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ABSTRACTS

Résumé

La collaboration entre les différents acteurs de la cybersécurité est essentielle pour
lutter contre des attaques de plus en plus nombreuses et sophistiquées. Pourtant, les
organisations sont souvent réticentes à partager leurs données, par peur de compromettre
leur confidentialité ou leur avantage concurrentiel, et ce même si cela pourrait améliorer
leurs modèles de détection d’intrusions. L’apprentissage fédéré est un paradigme récent
en apprentissage automatique qui permet à des clients répartis d’entraîner un modèle
commun sans partager leurs données. Ces propriétés de collaboration et de confidentialité
en font un candidat idéal pour des applications sensibles comme la détection d’intrusions.
Si un certain nombre d’applications ont montré qu’il est, en effet, possible d’entraîner un
modèle unique sur des données réparties de détection d’intrusions, peu se sont intéressées
à l’aspect collaboratif de ce paradigme. Dans ce manuscrit, nous étudions l’utilisation de
l’apprentissage fédéré pour construire des systèmes collaboratifs de détection d’intrusions.
En particulier, nous explorons (i) l’impact de la qualité des données dans des contextes
hétérogènes, (ii) l’exposition à certains types d’attaques par empoisonnement, et (iii) des
outils et des méthodologies pour améliorer l’évaluation de ce type d’algorithmes.

Le reste de ce manuscrit est rédigé en anglais.
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Abstract

Collaboration between different cybersecurity actors is essential to fight against in-
creasingly sophisticated and numerous attacks. However, stakeholders are often reluctant
to share their data, fearing confidentiality and privacy issues and the loss of their compet-
itive advantage, although it would improve their intrusion detection models. Federated
learning is a recent paradigm in machine learning that allows distributed clients to train
a common model without sharing their data. These properties of collaboration and confi-
dentiality make it an ideal candidate for sensitive applications such as intrusion detection.
While several applications have shown that it is indeed possible to train a single model
on distributed intrusion detection data, few have focused on the collaborative aspect of
this paradigm. In this manuscript, we study the use of federated learning to build col-
laborative intrusion detection systems. In particular, we explore (i) the impact of data
quality in heterogeneous contexts, (ii) the exposure to certain types of poisoning attacks,
and (iii) tools and methodologies to improve the evaluation of these types of algorithms.
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Chapter 1

INTRODUCTION

Contents

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context and Motivation

Modern information security is made difficult by the scale, complexity, and heterogene-
ity of information systems. Because security by design in these conditions is a considerable
challenge, security agencies also recommend complementary measures. For instance, the
NIST Cybersecurity Framework [Nat24] suggests a five-stage lifecycle for managing risks
in information systems: identify, protect, detect, respond, and recover.

The detection and response stages can significantly benefit from the recent advances
in Artificial Intelligence (AI) and Machine Learning (ML), enabling the analysis of more
complex behaviors. Yet, because organizations usually face similar threats, including large-
scale campaigns such as Mirai in 2016 or NotPetya in 2017, they would greatly benefit
from sharing insights on the intrusions they have encountered, or any knowledge that
might help others to identify the incident before the damages are too important. Collab-
oration is further encouraged by regulation, for instance with the NIS [16] and NIS2 [22]
European directives. Sharing data is made even more important for training ML and Deep
Learning (DL) models, which require large amounts of data to be effective. Yet, stake-
holders are often reluctant to involve their organization in data-sharing practices, fearing
confidentiality and privacy breaches, reputation loss, or regulation non-compliance.

Federated Learning (FL) [McM+17] has emerged as a promising paradigm for col-
laborative ML, enabling model training across distributed data sources while preserving
privacy. Deployed in intrusion detection contexts, FL can help organizations to virtually
extend the size of their training sets, thus producing more accurate models. This archi-
tecture could also be used to disseminate information about esoteric attacks or devices
behavior owned locally, that would benefit to other organizations. FL also promises to
solve other drawbacks of ML-based Intrusion Detection Systems (IDSs), such as the need
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Chapter 1 – Introduction

for continuous retraining, the lack of adaptability to new threats, or the risk of local biases
due to a lack of heterogeneity in the training set.

Consequently, applying FL to IDS seems like a promising approach to collaboratively
improve the local detection of cyber threats. This is supported by the amount of recent
literature on the topic, which has grown exponentially since 2018 [Ism+24; Lav+22c].
Yet, novel challenges arise in this context, such as how to handle the heterogeneity of
data sources or how to deal with untrusted participants. But more importantly, what
makes applying FL to IDS different from other applications? And is FL even a suitable
framework for collaborative IDS?

This dissertation aims to investigate the potential of Federated Learning as a collab-
orative framework for Intrusion Detection System, which we will refer to as Federated
Intrusion Detection System (FIDS). The remaining of this manuscript will discuss the
state of the art in FL and IDS, some of the challenges that arise in this context, and the
potential solutions to address them.

1.1.1 Use case boundaries

While applying FL to IDS can already be considered as a restricted scope, the IDS
literature contains a wide variety of use cases, each coming with its own set of specificities
and constraints. For instance, IDSs can be deployed at the network level, the host level,
or the application level. Likewise, objectives and constraints may vary depending on the
context and the type of devices involved: Internet of Things (IoT), Industrial Control Sys-
tem (ICS), or traditional information systems. Among the most common combinations,
Network-based Intrusion Detection System (NIDS) on Information Technology (IT) net-
work data stands out, notably in terms of implemented algorithms and available datasets.
This is particularly important for evaluation purposes, as it makes it easier to compare
the performance of different approaches.

Additionally, this use case provides a realistic application for FIDSs, where the actors
are organizations that own or oversee an information system, and that are interested in
improving their local detection. This is typically referred to as Collaborative Intrusion
Detection System (CIDS). For instance, Security Operations Centers (SOCs) monitor the
network traffic of their customers for security purposes, and cannot afford to share this
data with other organizations. Two SOCs could, however, share insights on the threats
they have encountered, or the behaviors they have observed, without sharing the raw
data. Existing structures, such as Information Sharing and Analysis Centers (ISACs) or
inter-SOCs could benefit from such a framework, as they already have a trust relationship
with their members.

Consequently, this dissertation will focus on the use case of building collaborative
NIDSs by leveraging FL on IT network data. Note however, that the results presented in

2
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Figure 1.1 – Illustration of FL in a CIDS use case.

this manuscript could theoretically be extended to other applications. Figure 1.1 illustrates
our use case.

1.2 Research Objectives

Overall, this work aims to answer the following: Can FL serve as a trustable knowledge-
sharing framework for collaboratively improving intrusion detection mechanisms? Based
on the context and motivation laid out in the previous section, we formulize the general
objectives of this dissertation as a set of research questions. The questions stated hereafter
are intended to be completed and extended in the following chapters, some of which
introduce their own research questions.

Specifically, we globally focus on the following research questions:

RQ1. What makes applying FL to IDSs specific?

RQ2. Can FL be used to federate IDSs across heterogeneous data sources?

RQ3. How does FL handle malicious contributions in a federated IDS?

RQ4. How can one assess and ensure the trustworthiness of the other participants’ con-
tributions?

3
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1.3 Contributions

We summarize the contributions of this dissertation as follows:

1. The first Systematic Literature Review (SLR) in literature that study the applica-
tion of FL to IDS. We propose a reference architecture and a taxonomy for structur-
ing the domain, supported by quantitative and qualitative analyses of the existing
literature.

2. An illustrative study highlighting the challenges of heterogeneity and malicious con-
tributions in FIDS.

3. An extensible evaluation framework for FIDSs called Eiffel, leveraging popular open
source libraries like Flower [Beu+20] and Hydra [Yad19], and a set of malicious
clients simulators.

4. A systematic analysis of the impact of label-flipping attacks on an FL-based collab-
orative IDS, leveraging the aforementioned evaluation framework.

5. A pioneer FL architecture for collaborative IDS that handles malicious contribu-
tions in heterogeneous environments, leveraging a cross-evaluation mechanism and
a reputation system.

6. A methodology allowing to generate network topologies with heterogeneity con-
straints, and laying down the foundations toward a more realistic evaluation of
FIDS and distributed networking telemetry experiments in general.

1.4 Outline

Apart from the introduction and conclusion chapters, the manuscript is organized in
two parts: we define FIDSs and identify their limitations in Part I, before quantifying
their limitations and providing solutions to address them in Part II.

Part I: The first part delves into the application of FL to IDS. After layout out the
necessary background in Chapter 2, we present the state of the art in FIDS in Chapter 3.
This chapter notably presents the results of our SLR on the topic, and focus on the related
challenges and research opportunities. Chapter 4 then closes this first part by highlighting
the main challenges in FIDS using toy examples.

Part II: The second part presents our contributions to addressing the limitations of
FIDS. Chapter 5 introduces our evaluation framework, and systematically analyses the
impact of label-flipping attacks on FIDS, raising questions on the detection of malicious
contributions in not Independent and Identically Distributed (NIID) settings. To tackle

4



1.5. Publications

these issue, Chapter 6 presents a pioneer FL architecture for FIDS that ensures the qual-
ity of incoming contributions in heterogeneous environments, with applications to the
detections of malicious behaviors. Finally, Chapter 7 introduces a practical method to
generate network topologies based on the composition of sub-topologies, and lays down
the foundations for further studies on distributed intrusion detection.

1.5 Publications

Journal articles

[Léo+22b] Léo Lavaur, Marc-Oliver Pahl, Yann Busnel, and Fabien Autrel, « The Evolution
of Federated Learning-based Intrusion Detection and Mitigation: A Survey », in:
IEEE Transactions on Network and Service Management, Special Issue on Network
Security Management (June 2022).

International conference papers

[Léo+24] Léo Lavaur, Pierre-Marie Lechevalier, Yann Busnel, Romaric Ludinard, Géral-
dine Texier, and Marc-Oliver Pahl, « RADAR: Model Quality Assessment for
Reputation-aware Collaborative Federated Learning », in: Proceedings of the 43rd
International Symposium on Reliable Distributed Systems (SRDS), Charlotte, NC,
USA, Sept. 2024.

[LBA24a] Léo Lavaur, Yann Busnel, and Fabien Autrel, « Systematic Analysis of Label-
flipping Attacks against Federated Learning in Collaborative Intrusion Detection
Systems », in: Proceedings of the 19th International Conference on Availability, Re-
liability and Security (ARES), Workshop on Behavioral Authentication for System
Security (BASS), Vienna, Austria, Aug. 2024.

[BL24] Yann Busnel and Léo Lavaur, « Tutorial: Federated Learning × Security for Net-
work Monitoring », in: Proceedings of the 44th International Conference on Dis-
tributed Computing Systems (ICDCS), Jersey City, NJ, USA, July 2024.

[LBA24b] Léo Lavaur, Yann Busnel, and Fabien Autrel, « Demo: Highlighting the Limits
of Federated Learning in Intrusion Detection », in: Proceedings of the 44th Inter-
national Conference on Distributed Computing Systems (ICDCS), Jersey City, NJ,
USA, July 2024.

National conference papers

[Léo+23] Léo Lavaur, Pierre-Marie Lechevalier, Yann Busnel, Marc-Oliver Pahl, and Fabien
Autrel, « Metrics and Strategies for Adversarial Mitigation in Federated Learning-
based Intrusion Detection », in: Rendez-vous de la Recherche et de l’Enseignement
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de la Sécurité des Systèmes d’Information (RESSI), Neuvy-sur-Barangeon, France,
May 2023.

[Léo+22a] Léo Lavaur, Benjamin Coste, Marc-Oliver Pahl, Yann Busnel, and Fabien Autrel,
« Federated Learning as Enabler for Collaborative Security between Not Fully-
Trusting Distributed Parties », in: Proceedings of the 29th Computer & Electronics
Security Application Rendezvous (C&ESAR), Rennes, France, Oct. 2022.

[Léo+21] Léo Lavaur, Marc-Oliver Pahl, Yann Busnel, and Fabien Autrel, « Federated
Security Approaches for IT and OT », in: Journée thématique du GT sur la Sécurité
des Systèmes, Logiciels et Réseaux (GT-SSLR), May 2021.

Tutorials

[BL23a] Yann Busnel and Léo Lavaur, « Federated Learning × Security for Network Man-
agement », 15th International Conference on Network of the Future (NoF), Izmir,
Turkey, Sept. 2023.

[BL23b] Yann Busnel and Léo Lavaur, « L’interêt de l’apprentissage fédéré dans le cadre
de la détection d’incidents sur les réseaux et/ou systèmes à grande échelle », Ecole
de Printemps Recherche de l’EUR CyberSchool, Rennes, France, Apr. 2023.
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2.1 Introduction

This chapter provides the necessary background and preliminaries to navigate the
rest of the manuscript. We start by laying out the foundations of Machine Learning
(ML) for intrusion detection in Section 2.2, followed by the implications of scaling up to
Collaborative Intrusion Detection Systems (CIDSs) in Section 2.3, enumerating along the
way the challenges that motivate the use of Federated Learning (FL). We then introduce
the fundamentals of FL in Section 2.4, focusing on the FedAvg algorithm and the notations
used throughout the thesis. Finally, we discuss the threats against FL in Section 2.4.4,
with a particular focus on data poisoning attacks.

2.2 Intrusion Detection

Organizations long relied on signature-based Intrusion Detection Systems (IDSs) to
detect intrusions. These systems leverage a database of known attack patterns (i.e., sig-
natures) to identify malicious activities. Listing 2.1 displays an example of a signature for
detecting the Heartbleed vulnerability using Suricata [The], a popular open-source IDS.
This signature relies on dedicated code inside Suricata’s engine that required extensive
human intervention to develop. It is consequently specific to Suricata and remains diffi-
cult to interpret and adapt. Such limitations motivated the study of ML for automatically
extracting patterns from data, enabling the development of more flexible and adaptive
IDSs.

IDSs can be broadly classified into two categories: misuse detection and anomaly de-
tection. Misuse detection refers to the identification of known attack patterns. Signature-

1. https://github.com/OISF/suricata/blob/master/rules/tls-events.rules
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alert tls any any -> any any (msg:" SURICATA TLS overflow heartbeat
encountered , possible exploit attempt (heartbleed)"; flow:established;
app -layer -event:tls.overflow_heartbeat_message; flowint:tls.anomaly.
count ,+,1; classtype:protocol -command -decode; reference:cve ,2014 -0160;
sid :2230012; rev :1;)

Listing 2.1 – Example of a Suricata signature for detecting the Heartbleed vulnerability 1.

based IDSs fall into this category. On the other hand, anomaly detection compares a
normal profile (trained on nominal traffic) with observed events to determine if they are
malicious [Gar+09]. This approach is de facto more efficient for detecting novel attacks,
but it is also more prone to false positives.

An analogy can be drawn between this classification and the two main paradigms of
ML: supervised and unsupervised learning. In supervised learning, the model is trained on
labeled data, where each sample is associated with a label. Labels can be classes (binary
or multi-class classification) or continuous values (regression). Either way, the model’s
objective is to predict the label of unseen samples. In unsupervised learning, no labels are
provided. The model’s goal is to find patterns in the data, such as clusters or outliers.
In anomaly detection, the model is trained on normal data only, and its objective is to
detect deviations from this normal profile.

Multiple ML algorithms have been applied to intrusion detection, including Support
Vector Machines (SVMs), Random Forests (RFs), and Artificial Neural Networks (ANNs).
However, the rise of Deep Learning (DL) has led to a significant improvement in the
performance of IDSs. DL is a subfield of ML that focuses on learning representations of
data through the use of neural networks. In the following sections, we introduce the basics
of DL for intrusion detection, review the existing paradigms, and discuss the metrics and
datasets used to evaluate these systems.

2.2.1 Deep Learning for Intrusion Detection

DL present several advantages over traditional ML algorithms. Most notably, they
automatically learn features from the data, reducing the need for manual feature engi-
neering. This is particularly useful in the context of intrusion detection, where the features
are often complex, interdependent, and of unequal relevance. The training data can range
from network traffic to system logs depending on the type of mechanism used: network-
based, host-based, or hybrid. Yet, Network-based Intrusion Detection Systems (NIDSs)
greatly outnumber other approaches in the literature, due the availability of network
traffic datasets and the ease of deployment.

Most of the research on NIDS use a representation known as unidirectional network
flows or netflows, where a flow is defined as a sequence of packets sharing the same source

10
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Figure 2.1 – Taxonomy of the main DL paradigms.

and destination addresses, ports, and protocol. Various features can be extracted from
these flows, such as the number of packets, bytes, and the duration of the flow. More
details on the features used in NIDS can be found in Section 2.2.2. More generally, the
dataset D of size n is represented as a set of variables Xi = 〈x1, x2, . . . , xm〉, i ∈ J1, nK,
where xj corresponds to the j-th feature, and m to the number of features.

Main DL Paradigms

Because of their layered architecture, Deep Neural Networks (DNNs) can adopt differ-
ent forms depending on the type of input data and the task at hand. Figure 2.1 presents the
major families of DL algorithms: supervised, unsupervised, and semi-supervised learning,
and finally reinforcement learning. While works exist on the application of reinforcement
learning to intrusion detection [He+24], they remain rare in the literature. Consequently,
we focus on supervised and unsupervised learning in this thesis. This section provides an
overview of these paradigms, and define for each the learning problem in the context of
intrusion detection.

Supervised Learning Supervised learning is the most common approach in ML, and
refers to the training of a model on labeled data. In the context of IDSs, practitioners
usually seek to classify network flows into two classes (benign and malicious), which is a
binary classification task. Consequently, the dataset D of size n associates each sample Xi

with a label yi ∈ {0, 1}. The model is trained to predict the label ŷ of unseen samples. To
do so, we generally use a Stochastic Gradient Descent (SGD)-based optimizer to minimize

11
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Figure 2.2 – Workflow of a Multilayer Perceptron (MLP) for intrusion detection.

a loss function
L(w,Xi, yi), i ∈ J1, nK, (2.1)

where w represent the model’s parameters. After computing the gradients ∇L(w,Xi, yi),
they can update their model as

wt+1 ← wt − η∇L(w,Xi, yi), (2.2)

where η is the learning rate, wt the model’s parameters at iteration t, and wt+1 the new
parameters resulting from the update. The last layer usually uses softmax or sigmoid

activation functions to output a probability of being in a class (normal or abnormal).
In the case of multi-class classification, the label is one-hot encoded 2 into a vector Y
of size c (the number of classes), and the softmax function is used. Depending on the
available features and the learning objective, various architectures can be used, such as
Convolutional Neural Networks (CNNs) for high-dimensional data, or Recurrent Neural
Networks (RNNs) for sequential data. Multilayer Perceptrons (MLPs) are the simplest
and most common architecture used in IDS, and the one that we focus on in this thesis,
although most concepts can be extended to other architectures.

2. One-hot encoding is a binary representation of categorical variables, where each category is mapped
to a binary vector. It is typically used in ML to represent categorical data, such as the protocol type in
netflows.
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Figure 2.3 – Workflow of a Stacked Autoencoder (SAE) for intrusion detection.

One of the main challenges in supervised learning is the availability of labeled data and
its quality. In the context of IDS, obtaining enough labeled data is particularly challenging,
as labeling requires expert knowledge and is time-consuming. Moreover, the class distri-
bution is often unbalanced, with benign traffic being much more frequent than anomalies
in the testing set [CBK09]. This issue is aggravated in siloed configurations, i.e., in which
models can only be trained on locally-collected data. This can lead to models that are
skewed by the unbalanced class distribution [Cam+22].

Challenge 1. Locally collected data is often unbalanced, leading to representation biases
and overall lower performance.

Unsupervised Learning To circumvent the need for labeled data, unsupervised learn-
ing can be used. Unsupervised ML algorithms are typically used for clustering or outlier
detection. The DL variants are rather used for feature extraction and dimensionality re-
duction, or anomaly detection. To detect anomalies, Autoencoders (AEs) can be trained
on normal data only, and then used to see whether the reconstruction error of a new
sample is above a certain threshold. This builds on the assumption that (i) benign traf-
fic is much more frequent that anomalies in the testing set [CBK09]; and (ii) abnormal
packets are statistically different from normal ones. In this scenario, the training dataset
D is composed of benign (i.e., normal) samples only and no associated label. Given
X = 〈Xi|i ∈ J1, nK〉, the model is trained to minimize the reconstruction error L(X , X̂ ),
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where X̂ is the output of the AE. A typical error function for this task is the Mean
Squared Error (MSE), expressed as:

MSE = 1
n

n∑
i=1

(
Xi − X̂i

)2
. (2.3)

Then the model can be updated using the same process described in Equation (2.2). Dif-
ferent architectures of AEs can be used, such as Stacked Autoencoders (SAEs) to improve
the quality of the extracted features, or Denoising Autoencoders (DAEs) to improve the
robustness of the model [GG20]. To detect anomalies, the reconstruction error of a new
sample is compared to a threshold θ defined during the training phase on validation data.
A high reconstruction error indicates that the considered samples is too far from the
training data, and can indicate an anomaly. The performance of the combination of the
AE and the threshold can then be evaluated using a labelled test set.

While unsupervised learning is particularly useful for detecting novel attacks, it is also
more prone to misclassification. Local data in the real-world is likely to be collected on
devices with little variance, e.g. same brand, same protocols, or use cases. This can lead
to a normal profile that is too specific to the local environment, and thus would raise
alerts as soon as a change occurs [LL19].

Challenge 2. Local data is specific to the environment, increasing the risk of false posi-
tives when changes occur.

Semi-supervised Learning Semi-supervised learning is a hybrid approach where only
a small part of the training data is labeled. This approach is particularly useful in the
context of IDS, where labeled data is scarce. A common strategy is to train an AE on
the full dataset to learn the optimal representation of the data, and use the encoder (see
Figure 2.3) part with a classifier to predict the label of the samples [APB20]. Other known
model architectures for semi-supervised learning include Deep Belief Networks (DBNs),
where multiple layers of Restricted Boltzmann Machines (RBMs) are stacked to form a
deep network that extracts features from the data. The model is then fine-tuned using
the labeled data for classification purposes.

2.2.2 Datasets

Datasets are essential in intrusion detection, as they allow researchers to evaluate and
compare their solutions. This is even more critical when leveraging ML and DL techniques,
as the performance of these models is highly dependent on the quality and quantity
of the training data. Until the mid-2010s, the most common dataset used for intrusion
detection was the KDD’99 dataset [Sig99], built for the KDD Cup 1999 competition
using the DARPA 1998 dataset. Tavallaee et al. [Tav+09] published an updated version

14
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Table 2.1 – Most common feature-based datasets for NIDSs.

Dataset Year Use case Feature extraction Features Records (train/test) a Attack classes Reference
KDD Cup 99 1999 Military IT Network Bro-IDS 41 4,898,431/311,029 4 [Sig99]
NSL-KDD 2009 Military IT Network See KDD’99 41 125,973/22,544 4 [Tav+09]
UNSW-NB15 2015 Company IT Network Bro, Argus, & Custom 49 2,540,044 10 [MS15]
CIDDS-001 2017 Small Business NetFlow v9 10 31,959,175 5 [Rin+17a]
CIDDS-002 2017 Small Business NetFlow v9 10 16,161,183 5 [Rin+17b]
CICIDS2017 2017 Company IT Network CICFlowMeter 80 2,830,743 9 [SHG18]
CICIDS2018 2018 Large-scale IT Network CICFlowMeter 80 8,284,254 7 [SHG18]
Bot-IoT 2019 Botnets and IoT Argus & Custom 14 72,000,000+ 4 [Kor+19]
ToN_IoT 2021 Cross-layer Infrastructure Zeek & Custom 44 461,043 9 [Mou21]
Edge-IIoTset 2022 Cross-layer Infrastructure Zeek & TShark 61 181,156/30,440 15 [Fer+22]

a. Some datasets do not have a recommended train/test split. In such cases, only the total number of
records is provided.

of the dataset, called NSL-KDD, which removes duplicates and corrects some errors in the
original dataset. However, NSL-KDD is still based on the original DARPA 1998 dataset,
and is considered outdated by today’s standards.

Since 2015 with the publication of the UNSW-NB15 dataset [MS15], new datasets
have been developed to address the limitations of the KDD’99 and NSL-KDD datasets,
such as the lack of realism 3 of the generated traffic, the lack of attack diversity, and the
scale of the experiments. Table 2.1 presents the most common feature-based datasets for
NIDSs, along with their characteristics. Two teams have been particularly active in this
area: the Intelligent Security Group (ISG) [Kor+19; Mou21; MS15] at the University of
New South Wales, Australia, and the Canadian Institute for Cybersecurity (CIC) [SHG18]
at the University of New Brunswick, Canada. They brought the most used datasets in
the field in recent years, UNWS-NB15 and CICIDS2017, respectively.

Provided features Because most of the datasets presented in Table 2.1 are made to
train and evaluate MLs models, they rely on a set of features extracted from the network
traffic. Some also include the original network captures (PCAPs) for further analysis, or
complementary system logs for correlation purposes. Two non-exclusive approaches can
be used to produce these features: feature extraction and feature selection.

Feature extraction: It refers to the computation of numerical characteristics after
the data collection; e.g., Inter-Arrival Time (IAT) or number of packets per device
in the context of traffic monitoring. Most modern dataset use existing IDSs to
extract these features, such as Zeek 4 or Argus 5. The resulting data are network
flows, aggregating the information of multiple packets into a single record.

Feature selection: It relates to the selection of the relevant features for a given task.

3. Only in regard to modern networks. Indeed, the DARPA 1998 dataset simulates multiple worksta-
tions in a military environment, using the US Air Force Research Laboratory’s testbed. The technologies
deployed where representative of the state of the art at the time.

4. Formerly known as Bro, available at: https://www.zeek.org/
5. Available at: https://openargus.org/argus-ids
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This is particularly useful in the context of ML, where irrelevant or redundant fea-
tures can degrade the performance of the model. For instance, Edge-IIoTset [Fer+22]
contains 61 features, selected from a pool of 1176 using feature correlation.

The choice of features is critical for the performance of the model, although DL mod-
els make this process less relevant due to their ability to filter out irrelevant features.
Yet, because each dataset comes with its own set of features, it is difficult to compare
the performance of models across datasets. Recently, Sarhan, Layeghy, and Portmann
[SLP22] proposed a standardized feature set for intrusion detection based on NetFlow
V9 [Cla04] format. They used nProbe 6 to convert four known IDS datasets to this for-
mat: i.e., UNSW-NB15 [MS15], Bot-IoT [Kor+19], ToN_IoT [Mou21], and CSE-CIC-
IDS2018 [SHG18]. The converted datasets (that the author call NF-V2) contain 43 fea-
tures extracted from flow characteristics, such as duration or packet length, and some
others that are protocols-specific. The uniform feature set across datasets allows the eval-
uation of ML models across independently generated datasets.

Use cases Until 2017 included, most datasets aim at simulating a typical network en-
vironment, such as deployed in an organization. This is the case for KDD’99, NSL-KDD,
UNSW-NB15, and CIDDS 1 and 2, and CICIDS2017. Since, the focus progressively shifts
towards more specific use cases, notably with the generalization of Internet of Things
(IoT) devices. These datasets include protocols that are not present in traditional IT-
oriented networks, such as MQTT or CoAP. This is the case for Bot-IoT [Kor+19],
ToN_IoT [Mou21], and Edge-IIoTset [Fer+22].

2.2.3 Metrics

Most research on ML for intrusion detection relies on the same set of metrics to assess,
validate, and compare their solutions [BG16; Cha+19; Far+20]. Most of these metrics are
derived from the confusion matrix (see Table 2.2), which is a table that summarizes the
performance of a classification model along the different classes. To compute the confusion
matrix, the model’s predictions (ŷ) are compared to the true labels (y, the ground truth) of
the samples. All the metrics presented in this section are defined for binary classification,
but can be extended to multi-class classification [BG16].

(1) Accuracy represents the proportion of correctly classified items. It is the ability for
the system to correctly distinguish abnormal traffic from legitimate one.

Accuracy = TP + TN
P + N

6. Available at: https://www.ntop.org/products/traffic-analysis/nprobe/
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Predicted condition

Total population
= P + N

Positive (PP) Negative (PN)

Positive (P) True Positive (TP) False Negative (FN)
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Negative (N) False Positive (FP) True Negative (TN)

Table 2.2 – Confusion matrix for binary classification.

(2) Precision, or Positive Predictive Value (PPV), is the proportion of correct positive
cases among all the cases that have been categorized as positive.

Precision = TP
TP + FP

(3) Recall, or True Positives Rate (TPR) represents the proportion of true positive cases
that have been correctly categorized.

Recall = TP
P = TP

TP + FN

(4) Specificity, or True Negative Rate (TNR), is the proportion of negative cases that
has been correctly categorized.

Specificity = TN
N = TN

TN + FP

(5) Fallout, or False Positives Rate (FPR), represents the proportion of the positive
cases that should have been categorized as negative. A high FPR often requires
human intervention after the classification task to filter out the false positive.

Fallout = FP
N = FP

TN + FP

(6) Missrate, or False Negative Rate (FNR), relates to the proportion of positive cases
that have not been categorized as such. In the context of IDSs, it represents an
attack that has been missed by the system. Thus, it is a critical metric for this use
case.

Missrate = FN
P = FN

TP + FN
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(7) F1-Score is the harmonic mean of precision and recall. It is often used to measure
ML algorithm, but is also criticized because of the equal importance it gives to both
precision and recall [HC18].

F1 = 2× Precision× Recall
Precision + Recall

(8) Mathew Correlation Coefficient (MCC) is an adaptation of the Phi (φ) coefficient to
confusion matrices. While being mathematically identical, the term is often preferred
by the ML community. The MCC has significant advantages over the other metrics,
as it covers all four categories of the confusion matrix [CJ20]. Thus, a high score
can only be obtained with high TP and TN, and low FP and FN.

MCC = TP× TN− FP× FN√
(TP + FP)(TN + FN) · P ·N

2.3 Collaboration in Intrusion Detection

The topic of collaboration in intrusion detection is rather old, with several surveys
and reviews available in the literature [EO11; FS16; LMK22; Men+15; VKF15; ZLK10],
and the oldest references dating back to the early 1990s [Sna+92]. In this section, we
present the different types of collaboration in intrusion detection, and discuss some of
the challenges that they face. A first distinction can be made between their objectives,
although they are not mutually exclusive: (i) share results to correlate alerts and detect
attacks at a global scale, or (ii) share knowledge to improve the detection capabilities of
local systems.

These objectives also depend on the scale of the collaboration. The first case mostly
refers to different probes, or sensors, that monitor the same infrastructure, and share
their results to correlate alerts and detect attacks at the infrastructure level. In the sec-
ond case, which is sometimes referred to as a Collaborative Intrusion Detection Network
(CIDN) [LMK22], collaboration usually happens among different organizations or enti-
ties that monitor infrastructures. In this thesis, we will focus on the latter, as it is more
relevant to the FL context (see Section 2.4).

2.3.1 The different topologies

The aforementioned literature identify two main types of topologies for CIDSs: central-
ized and decentralized. The definitions of these topologies are not always consistent across
the literature, especially between the terms decentralized, hierarchical, and distributed. For
instance, Zhou, Leckie, and Karunasekera [ZLK10] consider a decentralized system as a
system where each node is autonomous and can make decisions independently, while this
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(a) Centralized (b) Hybrid (c) Hierarchical (d) Fully decentralized

Figure 2.4 – Different topologies for collaborative intrusion detection systems. Nodes
are in red and marked as N , while servers are in blue and marked as S. Arrows represent
connections between entities.

definition matches the description of a distributed architecture in the work of Li, Meng,
and Kwok [LMK22].

In this manuscript, we will use the definitions illustrated in Figure 2.4. It distinguishes
two types of roles: nodes (N) and servers (S). A node is a device that captures data,
although it can also execute complementary tasks like preprocessing, feature extraction,
or traffic analysis. A server is a device that aggregates the data from the nodes and
distributes instructions to them, as well as updates for the local detection algorithm. The
different topologies are defined as follows, including different levels of decentralization:

Centralized. In a centralized architecture, a single server centralizes knowledge and
distributes instructions to the nodes.

Hybrid. In a hybrid architecture, multiple servers coexist. Each server is responsible
for a subset of the nodes, and they can share information between them. There are
no central server per se, but the roles of server and node still exist.

Hierarchical. A hierarchical architecture is a hybrid architecture where the servers
are organized in a tree-like structure. Each server is responsible for a subset of
the nodes, and they can forward information to their parent. Likewise, parents can
distribute instructions and updates to their children so that they are disseminated
throughout the hierarchy.

Fully decentralized. In a fully decentralized architecture, each node is autonomous
and can make decisions independently. Both roles of nodes and servers coexist in
the same entity. There are no servers anymore, and the node share information over
a peer-to-peer network.

Figure 2.4 illustrates these topologies. To summarize, the main difference between
the different topologies is the level of autonomy of the nodes and the centralization of
the knowledge. In the centralized architecture (Figure 2.4a), all nodes are connected to
a single server. We can refer to an architecture as decentralized as soon as there are no
single server overseeing all the nodes. Figures 2.4b to 2.4d show different examples of a
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decentralized architecture. The arrows between the different entities represent information
exchange, although the nature of these exchanges can vary depending on the direction.
An arrow displayed as N → S can represent collected data, generated alerts, or requests
for updates. An arrow displayed as S → N can represent instructions or updates for the
local detection algorithm or database. The term distributed refers less to the way the
system is organized, and more to how the tasks are executed. In a distributed system, the
tasks (e.g., detection, data processing, ML model training) are executed simultaneously
on different nodes, which can be organized in any of the aforementioned topologies.

2.3.2 Challenges in Collaborative Intrusion Detection

Collaborative intrusion detection faces challenges, including the Single Point-of-Failure
(SPoF) in a centralized architecture. If the analysis is performed remotely, like in a Se-
curity Operations Center (SOC) monitoring its consumers’ infrastructures, a failure on
the central server would hinder detection. Fortunately, in knowledge-sharing scenarios,
detection is (at least partially) performed locally, reducing the impact of a centralized
failure. Nonetheless, collaboration still relies on the availability of the central server.

Challenge 3. CIDSs typically rely on a central server for coordination and updates,
which represent a Single Point-of-Failure (SPoF).

Another challenge in collaborative intrusion detection is the latency induced by prop-
agating information over the network, especially under load. The ENISA (the European
Union’s agency for cybersecurity) defines the actionability of Threat Intelligence (TI) as
the fulfillment of five criteria: relevance, digestibility, accuracy, completeness, and time-
liness [ENI14]. It is the supporting architecture that provides the latter. Because low-
latency is crucial for actionable alerts locally, centrally analyzing the data increases the
time between the event and its detection.

Challenge 4. Centralized detection increases latency, which makes the shared knowledge
less actionable.

Further, sharing data can represent a privacy risk for a company, as the data rele-
vant for intrusion detection is likely to contain sensitive information [ZLK10]. Exposed
information might reveal relevant insights to a competitor or an attacker.

Challenge 5. CIDSs can expose sensitive information about the internals of a company.

A lot of other factors can impede collaboration. For instance, stakeholders are often
reluctant to share their information, fearing confidentiality and privacy issues (see Chal-
lenge 5), but most importantly the reputation loss that could result from a breach [PZ19].
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Cultural and language barriers can negatively affect the accuracy of the shared infor-
mation, even though international collaboration is push by regulation, such as the NIS
directives in Europe [16; 22]. Finally, the balance between anonymity and trust must be
taken into consideration to protect the participants without sacrificing the quality of the
information [ML15].

2.3.3 CIDS with Machine Learning

Before the advent of FL, the literature on CIDSs leveraging ML, or more generally
data-mining techniques, was scarce [FS16]. Existing solutions were mostly based sharing
alerts for correlation or rules for misuse detection, or rely on a central server to perform
learning tasks. Nonetheless, a few works leveraged distributed learning techniques that
remind of FL, notably with the constraint of not being able to share data between the
nodes. For instance, Folino, Pizzuti, and Spezzano [FPS10] proposed a framework allow-
ing distributed IDS nodes to train and exchange classifiers, before aggregating to build
ensemble models. However, most of the aforementioned reviews still identify data-mining
and ML techniques as a promising direction for CIDSs.

2.4 Fundamentals of Federated Learning

Introduced in 2016 by McMahan et al. [McM+17], Federated Learning (FL) changes
the usual ML paradigm where distributed data is centrally collected, curated, and pro-
cessed on a dedicated server. Instead, FL respects the decentralized nature of the data and
rather brings model training to the data sources. By alternating between training on local
data and aggregating model updates, FL enables the training of a shared model without
the need to share the data itself. This approach reveals itself as a promising solution to
multiple challenges faced by traditional ML systems. The two main ones are:

1. training models over massively distributed data sources, such as smartphones, wear-
ables, or IoT devices;

2. training models on sensitive data, such as medical records or financial transactions,
while preserving privacy and confidentiality.

Although the term Federated Learning was introduced by McMahan et al. [McM+17]
to describe their approach focusing on distributed mobile devices, the literature has sig-
nificantly broadened the definition of FL to encompass a wide range of privacy-preserving
distributed learning techniques. Therefore, we prefer the definition introduced in 2021 by
Kairouz et al. [Kai+21] and reiterated in Definition 2.1. The following sections introduce
the fundamentals of FL, with a focus on the FedAvg algorithm, the different types of FL,
and the question of data distribution. Finally, we succinctly discuss the threats against

21



Part I, Chapter 2 – Background and Preliminaries

FL, with a focus on data poisoning attacks. Table 2.3 summarizes the notations used in
this section, and throughout the manuscript.

Definition 2.1: Federated Learning

Federated Learning is a machine learning setting where multiple entities
(clients) collaborate in solving a machine learning problem, under the co-
ordination of a central server or service provider. Each clients raw data is
stored locally and not exchanged or transferred; instead, focused updates
intended for immediate aggregation are used to achieve the learning objec-
tive. – Kairouz et al. [Kai+21]

Formally, FL seeks to minimize a objective function f(·) 7, as:

min
w
f(w), where f(w) =

K∑
i=1

ρifi(w), (2.4)

where w is the model parameters, fi(w) is the local objective function of
client i, and ρi is the weight of client i.

2.4.1 The FedAvg Algorithm

FedAvg is the first and most popular algorithm for FL. The algorithm operates in
rounds, noted r. At each round r, an orchestrating server S randomly selects C ·K clients
from a pool of participants P , with K being the total number of participants and C the
fraction of clients selected with 0 < C ≤ 1. The server then tasks each selected participant
pi, i ∈ J1, KK to train a model wr

i . The round ends by the aggregation of the collected
models into a new global model w̄r, which is redistributed to the clients as a starting
point for the next round (r + 1).

In essence, FedAvg is a distributed 2-level SGD algorithm, where C controls the global
batch size, and then each client pi uses a local batch of size β to compute a local update.
To train their model, the participants use a SGD-based optimizer to minimize a objective
function fi(w), which is the local loss function of client pi (see Definition 2.1). They
compute the gradients of the loss function with respect to the model parameters, as:

gr
i = ∇fi(wr

i ), (2.5)

with is the results of the local optimization process.

7. Note that in the context of intrusion detection using ML, the objective function f(·) is often a loss
function L(·) to minimize, such as mentioned in Section 2.2.1.
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Table 2.3 – Summary of Notations.

Notation Description
K Number of participants
P = {pi|i ∈ J1, KK} Set of all participants
C Fraction of selected participants
dk Local dataset of participant pk

D =
K⊎

i=1
di Additive union of all local datasets

Xi = 〈x1, x2, . . . , xm〉 Features of sample i
Yi Label enconding for sample i
wr

i Local model of the k-ith participant at round r
W = (wr

i |i ∈ J1, KK) Local models from participants at round r
w̄ Aggregated model at round r
L(wi, di) Loss function for model wi on di

E Number of local epochs
β Batch size
η Learning rate

In their original publication, McMahan et al. [McM+17] introduce two algorithms for
FL: FedSGD and FedAvg. FedSGD is a straightforward implementation of SGD in a federated
setting, where each client computes the gradients after one epoch and sends them to the
server. The server then aggregates the gradients and updates the global model. With

D =
K⊎

i=1
di being the additive union of all local datasets di, the server computes the new

global model as:

wr+1 = wr − η
K∑

i=1

|di|
|D|

gr
i , (2.6)

where η is the learning rate, and |di| and |D| are the sizes of the local dataset and the
global dataset, respectively.

Based on the observation that there is no difference between averaging the gradients
gr

i and updating the global model, or updating the model locally and then averaging
the results, McMahan et al. [McM+17] introduce FedAvg. Indeed, the two operations are
equivalent, as the following equation shows:

wr+1 = wr − η
K∑

i=1

|di|
|D|

gr
i =

K∑
i=1

|di|
|D|

wr
i , (2.7)

where wr
i is the model trained by client pi at round r. This equivalence allows clients

to train their models for multiple epochs before sending the results to the server, which
reduces the communication overhead. Algorithm 2.1 summarizes the FedAvg algorithm.

This core idea, that averaging locally trained models iteratively converges towards an
optimal model trained over distributed data, is the foundation of FL.
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Algorithm 2.1 FedAvg [McM+17]. The participants of P are indexed
by i, C is the fraction of participants to be selected at each round, β
the local batch size, η the learning rate, E the number of epochs, and
∇L the gradients of the loss function L. Split is a function that splits
a dataset into batches or size β.

1: Initialize w0
2: for each round r = 1, 2, . . . do
3: m← max(C ·K, 1)
4: P r ← (SelectRandom(m,P ))
5: for all pi ∈ P r do
6: wr

i ← ClientFit(pi, w
r)

7: wr+1 ←
K∑

i=1

|di|
|D|

wr
i

8: . On client p. /
9: function ClientFit(p, ω)

10: for i← 1, . . . , E do
11: for all b ∈ Split(di, β) do
12: ω ← ω − η∇L(ω, b)

13: return ω

2.4.2 Types of Federated Learning

As stated in the introduction of this section, the literature has broadened the scope
of FL, leading to different types of FL depending on the context and the objectives of the
federation.

Cross-device vs. Cross-silo Federated Learning The first notable distinction is
between Cross-Device Federated Learning (CD-FL), the context in which FL was in-
troduced, and Cross-Silo Federated Learning (CS-FL). The cross-device settings concerns
massively distributed devices which are typically low-power and resource-constrained, such
as smartphones, wearables, or IoT devices. Their number can range from thousands to
billions, they are often heterogeneous and owned by different users. Consequently, CD-FL
often encounters challenges related to limited availability, reliability, and communication
overhead, but offers scalability and adaptability. In contrast, in cross-silo settings, FL op-
erates within organizational boundaries or distinct data silos, where each silo represents
a separate entity or institution. Silos could correspond to different departments within a
company, independent organizations, or even geographical regions. CS-FL typically im-
plies organizations with more homogeneous capabilities and more data to train on. Parties
in cross-silo FL are more likely to be reliable and consistently available for participation,
as they are usually institutional entities with dedicated infrastructure and resources. Yet,
entities involved in CS-FL also tend to have considerably greater discrepancies in terms
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Figure 2.5 – Horizontal vs. Vertical Federated Learning. In horizontal FL, clients share
the same features but not the same samples. In vertical FL, clients share the same samples
but not the same features.

of objectives and data-distributions, and sometimes even model architectures.

Horizontal vs. Vertical FL Another major distinction in FL is the axis along which
the data is distributed. In most application (notably in CD-FL), participants share the
same features, but possess different samples. This is referred to as Horizontal Federated
Learning (HFL) by Yang, Liu, et al. [Yan+19], and is illustrated in Figure 2.5. HFL
particularly copes with ground-truth issues (Challenge 2) by providing more data for
the global model to be trained on. Conversely, in Vertical Federated Learning (VFL),
participants might have different views over the same data, i.e. they share the same
samples but not the same features. This is particularly relevant in cross-silo applications,
where different organizations might have access to different data sources, but observe the
same events. Finally, Yang, Liu, et al. [Yan+19] also consider Federated Transfer Learning
(FTL), where participants share only a subset of both, features and samples.

Architecture Discrepancies In light of the architectures presented in Figure 2.4, the
initial FL proposal [McM+17] would be considered as a distributed task (i.e., model train-
ing) that is centrally orchestrated (see Figure 2.4a). The central server plays a pivotal role
in distributing model parameters, orchestrating training rounds, and aggregating updates
from individual devices. This approach requires global coordination and synchronization,
as all communication and aggregation activities are orchestrated by the server. While
server-orchestrated FL offers centralized control and streamlined management, it also in-
troduces potential single points of failure and scalability limitations due to the server’s
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central role (see Challenge 3). Although FL’s original definition implies a client-server
architecture, the literature has also explored other settings. Researchers have explored
multiple alternatives to the server-orchestrated setting, such as hierarchical FL [Liu+20]
or fully decentralized FL using gossip algorithms [Tan+23]. This decentralized approach
eliminates single points of failure and allows for greater scalability, as communication and
computation can be distributed across numerous devices. However, fully decentralized FL
may face challenges related to coordination, consistency, and synchronization, especially
in scenarios with a vast number of participating devices.

2.4.3 The Question of Data Distribution

The performance of FL algorithms is highly dependent on the distribution of the data
across the participants. Almost by definition, data in FL settings is not Independent and
Identically Distributed (NIID), as it is distributed across different devices or organiza-
tions, with no guarantee of homogeneity. However, the performance of FL algorithms of
the literature is often evaluated under the assumption that the data is Independent and
Identically Distributed (IID), which is rarely the case in practice. This discrepancy be-
tween the theoretical assumptions and the practical reality poses a significant challenge
for the FL community.

In the FL foundation paper [McM+17], the authors emphasize on NIID data being one
of the key attributes of FL, alongside the unbalanced overall distribution. They notably
present a pathological-NIID situation using MNIST [Lec+98], a digit recognition dataset,
where each client is given only two digits, e.g. 3 and 7. More recent papers consider alter-
native NIID use cases, deemed more realistic. For instance, Huang et al. [Hua+21] present
a practical-NIID use case, where participants can share similarities. This is particularly
suited for cross-silo use cases, such as CIDSs. Indeed, we can easily expect different orga-
nizations to own different architectures, and yet observe similar traffic patterns in their
networks.

The literature has addressed the issue of NIID data in FL from multiple angles.
First, some algorithms have been specifically designed to handle NIID data, such as
FedProx [Li+20c], Fed+ [Kun+22], or SCAFFOLD [Kar+20], although the former also cov-
ers the topic of heterogeneous capabilities. Techniques such as client-side sampling, in
which clients sample their data to match the global distribution, have also been pro-
posed [Han+24]. Finally, the literature has also explored clustering approaches to group
client with model updates in communities, assuming that similar updates come from
clients with similar data distributions [Ye+23].
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2.4.4 Threats against Federated Learning

The distributed nature of FL opens the way to various attack vectors, which can
be classified into two main categories: attacks against the federated model and attacks
targeting the participants’ privacy. In the former, adversaries aim to alter the behavior of
the global model, either to degrade its performance or to manipulate specific predictions.
In the latter, adversaries seek to infer sensitive information about the participants’ data,
such as inferring the presence of a specific sample in a participant’s dataset.

The two categories obviously have different objectives, and consequently different
threat models. We focus on the former in this thesis. Authors often refer to poisoning
attacks in FL as Byzantine attacks, as they are analogous to the concept of Byzantine
faults in distributed systems. Likewise, the term Sybil attacks [Dou02] is frequently used
to refer to the problem of colluding attackers [FYB20].

Attack vectors Poisoning attacks can be categorized into two main categories de-
pending on the phase in which they are perpetrated: model-poisoning [Bha+19] or data-
poisoning [Tol+20]. Model-poisoning attacks aim at manipulating the model’s parameters,
usually during or after training, to deviate the aggregated model from the global opti-
mum [Fan+20b]. Data-poisoning attacks, on the other hand, happen before the training
phase, and manipulate data samples to degrade performance, cause misclassification, or
introduce backdoors [Rod+23].

Data poisoning attacks can be categorized into clean-label and label-flipping attacks.
Clean-label attacks manipulate the samples to be misclassified, either by adding new
samples [Zha+22a] or by modifying existing ones [Mer+23]. Label-flipping attacks, on the
other hand, change the labels of the samples by flipping them to a different class [Tol+20]:
i.e., ysource → ytarget.

Attack target Additionally, most poisoning attacks can be further separated into un-
targeted and targeted attacks. Untargeted attacks randomly select samples to be manip-
ulated, and are usually easier to detect as they have a higher impact on the model’s
performance. Targeted attacks, on the other hand, select samples based on a specific cri-
terion, such as the class to be targeted. In a CIDS context, targeted attacks can be used
to introduce backdoors—i.e., making a specific attack class be misclassified as benign—or
cause targeted misclassification.

Mitigation strategies Algorithmic solutions to mitigate these attacks exist in dis-
tributed learning, such as Krum [Bla+17] or Trimmed Mean [Yin+18], and are often
used as comparison for works in Byzantine-robust FL. In addition to the algorithmic
countermeasures, various strategies have been proposed to detect and mitigate poison-
ing attacks in FL specifically, ranging from clustering [Ngu+22; STS16] and similarity-
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analysis [ALL21; FYB20] to client-side evaluation [Zha+20c]. Chapter 6 will provide a
more in-depth overview of the state-of-the-art in Byzantine-robust FL.

2.5 Conclusion and takeaways

In this chapter, we have introduced the basics of ML for intrusion detection and the
challenges of scaling up to CIDSs. We have also introduced the fundamentals of FL its
implications. With the challenges listed along the way, the relationship between FL and
CIDS becomes straightforward: FL is a natural fit for CIDSs as it allows to leverage the
benefits of distributed learning while preserving the locality of the data.

In the next chapter, we will review the state of the art in FL in the context of CIDS,
focusing on the different approaches to the problem and the challenges they face. Notably,
we will discuss Question RQ1: What makes applying FL to IDSs specific?.
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3.1 Introduction and Motivation

In the previous chapter, we introduced the concepts of Intrusion Detection System
(IDS) and Machine Learning (ML), the challenges of deploying Collaborative Intrusion
Detection Systems (CIDSs), and why Federated Learning (FL) is a promising solution to
these challenges. This chapter’s prime objective is to provide a comprehensive review of
how Federated Learning (FL) can be leveraged for intrusion detection purposes, and shed
light on the gaps in the literature that are discussed in this thesis.

A recent topic without identity Because of the novelty of FL in the field of Intrusion
Detection System (IDS), the literature on the topic is still scarce. Only a handful of
reviews [Agr+22; Ala+21; Cam+22] existed on the topic when we stopped our data
collection for this study in late 2021, most of which only as preprint. While these papers
provide a good overview of the existing works, they fail to provide synthesis and extract
the core characteristics of the field. Notably, what makes FL for IDS different from FL
for other applications, and what challenges are specific to the field of intrusion detection?

A systematic approach We aim to address this gap as thoroughly and transparently
as possible, and leverage the Systematic Literature Review (SLR) methodology to that
end. This method relies on a structured process to identify, select, and analyze the relevant
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literature on a given topic. With explicitly defined research questions and inclusion/ex-
clusion criteria, the Systematic Literature Review (SLR) methodology ensures that the
review is reproducible and unbiased. Therefore, we intend to provide a comprehensive
overview of the existing literature, and reproducible, evidence-based conclusions on the
specificities of FL for IDS.

Content The content of this chapter is based on our survey published in IEEE Trans-
actions on Network and Service Management (TNSM) in May 2022 [Lav+22c] and its
accompanying extension at the C&ESAR conference in November 2022 [Lav+22a]. Be-
cause the initial paper was submitted in November 2021, the quantitative analysis has
been updated during the writing of this manuscript to include the latest publications on
the topic. The qualitative analysis has also completed to a lesser extent.

Contributions of this chapter

The first SLR on the use of FL for IDS, including qualitative and
quantitative analyses of the literature.

A generalization of the selected works as a reference architecture for
Federated Intrusion Detection Systems (FIDSs), providing a starting
point for future works on the topic.

A taxonomy synthesizing the state of the art of FIDS, providing a
framework to analyze and compare existing and upcoming literature.

The identification of the main challenges and opportunities in the
field, and a set of research directions to address them.

3.2 Methodology

This section details the methodology applied to review the state of the art of FIDSs.
The SLR methodology was originally introduced to the field of engineering by Kitchenham
and Charters [KC07]. SLR uses analytical methods to answer research questions about
the literature on a specific topic. The update to the original article is less structured and
more focused on the evolution of the field, so the methodology is adapted accordingly.

3.2.1 Research Questions

The SLR methodology recommends defining explicit research questions to structure
the review and the selection of papers. This survey aims at evaluating FIDS and their ma-
turity, as well as their core components, and relevant variations. Therefore, using related
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Figure 3.1 – Search and selection processes. Sources of papers appear in yellow, the
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Figure from Lavaur, Pahl, et al. [Lav+22c] © IEEE 2022.

and selected works, we identify the following Research Questions (RQs) that cover the
topic of FIDSs. The questions complete and extend Question RQ1 which was introduced
in Chapter 1.

RQ1-1. What are FIDS?
1.a. What challenges do FIDS help to cope with?
1.b. Which techniques exist to federate Machine Learning (ML)–based detection and

mitigation mechanisms?

RQ1-2. What are the differences between FIDS?
2.a. What are the key components of FIDS? How do they influence the system’s per-

formance?
2.b. Which metrics are used to measure and compare FIDS?

RQ1-3. What is the state of the art of FIDS?
3.a. What are the subtopics covered by the academic literature since 2016?
3.b. Where was the literature published? Which research groups and communities are

active in this area?
3.c. What are open questions according to existing works?

3.2.2 Search and Selection Process

Figure 3.1 presents the methodology and its search, selection, and synthesis processes.
The searching of relevant literature involves four sources: recommendations, intuitive
search, structured search, and snowballing.

(1) Recommendations were given by supervisors and coworkers throughout the real-
ization of this work. This initial set of relevant papers is also used as a source of
snowballing for further searching.
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(2) Intuitive search has been performed at the beginning of the survey to get a first
grasp on the topic, and to learn about the functioning of FIDSs. At first, mostly
Google Scholar has been used.

(3) Structured search has been adopted afterward, following the principles of SLR [KC07].
Different search engines and online databases are used for the sake of completeness,
as illustrated in Figure 3.1. Both can provide different results, depedning on their
ownership and scope, as well as the way papers are indexed. Thus, multiple sources
provide more exhaustive results. The following queries have been used to search for
relevant literature: (a) application of FL to IDSs, and (b) literature addressing the
topic of FIDS with unusual keywords.
(a) ("federated learning" OR "fl" OR "federated")

AND ("intrusion detection systems" OR "ids")

(b) ("federated" OR "collaborative")

AND ("detection" OR "defense" OR "mitigation")

(4) Snowballing identifies relevant works that would have been missed otherwise, such
as publications cited by articles of our selected corpus, or papers that refer to them.
The related surveys identified in this work (Section 3.3) contain a lot of references
to technical articles, making them relevant for snowballing. Furthermore, as this
survey proceeds with quantitative analysis of the venues and groups (Section 3.4),
it provides extended snowballing opportunities by looking at other publications in
the most represented venues or research groups in the selected corpus.

Approximately two hundred papers have been identified. Duplicate removal is per-
formed with Zotero which allows identifying and merging redundant items. The selection
then happens in two phases. Firstly, the title and abstract are used to discriminate out-
of-scope papers in Phase I, along with their number of citations given the search engines,
and age. However, a paper with few citations, but interesting abstract, probably only
lacks visibility. Thus, it is moved to Phase II, which consists of a more thorough analysis
of the selected works, using the three-pass approach defined by Keshav [Kes07].

After the two selection phases, 22 papers were selected, excluding the 18 initial surveys
seen in Section 3.3. All present technical solution for FIDS. The challenges identified in
Chapter 2 were also used to either search or select papers, mostly through the intuitive
search part.

3.2.3 Data Extraction and Analysis

The quantitative section of the original paper was solely based on the 22 selected
papers. However, a significant amount of literature has been published since the initial
survey. Therefore, we updated the quantitative analysis to include the latest publications
on the topic. The qualitative analysis has also been completed to a lesser extent, just
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enough to provide a general overview of the field’s evolution. Figure 3.2 presents the
methodology applied to update the presented results.

We set up an automated collection system on Google Scholar, composed of an alert
based on the search queries defined in Section 3.2.2 and automated recommendations. The
system was set up in 2021 and ran until the beginning of the writing of this manuscript
in April 2024. It brought 423 emails containing 2490 links after duplicate removal. A
first selection was performed on the title and abstract, yielding 238 papers. After manual
filtering, we select 158 relevant papers, which amount to 136 new publications since the
original survey.

Literature processing To process this new corpus, we use Litstudy [Hel+22], a Python
library providing tools to extract and analyze bibliographic data. On the 158 selected
papers, 153 only were available on Scopus, the database available in Litstudy that provides
the most complete data. The list of papers is available as appendix of this manuscript. The
data extracted from the papers includes the title, abstract, authors, publication venue,
publication date, and keywords, among others. The extracted data is then used to perform
a quantitative analysis of the literature presented in Section 3.4.

Topic modeling Litstudy also provides tools to perform topic modeling on the text data
of the papers, mainly title and abstract. We first preprocess the text data by removing stop
words, punctuation, and numbers, and then associate each word with its frequency in the
corpus. Then, we test the two main approaches of available in the literature, namely Latent
Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF), to identify
the main topics in the corpus. The presented results have been obtained using the NMF
algorithm on 20 topics and after 2000 iterations, as it provided the most interpretable
results.
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Table 3.1 – Related literature reviews, their topics, contributions, and number of citations
according to Google Scholar (Apr. 2024). Works marked ∗ were originally available as
preprints, and were only published afterward. Works marked ‡ are added for the sake of
completeness, but were not included in the initial selection.

Domain Year Authors Contributions Cited Ref.

Security
information
sharing

2016 Skopik et al.  # # # #  # 291 [SSF16]
2018 Tounsi et al.   # # #  # 448 [TR18]
2019 Wagner et al.   # # #  # 240 [Wag+19]
2019 Pala et al.   #  #  # 63 [PZ19]

ML for
intrusion
detection

2016 Buczak et al.  # # # # G# # 3105 [BG16]
2018 Meng et al.  # # # #  # 562 [Men+18]
2019 Chaabouni et al.  # G# # #  # 790 [Cha+19]
2019 da Costa et al.  # # # #  # 492 [dCos+19]

Collaborative
detection

2010 Zhou et al.  # # # #  # 517 [ZLK10]
2015 Vasilomanolakis et al.  #  # #  # 379 [VKF15]

Federated
learning

2020 Aledhari et al.  # # # # # # 517 [Ale+20]
2020 Lyu et al. ∗  # # # #  # 436 [LYY20]
2020 Shen et al.  # # # #  # 69 [She+20]
2021 Mothukuri et al.  #  # #  # 376 [Mot+21a]
2021 Lo et al.   # # #   158 [Lo+21]

FL for intrusion
detection

2021 Agrawal et al. ∗  # # # #  # 142 [Agr+22]
2021 Alazab et al.  # # # #  # 158 [Ala+21]
2021 Campos et al. ∗  # # #   # 123 [Cam+22]
2022 Lavaur et al.     #   22 [Lav+22c]
2022 Fedorchenko et al. ‡ G# # # # # # # 22 [FNS22]
2022 Ghimire et al. ‡  # # # #  # 208 [GR22]
2024 Isma’ila et al. ‡   # # #   0 [Ism+24]
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3.3 Related Work

At the time of writing this literature review, the literature on FL for IDS was still
scarce. Only a handful of reviews had been published on the topic [Agr+22; Ala+21;
Cam+22]. Therefore, we extended our search of related works to related topics that were
susceptible to share similar challenges or conclusions. This extended selection can be di-
vided into three main categories: (a) security information sharing, (b) intrusion detection,
and (c) collaborative ML. Table 3.1 provides a summary of this selection, grouped by
topic and sorted by publication date. In addition to the initial selection, we also included
more recent surveys on the topic [FNS22; GR22; Ism+24], whose number highlights the
massive interest in the community.
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Common issues of collaborative systems, such as the need for trust, privacy, and
security, can also apply to FL-based collaboration systems. Therefore, we include four
surveys [PZ19; SSF16; TR18; Wag+19] where the authors discuss the challenges and
opportunities of sharing security-related information. They highlight the need for stan-
dardization, automation, and incentives, to achieve efficient and effective collaboration.
The topic of trust is a clearly identified challenge in these works [TR18; Wag19]. The
present study rather focuses on FL as a technical mean for collaboration, but such as
trust or incentives are also relevant in this context.

Because ML-based IDS can be considered as a key component of FIDS, we review
existing surveys on the topic [BG16; Cha+19; dCos+19; Men+18]. These work cover a
wide range of solutions, from traditional ML (Support Vector Machine (SVM), Decision
Tree (DT) and Random Forest (RF), among others) to more recent approaches, such
as deep learning, the latter being overrepresented in the literature of FIDSs. They also
provide a good overview of the existing datasets and evaluation metrics, which can be
useful for the evaluation of FL-based IDS. However, as noted in Section 3.6.2, typical IDS
datasets present limitations that can hinder the evaluation of FL-based IDS.

FL’s performance is obviously another critical aspect of FIDSs. Consequently, related
works include surveys on the collaborative aspects of ML and FL [Ale+20; Lo+21]. They
discuss FL approaches to work with distributed architectures. The security of FL is also
heavily reviewed by [LYY20; Mot+21b; She+20]. They identify security threats like com-
munication bottleneck, poisoning, and Distributed Denial of Service (DDoS) attacks, that
could endanger FL-based systems. While the IDS use case can be seen as an application of
FL, we argue that it raises specific concerns in terms of privacy, latency, and adaptability.

Vasilomanolakis, Karuppayah, and Fischer [VKF15] and Zhou, Leckie, and Karunasek-
era [ZLK10] survey the evolution of Collaborative Intrusion Detection System (CIDS)—at
the merge of intrusion detection and collaborative ML, or Topics (b) and (c) as presented
above. Their works are however older and thus, cannot offer a comprehensive view of
CIDS, as FL-based approaches did not exist at the time of their writing. Hence, the au-
thors focus on collaboration in the sense of detection+correlation, whereas the analysis
presented in this chapter (Section 3.5) surveys the use of FL in IDSs.

In addition to the above, recent work (i.e., contemporary to the writing of the initial
study) have reviewed the use of FL for intrusion detection [Agr+22; Ala+21; Cam+22].
Alazab et al. [Ala+21] address the wider topic of FL for cybersecurity, which only includes
intrusion detection as an application. Their paper is explanatory and provides an overview
of FL applications in information security. Like this work, Agrawal et al. [Agr+22] focus
on FIDSs, but have different methodology. The authors list existing FIDSs and detail their
approaches, and identify open issues. On the other hand, Campos et al. [Cam+22] review
a subset of FIDSs by focusing on Internet of Things (IoT) use case, and the impact of
non-IID (Independent and Identically Distributed) data on performance. While all identify
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challenges and research directions, this work also performs quantitative (Section 3.4) and
qualitative (Section 3.5) analyses of existing FIDSs, and extracts reference architecture
and taxonomy. The existence of these papers emphasizes the importance and relevance of
FIDSs for the research community.

The more recent works on the topic [FNS22; GR22; Ism+24] confirm these observa-
tions. The work of Fedorchenko, Novikova, and Shulepov [FNS22] is of little interest, as
it only lists and details existing works with close to no added value. Ghimire and Rawat
[GR22] provide a more convincing study, closer to the method applied by Alazab et al.
[Ala+21], but with a focus on the IoT. Finally, Isma’ila et al. [Ism+24] provide a com-
prehensive review, with up-to-date literature leveraging the SLR methodology, but still
focuses on the IoT.

3.4 Quantitative Analysis

This section provides indicators of the representation of FIDSs in the scientific liter-
ature: the evolution of the publications, the relevant venues, the active groups, and the
topics of interest. Notably, the identification of the most active groups and most relevant
venues provides insights on how to keep track of the most recent advances in the field.

3.4.1 Evolution of the Topic

The topic of IDS started to gain traction in the late 1990’, as depicted in Figure 3.3a.
After a stagnation period, the topic regained interest around 2015, with an increase of
the research on IoT and Industrial Internet of Things (IIoT) [Cha+19; DAF18], alongside
other specific use cases. With the introduction of FL by McMahan et al. [McM+17], the
community started to explore the application of FL to IDS around the years 2018–2019.
Figure 3.3a has been generated using the analytics offered by Scopus and the following
queries:

(a) intrusion AND detection AND system;

(b) federated AND learning.

Recent works on FL focus on its security and privacy-preserving aspects [LYY20;
Mot+21b; Ngu+20]. Techniques like homomorphic encryption were introduced as early
as 2017 [Har+17], and have been extensively reviewed since. More recently, other privacy-
preserving techniques have been applied to FL, such as Multi-Party Computation (MPC)
in FLGUARD [Ngu+21] or differential privacy in [KGS21]. FIDSs present a similar ten-
dency with more research towards algorithm security and privacy-preserving techniques.
For instance, Li, Wu, et al. [Li+20a] use homomorphic encryption to provide a secure and
privacy-preserving aggregation of models. Aside from security, variations of Horizontal
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Figure 3.3 – Evolution of the topics and number of publications.

Federated Learning (HFL) started to appear in 2021, such as segmented FL in [Sun+20],
as standard HFL has significantly been studied for FIDS.

Finally, the numerous literature reviews published since 2021 [Agr+22; Ala+21; Cam+22;
FNS22; GR22; Ism+24; Lav+22c] show the continuous interest of the community for the
study of FIDSs. These also show the need for synthesis and structuring of research in this
area.

3.4.2 Relevant Venues

The initial study published in 2022 [Lav+22c] observed very few recurring venues for
the publication of FIDS research. Indeed, only three venues had more than one publi-
cation on the topic: the IEEE Internet of Things Journal [Pop+21b; Zha+20a], IEEE
Access [Che+20; Li+20b], and the IEEE BigData conference [Cet+19; Fan+20a]. The
original distribution in terms of venue type (11 conferences, 10 journals and 1 book chap-
ter) has significantly changed, since journals represent two thirds of the publications. It is
worth noting that the number of publications in conferences is twice inferior to the num-
ber of publications in journals, as depicted in Figure 3.4. Multiple reasons can explain
this shift, such as a gain in maturity of the field. However, it is likely that the COVID-
19 pandemic partially influenced this trend, as conferences were more impacted by the
restrictions than journals.

Another observation of the initial study was the diversity of the venues, spanning a
wide range of topics, from IoT to Industrial Control System (ICS), including transporta-
tion systems and extra-terrestrial networks. This diversity is still present in the most
recent publications, although a few generic venues now host significantly more publica-
tions: the IEEE Internet of Things Journal, IEEE Access and Computers & Security.
The latter is the first security-specific venue to appear in the list. Its place in the top
venues is a sign of the increasing interest of the security community for FL and FIDS,
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1Figure 3.4 – Distribution of the publications in the most recurring venues. The lighter
colors represent the publications added since the initial study.

as most contributions were previously published in more use-case specific venues. Lastly,
while relevant venues have been accepting FL literature since its introduction, they start
to host specific tracks or special issues, such as ICDCS’s track on “Federated Learning,
Analytics, and Deployment”, or IEEE BigData’s “Special Session on Federated Learning
on Big Data”.

3.4.3 Active Groups

Since they introduced the topic of FL in 2016, the team at Google Research has
been a big influence for the research community [Bon+17; Bon+19; Kon+16a; Kon+16b;
McM+17]. They mostly work on the primitives behind FL, such as model aggregation
with the FedAvg algorithm [McM+17]. The team of TU Darmstadt (Germany) has also
been very active in the field, with a focus on IDS with DÏoT [Mar+19; Ngu+19] and FL se-
curity [Ngu+20]. The two collaborated, bringing FLGUARD [Ngu+21] and FLAME [Ngu+22],
two algorithms focusing on limiting the impact of poisoning attacks in FL. These series
of works makes them one of the most impactful groups in the field.

Other noteworthy groups include the Aalto University (Finland) [Ngu+21] and the
University of Tokyo (Japan) [QK21; SEO21; Sun+20]. The most active country remains
China, with a dozen institutions now amounting to a third of the publications in the field,
as illustrated by Figures 3.5 and 3.6b.

Investigating the major authors tells another story, as the most active authors are
not necessarily affiliated with the groups mentioned above. In particular, Popoola, Gui,
et al. co-authored several publications on FIDS [Pop+21a; Pop+21b; Pop+22; Pop+23]
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Figure 3.6 – Distribution of the publications by author and country.

as a collaboration between the Nanjing University of Posts and Telecommunications and
multiple British universities. Likewise, Duy et al., from the University of Information
Technology (VNU, Vietnam), are also quite represented in terms of publications [Duy+21;
Quy+22; Thi+22; Vy+21].

3.4.4 Topics of Interest

Using topic modeling, we extract the main topics of interest from the 153 publications
on FIDSs identified in the updated selection. By construction, the model is unable to
differentiate between application domains (such as IoT or ICS) the techniques used (e.g.,
blockchains) or the addressed challenges in a paper. However, it provides a good overview
of the main topics of interest in the field, especially for the consequent amount of literature
published since the initial study. Figure 3.7 present the topics identified by the model,
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1Figure 3.7 – Topics of interest in the field of FIDSs.

with the most recurring keywords for each topic.

First, this analysis highlights the application domains of FIDSs, where the topic
of IoT (i.e., internet_things, edge, things) is one of the most recurring (Topics 4,
9, and 10). Other applications stand out, such as ICS (industrial, iiot), Internet of
Medical Things (IoMT) (medical, healthcare), Vehicle-to-Everything (V2X) (vehicle,
vehicular, transportation), and Software-Defined Networking (SDN) (software, defined,
sdn). These applications also correlate with the venues identified in Section 3.4.2, as the
IEEE Internet of Things Journal or the IEEE Trans. on Industrial Informatics do focus
on IoT and ICS, respectively. Figure 3.8a depicts the distribution of the publications by
domain overall.

Likewise, some topics are directly associated with the challenges identified in Sec-
tion 3.6.2. For instance, Topic 0 (poisoning, defense, malicious) represents works fo-
cusing on adversarial attacks against FIDSs and their mitigation. Some techniques can
also be extracted from these results. For instance, Topic 0 also contains similarity as
a keyword, which is likely to refer to the use of similarity metrics to detect poisoning
attacks. This is indeed one of the most represented mitigation techniques in the literature
on FIDS [Yan+23] or FL alike [FYB20; Ngu+22]. Figure 3.8b depicts the distribution of
the addressed challenges over time. Unlike the distribution of the publications by domain,
some challenges are addressed in the literature much later, such as handling the hetero-
geneity of the data or resisting to adversarial attacks. Both are challenges that have been
identified in the initial study as open issues in the field [Lav+22a; Lav+22c].
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Figure 3.8 – Exploiting the topics of interest.

3.5 Qualitative Analysis

This section contains the results of our literature review. First, it synthesizes the
analyses into a reference architecture and a taxonomy for FIDSs, which help structure
the field. Then, it goes over a comparison of the selected works to answer Questions RQ1-
2.a to RQ1-1.b on the components of FIDSs and their impact on performance.

3.5.1 Structuring the Literature

The quantitative (Section 3.4) and qualitative (Section 3.5) analyses provide results
that we synthesize hereafter in a reference architecture and a taxonomy. The reference
architecture presents the components of FIDSs and their interactions, while the taxonomy
provides comparison criteria for the selected works.

We build the taxonomy upon different existing ones related to CIDS [VKF15; ZLK10],
ML–based intrusion detection [dCos+19], and FL [Ale+20; LYY20; Mot+21b]. First, we
extract classes relevant to the domain of FIDS, before filtering out irrelevant ones by
validating the taxonomy against the reference architecture (Figure 3.9). The latter displays
both the operation and the design of the system. By confronting the taxonomy and the
architecture, we ensure that each item of the taxonomy is related to a component of the
architecture, and vice versa. Then, we add any commonalities between the selected works
that are not already represented in the previous taxonomies. This identifies new criteria
on which to compare the selected works.

Reference Architecture

This section presents the reference architecture synthesized from the selected works, as
depicted in Figure 3.9. The architecture provides a summary of the components of FIDSs
and their interactions, answering Question RQ1-2.a. It can be divided in three parts:
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Figure 3.9 – The proposed reference architecture for FIDSs. Figure from Lavaur, Pahl,
et al. [Lav+22c] © IEEE 2022.

— The Managed system represents the monitored system, e.g., Information Technology
(IT) network, industrial devices, or health-monitoring wearables. Collected data can
either concern system or environment behavior. The former relates to information
generated by the systems, e.g., network traces or resource consumption. The latter
refers to what the monitored system operates on, e.g., health metrics for medical
devices or temperature and atmospheric pressure for building management systems.

— The Security subsystem is the core of the architecture. It contains all the system’s
activities, from model training to detection and counter-measures deployment. De-
pending on the objectives and constraints, this subsystem can either be run locally
like [PA18] or [Hei+20], on a dedicated edge-device as in [Li+20a]. In the case of
centralized learning, this entire subsystem runs in the cloud. The subsystem is as-
sumed to run a device that embeds enough computing power to perform real-time
anomaly detection against ML models. It is also capable of training its own model
based on collected data.

— The Collaboration subsystem provides the sharing feature of the system, essentially
model aggregation. It also provides optional training from other sources, like online
datasets.

This architecture has similarities with the principles of autonomic systems, as defined
by IBM in 2001 [KC03], referred to as Monitor-Analyze-Plan-Execute plus Knowledge
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(MAPE-K). Classic autonomic systems are local, and therefore use a database to provide
knowledge. In FIDS, FL fills this role in the reference architecture, as the knowledge is
being shared among all agents through model aggregation.

Taxonomy for FIDS

The taxonomy depicted in Figure 3.10 summaries the core components and speci-
ficities of FIDSs, as extracted from the selected works and existing related taxonomies.
Correlations between the taxonomy items and the system’s components can be seen in the
reference architecture (Figure 3.9). It also serves as a framework for the comparisons of
the selected works. Each class represents a building block, for which multiple approaches
exist depending on use case and constraints.

The proposed taxonomy contains 12 classes describing the selected works that span
over five main aspects:

— Two classes cover the topic of Data: Data Source and Distribution and Preprocess-
ing. It defines the type of data considered and how it is distributed among clients,
how it is collected, and the preprocessing strategies that are used.

— Local operation is represented by 3 classes: Algorithm location, Local Algorithm,
and Defense Capabilities. It describes the detection and mitigation strategies, how
models are built and trained, and where the computing resources are located.

— The Federation aspect is covered by 2 classes: Federation Strategy and Commu-
nication. They refer to the communication between the agents and the server, and
how data sharing is organized.

— Aggregation is also covered by 3 classes: FL Type, Aggregation Strategy, and Model
Target. It describes the type of FL used, how the models are merged, in accordance
with the objectives of the system.

— Finally, 2 classes address the Experimentation topic: Analyzed Dataset and Costs
and Metrics. This meta-category does not relate to the proposed solution, but to
how the experiments are performed.

3.5.2 Federated Learning for Intrusion Detection

This section reviews the selected literature. Using the taxonomy as a reference, it de-
tails and compares the selected works. Table 3.2 summarizes the information and helps
identify differences between the works. It gives partial answers to research questions
about the components of FIDSs and how to measure their impact on performance (Ques-
tions RQ1-2.a and RQ1-2.b), while Section 3.5.2.9 replies to Question RQ1-1.b about
federation techniques.
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Table 3.2 – Comparative overview of selected works in the original study—approach and
objectives (1/2).

Ref

Internet of Things

Information Technologies

Cyber Physical Systems

Autonomous Vehicles

Satellite-terrestrial networks
Horizontal FL

Vertical FL

Federated Transfer Learning

Federated MTL

Federated Mimic Learning
Online learning

Supervised

Semi-supervised

Unsupervised

Personalized models
Network-based

Usage-based Training location Data type Strengths

2018 Pahl and Aubet [PA18]  # # # #  # # # #  # #    # Device Abstracted network
traffic (middleware)

relatively lightweight,
online, no labels

2019 Rathore, Wook Kwon, and Park [RWP19] #  # # #  # # # # #  # #   #
Edge-controller
(SDN) Network traffic (SDN) offers mitigation,

decentralized

2019 Schneble and Thamilarasu [ST19]  # # # #  # # # #  # #    # Gateway IoT network
traffic (TCPdump)

online, offers per-class
models, no labels

2019 Nguyen, Marchal, et al. [Ngu+19] #  # # # # # #  # #  # #   # Gateway Encrypted network
traffic (CICFlowMeter) versatile (multi-task)

2019 Zhao, Chen, et al. [Zha+19] # #  # #  # # # #  # #  # #  Gateway Healthcare sensor values high adaptability, no labels

2019 Cetin et al. [Cet+19] #  # # #  # # # # #  # # #  # Gateway Network traffic (WIFI) –

2020 Li, Wu, et al. [Li+20a]  # # # #  # # # # #  # # # #  Gateway Air conditioner
sensor values offers traceability (blockchain)

2020 Chen, Zhang, and Yeo [CZY20] # #  # #  # # # # #  # # #  # Gateway MODBUS traffic confidentiality (encryption)

2020 Zhang, Lu, et al. [Zha+20a] #  # # #  # # # # #  # # #  # Device IoT network
traffic (TCPdump) –

2020 Fan et al. [Fan+20a] #  # # #  # # # # # # #  #  # Gateway IoT network
traffic (TCPdump) no labels

2020 Rahman et al. [Rah+20] #  # # #  # # # # #  # #   # Gateway Network traffic
(PCAP)

segmented (performance-
based models)

2020 Sun, Ochiai, and Esaki [SOE20]  # # # # # #  # # #  # #   #
Gateway
(MEC)

IoT network traffic
(TCPdump, CICFlowMeter)

knowledge transfer between
public and private datasets

2020 Al-Athba Al-Marri, Ciftler, and Abdallah [ACA20] #  # # # # # # #  #  # # #  # Gateway Network traffic
(TCPdump)

enhanced privacy
(mimic learning)

2020 Kim, Cai, et al. [Kim+20] #  # # #  # # # # #  # # #  # Gateway Network traffic
(TCPdump) –

2020 Qin, Poularakis, et al. [Qin+20a] #  # # #  # # # # #  # #   #
Gateway
(SDN) Network traffic (SDN)

very lightweight,
line-speed classification,
P4 language compatible

2020 Chen, Lv, et al. [Che+20] #  # # #  # # # # #  # # #  # Gateway Network traffic
(CICFlowMeter)

robust to poisoning,
scalable

2020 Hei et al. [Hei+20] #  # # #  # # # #  #  # #  # Device Network traffic
(TCPdump)

online, offers traceability
(blockchain)

2020 Li, Zhou, et al. [Li+20b] #  # #   # # # # #  # # #  # Gateway Network traffic (PCAP,
CICFlowMeter, Argus)

relatively lightweight,
confidentiality (encryption)

2021 Liu, Zhang, Zhang, et al. [Liu+21]  # # # #  # # # # #  # # #  # Gateway IoT network
traffic (TCPdump, Argus) zero-days detection

2021 Popoola, Gui, et al. [Pop+21b] #  # # #  # # # # #  # #   # Device Network traffic
(TCPdump) relatively lightweight

2021 Qin and Kondo [QK21] # # #  #  # # # # #  # # #  # Device Network traffic
(TCPdump) decentralized

2021 Sun, Esaki, and Ochiai [SEO21] #  # # #  # # # # #  # #   # Gateway Network traffic
(PCAP)

segmented (performance-
based models)

Use case FL type Training Approach
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3.5.2.1 Data Source and Distribution

The selected works highlight two main characteristics of the training data that impact
the design of FIDSs: the origin of the data and its distribution among clients. The type of
data used in the selected works is diverse, ranging from network traffic [CZY20; RWP19] to
sensor values [ST19; Zha+20a]. The former is significantly more represented, probably due
to the availability of public datasets like CICIDS2017 [SHG18] and UNSW-NB15 [MS15]
(see Section 3.5.2.11).

Most papers [CZY20; Hei+20; Li+20a; Ngu+19; Pop+21a; Rah+20; RWP19; SOE20]
use similar network features, such as source and destination, local and remote ports,
TCP flags, protocol, and packet length. The authors of [Qin+20a] also target network
features but at packet-level, all translated to 1D vectors: IP addresses, layer-4 protocol,
ports, and IP packet length as a 120-bit input vector. Li, Wu, et al. [Li+20a] also explore
network-related features in their use case of satellite communications. These values can be
completed with preprocessing (see Section 3.5.2.2) to extract other features from the raw
data. For instance, both Pahl and Aubet [PA18] and Nguyen, Marchal, et al. [Ngu+19]
analyze the periodicity of packets, which is notably useful for volumetric attack detection.
By using a middleware to classify the data, Pahl and Aubet [PA18] can train per-class
models. Such models are more specialized and thus more accurate, but most communi-
cation layers do not provide such metadata. Training per-class models usually requires
then a prior classification step, like in [Ngu+19]. The use of specialized models is further
discussed in Section 3.5.2.10.

On the other hand, Zhang, Lu, et al. [Zha+20a] and Schneble and Thamilarasu [ST19]
use sensor values, such as hearth rate and oxygen saturation. In this case, one does not
seek to detect intrusions per se, but rather anomalies in the data that could indicate
a malfunction or an attack. The observed data can be seen as a side-channel, leaking
information about the actions of potential attackers. More recently, FL has been applied
to Host-based Intrusion Detection Systems (HIDSs) [Guo+23], were similar considerations
apply, particularly in terms of data distribution.

Finally, even when considering the same data type, use cases introduce significant
differences in the available features. For instance, two systems targeting the communica-
tion between devices may encounter different protocols, services, and even communication
support. In the literature, the most common use cases are (sorted by representation): In-
formation Technology (IT), Internet of Things (IoT), Cyber-Physical System (CPS), and
Autonomous Vehicles (AV). While it is unlikely that a system would target multiple use
cases, discrepancies in the data distribution can exist within a single use case. Chen,
Zhang, and Yeo [CZY20], and partly Hei et al. [Hei+20], address the topic of skewed
data distribution. A non-Independent and Identically Distributed (IID) data distribution
can negatively impact training performance [Yan+19]. However, most real-world scenarios
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generate non-IID data, which is a major drawback of the selected works, as most of them
do not address this issue.

3.5.2.2 Preprocessing

In addition to the type of data considered, the preprocessing pipeline has a significant
impact on the performance of the system. Preprocessing implies the transformation of
raw data into a format that can be better leveraged by ML models, either by extracting
new features or by reducing the dimensionality of the data. Three main non-exclusive ap-
proaches are distinguishable in the selected works: feature extraction, feature embedding,
and feature selection:

— Feature extraction refers to the computation of numerical characteristics after the
data collection; e.g. Inter-Arrival Time (IAT) or number of packets per device in the
context of traffic monitoring. For instance, both Nguyen, Marchal, et al. [Ngu+19]
and Pahl and Aubet [PA18] extract periodicity features from the data. Because they
only process binary features, Qin, Poularakis, et al. [Qin+20a] extract numerical
features, and convert them to 1D vectors.

— Feature embedding or dimensionality reduction is used for algorithms that do not
deal efficiently with high-dimensional vectors. We mostly use the term embedding
when the authors use Deep Learning (DL) techniques, as it implies that the model
learns the best representation of the data, such as with autoencoders [CZY20]. Other
dimensionality reduction techniques include Principal Component Analysis (PCA),
used for example by Kim, Cai, et al. [Kim+20].

— Feature selection relates to the automated selection of relevant features, before learn-
ing. For instance, Qin and Kondo [QK21] use a greedy feature-selection algorithm
based on accuracy, while logistic regression can be used to eliminate features with
a recursive algorithm [ACA20].

The other works [Li+20a; RWP19; ST19; Zha+20a] do not emphasize on their fea-
ture selection strategy. Moreover, some papers [Li+20a; ST19; Zha+19] use datasets that
contains computed features (3.5.2.11). For experiments on live prototypes, feature com-
putation is required.

Depending on the use case, additional features after feature selection or extraction
may vary. Network analysis often relies on basic features, such as addresses and ports for
source and destination, protocol, data type, packet length, and timestamp. However, these
characteristics can also vary regarding their provenance: network capture [Sig99; Tav+09]
or abstracted communications [PA18]. Extracted features are very common, such as inter-
packet time, bytes sent per host, or bytes per packets [BG16; Cha+19]. For instance, both
Nguyen, Marchal, et al. [Ngu+19] and Pahl and Aubet [PA18] target IoT devices, which
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have a sporadic, but periodic and thus more predicable traffic. In this context, anomaly
in the packet-sequence, or in the inter-arrival time might indicate an attack.

Usage-based analysis, on the other hand, is entirely dependent on the monitored de-
vice. Schneble and Thamilarasu [ST19] monitor health-related features, like arterial blood
pressure or the raw ECG signals. The authors of [Zha+20a] focus on air conditioners, and
therefore measure related information such as water or air temperature.

3.5.2.3 Algorithm location

The proposed taxonomy (3.10) considers three types of locations: on-device, on-gateway,
and on-server. However, a large majority of the literature concerns either on-device train-
ing, or uses a dedicated device acting as a gateway. Most selected works use a dedicated
device to perform the analysis, while the others assume the devices can support their own
processing. Some hybrid approaches also exist, such as the multi-stage aggregation used
by Liu, Zhang, Zhang, et al. [Liu+21], where models can be trained and aggregated at
different stages of the edge–cloud continuum.

In most cases, it is the use case that dictates the model training location, as each comes
with specific constraints. For instance, Zhang, Lu, et al. [Zha+20a] focus on a medical
use case where the analyzed data solely consists of sensor measurements (Section 3.5.2.1).
Connected sensors are typically lightweight devices unable to process data, so they require
a gateway to be usable. Most works [ACA20; CZY20; Kim+20; Li+20a; Pop+21a; ST19;
Zha+19] rely on gateways because they are more suitable for traffic analysis. It allows to
capture all communications, even if the devices communicate on different supports (e.g.,
IEEE 802.3 vs. IEEE 802.11). Gateway-based processing can also be motivated by the
architecture of the monitored system. For instance, the authors of [Fan+20a] reuse the
existing infrastructure of 5G by exploiting Mobile Edge-Computing (MEC) gateways to
capture traffic and perform analysis for a 5G IoT use case. In some specific use cases, like
SDN, gateways can even offer additional features that can be leveraged by FIDSs, such
as packet re-routing [RWP19] or packet-level analysis [Qin+20b].

Other works [Hei+20; PA18; QK21; Rah+20] assume that end-devices are powerful
enough to support their own processing. While this is generally less realistic, it can be the
case for some specific use cases, like Autonomous Vehicles (AV) [Liu+21]. Indeed, such
vehicles often carry consequent processing abilities for environment recognition alone, and
are thus assumed to be able to perform ML training.

3.5.2.4 Local Algorithm

As discussed in the Chapter 2, one key aspects of ML for intrusion detection is its
adaptability to the monitored system. Online learning refers to the ability to train a model
continuously as data arrives, whereas offline learning refers to a one-shot training on a de-
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fined training set. Only four of the selected works adopt online learning [Hei+20; Ngu+19;
PA18; ST19]. All online work in the selection use either unsupervised or semi-supervised
approaches, as continuously feeding labeled data is impracticable. Offline learning algo-
rithms can be re-trained to adapt to new data, but this is not addressed in the selected
works.

Another key difference lies in the type of algorithm used. Neural Networks (NNs), and
most particularly Deep Neural Network (DNN), massively outnumber other approaches
in the selected works (21 out of 22, see Table 3.3). This is coherent with the state of the
art in ML for intrusion detection, as DNNs are also vastly represented in the literature. In
the selection, most works rely on either Multilayer Perceptrons (MLPs) (9 out of 22) or
Convolutional Neural Networks (CNNs) (4 out of 22). Recurrent Neural Networks (RNNs)
are also used in 3 works, but mostly in combination with other architectures.

This sections highlights the predominance of DNNs in the selected works. These finding
can be generalized to the literature published since the original study, as confirmed the
more recent work of Isma’ila et al. [Ism+24]. Indeed, DNNs are particularly well-suited
for FL:

— they are parametric models, meaning they can be aggregated using mathematical
operations on their parameters (Section 3.5.2.9);

— their layers learn different levels of abstraction, enabling partial aggregation and
specialized training (Section 3.5.2.10);

— their architecture can be adapted to the monitored system, as they can be trained
on different types of data and for different objectives (Section 3.5.2.1).

Consequently, this choice is both relevant for intrusion detection and as a base model to
be used in FL.

3.5.2.5 Defense Capabilities

Defense strategies are barely covered in the selected works, as only one paper provides
actionable counter-measures. Rathore, Wook Kwon, and Park [RWP19] leverage SDN
technologies, allowing the SDN controller to modify the network architecture in case of
an attack. The proposed solution is tailored for Denial of Service (DoS) or flooding attacks,
and therefore only needs to block the responsible traffic flow.

FIDSs could also provide remediation capabilities, providing automated resilience of
a monitored system [Gho+07]. To the best of our knowledge, there is no such work in the
literature. However, multiple works have been proposed to provide self-healing behaviors
to information systems [Ali+18; EA10]. Other recent works have also proposed to use FL
to improve event prediction in CIDSs [Nas+22]. Coupled with mitigation strategies, such
systems could provide a complete solution to intrusion detection and response, enabling
proactive defense against advanced attackers.
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Table 3.3 – Comparative overview of selected works in the original study—algorithms
and performance (2/2).

Ref Local Algorithm Federation Algorithm Accuracy Precision Recall Fall-out F-Score K a Dataset

2018 Pahl and Aubet [PA18] BIRCH
K-means Parameter addition 0.9900 – 0.9600 0.0020 – 7 Generated

2019 Rathore, Wook Kwon, and Park [RWP19] MLP Early model fusion ‡ 0.9100 ‡ 0.9100 ‡ 0.9100 – ‡ 0.9100 15 NSL-KDD [Tav+09]

2019 Schneble and Thamilarasu [ST19] MLP Weight and biases average 0.9930 – – – – 64 MIMIC [Joh+16]

2019 Nguyen, Marchal, et al. [Ngu+19] GRU FedAvg – – 0.9543 0 – 15 Generated

2019 Zhao, Chen, et al. [Zha+19] FC (shared layers) → FC Weight and biases average ∗ 0.9797 ∗ 0.9634 ∗ 0.9681 – – –
CICIDS2017 [SHG18]
ISCXVPN2016 [Dra+16]
ISCXTor2016 [Hab+17]

2019 Cetin et al. [Cet+19] SAE FedAvg – – – – – 933 AWID [Kol+16]

2020 Li, Wu, et al. [Li+20a] CNN-GRU → MLP Homomorphic parameter addition 0.9920 0.9885 0.9745 – 0.9813 7 CPS dataset [MG14]

2020 Chen, Zhang, and Yeo [CZY20] DAGMM Parameter addition – 0.7447 0.9803 – ‡ 0.8700 2 b KDD 99 [Sig99]

2020 Zhang, Lu, et al. [Zha+20a] MLP CDW_FedAvg ∗‡ 0.8900 ∗‡ 0.8600 ∗‡ 0.9450 – ∗‡ 0.8500 4 Generated

2020 Fan et al. [Fan+20a] CNN Parameter aggregation ∗ 0.9100 – ∗‡ 0.9350 ∗‡ 0.0020 – 4
CICIDS2017 [SHG18]
NSL-KDD [Tav+09]
Generated

2020 Rahman et al. [Rah+20] MLP FedAvg ∗ 0.7731 – – – – 4 NSL-KDD [Tav+09]

2020 Sun, Ochiai, and Esaki [SOE20] CNN Parameter aggregation ∗ 0.8710 – – – – 20 LAN-Security
Monitoring Project [Hid18]

2020 Al-Athba Al-Marri, Ciftler, and Abdallah [ACA20] MLP with Dropouts FedAvg 0.9812 ∗ 0.9900 ∗ 0.9900 ∗ 0.1320 ∗ 0.9900 10 NSL-KDD [Tav+09]

2020 Kim, Cai, et al. [Kim+20] MLP FedAvg 0.9712 – – – – 4 NSL-KDD [Tav+09]

2020 Qin, Poularakis, et al. [Qin+20a] BNN SignSGD ∗ 0.9640 ∗ 0.9555 ∗ 0.8645 – ∗ 0.9055 8 CICIDS2017 [SHG18]
ISCX Botnet 2014 [Big+14]

2020 Chen, Lv, et al. [Che+20] GRU-SVM FedAGRU ∗ 0.9905 – – ∗ 0.0108 ∗ 0.9762 20
CICIDS2017 [SHG18]
KDD 99 [Sig99]
WSN-DS [AAA16]

2020 Hei et al. [Hei+20] MLP FedAvg ∗‡ 0.8950 ∗‡ 0.9750 ∗‡ 0.8775 – ∗‡ 0.9225 3 DARPA 1999 [Hai+01]

2020 Li, Zhou, et al. [Li+20b] CNN Homomorphic parameter addition ∗ 0.8100 ∗ 0.1900 4 Generated

2021 Liu, Zhang, Zhang, et al. [Liu+21] MLP Parameter aggregation ‡ 0.9600 0.9400 0.9500 – – 6 KDD 99 [Sig99]

2021 Popoola, Gui, et al. [Pop+21b] MLP FedAvg ∗ 0.9939 ∗ 0.9819 ∗ 0.9676 – ∗ 0.9728 5 Bot-IoT [Kor+19]
N-BaIoT [Mei+18]

2021 Qin and Kondo [QK21] ONLAD [TKM20] (ELM + AE) FedAvg 0.7040 – – – – 8 NSL-KDD [Tav+09]

2021 Sun, Esaki, and Ochiai [SEO21] CNN Parameter aggregation – – – – ∗ 0.8930 20 LAN-Security
Monitoring Project [Hid18]

Metrics

∗ Value is an average of those provided by the authors.
‡ Value is read from a graph in the article, and may vary a few from the exact value.
a K is the highest number of client considered in the experiments.
b Chen, Zhang, and Yeo [CZY20] measure how one client performs, by training one other.
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3.5.2.6 Federation Strategy

Another key aspect of FIDSs is how the federation is organized. This depends on
the scale of the system and its architectural constraints, which are both yet again influ-
enced by the use case. To cope with large-scale settings, massive FL applications often
implement a client-selection algorithm which only train a subset of participant at each
round. This reduces the computing load and bandwidth consumption at the expense of
a slower convergence due to its stochastic nature—see Chapter 2. The selected works do
not discuss this aspect particularly deeply, although some observed positive results from
increasing the number of clients [Li+20a; Ngu+19; ST19]. Client selection can even be
done dynamically [Zha+20b], even though it is not discussed in the selected works. More
recent works leverage client selection, either to improve performances [Che+22], or to
mitigate the risk of malicious contributions [Cun+24].

On an architectural perspective, most FL implementations follow a client-server model,
where the server acts as an orchestrator distributing training tasks and model updates.
This is true for most of the selected works (18 out of 22). While relatively easy to deploy,
such approach has caveats, such as the necessity of trusting the central server, or the
Single Point-of-Failure (SPoF) in the aggregation process [Ale+20]. To mitigate these
issues, some works propose (partly) decentralized approaches, using Distributed Ledger
Technologies (DLTs) to store models and updates [RWP19], or enable traceability of the
training data using Merkle trees [Zha+20a]. The multi-stage aggregation proposed by
Liu, Zhang, Zhang, et al. [Liu+21] leverages DLTs to aggregate models between Roadside
Units (RSUs)—which connect vehicles to the rest of the world in the V2X paradigm. The
vehicles are also able to share their models with each other, in a manner resembling gossip
learning. Finally, Hei et al. [Hei+20] use the Hyperledger Fabric [And+18] to provide
integrity and redundancy.

3.5.2.7 Communication

FL implies a significant amount of communication between the clients and the server,
even though it remains more communication-efficient than distributed Gradient Descent
(GD) algorithms [McM+17]. Some selected works try to reduce the communication over-
head generated by their solution. Schneble and Thamilarasu [ST19] and Zhang, Lu, et al.
[Zha+20a] compare the communication used by their system in model sharing, and com-
pare it with the dataset size, which would require to be transferred in non-FL settings.
While their results show that the relevance of FL to limit communication usage can be
questioned in small datasets, its strength is undeniable with standard use cases—above
105 bytes according to [Zha+20a]. The communication overhead is one of the advantages
of FL over centralized ML approaches.

The communication between the clients and the server can also be secured. The au-
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thors of [Li+20a] and [Li+20b] use homomorphic encryption to aggregate the parameters
without the server knowing the generated model. The Paillier crypto-system supports ad-
dition [Pai99], which is performed on the server, before the result is disseminated back to
the clients. Each client can then decrypt the generated model, and devise the parameters
by the number of participants to obtain the averaged biases and weights.

3.5.2.8 FL Type

As introduced in Chapter 2, most FL implementations use HFL, 18 out of 22. Vertical
Federated Learning (VFL) is not represented in the selected works, and only found once
in the updated literature selection [NDG22]. As VFL requires having the same samples
but different features, it is more difficult to apply to a CIDS use case. Having the same
samples would mean that the different participants monitor the same devices, just using
different features, which does not follow the motivations of this work. Nevertheless, VFL
might be relevant for correlation purposes in a local architecture, or between Computer
Emergency Response Teams (CERTs) to share information about common threats.

On the other hand, some papers show that Federated Transfer Learning (FTL) can be
used to train models in different but related contexts. For instance, a model trained on
the periodicity of specific devices as in [Ngu+19; PA18] would not perform well against
devices with behaviors that are too different. However, with FTL, one could quickly train
a local model specific to his devices, using the knowledge acquired previously by others,
as in [Fan+20a]. Another application of this concept is used by [Zha+19] with Multi-Task
Learning (MTL), where a same model is trained simultaneously for multiple tasks. Like
in FTL, the model is retrained after the sharing to have personalized behavior.

Al-Athba Al-Marri, Ciftler, and Abdallah [ACA20] implement Federated Mimic Learn-
ing (FML) to improve data privacy. Mimic learning is a technique that use two models and
two datasets to train and share information afterward. Teacher model is trained on the
real and sensitive data, and used to label a public dataset. Student model is then trained
on the newly labeled public dataset, and shared with other participants after that.

3.5.2.9 Aggregation Strategy

The aggregation strategy is at the core of FL, as it was the original contribution [McM+17]
separating it from distributed GD algorithms. More specifically, the base principle of train-
ing over multiple epochs locally and aggregating the models (i.e., FedAvg) is one of the
key components of FL. This approach is the base of most implementations going forward.
Naturally, it is also the most represented aggregation algorithm in the selected works, as
6 out of 22 [ACA20; Kim+20; Ngu+19; Pop+21a; QK21; Rah+20] use it directly. Others
leverage alternative weighting mechanisms, where FedAvg weights models based on the
number of samples they have been trained on.
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Zhang, Lu, et al. [Zha+20a] propose to weight the aggregation according to the cen-
troid distance between the positive and negative classes of the client. They claim it reduces
the impact of heterogeneity in the data distribution. Other articles average the parame-
ters of the uploaded models [CZY20; ST19], while not mentioning FedAvg explicitly. The
aggregation weights also represent an opportunity to balance the clients contributions.
This is widely used in the FL literature, whether it is based on the number of sam-
ples [McM+17], on the participants’ obtained reputation [Wan+22; WK21], or based on
model-quality metrics [Den+21].

Because they use Binarized Neural Networks (BNNs) with only binary values, the
authors of [Qin+20a] cannot simply average the model parameters. While the last layer
of the BNN could be converted to numerical values to be aggregated more easily, the
authors prefer the binary approach SignSGD [Ber+18]. This aggregation algorithm relies
on majority voting to estimate the best weights for the layers. While their system performs
well, the authors point out that updates that do not change the sign of the weights
represent a waste of resources, since only two values are possible, +1 or −1.

Further, we also considered works in the literature that push the boundaries of the
aggregation process, even if it does not suit the formal definition of FL. For instance,
Rathore, Wook Kwon, and Park [RWP19] use early model fusion, a technique that concate-
nates the feature vectors of the models to learn the best feature representation. Pahl and
Aubet [PA18] use Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)
clusters, which have the particularity of being easily aggregated by simply adding the fea-
tures of multiple clusters together. Timestamps are also saved to detect the staleness of
the clusters.

Finally, multiple aggregations can be performed in a single system, whether it is hi-
erarchically [Liu+21] to reduce the communication overhead, or in different clusters in
parallel [SEO21; SOE20] to reduce the heterogeneity inside communities. The recent lit-
erature contains more works leveraging clustered FL to build more homogeneous commu-
nities [Cai+22; Sha+24]. Clustering will be extensively leveraged in Chapter 6 to detect
malicious contributions in heterogeneous settings.

3.5.2.10 Model Target

The existing literature on FIDS highlights how building a generic efficient model is
difficult. Nguyen, Marchal, et al. [Ngu+19] stress that anomaly detection systems suffer
from lower performance when monitoring multiple behaviors at the same time. This espe-
cially impacts the false positive rate and sensitivity in their experiments. To address this
issue, they propose to use an autonomous classification system [Mar+19] to categorize
devices first, and then train per-class models. However, this classification problem is not
specific to intrusion detection, and standards have been proposed for devices to advertise
such information. Manufacturer Usage Description (MUD) [LDR19] for instance allows
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devices to signal to the network what type of functionalities and authorizations that they
require for operating properly. While they do not rely on an existing standard, Pahl and
Aubet [PA18] use a middleware providing similar feature by communicating predefined
classes attached with each device’s requests.

Fan et al. [Fan+20a] leverage FTL to enable model specialization. Each client trains
a personalized version of the global model using Transfer Learning (TL). This allows to
train models accurately on the singularities of each network, while improving the overall
performance of the system. Another approach is to use MTL to train a single model on
multiple tasks. Zhao, Chen, et al. [Zha+19] train a unique model for anomaly detection,
Virtual Private Network (VPN) traffic classification, and TOR traffic recognition. Qin and
Kondo [QK21] propose another way of building different more specific models, by training
models depending on the feature set used by the local device. They emit the hypothesis
of building models per attack: devices could train a model for DoS attacks, others for
Probes. The other works considered in this survey use a global model for their detection
[ACA20; Che+20; CZY20; Hei+20; Kim+20; Li+20a; Pop+21a; Qin+20a; Rah+20; ST19;
Zha+20a], regardless of the data type or detection method.

3.5.2.11 Analyzed Dataset

The literature on IDS has produced various datasets over the years, which are used to
evaluate the performance of the proposed systems. Common datasets include KDD’99 [Sig99]
and its fixed version NSL-KDD [Tav+09], UNSW-NB15 [MS15], and CICIDS2017 [SHG18].
We will not describe these datasets here, as Chapter 2 already provides an overview of
the most common datasets used in intrusion detection. However, it is worth stressing
again that these datasets are often criticized, either for their age, their lack of realism,
or the different biases they contain. For instance, NSL-KDD fixes multiple issues of the
original KDD’99 dataset, such as removing redundant and duplicated records. Likewise,
recent works [ERJ21; Lan+22] have demonstrated issues in the CICIDS2017 dataset, e.g.,
duplicated records, ineffective attacks, and misordered packets.

The initial selection highlights a consequent representation of said datasets: out of the
22 selected works, 3 use KDD’99, 6 use NSL-KDD, and 4 use CIC-IDS2017. There are
still some overlaps between the datasets, as some works [Che+20; Fan+20a; Qin+20b;
Zha+19] test their approach on multiple datasets (but only one at a time). The other
works generally use domain-specific datasets, such as the MIMIC-III dataset [Joh+16] for
health-related data [ST19], or the CPS dataset of Morris and Gao [MG14] for FIDSs in
industrial settings [Li+20a].

However, this selection highlights a massive drawback of the literature: biased assump-
tions on the data distribution. Except for Sun, Ochiai, and Esaki who used a dataset
collecting data from effectively distributed sources, all selected work use a single dataset
and distribute it among the clients. Even worse, most of them either do not mention
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data-distribution at all, or assume it is IID. As discussed in Section 3.5.2.1, this is a
major drawback, as most real-world scenarios generate non-IID data. This makes most
experiments unrealistic, as the clients train their models on data generated on the same
network topology, with the same devices, and the same behaviors, even considering not
Independent and Identically Distributed (NIID) settings.

Just after we stopped data collection for the original study, Sarhan, Layeghy, and
Portmann [SLP22] proposed a standardized feature set for intrusion detection (see Chap-
ter 2), and converted four known IDS datasets to this format: UNSW-NB15 [MS15],
Bot-IoT [Kor+19], ToN_IoT [Mou+20], and CSE-CIC-IDS2018 [SHG18]. The uniform
feature set across datasets allows FL-based approaches to evaluate their performance on
independently generated datasets [dCar+23; Pop+21b], closing the gap towards more
realistic experiments. In the context of cross-silo FL, each dataset can act as one organi-
zation’s collected data, which is done by de Carvalho Bertoli et al. [dCar+23]. Finally, we
present in Chapter 7 our work on topology generation, which will provide building blocks
for generating more realistic distributed datasets.

3.5.2.12 Costs and Metrics

We can divide the metrics used in the selected works into three categories that follow
the life cycle of the system: training, federation, and execution. Training-related metrics
measure the behavior of the model during the training phase. Federation-related assess
the costs and benefits of the FL approach, while execution-related metrics measure the
performance of the system in real-time, notably during the detection or classification
phase.

Training This includes typical metrics like accuracy and loss used during the training
phase, as well as resource-related metrics. They can be used to measure the conver-
gence time of the model, often characterized as obtaining an accuracy above a defined
threshold (e.g. 90% in [CZY20]), or with the percentage of loss improvement between
two epochs (e.g. 0.01 in [Kim+20]). Training time also serve as a comparison between
approaches [ST19], even though it depends a lot on the underlying hardware architecture.
Finally, it can be used as a metric to select other hyper-parameters, such as the number
of epochs in [Liu+21]. Algorithm complexity and resource consumption are also relevant
metrics to measure local training costs. Constrained use cases like IoT require complex
algorithm to run on resource-limited devices. In [PA18], the authors also study complexity
to choose BIRCH clusters instead of K-means, as updating the former is easier—O(d) vs.
O(n ∗ d), where d is the dataset size. Hardware-related resources are used by [RWP19;
Zha+19], mostly to emphasize differences between their approach and another, often more
standard one. These resources often include CPU, disk and memory usage, as well as en-
ergy consumption. However, evaluating hardware-related metrics requires experiments to
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be implemented using the same hardware and software stacks. Hardware- and energy-
based metrics are especially relevant in constrained scenarios [Ngu+19; ST19], whereas
training time is relevant for most use case, while not a priority. When these measures
are collected on reference hardware, it can also be used to evaluate the feasibility of the
approach, as in [Ngu+19], if the hardware matches the deployment constraints of the
study.

Federation Federation-related metrics are heavily tied to the communication between
clients, or with a server. The communication overhead is a core metric of FIDSs, as
high bandwidth consumption is a drawback of CIDSs (see Challenge 4), especially in
constrained environments [Qin+20a]. The overhead is often measured in bytes, either
per packets [PA18], or for the total of all communications [ST19; Zha+20a]. Metrics
must be adapted to the specificities of each solution, for instance when adding a feature.
Consequently, Zhang, Lu, et al. [Zha+20a] add specific metrics in their evaluation to
measure the impact of using the blockchain, like the time of the blockchain encoring
process. Some works [ACA20; CZY20; Fan+20a; Li+20a; Pop+21a; Rah+20; RWP19;
SOE20], on the other hand, do not cover federation-related metrics in their evaluation,
which is questionable as it is a critical part of FIDSs.

Execution Finally, execution-related metrics are mostly focused on performance, and
often come from the ML community. As shown in Table 3.3, accuracy is used by almost all
reviewed works, followed by precision and recall. More generally, all metrics issued from the
confusion matrix can be used, but the literature emphasizes on metrics that focus on the
detection of anomalies, like recall and precision, or the F1-score which combines the two.
Researchers often use these metrics to compare their results with related works. Other
execution metrics like execution time are considered, as it can be critical for intrusion
detection tasks. Latency allows a comparison between different architectures, especially
centralized, distributed, and decentralized [RWP19]. Latency is also relevant for highly
constrained setups, as in [Qin+20a]. As pointed out in Section 3.5.2.3, ML location can
have an impact on data collection, but also on detection latency, if data need to travel over
network to be analyzed. Execution metrics are only relevant when comparing works that
share implementation. Such comparison is often performed by reimplementing a selection
of related works. They can also be used to highlight differences between approaches, like
between local, federated, and ideal models [Li+20a; RWP19].

3.6 Discussion

This section first discusses the limitations of this study, notably the number of selected
papers and the methodology used. We then answer Question RQ1-3.c by identifying the
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open issues and according research directions, and associate them with recent publications.

3.6.1 Limitations of this Study

The original review reviewed 22 technical papers about FIDSs, selected using SLR
methodology. This ensures that the selected papers are representative of existing works
in this field. Other surveys in similar but broader fields worked with bigger quantities of
papers; 231 in [Lo+21] about FL, or 95 in [dCos+19] for ML-based IDSs. Therefore, all
conclusion extracted from the selected works must be put in perspective of the number
of analyzed papers.

Furthermore, SLR methodology guarantees the exhaustive aspect of the selection.
However, relevant papers may have been missed; especially, edge–use-cases and unusual
wording can exclude papers from the selection process. We expect the steps presented in
Section 3.2 to mitigate this risk, notably snowballing.

Moreover, the selected metrics give insight on the quality of the predictions, and more
importantly the comparison between FIDS and local detection, when provided. As the
selected works target different use cases with different objectives, a performance metric-
based comparison is less relevant. Using the same datasets, hardware and network con-
figuration, and coding frameworks, a thorough reimplementation of the reviewed papers
could provide significant contributions.

Finally, the selected papers are from 2016 to 2021, and the field of FIDS has been
evolving rapidly. As noted in Section 3.2.3, a significant number of papers were published
since the end of data collection of the original review, including new literature reviews
(see Section 3.3). Yet, the conclusions of this study have provided a solid foundation for
the other contributions of this thesis and others in the literature. Further, most trends
and research directions that we identified are still relevant in 2024.

3.6.2 Open Issues and Future Directions

As FL is becoming more mature, new research tend focus either on side-aspects like
security and privacy [Bon+17; Don+20; FYB20; Mot+21b; Ngu+20] or on its application
to a specific use case, as do the works selected in this survey. This section reviews open
questions identified by literature, and the proposed according research directions. Addi-
tionally, for each identified open issue, we provide relevant publications that have been
published since the original review to complement the discussion. Some of these issues
depend on works from other related fields, such as ML for performance or FL for scalabil-
ity. However, the specificities of FIDSs require dedicated research. Especially, the topics
of security, trust, and heterogeneity are critical for a collaborative security use case.
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Performance Like any detection system, FIDSs are looking for an absolute perfor-
mance: a system with a perfect classification score, producing no false positives or nega-
tives. To this end, several research directions have been identified by the selected works,
such as the use of Generative Adversarial Networkss (GANs) [ST19] or the improvement
of feature selection as input to the model [SEO21]. More generally, there is a need for a
better understanding of the impact of hyper- and meta-parameters on the performance of
the system. This is especially true for FL, where the aggregation process can be seen as
an optimization problem in itself [CK21]; a problem for which the right parameters need
to be inferred. Both GANs [Jin+24] and meta-learning for local data-sampling [HDH23]
have been reviewed as potential solutions to this problem.

Adaptability Constrained environments like low-bandwidth networks, or low-powered
devices, may also impact the ability of FL to provide detection in a timely fashion (Chap-
ter 2). Since the security of constrained devices is a growing concern, the selected works
identify relevant research directions in this area, such as implementing compression al-
gorithms [Fan+20a] or globally reducing the number of computation rounds [Rah+20].
Moreover, as time goes by, the training data can be easily become outdated. Updating
strategies need to be studied to provide accurate results as time goes [Fan+20a], and
adapt to changes in the traffic behavior [QK21]. This topic has been especially tackled in
FIDSs using incremental learning [Jin+23].

Scalability Distributed systems such as FL are often used to cope with resource limi-
tations, especially in terms of computation and bandwidth. However, as pointed out by
several selected works, FL faces limitations when dealing with too many clients [Fan+20a;
RWP19]. Therefore, FIDSs require further research regarding client selection: performance-,
time-, or reputation-based [Cun+24]. Moreover, in massively distributed federations, the
aggregation process can become a bottleneck. In such settings, researchers and practition-
ers might consider using hierarchical aggregation or even complete decentralization of the
system. A few decentralized FIDSs approaches have been proposed since [Fri+23].

Heterogeneity and Transferability The approaches presented in the initial review
mostly consider that all local models share the same architecture and hyper-parameters,
use data from the same domain, and that all clients possess similar resources. These
limitations hurdle convergence, and more generally make current FIDSs less versatile
and transferable. Hence, open issues include allowing the federation of cross-domain
clients [Li+20a]. As pointed out in Section 3.5.2.1, the features selected for model training
have to be applicable to multiple environments. Transfer learning [SA21; She+20] and its
federated variant FTL [Che+20; Fan+20a] have been applied to similar domains in the
past, and might also represent a favorable direction for future research in terms of adapt-
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ability. Since the submission of this study, multiple papers [Che+22; Kho+21; OWN21]
have been published in this direction.

Security and Privacy The broad attack surface of FL directly applies to FIDSs, raising
concerns about poisoning, inference, or model extraction. The selected works already ad-
dress some of these issues by leveraging homomorphic encryption to secure the aggregation
process [Li+20a; Li+20b]. Others identify this aspect as potential future works [Che+20],
with countermeasures like MPC or Differential Privacy (DP). Furthermore, as ML, and
especially DL, lacks explainability, the content of a model is difficult to infer. It compli-
cates the detection of poisoning attacks, as it is hard to distinguish between a model that
has been poisoned and one that has been trained on a different dataset. Poisoning has
recieved a lot of attention in the literature of FL [FYB20; Ngu+20; Ngu+22], and some
works have been published in the context of intrusion detection too [Mer+23; Yan+23].

Trust and Reputation Following the same line of thought, the trustworthiness of the
participants is a critical aspect of FIDSs. Malicious participants can indeed impact the
model and the detection process. More generally, the quality of the participants’ contri-
butions must be controlled to ensure the quality of the aggregated model. Zhang, Lu,
et al. [Zha+20a] identify assessing the trustworthiness of the participants as a future re-
search direction. Inspiration should be taken from the state of the art of collaboration
systems and information-sharing platforms, which address problems such as trust or repu-
tations [SSF16; Wag+19], which are relevant for FIDS. Since the submission of this study,
works have been published on the topic of trust via client selection [Cun+24]. Chapter 6
presents a solution to this issue, by providing a trust-based model weighting mechanisms
to ensure the quality of the aggregated models [Lav+24].

Self-defense and self-healing As highlighted in Section 3.5.2.5, current research on
FIDS is focused on intrusion detection and attack classification. Mitigation is barely rep-
resented in the literature [RWP19]. However, technologies like SDN offer quick mitigation
capabilities, and recent works study the effectiveness of such defense mechanisms [BG17;
SB20]. New emerging applications like self-defense and self-healing systems could benefit
from FIDS and other FL-based technologies. A handful of works have been published on
the topic of attack mitigation and reaction [dCal+23; Pan+22; PG22], corroborating our
survey’s findings.

Evaluation Finally, the topic of evaluation raise two major issues in the selected works.
First, reproducibility is a major concern, as few are the works that provide the code or
the datasets used for the experiments. This is a common issue in the field of ML, which
has long been criticized for its lack of reproducibility [Arp+22; Baj+17]. The same issue
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is present in the field of FIDSs, as most of the selected works do not provide enough
information to reproduce the experiments. Some do not even disclose the datasets they
used, such as Nguyen, Marchal, et al. for DÏoT [Ngu+19]. Further, existing public datasets
are not representative of FIDSs deployment environments. Indeed, they are often datasets
produced for traditional ML-based IDSs, but split for federated purposes. This makes most
of the literature biased, as all samples are related to the same original event. Recent works
have tried to partially address this issue by providing standardized datasets [SLP22] or
dedicated ones [Fer+22], although the problem remains unsolved.

3.7 Conclusion and takeaways

FL comes solves two main challenges: (1) it breaks isolated architectures by allowing
learning over distributed data without compromising privacy; and (2) it speeds up training
and reduces communications compared to existing distributed learning approaches, and
even more so when compared to centralized learning. Applied on intrusion detection, FL
allows to leverage the knowledge of multiple actors to improve the detection of attacks,
while preserving the privacy of each organization’s data. This is particularly relevant to
fit with the injunctions of security agencies and regulations, which call for collaboration
and intelligence sharing, while also demanding strong privacy requirements. Based on the
literature reviewed, we can define FIDSs as follows:

Definition 3.1: Federated Intrusion Detection Systems (FIDSs)

Distributed IDSs with privacy-preserving federated knowledge. FIDSs lever-
age FL or similar distributed learning techniques 1 to share and aggregate
the models trained locally with other members of the federation. Federa-
tions can be closed (i.e., all participants are identified and trusted) or open
(i.e., participants can join and leave the federation at any time). Depending
on the ML model used locally, training can happen offline on labelled data,
online, or with a combination of both.

This review highlighted eight main challenges that need to be addressed to build ef-
ficient and secure FIDSs, ranging from pure performance to scalability and mitigation
mechanisms. In the following chapters, we will especially focus on three of these chal-
lenges: (i) FIDSs in Heterogeneous Environments; (ii) Malicious Contributions and Trust;

1. We take some liberty in this definition by not imposing the use of FL as a requirement. While it
is definitely the most popular approach and the motivation behind this study, other privacy-preserving
distributed learning techniques have been used in the literature [PA18; RWP19]. Further, the formal
definition of FL is still debated (see Chapter 2), as the term is often used to describe a broader set of
techniques.
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and (iii) Evaluation and Dataset Representativity. More specifically, we will address the
following points:

— Chapter 5 reviews the impact of Malicious Contributions over FIDSs in IID settings,
with an emphasis on reproducibility.

— We propose in Chapter 6 a novel approach to mitigate such effects in heterogeneous
environments, leveraging reputation systems to assess the quality of the participants’
contributions and their trustworthiness.

— We address Heterogeneity and Dataset Representativity in Chapter 7, where we
propose a novel approach to generate network topologies that are both realistic and
heterogeneous.

Before diving into these challenges, we will first present in Chapter 4 an application of
FIDSs using toy examples on public datasets. This will allow us to visualize the potential
of FIDSs, but most importantly the impact of the challenges we identified above.
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Chapter 4

PERFORMANCE AND LIMITATIONS OF

FIDSS

4.1 Introduction

In the previous chapters, we have discussed the perspectives offered by applying Fed-
erated Learning (FL) to Intrusion Detection Systems (IDSs), notably in terms of collab-
oration. Based on the insights gained from the literature, it is now clear that FL can be
used to train a global model over the distributed data of a federation of organizations.
It even seems that FL could be used to share attack knowledge, still without sharing
participants’ local data.

In this chapter, we present critical examples showing the challenges that arise when
applying FL to Collaborative Intrusion Detection Systems (CIDSs). We start by laying
out in Section 4.2 the practical use case that will be used throughout the rest of the
manuscript. Then, we highlight some limitations of FL in the context of CIDSs in Sec-
tion 4.3, based on our demonstration paper published at ICDCS 2024 [LBA24a].

Contributions of this chapter

A practical use case for FL in the context of CIDSs involving multiple
organizations.

A exhibition of the limitations of FL in the context of CIDSs, notably
in terms of data heterogeneity and susceptibility to poisoning attacks.

4.2 A Practical Use Case for FIDSs

We consider a typical FL scenario where a central server S is tasked with aggregating
the model updates wr

k of a set of participants P = {pk|k ∈ J1, nK} at each round r.
The participants pk are entities that oversee an organization’s network, which makes
them highly available and interested. This can be described as a Cross-Silo Federated
Learning (CS-FL) scenario, i.e., fewer participants with consequent amounts of data and
significant computing capabilities. Because of the lower scale of the federation and the
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assumed interest of the different parties, we set the fraction C of participants that are
selected at each round to 1.

For the sake of simplicity, we consider that all participants share the same model
architecture and extract the same features from the network traffic. This is not unrealistic,
as common formats and protocols are used in the industry for this purpose, such as
Cisco’s NetFlow format [Cla04] for network flows. Further, this description can fit multiple
scenarios, such as organizations deploying the same probe in their network as part of
a standardization effort, or a service provider offering a gray-box product to multiple
organizations. Although the features are assumed to be identical across participants, the
distribution of the data can vary considerably, as each organization has its own network
configuration and security policies [ZLK10].

We also consider that participants have access to labeled data, which is a common
assumption in the literature. Although labeling data can be costly, it is a more reasonable
assumption in CS-FL scenarios, where participants are more likely to have the human
and financial resources to label data. Therefore, each participant possesses a local dataset
dk = (Xk,Yk) that is not shared with the others. Because of the differences between orga-
nizations, the distribution of each local dataset dk can vary considerably, independently of
the associated labels. Indeed, the same network behavior (say Peer-to-Peer (P2P) file shar-
ing) might be considered normal in an organization (e.g., a media company) but flagged
as suspicious or outright malicious in another (e.g., a financial institution). However, the
CIDS use case implies that similarities can exist between participants, for instance be-
tween organizations operating in the same sector or having similar network infrastructure.
This particular setting can be described as practical not Independent and Identically Dis-
tributed (NIID), as opposed to the pathological NIID settings, where all participants have
unique and highly different data-distributions [Hua+21]. This is the most common set-
ting in Federated Intrusion Detection Systems (FIDSs), as it serves the goal of improving
behavior characterization, and having access to knowledge that cannot be inferred with
only local data.

4.2.1 Dataset selection

Since we consider that all organizations share the same model architecture, we need
multiple independently-generated datasets that share the same feature set. Fortunately,
Sarhan, Layeghy, and Portmann [SLP22] have proposed a standard feature set for IDS
datasets, based on NetFlow v9 (see Section 2.2.2). Namely, we used the modified versions
of the following datasets:

— UNSW-NB15 [MS15] is produced using the IXIA PerfectStorm tool on the Cyber
Range Lab of UNSW Canberra. The traffic is a hybrid set of real modern normal
activities and synthetic contemporary attack behaviors, grouped in 9 attack classes.
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— Bot-IoT [Kor+19] is another dataset generated at USNW, using a realistic smart
home environment setup, completed by IoT devices. It focuses on the detection of
IoT botnet attacks, the DoS and DDoS classes being the most represented. This
dataset is highly unbalanced, as the majority of the traffic is malicious.

— ToN_IoT [Mou+20] is yet another dataset generated by the same team, containing
IoT/IIoT telemetry data, network traffic, as well as system logs. The network dataset
contains 9 attack classes, including Ransomware, Scanning, and XSS.

— CSE-CIC-IDS2018 [SHG18] is a dataset generated by the Canadian Institute for
Cybersecurity in collaboration with the Communications Security Establishment
(CSE). The traffic is collected on a large-scale infrastructure deployed on AWS. It
contains 14 attack labels, grouped in 6 attack classes.

In most of the experiments presented in this manuscript, We use the “sampled” version
(1,000,000 data points per dataset) provided by the same team [LP22] We remove the port
and IP addresses for both source and destination, as they are rather a representation of the
network topology and device configurations than of traffic patterns [dCar+23]. We then
use one-hot encoding (see Section 2.2.1) on the categorical features (both in the sample
and labels), and apply min-max normalization to give all features the same importance
in model training. This pre-processing step produces 39 features for each sample.

4.3 Exhibiting the Limits of FIDSs

This demonstration spans over four specific scenarios, each highlighting a specific
aspect of the considered challenges. The first three (Sections 4.3.2 to 4.3.4) target different
heterogeneity scenarios, ranging from homogeneous dataset partitioning to completely
independent data sources. The last scenario (Section 4.3.5) focuses on poisoning attacks
against FL, where malicious participants try to degrade the performance of the global
model.

4.3.1 Setup

To evaluate the performance of FL in the context of CIDSs, and especially evaluate
the feasibility of the scenario presented in Section 4.2, we need datasets that are repre-
sentative of the traffic that can be observed in real-world networks. Consequently, we use
the datasets mentioned in Section 4.2 with the NF-V2 format, which allows us to use the
same model architecture for all participants.

To generate the different scenarios, we build an evaluation framework for FL called
Eiffel 1 [LBA24a], which relies on Flower [Beu+20], a modular FL framework. Eiffel is a

1. Available at: https://github.com/phdcybersec/eiffel
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Table 4.1 – Parameters used for all scenarios.

Parameter Notation Value
Federated Learning

Number of rounds R 10
Local epochs per round E 10
Number of clients K 4

Local Training
Neurons of the (2) hidden layers 128
Activation function (hidden layers) ReLU
Activation function (output layer) Softmax
Batch size β 512
Learning rate η 0.001

Datasets
Number of features 39
Number of samples 100,000

Python library that provides a set of tools to automate the evaluation of FL algorithms,
such as instantiating various types of data distribution, local models, and aggregation
strategies. It further provides multiple label-flipping attacks, and automates metric col-
lection and plotting to quickly evaluate the impact of each parameter.

To assess the impact of a scenario on the federation, we evaluate the global model
on each participant’s test set and collect different performance metrics. The results are
averaged over the different participants to obtain the global model’s performance. We
select the F1-score as the main metric for its focus on positive samples, but the same
methodology can be applied to other metrics. To assess the performance of a model
trained only on local data, we define a FedNoAgg strategy, where local models are kept by
participants at the end of each round. Therefore, models are trained during E × R local
epochs, where R is the number of rounds and E is the number of local epochs per round,
instructed by the server. Table 4.1 summarizes the parameters used for all scenarios, with
the notations defined in Section 2.4.

4.3.1.1 Data Partitioning in IDS contexts

Pathological-NIID partitioning is rarely seen in IDS binary-classification tasks, as they
typically require both benign and malicious training data. Therefore, a common NIID
partitioning scheme is: 1. pathological-NIID of the attack classes, e.g. one or two class
per client; and 2. Independent and Identically Distributed (IID) benign samples. Campos
et al. [Cam+22] also review other partitioning settings based on the ability to separate
data by client IP in public datasets. They also artificially build balanced IID partitions
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by dropping attack samples until a specific Shannon entropy threshold window is reached
for the local distribution. This approach is however more suited for cross-device use cases,
as each client receives the data from one device only. Overall, NIID data for a cross-silo
Network-based Intrusion Detection System (NIDS) context is typically one of:

(a) distributing a dataset among clients, before removing samples from n attack classes
from each client; or

(b) distributing the benign data among clients, before giving samples from n attack
classes to each client, with or without class overlap.

In this chapter, we use two approaches to generate NIID data:

(a) a practical NIID partitioning, where each client loses two attack classes; and

(b) a more realistic NIID setting, where each client has a different dataset.

4.3.2 Scenario 1: IID Data

The first scenario is the simplest one, where the data is partitioned in IID settings. Each
participant receives N

C
samples, after shuffling the dataset. Figure 4.1 presents the results

of this scenario based on the global model’s F1-score. There are virtually no differences
between the FedNoAgg and FedAvg strategies, since each participant has enough samples
of each class to train a suitable local model. Therefore, there are little benefit to using FL
in this scenario.

However, this configuration is often found in the literature to evaluate CIDSs based on
FL, such as in [Aou+22]. While this experiment illustrates the lack of performance gains
on IID data, larger-scale setups configurations might benefit from FL. In fact, selecting
only a subset of the available participants could obtain similar results while reducing
the local computing costs for participants. This setup is thus more akin to a distributed
learning approach, where the server is only used to coordinate the training process.
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4.3.3 Scenario 2: NIID Data from the Same Source

The second scenario highlights the knowledge-sharing capabilities of FL, as it can
transfer characteristics of the data distribution between participants. To illustrate this,
after partitioning the data as in Section 4.3.2, we randomly drop two classes from each
participant’s train set. This results in a NIID data distribution among participant, where
each one has a different subset of classes. Figure 4.2 displays the results of this scenario,
where FedAvg performs significantly better overall than having clients train locally. How-
ever, the F1-score hides the fact that some participants can miss entire attack classes in
the test set, rather than it being a global model issue.

Specifically, since clients have different subsets of classes, they might be unable to
detect some intrusions that are not present in their training data. For example, Table 4.2
displays the Detection Rate (DR) of the first client (client_0) in our setup for each
attack class, both in local and federated training, along with the number of samples of
each class. client_0 has no samples of the Infiltration and DoS classes, and therefore
cannot detect them, i.e. its DR is either 0 or very low. However, the global model is able
to detect these classes, as other clients have samples of these classes in their training set.
We also see a slight decrease in performance for the other classes (e.g., 99.91 instead of
100 for DDoS) due to the aggregation process. Note that the Infiltration being only
detected at 20.11% by the global model is the expected behavior on this dataset, as it is
particularly difficult to detect (see the baseline results in Chapter 5 for more details).

These results indicate that FL can effectively share knowledge between participants,
allowing them to detect attacks that are not present in their local training data. This is
a key feature of FL in the context of intrusion detection.
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Table 4.2 – Detection rate (DR) of client_0 in NIID settings. Rows where knowledge-
sharing is visible are highlighted in gray.

Attack class Samples DR (local) DR (federated)
DDoS 176107 100 99.91
DoS 0 2.43 98.57
Bot 1513 100 99.94
Brute force 1299 99.77 99.55
Infiltration 0 0 20.11
Injection 3 100 100

4.3.4 Scenario 3: NIID Data from Different Sources

While we highlight in Section 4.3.3 that FL can benefit from having different datasets
per client, to the point where it can share knowledge between participants, the third
scenario illustrates the limits of this assumption. CIDS experiments in the literature often
evaluate their approach with a scenario close to the ones presented in Sections 4.3.2
and 4.3.3, where one dataset is partitioned among participants. However, in practice,
participants will likely collect data from different networks, and therefore have different
data distributions.

In this third scenario, we test FedAvg in this configuration, with each participant having
a different dataset. Thanks to the standardized feature set (see Section 4.3.1), we can use
the same model architecture for all participants, which is a requirement for FedAvg. The
class overlap between datasets is also not an issue in this use case, as we focus on binary-
classification, which implies that all participants have benign and malicious samples.

The results presented in Figure 4.3 confirm great performances overall when partici-
pants are trained locally. However, the global model’s performance is highly impacted by
the heterogeneity of the data distributions. This is likely due to the fact that all partici-
pants converge to local minima that are too different from each other, and therefore the
aggregation do not result in a suitable model for all participants. Other approaches than
FedAvg have been proposed to address this issue in IDS context, as the one by Popoola,
Gui, et al. [Pop+21b] for instance, who use Fed+ [Kun+22] as the aggregation strategy
and present promising results in a similar scenario.

4.3.5 Scenario 4: Poisoning Attacks

With the first three scenarios, we have highlighted how the heterogeneity between
participants can impact the performance of FL. However, these scenarios assume that
participants are honest and respect the protocol. In this last scenario, we demonstrate
how FL can be vulnerable to malicious participants, whose goal is to degrade the perfor-
mance of the global model. To do so, we use a specific type data poisoning attacks (see
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Section 2.4.4), where attackers flip the labels of samples in their training data to degrade
the performance of the global model. We use the same setup as in Section 4.3.2, with four
participants and IID

In order to observe the impact in an extreme scenario, two of the four clients are
instructed to perform a label flipping attack on their entire training set. We can observe
in local training (Figure 4.4) that participants identified as “Attackers” have a very low
DR on their test set, as they literally misclassify all of their testing samples. The two
benign participants, on the contrary, reproduce the results of Section 4.3.2, with a high
DR on their test set.

In FL however, the global model is impacted by the malicious participants, as illus-
trated in Figure 4.4. The participants cannot converge towards a stable global model, as
the malicious participants’ updates are too different from the others. Due to the miss-
classification introduced by the malicious participants, the global model’s performance
is degraded, and the F1-score oscillates between 0.1 and 0.2. This is critically low, as it
means that the aggregated model either misses a lot of attacks and misclassifies a lot of
benign samples. A more in-depth analysis of the impact of poisoning attacks on FL is
presented in Chapter 5.
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4.4 Conclusion and Takeways

In this chapter, we have presented a practical use case for FL in the context of CIDSs.
This use case will be used throughout the rest of the manuscript to illustrate the different
contributions and results. Based on this use case, we have also exposed some limitations
of FIDSs, notably in terms of data heterogeneity and susceptibility to poisoning attacks.
We will explore these limitations further in the next chapters: the impact of poisoning
attacks in Chapters 5 and 6, and the impact of data heterogeneity in Chapters 6 and 7.
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Chapter 5

ASSESSING THE IMPACT OF

LABEL-FLIPPING ATTACKS AGAINST

FIDSS

5.1 Introduction

Because of its distributed nature, Federated Learning (FL) is highly susceptible to var-
ious types of threats, such as poisoning and privacy attacks [Rod+23]. Extensive analyses
of poisoning attacks in FL have been conducted [Bha+19; Tol+20] and have shown signifi-
cant impact on performance. However, in critical applications such as Intrusion Detection
Systems (IDSs), the performance of the learning algorithm is of utmost importance, as
it directly impacts the security of the monitored system. Consequently, the impact of
poisoning attacks on FL for IDSs is a critical concern.

Chapter 4 illustrated this concern easily, showing that a simple label-flipping attack
can completely compromise the performance of a Collaborative Intrusion Detection Sys-
tem (CIDS) based on FL. This chapter aims to further investigate the impact of label-
flipping attacks on Federated Intrusion Detection System (FIDS), and understand the
conditions under which these attacks are most effective. While robust approaches have
already been proposed [Vy+21; Yan+23; Zha+22b], few studies focus on understanding
and quantifying the impact of poisoning attacks on FL for IDSs. In particular, the effects
of label-flipping attacks has been overlooked, as no systematic study has been conducted
to understand their impact on FL for IDSs to the best of our knowledge.

This work aims at filling this gap by conducting a systematic and quantitative as-
sessment of the impact of label-flipping attacks on FL for IDSs. While simple in nature,
label-flipping attacks are particularly interesting as they are easy to implement, even in
a black-boxed system, and can have a significant impact on the trained global model.
Specifically, this study aims at answering the following research questions, building on
Question RQ3 stated in the Introduction of this thesis.

RQ3-1. Is the behavior of poisoning attacks predictable?

RQ3-2. Do hyperparameters influence the impact of poisoning attacks?

RQ3-3. Are IDS backdoors realistic using label-flipping attacks?
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RQ3-4. Is there a critical threshold where label-flipping attacks begin to impact perfor-
mance?

RQ3-5. Is gradient similarity enough to detect label-flipping attacks?

The content of this chapter is an extended version of our work published at Interna-
tional Conference on Availability, Reliability and Security (ARES) in August 2024 [LBA24b].
Its remainder is organized as follows. First, Section 5.2 details the methodology used to
conduct the experiments, with an emphasis on reproducibility. Then, Section 5.3 presents
the results of the experiments, answering the research questions. In Section 5.4, we delve
into the related work, especially the existing analyses on the impact of poisoning attacks
on FL. Finally, Section 5.5 discusses the implications of the results and concludes the
paper.

Contributions of this chapter

The first systematic analysis of the impact of label-flipping attacks
on CIDSs leveraging FL, answering a set of research questions.

A comprehensive understanding of the impact of these attacks on the
performance of the learning algorithm.

A reusable methodology to assess the impact of poisoning attacks on
FL, with experiments that can be easily replicated and extended to
other datasets, attack types, and mitigation strategies.

An automation framework to facilitate the evaluation of FL ap-
proaches under different attack scenarios, built upon Flower [Beu+20]
and Hydra [Yad19].

5.2 Methodology

Assessing the impact of data-poisoning over FL implies reviewing a consequent amount
of parameters and configurations. To optimize our work and make it easily reproducible,
the results presented in Section 5.3 have been generated using a purposely designed eval-
uation framework based on Flower [Beu+20] and Hydra [Yad19]. We follow the ACM’s
guidelines and terminology [ACM20], and take measures to ensure the reusability of our
artifacts, the reproducibility of our results, and the replicability of our experiments. Specif-
ically:

1. We provide the methodology and all parameters necessary to reimplement and repli-
cate the experiments;
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Table 5.1 – Distribution of the CIC-CSE-IDS2018 (left) and UNSW-NB15 (right)
datasets [LP22; SLP22].

Class Sampled Full

Benign 880,623 16,635,567
DDoS 73,558 1,390,270
DoS 25,574 483,999
Bot 7,595 143,097
Brute Force 6,525 123,982
Infiltration 6,108 116,361
Injection 17 432

Total 1,000,000 18,893,708

Class Sampled Full

Benign 960,078 2,295,222
Exploits 13,187 31,551
Fuzzers 9,377 22,310
Generic 6,976 16,560
Reconnaissance 5,352 12,779
DoS 2,455 5,794
Analysis 969 2,299
Backdoor 925 2,169
Shellcode 617 1,427
Worms 64 164

Total 1,000,000 2,390,275

2. Dependencies are pinned using Poetry for Python and Nix for system, allowing the
entire software pipeline to be executed in the same conditions;

3. All experiments are seeded where possible, which makes the results reproducible
within a three decimal precision;

4. The results and the code to generate them are available in open access 1, as are the
datasets 2.

The results presented in this chapter amount to 10 670 unique runs, and close to 1 613
cumulated computing hours on two NixOS servers with 96 cores, 768 GB of RAM and 2
Nvidia Tesla T4 each.

5.2.1 Dataset and Pre-processing

Due to the scale of the required experiments, we require datasets that are both rep-
resentative of the problem and small enough to be processed in a reasonable amount of
time. As discussed in Chapters 2 and 4, recent works on FL and IDS [SLP21] proposed a
standardized feature set (NF-V2) making cross-dataset FL setups easier. The authors no-
tably provide converted versions of known datasets, including CSE-CIC-IDS2018 [SHG18]
and UNSW-NB15 [MS15], the two most used generic Network-based Intrusion Detection
System (NIDS) datasets in the literature.

We use the “sampled” version of the datasets provided by the authors [LP22], and
already mentioned in Chapter 4. Table 5.1 summarizes the distribution of the classes
in the datasets. After pre-processing, we evenly split the dataset for the experiments,
ensuring the same class distribution in the training and testing sets. 80% of the dataset is

1. httos://github.com/TODO
2. https://staff.itee.uq.edu.au/marius/NIDS_datasets/
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1
(a) CIC-CSE-IDS2018

’sampled’ to ’sampled’ ’sampled’ to ’full’
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1
(b) UNSW-NB15

Figure 5.1 – Cross-projections of the malicious traffic from the two datasets in 2D using
Principal Component Analysis (PCA). On top, the frame of reference is computed using
the sampled dataset, and on the bottom the full dataset. The sampled dataset is then
projected on the left, the full dataset on the right.

used for training, and 20% for testing. We purposely do not use a proper validation set, as
the goal is to measure the performance delta related to the impact of the attacks on the
global model, and not to optimize the model’s hyperparameters. Indeed, the parameters
are kept constant throughout the experiments, as detailed in Table 5.2. We sometimes
refer to the datasets as cicids and nb15 for brevity in the remaining of this chapter.

To assess the representativity of the datasets sampling, we compare the projections
in two dimensions of the two datasets using PCA. Figure 5.1 presents cross-projections
results, depending on the datasets used to generate the projection frame. There are con-
sequent overlaps between the classes in this projection, implying that either 2 dimensions
are not enough to separate the classes, or there are features that are not relevant to the
classification task. Yet, the projected patterns are identical between the two datasets,
which indicates that the sampling process does not introduce significant distribution bias
in the dataset. Therefore, experiments performed over the sampled datasets should be
representative of observed the behaviors in the original dataset.

5.2.2 Local and Federated Training

We use a simple Multilayer Perceptron (MLP) model with two hidden layers, as im-
plemented by Popoola, Gui, et al. [Pop+21b] who use the same datasets; a summary of
the model’s parameters is available in Table 5.2. Trained centrally, this model reaches an
F1-score of 0.966 and an accuracy of 0.992 on our sampled CIC-CSE-IDS2018, and 0.945
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Table 5.2 – Hyperparameters.

Hyperparameter Value

Learning rate 0.0001
Hidden layers activation ReLU
Output layer activation Sigmoid
Input shape 49
Number of hidden layers 2
Size of the hidden layers 128
Optimizer Adam
Loss function Binary cross-entropy
Aggregation FedAvg

and 0.995 on the UNSW-NB15 dataset, respectively. These values can be considered as
baselines for the FL experiments.

We focus on the impact of data-poisoning specifically, and therefore omit other factors
that could hurt the performance of the model, such as client heterogeneity or disconnec-
tions. We also specifically concentrate our efforts on a collaborative cross-silo setting,
where all clients are available at each round and C = 1. Consequently, the dataset is
partitioned into 10 Independent and Identically Distributed (IID) shards of 80,000 data
points, and each client is assigned with one shard. On the server, the uploaded models are
aggregated using FedAvg—which, since the local datasets are of similar size, is equivalent
to a simple average of the weights.

5.2.3 Attack Model and Implementation

We consider data-poisoning attacks where malicious participants can alter their local
datasets before training. This definition covers both, participants that have been com-
promised and those that are deliberately modifying their data. Further, this scenario will
always be available, even with a secure and immutable FL client software. Specifically,
we implement data-poisoning using label-flipping attacks, where the attacker changes the
label y of a sample to a new label yp; i.e., yp = ¬y in a binary-classification problem.

Attacker’s Objective We consider two types of objectives for the attacker depending
on the type of attack leveraged. With targeted attacks, the attacker aims to make a
specific attack pattern undetectable, and therefore act as a backdoor in the IDS. This
is implemented by labeling a randomly selected fraction of a specific attack class (e.g.,
DDoS) as benign. With untargeted attacks, on the other hand, his goal is to produce
high False Positives Rate (FPR) and False Negative Rate (FNR), which can overwhelm
human operators or other security systems. Here, a random fraction of the entire dataset is
altered, where the label of each sample is flipped from benign to attack and vice versa. The
proportion of samples that are altered is controlled by the Data Poisoning Rate (DPR),

79



Part II, Chapter 5 – Assessing the Impact of Label-Flipping Attacks against FIDSs

Table 5.3 – Experimental parameters. Default parameters are highlighted in bold and
are used if not specified otherwise.

Parameter Values

dataset cicids, nb15

batch_size 32, 128, 512

epochs 100_10x10, 100_4x25, 100_1x100, 300_10x30, 300_4x75, 300_1x300

distribution 10-0, 9-1, 7-3, 5-5, 3-7

scenario continuous-{10,30,60,70,80,90,95,99}, continuous-100, late-3,
redemption-3

target untargeted, (cicids) bot, dos, ddos, bruteforce, infiltration,
injection, (nb15) generic, analysis, worms, backdoor, exploits,
untargeted, shellcode, dos, reconnaissance, fuzzers

partitioner iid_drop_1, iid_drop_2, iid_full, iid_keep_1, kmeans_drop_1,
kmeans_drop_2, kmeans_full, kmeans_keep_1

seed 1313, 1977, 327, 5555, 501, 421, 3263827, 2187, 1138, 6567

which is the ratio of samples matching the target that are altered by each attacker on a
specific round. We note the DPR, or local poisoning rate, as α.

Attacker’s Knowledge and Capabilities We consider attackers to be gray-box ad-
versaries, i.e., they have the same knowledge as benign clients, but are unable to modify
the system’s behavior, neither locally nor on the server. Further, we consider that multiple
attackers can be present in the system, and that they can act in concert. This scenario
is referred to as colluding attackers. In this case, the attackers share the same target and
DPR. The proportion of attackers can vary from one single malicious client to a majority
of them being malicious, and is expressed as τ , or Model Poisoning Rate (MPR) [Mer+23].
Note that in the context of IID partitioning, the overall poisoning rate could be regarded
as α× τ . This simplification is however not accurate in other partitioning strategies.

5.2.4 Experiments

We design a set of experiments to answer the research questions laid out in Section 5.1.
All experiments share a common set of constants, which are complemented by a set of
variable parameters. Table 5.3 summaries the available parameters for the experiments.
Each combination is tested 10 times using a set of 10 different seeds to study the pre-
dictability of the results. Specifically, the seed impacts data-partitioning operations (both
between the training and testing sets, and among clients afterward), the sample selection
in poisoning attacks, and the random weights of the initial model. It also impacts all the
random operations (such as data shuffling) done during model training.

The epochs parameter controls the aggregation frequency, i.e., the number of local
epochs per round E , as well as the number of rounds R. Logically, batch_size controls
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Figure 5.2 – Impact of the partitioning strategy on the model’s performance.

the size of the batches used at each iteration during training. The global number of local
epochs per client is kept to 100 or 300 to preserve comparability. The distribution rep-
resents the number of legitimate and malicious clients in the system, and consequently the
proportion of attackers. The key scenario represents the attackers’ behavior. Scenarios
defined as continuous-α represent a constant poisoning rate of α over the entire training
process. Scenarios named late-r and redemption-r produce an attack with α = 100 that
starts or ends at round r, respectively. Parameter target represents the target of the
attack as defined in Section 5.2.3; each attack class is made available as a target.

5.2.4.1 Partitioning Strategies

A particular parameter in this selection is the partitioner, which defines the strat-
egy used to partition the dataset among the clients. As mentioned in Section 4.3.1, the
literature of FIDSs usually considers either IID partitioning or basic not Independent
and Identically Distributed (NIID) scenarios where clients randomly drop attack classes.
To study the usage of similarity metrics to detect poisoning attacks, we consider eight
different partitioning strategies, with different levels of heterogeneity that range from IID
partitioning to pathological 3 settings without distribution overlap.

The partitioners marked named iid_* distribute the data in an IID manner, where
each client receives a stratified 4 subset of the dataset. Then, full, drop_*, and keep_* re-
fer to the way the attack classes are processed: all kept, certain classes dropped, or certain
classes kept, respectively. The kmeans_* partitioners use a k-means clustering algorithm
to partition the benign traffic among the clients, and then distribute the attack classes
based on their attribute (full, drop_*, keep_*). Because k-means algorithm minimizes
the intra-cluster variance, it increases the heterogeneity of the clients’ datasets. Figure 5.2
illustrates performance of the model under different partitioning strategies.

3. Refers to the pathological NIID partitioning [McM+17] discussed in Chapter 2.
4. Stratified sampling ensures that the class distribution remains the same among the different shards.

It is usually done using the labels of the samples, but any categorical feature can be used.
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5.2.5 Metrics

To quantify how the experiment parameters impact the global model, we define a set
of metrics to measure the Attack Success Rate (ASR) of poisoning attacks. The definition
of the ASR differs depending on the type of attack, according to the attacker’s objective
defined in Section 5.2.3. Because the ASR is based on performance and that no perfect
model exists, we distinguish the Absolute Attack Success Rate (AASR) measured on the
attack scenario, from the Relative Attack Success Rate (RASR) which also considers the
nominal performance without attacks. Formally, the RASR is defined as:

RASR = max(AASRbenign,AASRattack)− AASRbenign

1− AASRbenign

, (5.1)

where AASRbenign and AASRattack are the AASR of the benign and attack scenarios
respectively, under the same set of parameters. This is made possible thanks to the frame-
work’s reproducibility, which ensures two experiments started with the same seed will run
under the same conditions. Following the definitions in Section 5.2.3, we then defined two
variations of the AASR depending on the attacker’s objective. Both are computed based
on the confusion matrix of the model: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN).

Targeted attacks: Malicious participants leverage targeted attacks to make a specific at-
tack pattern undetectable. Therefore, a successful attack forces classification of the
relevant attack samples as benign. The AASR is then defined as the miss rate of
the targeted attack, i.e.

AASR = FNc

TPc + FNc

, (5.2)

where c is a specific attack class of the dataset.

Untargeted Attacks: Untargeted attacks aim at degrading the overall classification rate of
the model. Consequently, the AASR is defined as the miss-classification rate of the
model, i.e.

AASR = FP + FN
TP + TN + FP + FN = 1− Accuracy. (5.3)

Additionally, we use traditional binary classification metrics to observe the perfor-
mance of the model under various conditions, as identified in existing surveys [Cam+22;
Lav+22c] These metrics include accuracy, F1-score, and miss rate. Notably, we consider
the Main Task Accuracy (MTA), defined as the accuracy of the benign clients obtained
on the testing set, to measure the impact of the attacks on the model’s nominal perfor-
mance. All metrics are aggregated over the 10 runs of each experiment, and the mean and
standard deviation are reported for the selected metric.
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Figure 5.3 – Baseline performance of the global model without malicious participants.
The accuracy, F1-score, and recall illustrate the performance that can be expected from
the global model under the conditions selected for this study (E = 10, β = 512). The
recall of the available attack classes shall serve as a reference for the RASR of targeted
attacks.

5.3 Results

The results presented in this section aim at answering the research questions defined
in Section 5.1. Figure 5.3 presents the performance of the global model without mali-
cious participants to serve as a baseline to compare with. The model displays relatively
high performance on both datasets, i.e., above 0.9 for the accuracy, recall, and F1-score.
However, some classes are more challenging to detect than others. The low representation
of the “Injection” class in cicids (around 0.0017%, see Table 5.1) prevents the model
from learning from it, provoking this absence of evolution over time (see Figure 5.3a).
The “Infiltration” class is more represented in the dataset (0.6108%, approximately the
same as the “Brute Force” and “Bot” classes), but remains difficult to learn because of
its apparent similarity with benign traffic. Consequently, it never exceeds a recall of 0.2.
The detection in nb15 is better overall, with the exception of the “Analysis” and “DoS”
classes that score below 0.9, although they are not the least represented classes in the
dataset.
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Table 5.4 – Experiment parameters for RQ3-1.

Is the behavior of poisoning attacks predictable?

batch_size 32, 512
epochs 300_10x30, 300_4x75, 300_1x300
distribution 5-5
dataset cicids, nb15

0 50 100 150 200 250 300

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Accuracy per seed (E=10, β = 32)

0 50 100 150 200 250 300

Epochs

Accuracy per seed (E=10, β = 512)

cicids nb15

1Figure 5.4 – Impact of the dataset on the accuracy under poisoning. τ = 0.5, E = 10.
The x-axis represents the number of local epochs. Each line represents the accuracy over
time for a specific seed. The seed 6567 on nb15 (β = 512) is depicted in red.

5.3.1 Impact Predictability

A preliminary question to answer before quantifying the effects of label-flipping is
whether the behavior of poisoning attacks is predictable. This is a requirement for gener-
alizing our results to other datasets and models, and comparing the findings with current
and future studies. Due to computation constraints, we focus in this part on the param-
eters that have the most significant impact on the results, as we need to perform longer
experiments to ensure the stability of the results. Specifically, the selected distribution
contains 50% of malicious participants (i.e., τ = 0.5), which roughly equates to 50%
of the training data being poisoned. The experiments are performed during 300 epochs,
with three different aggregation frequencies (E ∈ {1, 4, 10}) and two different batch sizes
(β ∈ {32, 512}). Table 5.4 summarizes the parameters used for this experiment.

Figure 5.4 illustrates the accuracy of the global model over time for each seed. This
figure brings two key insights. First, the different runs exhibit consequent variability,
especially in the early stages of training. This is true for the runs themselves, but also for
between runs on the same datasets. Using the same parameters, the accuracy of the global
model varies from 0.2 to 0.8 after 100 epochs on cicids (with β = 32) and from 0.05
to 0.95 on nb15. Some runs display particularly heterogeneous results, such as the seed
6567 on nb15 (β = 512), depicted in red in Figure 5.5, which starts below 0.4, increases
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Table 5.5 – Experiment parameters for RQ3-2.

Do hyperparameters influence the impact of poisoning attacks?

batch_size 32, 128, 512
epochs 100_10x10, 100_4x25, 100_1x100
distribution 10-0, 5-5
scenario continuous-100, late-3, redemption-3

to close to 1.0, before dropping below 0.2 and stabilizing. Overall, nb15 presents a higher
variability than cicids, but with runs that are more stable.

The dispersion decreases over time given a big enough batch size, as shown in Fig-
ure 5.5. More importantly, each runs progressively converges to a stedier state. The ab-
solute accuracy differences in the bottom rows of Figure 5.5 indeed decrease over the
first epochs, before plateauing. It can be interpreted as a consequence of the complexity
of the learning tasks, which becomes harder as clients possess different labels for similar
samples. Therefore, the problem probably admits a high number of local minima, which
are reached depending on the seed. On the contrary, the difference between rounds using
E = 32 on cicids (see Figure 5.5a) tends to increase over time, illustrating the difficulty
for each run to converge to a stable state.

Answering RQ3-1. Is the behavior of poisoning attacks predictable?

The behavior of poisoning attacks is not predictable, as the dispersion be-
tween results is too important, although only the seed varies. However, the
dispersion decreases over time in some conditions, and each run tends to
converge to a stable state. In practice, this makes the impact difficult to
predict for a specific attack instance, even though general tendencies can be
extrapolated.

5.3.2 Hyperparameters Impact

To understand the impact of hyperparameters on the behavior of poisoning attacks,
we study the impact of different batch sizes (β) and aggregation frequencies (E). We set
again the conditions from Section 5.3.1 but limit the number of epochs to 100, as most
scenarios do not show significant changes after this point (see Section 5.3.1). Additionally,
we evaluate the hyperparameters on the late poisoning scenario, where the attackers
only start after a 3-rounds bootstrap period, and in the redemption scenario, where the
attackers stop after 3 rounds. The experiment parameters are summarized in Table 5.5.

Figure 5.6 illustrates the influence of hyperparameters on the impact of poisoning
attacks. The differences (the two bottom rows) are shown on a bi-symmetric logarithmic
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Figure 5.5 – Studying attack impact predictability over time, with 50% attackers. The
x-axis represents the number of local epochs. For each subfigure (Figures 5.5a and 5.5b),
the top row illustrates each seed’s accuracy over time with its standard deviation. The
bottom row displays the mean absolute difference (|accr − accr−1|) over time.
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1Figure 5.6 – Comparing the influence of hyperparameters on the impact of label-flipping
attacks (τ ∈ {0, 0.5} and α = 1). The x-axis represents the number of local epochs. The
top row illustrates the mean accuracy for each combination of hyperparameters (β and E).
The middle row displays the mean difference in standard deviation (σ) between rounds.
The bottom row shows the mean difference in terms of accuracy between rounds.
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scale [Web12], defined as

x′ 7→ sgn(x) · log10(1 + | x

10−4 |), (5.4)

to make up for the consequent differences in scale between combinations. In addition to
the accuracy of each parameter combination, Figure 5.6 also presents the average change
in standard deviation, or

1
R− 1

R∑
r=2

σr − σr−1, (5.5)

where R is the number of rounds and σr is the standard deviation of the accuracy at
round r between the different seeds. The average change accuracy is also displayed. For
these metrics, a positive value indicates an increase in the observed metric over time.

In the continuous scenario studied in Figure 5.6 (with τ = 0.5 and α = 1), the
hyperparameters have little impact on the global model’s accuracy. Yet, β = 32 presents
a slight increase in accuracy over time (Figure 5.6b) and a decrease in the dispersion
(Figure 5.6c). Note that there is close to no dispersion in the accuracy of the benign
scenario, as depicted in Figure 5.6c, confirming that the attack is indeed responsible for
the dispersion observed in Section 5.3.1. Interestingly, the correlations between the two
tested datasets are more pronounced with smaller batch sizes, as shown in Figures 5.6b
and 5.6c where the results become less correlated with β = 512.

The other hyperparameters do not display any significant correlation. In the end, all
tested parameters lead to between 0.4 and 0.5 accuracy under poisoning, while they all
exceed 0.95 without poisoning. This is critically low for intrusion detection: 0.5 is the
score of a random classifier on a balanced binary-classification task. Tossing a coin would
yield better results.

However, when clients have been given the time to converge before the attack, the
impact of the hyperparameters becomes more visible, particularly for the batch size as
depicted in Figure 5.7. While the impact is instantaneous when β = 32, it takes around
20 epochs with β = 512 to reach the same accuracy. The dispersion of the results is
significantly lower in the latter, as is the reached accuracy, which goes down to 0.25 after
60 epochs. A bigger batch size thus leads to a greater inertia and a lower dispersion
of the results when the attack starts, but also to a lower accuracy afterward. A similar
could be observed with the redemption scenario, where the attack stops after 3 rounds.
However, Figure 5.8 presents a quasi-instantaneous recovery of the global model’s accuracy
after the attack ends. This is expected, as Figure 5.3 indicates that the global model’s
accuracy already exceeds 0.95 at the first round, in spite of the randomly initialized
model parameters provided by the server before the first round. This is also consistent
with the results of Zhang, Zhang, Zhang, et al. [Zha+22a] on NSL-KDD [Tav+09] and
UNSW-NB15 [MS15].
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(a) CIC-CSE-IDS2018.
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(b) UNSW-NB15.

Figure 5.7 – Impact of hyperparameters on the accuracy of the global model under the
late scenario. The data is aligned to start at the last benign round before the attack,
and the impact is measured over the next 60 epochs (i.e., 6, 24 or 60 rounds depending
on the aggregation frequency).

Answering RQ3-2. Do hyperparameters influence the impact of poisoning
attacks?
While the hyperparameters have an impact on the poisoning effect, no com-
bination prevents it: on average, the performance remains the same. The
results’ dispersion can vary significantly depending on parameter combina-
tions, especially when the attack occurs after the clients have converged.
Then, a smaller batch size leads to a swifter effect, while a bigger batch
size leads to a greater ASR. Therefore, in performance-constrained use cases
(such as the Internet of Things (IoT)), defense mechanisms might need to
react faster to mitigate the attack’s impact. Round-based defenses should
be less affected, but history-based defenses could be significantly impacted.
When the attack stops, the global model’s accuracy recovers almost instan-
taneously. 89
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Figure 5.8 – Accuracy of the global model after a label-flipping attack. The data is
aligned to start at the last epochs before the attack ends, and the impact is measured
over the next 40 epochs (i.e., 4 or 10 rounds depending on E).

Table 5.6 – Experiment parameters for RQ3-3.

Are IDS backdoors realistic using label-flipping attacks?

distribution 10-0, 7-3, 5-5, 3-7
target dos, ddos, bot, infiltration, injection
scenario continuous-100
dataset cicids, nb15

5.3.3 IDS Backdoors using Label-flipping

One of the main concerns with poisoning attacks is the perspective of backdoors in
the IDS, allowing attackers to bypass the system’s detection capabilities afterward. To
assess this risk, we study the impact of label-flipping attacks with different targets. We
consider α = 100% and various values of τ to assess whether a ASR of 1.0 can be achieved.
Table 5.6 summarizes the parameters used for this experiment.

Figure 5.9 presents the impact of label-flipping attacks on the accuracy of the global
model for different attack targets. The figures show the RASR of targeted attacks towards
the different classes available in each dataset. To measure the impact of the attack on the
model’s overall performance, we also measure the MTA under the differnet attacks. The
AASR of the benign scenario is provided as a reference (cf . Figure 5.3).

The first striking observation is that the results differ greatly between the two datasets.
While on cicids, some attacks can reach an ASR close to 1.0 given enough attackers, most
results on nb15 remain below 0.25. Some classes seem completely immune to the attack,
such as “Backdoor”, “Shellcode”, and “Worms”. Even the most successful attacks on nb15

barely exceed 0.5. On cicids, on the other hand, the results are more convincing. While
30% of attackers are not enough to permanently impact the global model’s accuracy,
multiple classes can reach an RASR close to 1.0 at least momentarily. With τ = 0.5,
the RASR of “Bot”, “DDoS”, and “Infiltation” classes permanently reach 1.0 after a few
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Figure 5.9 – RASR of targeted label-flipping attacks over time, with β = 512, E = 10,
and α = 1.0. The x-axis represents the number of local epochs. The AASR of the benign
scenario is provided as a reference for each targeted class.
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rounds. Most importantly, the MTA of the global model remains close to its nominal
performance, even when the RASR of the targeted classes reaches 1.0, except for the
“DDoS” class. Indeed, the “DDoS” class is the most represented in the dataset, with
5.29% of the samples. Therefore, the misclassification of roughly 70% of the samples of
this class leads to a more significant impact on the global model’s accuracy.

The result disparity between classes, and more importantly between datasets, is diffi-
cult to interpret, although multiple hypotheses can be formulated. First, some classes are
significantly less represented in the datasets such as “Injection” in cicids or “Analysis”,
“Backdoor”, “Shellcode”, and “Worms” in nb15 (see Table 5.1). All these targets yielded
a RASR close to 0.0. Second, as we consider binary classification tasks, any overlap be-
tween classes’ characteristics can be used by the model to infer the correct associations
using samples from unaffected classes. For instance, the “Brute Force” and “DoS” classes
in cicids both imply a high number of connections from a single host, and both obtain
subpar results when compared to the most efficient attacks.

Answering RQ3-3. Are IDS backdoors realistic using label-flipping attacks?

This type of attack has less impact on the global model’s MTA, meaning
that they are more likely to remain undetected. Although not all classes
are equally impacted, IDS backdoors are possible using label-flipping at-
tacks, given a sufficient number of attackers and a well-represented target.
Colluding attackers can realistically create a backdoor that may later be
leveraged to evade detection, raising the question of the minimum DPR and
MPR necessary for such attacks to be effective. Yet, the results are dataset-
dependent, and some classes remain completely immune to the attack in
our experiments.

5.3.4 Threshold for Effective Attacks

Section 5.3.3 suggests that the number of attackers is a critical factor in the effective-
ness of targeted attacks. This experiment aims to understand the critical threshold where
label-flipping attacks begin to impact the global model’s accuracy by studying both the
DPR (α) and the MPR (τ). Table 5.7 summarizes the parameters used for this experi-
ment. Our previous experiments highlighted the impact of the number of attackers on the
global model’s accuracy.

Figure 5.10 presents the RASR of considered label-flipping attacks over time, both for
untargeted and targeted attacks. The entire figure emphasizes on the importance of the
number of attackers in the effectiveness of the attack, as most attacks are unimpactful
with while τ ≤ 0.3. In particular, with one single attacker (τ = 0.1), the RASR remains
well below 0.1, even with a high poisoning rate (α = 1.0). τ = 0.5 represents a tipping
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Figure 5.10 – Evolution of the RASR of poisoning attacks over time, depending on
the local poisoning rate (α), the proportion of attackers (τ), and the type of attack. The
x-axis represents the number of rounds. The value for targeted attacks is the mean of the
targets, from which we exclude the under-represented and ineffective ones (see Figure 5.9):
“Infiltration” and “Injection” in cicids, and “Analysis”, “Backdoor”, “Shellcode”, and
“Worms” in nb15. The FL round is used as the time unit.
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Table 5.7 – Experiment parameters for RQ3-4.

Is there a critical threshold where label-flipping attacks begin to impact
performance?

distribution 10-0, 9-1, 7-3, 5-5, 3-7
scenario continuous-{10,30,60,70,80,90,95,99,100}
target untargeted, dos, ddos, bot, infiltration
dataset cicids, nb15

point in our tests, with RASR values orders of magnitude higher than with τ = 0.3.
More importantly, we can infer from Γ = τ × α the overall quantity of poisoned data

due to our IID partitioning. For untargeted attacks in cicids, the RASR exceeds 0.5 for
Γ > 0.5, and approach 1.0 for Γ > 0.67. For targeted attacks, the RASR exceeds 0.5 for
Γ > 0.49 and approaches 1.0 for Γ > 0.56. Untargeted attacks on nb15 are slightly more
effective, with the RASR exceeding 0.5 for Γ > 0.49 and approaching 1.0 for Γ > 0.63.
However, as highlighted in Section 5.3.3, targeted attacks on nb15 are close to ineffective,
with the RASR never exceeding 0.25, even with Γ = 0.7, our highest overall poisoning
rate. Thus, RASR and the tuple (α, τ) exhibit fairly similar variations, albeit not linear:
the higher the DPR and MPR, the higher the RASR. However, poisoning the entire local
dataset seems more powerful than instantiating more attackers: α = 100 and τ = 50 yield
higher RASR than α = 80 and τ = 70, although the latter represents more affected data
overall.

Answering RQ3-4. Is there a critical threshold where label-flipping attacks
begin to impact performance?

The effectiveness of label-flipping attacks is directly related the overall
quantity of poisoned data. However, this relationship is not linear, and
there is a critical threshold when α is below 1.0. FL suffers from same
caveat as numerous other distributed systems, where the majority of par-
ticipants must be honest to ensure the system’s security. However, even
in its default configuration and without any defense mechanisms, multiple
attackers are necessary to impact the global model’s accuracy.

5.3.5 Similarity as a Defense Mechanism

A significant amount of literature has been dedicated to the development of defense
mechanisms against poisoning attacks. One of the most represented strategies is the use
of similarity metrics to detect poisoned contributions [ALL21; Cao+22; FYB20; Ngu+22].
This relies on assumption that the attackers’ model updates are statistically different from
those of benign participants, and that a profile of either of those can be established. For
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Table 5.8 – Experiment parameters for RQ3-5.

Is gradient similarity enough to detect label-flipping attacks?

distribution 10-0, 9-1, 5-5
scenario continuous-100
target untargeted
partitioner iid_drop_1, kmeans_drop_1, iid_drop_2, kmeans_drop_2,

iid_keep_1, iid_full, kmeans_full, kmeans_keep_1
dataset cicids, nb15

instance, Tolpegin et al. [Tol+20] propose to use PCA to measure the distance between
model updates in the projected space. To assess the effectiveness of this strategy for
CIDSs, we explore the impact of different partitioning schemes (cf . Section 5.2.4.1) on
the PCA analysis. Table 5.8 summarizes the parameters used for this experiment.

Figure 5.11 presents 2D projections of the participants’ gradients using PCA for dif-
ferent partitioning schemes. Each point represents a client’s contribution to the global
model’s update at the 10th round. Since FedAvg aggregates models by default, we com-
pute the gradients gr

i as the difference between the participant’s model at round r and
the last global model, i.e.,

gr
i = w̄r−1 − wr

i . (5.6)

This allows us to compare the participants’ direction, rather than their position in the
model’s parameter space.

The results on the iid_full setting are consistent with the literature: the benign par-
ticipants’ contributions are tightly clustered, and the attacker’s contributions are easily
identifiable as outliers [Tol+20]. However, the more heterogeneous partitioning schemes
make it less clear, especially with a single attacker. For instance, the kmeans_keep_1 par-
titioning scheme on cicids (Figure 5.11a) displays two outliers that are approximately as
far from the benign participants, one of which is the attacker. In the kmeans_* schemes, the
attacker is sometime s indistinguishable from the benign participants. Colluding attackers
are more easily identifiable, as they are usually grouped together in the less heterogeneous
settings. This quality disappears with the kmeans_* schemes, especially with cicids (Fig-
ure 5.11c). The two datasets exhibit slightly different behaviors, with attackers being more
easily identifiable on nb15 than on cicids, depending on the partitioning scheme.

95



Part II, Chapter 5 – Assessing the Impact of Label-Flipping Attacks against FIDSs

iid_full iid_drop_1 iid_drop_2 iid_keep_1

kmeans_full kmeans_drop_1 kmeans_drop_2 kmeans_keep_1

Benign Malicious

1(a) Single attacker on CIC-CSE-IDS2018

iid_full iid_drop_1 iid_drop_2 iid_keep_1

kmeans_full kmeans_drop_1 kmeans_drop_2 kmeans_keep_1

Benign Malicious

1(b) Single attacker on UNSW-NB15

iid_full iid_drop_1 iid_drop_2 iid_keep_1

kmeans_full kmeans_drop_1 kmeans_drop_2 kmeans_keep_1

Benign Malicious

1(c) Colluding attackers on CIC-CSE-IDS2018

iid_full iid_drop_1 iid_drop_2 iid_keep_1

kmeans_full kmeans_drop_1 kmeans_drop_2 kmeans_keep_1

Benign Malicious

1(d) Colluding attackers on UNSW-NB15

Figure 5.11 – 2D projection of gradients using PCA for different partitioning schemes.
The top row represents the results for a single attacker (i.e., τ = 0.1), while the bottom
row illustrates the results for colluding attackers (i.e., τ = 0.5). Results for the 10th round
with seed=1128 and α = 1.0.
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Answering RQ3-5. Is gradient similarity enough to detect label-flipping
attacks?
The PCA analysis provides an easy and visual way to detect attackers, as
long as the data distribution is homogeneous enough. However, this defense
mechanism is particularly challenged in more heterogeneous settings. Col-
luding attackers are more easily identifiable as they will usually form a clus-
ter of their own, highlighting the relevance of mitigation strategies such as
FoolsGold [FYB20] and CONTRA [ALL21] which detect colluding attackers in
heterogeneous environments using their similarity. Overall, similarity-based
defense mechanisms are effective in detecting attackers in homogeneous en-
vironments, but their effectiveness decreases with the heterogeneity of the
data distribution.

5.4 Related Work

The literature on the impact of poisoning attacks on FL [Bha+19; NM22; Sun+22;
Tol+20] provides insights on the behavior of poisoning attacks on generic Machine Learn-
ing (ML) tasks, such as image classification or natural language processing. Nuding and
Mayer [NM22] focus specifically on backdoor attacks, and emphasize on the importance
of the choice of the trigger pattern. Fang et al. [Fan+20b] and Sun, Cong, et al. [Sun+22]
rather study model-poisoning attacks. While often more effective than data-poisoning at-
tacks, they are more complex to implement, as they require access to the uploaded models
and knowledge of their functioning. The work of Tolpegin et al. [Tol+20] is the closest to
ours, as it focuses only on label-flipping attacks. Among the most notable outcomes, the
authors exhibit that targeted attacks are especially effective, having small to no impact
outside the targeted class. The specificities of the IDS use case, and notably the overlap
between classes, slightly contradict these conclusions.

In the context of IDSs, the literature on the impact of poisoning attacks on FL is
scarcer. Zhang, Zhang, Zhang, et al. [Zha+22a] provide a systematic analysis of clean-
label data-poisoning attacks, where they use Generative Adversarial Networkss (GANs)
to generate poisoned samples. Other works discuss clean-label attacks to a lesser ex-
tent [Ngu+20; Vy+21]. Meanwhile, Merzouk et al. [Mer+23] provide a comprehensive
analysis on data-poisoning attacks in FL for IDSs, but focus only on trigger backdoor at-
tacks. ML backdoors work by manipulating samples to associate a specific trigger pattern
with a given class so that the model misclassifies samples containing the trigger pattern.
Compared with the results of Section 5.3.3, these attacks appear to be more effective at
permanently introducing IDS backdoors. Finally, Yang, He, et al. [Yan+23] discuss the
specific aspects of label-flipping attacks in the context of FL for IDSs, using two different
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datasets, NSL-KDD [Tav+09] and UNSW-NB15 [MS15]. However, they only implement
label-flipping as a random selection of malicious samples to be flipped, which makes the
results less comparable.

5.5 Conclusion and Takeaways

The literature on the impact of poisoning attacks on FL that specifically cover intrusion
detection use cases is scarce, and in it, label-flipping attacks have been overlooked. This
chapter fills this gap by providing a comprehensive analysis of the impact of label-flipping
attacks on FL for IDSs. We evaluated the impact of untargeted and targeted label-flipping
attacks on the performance of FL models trained on CSE-CIC-IDS2018 and UNSW-NB15
using a standardized feature set to enable the extension of this work.

Our results highlight that (i) label-flipping attacks can have a significant impact on
the performance of FL models, especially targeted ones; (ii) the ASR is closely related
to the number of flipped samples overall, which can be approximated in IID settings
by the product of DPR (α) and MPR (τ); (iii) targeted label-flipping attacks strive on
well-detected targets, but can be significantly mitigated by the model’s generalization
capabilities; (iv) mitigation strategies must be adapted to the use case specificities (e.g.,
constrained environments); (v) gradient similarity can be used to detect label-flipping
attacks, but its effectiveness is challenged in heterogeneous settings.

Yet, there are still many open questions to address. First, our results can easily be
extended with more granular experiments and testing different attack combinations. On
the other hand, while the comparison with existing works seems to corroborate our results,
this study calls to be extended to other datasets, feature sets, model architectures, and FL
aggregation strategies. Finally, the provided evaluation framework can be used to evaluate
the efficiency of existing countermeasures, or to develop new ones. We strongly believe
that this work is a first step towards better evaluation of FL models and aggregation
strategies in the context of intrusion detection. In the next chapter, we will build on this
work’s findings in heterogeneous settings, and propose a novel approach to detect and
mitigate low-quality contributions in heterogeneous FIDS environments.
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6.1 Introduction

In the previous chapters, we identified and studied two major challenges that currently
impede the adoption and deployment of Federated Intrusion Detection Systems (FIDSs):
(1) the heterogeneity of the data sources, notably in Cross-Silo Federated Learning (CS-
FL) settings; and (2) the susceptibility of FIDSs to adversarial attacks. More generally,
because collaborative systems are inherently sensitive to input quality, any form of Byzan-
tine failure should be considered. While we focus specifically on data-related failures in
the context of this thesis, Byzantine faults can also encompass other types of failures,
such as crashes, arbitrary behavior, or communication issues. This applies whether the
participants are honest but use faulty data, or actively malicious. In this heterogeneous
context, it is particularly challenging to distinguish a faulty or malicious contribution
from a legitimate one originating from a different type of infrastructure.

Approaches that assess model quality [PB23] or mitigate poisoning [Bla+17; Cao+22]
in homogeneous distributions typically compare or evaluate a model using a single source
of truth. Building such a single source of truth, however, is inadequate in heterogeneous
contexts due to the differences between participants. Assuming that all contributions are
therefore different, some approaches detect colluding attackers based on their similar-
ity [ALL21; FYB20]. Nevertheless, these approaches fail to detect isolated attackers.
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In this chapter, we present RADAR, an architecture for CS-FL guarantying high-quality
model aggregation, regardless of the data homogeneity. RADAR relies on three main ingre-
dients: i) a modified Federated Learning (FL) workflow, where each participant uses its
local dataset to evaluate the other participants’ models, between the training and aggre-
gation steps; ii) a clustering algorithm leveraging the participants’ perceived similarity
to aggregate group-specific global models; and iii) a reputation system that weights the
participants’ contributions based on their past interactions.

We evaluate the performance of RADAR in a realistic Collaborative Intrusion Detection
System (CIDS) use case, using four network flow datasets with standardized features,
representing different environments, and model various Byzantine behavior using label-
flipping. We also compare our approach to existing strategies [FYB20; McM+17], and
conclude that RADAR can detect Byzantines contributions under most scenarios, from noisy
labels to colluding poisoning attacks.

The content of this chapter is based on our work published in IEEE International
Symposium on Reliable Distributed Systems (SRDS) [Lav+24], which results from a col-
laboration with Pierre-Marie Lechevalier, another Ph.D. student at IMT Atlantique. The
remainder of this chapter is organized as follows. We start by introducing preliminary
concepts in Section 6.2, before formalizing the problem in Section 6.3. After reviewing
related works in Section 6.4, we dive in RADAR’s architecture in Section 6.5. Sections 6.6
and 6.7 present the experimental setup and results, that we then discuss in Section 6.8.
Finally, Section 6.9 concludes this chapter.

Contributions of this chapter

RADAR, an architectural framework to protect FL strategies using clus-
tering and reputation-aware aggregation, validated by extensive eval-
uation against relevant baselines;

Demonstration that evaluation metrics (such as accuracy, F1-score,
or loss) can be used to effectively assess similarity between FL par-
ticipants, and as an input to clustering and reputation algorithms;

Confirmation that combining reputation and clustering successfully
addresses the problem of contribution quality assessment in hetero-
geneous settings.

6.2 Preliminaries

Section 2.4.4 introduced the concept of poisoning attacks in FL and mentioned some
apt countermeasures, such as Krum [Bla+17] or Trimmed Mean [Yin+18]. In this section,
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we delve deeper into the literature of Byzantine-resilient FL and their limitations in not
Independent and Identically Distributed (NIID) settings. We also introduce the reader to
the concepts of clustering and reputation systems in FL, which are used to address the
question of data heterogeneity and the reliability of participants’ contributions. Together,
these concepts form the basis of our proposed solution, RADAR.

6.2.1 Byzantine-resilient Federated Learning

To assess the quality of the submitted models in Independent and Identically Dis-
tributed (IID) settings, it is common to validate them against a centralized dataset [Cao+22],
or against randomly selected distributed datasets [PB23] if they are representative of
each other—which is the case with IID data partitioning. Submitted models can also be
compared to each other [Bla+17; Cao+22; Ngu+22] or with a reference model [XTL21;
Zho+22], using distance metrics. Among these, FLAME [Ngu+22] stands out, as it leverages
multiple complementary methods to stop malicious participants: clustering to identify
multiple groups of attackers, norm-clipping to mitigate gradient boosting attacks, and
adaptive noising to lessen the impact of outliers.

However, the assumption of IID data rarely holds in FL, even though its properties
facilitate the detection of Byzantine participants. Indeed, given NIID settings, You et al.
[You+22] show most of these mitigation strategies are inefficient. These methods rely
on a single source of truth that may be known beforehand [Cao+22], or elected among
participants [Bla+17]. However, by definition, this single source of truth does not exist in
NIID datasets. To circumvent this issue, FoolsGold [FYB20] and CONTRA [ALL21] assume
that sybils share a common goal, and thus produce similar model updates, allowing to
distinguish them from benign NIID participants that present dissimilar contributions.
Similar participants are classified as sybils using the cosine similarity between gradient
updates, and their weight is reduced in the final aggregation. Finally, to avoid relying
on a single source of truth or making assumptions about the participants’ behavior, the
server can directly task participants with evaluating models. Zhao, Hu, et al. [Zha+20c]
aggregate models in sub-models, which are then randomly attributed to multiple clients
for evaluation.

6.2.2 Clustered Federated Learning

NIID data can also be regarded as heterogeneous data distributions Pk that are re-
grouped together, where Pk is the distribution of the dataset dk. Following this idea,
some works [BFA20; Ouy+22; Ye+23] try to group participants sharing similarities. The
purpose of this approach is twofold. First, from a performance perspective, NIID settings
slow down convergence. Even if a global minimum is reached, the model might not be op-
timal for all participants [Kai+21; Ouy+22]. In addition, considering outliers as poisoned
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models [Per+20], one can eliminate thier in the aggregation process.
Since the effective number of clusters is unknown, hierarchical clustering is a common

way to create appropriate clusters [BFA20; Ye+23]. Another approach for finding the
appropriate number of clusters is dynamic split-and-merge clustering [Che+21], where
the number of clusters is adjusted depending on the distance between the participants’
in each cluster. Finally, Ouyang et al. [Ouy+22] propose a clustering algorithm relying
on K-means and spectral relaxation to group participants without prior knowledge of
the number of clusters. Contrary to the most of the existing works, they do not use
metrics that rely on vector representations of the models (such as cosine similarity, L2
norm, or scalar products). Rather, they leverage the Kullback-Leibler Divergence (KLD)
to compare the models’ probability distributions, which do not require the models to rely
on a convex loss function.

6.2.3 Reputation systems for Federated Learning

In collaborative applications, reputation systems preemptively assess the ability of
participants to perform a task and the quality of its result, based on past interactions.
Definition 6.1 provides a formal definition of reputation systems. In the context of FL,
they usually have three main applications: (i) client selection; (ii) model weighting and
aggregation; and (iii) tracking contribution quality over time.

Definition 6.1: Reputation Systems – Resnick et al. [Res+00]

A reputation system collects, distributes, and aggregates feedback about
participants past behavior. [. . . ] To operate effectively, reputation systems
require at least three properties:

• Long-lived entities that inspire an expectation of future interaction;

• Capture and distribution of feedback about current interactions (such
information must be visible in the future); and

• Use of feedback to guide trust decisions.

The first application, client selection, is used to determine which participants should
be included in the training process of the next round [ALL21; Kan+20; Son+22; Tan+22].
This is particularly useful in scenarios with constrained resources [Son+22] and in hybrid
architectures (see Figure 2.4b) where servers can exchange reputation information about
their users [Kan+20]. CONTRA [ALL21] provides an example of such a reputation system for
client selection. By progressively penalizing the participants that propose models similar
to each others, and that are thus suspected of being sybils (see Section 6.3 and ??), it
leaves room for participants issuing dissimilar models to be selected more often. We detail
in Section 6.2.1 the limits of these types of approaches in practical NIID settings.
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The second main application is to weight local models during the aggregation pro-
cess [Wan+22; WK21]: the higher the reputation, the heavier the local model contributes
to the aggregated model. Some will even go so far as to discard contributions when the
author’s reputation is too low. Karimireddy, He, and Jaggi [KHJ21] underline the im-
portance of historical record in robust aggregation: malicious incremental changes can be
small enough to be undetected in a single round but still eventually add up enough to
poison the global model over the course of multiple round. Reputation system’s ability to
track clients’ contributions over time [Kan+20; WK21] can be used as a countermeasure
to these attacks.

Finally, note that the literature on reputation systems sometimes distinguishes be-
tween reputation and trust systems [Che+11; ZY15]. One of the main differences is the
use of indirect feedbacks in reputation systems, wheras trust systems rely on direct evalua-
tion an objective metrics. Based on this distinction, the reputation is the global perception
of a one’s trustworthiness in the system, based on the feedback of others [Che+11].

6.3 Problem Statement

In line with Chapters 4 and 5, we consider once more the use case introduced in Sec-
tion 4.2 and the associated datasets. Specifically, we focus on a heterogeneous declination
of this CIDS use case, where we admit that participants share similarities in their data
distributions—e.g., between organizations operating in the same sector or having similar
network infrastructure. This setting, also mentioned in Section 4.2, is referred to as prac-
tical NIID [Hua+21]. We also set C = 1, as we consider that the participants are highly
available and interested in collaborating.

6.3.1 Low-quality Contributions

In FL, the quality of the global model is directly impacted by the quality of the partic-
ipants’ contributions. In a Intrusion Detection System (IDS) context, the poor quality of a
Machine Learning (ML) model can be induced by some choices in terms of architecture, hy-
perparameters, or optimizer—all fixed by the server, but also by the quality of the training
data. Multiple factors can affect the quality of local training data [Jai+20], such as: (1) La-
bel noise—samples associated with the wrong labels; (2) Class imbalance—differences in
terms of class representation in the dataset; or (3) Data heterogeneity—the variations
between samples of the same class.

Similar to existing works on data-quality [Den+21; Den+22], we focus on label noise,
which can have significant consequences on the global model’s performance, depending
on the proportion of mislabeled samples. In a CIDS, label noise can unknowingly be
introduced by the participants, either due to misconfigurations or to the presence of
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compromised devices. We consider two types of label noise: missed intrusions and mis-
classification.

a) Missed intrusions occur when a malicious sample is mislabeled as benign, leading
to a false negative. Participants in CIDSs label the attacks they are aware of, but
some might have been unnoticed.

b) A misclassification is the random mislabeling of a sample. This can be due to a lack
of knowledge or to a misconfiguration.

Such participants are referred to as honest-but-neglectful. Because these errors are assumed
to be unintentional, the proportion of misclassified samples is expected to be low. However,
the concept of missed intrusions implies that the participants are not aware of an entire
attack, which can represent a significant proportion of their dataset.

6.3.2 Data Poisoning Attacks

In addition to accidental low-quality contributions, some participants might deliber-
ately upload model updates that would negatively impact the performance of the global
model. Specifically, we consider the same attack model as detailed in Chapter 5, and focus
on label-flipping attacks. The model can be summarized as follows:

Attackers’ Knowledge. Attackers are gray-box adversaries, meaning that they have access
to the same information as the other participants; e.g., the last global models, the
hyperparameters, or the optimizer.

Attackers’ Objective. With targeted poisoning, attackers aim at making a specific type
of attack invisible to the Network-based Intrusion Detection System (NIDS). Con-
versely, with untargeted attacks, they seek to jeopardize the NIDS performance by
maximizing the number of misclassifications.

Attackers’ Capabilities. Attackers can flip the labels of an arbitrary proportion of their
dataset, referred to as the Data Poisoning Rate (DPR) and denoted α. They can
act alone or in collusion with other by applying the same strategy. The proportion
of attackers in the system is described by the Model Poisoning Rate (MPR) and
denoted β.

Because we do not make a priori assumptions on the whether the participants are
malicious or not in this contribution, we also refer to the DPR as the noisiness of a
participant. The MPR, on the other hand, almost exclusively describes attackers, as it is
unlikely for the same Byzantine fault to occur in multiple participants simultaneously.

6.3.3 Problem Formalization

Based on the previous assumptions, we consider that participants might upload model
updates that would negatively impact the performance of the global model, deliberately
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or not. Multiple forms of such actors can exist: external actors altering legitimate clients’
data (i.e. compromised), clients whose local training sets are of poor quality (i.e. honest-
but-neglectful), or clients modifying their own local data on purpose (i.e. malicious). We
refer to them as Byzantine participants or simply Byzantines in the remaining of this
chapter. We further consider that the server can be trusted to perform the aggregation
faithfully, and that FL guaranties the confidentiality of the local datasets. Attacking the
server is out of the scope of this study. Consequently, we aim at weighting or discarding
the participants’ contributions based on their quality to guaranty the performance of the
aggregated model.

Problem 6.1: Quality Assessment in Heterogeneous Settings

For n participants pi and their local datasets di of unknown similarity,
each participant uploads a model update wr

i at each round r. Given P =
{p1, p2, . . . , pn} and W = {wr

1, w
r
2, . . . , w

r
n}, how can one assess the quality

of each participant’s contribution wr
i without making assumptions on the

data distribution across the datasets di?

6.4 Related Works

In the context of Byzantine-robust FL, FLAME [Ngu+22] represents one of the most
complete solutions, leveraging clustering, norm-clipping, and adaptive noising to mitigate
attacks. Yet, because it works under the assumption that the biggest cluster represents
benign participants and that attackers cannot exceed 50% of the population, FLAME de
facto falters against a majority of malicious clients. Additionally, while FLAME can manage
scenarios with low proportions of NIID participants, it aims to produce a single global
model, which may not be optimal in highly skewed NIID environments where multiple sub-
federations are needed. A more comparabile approach leveraging clustering is proposed by
Ye et al. [Ye+23], who use cosine similarity to group participants in more homogeneous
subgroups. However, as this approach doesn’t aim to address Byzantines, it does not
consider that some malicious participants might aim to be grouped with benign ones to
poison the cluster’s model.

FoolsGold [FYB20] and CONTRA [ALL21] provide alternative strategies by identify-
ing sybils through the similarity of model updates. These methods are particularly well
suited for pathological NIID scenarios, as they assume sybils generate similar updates,
thus distinguishing them from benign participants. However, they struggle to detect lone
attackers and face challenges in practical NIID settings where legitimate communities of
similar participants exist (cf . Section 2.4.3). In such cases, these legitimate participants
may be falsely classified as sybils, reducing the effectiveness of these strategies.
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Figure 6.1 – Architecture overview.

To overcome relying on a single source of truth without using similarity metrics, Zhao,
Hu, et al. [Zha+20c] leverage client-side evaluations to assess model quality. To address
NIID settings, clients self-report the labels on which they have sufficient data to evalu-
ate the model, which introduces the risk of abusive self-reporting. Despite its significant
overhead in terms of resource and bandwidth consumption, this approach is remains ap-
propriate for cross-silo FL scenarios, which involves fewer participants with more data and
dedicated resources. A reputation system for FL that leverages indirect feedback would
be able to mitigate improper feedbacks and provide a more nuanced evaluation of par-
ticipants’ contributions. However, to the best of our knowledge, none of the trust-scoring
systems proposed in the literature fit the definition of a reputation system as posed in
Section 6.2.3.

6.5 Architecture

This section details RADAR’s architecture. It is divided into three main components:
(i) our cross-evaluation scheme that provides local feedbacks on each participant’s con-
tributions (Section 6.5.1), (ii) a similarity-based clustering algorithm that groups partic-
ipants based on evaluations (Section 6.5.2), and (iii) a reputation system that assesses
participants’ trustworthiness based on their past contributions (Section 6.5.3). Figure 6.1
provides an overview of RADAR.

6.5.1 Assessing Contributions with Cross-Evaluation

As highlighted in Section 6.4, most related works on poisoning mitigation in FL rely on
server-side models comparison [ALL21; FYB20]. They measure distance between the pa-
rameters (for Deep Neural Networks (DNNs), n-dimensional arrays containing the weights
and biases of each neuron) using metrics such as cosine similarity [FYB20] or Euclidean
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distance [Ma+22]. However, models that are statistically further from others are not auto-
matically of poor quality. To cope with this limitation, as well as the absence of source of
truth, we propose to rely on client-side evaluation [Zha+20c]. The results of this evaluation
can then be used by the server to either discard or weight contributions. RADAR’s work-
flow thus differs from typical approaches by adding an intermediate step for evaluating
parameters:

1. client fitting—The server sends clients training instructions and initial parameters,
i.e. randoms values for the first round. For subsequent rounds, the initial param-
eters of each client are initialized as the aggregated model (denoted w̄r−1

i ) of the
corresponding cluster, using the results of Step 3. at round r− 1. Each client trains
its own model using the provided hyperparameters, and the initial parameters as a
starting point before uploading their parameters wr

i to the server.

2. cross-evaluation—The server serializes all client parameters in a single list that is
sent to every client. Each client then locally evaluates each received model using
its validation set, generating a predefined set of metrics such as loss, accuracy, or
F1-score. The metrics of all clients are then gathered server-side.

3. parameter aggregation—The server partitions clients into a set of clusters C based
on the evaluations gathered in Step 2. For each cluster Ck ∈ C , the server computes
the new model w̄r

k =
∑

i|pi∈Cr
k

ρr
iw

r
i , where the weight ρr

i is given by the reputation

system for the participant pi at round r.

The cross-evaluation step generates an evaluation matrix that is used twice in the
architecture. Since this matrix is not symmetric, the vector of issued evaluations Er

[i,∗]

is used for clustering, while both the received evaluations vector Er
[∗,j] and the issued

evaluations vector Er
[i,∗] are used in the reputation system. Algorithm 6.1 details the

proposed workflow.
While most of the metrics for ML (see Section 2.2.3) are strictly expressed between

[0, 1], the loss value is expressed in [0,∞[, and is inverted when compared to the accuracy,
for instance. The lower the loss, the better the model parameters wr

j of a participant pj fit
the dataset di of another participant pi. This poses an issue for harmonizing metrics before
using them in a clustering or reputation algorithm. Thus, to project the loss value into a
comparable space, we need to use a continuous, strictly decreasing function mapping R+

to [0, 1]. We choose to use x 7→ 1− 2
π

arctan x (see Figure 6.2), as it emphasizes the lower
part of the spectrum, where the differences between model losses are concentrated.

6.5.2 Fighting Heterogeneity with Clustering

The clustering algorithm seeks to gather similar participants together in more homo-
geneous sub-federations when appropriate. Nguyen, Rieger, Chen, et al. [Ngu+22] and Ye
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Algorithm 6.1 RADAR. R is the number of rounds, β the local batch size, η the learning
rate, ε the number of epochs, and L a loss function. ω and Ω represent the model and
the set of models that are passed to the clients, respectively. We highlight in blue the
elements that differ from the standard FL workflow (see Algorithm 2.1 in Section 2.4).
Require: P

1: with r ← 0 do
2: C r ← {P}
3: W

r ← (Random( ))

4: for r ← 1, . . . , R do
5: . Step (1): model training /
6: for all pi ∈ P in parallel do
7: k ← GetCluster(pi, C

r)
8: wr

i ← ClientFit(pi, wr
k )

9: W r ← (wr
i )i∈nJ1,nK

10: . Step (2): cross-evaluation /
11: for all pi ∈ P in parallel do
12: (er

i,j)← ClientEvaluate(pi, W r)
13: Er

[i,j] = [er
i,j ]i,j∈J1,nK

14: . Step (3): parameters aggregation /

15: C r ← ComputeClusters(Er) . See: Section 6.5.2
16: for all Cr

k ∈ C r do
17: (ρr

i )← ComputeReput(Er, C r) . See: Section 6.5.3

18: W
r ← 1

|Cr
k
|

|Cr

k
|∑

i=0
wr

i

19: function ClientFit(p, ω)
20: for i← 1, . . . , ε do
21: for all b ∈ Split(di, β) do
22: ω ← ω − η∇L(ω, b)

23: return ω

24: function ClientEvaluate(p, Ω) . On client.
25: for all ωj ∈ Ω do
26: er

i,j ← Eval(ω, di)
27: return (er

i,j)i,j∈[[1,n]]
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et al. [Ye+23] both measure participants’ similarity by comparing the distance between
model updates. This is biased, as models that are statistically different might still pro-
duce relevant results. RADAR addresses this issue by defining similarity as the distance
between participants emitted evaluations. Indeed, since all participants evaluate the same
models, the variation in evaluation results reflects a difference in the evaluation datasets.
Therefore, participants having similar datasets should issue similar evaluations.

We note δr
i,j the distance between the evaluations of pi and pj at round r. δr

i,j is de-
fined as the cosine similarity between pi and pj issued evaluation vectors Er

[i,∗] and Er
[j,∗], or

δ(Er
[i,∗], E

r
[j,∗]). We then iteratively group similar participants into different clusters, lever-

aging hierarchical clustering. Initially, each participant is assigned to a different cluster.
Then, each closest pair of clusters is merged, thus reducing the number of clusters. The
process is repeated until the distance between the two closest clusters exceeds a given
threshold. Figure 6.3 illustrates this process.

While hierarchical clustering does not require the number of clusters as an input,
choosing the right threshold can be challenging. Contrarily to Ye et al. [Ye+23] who man-
ually adjust this parameter on a per-dataset basis, RADAR leverages a dynamic threshold
based on the mean inter-distance ∆r between the clusters at round r. This threshold Θ
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is expressed as:
Θ = β∆r = β

|C r|(|C r| − 1)
∑

k,`∈C r,
k 6=l

∆r
k,` (6.1)

where β is a tunable hyperparameter, and ∆r
k,` the distance between two clusters Cr

k and
Cr

` , defined as the distance between their centroids: δ(µr
k, µ

r
`). The centroid µr

k of a cluster
Cr

k is the average of the issued evaluations from its participants at round r, i.e., we have
µr

k = 1
|Cr

k |
∑

i∈Cr
k

Er
[i,∗].

Based on the results of the clustering, the server can then aggregate the models of
each cluster Cr

k separately, using the reputation system described in Section 6.5.3. Con-
sequently, the server maintains as many global models wr

k as there are clusters at each
round. Note that this is another difference with FLAME [Ngu+22], which only produces a
single common model for every participant.

6.5.3 Ensuring Quality Contributions with Reputation

The reputation system centrally computes the weights (ρr
i )pi∈Cr

k
used in the aggregation

of each cluster model wr
k at round r (see Section 6.5.1). Given the existence of methods

for common tasks, such as contribution filtering, RADAR models trust using a multivalued
Dirichlet probability distribution [Fun+11]. However, the evaluations Er

[∗,i] received by a
participant pi are continuous over [0, 1], and thus need to be discretized into a set of q
possible values ε = {ε1, ε2, . . . , εq}.

A Dirichlet distribution on the outcome of an unknown event (i.e., the mean of the
received evaluation 1

n

∑
er

i,j∈Er
[∗,j]

er
i,j) is usually based on the combination of an initial belief

vector and a series of cumulative observations [Fun+11]. As a complete cross evaluation
is already available at the first round, RADAR does not require an initial belief vector to
bootstrap reputation.

Following the notation used by Fung, Zhang, et al. [Fun+11], we note ~γr = {γr
1, γ

r
2, . . . , γ

r
q}

the cumulative evaluations received by pi: γr
2 = 3 means that three evaluations in Er

[∗,j]

had values bounded by
[

1
q
,
2
q

[
. We then note ~P = 〈P{ε1},P{ε2}, . . . ,P{εq}〉 the probabil-

ity distribution vector for the received evaluation of a participant, where
q∑

s=1
P{εs} = 1.

Leveraging the cumulative evaluations ~γr, the probability P{εs|~γr} is given by γr
s/

q∑
m=1

γr
m.

The system further needs to limit the ability of potential malicious participants to
manipulate their evaluations, either by badmouthing another participant, or by artificially
raising their own ratings. Consequently, the evaluations issued by a participant pi ∈ Cr

k

are weighted according to their similarity with other cluster members’ [XL04] as e′
i,j =

er
i,jsim(Er

[i,∗], E
r
[Cr

k
,∗]), where the similarity is defined as:
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sim(Er
[i,∗], E

r
[Cr

k
,∗]) = 1−

√√√√√√∑n
j=1

(
er

i,j −
∑

i∈Cr
k

er
i,j

|Cr
k

|

)2

|P |
. (6.2)

To prevent attacks phased over multiple rounds, while preventing past mistakes from
permanently impacting a participant, we use an exponential decay as forgetting factor,
noted λ ∈ [0, 1]. The reputation ψr

i of a participant pi at round r based on the prior
knowledge (γt

i)t∈[0,r] of this participant is given by Equation (6.3). Note that a small λ
gives more importance to recent evaluations: λ = 0 only considers the last round while
λ = 1, considers all round with equal weight. Based on ψr

i , the weight ρr
i of wr

i for
aggregation in wr

k (see Step 3. in Section 6.5.1) is given by Equation (6.4).

ψr
i =

r∑
κ=1

λr−κγκ
i (6.3) ρr

i = ψr
i∑|Cr

k
|

j ψr
j

(6.4)

As such, the weight ρr
i of pi will be proportional to its reputation, and therefore the

evaluations it received over time. The attackers’ evaluations only vary on the subset of
samples that are impacted. Consequently, the differences between their reputation scores
and those of legitimate participants can be relatively small, despite remaining meaningful.
We apply a sigmoid function to convert these scores to aggregation weighs and accentuate
this difference. We chose the Cumulative Distribution Function (CDF) of the normal
distribution as the sigmoid function, and adjust the σ parameter to control the slope of
the function.

6.6 Experimental Setup

We evaluate RADAR and any selected baseline on a set of heterogeneous intrusion de-
tection datasets [SLP22] with various attack scenarios (see Section 6.6.2). We implement
the described use case (Section 4.2) and threat model (??) as a set of experiments using
the FL framework Flower [Beu+20], with Nix [Dol06] and Poetry [Eus18] to reproducibly
manage dependencies. The hyperparameters used in our setup are detailed in Table 6.1.
The code for all experiments can be found online 1, with configuration and seeds for each
considered baseline and evaluation scenario. We also provide lock files to enable anyone
to reuse the same software versions as in this chapter.
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Table 6.1 – Hyperparameters. The model’s configuration is taken from the work of
Popoola, Gui, et al. [Pop+21b], while the parameters for RADAR’s architecture have been
selected empirically.

Model hyperparameters
Learning rate 0.0001
Batch size 512
Hidden layers activation ReLU
Output layer activation Sigmoid
# Input features 49
# Hidden layers 2
# Neurons (hidden layers) 128
Optimization algorithm Adam
Loss function Log loss
Number of local epochs 10

Clustering hyperparameters
Distance metric Cosine similarity
Threshold factor β 0.25
Cross-eval. metric F1-score

Reputation hyperparameters
Number of classes 10000
History parameter λ 0.3
Cross-eval. metric F1-score
Normal distribution σ 0.0005

Table 6.2 – Cross evaluation (F1-score) on the used datasets. Each dataset is uniformly
partitioned into a training set (80%) and an evaluation set (20%). The same partitions are
kept over the entire experiment. Each model (rows) is trained on its training set during 10
epochs, and then evaluated on each test set (columns). The highest scores are highlighted
in bold.

Evaluation set

T
ra

in
in

g
se

t CIC-IDS NB15 ToN_IoT Bot-IoT
CIC-IDS 0.961787 0.002723 0.524219 0.680166
NB15 0.108913 0.947204 0.009875 0.655943
ToN_IoT 0.211792 0.419380 0.966679 0.081510
Bot-IoT 0.158477 0.017188 0.703195 0.999483

6.6.1 Datasets and local algorithm

In continuity with the previous chapters, we implement our CIDS use case using the
datasets introduced in Section 4.2 and the standard feature set for flow-based NIDSs
proposed by Sarhan, Layeghy, and Portmann [SLP22]. However, to create groups of par-
ticipants that share similar distributions, we use the four datasets converted to this for-
mat by the authors: UNSW-NB15 [MS15], Bot-IoT [Kor+19], ToN_IoT [Mou21], and
CSE-CIC-IDS2018 [SHG18]. The uniform feature set allows evaluating FL approaches on
independently generated datasets [dCar+23; Pop+21b].

We use the “sampled” version (1,000,000 samples per dataset) provided by the same
team [LP22]. Like de Carvalho Bertoli et al. [dCar+23], we remove source and destination
IPs and ports, as they are more representative of the testbed environment than of the traf-
fic behavior. We then use one-hot encoding on the categorical features (both for samples

1. https://github.com/leolavaur/radar-srds-2024
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and labels), and apply min-max normalization to give all features the same importance
in model training.

Locally, we use a Multilayer Perceptron (MLP) with two hidden layers, following
Popoola, Gui, et al. [Pop+21b]. We reuse the hyperparameters provided by the authors
(see Table 6.1), and reproduce their results on our implementation, using the same four
datasets. Their algorithm shows low performance when training the model on one dataset,
and evaluating it on another, as illustrated in Table 6.2. This supports the assumptions
behind the cross-evaluation proposal, where the differences between the evaluation results
can be used to estimate the similarity between the local data distribution.

6.6.2 Evaluation scenarios

The threat model defined in Section 6.3.3 is implemented as a set of evaluation sce-
narios which model various data-quality situations. These scenarios can be summarized
in three categories:

C1: Benign. This category actually contains one scenario which showcases a practical
NIID situation, where participants can be grouped into 4 use cases. Each of the 4
datasets described in 6.6.1 is randomly distributed among 5 participants without
overlap. We thus have a total of 20 participants with different data, but some share
similarities between their data distributions.

C2: Lone Byzantine. The scenarios in this category differ from the Benign category
(C1) by introducing a fault in a single participant. This fault might be due to an
honest-but-neglectful participant that misclassified samples or missed an intrusion,
or a single malicious participant actively trying to poison the system. We emulate
the fault by flipping the one-hot encoded label on a subset of the participant’s data:
given a label ~y ∈ {〈0, 1〉, 〈1, 0〉}, a faulty sample will be assigned to 〈¬~y0,¬~y1〉. A
fault is characterized by two parameters:

(1) its target, i.e., the classes to which the affected samples belong; and
(2) its noisiness, i.e., the percentage (ranging from 10% to 100%) of targeted labels

that are actually flipped.

If a single class is affected, the fault is targeted, and only the samples of this class see
their label changed. We arbitrarily chose Bot-IoT and its “Reconnaissance” class as
the target for the experiments. Otherwise, the fault is untargeted, and all classes of
Bot-IoT are equally affected, including benign samples.

C3: Colluding Byzantines. This category encompasses scenarios resembling the Lone

Byzantine ones (Category C2), but where the same fault is replicated on multiple
participants at the same time. This corresponds to malicious participants in our
threat model, as it is unlikely that several honest-but-neglectful participants commit
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the very same fault. The colluding attackers are a majority if they outnumber the
benign participants whose data originate from the same dataset, and a minority oth-
erwise. As we experiment attacks on the Bot-IoT dataset whose data is distributed
among 5 participants, this respectively means that there are three attackers and two
benigns, or two attackers and three benigns. These two sub categories are referred
to as Colluding majority and Colluding minority, respectively.

We note the parameters of a fault as <noisiness><initial_of_target>, and use this
notation to refer to scenarios hereafter. As such, a Lone 80T scenario means that one of the
five participants coming from the Bot-IoT dataset will flip 80% of its “Reconnaissance”
labels to the opposite value. Colluding minority ≤30U refers to all scenarios where two
participants from Bot-IoT flip the labels on 30% of their entire dataset, or less.

6.6.3 Metrics

To measure the ability of RADAR to cluster clients correctly, we use the Rand index.
The Rand index compares two partitions by quantifying how the different element pairs
are grouped in each. It is defined between 0 and 1.0, 1.0 meaning that both partitions
are identical. RADAR already produces evaluation metrics at each round thanks to the
cross-evaluation scheme, based on each participant’s validation set. The same evaluation
methods are thus used on a common testing set (to each initial client dataset) and aggre-
gated to evaluate the approach. The presented results focus on the mean accuracy and
miss rate of the benign participants. Finally, the Attack Success Rate (ASR) is computed
over the benign participants of the affected cluster, and defined as the mean miss rate on
the targeted classes of targeted attacks, and the mean of the misclassification rates (i.e.
1− accuracy) in untargeted ones.

6.7 Experimental Results

RADAR serves multiple objectives at once: (a) maintaining high performance on prac-
tical NIID data, (b) correctly identifying and weighting low-quality contributions, and
(c) mitigating the impact of label-flipping attacks. As a result, we select relevant base-
lines from the literature to evaluate each of RADAR’s abilities. We use FedAvg [McM+17]
(abbreviated FA) to highlight the existing issues with statistical heterogeneity, using the
setup provided by Flower [Flo24]. Because RADAR can be partially assimilated as a clus-
tered FedAvg variant, we also consider a theoretical setup where participants are clustered
based on their original data distribution, and one instance of FedAvg is executed per clus-
ter. We refer to it as Clustered FedAvg or FC. To highlight RADAR’s ability to compare with
Sybil-focused mitigation strategies, we compare it with FoolsGold [FYB20] (also desig-
nated FG). We reuse the authors’ code [FYB19], and adapt it to model updates, since
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Table 6.3 – Rand index between RADAR’s clustering and two partitions of reference, under
various scenarios. Partition (A) contains only benign participants grouped according to
their respective dataset. Partition (B) contains attackers placed in a separated group in
addition to benign participants.

Scenario Partition (A) Partition (B)Category Noisiness Target
Benign 1.00 1.00
Lone ≤100 T 1.00 0.97
Lone ≤95 U 1.00 0.97
Lone 100 U 1.00 1.00
Collud. min. ≤100 T 1.00 0.97
Collud. min. ≤90 U 1.00 0.97
Collud. min. 100 U 1.00 1.00
Collud. maj. ≤100 T 1.00 0.96
Collud. maj. ≤90 U 1.00 0.96
Collud. maj. 100 U 1.00 1.00

FoolsGold was originally implemented on FedSGD. The following sections cover these top-
ics using the scenarios laid out in Section 6.6.2. Like the others, RADAR is abbreviated as
RA when needed.

6.7.1 Heterogeneity

Because our use case implies that some participants share similar data distributions,
we expect RADAR’s clustering component to limit the impact of heterogeneity by grouping
similar participants together. To evaluate our approach, we compare the partition created
by RADAR’s clustering algorithm with one where participants are grouped according to their
dataset of origin. This partition is presented as Partition A in Table 6.3. The constant
Rand index of 1.0 indicates that all participants are correctly grouped, regardless of the
considered evaluation scenario. This validates the idea that similarity between evaluations
can be used to regroup participants.

In addition to managing heterogeneity, it is critical that the countermeasures deployed
in RADAR do not negatively impact performance. Specifically, the reputation system must
not unfairly penalize legitimate participants because of their potential differences. Fig-
ure 6.4a presents the weights provided by the reputation system for the aggregation. In
the Benign scenario, the 5 participants originating from the Bot-IoT dataset do have equal
weights, confirming that none of them is penalized by the reputation system. Furthermore,
Table 6.4 indicates that RADAR’s mean accuracy is superior to FoolsGold’s and FedAvg, as
both baselines falter in practical NIID use cases. RADAR almost matches the results of FC,
which is ideally clustered by design. Overall, FoolsGold, a reference Byzantine-resilient
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Table 6.4 – Effect of different attack configurations (100T/U) on all baselines. The Attack
Success Rate (ASR) is computed over the targeted classes in targeted attacks, and over
all samples otherwise (see Section 6.6.3). RA is RADAR, FG is FoolsGold, FA is FedAvg (on
all participants), and FC is FedAvg ideally clustered per dataset. The ASR of benign runs
is provided as a baseline. RADAR’s limiting scenario is marked ‡.

Scenario Mean accuracy (%) ASR (%)
RA FG FA FC RA FG FA FC

Targeted (100T)
Benign 99.07 55.04 79.49 99.24 0.00 5.17 5.10 0.09
Lone 99.06 60.51 77.38 99.22 0.00 93.82 6.73 0.45
Collud. min. 98.96 54.64 78.48 98.33 0.00 2.97 9.99 53.40

‡ Collud. maj. 98.28 85.10 79.40 98.22 73.39 8.10 17.65 59.36

Untargeted (100U)
Benign 99.07 55.04 79.49 99.24 0.09 0.39 33.30 0.06
Lone 98.96 49.56 78.38 99.22 0.08 99.89 54.70 0.12
Collud. min. 98.98 49.67 72.47 97.69 0.10 0.04 44.53 6.26
Collud. maj. 98.96 69.09 81.87 75.66 0.08 38.98 59.49 94.36

FL strategy tailored for NIID settings, falters in practical NIID settings, where RADAR

strives.

6.7.2 Handling data quality

Another goal for RADAR is to handle contributions of various quality. This objective is
mostly represented by scenarios of Category C2 (Lone), as we consider that coordinated
faults are improbable for legitimate participants. In this configuration, we expect the
Byzantine participant to be either, put in a cluster of its own, or penalized by the reputa-
tion system. To verify the former, we compare the partition made by RADAR with another
where Byzantines are segregated in an additional cluster (see Partition B in Table 6.3).
Here, a Rand index lower than 1.0 implies that Byzantine participants have been grouped
with legitimate ones of the same dataset, which is the case in most scenarios of the Lone

category. However, the noisiest untargeted faults (Lone >95U) result in the Byzantine
participant being placed in his own separate cluster, thus neutralizing its impact on the
other participants. Note that the hyperparameters of the clustering algorithm could be
tuned so that attackers with lower noisiness would be separated, notably the threshold
factor β and the cross-evaluation metric (see Table 6.1).

When Byzantine participants are grouped with benign ones, we rely on the reputation
system to identify and diminish the impact of their contributions. The weights given by
the reputation system can be seen in Figure 6.4b, where the Byzantine client is heavily
penalized in the Lone 100T scenario. The effect of the clustering and reputation system
are also apparent in Table 6.4, where the ASR for both Lone 100T and Lone 100U are
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(b) Lone 100T.
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(c) Colluding minority 100T.
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(d) Colluding majority 100T.

Figure 6.4 – Aggregation weights ρr
i for the participants coming from the BoT-IoT dataset

depending on the number of Byzantines (100T). Byzantines are correctly penalized when
they are a minority, but gain precedence when they become the majority.
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Figure 6.5 – Attack Success Rate (ASR) of the different baselines. Even though attackers
are a majority, they gain weight precedence only for higher poisoning rates (>90%).

comparable to the benign case, underlining RADAR resilience. The results in Figure 6.5
confirm this trend: RADAR maintains a low ASR in most configurations. As a result, RADAR
demonstrates its ability to mitigate isolated Byzantine faults, regardless of their intensity.

The same cannot be said for FoolsGold’s, which aims at providing a single global
model. Further, by construction, it identifies groups of similar participants as colluding
attackers and considers that only the faulty participant is legitimate. This appreciation
error leads FoolsGold to have the worst attack success rate among all tested baselines,
even when compared against the naive FedAvg approach.

6.7.3 Label flipping attacks

We evaluate the resistance to label-flipping attacks using two different scenarios. First,
we consider that Colluding Byzantines can only refer to attackers, as it is unlikely
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Figure 6.6 – Aggregation weights ρr
i per participant of the poisoned cluster (Colluding

majority T). Even though attackers are a majority, they gain weight precedence only for
higher poisoning rates (≥90%).

that the very same fault happens over multiple clients at the same time. Second, the
Lone 100U scenario, as it is similarly unlikely that for an honest-but-neglectful participant
to misclassify the entirety of its data.

Like discussed in Section 6.7.2, the clustering algorithm separates the noisiest attacks
from the rest. This is true regardless of the number of attackers, as confirmed by the
results in Table 6.3. For untargeted faults with at least 95% noisiness, the Rand index at
round 10 stays equal to 1.0. This means that for those loud attacks, attackers are separated
from benign participants, hence negating their poisoning effect. This is a critical result
for RADAR, as this mitigation occurs for any number of attackers, even if they outnumber
benign participants. However, the attackers in Colluding T scenarios are placed with
legitimate participants in the same cluster.

Minority of attackers The Colluding minority class (Category C3) contains scenar-
ios where 2 out of 5 participants instantiated in Bot-IoT perpetrate label-flipping attacks.
Here, the results depicted in Figure 6.4c indicate that the attackers are heavily penalized
by the reputation system. This is coherent with the results in Table 6.4 for these scenar-
ios, where we can see that RADAR indeed fend off attackers with an ASR of 0.0. Among
the other baselines, FedAvg is especially affected, since it does not have any protection
against such attacks. This is also true for our theoretical baseline FC, although the effect
is logically limited to participants using the Bot-IoT dataset. FoolsGold, on the other
hand, detects the attackers since they are similar and thus manages to discard the attack,
obtaining a rather low ASR of 2.97%. Unfortunately, it also detects benign members from
the other clusters as colluding attackers and thus train on BoT-IoT only, leading to a very
low 54.64% accuracy overall.

Majority of attackers The Colluding majority 100T scenario, with 3 attackers out
of 5 participants, sees the attackers gain precedence. Figure 6.4d clearly illustrates this
phenomenon, where the legitimate participants’ weights drop as the reputation system
favors the attackers. This is a known limit of the reputation system, which favors the
majority by construction. This is further illustrated in Figure 6.7: a steeper drop in accu-
racy and miss rate occurs when attackers outnumber benign participants in one cluster.
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However, the metric distribution over the participants highlights that the other clusters
remain unaffected, and that the majority of benign participants continues to perform
well. Furthermore, as illustrated in Figures 6.5 and 6.6, the noisiness of attackers must
exceed 80% for attackers to poison the cluster’s model. Consequently, while this scenario
highlights a limitation of RADAR, it is significantly constrained.

Impact of the attack timing Additionally, Figure 6.8 depicts how the reputation
system reacts to participants that change their noisiness over time. Figure 6.8a features
a Colluding minority 100T scenario where the noisiness drops to 0% at round 3. The
system forgives attackers approximately four rounds after they adapted their behavior.
This rather short delay depends on the chosen λ history parameter of our reputation
system (see Table 6.1). On the contrary, Figure 6.8b showcases Colluding minority T

attackers going from 0 to 100% noisiness over the course of a few rounds. The reputation
system detects and penalizes them at round 5 when the noisiness reaches 60%. This in
phase with the conclusions of Figures 6.5 and 6.6: for lower noisiness levels, the attackers
have no effect. The reputation system thus detects attackers only when they start to
present a threat to the global model’s performance.

6.7.4 Synthesis

First, the results highlight the relevance of clustering in practical NIID use cases, as
attacks are confined to the cluster attackers have been assigned to. This is particularly
visible in the performance of RADAR and the clustered FedAvg variant, which both maintain
high accuracy overall by providing each community with a specific model. This is true even
in the presence of Byzantine faults or attackers. However, since FC does not implement any
mitigation strategy, its performance quickly degrades with the quality of the contributions,
especially in the presence of colluding attackers (as illustrated by Figure 6.5).

The results in Table 6.4 also emphasize on FoolsGold’s unsuitability for practical NIID
use cases, where groups of participants sharing similar distributions can exist. Especially
in a Lone scenario, any groups of similar participants are considered as colluding attackers
and penalized, leading to high ASR, as only the attacker is considered as legitimate. Sim-
ilarly, in Colluding majority T/U scenarios, FoolsGold penalizes all the other clusters,
leading to a model trained on Bot-IoT only. Overall, RADAR presents the most consistent
results, with high accuracy and low ASR in most scenarios, only failing against a major-
ity of extremely noisy colluding attackers that still managed to get similar enough to be
grouped with benign participants.
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Figure 6.7 – RADAR’s metric distribution among participants in different scenarios
(100T). The accuracy’s and miss rate’s lower bounds suddenly drop when attackers out-
number benign participants in the affected cluster. Indeed, clients in other clusters are
unaffected by the poisoning.
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(a) Attackers act with 100% noisiness,
but become benign on round 3.
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noisiness by 20% each round when r ≥ 3.

Figure 6.8 – Aggregation weights ρr
i per participant of the poisoned cluster (Colluding

minority T). Attackers are forgiven over time, and the reputation system reacts quickly
to newly detected attackers.

6.8 Discussion

The experiments illustrate how RADAR succeeds at identifying attackers in heteroge-
neous context, thus demonstrating its versatility. In this section, we discuss the limitations
and potential consequences of our architecture and propose research directions to close
these gaps.

Heterogeneity The experiments conducted in Section 6.7 show that RADAR can han-
dle heterogeneous participants. However, the simulation of the practical NIID setting is
limited by the available datasets and the partitioning choices. In RADAR, we use IID par-
titioning with each of our datasets to create our communities. This choice is motivated
by the absence of control over the data distribution of the participants with datasets
from different sources. The approach presented in Chapter 7 is expected to cope with
this limitation, and thus represent an interesting research direction to further investigate
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heterogeneous settings.

Generalizability While the experiments are only conducted on intrusion detection
datasets, RADAR’s design could be used in different use cases regarding the following con-
ditions: (1) parametric local models whose parameters can be aggregated using FL, and
(2) local testing sets and relevant metrics allowing participants to evaluate the others
models. Since the NIDS use case induces a focus on malicious samples (i.e. positive val-
ues), we choose the F1-score as input for our clustering and reputation algorithms, as
it emphasizes on false positives and false negatives. However, RADAR can handle differ-
ent metrics, for instance the loss of a model during evaluation, particularly relevant for
similarity measurements.

Scalability and performance The focus on small-scale collaboration (i.e. a few dozens
of participants) makes the overhead of the cross-evaluation step (Section 6.5.1) practical,
and justifies the absence of performance-related metrics in this paper. However, one can
question the scalability of the proposed approach in larger scale applications. Indeed, at
each round, clients evaluate |P | additional models, which scales linearly with the number
of clients. Two new communications are also introduced, one to send the models and
one to collect the evaluations. Their size also grows linearly with |P |, as the models of
all participants must be evaluated. Likewise, we exclude execution-related performance
evaluation such as training time, CPU overhead, or bandwidth consumption. It opens
the way to interesting research directions on how to implement and scale RADAR while
guarantying its properties.

Evaluation poisoning Attackers could try to poison the evaluations that they provide
on other participants to abuse the system. However, the implementation presented in Sec-
tion 6.6 implies that attackers poison both their training and testing sets. Consequently,
the evaluations they produce on other participants are directly affected. We thus expect
the system to cope with arbitrary poisoning similarly to data poisoning: either by placing
the attackers in a different cluster because of their dissimilarity, or by penalizing their
reputation.

Information disclosure Because RADAR shares models with the other participants to
obtain feedbacks, it can be argued that it revels more information about the participants.
This is limited to the participants’ models, which are shared without identifiers. However,
since clients also receive the global model of their cluster, they can try to estimate the
models that belong to their cluster. This remains challenging, as the models are weighted
using the reputation score of the participants, which are only available to the server.
Comparing the privacy impact of RADAR with those of simpler approaches like FedAvg
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represents interesting research directions.

6.9 Conclusion

In this chapter, we introduced RADAR, a Federated Learning framework that effectively
deals with Byzantine participants, even with heterogeneous data-distributions. To that
end, we introduce a cross-evaluation scheme that allows participants to subjectively es-
timate their pairwise similarities. Based on those measurements, we manage to rebuild
the initial participant distribution using hierarchical clustering. Our results confirm that
evaluation metrics can indeed be used to assess similarity between participants, without
accessing their datasets nor comparing their models statistically.

We further designed a reputation system based on the cross-evaluation results. Our
reputation system uses the perceived similarity of participants and their cumulated past
results to give a score to each participant inside a cluster. We are able to validate that the
combination of the clustering and reputation system can mitigate all tested Byzantines
scenarios, with the single exception of targeted attacks where a majority of Byzantines flip
more than 80% of their labels. To the best of our knowledge, this is the first reputation
system in FL that leverages indirect feedbacks to assess the quality of the participants’
contributions.

RADAR is the keystone of this thesis, as it addresses the main challenges of FIDSs in an
untrusted and heterogeneous environment. More importantly, it participates in laying out
the foundations for the future of FIDSs. Indeed, its intrinsic qualities, notably the indirect
feedbacks and personalized model weighting, makes it a suitable candidate for decentral-
ized architectures. In this regard, being able to remove the central server dependency is a
key step towards a truly decentralized, trustworthy, and privacy-preserving collaborative
machine learning framework. The next chapter will further explore these directions with
a discussion on the future of FIDS, and the potential of RADAR in this context.
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7.1 Introduction

With the last three chapters, we have seen how the performance of Federated Intrusion
Detection Systems (FIDSs) can be impacted by the heterogeneity of the participants’
data distributions. Yet, we have been limited in our experiments by the lack of datasets
to thoroughly evaluate this aspect of FIDSs. Indeed, the existing public datasets in the
literature are typically created using a single network topology, leaving researchers working
on distributed approaches with two choices: (a) use the existing datasets and rely on
partitioning strategies to simulate the heterogeneity of real-world data distributions; or
(b) apply standardized feature sets on existing public datasets to create training sets
coming from independent, siloed infrastructures.

Unfortunately, both of these approaches have limitations. In the first case, the parti-
tioning strategies cannot fully replicate the heterogeneity of real-world data distributions,
as data will remain correlated to some extent. Moreover, the partitioning strategies are
not always applicable to all datasets, and it requires a deep understanding of the way
each dataset has been generated to approach realistic data shards. In the second case,
the number of clients is limited by the number of public datasets available, narrowing
experiments to extremely small-scale federations. Additionally, because all datasets are
independent, characterizing the heterogeneity of the data distributions is difficult, leaving
little control over the experimental conditions. In this thesis, we leveraged both strategies
to simulate practical NIID (not Independent and Identically Distributed) settings, but
the results remained limited in realism by the lack of control over the data distributions.
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To bridge the gap towards more realistic evaluations of FIDSs, we propose a novel
approach to generate heterogeneous network topologies that can be deployed in virtu-
alized environments. Because creating a functional topology from scratch is particularly
complex, we compose topologies from a set of predefined building blocks that satisfy
user-defined constraints. By leveraging routing protocols and domain name resolution, we
can dynamically generate a large number of topologies that can be used to evaluate the
performance of FIDSs in a heterogeneous, yet controlled and reproducible, environment.

The content of this chapter originates from the preliminary work presented at the
C&ESAR conference in late 2022 [Lav+22b], and has been pursued as a side project
during the thesis. The prototype that implements our proposal has been developed by
Fabien Autrel, the Research Engineer of our team and co-supervisor of this thesis. The
reminder of this chapter is organized as follows. We start by laying out the requirements
for topology generation in the context of FIDSs in Section 7.2, and review existing related
works in Section 7.3. We then present our approach to generate topologies in Section 7.4,
and evaluate the performance of our tool in Section 7.5. Finally, we discuss the perspectives
of our work before concluding in Section 7.6.

Contributions of this chapter

A novel approach to build realistic network topologies for dataset
generation by leveraging constraint-based topology composition.

A prototype implementation of our proposal, with a performance eval-
uation of the topology generation process.

The foundations for the first truly distributed dataset in intrusion
detection, enabling the evaluation of FIDSs in under controlled con-
ditions.

7.2 Requirements

The topic of topology generation has been extensively researched in the late 90s and
early 2000s, notably to evaluate the performance of network protocols in large-scale net-
works [Med+01]. In a structuring survey on network topologies, Haddadi et al. [Had+08]
synthesized the requirements for network topology generators, from which we extract the
following requirements for our use case: representativeness, extensibility, and efficiency.

In addition to these requirements, since the goal of this work is to build topologies for
dataset generation, we take inspiration from the literature on Network-based Intrusion
Detection System (NIDS) datasets. In their study, Ring, Wunderlich, Scheuring, et al.
[Rin+19] identify the characteristics of a perfect dataset. It should: be up-to-date, cor-
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rectly labeled, and publicly available, contain real network traffic with various attacks
and normal user behavior, and span a long time. Finally, because we strongly believe in
the importance of reproducibility in experimental research, we follow the requirements
laid out by Uetz et al. [Uet+21] for sound experiments. They need to be: valid (i.e.,
well-defined and unrefutable), controllable (e.g., parameterized), and reproducible (i.e.,
the same results can be obtained by another group using the author’s artefact). Based on
these qualities, we derive the following requirements for the topology generator.

— Representativeness: the generated topologies must be representative of modern and
up-to-date real-world networks and respect their statistical properties.

— Extensibility: the tool must allow users to extend its capabilities.

— Efficiency: the tool must be efficient to generate a large number of various-scale
topologies without altering their properties.

— Validity: the generated topologies must be exempt of side effects or biases that could
alter the results of the experiments.

— Controllability: the generator must allow precise control over the differences between
the generated topologies.

— Reproducibility: the generator must be able to deterministically generate the same
topology multiple times.

7.2.1 Controlling Heterogeneity

The major challenge in generating network topologies for FIDSs consist in control-
ling the heterogeneity of the generated datasets. Notably, the generated topologies and
the associated datasets must allow researchers to evaluate the impact of different data-
distributions on FIDSs, and identify the aspects of heterogeneity that have the most
impact on performance. Consequently, the generator must allow precise control over the
differences between the generated topologies. To this end, we identify five main features
that characterize the heterogeneity of network topologies: architecture, attack scenarios,
hosted services, user behaviors, and maturity.

1. Architecture. The network architecture of the topology defines how services are
interconnected and where data collection is performed. For instance, a topology
with a single main gateway, which captures the traffic of several services on the
same network, will produce a different dataset when compared with a star-shaped
topology with multiple subnets. Appropriate metrics are required to characterize the
impact of these differences, e.g., size (number of hosts, of subnets), mean number
of hops between a service and the last gateway, and so on.

2. Attack scenarios. The literature on intrusion detection is rich with different classes
of attacks that generate different patterns of traffic. For instance, a Denial of Service
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(DoS) or brute force attack will generate a lot of traffic, which will vary depending
on the targeted service, e.g., an SSH server, a database over TCP, and so forth.

3. Hosted services. Different services can rely on different protocols, and therefore
generate different kind of data. For example, a service using TCP will induce con-
nection establishment, and therefore a lot of traffic back-and-forth, whereas some-
thing based on UDP will produce a more continuous stream of data. The Internet of
Things (IoT) also introduce new kinds of network traffic patterns, with unusual pro-
tocols such as CoAP or MQTT. Therefore, different services (and protocols) might
have different nominal behaviors, causing expected heterogeneity among partici-
pants. The list of considered services must be adapted depending on the considered
attack scenarios.

4. User behaviors. The network traffic can be influenced by the behavior of users,
which is determined by factors such as their role, device usage, and the type of
organization they belong to. For instance, a university network will have a high
number of students accessing the internet, while a company network will have more
internal traffic. Additionally, different applications and services that users connect
to can generate different traffic patterns and bandwidth consumption. For example,
streaming services may generate high bandwidth usage, while email services may
generate more intermittent traffic. Other factors like working hours, the use of a
company VPN, or the existence of a BYOD (Bring Your Own Device) policy can
also have an impact on the network traffic patterns.

5. Maturity. Security practices vary between organizations, depending on their threat
model, previous expertise, and budget. For example, a large company might have a
dedicated security team, and therefore be able to implement a more mature security
policy, whereas a Small and Medium-sized Enterprise (SME) might not have the
resources to do so. This parameter is important to consider, as it can impact the
quality of the dataset, e.g., by integrating unseen attacks in the training data as
benign traffic.

User behaviors can be implemented directly in traffic generators and are not considered
in the scope of this work. The maturity of the organization can be simulated by two
approaches: either by generating different topologies with different security policies and
relying on the service description to generate the topologies, or by altering data quality
in the generated datasets afterward. Consequently, we focus on the architecture, attack
scenarios, and hosted services to define the requirements of the topology generator.
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7.3 Related Work

The motivation behind topology generation originates from the need to evaluate net-
work protocols in simulations. In fact, while network topology should not influence the
behavior of a protocol, it can significantly impact its performance [Tan+02]. Multiple tools
have been developed to generate network topologies at the time, such as GT-ITM [CDZ97],
Tiers [Doa96], or BRITE [Med+01]. Tangmunarunkit et al. [Tan+02] distinguish two main
categories of topology generators: structural, which aim at reproducing the structural
properties of the internet and particularly its hierarchical organization, and degree-based,
which focus on the statistical properties of the network, notably the power-law distribu-
tion of the node degrees [FFF99]. Most of these works are more than 20 years old and have
been developed to generate topologies for internet-scale networks, which are not directly
applicable to the generation of FIDSs datasets, particularly in our siloed IT networks.

Recent works on topology generation are rarer and focus on specific use cases. For in-
stance, Laurito et al. [Lau+17] developed TopoGen, a tool to generate network topologies
using Software-Defined Networkings (SDNs). Their approach allows users to program-
matically define the network topology using the Ruby programming language, and ex-
tract existing topologies from real-world networks. Yet, their approach is limited to SDNs
and does not allow automating data generation. Alrumaih and Alenazi [AA23] developed
GENIND, a tool to generate industrial network topologies. Similarly to us, the authors
identified that most existing tools are too focused on internet-inspired and internet-scale
topologies, and do not allow generating topologies for specific use cases. Their tool focus
on generating topologies for industrial networks, and therefore generates topologies with
specific constraints layer-by-layer, before connecting the different sub-topologies together
in a multigraph. To the best of our knowledge, no existing tool allows generating network
topologies for IT networks, that can be randomized to obtain variations with common
characteristics.

Another aspect of this work is building topologies that satisfy the requirements of
specified attack scenarios, and deploying them in a controlled environment. Recent works
have focused on cyber ranges 1 for the latter. Both Venkatesan et al. [Ven+19] and Yamin
and Katt [YK22] translate a scenario and a topology description into a deployable envi-
ronment, but do not focus on the generation of the topologies themselves. More recently,
Besson et al. [Bes+24] developed URSID, a tool to generate vulnerable network architec-
tures that implement user provided attack scenarios. Compared to previous works, URSID
introduces variability in the scenarios and service deployments, but does not provide
heterogeneous topologies constructions. Therefore, no existing works provide a complete
solution to generate heterogeneous FIDS datasets.

1. A cyber range is a controlled environment simulating a real-world network, where users can deploy
their own topologies and scenarios, offering a wide range of applications, from cybersecurity training to
dataset generation [Nat23].
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7.4 Topology Generator for Federated IT Networks

To solve the limitations of existing datasets in the literature, we introduce FedITN_gen,
a topology generator for federated IT networks. In this section, we present the design and
architecture of FedITN_gen, before detailing its implementation using Airbus’ CyberRange
platform 2. While FedITN_gen is not released as an open-source tool yet, the code is
available upon request.

7.4.1 Approach Overview

The core idea behind FedITN_gen is to compose network topologies by selecting and
connecting a set of predefined sub-topologies that satisfy user-supplied constraints. A
sub-topology is a small network composed of a subnet, a set of nodes (clients or servers),
and a gateway that connects the subnet to the rest of the network. We build a library of
sub-topologies that represent common network configurations. While creating this library
remains human operated, the composition of the topologies is fully automated, allowing
the generation of different topologies with common characteristics.

FedITN_gen is a thus two-step algorithm:

1. Topology selection: Use constraint programming to find all sets of sub-topologies that
satisfy the user-defined constraints, based on a library of predefined sub-topologies.

2. Topology composition: For each set, connect the sub-topologies in a random tree-like
structure starting from the Master sub-topology.

7.4.1.1 Topology selection

The topology selection is the most important part of the algorithm, as it requires
finding all sets of sub-topologies that satisfy the user-defined constraints. A sub-topology
is composed of a subnet, a set of nodes (clients or servers), and a gateway that connects
the subnet to the rest of the network. Figure 7.1a shows an example of a sub-topology
with 4 nodes. The gateway gx is a particular node (not comprised in Nx) that connects
the subnet to the rest of the network. A sub-topology can therefore be represented as a
tuple tx = (x,Nx, gx). Selecting sub-topologies from the library is a Constraint Satisfaction
Problem (CSP) which aims at finding all sets of sub-topologies that satisfy the user-defined
constraints. Definition 7.1 defines the concept of a CSP.

While dimensioning the output topologies can easily be translated using numeric
boundaries, the constraints on the availability of services and attack scenarios in the
sub-topologies are slightly more challenging. We first define the service domain Dservice

as the set of all services available in the library of sub-topologies, and tag each service
node with its corresponding name, such as ftp, postfix (for email), or ldap. An attack

2. https://www.cyber.airbus.com/products/cyberrange/
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(a) Example of a sub-topology
containing 3 Windows clients
and 1 FTP server.
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(b) Example of a complete topology composed of 3 sub-
topologies. The span captures the traffic of all gateways to
simulate various probe positions afterward.

Figure 7.1 – Examples of topologies as instantiated on Airbus’ CyberRange. Each node
represents a machine, and the edges represent the connections between them. Nodes la-
beled quagga* are gateways connecting each sub-topology to the rest of the network.

scenario is defined as another tuple ak = (srcs = {N1, N2, . . .}, targets = {N11, N12, . . .})
where srcs and targets are sets of nodes available in the library that are compatible
with the attack scenario. For instance, a Man-in-the-Middle (MitM) attack could be rep-
resented as aMitM = (srcs = {Nattaker}, targets = {N1, N2}). Based on the aforementioned
definitions, we can define our Sub-topology Selection Problem (STSP) in Problem 7.1.

7.4.1.2 Topology composition

Once the sub-topologies are selected, the next step is to connect them to form a
complete IT network. The composition of the topologies is done in a tree-like structure,
starting from the Master sub-topology. The Master sub-topology is a special sub-topology
that acts as the root of the tree and contains the necessary services to route traffic between
the sub-topologies. Figure 7.1b shows an example of a complete topology composed of 3
sub-topologies. At this point of the algorithm, the sub-topologies are already selected,
and the composition is a simple matter of connecting the gateways while respecting the
last constraint of tree-depth. Yet, many variations of the same tree can be created, as
illustrated in Figure 7.2.
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Definition 7.1: Constraint Satisfaction Problem (CSP) [RN21]

A Constraint Satisfaction Problem (CSP) is a tuple P = (X,D,C) where:

— X = (X1, X2, . . . , Xn) is a set of variables.

— D = (D1, D2, . . . , Dn) is a set of non-empty domains, one for each
variable.

— C = (C1, C2, . . . , Cn) is a set of constraints that specify allowable
combinations of values in their domains.

Each constraint Cj ∈ C is a new tuple Cj = (χ,R) where R is a relation be-
tween the variables in χ ⊆ X. Thus, solving a CSP is finding an assignment
of values from X in D that satisfies all constraints in C.

Problem 7.1: Sub-topology Selection Problem (STSP)

Let T = {t1, t2, . . . , tn} be a set of sub-topologies, Dservice a set of services,
A = {a1, a2, . . . , am} a set of attack scenarios, nmin and nmax the bounds
of the number of subtopologies, and hmin and hmax the bounds for the total
number of nodes. Find all sets of sub-topologies T ′ ⊆ T that satisfy the
following:

1. nmin ≤ #T ′ ≤ nmax.

2. hmin ≤
∑

ts∈T ′ #Ns ≤ hmax.

3. ∀s ∈ Dservice, ∃ts ∈ T ′, s ∈ Ns.

4. ∀a ∈ A, ∀src ∈ a[srcs],∃ts ∈ T ′, src compatible with ts.

5. ∀a ∈ A, ∀target ∈ a[targets],∃ts ∈ T ′, target compatible with ts.

7.4.2 Implementation

In this section, we present parts of the implementation of FedITN_gen using Airbus’
CyberRange platform. A CyberRange is a virtual environment that simulates a real-world
network, allowing users to train and test their cybersecurity skills. Most importantly,
such platforms come with a set of templates that can be used to create sub-topologies,
and compatible attack scenarios and user traffic generation tools to generate realistic
traffic. We implement our topology generator as a Python script that interacts with the
CyberRange platform through its API to query the available sub-topologies, services,
and attack scenarios. The topology-selection algorithm is implemented using Google’s
CP-SAT solver 3, and we develop a simple recursive algorithm to compose the topologies.
The constraints on the availability of services and attack scenarios are implemented as a

3. https://developers.google.com/optimization/cp/cp_solver
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master master master master

Figure 7.2 – Possible unlabeled tree structures for a topology composed of 3 sub-
topologies. The biggest node represents the Master sub-topology.

simple filtering algorithm that removes sub-topologies that do not contain the required
services or are not compatible with the attack scenarios. We seed all random operation
to ensure deterministic results.

The Master sub-topology. The Master topology serves as the basis for the composi-
tion. It consists of a gateway connecting it to the Internet, a DHCP server for distributing
IP addresses, and a DNS server for resolving domain names across all topologies. This is
the only topology that receives manual configuration. We set up the DNS server to asso-
ciate domain names to the IPs of the services hosted in the sub-topologies: e.g., web server
(webserver.local), mail server (mailserver.local), file sharing (fileserver.local).
This approach makes it possible to define unique domain names for each service, and
make them accessible from any sub-topology.

Handling connectivity. Now that all services are available using their domain names,
the next step is to ensure that the services are reachable from any sub-topology. To do
so, each gateway gs hosts a DHCP server with a dedicated range to allocate IP addresses
for its child sub-topologies. The DNS configuration of the Master topology is propagated
to the DHCP server of each gateway, so that the domain names are resolved correctly.
To route traffic between the sub-topologies, the gateways also run an OSPF daemon to
exchange routing information, announcing their own subnet to the rest of the network.
This setup allows to dynamically configure the routing tables of the sub-topologies upon
deployment, and ensures that all machines are reachable.

Constraint satisfaction. As noted in Section 7.4.1, the topology selection is a CSP
that can be solved using a constraint solver. In particular, we implement our cardinality-
related constrains (i.e., the number of sub-topologies and nodes) using Google’s CP-SAT

solver. This generates all possible combinations of sub-topologies that satisfy the numeric
constraints. We then prune the sets that do not contain the required services or are not
compatible with the attack scenarios. For each set, we compose the complete topology
using a simple recursive algorithm that connects the gateways of the sub-topologies in
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Parameter Value

Min. number of nodes 10
Max. number of nodes 25
Min. number of sub-topologies 2
Max. number of sub-topologies 6
Services list empty
Attacks list empty
Tree depth 2

Table 7.1 – Fixed parameters for the
library size benchmark.
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1Figure 7.3 – Influence of the library size
on the performance of FedITN_gen.

a tree-like structure, starting from the Master sub-topology. The algorithm includes a
backtracking mechanism to roll back the composition when the tree-depth constraint is
not satisfied, and try again from another branch.

7.5 Performance Benchmark

In this section, we present some preliminary results regarding the performance of
FedITN_gen, as well as the influence of some constraints on performance. Note that these
results are based on a prototype implementation, and are more indicative of the potential
of the approach than of its actual performance. To evaluate our prototype, build a syn-
thetic library L of 253 unique sub-topologies with various characteristics, and perform a
series of experiments to evaluate the performance of FedITN_gen in various conditions. We
review the influence of the size of the library (i.e., #L), the maximum number of nodes,
the tree depth, and the number of service constraints on the performance of FedITN_gen.
To this end, we measure the total derivation time (i.e., selection and composition), the
number of generated sub-topology sets, and the number of generated final topologies (i.e.,
tree compositions of the sub-topology sets).

7.5.1 Influence of the library size

The size of the library of sub-topologies has a direct on the number of combinations to
explore. To evaluate the influence of the library size on the performance of FedITN_gen,
we vary the library size l from 1 to 29, with the other parameters fixed as in Table 7.1.
For each run, build a smaller library L′ such as L′ ⊂ L, and #L′ = l. We randomly select
l sub-topologies from the full library to constitute the library set. For each value of the
library size, we perform ten experiments to increase the robustness of the results.

Figure 7.3 displays the different metrics on a log scale. We notably observe that the
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Parameter Value

Min. number of nodes 1
Min. number of sub-topologies 1
Max. number of sub-topologies 6
Services list empty
Attacks list empty
Tree depth 2
Library size 40

Table 7.2 – Fixed parameters for the
maximum number of nodes benchmark.
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execution time increases exponentially with the library size. This is expected due to the
nature of the constraint solver and the tree composition algorithm. The number of sub-
topology sets and tree compositions also increase with the library size, but with a lower
slope. Note that even with a tree depth of 2, the number of tree compositions is superior
to the number of sub-topology sets by a factor of 10. Indeed, there is a combinatorial
explosion of the number of possible compositions.

7.5.2 Influence of the maximum number of nodes

We then evaluate the influence of the maximum number of nodes on the performance
of FedITN_gen. We vary the maximum number of nodes from 1 to 20, with the other
parameters fixed as in Table 7.2. For each value of the maximum number of nodes, we
likewise perform ten experiments.

Figure 7.4 displays the different metrics on a log scale. Again, all metrics increase
exponentially with the maximum number of nodes. Indeed, this parameter indirectly
influences the cardinality of the sub-topology sets generated, and thus the number of tree
compositions. Since we kept a tree depth of 2, the number of tree compositions is still
significantly higher than the number of sub-topology sets. Note that for a number of nodes
inferior to 4, there are no solutions, are the topologies in our test library have at least 4
nodes.

7.5.3 Influence of the tree depth

The next experiment evaluates the influence of the tree depth on FedITN_gen’s per-
formance. This parameter has no impact on the number of sub-topology sets, so we only
measure the number of tree compositions and the execution time. We vary the tree depth
from 1 to 7, with the other parameters fixed as in Table 7.3.
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Parameter Value

Min. number of nodes 10
Max. number of nodes 30
Min. number of sub-topologies 2
Max. number of sub-topologies 10
Services list empty
Attacks list empty
Library size 20

Table 7.3 – Fixed parameters for the
tree depth benchmark.
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Table 7.4 – Fixed parameters for the number of service constraints benchmark.

Parameter Value

Minimum number of nodes 5
Maximum number of nodes 15
Minimum number of sub-topologies 2
Maximum number of sub-topologies 6
Attacks list empty
Tree depth 2
Library size 40

Figure 7.5 displays the execution time and the number of tree compositions on a log
scale. Both increase exponentially with the tree depth, as expected, before reaching a
plateau with a tree depth of 4. This is due to the fact that the number of tree com-
positions is limited by the number of sub-topology sets, which in turn depends on the
other constraints. Consequently, the variations in the results are only due to the random
sampling of the sub-topologies in the library.

7.5.4 Influence of the number of service constraints

This last experiment evaluates the influence of the number of service constraints on
performance. The library of sub-topologies is generated with a fixed number of avail-
able services, namely: ldap, dbms, cms, dns, mail, syslog_server, web, ftp, proxy, and
cloud_storage. We vary the number of services constraints from 1 to 9, with the other
parameters fixed as in Table 7.4.

Figures 7.6a and 7.6b display the execution time and the numbers of sets and tree
generations, respectively. Unlike the other experiments, the execution time in almost con-
stant here, due to the way these constraints are handled. While the other constraints
are implemented as exploration problems, the service and attack constraints are applied
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Figure 7.6 – Influence of the number of service constraints on the performance of
FedITN_gen.

by pruning incompatible sub-topology sets. Therefore, the number of sets and trees are
progressively decreasing as the number of service constraints increases. By the 6th con-
straint, the resolution becomes infeasible, as there are no sub-topologies that satisfy all
the constraints. Increasing the maximum number of nodes and sub-topologies would allow
for more solutions, but would also increase the execution time.

7.6 Conclusion and Takeaways

In this chapter, we presented FedITN_gen, a tool for generating heterogeneous network
topologies to construct FIDSs datasets. Because generating such topologies from scratch
is impractical, we propose to build a library of predefined sub-topologies that can be
combined to form larger topologies according to a set of constraints. We implement a first
prototype of FedITN_gen to validate the feasibility of the approach and to evaluate its
performance. Due to the combinatorial nature of the problem, we rely on a constraint
solver to retrieve valid combinations of sub-topologies. Yet, the derivation time of our
tool currently scales exponentially with most of the parameters. Meanwhile, the number
of generated topologies is also exponential, making FedITN_gen a powerful tool to generate
a large number of topologies while controlling their heterogeneity.

Perspectives The current implementation of FedITN_gen is a first step towards a more
complete tool that would support data generation. We believe that having independently
generated datasets that are comparable with the state of the art, while allowing finer
controls over the heterogeneity of the data, would enable addressing some of the current
open challenges in the literature:

(a) performance against heterogeneity: the ability for the federation to maintain high
performance with heterogeneous participants;
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(b) knowledge transfer between clients: the ability for one client to recognize patterns
that are absent from its local training data;

(c) model adaptability: the ability of a local model to evolve in time, and to adapt to
new devices in the local network;

(d) generation capability: the ability for a local model to correctly characterize behavior
for similar but different services.

Future Work FedITN_gen is currently a preliminary prototype that we plan to improve
in several ways. The first and obvious improvement is to pursue the implementation of the
tool to support the automated execution of scenarios (both attacks and legitimate traffic
generation) to generate datasets, relaying on existing traffic generators of the literature.
Another lead for improvement lies in the optimization of the constraint solver, which is
currently the bottleneck of the tool. Multiple strategies can be considered, such as using a
more efficient modeling of the problem, or using other solving techniques such as column
generation. This is critical to introduce finer constraints and allow for more complex
topologies, without falling in the curse of dimensionality. Finally, while we identified as
a requirement the respect of the statistical properties of real-world IT networks, this
currently remains an open challenge. Consequently, future works include the study and
identification of the aforementioned properties in real-world networks, and the integration
of these properties in the generation process.
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Chapter 8

CONCLUSION AND PERSPECTIVES

8.1 Introduction

Throughout the last six chapters, we have explored the potential of federated learning
to build collaborative intrusion detection systems. We denoted this new approach Feder-
ated Intrusion Detection System (FIDS), and have shown how it can be used to address
the limitations of traditional Collaborative Intrusion Detection Systems (CIDSs). We have
observed the appealing properties of this approach, but also identified major limitations,
some of which we have addressed in the second part of this manuscript. In this concluding
chapter, we start with summarizing the contributions of this thesis (Section 8.2), before
outlining how future works could address their limitations and further improve the state
of the art of FIDSs in Section 8.2.2. We close this manuscript with a discussion on the
research perspectives of FIDSs and CIDSs in general, laying out a roadmap for future
research in this area (Section 8.3).

8.2 Thesis Summary

In the Introduction chapter of this manuscript, after presenting the context and mo-
tivation of this work, we formalized our research objective as the following question: Can
Federated Learning (FL) serve as a trustable knowledge-sharing framework for collabo-
ratively improving Intrusion Detection Systems (IDSs)? We derived four research ques-
tions from this main objective (Questions RQ1 to RQ4) and structured the rest of this
manuscript around these questions. The first part of this manuscript, Part I, was ex-
ploratory, and aimed at understanding the core characteristics of FIDSs. We started by
providing the necessary background on intrusion detection systems and federated learn-
ing in Chapter 2, before reviewing the state of the art of CIDSs and FL in Chapter 3,
addressing Question RQ1. This first part ended by illustrating the potential of FIDSs
through a practical application in Chapter 4, and highlighting the challenges associated
with Questions RQ2 and RQ3: data heterogeneity and malicious participants. The second
part of this manuscript, Part II, focused on addressing some of the identified limitations of
FIDSs to provide answers to Questions RQ2 to RQ4. We answer these research questions
hereafter, with references to the corresponding chapters.
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8.2.1 Answering the Research Questions

— Question RQ1: What makes applying FL to IDSs specific?
While introducing the preliminary concepts required for this thesis in Chapter 2,

we enumerated challenges of CIDSs that motivated exploring of FL. That alone does
not answer the question, so we performed a comprehensive review of the state of
the art in Chapter 3, where we proposed a taxonomy that describes FIDSs along
five axes: data, local operation, federation settings, aggregation, and evaluation. This
highlights the first specificity of FIDSs, as two out of our five criteria cover most of
the existing FL taxonomies: federation settings and aggregation.

We discuss in the same chapter other critical aspects of intrusion detection, em-
phasizing the importance of explainability, personalization, and adversarial robust-
ness in this context. Further, the specific types of data distributions and partitioning
encountered in IDSs are also unique to this domain, such as the attack classes over-
lap encountered in Chapter 5. Finally, the lack of datasets and the massive variety
of IDS use cases make it difficult to generalize the results of FL research to this
domain.

— Question RQ2: Can FL be used to federate IDSs across heterogeneous data sources?
Observed in both FL and FIDS literature (cf . Chapter 3), data heterogeneity is

a major challenge to real FL deployments. We illustrated this issue in Chapter 4,
where we highlighted both the benefits of data heterogeneity (e.g., improved gener-
alization and knowledge-sharing) and the challenges it poses, particularly in terms
of convergence and performance. Chapter 5 highlighted another issue with data het-
erogeneity: when participants are too different, identifying malicious contributions
becomes more difficult.

We proposed in Chapter 6 a novel approach to address this issue, RADAR, which
leverages three components: (i) a cross-evaluation scheme that modifies the FL
workflow to collect evaluation feedbacks; (ii) a clustering algorithm that groups
participants based on their feedback similarities, providing a more subjective view
of the participants’ differences; and (iii) a reputation system that analyses feedbacks
over time to weight the aggregation process accordingly. However, because of the lack
of appropriate distributed IDS datasets, we are limited in our evaluation. We then
propose in Chapter 7 an unconventional approach to address this issue, leveraging
constraint-based topology composition to generate synthetic datasets that mimic the
characteristics of independent organizations. Consequently, while we have evidences
that FL can could be used to federate IDSs across heterogeneous data sources, this
still represents a major research direction.

— Question RQ3: How does FL handle malicious contributions in a federated IDS?
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Malicious participants represent a major threat to collaborative systems. FL is
no exception, and we have illustrated in Chapter 4 how the lack of control over
the participants’ contributions is indeed a major concern. To better understand this
issue, we performed a systematic analysis of the impact of label-flipping attacks
against a FIDS in Chapter 5, and build an evaluation framework to facilitate this
process. Label-flipping attacks are especially interesting, as they are straightforward
to implement and can be applied to any threat models. Our results indicate that the
impact of such attacks can be quite significant, but also that FL’s inherent construc-
tion also mitigates parts of their effect, until a certain threshold. With Chapter 6,
we introduced a novel approach to detect malicious participants, including large
groups of colluding attackers. Yet, our experiments call to be extended to generalize
our findings.

— Question RQ4: How can one assess and ensure the trustworthiness of the other
participants’ contributions?

Even without malicious intent, uploaded model updates can have a negative im-
pact on the global model. This can be explained by heterogeneity (see Question RQ2
and chapter 4), but also by the quality of the training data. RADAR (Chapter 6) is
a first step towards addressing this issue, as it provides guarantees on the qual-
ity of the participants’ contributions based on evaluation metrics. In fact, from
the point of view of our aggregator, knowing whether a participant is malicious or
not is irrelevant: the collected feedbacks assess the model quality, not the partici-
pants’ intentions. Most importantly, RADAR is, to the best of our knowledge, the only
reputation-aware approach in FL that leverages actual participants’ feedbacks. This
represents a major shift in the way we assess the trustworthiness of the participants’
contributions, by relaxing the assumption that participants cannot upload anything
but model updates.

8.2.2 Future Work

The contributions of this thesis are a first step towards understanding the potential
of FL for building collaborative IDSs. We identified above some limitations of our work,
notably to extend our assessment study and our data-generation project. In this section,
we discuss our future work to address these limitations, and provide steps to improve the
state of the art by building on the contributions of this thesis.

Extending the assessment study. Chapter 5 provided the first systematic analysis
of the impact of label-flipping attacks against a FIDS. While this chapter already ex-
tends our original publication at ARES 2024 [LBA24b], the results are still limited to
two datasets, one model architecture and type of poisoning attack (i.e., label-flipping).
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Several steps can be taken to extend this work. First, the study can easily be extended
to other types of poisoning attacks, such as backdoor attacks or model poisoning, and to
other datasets. Likewise, implementing other aggregation baselines, including mitigation
strategies, would provide a comprehensive toolbox to evaluate the robustness of FIDS and
provide meaningful comparisons between approaches.

Improving RADAR’s scalability. Recent works in FL have shown the potential of de-
centralized approaches to improve both the scalability and the robustness of such systems.
This is in fact one of the major limitations of RADAR as it stands: the centralized nature
of the FL approach, coupled with the need to collect evaluation feedbacks, makes it dif-
ficult to scale to large numbers of participants. Fortunately, RADAR’s design makes it a
good candidate for decentralization. In a Peer-to-Peer (P2P) network, for instance using
a gossip-based protocol, participants could propagate model updates, but also evaluation
feedbacks on other participants. Then, the clustering and reputation systems could be
computed locally, from the point of view of each participant, each client could aggregate
a personalized model based on the reputation of the other participants. As emphasized in
the conclusion of Chapter 6, this would represent a key step towards a truly decentralized,
trustworthy, and privacy-preserving CIDS.

Generating independent datasets. We mentioned several times throughout this
manuscript the lack of appropriate truly distributed IT datasets for FIDS research. This
is a major limitation to generalizing the community’s findings to real-world applications.
In Chapter 7, we proposed FedITN_gen, a novel approach to create synthetic network
topologies enabling the generation of heterogeneous datasets. Our prototype is a first step
towards this goal, but it does not support the execution of scenarios yet. Consequently, de-
ploying scenarios and evaluating the generated datasets represents the natural next step.
Moreover, the current implementation includes naive algorithms to filter out irrelevant
sub-topologies after generation. We believe that the entire problem can be modeled as a
Constraint Satisfaction Problem (CSP), and plan to investigate this direction. Finally, the
recent advances in Large Language Models (LLMs) and Graph Neural Networks (GNNs)
could be leveraged to bridge the gap between theoretical topologies generation and their
deployment, by coupling these models with Infrastructure as Code (IAC) frameworks like
Terraform.

8.3 Perspectives: Going beyond FIDSs

In the last section, we discussed the future work we envision to build upon the con-
tributions of this thesis. However, the scope of this thesis is limited to specific aspects of
FIDSs, and we believe that FL has opened new research directions in the field of CIDS
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that are worth exploring. In this section, we discuss some of these perspectives, and in
particular four research axes that we believe will shape the future of CIDS research.

8.3.1 Federated Learning and Derivatives

FL is a core concept in this thesis, and more generally an essential component of
FIDSs. However, FL is not the only collaborative learning framework available, as the
term now encompasses a wide range of techniques that can be used to build collaborative
systems. In this section, we discuss some of these techniques, and how they could be used
to improve the state of the art of FIDSs.

Aggregation strategies Aggregation strategies are naturally at the core of FL, since
they define how the participants’ contributions are combined to build the global model.
Furthermore, they can serve additional purposes: privacy preservation (e.g., differen-
tial privacy [Mok+21]), robustness (e.g., model weighting [FYB20], clipping and nois-
ing [Ngu+22]), or incentivization [Den+21]. A particularly interesting direction for FIDS
is understanding and handling data heterogeneity. While a lot of research has been done
on this topic in the context of FL, the performance of these strategies in the context of
FIDSs is still an open question.

Horizontal architectures and trustworthiness A second import research direction
in FL is relaxing its core architectural assumptions to overcome the central server de-
pendency [Kai+21]. Multiple solutions have been proposed in the literature. However,
this poses new challenges of trust that are particularly relevant in the context of CIDSs,
as collaboration is typically done between trusted parties. Consequently, the question of
how to build trust between participants is a major concern, where decentralized reputa-
tion systems could play an important role. Since such systems may rely on evaluation,
can we trust participants to perform the evaluation correctly? Machine Learning (ML)
training and evaluation in trusted enclaves [Mon+21] could become of great help to that
regard. The lack of central authority also brings new interoperability challenges: Which
model architectures is used? With which hyperparameters? With what Deep Learning
(DL) framework? Standardization could help in that matter, whether it comes from enti-
ties like the Internet Engineering Task Force (IETF) or more ad-hoc consortiums. Recent
efforts towards standardizing the exchange of Neural Networks (NNs), such as Open Neu-
ral Network Exchange (ONNX) [ONN], could be envisioned to support interoperable and
decentralized collaborative learning applications.

Leveraging the communication layers In FL, everything happens at the application
layer, which makes it pretty agnostic of the architectural choices of the lower layers. How-
ever, some of these technologies present particularities that can be exploited to optimize
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bandwidth consumption, computing resources, or both. A first example that connects with
the decentralization objective mentioned above is Information-Centric Networking (ICN),
which provide interesting properties, such as information caching and in-network comput-
ing. While few works have been published in this direction [Ama+22; Ban+22], we believe
that ICN can provide FL with significant performance gains in large-scale settings. Yet,
this obviously introduces new challenges, such as how to address content (such as model
updates) without never accessing data. Another example is wireless protocols, were the
information in inherently broadcasted on a common medium. Consequently, decentralized
approaches (e.g., gossip learning) could significantly benefit from sharing model updates
with all available clients within range, instead of multiplicating unicast connections.

8.3.2 Modern Detection Techniques

Naturally, the second main component in FIDSs the local algorithm. Yet, we have
observed that most of the literature remained focused on scaling up the existing local
intrusion detection approaches, mostly selecting off-the-shelf models to see how they work
in federated settings. While these works have provided interesting first insight into FIDSs’
abilities, we believe they only have scratched its surface.

Novel algorithms and representations The rise of DL algorithms has revolution-
ized the field of intrusion detection, especially with new classes able to capture temporal
dependencies in data. Recurrent Neural Networks (RNNs), and more recently transform-
ers [Wu+22], have been successfully applied to intrusion detection. Another breakthrough
happened with the use of knowledge graphs to represent Network-based Intrusion Detec-
tion System (NIDS) data [Lei+20]. Yet, these techniques extract more abstract knowledge,
and the question of aggregating such knowledge in collaborative learning approaches re-
mains to be addressed. A few works in the literature successfully built federated RNNs, for
instance for event prediction [Nas+22], but to the best of our knowledge, it is not the case
with graph data. Finally, LLMs started to showcase applications in analyzing log data,
and the recent proposal of federating LLMs [Wu+22] might represent an opportunity to
train such algorithms on actual data, going beyond the simple local fine-tuning.

Explainability and Semantic Explainable Artificial Intelligence (XAI) has received
much attention over the last years, as the trustworthiness of ML algorithms started to
be questioned. This becomes even more relevant with FL. Not only are the shared con-
tributions black-boxes, but their averaging contributes to making the global model even
more opaque. Consequently, the question of how to explain the global model’s decisions
is of great importance, but so is the ability to track and explain the contributions of each
participant. This is particularly relevant in the context of FIDSs, where the global model’s
decisions can have significant impacts on the participants’ security. A first step in this
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direction is to apply semantic tagging to the shared contributions, to provide a more fine-
grained understanding of the “knowledge” shared by each participant, and the resulting
global model. Such tagging would also have applications in model personalization, as one
could express to domains they want their model to be more sensitive to. However, this
also raises new questions on the privacy of the shared contributions, and how to ensure
that the tagging process does not leak sensitive information.

8.3.3 Evaluation

Throughout the manuscript, we discussed at length the challenges that come with
evaluating FIDSs. Addressing some of them is even part of the contributions (cf . Sec-
tion C.1.1) or future work (Section 8.2.2) of this thesis. Yet, we believe that the evalu-
ation of FIDSs is a research axis in itself, and that it deserves more attention from the
community.

Datasets and benchmarks The first striking issue is the lack of appropriate datasets,
due to they way most of the public datasets are generated. Multiple strategies can be
envisioned to address this issue, although we focused on generating heterogeneous topolo-
gies in this thesis. Other strategies could include generating synthetic datasets, using
generative models or data augmentation techniques, as well as working on data transfor-
mation techniques to make variations of existing datasets, while preserving the validity of
the generated data. Another direction lies in the creation of evaluation frameworks, that
would allow researchers to evaluate their models in a more systematic way. We believe
that this thesis provides a starting point with Eiffel to define a more robust and system-
atic evaluation methodology for FIDS, including the definition of relevant metrics and the
development of benchmarks for this purpose.

Reproducibility For a long time, researchers have been publishing their results with-
out providing the necessary tools to reproduce them. This is particularly true in the field
of ML, where the choice of hyperparameters, the data preprocessing, or the model archi-
tecture can have a significant impact on the results. FL is particularly sensitive to these
issues, as its distributed and partially asynchronous nature makes it difficult to reproduce
the exact conditions of a given experiment.

Multiple initiatives have been launched to address this issue, such as the Baselines
project of the Flower framework [Beu+20] which collects baselines developed by the com-
munity using the framework to facilitate comparisons. The research community in general
has also started to pay more attention to reproducibility. In France, the Groupement de
Recherche (GdR) Réseaux et Systèmes Distribués (RSD) has launched a working group
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on reproducibility 1, whose goal is to facilitate the community’s discussions on this topic.
At an international level, the Association for Computing Machinery (ACM) has launched
the ACM Artifact Review and Badging initiative, which aims at promoting the publica-
tion of artifacts associated with research papers, as well as a dedicated working group on
reproducibility 2 and a novel venue for the topic, the ACM Conference on Reproducibility
and Replicability. We followed these guidelines in this thesis, and specifically in our as-
sessment study (Chapter 5), and we believe that this is a major step towards improving
the reproducibility of our results.

8.3.4 Integration in the Regulatory Landscape

Finally, the last research axis that we consider critical is the integration of FIDSs in
the regulatory landscape. In Europe, the General Data Protection Regulation (GDPR)
and the Data Act are two major regulations that have a significant impact on the way data
is handled, making data sharing and processing more difficult for organizations. This is
often used as a motivation to explore FL strategies in all kinds of applications, especially
in the health sector. The more recent AI Act introduced new restrictions on the use of
Artificial Intelligence (AI) and ML algorithms, and it is likely that FL will be impacted
by these regulations as well. Recent works just started to explore the impact of these
regulations, the AI Act in particular, on FL [Woi+24a; Woi+24b], but some questions
remain unanswered. For instance, how can we assess the fairness of a model without
accessing local data?

In the specific context of cybersecurity, the ANSSI (Agence Nationale de la Sécurité
des Systèmes d’Information), the French security agency, has published a series of guide-
lines on how to share information between organizations, and how to report incidents.
Among the missions of the agency is to share knowledge acquired while monitoring its
beneficiaries, and we believe that FL could be a key technology to achieve this goal. More
generally, we ask: is FL compatible with the current and upcoming regulatory landscape
for cybersecurity-related knowledge sharing?

8.4 Closing Remarks

In this concluding chapter, we have summarized the contributions of this thesis, and
outlined some of the future work that could be done to improve the state of the art of
FIDSs. We have also discussed some of the research perspectives that we believe will shape
the future of CIDS research, and in particular the role that FL and its derivatives will
play in this context.

1. https://gdr-rsd.fr/gt-reproductibilite/
2. ACM EIGREP: https://reproducibility.acm.org/
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8.4. Closing Remarks

More than a distributed learning technique, FL has demonstrated how parametric
models can be merged and modified using simple mathematical operations. This has
opened a new dimension in the field of ML and all its applications. In the context of
CIDS, this represents a major shift in the way we think about intrusion detection, and
how we can leverage the knowledge of multiple organizations to build more robust and
efficient systems.
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1Figure 8.1 – Topic embedding of the Federated Intrusion Detection System (FIDS)
literature using a Non-negative Matrix Factorization (NMF) model with 20 topics. Each
point represents a paper, and each are labelled with the topic they are the most associated
with.
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C Résumé en français de la thèse

La sécurisation des systèmes d’information se complexifie à mesure que ceux-ci gagnent
en taille et en complexité. Parce que la sécurité par conception est bien souvent inappli-
cable, les différentes agences gouvernementales recommandent des mesures de sécurité
complémentaires, telles que le déploiement de solutions de détection. Les systèmes de
détection d’intrusions (IDS en anglais) bénéficient grandement des dernières avances en
apprentissage machine (ML), mais se heurtent aussi aux limitations de ces derniers. En
particulier, l’important coût humain et financier de la génération de données étiquetées
pour entraîner des algorithmes d’apprentissage rend leur déploiement difficile pour les
organisations.

Dans ce contexte, mettre en commun les données d’apprentissage permet d’améliorer
la qualité de l’apprentissage, de réduire les biais dus aux distributions locales, tout en
partageant de l’information sur des nouvelles classes d’attaques. Malheureusement, les
réglementations en vigueur (RGPD en tête), mais aussi la peur de la fuite d’information
ou de propriété industrielle, rendent le partage de données impossible.

L’émergence de l’apprentissage fédéré (FL pour Federated Learning) a relancé l’inté-
rêt des communautés de détection d’intrusions pour les modèles collaboratifs. Ce dernier
permet d’entraîner un modèle unique sur des données réparties, sans pour autant qu’elles
ne quittent leurs lieux de traitement respectifs. Utilisé dans un contexte de détection
d’intrusions, le FL permet d’étendre virtuellement la taille du jeu de données d’entraî-
nement des participants. Plus important encore, ce type d’algorithme permet aussi de
propager des informations sur des caractéristiques apprises localement, en en faisant bé-
néficier d’autres organisations. Cet apprentissage réparti promet enfin de palier certaines
limitations classiques des algorithmes d’apprentissage, comme les biais de distribution.

Ainsi, l’application de l’apprentissage fédéré à la détection d’intrusions semble être
une solution prometteuse pour améliorer les performances des IDS. Le nombre d’études
publiées sur ce sujet corroborent cette hypothèse [Ism+24 ; Lav+22c]. Néanmoins, cette
approche pose de nouveaux défis, comme la gestion de l’hétérogénéité entre les partici-
pants ou la création de confiance entre ces derniers. Plus généralement, Quelles sont les
spécificités associées à l’application de l’apprentissage fédéré à la détection d’intrusions ?
Le FL est-il une solution viable pour construire des IDS collaboratifs ?

C.0.1 Cas d’étude

Parmi tous les cas d’usage possibles en détection d’intrusions, la détection d’intrusion
au niveau réseau (NIDS) sur des systèmes d’information orientés IT se trouve particulière-
ment représenté. Cela a un intérêt pratique, notamment pour la disponibilité d’algorithmes
déjà implémentés et de jeux de données appropriés. L’intérêt en terme d’évaluation est
évident, puisque cela rend les approches comparables, notamment en termes de perfor-
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mance.
De plus, ce cas d’étude représente un cas d’application réaliste pour des systèmes de

détection d’intrusions fédérés, où les participants à ce type de systèmes sont des orga-
nisations en charge de la surveillance d’un système d’information. À titre d’exemple, un
NIDS fédéré pourrait être déployé entre les Centre Opérationnels de Sécurité (SOC) de
plusieurs entreprises, qui auraient intérêt à partager des informations sur les attaques
qu’ils ont détectées, sans pour autant partager les données brutes.

C.0.2 Questions de recherche

La problématique traitée par cette thèse peut être résumée par la question suivante :
L’apprentissage fédéré peut-il fournir un cadre fiable de partage de connaissances pour
améliorer de manière collaborative les mécanismes de détection d’intrusion ?

RQ1. Qu’y a-t-il de spécifique à l’application de l’apprentissage fédéré aux IDS ?

RQ2. L’apprentissage fédéré peut-il être utilisé pour entraîner des IDS à partir de sources
de données hétérogènes ?

RQ3. Comment l’apprentissage fédéré gère-t-il les contributions malveillantes dans un
IDS fédéré ?

RQ4. Comment évaluer et garantir la fiabilité des contributions des autres participants ?

C.1 Résumé des contributions

Dans le chapitre Introduction de ce manuscrit, après avoir présenté le contexte et les
motivations de ce travail, nous formulons notre objectif de recherche sous la forme de la
question de recherche énoncée ci-dessus. Nous déclinons cet objectif en quatre questions
de recherche (Questions RQ1 to RQ4) et structurons le reste de ce manuscrit autour
de ces questions. La première partie de ce manuscrit, Part I, est exploratoire et vise à
comprendre les caractéristiques fondamentales des Systèmes de Détection d’Intrusions
Fédérés (FIDS). Nous commençons par fournir les connaissances de base sur les systèmes
de détection d’intrusions et l’apprentissage fédéré dans Chapter 2, avant de passer en
revue l’état de l’art des IDS collaboratifs (CIDS) et du FL dans Chapter 3, abordant ainsi
la question Question RQ1. Cette première partie se termine par l’illustration du potentiel
des FIDS à travers une application pratique dans Chapter 4, mettant en lumière les défis
associés aux questions Questions RQ2 and RQ3 : l’hétérogénéité des données et la présence
de participants malveillants. La deuxième partie de ce manuscrit, Part II, se concentre
sur la résolution de certaines des limitations identifiées des FIDS, afin de répondre aux
questions Questions RQ2 to RQ4. Nous répondons ici à ces questions de recherche, en
renvoyant aux chapitres correspondants.
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C.1.1 Réponses aux questions de recherche

— Question RQ1 : Qu’y a-t-il de spécifique à l’application de l’apprentissage fédéré aux
IDS ?

En introduisant les concepts préliminaires nécessaires à cette thèse dans Chap-
ter 2, nous énumérons les défis des CIDS qui motivent l’exploration du FL. Cela
ne suffit pas à répondre à la question, nous réalisons donc une revue complète de
l’état de l’art dans Chapter 3, où nous proposons une taxonomie qui décrit les FIDS
selon cinq axes : données, opération locale, paramètres de fédération, agrégation, et
évaluation. Cela met en évidence la première spécificité des FIDS, puisque deux de
nos cinq critères couvrent la plupart des taxonomies existantes du FL : paramètres
de fédération et agrégation.

Nous discutons dans le même chapitre d’autres aspects critiques de la détection
d’intrusion, en insistant sur l’importance de l’explicabilité, de la personnalisation et
de la robustesse face aux attaques dans ce contexte. De plus, les types spécifiques de
distributions et de partitions de données rencontrés dans les IDS sont uniques à ce
domaine, comme le chevauchement des classes d’attaques observé dans Chapter 5.
Enfin, le manque de jeux de données et la grande diversité des cas d’usage des
IDS rendent difficile la généralisation des résultats de la recherche en FL dans ce
domaine.

— Question RQ2 : L’apprentissage fédéré peut-il être utilisé pour entraîner des IDS à
partir de sources de données hétérogènes ?

Observée à la fois dans la littérature sur le FL et les FIDS (cf . Chapter 3),
l’hétérogénéité des données représente un défi majeur pour les déploiements réels
du FL. Nous illustrons ce problème dans Chapter 4, où nous mettons en avant à la
fois les avantages de l’hétérogénéité des données (e.g., une meilleure généralisation
et un partage de connaissances amélioré) et les défis qu’elle pose, notamment en
termes de convergence et de performance. Chapter 5 souligne un autre problème lié
à l’hétérogénéité des données : lorsque les participants sont trop différents, il devient
plus difficile d’identifier les contributions malveillantes.

Nous proposons dans Chapter 6 une approche novatrice pour résoudre ce pro-
blème, RADAR, qui repose sur trois composantes : (i) un schéma de cross-evaluation
(ou évaluation croisée) qui modifie l’algorithme classique du FL pour intégrer des
retours d’évaluation ; (ii) un algorithme de clustering qui regroupe les participants
en fonction des similitudes de leurs retours, offrant une vue plus subjective des dif-
férences entre participants ; et (iii) un système de réputation qui analyse les retours
au fil du temps pour pondérer le processus d’agrégation en conséquence. Cepen-
dant, en raison du manque de jeux de données appropriés pour les IDS répartis,
notre évaluation reste limitée. Nous proposons donc dans Chapter 7 une approche
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non conventionnelle pour résoudre ce problème, en utilisant la composition de to-
pologies basées sur des contraintes pour générer des jeux de données synthétiques
imitant les caractéristiques des organisations indépendantes. Par conséquent, bien
que nous disposions d’éléments de preuve que le FL pourrait être utilisé pour fédé-
rer des IDS à partir de sources de données hétérogènes, cela reste une direction de
recherche majeure.

— Question RQ3 : Comment l’apprentissage fédéré gère-t-il les contributions mal-
veillantes dans un IDS fédéré ?

Les participants malveillants représentent une menace majeure pour les systèmes
collaboratifs. Le FL n’échappe pas à cette règle, et nous illustrons dans Chapter 4
comment l’absence de contrôle sur les contributions des participants constitue effec-
tivement un problème majeur. Pour mieux comprendre cette problématique, nous
réalisons une analyse systématique de l’impact des attaques par inversion de la-
bels contre un FIDS dans Chapter 5, et construisons un cadre d’évaluation pour
faciliter ce processus. Les attaques par inversion de labels sont particulièrement
intéressantes, car elles sont faciles à mettre en uvre et peuvent être appliquées à
tout modèle de menace. Nos résultats montrent que l’impact de ces attaques peut
être assez important, mais que la construction inhérente du FL permet également
d’atténuer partiellement leur effet, jusqu’à un certain seuil. Avec Chapter 6, nous
introduisons une approche novatrice pour détecter les participants malveillants, y
compris les grands groupes d’attaquants en collusion. Cependant, nos expériences
doivent être étendues pour généraliser nos conclusions.

— Question RQ4 : Comment évaluer et garantir la fiabilité des contributions des autres
participants ?

Même sans intention malveillante, les mises à jour de modèles téléchargées
peuvent avoir un impact négatif sur le modèle global. Cela peut s’expliquer par
l’hétérogénéité (voir Question RQ2 and chapter 4), mais aussi par la qualité des
données d’entraînement. RADAR (Chapter 6) constitue un premier pas vers la ré-
solution de ce problème, car il offre des garanties sur la qualité des contributions
des participants, basées sur des métriques d’évaluation. En fait, du point de vue
de notre agrégateur, savoir si un participant est malveillant ou non est sans im-
portance : les retours recueillis évaluent la qualité du modèle, pas les intentions
des participants. Surtout, RADAR est, à notre connaissance, la seule approche de FL
tenant compte de la réputation qui exploite les retours réels des participants. Cela
représente un changement majeur dans la manière d’évaluer la fiabilité des contri-
butions des participants, en relâchant l’hypothèse selon laquelle les participants ne
peuvent télécharger que des mises à jour de modèles.
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C.2 Travaux futurs et perspectives d’évaluation

Cette thèse a ouvert la voie à l’exploration des systèmes de détection d’intrusions
collaboratifs basés sur l’apprentissage fédéré (FL), en abordant les défis liés à la sécurité
et à l’efficacité de ces systèmes. Certaines limitations demeurent néanmoins, notamment
en ce qui concerne l’extension des études d’évaluation et la génération de jeux de données
adaptés à des scénarios distribués. La conclusion de ce manuscrit (Chapter 8) résume
les contributions de cette thèse, avant de décrire comment les travaux futurs pourraient
résoudre leurs limitations et améliorer l’état de l’art des FIDS dans Section 8.2.2. Cette
dernière partie résume ces pistes de recherche, ainsi que les perspectives plus larges à
même de guider les travaux sur les CIDS, au-delà des contributions actuelles.

Dans le cadre de la poursuite des travaux présentés dans ce manuscrit, les amélio-
rations porteront d’abord sur l’extension des études d’évaluation des attaques par em-
poisonnement de modèles fédérés, au-delà des simples attaques par inversion de labels
déjà examinées dans cette thèse. Il sera nécessaire de tester différentes méthodes d’em-
poisonnement de modèle et d’intégrer de nouveaux jeux de données pour obtenir une vue
d’ensemble plus complète de la fiabilité des CIDS face à de telles menaces. Une deuxième
piste repose sur l’amélioration du passage à l’échelle de RADAR en développant des méca-
nismes décentralisés via des protocoles pair-à-pair, ce qui permettrait de gérer un plus
grand nombre de participants sans compromettre la performance ou la confidentialité
des échanges. Enfin, la génération de données réparties réellement indépendantes repré-
sente un autre chantier crucial, avec l’objectif ici de faire passer FedITN_gen de la simple
génération de topologies à des scénarios complets, pour valider les approches dans des
environnements plus proches de la réalité.

Le manuscrit détaille aussi des perspectives à long terme, incluant plusieurs axes de
recherche pour faire évoluer les CIDS. Tout dabord, les stratégies dagrégation des modèles
fédérées peuvent bénéficier des progrès récents en matière de confidentialité différentielle
(differential privacy) et de robustesse face aux attaques. Ensuite, lintégration des systèmes
décentralisés pose de nouveaux défis en termes de confiance entre les participants et din-
teropérabilité des modèles, qui devront être résolus pour déployer ces systèmes à grande
échelle. Lévaluation des CIDS elle-même doit par ailleurs être approfondie, notamment en
créant de nouveaux benchmarks et en établissant des méthodologies robustes pour garan-
tir la reproductibilité des résultats dans des environnements distribués. Enfin, lévolution
du cadre réglementaire, avec des lois et directives telles que le RGPD et l’AI Act, soulève
également des questions sur la conformité des approches fédérées, notamment en matière
de partage sécurisé de connaissances et de respect de la confidentialité des données lo-
cales. Ces recherches, à la croisée de la cybersécurité et de la réglementation, façonneront
l’avenir des systèmes collaboratifs pour la cybersécurité.
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Résumé : La collaboration entre les diffé-
rents acteurs de la cybersécurité est essen-
tielle pour lutter contre des attaques de plus
en plus nombreuses et sophistiquées. Pour-
tant, les organisations sont souvent réticentes
à partager leurs données, par peur de com-
promettre leur confidentialité ou leur avan-
tage concurrentiel, et ce même si cela pour-
rait améliorer leurs modèles de détection d’in-
trusions. L’apprentissage fédéré est un para-
digme récent en apprentissage automatique
qui permet à des clients répartis d’entraîner
un modèle commun sans partager leurs don-
nées. Ces propriétés de collaboration et de
confidentialité en font un candidat idéal pour
des applications sensibles comme la détec-

tion d’intrusions. Si un certain nombre d’ap-
plications ont montré qu’il est, en effet, pos-
sible d’entraîner un modèle unique sur des
données réparties de détection d’intrusions,
peu se sont intéressées à l’aspect collabora-
tif de ce paradigme. Dans ce manuscrit, nous
étudions l’utilisation de l’apprentissage fédéré
pour construire des systèmes collaboratifs de
détection d’intrusions. En particulier, nous ex-
plorons (i) l’impact de la qualité des données
dans des contextes hétérogènes, (ii) l’exposi-
tion à certains types d’attaques par empoison-
nement, et (iii) des outils et des méthodologies
pour améliorer l’évaluation de ce type d’algo-
rithmes.

Title: Improving Intrusion Detection in Distributed Systems with Federated Learning
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Abstract: Collaboration between different cy-
bersecurity actors is essential to fight against
increasingly sophisticated and numerous at-
tacks. However, stakeholders are often reluc-
tant to share their data, fearing confidential-
ity and privacy issues and the loss of their
competitive advantage, although it would im-
prove their intrusion detection models. Feder-
ated learning is a recent paradigm in machine
learning that allows distributed clients to train
a common model without sharing their data.
These properties of collaboration and confi-
dentiality make it an ideal candidate for sen-

sitive applications such as intrusion detection.
While several applications have shown that it
is indeed possible to train a single model on
distributed intrusion detection data, few have
focused on the collaborative aspect of this
paradigm. In this manuscript, we study the
use of federated learning to build collabora-
tive intrusion detection systems. In particular,
we explore (i) the impact of data quality in het-
erogeneous contexts, (ii) the exposure to cer-
tain types of poisoning attacks, and (iii) tools
and methodologies to improve the evaluation
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