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NOTATIONS AND METRICS

To ensure clarity and consistency throughout this thesis, a standardized set of no-
tations will be employed. In Table 1, we provide a list of the notations commonly used
throughout this manuscript, along with their definitions.

Table 1 – Frequently used notations and their meanings.

Symbol Meaning
Dl and Du labeled and unlabeled sets, composed of a set of sam-

ples and their corresponding class labels.
N and M number of samples in Dl and Du.
X l and Xu labeled and unlabeled data sets in Rd×N and Rd×M .
xl and xu data samples in Rd.
C l and Cu number of known and novel classes.
Y l and Yu target spaces in RCl and RCu .
Y l and Y u corresponding class labels of X l and Xu in Y l/Yu.
1[condition] the indicator function evaluates to 1 if the condition

is true and 0 otherwise.
z the projection of a sample x in the latent space of an

encoder.

The algorithms explored in this thesis will be evaluated with three main metrics:
• The Clustering Accuracy (ACC) [1] measures the extent to which the predicted

labels match the ground truth labels. Since the cluster label numbers are random and may
not correspond to the ground truth class labels, a mapping must be found to optimally
align them. This mapping can be obtained using the Hungarian algorithm [2] (also known
as the Kuhn-Munkres algorithm).

ACC = 1
M

M∑
i=1

1[yu
i = map(ŷu

i )] (1)

where map(ŷu
i ) is the mapping of the predicted label ŷu for sample xu

i . In other words,
the clustering accuracy is just the usual accuracy computed after finding the optimal
alignment between the randomly associated cluster numbers and the ground truth labels.
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• The Normalized Mutual Information (NMI) indicates the correspondence be-
tween the predicted and ground truth labels, and is invariant to permutations.

NMI = I(ŷu, yu)√
H(ŷu)H(yu)

(2)

where I(ŷu, yu) is the mutual information between ŷu and yu and H(yu) and H(ŷu) are the
entropies of the empirical distributions of yu and ŷu respectively. The mutual information
is computed as:

I(ŷu, yu) =
∑

ŷu,yu

P (ŷu, yu) log
(

P (ŷu, yu)
P (ŷu)P (yu)

)
(3)

• The Adjusted Rand Index (ARI) evaluates the similarity between two sets of
labels by taking into account the similarity that would be expected by random chance. It
adjusts the Rand Index (RI) for the expected RI of random labeling.

ARI = RI − Expected_RI
max(RI)− Expected_RI (4)

where RI = a+b

(n
2)

, a is the number of pairs of elements grouped in y that are also grouped
in ŷ, b is the number of pairs of elements that are in different groups in y and in ŷ, and(

n
2

)
is the total number of possible pairs in the dataset.

These three metrics are symmetric, i.e. metric(a, b) = metric(b, a), and range between
0 and 1 1, with values closer to 1 indicating better agreement between the cluster and
ground truth labels.

1. The ARI actually ranges from -1 to 1, with negative values indicating a performance worse than
random.
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Introduction

1.1 The value of reliable telecommunication networks

Driven by technological advancements, the global economy has become increasingly
reliant on internet services. Instant communication, project management, marketing or
e-commerce have all become integral to modern business operations, facilitating global
reach and operational efficiency. Optical fiber has played an especially pivotal role in these
advancements by vastly improving internet speeds. According to the ARCEP (an inde-
pendent French agency responsible for regulating telecommunications), as of March 31,
2018, 10.9 million French premises were eligible for Fiber-To-The-Home (FTTH) offers.
And by September 30, 2023, this number had grown to 38.9 million premises [3], covering
more than 84% of the fixed internet access market. Optical fiber has enabled the inte-
gration of high-speed, low-latency applications such as video streaming, online gaming,
cloud computing, telemedicine and smart city infrastructure into everyday life. And this
evolution is set to continue as more and more bandwidth-eager devices and services are
connected. For instance, from Cisco’s estimations [4], the number of 4K televisions in
homes quadrupled between 2018 and 2023.

As the primary entities responsible for providing and maintaining internet connectivity,
Internet Service Providers (ISPs) face many challenges from this rapid growth of the
FTTH network. ISPs build and maintain the network infrastructure by laying optical
fiber, installing routers, switches, data centers and other equipment necessary for data
transmission 1. They also manage and optimize the quality of service, ensuring that users
receive reliable and high-speed internet connections. And with an ever-changing network
consisting of a wide variety of equipment, it is becoming increasingly difficult to provide
high quality services with optimal uptime. Even with reliable hardware and software,
faults will inevitably occur, affecting the end-user experience. According to a 2023 study
by the Uptime Institute [5], 70% of IT and data centers outages cost businesses more than
$100,000 per outage. Sometimes faults can be spectacular, for example in 2016 a single
router failure caused Delta Airlines to cancel 2,300 flights and lose $177 million. The quick
resolution of such faults is imperative, as several ISPs usually compete for subscribers,
and users may switch to alternative providers. Therefore, effective fault management is a
key aspect of operating telecommunication networks, and especially in access network.

1. In some cases, ISPs do not build their own network and instead lease the infrastructure of com-
mercial operators, rather than building and maintaining their own. This model is often referred to as a
"virtual network operator" (VNO).
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1.2 The fault management process

Fault Management (FM) is the process of locating, analyzing and resolving network
problems (such as a cut fiber, network capacity overload or cyberattack) [6]. Figure 1.1
shows the FM process from detection to recovery.

Figure 1.1 – The Fault Management process.

Fault identification involves two complementary tasks: detection and diagnosis [7].
The purpose of fault detection is to decide whether the network is operating normally or
not. It can be triggered after observing a problem or proactively to anticipate upcoming
problems. And in the event of a fault, the diagnosis step (also called root cause analysis)
seeks to deduce the original cause of a fault or group of faults. It is sometimes divided into
two sub-tasks: localization and identification. The purpose of the mitigation process is to
determine the necessary actions to definitively resolve the fault. It starts with impact
analysis, where the nature of the fault (criticality, duration, scope, etc.) is determined.
This step helps to understand the risks associated with the fault (process or product
failures) and allows the operator to prioritize the most serious faults. Finally, the recovery
actions often consist of dispatching technicians to repair the previously identified software
or hardware causing the fault.

In the context of this research, we consider that it is the role of the ISPs to collect
the data describing the state of their network and to detect if it is subject to a fault.
The impact analysis and recovery actions can arguably only be carried out by network
experts, so we are only interested in the diagnosis step. The production of a diagnosis
is often considered the most difficult step in automatic fault management [8], as a good
diagnosis must allow the exact location of the fault to be determined and the repair to
be definitive.

In the past, fault diagnosis was performed manually by network experts who examined
each fault individually using a limited number of descriptors. However, the evolution of
telecommunications networks over the last two decades has significantly increased their
size and complexity, to the point where network diagnosis has become too complicated for
human experts. For this reason, fault diagnosis in the real world is now mostly conducted
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through expert systems (often rule-based algorithms) [9]. Similar to how an expert studies
a specific case, these systems analyze data from a large number of performance indica-
tors before reaching a conclusion on the nature of the fault. Rule-based expert systems
encapsulate the knowledge of the experts of the network in the form of rules. While their
decisions are easy to interpret, they have a number of drawbacks. Firstly, these solutions
are highly specific and cannot be transferred to different domains of application or net-
work architectures. Then, they still require manual maintenance by network experts and,
as the volume of data and the number of potential sources of faults increase, they are
becoming increasingly difficult to manage. Finally, because the rules may not cover all
possible cases, some faults may not match any of the rules and go undiagnosed. These
undiagnosed faults will require additional attention and investigation time, increasing the
operating costs.

Orange, the company where I conducted my thesis, is an ISP who is rapidly expanding
its Fiber-To-The-Home services. Similarly to most internet providers, Orange France has
developed its own expert diagnosis system called DELC (for Diagnostic Expert de la
Ligne Client, or expert diagnosis of the customer’s line). It is able to provide a diagnosis
for the majority of the faults, but some remain undiagnosed and often require a costly
investigation by a technician. With millions of interventions by technicians every year,
this is a topic of crucial importance for Orange.

Thus, the goal of this thesis is to discover new diagnoses for the faults for which the
DELC system was unable to determine the root cause. In this manuscript, we will consider
that we have a set of diagnosed faults predefined by network experts (the known classes)
and a set of undiagnosed faults (the novel classes) that we need to explore. To design
a system that can be used with other network architectures or problems, and to avoid
creating a system that is overly specific to DELC, we will attempt to create a method that
can be applied to partition any set of unknown (or novel) classes, given a set of known
classes.

1.3 Automatic network diagnosis systems

Before introducing the task of network diagnosis as a machine learning problem, we
briefly discuss existing diagnosis systems. Because large FTTH networks consist of devices
from many different vendors, with a plethora of protocols and management software,
automating network diagnosis is not an easy process. Network equipment vendors such as

14
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Cisco, Nokia or Huawei offer solutions that can only monitor their own devices. To achieve
full coverage of their network, ISPs must deploy management solutions from multiple
vendors, each focused on specific aspects of the network [10]. However, as each vendor uses
different performance indicators, metrics and data structures, this results in a significant
amount of effort to link the different pieces of software together to gain a global view of
the network. There is currently no holistic solution proposed to provide an overview of
such heterogeneous networks, which makes diagnosis a complex task and is the crux of
the problem we address in this thesis.

Recently, there has been a growing interest in statistical and data-driven approaches.
Machine learning has been particularly popular to leverage the large amounts of data
collected by ISPs [11]. Indeed, it is a much more attractive solution to query each equip-
ment for its individual information before merging all the collected variables into a single
unified dataset describing the network. In this way, the same methodology can be applied
on datasets from different ISPs, as long as the objective is clearly defined. In the fault
diagnosis literature, methodologies are generally categorized in three groups [12, 13, 14]:
Model-based methods aim at representing processes based on expert knowledge before
applying mathematical models. They can lead to very accurate diagnoses, but are inher-
ently difficult to scale to complex systems. Signal-based approaches rely on a fundamen-
tal understanding of the process physics to identify possible abnormalities and faults by
comparing detected signals to previous measures of normal operation. Primarily employed
with physical machinery, such as production lines, these approaches are less applicable to
our case. Lastly, data-driven approaches leverage large amounts of historical data and
are well suited for complex industrial systems such as FTTH networks. However, many
data-driven methods stop at the fault detection step and do not attempt to create groups
of similar faults, let alone diagnosing the root cause.

It should be noted here that most of the literature assumes that all possible root causes
of failures are known in advance, often reducing the diagnosis to a classification task.

At Orange, two theses have already been carried out with the aim of improving the
coverage of the diagnosis system. First, in [15], Serge Romaric Tembo Mouafo examined
the applicability of Bayesian networks, which have been extensively researched for the
diagnosis task. These models represent the variables of the network as nodes, with edges
representing the conditional dependencies between the nodes. In theory, the parameters
of these models can be automatically estimated from the data. However, practical im-
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plementation revealed that Bayesian networks are highly application-specific and require
manual tuning of weights by an expert of the network to reflect reality. Maintenance be-
comes time-consuming when the network changes or new faults arise, especially in large
access networks like Orange’s. This is the main drawback of model-based methodologies,
to which S. Tembo’s work [15] belongs.

And in [16], Amine Echraibi developed probabilistic graphical models based on Dirich-
let process mixtures. Interestingly, these models are capable of identifying clusters of sim-
ilar faults without prior knowledge of the number of clusters. However, in the Dirichlet
process, the size of the clusters decreases geometrically with their number, which is not
necessarily true in real-world scenarios. Additionally, it was chosen in this work to approx-
imate the posterior distribution of the target variable through the mean field technique,
which makes the assumption that instances of a dataset are independant. With network
data, this assumption is clearly violated as multiple clients can be affected by the same
fault. Finally, as the authors note, it is very difficult to create a clean dataset from the
large number of heterogeneous measures extracted from the access network. This was the
main obstacle to validate experimentally the efficacy of their methods, which we tackle
in Chapter 6. A. Echraibi’s work falls under the data-driven category, but distinguishes
itself by attempting to interpret the clusters of faults it creates by studying their most
descriptive features.

1.4 Network diagnosis as a machine learning problem

In this thesis, we approach the problem of automatic fault diagnosis from a data-centric
point of view. As we have seen before, fully modeling the network of an ISP is not feasible
in practice, as it is a monumental task that requires continuous maintenance. Instead,
we assume that for each fault, the ISP has collected a number of features describing the
network at the time of the failure. Then, over the course of a few weeks or months, the
faults are compiled into a single dataset.

Orange’s rule-based expert diagnosis system, DELC, diagnoses between 80% and 90%
of the FTTH faults. And undiagnosed faults are labeled as DNIs (for Défauts Non Identi-
fiés, or unidentified faults). Thus, we can consider that we have two distinct sets of data:
one made up of the known diagnoses where all faults have been labeled by the expert sys-
tem, and the other made up of the unlabeled DNIs. For the time being, we assume that
the rules for known diagnoses in the expert system have complete coverage, and therefore
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that the unlabeled faults do not contain instances of the known diagnoses. Indeed, we are
only interested in discovering new diagnoses. Updating the definition of known diagnoses
could be an interesting future development of our work. The collected data is comprised
of a large number of heterogeneous features such as signals strengths, software versions,
timestamps, equipment statuses, etc. After preprocessing, the data can be shaped into a
table, with each row representing a fault and each column a feature.

While exploring the sub-domains of open-world Machine Learning (see Chapter 2),
we came across the nascent field of Novel Class Discovery (NCD). Very similar to our
problem, we are given during training a labeled set of known classes and an unlabeled
set of different and unknown classes. And the goal is to discover the underlying classes
within the unlabeled data. The first groundbreaking paper was published in 2021 [17], and
NCD has remained largely focused on image data ever since. As there is a strong spatial
correlation between the pixels of an image, powerful techniques such as convolution, data
augmentation or Self-Supervised Learning [18] can be applied to improve performance. But
since there is no spatial correlation between the heterogeneous features of tabular data,
these techniques cannot be used and state-of-the-art NCD methods cannot be directly
employed. However, we believe that the general philosophy and concepts behind NCD
can still be transferred to our case. For these reasons, we consider in this thesis that our
fault diagnosis problem is a Novel Class Discovery problem in tabular data, and we make
both theoretical and practical contributions to this domain.

1.5 The limits of unsupervised clustering and the
need for NCD

Before we proceed, we would like to quickly address a question that often arises when
introducing the NCD problem: “Why cannot unsupervised clustering methods solve the
NCD problem?” While simply clustering the unlabeled set of unknown classes could work
with some datasets, the more complex cases prove difficult for unsupervised methods. We
illustrate this idea in Figure 1.2 with a dataset comprised of real FTTH faults, where the
classes are the known diagnoses of the DELC system. In Figure 1.2(a), the prediction of a
k-means algorithm is the typical result expected from an unsupervised clustering method.
The clusters’ edges are clearly defined, and visually isolated groups of points have been
grouped together. However, the reality of the ground truth in Figure 1.2(b) tells another
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story. The obvious clusters of points shown by the t-SNE 2 and confirmed by k-means are
completely different to the underlying classes we are trying to discover. This means that
the features relevant to the diagnosis problem do not have enough weight in the original
feature space.

(a) Points colored with the prediction of k-
means in the original feature space.

(b) Points colored with the ground truth la-
bels.

Figure 1.2 – t-SNE visualization of the instances of the 80 most represented classes of
DELC.

As with most NCD problems, clusters found by purely unsupervised means are rarely
of interest to domain experts who have already drawn the most obvious conclusions. For
example, we observe that clustering algorithms tend to group faults according to the
model of home modem, which is not useful for diagnosis. So in NCD, the problems are
generally too complex for unsupervised clustering, and a labeled set of known classes is
used to extract a general idea of what constitutes an interesting class. These known classes
are a translation of the experts’ knowledge and will guide the clustering process. Some
works even define the goal of NCD as extracting the distinctive high-level features of the
known classes into a representation where the novel classes are easily separable [19]. In
this thesis, we will inject the experts’ knowledge into a latent space using a supervised
objective that predicts the known classes.

2. t-distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction technique used
for visualizing high-dimensional data in lower dimensions while preserving local structure.
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1.6 Contributions and organization of the document

This thesis is organized in 5 main chapters which we describe in this section.
We begin in Chapter 2 with a comprehensive survey of the state-of-the-art Novel Class

Discovery methods. After formally defining the NCD problem, we give an overview of the
different families of approaches. For each family, we describe their general principle and
detail a few representative methods. We also present some common tools and techniques
used in NCD, such as pseudo-labeling, self-supervised learning and contrastive learning.
Finally, to help readers unfamiliar with the NCD problem differentiate it from other closely
related domains, we summarize some of the closest areas of research and discuss their main
differences. The contents of this chapter have been submitted to an international machine
learning journal and are available as a preprint in the meantime:

[20] Novel Class Discovery: an Introduction and Key Concepts. Colin Troise-
maine, Vincent Lemaire, Stéphane Gosselin, Alexandre Reiffers-Masson, Joachim Flocon-
Cholet and Sandrine Vaton. In: ArXiv preprints, 2023.

In Chapter 3, we propose a first method for solving the NCD problem in tabular data,
which we call TabularNCD. We extract knowledge from already known classes into a latent
space to guide the discovery process of novel classes. We propose a new pseudo-labeling
process and follow recent findings in Multi-Task Learning to optimize a joint objective
function. Extensive experiments are conducted to evaluate our method and demonstrate
its effectiveness against 3 competitors on 7 diverse public classification datasets. This
method has been published at an international conference:

[21] A Method for Discovering Novel Classes in Tabular Data. Colin Troisemaine,
Joachim Flocon-Cholet, Stéphane Gosselin, Sandrine Vaton, Alexandre Reiffers-Masson
and Vincent Lemaire. In: IEEE International Conference on Knowledge Graph (ICKG),
2022.

Its French translation has been presented at the following national conference:

[22] Découvrir de nouvelles classes dans des données tabulaires. Colin Troise-
maine, Joachim Flocon-Cholet, Stéphane Gosselin, Sandrine Vaton, Alexandre Reiffers-
Masson and Vincent Lemaire. In: Extraction et Gestion des Connaissances (EGC), 2023.
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Chapter 4 is dedicated to solving the NCD problem under more realistic conditions.
In particular, we consider that no prior knowledge of the novel classes is available. To
this end, we propose to tune the hyperparameters by adapting the k-fold cross-validation
process. Since we have found that methods with too many hyperparameters are likely to
overfit the known classes, we propose a new model focused on simplicity. Furthermore,
we find that the latent space of this method can be used to reliably estimate the number
of novel classes. In addition, we adapt two unsupervised clustering algorithms (k-means
and Spectral Clustering) to leverage the knowledge of the known classes. The contents of
this chapter were presented in the following paper, which is part of the journal track of
the ECML/PKDD international conference:

[23] A Practical Approach to Novel Class Discovery in Tabular Data. Colin
Troisemaine, Alexandre Reiffers-Masson, Stéphane Gosselin, Vincent Lemaire and San-
drine Vaton. In: Data Mining and Knowledge Discovery, 2024.

Chapter 5 presents an interactive interface for interpreting the results of clustering
or NCD algorithms. The interpretation of the domain- and application-specific attributes
of tabular data is difficult and often requires a domain expert. Therefore, this interface
allows a domain expert to easily run state-of-the-art NCD and clustering algorithms on
tabular data. Without writing any code, and with minimal knowledge of data science,
interpretable results can be generated. This work was presented in a demo paper at an
international conference:

[24] An Interactive Interface for Novel Class Discovery in Tabular Data. Colin
Troisemaine, Joachim Flocon-Cholet, Stéphane Gosselin, Alexandre Reiffers-Masson, San-
drine Vaton and Vincent Lemaire. In: Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD), Applied Data Science and Demo Track, 2023.

In Chapter 6, we validate the methods developed in the previous chapters on real
operational faults of Orange’s FTTH network. We start by detailing the data wrangling
process that had to be followed to transform the raw data used by DELC into a for-
mat usable by machine learning algorithms. In the experiments, 7 clustering and NCD
algorithms are evaluated against each other on this dataset. The results are presented in
terms of performance metrics and with a confusion matrix. Finally, we give an example
of a decision tree that can be automatically derived from the discovered clusters, and
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compare it to the true rules in DELC’s software.
Finally, Chapter 7 summarizes the contributions made throughout the dissertation,

highlights their limitations and explores potential future research directions. In these fu-
ture research directions, we discuss promising topics such as cluster interpretation, human-
in-the-loop, Generalized Category Discovery (GCD) and hyperbolic neural networks for
hierarchical data representation.

The chapters are organized around the individual papers that have been produced
during the course of this thesis, reflecting the scientific approach that has been taken.
Each chapter is designed to be self-contained, allowing for independant understanding
without the need to read the others. As a result, there may be repetitions, especially in
the introductions and related works of Chapters 3 and 4. We recommend that the reader
follow the chapters in their intended order and skip those sections that may be redundant.
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2.1 Introduction

In the past decade of machine learning research, many classification models have relied
heavily on the availability of large amounts of labeled data for all relevant classes. The
recent success of these models is due in part to the abundance of labeled data. However,
it is not always possible to have labeled data for all classes of interest, leading researchers
to consider scenarios where unlabeled data is available. This “open-world” assumption
is becoming increasingly more common in practical applications, where instances outside
the initial set of classes may emerge [25]. To illustrate, let’s examine the scenario of
Figure 2.1. Here, instances from classes never seen during training appear at test time.
An ideal model should not only be able to classify the known classes (parrots and cats),
but also to discover the new ones (tigers and horses).

Figure 2.1 – The open-world scenario, where new classes appear during inference.

What is the issue? - In this example, a standard classification model is likely to in-
correctly classify instances that fall outside the known classes as belonging to one of the
known classes. This is a well-known phenomenon of neural networks, where they can pro-
duce overconfident incorrect predictions, even in the case of semantically related inputs
[26]. Here, a tiger would be classified as a parrot or a cat. For this reason, researchers are
now exploring scenarios where unlabeled data is also available [27, 28]. In this chapter, we
will focus on one such scenario, where a labeled set of known classes and an unlabeled set
of novel classes are given during training. The goal is to learn to categorize the unlabeled
data into the appropriate classes. This is referred to as “Novel Class Discovery (NCD)” 1

[29].

1. In this chapter, we use the term “Novel Class Discovery” to refer to the specific domain and not to
the act of discovering novel classes. This name is becoming gradually more popular in the literature, but
it can be confusing due to its general meaning. It is also sometimes called “Novel Category Discovery”.
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What is the usual setup of NCD? - Illustrated in Figure 2.2, the training data in NCD
consists of two sets of samples: one from known classes and one from novel classes. The test
set is comprised solely of samples from novel classes. The NCD scenario belongs to Weakly
Supervised Learning [27, 28], where methods that require all the classes to be known in
advance can be distinguished from those that are able to manage classes that have never
appeared during training. As an example, in Open-World Learning (OWL) [25], methods
seek to accurately label samples of classes seen during training, while identifying samples
from novel classes. However, the methods in OWL are generally not tasked with clustering
the novel classes and unlabeled data is left unused. Another example is Zero-Shot Learning
(ZSL) [30], where the models are designed to accurately predict classes that have never
appeared during training. But some kind of description of these novel classes is needed
to be able to recognize them. On the other hand, NCD has recently gained significant
attention due to its practicality and real-world applications.

Figure 2.2 – The Novel Class Discovery scenario, where both labeled data of known classes
and unlabeled data of novel classes are available during training.

Why does clustering alone fail to produce good results? - Albeit naive, unsupervised
clustering is a direct solution to the NCD problem as it can sometimes be sufficient
for discovering classes in unlabeled data. For example, many clustering methods have
obtained an accuracy larger than 90% on the MNIST dataset [31, 32, 33]. But in the case
of complex datasets, the literature shows that clustering fails [34, 35] compared to more
sophisticated approaches. Clustering can fail for many reasons due to the assumptions
that the methods make: spherical clusters, mixture of Gaussian distributions, shape of
the data, similarity measure, etc. Thus, the partitioning produced could be incoherent
with the data or with the semantic classes; i.e. unsupervised learning is not enough in
some cases. We attempt to illustrate this idea in Figure 2.3: If the similarity measure
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used is highly influenced by the color of images, the clusters that are generated will likely
group images based on their dominant color. Although the clusters formed in this manner
will be statistically accurate (with high similarity within the cluster and low similarity
between clusters), the semantic categories will not be revealed.

Figure 2.3 – Example of naive solution that could be found with unsupervised clustering.
The images are grouped by dominant color and not by semantic class such as bird, flower,
fish, . . .

As real-world datasets vary widely in nature and the desired clusters can have very
different definitions, it seems impossible to create a clustering algorithm that fits all data
types. Therefore, there is a need for more refined techniques that can extract from known
classes a relevant representation of a class in order to improve the clustering process.

To fill these gaps - the Novel Class Discovery domain has been proposed: it attempts to
identify new classes in unlabeled data by exploiting prior knowledge from known classes.
The idea behind NCD is that by having a set of known classes, a suitable method should
be able to improve its performance by extracting a general concept of what constitutes
a good class. This can, for example, take the form of a specialized similarity function
or a latent space containing domain-specific features. It is assumed that the model does
not need to be able to distinguish the known from the novel classes. If this assumption
is not made, this becomes a Generalized Category Discovery (GCD) [36] problem. Some
solutions have been proposed for the NCD problem in the context of computer vision and
have displayed promising results [17, 37, 38, 39].

In most of the literature, the difficulty of a NCD problem is set by varying the number
of known/novel classes, and increasing the number of known classes is considered as a way
of making the problem easier. In [40], the authors explore the influence of the semantic
similarity between the classes of the labeled and unlabeled sets. Their assumption is that
if the labeled set has a high semantic similarity to the unlabeled set, the NCD problem
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will be easier to solve. Intuitively, if the task is to distinguish different animal species
in the unlabeled set, a set of other known animals will be beneficial, while a set of cars
will not. They prove the validity of this assumption through their experiments and find
that a labeled set with low semantic similarity can even have a negative impact on the
performance.

Contributions and organization of this chapter - We provide a detailed overview of
Novel Class Discovery and its formulation, as well as its positioning with respect to related
domains. We outline the key components present in most NCD methods, in the form of
general workflows and a study of some representative methods, organized by the way they
transfer knowledge from the labeled to the unlabeled set. Additionally, we situate related
works in the context of NCD. The remaining sections of this chapter are organized as
follows: Section 2.2 introduces relevant general knowledge and an overview of domains
related to NCD. Section 2.3 presents a taxonomy of current NCD methods and describes
some representative methods. Section 2.4 provides a brief overview of new domains derived
from NCD. Since certain techniques and tools are frequently found in NCD methods,
Section 2.5 offers a concise description of them. Finally, Section 2.6 highlights links and
differences with related research fields before concluding.

2.2 Preliminaries

In this section, we introduce some general knowledge useful to understand most of
the NCD works. We start by briefly summarizing the history of NCD in the literature,
before giving a formal definition that follows the widely used mathematical notations of
[39] and [41]. And we present the usual evaluation protocol and the metrics used in NCD.
Please note that the notations that will be utilized throughout this chapter can be found in
the unnumbered Notations section just before the general introduction of this manuscript.

A brief history of NCD: The 2018 article of Hsu et al. [29] can be considered the
first to solve the Novel Class Discovery problem. The authors position their work as a
transfer learning task where the labels of the target set are not available and must be
inferred. Their methods, KCL [29] and MCL [42], are still regularly used as competitors
in NCD articles. The term “Novel Category Discovery” was initially used by Han et al.
[41] in 2020 and is another popular term to designate the NCD problem. Building on this

27



Novel Class Discovery: an Introduction and Key Concepts

work, Zhong et al. defined “Novel Class Discovery” as a new specific setting in 2021 [39].

A formal definition of NCD: During training, the data is provided in two distinct
sets: a labeled set Dl = {(xl

i, y
l
i)}N

i=1 where each sample xl
i in X l ∈ Rd×N has a corre-

sponding class labels yl
i ∈ Y l = {1, . . . , C l }. And an unlabeled set Du = {xu

i }M
i=1 where

only the samples xl
u in Xu ∈ Rd×M are available. The goal is to use both Dl and Du to

discover the Cu novel classes, and this is usually done by partitioning Du into Cu clusters
and associating labels yu

i ∈ Yu = {1, . . . , Cu} to the data in Du.
In the specific setup of NCD, there is no overlap between the classes of Y l and Yu,

so we have Y l ∩ Yu = ∅. We are not concerned with the accuracy on the classes of Dl,
this set is only here to provide a form of knowledge on what constitutes a relevant class.
In all the works reviewed in this chapter, the number Cu of novel classes is assumed to
be known a priori, although we will see that some works attempt to estimate this number.

Positioning and key concepts of NCD: Novel Class Discovery is a nascent prob-
lem with a setup that can be challenging to differentiate from other fields. To provide an
overview of the domains explored in this chapter, we propose Figure 2.4. By comparing
NCD with these related domains and highlighting the key differences, we aim to offer
the reader a clear and comprehensive understanding of the NCD domain. Please refer to
Section 2.6 for further details and discussions. Note that in Figure 2.4, the domains are
differentiated only by their setup, and while they may be similar, they dot not solve ex-
actly the same problems. Additionally, Open-World Learning is reviewed in Section 2.6.4
but does not appear in this figure. This is due to its broad definition and the multitude of
domains it encompasses, which would cause it to appear in several branches of Figure 2.4.

Evaluation protocol and metrics in NCD: To evaluate a NCD method on a given
dataset, the typical procedure [37] is to hold out (or hide) during the training phase a
portion of the classes from a fully labeled dataset to act as novel classes and form the
unlabeled dataset Du. For example, in most articles evaluated on MNIST, the authors
consider the first 5 digits as known classes and the last 5 as novel classes whose labels are
not used during training. The performance metrics are only computed on Du, as NCD is
only concerned with the performance on the novel classes.

The primary metric used to evaluate the performance of models in NCD is the cluster-
ing accuracy (ACC). First introduced by [1], it requires to optimally map the predicted
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Figure 2.4 – Overview of the domains related to Novel Class Discovery.

labels to the ground truth labels, as the cluster numbers will not necessarily match the
class numbers. The mapping can be obtained with the Hungarian algorithm [2] (also
known as the Kuhn-Munkres algorithm). The ACC is defined as:

ACC = 1
M

M∑
i=1

1[yu
i = map(ŷu

i )] (2.1)

where map(ŷu
i ) is the mapping of the predicted label for sample xu

i and M is the number
of samples in the unlabeled set Du.

Another popular metric is the normalized mutual information (NMI). It measures
the correspondence between the predicted and ground truth labels and is invariant to
permutations. It is defined as:

NMI = I(ŷu, yu)√
H(ŷu)H(yu)

(2.2)

where I(ŷu, yu) is the mutual information between ŷu and yu and H(yu) and H(ŷu) are
the marginal entropies of the empirical distributions of yu and ŷu respectively.

Both metrics range between 0 and 1, with values closer to 1 indicating a better agree-
ment to the ground truth labels. Other metrics that can be found in NCD articles include

29



Novel Class Discovery: an Introduction and Key Concepts

the Balanced Accuracy (BACC) and the Adjusted Rand Index (ARI). In the case of im-
balanced class distribution, the BACC provides a more representative evaluation of the
performance of a model compared to the simple accuracy. It is calculated as the average of
sensitivity and specificity. And the ARI gives a normalized measure of agreement between
the predicted clusters and the ground truth. Unlike the other metrics, it ranges from -1
to 1, with higher values also indicating better agreement between the two clusterings. A
score of 0 indicates random clustering, while negative scores indicate a performance worse
than random.

2.3 Taxonomy of Novel Class Discovery methods

Table 2.1 – Main contributions of the works in NCD, organized by the method of knowl-
edge transfer from Dl to Du.

Knowledge
transfer method Article Main contributions

Tw
o-

st
ag

e
m

et
ho

ds Similarity func-
tion learned on
Dl

CCN [29] The first article to define and solve the NCD problem.

MCL [42] Improvement of [29] and introduction of the modified
binary cross-entropy with inner product.

Latent space
learned on Dl

DTC [37] Adaptation of a deep clustering method [43] for NCD.

MM/MP [19] Formalization of the assumptions behind NCD. Solving
NCD with a limited quantity of unlabeled data.

O
ne

-s
ta

ge
m

et
ho

ds

Joint objective
on Dl and Du

AutoNovel [17, 41]
Using SSL to pre-train using all the data. The RankStats
method for pseudo-labeling. Joint objective of
classification on Dl and clustering on Du.

CD-KNet-Exp [38] Using the Hilbert Schmidt Independence Criterion to
bridge supervised and unsupervised information.

Unnamed [44] Insertion of the pre-training objective in the joint loss.

OpenMix [45] Creating synthetic samples with mixed known and novel
classes to produce robust pseudo-labels.

NCL [39] Adapting contrastive learning to the NCD setting, along
with NCD-specific hard-negative generation.

WTA [46] A solution for NCD in multi-modal video data, using
WTA hashing [47] for pseudo-labeling.

DualRS [48] Automatic extraction of both global and local features of
images to define robust pseudo-labels.

Spacing loss [49] Learning an easily separable representation with
spaced-out spherical clusters.

TabularNCD [21] Solving the NCD problem for tabular datasets.

In this section, NCD works are organized by the way in which they transfer knowledge
from the labeled set Dl to the unlabeled set Du. Also identified by [50], and [49], NCD
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methods adopt either a one- or two-stage approach. An overview of the methods that are
studied in this section is provided in Table 2.1, along with a brief description of their
contributions.

The first NCD works published were generally two-stage approaches, so they are de-
scribed here first. They tackle the NCD problem in a way similar to cross-task Transfer
Learning (TL) methods. They first focus on Dl only (like a source dataset in TL) before
exploring Du (similarly to a target dataset without labels in TL). Within this category,
two families of methods can be distinguished: one uses Dl to learn a similarity func-
tion, while the other incorporates the features relevant to the classes of Dl into a latent
representation.

More recent methods adopt one-stage approaches and process Dl and Du simultane-
ously through a shared objective function. All the one-stage methods reviewed here work
in a similar manner, where a latent space shared by Dl and Du is trained by two classifi-
cation networks with different objectives. These objectives usually include clustering the
unlabeled data and maintaining good classification accuracy on the labeled data.

2.3.1 Two-stage methods

Learned-similarity–based

Figure 2.5 – General workflow of learned-similarity–based methods.

The general workflow of learned-similarity–based methods is illustrated in Figure 2.5.
Learned-similarity–based methods start by learning onDl a function that is also applicable
on Du and determines if pairs of instances belong to the same class or not. As the numbers
C l and Cu of classes can be different, a binary classification network is generally trained
by deriving supervised pairwise labels from the existing class labels Y l. The learned binary
classifier is then applied on each unique pair of instances in the unlabeled set Du = {Xu}
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to form a pairwise pseudo-label matrix Ỹ u. This matrix is used as a target to train a
classifier on Du and make the final class prediction.

In this section, we review two of the main learned-similarity—based methods of the
literature. CCN [29] is the first to tackle the very specific problem of NCD, and MCL [42]
makes improvements to CCN and defines a loss function used in many subsequent NCD
works.

• Constrained Clustering Network (CCN) [29] tackles the cross-domain Transfer
Learning (TL) problem which is outside of the scope of this review, as well as a cross-task
TL problem that corresponds to NCD. In the latter, the method seeks to cluster Du by
using the knowledge of a network trained on Dl. In the first stage, a similarity prediction
network is trained on Dl to distinguish if pairs of instances belong to the same class or
not. This network is then applied on Du to create a matrix of pairwise pseudo-labels Ỹ u

(similarly to must-link and cannot-link constraints). In the second stage, a new classifica-
tion network is defined with Cu output neurons with the objective of partitioning Du. It
is trained on Du by comparing the previously defined pseudo-labels to the KL-divergence
between pairs of its cluster assignments. In other words, if for two samples xi and xj the
value in the pseudo-labels matrix is 1 (i.e. Ỹ u

i,j = 1), the two cluster assignments of the
classification network must match according to the KL-divergence. The idea behind this
approach is that if a pair of instances is similar, then their output distribution should be
similar (and vice-versa), resulting in clusters of similar instances according to the similar-
ity network.

• Meta Classification Likelihood (MCL) [42] is a continuation of CCN [29] by
the same authors. They also consider multiple scenarios, one of them being “unsuper-
vised cross-task transfer learning”, which corresponds to the NCD setting. Similarly to
CCN [29], pairwise pseudo-labels are constructed on Du by a similarity prediction net-
work trained on Dl. A classification network with Cu output neurons is also defined to
partition Du. But this time, the KL-divergence is not used to determine if two instances
were assigned to the same class. Instead, they use the inner product of the prediction
pi,j = ŷT

i · ŷj. This pi,j will be close to 1 when the predicted distributions ŷi and ŷj are
sharply peaked at the same output node and close to 0 otherwise. This is a simple yet
effective idea that can be directly compared to the pairwise pseudo-labels ỹi,j ∈ {0, 1}
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and enables the use of the usual binary cross-entropy (BCE) as a loss function:

LBCE = −
∑
i,j

ỹi,jlog(ŷT
i · ŷj) + (1− ỹi,j)log(1− ŷT

i · ŷj) (2.3)

This is an important formalization of the classification problem with pairwise labels that
has been used in many subsequent NCD papers.

Latent-space–based

The general workflow of latent-space–based methods is illustrated in Figure 2.6. These
methods start by training with Dl = {X l, Y l} a latent representation that incorporates
the important characteristics of the known classes Y l. This is usually done by defining a
deep classifier with several hidden layers. After training with cross-entropy, the output and
softmax layers are discarded, and the last hidden layer is now regarded as the output of an
encoder. These methods make the assumption that the high-level features of the known
classes are shared by the novel classes. As the latent space highlights these features, Xu is
then projected inside, and any off-the-shelf clustering method can be applied to discover
the novel classes.

Figure 2.6 – General workflow of latent-space–based methods

Two relevant latent-space–based methods are summarized below. DTC [37] extends to
the NCD setting a deep clustering method, which is very suitable for the NCD problem.
MM [19] formalizes the assumptions behind NCD and proposes to train a set of expert
classifiers to cluster the unlabeled data.

• Deep Transfer Clustering (DTC) [37] is based on an unsupervised deep clus-
tering method, DEC [43], which clusters the data while learning a good representation
at the same time. Unlike many deep clustering methods, DEC does not rely on pairwise
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pseudo-labels. Instead, it maintains a list of class prototypes that represent the cluster
centers and assigns instances to the closest prototype. To adapt DEC to the NCD setting,
DTC initializes a representation by training a classifier with cross-entropy on Dl using
the ground truth labels. The embedding of Du is then obtained by projecting through
the classifier whose last layer was removed. An intuitive conclusion for DEC is that if
the classes Y l and Y u share similar semantic features, DEC should perform better on the
embedding of Du produced this way.

After projection of Du, DTC applies DEC with some improvements. Namely, the clus-
ters are slowly annealed to prevent collapsing the representation to the closest cluster
centers, and they find that further reducing the dimension of the learned representation
with Principal Component Analysis (PCA) leads to an improved performance.

• Meta Discovery with MAML (MM) [19] proposes a new method along with
theoretical contributions to the field of NCD, by defining a set of conditions that must
be met so that NCD is theoretically solvable. In simple terms, they state that: (1) known
and novel classes must be disjoint (2) it must be meaningful to separate observations
from X l and Xu (3) good high-level features must exist for X l or Xu and based on these
features, it must be easy to separate X l or Xu (4) these high-level features are shared by
X l and Xu. These four conditions are worthy of consideration when the NCD problem is
addressed for a new dataset. The reader may find more details in the original article.

Based on the assumption that X l and Xu share high-level features where the parti-
tioning is easy, the authors suggest that it is possible to cluster Du based on the features
learned on Dl. Therefore, they propose a two-stage approach that starts by training a
number of “expert” classifiers on Dl with a shared feature extractor. These classifiers are
constrained to be orthogonal to each other to ensure that they each learn to recognize
unique features of the labeled data. The resulting latent space should reveal these high-
level features, shared by the labeled and unlabeled data, and should be sufficient to cluster
Du. The expert classifiers are then fine-tuned on the unlabeled data Du with the BCE of
Equation (2.3) by defining pseudo-labels based on the similarity of instances in the latent
representation learned on Dl. The output of the classifiers after fine-tuning is used as the
final prediction for the unlabeled data.

This paper also makes experiments given a limited quantity of unlabeled data, and
shows that its method is more robust than the competitors in this case.
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2.3.2 One-stage methods

Introduction

The general workflow of one-stage methods is illustrated in Figure 2.7. In opposition
to two-stage methods, one-stage methods exploit both sets Dl and Du simultaneously.
Some of these methods still have multiple steps (such as pre-training on Dl), but they
are characterized by their joint use of Dl and Du during the clustering phase. Among
two-stage approaches, both similarity (see Section 2.3.1.A) and latent-space based (see
Section 2.3.1.B) are negatively impacted when the relevant high-level features are not
completely shared by the known and novel classes, as shown in [40]. But by handling
data from both sets of classes, one-stage methods will inherently obtain a better latent
representation less biased towards the known classes.

Figure 2.7 – General workflow of one-stage methods. The regularization loss is omitted
for the sake of clarity.

Most one-stage methods jointly train two classification networks (see Figure 2.7). One
predicts the labels of Dl and introduces the relevant features of the known classes, and
the other partitions Du using pseudo-labels usually defined with similarity measures. By
training both networks on the same latent space, they share knowledge with other. In
this chapter, the classification network trained on Du will be referred to as a “clustering”
network, since it is trained with unlabeled data.

One-stage methods define a multi-objective loss function which typically has 3 com-
ponents: cross-entropy (LCE), binary cross-entropy (LBCE) and regularization (LMSE).
The cross-entropy loss is simply used to train the classification network with the ground
truth labels. The binary cross-entropy loss compares the prediction of the clustering net-
work to pseudo-labels (see Equation (2.3)). And the regularisation loss ensures that the
model generalizes to a good solution. This is usually done by encouraging both networks
to predict the same class for an instance and its randomly augmented counterpart (see
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column “Data Augmentation” in Table 2.2).
While Section 2.3.1 was, to the best of our knowledge, an exhaustive list of the two-

stage methods, there is a larger (and fast growing) number of papers that follow a one-
stage approach. For this reason, only four methods representative of the literature are
first detailed, and a few other methods are described more concisely in the last section.

AutoNovel

AutoNovel [17, 41] is the first one-stage method proposed to solve the NCD problem. It
introduced the architecture illustrated in Figure 2.7 and inspired many subsequent works
[39, 49, 45, 46, 48]. AutoNovel starts by carefully initializing its encoder using the RotNet
[51] Self-Supervised Learning (SSL) method to train on both labeled and unlabeled data.
As SSL does not leverage the labels of known classes, the learned features will not be
biased towards the known classes. At this point, the authors consider that the features
learned by the encoder will be representative of all data and will be useful for any given
task, so they freeze all but the last layer of the encoder. Finally, the labeled data is used
to train for a few epochs the classifier and fine-tune the last layer of the encoder. This
concludes the initialization of the representation (the shared encoder in Figure 2.7), which
is crucial as the next step involves determining pseudo-labels in the latent space based on
pairwise similarity measures.

To realize the joint learning on Dl and Du, the two classification networks that can be
seen in Figure 2.7 are added on top of the encoder. The three components of the model
(shared encoder, classification network and clustering network) are then trained using a
loss composed of the three components described in the introduction of this section:

LAutoNovel = LCE + LBCE + LMSE (2.4)

As AutoNovel uses the BCE of Equation (2.3), the inner products of the clustering network
predictions are compared to the pairwise pseudo-labels defined by their original RankStats
(for ranking statistics) method (see Section 2.5.2).

Class Discovery Kernel Network with Expansion (CD-KNet-Exp)

CD-KNet-Exp [38] is a multi-stage method that constructs a latent representation
using Dl and Du that is suitable, after training, to the discovery of the novel classes by
a k-means. It starts by pre-training a representation with a “deep” classifier on Dl only.
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Since this embedding could be highly biased towards the known classes, and may not
generalize well to Du, the representation is then fine-tuned with both Dl and Du. In this
second stage, they optimize the following objective:

max
U,θ

H(fθ(X), U) + λH(fθ(X l), Y l) (2.5)

f is the feature extractor (or encoder) of parameter θ. H(P,Q) is the Hilbert Schmidt
Independence Criterion (HSIC). It measures the dependence between distributions P

and Q. And U is the spectral embedding of X. Intuitively, the first term encourages
the separation of all classes (old and new) by performing something similar to spectral
clustering. And the second term introduces the supervised information from the known
classes by maximizing the dependence between the embedding of X l and its labels Y l.

This second step produces a latent space that should have incorporated the information
from both known and novel classes and be easily separable. For this reason, the embedding
of the data is finally fθ(Xu) partitioned with k-means clustering.

OpenMix

The principle of OpenMix [45] is to exploit the labeled data to generate more robust
pseudo-labels for the unlabeled data. It relies on MixUp [52], which is widely used in
supervised and semi-supervised learning. As MixUp requires labeled samples for every
class of interest, applying it directly on the unlabeled data would still produce unreliable
pseudo-labels. Instead, OpenMix generates new training samples by mixing both labeled
and unlabeled samples.

First, a latent representation is initialized using the known classes only. Then, a clus-
tering network is defined to discover the new classes using a joint loss on Dl and Du. The
model is trained with synthetic data that are a mix of a sample from a known class and a
sample from a novel class. The synthetic data points are generated with MixUp, while the
labels are a combination of the ground truth labels of the labeled samples and the pseudo-
labels determined using cosine similarity for the unlabeled samples (see Figure 2.8). The
authors argue that the overall uncertainty of the resulting pseudo-labels will be reduced,
as the labeled counterpart does not belong to any new class and its label distribution is
exactly true.

These synthetic labels are compared to the prediction of the model: (i) the classifica-
tion network predicts the known part and (ii) the clustering network the novel part (see
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Figure 2.8 – Example of synthetic label generated by Openmix [45]. Here, it is a mix of
a labeled sample of class C1 and an unlabeled sample with pseudo-label C4.

Figure 2.7) of the full label space.
The authors observe that the clustering network has good accuracy on the samples that

it predicted with high-confidence. Based on this observation, they regard these samples
as reliable anchors that are further integrated with unlabeled samples to generate even
more combinations with MixUp.

Neighborhood Contrastive Learning (NCL)

NCL [39] is inspired by AutoNovel [17] as it uses the same architecture (see Figure 2.7)
and pre-trains its representation in the same way. Its main contribution is the addition
of 2 contrastive learning terms to the loss of AutoNovel (see Equation (2.4)) to improve
the learning of discriminative representations. The first one is the supervised contrastive
learning term from [53] applied to the labeled data using the ground truth labels. The
second term is applied on the unlabeled data and adapts the original unsupervised con-
trastive learning loss to the NCD problem to exploit both labeled and unlabeled data.

For this second term, the authors maintain a queue Mu of samples from past training
steps, and consider for any instance in a batch that the k most similar instances from the
queue are most likely from the same class. The contrastive loss, for these positive pairs is
defined for the embedding zu

i of an instance xu
i as:

l(zu
i , ρk) = −1

k

∑
z̄u

j ∈ρk

log eδ(zu
i ,z̄u

j )/τ

eδ(zu
i ,ẑu

i )/τ +∑|Mu|
m=1 e

δ(zu
i ,z̄u

m)/τ
(2.6)

with ρk the k instances most similar to zu
i in the unlabeled queue Mu, δ the similarity

function and τ a temperature parameter.
Additionally, synthetic positive pairs (zu, ẑu) are generated by randomly augmenting
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each instance. The contrastive loss for positive pairs is written as:

l(zu, ẑu) = −log eδ(zu,ẑu)/τ

eδ(zu,ẑu)/τ +∑|Mu|
m=1 e

δ(zu,z̄u
m)/τ

(2.7)

Finally, “hard negatives” are introduced in the queue Mu to further improve the
learning process. Hard negatives refer to similar samples that belong to a different class
and are an important concept in contrastive learning. Selecting hard negatives in Du can
be difficult since there are no class labels available. Therefore, the authors take advantage
of the fact that the classes of Dl and Du are necessarily disjoint and create new hard
negative samples by interpolating easy negatives from the unlabeled set (i.e. instances
that are most likely true negatives) with hard negatives from the labeled set.

To summarize, the overall loss that is optimized by the model is:

LNCL = LAutoNovel + lscl + αl(zu
i , ρk) + (1− α)l(zu, ẑu) (2.8)

where lscl is the supervised contrastive loss term for the labeled samples of Dl and α is a
trade-off parameter.

Other methods

We briefly describe a few other one-stage NCD works here. In [44], the SSL objective
of RotNet [51] and joint objective of Equation (2.4) are merged in a single loss function.
The shared encoder is therefore influenced by the classification network, the clustering
network and a linear layer that predicts the random rotations of images. The authors argue
that the self-supervised signals will provide a strong regularization that will alleviate the
performance degradation caused by the noisy pseudo-labels.

The method proposed in [46] is able to process multi-modal data, composed of both
video and audio. Two feature encoders are trained with Noise Contrastive Estimation
(NCE) [54], and the latent representations are concatenated before being fed to either a
classification or clustering network. The Winner-Take-All hash [47] is used to measure the
similarity between each pair of unlabeled samples during the definition of pseudo-labels
required to train the clustering network. The authors argue that WTA is more robust to
noise and effectively captures the structural relationships among the objects (see [46] for
more details).

The Dual Ranking Statistics (DualRS) [48] method trains two framework branches
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on a shared latent representation. Both branches have a classifier trained to predict the
known classes and a clustering network trained with pseudo-labels and Equation (2.3).
One branch is tasked to extract global features, as pseudo-labels are defined by measuring
the similarity between whole images. The other branch focuses on individual local details,
and pairwise similarities are computed using only part of each image. The authors argue
that these branches are complementary to each other, as they focus on different granu-
larity of the data. The global branch may easily find similarities and introduce more false
positives and have high recall (but low precision), while the local-part branch will be more
“strict” and have high precision (but low recall). To make the two branches communicate,
agreement between the similarity score distributions of unlabeled data is encouraged.

Similarly to [38], the Spacing Loss [49] method shapes a latent space where the novel
classes are easily separable. During training, the representation is slowly guided to have
spaced-out clusters that are equidistant to each other. Each epoch alternates between
learning with pseudo-labels derived from the closest cluster centers and modifying the
cluster centers themselves. During inference, a k-means is run in the learned latent rep-
resentation to discover the novel categories.

Finally, to the best of our knowledge, a single method has attempted to solve NCD
in the context of tabular data [21]. It pre-trains a simple encoder of dense layers with
the VIME [55] self-supervised learning method and adopts the two heads architecture of
Figure 2.7. Similar to other one-stage methods, known classes are classified jointly with
clustering on the unlabeled data, and pseudo-labels are defined based on pairwise cosine
similarity.

2.3.3 Estimating the number of novel classes

The assumption that the number Cu of novel classes in the unlabeled set Du is known
can be unrealistic in some scenarios. For this reason, a few methods were proposed to
automatically estimate this number Cu.

A method used in [29, 42, 48, 56], consists in setting the number of output neurons of
the clustering network to a large number (e.g. 100). In doing so, we rely on the clustering
network to use only the necessary number of clusters and to leave the other output neurons
unused. Clusters are counted if they contain more instances than a certain threshold. This
approach is surprisingly simple, but displays stable results in the different articles that
experimented it.

In [36, 57], a k-means is performed on the entire dataset Dl∪Du. The number of novel
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classes Cu is estimated to be the k that maximized the Hungarian clustering accuracy
(see Section 2.2): a k too high will result in clusters assigned to the null set and a number
too low will have clusters composed of multiple classes, both cases will be considered as
being assigned incorrectly.

Finally, another popular idea is to make use of the known classes [37, 41, 17, 58]. This
process is illustrated in Figure 2.9. The known classes of Dl are first split into a probe
subset Dl

r and a training subset Dl\Dl
r containing the remaining classes. The set Dl\Dl

r

is used for supervised feature representation learning, while the probe set Dl
r is combined

with the unlabeled set Du. Now, a constrained k-means is run on Dl
r ∪ Du. Part of the

classes of Dl
r are used for the clusters initialization, while the rest are used to compute

2 cluster quality indices (average clustering accuracy and cluster validity index, see [37]).
Note that this can be difficult to use when the number of known classes is small, since it
involves many class splits.

Figure 2.9 – Number of novel classes estimation process from DTC [37].

2.3.4 Methods summary

Table 2.2 summarizes the important characteristics of the methods that were described
in this section. These characteristics include the type of data processed, the method of
defining pairwise pseudo-labels and, if applicable, the method of estimating the number
of novel classes Cu. From column “Unknown Cu”, it is evident that all the works reviewed
here assume knowledge of the number of novel classes. Moreover, this table highlights the
popularity of pairwise pseudo-labeling as a means of training classification networks on
unlabeled data, with only DTC [37] and CD-KNet-Exp [38] relying on different processes.
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Table 2.2 – Overview of the characteristics of NCD methods.

Method Data
Type

Backbone
architecture

Pairwise
pseudo-labels

Pre-
training

Data
Augmentation Unknown Cu

T
w

o-
st

ag
e

m
et

ho
ds CCN [29] Image ResNet18 From learned

classifier ✗ ✗
✗ + Estimated

(k = 100)

MCL [42] Image LeNet, VGG8
and ResNet

From learned
classifier ✗ Crop and flip ✗ + Estimated

(k = 100)

DTC [37] Image ResNet18
and VGG

✗ (class
prototypes) CE on Dl Crop and flip ✗ + Estimated

(probe classes)

MM/MP [19] Image ResNet18
and VGG16 RankStats [17] CE on Dl ✗ ✗

O
ne

-s
ta

ge
m

et
ho

ds

AutoNovel [17, 41] Image VGG and
ResNet18 RankStats [17]

RotNet
[51] on

Dl ∪ Du
Crop and flip ✗ + Estimated

(probe classes)

CD-KNet-Exp [38] Image Custom CNN ✗ CE on Dl ✗ ✗

Unnamed [44] Image ResNet18 Threshold on
SNE ✗ Yes, unspecified ✗

OpenMix [45] Image VGG and
ResNet18

Threshold cosine
similarity CE on Dl Crop and flip ✗

NCL [39] Image ResNet18 Threshold cosine
similarity

RotNet
[51] on

Dl ∪ Du
Crop and flip ✗

WTA [46] Image &
Video

R3D-18 and
ResNet18 WTA hash [47] ✗

Crop, resize, flip,
color distortion

and blur
✗

DualRS [48] Image RestNet18 Dual ranking
statistics

RotNet
[51] on

Dl ∪ Du
Crop and flip ✗ + method

from DTC

Spacing Loss [49] Image ResNet18
Threshold cosine

sim. + class
prototypes

CE on Dl Crop and flip ✗

TabularNCD [21] Tabular Custom DNN Number of most
similar

VIME
[55] on

Dl ∪ Du
SMOTE [59] ✗
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2.4 New domains derived from NCD

As the number of NCD works increases, new domains closely related to it are emerging.
Researchers are designing scenarios where they relax some of the hypotheses or define new
tasks inspired by NCD. This section will provide a brief overview of some of the most
important of these domains. Given their similarity in settings, Table 2.3 highlights some
of the key differences among them.

Table 2.3 – Distinctions between the related domains.

NCD GCD NCDwF
test data ∈ Y l ∪ Yu ✗ ✓ ✓

Dl and Du are avail-
able simultaneously ✓ ✓ ✗

Generalized Category Discovery (GCD) [36] is a setting that is gaining traction
from the community, with some very recent articles published [36, 58, 60, 57]. GCD was
designed to be a less constrained and more realistic setting of Novel Class Discovery, as
it does not assume that samples during inference will only belong to the novel classes. As
the test data can belong to either known or novel classes, the task at inference becomes
to (i) accurately classify samples from known classes and (ii) find the clusters of samples
from novel classes. Compared to NCD, this poses a greater challenge for designing an
efficient model. Methods in this domain are thus evaluated for both their classification
and clustering performance. Note that this setting is close to Open-World Learning, but
still different as the training data is still composed of two separate sets (Dl and Du).

This problem was first solved in 2021 by [61], but it was not immediately recognized
as a setting distinct from NCD. Later, as multiple articles were published simultaneously,
different names were used and problem was presented in varying ways. Some of these
names include Generalized Novel Class Discovery [60], Open Set Domain Adaptation [62]
and Open-World Semi-Supervised Learning [63], however, they all ultimately aimed to
solve the same task.

In the first article that formalizes the GCD problem [36], the authors find that existing
NCD methods are prone to overfitting on the known classes. Instead of using a parametric
classifier, which was seemingly the cause of the overfitting, they use contrastive learning
and a semi-supervised k-means to recognize images.

Another method of interest is XCon [57]. In this case, the authors focus on fine-
grained Generalized Category Discovery, where different classes have very close high-level
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features (e.g. two different species of birds where only the beak is different). They propose
to partition the data into k sub-datasets that share irrelevant cues (e.g. background and
object pose) to force the method to focus on important discriminative information.

Note: GCD and its links to Open-World Learning are discussed in Section 2.6.4.

Novel Class Discovery without Forgetting (NCDwF) [64] is another domain that
relaxes some of the assumptions behind NCD. In NCDwF, Dl and Du are not available
simultaneously. Instead, during training, we are first given Dl to train the standard su-
pervised task of discriminating known classes. Then, Dl becomes unavailable and we are
given Du with the goal of discovering the novel classes. At inference time, the learned
model is evaluated for its performance on instances from a mix known and novel classes.
This task also poses a greater challenge than NCD as it needs to recognize instances from
the full class distribution Y l ∪Yu. And it is more challenging than GCD as the two train-
ing sets Dl and Du are not available at the same time. This means that the partitioning
of Du must be learned while avoiding catastrophic forgetting on known classes (hence the
name). This domain can be applied if, for example, a model that was previously trained
to identify some classes in a dataset that is no longer accessible, and we need to detect
new classes while maintaining accuracy on the previously learned categories.

ResTune [50] is the first to solve NCDwF. This article examines three distinct test
cases, with NCD and NCDwF among them. This two-stage method starts with pre-
training using the labeled data Dl and a simple cross-entropy loss. Then, during the
training on Du only, the previously learned representation and classifier are frozen to avoid
both forgetting of known classes and overfitting on the unlabeled data. The partitioning
is done by adapting DEC [43] to the NCDwF setting.

In [65], this problem is referred to as class-incremental novel class discovery (class-
iNCD). Given the NCDwF setting, a two-stage method that seeks to define a classifier
capable of predicting in the full label space Y l∪Yu is proposed. Similarly to ResTune [50],
an encoder and a classifier are first trained with supervision on the labeled set Dl. Then,
during the exploration of the unlabeled set Du, the previously learned classifier is extended
with Cu new output neurons. Additionally, a classification network is added on the shared
latent space to partition the unlabeled samples. It is trained with the unsupervised BCE
objective of Equation (2.3) and pseudo-labels defined by the RankStats method [17]. The
classes predicted by this network are used as targets for the full classification network.

Finally, [64] introduces the name NCDwF. To avoid the forgetting, it proposes a
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method to generate synthetic samples that are representative of each known class and
act as a proxy for the no longer available labeled data. Furthermore, the authors propose
a mutual-information based regularizer which improves the partitioning of novel cate-
gories, and a Known Class Identifier that helps generalize inference when the test data
includes instances from both known and novel classes.

Novel Class Discovery in Semantic Segmentation (NCDSS) is a task defined
in [66] which consists in segmenting images that contain novel classes, given a set of
labeled images with known foreground and background classes. Since the pixels of multiple
categories within a single image must be correctly classified, it is more challenging than
NCD. Similarly to NCD, the condition that Y l ∩ Yu = ∅ is respected, meaning that no
image in the unlabeled set contains an object from the known classes. The framework
they propose has three stages: base training, clustering with pseudo-labels, and novel
fine-tuning. In the base training stage, the model is trained with labeled base data, which
is then used in novel images to filter out salient base pixels and assign base labels. In the
clustering stage, novel images are fed into the model to obtain novel foreground pixels,
which are then used for clustering and assigning novel labels. To address the issue of
noisy clustering pseudo-labels, an Entropy-based Uncertainty Modeling and Self-training
(EUMS) framework is proposed to improve the novel fine-tuning stage by dynamically
splitting and reassigning novel data into clean and unclean parts based on entropy ranking.

2.5 Tools for Novel Class Discovery

Some specific learning paradigms are often found in NCD works. Namely: (i) Self-
Supervised Learning (SSL) is a popular approach for initializing an encoder, (ii) Pairwise
pseudo-labels are used in almost all NCD methods to provide a weak form of supervision
for classification neural networks, and (iii) contrastive learning has been employed by
some to construct meaningful and discriminative representations. In this section, these 3
key paradigms to design NCD methods are presented and discussed.

2.5.1 Self-Supervised Learning

As illustrated in Table 2.2, many methods rely on similarity measures in the latent
space to define pairwise relationships between unlabeled instances. To avoid measuring
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the similarity after projection through an encoder that was randomly initialized, some
methods train for a few epochs with cross-entropy on the labeled samples only. However,
this could result in features that are highly biased towards the labeled data and that
poorly represent the novel classes. Instead, recent methods have taken advantage of Self-
Supervised Learning (SSL) to bootstrap their latent representation.

SSL is a technique that is widely used in computer vision and natural language pro-
cessing. The general idea behind SSL methods is to define pretext tasks that do not require
labels. A pretext task is a fake problem that can be defined depending on the type of data
that is used. For example, predicting the angle of rotation of an image [51], re-coloring [67]
and completing masked words in sentences [68] are common pretext tasks. Intuitively, SSL
allows the model to exploit larger amounts of data by using both labeled and unlabeled
data. The model pre-trained this way will be able to extract more interesting proper-
ties, subtle patterns and less common representations of the data, resulting in improved
performance compared to solely relying on labeled data.

In the context of Novel Class Discovery, SSL allows the model to learn a robust rep-
resentation that is not biased towards the known classes, as all of the data (labeled and
unlabeled) is used. Among SSL methods, RotNet [51] has been a popular choice in NCD
works [17, 39, 48]. It is a simple and efficient method where the network must predict
the rotation angle, from 0, 90, 180 or 270 degrees, applied to an image. DINO (for self-
distillation with no labels) [69] has also been used in the context of GCD [36]. It employs
a self-distillation scheme where a student network learns from a teacher given different
crops of the same image. It is a powerful method for vision transformers that produces
feature representations where similar objects are close to each other, which is ideal for
NCD applications. Finally, VIME (for value imputation and mask estimation) [55] has
been used by TabularNCD [21] to pre-train dense layers in the context of tabular data by
reconstructing corrupted samples. However, as SSL still struggles to be applied to domains
such as tabular data, it has only marginally improved performance. This is partly due to
the fact that SSL methods rely heavily on the spatial and semantic structure of image or
language data to design pretext tasks. Thus, only a few works have been proposed to deal
with heterogeneous data [55, 70, 71].

2.5.2 Pseudo-labels

Pseudo-labeling is a technique that provides “weak” labels for unlabeled data. It is
particularly useful to exploit large amounts of unlabeled data with models that require
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a target to be trained. Apart from NCD, pseudo-labels (sometimes called soft labels)
are found in other domains, such as Semi-Supervised Learning where unlabeled samples
that were predicted with high confidence are added to the training data [72]. In Deep
Clustering, they are used to iteratively refine a latent representation by predicting these
labels [33, 73].

As expressed in Section 2.3, most NCD methods define pairwise pseudo-labels to rep-
resent the relationships between pairs of instances in the unlabeled set Du. In the case of
learned-similarity–based NCD methods, they are a way of directly transferring knowledge
from the known classes (see Section 2.3.1). For the rest, pairwise pseudo-labels are defined
and used in a manner similar to Deep Clustering methods, where they provide supervision
for a classification network tasked to partition the unlabeled data 2. Instead of directly
assigning class labels to instances, the model is only tasked to predict the same label for
“positive” relations and a different label for “negative” relations. This conversion to a
different task is called problem reduction [74]. It is considered as a less complex problem
to solve and to have a lower cost to collect the target. All pseudo-labeling techniques that
rely on a similarity measure make the assumption that instances close to each other (usu-
ally in the latent space) are likely to belong to the same class. Pairwise pseudo-labels are
defined in {0, 1} and can be compared for example to the inner product of the prediction
through the binary cross-entropy (see Equation (2.3)).

(a) Representation of
the data points of the
batch.

(b) Pairwise similar-
ity matrix.

(c) Pairwise pseudo-
labels matrix for λ =
0.5.

Figure 2.10 – The pairwise pseudo-labels definition process.

To aid the reader in his understanding, Figure 2.10 illustrates a simple pseudo-labeling
process employed by OpenMix [45] and NCL [39]. Given a pair (xu

i , x
u
j ) in a batch (Fig-

ure 2.10(a)), the latent representation (zu
i , z

u
j ) is extracted and their cosine similarity

2. As this classification network is trained on unlabeled data using these pseudo-labels, it is referred
to as a “clustering” network instead.
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δ(zu
i , z

u
j ) = zu

i · zu
j /∥zu

i ∥∥zu
j ∥ is computed (Figure 2.10(b)). To use this pairwise similarity

matrix as a target for the classification network, it needs to be binarized. And a solution
is to set a threshold λ for the minimum similarity score required to consider two instances
as belonging to the same class (Figure 2.10(c)). So in this case, the pseudo-labels are
defined as:

ỹij = 1[δ(zu
i , z

u
j ) ≥ λ] (2.9)

Note that OpenMix sets λ to 0.9 and NCL uses 0.95 arbitrarily, but this is a hyperpa-
rameter that can be optimized.

Figure 2.11 depicts this pseudo-labeling process on a real dataset. We take the first 5
classes of MNIST and project them using t-SNE, which allows us to easily distinguish the
classes. On the left side, the points are colored according to their cosine similarity to a
randomly selected point (the blue triangle). And on the right side, we define pseudo-labels
using Equation 2.9 with λ = 0.70 (green = positive and red = negative). This is a case of a
successful use of Equation 2.9, as almost all positive pairs are in the same class. However,
this method may not consistently produce such good results, especially for the points at
the edge of a class.

Figure 2.11 – Left: cosine similarity to a random point (the blue triangle). Right: pseudo-
labels.

In the remainder of this section, some of the most commonly used pseudo-labeling
techniques are introduced.

RankStats (for ranking statistics) is a pseudo-labeling approach introduced in Au-
toNovel [17]. Instead of computing a scalar product or a difference between vectors, a
pair of instances is considered similar if their features that were “most activated” by the
encoder are the same. The authors argue that the most discriminative features of an im-
age should have the highest values after projection. Thus, RankStats tests whether the k
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highest values of a pair of embeddings are in the same locations:

ỹij = 1[topk(zu
i ) = topk(zu

j )] (2.10)

topk is a function that returns the indices of the k largest values in a vector. The order of
the most activated features is not required to be the same. It must only contain the same
set of indices, making RankStats more robust to discrepancies among the most discrimi-
native features.

In [46], the Winner-Take-All (WTA) hash [47] is used to compare pairs of instances.
WTA is an embedding method that maps vectors to integer codes. In more detail, the
projection zu

i of an instance xu
i is randomly permuted, and the index of the largest elements

in its k first values is recorded in ch
i . This process is repeated H times for each sample

zu
i to form the WTA hash code ci = (c1

i , . . . , c
h
i , . . . , c

H
i ). Samples are then compared by

applying the same set of permutations and counting the number of indices equal to each
other:

ỹij = 1[1T · (ci = cj) ≥ µ] (2.11)

with µ a threshold. For reference, in [46], H is set to the size of the embedding (512), µ
is selected empirically to be 240 and k = 4.

Intuitively, WTA considers many different orders of features, avoiding the comparison
to be dominated by high frequency noise or small local regions that are highly activated.
Replacing the RankStats pseudo-labeling method in AutoNovel [17] with WTA shows
only marginal improvements. But for the NCD method proposed by the authors in [46],
WTA consistently outperforms other alternatives, such as RankStats, cosine similarity or
nearest neighbour.

Lastly, the quality of the pseudo-labels has been explored in some articles. It is often
expressed that they can be noisy and unreliable, and as they have a strong influence on the
clustering performance, some works have approached this problem. OpenMix [45] mixes
labeled and unlabeled samples with MixUp [52] to generate higher confidence pseudo-
labels. DualRS [48] focuses on multiple granularity of image crops to improve reliability.
And [44] proposes utilizing local structure information in the feature space to construct
pairwise pseudo-labels, as they are more robust against noise.
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2.5.3 Contrastive Learning

Contrastive Learning [75, 76] is a self-supervised representation learning technique
where the objective is to learn a robust representation. This is done by pulling together
similar samples and pushing apart dissimilar samples. As labels are not available, a pos-
itive pair is usually formed of a sample and its augmented counterpart, while negative
pairs are formed with the rest of the data.

Contrastive learning can be easily adapted to take into account labeled samples and to
produce even higher quality discriminative representations [53]. For these reasons, it is an
ideal technique for the task of Novel Class Discovery, and some NCD works have already
used contrastive terms. For instance, NCL [39] adapts the contrastive loss to exploit both
the labeled and the unlabeled sets into one holistic framework. Detailed in Section 2.3.2,
their overall loss function is composed of (i) the loss of AutoNovel [17] to partition the
unlabeled data and (ii) two contrastive terms. The first is the supervised contrastive loss
[53] applied to the labeled data, and the second is the unsupervised contrastive loss for
the unlabeled data. Their method outperforms all other baselines in the comparison, and
they show that the contrastive terms help improve the discrimination of the model.

The Noise-Contrastive Estimation (NCE) [54], has been employed by the WTA-based
NCD method of [46]. It is a parameter estimation method initially designed to be an
alternative to the expensive softmax function. Instead of computing the prediction of the
model for every class, only the true class and a few other (called noisy) classes have to be
estimated. This principle inspired the supervised contrastive loss [53], and it is employed
in the NCD method of [46]. Given a batch of size n and the projection zi of an instance
xi, [46] defines the following loss:

LNCE = −log exp(zi · ẑi/τ)∑
n 1[n ̸= i]exp(zi · zn/τ) (2.12)

where ẑi is the augmented counterpart of zi, 1[n ̸= i] is an indicator function evaluating
to 1 iff n ̸= i and τ is a temperature parameter. Note that since the projection z is ℓ2-
normalized, the cosine similarity can be simplified to the inner product. In the case of the
NCD method of [46], this NCE loss is used to maintain a latent representation. Similarly
to NCL [39], the unlabeled data has positive pairs formed by a sample and its augmented
counterpart, while negative pairs are formed with all other samples in the batch. However,
compared to [46], NCL reports higher accuracy on the CIFAR-100 and ImageNet datasets.
This could be attributed to the fact that NCL defines additional positive pairs by selecting
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the most similar pairs in a queue of samples.
OpenCon [77] is a method proposed for the Generalized Category Discovery prob-

lem, where the authors employ class prototypes to separate known and novel classes. All
instances are assigned to their closest prototype, which allows the definition of a set of
pseudo-positives P(x) and pseudo-negatives N (x) for each instance x. In conventional
unsupervised contrastive learning frameworks, only the augmented counterpart of an in-
stance is used to form a positive pair. In this case, P(x) can be used to define a larger
number of positive pairs. Given an anchor point x, their contrastive loss is defined as:

LOpenCon = − 1
|P(x)|

∑
z+∈P(x)

log exp(z · z+/τ)∑
z−∈N (x) exp(z · z−/τ) (2.13)

where τ is a temperature parameter and z is the ℓ2-normalized projection of x. Two
additional terms are optimized during training: the supervised contrastive loss [53] on
the labeled data Dl and the self-supervised contrastive loss [76] on the unlabeled data
Du. During training, the class prototypes are defined as moving averages and cluster
assignments are updated after each epoch.

2.6 Related works

2.6.1 Unsupervised Clustering

The NCD problem is closely related to unsupervised clustering. In both domains, the
aim is to find a partition of a dataset where no prior knowledge on the novel classes is
available. Just like in NCD, a common approach is to consider that the close neighborhood
of an instance is likely to belong to the same class. In this case, groups where instances
are more similar to each other than they are to other groups are created. The definition
of this similarity can vary a lot depending on the purpose of the study or domain-specific
assumptions. The most widely known methods of clustering are usually unsupervised,
however we still distinguish them from the less common semi-supervised approach (see
Section 2.6.2) that leverages a small amount of information to guide the definition of the
clusters.

In the completely unsupervised case, many shallow and deep learning based methods
have been proposed. We refer the reader to [43] for fundamental work and [78] for a
more detailed survey. Some of the main categories of clustering algorithms are: Centroid-
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based algorithms create clusters by determining the proximity of data points to a central
vector. Connectivity-based algorithms group data points into clusters using a tree-like
structure. Distribution-based algorithms model the data with a chosen distribution and
form clusters based on the likelihood of data points belonging to the same distribution.
Density-based algorithms define clusters as regions of high data density and consider
points in sparsely populated areas as outliers. Finally, Deep Clustering methods aim at
jointly conducting dimensionality reduction (or feature transformation) and clustering,
which is done independently in other classical works [78].

As Deep Clustering methods learn rich informative representations while separating
data into clusters without supervision, their architectures and loss functions are often
similar to those used in NCD methods, and they are sometimes even used as baselines in
NCD. They can be easily adapted to the NCD setting, for example by adding a supervised
objective trained on the labeled data from Dl to guide the clustering process.

Discussion. As expressed in the introduction, fully unsupervised clustering is not a
complete solution to the NCD problem. Multiple and equally valid criteria to partition a
dataset can be used, so the definition of what constitutes a good class becomes ambiguous.
This is why the use of a labeled dataset becomes essential to narrow down what constitutes
a proper class and guide the clustering process. Nonetheless, clustering methods are a
frequent building block in NCD methods. An example of this is Deep Transfer Clustering
[37], where the authors extend Deep Embedded Clustering [43] by guiding its training
process with the known classes. A few works use k-means and its variations for label
assignment in the feature space of a deep network [36, 38]. And [79] employs both k-
means and spectral graph theory to explore the novel classes.

2.6.2 Semi-Supervised Learning

Semi-Supervised Learning [80] is an instance of weak supervision, as it uses a lim-
ited amount of information in order to carry out its task. It is often reviewed in Novel
Class Discovery articles for the similarity of its setup. Four different scenarios can be dis-
tinguished in Semi-Supervised Learning: semi-supervised dimensionality reduction [81],
semi-supervised regression [82], semi-supervised classification [83, 84] and semi-supervised
clustering [85, 86, 87]. Only the last two are relevant for our problem, and they are briefly
introduced below.

In Semi-Supervised Classification, only a small portion of the dataset is labeled,
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while the rest is unlabeled. This is a setup that can arise when labeling every instance
is too costly, but we still wish to leverage the unlabeled data. Similarly to supervised
classification, the goal is to assign instances to one of the classes seen in training, however
traditional supervised classification will not take advantage of the unlabeled data. In
this situation, a more accurate model can often be built using semi-supervised learning.
Examples of such models include constrained k-means and seeded k-means [83, 88]. They
are extensions of k-means that use a labeled subset to initialize the centroids of the
clusters. It is important to note that the methods in this domain focus on the classification
task, where the classes in labeled and unlabeled sets are the same. This is the main
difference with the NCD domain, and the reason why semi-supervised learning methods
cannot be transferred to our problem.

In the case of Semi-Supervised Clustering, additional information in the form of
“must-link” and “cannot-link” constraints is usually available. It indicates if pairs of in-
stances must or must not be placed in the same cluster. Such relations can be derived from
class labels. Examples of semi-supervised clustering algorithms include COP-Kmeans [85],
PCKmeans [86] and kernel spectral clustering [87]. The Novel Class Discovery problem
could be reformulated as a Semi-Supervised Clustering problem by defining must-link
and cannot-link constraints. However, the complete set of constraints can only be defined
for the labeled data thanks to the ground truth labels available. Only cannot-link con-
straints can be defined between the labeled and unlabeled data (using the hypothesis that
Y l ∩ Yu = ∅), and no constraints can be defined for pairs of unlabeled data. We do not
expect this set of constraints to help the clustering process of the unlabeled data. Fur-
thermore, most Semi-Supervised Learning methods are modified versions of the k-means
algorithm, and will also suffer when the clusters are not spherical or when the dimension
is too large and the euclidean distances becomes inadequate.

Discussion. Semi-supervised learning methods require either the classes to be known
in advance (in the case of partially labeled data) or known constraints on the observations,
which is not the case in NCD. Recent works [89, 90] have also shown that the presence
of novel class samples in the unlabeled set negatively impacts the performance of such
models. Some articles address this issue [91], but they do not attempt to discover the
novel classes. As such, semi-supervised works are not directly applicable to the Novel
Class Discovery problem.
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2.6.3 Transfer Learning

Transfer Learning is an other domain often mentioned in NCD articles. It is a field
of machine learning that aims at leveraging knowledge from a source domain or task to
solve a different (but related) problem faster or with better generalization. In computer
vision, Transfer Learning is commonly expressed by starting the training from a model
that was pre-trained on the ImageNet [92] dataset. Two scenarios of transfer learning can
be distinguished and they are introduced in Table 2.4.

Table 2.4 – Overview of the scenarios of transfer learning

Scenario Definition Example

cross-domain
transfer
learning

Also known as domain adapta-
tion, a model trained to execute
a task on one domain is used to
learn the same task on a differ-
ent (but related) domain.

The knowledge of a classifier trained
to recognize positive or negative re-
views on the domain of movies can
be transferred to the domain of book
reviews [93].

cross-task
transfer
learning

The knowledge gained by learn-
ing to distinguish some classes
is then applied on other classes
of the same domain.

A model that was trained to recog-
nize the 5 first digits of the MNIST
dataset can be expected to more ef-
fectively learn to distinguish the 5
other digits of MNIST [94].

With cross-domain transfer learning, a model can be pre-trained on a different
but related source dataset. This is useful when the target dataset has too few instances to
obtain good generalization. In this context, the “re-usability” of the source data depends
on the degree of overlap between the features of the source and target domains. This
idea is explored in [95], where the authors distinguish two categories of approaches. The
instance-based approaches attempt to reuse the source domain data after re-sampling
or re-weighting and are sensitive to such overlapping. And feature-representation-based
approaches try to find a good representation for both the source and target domain.

In cross-task transfer transfer learning, the label spaces are different. In this case,
methods learn a pair of feature mappings to transform the source and target domain to a
common latent space [96, 97]. Another approach is to learn a feature mapping to trans-
form data from one domain to another directly [98, 99].

Discussion. NCD can be viewed as an unsupervised cross-task transfer learning task,
where the knowledge from a classification task on a source dataset is transferred to a clus-
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tering task on a target dataset. The large majority of Transfer Learning articles require
the labels of both the source and target domains to be known in advance, which makes
the use of such methods impossible in our context of class discovery. The Constrained
Clustering Network (CCN) [29] is an exception in this regard. It is a method proposed
to solve two different transfer learning scenarios, one of which being a cross-task problem
where the labels of the target data that must be inferred are not available. This is essen-
tially the NCD problem, which eventually led to this paper being recognized as one of the
earliest NCD works.

2.6.4 Open-World Learning

Rather than being a domain in and of itself, Open-World Learning (OWL) [25] is a
broad term that encompasses all the domains that live under the open-world assumption.
Traditional machine learning tasks focus on closed-world settings, where the test instances
can only be from the distribution that was seen during training. This is in opposition to
the open-world setting, where instances can come from outside of the training distribu-
tion. Some of these domains include Anomaly Detection (AD), Novelty Detection (ND),
Open Set Recognition (OSR), Out-of-Distribution Detection (OOD Detection) and Out-
lier Detection (OD). They are concerned with either or both of semantic shift (when new
classes appear) and covariate shift (when the definition of the known classes changes).

To help the reader distinguish these domains, Table 2.5 summarizes a few important
criteria. And a general description of each of the 5 domains is provided below.

Table 2.5 – Overview of the domains in Open-World Learning.

Need to ... NCD1 GCD2 AD3 ND4 OSR5 OOD6

Detection OD7

recognize OOD instances ✗ ✓ ✓ ✓ ✓ ✓ ✓

have OOD samples during training ✓ ✓ ✓/✗ ✗ ✗ ✓ ✓

accurately classify known samples ✗ ✓ ✗ ✗ ✓ ✓ ✗

discover the new classes ✓ ✓ ✗ ✗ ✗ ✗ ✗

1Novel Class Discovery, 2Generalized Category Discovery, 3Anomaly Detection, 4Novelty Detection,
5Open Set Recognition, 6Out-of-Distribution, 7Outlier Detection.

Anomaly Detection: Given a predefined “normality”, the goal of AD is to identify
abnormal observations. The abnormality can originate either from a semantic or covariate
shift [100]. For example, given a set of pictures of dogs, a model capable of recognizing if
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a picture is not a dog (i.e. a picture of a cat) falls under semantic shift AD. In this case,
the normality corresponds to all pictures of dogs. And a model designed to recognize if a
given picture of dog is from a breed seen in training falls under covariate shift AD. We
can see that the key to successfully building an AD model is to precisely define the notion
of normality.

Two categories of AD settings can be distinguished: either the training set represents
the normality, or the training set is labeled “normal” and “abnormal”. The first set-
ting is usually preferred, as anomalous data is often found in limited quantities (or even
completely unavailable), which makes unsupervised approaches more attractive than su-
pervised ones.

Novelty Detection: From a clean training set with only instances of known classes,
the goal of ND is to identify if new test observations come from a novel class or not.
This problem is very close to Anomaly Detection, but it can be differentiated in two
ways: First, this problem is concerned only with semantic shift (i.e. the apparition of
new classes). And second, it does not consider novel samples as “anomalies” that must be
discarded, but rather as new learning opportunities from events that were not seen during
training [101]. ND stems from the idea that during training, a model cannot have seen
all possible classes. Since this idea is very valid in production, traditional classification
models can be difficult to apply, and ND models are more convenient.

However, the authors of [25] conclude that the goal of ND is only to distinguish novel
samples from the training distribution, and not to actually discover the novel classes.
Therefore, most methods assume that the discovery of the new classes in the rejected
examples is either the duty of a human or a task that is outside of the scope of their
research. This is a major difference with Novel Class Discovery (NCD), as ultimately, the
goal of NCD is to explore the novel samples. To the best of our knowledge, [102] is an
exception. In this work, an attempt is made by the system to solve this problem while
still addressing the other concerns of open-world learning.

Open Set Recognition: The idea behind Open Set Recognition (OSR) [103] is that
standard neural networks have a tendency to output high confidence predictions even when
confronted with instances from classes that were never seen during training. OSR there-
fore tries to detect when samples come from unknown classes additionally to accurately
classifying the known classes. An example of an OSR system would be an application

56



Novel Class Discovery: an Introduction and Key Concepts

trained to recognize certain faces to allow entry into a building. Such a system must (i)
identify known people and (ii) reject the faces from people it has never seen instead of
predicting one of the known faces.

Out-of-Distribution Detection: Similarly to OSR, OOD Detection originates from
the idea that machine learning models can predict labels with high confidence for in-
stances of classes they have never seen during training. OOD Detection methods also aim
to (i) accurately classify samples of known classes and (ii) reject samples from outside the
known distribution. Because the definition of “distribution” depends on the application,
OOD Detection methods cover a large range of methods. These methods are generally
given both In-Distribution (ID) and Out-of-Distribution (OOD) samples during training
(see Table 2.5) to narrow down the definition of ID. Note that OSR and OOD Detection
are very close both in setting and goal. However, they can be differentiated primarily by
the fact that OSR methods are tasked with identifying instances that suffer a semantic
shift, but originate from the same source dataset, while OOD Detection methods seek
to identify semantically different instances that come from a completely different dataset
with non-overlapping classes.

Outlier Detection: OD is a task that deviates from the 4 other OWL tasks de-
fined above, as there is no train/test split and all the data is processed together. The
goal is to detect samples that present a significant semantic or covariate deviation from
others according to some measure. Some of the applications of such methods include net-
work intrusion detection [104], video surveillance [105] and dataset preprocessing [106].
Outlier Detection is a well-studied domain with a large number of proposed methods.
Distance-based methods identify points that are far away from all of their neighbors [107],
density-based methods select points in sparsely populated regions [108] and clustering-
based methods capture samples that did not fall in any of the major clusters [109].

Discussion. The main objective of Open-World Learning (OWL) methods is generally
to identify instances that come from a different distribution than the known classes in
order to reject them and keep a high performance on known classes. These methods ignore
the rejected instances and do not seek to cluster them into novel classes (see Table 2.5).
Because in the open-world setting, the data at training or inference time will be a mix of
In- and Out-of-Distribution samples, OWL methods are always at least tasked to recognize
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Out-of-Distribution samples. This is not a concern in Novel Class Discovery (which does
not belong to OWL), as we are given separate datasets during training and only samples
from novel classes at inference. Instead, NCD could be seen as an extension from OWL
works where, after novel samples were detected, we seek to discover the underlying classes.
But as the main focus of these articles is not relevant to the NCD problem, it is difficult
to transfer OWL works to NCD.

However, Generalized Category Discovery (GCD, see Section 2.4) can be seen as a
domain that is halfway between OWL and NCD. Like in NCD, methods in GCD are
given two separate sets during training: a labeled set of known classes and an unlabeled
set of novel classes. And like in OWL, test samples in GCD can be either from known or
novel classes. Generalized Category Discovery is very close to OSR and OOD Detection,
as it shares their goal of accurately classifying known samples and identifying samples
from novel classes. It can, however, be distinguished by the fact that semantically shifted
samples originate from the same parent distribution (i.e. they are classes from the same
dataset). Moreover, it does not stop at identifying which samples come from novel classes,
but actually tries to discover the novel classes.

As many methods in AD/ND/OSR/OOD Detection/OD can be applied to detect
instances that are semantically different from the known classes, they could potentially
be used for the task of GCD to distinguish if instances come from known or novel classes.
Such methods could be used in a two-stage approach, where test samples would first
be designated as belonging to known or novel classes using OWL methods, and then
the samples of novel classes would be clustered with NCD methods. However, holistic
approaches are usually preferred by researchers and works in GCD seem to be following
this path [36, 58, 60, 57].

2.7 Conclusion and perspectives

This chapter extensively examined the publications in the new field of Novel Class
Discovery. We formally defined the setup and key components of NCD, and proposed a
taxonomy that categorizes NCD frameworks based on the way knowledge is transferred
between the labeled and unlabeled sets. We found that two-stage methods were initially
popular, but their risk of overfitting on the known classes encouraged defining single-stage
methods, which are now widely adopted. We believe this taxonomy will help guide future
research by giving a clear overview of the families of approaches and techniques that
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have already been explored. NCD is a newly emerging field that offers a more practical
setting compared to fully supervised or unsupervised methods in certain situations. This
has led to the creation of new domains, which we have also analyzed, as researchers have
relaxed their assumptions and devised new challenges inspired by NCD. Additionally, we
identified and presented techniques and tools that are commonly used in NCD. Finally,
since this is a new domain that lies at the intersection of several others, it can become
challenging to distinguish NCD from other areas of research. Thus, we also presented the
domains most closely related to NCD and highlighted the main differences. We hope that
this last section will help readers unfamiliar with NCD to understand what distinguishes
it from other domains.

Despite the growing body of work in this area, several questions remain unanswered
and some perspectives, in our view, are worthy of further study. As we have seen in this
chapter, the majority of NCD works are applied only to image data due to specialized ar-
chitectures and techniques such as data augmentation and self-supervised learning, which
rely on the unique structure of images. They are partly responsible for the success of NCD
methods, and since they are not directly applicable to other data types, most works are
still limited to image data. However, it is worth exploring the potential of applying such
methods to other data types such as text, tabular, and others. DTC [37] has shown that
deep clustering methods can easily be transferred to the NCD problem, and we expect
that more of them could be adapted and offer a new source of inspiration. Some proce-
dures have been proposed to determine the number of novel classes automatically with
varying degrees of success. Ideally, NCD methods should not make the assumption that
this number is known in advance, but this is most likely not a limiting factor in real-world
scenarios. We also believe that it is crucial to have a unified benchmark and evaluation
protocol, since previous works have shown that the split of known/novel classes has an in-
fluence on the difficulty of the NCD problem [40]. Lastly, the accuracy of pseudo-labeling,
which widely used in one-stage frameworks, is a decisive factor to the success of these
methods. There is still room for improvement in this area, for instance, taking labeled
data into account, or taking inspiration from graph theory and spectral clustering.

In the next chapter, we address one of these open questions by proposing a method
specifically designed for the problem of Novel Class Discovery in tabular data. This is
also the first step in solving our original FTTH fault diagnosis problem, as explained in
Chapter 1. Due to the lack of competitors in this specific context, its effectiveness will
only be compared to unsupervised clustering methods.
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3.1 Introduction

The recent success of machine learning models has been enabled in part by the use
of large quantities of labeled data. Many methods currently assume that a large part of
the available data is labeled and that all classes are known. However, these assumptions
do not always hold true in practice, prompting researchers to explore scenarios where
unlabeled data is available [27, 28]. As we have seen in Chapter 2, Novel Class Discovery
(NCD) [29] is a recently proposed domain where prior knowledge from known classes is
used to identify new classes in unlabeled data. In this setup, the data is divided in two
sets. The first is a labeled set containing known classes and the second is an unlabeled set
containing novel classes that must be discovered. Some solutions have been proposed for
the NCD problem in the context of computer vision [17, 37, 38, 39] and have displayed
promising results.

However, research in this area is still new, and NCD has not yet been addressed for
tabular data. While audio and image data have been of great interest in recent scientific
publications, tabular data remains a very common information structure that is found
in many real world problems where NCD could be beneficial. For instance, customer
behavior analysis could leverage NCD techniques to identify previously unknown patterns
of customers based on their behavior, preferences, or demographics [110]. Another example
is cybersecurity, where NCD can be used to detect new types of cyber threats, malware,
or anomalous network activities that are not covered by existing security systems.

Tabular data can come in large unlabeled quantities due to the labeling process being
often costly and time-consuming, in part due to the difficulty of visualization, which is why
a lot of unlabeled data is often left unexploited. In [18], the authors review the primary
challenges that come with tabular data and identify three main obstacles to the success
of deep neural networks on this type of data. The first is the quality of the data, that
often includes missing values, extreme data (outliers), erroneous or inconsistent data and
class imbalance. Then, the lack of spatial correlation between features makes it difficult
to use techniques based on inductive biases, such as convolutions or data augmentation
[111]. And finally, the heterogeneous and complex nature of the data (dense continuous
and sparse categorical features) that can require considerable preprocessing, leading to
information loss compared to the original data [112].

Our proposal: To address the NCD problem in the challenging tabular data envi-
ronment, we propose TabularNCD (for Tabular Novel Class Discovery). In the first step
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of our method, an unbiased latent representation is initialized by taking advantage of the
advances in Self-Supervised Learning (SSL) for tabular data [55]. Then, we build on the
idea that the local neighborhood of an instance in the latent space is likely to belong to
the same class, and a clustering of the unlabeled data is learned through similarity mea-
sures. The process in this second step is jointly optimized with a classifier on the known
classes to include the relevant features from the already discovered classes.

Our key contributions are summarized as follows:

— We propose TabularNCD, a new method for Novel Class Discovery. To the best of
our knowledge, this is the first attempt at solving the NCD problem in the context
of tabular data with heterogeneous features. Thus, we do not depend on the spatial
inductive bias of features, which other NCD methods rely heavily on when using
convolutions and specialized data augmentation techniques.

— We empirically evaluate TabularNCD on seven varied public classification datasets.
These experiments demonstrate the superior performance of our method over com-
mon fully unsupervised methods and a baseline that exploits known classes in a
naive way.

— We also introduce an original approach for the definition of pairs of pseudo-labels
of unlabeled data. This approach exploits the local neighborhood of an instance in
a pre-trained latent space by considering that its k most similar instances belong
to the same class. We study its robustness and the influence of its parameters on
performance.

— Lastly, we conduct experiments to understand in depth the reasons for the advantage
that the proposed method has over simpler approaches.

3.2 Novel Class Discovery and related works

The process of discovering new classes depends on the final application in the real
world (offline vs online learning, nature of the data, etc). In the literature of “concept
drift” [113], changes in the distribution of known classes can appear either gradually or
suddenly. Some analogies can be made with the present chapter, where we consider the
case of the “sudden drift”, as the labeled dataset Dl and unlabeled dataset Du do not
share any classes (as described in Section 3.1). Furthermore, we assume that a form of
knowledge can be extracted from Dl to be then used on Du. In this sense, “Novel Class
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Discovery (NCD)” methods mainly lie at the intersection of several other lines of research
that we briefly review here.

Transfer Learning [114]: To solve a problem faster or with better generalization,
transfer learning leverages knowledge from a different (but related) problem. Transfer
learning can either be cross-domain, when a model trained to execute a task on one
domain is retrained to solve the same task but on another domain. Or it can be cross-task,
when a model trained to recognize some classes is retrained to distinguish other classes
of the same domain. NCD can be regarded as a cross-task transfer learning problem, in
the sense that it aims to cluster unlabeled data by leveraging knowledge from different
labeled data. However, most of the works in transfer learning require labeled data in the
source and target domains to train a classifier for the new task. When there are no labels
in the target domain, cross-task transfer learning methods usually employ unsupervised
clustering approaches trained on features extracted from labeled data.

Open-World Learning: Unlike in the traditional closed-world learning, the problem
of Open-World Learning expects at test time instances from classes that were not seen
during training. The objective is therefore threefold: 1) to obtain good accuracy on the
known classes, 2) to recognize instances from novel classes and optionally, 3) to incremen-
tally learn the new classes. In practice, most methods [115, 116] assume that the discovery
of the new classes in the rejected examples is either the duty of a human or a task that is
outside the scope of their research. To the best of our knowledge, [117, 102] are exceptions
in this regard. However, Open-World Learning still diverges from NCD, as classes in the
unlabeled set can be novel or not. This is not the case for NCD, where it is assumed that
it is already known if an instance belongs to a novel class or not. In other words, the focus
of NCD is only on the third task of Open-World Learning.

Semi-Supervised Learning: When a training set is partially labeled, classical su-
pervised methods can only exploit the labeled data. Semi Supervised Learning [80] is a
special instance of weak supervision where additional information in the form of a labeled
subset or some sort of known relationship between instances is available. Using this infor-
mation, models can learn from the full training set even when not all of the instances are
labeled. However, all of these methods build on the assumption that labeled and unlabeled
sets contain instances of the same classes, which is not the case in NCD.

Novelty Detection: From a training set with only instances of known classes, the
goal of Novelty Detection (ND) is to identify if new test observations come from a novel
class or not. This problem is concerned with semantic shift (i.e. the apparition of new
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classes). The authors of [25] conclude that the goal of ND is only to distinguish novel
samples from the training distribution, and not to actually discover the novel classes.
This is the first major difference with Novel Class Discovery, as the ultimate goal of NCD
is to explore the novel samples. The second difference is that in NCD, the known and
novel classes are already split, which is not the case in ND.

Novel Class Discovery (NCD): In a large part of the literature related to NCD, the
goal is to cluster classes in an unlabeled set when a labeled set of known classes is available.
Unlike in semi-supervised learning, the classes of these two sets are disjoint. The labeled
data is used to reduce the ambiguity that comes with the many potentially valid clustering
criteria of the unlabeled data. It is a challenging problem, as the patterns learned from
the labeled data may not be relevant or sufficient to cluster the unlabeled data. In [19],
the authors explore the assumptions behind NCD and give a formal definition of NCD.
They find that this is a theoretically solvable problem under certain assumptions, the
most important one being that the labeled and unlabeled data must share good high-level
features and that it must be meaningful to separate observations from these two sets.

NCD methods have mainly been developed for the computer vision problem, and the
pioneering works involve Constrained Clustering Network (CCN) [29], where the authors
approach NCD as a transfer learning problem and rely on the KL-divergence to eval-
uate the distance between the cluster assignments distributions of two data points. In
Deep Transfer Clustering (DTC) [37], the authors extend the Deep Embedded Clustering
method [43] by taking the available labeled data into account, allowing them to learn
more relevant high-level features before clustering the unlabeled data. Another impor-
tant work is AutoNovel [17], where two neural networks update a shared latent space.
Finally, Neighborhood Contrastive Learning [39], which is based on AutoNovel, adds two
contrastive learning terms to the loss to improve the quality of the learned representa-
tion. The common denominators of these works are the learning of a latent space and
the definition of pairwise pseudo-labels for the unlabeled data. Despite showing competi-
tive performance, they are all solving NCD for computer vision problems. Thus, they are
able to take advantage of the spatial correlation between the features with specialized
architectures and they are not affected by the other challenges of tabular data. Because
data augmentation is a crucial component to regularize the network, it is not possible to
directly transfer their work on tabular data.

In the next section, the architecture of the proposed method is depicted, along with
the two main steps of the training process.
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3.3 The method

Given a labeled set Dl = {(xl
i, y

l
i)}N

i=1 where each instance xl
i of X l ∈ Rd×N has a

one-hot label yl
i ∈ Y l = {1, . . . , C l} and an unlabeled set Du = {xu

i }M
i=1 where only the

instances xu
i of Xu ∈ Rd×M are available. The goal is to identify the Cu classes of Du

by predicting their labels yu
i ∈ Yu = {1, . . . , Cu}. In this chapter, our setting assumes

that this number Cu of novel classes is known in advance and that the classes of Dl and
Du are disjoint (i.e. Y l ∩ Yu = ∅). Additionally, we follow the formulation of the NCD
problem from [19] and suppose that PDl(Y |X) and PDu(Y |X) are statistically different
and separable, but still share high-level semantic features, so that we can extract general
knowledge from Dl of what constitutes a pertinent class. So to identify the classes in Du,
a transformation ϕ must be learned, such that ϕ(Xu) is separable.

The proposed method includes two main steps: (i) first, the representation is initialized
by pre-training the encoder ϕ on Dl∪Du without using any label. Then (ii), a supervised
classification task and an unsupervised clustering task are jointly solved on the previ-
ously learned representation, further updating it. Each of these two steps has its own
architecture and training procedure which are described below and in the next sections.

Similarly to [39], our method is based on AutoNovel [17], and the representation is
obtained using a model that includes a feature extractor ϕ(x) = z, which is a simple
combination of multiple dense layers with non-linear activation functions (see Fig. 3.1).
In the second step, the latent representation of the feature extractor is forwarded to two
linear classification and clustering layers followed by Softmax layers (see Fig. 3.2).

Why rely on a deep architecture? Despite much research efforts in deep learning,
the tasks of classification and regression in the context of tabular data are still dominated
by “classical” approaches based on tree-ensembles. In [18], the authors benchmarked 12
state-of-the-art deep learning-based approaches against 9 classical methods on both re-
gression and classification tasks. They found that XGBoost [118], LightGBM [119] and
CatBoost [120] outperformed both deep and shallow neural networks on most datasets
with significantly less training time. They conclude that for supervised tasks, the use of
current deep learning techniques is generally inefficient compared to gradient boosting
methods. However, for unsupervised problems such as clustering, deep learning methods
offer certain advantages. Tabular data often suffers from sparse values, high dimension-
ality and heterogeneous features that make it difficult to accurately measure distances
between points. Deep encoders are a good solution to these challenges because the data
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is projected into a homogeneous latent space of reduced dimensionality. Furthermore, in
a well-defined latent space, instances close to each other are likely to belong to the same
class. These advantages, together with the supervised information available in NCD that
can be exploited during training, lead us to expect better performance when using a deep
architecture.

The following subsections describe in more details the two main training steps of
the method and the consistency regularization term, which is required in the kind of
architecture that is presented here.

3.3.1 Initialization of the representation

Figure 3.1 – Architecture of the pre-training step.

This first step aims at capturing a common and informative representation of both
Dl and Du. This is important because the representation is used in the next step, among
other things, to compute the similarity of pairs of instances and thus determine if examples
should belong to the same cluster or not. Among the possibilities offered in the literature,
the way we decided to elaborate this representation is to project examples in a latent
space produced by a deep architecture trained on Dl and Du.

To pre-train the latent space using both labeled and unlabeled data, we take advantage
of Self-Supervised Learning (SSL), and apply the Value Imputation and Mask Estimation
(VIME) method [55]. As the name suggests, VIME defines two pretext tasks to train the
encoder ϕ. From an input vector x ∈ Rd that has been corrupted, the objective is to
1) recover the original values and 2) recover the mask used to corrupt the input. The
corruption process begins with the generation of a binary mask m = [m1, ...,md]⊤ ∈
{0, 1}d, with mj randomly sampled from a Bernoulli distribution with probability pm.
The corrupted vector x̃ is then created by replacing each dimension j of x where mj = 1
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with the dimension j of a randomly sampled instance from the training set. So x̃ =
(1 − m) ⊙ x + m ⊙ x̄, where ⊙ is the element-wise product and each x̄j of x̄ has been
randomly sampled from the empirical marginal distribution of the j-th feature of the
training set.

The pre-training framework is illustrated in Fig. 3.1. The encoder and the mask and
feature vector estimators are jointly trained with the following optimization problem:

LV IME = lrecons. + αlmask (3.1)

where α is a trade-off parameter. Following [55], we use α = 2.0. The mean squared error
(MSE) loss is used to optimize the feature vector estimator:

lrecons. = 1
d

d∑
j=1

(xj − x̂j)2 (3.2)

where x̂ is the input reconstructed from the corrupted vector x̃. The binary cross-entropy
(BCE) loss is used to optimize the mask estimator:

lmask = −1
d

d∑
j=1

[mj log(m̂j) + (1−mj) log(1− m̂j)] (3.3)

where m̂ is the estimated mask.
The authors argue that by training an encoder to solve these two tasks, it is possible

to capture the correlation between the features and create a latent representation z that
contains the necessary information to recover the input x. While the general idea of the
VIME method is similar to that of a denoising auto-encoder (DAE), it reports superior
performance in [55] and there are two major differences. The first is the addition of the
mask estimation task, and the second lies in the noise generation process. A DAE will
create noisy inputs by adding Gaussian noise or replacing values with zeroes, while VIME
randomly selects values from the empirical marginal distribution of each feature. This
means that the noisy x̃ of VIME will be harder to distinguish from the input.

Note that a simple approach to initialize the encoder would be to train a classifier using
the known classes. However, the resulting representation would rapidly overfit on these
classes and the unique features of the novel classes would be lost. Instead, by generating
pseudo-labels from pretext tasks on unlabeled data, a model can be trained to learn
informative representations and high-level features that are unbiased towards labeled data.
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This is the general idea behind Self-Supervised Learning and it is a technique commonly
used in NCD [121, 17, 39]. An example of it is RotNet [51], where the model has to
predict the rotation that was applied to an image from the possible 0, 90, 180 and 270
degrees values. Unfortunately, only a few works have attempted to adapt this technique
for tabular data [70, 71, 55] and have not had the same success.

3.3.2 Joint training on the labeled and unlabeled data

Figure 3.2 – Architecture of the joint learning step. After the input data x has been
projected, labeled data zl is used to train the classification network ηl and unlabeled data
is used to train the clustering network ηu with the generated pseudo-labels as its target.

We formulate the novel class discovery process as multi-task optimization problem. In
this step, two new networks are added on top of the previously initialized encoder, each
solving different tasks on different data (see Fig. 3.2). The first is a classification network
ηl(z) ∈ RCl+1 trained to predict 1) the C l known classes from Dl with the ground truth
labels and 2) a single class formed of the aggregation of the unlabeled data. The second
is another classification network trained to predict the Cu novel classes from Du. It will
be referred as the clustering network ηu(z) ∈ RCu . These two networks share the same
embedding and both update it through back-propagation, sharing knowledge with one
another.

The classification network is optimized with the cross-entropy loss using the ground
truth one-hot labels y:

lclass. = −
Cl+1∑
c=1

yc log(ηl
c(z)) (3.4)

where z = ϕ(x). Its role is to guide the representation to include the features of the known
classes that are relevant for the supervised classification task.
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To train the clustering network ηu with unlabeled data in a supervised manner, pseudo-
labels ỹi,j ∈ {0, 1} are generated for each pair (xi, xj) of unlabeled data in a mini-batch.
This is comparable to a pretext task in Self-Supervised Learning. Another possible ap-
proach would be to predict the similarity of instances directly, but using pseudo-labels
has the advantage of directly associating classes to the instances and does not require an
additional clustering of the embedding. In this case, pseudo-labels indicate if a pair of
instances should belong to the same class or not, independently of the class number pre-
dicted by the network. They are defined as ỹi,j = 1 if zi and zj are similar, and ỹi,j = 0 if
they are dissimilar. After the mini-batch X has been projected in the encoder (Z = ϕ(X)),
there are |Z| − 1 pairwise pseudo-labels defined for each instance zi ∈ Z. The clustering
network is optimized with the binary cross-entropy loss, which is for a single instance zi:

lclust. = 1
|Z| − 1

|Z|∑
j=1
j ̸=i

[−ỹi,j log(pi,j)− (1− ỹi,j) log(1− pi,j)] (3.5)

where pi,j = ηu(zi) ·ηu(zj) is a score close to 1 if the clustering network predicted the same
class for zi and zj and close to 0 otherwise. For this reason, pi,j can directly be compared
to the pairwise pseudo-labels ỹi,j. The intuition is that instances similar to each other in
the latent space are likely to belong to the same class. Therefore, ηu will create clusters
of similar instances, guided by ηl with the knowledge of the known classes.

Note: Predicting the unlabeled data as a single new class in the classification network
is not done in AutoNovel [17] and is one of the main differences with our work. We found
that having an overlap of the instances in the classification and clustering networks would
improve the performance and result in the definition of cleaner latent space that does not
mix labeled and unlabeled data.

Definition of pseudo-labels. As expressed in Section 2.5.2, many NCD works (e.g.
[17, 42, 39]) define pseudo-labels as a form of weak supervision to iteratively refine the
prediction of their clustering network. Pseudo-labels are defined for each unique pair of
unlabeled instances in a mini-batch based on similarity. The most common approach is
to define a threshold λ for the minimum similarity of pairs of instances to be assigned to
the same class. We refer the reader to Figure 2.10 for a more intuitive explanation of this
process.

However, we found experimentally (see Appendix A.1) that defining for each point
the top k most similar instances as positives was a more reliable method. So, for each
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pair (xi, xj) in the projected batch of unlabeled data Z, the pseudo-labels are assigned as
follows:

ỹi,j = 1[j ∈ argtopk
r∈{1,...,|Z|}

r ̸=i

δ(zi, zr)] (3.6)

where δ(zi, zr) = zi·zr

∥zi∥∥zr∥ is the cosine similarity and argtopk is the subset of indices of the
k largest elements. This means that each observation has k positive pairs and |Z| − 1− k
negative pairs.

3.3.3 Consistency regularization

During the training of the two classification networks, the latent representation of the
encoder changes. And since the pseudo-labels are defined according to the similarity of
instances in the latent space, this causes a moving target phenomenon, where the pairwise
pseudo-labels can differ from one epoch to another. To limit the impact of this problem,
a regularization term is needed. Commonly employed in semi-supervised learning [90], we
use “data augmentation”. The idea is to encourage the model to predict the same class for
an instance x and its augmented counterpart x̄. But while data augmentation has become
a standard in computer vision, the same cannot be said for tabular data. The authors of
[18] consider the lack of research in tabular data augmentation (along with the difficulty
to capture the dependency structure of the data) to be one of the main reasons for the
limited success of neural networks in tabular data. Nevertheless, we find that consistency
regularization is an essential component for the performance of the method proposed here.

In this chapter we use SMOTE-NC (for Synthetic Minority Oversampling Technique
[59]), which is one of the most widely used tabular data augmentation techniques. It
synthesizes new samples from the minority classes to reduce imbalance, thus improving
the predictive performance of models on these classes. Synthetic samples are generated
by taking a point along the line between the considered sample and a random instance
among the k closest of the same class (in the original input space). Fig. 3.3 illustrates
this technique. The larger the k is, the wider and less specific the decision regions of the
learned model will be, resulting in better generalization.

This method can be applied directly to instances of the labeled set, however we relax
the constraint of selecting same-class instances for the unlabeled set, as no labels are
available. It can also be noted that the nearest neighbors for the observations of the
unlabeled set are not selected from the labeled set since one of the hypotheses of our
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Figure 3.3 – Illustration of the SMOTE data augmentation technique. The red dots are
the batch samples, and the black triangles are the synthetic new samples.

problem is that Y l ∩ Yu = ∅ (the same goes for the labeled set).

The mean squared error (MSE) is used as the consistency regularization term for both
the classification and the clustering network. For the clustering network, it is written as:

lreg. = 1
Cu

Cu∑
c=1

(ηc(z)− ηc(z̄))2 (3.7)

where z̄ = ϕ(x̄) is the projection of x augmented with the method inspired from SMOTE-
NC. For the classification network, it is averaged over C l + 1 instead.

3.3.4 Overall loss

The method proposed here falls under the domain of Multi-Task Learning (MTL)
where instead of focusing on the only task that solves the problem at hand (discovering
new classes in Du), additional related tasks are jointly learned (classification of samples
in Dl). By introducing new inductive biases, the model will prefer some hypotheses over
others, guiding the model towards better generalization [122]. Our architecture falls under
the hard parameter sharing domain of MTL, where the first layers are shared between the
different tasks (i.e. the encoder), and the last few layers are task-specific.

We chose to adopt an alternating optimization strategy, which was introduced in [123].
In this case, we define one objective function and one individual optimizer per task. The
loss of the classification network is:

Lclassification = w1lclassif. + (1− w1)lreg. (3.8)
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And the loss of the clustering network can be written as:

Lclustering = w2lclust. + (1− w2)lreg. (3.9)

where w1 and w2 are trade-off hyperparameters for balancing the weight of the consistency
regularization terms.

Description of the training process: The classification network and the clustering
network are trained alternately. For each mini-batch during training, the classification
network and the encoder are first updated through back-propagation with the loss from
(3.8). Then, the unlabeled data of the same mini-batch is forwarded once again through
the encoder to compute the loss from (3.9), which is back-propagated to update the
clustering network and the encoder once more.

3.4 Experiments

3.4.1 Datasets and experimental details

Datasets. To evaluate the performances of the method proposed here, a variety of
datasets in terms of application domains and characteristics have been chosen (see Ta-
ble 3.1). Six public tabular classification datasets were selected: Forest Cover Type [124],
Letter Recognition [125], Human Activity Recognition [126], Satimage [127], Pen-Based
Handwritten Digits Recognition[127] and 1990 US Census Data [127], as well as MNIST
[128], which was flattened to transform the 28 × 28 grayscale images into vectors of 784
attributes. We preprocess the numerical features of all the datasets to have zero-mean
and unit-variance, while the categorical features are one-hot encoded. If the training and
testing data were not already split, 70% were kept for training while the remaining 30%
were used for testing.

Following the same procedure found in Novel Class Discovery articles [121, 17, 39],
we hide the labels of some classes to create the novel classes. And the capacity of the
compared methods to recover these classes is then evaluated. Around 50% of the classes
are hidden, resulting in further splitting of the training and testing sets into labeled and
unlabeled subsets. The partitions of the 7 datasets can be found in Table 3.1.

Evaluation metrics. To thoroughly assess the performance of the methods compared
in the experiments described below, we report four different metrics. The first two are the
clustering accuracy (ACC) and balanced accuracy (BACC), which can be computed after
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Table 3.1 – Statistical information of the selected datasets.

Dataset name Attri- # classes # train # train # test # test
butes C l / Cu labeled unlabeled labeled unlabeled

MNIST [128] 784 5 / 5 30,596 29,404 5,139 4,861
Forest Cover type [124] 54 4 / 3 6,480 4,860 36,568 13,432
Letter recognition [125] 16 19 / 7 10,229 3,770 4,296 1,704
Human activity [126] 562 3 / 3 3,733 3,619 1,494 1,453
Satimage [127] 36 3 / 3 2,525 1,976 1,042 887
Pendigits [127] 16 5 / 5 3,777 3,717 1,764 1,734
1990 US Census [127] 67 12 / 6 50,000 50,000 31,343 18,657

the optimal linear assignment of the class labels is solved with the Hungarian algorithm [2].
The use of the balanced accuracy is justified by the unbalanced class distribution of some
datasets, which resulted in inflated accuracy scores that were not truly representative
of the performance of the method. Another reported metric is the Normalized Mutual
Information (NMI). It measures the correspondence between two sets of label assignments
and is invariant to permutations. Finally, we compute the Adjusted Rand Index (ARI).
It measures the similarity between two clustering assignments.

These four metrics range between 0 and 1, with values closer to 1 indicating a better
agreement to the ground truth labels. The ARI is an exception and can yield values in
[−1,+1], with negative values when the index is less than the Expected_RI. The metrics
reported in the next section are all computed on the unlabeled instances from the test
sets.

Competing methods. As expressed in Section 3.1, to the best of our knowledge, there
is no other method that solves the particular Novel Class Discovery problem for tabular
datasets. Nonetheless, we can compare ourselves to unsupervised clustering methods.
This will also allow us to show that our method provides an effective way of incorporating
knowledge from known classes. We choose the k-means algorithm for its simplicity and
wide adoption, as well as the Spectral Clustering [129] method for its known good results
to discover new patterns as in Active Learning [130]. We set k to the ground truth (i.e.
k = Cu) for both clustering methods, as it was already assumed that it is known in the
proposed method.

We also define a simple baseline that clusters unlabeled data while still capitalizing
on known classes: (i) first, a usual classification neural network is trained on the known
classes from Dl; (ii) then the classifier’s penultimate layer is used as a feature embedding
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for Du. In this projection, a k-means is applied to assign labels to the unlabeled test
instances. Compared to the unsupervised approaches, this technique has the advantage
of learning the patterns of the known classes in a homogeneous latent space. However,
we still expect it to perform sub-optimally as the unique features and patterns of the
unlabeled data might be lost in the last hidden layer after training.

Implementation details. For all datasets, we employ an encoder composed of 2
dense hidden layers that keeps the dimension of the input with activation functions and
dropout values that are optimized hyperparameters. Following VIME [55] and AutoNovel
[17], we use a single linear layer for the mask estimator, vector estimator, classification
network and clustering network.

The hyperparameters (see Table A.3 in appendix) of the proposed method are opti-
mized with a Bayesian search on a validation set which represents 20% of the training set.
During the Self-Supervised Learning step (see Section 3.3.1), we observe little impact on
the final performance of the model when optimizing the hyperparameters specific to the
VIME method, and therefore use the values suggested in the original paper: a learning
rate of 0.001, a corruption rate of 30% and a batch size of 128. In the joint training step
(see Section 3.3.2), we use a larger batch size of 512 as the observations are randomly sam-
pled from the merged labeled and unlabeled data. The hyperparameters of this step are
the learning rates of both classification and clustering network optimizers, along with the
trade-off parameters of their respective losses. The top k number of positive pairs defined
by (3.6) and the k neighbors considered in the data augmentation method of Section 3.3.3
are also optimized and can all be found in Table A.3 in appendix. We use AdamW [131]
as the optimizer for the pre-training step and for the two optimizers of the joint training
step, and find that 30 epochs are enough to converge for both steps on any of the tabular
datasets used.

We implemented our method under Python 3.7.9 and with the PyTorch 1.10.0 [132]
library. The experiments were conducted on Nvidia 2080 Ti and Nvidia Quadro T1000
GPUs. The networks are initialized with random weights, and following [17], the results are
averaged over 10 runs. The code is publicly available at https://github.com/ColinTr/
TabularNCD.
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3.4.2 Results

Table 3.2 – Performance of TabularNCD on the novel classes. Best results are in bold.

Dataset Method BACC (%) ACC (%) NMI ARI

MNIST

Baseline 57.7±4.7 57.6±4.5 0.37±0.2 0.31±0.3
Spect. clust - - - -
k-means 60.1±0.0 61.1±0.0 0.48±0.0 0.38±0.0
TabularNCD 91.5±4.1 91.4±4.2 0.82±0.06 0.81±0.04

Forest

Baseline 55.6±2.0 68.5±1.4 0.27±0.02 0.15±0.01
Spect. clust 32.1±1.4 85.8±4.0 0.01±0.01 0.09±0.01
k-means 32.9±0.0 62.0±0.0 0.04±0.00 0.05±0.00
TabularNCD 66.8±0.6 92.2±0.2 0.37±0.09 0.56±0.09

Letter

Baseline 55.7±3.6 55.9±3.6 0.49±0.04 0.33±0.04
Spect. clust 45.3±4.0 45.3±4.0 0.48±0.03 0.18±0.03
k-means 50.2±0.6 49.9±0.6 0.40±0.01 0.28±0.01
TabularNCD 71.8±4.5 71.8±4.5 0.60±0.04 0.54±0.04

Human

Baseline 80.0±0.5 78.0±0.6 0.64±0.01 0.62±0.01
Spect. clust 70.2±0.0 69.4±0.0 0.72±0.00 0.60±0.00
k-means 75.3±0.0 77.0±0.0 0.62±0.00 0.59±0.00
TabularNCD 98.9±0.2 99.0±0.2 0.95±0.01 0.97±0.01

Satimage

Baseline 53.8±3.4 53.9±4.2 0.25±0.03 0.22±0.03
Spect. clust 82.2±0.1 77.8±0.1 0.51±0.00 0.46±0.00
k-means 73.7±0.3 69.2±0.2 0.30±0.00 0.28±0.00
TabularNCD 90.8±4.0 91.4±5.0 0.71±0.11 0.79±0.07

Pendigits

Baseline 72.8±5.5 72.8±5.4 0.62±0.06 0.54±0.07
Spect. clust 84.0±0.0 84.0±0.0 0.78±0.00 0.67±0.00
k-means 82.5±0.0 82.5±0.0 0.72±0.00 0.63±0.00
TabularNCD 85.5±0.7 85.6±0.8 0.76±0.02 0.71±0.02

Census

Baseline 53.0±3.5 55.0±6.5 0.49±0.02 0.30±0.03
Spect. clust 23.6±3.3 51.3±5.5 0.24±0.11 0.18±0.09
k-means 38.5±2.6 49.8±3.6 0.41±0.05 0.28±0.03
TabularNCD 61.9±0.6 50.1±0.9 0.48±0.01 0.30±0.00

The standard deviation is computed over 10 executions. The 2 unsupervised clustering methods (Spect.
clust and k-means) are only fitted to the test instances belonging to the novel classes. Values for the
spectral clustering of MNIST are missing as the execution did not complete under 1 hour.

Comparison to the competing methods. In Table 3.2, we report the performance
of the 4 competing methods and on the 7 datasets for the clustering task. The results show
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that TabularNCD achieves higher performance than the baseline and the two unsupervised
clustering methods, on all considered datasets and on all metrics. The improvements in
accuracy over competing methods ranges between 1.6% and 21.0%. This proves that even
for tabular data, useful knowledge can be extracted from already discovered classes to
guide the novel class discovery process.

Figure 3.4 – Per-attribute coefficients of a logistic regression trained to predict the known
and novel classes. The dataset is Satimage.

While the baseline competitor (k-means on a projection learned on the labeled data,
see Section 3.4.1) improves the performance of k-means for some datasets (notably the
Census and Forest datasets), it still lags behind our method in general. The baseline
obtains a lower score than the simple k-means on only 3 datasets, which means that in
some cases, the features extracted from the known classes are insufficient to discriminate
novel unseen data. This is the case for the Satimage dataset, where the performance of the
baseline is much lower compared to the simple k-means on the original data. To understand
this phenomenon, we compare the importance of the features used to predict the known
classes to the importance of the features of the novel classes. Because the features have
been standardized, we can simply look at the coefficients of a logistic regression. Fig. 3.4
illustrates this experiment: the 5 most important coefficients in the prediction of one of
the novel classes are more than twice as large as the addition of the coefficients of the
attributes used to predict the known classes. Because these attributes that are critical
in the discrimination of this novel class are relatively unimportant in the discrimination
of the known classes, they are lost during the training of the classifier that serves as a
feature extractor in the baseline, which results in a projection of the unlabeled instances
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of poor quality. This issue is more pronounced as the known and novel classes are more
dissimilar. The latent representation of TabularNCD is pre-trained using SSL on all the
available data, which explains why it is unaffected by the phenomenon described above.

Table 3.3 – Performance of the proposed method against CD-KNet [38]. Best results are
in bold.

Dataset MNIST
Method ACC (%) NMI ARI
TabularNCD 91.4 0.823 0.812
CD-KNet 86.9 0.683 0.707
CD-KNet-Exp 94.5 0.856 0.869

Comparison to a NCD method on MNIST. CD-KNet-Exp [38] (for Class Dis-
covery Kernel Networks with Expansion) is one of the first methods that attempts to
solve the NCD problem. They define their problem as an Open-World Class Discovery
problem, which is actually another name for Novel Class Discovery. In their proposed
method, they start by training a classifier on the known classes of Dl, and then fine-tune
it on both Dl and Du before applying a k-means on the learned latent representation to
get the cluster assignments. Similarly to our experimental protocol, they select the first 5
digits of MNIST as known classes and use the last 5 as new unlabeled classes to discover.
For this reason, we can directly compare their reported performance to ours in Table 3.3.
From this table, we see that in terms of clustering accuracy, our method performs 4.5%
better than their simpler implementation CD-KNet, and 3.1% worse than their complete
approach CD-KNet-Exp, where the previously learned classifier is re-trained with the
pseudo-labels assigned using k-means. Obtaining comparable results on MNIST is very
encouraging because unlike our approach, CD-KNet-Exp takes advantage of convolutional
neural networks as they only use image data. Their re-training technique could also be
explored in future work to improve performance.

Ablation study. The usefulness of each of the components of the proposed method is
estimated in Table 3.4 by ablating them and comparing the metrics after training to the
metrics of full method. The first observation that can be made is that each component
has a positive influence, and removing any of them results in a drop in performance. The
most important one is the BCE (3.5), since without it the clustering network degenerates
to a trivial solution where it predicts the same class for all observations. Next is the MSE
from the consistency loss (3.7). The substantial drop in performance was expected as its
role is crucial to (1) reduce the moving target phenomenon introduced in Section 3.3.3 and
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Table 3.4 – Ablation study of the proposed method.

Method BACC (%) ACC (%) NMI ARI
TabularNCD 90.8±4.0 91.4±5.0 0.71±0.11 0.79±0.07
- w/o SSL 88.4±5.3 88.6±7.0 0.67±0.15 0.67±0.10
- w/o CE 72.0±6.1 69.5±6.0 0.44±0.12 0.49±0.08
- w/o BCE 33.3±0.0 51.7±0.0 0.00±0.00 0.00±0.00
- w/o MSE 66.7±5.7 63.9±4.4 0.44±0.02 0.37±0.02

SSL: Self-Supervised Learning, CE: Cross Entropy loss of the classification network, BCE: Binary
Cross Entropy loss of the clustering network, MSE: Mean Squared Error consistency loss. The dataset
is Satimage [127].

(2) regularize the network to improve its generalization. We also observe an important
decrease in performance when removing the CE (3.5), meaning that in the case of the
Satimage dataset, jointly learning a classification network with the clustering network
helps guide the clustering process as intended. Finally, while it is beneficial to pre-train
the encoder with SSL, the impact is small. This can be explained in part by the limited
success that SSL works have had in the challenging area of tabular data.

(a) Original data (b) After SSL (c) Joint training epoch
15

(d) Joint training epoch
30

Figure 3.5 – Evolution of the t-SNE during the joint training of the model on the Human
Activity Recognition dataset.

Visualization. In addition to quantitative results, we also report a qualitative analysis
showing the feature space that is learned. In Fig. 3.5, we visualize the evolution of the
representation of all the classes during the training process of the proposed method.
Fig 3.5(a) corresponds to the original data, while the next figures are the data projected
in the latent space. Classes overlap in the original representation, as well as in the latent
space after Self-Supervised Learning (Fig 3.5(b)). However, the SSL step initialized the
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encoder to a reasonable representation. This means that at the beginning of the joint
training, the pseudo-labels defined on the unlabeled data using (3.6) will be accurate.
During the joint training in the Figures 3.5(c) and 3.5(d), the classes are more and more
separated, showing that the proposed method is able to successfully discover novel classes
using knowledge from known classes. The plot clearly shows that our model produces
feature representations where samples of the same class are tightly grouped.

Finally, we note that additional experiments can be found in Appendix A.5, where
we attempt to automatically determine the optimal value of top k in the pseudo-labeling
process during training. The general idea is to apply the pseudo-labeling method to all the
points in a mini-batch and find the top k value that minimizes the error on the labeled
data by comparing its results to the ground truth labels. Four distinct approaches are
analyzed in two different settings, and the results are promising.

3.5 Conclusion and future work

In this chapter, we have proposed a first solution to the Novel Class Discovery problem
in the challenging environment of tabular data. We demonstrated the effectiveness of our
proposed approach, TabularNCD, through extensive experiments and careful analysis on
7 public datasets against unsupervised clustering methods. The greater performance of
our method has shown that it is possible to extract knowledge from already discovered
classes to guide the discovery process of novel classes, which demonstrates that NCD is
not only applicable to images but also on tabular data. Lastly, the original method of
defining pseudo-labels proposed here has proven to be reliable even in the presence of
unbalanced classes.

However, while the results of this first method are convincing, it still has a number
of limitations. Namely, the assumption that the number of novel classes is known in
advance is impractical and has already been identified as an important issue in Chapter 2.
Additionally, the many hyperparameters of our method were optimized using the labels of
the novel classes, which are not available in practice. These issues will be the main focus
of Chapter 4, where we aim to solve NCD in more realistic scenarios.
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4.1 Introduction

Recently, remarkable progress has been achieved in supervised tasks, in part with the
help of large and fully labeled sets such as ImageNet [92]. These advancements have pre-
dominantly focused on closed-world scenarios, where, during training, it is presumed that
all classes are known in advance and have some labeled examples. However, in practical
applications, obtaining labeled instances for all classes of interest can be a difficult task
due to factors such as budget constraints or lack of comprehensive information. Further-
more, for models to be able to transfer learned concepts to new classes, they need to be
designed with this in mind from the start, which is rarely the case. Yet this is an im-
portant skill that humans can use effortlessly. For example, having learnt to distinguish
a few animals, a person will easily be able to recognise and “cluster” new species they
have never seen before. The transposition of this human capacity to the field of machine
learning could be a model capable of categorizing new products in novel categories.

This observation has led researchers to formulate a new problem called Novel Class
Discovery (NCD) [20, 29]. Here, we are given a labeled set of known classes and an
unlabeled set of different but related classes that must be discovered. Lately, this task
has received a lot of attention from the community, with many new methods such as
AutoNovel [17], OpenMix [45] or NCL [39] and theoretical studies [110, 40]. However,
the majority of these works tackle the NCD problem under the unrealistic assumption
that the number of novel classes is known in advance, or that the target labels of the
novel classes are available for hyperparameter optimization [21]. This is, for example, the
case with the method proposed in Chapter 3. These assumptions render these methods
impractical for real-world NCD scenarios. To address these limitations, we propose a
general framework for optimizing the hyperparameters of NCD methods where the ground
truth labels of novel classes are never used, as they are not available in real-world NCD
scenarios. Furthermore, we show that the latent spaces obtained by such methods can be
used to accurately estimate the number of novel classes.

We also introduce three new NCD methods. Two of them are unsupervised clustering
algorithms modified to leverage the additional information available in the NCD setting.
The first one improves the centroid initialization step of k-means, resulting in a fast and
easy to use algorithm that can still give good results in many scenarios. The second
method focuses on optimizing the parameters of the Spectral Clustering (SC) algorithm.
This approach has a potentially higher learning capacity as the representation itself (i.e.
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the spectral embedding) is tuned to easily cluster the novel data. Finally, the last approach
is a deep NCD method composed of only the essential components necessary for the NCD
problem. Compared to SC, this method is more flexible in the definition of its latent space
and effectively integrates the knowledge of the known classes.

While these contributions can be applied to any type of data, our work focuses on
tabular data. The NCD community has focused almost exclusively on computer vision
problems and, to the best of our knowledge, only one paper [21] has tackled the problem
of NCD in the tabular context. This is despite the many applications of NCD in tabular
data. Some examples include cybersecurity, where network traffic could be used to infer
new types of cyber-attacks that deviate from known attack patterns; sensor data analysis,
where new categories of equipment failures could be diagnosed and lead to faster repairs;
or fraud detection, where new types of fraudulent transactions that deviate from known
patterns could be discovered. However, this previous work [21] required the meticulous
tuning of a large number of hyperparameters to achieve optimal results. Methods designed
for tabular data cannot take advantage of powerful techniques commonly employed in
computer vision. Examples include convolutions, data augmentation or Self-Supervised
Learning methods such as DINO [69], which have been used with great success in NCD
works [36, 57, 133], thanks to their strong ability to obtain representative latent spaces
without any supervision. On the other hand, tabular data methods have to rely on finely
tuned hyperparameters to achieve optimal results. For this reason, we believe that the
field of tabular data will benefit the most from our contributions.

By making the following contributions, we demonstrate the feasibility of solving the
NCD problem with tabular data and under realistic conditions:

— We develop a hyperparameter optimization procedure tailored to transfer the results
from the known classes to the novel classes with good generalization.

— We show that it is possible to accurately estimate the number of novel classes in the
context of NCD, by applying simple clustering quality metrics in the latent space
of NCD methods.

— We modify two classical unsupervised clustering algorithms to effectively utilize the
data available in the NCD setting.

— We propose a simple and robust method, called PBN (for Projection-Based NCD),
that learns a latent representation that incorporates the important features of the
known classes, without overfitting on them.

The code is available at https://github.com/Orange-OpenSource/PracticalNCD.
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4.2 Related work

The setup of NCD [20], which involves both labeled and unlabeled data, can make it
difficult to distinguish from the many other domains that revolve around similar concepts.
In this section, we review some of the most closely related domains and try to highlight
their key differences in order to provide the reader with a clear and comprehensive un-
derstanding of the NCD domain.

Semi-supervised Learning is another domain that is at the frontier between super-
vised and unsupervised learning. Specifically, a labeled set is given alongside an unlabeled
set containing instances that are assumed to be from the same classes. Semi-supervised
Learning can be particularly useful when labeled data is scarce or annotation is expen-
sive. As unlabeled data is generally available in large quantities, the goal is to exploit it
to obtain the best possible generalization performance given limited labeled data.

The main difference with NCD is that the all the classes are known in advance. Some
works have shown that the presence of novel classes in the unlabeled set negatively impacts
the performance of Semi-Supervised Learning models [89, 91]. So as these works do not
attempt to discover the novel classes, they are not applicable to NCD.

Transfer Learning aims at solving a problem faster or with better performance by
leveraging knowledge from a different problem. It is commonly expressed in computer
vision by pre-training models on ImageNet [92]. Transfer Learning can be either cross-
domain, when a model trained on a given dataset is fine-tuned to perform the same task
on a different (but related) dataset. Or it can be cross-task, where a model that can
distinguish some classes is re-trained for other classes of the same domain.

NCD can be viewed as a cross-task Transfer Learning problem where the knowledge
from a classification task on a source dataset is transferred to a clustering task on a target
dataset. But unlike NCD, Transfer Learning typically requires the target spaces of both
sets to be known in advance. Initially, NCD was characterized as a Transfer Learning
problem (e.g. in DTC [37] and MCL [42]) and the training was done in two stages: first
on the labeled set and then on the unlabeled set. This methodology seemed natural, as
with Transfer Learning, both sets are not available at the same time.

The field of Open Set Recognition (OSR) [103] stems from the observation that
neural networks have a tendency to make predictions with high confidence, even for in-
stances of classes they have never seen before. It is based on the Open-World assumption
in which instances of new classes may appear during inference, so standard models can-
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not be used. Therefore, in OSR, samples from novel classes must be correctly identified
as unknown. An example would be a fingerprint recognition model that needs to reject
images of fingerprints (or anything else!) from people who are not registered. However, as
in many domains under the Open-World assumption, the goal of OSR is only to identify
samples from novel classes. In NCD, we assume that this identification has already been
made, and we try to actually discover the novel classes.

Generalized Category Discovery (GCD) was first introduced by [36] and has also
attracted attention from the community [58, 60, 57]. It can be seen as a less constrained
alternative to NCD, since it does not rely on the assumption that samples belong exclu-
sively to the novel classes during inference. However, this is a more difficult problem, as the
models must not only cluster the novel classes, but also accurately differentiate between
known and novel classes while correctly classifying samples from the known classes.

Some notable works in this area include ORCA [121] and OpenCon [77]. Namely,
ORCA trains a discriminative representation by balancing a supervised loss on the known
classes and unsupervised pairwise loss on the unlabeled data. And OpenCon proposes a
contrastive learning framework which employs Out-Of-Distribution strategies to separate
known vs. novel classes. Its clustering strategy is based on moving prototypes that enable
the definition of positive and negative pairs of instances.

Novel Class Discovery has a rich body of papers in the domain of computer vision.
Early works approached this problem in a two-stage manner. Some define a latent space
using only the known classes, and project the unlabeled data into it (DTC[37] and MM
[19]). Others train a pairwise labeling model on the known classes and use it to label and
then cluster the novel classes (CCN [29] and MCL [42]). But both of these approaches
suffered from overfitting on the known data when the high-level features were not fully
shared by the known and novel classes.

Today, to alleviate this overfitting, the majority of approaches are one-stage and try to
transfer knowledge from labeled to unlabeled data by learning a shared representation. In
this category, AutoNovel [17] is one of the most highly influential works. After pre-training
their latent representation with SSL [51], two classification networks are jointly trained.
The first simply learns to distinguish the known classes with the ground truth labels. And
the other learns to separate unlabeled data from pseudo-labels defined for each epoch
based on pairwise similarity. NCL [39] adopts the same architecture as AutoNovel, and
extends the loss by adding a contrastive learning term to encourage the separation of novel
classes. OpenMix [45] utilizes the MixUp strategy to generate more robust pseudo-labels.
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As expressed before, although these methods have achieved some success, they are
not applicable to tabular data. To date, and to the best of our knowledge, only Tabu-
larNCD [21] tackles this problem. Also inspired by AutoNovel, it pre-trains a dense-layer
autoencoder with SSL and adopts the same loss terms and dual classifier architecture.
Pseudo-labels are defined between pairs of unlabeled instances by checking if they are
among the most similar pairs.

For a more complete overview of the state-of-the-art of NCD, we refer the reader to
the survey [20].

4.3 Approaches

In this section, after introducing the notations, we define two simple but potentially
effective models derived from classical clustering algorithms (Sections 4.3.2 and 4.3.3).
The idea is to use the labeled data to improve the unsupervised clustering process, and
make the comparison to NCD methods more challenging. Then, we present a new method,
PBN (for Projection-Based NCD, Section 4.3.4), characterized by its low number of hy-
perparameters needed to be tuned.

4.3.1 Problem setting

We begin by describing the Novel Class Discovery setup and the necessary nota-
tions. Here, data is provided in two distinct sets: a labeled set of known classes Dl =
{(xl

i, y
l
i)}N

i=1 where each instance xl
i belongs to X l ∈ Rd×N and has a one-hot label

yl
i ∈ Y l = {1, . . . , C l}. And an unlabeled set Du = {xu

i }M
i=1 where only the data sam-

ples xu
i of Xu ∈ Rd×M are available. The objective is to exploit the knowledge from Dl to

accurately cluster Du by predicting the labels yu
i ∈ Yu = {1, . . . , Cu} of the novel classes.

In NCD, the novel classes are different but related to the known classes, with no overlap
between these two sets of classes (i.e., Y l ∩ Yu = ∅).

Following previous research, we first assume that the number of novel classes Cu is
known in advance, and later propose an approach to estimate this number in a later
section.
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4.3.2 NCD k-means

This is a straightforward method that takes inspiration from k-means++ [134], which
is an algorithm for choosing the initial positions of the centroids (or cluster centers). In
k-means++, the first centroid is chosen at random from the data points. Then, each new
centroid is chosen iteratively from one of the data points with a probability proportional
to the squared distance from the point’s closest centroid. The resulting initial positions
of the centroids are generally spread more evenly, which yields appreciable improvement
in the final error of k-means and convergence time.

As shown in Figure 4.1(a), we naively adapt k-means++ to the NCD setting by
defining C l initial centroids. They are set as the mean class points of the known classes
using the ground truth labels. Then, we follow k-means++ and randomly select Cu new
centroids in the unlabeled set, with similarly decreasing probability when closer to existing
centroids. We found experimentally (see Appendix B.6) that, after the initialization is
complete, the best accuracy is achieved when only the centroids of the novel classes are
updated, and using the unlabeled data only. In other words, the data of the known classes
is only used during the initialization of the new centroids, but not during the convergence
phase. Intuitively, if the centroids of the known and novel data are updated together, they
have a higher risk of drifting and capturing data of the other set. The pseudocode of the
proposed method is summarized in Algorithm 2 of Appendix B.1.

(a) Before convergence (b) After convergence

Figure 4.1 – t-SNE plots of the Pendigits dataset depicting the centroids before and after
convergence. Note how the centroids of the known classes (the squares) do not move, as
they stay the mean class point.

Similarly to k-means++, we repeat the initialization process a few times and keep the
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centroids that achieved the smallest inertia. Note that, to stay consistent with the k-means
algorithm, we use also the L2 norm (i.e. the Euclidean distance) for NCD k-means.

4.3.3 NCD Spectral Clustering

Spectral Clustering (SC) is an alternative to distance-based clustering methods (such
as k-means). It makes no assumptions about the structure of the data and considers the
clustering problem as a graph partitioning problem and seeks to decompose the graph
into connected components [129]. The input of the Spectral Clustering algorithm is an
adjacency matrix (sometimes called similarity graph) which must accurately represent the
neighborhood relationships between data points. There are multiple ways to construct
such a graph, however there is no theoretical result on the relation between the similarity
graph construction method and the Spectral Clustering results. Here, we employ a popular
approach to construct the adjacency matrix, which is through a Gaussian kernel: Ai,j =
exp (−∥xi − xj∥2

2/(2σ2)) , ∀xi, xj ∈ X where the parameter σ controls the width of the
neighborhood.

Following the Ng-Jordan-Weiss algorithm [135], we use the symmetric normalized
Laplacian Lsym = D−1/2LD−1/2. Here, the degree matrix D is a diagonal matrix with de-
grees d1, · · · , dn defined as di = ∑n

j=1 Ai,j. n is the number of data samples and L = D−A
is the unnormalized Laplacian matrix. The next step consists in finding the first u eigen-
vectors of Lsym to form the spectral embedding U ∈ Rn×u, where row i corresponds to
point xi. Finally, the points in U are partitioned with k-means into clusters.

The optimal value of σ in the Gaussian kernel can vary widely depending on the
distribution of inter-point distances. For this reason, we take inspiration from the rules of
thumb given in [129] and employ a minimum spanning tree (MST) to choose σ. In the past
few years, several graph-based clustering methods that use the MST have been proposed
[136], as it reliably represents the layout of the data and is inexpensive to compute. In
the approach proposed here, we denote dmax the length of the longest edge in the MST
of inter-point distances. The longest edge of the MST is a much studied object [137] and
is representative of the scale of the dataset. The scaling factor σ is then calculated such
that, after applying the Gaussian kernel, dmax is transformed into a chosen similarity smin.
This ensures that the resulting graph is safely connected. By optimizing this similarity
smin we can accurately represent the neighborhood relationships.

Therefore, for a given value of smin, we derive σ from the length of the longest edge
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dmax in the MST:

exp
(
−d2

max/(2σ2)
)

= smin

⇔ σ = dmax/
√
−2 ln (smin) (4.1)

Optimizing smin instead of σ should be more robust to variations in the distribution of
inter-point distances and give better results across different datasets or parts of a dataset.

To incorporate the knowledge from the known classes in the Spectral Clustering pro-
cess, our initial approach was to utilize NCD k-means within the spectral embedding. In
short, we would initially compute the full spectral embedding for all the data and deter-
mine the mean points of the known classes with the help of the ground truth labels. These
mean points would then serve as the initial centroids. However, the observed performance
improvement over the fully unsupervised SC was quite marginal.

Instead, the idea that we will use throughout this chapter (and that we refer to as
“NCD Spectral Clustering”) stems from the observation that SC can obtain very different
results according to the parameters that are used. Among these parameters, the temper-
ature parameter σ of the kernel holds particular importance, as it directly impacts the
adjacency matrix’s accuracy in representing the neighborhood relationships of the data
points. The rule of thumb of Equation 4.1 still requires to choose a value, but significantly
reduces the space of possible values. Additionally, while the literature often sets the num-
ber of components u of the spectral embedding equal to the number of clusters, we have
observed that optimizing it can also improve performance.

Therefore, rather than a specific method, we propose the parameter optimization
scheme illustrated in Figure 4.2. For a given combination of parameters {smin, u}, the

Figure 4.2 – NCD Spectral Clustering parameter optimization process.

corresponding spectral embedding of all the data is computed and then partitioned with
k-means. The quality of the parameters is evaluated from the clustering performance on

89



A Practical Approach to Novel Class Discovery in Tabular Data

the known classes, as the ground truth labels are only available for the known classes.
Indeed an important hypothesis behind the NCD setup is that the known and novel
classes are related and share similarities, so they should have similar feature scales and
distributions. Consequently, if the Spectral Clustering performs well on the known classes,
the parameters are likely suitable to represent the novel classes. The pseudocode of this
approach can be found in Algorithm 3 of Appendix B.1.

Discussion. This idea can be applied to optimize the parameters of any unsupervised
clustering algorithm in the NCD context. For example, the Eps and MinPts parameters
of DBSCAN [109] can be selected in the same manner. It is also possible to use a different
adjacency matrix in the SC algorithm. One option could be to substitute the Gaussian
kernel with the k-nearest neighbor graph, and therefore optimise k instead of σ. However,
for the sake of simplicity, we will only investigate SC using the Gaussian kernel.

4.3.4 Projection-Based NCD

Figure 4.3 – Architecture of the PBN model.

Projection-based NCD (PBN) can be seen as an extension of the baseline method used
in TabularNCD [21]. PBN is illustrated in Figure 4.3 and consists of 3 key components: (1)
an encoder that learns a shared representation between the known and novel classes; (2) a
classification network trained to distinguish the known classes of Dl in order to incorporate
their relevant features into the representation; and (3) a decoder that reconstructs the
data for both known and novel classes of Dl ∪Du, ensuring that the latent space contains
the information necessary to represent all classes. The decoder serves a dual purpose: it
provides regularization and mitigates overfitting on the known classes, thus improving
generalization, as shown in [138].
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The training loss is defined as:

LP BN = w × LCE + (1− w)× LMSE (4.2)

where w ∈ (0, 1) is a trade-off parameter that allows to balance the strength of the
cross-entropy loss and the reconstruction loss.

The cross-entropy loss on the known classes is defined as:

LCE = −
Cl∑

c=1
yc log (ηc(z)) (4.3)

where η(z) = (ηc(z))Cl

c=1 is the output of a classification network composed of a single
dense layer of neurons, z = ϕ(x) is the projection of instance x through the encoder ϕ
and (yc)Cl

c=1 is the one-hot encoded ground truth label of instance x.
The reconstruction loss of the instances from all classes is written as:

LMSE = 1
d

d∑
j=1

(xj − x̂j)2 (4.4)

where x̂ = ψ(z) is the reconstruction of instance x ∈ Rd.
Once the encoder, decoder and classification network have been trained (step 1), unla-

beled data Du is projected by the trained encoder into the latent space and then clustered
with k-means to discover novel classes (step 2).

Projection-based NCD requires tuning of four hyperparameters. The trade-off param-
eter w is inherent to the method and the other three come from the choice of architecture:
the learning rate, the dropout rate and the size of the latent space.

Note that this method does not employ complex schemes to define pseudo-labels unlike
many NCD works. They have been proven to be accurate with image data (notably
thanks to data augmentation techniques) [17, 48], but we found in preliminary results
not detailed here, that for tabular data, they introduce variability in the results and new
hyperparameters that need to be tuned.

Discussion. Similarly to PBN, the baseline method of TabularNCD [21] relies on the
assumption that known and novel classes share similar high-level features, and defines a
latent space that highlights these features. This baseline first trains a deep classifier to
distinguish only the known classes of Dl. After training, the output and softmax layers
are discarded, and the last hidden layer is now considered as the output of an encoder. It
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then projects the novel data of Du into this latent space and partitions it using k-means.
This is the basic workflow of two-stage latent space-based NCD methods identified in
[20]. It is also similar to DTC [37], which uses the more refined DEC [43] clustering model
instead of k-means in the baseline. The problem with such two-stage methods is that the
resulting representations are at risk of being heavily biased towards the known classes.
Thus, if some concepts or high-level features are not shared between the known and novel
classes, the novel classes will not be well represented and these approaches will fail.

4.3.5 Summary of proposed approaches

In this section, we have proposed 3 distinct methods for solving the NCD problem,
all of which leverage knowledge from the known classes in different ways. Firstly, NCD k-
means uses the labeled data to improve the initialization of its centroids. Secondly, instead
of using the labels of the known classes during the clustering process itself, NCD Spectral
Clustering uses them to find parameters that are likely to be suitable for the whole domain.
More precisely, by clustering Dl ∪ Du together, the adequacy of the parameters smin

and u can be evaluated on the known classes. Finally, PBN is a straightforward method
that includes only the essential components to define a latent representation suitable for
clustering the novel classes. In this case, an encoder is trained with a classification loss
on the known classes and a reconstruction loss on all the data to ensure that the novel
classes are not misrepresented. The novel data is then projected into this representation
and clustered with k-means.

In the next section, we present an approach to finding hyperparameters without using
the labels of the novel classes, which are not available in realistic scenarios. Indeed in the
experiments (see Section 4.7), it should become clear why the simplicity of the proposed
approach is a desirable feature for hyperparameter optimization in the NCD context.

4.4 Hyperparameter optimization

The success of machine learning algorithms (including NCD) can be attributed in part
to the high flexibility induced by their hyperparameters. In most cases, a target is avail-
able and approaches such as the k-fold Cross-Validation (CV) can be employed to tune
the hyperparameters and achieve optimal results. However, in a realistic scenario of Novel
Class Discovery, the labels of the novel classes are never available. We must therefore
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find a way to optimize hyperparameters without ever relying on the labels of the novel
classes. In this section, we present a method that leverages the known classes to find hy-
perparameters applicable to the novel classes. This tuning method is designed specifically
for NCD algorithms that require both labeled data (known classes) and unlabeled data
(novel classes) during training 1. This is the case for Projection-based NCD, as described
in Section 4.3.4.

The process that we devised is represented in Figure 4.4. For each of the splits, the
instances of around half of the known classes are selected to form the set Dhid and their
labels are hidden. The labeled set now becomes the instances of Dl\Dhid and the unlabeled
set becomes the instances of Du∪Dhid. After training the model with this new data split,
it is evaluated for its performance for partitioning the instances of Dhid only since their
labels are available.

Figure 4.4 – The k-fold cross-validation approach for hyperparameter optimisation of
NCD methods.

To illustrate, in the split 1 of Figure 4.4, the model will be trained with the subsets
of classes {C2, C3, C4} as known classes and {C0, C1, C5, . . . , C9} as novel classes. It will
be evaluated for its performance on the hidden classes {C0, C1} only.

1. To optimize purely unsupervised clustering methods for NCD, we refer the reader to the optimiza-
tion process of Section 4.3.3.
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To evaluate a given combination of hyperparameters, this approach is applied to all
the splits, and the performance on the hidden classes is averaged. After repeating this
process for many combinations, the combination that achieved the best performance is
selected. For the final evaluation on the novel classes, in a realistic scenario of NCD their
labels are never available. However, in the datasets employed in this chapter, the novel
classes are comprised of pre-defined classes. Therefore, even though these labels are not
employed during training, they can still be used to assess the final performance on the
novel classes of different models and compare them against each other.

This tuning method stems from the same idea behind the NCD Spectral Clustering
parameterization process. Namely, if the clustering in the learned representation success-
fully partitions the hidden classes in Dhid, it is also likely suitable for the novel classes in
Du. Furthermore, keeping the unlabeled data during training even though the model is
not evaluated on the novel classes is important, as it increases the chances of the repre-
sentation being adapted for all the classes. For the same reason, the k-means of PBN (see
Section 4.3.4) is fitted on Du ∪Dhid together (instead of just Dhid) and the performance
is then computed on Dhid only. So cases where the classes in Du and Dhid are tangled will
be penalized.

In Table 4.1, we report for all datasets used in our experiments the number of known
classes that are hidden in each split, as well as the number of splits. Note that when the
number of known classes is small (e.g. 3 for Human), this approach may be difficult to
apply.

Table 4.1 – Classes splits of the k-fold cross-validation.

Dataset Known Novel Hidden Splitsclasses classes classes
Human 3 3 2 3
Letter 19 7 7 5
Pendigits 5 5 2 5
Census 12 6 6 5
m feat 5 5 2 5
Optdigits 5 5 2 5
CNAE-9 4 5 2 5

Discussion. Similarly to NCD, there are no labels available in unsupervised clustering
problems, which makes the task of hyperparameter selection very difficult. To address
this issue, clustering algorithms are sometimes tuned using internal metrics that do not
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rely on labeled data for computation. These metrics offer a means of comparing the
results obtained from different clustering approaches. Examples of such metrics include the
Silhouette coefficient, Davies-Bouldin index, or Calinski-Harabasz index [139]. However,
it is important to note that these metrics make assumptions about the structure of the
data and can be biased towards algorithms which make a similar assumption. But unlike
unsupervised clustering, the NCD setting provides known classes that are related to the
novel classes we are trying to cluster.

4.5 Estimating the number of novel classes

Cluster Validity Indices (CVIs) are commonly used in unsupervised data analysis
to estimate the number of clusters and are also applicable to the NCD problem. CVIs
are scores that compare the compactness and separation of clusters without the help of
external information such as ground truth labels. However, the knowledge from the known
classes is not used if the CVIs are directly applied to estimate the number of novel classes.
Therefore, we propose to apply the CVIs in the latent representation learned by PBN.
Projection-based NCD methods such as PBN are designed to create a latent space that
emphasizes the relevant features of the known classes. Since these features are shared to
some extent with the novel classes, this representation should be better at revealing the
clusters we are trying to discover than the original feature space. Consequently, it makes
sense that applying the different estimation techniques in the learned latent space should
yield better results.

Note that this is only applicable to NCD methods such as PBN that do not require
the number of novel classes Cu to train their latent space (unlike TabularNCD). For the
others, the estimation can be done once in the original feature space, but should have
higher error.

Some NCD works have also previously attempted to estimate the number of novel
classes. For instance, [29] defines a large number of output neurons in their clustering
network (e.g. 100). In this case, the clustering network is expected to use only the necessary
number of clusters while leaving the remaining output neurons unused. Clusters were
counted if they contained more instances than a certain threshold. However, since, with
the exception of TabularNCD, the models studied in this chapter do not use a clustering
network, we will not evaluate this method.
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Another technique, proposed by [36], consists in training a k-means on the combined
dataset Dl ∪Du and selecting the k that yielded the highest accuracy on Dl. While this
approach worked well for balanced datasets [57], it has been shown to underperform in
the case of unbalanced class distributions [140]. For the sake of simplicity, we will call this
method KM-ACC (for k-means ACC) in the remainder of this chapter.

To select the CVI that we will use for our application, we rely on the results of [139].
Here, the authors conducted an extensive performance evaluation of 30 CVIs. They con-
cluded that the Silhouette, Davies–Bouldin, Calinski–Harabasz and Dunn indices behaved
better than other indices in almost all cases. In the experiments, the performance of these
4 indices will be compared, with the addition of the elbow method and the NCD-specific
method KM-ACC.

4.6 Full training procedure

In the previous sections, we presented the models, the hyperparameter optimization
and the estimation procedure of the number of novel classes independently. In this section,
these components are brought together to form a complete training procedure. To ensure
that no prior knowledge about the novel classes is ever used in this process, the number
of novel classes is naturally estimated during the k-fold CV introduced in Section 4.4. As
the whole process is quite complex, we try to summarize it in clear terms in this section
and in Algorithm 1.

To gauge a given set of hyperparameters, we evaluate the performance of the model
over nfolds, where in each fold, a random combination of known classes is “hidden” and
merged with the unlabeled data of Du. In a fold, the encoder of the NCD model is first
trained on this new data split. The number of novel classes is then estimated with a CVI
in the projection of the unlabeled data. At this point, the novel and hidden classes are
partitioned by the model in the latent space using the previous estimate of the number of
clusters. And the accuracy for this fold is calculated on the hidden classes. This process is
repeated for all folds and for many combinations of hyperparameters, and the combination
that achieved the best performance on average is selected for the final evaluation of the
model.
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Algorithm 1 Agnostic NCD model evaluation
Require: Training data {Dl, Du}, hyperparameters θ, number of classes to hide nhid,

number of folds nfolds

1: Initialize: folds← set of nfolds random combinations of nhid known classes
2: for each fold in folds do
3: Dhid ← the data from Dl of the classes in fold
4: Dl′ ← Dl \Dhid

5: Du′ ← Du ∪Dhid

6: Train model on {Dl′ , Du′} with hyperparameters θ
7: Zu ← ϕθ(Xu) the projection of the novel data
8: k′ ← the estimation of Cu in Zu with a CVI
9: Get the clustering prediction of the model for Du′ using k = nhid + k′

10: ACChid ← clustering performance on Dhid

11: end for
12: Return: Average of all the ACChid

4.7 Experiments

4.7.1 Experimental setup

Datasets. To evaluate the performance of the methods compared in this chapter,
7 tabular classification datasets were selected: Human Activity Recognition [126], Let-
ter Recognition [125], Pen-Based Handwritten Digits [127], 1990 US Census Data [127],
Multiple Features [127], Handwritten Digits [127] and CNAE-9 [127].

Following the previous NCD works [39, 37, 17], the instances of about 50% of the classes
are hidden a priori to form the unlabeled set of novel classes Du, while the rest form the
labeled set Dl. We use a 70/30% train/test split if it was not already provided. Statistical
information on the datasets is shown in Table 4.2, and the number of known/novel classes
(along with the number of classes hidden during the k-fold CV) can be found in Table 4.1.
The numerical features of all the datasets are preprocessed to have zero mean and unit
variance, while the categorical features are one-hot encoded.

Metrics. We report the clustering accuracy (ACC) on the unlabeled data. It is defined
as:

ACC = max
perm∈P

1
M

M∑
i=1

1 {yi = perm(ŷi} (4.5)

where yi and ŷi are the ground truth labels and predicted labels for instance xi respec-
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Table 4.2 – Details of the datasets.

Dataset Human Letter Pendigits Census m feat Optdigits CNAE-9
Features 562 16 16 67 515 62 856
Known classes 3 19 5 12 5 5 4
Known data 3733 10229 3777 12000 802 1918 377
Novel classes 3 7 5 6 5 5 5
Novel data 3619 3770 3717 6000 798 1905 487
Test data 1453 1704 1734 6000 202 905 113

tively. Here, M = |Du|. P is the set of all possible permutations between ground truth
and predicted labels. It can be easily computed using the Hungarian algorithm [2]. The
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) are also reported
in Appendix B.2.

Competitors. We report the performance of k-means and Spectral Clustering, along
with their NCD-adapted versions introduced in Sections 4.3.2 and 4.3.3. We also include
PBN and the pioneering NCD work for tabular data, TabularNCD [21]. Finally, we im-
plement the same baseline used in [21]. It is a simple deep classifier that is first trained to
distinguish the known classes. Then, the penultimate layer is used to project the data of
the novel classes before clustering it with k-means. See the discussion of Section 4.3.4 for
more details. We will call this approach the “baseline” for the remainder of this chapter.

Implementation details. The neural-network based methods (i.e. PBN, TabularNCD
and the baseline) are trained with the same architecture: an encoder of 2 hidden layers
of decreasing size, and a final layer for the latent space whose dimension is optimized as
an hyperparameter. The dropout probability and learning rate are also hyperparameters
to be optimized. The classification networks are all a single linear layer followed by a
softmax layer. All methods are trained for 200 epochs and with a fixed batch size of 512.
For a fair comparison, the hyperparameters of these neural-network based methods are
optimized following the process described in Section 4.4 (whereas the parameters of NCD
SC are simply optimized following Section 4.3.3). Thus, the labels of the novel classes are
never used except for the computation of the evaluation metrics reported in the result
tables. The hyperparameters of the deep-based methods are tuned by a random search of
the hyperparameter space and selecting the combination which obtained the best ARI on
the hidden classes. The search space and selected values can be found in Appendix B.3.

Objectives of the experiments. In the following section, an extensive evaluation
of the clustering accuracy of the 7 competitors is performed. This evaluation is carried
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out in two steps. First, when the number of novel classes is known in advance, we seek
to determine whether (1) the NCD-adapted versions of k-means and Spectral Clustering
outperform their purely unsupervised versions when labeled data is available, and (2)
which of the deep-based NCD methods performs best when the labels of the novel classes
are not available for hyperparameter tuning. And second, in the most realistic scenario
where the number of classes is not given in advance, we compare the ability of different
CVIs to accurately estimate this number and the impact on the NCD methods of using
this estimation.

4.7.2 Results analysis

Results when the number of novel classes is known in advance

Clustering. In Table 4.3, we first examine the performance of the unsupervised clus-
tering methods when the number of novel classes Cu is known in advance. The aim is
to determine which of the clustering algorithms performs best and should be compared
with the NCD methods. We observe that NCD k-means is never worse than k-means,
and NCD SC is only once worse than SC. This result confirms the efficacy of both NCD
approaches and demonstrates that even simple clustering techniques can benefit from the
known classes, although the improvements are sometimes only marginal.

The comparison between NCD k-means and NCD SC confirms the idea that no single
clustering algorithm is universally better than the others in all scenarios, as noted by
[141]. However, NCD SC outperforms its competitors on 4 occasions and has a the highest
average accuracy. Therefore, this algorithm is selected for the next step of comparisons.

Table 4.3 – Test ACC of the clustering algorithms averaged over 10 runs. Best results are
in bold.

Dataset k-means NCD SC NCD SC
k-means

Human 75.7±0.2 75.9±0.0 76.3±0.3 93.1±9.7
Letter 50.7±0.2 51.9±2.3 55.9±0.0 57.4±5.8
Pendigits 81.7±0.0 81.7±0.0 83.0±0.0 81.7±2.7
Census 49.9±4.0 50.4±1.1 48.5±0.3 48.0±1.8
m feat 89.1±0.3 89.7±0.4 89.6±0.3 89.2±2.3
Optdigits 79.1±4.5 94.2±0.0 89.7±0.0 95.4±5.3
CNAE-9 60.6±5.9 61.2±4.5 53.8±4.8 69.0±6.7
Average 69.5 72.1 71.0 76.3
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NCD. As shown in Table 4.4, PBN outperforms both the baseline and TabularNCD
by an average of 21.6% and 12.9%, respectively. It is only outperformed by the baseline on
the Letter Recognition [125] dataset. This dataset consists of primitive numeric attributes
describing the 26 capital letters in the English alphabet, which suggests a high feature
correlation between the features used to distinguish the known and novel classes. Since
the baseline learns a latent space that is strongly discriminative for the known classes,
this gives the baseline model a distinct advantage in this specific context. On the other
hand, we observe that it is at a disadvantage when the datasets do not share as many
high-level features between the known and novel classes.

Table 4.4 also demonstrates the remarkable competitiveness of the NCD Spectral
Clustering method, despite its low complexity. On average, it trails behind PBN by only
1.0% in ACC and manages to outperform PBN twice over 7 datasets.

Table 4.4 – Test ACC of the NCD methods averaged over 10 runs. Best results are in
bold.

Dataset Baseline NCD SC TabularNCD PBN
Human 71.6±1.7 93.1±9.7 72.2±2.6 76.7±1.8
Letter 64.9±2.6 57.4±5.8 62.1±3.0 62.4±2.0
Pendigits 53.4±6.6 81.7±2.3 57.0±6.0 82.8±0.6
Census 59.1±0.8 48.0±1.8 45.2±4.8 62.4±0.9
m feat 66.7±4.1 89.2±2.3 90.2±2.7 91.7±0.8
Optdigits 40.7±5.1 95.4±5.3 73.0±8.4 92.6±2.3
CNAE-9 40.2±3.2 69.0±6.7 51.3±5.2 72.6±4.6
Average 55.7 76.3 64.4 77.3

To investigate the reasons behind the subpar performance of TabularNCD, we look
at the correlation between the ARI on the hidden classes and the final ARI of the model
on the novel classes. A strong correlation would imply that if a combination of hyperpa-
rameters performed well on the hidden classes, it would also perform well on the novel
classes. To examine this, we plot the average ARI on the hidden classes against the ARI
on the novel classes. Figure 4.5 is an example of such a plot. It shows that, in the case of
the Letter Recognition dataset, PBN has a much stronger correlation than TabularNCD.
We attribute this difference to the large number of hyperparameters of TabularNCD (7,
against 4 for PBN), which causes the method to overfit on the hidden classes, resulting
in a lack of effective transfer of hyperparameters to the novel classes.

In conclusion, this section has shown that when the number Cu of novel classes is
known, NCD SC performs almost as well as PBN. Therefore, in this specific scenario,
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(a) PBN (b) TabularNCD

Figure 4.5 – Comparison between the ARI on the hidden and novel classes. Each point is
a different hyperparameter combination.

NCD SC is a viable candidate for addressing the NCD problem due to its lower complexity
and shorter training time. Conversely, despite its strong learning capacity, TabularNCD
is penalized by its high number of hyperparameters.

Results when the number of novel classes is estimated

As expressed in Section 4.5, the number of clusters is estimated in the representation
learned by PBN during the k-fold CV. The result is a method that never relies on any
kind of knowledge from the novel classes. This approach is also applicable to the baseline
and the spectral embedding of SC, but not to TabularNCD as it requires the number of
clusters during the training of its representation. For a fair comparison, TabularNCD is
trained here with a number of clusters estimated beforehand with a CVI.

To determine which CVI will perform the best in this application, we estimate the
number of classes in the latent spaces learned by PBN when Cu was known in advance.
Figure 4.6 displays the average ranks of the CVIs in the latent spaces, and the details
of the results can be found in Appendix B.5. The Nemenyi post-hoc test was used to
compare the methods against all others. However, given the relatively small number of
datasets, the Critical Difference (CD) is large and the CVIs are not statistically different
from each another according to the Nemenyi test.

Nevertheless, we find that the Silhouette coefficient performed the best in the latent
space of PBN, closely followed by the Calinski-Harabasz index. The elbow method is
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Figure 4.6 – Comparison of the CVIs in the latent space of PBN using the Nemenyi test
with a 95% confidence interval.

ranked last, which could be explained by the difficulty in defining an elbow 2.
To summarize, in the following results, the Silhouette coefficient will be used for all

estimations of Cu. The full training procedure described in Section 4.6 will be used to train
the baseline and PBN, with Cu estimated in their latent spaces as detailed in Algorithm
1. For TabularNCD, Cu is estimated once in the original feature space (see Appendix B.5
Table B.5 for the values used). And NCD SC is trained as it was described in Section 4.3.3,
but with Cu estimated in its spectral embedding.

Table 4.5 – Test ACC averaged over 10 runs. With Cu estimated with the Silhouette
coefficient. Best results are in bold.

Dataset Baseline NCD SC TabularNCD PBN
Human 70.8±2.9 30.2±4.2 71.1±0.0 71.1±0.0
Letter 64.0±6.1 34.8±2.3 41.8±4.9 61.3±4.7
Pendigits 46.7±3.6 74.1±2.1 57.0±6.0 83.0±0.3
Census 56.6±3.6 29.0±3.5 35.7±1.6 49.8±0.1
m feat 59.5±7.7 73.2±3.9 41.1±0.2 90.6±2.2
Optdigits 42.1±4.6 79.5±4.0 96.9±1.3 90.5±4.8
CNAE-9 33.8±3.8 44.6±3.9 39.3±0.2 50.8±1.5
Average 53.4 52.2 54.7 71.0

As emphasised earlier, Table 4.5 reports the results of the different NCD algorithms in
the most realistic scenario possible, where both the labels and the number of novel classes
are not known in advance. This is the setting where PBN exhibits the greatest improve-
ment in performance compared to the other competitors, achieving an ACC that is 17.6%,
18.8% and 16.3% higher than the baseline, NCD SC, and TabularNCD, respectively.

Remarkably, TabularNCD outperforms PBN on the Optdigits datasets where the num-
ber of clusters was overestimated by the Silhouette coefficient in the original feature space.

2. There are no widely accepted approaches, as the concept of an “elbow” is subjective. In this study,
we employed the kneedle algorithm [142] through the kneed Python Library [143].
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This suggests that TabularNCD probably only utilized the output neurons necessary for
clustering, leaving the others unused, which was the method proposed in [29] for estimat-
ing Cu. This is not true for the Letter dataset where Cu was significantly overestimated,
indicating that accurate estimations will likely result in improved performance.

Compared to the case where Cu is known in advance, the ACC of the baseline falls
from 55.7% to 53.4% and NCD SC falls from 74.3% to 52.2%. This shows that they are
both unable to find a latent space suitable for the estimation of Cu.

However, the ACC of PBN remains an impressive 71.0%, demonstrating that this
simple method, comprising of only two loss terms, is the most appropriate for tackling
the NCD problem in a realistic scenario. In contrast to the baseline and NCD SC, its
reconstruction term enables it find a latent space where the unlabeled data is correctly
represented. And unlike TabularNCD, it has a low number of hyperparameters which de-
creases the probability of overfitting on the hidden classes during the k-fold CV procedure.

Impact of the ratio of novel classes

In the literature on Novel Class Discovery, the ratio of the number of novel classes to
the number of known classes is usually set arbitrarily (e.g. 0.5 if there are few classes, and
0.2 if there are many). In reality, this ratio is not known in advance, so NCD methods
should ideally be robust over a wide range of ratios. To compare the robustness of the 5
methods discussed in this paper, we perform experiments on the Letter Recognition [125]
dataset when the number of novel classes increases. For each number of novel classes that
was evaluated, we defined 5 random combinations of known/novel classes. For example,
in Figure 4.7, the second point from the left corresponds to the average performance of
the methods over 5 random combinations of 3 novel and 23 known classes.

From the results displayed in Figure 4.7, we find that the performance of the methods is
almost always uniformly decreasing as the ratio of novel classes increases. We also observe
that the accuracy of the deep-based methods (PBN, TabularNCD and the baseline) starts
to decrease faster than NCD k-means and NCD SC when the number of novel classes
becomes too large. As the number of known classes C l decreases, the quality of their
latent representation is reduced and their clustering is negatively affected. Of course, this
is especially true for the baseline, which trains its latent space solely on the known classes.

The performance of TabularNCD peaks around 7 novel classes, the number for which
it was specifically optimized. On the other hand, PBN is more stable and outperforms its
competitors over a wide range of values. Its small number of hyperparameters, coupled
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Figure 4.7 – Performance of the methods when the number of novel classes increases.

with its reconstruction loss, makes it less prone to overfitting, and it still extracts relevant
information in its latent space even when there are few known classes.

4.8 Conclusion

In this chapter, we have shown that in the NCD setting, unsupervised clustering
algorithms can benefit from knowledge of the known classes and reliably improve their
performance by implementing simple modifications. We have also introduced a novel NCD
algorithm called PBN, which is characterized by its simplicity and low number of hyperpa-
rameters, which proved to be a decisive advantage under realistic conditions. In addition,
we have proposed an adaptation of the k-fold cross-validation process to tune the hy-
perparameters of NCD methods without depending on the labels of the novel classes.
Finally, we have demonstrated that the number of novel classes can be accurately esti-
mated within the latent space of PBN. These two previous contributions have shown that
the NCD problem can be solved in realistic situations where no prior knowledge of the
novel classes is available during training.

With the multiple methods proposed in this chapter, along with TabularNCD in Chap-
ter 3, there should now be enough options to get reasonable results for NCD problems in
most tabular datasets. In the next chapter, we will present a web interface where these
models can be used to partition a datasets in just a few clicks. It is primarily intended to
allow domain experts who do not necessarily have coding or data science experience to
take advantage of our algorithms.
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This work was presented in a demo paper at an international conference: [24] An Inter-
active Interface for Novel Class Discovery in Tabular Data. Colin Troisemaine, Joachim
Flocon-Cholet, Stéphane Gosselin, Alexandre Reiffers-Masson, Sandrine Vaton and Vin-
cent Lemaire. In: Machine Learning and Knowledge Discovery in Databases (ECML PKDD),
Applied Data Science and Demo Track, 2023.
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5.1 Introduction

Novel Class Discovery (NCD) [29, 20] is a new and growing field, where we are given
during training a labeled set of known classes and an unlabeled set of different classes that
must be discovered. In recent years, many methods have been proposed in the context of
computer vision [19, 17, 37].

Tabular data refers to data arranged in a table, where each row is an observation and
each column is an attribute. It is one of the most common types of data in practical
applications such as medical diagnosis, customer churn prediction, cybersecurity, and
credit risk assessment. [144]. An intuitive example of application of NCD in tabular data
would be customer churn prediction: by using a dataset that includes the reasons why
customers stopped using a product, we can more accurately identify other causes of churn
in an unlabeled set where the reasons have not yet been identified.

While in practice, tabular data is one of the most prevalent data types in the real world,
to the best of our knowledge, only two papers have attempted to solve NCD specifically
for tabular data [21, 23]. This is partly due to the heterogeneous nature of tabular data
and its lack of spatial and semantic structure, which makes it difficult to apply some
computer vision techniques such as data augmentation or Self-Supervised Learning [18].
Furthermore, tabular data contains attributes that are specific to each domain. This
means that analyzing and understanding the results of NCD or clustering algorithms can
be challenging for a data scientist who is not necessarily familiar with the attributes of the
dataset. On the other hand, the domain expert does not necessarily have the knowledge
required to write code and run NCD or clustering algorithms.

In an ideal scenario, the domain expert would be included in the training loop to inter-
pret the results produced by the data scientist. But for practical reasons, it can be difficult
to dedicate two people to this task, as having a data scientist run an algorithm, present
the results to the expert, and update the parameters based on the expert’s feedback can
be a slow and tedious process.

Hence, the goal of the interface proposed here is to allow a domain expert to visualize
his data and run NCD or clustering algorithms without having to write code, as in visual
data mining [145]. Given a preprocessed dataset, a user can employ this interface to (i)
get a first idea of the separability of the data with t-SNE, (ii) select which features and
classes to use, and which classes are considered novel (iii) parameterize and execute NCD
and clustering algorithms and (iv) train decision trees to generate rules and interpret the

106



An Interactive Interface for Novel Class Discovery in Tabular Data

classes or clusters. Based on theses results, an expert can remove features or classes that
have too much influence on the results, re-train a clustering model and re-generate rules.
This process can be very tedious through code, but it can be done in only a few clicks
with this interface (which even a data scientist could benefit from).

Currently, TabularNCD [21] is the only NCD algorithm implemented in this interface.
The unsupervised methods of spectral clustering and k-means are also available, as well
as a simple baseline method for solving NCD. This baseline trains a classification neural
network on the labeled data, and then projects the unlabeled data in its last layer before
clustering it with k-means.

As expressed before, this interface cannot replace the domain expert. It only allows him
to explore his dataset using machine learning tools without writing code. This interface is
also upgradeable, as new NCD or clustering algorithms can be quickly implemented. The
application is open source and can be installed locally using the code at https://github.
com/ColinTr/InteractiveClustering. The video of the demonstration is available at
www.youtube.com/watch?v=W7ru8NHPj-8.

5.2 Interface description

Figure 5.1 – The interface for interactive clustering and Novel Class Discovery.
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As shown in Figure 5.1, the interface is composed of 6 different panels that we will
describe in this section. For reference, the interface was made in JavaScript with React
18.2.0, and the Python code is executed by a Flask 2.2.2 backend server.

After selecting and loading a dataset with panel (1), the user can select in panel (2)
which features to use in the dataset, and indicate which is the class feature. Panel (3) lists
the modalities of the class feature picked earlier. Here, the user can choose to remove some
classes from the dataset by unchecking them and indicate which classes are considered as
known or novel. Given a real dataset including both labeled and unlabeled data, a group
of observations could be labeled as “novel”, which can be selected in this panel.

With panel (4), the data can be visualized in 2 dimensions by running a t-SNE. The
user also has the option to view only the novel classes for easier readability. Clicking
on a point displays all its attributes. Note that in an effort of optimization and better
responsiveness, if a data plot is requested and has the same coordinates as a previous
request, the t-SNE is re-used and only the coloring of the points is updated.

The NCD and clustering models can be selected and configured in panel (5). Currently,
4 models are available: TabularNCD [21] is a NCD method that pre-trains a simple en-
coder of dense layers with the VIME [55] self-supervised learning method. It adopts an
architecture with two “heads”: one to classify the known classes and introduce relevant
high-level features in the latent space of the encoder, and another classifier for the un-
labeled data trained with pseudo-labels defined without supervision in the latent space.
Next is k-means, which was implemented for its simplicity and wide adoption in the
community. It has the advantage of having a single parameter (the number of clusters).
Spectral clustering is also available. It is known for its good results and its ability to
discover new patterns across a wide variety of datasets [135]. And finally the baseline
method described in Section 5.1 can be selected. Both TabularNCD and the baseline rely
on an architecture composed of a combination of dense layers, dropout and activation
functions which can all be modified through the interface (even the sizes and number of
hidden layers).

Starting the training of TabularNCD or the baseline will produce a pop-up that dis-
plays the current progress of the training and the estimated time to completion. It is also
possible to visualize a t-SNE of the latent space of these models, instead of visualizing
the original features of the data.

Finally, in panel (6), the user can get an interpretable description of the results by
training a decision tree to classify the known classes and the discovered clusters. Figure 5.2

108



An Interactive Interface for Novel Class Discovery in Tabular Data

Figure 5.2 – Example of rules that describe the classes of the glass identification dataset.

is an example of rules in a decision tree obtained for the glass dataset. Each box represents
a node/leaf of the tree and displays the rule and the majority class. The tree can be multi-
class and will give an overview of the relations between all the classes and clusters, but it
can be hard to comprehend because of its complexity. For this reason, we can instead use
a one-versus-rest approach, where for each class or cluster, a decision tree has to predict
the class or cluster against all the others. As each individual tree solves a problem of
lower complexity, they are shorter compared to the multi-class case and are more easily
interpretable.

5.3 Conclusion

This chapter introduces an interactive data exploration interface for the problem of
Novel Class Discovery in tabular data. This interface is mainly targeted to domain experts
and data scientists. The user can quickly visualize the data and generate clusters of novel
classes along with interpretable decision trees to describe them. Furthermore, the user can
easily identify both features and classes to remove from the training process and start a
new clustering with different parameters.

In the future, this interface could be improved by adding a function to estimate the
number of clusters (i.e. the number of novel classes). New NCD and clustering methods
such as the ones studied in Chapter 4 could also be implemented. Giving the user the
ability to merge or split some clusters and update the decision tree’s rules accordingly
could also be an interesting addition.
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At this point, we have gathered enough experience, tools and methods in Chapters 3,
4 and 5 to expect to get interesting results for our initial diagnosis discovery problem.
Therefore, we dedicate the next chapter to the creation of a dataset describing faults in
operational customer FTTH data, and use it to benchmark our algorithms.
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6.1 Introduction

This thesis is carried out at the Orange company, which is an Internet Service Provider
(ISP) and is therefore tasked with delivering reliable internet connectivity to homes and
businesses. Over the past decade, Orange’s telecommunication infrastructure has under-
gone significant changes. The introduction of Asymmetric Digital Subscriber line (ADSL)
in 1999 has given access to high-speed internet access by utilizing existing phone copper
cables in France. However, it has become obsolete with the advancements in optical fiber
technology. Optical fiber not only provides significantly enhanced bandwidth capabilities
over longer distances [146], but is also more energy efficient [147, 148]. Consequently,
Orange has started to progressively shut down the ADSL network since 2022, and new
ADSL subscriptions are no longer available where optical fiber is accessible. In anticipa-
tion of the complete stop of ADSL services planned for 2030, Orange is currently rapidly
expanding its Fiber-To-The-Home (FTTH) network.

Figure 6.1 – Simplified architecture of GPON FTTH networks.

To deploy FTTH networks, ISPs have widely adopted the Gigabit-capable Passive
Optical Network (GPON) solution [149]. Speeds are typically 2.4 Gbits/s down and 1.2
Gbits/s up, and a single fiber can generally connect up to 64 customers. Incidentally,
Orange has also started to deploy XGS-PON [150], where a single fiber can provide speeds
of 10 Gbits/s up and down to 128 customers. As shown in Figure 6.1, the network can
be divided into 4 main segments [151]. The first is the core network, which is the
backbone of an ISP’s infrastructure and is responsible for routing and transmitting data
across long distances. It consists of high-capacity routers, optical fiber cables, and other
networking equipment that enable the efficient transport of data packets between different
geographical locations. Following the core network is the central office. It houses the
Optical Line Termination (OLT) where the primary optical access transmitter and receiver
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can be found. From this fiber starts the passive infrastructure known as the optical
distribution network (ODN). It is mainly composed of splitters that broadcast the
single incoming signal into many signals for up to 64 consumers. This signal is finally
received by the Optical Network Termination (ONT) at the customer premises. The ONT
converts the optical signals carried by the fiber into digital electrical signals that can then
be processed by a residential gateway. As such, it marks the end of the optical distribution
network and the beginning of the customer’s Home LAN (Local Area Network). In newer
models, the ONT is often integrated directly into the residential gateway offered by ISPs,
which provides essential services such as WiFi, firewall or IP routing.

(a) Total number of faults per day during the
months of 2023.

(b) Average number of faults over the course of a
day (every 15 minutes).

Figure 6.2 – FTTH faults detected between September and November 2023 1.

The number of homes eligible for FTTH offers in France has grown from 10.9 million
to 38.9 million between 2018 and 2023, as noted in Chapter 1. Even with reliable hardware
and software, faults will inevitably occur in such a large network. They can be caused
by a variety of factors such as weather damage, configuration errors, overloading, and so
on. If an ISP takes too long to resolve the faults in its network, customers will become
frustrated and businesses may find their operations disrupted. This dissatisfaction can
cause customers to seek alternative service providers, resulting in customer churn and
revenue loss for the ISP. For these reasons, the ability to quickly identify and correct faults
is critical. In this context, Orange has developed an automatic diagnosis system to assist its

1. The storm “Ciarán” hit France between the 1st and 2nd November, where there is a drop in detected
faults in Figure 6.2(a). It may be because electricity was unavailable for many homes, so no diagnosis
could be made.
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technicians and network experts determine the root cause of faults. This system is called
DELC (for Diagnostic Expert de la Ligne Client, or expert diagnosis of the customer’s
line) and is a rule-based software developed by experts of the network. When a customer
experiences problems with their internet services and requests a diagnosis, a description
of the state of the network is first gathered through key performance indicators such
as power voltages, optical reception powers, device temperatures, or software versions.
Then, a set of rules comparable to decision trees is applied to this data to produce a
final diagnosis. These rules are written by network experts, and are a translation of their
knowledge (more details will be given in Section 6.2).

In 2023, approximately 200,000 FTTH tests were performed per day in France by this
system, with an average of 7000 unique faults detected daily (see Figure 6.2). The DELC
system is currently capable of diagnosing around 85% of the FTTH faults at Orange.
Although this is an impressive rate, the remaining 15% of faults that the DELC system
cannot diagnose must often be investigated by technicians. This is a significant problem,
given that millions of interventions are carried out each year. Since its introduction in
2012, the DELC system’s diagnosis rate has improved from 48% to the current 85% in
2023. However, this rate has recently stopped progressing. Network experts are struggling
to find new diagnoses and speculate that the most obvious ones have already been discov-
ered, leaving only complex ones to be found. The large number of faults and their many
descriptive variables make manual analysis of the data difficult. In this thesis, we have
developed machine learning tools in Chapters 3, 4 and 5 that network engineers may not
be familiar with. By applying previously unexplored approaches to DELC’s data, we hope
to discover new and interesting diagnoses.

The objective is not to replace the current rule-based system, as it has the advantage
of being easy to interpret. In this chapter, we will only suggest new diagnoses to the
network experts from groups of similar undiagnosed faults. By diagnosing faults more
accurately, the number and duration of interventions are reduced. This means technicians
make fewer trips to customer premises, reducing fuel consumption and ultimately lowering
the operational costs and carbon footprint of Orange’s FTTH network.

We begin in Section 6.2 with an overview of the DELC system and practical details on
the data it handles. Section 6.3 describes the extensive data collection and preprocessing
that was conducted to transform DELC’s large volumes of data into exploitable tabular
data for our algorithms. Finally, in Section 6.4, the multiple clustering and NCD methods
proposed in Chapters 3 and 4 are benchmarked for their ability to rediscover known
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diagnoses that were hidden during the training process. The best performing algorithms
will be selected and applied to the real undiagnosed data before presenting the results to
the network experts.

6.2 Orange’s diagnosis system

Every time a customer experiences an interruption of their internet services, Orange’s
diagnosis software, DELC, is executed. It can be launched by the support hotline, by the
customer through the dedicated app, or even by technicians during an intervention to
verify the completion of their work. In order to make a diagnosis, around 3000 variables
describing the status of all the equipment related to the client are collected from the core
network all the way to the home LAN (see Figure 6.1). To illustrate the type of data
used during diagnosis, we list a few examples of equipment along with their descriptive
variables:

— OLT/ONT: model, vendor, received and transmitted power level in dBm, list of
recent alarms, fiber length.

— Residential gateway: firmware version, first and last connection dates, IP configura-
tion, activated WiFi channels.

— DSLAM: current working state, manufacturer, port number, power voltage.

Some information about the customer’s local equipment (e.g. PLC adapters 2, TVs, phones
or computers) is also obtained. This can help evaluate performance indicators such as WiFi
quality, or if the same IP address has been assigned to two different devices. External
information like weather data is also taken into account, as thunder strikes are one of the
most common causes of disruption. Finally, the neighbors of the customer that is being
tested can also be inspected. If several customers were affected simultaneously, the fault
is considered collective, and the root cause is probably not in the customer’s home, but
further upstream in the network.

Figure 6.3 – Example of a diagnosis rule in DELC.

2. PLC (Power-Line Communication) adapters are devices that can carry data over electric lines.
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In order to minimize the time spent by field technicians and network experts on trou-
bleshooting, one of the main requirements of this software is to generate pertinent di-
agnoses that clearly identify the root cause of the fault. In addition, it must reach a
conclusion in a reasonable amount of time (< 60 sec), since it can be run while on-call
with a customer. To do so, all devices in the customer’s network are queried simultane-
ously, and all previously defined rules, such as the one shown in Figure 6.3, are applied.
Since multiple rules can be valid for the same fault, they are assigned weights by network
experts according to their criticality and confidence, and the final diagnosis is chosen by
the largest weight.

Table 6.1 – Faults validating rules.

Rule 1 Rule 2 Rule 3
weight = 20 weight = 50 weight = 100

Fault A ✗ ✓ ✗

Fault B ✓ ✗ ✓

Fault C ✗ ✗ ✗

This approach used by DELC to handle multiple rules is illustrated through Table 6.1,
where 3 faults are confronted with 3 diagnosis rules with different weights. For fault A,
only rule 2 was valid, so there is no confusion about the final diagnosis. In the case of
fault B, both rules 1 and 3 are valid, so the diagnosis of rule 3 is considered final, since its
weight is higher. Finally, fault C does not validate any of the rules. As noted in Section 6.1,
this happens on average for 15% of the faults. These undiagnosed faults are referred to
as DNIs (for Défauts Non Identifiés, or unidentified faults) and will be the main topic of
our experiments. In the rest of this chapter, we consider the faults of the known diagnoses
as our labeled set of known classes, and the faults marked as DNIs as our unlabeled set.

Reports from field technicians about discrepancies between a diagnosis and the actual
fault observed during an intervention are usually the starting point for network experts.
By manually reviewing such faults and investigating the causes of the anomalies, experts
can sometimes create rules for new diagnoses or update existing ones. The new or updated
rules are validated against previously recorded faults and, after some time in production,
are fully integrated into DELC. Currently, there are 203 known diagnoses for the scopes
of FTTH and HomeLan faults, and the distribution of their occurrences is displayed in
Figure 6.4. The unidentified faults are colored in red, and are split in a few sub-categories
by the DELC system according to the general state of the internet services of the customer
(e.g. is the session in an active, inactive or unknown state).

116



Exploration of operational FTTH data

Figure 6.4 – Distribution of the 80 most represented classes of DELC between the
12/9/2023 and the 6/11/2023 (55 days). Known classes are in blue and the families of
DNIs are in red. The most two represented classes were capped for the sake of clarity, but
had 157590 and 83600 instances respectively.

Compared to tabular datasets in fields that deal with similar data, such as sensor
data analysis or cybersecurity, the DELC dataset is a true outlier due to its exceptional
number of features (2914) and classes (203). In addition, the highly subjective definition
of our objective (discovering “pertinent” diagnoses) makes it uniquely challenging. In the
following section, we describe the difficult data collection and preprocessing of the DELC
dataset. In the absence of a target, it is difficult to predict which features might be useful
to create new diagnoses. Despite the heterogeneous nature of the numerous features, the
preprocessing is critical and must be performed carefully to obtain any relevant results.

6.3 Data collection and preprocessing

The raw features found in the dataset exploited by DELC are very diverse in nature.
For example, there are several formats of timestamps, some XML and JSON, categorical
variables with many modalities, unique identifiers, IP addresses, ... Since the DELC system
is a custom software developed by network experts, each of its rules can utilize information
in any format, so it’s not a problem. However, machine learning algorithms such as neural
networks can usually only exploit clean numerical data where no values are missing.
Therefore, some preprocessing is required to prepare the raw data from DELC’s databases
for the methods we have developed. In this section, the data wrangling process that was
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followed is presented. Data wrangling is a general term that designates the process of
transforming the raw data into a format that is suited for a specific application. It is a
time consuming but essential process that is generally divided into 6 main steps which
are detailed below.

1. Data acquisition marks the first phase of data wrangling, where all the relevant
information is sourced from databases, APIs, or files. This step requires extensive explo-
ration of the multiple sources of data exploited by DELC. Through discussions with the
leading developers of DELC, we identified 4 databases that contained data relevant for the
problem of fault diagnosis. Concretely, this step mainly involved writing SQL queries to
retrieve the data from the databases. Since the faults of the entirety of Orange’s network
are centralized in shared databases (e.g. ADSL, xDSL, GPON and XGS-PON), we limited
our requests to FTTH customers between the months of September and November 2023.
In addition, the diagnoses were restricted to a specific version of the DELC software to
avoid inconsistencies in the target, as DELC’s rules are regularly updated.

During this step, the objective is to gather as much relevant data as possible. All
the descriptive attributes in the databases are collected, and the superfluous data will
be filtered in the next steps. Nevertheless, with respect to the General Data Protection
Regulation (GDPR), we actively avoid including any personal data of the customers,
which is anyway unrelated to the network diagnosis task.

2. Structuring (or transforming) consists in reshaping the raw data into a format
usable by the analysis tools of the next steps. The multiple tables that were just collected
are pivoted so that each row corresponds to a fault and each column to the descriptive
attributes. Information contained within concatenated features (such as devices configu-
rations in JSON format) is also extracted into individual features. The result is a CSV
table that can be loaded into the data analysis library of choice, which in our case is the
Python package Pandas.

3. Cleaning is mainly dedicated to rectifying errors, inconsistencies and missing val-
ues. This is an important step to guarantee the accuracy of the dataset and should not
be overlooked. Here, we start with a manual inspection of each of the 2914 attributes to
detect unusable content, which mainly included IP addresses, logs, URLs and attributes
that were unrelated to our context. Constants and unique identifiers are also removed,
and duplicates are detected by computing the correlation matrix. At this point, there are
501 raw features remaining, which are all rich in information. Attributes are then cast
into their intended data types (floats, integers, booleans, strings, and so on), and the
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formats of the timestamps are standardized. Finally, the missing values are either filled
with zeroes (e.g. number or duration of alarms) or with the average value (e.g. device
temperature or voltage).

4. Enriching a dataset with information from new sources provides additional context
and insight. In this case, since enough information has already been collected during the
data acquisition, this step only consists of extending the data of each fault with the
information from the 4 tables, along with the final diagnosis of DELC (including the
DNIs).

Feature engineering can also be considered part of the enriching process. It refers to
the process of extracting the information in the raw features into relevant features that
can be directly exploited by models. While various automated feature engineering software
packages are available [152, 153], they cannot handle the specificity of DELC’s data and
may create redundant or unimportant features. Therefore, most of the preprocessing time
was spent in this phase, since almost each of the 501 raw features is unique and requires a
different treatment. If the purpose of a feature was not clear, the source code of the DELC
software was consulted, and the way the features were used in the rules was translated
in the preprocessing. For example, the DELC software often checks whether features are
present or not, but the actual value is not important. The result was binary variables with
a 1 if the feature was present and 0 otherwise. Finally, features containing categorical data
were one-hot encoded and numerical data was standardized to have a mean of 0 and a
standard deviation of 1.

After this process, the 501 raw attributes became 781 numerical features that could
already be used to train models.

5. Validating the data involves assessing its quality and identifying any remaining
errors, anomalies or inconsistencies that may have been overlooked in earlier stages. In
this dataset, redundant and ambiguous information is stored in different formats such as
XML, JSON or timestamps. For this reason, perfectly correlated pairs of features and
constant features were inadvertently introduced during the enrichment process and were
removed in this step. Studying the confusion matrix of a random forest classifier trained to
predict the known diagnoses was also very helpful. It revealed that some classes could not
be reliably predicted, so we were able to identify which important features were missing
and add them to the dataset. This leaves the dataset with 714 features.

At this point, all the features have been carefully processed and the dataset could al-
ready be used to explore the DNIs. However, we make the observation that 714 features is
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a lot and the NCD and clustering algorithms that will be applied in the following section
might be subject to the curse of dimensionality. The term “curse of dimensionality” was
coined by Bellman in 1957 [154] and mainly refers to two undesirable phenomena happen-
ing in high dimensional data. First is the issue of sparsity, where an exponential amount
of data is needed to fill high dimensional spaces. Without enough data, machine learning
algorithms tend to overfit or fail to find the relevant patterns. Secondly, and perhaps most
importantly in our case, the Euclidean distance measure used by clustering algorithms
becomes gradually meaningless as the number of features increases [155]. Intuitively, with
many dimensions, the probability that two points differ greatly in at least one dimension
is large. Since the Euclidean distance is a squared sum of differences, it accentuates this
problem and all the points in a set appear far away from each other.

Another reason for reducing the dimensionality of our current dataset is that there are
a number of unnecessary features that could negatively affect the results of our NCD and
clustering algorithms. For instance, many of the features are very sparse, as 33% of the
features have a mode (i.e. the value that appears most often) that represents at least 99%
of the values of the feature. Overall, reducing the dimensionality has many benefits, it
reduces the risk of overfitting, mitigates the effects of the curse of dimensionality, prunes
irrelevant features and shortens training time [156].

There is a rich literature of feature selection methods in supervised settings, as the
objective is usually clear and the results are easily evaluated [157]. However, fewer ap-
proaches have been proposed for unsupervised scenarios as they have to rely on arbitrary
characteristics of the data to evaluate the importance of the features. The Novel Class
Discovery problem tackled in this thesis has the specificity of presenting both a labeled
and unlabeled set of data during training. Thus, a naive approach to reduce the dimen-
sionality of our dataset could be to apply supervised feature selection on the labeled set.
For example, the importance of a variable in a random forest can be measured by the de-
crease in prediction accuracy when its values are randomly permuted (see Mean Decrease
Accuracy or Gini Importance in [158]). Another approach, applicable to any model, is
to add a small amount of noise to each variable and measure the change in the output
[159]. The input variable whose change had the largest effect on the output is considered
the most important. However, importance measures are always determined relative to a
target variable (so here, the known diagnoses). In our diagnosis discovery problem, these
known classes are only here to support the exploration of an unlabeled set. In this un-
labeled set, no target variable is available to reliably evaluate the output of the models,
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and variable importance measures cannot be applied. Although NCD problems assume
that known and novel classes share some high-level discriminative features, they rarely
overlap completely. In other words, a feature selection based on the variable importance
computed only on the labeled set will be heavily biased towards the known classes, and
the resulting features might not be sufficient to partition the novel classes. This aspect
was also taken into account in the Projection-Based NCD (PBN) method proposed in
Chapter 4. During the training of the latent representation, the classification loss on the
known classes is accompanied by a reconstruction loss on all the data to avoid overfitting.

For these reasons, we turn to unsupervised feature selection (UFS). In contrast to su-
pervised feature selection, UFS methods are unbiased and perform well when prior knowl-
edge is not available. They are divided in three main categories by [156]: filter methods
measure intrinsic properties of the data [160], wrapper methods measure the impact of
the features on the result of a clustering algorithm [161] and hybrid methods try to find
a compromise between filter and wrapper approaches [162]. Filter based feature selec-
tion methods are the most popular for their speed and scalability. They evaluate features
without involving a clustering algorithm, so they are not biased towards specific learn-
ing models. On the other hand, wrapper and hybrid methods have a high computational
cost, which discourages their use on our large dataset of almost 500,000 points and 714
dimensions.

In [156], the authors reviewed the state-of-the-art UFS methods and concluded that
there is no method that is universally superior in all cases. The quality of the features
selected by different approaches depends mainly on the nature of the dataset, the evalu-
ation metric and the clustering algorithm used. Thus, we decided to compare three filter
UFS methods: the first is SVD-Entropy [160], sorts the features by their impact on the
entropy of the singular values of the dataset. Then the Laplacian score [163] ranks the fea-
tures according to their importance in preserving the overall structure of the data. And
the Variance Threshold is a simple approach that sorts the features according to their
variance, where features with a larger variance (i.e. many unique values) are considered
to be more useful than features with many repeated values 3. Finally, our baseline UFS
method is a random ordering of the features.

Although it was stated earlier that we should avoid directly using the labels of the

3. Since the continuous features have been standardized, they have a variance of 1, which causes them
to be ranked first by the Variance Threshold. This is one of the limitations of this simple UFS method,
but it is not significant in this case since we only have 51 continuous features and they all appear to
contain relevant information.
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known classes to select the features, using these labels to determine which UFS method is
best suited to our problem should not introduce a strong bias toward the known classes. In
the following experiments, subsets of features will be selected by the three UFS methods.
The performance of a k-means trained on the known class data with these features will
then be assessed. The UFS method for which the results were closest to the ground truth
labels will be used to make the final feature selection.

Figure 6.5 – Comparison of the performance of k-means on the 68 most represented known
classes of DELC with different feature selection methods.

In Figure 6.5, the performance of three filter UFS methods is evaluated on the 68
most represented known classes of our dataset. Specifically, the average NMI of k-means
trained with the n most important features is plotted for each approach. So, at the 100
feature mark on the x-axis, the average performance of 50 runs of k-means trained on the
first 100 features selected by each method is recorded. The ranking of the UFS methods
is deterministic and therefore computed only once, while the performance of the random
selection is averaged over 50 random rankings. While the random selection shows a sur-
prisingly good average performance, its high variability is dissuasive. Both SVD-Entropy
and Laplacian score are almost always outperformed by Variance Threshold, which shows
stable performance over a wide range of numbers of features. The DELC dataset has
many features that are almost constant (with the mode representing the majority of the
values), so the Variance Threshold approach is well suited to filtering out these variables
with little information 4.

4. Note that some of these low-information variables are likely to be relevant for rare fault types.
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Figure 6.6 – In log scale, variance of each feature against its Gini Importance calculated
from a Random Forest classifier trained to predict the known classes.

To conclude this feature selection step, the variance of each feature is calculated over
the entire dataset, and we arbitrarily choose to keep the 500 features with the highest
scores. Finally, to ensure that none of the features relevant to predicting the known classes
have been removed by this unsupervised selection, a random forest classifier is trained to
predict the known classes. And the corresponding Gini Importance [158] of the features is
computed. We plot the Gini Importance and variance in Figure 6.6 and find a correlation
of 0.804 using Spearman’s rank correlation, showing that features with greater variance
are more likely to be useful. Of the 500 features with the largest Gini Importance, 37
were not selected by the variance approach, so they are added to our dataset, bringing
the total to 537.

6. Publishing is the last step of the data wrangling process. It aims at making the
dataset available to anyone in the company who might have a use for it. The data must
be accompanied by comprehensive documentation to ensure that the preprocessing can
be reproduced and possibly improved. To this end, documentation is written that focuses
on the required authorizations, data sources, and procedures to be followed. Finally, the
availability of this dataset will be widely publicized through presentations illustrated with

However, we do not expect our NCD and clustering algorithms to be able to capture them, and we are
primarily focused on discovering the most common diagnoses among the DNIs, not the rare event.
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some possible use-cases.

Before proceeding with the experiments, let us describe the dataset that was created
here. It contains 493,336 faults described by 537 variables, of which 51 are continuous
and 486 are boolean. Among these variables, 51 are dedicated to alarms during diagnosis,
114 to the description of the FTTH network, 88 to the configuration of the modem and
97 to the client devices, while the rest are diverse (OLT, ONT, neighbors, WiFi, ...). As
shown in Figure 6.4, the distribution of the 203 diagnoses is highly unbalanced, as the 10
most represented diagnoses make up 76.7% of all diagnoses. To improve the balance of
the classes in the dataset, we decide to discard classes with less than 150 instances. This
eliminates 105 classes that accounted for only 0.9% of the total number of faults. Similarly,
some classes are overrepresented, so the maximum number of instances in a single class is
limited to 2000. This pruning is not applied to the DNIs in order to preserve as much of
their information as possible. In the end, the dataset that will be used in the experiments
has 83,067 rows of 91 diagnoses (i.e. known classes) and 39,311 rows of 6 categories of
DNIs (i.e. novel classes), which is a ratio of 68/32%.

Finally, Table 6.2 summarizes the evolution of the dataset through the 5 data wrangling
steps (excluding the publishing step which does not update the dataset) in terms of number
of classes, instances and features.

Table 6.2 – Numerical description of the DELC dataset across the data wrangling steps.

Step Classes Instances Features
1. Acquisition 203 327,228,003 4
2. Structuring 203 493,336 2914
3. Cleaning 203 493,336 501
4. Enriching 203 493,336 781
5. Validating 203 493,336 537
Experiments 91 83,067 537

6.4 The experiments

6.4.1 Objectives

As stated throughout this manuscript, the main objective of this thesis is to discover
groups of similar faults among the unlabeled set of points (the DNIs). The groups will
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be explained by rules, in the form of decision trees, and must be relevant enough to help
technicians more quickly resolve the root cause of the faults for each group. However,
the definition of “relevant” in this context is unclear, which makes this problem almost
impossible to automatise. And as network experts have spent more time manually ex-
amining the DNIs, the most obvious groups have all been found, leaving only the more
obscure ones to be discovered. For this reason, we believe that even in the best case, the
algorithms we have developed so far will only be able to discover a few relevant groups of
faults at a time.

Figure 6.7 – Continuous Novel Class Discovery process with a human in the loop.

Since the opinion of a network expert is required to validate or invalidate the groups of
faults we create (i.e. clusters), the process pictured in Figure 6.7 naturally comes to mind.
First, a Novel Class Discovery algorithm is applied on the dataset to propose some new
diagnoses. These diagnoses are then presented in the form of rules to a human expert who
can select the valid ones and incorporate them into the software of DELC. This process
can then be repeated after the new validated diagnoses have been added to the known
classes, incrementally reducing the number of DNIs.

We believe that this is an approach likely to produce good results in a practical sce-
nario. However, given the time constraints of this thesis, we did not have the opportunity
to interact with a network expert and validate a large number of clusters to evaluate the
results of our algorithms on the DNIs. Instead, we limit our work to the comparison of the
different algorithms introduced in earlier chapters by evaluating their ability to rediscover
known classes that were hidden during training (just like the result tables in Chapters 3
and 4). And the algorithm that performed best on the hidden known classes can later be
used to generate clusters of DNIs.

In summary, the following sections will be used to benchmark the algorithms developed
so far on this dataset and to create examples of diagnoses in the form of decision trees.
The best performing NCD method could then be applied to the full dataset to actually
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propose new diagnoses for the DNIs to the network experts.

6.4.2 Experimental setup and methodology

Dataset. The dataset used in the experiments below is summarized in Table 6.3 and
consists of 83,067 rows and a total of 91 diagnoses. Around 30% of the known classes (i.e.
28 diagnoses) are hidden during training to serve as novel classes, while the remaining
70% (i.e. 63 diagnoses) are the known classes. In contrast to the methodology adopted
in Chapters 3 and 4, no train-test split is used here. Instead, the models are evaluated
on their ability to cluster the entire set of hidden classes. This is a common practice in
unsupervised clustering papers, as clustering algorithms aim only to discover patterns in
the data without relying on a labeled target. NCD algorithms are the same in this respect,
so there is no notion of overfitting as in supervised learning. Furthermore, the goal of NCD
is not to create a model destined to be deployed in production to predict new samples.
The only objective is to discover the inherent classes within the unlabeled data, as we’ve
shown in Figure 6.7 of Section 6.4.1. In this context, a train/test split is not justified and
would deprive our exploratory analysis of valuable data points 5.

Table 6.3 – Details of the dataset.

Classes Instances Features
Labeled set 63 57,015

537Unlabeled set 28 26,052
Total 91 83,067

Competitors. The same methods used in the experiments of Chapter 4 will be com-
pared here. They include:

— The unsupervised clustering algorithms k-means and Spectral Clustering, as well as
their NCD-adapted versions (see Sections 4.3.2 and 4.3.3).

— The deep-based methods TabularNCD (see Chapter 3) and Projection-Based NCD
(PBN, see Section 4.3.4).

— And the baseline method, where the data of the novel classes is projected through
a multilayer perceptron that was trained to distinguish the known classes, and is
then clustered with k-means (see the discussion of Section 4.3.4).

5. In chapters 3 and 4, we used a train/test split to have an experimental methodology comparable
to most NCD papers, but as explained, it is not justified in this case.
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The neural-network based methods (i.e. TabularNCD, PBN and the baseline) are
trained with the same base architecture: an encoder of 2 hidden layers of decreasing size,
and a final layer producing the latent space whose dimension is optimized. All methods are
trained for 200 epochs with a fixed batch size of 512. Importantly, the hyperparameters
are optimized following the k-fold cross-validation approach described in Section 4.4.

Evaluation. The clustering accuracy (ACC) on the unlabeled set will be the main
metric of comparison during the experiments. It is defined in Equation 4.5 of Chapter 4.7.1,
and uses the Hungarian algorithm (also known as the Munkres assignment algorithm)
to optimally match the predicted clusters to the ground truth labels. Additionally, the
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) are also reported.

Note that in these experiments we chose to use the ground truth number of novel
classes (i.e. 28). While it is unrealistic to assume that this number is available in a practical
scenario, finding the exact number is not critical to the success of the clustering and NCD
algorithms. In fact, as stated in Section 6.4.1, we expect that at best the algorithms will
discover only a few relevant groups at a time. Therefore, if the number of novel classes is
estimated within a reasonable margin of error, the few correct clusters generated should
not be affected.

6.4.3 Fast spectral clustering with k-means

Spectral clustering is notoriously difficult to scale to large problems [164]. The reason is
simple: given a dataset of n points, it needs to construct an adjacency matrix of size n×n,
before searching for the eigenvectors of that matrix, an operation with a computational
complexity of typically O(n3). Since the distance function we use is the Gaussian kernel
(see Section 4.3.3), the adjacency matrix is dense and its memory footprint of n2 cannot
be reduced with a sparse representation. In the previous chapters, the largest dataset was
US Census 1990 [127] with 18,000 instances. Given that a float64 has a size of 8 bytes,
the adjacency matrix required 18000× 18000× 8 bytes, or 2.4 gigabytes of memory, and
the spectral embedding could be computed relatively quickly. However, the dataset in
these experiments has a total of 83, 067 instances, so its matrix requires 51.4 gigabytes
of memory. Even using the float32 format, which has half the precision and memory
footprint, this is still 25.7 gigabytes, making eigenvector computation impractical.

To mitigate these scalability issues, various approximation techniques, parallelization
strategies, and optimizations have been proposed. For example, a popular method pro-
posed in [165] approximates the eigenvectors by sampling a subset of data points. The
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eigenvectors are computed for this subset and the Nyström method is used to approximate
the full solution. While this reduces computation, it is not efficient for datasets with a
large number of features and is sensitive to the initial random subsampling.

Figure 6.8 – t-SNE representation of the iris dataset approximated by 18 centroids (green
crosses). The points are colored according to the prediction of the KASP algorithm.

Instead, we turn to the “k-means-based approximate spectral clustering” (KASP)
method [164]. The main idea behind this method is to approximate spectral clustering by
first running a k-means algorithm with a large number of centroids. These centroids are
then used as a reduced representation of the dataset and are partitioned using spectral
clustering. Finally, the labels assigned to the centroids by spectral clustering are propa-
gated to the nearest points, effectively clustering the entire dataset. Because it uses k-
means++ which defines multiple initial centroid positions and selects the best one in terms
of inertia, the approximated representation is relatively stable even in high-dimensional
problems where the data is sparse. This concept is illustrated in Figure 6.8, where the
iris dataset is approximated by 18 centroids, and the points are colored by performing
spectral clustering on these centroids and propagating the labels to the nearest points.

Note: In our experiments, the purely unsupervised spectral clustering is applied only
to the unlabeled data of the novel classes (which has 26,052 points). The adjacency matrix
weighs only 2.5 gigabytes when using a float32 format, and the eigenvectors can be com-
puted in a reasonable amount of time, so we do not use KASP in this case. On the other
hand, NCD Spectral Clustering computes the spectral embedding of the entire dataset
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dataset (both known and novel classes) and needs to be approximated for the reasons
mentioned above.

6.4.4 Results

Table 6.4 – Clustering performance of the algorithms averaged over 50 runs. Best results
are in bold.

Method ACC NMI ARI
k-means 28.3±2.0 42.3±1.6 21.2±2.5
NCD k-means 31.0±1.6 44.0±1.0 24.3±2.4
Spectral Clustering 20.2±1.2 37.9±0.6 13.7±1.2
KASP NCD Spectral Clustering 29.4±1.3 39.1±1.4 22.3±1.9
Baseline 45.3±1.1 53.8±0.7 35.6±1.0
TabularNCD 40.7±2.2 50.5±1.0 33.4±2.4
PBN 45.5±1.1 56.2±0.7 40.0±0.9

Numerical results. Table 6.4 measures the average performance over 50 executions of
all competitors in terms of ACC, NMI and ARI. The simple k-means performs moderately
well, while NCD k-means shows slight improvements on all metrics. The purely unsuper-
vised spectral clustering (SC) method has the lowest performance among the methods in
this study, with an ACC of only 20.2%. While KASP NCD SC achieves results comparable
to NCD k-means, it still outperforms SC by 9.2% in terms of ACC. This confirms both
the effectiveness of KASP in creating a suitable representation with a reduced number
of points, and the importance of tuning the hyperparameters using the known classes, as
described in Section 4.3.3.

The three neural network based methods significantly outperform the four traditional
clustering methods. Although slightly worse than the baseline and PBN, the performance
of TabularNCD is commendable and suggests that it is able to capture meaningful clusters
within DELC’s data. By design, the baseline focuses on capturing only the features of the
known classes during training, before clustering the novel classes (see the discussion of
Section 4.3.4). Therefore, its impressive performance reveals that there is a strong simi-
larity between the high-level features used to distinguish the known and hidden classes.
Finally, PBN is the overall top performer in this benchmark. Its ACC is comparable to
the baseline, but its NMI and ARI are 2.2% and 4.4% higher respectively.

Confusion matrix and decision trees. Since we found that PBN performed the
best among the competitors, we use the clusters it generated for the hidden classes to
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illustrate the kind of results that can be expected for the novel classes (i.e. the DNIs).
Figure 6.9 represents the confusion matrix of PBN’s prediction against the ground truth
labels. The Hungarian algorithm was used to find the best match between the cluster
numbers and the class labels. To improve readability, it only includes the first 15 hidden
classes out of the 28. This figure demonstrates that an ACC of 45.5% does not mean that
each cluster is only 45% pure individually. Instead, we observe that some clusters fail and
overlap multiple classes, and others are almost pure (e.g. clusters number 3, 7, 8 or 14).

Figure 6.9 – Confusion matrix of the prediction of PBN for the first 15 hidden classes of
DELC.

The last step of this series of experiments is essential to validate the results obtained
so far. The objective here is to create a representation of the clusters that can be easily
interpreted by the network experts. Similarly to the interface of Chapter 5, we display
the decision rules of trees trained to predict the clusters. Specifically, the trees are trained
using a one-vs-rest approach: for each cluster, a tree is trained to distinguish that cluster
from all others. We chose this approach over using a single multi-class decision tree because
it produces shallower and simpler sets of rules, which are closer to what can be found in
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DELC’s software.

Figure 6.10 – One-vs-rest decision tree for cluster 8, visualized with the Graphviz library.

To illustrate with a successful example, we select cluster number 8 in Figure 6.9 for
its high correspondence with the ground truth, and train a decision tree to distinguish it
against all known classes. The resulting tree is shown in Figure 6.10, and achieves 99.9%
classification accuracy with just 4 leaf nodes. To navigate the tree to “class = 1” in blue,
which corresponds to cluster 8, the following path must be taken 6:

— The root node “livebox.4.res.lastupdate.status.code=UPDATING <= 0.5” must
evaluate to false, indicating that its value is 1.

— Next, the value of “session.res.connection.status.IS_0” must also be 1.

— And finally “delc.res.ftth.client.ont.alarme=DG <= 0.5” must evaluate to true,
meaning its value is 0.

A network expert will thus understand from this figure that the faults in cluster 8 are
characterized by a modem last status code of “UPDATING”, a disconnected internet
session and an ONT alarm different from DG (for dying gasp), although the last node
captures very few faults and could be omitted. This interpretation corresponds very closely
to DELC’s diagnosis for a failed modem software update. The only difference is that it

6. Note that the features used by this decision tree are all boolean so their values are either 0 or 1.
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uses the current internet session status instead of the attribute for the last connection
status, and both have a very close meaning.

Finally, it is important to note that we selected a cluster which we knew was accurate
thanks to the ground truth labels, but they will obviously not be available in the case of a
practical exploration of the DNIs. However, we believe that network experts will be able
to easily identify nonsensical rules and focus on potentially relevant ones. For example,
a diagnosis is unlikely to be characterized by an attribute related to the GPON network
and the battery level in the TV remote control, so such clusters can be ignored.

6.5 Conclusion

After briefly introducing the architecture of GPON FTTH networks, we have moti-
vated the importance of a reliable automatic diagnosis system. While Orange’s DELC
software is capable of diagnosing most faults, it has become difficult to maintain us-
ing traditional means. Manual investigation of undiagnosed faults by network experts is
becoming increasingly difficult as the FTTH network continues to expand. Thus, in an
attempt to solve this problem, we have proposed a semi-automatic process for discovering
new diagnoses using the tools developed in the previous chapters of this thesis.

However, DELC is a rule-based software developed internally, capable of collecting
data from multiple sources and using features in very different formats (strings, lists,
identifiers, dates, ...). The first step was therefore to transform these features into a
tabular dataset that could be fed to our algorithms. We collected a large number of
faults and descriptive attributes over a period of 2 months to ensure that there was
enough information to produce relevant results. We then followed a rigorous data wrangling
process, where the data went through several steps such as structuring, cleaning, feature
extraction or evaluation. This previously unavailable representation of the data and the
scripts required to produce it were released internally and are already being used for
various use-cases where machine learning can now be used to uncover difficult patterns.

In the experiments, we evaluated the performance of 7 clustering and NCD algorithms
on this dataset. The undiagnosed faults are, by definition, without labels and evaluating
the clusters produced by each method is impossible unless a network expert reviews
many of them, which is unrealistic. Therefore, similarly to the open source datasets in
the previous chapters, we hid a portion of the known classes to act as novel classes. We
followed the optimization procedure introduced in Chapter 4 and found that deep-based
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NCD methods significantly outperformed the other solutions, with PBN having the best
performance. Finally, we validated our rule generation process by training a decision tree
to predict a cluster and found that it closely resembled the true rules of DELC’s software.
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In this dissertation, we have addressed the problem of Novel Class Discovery (NCD),
which uses labeled data to more accurately cluster unlabeled data containing novel but
related classes. Most of the existing work in NCD is specialized to computer vision and
relies on techniques that are not applicable to tabular data, which is the focus of this
thesis. Consequently, we developed new approaches specifically tailored to NCD in tabular
data and demonstrated the value of our contributions through the discovery of new fault
diagnoses in operational FTTH data.

In this conclusion, we first review the contributions made in each chapter and highlight
their limitations in Section 7.1. Then, in Section 7.2, we discuss possible extensions of our
work and interesting future research directions.

7.1 Summary of the contributions

We started in Chapter 2 with a survey of the state-of-art in Novel Class Discovery.
We established a categorization of existing NCD methods into two main approaches: two-
stage methods that first learn a representation on the labeled data, before exploring the
unlabeled data; and one-stage methods that process both sets through a joint objective
function. This chapter highlights the fundamental differences between these approaches,
their general workflows, strengths and weaknesses. In addition, we presented some new
related tasks inspired by NCD, with Generalized Category Discovery (GCD) being of
particular interest. It considers that samples in the unlabeled set can belong to either
known or novel classes, making it applicable to many real-world scenarios. Finally, we
provided an overview of important components commonly found in NCD algorithms,
such as pseudo-labeling, contrastive learning, and methods for estimating the number of
novel classes.

During this survey, we noted a lack of NCD methods for tabular data, as the majority
of works focus on image data which benefits from spatial correlation between pixels. This
specificity enables the use of techniques like data augmentation or contrastive learning,
both of which have poor results in tabular data [18].

Chapter 3 is dedicated to the definition of a first NCD method adapted to tabular
data. Inspired by the most prominent work at that time, AutoNovel [17], we defined
TabularNCD, a one-stage method where an encoder is trained by a joint objective on
multiple tasks. The first is a simple classification of the known classes to include their
discriminative features in the latent space. The second is a clustering of the unlabeled data
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by defining pseudo-labels based on the similarity of the points in the encoder’s output.
And the last is a consistency objective to regularize the outputs of the classification and
clustering networks. Similar to AutoNovel, the latent representation of the encoder is
initialized by Self-Supervised Learning on both labeled and unlabeled data. However,
ablation studies revealed that this step was not essential for the success of the method
and increased its complexity for limited gains.

While TabularNCD displayed strong performance during the evaluation on public
tabular datasets, the optimization process was not realistic. Indeed, both the number
and true labels of the novel classes in the training set were used to optimize the model’s
hyperparameters. In addition, we found that the performance of TabularNCD is very
sensitive to its many hyperparameters (7 in total, 4 of which are just for the loss function),
making tuning a delicate process.

These limitations are the focus of Chapter 4, where we proposed three new mod-
els. The first two are derived from unsupervised clustering methods: NCD k-means en-
hances the initialization of centroids using the labeled data, while NCD Spectral Clus-
tering (NCD SC) optimizes SC’s hyperparameters based on clustering performance on
the known classes. The last is a neural network based approach dubbed Projection Based
NCD (PBN). It trains an encoder with a classification loss on the known classes and a
reconstruction loss on all the data to avoid overfitting, before clustering the latent repre-
sentation of the unlabeled data with k-means.

Importantly, this chapter addresses the realistic scenario where the labels and number
of novel classes are not available during training. Thus, we defined a hyperparameter
optimization technique where a portion of the known classes are hidden and used to
validate the performance of different combinations of hyperparameters. And the number
of clusters is estimated using Cluster Validity Indices in both the original and learned
latent spaces. The intentionally low complexity and number of hyperparameters of the
proposed methods proved advantageous, as the hyperparameters of PBN and NCD SC
did not overfit during optimization, unlike TabularNCD.

Next, we developed and presented an interactive data exploration interface in Chap-
ter 5. The objective here was to allow domain experts to easily apply the algorithms
developed in the previous chapters on their datasets without requiring extensive coding
and data science knowledge. In this interface, users can select which features and classes
to use, visualize their data in 2 dimensions using t-SNE, configure and run NCD and clus-
tering models, and generate interpretable decision tree rules to describe the discovered
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clusters.
The idea of involving domain experts in the NCD process came from the observation

that the domain- and application-specific attributes of tabular data can be difficult to
grasp for data scientists unfamiliar with the domain. By allowing the domain expert to
directly manipulate the data and retrain models with different parameters, the iterative
process of NCD is streamlined and much less tedious than when done through coding and
interaction with a data scientist.

While this interface is a valuable tool in practical applications of NCD for tabular data,
it still has some limitations. For example, the decision tree rules generated to interpret
the discovered clusters can become cluttered and difficult to read, especially in the multi-
class case. The one-vs-rest approach helps mitigate this, but can still struggle with highly
complex datasets. Lastly, there is no built-in functionality for estimating the optimal
number of clusters or novel classes, and the user may have to rely on external methods
or trial and error to approximate this value.

Finally, Chapter 6 represents the synthesis and application of the concepts and meth-
ods developed throughout this manuscript, in the context of FTTH network fault diag-
nosis. After introducing the architecture of GPON FTTH networks, we described the
limitations of Orange’s rule-based diagnosis system and why NCD could help network
experts in their work. To this end, we collected a large number of operational faults in
Orange’s FTTH network. Since this data was disorganized and contained information in
very varied formats, extensive preprocessing was necessary to transform the data into a
usable format. We then proposed a semi-automated diagnosis discovery process in which
a network expert selects and refines the clusters produced by our algorithms. In the exper-
iments, we evaluated the performance of 7 clustering and NCD algorithms on the DELC
dataset and found that our deep-based approaches largely outperformed the simpler un-
supervised clustering alternatives, with PBN being the top performer. We concluded by
validating the rules of the decision tree we generated to interpret the clusters and observed
that they closely resembled the true rules in the DELC software.

Evaluating the models when the number of novel classes is not known in advance is
an important aspect that was not explored in the experiments and should be done in
the future. We also did not have the opportunity to test the process of Figure 6.7 on
undiagnosed faults, as some additional time and engineering is required to fully develop
the system. Nevertheless, the encouraging results of the experiments indicate that this is
the right approach in this specific context.
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7.2 Future directions

7.2.1 Selecting the most relevant clusters

When trying to discover a large number of new classes in a dataset, interpreting the
generated clusters with decision trees can become difficult, as multi-class decision trees will
quickly contain an overwhelming number of nodes. Using a one-vs-rest approach spreads
the complexity over many trees, but can still be problematic when the number of features
is high and the clusters are convoluted. Add to this the fact that NCD or clustering
algorithms must be fine tuned until the domain expert is satisfied with the results, and
the number of trees to be examined can quickly become enormous. The dataset we created
in Chapter 6 has 537 features, so it is clearly affected by this problem. Thus, we need to
find a way to optimize the limited time that domain experts can dedicate to this task.

One way to address this challenge of efficiently interpreting a large number of clusters
might be to rank the clusters from most to least likely to be correct. By automatically
determining the most relevant clusters, domain experts could focus their efforts on the
most promising clusters first. This can be achieved, for example, by sorting the clusters
according to some Cluster Validity Indices (CVIs) [139]. In Chapter 4, we used CVIs to
estimate the number of novel classes by summarizing the entire clustering prediction of a
model into a single quality score. And since some of these CVIs are defined as an average
of the individual scores they assign to each cluster, the individual scores could be used
to rank the clusters from most to least relevant. A good example is the Silhouette Index
[166]:

Ssil =
k∑

n=1

1
|In|

∑
i∈In

b(i)− a(i)
max(a(i), b(i)) (7.1)

with k the number of clusters, In the set of indices of points belonging to cluster n,
a(i) the mean distance of point i to all other points in the same cluster and b(i) the
smallest mean distance of point i to the points in any other cluster. The clusters could
then be ranked according to the average of the Silhouette coefficients (the fraction in
Equation 7.1) of all points in a cluster. Other examples of scores that can be diverted
for this application include the inertia, the distortion and the Davies-Bouldin index [167].
Note that depending on the NCD or clustering algorithm used, these scores may give
more accurate results when computed in the latent or original feature space. Similar to
the experiments of Chapter 6, the best approach can be selected by finding the CVI that
best correlates with the ground truth accuracy of the clusters on some hidden classes.
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Stable clusters that appear across different executions or with slight variations in the
clustering algorithm are also more likely to be relevant. Intuitively, if a cluster persists
across multiple runs of the same model (or even across different algorithms), it increases
the confidence that this cluster reflects a genuine pattern within the data. While we could
not find research specifically focused on identifying consistent clusters across algorithms,
the field of Consensus Clustering seems to share similar concepts [168].

Finally, in addition to validation metrics, the number of points in a cluster may be
a useful metric for domain experts. Clusters with very few points may not be reliable,
whereas clusters with many points may indicate dominant patterns in the data.

7.2.2 NCD and human-in-the-loop

Throughout this thesis, we have explored ways to improve the clustering of the novel
classes based only on the knowledge contained in the known classes. Yet, it should be
possible to involve a domain expert in the learning process through human-in-the-loop
(HITL) [169] strategies to further refine the results. Domain experts can provide valuable
insights by evaluating the clusters produced by our algorithms and suggest improvements.
In this section, we describe some ways to integrate this feedback into our models and
iteratively refine the results.

This problem should first be approached by asking what questions can realistically be
answered by a human expert. An impractical example would be to ask someone to tell for
all pairs of points in a cluster whether they should be grouped together. Indeed, given the
large number of features in our dataset, even comparing two points will be slow. Instead,
questions should be formulated precisely to make the best use of the limited time that
humans can spend on such a task. Some examples are given below:

“Should these two points be in the same cluster?” is very similar to the previous one,
but is of a much smaller scale. This could be easily implemented by must- and cannot-link
constraints, and could be taken into account by using COP-Kmeans [85] or PCKMeans
[86]. These constrained clustering algorithms can simply replace the k-means in the latent
space of PBN or in the spectral embedding of NCD Spectral Clustering. In the case of
TabularNCD, which does not directly rely on a clustering algorithm like k-means, this
pairwise information could be integrated into the training with a contrastive loss. This
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could, for example, be achieved with the supervised contrastive learning loss [53]:

ℓi = − 1
|P (i)|

∑
p∈P (i)

log exp (zi · zp/τ)∑
a∈A(i) exp (zi · za/τ) (7.2)

with zi = ϕ(xi) the projection of xi in the latent space, τ a temperature parameter,
A(i) = I\{i} 1 and P (i) the set of indices of the points that were labeled as positives
relative to i by the expert. By adding this objective function to the model during training,
the points in P (i) are pulled together, while the rest are pushed apart. However, we
warn the reader that to be effective, the contrastive loss may require many labeled pairs,
or heavy data augmentation which has been observed to perform less favourably with
heterogeneous tabular data than with image data [18]. A possible solution would be to
locally approximate the expert’s feedback by generalizing the labels assigned to the pairs
of points to the immediate neighborhood.

“Should these two features be important in the same cluster?” is difficult to formulate
due to its subjectivity. To illustrate this question, we can argue, for example, that it would
be unexpected for a feature related to the quality of the Wi-Fi and a feature expressing the
configuration of the GPON network to be present in the same diagnosis. Thus, instead of
simply dismissing such a cluster as nonsensical, an expert could justify the reasons behind
his or her decision. The importance of the features in a cluster could be measured by the
Gini importance [158] of a random forest classifier trained to predict the cluster labels.

Finally, “Should we group some of these clusters?” can be easily implemented by
comparing the closest clusters first, and re-generating their interpretation if the expert
decides to merge them. And the opposite can also be done by asking if some clusters
should be split.

7.2.3 Other directions

We finish this conclusion chapter by briefly presenting several ideas that we were not
able to develop in this manuscript, but that we believe are still important topics for the
resolution of the NCD problem in practical scenarios.

In this work, we relied heavily on the assumption that none of the samples in the un-
labeled sets belonged to known classes. However, it is likely that the coverage of DELC’s
rules is incomplete, and that some faults labeled as DNIs actually belong to known cat-

1. I = {1...N} the indices of all points in the dataset
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egories. While it is impossible to determine the exact number of faults affected by this
problem, violating NCD’s assumption that Y l ∩ Yu = ∅ could still have an important
impact on performance. If a significant portion of the unlabeled data is confirmed to be-
long to the known classes, it may be worthwhile to explore the literature of Generalized
Category Discovery (GCD), where Y l ⊂ Yu. The more flexible setting of the GCD field
probably contributes to its growing popularity. In 2022, we reviewed 20 papers and found
14 focused on NCD and 6 on GCD. In 2023, out of 29 papers, 9 addressed NCD and 20
focused on GCD.

Instead of representing data in the usual Euclidean space, hyperbolic neural networks
typically project data into a Poincaré ball where the curvature is negative. In this unusual
data representation, the distance from the origin increases exponentially as you move away
from it. This natural tree-like structure of hyperbolic spaces caused by their negative
curvature makes them well suited for representing hierarchical data [170]. The rules of
DELC’s software are similar to decision trees and contain multiple families of diagnoses
(FTTH, Wi-Fi, CPL, ONT, ...). This suggests a hierarchical nature of the diagnoses,
which could be leveraged by using a hyperbolic representation. However, while hyperbolic
neural networks have shown promising results for clustering in computer vision and natural
language processing, they have not been extensively studied on tabular data and still suffer
from instability during training [171, 172].
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RÉSUMÉ EN FRANÇAIS

Cette section est un résumé substantiel en Français de ce manuscrit de thèse. Cet
exercice recommandé par l’école doctorale permet non seulement de rendre la thèse plus
accessible aux lecteurs francophones qui ne maîtrisent pas l’anglais, mais aussi de pro-
mouvoir l’usage de la langue française dans le domaine académique et scientifique. Dans
les pages suivantes, nous introduirons ainsi le thème de cette thèse et motiverons son
importance, avant de résumer le contenu et les contributions de chacun des chapitres.

Introduction

L’importance de la fiabilité des réseaux de télécommunication

La dépendance de l’économie mondiale aux services Internet s’est beaucoup accentuée
au cours de ces dernières années. La communication instantanée, la gestion de projets, le
marketing ou le commerce électronique sont désormais des éléments essentiels des opéra-
tions commerciales modernes, facilitant les échanges à l’échelle mondiale. La fibre optique
a joué un rôle particulièrement crucial dans ces avancées en améliorant considérablement
les vitesses Internet. Selon l’ARCEP, le nombre de foyers français éligibles aux offres de
Fibre-To-The-Home (FTTH) est passé de 10,9 millions en 2018 à 38,9 millions en 2023
[3], couvrant plus de 84% du marché de l’accès Internet fixe. La fibre optique a permis
l’intégration d’applications à haut débit et faible latence telles que le streaming vidéo,
les jeux en ligne, l’informatique en nuage (ou cloud computing), la télémédecine et les
infrastructures de villes intelligentes dans la vie quotidienne. Cette évolution est appelée
à se poursuivre avec la connexion de plus en plus d’appareils et de services gourmands en
bande passante.

Les Fournisseurs d’Accès à Internet (FAI) sont responsables de la livraison et de la
maintenance de la connectivité Internet. Ils construisent et maintiennent l’infrastructure
du réseau en posant de la fibre optique, en installant des routeurs, des commutateurs,
des centres de données et d’autres équipements nécessaires à la transmission des données.
Ils gèrent également la qualité du service, garantissant aux utilisateurs des connexions
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Internet fiables et à haute vitesse. Cependant, avec un réseau en constante évolution
composé d’une grande variété d’équipements, il devient de plus en plus difficile de fournir
des services de qualité avec une durée de fonctionnement optimale. Même avec du matériel
et des logiciels fiables, des pannes se produiront inévitablement, affectant l’expérience
utilisateur. Selon une étude de 2023 de l’Uptime Institute [5], 70% des pannes de centres
de données coûtent aux entreprises plus de 100 000 dollars par panne. Certaines de ces
pannes peuvent être spectaculaires, comme en 2016, lorsqu’une seule défaillance de routeur
a conduit Delta Airlines à annuler 2 300 vols et à perdre 177 millions de dollars. À plus
petite échelle, la résolution de ces pannes doit aussi être rapide, car plusieurs FAI sont
souvent en concurrence pour les mêmes abonnés, et les utilisateurs peuvent passer chez des
fournisseurs concurrents s’ils ne sont pas satisfaits. Par conséquent, une gestion efficace
des pannes est un aspect clé de l’exploitation des réseaux de télécommunications, en
particulier dans les réseaux d’accès.

Le diagnostic automatique des pannes

Dans le passé, le diagnostic des pannes était fait manuellement par des experts du
réseau qui examinaient chaque panne individuellement via un nombre limité d’attributs
descriptifs. Cependant, l’évolution des réseaux de télécommunications au cours des deux
dernières décennies a considérablement augmenté leur taille et leur complexité, et le diag-
nostic est aujourd’hui devenu trop complexe pour des experts humains. C’est pourquoi,
en pratique, le diagnostic des pannes est principalement réalisé par des systèmes experts
(souvent des algorithmes à base de règles) [9]. De la même manière qu’un expert étudie
un cas spécifique, ces systèmes analysent un grand nombre d’indicateurs de performance
avant de parvenir à une conclusion sur l’origine de la panne. Ces systèmes représen-
tent les connaissances des experts du réseau sous forme de règles dont les décisions sont
faciles à interpréter. Cependant, ces solutions sont très spécifiques et ne peuvent pas être
transférées à d’autres domaines d’application ou architectures de réseau. De plus, elles
nécessitent une maintenance manuelle et continue de la part des experts du réseau, ce
qui devient de plus en plus difficile à mesure que le volume de données et le nombre de
sources potentielles de pannes augmentent. Enfin, comme les règles ne couvrent pas tous
les cas possibles, certaines pannes peuvent ne correspondre à aucune des règles et ne pas
être diagnostiquées. Ces pannes non diagnostiquées nécessiteront un temps d’investigation
supplémentaire et augmenteront les coûts d’exploitation du FAI.

Orange, l’entreprise dans laquelle j’ai réalisé ma thèse, est un Fournisseur d’Accès à
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Internet qui développe rapidement ses services de fibre optique. Comme la plupart des
FAIs, Orange France a conçu son propre système de diagnostic expert. Appelé DELC
(pour Diagnostic Expert de la Ligne Client), il est capable de fournir un diagnostic pour
la majorité des pannes, mais certaines restent non diagnostiquées et nécessitent souvent
une investigation coûteuse de la part d’un technicien. Avec des millions d’interventions de
techniciens chaque année, c’est un sujet d’une importance cruciale pour Orange.

L’objectif de cette thèse est donc d’essayer de découvrir automatiquement de nouveaux
diagnostics pour les pannes pour lesquelles le système DELC n’a pas pu déterminer la
cause racine. Dans ce manuscrit, nous considérons que nous disposons d’un ensemble de
fautes diagnostiquées (les classes connues) et d’un ensemble de fautes non diagnostiquées
(les nouvelles classes) que nous devons explorer. Idéalement, le système que nous allons
concevoir ne sera pas spécifique à DELC et pourra être utilisé avec d’autres architectures
de réseau ou pour d’autres problèmes. Nous allons ainsi tenter de créer une méthode qui
peut être appliquée pour partitionner n’importe quel ensemble de classes inconnues, étant
donné un ensemble de classes connues.

Le diagnostic en tant que problème d’apprentissage automatique

Dans cette thèse, nous abordons le problème du diagnostic automatique des pannes
en se focalisant uniquement sur les données. En effet, modéliser entièrement le réseau
d’un Fournisseur d’Accès à Internet n’est pas faisable en pratique, car c’est une tâche
monumentale et qui nécessite une maintenance continue. Ici, nous supposons que pour
chaque panne, le FAI a collecté un certain nombre de caractéristiques décrivant l’état du
réseau au moment de la panne. Les descriptions de pannes sur une période de plusieurs
mois pourront alors être compilées pour former notre jeu de données.

Le système expert à base de règles d’Orange, DELC, diagnostique entre 80% et 90%
des pannes FTTH. Les pannes non diagnostiquées sont étiquetées comme DNIs (pour
Défauts Non Identifiés). Nous pouvons ainsi considérer que nous avons deux ensembles
de données distincts : l’un composé des diagnostics connus où toutes les pannes ont été
étiquetées par le système expert, et l’autre composé des DNIs non étiquetés. Les données
collectées sont composées d’un grand nombre d’attributs descriptifs hétérogènes tels que
des niveaux de signal, des versions logicielles, des horodatages, des statuts d’équipements,
etc. Après pré-traitement, les données seront structurées sous forme de tableau, chaque
ligne représentant une panne et chaque colonne une caractéristique.

En explorant les sous-domaines de l’open-world learning (voir Chapitre 2), nous avons
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découvert le domaine émergent de la Découverte de Nouvelles Classes (Novel Class Dis-
covery, NCD). Très similaire à notre problème, il y a pendant l’entraînement un ensemble
étiqueté de classes connues et un ensemble non étiqueté de classes différentes et inconnues.
Et l’objectif est de découvrir les classes sous-jacentes dans les données non étiquetées. Le
premier article majeur de NCD a été publié en 2021 [17], et ce domaine est resté largement
focalisé sur les données d’images depuis lors. Comme il existe une forte corrélation spa-
tiale entre les pixels d’une image, des techniques telles que la convolution, l’augmentation
des données ou l’apprentissage auto-supervisé (Self-Supervised Learning, SSL) peuvent
être employées pour améliorer les performances. Dans notre cas, les attributs des données
tabulaires sont hétérogènes et il n’y a pas de corrélation spatiale. Ainsi, ces techniques
ne peuvent pas être utilisées et les méthodes de NCD de l’état de l’art ne peuvent pas
directement être appliquées. Cependant, nous pensons que la philosophie générale et les
concepts derrière le NCD peuvent être transférés à notre problème. Nous considérons
donc dans cette thèse que notre problème de diagnostic de pannes est un problème de
Découverte de Nouvelles Classes dans des données tabulaires.

Chapitre 2 : État de l’art

Nous avons commencé par une étude de l’état de l’art en matière de Découverte de
Nouvelles Classes. Après avoir défini formellement les hypothèses et composants clés des
méthodes de NCD, nous les avons catégorisées en fonction de la manière dont les con-
naissances de l’ensemble étiqueté sont utilisées pour partitionner l’ensemble non étiqueté.
Nous avons constaté que les approches à deux étapes, qui s’entraînent d’abord uniquement
sur les données étiquetées avant de partitionner l’ensemble non étiqueté, ont rapidement
perdu de leur popularité. Leur risque de sur-entraînement sur les classes connues a mené
les chercheurs à définir des méthodes à une seule étape où les deux ensembles sont util-
isés à la fois et qui sont maintenant largement adoptées. Cette taxonomie devrait aider
à orienter les recherches futures en donnant un aperçu clair des familles d’approches et
de techniques qui ont déjà été explorées. L’émergence du NCD a conduit à la création de
nouveaux domaines où les chercheurs assouplissent les hypothèses du NCD et que nous
avons également analysés. De plus, nous avons identifié et présenté les techniques et outils
couramment utilisés en NCD. Enfin, étant donné qu’il s’agit d’un nouveau domaine qui
se situe à l’intersection de plusieurs autres, il peut être difficile de le distinguer des autres
domaines de recherche. Nous avons donc présenté les domaines les plus proches et précisé
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leurs principales différences.
Malgré le nombre croissant de travaux dans ce domaine, nous avons identifié plusieurs

questions restant sans réponse et certaines perspectives qui méritent d’être étudiées plus
en détail. Comme nous l’avons déjà exprimé, la majorité des travaux de NCD sont ap-
pliqués uniquement aux données d’images et profitent de puissantes techniques telles que
l’augmentation de données et l’apprentissage auto-supervisé qui reposent sur la structure
unique des images. Ces techniques sont en partie responsables du succès des méthodes de
NCD, et comme elles ne sont pas directement applicables à d’autres types de données,
la plupart des travaux sont encore limités aux données d’images. Cependant, il serait
intéressant d’explorer leur potentiel avec d’autres types de données comme le texte ou
les tableaux. DTC [37] a montré que les méthodes de partitionnement à base de réseaux
de neurones peuvent facilement être transférées au problème de NCD, et nous pensons
que davantage d’entre elles pourraient être adaptées. Ensuite, les méthodes de NCD ne
devraient pas supposer que le nombre de nouvelles classes est connu à l’avance, et même si
certaines approches ont été proposées pour le déterminer automatiquement, leur précision
est limitée. Nous pensons également qu’il est important d’avoir un protocole d’évaluation
unifié, car des travaux ont montré que la sélection des classes connues/nouvelles a une
influence sur la difficulté du problème de NCD [40]. Enfin, nous avons remarqué que le
pseudo-étiquetage est une technique largement utilisée dans les méthodes en une étape.
Leur performance est un facteur décisif pour le succès de ces méthodes et il y a encore
des améliorations possibles dans ce domaine, par exemple, en tenant compte des données
étiquetées, ou en s’inspirant de la théorie des graphes ou du partitionnement spectral.

Chapitre 3 : Première méthode

Dans ce chapitre, nous avons défini une première méthode, TabularNCD, pour
la découverte de nouvelles classes dans les données tabulaires. Inspirée par le tra-
vail d’AutoNovel [17], TabularNCD repose principalement sur la définition de pseudo-
étiquettes et sur l’optimisation d’un objectif joint sur nos deux ensembles de données.
Son entraînement commence par l’initialisation de son espace latent à l’aide d’une nou-
velle technique d’apprentissage auto-supervisé pour les données tabulaires, VIME [55].
Le partitionnement des données non étiquetées est ensuite réalisé en se basant sur l’idée
que le voisinage local d’une instance dans l’espace latent appartient probablement à la
même classe. Ce processus est optimisé conjointement avec un classificateur sur les classes
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connues afin d’inclure leurs caractéristiques importantes dans l’espace latent.
Les contributions que nous faisons dans ce chapitre sont les suivantes :

1. Proposition d’une nouvelle méthode pour la découverte de nouvelles classes dans
des données tabulaires.

2. Évaluation empirique de cette méthode sur sept ensembles de données publics, dé-
montrant sa performance supérieure par rapport à des méthodes entièrement non
supervisées et une méthode exploitant les classes connues de manière naïve.

3. Introduction d’une approche originale pour la définition de pseudo-étiquettes, ex-
ploitant le voisinage local d’une instance dans un espace latent pré-entraîné.

4. Réalisation d’expériences pour comprendre les raisons de l’avantage de la méthode
proposée par rapport à des approches plus simples.

Nous avons également comparé TabularNCD à une méthode de découverte de nouvelles
classes pour les images, CD-KNet, sur l’ensemble de données MNIST, et avons obtenu des
résultats comparables, démontrant que notre méthode est efficace même sans les avantages
des réseaux de neurones convolutifs utilisés pour les images. Nous avons ensuite réalisé une
étude d’ablation pour évaluer l’importance de chaque composant de notre méthode. Enfin,
nous avons visualisé l’évolution de la représentation des données au cours de l’entraînement
et observé que notre modèle sépare progressivement les échantillons en groupes de même
classes.

En conclusion, notre travail démontre que le domaine de la Découverte de Nou-
velles Classes est non seulement applicable aux images mais aussi aux données tabulaires
hétérogènes, ouvrant ainsi de nouvelles perspectives pour l’apprentissage en monde ouvert
dans divers domaines d’application.

Chapitre 4 : Approches pratiques

Dans ce chapitre, nous focalisons notre travail sur les limitations de la méthode pro-
posée dans le chapitre précédent. En effet, comme il est souvent le cas dans les articles de
NCD, le nombre de nouvelles classes y est supposé connu à l’avance, et leurs étiquettes
on été utilisées pour optimiser les hyperparamètres. Les méthodes qui font ces hypothèses
deviennent alors difficiles à appliquer dans des scénarios pratiques. Nous nous concentrons
donc ici sur la résolution du NCD dans les données tabulaires sans aucune connaissance
préalable des nouvelles classes.
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Pour ce faire, nous proposons d’adapter le processus de validation croisée à k blocs en
cachant certaines des classes connues dans chaque bloc pour optimiser les hyperparamètres
des méthodes de NCD. Nous avons constaté que les méthodes avec trop d’hyperparamètres
ont tendance à sur-apprendre ces classes cachées. Par conséquent, nous définissons un
modèle simple de NCD à base de réseaux de neurones, composé uniquement des éléments
essentiels au problème de NCD, et montrons qu’il offre des performances robustes dans
des conditions réalistes. De plus, nous observons que l’espace latent de cette méthode peut
être utilisé pour estimer de manière fiable le nombre de nouvelles classes.

Nous adaptons également deux algorithmes de partitionnement non supervisé (k-
means et partitionnement spectral) pour qu’ils tirent parti des connaissances des classes
connues. Des expériences sont menées sur sept ensembles de données tabulaires, dé-
montrant l’efficacité des méthodes proposées et du processus d’ajustement des hyper-
paramètres. Ces expériences montrent également que le problème de NCD peut être ré-
solu dans des conditions réalistes où aucune connaissances a priori des nouvelles classes
ne sont disponibles.

Chapitre 5 : Interface d’exploration de données

Les experts d’un certain domaine sont les plus à même d’interpréter les résultats des al-
gorithmes de NCD ou de partitionnement non supervisé. Mais en pratique, ils ne disposent
pas forcément des compétences requises en rédaction de code ou en science des données
pour mettre en œuvre ces algorithmes. Dans ce chapitre, nous présentons une interface
interactive d’exploration de données qui permet à ces experts d’appliquer facilement les
algorithmes développés dans les chapitres précédents sur leurs ensembles de données sans
avoir à rédiger de code. Dans cette interface, les utilisateurs peuvent sélectionner les at-
tributs et les classes à utiliser, visualiser leurs données en deux dimensions à l’aide de
t-SNE, configurer et exécuter des modèles de NCD et de partitionnement, et générer des
règles interprétables sous forme d’arbres de décision pour décrire les classes découvertes.

L’idée d’impliquer des experts du domaine dans le processus de NCD est venue de
l’observation que les attributs des ensembles de données tabulaires sont toujours spéci-
fiques à l’application et peuvent être difficiles à interpréter pour les data scientists. En
permettant aux experts de manipuler directement les données et de réentraîner les modèles
avec différents paramètres, le processus de découverte de nouvelles classes est simplifié et
beaucoup moins fastidieux que lorsqu’il est effectué en interaction avec un data scientist.
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Chapitre 6 : Application au diagnostic de pannes FTTH

Ce chapitre représente la synthèse et l’application des concepts et méthodes développés
tout au long de cette thèse dans le contexte du diagnostic des pannes des réseaux FTTH
(Fiber-To-The-Home). Après avoir introduit l’architecture des réseaux FTTH GPON,
nous avons décrit les limitations du système de diagnostic automatique à base de règles
d’Orange, appelé DELC (Diagnostic Expert de la Ligne Client). Depuis son introduc-
tion en 2012, le taux de diagnostic du système DELC est passé de 48% à 85% en 2023.
Cependant, ce taux a récemment cessé de progresser, et les experts du réseau peinent à
trouver de nouveaux diagnostics. Les 15% restants doivent souvent être investigués par
des techniciens, entraînant des coûts d’exploitation élevés pour Orange.

Les outils de NCD que nous avons développés dans les chapitres précédents de cette
thèse sont une approche que les experts du réseau n’ont pas encore explorée. Nous espérons
ainsi qu’ils offriront une nouvelle perspective à la découverte de diagnostics. L’objectif
n’est pas de remplacer le système actuel, mais de suggérer de nouveaux diagnostics aux
experts du réseau à partir de groupes de pannes similaires non diagnostiquées.

Pour ce faire, nous avons commencé par collecter un grand nombre de pannes opéra-
tionnelles du réseau FTTH d’Orange. Ces données étaient désorganisées et contenaient
des informations dans des formats très variés, un prétraitement approfondi était donc
nécessaire pour transformer les données en un format utilisable. Nous avons structuré ces
données en une table CSV, nettoyé les erreurs et les valeurs manquantes, et enrichi le
jeu de données avec des informations supplémentaires pertinentes. Nous avons également
filtré les attributs pour réduire la dimensionnalité du jeu de données, en utilisant des
méthodes de sélection de caractéristiques non supervisées.

Dans les expériences, nous avons comparé tous les algorithmes de partitionnement et
de NCD utilisés au cours de cette thèse en fonction de plusieurs métriques Les méth-
odes basées sur les réseaux neuronaux, telles que TabularNCD et Projection-Based NCD
(PBN), ont significativement surpassé les autres solutions, avec PBN obtenant les meilleurs
résultats. Enfin, nous avons validé notre processus de génération de règles en entraînant
un arbre de décision pour prédire un groupe de données et avons constaté qu’il ressemblait
étroitement aux règles réelles du logiciel DELC. Nous avons conclu que notre approche
semi-automatique pour découvrir de nouveaux diagnostics pourrait aider les experts du
réseau à identifier et corriger plus rapidement les pannes, réduisant ainsi les coûts opéra-
tionnels du réseau FTTH d’Orange.
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Conclusion et perspectives

Cette thèse a abordé le problème de la découverte de nouvelles classes dans les données
tabulaires en développant des méthodes originales et en les appliquant à un cas réel de
diagnostic de pannes des réseaux FTTH. Nous avons montré que les méthodes basées sur
les réseaux de neurones, en particulier PBN, sont efficaces pour résoudre ce problème dans
des scénarios réalistes où aucune connaissance a priori n’est disponible.

Pour les travaux futurs, nous proposons plusieurs directions de recherche. Tout d’abord,
il serait utile de développer des méthodes pour sélectionner automatiquement les groupes
de données les plus pertinents afin d’optimiser le temps limité que les experts du domaine
peuvent consacrer à cette tâche. Ensuite, l’intégration de l’expert du domaine dans le
processus d’apprentissage par des stratégies de human-in-the-loop pourrait améliorer les
résultats. Enfin, il serait intéressant d’explorer l’utilisation des réseaux de neurones hy-
perboliques pour représenter les données, car ils sont adaptés pour la représentation de
données hiérarchiques comme celles des réseaux Internet.
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Appendix A

SUPPLEMENTARY MATERIALS OF

CHAPTER 3

A.1 Comparison of the pseudo-labeling methods

Hyperparameter range

In this section, we compare the performance and stability of two pseudo-labeling meth-
ods. The first is the threshold based method of Equation 2.9 (see Section 2.5.2), which is
used in several NCD articles [45, 39]:

ŷi,j = 1[δ(zi, zj) ≥ λ]

And the second is the top k based method of Equation 3.6, that we propose in Section 3.3.2:

ŷi,j = 1[j ∈ argtopk
r∈{1,...,|Z|}

r ̸=i

δ(zi, zr)]

To determine which pseudo-labeling methods is better, the performance of Tabu-
larNCD is evaluated with both methods for different values of their hyperparameter.
For the threshold based method, the value of λ is varied in [0, 1], and for the top k based
method, the percentage of the pairs that are positive is varied in [0%, 100%].

The results of this experiment are displayed in Figure A.1 and are averaged over 10
executions for 4 different datasets. They reveal that the top k based method obtains
similar or slightly superior performance over the threshold based method. However, we
observe that the ideal range of values is larger for the top k based method, which makes
hyperparameter tuning easier.
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(a) MNIST (b) Forest Cover Type

(c) Human Activity Recognition (d) US Census 1990

Figure A.1 – Balanced accuracy w.r.t to the pseudo-labeling method, for all of their
possible values.

Clustering collapse
During the experiments, we also noticed that with the threshold based method, the

clustering network would sometimes collapse, and degenerate to a trivial solution where
all instances are given the same cluster label (see Figure A.2). This problem arises due to
the fact that the cosine similarity is measured in the latent space, which itself is updated
during learning. By bringing all the data points very close to each other, the cosine
similarity between all pairs of points can become higher that the threshold λ, and all the
pairs will be regarded as positive in Equation 2.9. In this case, the model easily minimizes
the loss and degenerates to a trivial solution with a single cluster.

In contrast to the threshold based method, the top k based method uses a number of
positive and negative pairs which is constant during training. This collapse phenomenon
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therefore cannot happen in this case, which is another advantage of the proposed pseudo-
label definition method.

Figure A.2 – Evolution of the balanced accuracy during training, where the clustering
collapses.

A.2 Hyperparameters importance

In Chapter 3, a total of 8 hyperparameters were incrementally introduced for Tab-
ularNCD. And the optimal values chosen by the tuning process are reported in Ap-
pendix A.4. As stated throughout this manuscript, this large number of hyperparameters
that must be tuned is the main weakness of TabularNCD. Here, we summarize these
hyperparameters in Table A.1 and assess their importance according to the impact they
have on the final clustering performance to determine if some can be excluded from the
optimization process.

Table A.1 – Summary of the hyperparameters tuned in TabularNCD.

Parameter Description Importance
top k Number of positive pairwise labels for each point in a batch High
w1 Trade-off between the classification and regularization terms Low
w2 Trade-off between the clustering and regularization terms High
lrclassif. Learning rate of the optimizer for the classification task Medium
lrcluster. Learning rate of the optimizer for the clustering task Medium
k neighbors Number of points in the neighborhood of a sample in SMOTE Low
dropout Probability of zeroing inputs between each layers Medium
activation fct. Activation function used between each layer of the encoder Low

156



The importance of each hyperparameter depicted in Figure A.3 was calculated by
the framework we used to automate the hyperparameter search, Weights & Biases. Its
approach is to train a random forest with the hyperparameter configurations as inputs
and the selected model’s performance metric as the target output. The importance of each
hyperparameter is then defined as the feature importance values of the trained random
forest model. In Figure A.3, we report the average importance computed during the
optimization of TabularNCD over the 7 datasets of Chapter 3.

Figure A.3 – Average random forest hyperparameter importance for TabularNCD.

We observe three groups of hyperparameters:

— High importance (≥ 0.20): top k and w2.

— Medium importance (0.05 - 0.20): dropout, lrcluster. and lrclassif..

— Low Importance (< 0.05): w1, k neighbors and activation function.

Unsurprisingly, top k has the most impact on the performance since it controls the
pseudo-labeling process, which directly determines the results produced by the clustering
network. For similar reasons, w1 is almost as important as top k. It balances the weight
of the binary cross entropy loss of the clustering network with the regularization term.

On the other hand, w1, k neighbors and the activation function were always the least
important hyperparameters across the 7 datasets. Given their low impact on performance,
we recommend fixing w1 = 0.8, k neighbors = 10, and the activation function = ReLU in
future experiments. This should reduce the search space and save computational resources.
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A.3 Influence of data representation for the k-means

In table A.2, the quality of different data representations of MNIST are compared
using k-means. We observe that after Self-Supervised Learning, the encoder learned a
representation of the original data where the k-means algorithm performs slightly better
than on the original data (+2.8% in accuracy). And after joint training, the novel classes
are even more cleanly separated, as k-means gains +24.3% in accuracy over the original
data representation.

Table A.2 – Clustering performance of k-means on the new classes of MNIST for different
data representations.

Data representation BACC ACC NMI ARI
(1) Original data 60.1 61.1 48.1 38.2
(2) Latent w/ SSL 63.8 63.9 50.1 41.4
(3) Latent w/ joint 84.9 85.4 74.8 72.8

(1) is the original data, (2) is the data projected by an encoder trained with SSL (Section 3.3.1), and
(3) is the data projected by an encoder jointly trained by the TabularNCD (Section 3.3.2).

A.4 Hyperparameters values

We optimize the most important hyperparameters for each dataset and report their
values in table A.3. The constants are: batch size = 512, encoder layers sizes = [d, d, d],
α = 2.0, ssl lr = 0.001, epochs = 30 and p_m = 0.30.

Table A.3 – Best hyperparameters found.

Parameter MNIST Forest Letter Human Satimage Pendigits Census
cosine top k 15.015 19.300 2.019 15.277 6.214 5.609 13.96
w1 0.8709 0.1507 0.4887 0.4560 0.80 0.7970 0.8104
w2 0.6980 0.8303 0.9350 0.6335 0.8142 0.8000 0.9628
lrclassif. 0.009484 0.001876 0.009906 0.001761 0.007389 0.006359 0.005484
lrcluster. 0.0009516 0.007191 0.007467 0.001017 0.008819 0.009585 0.0008563
k neighbors 4 9 6 15 11 10 7
dropout 0.01107 0.09115 0.07537 0.2959 0.4210 0.01652 0.06973
activation fct. Sigmoid Sigmoid ReLU ReLU ReLU ReLU ReLU

“cosine top k” is here a percentage of the max number of pairs of instances in a batch.
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A.5 Estimation of the top k value

A.5.1 Objective

Lowering the number of hyperparameters that must be tuned is an important task. By
reducing the size of the hyperparameter space, the optimization is faster and the optimum
is easier to find. In the context of NCD, it also decreases the chances of overfitting on
the known classes (see Figure 4.5 of Section ??). Therefore, in this section, we explore a
way of automatically estimating the optimal value of top k in the pseudo-labeling process.
The general idea is to apply the pseudo-labeling method to all the points of a mini-batch
(both labeled and unlabeled) and to compute the accuracy on the labeled data.

Figure A.4 – Ground truth pairwise pseudo-label matrix. Because it is symmetric, the
lower triangle of the matrix can be ignored.

We illustrate this concept in Figure A.4, which represents the pairwise pseudo-label
matrix for a batch of 8 data points where {A,B,C,D} are labeled observations and
{E,F,G,H} are unlabeled observations. Since the ground truth labels of the known classes
are available, we can easily define the true pairwise relationships of the green triangle.
And we can then compare this ground-truth matrix with the result of our unsupervised
pseudo-labeling process. Thus, by varying the top k hyperparameter in Equation 3.6 (see
also Appendix A.1), we can find the value that minimizes the pseudo-labeling error on
the labeled data.

This approach relies on the assumption that known and novel classes share some sim-
ilarity in the distribution of their values. In other words, an optimal value of top k for
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the known classes should also produce good results for the novel classes. Note that this
approach can be used for all three pseudo-labeling methods (i.e. the λ threshold, the top
k of Equation 3.6 or the k in the RankStats method [17]).

To quickly find the optimal value of top k for the labeled data, we explore different
values using the golden section search (GSS). The GSS is a method to estimate the
extremum (minimum or maximum) of a function in an interval. If the function is uni-
modal 1, it is guaranteed to find that extremum. As it incrementally narrows the range of
the possible extremum, the GSS can be stopped either when the range is small enough or
after a certain number of steps.

Proving that a function is unimodal is difficult, so we will only attempt to explain intu-
itively why the pseudo-labeling error is unimodal. In Figure A.5, we picture the pseudo-
labeling error of Equation 3.6 according to the value of top k. When the value is too
small, the pairwise pseudo-labeling will “miss” relations that should have been positive.
And when it is too large there will be too many positive pairwise relations, some of which
will link points between different classes. In practice, we find that when the latent space is
reasonably well defined and the clusters are fairly separable, this unimodality holds true.
And we find experimentally that after 10 iterations of the GSS, the precision is sufficient.

Figure A.5 – Example of a pseudo-labeling error curve in which we search the k which
minimizes the error with the golden section search.

A.5.2 Experiments

In the experiments, we compare two estimation approaches. In the first, which was
described above, only the labeled-to-labeled relations (the green of Figure A.4) are used

1. e.g. with m the minimum, a unimodal function is monotonically decreasing for x ≤ m and mono-
tonically increasing for x ≥ m
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to compute pseudo-labeling error. And in the second, we also use labeled-to-unlabeled
relations (in blue). The unlabeled-to-unlabeled relations (in yellow) cannot be used as we
have no information available regarding their labels.

These two estimation approaches are evaluated on a total of 4 pseudo-labeling meth-
ods, which define positive pairwise relations in different ways (see Figure 2.10 for a re-
minder):

1. threshold - cosine similarities above a certain threshold (see Eq. 2.9 of Sec. 2.5.2).

2. top k per instance - the k largest cosine similarities of each instance (see Eq. 3.6
of Sec. 3.3.2).

3. top k total - the largest k cosine similarities in the upper triangle of the pairwise
cosine similarity matrix.

4. top k per inst. agreeing - if a pairwise relation is among the k largest for both
instances of the pair.

We compare the performance of TabularNCD when top k was optimized beforehand
(called here the baseline) to its performance when top k was estimated during training.
There are 2 estimation methods and 4 pseudo-labeling methods, so 1+2×4 = 9 approaches
are compared in total. The numerical results for each approach and dataset in terms of
clustering accuracy can be found in Table A.4. And in Figure A.6, the average rank of
each approach is displayed on a critical diagram.

Figure A.6 – Critical diagram of the ACC of TabularNCD with different pseudo-labeling
methods. The comparison is done using Nemenyi’s test, which is conducted post-hoc on
the results of a Friedman test.

The first thing to note is that none of the estimation approaches reliably outperform
the baseline. This could be explained by the fact that the hyperparameters were opti-
mized for a fixed value of the “top k per instance” pseudo-labeling method. Thus, the
comparison may be unfavorable to the other the other pseudo-labeling methods, as the
hyperparameters are not independant of the pseudo-labeling method. Nevertheless, the
“top k per instance” applied to both labeled and unlabeled data is almost on par with the
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baseline, with an average ACC of 81.7% against 82.4% for the baseline. This suggests that
if the hyperparameters were optimized using this estimation method, it could potentially
outperform the baseline.

Table A.4 – Test clustering accuracy (×100) averaged over 5 executions. Best results are
in bold.

Forest Human Letter Pendigits Satimage Census MNIST
baseline 93.4±0.1 99.4±0.3 71.6±2.4 84.9±0.8 92.0±1.8 49.5±0.4 85.8±5.4

la
b+

un
la

b threshold 91.0±3.1 88.5±13.0 60.7±5.4 88.1±1.7 76.1±3.4 52.2±4.5 21.1±0.0
top k total 86.2±13.6 96.7±0.5 60.9±1.5 85.1±0.8 76.1±10.2 48.5±2.9 50.2±9.0
top k per instance 93.2±0.4 98.8±0.2 65.3±3.3 85.3±0.7 92.9±0.8 45.1±1.1 91.2±4.9
top k per inst. agreeing 89.9±7.0 98.1±0.5 37.4±8.8 84.5±0.9 92.5±1.8 48.9±1.1 93.6±0.2

la
b

on
ly threshold 92.7±0.3 99.5±0.1 69.3±5.9 76.2±8.3 77.0±1.7 48.7±0.9 21.1±0.0

top k total 88.5±5.0 74.8±2.7 61.0±4.6 82.5±4.7 83.2±7.9 49.4±2.0 25.1±7.9
top k per instance 93.1±0.3 97.9±0.3 69.3±2.5 81.6±1.1 74.4±0.3 44.2±0.6 87.9±3.3
top k per inst. agreeing 92.8±0.4 85.9±8.0 65.5±5.2 81.6±2.8 74.5±0.6 45.4±2.1 85.5±1.7

Finally, in Figure A.7, we plot the value of the estimated value of top k and the
clustering accuracy during training of TabularNCD on the Pendigits dataset. We observe
that the estimated value starts at a low value (around 3%), indicating that only the very
close neighborhood of the points in the latent space belongs to the same class. However,
as the training progresses and the latent space is refined by TabularNCD, the value rises
since the neighborhood belonging to the same class as the observations expands.

(a) Estimated value of top k (b) Clustering accuracy

Figure A.7 – Estimated threshold and clustering during the training of TabularNCD on
the Pendigits dataset.
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Appendix B

SUPPLEMENTARY MATERIALS OF

CHAPTER 4

B.1 Pseudocode of the methodologies

In this section, we provide the pseudocode of the NCD k-means and NCD Spectral
Clustering methods proposed in Sections 4.3.2 and 4.3.3, respectively. With this addition,
we hope to improve the clarity of our research and make it easier to understand the
available open-source code.

Algorithm 2 NCD k-means
Require: Labeled set of known classes Dl = {X l, Y l}, unlabeled set of novel classes Du = {Xu},

number of clusters k.
1: Initialize: Ll and Lu empty lists of centroids for the known and novel classes

Phase 1 - Initialization of the centroids
2: // Initialize the centroids of known classes using the ground truth labels:
3: for each class c in Dl do
4: Let X l

c = {xl
i | xl

i ∈ X l, yl
i = c} be the subset of points belonging to class c

5: Calculate µl
c = 1

|Xl
c|
∑

xl
i∈Xl

c
xl

i the average point of class c

6: Add µl
c to the list Ll of centroids of the known classes

7: end for
8: // Initialize the centroids of the novel classes in Lu following k-means++:
9: while |Lu| < k do

10: For each point xu
i in Du, calculate the distance d(xu

i ) between xu
i and its nearest centroid

in Ll ∪ Lu

11: Choose the next centroid from the points in Du with probability proportional to d(xu
i )2

12: Add the chosen centroid to Lu

13: end while
Phase 2 - Follow the usual k-means algorithm
14: Make the centroids of Lu converge, using only the data of Du

15: Partition the points in Du using only the centroids of the novel classes in Lu
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Algorithm 3 NCD Spectral Clustering
Require: Labeled set of known classes Dl = {X l, Y l}, unlabeled set of novel classes Du = {Xu},

number of clusters k, number of hyperparameter optimization runs nopt.
Phase 1 - Determination of the optimal hyperparameters
1: Initialize ARIopt = 0 the best ARI obtained and {uopt = 0, σopt = 0} the optimal hyperpa-

rameters
2: for nopt random combinations of hyperparameters {urand, σrand} do
3: Compute the adjacency matrix A of the points in Dl ∪ Du, where Ai,j = exp(−∥xi −

xj∥22/(2σ2
rand))

4: Define the spectral embedding U as the first urand eigenvectors of the symmetric nor-
malized Laplacian of A

5: Partition all the points in U using k-means into k + C l classes
6: Calculate ARIrand, the clustering ARI of this k-mean only on the points of Dl, using the

ground truth labels Y l

7: if ARIrand > ARIopt then
8: ARIopt ← ARIrand, uopt ← urand and σopt ← σrand

9: end if
10: end for
Phase 2 - Clustering of the data of the novel classes
11: Get Uopt the spectral embedding of Dl ∪Du with the parameters {uopt, σopt}
12: Partition the points of Du embedded in Uopt into k clusters with k-means
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B.2 Additional result metrics

In addition to the ACC results discussed in Section ??, we present the NMI (Ta-
ble B.1) and ARI (Table B.2) for the NCD methods when the number of novel classes
Cu is unknown and has to be estimated. Our results are consistent with those shown in
Table 4.5: the PBN method largely outperforms its competitors in this realistic scenario.
In particular, PBN achieves an average NMI higher than the baseline, NCD SC and Tab-
ularNCD by 23.5%, 8.6% and 13.5% respectively. Similarly, the ARI is 24.5%, 12.4% and
17.5% higher on average.

Table B.1 – Test NMI averaged over 10 runs. With Cu estimated with the Silhouette
coefficient. Best results are in bold.

Dataset Baseline NCD SC TabularNCD PBN
Human 56.1±8.9 45.8±3.0 75.2±0.0 75.2±0.0
Letter 54.4±3.3 52.6±1.0 37.2±3.2 59.2±2.4
Pendigits 41.0±6.7 79.5±1.4 48.0±6.5 73.4±2.5
Census 59.7±0.6 33.5±1.0 42.6±1.5 60.6±0.5
m feat 50.0±3.9 71.9±2.9 44.8±2.1 79.1±3.3
Optdigits 28.5±6.0 77.3±2.0 93.1±2.0 84.9±2.0
CNAE-9 23.0±1.5 56.5±2.0 42.0±1.3 45.2±13.4
Average 44.7 59.6 54.7 68.2

Table B.2 – Test ARI averaged over 10 runs. With Cu estimated with the Silhouette
coefficient. Best results are in bold.

Dataset Baseline NCD SC TabularNCD PBN
Human 48.7±4.0 20.3±3.0 61.4±0.0 61.4±0.0
Letter 44.3±4.1 29.5±2.2 23.4±5.6 48.9±3.1
Pendigits 29.8±5.7 73.7±1.7 37.6±6.5 65.3±3.4
Census 42.6±3.7 23.0±3.8 26.7±0.8 35.5±0.2
m feat 40.9±5.3 64.1±4.5 21.5±0.2 79.1±4.2
Optdigits 16.9±6.5 75.6±3.6 94.1±2.7 84.4±4.4
CNAE-9 11.6±1.9 33.2±4.0 18.8±0.4 31.5±1.7
Average 33.5 45.6 40.5 58.0
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B.3 Hyperparameters details

The Table B.3 shows the hyperparameters found by the full procedure described in
Section 4.6. The type of distributions and value spaces explored for each hyperparameter
are given in the “Range” and “Distribution” columns. The variable d in the range of the
latent dim refers to the dimension of the points in the datasets.

Table B.3 – Hyperparameters of the methods found when Cu is estimated.

Parameter Range Distribution Human Letter Pendigits Census m features Optdigits CNAE-9

B
as

e-
lin

e latent dim [5, d] int uniform 560 9 9 30 34 42 569
lr [0.0001, 0.1] log uniform 0.000154 0.001333 0.005517 0.002021 0.000118 0.003330 0.000167
dropout [0.0, 0.6] uniform 0.168044 0.140095 0.052505 0.467836 0.564855 0.075180 0.257765

N
C

D
SC

smin ]0.0, 1.0[ uniform 0.29396 0.98137 0.86147 0.63534 0.70005 0.20412 0.83132
u [1, 200] int uniform 144 14 18 53 16 26 14

Ta
bu

la
rN

C
D

k neighbors [2, 100] int uniform 70 29 73 45 15 48 7
latent dim [5, d] int uniform 372 14 13 56 98 62 791
lr [0.0001, 0.1] log uniform 0.00961 0.00036 0.00464 0.00124 0.00840 0.00755 0.00129
dropout [0.0, 0.6] uniform 0.15436 0.06672 0.27823 0.27489 0.01384 0.09158 0.08220
top k [0.0, 1.0] uniform 0.61097 0.16517 0.46739 0.93956 0.59044 0.99586 0.94210
w1 [0.0, 1.0] uniform 0.04745 0.41367 0.13992 0.31247 0.30193 0.78532 0.19631
w2 [0.0, 1.0] uniform 0.70265 0.97095 0.60544 0.88265 0.83427 0.93356 0.64128

PB
N

latent dim [5, d] int uniform 504 22 12 13 172 53 579
lr [0.0001, 0.1] log uniform 0.00010 0.00058 0.00107 0.00211 0.00467 0.00036 0.00440
dropout [0.0, 0.6] uniform 0.50984 0.02745 0.01126 0.16777 0.23934 0.06606 0.08131
w [0.0, 1.0] uniform 0.46714 0.72241 0.10671 0.96086 0.67034 0.18917 0.69815

B.4 PBN coupled with Spectral Clustering

In Section 4.3.3, we proposed the Projection Based NCD (PBN) method where a
latent representation is first trained with a reconstruction loss on all the points, and a
classification loss on the labeled data. After training of the representation, the simple
k-means algorithm is used to cluster the unlabeled data of the novel classes. It was chosen
mainly for its fast execution time, as the idea behind PBN is to obtain a representation
where the novel classes are already well separated, so a sophisticated clustering algorithm
should not be needed. But naturally, any other unsupervised clustering method can be
employed and might improve the performance. Therefore, in this section, we investigate
the performance of PBN when k-means is replaced with Spectral Clustering (SC).

In these experiments, the number of novel classes Cu is considered to be known in
advance. In Table B.4, three variations of the PBN method are compared:
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— KM PBN: The model used in the article, where k-means is used in the latent
space.

— SC PBN default: k-means is directly replaced by SC with default hyperparam-
eters. The similarity smin is set to 0.6, and the number of components u of the
spectral embedding is set to the number of novel classes Cu, as is usually done in
the literature on Spectral Clustering.

— SC PBN full opt: Here, SC is also used for clustering, and its hyperparameters smin

and u are optimized together with PBN’s hyperparameters. So for each datasets, 6
hyperparameters are optimized (4 from PBN and 2 from SC).

Table B.4 – Test accuracy of the 3 variations of PBN averaged over 10 runs. Best results
are in bold.

Dataset KM PBN SC PBN SC PBN
default full opt

Human 76.7±1.8 80.2±0.7 76.6±6.1
Letter 62.4±2.0 64.4±2.8 50.9±2.7
Pendigits 82.8±0.6 82.0±2.2 79.3±4.0
Census 62.4±0.9 61.1±2.0 53.0±2.4
m feat 91.7±0.8 92.6±1.6 89.7±1.5
Optdigits 92.6±2.3 94.8±2.1 94.6±3.6
CNAE-9 72.6±4.6 73.5±6.1 68.0±4.2
Average 77.3 78.4 73.2

In Table B.4, it can be seen that using SC with its default hyperparameters results
in a clustering accuracy that is on average 1.1% higher than PBN coupled with k-means.
But when the hyperparameters of SC are also optimized, the average accuracy drops by
4.1% instead. This shows that, as expressed throughout this article, having too many hy-
perparameters in the context of the NCD problem makes it difficult to effectively transfer
the results on the known classes to the novel classes, and the hyperparameters tend to
overfit the known classes.

These results suggest that the best approach is to apply SC with its default hyper-
parameters to cluster the projection of the novel data. However, it must be noted that
the number of novel classes is used to define the number of components of the spectral
embedding. Thus, in the case where Cu is not considered to be known in advance and has
to be estimated, the performance may be degraded.
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B.5 Cluster Validity Indices results details

An estimate of the number of clusters in the 7 datasets considered in this paper can be
found in Table B.5. Among the 6 CVIs reported here, the Silhouette coefficient performed
the best. Furthermore, compared to the original feature space, its average estimation error
significantly decreased in the latent space, validating our approach. For some datasets,
the Davies-Bouldin index continued to decrease and the Dunn index continued to increase
as the number of clusters increased, resulting in very large overestimations. Note that the
estimates of the number of novel classes in Table B.5 are not needed in the experiments
of Section ??, since Algorithm 1 directly incorporates such estimates in the training
procedure. This table has only helped us to identify the most appropriate CVI for our
problem. The only exception is the TabularNCD method, which requires an a priori
estimation of the number of novel classes in the original feature space.

Table B.5 – An estimation of the number of novel classes with some CVIs in the latent
space of PBN.

Dataset Human Letter Pendigits Census m feat Optdigits CNAE-9
Ground truth 3 7 5 6 5 5 5

PBN latent space
Silhouette 2 8 5 3 5 5 5
CH 2 3 5 4 2 2 5
Dunn 2 3 98 3 2 95 2
KM ACC 1 2 3 3 5 6 1
Davies-B. 2 63 6 3 99 4 96
Elbow 9 14 10 7 16 13 9

Original feature space
Silhouette 2 45 5 3 2 9 2

B.6 NCD k-means centroids convergence

In this appendix, we aim to determine how to achieve the best performance with
NCD k-means. Specifically, after the centroid initialization described in Section 4.3.2, we
investigate: (1) whether it is more effective to update the centroids of both known and
novel classes, or only the centroids of novel classes; (2) whether the centroids need to be
updated using data from both known and novel classes, or only using data from novel
classes. The results are presented in Table B.6 and show that for 5 out of 7 datasets,
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the best results are obtained when only the centroids of the novel classes are updated on
the unlabeled data. Updating the centroids of the known classes always leads to worse
performance, as the class labels are not used in this process. Thus, the centroids of the
known classes run the risk of capturing data from the novel classes (and vice versa).

Table B.6 – ACC of NCD k-means averaged over 10 runs. Best results are in bold.

Dataset Converging the On unlabeled On labeled and
centroids... data only unlabeled data

Human novel only 75.9±0.0 77.4±0.0
known and novel - 75.1±0.5

Letter novel only 51.9±2.3 39.5±1.9
known and novel - 42.3±2.6

Pendigits novel only 81.7±0.0 72.7±0.9
known and novel - 75.3±4.0

Census novel only 50.4±1.1 50.4±4.8
known and novel - 44.6±8.3

m feat novel only 89.7±0.4 69.1±0.2
known and novel - 84.1±7.0

Optdigits novel only 94.2±0.0 70.8±7.8
known and novel - 74.0±14.7

CNAE-9 novel only 61.2±4.5 48.3±8.5
known and novel - 68.1±7.5
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Résumé : Cette thèse porte sur la découverte
de nouvelles classes dans le contexte de don-
nées tabulaires. Le problème de Novel Class
Discovery (NCD) consiste à extraire d’un en-
semble étiqueté de classes déjà connues des
connaissances qui permettront de partitionner
plus précisément un ensemble non étiqueté
de nouvelles classes. Bien que le NCD ait ré-
cemment fait l’objet d’une grande attention de
la part de la communauté, il est généralement
résolu sur des problèmes de vision par ordi-
nateur et parfois dans des conditions irréa-
listes. En particulier, le nombre de nouvelles
classes est souvent supposé étant connu à
l’avance, et leurs étiquettes sont parfois uti-
lisées pour ajuster les hyperparamètres. Les

méthodes qui reposent sur ces hypothèses ne
sont pas applicables aux scénarios du monde
réel. C’est pourquoi dans cette thèse nous
nous concentrons sur la résolution de décou-
verte dans les données tabulaires lorsqu’au-
cune connaissance a priori n’est disponible.
Les méthodes développées au cours de la
thèse sont appliquées à un cas réel : le diag-
nostic automatique des pannes dans les ré-
seaux de télécommunication, spécifiquement
les réseaux d’accès à fibre optique. Le but
est d’avoir une gestion efficace des pannes,
en particulier au stade du diagnostic lorsque
des pannes inconnues (nouvelles classes)
peuvent apparaitre.

Title: Novel Class Discovery in Tabular Data: an Application to Network Fault Diagnosis
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Abstract: This thesis focuses on Novel Class
Discovery (NCD) in the context of tabular data.
The Novel Class Discovery problem consists
in extracting knowledge from a labeled set
of already known classes in order to more
accurately partition an unlabeled set of new
classes. Although NCD has recently received
a lot of of attention from the community, it is
generally addressed in computer vision prob-
lems and sometimes under unrealistic con-
ditions. In particular, the number of novel
classes is often assumed to be known in ad-
vance, and their labels are sometimes used

to tune hyperparameters. Methods based on
these assumptions are not applicable to real-
world scenarios. Thus, in this thesis we fo-
cus on discovery resolution in tabular data
when no a priori knowledge is available. The
methods developed in the thesis are applied
to a real-world case: automatic fault diagno-
sis in telecommunication networks, with a fo-
cus on fiber optic access networks. The aim
is to achieve efficient fault management, par-
ticularly at the diagnosis stage when unknown
faults (new classes) may appear.
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