 where e0, . . . , eT ∈ RT+1 is a canonical basis of RT+1.

Lemma 12. If the union graph GU := ([n],∪t∈TEt) is connected, it follows for
any λ > 0 that N

(
L(λ)

)
= span {ek ⊗ 1n}Tk=0. Here, e0, . . . , eT ∈ RT+1 is a

canonical basis of RT+1.

The proof is outlined in Section 3.6. It follows that if the union graph GU
is connected, then the estimator ẑ is given by the following solution of (3.3.2)

ẑ = L†(λ)Qy, (3.3.3)

which is uniquely defined and is orthogonal to span {ek ⊗ 1n}Tk=0 (in other
words, ẑ is block-wise centered). Furthermore, the ground truth z∗ satisfies
by definition Lz∗ = Qx∗, which implies that L(λ)z∗ = Qx∗ + λE⊤Ez∗. Since
z∗ is block-wise centered, i.e., z∗ ⊥ N(L(λ)) due to Lemma 12, hence it
satisfies

z∗ = L†(λ)
(
Qx∗ + λE⊤Ez∗

)
. (3.3.4)

By (3.3.3), (3.3.4) and the triangle inequality, we arrive at the following
bound

∥ẑ− z∗∥22 ≲ ∥L†(λ)Q(y− x∗)∥22 + λ
2∥L†(λ)E⊤Ez∗∥22. (3.3.5)

The first term in the RHS of (3.3.5) is the variance term due to noise that
will be controlled by a large enough value of λ. The second term is the bias
which depends on the smoothness of z∗, and will be controlled by choosing
λ to be suitably small. The optimal choice of λ will then achieve the right
bias-variance trade-off.

3.3.1 Warm-up: the non-evolving case

We will first analyze the case where the comparison graph is the same across
all times, as this case will serve as a foundation for our analysis of the time-
evolving case. We will refer to this case as non-evolving, which is formally
defined by the following assumption (notice that this is different from what
we referred to previously as the static case, where T = 1).

Assumption 3 (Fixed and connected comparison graph). Let G0 be any con-
nected graph on n vertices, we assume that Gk = G0, for all k = 0, . . . , T .

Under Assumption 3, we have Lk = L0 and Qk = Q0, which implies that
the matrices Q,L and L(λ) can be written as

Q = IT+1 ⊗Q0,

L = IT+1 ⊗ L0,

L(λ) = IT+1 ⊗ L0 + λE⊤E.
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spectral decomposition of L(λ) . In order to obtain an explicit
spectral decomposition for L(λ), we choose vj := a0,j (given that ak,j = a0,j
we will simply write aj in the sequel) for all j = 1, . . . ,n− 1 as the eigen-
vector basis for Lcom := CCT . With this choice, and recalling that E⊤E =

MM⊤ ⊗ Lcom, the eigenpairs of E⊤E associated with nonzero eigenvalues
are (

(n− 1)µk,uk ⊗ aj
)
j=1,··· ,n−1,k=0,··· ,T−1.

Therefore each eigenvalue of the form (n− 1)µk has multiplicity n− 1. Ob-
serve that we have the freedom to choose any orthonormal basis as the
eigenbasis for IT+1, we opt for the basis given by {uk}

T
k=0, i.e., the eigenvec-

tors of MMT . Hence, the eigenpairs of IT+1 ⊗ L0 for nonzero eigenvalues
are given by

(αj,uk ⊗ aj)j=1,··· ,n−1,k=0,··· ,T .

Thus, the following decompositions hold.

E⊤E =

T−1∑
k=0

n−1∑
j=1

(n− 1)µk(uku
⊤
k ⊗ aja⊤j ), (3.3.6)

L =

T∑
k=0

n−1∑
j=1

αj(uku
⊤
k ⊗ aja⊤j ), (3.3.7)

L(λ) =

T−1∑
k=0

n−1∑
j=1

(αj + (n− 1)λµk)(uku
⊤
k ⊗ aja⊤j ) +

n−1∑
j=1

αj(uTu
⊤
T ⊗ aja⊤j ).

(3.3.8)

From (3.3.8) we see directly that L(λ) has rank (n− 1)(T + 1) and that its
nullspace is given by span{uk ⊗ an}Tk=0 = span {ek ⊗ 1n}Tk=0. Given the
above notations and setup, we can now present the following bound on the
estimation error.

Proposition 1. Take δ ∈ (0, e−1), then under Assumptions 2 and 3 it holds with
probability larger than 1− δ

∥ẑ− z∗∥22 ⩽
( 1

α2n−1
∨ 1
)
λST (3.3.9)

+ σ2α1(1+ 4 log(1/δ))
( T−1∑
k=0

n−1∑
j=1

1

(αj + λ(n− 1)µk)2
+

n−1∑
j=1

1

α2j

)
.

The proof is detailed in Section 3.6.2.

choice of λ . The right hand side of the estimation error bound (3.3.5)
can be regarded as the sum of a bias and a variance term, representing
an instance of the bias-variance trade-off phenomenon. Proposition 1 gives
an error bound where the dependence on λ (and the other parameters of
the problem) is explicit. The following lemma helps us further simplify the
dependence on λ for the variance term (second term in the RHS of (3.3.9)).
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Lemma 13. We have

T−1∑
k=0

n−1∑
j=1

1

(αj + λ(n− 1)µk)2
≲
T
√
n− 1

α
3/2
n−1

√
λ

The proof is outlined in Section 3.6.1. Combining the results of Proposi-
tion 1 and Lemma 13, we obtain

∥ẑ− z∗∥22 ≲ O
(
λST + σ2

T√
λ

)
+ σ2α1 log(1/δ)

n−1∑
j=1

1

α2j
,

where we recall that the asymptotic notation O(·) hides the dependence on
constants and all parameters except for T and σ. It is easy to see that the
optimal choice for λ (in terms of T ,ST and σ) is then given by

λ = argmin
λ ′

λ ′ST + σ2
T√
λ ′

, (3.3.10)

which corresponds to λ = σ
4
3 ( TST )

2/3. The choice of λ given by (3.3.10) is
well defined (there is a unique minimizer) in the case where at least one of
the terms ST and σ is non-zero. On the other hand, for the case σ = ST = 0,
the estimation error is zero for any choice of λ, as is clear from Proposition
1. We will only consider the case when at least one of σ,ST is non-zero in
the sequel. Plugging this in (3.3.9) and using Lemma 13 we arrive at the
following bound on the estimation error.

Theorem 6. Let δ ∈ (0, e−1). Under Assumptions 2 and 3, choosing λ = σ
4
3 ( TST )

2/3,
it holds with probability larger than 1− δ that

∥ẑ−z∗∥22 ≲ σ
4
3 T

2
3 S

1
3
T

( 1

α2n−1
∨1+

α1
√
n− 1

α
3/2
n−1

log (1/δ)
)
+σ2α1 log (1/δ)

n−1∑
j=1

1

α2j
.

The following corollary states the order of the estimation error under
different smoothness regimes.

Corollary 3. Assume that ST = O(Tγ) for some γ < 1. If λ = σ
4
3 ( TST )

2/3, then

it holds with high probability that ∥ẑ− z∗∥22 = O(σ
4
3 T

2+γ
3 ∨ σ2). In particular,

∥ẑ− z∗∥22 =

O(σ
4
3 T

2
3 ) if ST = O(1) and λ = σ

4
3 T2/3,

O(σ
4
3 T

1
3 ) if ST = O( 1T ) and λ = σ

4
3 T4/3.

3.3.2 Any sequence of connected graphs

We now treat the case where the comparison graphs Gk can differ from one
another across time, but we assume that Gk is connected for all k ∈ {0, . . . , T }.
The main idea is to use the results from Section 3.3.1 and the fact that the
Laplacian of every connected graph can be bounded (in the Loewner order)
by the Laplacian of the complete graph, up to a scalar factor.



76 dynamic ranking and translation synchronization

a loewner bound. If graphGk is connected for all k ∈ {0, . . . , T }, then
there exists a sequence β0, · · · ,βT of strictly positive real numbers such that

Lk ≽ βkLcom, (3.3.11)

where Lcom = CCT is the Laplacian matrix of Kn, the complete graph on n
vertices, and Lk is the Laplacian of the graph Gk. Notice that when Gk is
connected, we can always choose βk(n− 1) to be the Fiedler eigenvalue (the
second-smallest eigenvalue1) of Lk [6]. Denoting Dβ = diag(β0, . . . ,βT ), we
have the following semi-definite bound for the stacked Laplacian L

L ≽ Dβ ⊗ Lcom ≽ min
0⩽k⩽T

βk · (IT+1 ⊗ Lcom) := min
0⩽k⩽T

βkL̃, (3.3.12)

which implies that

L(λ) ≽ (Dβ+λMMT )⊗Lcom ≽
(

min
0⩽k⩽T

βk · IT+1+λMMT
)
⊗Lcom. (3.3.13)

Let βk = λmin(Lk)/(n − 1), where λmin(Lk) denotes the smallest nonzero
eigenvalue of Lk. Then, min0⩽k⩽T βk =

λmin(L)
n−1 , where λmin(L) is the small-

est nonzero eigenvalue of L, and (3.3.13) implies

L(λ) ≽
( 1

n− 1
λmin(L) · IT+1 + λMMT

)
⊗ Lcom := L̃(λ). (3.3.14)

Using these observations, we arrive at the following error bound which is
a generalization of Proposition 1 to the general case of evolving graphs. Its
proof can be found in Section 3.6.3.

Proposition 2. Assume that Gk is connected for all k = 0, . . . , T . Then under
Assumption 2, the estimator ẑ given by (3.1.5) satisfies with probability larger than
1− δ

∥ẑ− z∗∥22 ≲
1

λ2min(L)
λ2nST

+ σ2∥L∥2(1+ 4 log(1/δ))
( T−1∑
k=0

n− 1

(λmin(L) + (n− 1)λµk)2
+

n− 1

λ2min(L)

)
.

The main difference between the previous result and Proposition 1 is that
here we obtain a bound of order O(λ2ST ) for the bias term, while Proposi-
tion 1 gives a bound of order O(λST ) for the same term. This will have an
impact on the final error rate given in Theorem 7 below.

We choose λ by proceeding as in Section 3.3.1. Indeed, we obtain the
bound

T−1∑
k=0

n− 1

(λmin(L) + (n− 1)λµk)2
≲

T
√
n− 1

λmin(L)3/2
√
λ

(3.3.15)

1 It is known for a fact that between all the connected graphs on n vertices, the one
that has the smallest Fiedler value is the path graph, which provides a lower bound
of order n−2 on βk(n− 1), for all k ∈ {0, · · · , T }.
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in the same manner as in (3.6.3). Plugging it in Proposition 2, we deduce

λ = σ
4
5
(
T
ST

) 2
5 to be the optimal choice. This then leads to the following

theorem which corresponds to a formal version of Theorem A.

Theorem 7. Under the assumptions of Proposition 2 and choosing λ = σ
4
5
(
T
ST

) 2
5 ,

it holds with probability larger than 1− δ

∥ẑ− z∗∥22 ≲ σ
8
5 T

4
5 S

1
5
T

(
n

λ2min(L)
+

√
n− 1∥L∥2 log (1/δ)

λ
3/2
min (L)

)

+
(n− 1)∥L∥2σ2 log (1/δ)

λ2min(L)
.

Consequently, if ST = O(Tγ) for some γ < 1, then ∥ẑ− z∗∥22 = O(σ
8
5 T

4
+γ5∨σ2).

In particular,

∥ẑ− z∗∥22 =

O(σ
8
5 T

4
5 ) if ST = O(1) and λ = σ

4
5 T2/5,

O(σ
8
5 T

3
5 ) if ST = O( 1T ) and λ = σ

4
5 T4/5.

This theorem reveals the dependence on the parameters of the problem,
up to absolute constants. In terms of the notation introduced in the state-
ment of Theorem A, we have

ΨLS
(
n,σ, δ

)
= σ

8
5

( n

λ2min(L)
+

∥L∥2
√
n− 1 log (1/δ)

λ
3/2
min (L)

)
,

Ψ ′
LS
(
n,σ, δ

)
=

(n− 1)∥L∥2σ2 log (1/δ)

λ2min(L)
.

The error rates presented in Theorem 7 are not optimal and they do not
match those obtained in Theorem 1 for the case of non-evolving graphs.
We believe that the correct bound for the square error in this case should
be, as in Theorem 1, of order O(T2/3S1/3T ∨ 1). In particular, in the case
ST = O(1) we obtain a rate O(T4/5) which should be O(T2/3). As will be
seen in the proof of Proposition 2, the main technical difficulty to obtain
what we believe to be the correct bound lies in the fact that the Loewner
ordering is not preserved after taking matrix squares, i.e., (3.3.14) does not
automatically imply L2(λ) ≽ L̃2(λ). On the other hand, under the following
assumption on the stacked Laplacian of the comparison graphs, we will
obtain the same rate as in the non-evolving case.

Assumption 4. There exists a constant κ > 1 such that for all λ > 0 it holds

1

κ

(
L2 + λ2(ETE)2

)
+ λ(ETEL+ LETE) ≽ 0. (3.3.16)

Altough technical in nature, we argue that Assumption 4 is reasonable
and rather mild. Indeed, notice that given any pair of symmetric matrices
(not necessarily p.s.d) A,B of the same size we have that 1κ (A

2+B2)+AB+

BA ≽ 0 for any κ ⩽ 1. Notice also that in the non-evolving case we have
that ETEL+ LETE ≽ 0 (as can be seen from (3.3.6) and (3.3.7)) which implies
in that case the stronger condition that (3.3.16) is satisfied for every λ > 0

and every κ > 1 (hence in particular Assumption 4 holds). It is possible
that Assumption 4 holds for an absolute constant κ > 1 for any stacked
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Laplacian L of connected graphs Gk, but we are unable to prove it. The
following theorem shows that under Assumption 4 we obtain error rates
that match those of Theorem 6.

Theorem 8. Under the hypotheses of Proposition 2, suppose that Assumption 4

holds. Then choosing λ = σ
4
3
(
T
ST

) 2
3 , it holds with probability greater than 1− δ

that

∥ẑ− z∗∥22 ≲
σ
4
3 κ

κ− 1
T
2
3 S

1
3
T

((
1

λ2min(L)
∨ 1

)
+

√
n− 1∥L∥2σ2 log (1/δ)

λ
3/2
min (L)

)

+
(n− 1)∥L∥2σ2 log (1/δ)

λ2min(L)
,

where κ := max
{
κ > 1 :

1

κ

(
L2+ λ2(ETE)2

)
+ λ(ETEL+ LETE) ≽ 0

}
.

Consequently, if ST = O(Tγ) for some γ < 1, then ∥ẑ− z∗∥22 = O(σ
4
3 T

2+γ
3 ∨σ2).

In particular,

∥ẑ− z∗∥22 =

O(σ
4
3 T

2
3 ) if ST = O(1) and λ = σ

4
3 T2/3,

O(σ
4
3 T

1
3 ) if ST = O( 1T ) and λ = σ

4
3 T4/3.

The proof of Theorem 8 mimics the argument used to prove Theorem 7.
It follows from the following bound, which is analogous to the bound in
Proposition 2

∥ẑ− z∗∥22 ⩽
κ

κ− 1

( 1

λ2min(L)
∨ 1
)
λST

+ σ2∥L∥2(1+ 4 log(1/δ))
( T−1∑
k=0

n− 1

(λmin(L) + (n− 1)λµk)2
+

n− 1

λ2min(L)

)
.

(3.3.17)

Then using the bound in (3.3.15), the optimal choice for λ follows by an
elementary calculation. The bound (3.3.17) is proven by using the second
statement of Lemma 16 (which controls the bias term), and Lemma 17 is
used to bound the variance term (which is unchanged with respect to Theo-
rem 7). These lemmas can be found in Section 3.6.3.

Remark 12 (Connectedness assumption). We believe that the analysis can likely
be extended to the setup where some of the graphs are disconnected (with the union
graph GU being connected). The main technical difficulty in this case comes from
the fact that the Loewner bound (3.3.11) now does not hold for a strictly positive βk
for all k. If some of the βk’s in (3.3.11) are allowed to be 0, then min0⩽k⩽T βk = 0

which renders the bound (3.3.13) to be not useful. In the proof of Lemma 17, we
need to have a good lower bound on the eigenvalues of L(λ) in order to bound
Tr
(
L†2(λ)

)
, but this appears to be very challenging. Moreover, while the first part

of Lemma 16 will remain unchanged, it is difficult to see how the second part of
Lemma 16 can be adapted for this setup.
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3.4 projection method analysis

Let us now obtain bounds for the estimation error of the projection method.
To prove Theorem B, we will use an analogous scheme to Section 3.3, i.e.,
we build upon the non-evolving case, by considering that all the comparison
graphs are the same. Before proceeding, it will be useful to introduce some
notation specific to the projection approach that will be used in the analysis.

notation. Let us define the following quantities.

• Lτ = {(k, j) ∈ {0, · · · , T }× [n] s.t λjµk⩽τ}, where τ∈ [0,∞], corresponds
to the indices for the low-frequency part of the spectrum of ETE. Note
that when τ = 0, it corresponds to the indices for the nullspace of ETE.
On the other hand, when τ = ∞, we have L∞ = {0, · · · , T }× [n].

• Hτ = {0, · · · , T } × [n] \ Lτ corresponds to the indices for the high-
frequency part of the spectrum.

• Vτ = span{uk ⊗ aj}(k,j)∈Lτ is the linear space spanned by the low
frequency eigenvectors. PVτ is the projection matrix for Vτ.

• PV⊥
τ

is the projection matrix for the orthogonal complement of Vτ, i.e.,
V⊥
τ .

The previous definitions help formalize the description of ẑ in (3.1.6) and
we can write, in matrix notation,

ž = L†Qy and ẑ = PVτ ž.

Notice that N(E⊤E) ⊂ Vτ and ž ⊥ ek ⊗ 1n for each k. This then implies that

ẑ = PVτ ž ⊥ (ek ⊗ 1n), k = 0, . . . , T ,

which means that ẑ is block-wise centered. Now the latent strength vector
z∗ is given as the solution of the linear system Lz = Qx∗ with z∗ assumed
to be block-centered. If each Gk is connected, then z∗ is uniquely given by

z∗ = L†Qx∗.

Therefore, since

z∗ = PVτz
∗ + PV⊥

τ
z∗ = PVτL

†Qx∗ + PV⊥
τ
z∗,

we obtain the following expression for the estimation error

∥ẑ− z∗∥22 = ∥PVτL
†Q(y− x∗)∥22 + ∥PV⊥

τ
z∗∥22. (3.4.1)

The first term in the RHS of (3.4.1) is the variance term due to noise that
will be controlled by choosing τ to be suitably large. The second term is
the bias which depends on the smoothness of z∗ and will be controlled by
choosing τ to be sufficiently small. Hence the optimal choice of τ will be the
one which achieves the right bias-variance trade-off.

Remark 13 (Connectedness assumption). The assumption that each Gk is con-
nected enables us to uniquely write the block-centered z∗ as z∗ = L†Qx∗. In case
some of the graphs were disconnected, then it is not necessary that L†Qx∗ sat-
isfies the smoothness condition in Assumption 2, even though it is a solution of
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Lz = Qx∗. It is unclear how to proceed with the analysis in this case, and we leave
it for future work.

3.4.1 Non-evolving case

The following theorem provides a tail bound for the estimation error of the
projection method under Assumption 3 (non-evolving case).

Theorem 9. For any δ ∈ (0, e−1) and τ ⩾ 0, it holds under Assumptions 2 and 3
that with probability at least 1− δ

∥ẑ− z∗∥22 ≲ ST
(1
τ
∧

1

(n− 1)µT−1

)
+α1σ

2 log (1/δ)

T + 1
π

√
τ

n− 1

n−1∑
j=1

1

α2j
+

n−1∑
j=1

1

α2j

 .

The proof is detailed in Section 3.6.4. We now show how to optimize the
choice of the regularization parameter τ.

choice of τ . Consider the case ST = 0 first. From Theorem 9, it is clear
that, in that case, the optimal choice is to set τ to zero. On the other hand,
notice that Theorem 9 can be written using asymptotic notation (hiding all
the parameters except for T and σ) as

∥ẑ− z∗∥22 = O
(ST
τ

+ σ2T
√
τ
)
,

and hence the optimal choice of τ is given by τ = σ−
4
3

(
ST
T

) 2
3 . Notice that

when σ = 0 and ST ̸= 0, the optimal choice is τ = ∞, which gives a zero
error as expected. In the case σ = ST = 0, the estimation error is also zero
as is obvious from the bound above. Below, we focus on the interesting case
where at least one of σ,ST is non-zero. The following result then follows
directly from Theorem 9.

Corollary 4. Choosing τ = σ−
4
3

(
ST
T

) 2
3 , then for any δ ∈ (0, e−1), it holds with

probability greater than 1− δ that

∥ẑ− z∗∥22 ≲ σ
4
3 T

2
3 S

1
3
T

(
1+

log (1/δ)

π
√
n− 1

n−1∑
j=1

α1

α2j

)
+ σ2 log (1/δ)

n−1∑
j=1

α1

α2j
.

Consequently, if ST = O(Tγ) for some γ ⩽ 1, then ∥ẑ− z∗∥22 = O(σ
4
3 T

2+γ
3 ∨σ2).

In particular,

∥z̃− z∗∥22 =

O(σ
4
3 T

2
3 ) if ST = O(1) and τ = σ−

4
3 T−2/3,

O(σ
4
3 T

1
3 ) if ST = O( 1T ) and τ = σ−

4
3 T−4/3.
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3.4.2 Any sequence of connected graphs

Similar to the analysis for the least-squares approach in Section 3.3.2, we will
use the semi-definite bound (3.3.12) to pass from the case of non-evolving
graphs to the case where the graphs can differ (but are connected). Given
the bound in the Loewner order (3.3.12), we see that the role played by
the eigenpairs (αj,aj) in Section 3.4.1 is now replaced by the eigenpairs
of the Laplacian of the complete graph. Information about the comparison
graphs is also encoded in the scalar min0⩽k⩽T βk (or in λmin(L)), where
βk(n − 1) is equal to the Fiedler eigenvalue of Lk. The following bound
for the estimation error is analogous to Theorem 9 and Corollary 4, and
formalizes the statement of Theorem B.

Theorem 10. Assume that Gk is connected for all k ∈ {0, . . . , T } and let λmin(L)

be the smallest nonzero eigenvalue of L. Then for any δ ∈ (0, e−1) and τ ⩾ 0, it
holds under Assumption 2 and with probability larger than 1− δ that

∥ẑ− z∗∥22 ≲ ST

(
1

τ
∧

1

(n− 1)µT−1

)
(3.4.2)

+
(T + 1)σ2 ∥L∥2 log (1/δ)

π

√
τ

n− 1

1

λ2min(L)
+ σ2 ∥L∥2 log (1/δ)

1

λ2min(L)
.

Choosing τ = σ−
4
3
(ST
T

)2/3 leads to the bound

∥ẑ−z∗∥22 ≲ σ
4
3 T

2
3 S

1
3
T

(
1+

∥L∥2 log (1/δ)

π
√
n− 1

1

λ2min(L)

)
+σ2 ∥L∥2 log (1/δ)

1

λ2min(L)
.

(3.4.3)

Thus, if ST = O(Tγ) for some γ ⩽ σ2, then ∥z̃− z∗∥22 = O(σ
4
3 T

2+γ
3 ∨ 1). In

particular,

∥ẑ− z∗∥22 =

O(σ
4
3 T

2
3 ) if ST = O(1) and τ = σ−

4
3 T−2/3,

O(σ
4
3 T

1
3 ) if ST = O( 1T ) and τ = σ−

4
3 T−4/3.

In terms of the notation introduced in Theorem B, we have

ΨProj
(
n,σ, δ

)
= σ

4
3

(
1 +

∥L∥2 log (1/δ)

π
√
n− 1

1

λ2min(L)

)
,

Ψ ′
Proj
(
n,σ, δ

)
= σ2 ∥L∥2 log (1/δ)

1

λ2min(L)
.

3.5 proofs

3.6 proof of lemma 12

Proof. Recall that (λi, vi)ni=1 denote the eigenpairs of CC⊤ with λ1 ⩾ · · · ⩾
λn−1 > λn its eigenvalues. Since CC⊤ = nI− 11⊤ we know that vn = 1n
and {vi}

n−1
i=1 is any orthonormal basis for the space orthogonal to span(1n).

Also recall that (µk,uk)Tk=0 denote the eigenpairs of MM⊤ where uT =

1T+1. Now the eigenvectors of E⊤E that have eigenvalue zero are

• uT ⊗ vj = 1T+1 ⊗ vj for j = 1, . . . ,n− 1, and



82 dynamic ranking and translation synchronization

• uk ⊗ vn = uk ⊗ 1n for k = 0, . . . , T .

Note that {uk ⊗ 1n}Tk=0 lie in N(L+ λE⊤E) and

span {uk ⊗ 1n}Tk=0 = span {ek ⊗ 1n}Tk=0 .

Since L+ λE⊤E is p.s.d, we have that N(L+ λE⊤E) = span{ek ⊗ 1n}Tk=0 iff

x⊤(LṼ + λE⊤E)x > 0, ∀x ( ̸= 0) ∈ span⊥ {ek ⊗ 1n}Tk=0 . (3.6.1)

As the orthogonal complement of span {ek ⊗ 1n}Tk=0 is given by

span⊥ {ek ⊗ 1n}Tk=0 = span
{
1T+1 ⊗ vj

}n−1
j=1

⊕N⊥(E⊤E)

we claim that (3.6.1) translates to establishing that

x⊤Lx > 0, ∀x ( ̸= 0) ∈ span
{
1T+1 ⊗ vj

}n−1
j=1

. (3.6.2)

To prove this claim, we begin by writing any x ∈ span⊥ {ek ⊗ 1n}Tk=0 as
x = x̃ + x ′ where x̃ ∈ span

{
1T+1 ⊗ vj

}n−1
j=1

and x ′ ∈ N⊥(E⊤E). Then if
x ̸= 0,

x⊤(L+ λE⊤E)x = x⊤Lx+ λx ′⊤E⊤Ex ′

=

{
x̃⊤Lx̃ ; if x ′ = 0,

> 0 (since λ > 0) ; if x ′ ̸= 0,

which establishes the claim since at least one of x̃, x ′ ̸= 0.
To prove (3.6.2), we first observe that x⊤(L + λE⊤E)x = x⊤Lx, for any

x ∈ span
{
1T+1 ⊗ vj

}n−1
j=1

. Since v1, . . . , vn−1 is any orthonormal basis for
the subspace orthgonal to 1n, we set x = 1T+1 ⊗ v for any v( ̸= 0) lying in
that subspace. This gives us

x⊤Lx =
∑
t∈T

v⊤Ltv = v
⊤

(∑
t∈T

Lt

)
v.

Now,
∑
t∈T Lt is the Laplacian of the union graph GU. Since

∑
t∈T Lt has

rank n− 1 iff GU is connected (which is true by assumption), we arrive at
(3.6.2).

3.6.1 Proof of Lemma 13

Using the fact that αj ⩾ αn−1 for all j ∈ {1, · · · ,n− 1}, and the explicit form
of the non-zero eigenvalues of the path graph on T + 1 vertices (see for e.g.
[6])

µk = 4 sin2
(T − k)π

2(T + 1)
, k = 0, . . . , T − 1;

we have that

T−1∑
k=0

n−1∑
j=1

1

(αj + λ(n− 1)µk)2
⩽ (n− 1)

T∑
k=1

1

(αn−1 + 4λ(n− 1) sin2 kπ
2(T+1) )

2

(3.6.3)
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The last term in the previous inequality can be regarded as a Riemannian
sum, and as such it can be bounded by an integral as follows

1

T + 1

T∑
k=1

1

(αn−1 + 4λ(n− 1) sin2 kπ
2(T+1) ) − 2

⩽
∫1
0

dx

(αn−1 + 4λ(n− 1) sin2 πx2 )2
.

Let us focus on the integral term, for which the following bound holds∫1
0

dx

(αn−1 + 4λ(n− 1) sin2 πx2 )2
(1)
= 2

∫ 1
2

0

dx

(αn−1 + 4λ(n− 1) sin2 πx)2

(2)
⩽ 2

∫ 1
2

0

dx

(αn−1 + λ(n− 1)π2x2)2

(3)
=

2

πα
3/2
n−1

√
λ(n− 1)

I
(π
2

√
λ(n− 1)

αn−1

)
,

where I(t) =
∫t
0

du
(1+u2)2

. Equality (1) comes from a change of variables. In
(2), we used that sin x ⩾ x/2 for all x ∈ [0,π/2] and (3) results from the

change of variable u =
√
λ(n−1)
αn−1

πx. By an elementary calculation, we verify

that I(t) = arctan t
2 + t

2(1+t2)
. Hence,

∫1
0

dx

(αn−1 + 4λ(n− 1) sin2 πx)2
⩽

1

α
3/2
n−1

arctan(π2
√
λ(n−1)
αn−1

)

π
√
λ(n− 1)

+
1

2(α2n−1 +
π2

2 αn−1(n− 1)λ)

≲
1

α
3/2
n

√
(n− 1)λ

+
1

α2n−1 +
π2

4 αn−1(n− 1)λ
,

where the last inequality follows from | arctan(x)| ⩽ π
2 for all x ∈ R. From

this, we deduce that

T−1∑
k=0

n−1∑
j=1

1

(αj + λ(n− 1)µk)2
≲
T
√
n− 1

α
3/2
n−1

√
λ
+

T(n− 1)

α2n−1 +αn−1(n− 1)λ

= T(n− 1)

×

(
1

αn−1
√
αn−1(n− 1)λ

+
1

α2n−1 +αn−1(n− 1)λ

)

≲
T(n− 1)

αn−1
√
αn−1(n− 1)λ

=
T
√
n− 1

α
3/2
n−1

√
λ

.

3.6.2 Proof of Proposition 1

The proof of Proposition 1 follows from Lemmas 14 and 15 below.
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Lemma 14 (Bound on the variance term). For any δ ∈ (0, e−1), it holds with
probability larger than 1− δ that

∥L†(λ)Q(y−x∗)∥22 ⩽ σ2α1(1+4 log(1/δ))
( T∑
k=0

1

(αj + λ(n− 1)µk)2
+

n−1∑
j=1

1

α2j

)
.

Proof. Define Σ := (L†(λ)Q)⊤L†(λ)Q = Q⊤L†2(λ)Q. Using [20, Thm.2.1], it
holds for any c > 1

∥L†(λ)Q(y− x∗)∥22⩽ σ
2(Tr(Σ) + 2

√
Tr(Σ2)c+ 2∥Σ∥2c)

⩽ σ2(1+ 4c)Tr(Σ) (3.6.4)

with probability 1− e−c (using the fact that Tr(Σ2)∨ ∥Σ∥2 Tr(Σ) ⩽ Tr(Σ)).
On the other hand,

Tr(Σ) = Tr(QQ⊤L†2(λ)) ⩽ ∥QQ⊤∥2 Tr(L†2(λ))

where we used the fact that given symmetric p.s.d matrices A,B it holds
Tr(AB) ⩽ ∥A∥2 Tr(B). From the spectral decomposition of L(λ) (given by
(3.3.8)) we deduce that

Tr(L†2(λ)) =
T−1∑
k=0

n−1∑
j=1

1

(αj + λ(n− 1)µk)2
+

n−1∑
j=1

1

α2j
.

Using
∥∥QQ⊤∥∥

2
= α1 and c = log(1/δ) concludes the proof.

Lemma 15 (Bound on the bias term). We have

λ2∥L†(λ)E⊤Ez∗∥22 ⩽
( 1

α2n−1
∨ 1
)
λST .

Proof. From (3.3.6) and (3.3.8) it is easy to see that

λ2∥L†(λ)E⊤Ez∗∥22 =

T−1∑
k=0

n−1∑
j=1

( λ(n− 1)µk
αj + λ(n− 1)µk

)2
⟨z∗,uk ⊗ aj⟩2.

On the other hand, the smoothness condition in Assumption 2 can be writ-
ten as

∥Ez∗∥22 =

T−1∑
k=0

n−1∑
j=1

(n− 1)µk⟨z∗,uk ⊗ aj⟩2 ⩽ ST .

Defining bk :=
∑n−1
j=1 ⟨z∗,uk ⊗ aj⟩2 and using that α1 ⩾ · · · ⩾ αn−1 > 0 we

obtain

λ2∥L†(λ)E⊤Ez∗∥22 ⩽
T−1∑
k=0

( λ(n− 1)µk
αn−1 + λ(n− 1)µk

)2
bk,

λ∥Ez∗∥22 =

T−1∑
k=0

λ(n− 1)µkbk ⩽ λST .
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We now conclude using the following elementary fact with c = λ(n− 1)µk
and d = αn−1.

Claim 1. Let c,d be strictly positive real numbers, then( c

d+ c

)2
⩽
( 1
d2

∨ 1
)
c.

Proof. We have two cases. For c ⩾ 1, we have
(
c
d+c

)2
< 1 and

(
1
d2

∨ 1
)
c ⩾

1, so the inequality is verified. In the case c < 1, we have

( c

d+ c

)2
⩽
c2

d2
⩽
c

d2
⩽
( 1
d2

∨ 1
)
c.

3.6.3 Proof of Proposition 2

Using (3.3.14), the proof of Proposition 2 goes along the same lines as that of
Proposition 1. It follows directly from Lemmas 16 (the first statement) and 17

below, which offer a control of the bias and the variance term, respectively.

Lemma 16. The following is true.

1. It holds that

λ2∥L†(λ)ETEz∗∥22 ≲
λ2n

λ2min(L)
ST .

2. If Gk is connected for all k = 0, · · · , T and L satisfies Assumption 4, then
for all λ > 0 we have

λ2∥L†(λ)ETEz∗∥22 ≲
κ

κ− 1

( 1

λ2min(L)
∨ 1
)
λST

where

κ := max
{
κ > 1 s.t

1

κ

(
L2 + λ2(ETE)2

)
+ λ(ETEL+ LETE) ≽ 0

}
.

Proof. We have

λ2∥L†(λ)ETEz∗∥22 ⩽ λ2∥L†(λ)ET∥22∥Ez
∗∥22

⩽ λ2∥L†(λ)∥22∥E
T∥22∥Ez

∗∥22

≲
λ2n

λ2min(L)
ST

where in the first inequality we used the submultiplicativity of the opera-
tor norm and in the last step we used that ∥ET∥22 ≲ n, ∥Ez∗∥22 ⩽ ST by
the smoothness assumption, and ∥L†(λ)∥22 ⩽ 1

λ2min(L)
. This proves the first

statement.
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To prove the second part, we assume that Assumption 4 holds and κ is
the largest value for which it holds. From this it follows that

(L+ λETE)2 ≽
κ− 1

κ

(
L2 + λ2(ETE)2

)
≽
κ− 1

κ

(
λ2min(L)

(n− 1)2
L̃2 + λ2(ETE)2

)
,

where in the last inequality we used (3.3.12) with min0⩽k⩽T βk =
λmin(L)
n−1

and the fact that the eigenvectors of L and L̃ are aligned (because L̃ = IT+1⊗
Lcom and the eigenvector of Lcom can be aligned with those of any Laplacian).
Since λ > 0, then by recalling Lemma 12, one can verify that (L+ λETE)2

and L̃2 + λ2(ETE)2 have the same null space. This in turn implies (using
Lemma 23) that

κ

κ− 1

(
λ2min(L)

(n− 1)2
L̃2 + λ2(ETE)2

)†

≽ (L+ λETE)†2 = L†2(λ).

Now arguing similarly to the proof of Lemma 15, we have

∥L†(λ)ETEz∗∥22 = z∗TETEL†2(λ)ETEz∗

⩽
κ

κ− 1
z∗TETE

(
λ2min(L)

(n− 1)2
L̃2 + λ2(ETE)2

)†

ETEz∗,

(1)
=

κ

κ− 1

T−1∑
k=0

n−1∑
j=1

λ2(n− 1)2µ2k
λ2min(L) + λ

2(n− 1)2µ2k
⟨z∗,uk ⊗ aj⟩2

(2)
⩽

κ

κ− 1

( 1

λ2min(L)
∨ 1
)n−1∑
j=1

λ(n− 1)µk⟨z∗,uk ⊗ aj⟩2,

(3)
⩽

κ

κ− 1

( 1

λ2min(L)
∨ 1
)
λST

where in (1) we used the known spectral expansion of L̃ and ETE, in (2) we
used Claim 1 (used in the proof of Lemma 15) with the fact that c2

c2+d2
⩽(

c
c+d

)2 for c,d > 0, and in (3) we used the smoothness assumption.

When the comparison graphs are not necessarily the same, Lemma 14 is
replaced by the following lemma.

Lemma 17. For any δ ∈ (0, e−1), it holds with probability greater than 1− δ that

∥L†(λ)Q(y− x∗)∥22 ⩽ σ2∥L∥2(1+ 4 log(1/δ))

×
( T−1∑
k=0

n− 1

(λmin(L) + (n− 1)λµk)2
+

n− 1

λ2min(L)

)
.

Proof. Reasoning as in the proof of Lemma 14 (using [20, Thm. 2.1]) we
obtain with probability at least 1− δ that

∥L†Q(y− x∗)∥2 ⩽ σ2(1+ 4 log(1/δ))Tr
(
LL†2(λ)

)
. (3.6.5)
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Recall from (3.3.14) that L(λ) ≽ L̃(λ), hence we deduce that

Tr
(
LL†2(λ)

)
⩽ ∥L∥2 Tr

(
L†2(λ)

)
⩽ ∥L∥2 Tr

(
L̃†2(λ)

)
.

Since L̃†(λ) =
(
1
n−1λmin(L)IT+1 + λMM

⊤)⊗ Lcom, it is easy to verify that
the nonzero eigenvalues of L̃(λ) correspond to the set {λmin(L) + λµk(n−

1)}T−1k=0 ∪ {λmin(L)}, and each eigenvalue has multiplicity n− 1. Hence,

Tr
(
L̃†2(λ)

)
=

T−1∑
k=0

n− 1

(λmin(L) + λµk(n− 1))2
+

n− 1

λ2min(L)
.

Plugging this into (3.6.5), the result follows.

3.6.4 Proof of Theorem 9

The proof of Theorem 9 follows directly from the two lemmas below.

Lemma 18. If z∗ is such that ∥Ez∗∥22 ⩽ ST , and τ ⩾ 0 then ∥PV⊥
τ
z∗∥22 ⩽

ST (
1
τ ∧ 1

(n−1)µT−1
).

Proof. By Parseval’s identity,

∥PV⊥
τ
z∗∥22 =

∑
(k,j)∈Hτ

⟨z∗,uk ⊗ aj⟩2.

On the other hand,

∑
(k,j)∈Hτ

(n− 1)µk⟨z∗,uk ⊗ aj⟩2 ⩽
T−1∑
k=0

n−1∑
j=1

(n− 1)µk⟨z∗,uk ⊗ aj⟩2

= ∥Ez∗∥22 ⩽ ST ,

where we used the fact µk ⩾ 0 in the first inequality, and the assumption
∥Ez∗∥22 ⩽ ST in the second inequality. We first assume that τ > 0. Since
(n− 1)µk ⩾ τ for all (k, j) ∈ Hτ, we deduce that

∥PV⊥
τ
z∗∥22 ⩽

ST
τ

.

On the other hand, we have the following inequalities

(n− 1)µT−1∥PV⊥
τ
z∗∥2 ⩽ ∥EPV⊥

τ
z∗∥2 ⩽ ∥Ez∗∥2 ⩽ ST ,

from which the lemma follows.

Lemma 19. For any δ ∈ (0, e−1), it holds with probability greater than 1− δ

∥PVτL
†Q(y−x∗)∥22 ⩽ 2σ2α1(1+4 log (1/δ))

T + 1
π

√
τ

n− 1

n−1∑
j=1

1

α2j
+

n−1∑
j=1

1

α2j

 .

Proof. Define

Σ := (PVτL
†Q)⊤PVτL

†Q = Q⊤L†PVτL
†Q.
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Using [20, Thm.2.1], we have for all c > 1 and with probability larger than
1− e−c that

∥PVτL
†Q(y− x∗)∥22 ⩽ σ2(1+ 4c)Tr(Σ). (3.6.6)

By the cyclic property of the trace, it holds that

Tr(Σ) = Tr(QQ⊤L†PVτL
†) ⩽ ∥QQ⊤∥2 Tr(L†PVτL

†), (3.6.7)

using the same property of p.s.d matrices as in the proof of Lemma 14. On
the other hand,

PVτ =
∑

(k,j)∈Lτ

(uk ⊗ aj)(uk ⊗ aj)⊤ and L† =

T∑
k=0

n−1∑
j=1

1

αj
(uk ⊗ aj)(uk ⊗ aj)⊤.

Recall that Lτ = {(k, j) ∈ {0, · · · , T }× [n] s.t λjµk⩽τ} can be written as L1 ∪
L2, where

L1 = {k = 0, · · · , T − 1 s.t (n− 1)µk⩽τ}× [n− 1],

L2 = {(k, j) ∈ {0, · · · , T }× [n] s.t λjµk = 0} = ({T }× [n])∪ ({0, . . . , T }× {n}).

Thus,

PVτL
†2 =

∑
(k,j)∈L1

1

α2j
(uk⊗aj)(uk⊗aj)⊤ +

n−1∑
j=1

1

α2j
(1T ⊗aj)(1T ⊗aj)T .

and we obtain the expression

Tr(PVτL
†2) =

(
|{k = 0, · · · , T − 1 s.t (n− 1)µk⩽τ}|+ 1

)
×
n−1∑
j=1

1

α2j
. (3.6.8)

Recall that µk = 4 sin2 (T−k)π
2(T+1) for k = 0, . . . , T − 1 and define the set

A := {k = 0, · · · , T − 1 s.t 4(n− 1) sin2
(T − k)π

2(T + 1)
⩽τ}.

Now since sin x ⩾ x/2 for x ∈ [0,π/2], we know that

sin2
(T − k)π

2(T + 1)
⩾

(T − k)2π2

4(T + 1)2
.

This in turn implies that |A| can be bounded as

|A| ⩽

∣∣∣∣{k = 1, . . . , T : 4(n− 1)
π2k2

4(T + 1)2
⩽τ

}∣∣∣∣
⩽
T + 1

π

√
τ

n− 1
.

Using this in (3.6.8), we obtain

Tr(PVτL
†2) ⩽

(
T + 1

π

)√
τ

n− 1

n−1∑
j=1

1

α2j
+

n−1∑
j=1

1

α2j
.
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Combining this with (3.6.6) and (3.6.7), the result follows by taking c =

log (1/δ).

3.6.5 Proof of Theorem 10

We first observe that Lemma 18 works under Assumption 2 and hence
applies verbatim in this context. We now formulate a result analogous to
Lemma 19 dropping the assumption that all the graphs are the same and
using the semi-definite bound (3.3.12).

Lemma 20. Assume that Gk is connected for all k = 0, . . . , T and let βk(n− 1) be
the Fiedler eigenvalue of Lk. For any δ ∈ (0, e−1), it holds with probability larger
than 1− δ

∥PVτL
†Q(y− x∗)∥22 ⩽ σ2 ∥L∥2

1

min0⩽k⩽T β2k
(1+ 4 log (1/δ))

×
(

T + 1

π(n− 1)

√
τ

n− 1
+

1

n− 1

)
.

Proof. Let Σ := (PVτL
†Q)⊤PVτL

†Q = Q⊤L†PVτL
†Q and recall that y− x∗ is

subgaussian with parameter σ. Using [20, Thm.2.1] we obtain for any c > 1
that with probability larger than 1− e−c

∥PVτL
†Q(y− x∗)∥22⩽ σ

2(Tr(Σ) + 2
√

Tr(Σ2)c+ 2∥Σ∥2c)

⩽ σ2(1+ 4c)Tr(Σ) ⩽ σ2(1+ 4c)∥QQ⊤∥2 Tr(L†PVτL
†),

(3.6.9)

where to pass from the first line to the second line we used the fact that c > 1
and Tr(Σ2)∨ ∥Σ∥2 Tr(Σ) ⩽ Tr(Σ)2. Notice that up until this point, the proof
does not change with respect to the proof of Lemma 19. Recall from (3.3.12)
that L̃ = IT+1 ⊗ Lcom and L ≽ (min0⩽k⩽T βk)L̃. Since the eigenvectors of
L, L̃ are aligned (because the eigenvector of Lcom can be aligned with those
of any Laplacian), it follows that

1

min0⩽k⩽T β2k
L̃†2 ≽ L†2. (3.6.10)

Using (3.6.10) and the fact that PVτ is a projection matrix, we obtain

Tr(L†PVτL
†) = Tr(PVτL

†2) ⩽
1

min0⩽k⩽T β2k
Tr(PVτ L̃

†2). (3.6.11)

where the second inequality follows from (3.6.10) and the fact that Tr(AB) ⩾
0 if A,B ≽ 0. We also have that

PVτ L̃
†2 =

∑
(k,j)∈L1

1

(n− 1)2
(uk ⊗ aj)(uk ⊗ aj)⊤
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hence proceeding in a manner similar to the proof of Theorem 9 leads to the
bound

Tr(PVτ L̃
†2) =

(
|{k = 0, · · · , T − 1 s.t (n− 1)µk⩽τ}|+ 1

)
× 1

n− 1

⩽
T + 1

π(n− 1)

√
τ

n− 1
+

1

n− 1
.

Combining this with (3.6.9) and (3.6.11), the result follows.

Proof of Theorem 10. The first inequality of Theorem 10 follows directly from
Lemmas 18 and 20. Inequality (3.4.2) follows by choosing τ as in Section
3.4.1. The rest of the proof is a direct consequence of the previous result.

3.7 experiments

We now empirically evaluate the performance of the proposed methods on
both synthetic and real data. The code for all the experiments is available at
https://github.com/karle-eglantine/Dynamic_TranSync.

3.7.1 Synthetic data

generate the ground truth z∗ . The first step is to generate
the true weight vector z∗ such that it satisfies Assumption 2, for different
regimes of ST . Let us recall that this assumption can be written as

∥Ez∗∥22 = z∗⊤E⊤Ez∗ ⩽ ST

which implies that z∗ lies close to the null space of E⊤E, as quantified by ST .
Hence, one possibility to simulate z∗ is to project any vector onto a space
Vε generated by the eigenvectors associated with the smallest eigenvalues
of E⊤E. Likewise, Vε contains the null space of E⊤E and a few more eigen-
vectors, depending on ST . For ε > 0, let us define

Lε :=
{
(k, j) ∈ {0, . . . , T }× [n] s.t. λjµk⩽ε

}
,

then Vε = span{uk ⊗ aj}(k,j)∈Lτ . Using similar tools as in the proof of The-
orem 9, it can be shown that

|Lε| ⩽ T +n+

√
(n− 1)ε(T + 1)

π
.

Hence, we can compute a value of ε such that any vector belonging to Vε

satisfies Assumption 2. More precisely, choosing ε =
(

πST
(T+1)

√
n−1

)2/3
, it

then holds that for any z ∈ Rn(T+1) such that ∥z∥2 = 1,∥∥EPVεz∥∥22 ⩽ ST ,

where PVε denotes the projection matrix onto the space Vε. The synthetic
data is then generated as follows.

1. Generate z ∼ N(0, In(T+1)) and normalize it such that ∥z∥2 = 1.

https://github.com/karle-eglantine/Dynamic_TranSync
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2. Compute kε = ⌈T +n+
(

T+1
(n−1)π

)2/3
S
1/3
T ⌉ eigenvectors of E⊤E, cor-

responding to its kε smallest eigenvalues.

3. Compute z∗ = PVεz.

4. Center each block z∗k, k = 0, . . . , T .

generate the observation data . The observations consist of
comparison graphs Gt for t ∈ T and the associated measurements yij(t)
for each edge {i, j} ∈ Et.

1. For each t ∈ T, Gt is generated as an Erdös-Renyi graph G(n,p(t)),
where the probability p(t) is chosen appropriately, as described in
Figs. 10, 11 and 12. Meaningful recovery of z∗ is only possible if the
union of all the graphs is connected, hence we ensure the connectivity
of GU = (n,∪t∈TEt).

2. For all t ∈ T and {i, j} ∈ Et, we generate a noisy measurement yij(t)
of the strengths difference z∗t,i − z

∗
t,j as in (3.1.1), using a standard

Gaussian noise.

Once the true weights and the observations are generated, one can easily
implement our methods using traditional least-squares solvers. In our ex-
periments, we use the least-squares solver lsqr from the scipy package of
Python. Note that in both of our methods, there is a tuning parameter – λ
for the Penalized Least-Squares (denoted as DLS later) and τ for the Projec-
tion method (denoted DProj). Throughout, we choose λ = (T/ST )

2/3 and
τ = (ST/T)

2/3.

dynamic btl set up. As noted in Remark 6, the Dynamic TranSync
model is linked to the Dynamic BTL model. Hence, we will also test numer-
ically the performances of our methods on synthetic data generated accord-
ing to the BTL model. The ground truth w∗ = exp(z∗) is generated simi-
larly as in the Dynamic TranSync setup, as well as the observation graphs.
However the measurements yij(t) are now generated according to the Dy-
namic BTL model (see [24] for more details). In this particular setup, we
will compare the performance of our methods with two other approaches
that focus on dynamic ranking for the BTL model, namely, the Maximum-
Likelihood Estimation (MLE) method [4] and the Dynamic Rank Centrality
(DRC) method [24]. These methods have shown optimal results when the
strength of each item is a Lipschitz function of time, which translates to
ST = 1

T in our set up. More generally, the regime of interest in our smooth-
ness assumption is ST = o(T).

results . The results are summarized below.

1. In Figure 10, we consider n = 100 items and T ranging from 10 to
200, where the data is generated according to the Dynamic TranSync
model. The estimation errors are averaged over 40 bootstrap simula-
tions and plotted for different regimes of smoothness ST . We observe
that in every case, DLS and DProj methods give very similar results.
As expected, the MSE decreases to zero as T increases in every smooth-
ness regime. Note that the variance of the error, represented by the
vertical bars, is also decreasing with T .
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(a) Smoothness ST = 1
T

(b) Smoothness ST = 1√
T

(c) Smoothness ST =
√
T (d) Smoothness ST = 1

Figure 10: MSE versus T for DLS and DProj when the data is
generated according to the Dynamic TranSync model for n =
100 and graphs are generated as G(n,p(t)) with p(t) chosen
randomly between 1

n and log(n)
n . The results are averaged over

the grid T as well as 40 Monte Carlo runs.

2. In Figure 11, we repeat the same experiments using data simulated
according to the Dynamic BTL Model, and compare our results with
the DRC and MLE methods for ST = 1

T and ST = 1√
T

. For both
smoothness choices, DLS seems to be the best performing method as
its MSE goes to zero at the fastest rate.

3. As a sanity check, we also show in Figure 12 that our methods per-
form better than the naive least-squares (LS) approach that simply
estimates the strength vector individually on each graph Gk. In this
case, one needs to impose connectivity on each graph in order to ob-
tain meaningful results using LS. Figure 12 shows that as expected,
the MSE is constant with T for the LS method. This illustrates that
even when all the graphs are connected, dynamic approaches are bet-
ter suited to recover the strengths and/or ranking of a set of items.

4. We show in Figure 13 the influence of the sparsity of the input graphs
on the estimation. We generate input graphs as G(n,p) for different
values of p and observe that the MSE increases with the sparsity for
the DLS method. The Projection method however has a similar perfor-
mance for all sparsity levels.

5. In Figure 14, we show that the optimal values for the hyperparameters
λ and τ derived theoretically are also numerically optimal. Indeed for
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both methods, the MSE is close to its minimum for these choices of
parameters.

(a) Smoothness ST = 1
T

(b) Smoothness ST = 1√
T

Figure 11: MSE versus T for DLS, DProj, DRC and MLE when
the data is generated according to the BTL model for n = 100,
and graphs are G(n,p(t)) with p(t) chosen randomly between 1

n

and log(n)
n . The results are averaged over the grid T as well as

40 Monte Carlo runs.

(a) Smoothness ST = 1
T (b) Smoothness ST =

√
T

Figure 12: Evolution of estimation errors with T for Least-
Squares, DLS and DProj method when the synthetic data are
generated according to the Dynamic TranSync model for n = 100

and the graphs are generated as G(n,p(t)) with p(t) = log(n)
n .

In particular, we ensure that the individual graphs are all con-
nected. The results are averaged over the grid T as well as 20
Monte Carlo runs.

3.7.2 Real data

We now provide empirical results on two real data sets – the Netflix Prize
data set [23], and Premier League results from season 2000/2001 to season
2017/2018 [49]. In order to assess the performance of our algorithms, we
will compute the number of upsets as well as the mean squared error (MSE)
for each method. The number of upsets is defined as the number of pairs
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(a) DLS Method (b) DProj Method

Figure 13: Evolution of estimation errors with T for DLS and
DProj method when the synthetic data are generated according
to the Dynamic TranSync modelfor n = 100 and the graphs are
generated as G(n,p) for different choices of p. In particular, we
ensure that the individual graphs are all connected. The results
are averaged over the grid T as well as 20 Monte Carlo runs.

(a) Performance of DLS (b) Performance of DProj

Figure 14: Performance of our methods for different values of
hyperparameter, with n = 100, T = 200 and σ = 1. We
highlight in red on the x-axis the optimal values of parameter

computed theoretically, λ = σ4/3
(
T
ST

)2/3
for the DLS and

τ = σ−4/3
(
ST
T

)2/3
for DProj.

for which the estimated preference is different from the observation. More
precisely, denoting ẑ to be the estimator of the strengths (for any method),

Number of upsets :=
∑
t∈T

∑
{i,j}∈Et

1sign(yij(t)) ̸=sign(ẑt,i−ẑt,j).

The MSE is defined using the vector of observations y and the estimated
strength vector ẑ as

MSE =
1

T + 1

∑
t∈T

∑
{i,j}∈Et

(
yij(t) − (ẑt,i − ẑt,j)

)2 .
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The tuning parameters λ, τ will be chosen using the cross validation proce-
dure described below.

cross validation procedure .

1. Fix a list of possible values of λ (resp. τ).

2. For every possibles value of λ (resp. τ), repeat several times the steps
below.

• For each time t, select randomly a measurement yij(t) at time
t. Let us denote (it, jt) the selected pair of items at time t. We
denote Ytest =

{
yit,jt(t) | t ∈ T

}
to be the set containing this data

and Itest = {(t, it, jt) | t ∈ T} to be the set of corresponding in-
dices.

• Consider the data set where the data in Ytest have been removed.
Compute the estimator ẑ on this smaller data set.

• Compute the prediction error for both performance criteria

– MSE:
1

T + 1

∑
(t,it,jt)∈Itest

(yit,jt − (ẑit(t) − ẑjt(t)))
2.

– Mean number of upsets :

1

T + 1

∑
(t,it,jt)∈Itest

1sign(yitjt(t)) ̸=sign(ẑt,it−ẑt,jt).

We compute the mean of those errors for each value of the parameter
λ (resp. τ).

3. Select λ⋆ (resp. τ⋆) which minimizes the mean prediction error.

4. Proceed to the estimation with the chosen parameter λ⋆ (resp. τ⋆).

netflix prize data set. Netflix has provided a data set containing
anonymous customer’s ratings of 17770 movies between November 1999

and December 2005. These ratings are on a scale from 1 to 5 stars. From those
individual rankings, we need to form pairwise information that satisfies the
Dynamic Transync model (3.1.1). Denoting si(t) to be the mean score of
movie i at time t, computed as the mean rating given to this movie at time
t among the customers, we then define for all pair of movies {i, j} rated at
time t

yij(t) = si(t) − sj(t). (3.7.1)

For computational reasons, we choose a subset of 100 movies to rank. We
can then use our estimation methods to recover each movie’s quality (and
then their rank) at any month between November 1999 and December 2005.
In order to denoise the observations, we gather the data corresponding
to successive months such that all the graphs of merged observations are
connected. The merged dataset is then composed of T = 23 observation
graphs. The associated observations yij(t) are computed in a similar man-
ner as (3.7.1), using the mean score of the movies across the corresponding
merged time points and the customers. For this dataset of merged movies,
the cross validation step gives two different values of parameters (λ∗, τ∗)
for the two different performance criteria we consider, presented in Table 6a.
Using λ∗, τ∗, we then perform the estimation using the naive Least-Squares
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MSE Upsets

λ∗ 131.48 157.89

τ∗ 0.42 0.37

(a) Cross-validation results

MSE Upsets

LS 3573 0.4954

DLS 3040 0.4984

DProj 3025 0.4976

(b) Performance of the three estimation
methods

Table 6: Cross-validation and performance for the chosen pa-
rameters for the Netflix dataset. We use the MSE and the mean
number of Upsets as our performance criteria.

(LS) approach as well as our two methods, namely DLS and DProj, and
compute in both cases the MSE and the mean number of upsets. The results
are presented in Table 6b. We note that the mean number of upsets is es-
sentially similar for all the methods, indicating that none of the methods is
better than the other for this criteria. However, DLS and DProj improve the
performance of the estimation in terms of the MSE criterion.

english premier league dataset. This dataset is composed of
all the game results from the English Premier League from season 2000-2001

to season 2017-2018. These 18 seasons involve n = 43 teams in total, each
season seeing 20 teams confront each other across 38 rounds. The observa-
tions are the mean scores of the games between a pair of teams within the
same season. Similar to the Netflix dataset, we can group the game results
from successive seasons, resulting in T = 9 observation graphs. Let us de-
note Tk to be the set of time-points gathered to form the graph Gk. For
each Gk, the corresponding observations are defined for each pair of teams
{i, j} ∈ Ek as

yij(k) =
1

|Tk|

∑
t∈Tk

(si(t) − sj(t)),

where si(t) denotes the mean number of goals scored by team i against team
j during the season t. In this case, merging the data does not lead to indi-
vidual connectivity of the graphs, because of the promotion and relegation
of teams at the end of each season. However, the union of all these graphs
is connected. As for the Netflix dataset, we perform a cross-validation step
to choose the best parameters (λ∗, τ∗), in regards to the performance crite-
rion we consider (MSE or Mean number of upsets). The results of the cross
validation are presented in Table 7a. Then, we perform our estimation for
these chosen values of the parameters for DLS and DProj. Note that as the
individual graphs are not connected, the naive LS method will not give inter-
pretable results,and is only included here for comparison with our methods.
As shown in Table 7b, DLS and DProj perform better than LS both in terms
of MSE or in Mean number of upsets. Specifically, the number of upsets is
improved by 10% with our methods.

smoothness of the real data sets . Our methods rely on the
underlying smoothness of the data. However, with real data sets, the ground
truth vector z∗ is unknown, thus making it difficult to check whether this
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MSE Upsets

λ∗ 24.49 32.65

τ∗ 6.43 5.57

(a) Cross-validation results

MSE Upsets

LS 0.0024 0.67

DLS 0.0015 0.57

DProj 0.0014 0.58

(b) Performance of the three estimation
methods

Table 7: Cross-validation and performances for those chosen pa-
rameters for the Premier League dataset. We use the MSE and
the mean number of Upsets as our performance criteria. Perfor-
mance results are presented for the simple LS, DLS and DProj
methods.

assumption is satisfied. In order to verify that our data sets are fit for our
methods, one can define, as a proxy, an “empirical ground-truth” vector

z
∗,emp
t,i :=

1∣∣Nt,i∣∣
∑
j∈Nt,i

yij(t),

where Nt,i denotes the set of neighbors of node i in the graph Gt. For
some items that have been compared at all times, we plot the evolution of
z
∗,emp
t,i in Figure 15. This figure shows that despite some jumps, the overall

evolution of z∗,emp
t,i is reasonably smooth.

Figure 15: Evolution of the strengths for real data sets
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3.8 summary of notation

Symbol Definition

T Uniform grid of [0, 1], with size T + 1.

Gt ′ = ([n],Et ′), Gk Undirected comparison graph at time t ′ = k
T ∈ T

z∗t ∈ Rn Ground-truth strengths at time t ∈ [0, 1]

x∗ij(t) True strength difference between items i and j at time t

yij(t)
Observed strength difference between items i and j at time
t

σ2 Variance of the subgaussian noise

ST Upper bound of the smoothness assumption 2

C
Edge incidence matrix of the complete graph with n ver-
tices

M Incidence matrix of the path graph on T + 1 vertices

E =M⊤ ⊗C⊤ Smoothness operator

ž⊤ = (ž⊤0 , . . . , ž⊤T )
⊤ Unconstrained least squares estimator, see (3.1.4)

λ
Hyperparameter for the smoothness penalised least
squares method

τ Threshold for the Projection method

Vτ
Space generated by the eigenvectors of E⊤E corresponding
to eigenvalues smaller than τ

PVτ Projection matrix on Vτ

Qk Incidence matrix of the graph Gk
Q = diag(Q0, . . . ,QT ) Block diagonal matrix with blocks Qk
Lk = QkQ

⊤
k Laplacian matrix of the graph Gk

L = diag(L0, . . . ,LT ) Block diagonal matrix with blocks Lk
L(λ) = L+ λE⊤E Regularized Laplacian

(λj, vj)nj=1 Eigenpairs of CC⊤

(µk,uk)Tk=0 Eigenpairs of MM⊤

(αk,j,ak,j)
n
j=1 Eigenpairs of Lk

Lcom = CC⊤ Laplacian matrix of the complete graph on n vertices

λmin(L) Smallest non-zero eigenvalue of L

Table 8: Summary of symbols used throughout the chapter along
with their definitions.



4
C O N C L U S I O N A N D P E R S P E C T I V E S

In this thesis, we have provided new analysis of dynamic ranking models.
We studied the Dynamic BTL model, introduced by Bong et al. [4], under
a local smoothness assumption. We have introduced a spectral algorithm
that performs similarly as the MLE estimation presented in [4], but which
has a far lower computational cost. We have also introduced a new dynamic
model, the Dynamic TranSync model, directly derived from the Translation
Synchronization by Huang et al. [21]. We have analysed this model under
a global smoothness assumption and introduced two estimation methods.
Both estimators are shown to be consistent and performant on both syn-
thetic and real datasets.

As one of the few theoretical works on dynamic ranking, there is still a lot
of extensions one can look at in the dynamic setting. Moreover, our models
also suffer from some limitations we may want to overcome. We describe
here some of those topics of interest.

1. Independence. One of the main assumptions of the dynamic BTL model
we consider is the independence of the outcomes for all comparisons
at a given time t, and the independence across different time points.
The latter assumption can in particular be questioned, as the choices
of one user across time are typically not going to be independent.
It would be interesting to model these dependencies across time, for
instance, by modelling them as a Markov process.

2. Home effect. Another model, used in the study of sports tournaments
by Cattelan et al. [7] adapts the BTL to include a home effect, which is
beneficial to the hosting team. Indeed, because of the familiar environ-
ment and the supporting public, a team is more likely to win if they
play in their stadium. It would be interesting to theoretically analyze
such a model.

3. New estimators for the Dynamic BTL model. An interesting direction
would be to theoretically analyze the performance of the estimators
proposed in Chapter 3 for the dynamic BTL model (recall Remark 6).
The main difficulty in this regard is that the noise in the measure-
ments is not zero-mean anymore, and it is not easy to see how such a
noise term can be handled to give meaningful error bounds.

4. Disconnected graphs. As previously discussed in Remarks 12 and 13,
we believe that the analysis of the Dynamic TranSync model can be
extended to the case where some of the individual graphs are dis-
connected. It will be interesting to analyze this setup in detail with
corresponding error bounds.

5. Lower bound for the Dynamic TranSync. The analysis of the Dynamic
TranSync model focuses on upper bounds on the estimation error,
however it will be interesting to derive lower bounds for the dynamic
TranSync model which showcase the optimal dependence on n, T and
ST .
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6. Non-parametric dynamic models. Considering a parametric model as the
BTL or the TranSync model has limitations as it assumes that the pref-
erence outcomes depend only on one parameter w∗, which can be
seen as a strong transitivity constraint [42]. That is why one can in-
stead use non-parametric models as described in [38, 41, 42], where
only a certain transitivity assumption is made on the comparison ma-
trix. It has been shown by Shah et al. [42] that in the static case, the
matrix of probabilities can be estimated at the same rate as in a para-
metric model. As such extensions can be considered in the static set-
ting, it would be interesting to adapt these models to the dynamic
case and study their performance.
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4.1 appendix of chapter 2

4.1.1 Technical tools

We collect here some technical results that are used for proving the main
results in Chapter 2. We begin by recalling the following result from [9].

Theorem 11 ([9, Theorem 8]). Suppose that P, P̂,P∗ are probability transition
matrices with stationary distributions π, π̂,π∗ respectively. We assume that P∗ rep-
resents a reversible Markov chain. When

∥∥P− P̂∥∥
π⋆ < 1−max{λ2(P⋆),−λn(P⋆)}

holds, then we have

∥π− π̂∥π⋆ ⩽

∥∥π⊤(P− P̂)
∥∥
π⋆

1− max{λ2(P⋆),−λn(P⋆)}−
∥∥P⋆ − P̂∥∥

π⋆

. (4.1.1)

Next, we recall some useful concentration results from probability start-
ing with the classical Chernoff bound.

Theorem 12 (Chernoff bound, [33, Theorems 4.4, 4.5]). Let X1, . . . ,Xn be
independent Bernoulli variables with P(Xi = 1) = pi. Let X =

∑n
i=1 Xi.

1. For any µ ⩾ E[X], the following is true.

• For δ ∈ (0, 1], P (X ⩾ (1+ δ)µ) ⩽ e−δ
2µ/3.

• For δ ⩾ 1, P (X ⩾ (1+ δ)µ) ⩽ e−δµ/3.

2. For any µ ⩽ E[X] and δ ∈ (0, 1), P (X ⩽ (1− δ)µ) ⩽ e−δ
2µ/2.

Theorem 13 (Hoeffding’s inequality). Let X1, . . . ,Xn be a sequence of indepen-
dent random variables where Xi ∈ [ai,bi] for each i ∈ [n], and Sn =

∑n
i=1 Xi.

Then

P (|Sn − E[Sn]| ⩾ t) ⩽ 2 exp
(
−

2t2∑n
i=1(bi − ai)

2

)
.

Theorem 14 (Matrix Bernstein, [45]). Let Z1, . . . ,Zn ∈ Rd1×d2 be indepen-
dent, zero-mean random matrices, each satisfying (almost surely) ∥Zi∥2 ⩽ B. Then
for any s ⩾ 0,

P

(∥∥∥∥∥
n∑
i=1

Zi

∥∥∥∥∥
2

⩾ s

)
⩽ (d1 + d2) exp

(
−

3s2

6ν+ 2Bs

)

where ν = max
{∥∥E[

∑n
i=1 Z

⊤
i Zi]

∥∥
2

,
∥∥E[

∑n
i=1 ZiZ

⊤
i ]
∥∥
2

}
.

Proposition 3. The following is true.

1. 1− x
2 ⩾ e−x for x ∈ [0, 1.59]

2. 1− x ⩽ e−x for x ∈ [−1, 1].
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4.1.2 Properties of Erdös-Renyi graphs

Recall that in our setup, we have T + 1 Erdös-Renyi graphs Gt ′ ∼ G(n,p(t ′))
for t ′ ∈ T. Moreover, for any given t ∈ [0, 1], we have the union graph
Gδ(t) ∼ G(n,pδ(t))) with pδ(t) as in (2.2.3). Also recall that pδ,sum(t) :=∑
t ′∈Nδ(t)

p(t ′).

Lemma 21. Consider the events

1. A1 =
{
npδ(t)
2 ⩽ dmin,δ(t) ⩽ dmax,δ(t) ⩽

3npδ(t)
2

}
,

2. A2 =
{
ξδ(t) >

1
2

}
,

3. A3 =
{
|Eδ(t)| ⩽ 2n2pδ(t)

}
,

4. A4 =
{
pδ,sum(t)

2 ⩽ Nmin,δ(t) ⩽ Nmax,δ(t) ⩽ 2pδ,sum(t)
}

.

Then the following is true.

1. There exists a constant c0 ⩾ 1 such that if pδ(t) ⩾ c0
logn
n , then P(Ai) ⩾

1−O(n−10) for i = 1, 2, 3.

2. There exists a constant c2 ⩾ 1 such that if pδ,sum(t) ⩾ c2 logn, then
P(A4) ⩾ 1−O(n−10).

Proof. 1. This follows for A1 from the Chernoff bound (see Section 4.1.1)
with ε = 1/2, and the union bound. For A2, the statement follows
directly by applying [36, Lemma 7] to Gδ(t). For A3, this is again a
standard use of the Chernoff bound with µ =

(
n
2

)
pδ(t) and ε = 1/2.

2. Note that for any i ̸= j ∈ [n], |Nij,δ(t)| is a sum of independent
Bernoulli random variables and E[|Nij,δ(t)|] =

∑
t ′∈Nδ(t)

p(t ′) = pδ,sum(t).
Then if pδ,sum(t) ⩾ c2 logn for a suitably large constant c2 > 0, it
holds with probability at least 1−O(n−12) that

pδ,sum(t)

2
⩽ |Nij,δ(t)| ⩽ 2pδ,sum(t).

Now the union bound implies that

P

(
∀i ̸= j :

pδ,sum(t)

2
⩽ |Nij,δ(t)| ⩽ 2pδ,sum(t)

)
⩾ 1−O(n−10).

Since Nmin,δ(t) ⩾ mini ̸=j |Nij,δ(t)| and Nmax,δ(t) ⩽ maxi ̸=j |Nij,δ(t)|
is always true, hence the statement follows.

Proposition 4. With pmin as in (2.2.5), we have for all t ∈ [0, 1] that pδ(t) ≳

min {1,pminδ}. Therefore pδ(t) ≳
logn
n if pminδ ≳

logn
n .

Proof. Starting with the definition of pδ(t) in (2.2.3), we have using Proposi-
tion 3 that

pδ(t) = 1−
∏

t ′∈Nδ(t)

(1−p(t ′)) ⩾ 1−(1− pmin)
|Nδ(t)| ⩾ 1−e−pmin|Nδ(t)| ⩾ 1−e−pminδ

(4.1.2)

where the last inequality follows uses the fact |Nδ(t)| ⩾ δ for all t. Now
there are two cases to distinguish.
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• If pminδ ⩽ 1, then 1− e−pminδ ⩾ pminδ
2 using Proposition 3.

• If pminδ ⩾ 1, then 1− e−pminδ ⩾ 1− e−1.

This concludes the proof.

4.2 appendix of chapter 3

4.2.1 Technical tools

We recall below two useful and standard results regarding the Löwner or-
dering. The proof of the next lemma has been adapted from [14].

Lemma 22. Let A,B be two N×N symmetric positive definite matrices, such that
B ≽ A. Then, it holds A−1 ≽ B−1.

Proof. Given that B ≽ A, it is easy to see that A−1/2(B − A)A−1/2 ≽ 0,
which is equivalent to A−1/2BA−1/2 ≽ I. Assuming A and B are N×N
matrices, let us write the spectral expansion

A−1/2BA−1/2 =

N∑
i=1

µiuiu
⊤
i .

Noticing that I =
∑N
i=1 uiu

⊤
i , and given the fact A−1/2BA−1/2 ≽ I it is

clear that µi > 1 for all i, which implies that

I =

N∑
i=1

uiu
⊤
i ≽

N∑
i=1

µ−1i uiu
⊤
i = A1/2B−1A1/2.

On other hand, using this Loewner inequality, we deduce that

B−1 = A−1/2(A1/2B−1A1/2)A−1/2 ≼ A−1/2IA−1/2 = A−1

The proof of the following lemma is outlined in [50].

Lemma 23. Let A,B be two N×N symmetric positive semidefinite matrices satis-
fying B ≽ A and N(A) = N(B). Then it holds A† ≽ B†.

Proof. If A,B are invertible, the result follows direclty from Lemma 22. If
they are not, assume that their nullspace N(A) has dimension d ⩾ 1 and
their range has dimension N− d. Let {v1, · · · , vd} be any orthonormal basis
of N(A). It is easy to see that A +

∑d
i=1 viv

T
i is invertible, and the same

is true for B+
∑d
i=1 viv

T
i . Given B+

∑d
i=1 viv

T
i ≽ A+

∑d
i=1 viv

T
i , we use

Lemma 22, to deduce

A† +
d∑
i=1

viv
T
i = (A+

d∑
i=1

viv
T
i )

−1 ≽ (B+

d∑
i=1

viv
T
i )

−1 = B† +
d∑
i=1

viv
T
i ,

where for the first and last equality we used the orthogonality of the range
of A (B has the same range) with respect to the nullspace. From this, the
result follows.
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4.2.2 Additional simulations

eigenvalues of L(λ) . The theoretical analysis of the smoothness pe-
nalized estimator relies on the knowledge of the eigenvalues of L(λ) and
how they differ from the eigenvalues of L. We show in Figure 16 the vari-
ations of the eigenvalues of these matrices for different choices of λ. We
verify experimentally that the addition of a penalty term increases part of
the spectrum, which is at the base of our theoretical analysis.

(a) Eigenvalues of L (b) Eigenvalues of L(λ)

Figure 16: Histogram of eigenvalues of L and L(λ) for different

values of λ = cλ

(
T
ST

)2/3
, for T = 200 and n = 100. The

addition of the penalty term increases the eigenvalues.

simulation for n ≫ T . Figure 17 shows the evolution of the MSE
for n = 200 and T varying between 10 and 50. We observe that even in
the case n ≫ T , the estimation error goes to 0 as T increases. However, the
errors are slightly bigger than in the case n ≪ T , which is consistent with
the theoretical error bounds we presented in this chapter.



4.2 appendix of chapter 3 105

(a) Smoothness ST = 1
T

(b) Smoothness ST = 1√
T

Figure 17: MSE versus T for DLS and DProj for n ≫ T . Here
n = 200, T goes from 10 to 50 and data is generated accord-
ing to the Dynamic TranSync model. Graphs are generated as
G(n,p(t)) with p(t) chosen randomly between 1

n and log(n)
n .

The results are averaged over the grid T as well as 20 Monte
Carlo runs.
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