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All models are wrong, but some are useful. (Box, 1979)
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Abstract

Progression heterogeneity in chronic diseases such as Amyotrophic Lateral Sclerosis (ALS)
is a significant obstacle to developing effective treatments. Leveraging the growing wealth
of large databases through modelling can help better understanding it. However, the data
collected only offer access to partial trajectories, that need to be realigned to reconstruct a
comprehensive disease progression.

To address this challenge, data-driven progression models like the longitudinal Spa-
tiotemporal model were developed. Its main interest is its ability to synchronise patients
onto a common disease timeline (temporal aspect) thanks to a latent disease age, while
also capturing the remaining variability through parameters that account for outcome or-
dering (spatial aspect). However, this model was primarily designed for longitudinal data,
overlooking crucial outcomes in ALS such as time to death or initiation of life support,
like Non-Invasive Ventilation (NIV). Conversely, existing joint models offer the advantage
of simultaneously handling longitudinal and survival data. However, they do not realign
trajectories, which compromises their temporal resolution.

This thesis aimed to expand the Spatiotemporal model into a Joint Spatiotemporal model,
enabling, for ALS research, the examination of survival data alongside longitudinal data.

First, we applied the Spatiotemporal model to explore how the interaction between sex
and onset site (spinal or bulbar) impacts the progression of ALS patients. We selected 1,438
patients from the PRO-ACT database. We demonstrated a significant influence of both sex
and onset site on six longitudinal outcomes monitoring the functional and respiratory decline
in addition to Body Mass Index. However, this study did not incorporate survival analysis,
despite its paramount importance in ALS, due to limitations inherent to the Spatiotemporal
model.

To address this gap, we associated the Spatiotemporal model with a survival model that
estimates a Weibull survival model from its latent disease age, creating a univariate Joint
Temporal model. After model validation, we benchmarked our model with a state-of-the-art
joint model on PRO-ACT data. Our model exhibited significantly superior performance in
terms of absolute bias and mean cumulative AUC for right-censored events. This demon-
strated the efficacy of our approach in the context of ALS compared to existing joint models.
However, modelling several longitudinal outcomes requires a multivariate approach. Life
support initiation that might be censored by death needs to be also considered.
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We thus extended the Joint Temporal model, into a multivariate Joint Spatiotemporal
model with competing risks to analyse NIV initiation. This involved coupling the multi-
variate Spatiotemporal model with a cause-specific Weibull survival model from the latent
disease age. We incorporated spatial parameters with a Cox proportional effect on the
hazard. After validation, we benchmarked our model with a state-of-the-art joint model
on PRO-ACT data and analysed sex and onset site interaction in complement to the first
study. The Joint Spatiotemporal model achieved similar performance to the state-of-the-art
model while capturing an underlying shared latent process, the latent disease age, whereas
the state-of-the-art models the impact of longitudinal outcomes on survival.

To enhance the reproducibility and facilitate the reuse of these models, the proposed
models were implemented in the open-source software Leaspy.

In conclusion, this thesis introduces the first data-driven progression model combining
longitudinal and survival modelling. We demonstrated its relevance to understand the
occurrence of critical events in ALS. This work paves the way for further extension to
analyse recurrent events, among other potential applications in causal inference.



vii

Résumé

L’hétérogénéité des progressions des maladies chroniques, comme la Sclérose Latérale
Amyotrophique (SLA), constitue un obstacle au développement de traitements. L’utilisation
croissante de bases de données, couplée à la modélisation de ces maladies, contribue à une
meilleure compréhension de ce phénomène. Cependant, les données collectées ne permettent
de décrire que des trajectoires partielles qui doivent être réalignées pour reconstruire une
progression complète de la maladie.

Le modèle spatiotemporel est l’un des modèles développés pour traiter cette question. Son
principal intérêt est sa capacité à réaligner les progressions des patients à la fois en terme
de chronologie (aspect temporel), grâce à un âge latent, et en terme d’ordre de progression
des données longitudinales (aspect spatial). Cependant, ce modèle n’a pas été conçu pour la
modélisation d’évènements, cruciaux dans la SLA : survie ou introduction de support de vie,
comme la ventilation non invasive (VNI). A l’inverse, les modèles conjoints existants offrent
l’avantage de traiter simultanément des données longitudinales et de survie. Cependant, ils
ne réalignent pas les trajectoires, ce qui compromet leur résolution temporelle.

Cette thèse visait à étendre le modèle spatiotemporel en un modèle spatiotemporel con-
joint, permettant l’examen des données longitudinales et de survie dans la SLA. Nous avons
d’abord appliqué le modèle spatiotemporel pour étudier l’impact de l’interaction entre le
sexe et le site de début (spinal ou bulbaire) sur la progression de la SLA. En utilisant la
base de données PRO-ACT, nous avons démontré une influence significative à la fois du
sexe et du site de début sur six résultats longitudinaux surveillant le déclin fonctionnel et
respiratoire ainsi que l’indice de masse corporelle. Cependant, cette étude n’a pas incor-
poré d’analyse de survie, malgré son importance dans la SLA, en raison des limitations du
modèle.

Pour combler cette lacune, nous avons associé au modèle spatiotemporel un modèle de
survie qui estime une distribution de Weibull de l’évènement (le décès ici) à partir de l’âge
latent, créant ainsi un modèle temporel univarié conjoint. Après validation du modèle, nous
l’avons comparé à un modèle conjoint de l’état de l’art sur les données PRO-ACT. Notre
modèle a obtenu des performances significativement supérieures en termes de biais absolu
et d’AUC moyenne pour les événements censurés à droite. Cela a démontré l’efficacité de
notre approche dans le contexte de la SLA. Cependant, la modélisation de plusieurs résultats
longitudinaux nécessite une approche multivariée et l’initiation de support de vie, qui peut
être censurée par le décès, doit aussi être prise en compte.
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Nous avons donc étendu le modèle temporel conjoint en un modèle spatiotemporel con-
joint avec des risques concurrents pour analyser l’initiation de la VNI. Cela impliquait de
coupler le modèle spatiotemporel multivarié avec un modèle de survie pour risques concur-
rents estimé à partir de l’âge latent. Après validation, nous avons comparé notre modèle à
un modèle conjoint de l’état de l’art sur les données PRO-ACT et avons analysé l’interaction
entre le sexe et le site de début en complément de la première étude. Le modèle spatiotem-
porel conjoint a atteint des performances similaires au modèle de l’état de l’art tout en
capturant un processus latent partagé, l’âge latent, tandis que le modèles de l’état de l’art
examinent l’impact des données longitudinales sur la survie.

Pour faciliter la reproductibilité et la réutilisation de ces modèles, ils ont été implémentés
dans le logiciel open source Leaspy.

Cette thèse introduit le premier modèle permettant de réaligner des trajectoires partielles
en combinant la modélisation de données longitudinales et de survie. Nous avons démontré
sa pertinence pour comprendre l’occurrence d’événements critiques dans la SLA.
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Introduction

The challenge of age-related diseases for public health

In 2023, according to the World Health Organisation, chronic diseases cause 74% of all
deaths globally (Organization et al., 2022). Chronic disease can be defined as non-contagious
diseases with a long latency period and a prolonged temporal course (McKenna et al., 1998).
They encompass diseases such as cardiovascular diseases, cancer, and neurodegenerative dis-
eases. With the ageing population, neurodegenerative disorders are an important burden
for the healthcare system (Zahra et al., 2020). Neurodegenerative diseases are caused by
the progressive loss of structure or function of neurons, in the process known as neurodegen-
eration. The three most incident neurodegenerative diseases are Alzheimer’s disease (11.08
per 1,000 person-years in Europe (Niu et al., 2017)), Parkinson’s disease (11–19 per 100,000
person-years in Europe (Balestrino and Schapira, 2020)) and Amyotrophic Lateral Sclerosis
(ALS) (1-2.6 per 100,000 in Europe (Talbott, Malek, and Lacomis, 2016)).

These diseases have different mechanisms and presentations. Alzheimer’s disease is linked
to the accumulation of tau and amyloïd beta protein in the brain and causes short-term
memory loss, which worsens over time. Parkinson’s disease is characterised by the loss of
dopaminergic neurons which causes tremors as well as stiffness or slowing of movement.
ALS is linked to the death of motoneurone, and results in a loss of voluntary motricity and
trouble breathing. Age at onset and time of survival also vary quite a lot with ALS being
one of the youngest diseases (58–60 years for ALS (Talbott, Malek, and Lacomis, 2016)) and
the fastest mortal one (average survival from onset to death is 3–4 years (Talbott, Malek,
and Lacomis, 2016)).

Despite evident differences in pathophysiology and symptoms, these diseases also share
important similarities. They are long and progressive with suspected onset occurring years
before clinical manifestations. For instance, in Alzheimer’s disease, the progression of amy-
loid and neurodegeneration biomarkers starts before the manifestation of the first symptoms
(Jack et al., 2010). Similarly in ALS, changes in metabolism start before a significant weight
loss and the first motor symptoms (Peter et al., 2017). Neurodegenerative diseases also have
heterogeneous progressions with large variations in the disease presentation, speed of pro-
gression, and age at onset (Greenland, Williams-Gray, and Barker, 2019; Duara and Barker,
2022; Beghi et al., 2007). The incidence of all these diseases increases with age, making age
the most important risk factor in all cases.

There is also no cure for any of these diseases. An ever-increasing research effort to
find treatments has resulted in an always-increasing number of clinical trials in this area:
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the National Institute on Aging (NIA) is currently supporting 508 active clinical trials on
Alzheimer’s disease (Aging, 2023). 125 trials on ALS were conducted between 2008 and 2019
(Wong et al., 2021). Only symptomatic treatments exist for Alzheimer’s disease (memantine
and donepezil (Zahra et al., 2020) and the recently approved lecanemab) and Parkinson’s
disease (Levodopa and other dopaminergic drugs (Bie et al., 2020)). For ALS, Riluzole
enables a significant survival improvement of 3 months on average (Bensimon, Lacomblez,
and Meininger, 1994; Miller et al., 2007) and is often associated with life-support clinical
procedures, such as gastrostomy to improve feeding, or None-Invasive Ventilation (NIV), to
avoid respiratory failures (Bourke et al., 2006; Vianello et al., 2011; Körner et al., 2013).
Failure rates in clinical trials are among the highest in this therapeutic area (Cummings,
2018). The reasons are multiple (Yiannopoulou et al., 2019; Petrov et al., 2017; Olanow,
Kieburtz, and Schapira, 2008), and among them: the heterogeneity in disease progression
(Beghi et al., 2007), the absence of accurate estimates of the disease stage and reliable
biomarkers to track disease progression.

Data: a blessing or a curse to understand progression hetero-
geneity

The development of disease progression models has helped in better understanding this
heterogeneity (Locascio and Atri, 2011), which has led to great promise for the design of
more powered trials (Maheux et al., 2023; Raket, 2022). To have representative models,
important research efforts allowed the creation of a large multimodal longitudinal dataset
to study the natural progression of the disease, such as the Alzheimer’s disease neuroimag-
ing initiative (ADNI Mueller et al., 2005), the Parkinson’s Progression Marker’s Initiative
(PPMI, Parkinson Progression Marker Initiative, 2011), and NISALS (Müller et al., 2016),
PULSE (University Hospital, Lille, 2022), PRO-ACE (Sherman et al., 2019) and PRO-ACT
(Atassi et al., 2014) in ALS.

In these studies, patients are followed over several months or years, with the collection
of repeated measures of clinical scales or biomarkers at several visits and the recording of
events during the follow-up period. These datasets allow the study of disease progression in
contrast to cross-sectional studies (Locascio and Atri, 2011). In Alzheimer’s and Parkinson’s
diseases, longitudinal outcomes are collected measuring cognitive (MMSE (Tombaugh and
McIntyre, 1992)) or motor (MDS-UPDRS (Goetz et al., 2008)) impairment. In ALS, due
to the short survival, and FDA requirement for drug approval (FDA, 2019), death is a
major outcome and is often recorded in addition to longitudinal outcomes measuring motor
or respiratory decline (ALSFRSr (Rooney et al., 2017), Forced Vital Capacity (Daghlas,
Govindarajan, and Pooled Resource Open-Access ALS Clinical Trials Consortium, 2021)).
Initiation of life-support clinical procedures is also an important step for the patient’s life
and is representative of an advanced stage of the disease.

As in many other domains, models face the challenge of the quality of the data collected.
Classical challenges of longitudinal data encompass modelling outcomes with low test-retest
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reliability (consistency of a measure from one time to another) and collected at irregular
timing. The number of patients followed, as well as their duration of follow-up, is also key
to model the high heterogeneity of these diseases. Nevertheless, as it was well described
by Young et al., 2024, following patients for decades and collecting outcomes (sometimes
expensive and invasive) is impossible. Databases result in short-term heterogeneous longi-
tudinal outcomes, observed at different stages of the diseases. The main challenge is thus
to realign the partial trajectories to reconstruct a comprehensive disease progression.

There is thus a need to model the heterogeneity of ALS progression, by capturing both
longitudinal and survival processes while considering the specificity of the available data.

Contributions

Three types of contributions were made during this thesis. First, methodological contri-
butions were made. We have extended an existing longitudinal model: the Spatiotemporal
model. Its strength is its ability to synchronise patients onto a common disease timeline
(temporal aspect) thanks to a latent disease age, while also capturing the remaining vari-
ability through parameters that account for outcome ordering (spatial aspect). In chapter
3, we have created a univariate Joint Temporal model by associating a Weibull distribution
from the latent age to the Spatiotemporal model to also model event with non-informative
right censoring (see section 1.3). Then, in chapter 4, we have extended this model into a
multivariate Joint cause-specific Spatiotemporal model to handle competing risks (see sec-
tion 1.3). Both models were validated on simulated data and then benchmarked against
reference joint models.

We also applied our models to give better insights into the progression of ALS. To char-
acterise ALS heterogeneity, in chapter 2, we have applied the Longitudinal Spatiotemporal
model to a large multicentric ALS dataset, PRO-ACT. In complement to existing cross-
sectional and survival analysis, we analysed the interaction between sex and site of onset
on the joint progression of six longitudinal outcomes monitoring the functional and respira-
tory decline in addition to Body Mass Index. Then, thanks to the new Joint cause-specific
Spatiotemporal model, in chapter 4, we have complemented the first analysis by taking into
account NIV initiation and death.

Finally, software contributions were also made during this thesis. A large refactoring
of an existing open-source software named Leaspy for LEArning Spatiotemporal patterns
in PYthon was started and the models developed in this thesis were implemented in the
new structure, to ease their reuse. All the data processing needed for this thesis was inte-
grated into an internal data processing software for publicly available datasets, to facilitate
reproducibility.

Manuscript overview

The manuscript is organized as follows:
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• In chapter 1, we reviewed the different models available for longitudinal and survival
data associated with the different challenges they tackle, which enabled us to find a
well-suited model for longitudinal data for ALS: the Spatiotemporal model.

• In chapter 2, we presented the Spatiotemporal model in more detail and applied it
to ALS data to better characterise the heterogeneity of the disease, studying sex and
onset site interaction.

• In chapter 3, we extended the Spatiotemporal model in a univariate Joint Temporal
model to analyse jointly the functional decline and death. The model was validated
on simulated data and benchmarked in both simulated and real data against reference
models on PRO-ACT data.

• In chapter 4, we extended the Joint Temporal model into a multivariate Joint cause-
specific Spatiotemporal model. After validation, we benchmarked our model with
reference models on PRO-ACT data and analysed sex and onset site interaction on
NIV initiation and death, in complement to the first study of chapter 2.

• In chapter 5, we detailed our software contributions to both the existing package
Leaspy and the internal data processing software.
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Chapter 1

Joint models: modelling longitudinal
data jointly with events

This chapter is a literature review on longitudinal and survival modelling, focusing on their
application in the context of ALS, as developed within this thesis. Like in other domains,
modelling must strike a balance between flexibility and interpretability. Classic challenges
from longitudinal data include handling multiple outcomes simultaneously and dealing with
unevenly spaced visits. However, in the context of chronic diseases, such as ALS, an addi-
tional challenge arises: the need to realign patients’ trajectories, a task uniquely addressed by
data-driven disease progression models. Survival modelling also presents its own set of chal-
lenges, primarily centred around censoring. Biologically, longitudinal and survival processes
often exhibit interdependencies, prompting the development of joint models to estimate both
concurrently. While various types of associations between these processes have been pro-
posed, existing joint models fail to address the specificity of chronic diseases adequately. As
a result, there is a pressing need for joint data-driven disease progression models tailored for
this challenge.
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1.1 Introduction

Many different regression models exist to analyse the occurrence of an event (survival data)
and repeated measures at different visits (longitudinal data). From a biological perspective,
these two processes are often associated and can inform each other. Thus, modelling both
data together can reduce biases (Lu et al., 2023). Models that jointly optimise a longitudinal
and a survival submodel have been developed for this purpose. These models are known as
joint models.

In the context of clinical data, such models face the challenge of being as flexible as
possible while keeping good interpretability. They are of specific interest in ALS, as an
improvement in both survival and functional decline must be shown for treatment approval,
according to FDA, 2019.

The following chapter details different existing longitudinal and survival models and how
they were linked together to create joint models. Each part describes various applications
of these models in the context of ALS.

The current state-of-the-art deliberately avoids the development of deep learning meth-
ods. Deep learning methods have demonstrated great performances in longitudinal data,
especially in imaging (Valliani, Ranti, and Oermann, 2019) and natural language processing
(Locke et al., 2021), but this thesis did not analyse any of them. Moreover, these algorithms
may perform poorly when applied to clinical scores (Maheux et al., 2023; Christodoulou et
al., 2019). They were also developed for survival analysis (Roblin, Cournède, and Michiels,
2024; Lee, Yoon, and Schaar, 2020; Lee et al., 2018; Jarrett, Yoon, and Schaar, 2019; Bi-
ganzoli et al., 2006) and joint modelling (Bull et al., 2020; Soleimani, Hensman, and Saria,
2017; Lee, Yoon, and Schaar, 2020). But overall, due to interpretation difficulties, overfitting
issues and complex hyperparameters setting (Grollemund et al., 2019), they are often less
practical (Kantidakis et al., 2023). Thus, despite their stringent assumptions, parametric
regression models still have great potential in clinical applications (Westeneng et al., 2018).

1.2 Longitudinal models

1.2.1 Challenges from the data

Longitudinal data are repeated measures, for one patient, of one or several outcomes
at different visits. Compared to cross-sectional data (one observation per patient), they
enable to measure the long-term effect of covariables such as sex or characteristic of disease
onset (Farrington, 1991). Their main challenge comes from the modelisation of the intra-
patient correlation (several visits per patient), which needs to be taken into account to avoid
misinterpretation of the data (Locascio and Atri, 2011). Then, different types of outcomes
can be modelled. In this thesis, the outcomes studied were considered continuous. Literature
dealing with the modelling of non-continuous outcomes is thus not further described (Ten
Have et al., 1998; Liu and Hedeker, 2006; Saulnier et al., 2022; Poulet and Durrleman,
2023b).
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For chronic diseases, as described in Introduction, longitudinal data often result in short-
term heterogeneous irregular outcomes (Young et al., 2024). The trajectories must thus be
realigned to reconstruct a comprehensive disease progression. Symptoms onset are often
used to do so, but are not reliable in such diseases, as the progression of biomarkers often
starts years before the manifestation of the first symptoms (Jack et al., 2010; Peter et al.,
2017).

All the models described below, associated with the challenges they tackle, are summarised
in Table 1.1.

1.2.2 Longitudinal models

Generalized Estimating Equation models (Liang and Zeger, 1986), have a "top-down"
approach to estimate intra-patient correlation: they estimate directly the mean relations on
the one hand, while separately dealing with covariance structure among the observations
within subjects (Locascio and Atri, 2011). These models require equally spaced visits (Lo-
cascio and Atri, 2011) only give access to marginal models and not to individual trajectories,
which makes them less used than other models (Gibbons, Hedeker, and DuToit, 2010).

To handle not regularly spaced visits, mixed-effect models were developed (Laird and
Ware, 1982). Such models have a "bottom-up" approach and infer individual specificity
to get the population one (Locascio and Atri, 2011). They are composed of two types of
parameters, fixed effects, to describe the average population progression, and random effects,
to capture the individual variability around the average disease progression. Linear Mixed-
effects Models (LMM) are the simplest, but they are often inadequate because changes in
clinical outcomes are non-linear over long periods of time.

The most common type of Non-Linear Mixed effects is the Generalised Linear Mixed-
effect Model (GLMMs), a direct extension of LMM, which enables the estimation of non-
linear progression (McCulloch, Searle, and Neuhaus, 2008). Even when non-linear, those
models are fully parametric and might not be flexible enough to capture complex progres-
sions.

Keeping the idea of individual parameters and irregular visits, ordinary differential equa-
tion models, more flexible than mixed-effect models, were developed. They are progression
models that estimate the derivative of an outcome trajectory model, at the population level,
from the partial trajectories of the observed patients (Lahouel et al., 2023). This derivative
is then integrated to estimate the average progression and each initial condition of patients
can be seen as individual parameters (as random effects in a mixed-effect model).

Finally, for even more flexibility, Random Forest models (Breiman, 2001) were designed.
They are an ensemble model, that uses multiple decision tree models to predict an outcome,
allowing to reduce the overfitting of decision trees used alone. Nevertheless, the flexibility of
these models comes at the cost of interpretability, and if decision trees are easy to interpret,
Random Forest models lose that possibility.
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1.2.3 Data-driven disease progression models

Data-driven disease progression models are models designed "to learn long-term disease
biomarker timelines for chronic diseases from short-term data without requiring prior knowl-
edge of an individual’s disease stage" (Young et al., 2024). Doing so, they are perfectly
suited to tackle the challenges of data from chronic diseases. Here, we will only focus on
phenomenological data-driven progression models that capture common trajectories of dis-
ease biomarkers as a continuous function of the data-driven time axis (Young et al., 2024).
Note that pathophysiological data-driven progression models, focusing more on biological
hypothesis testing and insight, also exist (Young et al., 2024), but were not considered in
this thesis as no biological hypothesis was stated.

To improve the temporal resolution of existing GLMMs, data-driven mixed-effect models
use a latent variable representative of the stage of the disease to realign trajectories. In
that sense, disease progression score models were developed (Jedynak et al., 2012; Donohue
et al., 2014) and extended (Bilgel et al., 2016; Bilgel and Jedynak, 2019; Raket, 2020).
Other models created a latent disease age to realign patient observations (Li et al., 2017;
Iddi et al., 2018).

The Spatiotemporal model is an extension of latent disease age models using geometry to
operate in a high dimension (Durrleman et al., 2013; Schiratti et al., 2015; Schiratti, 2017).
This model showed good performances in neurodegenerative disease by outperforming the 56
alternative methods for predicting cognitive decline in Alzheimer’s disease in the TADPOLE
challenge (Marinescu et al., 2019; Koval et al., 2021). This model was also extended to
images (Lorenzi et al., 2019; Sauty and Durrleman, 2022; Abi Nader et al., 2020) and
ordinal data (Poulet and Durrleman, 2023b).

To give more flexibility in modelling longitudinal outcomes, data-driven disease progres-
sion models using ordinary differential equation models were designed (Samtani et al., 2013;
Villemagne et al., 2013; Jack et al., 2013; Oxtoby et al., 2014). Nevertheless, they do not
estimate a disease timeline common to all outcomes and provide several disease stages for
each individual (Young et al., 2024).
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Table 1.1: Longitudinal models with their modelling challenges

Legend: +: the model addresses the challenge, +/-: the model partially addresses the challenge, -: the model does not address the challenge, Generalised
Linear: Generalised Linear Mixed-effects Models, Latent disease age: Mixed effect models with a latent disease age, Spatiotemporal: Spatiotemporal
model, Data-driven: Data-driven disease progression models here the Ordinary Differential Equation ones, Individual effects: individual patient speci-
ficity is captured by the model, High dimension: a large number of longitudinal outcomes can be modelled at the same time, Interpretability: the model
is easy to interpret, Flexibility: the outcome progression function is very flexible, Not equally spaced visits: the model can handle not equally spaced
visits easily without the need for imputations, Common timeline: the model can realign partial patients trajectories on a common timeline.

Classic challenges Chronic challenges
Individual

effects
High

dimension Interpretability Flexibility Not equally
spaced visits Common timeline

Mixed-effect Generalised Linear + +/- + - + -
Latent disease age + +/- + - + +
Spatiotemporal + + + - + +

Ordinary Differential Equation Classic + +/- + +/- + -
Data-driven + +/- + +/- +/- +

Generalized Estimating Equation - +/- + - - -
Random Forest - + - + - -

Table 1.2: Survival models with their modelling challenges

Legend: +: the model addresses the challenge, +/-: the model partially addresses the challenge, -: the model does not address the challenge, Flexible
hazard: the hazard function is flexible, Covariate effects: covariates can have several types of impact on survival, Interpretability: the model is easy to
interpret, Individual effects: individual patient specificity is captured by the model.

Flexible hazard Covariates effect Interpretability Individual effects
Cox proportional hazard + - + -
Accelerated Failure Time - +/- + -
Survival Frailty - +/- + +
Random Survival Forest +/- + - -
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1.2.4 ALS applications

ALS functional rating scale (ALSFRSr) (Rooney et al., 2017), is the main outcome used
to monitor ALS progression and was invariably used in ALS modelling (Grollemund et al.,
2019). Many linear mixed-effects models were used to analyse the heterogeneity of ALS
by describing the impact of covariates (disease onset site, age, baseline blood markers)
on the functional decline (ALSFRSr) (Visser et al., 2007; Atassi et al., 2014; Rooney et
al., 2017) and the vital capacity (Atassi et al., 2014). Some GLMM were also used to
analyse fMRI (Mejia et al., 2022). Random Forests enabled to model the vital capacity
progression (Jahandideh et al., 2018). In line with these studies, we analysed, in chapter 2,
the interaction of sex and onset site on the longitudinal progression using the Spatiotemporal
model.

In 2015, a large data challenge on ALS, Prize4Life, aimed to find the best algorithm to
predict prognosis to refine patient enrolment in clinical trials (Küffner et al., 2015). One task
was to predict the slope of ALSFRS changes between 3-12 months with ALSFRS measured
between 0-3 months on the large PRO-ACT database. Many of the participants were using
Random Forest (Hothorn and Jung, 2014; Ko et al., 2014) and some argue that they better
generalise than GLMMs (Taylor et al., 2016). The results of this challenge could be seen as
state-of-the-art in the prediction of ALS prognosis and will be further referred to in chapter
3.

1.3 Survival models

1.3.1 Challenges from the data

When studying the occurrence of an event, different estimands are of interest:

• Survival (S(t)): the probability that the event occurred later than a specified time t:
S(t) = P (T > t),

• Hazard (h(t)): the probability that the event occurred at a given time t, conditional
on survival until time t or later: h(t) = limdt→0

P (t≤T<t+dt)
dtS(t)

• Cumulative Incidence Function (CIF (t)): the probability that an event of a given
type occurs at or before time t: CIF (t) = P (T ≤ t).

The main challenge in computing these quantities is that the event is not always ob-
served. Not taking into account this missingness, named censoring in survival analysis,
would lead to biased estimations (Bouaziz, n.d.). Censoring can occur at different times
compared to the event: 1) left censoring, when the event occurs before the window of
follow-up; 2) right censoring, when the event occurs after the window of follow-up and 3)
interval censoring, when the event occurs between two visits (Leung, Elashoff, and Afifi,
1997). The association between the censoring process and the event is then the major
difficulty. Most of the models assume a non-informative censure (also known as the inde-
pendent censoring assumption), meaning that the hazard of the event for a patient censored
at TC is the same as the one for the remaining patients after TC (Fleming and Harrington,
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2013; Jackson et al., 2014). Jackson et al., 2014 remind that this assumption is slightly
weaker than the assumption of statistical independence between event and censoring condi-
tionally on covariates (missing at random data (Rubin, 1976; Nahhas, 2024)) that is often
used. When modelling events with informative censoring, the main challenge is to model
the source of censoring. This source can be identified, although partially observed, and the
task results in modelling several competing events. In this thesis, we considered only right
censored data with non-informative censoring or with competing risks.

Note that recent pseudo-observation techniques have provided a solution to the cen-
sorship issue in survival data, allowing them to be treated similarly to longitudinal data
without censorship concerns (Andersen and Perme, 2010). However, this technique requires
a restriction to the study of specific time points. This is not always appropriate and will
not be discussed further here.

1.3.2 Modelling an event with non-informative right censoring

When modelling an event with non-informative right censoring, there is a one-to-one
mapping between the modelling of h(t) and CIF (t) = 1 − S(t) (Andersen et al., 2012), in
such case, survival is often the main output of interest. Different methods exist to model
the occurrence of events and are summarised jointly with the challenges they tackle in Table
1.2.

The most known survival model is the Kaplan-Meier estimator (Kaplan and Meier, 1958).
It is a non-parametric model, thus very flexible, that describes a cohort, but is limited in
its ability to estimate survival adjusted for covariates.

Hazard-based regression models were partly designed to improve the description of covari-
ates’ impact on the hazard (Rubio et al., 2019). The most famous is the Cox Proportional
Hazard model (Cox, 1972), with a proportional effect of covariables on the hazard through
the multiplication of a baseline hazard. Its main interests are that it does not require esti-
mating the baseline hazard function when used alone, which enables some flexibility in the
hazard. Nevertheless, for some applications (visualisation, joint modelling), a flexible para-
metric version of the Cox model was also developed by Royston and Parmar, 2002. Even if
the proportional impact of covariates on the hazard is easy to interpret, this assumption is
often violated.

Accelerated Failure Time (AFT) models enable to describe a non-proportional impact
of covariates on the hazard (Kalbfleisch and Prentice, 2002). In these models, covariates
directly affect survival time, but in doing so, modelling the hazard function is mandatory,
making them less used for survival analysis alone. Besides, the results obtained from these
models may be harder to interpret.

Frailty models alleviate the assumption of the Cox model by capturing an additional
proportional effect of unobserved covariates using a random effect (Hougaard, 1995). How-
ever, to calculate the random effect, correlated survival data (observations clustered into
groups or recurrent events) are needed, which are not always available.
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Finally, to access even more flexibility in modelling, Random Survival Forest models were
adapted using a measure of entropy suited for survival (log-rank test) (Ishwaran et al., 2011;
Jiang, Xie, and Colditz, 2020; Lin, Li, and Luo, 2021). Nevertheless, as for the longitudinal
models (see section 1.2.2), this is at the cost of interpretability.

1.3.3 Modelling an event with competing risks

When studying competing events, there is no longer a one-to-one mapping between the
hazard and the CIF for an event l as the cumulative incidence takes into account the survival
from all causes (CIFl is distinct from 1−Sl(t)) (Zhang, Zhang, and Scheike, 2008; Andersen
et al., 2012. In such a context, the CIF is often the main output of interest.

From there, historically, two main approaches exist to model CIF (Zhang, Zhang, and
Scheike, 2008). The first one consists of modelling the hazard with different cause-specific
hazard functions. The most famous approach is the one using the proportional hazard Cox
approach (Prentice and Gloeckler, 1978; Cheng, Fine, and Wei, 1998) but others using the
Aalen additive hazard model (Aalen, 1989) were also developed. With the cause-specific
model, each event is modelled separately. In the case of the Cox version, the hazard ratio
can thus still be extracted (Andersen et al., 2012). For these reasons, it is particularly
relevant for the study of disease aetiology. Frailty models were extended using cause-specific
modelling for competing risks but still require correlated survival data (Gorfine and Hsu,
2011). Nevertheless, with the cause-specific models, the impact of covariates directly on the
CIF is hard to interpret.

The second one consists in modelling the distribution hazard function instead of the
hazard itself, which enables a more direct effect of covariates on the cumulative incidence
function. The proportional Cox version of such an approach is often known under the
Fine and Gray model (Fine and Gray, 1999). This method is useful to reflect the effect
of covariates on the ordering of the cumulative incidence curves but only gives access to
sub-distribution HRs which have no easy interpretation (Zhang, Zhang, and Scheike, 2008;
Andersen et al., 2012). In addition, as it models jointly multiple causes of events this method
is not recommended for causal inference (Allison, 2018).

A more recent approach, Vertical Modelling, separates the problem into two different
quantities: the total hazard (to access the probability of being free from all causes) and the
relative cause-specific hazards (Nicolaie, Van Houwelingen, and Putter, 2010). Although in
terms of probability decomposition, it may seem more intuitive, two distinct functions must
be specified and the same problem as with the Fine Gray model for causal inference might
occur (Allison, 2018).

Random Survival Forests were also extended with a suited entropy measure (Fine and
Gray test) and give more flexibility in modelling still at the cost of interpretability (Ishwaran
et al., 2014; Devaux et al., 2023).
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1.3.4 ALS applications

In ALS, death has been the first outcome studied, before functional decline. Some studies
tried to characterise the heterogeneity of the disease progression using a Cox proportional
hazard model to understand the impact of covariates on survival (Murdock et al., 2021).

The same kind of model was also used to demonstrate the impact of treatments: for rilu-
zole (Ad, Rpa, and Lh, 2019; Zoccolella et al., 2007; Traynor et al., 2003; Georgoulopoulou
et al., 2013), gastrostomy (Hesters et al., 2020; Vergonjeanne et al., 2020) or NIV (Kleopa
et al., 1999; Lo Coco et al., 2006; Bourke et al., 2006).

The Prize4Life challenge (Küffner et al., 2015) also included the prediction of the prob-
ability of death within 0–12 months, 0-18 and 0–24 months from trial onset. Several Ran-
dom Forests were used (Beaulieu-Jones, Greene, and Pooled Resource Open-Access ALS
Clinical Trials Consortium, 2016; Pfohl et al., 2018) including the winner (Huang et al.,
2017). To give access to such predictions to neurologists, Westeneng et al., 2018 have de-
veloped an online tool using the Cox Royston-Parmar model (Royston and Parmar, 2002):
http://www.encalssurvivalmodel.org/.

There have been relatively few studies investigating competing risks in ALS. Even though
vital capacity was early identified as a predictor of disease progression (Schiffman and Belsh,
1993) and proved relevant in the Prize4Life challenge (Küffner et al., 2015), few studies
model None-Invasive-Ventilation introduction (Thakore et al., 2019).

1.4 Joint models

1.4.1 Challenges from the data

From a biological perspective, longitudinal and survival processes are often associated, and
modelling both data together reduces biases (Lu et al., 2023). Joint models were thus devel-
oped by connecting a survival model with a longitudinal submodel. The principal challenge
from the data is to well model the association of the two processes and many different
structures have been proposed offering different levels of flexibility to capture individual
variability in the survival submodel.

Different models have been published. They are described below, associated with the
challenges they tackle, and summarised in Table 1.3.

Note that some methods, such as landmarking or two-stage modelling (Bull et al., 2020),
use the output of longitudinal models to inform survival models, in a two-step manner.
Nevertheless, joint modelling has the advantage of carrying forward the uncertainty and
reducing biases in the hazard ratio (Sweeting et al., 2017). Thus, these methods will not be
further described here.

http://www.encalssurvivalmodel.org/
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1.4.2 Latent class joint models

The Latent class joint model, originally developed by (Lin et al., 2002; Proust-Lima et al.,
2009; Proust-Lima et al., 2014), groups similar patients together in a latent class with a
specific value of parameters per group. The survival function has thus different fixed effects
for each latent class. By aggregating patients, this approach helps to better understand the
heterogeneity, even though the meaning of the different classes remains unknown. It allows
calculating the probability of an individual belonging to a particular class but may result
in some patients being almost equitably distributed.

As a longitudinal submodel, they are all built on GLMM for each latent class (mixture
model). The survival submodel was originally developed for events with non-informative
right censoring (Proust-Lima et al., 2009) using a Cox proportional association for the
covariates. Now, many extensions exist, enabling competing risks with cause-specific models
(Blanche et al., 2015; Proust-Lima et al., 2014; Proust-Lima, Dartigues, and Jacqmin-
Gadda, 2016). These developments are associated with a software package developed in R
(Proust-Lima, Philipps, and Liquet, 2017).

1.4.3 Shared random effects joint models

Shared random effect models associate with each individual a random effect and could be
seen as a direct extension of the longitudinal mixed effect models (Rizopoulos and Ghosh,
2011). The survival function thus integrates a proportional effect of the functions of the
random effects of the longitudinal model, allowing more flexibility in capturing its variability.
They are the most used type of joint models (Sudell, Kolamunnage-Dona, and Tudur-Smith,
2016) as they enable capturing individual variability in the survival function. Their main
limitation is that by including predictors of the longitudinal outcome in the survival model,
they mostly focus on how longitudinal outcomes impact survival.

As the other joint models, they are all built on GLMM. For the survival submodel, the
original model used a Cox proportional association for the longitudinal outcome (Rizopoulos
and Ghosh, 2011) and then others were developed using AFT (Tseng, Hsieh, and Wang,
2005).

Extensions that model competing events mainly use a cause-specific formulation with Cox
proportional hazard (Elashoff, Li, and Li, 2007; Andrinopoulou et al., 2017) or AFT (Hao
et al., 2024). More recently, a joint model using the Fine Gray approach was developed
(Thomadakis et al., 2024). A recent extension combined latent class to random effect in
a high dimensional context (16 longitudinal outcomes) (Nguyen et al., 2023). In parallel,
different estimation software packages were implemented for joint models based on GLMMs
(Rizopoulos, Papageorgiou, and Miranda Afonso, 2024; Rustand et al., 2024).

1.4.4 Frailty joint models

Frailty joint models were developed (Rondeau, Mazroui, and Gonzalez, 2012; Masci, Spreafico,
and Ieva, 2023), extending the frailty survival models described in section 1.3.2. They en-
able capturing an additional random effect through the correlated survival data, compared
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to the shared random effects model. Nevertheless, as for frailty survival models, such corre-
lated survival data are not always available. As with other joint models, they are grounded
on GLMM and have been extended for competing events (Huang, Li, and Elashoff, 2010;
Etzkorn et al., 2024). A dedicated software package was also created (Rondeau, Mazroui,
and Gonzalez, 2012).
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Table 1.3: Joint models with their modelling challenges

Legend: +: the model addresses the challenge, +/-: the model partially addresses the challenge, -: the model does not address the challenge, Individual
effects: individual patient specificity is captured by the model, High dimension: a large number of longitudinal outcomes can be modelled at the same
time, Common timeline: the model can realign partial patients trajectories on a common timeline, Link between submodels: describe how the longitudinal
and the survival submodel are linked inside of the joint model.

Classic challenges Chronic challenges
Individual effects High dimension Link between submodels Common timeline

Latent class +/- +/- Parameters per group of patients -
Shared random effects + +/- Impact of longitudinal outcomes on survival -
Frailty + +/- Extract information from correlated survival information -
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1.4.5 ALS Application

Most of the studies used a two-step analysis to analyse longitudinal data jointly with survival
data (Bull et al., 2020; Murdock et al., 2021; Haverkamp, Appel, and Appel, 1995; Jablecki,
Berry, and Leach, 1989; Norris et al., 1993; Atassi et al., 2014; Elamin et al., 2015; Reniers
et al., 2017). Only a few studies have used joint models in different contexts: Sun et al., 2020
studied the impact of a longitudinal outcome (blood markers) on an event (death), Rooney
et al., 2019 studied the impact of a covariate (the gene C9orf72) on both a longitudinal
outcome (ALSFRSr) and an event (death) and Kyheng et al., 2021 stratified the population
thanks to both a longitudinal outcome (ALSFRSr) and an event (death). Joint models
have also shown a potential to demonstrate treatment effects (Eijk et al., 2019) and were
applied to the analysis of the effects of ceftriaxone (Wang and Luo, 2019). Nevertheless,
joint models with competing risks in ALS have not been as much used as in other diseases.

1.5 Discussion

To model longitudinal data, mixed effect models and the Ordinary Differential Equation
models are interesting because they give access to both population and individual levels with
good interpretability. From there, data-driven progression mixed effect models seem better
suited to our neurodegenerative context as they enable us to realign patients’ trajectories
on a common timeline. More specifically, the Spatiotemporal model that was originally
designed for high dimensional longitudinal data (Durrleman et al., 2013) is particularly
interesting because it has already been widely used in the context of neurodegenerative
diseases.

An important number of the survival models are non-parametric or semi-parametric ones.
However, when associated with a longitudinal submodel, the survival submodel must be
parametric (Rizopoulos, 2012), which reduces the interest of the Cox model compared to
the AFT model for events with non-informative right censoring. For events with competing
risks the cause-specific model is recommended to describe disease progression heterogeneity.
Whatever the type of censure, frailty models are the only survival models to integrate
individual parameters to model unobserved covariates but require correlation in the survival
data.

Joint modelling enables to bring more flexibility to capture survival variability. The shared
random effect models are the most used as they enable to capture individual variability in
survival, thanks to random effects, without the need for correlated survival data. Neverthe-
less, whatever the extension, all these joint models rely on GLMMs, necessitating the use
of reference times, which is not reliable in our context. In that sense, a data-driven disease
progression joint model, that might be able to handle a high dimension of features is missing
and may bring a different way to analyse the data (Hickey et al., 2016; Alsefri et al., 2020).
The objective of this thesis was thus to create a Joint data-driven model to handle events
with non-informative right censoring or competing risks jointly with multiple longitudinal
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outcomes. Note that in the meantime, other efforts on joint modelling with temporal recali-
bration (Saulnier, Proust-Lima, and Samier, 2023) and joint models grounded on non-linear
mixed effects models more complex than GLMM (Lavalley-Morelle et al., 2024) were also
conducted.
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Chapter 2

Quantifying ALS heterogeneity with
a longitudinal Spatiotemporal model

In this chapter, we present the existing longitudinal Spatiotemporal model and use it to study
the impact of sex and onset site (spinal or bulbar) interaction on the progression of ALS.
We selected patients from the PRO-ACT database and divided them into four subgroups
depending on their sex and onset site. We used one Spatiotemporal model to investigate
the combined changes of the four sub-scores of the revised ALS Functional Rating Scale
(ALSFRSr), the forced vital capacity (FVC), and the body mass index (BMI). We then
compared the progression speed, the estimated reference time, and the relative progression of
the outcomes across each subgroup. We included 1,438 patients: 51% spinal men, 12% bulbar
men, 26% spinal women, and 11% bulbar women. We showed a significant influence of both
sex and onset site on the ALSFRSr progression. The BMI decreased 8.9 months earlier (95%
CI = [3.9, 13.8]) in women than men, after correction for the onset site. Among patients
with bulbar onset, FVC was impaired 2.6 months earlier (95% CI = [0.6, 4.6]) in women.
Using the Spatiotemporal model, we showed that sex and onset site are important drivers of
the progression of motor function, BMI, and FVC decline.

This chapter was published in the Journal of Neurology. See (Ortholand et al., 2023).
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2.1 Introduction

ALS shows an important phenotypic variability, particularly regarding the site of disease
onset and progression (Swinnen and Robberecht, 2014). It is well documented that the forms
starting with dysarthria and dysphagia (bulbar onset) or with limb weakness (spinal onset)
differ in terms of incidence (Swinnen and Robberecht, 2014), progression speed (Tysnes,
Vollset, and Aarli, 1991; Brown and Al-Chalabi, 2017; Brooks, 1996) and survival duration
(Tysnes, Vollset, and Aarli, 1991).

Another major component of disease heterogeneity is the marked sexual dimorphism.
Several epidemiological studies showed a lower incidence of ALS in women compared to men
(Tysnes, Vollset, and Aarli, 1991; Logroscino et al., 2010) as well as differences in the onset
site and age at onset (Chiò et al., 2020).

However, the interaction of sex and onset site on disease trajectory is not fully described.
First, most results in the literature come from cross-sectional studies (Logroscino et al.,
2010; Chiò et al., 2020), although longitudinal studies are needed to measure the long-term
effect of clinical or demographic variables, such as age or sex (Farrington, 1991). Second,
studies mainly concerned survival (Tysnes, Vollset, and Aarli, 1991) and did not take into
account how the interaction of age and disease impacts the progression and the presentation
of the disease.

In chapter 1, we have seen that mixed-effects models could be of great help when
analysing longitudinal data. More precisely, we have decided to take advantage of the
existing Spatiotemporal model (Schiratti et al., 2015; Schiratti, 2017), well suited to realign
the partial follow-up of patients in the context of chronic diseases.

After presenting the Spatiotemporal model in more detail, we used it on a large longitu-
dinal dataset to investigate the interaction of sex and onset site on the progression of the
following clinical proxies: BMI (Moglia et al., 2019), Forced Vital Capacity (FVC) (Daghlas,
Govindarajan, and Pooled Resource Open-Access ALS Clinical Trials Consortium, 2021),
and the revised ALS functional rating scales (ALSFRSr) (Rooney et al., 2017).

2.2 Model specifications

2.2.1 Notations

In the following, we consider N patients, associated with longitudinal data: repeated mea-
sures of K given outcomes noted yk. Each patient i is followed for ni visits. For each visit
j, we denote ti,j,k the age at the visit, and yi,j,k the value of the outcome k for the patient
i at this visit j.

2.2.2 Intuition and Riemannian geometry background

The Spatiotemporal model was first introduced by Schiratti et al., 2015 and was more
broadly used for longitudinal modelling of neurodegenerative diseases (Schiratti, 2017; Ko-
val, 2020) as described in chapter 1. As presented in Figure 2.1 the model draws a parallel
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between a clinical and a Riemannian point of view of the disease progression. The idea
is to see the variability of the disease progression as a Riemannian manifold where the
longitudinal observations yi,j,k are aligned in an individual trajectory γi that traverses the
manifold.
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Figure 2.1: From clinical to Riemannian point of view
On the left, the progression of four clinical outcomes for one patient is represented depending
on the age of the patient. The graph displays the individual progression of one patient on a
grid detailing the typical progression of the disease, as it is done in health diaries for BMI
curves. This represents how a clinician is used to see the progression of the patient. On the
right, the same patient progression is represented but this time in a disease space (manifold)
built thanks to the knowledge extracted from the four clinical outcomes. This represents the
Riemannian point of view of the progression of the patient.

The shape of the disease progression (linear, logistic ...) is defined by the choice of the
Riemannian metric applied to the manifold. For instance, the manifold Rn equipped with
Euclidean metric gives straight lines trajectories and thus straight lines disease progression.
As we studied mainly clinical scores, with curvilinearity, and potential floor or ceiling effects
(Gordon et al., 2010), we selected a metric that enables modelling the logistic progression
of the outcomes.

To separate an average disease progression from the individual progression, a mixed-effects
model structure is added to the trajectories. Any trajectory γ (geodesic) can be defined
by the two parameters of its initial condition at a time t0: the initial position γ(t0) = p

and the initial speed γ̇(t0) = v0. The average trajectory γ0 is thus parametrized by its
initial conditions (t0, p, v0). This average longitudinal process is further described in section
2.2.3.3.
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From there, the individual trajectory γi(t) could be defined. First, a temporal variation
is enable with varying degrees of individual earliness τi and speed eξi , using a latent disease
age ψi(t). In terms of initial definition, these variations could be seen as (t0 + τi, p, v0e

ξi).
Subsequently, variation in terms of disease presentation, which corresponds to modifying
the order of degradation of the various outcomes, is allowed. From a Riemannian point of
view, the trajectory is spatially adjusted playing on the initial position p. It is done thanks
to a vector in the tangent space of the trajectory that modified the trajectory in the sense
of the Exp-parallelisation. All these individual parameters are further described in section
2.2.3.2.

2.2.3 The longitudinal Spatiotemporal model

2.2.3.1 Mixed effect models formalism

The longitudinal process modelled, γi,k(ti,j,k), is the progression of the kth outcome of
the patient i, measured by yi,j,k at each time ti,j,k for each visit j of the patient i. t is
also indexed by k so that the model can handle missing values on some outcomes. The
longitudinal process is estimated with a Gaussian noise for each outcome compared to the
measure: ϵk ∼ N (0, σk) with σk the standard deviation of the noise of the outcome k, which
gives: yi,j,k = γi,k(ti,j,k) + ϵi,j,k. Note that we assume that all the noises of the visits are
independent.

To describe the model, we will further use the formalism of mixed-effects models: with
fixed effects (population level parameters) and random effects (individual level parameters
indexed by i) (see section 1.2.2).

2.2.3.2 Random effects: temporal and spatial individual variability

The strength of the Spatiotemporal model is to disentangle temporal from spatial variability.

Temporal variability First, temporal variability is allowed with variations on individual
progression earliness and speed. It is done by mapping the chronological age of a patient t
into a latent disease age ψi(t), representative of the disease stage of the patient. Using the
formalism described before, it can be written as :

ψi(t) = eξi(t− τi) + t0 (2.1)

where eξi is the speed factor of patient i, τi is its individual estimated reference time and t0
is the population estimated reference time. (τi− t0) can thus be seen as an individual time-
shift compared to the population. Although the reference time is not the time of disease
onset, it plays quite the same role: it is a state of the disease on which all the patients are
realigned. The effects of the two temporal random effects on the progression are described
in Figure 2.2 from both a clinical and a Riemannian point of view. The main advantage
of this formalism is that the individual progressions are realigned on a given value of the
outcomes and not on a reference onset time, as with Generalised Linear Mixed effects models
(Schiratti et al., 2015), which might be more robust in our context.



26 Chapter 2. Quantifying ALS heterogeneity with a longitudinal Spatiotemporal model

Spatial variability To capture the disease presentation variability, spatial random ef-
fects, named the space-shifts wi,k, are defined for each outcome to modify their order of
degradation during the disease progression. Nevertheless, for identifiability reasons, the di-
mension of the space-shift space is reduced with an independent component analysis (ICA)
decomposition using Ns ≤ K − 1 independent sources (si)1≤i≤Ns , resulting in wi = Asi,
where A is the mixing matrix of the ICA decomposition. However, this definition does
not guarantee the orthogonality of the space shift to the speed of progression v0 (as in the
Exp-parallelisation at 1

1+g from Riemannian geometry) which gives the identifiability. Thus,
the matrix A is defined as a linear combination of vectors of an orthonormal basis, (Bo)o,
of the hyperplane orthogonal to Span(v0) (dimension K × (K − 1)): each column m of A
is thus Am =

∑K−1
o=1 βo,mBo with β the matrix of coefficient (dimension (K − 1) × Ns) so

that A = (Bβ)T . (Schiratti et al., 2017). The effects of these spatial random effects on the
progression are described in Figure 2.2.



2.2.
M

odelspecifications
27

Age

N
or

m
al

is
ed

 s
co

re

best

worst

𝑒!!
𝑒!!

3.a.

Age

N
or

m
al

is
ed

 s
co

re

best

worst

𝑤"#

𝑤"$
4.a.

Age

N
or

m
al

is
ed

 s
co

re

best

worst

1.a.

Age

N
or

m
al

is
ed

 s
co

re

best

worst

5.a.

N
or

m
al

is
ed

 s
co

re

best

worst

1.b.

Normalised score
best worst

N
or

m
al

is
ed

 s
co

re

best

worst

5.b.

Normalised score
best worst

N
or

m
al

is
ed

 s
co

re

best

worst

4.b.

Normalised score
best worst

𝑤"

Ri
em

an
ni
an

po
in

t o
f v

ie
w

C
lin

ic
al

po
in

t o
f v

ie
w

Temporal
Random effects

Speed factor (𝑒!!) Space shifts (𝑤")

Spatial
Random effects

Population
progression

Individual
progression

Age

N
or

m
al

is
ed

 s
co

re

best

worst

𝜏" 	− 𝑡%

2.a.

𝜏" 	− 𝑡%

N
or

m
al

is
ed

 s
co

re

best

worst

2.b.

Normalised score
best worst

𝜏" 	− 𝑡%

𝜏" 	− 𝑡%

𝜏" 	− 𝑡%

N
or

m
al

is
ed

 s
co

re

best

worst

3.b.

Normalised score
best worst

𝑒!!

𝑒!!

𝑒!!

Time shift (𝜏" − 𝑡#)

Figure 2.2: Temporal and spatial random effects: from population to individual progression (adapted from Koval et al., 2021)
This figure presents from two points of view (clinical and Riemannian) how the three types of random effects (two temporal and one spatial) enable to modify the
population average progression to calibrate the patient observations. Clinical: Two normalised clinical scores (blue and orange) (0: the healthiest value, +1: the
maximum pathological change) depending on the age of the patients. The scatter represents the real observed values for one patient at different visits. Riemannian:
The same two normalised scores are represented but this time depending on each other. The scatter represents the same real observed values as in the clinical version.
The black cross on the curve corresponds to what is modelled at the visit ages of the patient. Population progression (1.a., 1.b.): Population average trajectory
compared to the observed values of the patient. Time Shift (2.a., 2.b.): The progression starts earlier due to the individual estimated reference time, Clinical
graph: the curves are shifted on the left, Riemannian graph: black crosses are shifted on the right following the trajectory (for the same age the patient is more
advanced). Speed factor (3.a., 3.b.): The progression speed increases, Clinical graph: the curves become steeper, Riemannian graph: black crosses get further
from each other on the trajectory (for the same time of follow-up a wider portion of the trajectory is observed). Space Shift (4.a., 4.b.): the blue curves progress
before the orange curve, Clinical graph: the curves are shifted in opposite directions, Riemannian graph: most of the blue (resp. orange) score value is observed for
an orange (resp. blue) value of 0 (resp. 1) Individual progression (5.a., 5.b.): The modelled curves fit the observations, Riemannian graph: the black crosses
are close to the observed values.
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2.2.3.3 Fixed effects: trajectory shape

The modelling of the longitudinal process consists of computing the trajectory from the
latent disease age defined in section 2.2.3.2. To model logistic curves, we used a metric
G(p) = 1

p2(1−p)2 in a manifold (0, 1). For a K-dimensional dataset, we used the product
manifold of this 1-dimensional manifold. The method to find the trajectory from the metric
is further described in Koval, 2020 (p.169). From there, we got the average curve for an
outcome k at time t:

γ0,k(t) =
(
1 + gk × exp(− (1+gk)

2

gk
(v0,k(t− t0))

)−1
(2.2)

where t0 is the population estimated reference time defined in section 2.2.3.2, v0,k is the
speed of the logistic curves at t0 and pk = 1

1+gk
is the value of the modelled outcomes at

t0. We also got the individual curve for an outcome k (continuous between 0 and 1), an
individual i at time t:

γi,k(t) =
(
1 + gk × exp(− (1+gk)

2

gk
(v0,k(ψi(t)− t0) + wi,k)

)−1
(2.3)

2.2.3.4 Wrap-up

To sum up, the model described can be resumed by the following formulas for a patient i
and an outcome k:

ψi(t) = eξi(t− τi) + t0

wi = Asi

γi,k(t) =
(
1 + gk × exp(− (1+gk)

2

gk
(v0,k(ψi(t)− t0) + wi,k)

)−1

(2.4)

Note that the model described here is not structurally identifiable (Lavielle and Aarons,
2016) but its identifiability comes with the statistical model.

2.2.4 Likelihood of the longitudinal Spatiotemporal model

2.2.4.1 Parameters structure

In the statistical model, all parameters of the structural model described in section 2.2.3.4
are latent parameters following a given distribution. We make a distinction between fixed
and random effects. Random effects follow a Gaussian distribution for which all parameters
are estimated using likelihood maximisation. To ensure the positivity of fixed effects, their
log are estimated and written with a tilde (for instance, ṽ0 = log(v0)). Log fixed effects
follow a normal distribution with the average parameters estimated using a log-likelihood
maximisation and the standard deviation parameters defined as hyperparameters. To ensure
identifiability, we set the mean parameter ξ = 0, t0 = τ , s = 0, and the standard deviation
parameters σs = 1. We end up with the following structure with the patients indexed by i
and outcomes by k, the sources by m, and the dimensions of the hyperplane orthogonal to
Span(v0) by o:

• Latent parameters (z):



2.2. Model specifications 29

– Latent fixed effects (zfe): log fixed effects sampled from normal distributions
parametrized by model parameters and hyperparameters zfe = {g̃k, ṽ0,k, βo,m},

g̃k = log(gk) ∼ N
(
g̃k, σ

2
g̃

)
ṽ0,k = log(v0,k) ∼ N

(
ṽ0,k, σ

2
ṽ0

)
βo,m ∼ N

(
βo,m, σ

2
β

)
– Latent random effects (zre): sampled from normal distributions parametrized by

model parameters zre = {ξi, τi, si},

ξi ∼ N
(
ξ, σ2ξ

)
τi ∼ N

(
τ , σ2τ

)
si,m ∼ N (s, σs)

• Model parameters (θ): fixed effects estimated from log-likelihood maximisation θ =

{σξ, στ , t0, g̃k, ṽ0,k, βo,m, σk}

• Hyperparameters (Π): set by the user Π = {σg̃, σṽ0 , σβ}

2.2.4.2 Likelihood

The likelihood estimated by the model is the following:

p(y | θ,Π) =
∫
z
p(y, z | θ,Π)dz

p(y, z | θ,Π) can be divided into two different terms: data attachment, which represents
how well the model describes the data y, and a prior attachment, which prevents over-fitting:

log p(y, z | θ,Π) = log p(y | z, θ,Π) + log p(z | θ,Π)

The prior attachment term can be separated into two terms: two terms for the prior attach-
ment of latent parameters (fixed and random). We end up with the following expression
:

log p(y, z | θ,Π) = log p(y | z, θ,Π) + log p(zre | zfe, θ,Π) + log p(zfe | θ,Π)

The four different parts of the log-likelihood are described below associated with their differ-
ent assumptions. Note that the total formula of the log-likelihood is available in appendix
A.1.

Data attachment To model the longitudinal process, we assumed that patients and their
visits are independent conditionally on random effects and that the noise of the process
follows a Gaussian distribution. We thus got (from Koval, 2020 p.175):

log p(y | z, θ,Π) =
∑
i,j,k

log p(yi,j,k | z, θ,Π)

=
∑
i,j,k

− log
(
σk
√
2π
)
− 1

2σ2k
(yi,j,k − γi,k (ti,j,k))2

Latent random effects priors attachment As patients were supposed independent of
each other, we supposed that random effects were independent conditionally to zfe, θ, and
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Π. The regularization term associated, with ξ = 0, t0 = τ , s = 0 and σs = 1, is then (from
Koval, 2020 p.175):

log p(zre | zfe, θ,Π) =
∑
i

(
log p(τi | zfe, θ,Π) + log p(ξi | zfe, θ,Π) +

Ns∑
m

log p(si,m | zfe, θ,Π)

)

=− N log
(
στ
√
2π
)
− 1

2σ2τ

∑
i

(τi − t0)2

− N log
(
σξ
√
2π
)
− 1

2σ2ξ

∑
i

(ξi − ξ)2

− NNs log
(
σs
√
2π
)
− 1

2σ2s

∑
i

Ns∑
m

(si,m)
2

Latent fixed effects prior attachment Each latent fixed effect is independently sam-
pled from a posterior distribution. The regularization term associated is then (from Koval,
2020 p.175):

log p(zfe | θ,Π) =
∑
k

(log p(g̃k | θ,Π) + log p(ṽ0,k | θ,Π))

+
∑
o,m

log p(βo,m | θ,Π)

=−
∑
k

log
(
σg̃
√
2π
)
− 1

2σ2g̃

(
g̃k − g̃k

)2
−

∑
k

log
(
σṽ0
√
2π
)
− 1

2σ2ṽ0

(
ṽ0,k − ṽ0,k

)2
− (K − 1)Ns log(σβ

√
2π)− 1

2σ2β

∑
o,m

(βo,m − βo,m)

2.2.5 Estimation of the longitudinal Spatiotemporal model

Two types of estimation can be conducted using the Spatiotemporal model. The first one
is the estimation of the fixed effects jointly with the random effects, referred to as the
calibration, and the second one is the estimation of the random effects of a patient knowing
the fixed effects, named personalisation. An implementation of the Spatiotemporal model
enabling both estimations is available in the open-source package Leaspy: https://gitlab.
com/icm-institute/aramislab/leaspy.

2.2.5.1 Model calibration

The first step is the calibration of the model which enables the estimation of the fixed and as-
sociated random effects from a training dataset. There is no analytical solution for maximis-
ing the log-likelihood. Thus we used an Expectation-Maximization algorithm. Nevertheless,
the computation of the expectation is also intractable due to the non-linearity of the model.
Thus, a Monte-Carlo Markov Chain Stochastic Approximation Expectation-Maximization

https://gitlab.com/icm-institute/aramislab/leaspy
https://gitlab.com/icm-institute/aramislab/leaspy
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(MCMC-SAEM) algorithm (Kuhn and Lavielle, 2004) was used with a Robbins-Monro con-
vergence algorithm (Robbins and Monro, 1951) applied on the last iterations to get the mean
of the distribution of the model. Note that convergence of the MCMC-SAEM algorithm has
been proven for models that lie in the curved exponential family (Kuhn and Lavielle, 2004),
a category in which falls the Spatiotemporal model. More details are given by Koval, 2020
(p.41-43) and Schiratti, 2017 (p.106).

2.2.5.2 Model personalisation

The second step is personalisation. It is mainly used to compute the random effects for new
patients from a test dataset. During this step, we used previously computed fixed effects
from the calibration. During this personalisation, only the random effects are estimated,
to get the individual longitudinal processes. The solver minimise from the package Scipy
(Virtanen et al., 2020) was used to maximise the log-likelihood.

2.3 Method: Analysis of ALS heterogeneity

2.3.1 Patients

We conducted our analysis using data from the Pooled Resource Open-Access ALS Clinical
Trials Consortium (PRO-ACT) database. This database is a compilation of 23 phase II and
III clinical trials along with one observational study. Notably, the database does not include
any information that could potentially lead to patient identification, such as the clinical trial,
tested drug, study centres, or dates. Given that the database is an aggregation of various
sources, it encompasses multiple inclusion and exclusion criteria for patients entering the
cohort. More detailed information can be found in the paper that introduces the database
(Atassi et al., 2014).

We selected patients with a minimum of two visits recorded for all the outcomes listed
below. We collected the following data: values of the outcomes at each available visit
with the age of the patient at the respective visits, patient sex, and onset site (spinal or
bulbar), a label available within the PRO-ACT database. Patients were categorized into
four subgroups based on sex and onset site: men with bulbar onset, women with bulbar
onset, men with spinal onset, and women with spinal onset.

2.3.2 Outcomes

We selected a set of outcomes that are important clinical proxies of ALS progression and
were available in the PRO-ACT database. We considered the most widely used functional
rating system in patients with ALS, namely the revised version of the ALS functional rating
scale (ALSFRSr)(Rooney et al., 2017). The scale starts at a maximum theoretical value of
48 and decreases with the severity of the disease till zero. We considered the four ALSFRSr
sub-scores assessing four distinct domains: bulbar, gross motor, fine motor, and respira-
tory functions. Each sub-scale has 12 points each (Rooney et al., 2017). In addition, we
considered the BMI (Moglia et al., 2019) and the Forced Vital Capacity (FVC)(Daghlas,
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Govindarajan, and Pooled Resource Open-Access ALS Clinical Trials Consortium, 2021)
that we normalized using the computed normal FVC (Brändli et al., 1996).

We normalized the outcomes between 0 (the healthiest value) and +1 (the maximum
pathological change). The four ALSFRSr sub-scores were normalized using their theoretical
maximum and minimum values. For FVC and BMI, we first applied a box-cox transfor-
mation (estimated on the whole PRO-ACT dataset) to get a standard normal distribution
(Pedregosa et al., n.d.; Yeo and Johnson, 2000; Box and Cox, 1964). We then clipped the
resulting value between -3 and 3 points and converted them to the 0 to 1 scale.

In addition to these repeated measures, we collected the following covariates when avail-
able: riluzole use, trial arm (active, placebo, observational), age at first symptom, age at
diagnosis, age at baseline, Mitos (Fang et al., 2017) and FT9 scores (Thakore et al., 2018)
at baseline. These data were not used as input for the disease progression model.

2.3.3 Statistical Analysis

We calibrated the model with the dataset described above and composed of four subgroups
for 20,000 iterations.

The four studied subgroups had different sizes, so we wanted to assess if the model
calibrated all of them well. To do so, we computed the reconstruction error as the difference
between the estimated value of each visit and its real available value and compared the
reconstruction error between subgroups.

We used ANOVAs to test for the interaction of sex and onset site on the random effects
of the Spatiotemporal model. When the results were significant, we conducted independent
pairwise Tukey-Kramer tests (Tukey, 1949) for further comparison. Conversely, if no sig-
nificant interaction was observed, we conducted an ANOVA without interaction to assess
the influence of each covariate while adjusting for others. All the results are presented
with a 95% confidence interval computed with pairwise Tukey-Kramer or ANOVA without
interaction, depending on the interaction significance.

The same comparison process was used to compare the subgroups at baseline and de-
scribe the database. For database description, data are expressed as mean +/- standard
deviation or frequency (percent). Statistical analysis used a conventional 2-tailed type I
error of 0.05. Data were analyzed using packages statsmodel (Skipper and Perktold, 2010)
and bioinfokit (Bedre, 2020) for Python.

2.4 Results

2.4.1 Patients

In the PRO-ACT database, which included 8,571 patients (with a total of 78,824 visits),
we excluded 220 BMI values and 45 FVC values that fell outside the normalization range.
Subsequently, we selected the 1,463 patients with at least two visits for all the selected
outcomes. Finally, we further refined our selection to 1,438 patients who had information
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regarding the onset site. Note that sex was available for all patients. Further characteristics
of the population are presented in Figure 2.1.

The database consisted of 51% men with spinal onset, 12% men with bulbar onset,
26% women with spinal onset, and 11% women with bulbar onset. Over the four subgroups,
there were no significant differences in follow-up duration (1.00 ± 0.59 years), the number of
visits per patient (11.6 ± 7.2 visits), and time between visits (34.5 ± 28.5 days). However,
significant differences were observed among subgroups concerning ages, disease duration,
and some baseline scores.
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Outcomes Spinal Man Bulbar Man Spinal Woman Bulbar Woman p-value Subgroup relations

Numbers Patients 757 126 405 150
Visits 9236 1447 4771 1799
Visits per patient 12.2 ± 10.0 11.5 ± 7.4 11.8 ± 9.0 12.0 ± 7.7 0.46 -

Riluzole use Took at least once 533 (70%) 82 (65%) 286 (71%) 96 (64%)
Never took 126 (17%) 31 (25%) 72 (18%) 29 (19%)
No information on use 98 (13%) 13 (10%) 47 (12%) 25 (17%)

Trial arm Active 378 (50%) 66 (52%) 204 (50%) 65 (43%)
Placebo 210 (28%) 35 (28%) 115 (28%) 40 (27%)
Observational 169 (22%) 25 (20%) 86 (21%) 45 (30%)

Age First symptoms 52.3 ± 11.1 (100%) 53.1 ± 11.6 (100%) 54.1 ± 10.9 (100%) 59.5 ± 9.5 (100%) 0.0021 (SM,BM,SW)<BW
Diagnosis 53.0 ± 11.1 (87%) 53.7 ± 11.7 (89%) 54.7 ± 10.6 (85%) 60.5 ± 9.5 (90%) 0.0012 (SM,BM,SW)<BW
Baseline 54.1 ± 11.1 (100%) 54.6 ± 11.7 (100%) 56.0 ± 10.8 (100%) 61.1 ± 9.4 (100%) 0.0018 (SM,BM,SW)<BW

Time duration Patient time of follow-up (y) 1.0 ± 0.7 (100%) 1.0 ± 0.6 (100%) 1.0 ± 0.8 (100%) 1.0 ± 0.6 (100%) 0.58 -
Time between visits (d) 34 ± 28 (100%) 35 ± 28 (100%) 35 ± 30 (100%) 34 ± 29 (100%) 0.33 -
Disease duration (y) 1.8 ± 1.0 (100%) 1.4 ± 0.9 (100%) 1.9 ± 1.1 (100%) 1.6 ± 0.9 (100%) 0.61 B<S***

Outcomes at baseline Mitos 0.2 ± 0.5 (59%) 0.2 ± 0.5 (59%) 0.3 ± 0.5 (61%) 0.2 ± 0.5 (71%) 0.70 -
FT9 1.8 ± 0.9 (59%) 1.9 ± 1.0 (59%) 1.9 ± 0.9 (61%) 1.9 ± 1.0 (71%) 0.52 -
ALSFRSr score Total 37.2 ± 5.4 (59%) 37.4 ± 5.8 (59%) 35.9 ± 5.5 (61%) 37.3 ± 5.3 (71%) 0.19 W<M***

Respiratory 11.3 ± 1.3 (59%) 11.1 ± 1.3 (59%) 11.2 ± 1.3 (61%) 11.1 ± 1.2 (71%) 0.73 -
Bulbar 10.8 ± 1.5 (59%) 7.6 ± 2.1 (59%) 10.5 ± 1.7 (61%) 6.7 ± 2.3 (71%) 0.025 BW<BM<(SW,SM)
Fine motor 7.6 ± 2.8 (59%) 9.2 ± 2.6 (59%) 8.0 ± 2.7 (61%) 10.0 ± 2.1 (71%) 0.39 M<W**;B<S***
Gross motor 7.6 ± 2.5 (59%) 9.5 ± 2.5 (59%) 6.2 ± 2.4 (61%) 9.5 ± 2.3 (71%) 0.0012 SW<SM<(BW,BM)

Forced vital capacity 75.9 ± 14.4 (97%) 70.3 ± 13.6 (96%) 74.6 ± 14.4 (96%) 68.7 ± 13.8 (97%) 0.83 B<S***
BMI 27.1 ± 4.2 (98%) 26.8 ± 4.3 (97%) 26.4 ± 5.0 (98%) 25.6 ± 4.9 (98%) 0.46 W<M***

Table 2.1: Patient characteristics
Data are expressed as mean± standard deviation (percentage of available data) or frequency (percentage), p-value: ANOVA interaction p-value, subgroup
relations: if the interaction was significant, significant relations between the subgroups are described, otherwise only the relation between sex and onset
without interaction is described. BM: bulbar men, BW: bulbar women, SM: spinal men, SW: spinal women, *: <0.05, **: <0.01, ***: <0.001
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2.4.2 Reconstruction error

The maximum differences of the median (orange line in Figure 2.3) were small compared
to the observed median of patient follow-up variation (difference between the minimum
and maximal value of the outcome across patient follow-up) for each outcome considered:
2.18% compared to 17.35% for FVC, 0.05 point compared to 2.50 kg/m2 for BMI, 0.19 point
compared to 2.00 point for respiratory scale, 0.31 point compared to 2.00 point for bulbar
scale, 0.08 point compared to 4.00 point for fine motor scale and 0.07 point compared to
4.00 point for gross motor scale.

ALSFRSr Gross Motor ALSFRSr Fine Motor

ALSFRSr Bulbar ALSFRSr Respiratory

BMI FVC

A. B.

C. D.

E. F.

Figure 2.3: Reconstruction error distribution of the Longitudinal Spatiotemporal model
per outcome and subgroup

Box plots are represented with the median in orange in the native scale of the outcome. The
numbers in parentheses represent the number of visits on which the boxplot was computed.

2.4.3 ALS outcomes trajectories

The average disease progression was first extracted for the four subgroups. Figure 2.4
represents the progression of ALSFRSr subscores for each subgroup. Overall, curves are
shifted on the right for patients with bulbar onset (Figure 2.4 B and D) compared to
patients with spinal onset (Figure 2.4 A and C). Curves are also shifted on the right for
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women (Figure 2.4 A and B) compared to men (Figure 2.4 C and D), illustrating later onset
for women compared to men.

The model also exhibited differences in the order of progression of the different outcomes.
For instance, it confirmed the progression order of ALSFRSr bulbar curve (orange) and
ALSFRSr motor curves (red and green): they are switched between patients with spinal
onset (Figure 2.4 A and C) and patients with bulbar onset (Figure 2.4 B and D). Finally,
we can note differences in speed. Patients with spinal onset (Figure 2.4 A and C and Figure
2.5 purple and grey) seem to have steeper curves than patients with bulbar onset (Figure 2.4
B and D and Figure 2.5 cyan and pink). All these results are described below by quantitative
statistical tests.

Average spinal woman progression (405 patients) Average bulbar woman progression (150 patients)

Average spinal man progression (757 patients) Average bulbar man progression (126 patients)

A. B.

C. D.

Figure 2.4: Average progression of ALSFRSr subscores depending on sex and onset site
Respiratory (blue), Bulbar (orange), Fine Motor (red), Gross Motor (green)

Average FVC progression for each subgroup Average BMI progression for each subgroup

A. B.

Figure 2.5: Average subgroup progressions of Forced Vital Capacity (FVC) and Body
Mass Index (BMI) for each subgroup
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2.4.4 Individual temporal variability (ξi, τi)

2.4.4.1 Estimated age at disease onset (τi)

We found an interaction between the onset site and sex for the reference time (p = 0.0020)
(Figure 2.6 A). For patients with bulbar onset, the reference time for men occurred 6.0
years earlier (95% CI = [2.6, 9.5]) than for women while for a woman with spinal onset, it
occurred 4.7 years earlier (95% CI = [1.9, 7.4]) than for women with bulbar onset.

2.4.4.2 Speed of progression ( ξi)

We did not find any significant interaction between the onset site and sex for the speed factor
of progression (p-value = 0.14) (Figure 2.6 B). Patients with bulbar onset were found to
progress 1.4 times faster (95% CI = [1.2, 1.6]) than patients with spinal onset independently
of sex.
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Figure 2.6: ALS estimated speed factor and reference time depending on sex and onset
site

Panel A: the vertical axis presents the estimated reference time in months compared to the
mean estimated reference time of the whole population. Panel B: The vertical axis presents
the log speed compared to the mean log speed of the whole population. Both horizontal axes
are for sex with estimation for the bulbar patients in blue and the spinal patients in orange.
The graph displays the mean of this delay with its confidence interval.ANOVA interaction
p-value is equal to: (A) 0.002 for the reference time and (B) 0.14 for the log speed factor .
***: p-value for pairwise comparison <0.001

2.4.5 Individual spatial variability (wiv−1
0 )

Space-shifts (wi) were corrected by the speed (v0) to facilitate there interpretation in a time
unit.

2.4.5.1 Motor decline

We found an interaction between sex and onset site for the gross motor scale (p<0.001)
but not for the fine motor scale (p-value = 0.12), once corrected for the estimated reference
timing and speed of progression (Figure 2.7 A and B). Among patients with spinal onset,
ALSFRSr gross motor scale deteriorated 4.5 months later (95% CI = [3.1, 6.0]) in women
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than in men. However, ALSFRSr fine motor scale changed 3.5 months earlier (95% CI =
[2.6, 4.4]) in women than in men, independently of the onset site. Among men, ALSFRSr
gross motor scale changed 10.6 months earlier (95% CI = [8.3, 12.8]) for patients with spinal
onset compared to bulbar onset. Among women, the difference increased to 16.0 months
earlier (95% CI = [13.7, 18.2]). ALSFRSr fine motor scale changed 10.2 months earlier (95%
CI = [9.0, 11.3]) for patients with spinal onset compared to bulbar onset, independently of
the sex.

2.4.5.2 Bulbar signs decline

We observed an interaction between sex and onset site for ALSFRSr bulbar score (p-value =
0.01), once corrected for the estimated reference timing and speed of progression (Figure 2.7
C). Among patients with bulbar onset, ALSFRSr bulbar scale changed 6.4 months earlier
(95% CI = [1.6, 11.1]) in women than men. Among men, the ALSFRSr bulbar scale changed
27.2 months later (95% CI = [23.4, 31.0]) for patients with spinal onset compared to bulbar
onset. Among women, the difference increased to 32.5 months later (95% CI = [28.7, 36.3]).

2.4.5.3 Respiratory decline

We found an interaction between sex and onset site for FVC (p<0.001) but not for ALSFRSr
respiratory score (p-value = 0.058), once corrected for the estimated reference timing and
speed of progression (Figure 2.7 E and F). Among patients with bulbar onset, FVC was
impaired 2.6 months earlier (95% CI = [0.6, 4.6]) in women than in men. Among men,
FVC was impaired 5.4 months earlier (95% CI = [3.8, 7.0]) in patients with bulbar onset
compared to spinal onset. Among women, the difference increased to 8.3 months (95% CI
= [6.7, 9.9]). ALSFRSr respiratory scale changed 2.4 months earlier (95% CI = [0.7, 4.0])
for patients with bulbar onset compared to spinal onset independently of the sex.

2.4.5.4 BMI decline

We did not observe an interaction between sex and onset site for BMI (p-value = 0.17), once
corrected for the estimated reference timing and speed of progression (Figure 2.7 D). BMI
decreased 8.9 months earlier (95% CI = [3.9, 13.8]) in women than men, independently of
the onset site. BMI decreased 10.0 months earlier (95% CI = [3.8, 16.1]) for patients with
bulbar onset compared to spinal onset, independently of the sex.

2.5 Discussion

2.5.1 Results interpretation

2.5.1.1 Methodology

The reconstruction error of the model was of the same range as the one of the Alzheimer’s
disease study (Koval et al., 2021), for which the model was originally developed, which
confirmed the potential of the Spatiotemporal model in ALS. The strength of the Spa-
tiotemporal model is its ability to synchronise patients onto a common disease timeline
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Figure 2.7: Onset of impairment depending on sex and onset site
The vertical axis presents the delay of outcome impairment onset in months compared to
the mean onset of the whole population. The horizontal axis is for sex with estimation for
the bulbar patients in blue and the spinal patients in orange. The graph displays the mean
of this delay with its confidence interval. Results are corrected for the subgroup estimated
reference timing and speed of progression. ANOVA interaction p-value is (A,C,D) below
0.001 for ALSFRSr gross motor, ALSFRSr bulbar, and FVC, (B) 0.12 for ALSFRSr fine
motor, (E) equal to 0.058 for ALSFRSr respiratory, and (D) 0.17 for BMI. FVC: Forced
Vital Capacity (%), **: p-value for pairwise comparison <0.01 ,***: p-value for pairwise
comparison <0.001

(temporal aspect) thanks to a latent disease age, while also capturing the remaining vari-
ability through parameters that account for outcome ordering (spatial aspect). Thanks to
its interpretable structure, random effects distribution could be analysed to study ALS het-
erogeneity in terms of speed of progression, estimated age at onset and order of outcomes
decline.

2.5.1.2 Clinical

Concerning the effect on weight, we showed that BMI starts to decrease 9 months earlier
in women than men, independently of the onset site. Considering the rapid progression of
ALS, with a mean survival of three to four years (Talbott, Malek, and Lacomis, 2016), this
inter-sex difference appears clinically meaningful. Weight loss is a classical consequence of
bulbar impairment leading to dysphagia. However, alterations in body weight are present
in ALS patients already decades before the clinical manifestation of ALS (Peter et al.,
2017) and are a negative prognostic factor associated with shorter survival (Li et al., 2022).
Weight loss is also associated with increased energy expenditure. It is present in almost half
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of the patients and is associated with shorter survival (Nakamura et al., 2022). Inter-sex
differences in metabolism may also affect the disease trajectory. The role of energy and
lipid metabolism abnormalities in the pathogenesis of ALS is currently a focus of many
studies in animal models and ALS patients (Dupuis et al., 2011; Nelson and Trotti, 2022;
Vandoorne, De Bock, and Van Den Bosch, 2018; Guillot, Bolborea, and Dupuis, 2021).
Inter-sex differences in the percentage of body fat may also modify disease progression. It
is higher in women (Blaak, 2001) and may vary with menopausal status (Toth et al., 2000).
Studies comparing fat mass with impedancemetry or dual-energy X-ray absorptiometry
are needed to investigate better the role of metabolism and the effect of sex on disease
progression (Lee et al., 2021).

The effect of sex on respiratory decline has not been reported so far. We showed that
among patients with bulbar onset, FVC is impaired 2.6 months earlier in women than in
men. This difference is also clinically meaningful since respiratory distress is the main
cause of death in ALS and the decline of FVC is the main criterion for the indication of
non-invasive ventilation (Morelot-Panzini, Bruneteau, and Gonzalez-Bermejo, 2019).

An unexpected result was that the ALSFRSr fine motor scale changes earlier in women,
regardless of the onset site, but that the ALSFRSr gross motor scale changes later in women
among patients with spinal onset. Further studies are needed to investigate whether these
differences might be related to sexual dimorphism in the anatomic pattern of abnormalities,
both in terms of susceptibility to neurodegeneration or compensatory mechanisms. The
advances in neuroimaging enable an increasing number of research studies investigating
sexual dimorphism in both health and disease conditions (Bede et al., 2022; Trojsi et al.,
2021). In ALS more specifically, significant sex differences in the anatomical patterns of
cortical and subcortical pathology have been shown (Bede et al., 2022). Finally, these sex
differences might be a bias in the self-evaluation of motor abilities using ALSFRSr.

From a biological perspective, the mechanisms of sexual dimorphism in ALS have been
related to sex-specific microglial regulation (Lay and Li, 2019), sex hormones (Raymond et
al., 2021), or susceptibility to oxidative stress (Sumien et al., 2021). A study, performed on
a large number of ALS women with natural menopause and well-defined oral contraceptive
usage, has demonstrated that longer exposure to female hormones has neuroprotective effects
on motoneurons in ALS (positive association between a longer reproductive condition, the
susceptibility to ALS, and the survival of ALS patients)(Raymond et al., 2021).

2.5.2 Strengths & Weaknesses

2.5.2.1 Methodological

We used a mixed-effect model following neurological research recommendations (Locascio
and Atri, 2011). Logistic curves were used to overcome common limitations on score analysis:
curvilinearity, and potential floor or ceiling effects (Gordon et al., 2010). A population-based
study showed the existence of plateaux in ALSFRSr mainly shorter than 6 months, with only
10% of patients with wider plateaux (Vasta et al., 2020). Thus, modelling the progression
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of ALSFRSr subscores by logistic curves could be debated. Nevertheless, plateaux appear
in high scores and are unlikely to change the results since our patients’ average length of
follow-up is one year.

The Spatiotemporal model used is robust to missing data and does not require a stan-
dardized time between visits (Couronne et al., 2019). Even though, the informative right
censoring of the visits by death might introduce biases in our study (Schluchter, 1992).
Thus, studying jointly longitudinal and survival data, potentially with a joint model (see
section 1.4) can result in more precise estimates and improve inference (Lu et al., 2023).
Using a joint model could also bring insight into the interaction between sex and onset site
corrected by the progression of the longitudinal outcomes.

2.5.2.2 Clinical

A strength of our study is that our model was based on a large, multicentric, and longitudinal
database. However, the PRO-ACT database may not represent the real-life ALS patient
population. Since the database aggregates clinical trial data, there is an over-representation
of men, young subjects, patients with spinal onset, and slow progressors. Nevertheless, these
results could help better understand the progression of placebo arms and design strategies
for patient stratification in clinical trials. The absence of information on genetic mutation
(Swinnen and Robberecht, 2014), neuropsychological symptoms (Swinnen and Robberecht,
2014), and lifestyle (Trojsi et al., 2012; Westeneng et al., 2021) also limits the interpretation
of the results.

2.6 Conclusion & perspectives

To summarize, we showed that sex and onset site interaction is an important driver of ALS
progression considering many clinical proxies such as disability, weight loss, and respiratory
function. Pathophysiological mechanisms underlying these differences are elusive and may
account for an interplay of biological, lifestyle, and environmental factors.

From a clinical perspective, further studies in animal models and patients are needed
to understand better their respective contributions (Chiò et al., 2020). In addition, from a
methodological point of view, this study confirms the relevance of the Spatiotemporal model
in ALS and calls for a joint Spatiotemporal model.
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Chapter 3

A univariate Joint Temporal model

In this chapter, we propose a univariate Joint Temporal model, that would enable to jointly
model longitudinal and survival data while automatically realigning partial patient trajecto-
ries. To do so, we used the longitudinal Spatiotemporal model with its latent disease age, as
a longitudinal submodel. We associated it with a survival submodel that estimates a Weibull
distribution from the latent disease age. First, we validated our model on different simulated
scenarios. Then, we benchmarked our model with a state-of-the-art joint model and refer-
ence survival and longitudinal models on simulated and real data in the context of ALS. On
PRO-ACT ALS data, our model got significantly better results than the state-of-the-art joint
model for absolute bias (4.21(4.41) versus 4.24(4.14)(p-value=1.4e-17)), and mean cumula-
tive AUC for right censored events (0.67(0.07) versus 0.61(0.09)(p-value=1.7e-03)). Thus,
we showed that our approach is better suited than the state-of-the-art in the context where
the reference time to realign trajectories is not reliable.

This chapter has been submitted. See (Ortholand et al., 2024).
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3.1 Introduction

As described in section 1.2.1, longitudinal data available for progressive chronic diseases
are often sparse and cover only parts of the progression, which emphasises the need to realign
manually or automatically patients’ ages depending on their disease stages, to extract a full
typical timeline of the disease (Young et al., 2024). The date of the first symptom is often
used to do so, but in such chronic disease, it might not be a reliable reference time as onset
is suspected to occur years before clinical manifestations (Jack et al., 2010; Peter et al.,
2017). In the case of ALS, survival data (see section 1.3.1), with the occurrence of death,
are also of importance notably to demonstrate a treatment effect (FDA, 2019).

Joint models enable modelling both survival and longitudinal data together, which can
enable to reduce biases when they are associated with the same biological processes (Lu
et al., 2023). Joint models are composed of three parts: a model for the survival data, a
model for the longitudinal data and a linkage structure, which captures the link between the
two types of data (Rizopoulos, 2012; Elashoff, Li, and Li, 2016; Hickey et al., 2016; Furgal,
Sen, and Taylor, 2019; Alsefri et al., 2020).

The most used survival model, for data with right non-informative censoring, is the Cox
Proportional Hazard (Cox) model (Cox, 1972), with a proportional effect of covariates on the
hazard scale (see section 1.3.2). Nevertheless, as the baseline hazard needs to be estimated
for joint models (Rizopoulos, 2012) and the proportional assumption is often violated on long
follow-up, it might not be the appropriate survival submodel. Thus Accelerated Failure Time
(AFT) models (Kalbfleisch and Prentice, 2002) may be better suited as survival submodels.

As described in section 1.4, joint models are built upon Generalised Linear Mixed-effect
Models (GLMMs) (McCulloch, Searle, and Neuhaus, 2008) as longitudinal submodel. But
such classical mixed-effect models rely on an empirical disease time axis, which limits their
temporal resolution to the resolution of the reference time used to index the disease time
axis (Schiratti et al., 2015; Schiratti, 2017; Young et al., 2024). To overcome this issue,
longitudinal models that capture the data-driven disease timeline behind the observable
data, named data-driven disease progression models, were developed (Young et al., 2024)
as described in section 1.2.3. Among others, the Spatiotemporal model was proposed to
capture, from a population sample, a latent disease age to overcome the need for a reference
time (Schiratti et al., 2015; Schiratti, 2017).

As mentioned in section 1.4, three main types of joint modelling were proposed: the
latent class model (Proust-Lima, Philipps, and Liquet, 2017; Proust-Lima et al., 2023), the
frailty joint model (Rondeau, Mazroui, and Gonzalez, 2012) and the shared random effects
model (Rizopoulos, 2016). Compared to the other two types of models, the advantage of
the shared random effects model is that it captures individual variability without the need
for correlated survival data. Nevertheless, the shared random effects models have their own
limitations: by including predictors of the longitudinal outcome in the survival model, they
usually focus on how longitudinal outcomes impact survival. They also rely on GLMM
which limits their time resolution. Modelling ALS progression raises thus the need for a
Joint data-driven model.
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From a clinical point of view, having a personalised prognosis in ALS could help, in ad-
dition to better-anticipating care management of the patient, to design more powered trials
(Maheux et al., 2023; Raket, 2022). An online tool is freely available online, for neurologists,
to give insight on prognosis (Westeneng et al., 2018)(http://www.encalssurvivalmodel.
org/) and it was also the subject of the challenge Prize4Life (Kueffner et al., 2019).

In this chapter, we propose a Joint Temporal model suited for progressive chronic diseases
that overcomes the need, of the state-of-the-art joint models, for a reliable reference time.
To do so, we used the longitudinal Spatiotemporal model as the longitudinal submodel
and used its defined latent disease age as the linkage structure. We associated a survival
submodel that estimates a Weibull distribution from the latent disease age, in the spirit of
an AFT model.

After introducing the Joint Temporal model, we validated it using sensitivity analysis on
simulated data corresponding to different real-like clinical scenarios. We then benchmarked
the Joint Temporal model against reference models on simulated and real ALS data, and
showed that the proposed approach is better suited than the state-of-the-art when reference
time used to realign patients is not reliable.

3.2 Model specifications

3.2.1 Notations

3.2.1.1 Data

As in section 2.2.1, we consider N patients, indexed by i, followed for ni visits indexed by j
and observed at an age ti,j . In this chapter, only one outcome yi,j is measured. We assume
that we also observe an event e, and denote tei the age of the patient when the event is
observed. To distinguish censored and observed events, a boolean Bei is associated with the
time of the event tei : Bei = 0 if the event is censored and Bei = 1 if the event is observed
(see section 1.3.1). If the event is censored, the time of the last visit is used as the time of
the event tei (Leung, Elashoff, and Afifi, 1997).

3.2.1.2 Joint model structure

The objective of joint models is to describe the combination of two types of clinical data:
longitudinal data and survival data, with their linkage. As detailed in section 2.2.3.1, the
longitudinal process, is modelled by γi(ti,j) so that yi,j = γi(ti,j) + ϵi,j with ϵi,j ∼ N (0, σ)

a Gaussian noise. The survival process Si(t), is modelled by the probability that a patient
i experiences the event after age t with Si(t) = p(tei > t).

3.2.2 The Joint Temporal model

The Joint Temporal model is built upon a univariate version of the Spatiotemporal model
described in section 2.2.3. In such a univariate model, only temporal variability is allowed
and no random effects are capturing spatial variability (see section 2.2.3.2) as there is only
one outcome y considered.

http://www.encalssurvivalmodel.org/
http://www.encalssurvivalmodel.org/
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3.2.2.1 The latent disease age: correction of individual variation

In the Joint Temporal model, the differences in the observed univariate trajectories are
encapsulated in the latent disease age ψi(t) = eξi(t− τi) + t0 with eξi the individual speed
factor and τi the individual estimated reference time (see section 2.2.3.2). The latent disease
age is then used as the link between the longitudinal and the survival processes (γi(t), Si(t)),
both estimated from this latent disease age.γi(t) = γ0(ψi(t))

Si(t) = S0(ψi(t))

Indeed, for the survival modelling, instead of using time 0 as a start time, we used the
reference time t0 and imposed ∀t < t0, S0(t) = 1. This assumption makes sense as t0
enables realigning trajectories and corresponds to a time of a given value of the score that
most of the patients experimented with.

3.2.2.2 Modelling longitudinal process

Following what was described in section 2.2.3.3, the univariate Spatiotemporal model can
be rewritten for a patient i and a visit j as:

γi(ti,j) =
(
1 + g × exp(−v0 (g+1)2

g (ψi(ti,j)− t0))
)−1

3.2.2.3 Modelling survival process

The Weibull distribution is used to model the survival probability from the latent disease
age ψi(t):

Si(t) = S0(ψi(t))

= 1ψi(t)>t0 exp
(
−
(
ψi(t)−t0

ν

)ρ)
+ 1ψi(t)≤t0

= 1t>τi exp
(
−
(
eξi (t−τi)

ν

)ρ)
+ 1t ≤τi

where ν represents the scale and ρ the shape of the Weibull distribution. From there we
also compute the individual hazard, which is, assuming that a patient has survived for a
time t, the probability that he will not survive for an additional time dt:

hi(t) = −S
′
i(t)
Si(t)

= 1ψi(t)>t0
ρeξi
ν

(
ψi(t)−t0

ν

)ρ−1

= 1t>τi
ρeξi
ν

(
eξi (t−τi)

ν

)ρ−1
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3.2.2.4 Joint Temporal model

The Joint Temporal model is the combination of both a longitudinal submodel γi(t) and a
survival submodel Si(t) using the latent disease age ψi(t) as a linkage structure:

ψi(t) = eξi(t− τi) + t0

γi(t) = γ0(ψi(t)) =
(
1 + g × exp(−v0 (g+1)2

g (ψi(t)− t0))
)−1

Si(t) = S0(ψi(t)) = 1ψi(t)>t0 exp
(
−
(
ψi(t)−t0

ν

)ρ)
+ 1ψi(t)≤t0

(3.1)

3.2.3 Likelihood of the Joint Temporal model

3.2.3.1 Parameters

We put ourselves in the same context as in section 2.2.4.1. The parameters of the model
can be summarised as follows for each patient i:

• Latent parameters (z):

– Latent fixed effects (zfe): fixed effects sampled

g̃ = log(g) ∼ N
(
g̃, σ2g̃

)
ṽ0 = log(v0) ∼ N

(
ṽ0, σ

2
ṽ0

)
ν̃ = − log(ν) ∼ N

(
ν̃, σ2ν̃

)
ρ̃ = log(ρ) ∼ N

(
ρ̃, σ2ρ̃

)
– Latent random effects (zre): random effects sampled

ξi ∼ N
(
ξ, σ2ξ

)
τi ∼ N

(
τ , σ2τ

)
• Model parameters (θ): fixed effects estimated from log-likelihood maximisation θ =

{σξ, στ , t0, g̃, ṽ0, ν̃, ρ̃, σ}

• Hyperparameters (Π): set by the user Π = {σg̃, σṽ0 , σν̃ , σρ̃}

To ensure identifiability, we set ξ = 0 and t0 = τ .

3.2.3.2 Log-likelihood

The likelihood estimated by the model is the following:

p(y, Te, Be | θ,Π) =
∫
z
p(y, Te, Be, z | θ,Π)dz

p(y, Te, Be, z | θ,Π) can be divided into two different terms: data attachment which
represents how well the model describes the data (y, te, Be) and a prior attachment, which
prevents over-fitting.

log p((y, te, Be), z | θ,Π) = log p(y, te, Be | z, θ,Π) + log p(z, | θ,Π)

The first term, data attachment, can be divided again into two terms considering that sur-
vival and longitudinal processes are independent knowing the random effects, which is an
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assumption common to other joint models (Rizopoulos, 2012; Proust-Lima, Philipps, and
Liquet, 2017). We can also split the prior attachment term: two terms for the prior attach-
ment of latent parameters (fixed and random). We end up with the following expression
:

log p((y, te, Be), z, θ | Π) = log p(y | z, θ,Π)

+ log p(te, Be | z, θ,Π)

+ log p(zre | zfe, θ,Π)

+ log p(zfe | θ,Π)

The different log-likelihood parts are described below associated with their different assump-
tions. Note that the total formula of the log-likelihood is available in appendix A.1.

Longitudinal data attachment For longitudinal process modelling, we assumed that
patients and their visits were independent conditionally to the parameters of the model and
that the noise of the process follows a Gaussian distribution. We thus get:

log p(y | z, θ,Π) =
∑
i,j

log p(yi,j | z, θ,Π) =
∑
i,j

− log
(
σ
√
2π
)
− 1

2σ2
(yi,j − γi (ti,j))2

Survival data attachment For survival process modelling, we also assumed that all
patients were independent and that the modelling of the survival process depended on
whether the event was observed or not:

log p(te, Be | z, θ,Π) =
∑

i log p(tei , Bei | z, θ,Π)

=
∑

i 1Bei=1 × log (hi(tei)) +
∑

i log (Si(tei))

Note that if ψi(t) < t0 log (hi(tei)) = −∞. To prevent estimation issues, we initialised the
algorithm at a possible point getting inspiration from barrier methods (Nesterov, 2018).

Latent random effects priors attachment As patients were supposed to be indepen-
dent of each other, we supposed that random effects were independent conditionally to zfe, θ
and Π. The regularization term associated, with ξ = 0 and τ̄ = t0, is then:

log p(zre | zfe, θ,Π) = log p(τi | zfe, θ,Π) + log p(ξi | zfe, θ,Π)

= −N log
(
στ
√
2π
)
− 1

2σ2
τ

∑
i(τi − t0)2

−N log
(
σξ
√
2π
)
− 1

2σ2
ξ

∑
i(ξi − ξ)2
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Latent fixed effects prior attachment Each latent fixed effect is independently sam-
pled from a posterior distribution. The regularization term associated is then:

log p(zfe | θ,Π) = log p(g̃ | θ,Π) + log p(ṽ0 | θ,Π)

+ log p(ν̃ | θ,Π) + log p(ρ̃ | θ,Π)

= −log
(
σg̃
√
2π
)
− 1

2σ2
g̃

(
g̃ − g̃

)2
− log

(
σṽ0
√
2π
)
− 1

2σ2
ṽ0

(
ṽ0 − ṽ0

)2
− log

(
σν̃
√
2π
)
− 1

2σ2
ν̃

(
ν̃ − ν̃

)2
− log

(
σρ̃
√
2π
)
− 1

2σ2
ρ̃

(
ρ̃− ρ̃

)2
3.2.4 Estimation of the Joint Temporal model

The estimation method can be separated into two steps, as in section 2.2.5.
The first one is the estimation of the fixed effects jointly with the random effects, referred

to as the calibration step. It is the same as the one used in section 2.2.5. The adapted total
log-likelihood, the sufficient statistics, and the maximisation update rules, necessary for the
computation, are given in the appendix A.2 and A.3.

The second one is the estimation of the random effects of a patient knowing the fixed
effects, named personalisation step. The only difference with section 2.2.5 is that for pre-
dictions, the survival probability is then corrected using the survival probability at the last
visit as in other packages (Rizopoulos, 2016).

An implementation of the Joint temporal model is available in the open-source package
Leaspy (v2): https://gitlab.com/icm-institute/aramislab/leaspy.

3.2.5 Attenuation estimation bias

An attenuation in the population speed v0 has been observed in several studies using the
Spatiotemporal model through Leaspy package (unpublished data). The cause of the atten-
uation of the speed v0 is still a subject of research, although many hypotheses have been
tested. As it is linked with the speed, ξi might also be linked to the issue. Thus, this
attenuation issue might propagate to the scale of the Weibull distribution, ν, in the Joint
Temporal model. Nevertheless, as e−ξi impacts ν this might result in an overestimation of
ν. Here, we proposed a method to correct this attenuation bias for both the Longitudinal
and the Joint Temporal model.

Past experiments have shown that predictions were less impacted by this attenuation.
Thus, we decided to correct the fixed effects estimated by the calibration with the mean
of the random effects estimated after a personalisation on the training set. We further
investigate the size of the bias and the impact of the correction method.

3.2.6 Reference models for univariate longitudinal data and event with
right non informative censoring

We chose to benchmark the Joint Temporal model against several reference models. First,
we used one-process-only models. For the survival model, we used a Weibull AFT model

https://gitlab.com/icm-institute/aramislab/leaspy
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to describe the survival process, using the Lifelines python package (Davidson-Pilon, 2023).
This model will be referred to as the AFT model. For the longitudinal model, we used a
univariate version of the Spatiotemporal model described in section 3.2.2.2 using the open-
source Leaspy package. This model will be referred to as the Longitudinal model. We
expected the Joint Temporal model to be at least as good as these two models.

Second, we built a two-stage model: a survival model that took as covariates the random
effects of the Longitudinal model (Murawska, Rizopoulos, and Lesaffre, 2012). Even though
this model is subject to an immortal bias, it enabled us to compare our model to a better
survival model than the AFT model. We used the Longitudinal model to extract random
effects for each individual, and then used them as covariates in a Weibull AFT model,
using the Lifelines package (Davidson-Pilon, 2023). This model will be referred to as the
Two-stage model, and the Joint Temporal model was expected to be at least as good as it.

Third, we used a joint model with shared random effects, to evaluate if the new model
could improve estimation. To do so, we use a logistic longitudinal process, estimated using
the JMbayes2 package (Rizopoulos, 2016). This model will be referred to as the univ-
JMbayes2 model. All the parameters and the model structure equations are summarised in
Table 3.1.

3.2.7 Clinically meaningful estimated parameters

Predictions of different models can easily be compared. Nevertheless, joint models are also
used to make cohort descriptions. Since each model has its own parameters, their comparison
is difficult. To overcome this issue, the idea was to extract clinically meaningful estimated
parameters that could be easily used in cohort description. For the survival process, we
chose the median survival time, referred to as the median. For the longitudinal process, we
have assumed a logistic shape of the curve. We then used the axis value and the slope at
the inflection point as clinically meaningful estimated parameters. We later refer to them
as midpoint and growth. Note that for all the different models, we reported the formula
used in Table 3.2.
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Table 3.1: Specification of the Joint Temporal model and reference models for univariate longitudinal outcome and event with non-informative right
censoring

Legend: Longitudinal: Spatiotemporal longitudinal model, Two-stage model: AFT survival model that used as covariate random effects of the Longitudinal
model, AFT: Accelerated Failure Time model, Joint Temporal: the Joint Temporal model, univ-JMbayes2: joint model with shared random effects.
spl(t): spline function, x = (ξ, τ) are extracted from the Longitudinal model and used as covariates,

Model Inputs Effects Random effects structure Link functions
Fix Random ψi(t) Longitudinal γi(t) Survival Si(t)

Longitudinal t g, v0, t0 ξi, τi eξi(t− τi) + t0

(
1 + g × exp(−v0 (g+1)2

g (ψi(t)− t0))
)−1

-

Two-stages t, x = (ξi, τi) ν0, ν1, ρ0 - - - exp

(
−
(

t
exp(ν0+ν1x)

)exp(ρ0))
AFT t ν0, ρ0 - - - exp

(
−
(

t
exp(ν0)

)exp(ρ0))
Joint Temporal t g, v0, t0, ρ, ν ξi, τi eξ(t− τ) + t0

(
1 + g × exp(−v0 (g+1)2

g (ψi(t)− t0))
)−1

exp
(
−
(
ψi(t)
ν

)ρ)
univ-JMBayes2 t β0, β1, g, α, spl(t) bi,0, bi,1 (β0 + bi,0) + (β1 + bi,1)t (1 + g × exp(ψi(t)))

−1 exp
(
−
∫ t
0 exp(spl(u) + αγ(u))du

)
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Table 3.2: Clinically meaningful estimated parameters formulas for the Joint Temporal model and reference models for univariate longitudinal outcome
and event with non-informative right censoring

Legend: Longitudinal: Spatiotemporal longitudinal model, Two-stage model: AFT survival model that uses as covariate random effects of the Longitudinal
model, AFT: Accelerated Failure Time model, Joint Temporal: the Joint Temporal model, univ-JMbayes2: joint model with shared random effects.
If a function to extract the clinically meaningful estimated parameters was available in the package it was directly used and noticed as available in the
package. For the JMBayes2 package, we estimated the function S(t) to find the median of survival (from S(t) estimation).

Model Survival Longitudinal
Median Growth Midpoint

Longitudinal - v0
(g+1)2

4g log(g) g
v0(g+1)2

+ t0

Two-stages available in package - -
AFT available in package - -

Joint Temporal ν ln(2)
1
ρ v0

(g+1)2

4g log(g) g
v0(g+1)2

+ t0

univ-JMBayes2 from S(t) estimation −β1/4 −β0
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3.3 Simulation study

3.3.1 Simulated data

3.3.1.1 Data simulation

Data were simulated under the Joint Temporal model structure. We used the following
procedure:

1. We simulated random effects using ξi ∼ N
(
0, σ2ξ

)
and τi ∼ N

(
t0, σ

2
τ

)
.

2. We modelled the age at baseline tb,i as tb,i = τi + δbi with δbi ∼ N
(
δb, σ

2
δb

)
.

3. We set a time of follow-up per patient Tfi , with Tfi ∼ N
(
Tf , σ

2
Tf

)
and a time between

two visits δvi,j = ti,j−1 − ti,j , with δvi,j ∼ N
(
δv, σ

2
δv

)
to simulate ni visits until

ti,ni ≤ tb,i + Tfi < ti,ni+1 .

4. We set the value of the outcome at each visit using yi,j = γi(ti,j) + ϵi,j with ϵi,j ∼
N
(
0, σ2

)
with Leaspy.

5. For each patient, we simulated the event Tei using Tei ∼ e−ξiW (ν, ρ) + τi.

6. We considered that the event stopped the follow-up and that the follow-up censored
the event. Thus all the visits after the event were censored (ti,j > Tei) and events
after the last visit were censored: (ti,max(j) < Tei).

Due to random assignment, some patients experienced the event (death) before their first
visit. This censure also changed the random effects distribution, as most of the patients cen-
sored were progressing fast. To consider this bias, we corrected the true values of clinically
meaningful estimated parameters, using the available true value of random effects.

3.3.1.2 Simulated Scenarios

We simulated ALS real-like data with different data collection designs (number of patients,
visit frequency, time of follow-up, and noise). We used the PRO-ACT dataset, described in
section 2.3.1, to get estimated real-like values for parameters. Parameters directly associated
with the disease were extracted from data analysis, using the Longitudinal and AFT models.
For each of the five scenarios that studies the impact of a given parameter, we simulated
three different datasets, that corresponded to an easy, medium, and complex situation.

Our first scenario concerned the number of patients needed for calibration. Due to
PRO-ACT properties, we decided to test three sample sizes: N = 200, 500, and 1,000, with
other parameters being equal to real-like ones. Visit frequency impact was studied with our
second scenario. In PRO-ACT, patients are seen on average every 1.47 months. We have
tested three different average times between visits δv = 3, 1.5, 1. The third scenario enabled
us to study the impact of the time of follow-up. Patients in PRO-ACT are followed for an
average of 0.96 years. We tested three different average follow-up duration Tf = 0.75, 1.0,
1.25. Our fourth scenario enabled us to measure the impact of longitudinal noise in data
collection. On PRO-ACT, we found a noise of 5% on the longitudinal outcome using the
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Longitudinal model. Note that the test-retest error of ALSFRSr is around 2% (Miano et al.,
2004). We thus decided to test σ = 5%, 10% and 20%. Finally, our fifth scenario concerned
noise in event distribution. We found a shape of the Weibull distribution, ρ, on the survival
process of 2.25. We decided to test three events distribution (ρ, ν) = (3, 3.11),(2.25, 3.62),

(2, 3.84) so that the mode of the distribution (ν
(
ρ−1
ρ

) 1
ρ ) does not change but the variation

increases.
To make the results of our scenarios comparable, we put the same real-like dataset for

all the medium difficulties of the scenarios except for the patient and longitudinal noise
one, for which the real-like dataset corresponds to the easier one. We ended up with 11
distinct datasets for different study designs, all inspired by real data for which simulation
parameters are summarised in the Table 3.3.
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Table 3.3: Data simulation parameters for each of the five scenarios

Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-up (F): sce-
nario with different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise
(S): Scenario with different standard deviation on survival. (r) indicate when ALS real-like parameters are used. For each sce-
nario, three datasets were simulated [Easy, Medium, Hard] that corresponded to an increased difficulty of simulated data for the es-
timation. More information on simulation is available in section 3.3.1.2. Note that to assure identifiability: τ = t0, ξ = 0.

Type Parameters ALS Patient Visit Follow up Longitudinal Survival
Name Symbol real-like (r) number (P) density(V) (F) noise (L) noise (S)

Patients Patient number N 1,000 [r, 500, 200] r r r r

Random Effect Individual log-speed factor (mean) ξ 0 r r r r r
(std) σξ 0.73 r r r r r

Population estimated reference time (years) (std) τ 1.17 r r r r r
(std) στ 1.04 r r r r r

Longitudinal Speed of the logistic curve v0 1.13 r r r r r
Fixed Effects Curve value at t0: 1

1+g g 6.40 r r r r r
Estimated noise σ 0.04 r r r [r, 0.1, 0.2] r

Survival Scale of the Weibull distribution ν 3.62 r r r r [3.11, r, 3.84]
Fixed Effects Shape of the Weibull distribution ρ 2.25 r r r r [3, r, 2]

Visits

Time between τ and baseline (years) (mean) δb 0.4 r r r r r
(std) σδb 0.84 r r r r r

Time of follow up (years) (mean) Tf 0.96 r r [2, r, 0.5] r r
(std) σTf 0.87 r r r r r

Time between visits (months) (mean) δv 1.47 r [1, r, 3] r r r
(std) σδv 0.5 r r r r r
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3.3.2 Method - Validation study

3.3.2.1 Sensitivity analysis

To perform our sensitivity analysis on all the simulated scenarios (Table 3.3 in appendix),
we first trained the Longitudinal model during 2,000 iterations. We used the values of the
Longitudinal model as initialisation for the Joint Temporal model, and ran it for 70,000
iterations (on average an hour), with a Robbins-Monro convergence phase on the 10,000
last iterations (Robbins and Monro, 1951). We then assessed the quality of the estimates
in two steps.

Effects estimations We wanted to assess how well the model could estimate fixed and
random effects from simulated data whatever the study design. For fixed effects, as done
by Pan and Hout, 2023, we extracted data from the posterior distribution (between 30,000
and 60,000 iterations) and estimated the bias to true fixed effects used for simulation. For
random effects, we extracted the mean of the random effects posteriors for each individual
(between 30,000 and 60,000 iterations) to reduce the computation complexity. As a metric,
we used the intraclass correlation between the mean of each individual and the true value
that enabled the simulation.

Attenuation bias correction We tested our correction of attenuation bias in simulated
data, using clinically meaningful estimated parameters, as their biases are easier to interpret
than fixed effects. For the value without correction, we computed the clinically meaningful
parameters using the posteriors of fixed effects. For the value with correction, we corrected
the output on the model (70, 000th iteration, means computed through the Robbins-Monro
convergence), with the mean of random effects estimated thanks to personalisation on the
training set. We compared both values.

The impact of the correction method on random effects was also evaluated. We computed
the intraclass correlation between the random effects extracted from personalisation and the
true value that enabled the simulation. Results were compared with the one of the sensitivity
analysis.

3.3.2.2 Benchmark experiment on simulated data

All estimations and predictions of the models were compared using the real-like dataset
(Table 3.3 in appendix). We selected patients with at least 3 visits to ease the following
prediction setup. A 10-fold cross-validation (train 90% - test 10%) was used, with 70,000
iterations for both the Spatiotemporal and Joint Temporal model (on average half an hour)
with a Robbins-Monro convergence phase on the 10,000 last iterations (Robbins and Monro,
1951). The Joint Temporal model initialised with parameters of a Longitudinal model ran
with 2,000 iterations.

Clinically meaningful estimated parameters on simulated data As we could not
compare the fixed effects of the different models, we chose to compare the clinically mean-
ingful estimated parameters, with the true one that enabled simulation.
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For each model, we computed clinically meaningful estimated parameters using model
output (70, 000th iteration, means computed through the Robbins-Monro convergence) (Ta-
ble 3.2) and applied the attenuation bias correction (see section 3.2.5) for both the Joint
Temporal model and the Longitudinal model. Then, the bias to true clinically meaningful
estimated parameters was computed. We compared the 10-fold pooled bias distribution of
the Joint Temporal model with the four reference models for the three clinically meaningful
estimated parameters using a Wilcoxon signed-rank test with a Bonferroni adjustment for
multiple pairwise comparisons.

Prediction on simulated data Finally, we wanted to evaluate both the goodness of
survival and longitudinal predictions of the Joint Temporal model against reference models
on simulated data. The fixed effects output by the model (70, 000th iteration) were used as a
predictive model and will be referred to as the prediction model. Personalisation was made
using the first two visits of the patients from the test set and predictions were estimated on
the remaining. The goodness of longitudinal predictions was assessed using absolute errors.
The goodness of survival predictions was assessed using the C-index, for event order at 1 and
1.5 years, as in the ALS challenge (Kueffner et al., 2019). Nevertheless, this method is not
suitable for the evaluation of t-year predicted risks (Blanche, Kattan, and Gerds, 2019). We
thus added the mean cumulative dynamic AUC at 1 and 1.5 years for a correct measure and
kept the C - index for comparison with existing results. To evaluate the absolute distance
between real and estimated probability of the events, we used the Integrated Brier Score
(IBS). The predictions were compared using a Wilcoxon signed-rank test with a Bonferroni
adjustment for multiple pairwise comparisons. All the survival metrics were computed using
the Python package sksurv (Pölsterl, 2020).

3.3.3 Results

3.3.3.1 Data simulated

Among the 11 datasets simulated under the 5 scenarios, the number of visits simulated was
relatively stable at 8,341 (31) except for the patient, visits and follow-up scenarios (Figure
B.1 in appendix). The censuring rate was between 80 and 85% for all datasets, except for
the easy and hard dataset of the follow-up scenario, with 60% and 90% censure (Figure B.1
in appendix).

3.3.3.2 Sensitivity analysis

Effect estimation We evaluated the posterior distribution of fixed effects (Figure B.2 in
appendix). For the survival submodel, both Weibull fixed effects were slightly overestimated.
The scale of the Weibull distribution (ν) was overestimated for the real-like dataset by 8.7
(2.9) % and reached the worst results for the harder dataset of the follow-up scenario (Figure
B.2 in appendix). The shape of the Weibull distribution (ρ) was overestimated for the real-
like dataset by 30.2 (5.5) % and often across scenarios (Figure B.2 in appendix).

For the longitudinal submodel, the main parameters were slightly underestimated. For
the real-like dataset, g was underestimated by -5.2 (3.9) % (with 1

1+g the value of the
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outcomes at t0) and the population speed (v0) by -6.7 (2.8)%. The worst results were
reached for the harder dataset of longitudinal noise scenarios (Figure B.2 in appendix).

For the four remaining parameters, the population estimated reference time (t0), the
longitudinal noise (σ) and the standard deviation of the random effects (στ , σξ), average
biases were below 4% for the real-like dataset. Worst results were reached for the harder
dataset of longitudinal noise scenarios (σ = 20%) for all these fixed effects (Figure B.2 in
appendix).

The intra-class correlation between simulated random effects and the mean of posterior
random effects for each patient was between 0.75 and 0.97 (Table B.1 in appendix).

Attenuation bias correction The attenuation correction bias was evaluated on clinically
meaningful estimated parameters, but was already observed in effect estimation with the
underestimation of the population speed (v0) and the overestimation of the scale of the
Weibull distribution (ν). Almost all corrected clinically meaningful estimated parameters
had a lower bias compared to those of the posterior, whatever the scenario and difficulty of
the dataset (Figure 3.1).

Figure 3.1: Absolute estimated bias for clinically meaningful estimated parameters for
the Joint Temporal model (median, growth and midpoint) on all simulated datasets

Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with
different density of visits, Follow-up (F): scenario with different follow-up duration, Lon-
gitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise
(S): Scenario with different standard deviation on survival. Easy, Medium, and Hard cor-
respond to an increased difficulty of simulated data for the estimation, more information on
simulation is available in section 3.3.1.2 and summarised in the table 3.3. Datasets with (r)
correspond to the real-like dataset.
corrected: mean bias extracted from Robbin Monroe algorithm corrected for attenuation bias,
from posterior: mean bias with CI 95% of the posterior chain. Values of the clinically mean-
ingful estimated parameters that enabled the simulation, from which the bias is computed,
were 4.48 (0.12) years for the median, -13.19 (0.21) point of ALSFRSr per year for the
growth, 2.92 (0.06) years for the midpoint.

The corrected median absolute bias was below 0.43 years for a real value of 4.48 (0.12)
years, for all scenarios except the harder of patients and follow-up scenarios. The worst
result was reached for the harder follow-up scenario (Tf = 0.75). The corrected growth
absolute bias was below 0.76 points for a real value of -13.19 (0.21) points of ALSFRSr per
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year, for all scenarios, except for the harder longitudinal noise dataset (σ = 20%). The
corrected absolute bias midpoint was lower than 0.13 years for a real value of 2.92 (0.06)
years, whatever the scenario. The worst result was reached for the harder dataset of the
longitudinal noise scenario (σ = 20%). All the detailed values for biases are available in
Table B.2 in the appendix.

Random effects computed through personalisation were not different from those of the
posterior mean (Figure B.3 in appendix). Detailed values can be found in Table B.3 in the
appendix.

3.3.3.3 Benchmark experiment on simulated data

Clinically meaningful estimated parameters For the longitudinal process, the Joint
Temporal and Longitudinal models were closer to the Truth model compared to univ-
JMbayes2 (Figure B.4 A). Over 10-fold cross-validation, the midpoint was simulated to
be 2.97 (0.02) years and the growth of -12.97 (0.11) points of ALSFRSr per year. The Joint
Temporal model had a smaller absolute bias on both the growth and midpoint compared to
the univ-JMbayes2 model: 0.59 (0.08) compared to 1.71 (0.12) points of ALSFRSr per year
(p-value = 3.9e-03) and 0.06 (0.01) compared to 0.43 (0.04) years (p-value = 3.9e-03)(Table
3.4). This was expected due to the structure of the simulated data. The Longitudinal model
had a smaller absolute bias on both the growth and the midpoint compared to the Joint
Temporal model: 0.39 (0.08) compared to 0.59 (0.08) (p-value =3.9e-03) and 0.04 (0.01)
compared to 0.06 (0.01) (Table 3.4). This might be because the Longitudinal model has
fewer constraints and is applied to an easy task: the simulated data and the Longitudinal
model have the same structure.

For the survival process, the Two-stages model and the Joint Temporal model were close
to the Truth at the beginning of the progression. The univ-JMbayes2 model overestimated
the average patient survival (Figure B.4 B in appendix). It was confirmed by an absolute
bias of 2.34 (0.14) years on the median compared to a truth value of 4.57 (0.03) years
over 10-fold cross-validation (Table 3.4). This issue might be linked to the non-linearity
of the random effects in the simulation process. The computed bias on the median was
not significantly different for the Joint Temporal model and the Two-stages model. The
computed bias on the median was lower for the Joint Temporal model than for the AFT
model: respectively 0.09 (0.04) and 0.8 (0.08) (p-value = 5.9e-03) (Table 3.4).

Next visits predictions on simulated data On simulated data, using the 10-fold cross-
validation (train 90% - test 10%), we personalised the model on the first two visits of
the patients from the test set and predicted the remaining. Doing so, 6,382 longitudinal
predictions were made at 0.58 (0.41) years from the last visit.

For the longitudinal process, the Joint Temporal model had a significantly smaller lon-
gitudinal absolute prediction bias compared to the univ-JMbayes2 model: respectively 3.74
(3.8) and 4.09 (4.1) points of ALSFRSr (p-value = 3.9e-27)(Table 3.5). The Longitudi-
nal model had a smaller absolute prediction bias compared to the Joint Temporal model:
respectively 3.73 (3.82) compared to 3.74 (3.8) (p-value = 3.3e-05).
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Table 3.4: Clinically meaningful estimated parameters absolute bias of the Joint Tem-
poral model and reference models on real-like dataset

Legend: Joint Temporal: the Joint Temporal model, Two-stage model: AFT survival
model that uses as covariate random effects of the Longitudinal model, Longitudinal:
Spatiotemporal longitudinal model, AFT: Accelerated Failure Time model, univ-JMbayes2:
joint model with shared random effects.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-
values are computed using a Wilcoxon signed-rank test with Bonferroni correction
between the Joint Temporal model and each reference model. Results in bold are
the smallest biases for the clinically meaningful estimated parameter. Values of
the clinically meaningful estimated parameters that enabled the simulation, from
which the biases were computed: -12.97 (0.11) points of ALSFRSr per year for
the growth, 2.97 (0.02) years for the midpoint, 4.57 (0.03) years for the median.

Joint Temporal Two stages p-value Longitudinal p-value AFT p-value univ-JMbayes2 p-value
growth (pt/y) 0.59 (0.08) - - 0.39 (0.08) 3.9e-03 - - 1.71 (0.12) 3.9e-03
midpoint (y) 0.06 (0.01) - - 0.04 (0.01) 3.9e-03 - - 0.43 (0.04) 3.9e-03
median (y) 0.09 (0.04) 0.14 (0.05) 3.2e-01 - - 0.80 (0.08) 5.9e-03 2.34 (0.14) 5.9e-03

For the survival process, the Joint Temporal model significantly improved all metrics
compared to the univ-JMbayes2 and AFT models. Again, for the univ-JMbayes2 model, this
might be due to the failure of the univ-JMbayes2 model to handle the non-linear relation
between random effects. The survival predictions of the Joint Temporal model were not
significantly distinct for any metric from the one of the Two-stages model.

Table 3.5: Prediction metrics results for the Joint Temporal model and reference models
on real-like dataset

Legend: Joint Temporal: the Joint Temporal model, Two-stage model: AFT survival model
that uses as covariate random effects of the Longitudinal model, Longitudinal: longitudinal
model, AFT: Accelerated Failure Time model, univ-JMbayes2: joint model with shared
random effects.
Results are presented with means (SD) over the 10-fold cross-validation. P-values are com-
puted using a Wilcoxon signed-rank test or pairwise t-test with Bonferroni between the Joint
Temporal model and each reference model. IBS stands for Integrated Brier Score. ↓means
that the metric should be minimised and ↑maximised. Results in bold are the best for each
metric. 6,382 longitudinal predictions were made at 0.58 (0.41) years from the last visit.

Joint Temporal Two stages p-value Longitudinal p-value AFT p-value univ-JMbayes2 p-value
Absolute bias ↓ 3.74 (3.80) - - 3.73 (3.82) 3.3e-05 - - 4.09 (4.10) 3.9e-27
MSE 28.42 (70.5) - - 28.54 (72.36) 4.4e-02 - - 33.48 (83.35) 3.0e-25
IBS ↓ 0.08 (0.02) 0.08 (0.02) 3.2e-01 - - 0.11 (0.03) 5.3e-05 0.11 (0.03) 7.5e-05
Mean AUC (1y, 1.5y) ↑ 0.74 (0.10) 0.75 (0.09) 1.0e+00 - - 0.60 (0.08) 2.2e-03 0.60 (0.09) 3.3e-03
C-index 1.0y ↑ 0.73 (0.07) 0.73 (0.08) 1.0e+00 - - 0.60 (0.07) 3.1e-03 0.59 (0.07) 2.5e-03
C-index 1.5y ↑ 0.73 (0.07) 0.73 (0.07) 1.0e+00 - - 0.60 (0.07) 2.0e-03 0.59 (0.07) 1.9e-03

3.3.4 Intermediate conclusion

We have evaluated the impact of attenuation bias on the Joint temporal model fixed effects
and proposed a correction that enabled us to reduce the absolute bias on clinically meaning-
ful estimated parameters. On simulated data, the Joint Temporal model got results close to
the Longitudinal model. Results in the survival process were in the same range as the ones
of the Two-stage model and outperformed the AFT model. All these results were promising
and enabled us to validate the Joint Temporal model on simulated data.
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3.4 Application: Model benchmark

3.4.1 ALS Data: PRO-ACT

Study population We applied our method to the PRO-ACT data described in section
2.3.1 to test prediction performances on real data keeping in mind the objective to improve
the power of clinical trials. For the study, we selected patients with at least three visits for
the longitudinal outcomes described below (to ease prediction setup), age at first symptoms,
symptom onset (spinal or bulbar), and sex.

Outcomes As described by the FDA (FDA, 2019), for ALS, clinical trials must demon-
strate a treatment effect on function in daily activities and death. Following this guideline,
we considered the revised version of the ALS functional rating scale revised (ALSFRSr) as
the longitudinal outcome (Rooney et al., 2017). The scale starts at a maximum theoretical
value of 48 and decreases with the severity of the disease till zero. For modelling reasons, it
was normalized using its scale so that the 0 value was the healthiest score and +1 the maxi-
mum disease score change. Tracheostomy was associated with death as a survival outcome,
as in many ALS studies and challenges (Kueffner et al., 2019).

3.4.2 Method - Benchmark experiment on real data

We compared the estimation and prediction of the reference models on real data, using a 10-
fold cross-validation (train 90% - test 10%). The Joint Temporal model was run with 70,000
iterations for each model (on average an hour and a half) with a Robbins-Monro convergence
phase on the 10,000 last iterations (Robbins and Monro, 1951). The Joint Temporal model
was initialised with parameters of a Longitudinal model ran for 2,000 iterations.

Clinically meaningful estimated parameters on real data We computed corrected
clinically meaningful estimated parameters from the Joint Temporal model and the reference
models to see how different they could be (see section 3.3.2.1).

Prediction on real data We wanted to evaluate both the goodness of survival and
longitudinal predictions of the Joint Temporal model against reference models, this time on
real data using the PRO-ACT database. We used the same method as the one developed
in section 3.3.2.2, but applied it to PRO-ACT data: a 10-fold cross-validation (train 90%
- test 10%), with personalisation of the two first visits of the patients of the tests set to
predict the remaining.

3.4.3 Results

3.4.3.1 Data description

PRO-ACT datasets had similar or easier characteristics for estimation, compared to our
real-like simulated dataset, in terms of the number of patients, visits, and time of follow-up
(Table 3.6).



3.4. Application: Model benchmark 63

Table 3.6: Characteristics of the selected patients of PRO-ACT database used to bench-
mark the Joint Temporal model with the reference models

Legend: Results are presented as mean (SD) or frequency [percent][class%]. There were no
missing values in the dataset due to patient selection.

Characteristics Values
Number of patients 2,528
Number of visits 23,143
Number of patients years 2,531
Percentage of censored events (%) 76.74
Number of visits per patients 9.2 (4.3)
Time of follow-up (years) 1.0 (0.6)
Time between visits (months) 1.5 (0.9)
Gender (Male) 1,575 [62.3%]
Symptom onset (Spinal) 1,952 [77.2%]
Age at first symptoms 54.0 (11.3)
Time from first symptoms to baseline (years) 1.6 (0.9)
ALSFRSr total (baseline) 37.9 (5.4)

3.4.3.2 Benchmark on real data

Clinically meaningful estimated parameters on real data For the longitudinal pro-
cess, the Joint Temporal model and Longitudinal model were close compared to the univ-
JMbayes2 model (Figure B.5 A in appendix). Growth in points of ALSFRSr per year ranged
from -13.95 (0.08) for the Longitudinal model to -15.351 (0.1) for the univ-JMbayes2 model,
with a difference of almost 1.4 points per year between the two models. The midpoint
ranged from 2.78 (0.01) for the Joint Temporal model to 3.22 (0.014) for the univ-JMbayes2
model, with a difference of more than 5 months (Table 3.7).

Survival curves were pretty close, even though the variation over 10-fold cross-validation
was wider for the univ-JMbayes2 model (Figure B.5 B in appendix). Apart from the AFT
model, the computed medians were close for all the models, ranging from 4.14 (0.02) for the
Two-stages model to 4.47 (0.09) for the univ-JMbayes2 model with a difference of almost 4
months between the two models (Table 3.7).

Table 3.7: Clinically meaningful estimated parameters for the Joint Temporal model and
reference models on PRO-ACT data

Legend: Joint Temporal: the Joint Temporal model, Two-stage model: AFT survival
model that uses as covariate random effects of the Longitudinal model, Longitudinal:
Spatiotemporal longitudinal model, AFT: Accelerated Failure Time model, univ-JMbayes2:
joint model with shared random effects.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-
values are computed using a Wilcoxon signed-rank test with Bonferroni cor-
rection between the Joint Temporal model and each of the reference models.

Joint Temporal Two stages p-value Longitudinal p-value AFT p-value univ-JMbayes2 p-value
growth (pt/y) -14.17 (0.08) - - -13.95 (0.08) 9.8e-11 - - -15.35 (0.10) 4.6e-14
midpoint (y) 2.78 (0.01) - - 2.79 (0.01) 1.6e-04 - - 3.22 (0.01) 1.8e-13
median (y) 4.15 (0.03) 4.14 (0.02) 6.2e-01 - - 4.69 (0.02) 4.4e-11 4.47 (0.09) 2.0e-06
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Prediction on real data On real data, using the 10-fold cross-validation (train 90% -
test 10%), we personalised the model on the first two visits of the patients from the test set
and predicted the remaining. Doing so,18,077 longitudinal predictions were made at 0.63
(0.55) years from the last visit.

For the longitudinal process, the Joint Temporal model had a significantly smaller ab-
solute prediction bias compared to univ-JMbayes2 respectively 4.21 (4.41) and 4.24 (4.14)
points of ALSFRSr (p-value = 1.4e-17), but a larger absolute prediction bias compared to
the Longitudinal model (4.18 (4.38) (p-value = 2.2e-73)) (Table 3.8).

For the survival process, the Joint Temporal model was significantly better than all the
other models for ordering events, with a mean AUC of 0.67 (0.07) (Table 3.8). The distance
to the observed failure time was not significantly different from the one of the univ-JMbayes2
model with an IBS of 0.1 (0.01), but it was significantly smaller than the one of the Two-
stage model (0.11 (0.01) (p-value = 2.5e-04)) and the one of the AFT model (0.12 (0.01)
(p-value = 1.1e-04)) (Table 3.8).

Table 3.8: Prediction metrics results for the Joint Temporal model and reference models
on PRO-ACT data

Legend: Joint Temporal: the Joint Temporal model, Two-stage model: AFT survival
model that uses as covariate random effects of the Longitudinal model, Longitudinal:
Spatiotemporal longitudinal model, AFT: Accelerated Failure Time model, univ-JMbayes2:
joint model with shared random effects.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-
values are computed using a Wilcoxon signed-rank test or pairwise t-test with
Bonferroni between the Joint Temporal model and each of the reference models.
IBS stand for Integrated Brier Score. ↓means that the metric should be min-
imised and ↑maximised. Results in bold are the best for each metric. 18,077
longitudinal predictions were made at 0.63 (0.55) years from the last visit.

Joint Temporal Two stages p-value Longitudinal p-value AFT p-value univ-JMbayes2 p-value
Absolute bias ↓ 4.21 (4.41) - - 4.18 (4.38) 2.2e-73 - - 4.24 (4.14) 1.4e-17
MSE ↓ 37.11 (91.07) - - 36.67 (90.11) 1.4e-63 - - 35.14 (71.33) 1.1e-13
IBS ↓ 0.10 (0.01) 0.11 (0.01) 2.5e-04 - - 0.12 (0.01) 1.1e-04 0.10 (0.01) 1.0e+00
Mean AUC (1y, 1.5y) ↑ 0.67 (0.07) 0.62 (0.08) 2.8e-03 - - 0.42 (0.07) 4.3e-05 0.61 (0.09) 1.7e-03
C-index 1.0y ↑ 0.69 (0.05) 0.63 (0.06) 4.0e-04 - - 0.41 (0.05) 1.1e-06 0.63 (0.06) 3.1e-04
C-index 1.5y ↑ 0.70 (0.05) 0.65 (0.05) 9.7e-04 - - 0.41 (0.05) 1.6e-06 0.66 (0.05) 1.8e-03

3.5 Discussion

3.5.1 Results interpretation

3.5.1.1 Methodology

Our work showed the potential of a Joint Temporal model that automatically realigns pa-
tients’ trajectories in the context of progressive chronic diseases. After validating the Joint
Temporal model on simulated data, we showed how it could improve the prediction of ALS
progression. Compared to the AFT model and the Two-stage model, the Joint Temporal
model outperformed significantly all the metrics, but the Longitudinal model performed
slightly better than the Joint Temporal model. Event censoring may not bring much to the
Longitudinal model in this case, however, joint modelling corrected shortcomings of the two-
stage model, such as immortal bias. Compared to the joint univariate model with shared
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random effects (univ-JMbayes2 model), the Joint Temporal model outperformed the longi-
tudinal and event ordering metrics (C-index and AUC). This shows that our latent disease
age might be better suited to capture the heterogeneity of the progression of degenerative
diseases. Note that for the event distance metric (IBS) the joint univariate model with
shared random effects model and the Joint Temporal model did not perform significantly
differently. This might be because the survival function of the joint univariate model with
shared random effects model, was more flexible, using splines instead of a Weibull function.

Prediction performances can be assessed in real datasets, using hidden visits. The Lon-
gitudinal model gave the best longitudinal predictions. The clinically meaningful estimated
parameters were close between the Longitudinal and the Joint Temporal models. The dif-
ference between the joint models on real data was 1.18 points of ALSFRSr per year on the
slope and more than 5 months on the midpoint. These differences were wider than the
absolute bias observed in the real-like simulated data. For survival, the Joint Temporal
model outperformed the other models on the real dataset. Compared to the joint univariate
model with shared random effects model, we observed a difference of almost 4 months for
the median survival. This difference was of the same magnitude as the median absolute bias
observed on the real-like simulated data (Table 3.4).

We have tested the Joint Temporal model in different clinical trial scenarios to give future
users insights into biases on clinically meaningful estimated parameters and guidelines as
recommended (Hickey et al., 2016). Note that we studied ALS disease with its own patho-
logical and clinical study characteristics and that guidelines should be adapted in other con-
texts. We showed that the Joint Temporal model tends to overestimate the survival median
and underestimate absolute growth with scenarios increasing difficulty (fewer points, larger
noise). Still, the following recommendations could help keep this bias reasonably small. The
parameter that impacted the estimation precision the most, was the noise on longitudinal
data. In clinical scores, it could be assessed with the Minimal Detectable Change (MDC)
and can vary from one disease to another: 10 % for MDS-UPDRS III (Parkinson), (Steffen
and Seney, 2008), 10 % MMSE (Alzheimer) (Feeney et al., 2016) and 3% ALSFRSr (ALS)
(Fournier, James, and Glass, 2023). In our simulation study, a longitudinal noise of 20%
was too large to get good results, but good results were reached with 10 % in our setting
(corrected bias: [median: 0.07 year, growth: -0.59 point of ALSFRSr/year, midpoint: -
0.02 year]). The number of patients and the time of follow-up should also be considered.
For ALS, with a 4 to 5 years median of death from first symptoms, 6 months of follow-up
induces too much bias on the estimated median which might be due to a high censoring
rate in our case (90%). Results with one year of follow-up, that correspond to real-like
studies (83% of censoring rate), were good (corrected bias: [median: 0.005 year, growth:
0.45 point of ALSFRSr/year, midpoint: -0.06 year]). Note that observation time in disease
timing might also play a role here but we did not further investigate it. We showed that
even with only 200 patients, the Joint Temporal model had reasonable biases on clinically
meaningful estimated parameters (corrected bias: [median: 0.58 year, growth: 0.37 point of
ALSFRSr/year, midpoint: 0.01 year]). Note that there might be a balance with the number
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of visits (8 by default here). For 1,000 patients, we could reduce the number of visits to
4 per patient every 3 months again with a reasonable bias (corrected bias: [median: 0.14
year, growth: 0.43 point of ALSFRSr/year, midpoint: -0.07 year]). Note that the visits
were well-distributed during the whole follow-up time.

3.5.1.2 Clinical

In ALS the question of prognosis is of great interest both for patient care management
and for the increase of clinical trial power. A prognosis online tool is freely available online
for neurologists: The ENCALS Survival model (Westeneng et al., 2018) using a Royston
Parmar Survival model with a proportional impact of covariates (see section 1.3). Using the
C-index, the prediction of our Joint Temporal model reached a C-index around 0.7 (0.5)
using only ALSFRSr, whereas the ENCALS model reached in external validation cohort 0·78
(95% CI 0·77–0·80), using various covariates as sex, site of onset or Forced Vital Capacity.
The performances of the Joint Temporal model can also be compared to the results of
the ALS challenges Prize4Life (Kueffner et al., 2019). The C-index estimated corresponds
to rank seventh, even though we used only ALSFRSr progression to help the prediction,
the other models being much more flexible models with multiple covariates. Longitudinal
prediction got an absolute bias of 4.18 (4.38) points of ALSFRSr which is correct for a scale
design of 48 points but that could still be improved compared to the Minimum Detectable
Change (MDC) of 1.59 points of ALSFRSr(Fournier, James, and Glass, 2023). These results
are quite encouraging given the quantity of information used for prediction but also call for
an extension of the model, to improve the quantity of data handled.

3.5.2 Strengths & Weaknesses

3.5.2.1 Methodology

The main strength of our model, compared to the state-of-the-art is that it alleviates the
proportional hazard hypothesis while keeping an interpretable structure with the latent
disease age. Compared to the joint univariate model with the shared random effects model,
which models the effect of longitudinal outcomes on the event, the Joint Temporal model
captures a latent shared process with the latent disease age, which provides a modelling
alternative. The shared latent age encapsulates the individual temporal variability (speed
and reference time) and enables realigning the progression of the patients on a common
timeline.

More work could be done to alleviate the assumptions about the independence of longi-
tudinal noises at each visit, which has already been addressed in some models (Proust-Lima,
Philipps, and Liquet, 2017). The Joint Temporal model has also been shown to be subjected
to a bias that attenuates the speed, and although we attempted to address it, we still need
to consolidate the hypothesis and the estimation of a good correction for parameters.

3.5.2.2 Clinical

As in the precedent chapter 2, the PRO-ACT database is not representative of the real-life
ALS patient population (over-representation of men, young subjects, patients with spinal
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onset, and slow progressors). Thus, prediction performances must be tested on cohorts
representative of the clinical routine and most of all with external databases.

3.6 Conclusion & perspectives

In conclusion, the Joint Temporal model with latent disease age enabled us to improve the
performance of most prediction metrics compared to existing joint models and alleviate the
need for a precise reference time.

From a clinical point of view, this model opens up perspectives to design predictive
and personalized therapeutic strategies. Nevertheless, it could only model one longitudinal
and one event with non-informative right censoring, whereas in ALS many outcomes are
available as well as events that could be censored by death as the initiation of Non-Invasive
Ventilation (NIV).
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Chapter 4

A Joint cause-specific Spatiotemporal
model

In this chapter, we extended the univariate Joint Temporal model, into a multivariate Joint
cause-specific Spatiotemporal model. This extension enabled us to analyse the initiation
of Non-Invasive Ventilation, potentially censured by death, jointly with longitudinal scores
linked to functional decline. We used the longitudinal Spatiotemporal model presented in
Chapter 2 associated with a cause-specific Weibull distribution from the latent disease age.
Spatial random effects were incorporated to have a proportional effect on the hazard. First,
we validated our model on simulated real-like data. Then, we benchmarked our model with
a reference joint model on real ALS data using PRO-ACT dataset. Finally, we compared
the progression speed, the estimated reference time, and spatial variability across sex and
onset site subgroups in complement to what was done in chapter 2. The Joint cause-specific
Spatiotemporal model achieved similar performance to the reference model while capturing
an underlying shared latent process, the latent disease age, associated with the impact of
the ordering of longitudinal outcomes on the occurrence of the events. This enabled us to
overcome the limitation of the reference model that only captures the impact of longitudinal
outcomes on events occurrence. The application study gave expected results for the Longitu-
dinal outcomes and showed how to interpret the model.
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4.1 Introduction

Respiratory failure is the leading cause of death in ALS and Non-Invasive Ventilation (NIV)
has been proven to be of effective support (Kleopa et al., 1999; Bourke et al., 2006; Hirose
et al., 2018). The timing anticipation of its initiation remains a challenge for clinicians due
to the heterogeneous clinical manifestation of the disease already described in chapter 2. A
better understanding could help improve patient support as its initiation is also symptomatic
of an advanced stage of the disease.

Studies report widely different guidelines for the indication of NIV (Georges et al., 2017;
Morelot-Panzini, Bruneteau, and Gonzalez-Bermejo, 2019) rather than expected initiation
timings. One study (Segura et al., 2023), focusing only on the onset site as a source of
heterogeneity, has already demonstrated disparities in NIV initiation. Life support initia-
tions (gastrostomy, tracheostomy, NIV) were also the subject of a work I co-supervised, on
the French medico-administrative hospital database, in which both sex and onset site were
shown to play a role (Dibling et al., 2024). Nevertheless, longitudinal outcomes of patients
were not available for the study. A very recent study analysed the impact of sex and site
of onset on NIV initiation (Grassano et al., 2024), but they did not take into account the
potential censure of NIV by death, which is known to introduce biases (see section 1.3.1).

As shown in chapter 2 many longitudinal outcomes described the disease progression.
Thus, using a joint model can give insight into how their progression is linked to NIV
initiation. As this event can be censored by death or tracheostomy, its study, jointly with
longitudinal outcomes, requires a joint competing risk model (see section 1.3.3).

To capture individual variability from longitudinal outcomes and model events with
competing risks, shared random effects models have been mainly extended using cause-
specific (Elashoff, Li, and Li, 2007; Andrinopoulou et al., 2017; Hao et al., 2024) (see
section 1.3.3). As described in chapter 3, these models do not realign partial trajectories
(Young et al., 2024) and only model the impact of the longitudinal outcome on survival.

To bridge this gap, we extended the Joint Temporal model developed in chapter 3 and
studied NIV initiation occurrence jointly with the subscores of ALSFRSr. To do so, we
first described the Joint cause-specific Spatiotemporal model: the multivariate Longitudinal
Spatiotemporal model associated with a cause-specific Weibull model. We validated it on
simulated data and benchmarked it against reference models on PRO-ACT data. Finally,
we used it to compare the progression speed, the estimated reference time, and spatial
variability across sex and onset site subgroups to complement chapter 2 with death and
NIV initiation variability.

4.2 Model specifications

4.2.1 Notations

For the longitudinal process, we used the same notations as the one introduced in section
2.2.1. We considered N patients, indexed by i, followed during ni visits indexed by j. We
modeled K outcomes at each visit so that yi,j,k = γi,k(ti,j,k) + ϵi,j,k.
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For the survival process, we extended the notation defined in section 3.2.1 following the
notation of Andrinopoulou et al., 2017. We consider L events associated with one timing
tei that corresponds to the time of the first event observed, or the censoring time. Then, we
associated Bei = 0 if the event is censored and Bei = l if the event l is observed.

4.2.2 Joint cause-specific Spatiotemporal model

4.2.2.1 Temporal and spatial random effects

Temporal random effects A first individual variability of the patient i is encapsulated
in the latent disease age ψi(t) = eξi(t − τi) + t0 with eξi is the individual speed factor and
τi the individual estimated reference time (see section 2.2.3.2). As for the Joint Temporal
model, the longitudinal and survival processes (γi(t), Si(t)) were computed from the latent
disease age (see section 3.2.2.1). Thus, to use the model the user must make the hypothesis
that the longitudinal and the survival processes are linked by a shared latent disease age,
referred to as the shared latent age hypothesis

Spatial random effects A second individual variability, in the disease presentation, is
captured as in section 2.2.3.2, by the space shifts wi = Asi through a dimension reduction
with a mixing matrix A and Ns ≤ K−1 independent sources. As in section 2.2.3.2, to ensure
identifiability through Exp-parallelisation, the matrix A is defined as a linear combination
of vectors of an orthonormal basis, (Bk)1≤k≤K , of the hyperplane orthogonal to Span(v0)
(dimension K × (K − 1)): each column m of A is thus Am =

∑K−1
o=1 βo,mBo with β the

matrix of coefficient (dimension (K − 1)×Ns) so that A = (Bβ)T . These sources are also
used to link the survival and the longitudinal process with the creation, for each event l, of

a survival shift ui,l =
Ns∑
m=1

ζl,msi,m with ζ a matrix of hazard ratio coefficients. Note that, to

describe individual variability on one longitudinal outcome k or event l, space shift wi,k, and
survival shits ui,l are usually easier to interpret compared to sources si, as they encapsulate
the total effect of the spatial variability.

4.2.2.2 Longitudinal submodel

Longitudinal process modelling consists of calculating logistic trajectories γi,k(t) for each
outcome k, from the latent disease age ψi(t), taking into account space shifts wi,k (see
section 2.2.3.3):

γi,k(t) =
(
1 + gk × exp(− (1+gk)

2

gk
(v0,k(ψi(t)− t0) + wi,k)

)−1
(4.1)

where t0 is the population estimated reference time, v0,k is the speed of the logistic curve
at t0 and 1

1+gk
is the value of the logistic curve at t0.

4.2.2.3 Survival submodel

We used a cause-specific structure (Prentice and Gloeckler, 1978; Cheng, Fine, and Wei,
1998) to handle competing risks. Doing so, for each event l and patient i, we define a hazard
hi,l(t), and an associated survival function Si,l(t). The Weibull distribution is used to model
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the event occurrence from the latent disease age with an additional Cox-proportional hazard
impact of the sources on the hazard using the survival shifts ui = ζsi:

hi,l(t) = h0,i,l(t) exp (ui,l)

= ρle
ξi

νl

(
eξi (t−τi)

νl

)ρl−1
exp (ui,l)

where νl is the scale and ρl the shape of the Weibull distribution of the event l. From there,
we compute the survival of event l:

Si,l(t) = exp

(
−

∫
t

0
hi,l(x)dx

)
= exp

(
−
(
eξi (t−τi)

νl

)ρl
exp (ui,l)

)
And the Cumulative Incidence Function (CIF) of event l:

CIFi,l(t) =

∫
t

0
hi,l(x)

∏L
q Si,q(x)dx

=

∫
t

0

ρle
ξi

νl

(
eξi (x−τi)

νl

)ρl−1
exp (ui,l)

∏L
q exp

(
−
(
eξi (x−τi)

νq

)ρq
exp (ui,q)

)
dx

We can see here that the survival shits ui,l have a proportional effect on the hazard and
thus have an interpretation close to the classic Hazard Ratio. Nevertheless, as they are not
exactly the same, for clarity reasons they will be referred to as the Proportional effect of
survival shits on the Hazard (PH).

4.2.2.4 Joint cause-specific Spatiotemporal model

The Joint cause-specific Spatiotemporal model can thus be summarised for a patient i, an
outcome k, and an event l by:

ψi(t) = eξi(t− τi) + t0

wi = Asi

ui = ζsi

γi,k(t) =
(
1 + gk × exp(−v0,k (gk+1)2

gk
eξi(t− τi) + wi,k)

)−1

Si,l(t) = exp
(
−
(
eξi (t−τi)

νl

)ρl
exp (ui,l)

)
(4.2)

4.2.3 Likelihood of the Joint cause-specific Spatiotemporal model

4.2.3.1 Parameters

We put ourselves in the same context as in section 2.2.4.1. The parameters of the model
can be summarised as follows with the patients indexed by i and outcomes by k, the events
by l, the sources by m, and the dimensions of the hyperplane orthogonal to Span(v0) by o:

• Latent parameters (z):
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– Latent fixed effects (zfe): fixed effects sampled

g̃k = log(gk) ∼ N
(
g̃k, σ

2
g̃

)
ṽ0,k = log(v0,k) ∼ N

(
ṽ0,k, σ

2
ṽ0

)
ν̃l = − log(νl) ∼ N

(
ν̃l, σ

2
ν̃

)
ρ̃l = log(ρl) ∼ N

(
ρ̃l, σ

2
ρ̃

)
ζl,m ∼ N

(
ζ l,m, σ

2
ζ

)
βo,m ∼ N

(
βo,m, σ

2
β

)
– Latent random effects (zre): random effects sampled

ξi ∼ N
(
ξ, σ2ξ

)
τi ∼ N

(
τ , σ2τ

)
si,m ∼ N (s, σs)

• Model parameters (θ): fixed effects estimated from log-likelihood maximisation θ =

{g̃k, ṽ0,k, ν̃l, ρ̃l, βo,m, ζl,m, σ, σξ, t0, στ}

• Hyperparameters (Π): set by the user Π = {σg̃, σṽ0 , σν̃ , σρ̃, σβ, σζ , σs}

To ensure identifiability, we set ξ = 0, σs = 1, s = 0 and t0 = τ .

4.2.3.2 Log-likelihood structure

The likelihood estimated by the model is the following:

p(y, Te, Be | θ,Π) =
∫
z
p(y, Te, Be, z | θ,Π)dz

As in chapter 3.2.3.2, the p(y, Te, Be, z | θ,Π) could be divided into four different terms:
the longitudinal data attachment, the survival data attachment, two terms for the prior at-
tachment of latent parameters (fixed and random). We end up with the following expression
:

log p((y, te, Be), z | θ,Π) = log p(y | z, θ,Π)

+ log p(te, Be | z, θ,Π)

+ log p(zre | zfe, θ,Π)

+ log p(zfe | θ,Π)

The different parts of the log-likelihood are described below associated with their different
assumptions, with the priors attachment to latent fixed effect, p(zfe | θ,Π), separated for
longitudinal and survival effects. Note that the total formula of the full log-likelihood is
available in appendix A.1.

Longitudinal data attachment The longitudinal data attachment, p(y | z, θ,Π), is the
same, with the same assumptions, as the one from the Longitudinal Spatiotemporal model
(see section 2.2.4.2).

Survival data attachment To model the survival process, we assumed that all patients
were independent and that the modelling of the survival process depended on whether the
event was observed or not. Note that the following equation could be interpreted as follows:
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the patient must have survived till the time of observation (or censure) and then has an
instantaneous risk for the observed events (Mozumder, Rutherford, and Lambert, 2018):

log p(te, Be | z, θ,Π) =
∑
i

log p(tei , Bei | z, θ,Π)

=
∑
i,l

1Bei=l
× log (hi,l(tei)) +

∑
i,l

log (Si,l(tei))

=
∑
i,l

1Bei=l
× log

(
ρle

ξi

νl

(
eξi(tei − τi)

νl

)ρl−1

exp (ui,l)

)

−
∑
i,l

(
eξi(tei − τi)

νl

)ρl
exp (ui,l)

Note that the likelihood for a simple event could be extracted from the above formula
by putting L = 1. As in section 3.2.3.2, if ψi(t) < t0 log (hi(tei)) = −∞. To prevent
estimation issues, we initialised the algorithm at a possible point getting inspiration from
barrier methods (Nesterov, 2018).

Latent random effects priors attachment The latent random effects priors attach-
ment, p(zre | zfe, θ,Π), is the same, with the same assumptions, as the one from the Longi-
tudinal Spatiotemporal model (see section 2.2.4.2).

Latent fixed effects priors longitudinal attachment The latent fixed effects priors
longitudinal attachment p(g̃, ṽ0, β | θ,Π) is the same, with the same assumptions, as the
fixed effects priors attachment, p(zfe | θ,Π), from the Longitudinal Spatiotemporal model
(see section 2.2.4.2).

Latent fixed effects prior event attachment Each latent fixed effect is independently
sampled from a posterior distribution. The regularization term associated is then:

log p(ν̃, ρ̃, ζ | θ,Π) =
∑
l

log p(ν̃l | θ,Π) + log p(ρ̃l | θ,Π)

+
∑
l,m

log p(ζl,m | θ,Π)

=−
∑
l

log
(
σν̃l
√
2π
)
− 1

2σ2ν̃l

(
ν̃l − ν̃l

)2
−

∑
l

log
(
σρ̃l
√
2π
)
− 1

2σ2ρ̃l

(
ρ̃l − ρ̃l

)2
−

∑
l,m

log
(
σζ
√
2π
)
− 1

2σ2ζ

(
ζl,m − ζ l,m

)2
4.2.4 Estimation of the Joint cause-specific Spatiotemporal model

The estimation method can be separated into two steps, as in section 2.2.5. The calibration is
the same as the one used in section 2.2.5. The adapted sufficient statistics and maximisation
update rules, necessary for the computation, are given in the appendix A.2 and A.3.
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For the personalisation, the only difference with section 2.2.5 is, that the CIF is needed
to compute the predictions. The CIF is corrected using the survival probability at the last
visit used for personnalisation as in Andrinopoulou et al., 2017.

An implementation of the Joint cause-specific Spatiotemporal model is available in
the open-source package Leaspy (v2): https://gitlab.com/icm-institute/aramislab/

leaspy.

4.2.5 Reference multivariate and cause-specific models

Several reference models were used in this chapter. First, we used one-process-only models.
For the survival model, we used a cause-specific Weibull AFT model to describe the survival
process, using the R flexsurv package (Jackson, 2016). This model will be referred to
as the cause-specific AFT model. For the longitudinal model, we used the Longitudinal
Spatiotemporal model described in section 3.2.2.2 using Leaspy package. This model will
be referred to as the Longitudinal model.

Then, we used a joint model with shared random effects for competing risks. We used a
logistic longitudinal process, with a cause-specific competing risk model, estimated using the
JMbayes2 package (Rizopoulos, 2016). This model will be referred to as the cause-specific
JMbayes2 model. All the model equations are summarised in Table 4.1.

https://gitlab.com/icm-institute/aramislab/leaspy
https://gitlab.com/icm-institute/aramislab/leaspy
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Table 4.1: Specification of reference models for multivariate longitudinal outcomes and competing risks

Legend: Longitudinal: Longitudinal Spatiotemporal model, Cause-specific AFT: Cause-specific Weibull Accelerated Failure Time model, Joint Spa-
tiotemporal: the Joint cause-specific Spatiotemporal model, Cause-specific-JMbayes2: joint model with shared random effects and cause-specific survival
model. spl(t): spline function. L events indexed by l and K longitudinal outcomes indexed by k. For space reasons, the CIF is not integrated into the
table, but all the model followed a cause-specific structure described in Zhang, Zhang, and Scheike, 2008 and in section 4.2.2.3

Model Inputs Effects Random effects structure Link functions
Fixed Random ψi(t) Longitudinal γi,k(t) Si,l(t)

Longitudinal t g, v0, t0 ξi, τi, wi eξi(t− τi) + t0

(
1 + gk × exp(−v0,k (gk+1)2

gk
(ψi(t)− t0) + wi,k)

)−1
-

Cause-specific AFT t ν0, ρ0 - - - exp
(
−
(
t
νl

)ρl)
Joint Spatiotemporal t g, v0, t0, ρ, ν ξi, τi, wi, ui eξi(t− τi) + t0

(
1 + gk × exp(−v0,k (gk+1)2

gk
(ψi(t)− t0) + wi,k)

)−1
exp

(
−
(
ψi(t)
νl

)ρl
exp (ui,l)

)
Cause-specific-JMBayes2 t β0, β1, gk, α, spl(t) bi,0, bi,1 (β0 + bi,0) + (β1 + bi,1)t (1 + gk × exp(ψi(t)))

−1 exp

(
−

∫
t

0
exp(spll(u) +

∑
k αkγi,k(u))du

)
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4.3 Material

4.3.1 PRO-ACT data

4.3.1.1 Population

We extracted patients from the PRO-ACT database with age at first symptoms, sex, and
onset site. To limit left-censored VNI initiation, we selected patients with a Mitos score
equal to 0 (Fang et al., 2017). We used this population to extract real-like values for the
simulation study and perform the application study. For the benchmark study, we sub-
selected this population by keeping only patients with at least three visits to be able to
evaluate longitudinal predictions: on the test set, we personalised the models on two visits
and made predictions on the remaining.

4.3.1.2 Outcome

Longitudinal outcomes For the benchmark and the application, we used three subscores
of ALSFRSr: bulbar scale, fine motor scale, and gross motor scale (Rooney et al., 2017).
Indeed, we did not want to use respiratory longitudinal outcomes that risk to capture all
the correlations with events.

To test the impact of the number of sources (at a maximum of K-1, see section 2.2.3.2),
we wanted to simulate four longitudinal outcomes. We added the ALSFRSr total, which
does not make much sense from a clinical point of view, but the idea was only to have credible
parameters for the simulation of four outcomes. We normalized the outcomes between 0
(the healthiest value) and +1 (the maximum pathological change). All the scores were
normalized using their theoretical maximum and minimum values (Rooney et al., 2017).
We reindexed the visits by the time from symptom onset.

Survival outcomes We extracted the death and NIV initiation age from the PRO-ACT
database as described in section 5.3.3. As NIV initiation was interval censored, we used the
mean of the interval as an approximation, even though this might introduce some biases
(Leffondré et al., 2013). Death and tracheostomy were also extracted and associated as in
the majority of ALS studies. Note that for simplicity, we will talk about death to encapsulate
both, in the following sections. As visits, events were reindexed by the time from symptom
onset.

4.3.2 Simulated data

4.3.2.1 Data simulation method

Data were simulated under our Joint cause-specific Spatiotemporal model structure. Pa-
rameter values for each scenario are summarised in Table 4.2. We simulated data thanks to
the following procedure:

1. We simulated random effects using ξi ∼ N
(
0, σ2ξ

)
, τi ∼ N

(
t0, σ

2
τ

)
, and Ns sources

si,m ∼ N (s, σs).
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2. We modelled age at first visit (baseline) tb,i as tb,i = τi + δbi with δbi ∼ N
(
δb, σ

2
δb

)
.

3. We set a time of follow-up per patient Tfi , with Tfi ∼ N
(
Tf , σ

2
Tf

)
and a time between

two visits δvi,j = ti,j−1 − ti,j , with δvi ∼ N
(
δv, σ

2
δv

)
to simulate ni visits until ti,ni ≤

ti,0 + Tfi < ti,ni+1 .

4. We set the value of the K longitudinal outcomes at each visit using yi,j,k = γi,k(ti,j,k)+

ϵi,j,k with ϵi,j,k ∼ N
(
0, σ2k

)
with Leaspy software.

5. For each patient, we simulated the L event Tei,l using Tei,l ∼ e−ξiW (νl, ρl) + τi.

6. We kept the first event that occurred as observed and censored the others,

7. We considered that the first event stopped the follow-up and that the follow-up cen-
sored the first event. Thus all the visits of each outcome k after the event were
censored: ti,j,k > Tei , and events after the last visit were censored: max(ti,j,k) < Tei .

As we studied sub-cores of one score, we considered that all measures were available at
a given time.

4.3.2.2 Scenarios

As in section 3.3.1.2, we used the PRO-ACT dataset, described in section 2.3.1, to get
estimated real-like values for parameters. Parameters directly associated with the disease
were extracted from data analysis, using the Longitudinal and cause-specific Weibull AFT
models.

To validate the model and give future users insight on how to select the right number of
sources, we simulated four outcomes with two sources, to be able to evaluate the model with
1, 2, and 3 sources. We simulated a dataset close to real data with a valid shared latent
age hypothesis, following the procedure of section 4.3.2.1. This dataset will be referred to
as the Real-like dataset.

We also simulated longitudinal and survival data with no link, to give insight on how to
test if the shared latent age hypothesis is valid. To do so, we simulated two sets of random
effects, one for the longitudinal and one for the survival process. Apart from that, we kept
the same values and process for simulation. This dataset will be referred to as the no-link
dataset.
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Table 4.2: Data simulation parameters by scenario

Legend: Real-like: Real-like simulated dataset (valid shared latent age hypothesis), No link: No-link dataset (invalid shared latent age hypothesis), (r)
indicate when ALS real-like parameters are used. More information on simulation is available in section 4.3.2.τ = t0, ξ = 0, σs = 1 and s = 0

Type Parameters ALS Real-like Real-like No-link
Name Symbol parameters (r) simulation simulation

Patients Patient number N 1,000 r r

Random Effect

Population estimated reference time (year) (mean) τ 1.3 r r
(std) στ 1.1 r r

Individual log-speed factor (mean) ξ 0 r r
(std) σξ 0.79 r r

Number of sources Ns 2 r r
Longitudinal Speed of the logistic curve v0 [0.07 , 0.19, 0.20, 0.11] r r
Fixed Effects Curve value at t0: 1

1+g g [13.96, 5.32, 3.99, 5.70] r r
Estimated noise σ [0.07, 0.08, 0.07, 0.04] r r

Longitudinal mixing matrix A [[ 0.059, -0.103, 0.001, 0.004], [[ 0.06, -0.10, 0.00, 0.01], [[ 0.06, -0.10, 0.00, 0.01],
[ 0.059, 0.006, -0.141, -0.004]] [ 0.06, 0.006, -0.14, -0.00]] [ 0.06, 0.01, -0.14, -0.00]]

Survival Scale of the Weibull distribution ν [3.4, 3.9] [2.8, 3.6] [2.8, 3.6]
Fixed Effects Shape of the Weibull distribution ρ [1.7, 2.8] r r

Hazard ratio coefficients ζ [[-0.09, 0.09] [[-0.09, 0.09] [[-0.09, 0.09]
[-0.1, 0.05]] [-0.1, 0.0]] [-0.1, 0.0]]

Visits

Time between τ and baseline (years) (mean) δb 0.2 0.3 0.3
(std) σδb 0.8 r r

Time of follow up (year) (mean) Tf 0.8 1.1 1.1
(std) σTf 0.5 r r

Time between visits (months) (mean) δv 1.4 2.0 2.0
(std) σδv 0.75 r r
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4.3.3 Characteristics of the datasets

Out of the 8,571 patients from the PRO-ACT database, we subselected 6,034 patients with
sex and first symptoms (spinal or bulbar onset) provided. Out of them, 2,219 had their
first visit with a Mitos score equal to 0. Then 42 patients were dropped for the Analysis
dataset due to left censored VNI. For the Benchmark dataset, we also dropped patients
with less than 3 visits and ended up with 1,919 patients. Characteristics of the Analysis
and the Benchmark dataset were close despite the subselection of patients (Table 4.3). NIV
initiation was interval censored between two visits, with a mean interval of 1.9 (1.4) months.

Simulated scenarios had fewer patients and visits than the PRO-ACT datasets, even
though the time of follow-up was a little bit longer (Table 4.3). We also added slightly more
censoring of events which also increased the modeling difficulty. Due to the censure of the
fastest patients in the simulation process (some events happened before their first visit), the
final simulated value of the Weibull scale, ν, and the population speed, v0, were respectively
higher and smaller compared to the target simulation.

Table 4.3: Characteristics of the PRO-ACT and simulated datasets

Legend: Results are presented with mean (SD) [class%]. There were no missing values in
the dataset due to patient selection.
Analysis: extraction from the PRO-ACT database used for the application
and the estimation of parameters used for simulation, Benchmark: extrac-
tion from PRO-ACT database used to benchmark the models, patients have at
least 3 visits, Real-like: Real-like simulated dataset (valid shared latent age
hypothesis), No link: No-link dataset (invalid shared latent age hypothesis).

Real PRO-ACT data Simulated data
Type Characteristics Analysis Benchmark Real-like No link
Number patients 2,177 1,919 1,000 1,000

visits 16,400 16,036 6,401 6,879
patient-years 1,661 1,650 901 973
visits per patients 7.5 (4.5) 8.4 (4.1) 6.4 (3.2) 6.9 (3.4)

Time follow-up (years) 0.8 (0.5) 0.9 (0.5) 0.9 (0.5) 1.0 (0.6)
between visits (months) 1.4 (0.7) 1.4 (0.7) 2.0 (0.7) 2.0 (0.7)

Gender (Male) 1,364 (62.7 %) 1197 (62.4 %) - -
Symptom onset (Spinal) 1,666 (76.5 %) 1465 (76.3 %) - -
Age at first symptoms 54.1 (11.3) 54.0 ± 11.4 - -
Observed events (%) VNI 570 (26.2%) 477 (24.9%) 204 (20.4 %) 171 (17.1%)

Death 245 (11.3%) 216 (11.3%) 91 (9.1%) 56 (5.6%)
ALSFRSr (baseline) total 39.4 (4.1) 39.6 (4.1) 38.8 (5.3) 36.7 (8.6)

bulbar 10.3 (2.0) 10.3 (2.0) 10.2 (2.0) 9.7 (2.7)
fine motor 9.1 (2.0) 9.1 (2.0) 8.9 (2.6) 8.3 (3.2)
gross motor 8.5 (2.4) 8.6 (2.5) 8.5 (2.7) 7.8 (3.2)

4.4 Simulation study

The objective of this section was to validate the Joint cause-specific Spatiotemporal model
by assessing fixed and random effects estimation on simulated data and give insight into
how to test the shared latent age hypothesis.
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4.4.1 Method

For each experiment, we first trained the Longitudinal model during 2,000 iterations.
Then, we ran the Joint cause-specific Spatiotemporal model for 70,000 iterations (on average
7 hours) using the values of the Longitudinal model as initialisation and with a Robbins-
Monroe convergence phase on the 10,000 last iterations (Robbins and Monro, 1951). The
different parameters estimated by the Joint cause-specific Spatiotemporal model for the
simulation study are summarised in Table 4.4 jointly with their interpretation.

Table 4.4: Description of the parameters estimated by the Joint cause-specific Spatiotem-
poral model for the simulation study

Legend: m indexed the dimension of the ordering of longitudinal outcomes (spatial variabil-
ity), here with dimension three (three sources). Mixing matrix and HR coefficients must
be adaptated when using one (first line only) or two sources (two first lines). Individual
log-speed factor mean ξ, individual spatial variability mean and standard deviation s, σs pa-
rameters are not present as they are fixed by the model (ξ = 0, s = 0, σs = 1) and t0 = τ

Distribution of random effects
Estimated reference time (mean) t0

Estimated reference time (std) στ

Individual log-speed factor (std) σξ

Longitudinal fixed effects
Bulbar Fine motor Gros motor Total

Curve values at t0: 1
1+gk

(gk) g0 g1 g2 g3

Speed of the logistic curves (v0,k) v0,0 v0,1 v0,2 v0,1

Estimated noises (σk) σ0 σ1 σ2 σ3

Mixing matrix (Ak,m) A0,0 A1,0 A2,0 A3,0

A0,1 A1,1 A2,1 A3,1

A0,2 A1,2 A2,2 A3,2

Survival fixed effects
NIV initiation Death

Weibull scale (νl) ν0 ν1

Weibull shape (ρl) ρ0 ρ1

HR Coefficients (ζl,m) ζ0,0 ζ1,0

ζ0,1 ζ1,1

ζ0,2 ζ1,2

4.4.1.1 Determining the number of sources

The number of sources is a hyperparameter that we can adjust. It corresponds to the
number of dimensions allowed for the ordering of the longitudinal outcomes (spatial aspect).
To evaluate the optimal number of sources needed to model the data, as we got four longi-
tudinal outcomes to model, we ran three models with 1, 2, and 3 sources on the datasets.
Indeed the number of sources must be below or equal to the number of longitudinal outcomes
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minus one (see section 4.2.2.1). To compare the models, we used the conditional version
of the Watanabe–Akaike Information Criterion (WAIC) (Watanabe, 2010) (see appendix
C.1), a generalised version of the AIC, which gives a measure of the trade-off between the
goodness of fit and the simplicity of the model. We then kept the number of sources that
enabled to minimise the conditional WAIC.

4.4.1.2 Precision of the parameters estimated

To validate the model, we assessed how well the model could estimate fixed and random
effects when the shared latent age hypothesis (the longitudinal and the survival processes
are linked by a shared latent disease age (see section 4.2.2.1)) is valid (Real-like simulated
dataset) and not valid (No-link simulated dataset). For fixed effects, as done by Pan and
Hout, 2023, we extracted data from the posterior distribution (between the 50.000 and
60.000 iterations). We obtained the 95% credibility interval of the estimated fixed effects
and checked if the simulated value was included in the credibility interval. For random
effects, we extracted the mean of the random effects posteriors for each individual (between
50,000 and 60,000 iterations) to reduce the computation complexity. As a metric, we used
the intraclass correlation between the value obtained with the simulated dataset for each
individual and the true value that enabled the simulation.

4.4.1.3 Validity of the shared latent age hypothesis

Finally, we wanted to give future users tools to evaluate if the shared latent age hypothesis
was realistic on their dataset.

To do so, we compared the estimated parameters from the Joint cause-specific Spa-
tiotemporal model with the one of the cause-specific AFT Weibull model and the Longi-
tudinal Spatiotemporal model, both on the Real-like and No-link simulated dataset. For
the cause-specific AFT Weibull model we matched ν with t0 + ν in the Joint cause-specific
Spatiotemporal model, as the survival submodel starts from t0 (see section 4.2).

4.4.2 Results

4.4.2.1 Determining the number of sources

The objective was to evaluate whether the conditional WAIC could be used to select the
correct value for the number of sources of the model, the only hyperparameter that needs
to be set by the user.

On the Real-like dataset, the conditional WAIC was lower for the model with two sources
(-73,628) compared to the one with one (-59,969) and three (-71,211) sources. These results
confirmed what was expected as we simulated data with two sources.

On the No-link dataset, the conditional WAIC was lower for the model with three sources
(-79,631) compared to the one with one (-65,179) and two (-79,144) sources. The data were
simulated using two sources, so the test failed to detect it. Nevertheless, this might be linked
to the fact that the shared latent age hypothesis was not valid for the No-link dataset.
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We validated the use of the conditional WAIC to select the number of sources when the
shared latent age hypothesis was valid. In the following parts, a Joint cause-specific model
with two sources on the Real-like dataset was used, and with three sources on the No-link
dataset.

4.4.2.2 Precision of the parameters estimated

We wanted to evaluate the performance of the model on simulated data with valid (Real-
like dataset) and invalid (No-link dataset) shared latent age hypotheses.

Real-like dataset On the Real-like dataset, out of 32, 18 of the 95% credibility inter-
val of the distribution contained the simulated parameters (Table 4.5). For the simulated
parameters that did not fall in the 95% credibility interval of the distribution, the mean
absolute bias was below 28% of the simulated value. We can note, that as in chapter 3,
population speed, v0, tended to be underestimated and Weibull scale, ν, overestimated, but
biases were relatively small.

The hazard ratio coefficients (ζ) estimate the association between the ordering of the
longitudinal outcomes and the events occurring. The value of ζ1,1 was found not significantly
different from zero which corresponded to the simulated value. Nevertheless, ζ0,0 was also
found not significantly different from zero even though it was simulated with -0.09. This
might be linked to the small size of the value.

Both temporal and spatial random effects were well reconstructed, with intra-class cor-
relations higher than 0.83 (Table C.1 in appendix).

No-link dataset Here the idea is mainly to test what happens when this hypothesis
is invalid. On the No-link dataset, out of 37, 11 of the 95% credibility interval of the
distribution contained the simulated parameters (Table C.2 in appendix). The parameters
linked to the distribution of the random effects and the longitudinal fixed effects, except the
values of the mixing matrix, were close to the values of the parameters used for simulation,
with less than 15% of bias (Table C.2 in appendix). The mixing matrix and the survival
fixed effects were far from what was simulated going for the most extreme values to 1,000%
of bias (Table C.2 in appendix).

The hazard ratio coefficients (ζ) failed to capture the absence of association between the
ordering of the longitudinal outcomes and the events occurring: 3 out of 6 coefficients were
found significantly different from zero. This might be explained by the fact that the shared
latent age hypothesis was not valid on the No-link dataset.

Temporal random effects and space shifts were well reconstructed for the longitudinal
process (intra-class correlations higher than 0.9) but not for the survival shifts (ui,1: -0.91
[-0.92 -0.9 ] and ui,2: 0.01 [-0.05 0.07]) (Table C.3 in appendix).

When the shared latent age hypothesis was valid, the model well reconstructs the data
with 18, out of 32, of the 95% credibility interval of the distribution that contained the
simulated parameters and mean absolute biases lower than 30% otherwise. Nevertheless,
when the shared latent age hypothesis was invalid, the model only fits the longitudinal
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process, resulting in wrong survival model fixed effects. Note that this behavior might be
due to the quantity of information available in the data. Such a situation must be diagnosed
by a user and the following section proposes a methodology to do so.

Table 4.5: Biases of the estimated parameters of the Joint cause-specific Spatiotemporal
model on the Real-like simulated dataset

Legend: For each parameter of the model, the value used for simulation is reported with the
value of the mean of the stabilized posterior and the associated Credibility Interval at 95%
computed on the last 10,000 iterations of the stabilized MCMC-SAEM: (*) the simulated
value is in the 95% credibility interval, (<) the simulated value is underestimated, (>) the
simulated value is overestimated. Bias: difference to the true parameters divided by the true
parameters,-: put when the bias could not be computed as the true parameter equal to 0,
ξ, s, σs parameters are not present as they are fixed by the model (ξ = 0, s = 0, σs = 1) and
t0 = τ

Parameters name Simulated Estimated Bias (%)

Distribution of
random effects

Estimated reference time (mean) t0 1.36 * 1.381 [1.336, 1.421] 1.5 [-1.8, 4.4]
Estimated reference time (std) στ 1.062 * 1.058 [1.038, 1.080] -0.4 [-2.3, 1.7]
Individual log-speed factor (std) σξ 0.725 * 0.749 [0.722, 0.780] 3.4 [-0.3, 7.6]

Longitudinal
fixed effects

Curve values at t0: 1
1+gk

(gk)

g0 13.958 < 13.002 [12.344, 13.712] -6.9 [-11.6, -1.8]
g1 5.316 < 4.549 [4.229, 4.850] -14.4 [-20.4, -8.8]
g2 3.993 < 3.639 [3.485, 3.828] -8.9 [-12.7, -4.1]
g3 5.704 < 5.428 [5.308, 5.534] -4.8 [-6.9, -3.0]

Speed of the logistic curves (v0,k)

v0,0 0.062 < 0.059 [0.056, 0.061] -4.7 [-9.2, -0.3]
v0,1 0.167 * 0.165 [0.157, 0.173] -1.3 [-6.0, 3.4]
v0,2 0.176 < 0.167 [0.161, 0.173] -5.0 [-8.6, -1.6]
v0,3 0.1 < 0.094 [0.091, 0.096] -6.3 [-8.9, -3.8]

Mixing matrix (Ak,m)

A0,0 0.06 * 0.059 [0.053, 0.067] -1.5 [-10.8, 12.1]
A0,1 0.059 * 0.059 [0.051, 0.066] 0.8 [-14.0, 12.6]
A1,0 -0.1 > -0.107 [-0.115, -0.101] -7.4 [-15.2, -1.1]
A1,1 0.006 * 0.009 [-0.003, 0.023] 50.7 [-146.1, 286.7]
A2,0 0.0 * -0.005 [-0.024, 0.007] -
A2,1 -0.14 * -0.147 [-0.154, -0.138] -4.9 [-10.1, 1.5]
A3,0 0.01 * 0.01 [0.009, 0.011] 1.0 [-12.0, 14.5]
A3,1 -0.0 * -0.0 [-0.002, 0.001] -

Estimated noises (σk)

σ0 0.065 < 0.058 [0.057, 0.058] -11.0 [-11.7, -10.3]
σ1 0.076 < 0.073 [0.072, 0.074] -4.0 [-4.8, -3.2]
σ2 0.074 < 0.072 [0.071, 0.073] -3.0 [-3.8, -2.2]
σ3 0.036 * 0.036 [0.036, 0.037] 0.1 [-0.7, 1.0]

Survival
fixed effects

Weibull scale (νl)
ν0 3.143 > 4.012 [3.706, 4.303] 27.7 [17.9, 36.9]
ν1 4.041 > 4.499 [4.226, 4.781] 11.4 [4.6, 18.3]

Weibull shape (ρl)
ρ0 1.7 * 1.739 [1.618, 1.887] 2.3 [-4.8, 11.0]
ρ1 2.8 * 2.908 [2.678, 3.145] 3.9 [-4.3, 12.3]

HR Coefficients (ζl,m)

ζ0,0 -0.09 * -0.071 [-0.161, 0.028] 21.7 [-78.4, 131.6]
ζ0,1 -0.1 * -0.076 [-0.212, 0.046] 24.1 [-112.4, 146.3]
ζ1,0 0.09 * 0.153 [0.006, 0.285] 70.3 [-92.8, 216.4]
ζ1,1 0.0 * -0.01 [-0.210, 0.151] -

4.4.2.3 Validity of the Shared latent age hypothesis

As seen above, it is important to diagnose cases where the shared latent age hypothesis
might be invalid. We proposed to compare the results of the Joint Spatiotemporal model
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with one process model only, to test such a hypothesis.

Longitudinal submodel On the Real-like datasets, parameters of the Longitudinal Spa-
tiotemporal model were close to the ones of the longitudinal submodel of the Joint Spa-
tiotemporal model (21 out of 23 credibility intervals overlapped) (Table C.4 in appendix)
On the No-link dataset, parameters were also close except for the mixing matrix which might
be due to the number of sources overestimated (21 out of 23 credibility intervals overlapped,
with 6 disjoint credibility intervals found for the mixing matrix coefficients) (see section
4.4.2.1) (Table C.5 in appendix). This was coherent with the results of section 4.4.2.2 as
we observed that the longitudinal results seemed correct even when the shared latent age
hypothesis was invalid.

Scale of the Weibull distribution On the Real-like dataset, the values of the Weibull
scale corrected by t0 of the Joint cause-specific Spatiotemporal model were close to the
Weibull scale of the cause-specific AFT model for the NIV initiation (5.4 [5.2, 5.7]) and 6.2
[5.7, 6.8]) and the death (5.9 [5.6, 6.2] and 8.4 [7.1, 9.8]) (Table 4.6). On the No-link dataset,
the values of the Weibull scale corrected by t0 of the Joint cause-specific Spatiotemporal
model, (ν + t0), compared to the one of the Weibull scale of the cause-specific AFT model,
were three times bigger for the NIV initiation (14.5 [13.0, 16.8] against 5.8 [5.3, 6.4]) and
ten times bigger for the death (92.2 [77.0, 116.6] against 9.1 [7.3, 11.4]) (Table 4.6). Thus
really different values of the Weibull scale must be a warning that the shared latent age
hypothesis might be invalid.

Shape of the Weibull distribution Depending on the value of the shape of the Weibull
distribution (ρ) the hazard function h(t) has different progressions (Jiang and Murthy,
2011):

• ρ < 1: indicates that the hazard function decreases over time which happens if the
event is more likely to occur at the beginning of the disease,

• ρ = 1: indicates that the hazard function is constant over time which might suggest
random external events are causing the event,

• ρ > 1: indicates that the hazard function increases with time, which happens when
the event is more likely to happen as time goes on.

In the Real-like dataset, the trends captured were the same (ρ > 1), with values of ρ close
between the Joint cause-specific Spatiotemporal model and the cause-specific AFT model
for NIV initiation (1.7 [1.6, 1.9] and 2.0 [1.8, 2.3]) and the death (2.9 [2.7, 3.1] and 2.3 [1.9,
2.7]) (Table 4.6).

In the No-link dataset, we observed that the tendencies captured by the two models
were not the same: ρ ≤ 1 for the Joint cause-specific Spatiotemporal model (NIV initiation:
0.9 [0.8, 1.0], death:0.9 [0.9, 1.0]) whereas ρ > 1 for the cause-specific AFT model (NIV
initiation: 2.4 [2.1, 2.7], death: 2.5 [2.0, 3.0]) (Table 4.6). Here, at least for the death, we
expected the hazard function to increase with time (ρ > 1).
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The fact that the Joint cause-specific Spatiotemporal model did not capture this be-
haviour in addition to different behaviour compared to the cause-specific AFT model, should
be a supplementary warning that the shared latent age hypothesis might be invalid. Indeed,
the latent age should not change the hazard function tendency.

To conclude, to test if the shared latent age hypothesis seems valid, we recommend com-
paring the results of the Joint cause-specific Spatiotemporal model with those of the cause-
specific AFT model:

• ν should be close to ν + t0,

• ρ should lead to the same types of hazard function.

Table 4.6: Comparison of the parameters estimated by the Joint cause-specific Spa-
tiotemporal model and the cause-specific AFT model on simulated data

Legend: NIV: Non Invasive Ventilation initiation, Parameters: parameters of the Weibull
distribution with ν the scale, ρ the shape, and t0 the estimated reference time, Simulated:
values of the parameter used to simulate the data, Joint Spatiotemporal: Joint cause-specific
Spatiotemporal model, Cause-specific AFT: Cause-specific Accelerate Failure Time model.
Simulated values (νl + t0, ρl) for the Real-like dataset: NIV initiation (4.4, 1.7), death (5.3
2.8) and for the No-link dataset: NIV initiation (4.1, 1.7), death (4.9, 2.8).

Weibull scale Weibull shape
Spatiotemporal Cause-specific Spatiotemporal Cause-specific

(νl + t0) AFT(νl) (ρl) AFT(ρl)
Real-like NIV 5.4 [5.2, 5.7] 6.2 [5.7, 6.8] 1.7 [1.6, 1.9] 2.0 [1.8, 2.3]

Death 5.9 [5.6, 6.2] 8.4 [7.1, 9.8] 2.9 [2.7, 3.1] 2.3 [1.9, 2.7]
No-link NIV 14.5 [13.0, 16.8] 5.8 [5.3, 6.4] 0.9 [0.8, 1.0] 2.4 [2.1, 2.7]

Death 92.2 [77.0, 116.6] 9.1 [7.3, 11.4] 0.9 [0.9, 1.0] 2.5 [2.0, 3.0]

4.4.3 Intermediate conclusion

The number of sources should be determined using conditional WAIC or other measures of
fit. To use the model, a main hypothesis should be made: the longitudinal and the survival
processes are linked by a latent disease age. To assess this hypothesis, we recommend
comparing the results of the Joint cause-specific model to those of a cause-specific AFT
model comparing the results of the Joint cause-specific Spatiotemporal model with those of
the cause-specific AFT model:

• ν should be close to ν + t0,

• ρ should lead to the same types of hazard function.

When the hypothesis of a shared latent disease age seems respected (close values between
the Joint cause-specific survival submodel and the cause-specific AFT model), and after
choosing the right number of sources, the model well reconstructed the data with 18, out of
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32, of the 95% credibility interval of the distribution that contained the simulated parameters
and absolute biases lower than 30% otherwise (Table 4.5). The model well reconstructed the
latent disease age (temporal random effects) and captured most of the significant association
between the ordering of longitudinal outcomes and the occurrence of events (ζ).

4.5 Benchmark

The objective of this section was to evaluate if our model could improve modelling precision
compared to the cause-specific JMbayes2.

4.5.1 Method

We made a 10-fold cross-validation (train 90% - test 10%) on the Benchmark dataset.
For each Joint cause-specific Spatiotemporal model, we first trained the Longitudinal model
for 2,000 iterations. Then, we ran the Joint Spatiotemporal model for 70,000 iterations (on
average 7 hours) using the values of the Longitudinal model as initialisation (with a Robbins-
Monroe convergence phase on the 10,000 last iterations (Robbins and Monro, 1951)). The
cause-specific JMbayes2 model ran for 25,000 iterations (on average 3 hours and a half). The
Longitudinal model was also run for 70,000 iterations (with a Robbins-Monroe convergence
phase on the 10,000 last iterations (Robbins and Monro, 1951)).

We first compared the fitted models using conditional WAIC. It was output from the
cause-specific JMbayes2 model and we computed it for the Joint cause-specific Spatiotem-
poral model as described in appendix C.1.

Then, we compared them using prediction of both longitudinal and survival outcomes: we
personalised the models on the two first visits of the patients from the tests set and made
predictions on the remaining. As in section 3.3.2.2, the goodness of longitudinal predictions
was assessed using absolute errors for each of the three longitudinal outcomes. We assessed
the goodness of survival predictions in ordering events using the C-index at 1 and 1.5 years
and the mean cumulative dynamic AUC at 1 and 1.5 years (see section 3.3.2.2). We used the
Integrated Brier Score (IBS) to evaluate the precision of predictions of survival predictions
(see section 3.3.2.2). All the survival metrics were computed using the Python package
sksurv (Pölsterl, 2020). The predictions were compared using a Wilcoxon signed-rank test
with a Bonferroni adjustment.

4.5.2 Results

The Joint cause-specific Spatiotemporal model got significantly lower conditional WAIC,
across the 10-fold cross-validation, compared to the cause-specific JMbayes2 model: -108,737
(586) against -101,778 (1,228) (p-value = 1.95e-3).

Longitudinal results 12,197 longitudinal predictions were made at 0.55 (0.47) years from
the last visit. The Longitudinal model was significantly better than the Joint cause-specific
Spatiotemporal model for all the different outcomes, even though the difference was small:
the larger being for gross motor scale with 1.424 (1.331) against 1.414 (1.335) (p-value =
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6.5e-30) (Table 4.7). The cause-specific JMbayes2 model got significantly lower absolute bias
for two outcomes compared to the Joint cause-specific Spatiotemporal model: for bulbar
scale (1.166 (1.233) against 1.187 (1.312) (p-value: 3.4e-02)) and gross motor scale (1.365
(1.288) against 1.424 (1.331) (p-value: 3.4e-02)) (Table 4.7).

Survival results The cause-specific JMBayes2 model got significantly better results for
the IBS for both NIV initiation (0.124 (0.015) against 0.131 (0.013) (p-value: 7.8e-03))
and death (0.138 (0.021) against 0.142 (0.02) (p-value: 1.3e-06)) (Table 4.8). For AUC
and C-index, although the results of the Joint cause-specific Spatiotemporal model were
systematically better, none was significant (Table 4.8).

Table 4.7: Absolute bias on the longitudinal outcomes for the Joint cause-specific Spa-
tiotemporal and reference models on PRO-ACT data (Benchmark dataset)

Legend: Joint: the Joint cause-specific Spatiotemporal model, Longitudinal: Spatiotemporal
longitudinal model, JMbayes2: joint model with shared random effects with cause-specific
survival model estimated using JMbayes2.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-values are
computed using a Wilcoxon signed-rank test with Bonferroni between the Joint Temporal
model and each of the reference models. The absolute bias should be minimised and the best
results are in bold. 12,197 longitudinal predictions were made at 0.55 (0.47) years from the
last visit.

Joint Longitudinal p-value JMbayes2 p-value
Bulbar 1.187 (1.312) 1.179 (1.301) 2.8e-18 1.166 (1.233) 3.4e-02
Fine motor 1.510 (1.425) 1.499 (1.417) 5.1e-24 1.502 (1.397) 9.8e-01
Gross motor 1.424 (1.331) 1.414 (1.335) 6.5e-30 1.365 (1.288) 6.1e-08

Table 4.8: Event metrics on NIV initiation and death for the Joint cause-specific Spa-
tiotemporal and reference models on PRO-ACT data (Benchmark dataset)

Legend: NIV: Non Invasive Ventilation initiation, Joint: the Joint Temporal model, Lon-
gitudinal: Spatiotemporal longitudinal model, JMbayes2: joint model with shared random
effects with cause-specific survival model estimated using JMbayes2.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-values are
computed using a Wilcoxon signed-rank test with Bonferroni. ↓means that the metric should
be minimised and ↑maximised. Results in bold are the best for each metric for each event.

NIV Death
Joint JMbayes2 p-value Joint JMbayes2 p-value

IBS ↓ 0.131 (0.013) 0.124 (0.015) 7.8e-03 0.142 (0.02) 0.138 (0.021) 1.3e-06
AUC ↑ 0.642 (0.085) 0.633 (0.091) 1.0e+00 0.719 (0.101) 0.695 (0.107) 1.7e-01
C-index 1.0y ↑ 0.654 (0.043) 0.632 (0.046) 5.9e-02 0.654 (0.042) 0.637 (0.042) 1.6e-01
C-index 1.5y ↑ 0.654 (0.044) 0.642 (0.048) 2.2e-01 0.655 (0.042) 0.642 (0.045) 1.2e-01
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4.6 Application

The objective of this section was to see how the modelling of NIV initiation could impact
the results described in chapter 2.

4.6.1 Method

We assessed the association of longitudinal and survival processes and chose the number of
sources with the method described in section 4.4.1. We ran one model on the Analysis PRO-
ACT dataset for 70,000 iterations (with a Robbins-Monroe convergence phase on the 10,000
last iterations (Robbins and Monro, 1951)). We extracted from the individual posteriors
the mean of the random effects from 10,000 iterations (between 50,000 and 60,000 before
the Robin-Monroe scheme (Robbins and Monro, 1951)).

Then, to better characterize the heterogeneity associated with sex (man/woman) and
onset site (spinal/bulbar), we studied the distribution of random effects according to four
subgroups using ANOVA with Bonferroni correction.

4.6.2 Results

4.6.2.1 Model selection

The number of sources must be inferior or equal to the number of outcomes studied minus
one, thus in our case, we tested one and two sources. We computed the conditional WAIC
for the model with one (-79,491) and two sources (-116,937) and chose to use two sources.
The parameters of the Weibull distribution estimated were close to the one of the competing
risk analysis alone (Table 4.9) which enabled us to validate the hypothesis of the shared
latent age.

Table 4.9: Comparison of the parameters estimated by the Joint cause-specific Spa-
tiotemporal model and the cause specific AFT model on the Analysis dataset

Legend: NIV: Non Invasive Ventilation initiation, Death: Death, Parameters: parameters
of the Weibull distribution with ν the scale, ρ the shape and t0 the estimated reference time,
Simulated: values of the parameter used to simulate the data, Joint Spatiotemporal: Joint
cause-specific Spatiotemporal model, Cause-specific AFT: Cause-specific Accelerate Failure
Time model

Weibull scale Weibull shape
Event Spatiotemporal Cause-specific Spatiotemporal Cause-specific

(νl + t0) AFT(νl) (ρl) AFT(ρl)
NIV 4.6 [4.5, 4.8] 4.9 [4.6, 5.1] 1.9 [1.8, 2.0] 2.1 [1.9, 2.2]
Death 5.1 [5.0, 5.3] 6.6 [6.1, 7.2] 3.4 [3.2, 3.6] 2.3 [2.1, 2.6]
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4.6.2.2 Estimation accuracy analysis

Here we mainly focus on the fixed parameters that enable linking the longitudinal and
the survival processes, as it is the main novelty of the Joint cause-specific model, but all the
fixed effects of the model are available in Table C.7 in appendix.

The individual spatial variability, is captured by the sources si which impact the disease
presentation through the mixing matrix A (dimension reduction) and the occurrence of
events through the hazard ratio coefficients ζ (proportional impact of the sources on the
hazard). Thus studying the dimensions of the sources can give insight into the distribution
of the variability. Note that to be easier to interpret coefficients of the mixing matrix are
corrected by the speed (v0) to be on a time unit.

An increase of one standard deviation on the first dimension of the disease presentation
(first source s(i,1) + σs) (Figure 4.1 Panel A) corresponded to a higher risk of NIV (HR:
1.2 [1.1, 1.3]), a higher risk of death or tracheostomy (HR: 1.4 [1.2, 1.5]), a later bulbar
progression (delay: 6. 9 [6.0, 7.8] months), a later fine motor progression (delay: 2.4 [2.1,
2.6] months) and an earlier gross motor progression (delay: -8.3 [-8.7, -8.0] months). An
increase of one standard deviation on the second dimension (second source s(i,2)+σs) (Figure
4.1 Panel B) corresponded to a lower risk of NIV (HR: 0.9 [0.9, 1.0]), a lower risk of death
or tracheostomy (HR: 0.8 [0.7, 0.9]), a later bulbar progression (delay: 16.7 [16.0, 17.4]
months), earlier fine motor progression (delay: -6.5 [-6.9, -6.2] months) and an earlier gross
motor progression (delay: -3.9 [-4.3, -3.5] months).
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Figure 4.1: Influence on the progression of the two dimensions of the disease presentation (spatial aspect)
Legend: Graphs represent the population mean random effects for the speed and the time-shift (ξi = 0, τi = t0) and different values for the source si depending on the
latent disease age since first symptoms (interval correspond to the 95% credibility interval of estimated latent disease age across patients). On each panel the mean
value for the disease presentation random effect, si = (0, 0) (plain line) is compared to a shift of one standard deviation (σs = 1) of the source (dashed line): Panel
A on the first dimension and Panel B on the second dimension. The mixing matrix coefficients (Ak,m) are corrected by the speed (v0,k) to be expressed in time units
(months). ζl,m are the proportional hazard ratios associated with the sources. The influence of the dimension on the disease presentation has been reported with a
credibility interval 95%. Longitudinal outcomes: the shifts in the month for each outcome compared to the trajectory with si = (0, 0) are presented (a negative value
means that the degradation starts earlier). Events cumulative incidence: the hazard ratios are reported (a value above one means a lower survival and a higher risk).
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4.6.2.3 Individual temporal variability

A. Higher log-speed

Mean population
log-speed

Lower log-speed

B.

***

Higher time

Mean population
time

Lower time

Figure 4.2: Individual estimated reference time and speed depending on sex and symptom
onset

Legend: Graphs present the mean of random effects distribution for the four subgroups defined
by sex (in abscissa men, women) and symptom onset (blue: Bulbar, orange: Spinal) with its
confidence interval 95%. Panel A: the vertical axis presents the estimated reference time in
months compared to the mean estimated reference time of the whole population. Panel B: The
vertical axis presents the log speed compared to the mean log speed of the whole population.
ANOVA interaction p-value with Bonferroni correction: (A) 1. estimated reference time,
(B) 1. individual log-speed.

Estimated age at disease onset The estimated reference time was not significantly
different between the four studied groups (Figure 4.2 A).

Speed of progression We did not find any significant interaction between the onset site
and sex for the speed factor of progression (p-value = 1.) (Figure 4.2 B). However, patients
with bulbar onset were found to progress 1.47 times faster (95% CI = [1.37, 1.57]) than
patients with spinal onset independently of sex.

4.6.2.4 Individual spatial variability

Sources characterise the dimensions of spatial variability, i.e. the order of evolution of
longitudinal outcomes and their impact on events. Nevertheless, to describe individual
variability on one longitudinal outcome k or event l, space shift (wi,k = Aksi) and survival
shits (ui,l = ζlsi) are usually easier to interpret compared to sources si, as they encapsulate
the total effect of the spatial variability (see section 4.2.2.1). Note that survival shifts have a
proportional impact on the hazard and their interpretation is close to the one of the hazard
ratio and will be referred to as the Proportional effect of survival shits on the Hazard (PH).
The space shifts were corrected by the speed (v0) to be on a time unit.

Motor decline (wiv−1
0 ) We found an interaction between sex and onset site for gross

motor (p = 0.034) but not for fine motor scales (p-value = 1.), once corrected for the
estimated reference timing and speed of progression (Figure 4.3 A and B).
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Figure 4.3: Individual spatial variability on Longitudinal outcomes
Legend: Graphs present the mean of random effects distribution for the four subgroups defined
by sex (in abscissa men, women) and symptom onset (blue: Bulbar, orange: Spinal) with its
confidence interval 95%. The vertical axis presents the delay of outcome impairment onset
in months compared to the mean onset of the whole population. ANOVA interaction p-value
with Bonferroni correction: (A) 0.034 gross motor scale, (B) 1. fine motor scale, (C) 0.15
bulbar scale.

Among patients with spinal onset, ALSFRSr gross motor scale deteriorated 3.0 months
later (95% CI = [2.0, 4.0]) in women than in men. However, ALSFRSr fine motor scale
changed 2.4 months earlier (95% CI = [1.9, 2.9]) in women than in men, independently of
the onset site.

Among men, ALSFRSr gross motor scale changed 10.1 months earlier (95% CI = [8.8,
11.4]) for patients with spinal onset compared to bulbar onset. Among women, the difference
decreased to 7.7 months earlier (95% CI = [7.2, 8.3]). ALSFRSr fine motor scale changed
10.2 months earlier (95% CI = [9.0, 11.3]) for patients with spinal onset compared to bulbar
onset, independently of the sex.

Bulbar signs decline (wiv−1
0 ) We did not observe any interaction between sex and onset

site for ALSFRSr bulbar scale (p-value =0.15), once corrected for the estimated reference
timing and speed of progression (Figure 2.7 C).

ALSFRSr bulbar scale changed 28.6 months later (95% CI = [27.4, 29.8]) for patients
with spinal onset compared to bulbar onset, independently of the sex.

Non-Invasive Ventilation Initiation (ui) After correction for speed and onset, women
had a significantly higher risk of NIV initiation compared to men (PH: 1.09 [1.08, 1.11])
(Figure 4.4 A).

Death (ui) Again, after correction for speed and onset, women had a significantly higher
risk of death compared to men (PH: 1.16 [1.14, 1.20]) (Figure 4.4 B).
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Figure 4.4: Individual spatial variability on NIV initiation and death
Legend: Graphs present the mean of random effects distribution for the four subgroups defined
by sex (in abscissa men, women) and symptom onset (blue: Bulbar, orange: Spinal) with
its confidence interval 95%. The vertical axis presents the log Proportional effect of survival
shits on the Hazard compared to the mean of the whole population. ANOVA interaction
p-value with Bonferroni correction: (A) 1. NIV initiation log-PH, (B) 1. death

4.7 Discussion

4.7.1 Results interpretation

4.7.1.1 Methodological

We designed the first data-driven multivariate joint cause-specific model. To do so, we
used the Longitudinal Spatiotemporal model as longitudinal submodel. The proposed Joint
cause-specific Spatiotemporal model realigns both survival and longitudinal observations on
a latent disease age (temporal aspect). In addition, it captures the impact of the order
of the longitudinal outcome on the survival processes (spatial aspect). This enabled us to
overcome the limitation of the joint shared random effects that model the impact of the
longitudinal outcomes on survival.

To assess the validity of the shared latent age hypothesis, we recommend comparing the
results of the Joint cause-specific model to those of a cause-specific AFT model: the shape
of the Weibull distribution should lead to the same types of hazard function and really
different values of the scale should be a warning. We advised using the conditional WAIC
to find the right number of sources for the model which is the only hyperparameter that the
user has to fine tune. When the hypothesis of a shared latent disease age seems respected,
and after choosing the right number of sources, the model gave correct results on real-like
simulated data with high censure level (20% of observed VNI initiation and 9.1 % of death):
with 18, out of 32, of the 95% credibility interval of the distribution that contained the
simulated parameters and absolute biases lower than 30% otherwise.
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For the benchmark against the reference model, the cause-specific JMBayes2, the Joint
cause-specific Spatiotemporal model got a significantly better conditional WAIC on the
Benchmark dataset. This could be linked to the fact that the Joint cause-specific Spa-
tiotemporal model has only one individual speed shared for all the outcomes, whereas the
cause-specific JMbayes2 model has one per outcome linked with a correlation matrix.

The prediction results were more mitigated. The cause-specific JMBayes2 model got
better results for all the longitudinal outcomes. This might be the drawback of one shared
individual speed (ξi) of the Spatiotemporal model. Nevertheless, this shared individual
speed should facilitate application to a higher number of longitudinal outcomes, which is
currently a limitation of the cause-specific JMBayes2 model (Devaux et al., 2023; Hickey
et al., 2016). Compared to the Joint cause-specific Spatiotemporal model, the Longitudinal
Spatiotemporal model got significantly better results. It was already the case with the Joint
Temporal model and could be because the longitudinal model is less constrained.

As for the Joint Temporal model with the univ-JMbayes2 model in chapter 3, the cause-
specific JMBayes2 model got better results for the event distance metric (IBS). The survival
function of the cause-specific JMbayes2 model may exhibit this difference due to its enhanced
flexibility, utilizing splines instead of a Weibull function. Even though the Joint cause-
specific Spatiotemporal model got systematically better event ordering metrics (C-index
and AUC) compared to the cause-specific JMbayes2 model, none was significant. Results
were stronger for the Joint Temporal model compared to the uni-JMbayes2 model, for which
the event prediction task was a bit easier with only one event to model and 588 (23%) event
observations.

4.7.1.2 Clinical

For the clinical application, although the population of this study was younger (due to
Mitos selection) and the outcomes did not include respiratory and weight decline proxies
as in chapter 2, results on individual speed, gross motor, bulbar and fine motor scales were
quite similar. Note that even though results on the functional decline were not significant
in our study the same tendency as the one from (Grassano et al., 2024) emerged: women
have a faster functional decline. The estimated age at onset could not be compared due to
the re-indexation by the time since the onset of symptoms, which seems to have absorbed
most of the variability.

Once corrected for speed of functional decline, men had a slower NIV initiation and a
slower death or tracheostomy, which did not replicate results from the literature (Grassano
et al., 2024; Dibling et al., 2024). This might be linked to the fact that we did not take
into account the age at disease onset as a covariate in the survival analysis. Indeed, men
are known to start the disease earlier than women (Nona et al., 2023), and a later disease
tends to have a worse prognosis (Chio et al., 2009).
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4.7.2 Strengths & Weaknesses

4.7.2.1 Methodological

The designed model showed great potential to model a shared disease speed among both
longitudinal and survival processes, which could be a nice outcome for causal inference in
the future. It must be benchmarked in the context of higher dimensions (Nguyen et al.,
2023; Devaux et al., 2023; Hickey et al., 2016).

Nevertheless, its structure makes it harder to model complex associations, such as the
impact of the integral of some outcomes, which is possible with JMbayes2. Covariates were
also not included in the model, but recent work (Fournier and Durrleman, 2023) paves the
way for their integration. Marginal WAIC would have been more robust to compare the
models (Millar, 2018), but was computationally consuming due to the current version of the
software.

4.7.2.2 Clinical

A strength of our study is that our model was based on a large, multicentric, and longitudinal
database. However, the PRO-ACT database may not represent the real-life ALS patient
population. Since the database aggregates clinical trial data, there is an over-representation
of men, young subjects, patients with spinal onset, and slow progressors. An improvement
in dealing with survival data could be done by handling interval and left censored (42 out of
2,177 patients) NIV initiation to reduce potential introduced biases (Leffondré et al., 2013).
The main limitation of our study was that we did not include the age at disease onset as a
covariate for both NIV initiation and death or tracheostomy, which may be the main reason
why we could not replicate the results of (Grassano et al., 2024). Recent improvements of the
Spatiotemporal model have enabled taking into account covariates, and such functionality
should be added to the joint Spatiotemporal model (Fournier and Durrleman, 2023).

4.8 Conclusion & perspectives

The Joint cause-specific Spatiotemporal model has great potential but must be further tested
on high dimensional data. More extensions with covariates would also be needed to better
characterise NIV initiation.
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Chapter 5

Software development: contribution
to reproducibility and reuse

This chapter describes the two main software tools developed during this thesis to obtain
the results presented in the previous chapters and to ease future reuse and reproducibility
of the work done. First, we implemented the joint models described in the past chapters
in an existing open-source software named Leaspy for LEArning Spatiotemporal patterns
in PYthon.To do so, a large refactorisation was conducted to ease maintenance and model
implementation. Second, we integrated all the data processing into an internal software. All
this was a team effort in which I participated.
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5.1 Introduction

Sharing the data and the code used during experiments enables to improve reproductibility
and fosters an easier reuse of the work done in other contexts. During this thesis, two
contributions were made in that sense.

First, following the call of the literature review of Hickey et al., 2016 and the efforts of
the joint modelling community (Proust-Lima, Philipps, and Liquet, 2017; Rizopoulos, Papa-
georgiou, and Miranda Afonso, 2024; Rustand et al., 2024; Lavalley-Morelle et al., 2024), we
implemented the joint models described in the previous chapters in an existing open-source
software named Leaspy for LEArning Spatiotemporal patterns in PYthon. Second, getting
inspiration from what was done by Routier et al., 2021, we integrated the data processing
required for this thesis into a team software to facilitate its future use and improvement.

5.2 Leaspy: an open-source software for disease progression
modelling

5.2.1 Context

A software already exists for the longitudinal Spatiotemporal model: Leaspy (https://
gitlab.com/icm-institute/aramislab/leaspy) and was used in several clinical studies
(Koval et al., 2021; Sauty and Durrleman, 2023; Maheux et al., 2023; Landau et al., 2021;
Moulaire et al., 2023; Koval et al., 2022; Di Folco et al., 2023). Thus, the objective was to
integrate the developed joint models into the existing software.

Doing so, quite a lot of problems were raised. First, base classes (root classes from which
others inherited) did not define a proper interface and they contained specific logic, which
led to inheritance issues for the introduction of new models. Second, there was a tight
coupling between different classes, which implied changing a lot of files across the code
when introducing a new model. Third, model specifications were far from the mathematical
representation, which again complexified the implementation of new models.

For all those reasons and because there was an urge to introduce several models in addition
to the joint models described (Fournier and Durrleman, 2023), a large team effort was started
to refactor the existing software and facilitate future model implementation. This section
presents the work done, taking as an example the implementation of the joint temporal
model (see section 3.2.2).

5.2.2 Refactorisation of the class structure

5.2.2.1 The intuition behind the new structure

Going back to the parameters structure of the different models implemented (longitudinal
multivariate: section 2.2.4.1, joint temporal: section 3.2.3.1, joint competing multivariate:
section 4.2.3.1), we can see that parameters have different properties. For instance: latent
parameters are sampled, model parameters maximise the likelihood, some are shared across

https://gitlab.com/icm-institute/aramislab/leaspy
https://gitlab.com/icm-institute/aramislab/leaspy
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patients, others are individual. Nevertheless, they can all be seen as belonging to a common
framework: they are quantities that are computed from other variables or that allow com-
puting other variables (often both). All the Spatiotemporal models, as Bayesian models,
are therefore just a set of variables along with a set of dependency relationships between
these variables. Every intermediate computation of the model, as the latent age ψi(t) (see
section 2.2.3.2) or the longitudinal process γi(t) (see section 2.2.3.3), also corresponds to
instantiating new variables that depend on the elements of the computation.

For models to be computationally sound, we needed to have a flow of dependency: a
variable cannot depend on a variable that itself depends on it. Said differently, every model
should be laid out as a Directed Acyclic Graph (DAG). The graph specifies the properties
of each variable, as well as the dependency flow and the update rules. Such structure can
optimise computations and has the advantage of being close to the mathematical formula-
tion. In the case of the joint temporal model, the DAG is described in Figure 5.1. This
structure was inspired by Bayesian software such as PymC (Oriol et al., 2023).

Figure 5.1: Directed Acyclic Graph of the joint Temporal model
Legend: individual parameters are indexed by i. θ: model parameters, Π: hyperparameters,
ρ: shape of the Weibull distribution, ν: scale of the Weibull distribution, (tei , Bei): time at
event and associated boolean to code if it is observed or not, ξi: individual speed factor, τi:
individual estimated reference time, ti,j: time at visit j, g: Curve value at t0: 1

1+g , v0: Speed
of the logistic curve, yi,j: outcome at the visit j. Note that t0 = τ .

In practice, computation did already follow this flow of dependency after each update of
variables. But it was in a very “ad-hoc” and model-specific way following long condition
blocks spread in multiple places in the code.

5.2.2.2 The new structure

The new structure can be summarised by the diagrams displayed in Figure 5.2 and is further
described by the four parts below.
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Variables Following the idea that model update follows a DAG, such a VariableDAG
object was created (Figure 5.2 Variables part). It is a formal object that defines the model
through formal variables and their formal relationships.

The different variables stored in the DAG are of multiple types depending on the pa-
rameters they represent:

• DataVariable: observed data (ex: y, te, Be),

• Hyperparameter : parameters set by the user (ex: σg),

• ModelParameter : parameters that are maximised through the likelihood (ex: t0),

• IndividualLatentVariable: latent individual variables (random effects) that are sam-
pled (ex: ξi),

• PopulationLatentVariable: latent population variables (fixed effects) that are sampled
(ex: g, v0),

• LinkedVariable: variables obtained only from the computation of other variables (ex:
ψi(t))),

Each model is defined by a State object that contains a DAG and the current values of
each variable. It can be thought about as a dictionary, with set and get methods to handle
the propagation of values defined by the DAG. This object has fork and clone methods to
facilitate Gibbs acceptation scheme (Casella and George, 1992) during the calibration (see
section 2.2.5 for more details).

Observation models We defined a class named ObservationModel that given the model
and some observed data will provide the linked variables regarding observations and their
attachment to the model (the negative log-likelihood - nll - to be minimized) associated
with a well-defined distribution.

Distribution Latent variables and observation models are based on a probability distri-
bution that is defined by a specific class, all inherited from the same structure.

Models The model class (that inherited from BaseModel)) link the state, the observation
model, and the metric (LogMixing and LinMixing) that defines the shape of the curves as
defined in section 2.2.3.3.

5.2.2.3 Non-regression evaluation

In the initial version of the package, quite a lot of tests were already implemented: unit
tests which enable to check that each method of each class does what it is supposed to
do, and functional tests which verify that the implemented models return the right output
after the different estimations. All the tests are run after each change in the package to
make sure nothing was broken accidentally. Nevertheless, these tests were done on a few
iterations and did not wait for convergence, due to time considerations. The refactoring



5.2. Leaspy: an open-source software for disease progression modelling 103

Figure 5.2: Simplified Class Diagram structure of Leaspy software
Legend: Dashed: the class (arrow start) is an attribute of the other class (arrow end), Plain:
the class (arrow end) inherited from the parent class (arrow (inherited from the method
of the parent class and can have its own), WeibullFamily: Weibull distribution from latent
age for right censored data, WeibullWSourcesFamily: Weibull distribution from latent age
for right censored data with a proportional effect of sources on the hazard, WeibullObs:
Observational model with WeibullFamily distribution, WeibullWSourcesObs: Observational
model with WeibullWSourcesFamily distribution, Collect: class that contains the update rules
for the model parameters (sufficient statistics section 2.2.5), LinMixing/LogMixing: these
classes enable to define the shape of the curve linear or logistic, LMEModel: Linear mixed-
effect model

of the sampling changed the order of the latent variables, which broke the tests. Thus, to



104 Chapter 5. Software development: contribution to reproducibility and reuse

enable the refactored version to pass the tests, we had to hardcode the order of the variables
sampled. Tests are meant to be updated at the end of the refactorisation to remove the
hardcode order of the variables sampled.

We have also reproduced different past experiments to make sure that the models con-
verged at the same place.

5.2.3 A simplified implementation: the example of the joint temporal
model

Thanks to the refactorisation adding a new model can be summarised by the following steps:

1. Update input data structure: Leaspy has a specific class to handle data. Thus,
if the new model handles data that were not handled before, the data class must be
updated. This was the case for the joint temporal model, as before only longitudinal
data were allowed. Changes were made to enable survival data in the class structure.

2. Create an observation model: Then if necessary a new observation model can be
created to define the link between the observed data and the new model. In the case
of the joint temporal model, a new observation model following a Weibull distribution
for right-censored survival data was created.

3. Specify the DAG: A new model class can then be created and its DAG should be
specified. For the joint temporal model, this consisted of defining the DAG described
in Figure 5.1.

4. Write some tests: When the model has been validated on simulated data, some
functional tests must be added to avoid future involuntary changes.

The joint temporal model was coded in both versions (pre and post-refactorisation) which
enabled us to measure the improvement for future users. The merge request in the first ver-
sion was spread over a large number of files whereas the second one was much more localised
and mainly followed the above steps. Both merge requests are available online at https://
gitlab.com/icm-institute/aramislab/leaspy/-/merge_requests/104/diffs and https:

//gitlab.com/icm-institute/aramislab/leaspy/-/merge_requests/114/diffs.

5.3 Data converters: extracting and cleaning data

5.3.1 Context

To ease data processing, conventions exist on how to store longitudinal and survival datasets.
For longitudinal datasets, two formats exist: the long format for which each row is one visit
of a given patient and columns the outcomes, and the wide format for which each row is a
patient and columns represent the value of the outcome at each visit. The long format is by
far the most used in clinical datasets. For survival data, also several formats exist (Dugué
et al., 2016). For events left or right censored, a time is stored jointly with a boolean. For
interval-censored events, the two bounds times of the interval are stored.

https://gitlab.com/icm-institute/aramislab/leaspy/-/merge_requests/104/diffs
https://gitlab.com/icm-institute/aramislab/leaspy/-/merge_requests/104/diffs
https://gitlab.com/icm-institute/aramislab/leaspy/-/merge_requests/114/diffs
https://gitlab.com/icm-institute/aramislab/leaspy/-/merge_requests/114/diffs
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With these conventions, the value used for visit indexing can vary, the units of mea-
surement may not be consistent and some artefacts may exist in the databases. Thus, each
person tends to create its own cleaning pipeline which may complexify reproducibility.

Doing so, and getting inspiration from Routier et al., 2021, we defined a stricter format
and created converters for public datasets. The software aims to enable collaborators to
spend less time on data processing, facilitate data sharing, and improve the reproducibility
of experiments.

5.3.2 From raw to clean data

5.3.2.1 Dataset format

There are different ways to index the visits: by their number, by their time to the baseline,
by the age of the patient ... In some studies visits are not equally spaced thus indexing with
the number of the visit does not make sense, a time would be more reliable. Nevertheless,
we have seen that symptom onset is not a reliable time reference, and age at baseline may
not be representative of the same stage of the disease for all patients. Thus, we chose to
index the visit thanks to the age of the patient stored as a float. In addition to time-varying
outcomes, patients can be characterised by fixed covariates that do not vary across visits,
such as sex. To store them in addition to longitudinal outcomes in the same dataset, they
are repeated at each visit but must be equal for one patient.

Like fixed covariates, events were repeated at each visit of the patient. Depending on
the extraction method for events (through longitudinal scores or event database) they have
different censoring types. Thus, they were stored in different formats (interval censored or
right censored).

5.3.2.2 Conventions

To perform automatic tests at the end of data cleaning, each new variable cleaned (outcome,
covariate) is added to a convention repertory. It includes a range (minimum to maximum
values often defined as worst to best) as well as a type of outcome that can be an item
(CategoricalItem), clinical score (NumericCompoundItem), or a biomarker (NumericItem).
The class diagram is described in Figure 5.3.

5.3.2.3 Converters

The idea was to create a structure that automatically processes the data so that the code
could be shared and run on a machine without directly sharing the data. An abstract class
of converter was created and then each converter specific to a dataset can inherited from it.
Each converter overloads get_clean_dataset_impl and returns, after a batch of automatic
tests, an object containing the dataset. Eight converters were created to process datasets
from different diseases: ALS, Alzheimer’s disease, Huntington, and Parkinson’s disease.
They are all summarised in Figure 5.3.
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Figure 5.3: Simplified Class Diagram structure of the converter software
Legend: Dashed: the object is an attribute, Plain: inherited from the class, xx_fix: json files
that contain some individual fix for patients that have strange values.

5.3.3 The example of PRO-ACT converter

The PRO-ACT database is composed of 16 files in long format, with visits indexed by
a relative timing to the baseline of the file. In addition, columns are not typed, and some
artefacts can be found.

Different outcomes were directly collected from the database (the items of the ALSFRS(r)
(Rooney et al., 2017), in opposition to computed ones with for instance a simple sum
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(ALSFSR total or Mitos (Fang et al., 2017)). Nevertheless, some values available were
already composite scores and their method of computation was not specified in the database,
which could lead to centre biases if it was computed at the center level in further analysis.
It was for example the case with the normalised Forced Vital Capacity (FVC), for which
several normalisation techniques exist (Degens and Merget, 2008). We recomputed with a
homogenous formula the normalised FVC at each visit (Degens and Merget, 2008; Brändli
et al., 1996). The difference with the version extracted from the database was of 8.2 (5.7) %.
Due to the multicentric setting of the PRO-ACT database, weight was collected in different
units. Nevertheless, some weights had no units associated, or only for a subset of the visits.
Differences between the values in each unit were not large enough to impute data without
labels. Thus we had to put aside weights of patients with no labels or inconsistent labels
across visits. All the different visits for the different outcomes came from different files and
were merged. After merging, we ended up with visits indexed by different ages, sometimes
closer than a day. In such cases, we merged them as one unique visit, if the values of the
outcomes allow it.

We considered that height could be seen as a covariate for patients older than 25 years,
which represent the large majority of the patients in the dataset. As for the weight, we faced
an issue with units. There is a factor of 2.54 to pass from inches to centimetres. Thus only
the patients with a height between 100 and 110 cm could be difficult to label (100 to 110 cm
or 254 or 279 cm). Hopefully, there were no such patients. Then we needed to homogenise
the height over the visits for each patient as they were patients with heights that vary up
to 20 cm. Sex labelling was consistent. For the ALS onset type, we grouped the different
available labels: LIMB and SPINE for spinal patients and BULBAR for bulbar patients. If
both were present the values were concatenated.

We also extracted events from the database. Extraction of the death was quite simple
as all the deaths were stored in one file. For patients without observed death, we censored
their deaths with the date of the last visit. Extraction of Non-Invasive Ventilation (NIV),
gastrostomy and tracheostomy was a bit more complex. The use of NIV is coded in item 12
of ALSFRSr and item 10 of ALSFRS. We were thus able to extract interval-censored data
thanks to the value of these items taking the first change into account. The same kind of
procedure was followed using item 12 of ALSFRSr for the tracheostomy and items 6a and
6b for the gastrostomy. As tracheostomy and gastrostomy are also medical interventions,
some codes were available in one of the tables using the Medical Dictionary for Regulatory
Activities (MDRA). After analysis of the different labels, we have decided to keep the Lowest
Level Term, displayed in Figures D.1 and D.2 in the appendix, to extract an exact date of
gastrostomy and tracheostomy. Thus for gastrostomy and tracheostomy two types of events
were extracted for some patients: interval-censored events and right-censored events.

From an implementation point of view the cleaning of the database can be separated into
three main phases. First, the extraction of fixed covariates, then the extraction of all the
longitudinal outcomes and finally the extraction of events.
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5.4 Personal contribution

Since the beginning of my PhD, I have been involved in the Leaspy project and participated
in its development. Over the past three years, I have made many contributions, both in
terms of software development and project management.

Most of the implementation of the refactored existing code was done by Nicolas Gensollen
and Etienne Maheux. However, I have actively participated in creating short and midterm
roadmaps, reviewing the merge requests, and designing the refactored software. I have also
implemented the different joint models in the refactored version.

I participated marginally in the conception of the whole structure of the converter, but
I implemented inside the structure all the converters related to ALS.

5.5 Conclusion & perspectives

We contributed to ease the reproducibility and the repurposing of the work done in this
thesis.

With the members of my team, we have refactored the existing open-source software
to ease maintenance and future model implementation. The main historical models are
already available in the package, as well as the new joint models described in this thesis.
Nevertheless, some work remains in implementing an automatic diagnosis routine of the
calibration estimation, with graphs and key summary statistics including metrics to compare
models (WAIC (Watanabe, 2010)). This work may also enable easier implementation of
more modern samplers to speed up convergence (Betancourt, 2018; Hoffman and Gelman,
2014).

The data processing pipeline can always be improved by including the processing of more
publicly available datasets. Some work could also be done to convert it into an open-source
software while maintaining patient privacy.
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Conclusion

Progression heterogeneity in chronic diseases such as Amyotrophic Lateral Sclerosis (ALS)
is a significant obstacle to developing effective treatments. Leveraging the growing wealth
of large databases through modelling can help better understand it. However, the data
collected only offer access to partial trajectories needing to be realigned to reconstruct a
comprehensive disease progression.

This thesis aimed to model the heterogeneity of ALS progression, by capturing both
longitudinal and survival processes, while considering the specificity of the available data.

After identifying the need in the literature for a joint data-driven model to handle ALS
data, we have extended an existing longitudinal one, the Spatiotemporal model, to fill this
gap. The strength of the Spatiotemporal model is its ability to synchronise patients onto
a common disease timeline (temporal aspect) thanks to a latent disease age, while also
capturing the remaining variability through parameters that account for outcome ordering
(spatial aspect).

We first associated the Spatiotemporal model with a survival model that estimates a
Weibull survival model from its latent disease age, creating a univariate Joint Temporal
model. Our model was validated on simulated data and exhibited on PRO-ACT data
significantly better performance in terms of absolute bias and mean cumulative AUC for
right-censored events compared to a state-of-the-art shared random effect model.

Then, we coupled the multivariate Spatiotemporal model with a cause-specific Weibull
survival model from the latent disease age, incorporating spatial parameters with a Cox
proportional effect on the hazard to create a Joint cause-specific Spatiotemporal model.
The Joint cause-specific Spatiotemporal model achieved similar performance to the state-
of-the-art model while capturing an underlying shared latent process, the latent disease age,
whereas the state-of-the-art models the impact of longitudinal outcomes on survival.

Thanks to these models, we contributed to characterise ALS heterogeneity. We applied
the Spatiotemporal model to explore how the interaction between sex and onset site (spinal
or bulbar) impacts the progression of ALS patients. Using the 1,438 patients selected from
the PRO-ACT database, we demonstrated a significant influence of both sex and onset site
on six longitudinal outcomes monitoring the functional and respiratory decline in addition
to Body Mass Index.

We then complemented this analysis with the newly created Joint cause-specific Spa-
tiotemporal model to analyse the initiation of Non-Invasive Ventilation and death. Our



110 Conclusion and perspectives

analysis revealed that women were more at risk than men of NIV initiation and death, after
adjusting for individual latent disease age and onset site, but should be further assessed
with the correction by the age at first symptoms.

Contributions were made to ease the reuse of the new models developed, by starting a large
refactoring of an existing open-source software named Leaspy for LEArning Spatiotemporal
patterns in Python and implementing the model developed in this thesis in the new structure.
All the data processing needed for this thesis was also integrated into an internal data
processing software for publicly available datasets to facilitate reproducibility.

Perspectives

Some work remains to validate and extend the Joint cause-specific Spatiotemporal model.
First, further studies to better understand the underestimation of the speed should be
conducted including the estimating the influence of the longitudinal noise on the model.
Then, a benchmark in the context of chronic disease to see if the Joint Spatiotemporal model
could handle high-dimension data in line with the work of Nguyen et al., 2023 should be
conducted. Nevertheless, to do so, some efforts must be made to improve the samplers of the
model to speed up the convergence (Betancourt, 2018; Hoffman and Gelman, 2014). Then,
getting inspiration from (Rouanet et al., 2016; Yang et al., 2023), the Joint cause-specific
Spatiotemporal model could be extended to handle interval and left censored data to better
analyse NIV initiation or any event that could be extracted from clinical scores for example.
Finally, studying the compatibility of the Joint cause-specific Spatiotemporal model with
other recent extensions of the Spatiotemporal model that enable modelling ordinal data
(Poulet and Durrleman, 2023b), different subgroups through mixture modelling (Poulet
and Durrleman, 2023a) or covariates influence (Fournier and Durrleman, 2023) could also
be of interest.

Joint model could also be used in clinical trials to improve power through the correction
with prognostic scores (Ai, Street, and Francisco, 2021; FDA, 2023) or better-selecting ho-
mogenous population (Maheux et al., 2023). In causal inference, joint models may offer an
alternative to principal stratification in the context of truncation by death when a longitu-
dinal outcome is the outcome of interest (McNealis, Moodie, and Dean, 2024; Shardell and
Ferrucci, 2018; Kurland et al., 2009).

For now, the Spatiotemporal model does not enable modelling changes of dynamics in
longitudinal progression. Modelling jointly to longitudinal data, recurrent or multiple events
could be a way to introduce them in the model (Kim et al., 2012; Rouanet et al., 2016;
Ferrer et al., 2016; Mauguen et al., 2013; Musoro, Geskus, and Zwinderman, 2015; Tong,
Liu, and Pena, 2022). Such work could have direct applications, among which, studying the
progression changes after attacks in multiple sclerosis or after strokes in CADASIL.
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Model equations

In this appendix all the formulas related to the estimation of the models are grouped.
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A.1 Likelihood

As a reminder, note that there are N patients indexed by i and each has ni visits indexed
by j. Note that t0 = τ . Note that the detailed probabilities must be integrated over the
latent parameters to get the real likelihood formula.

A.1.1 Longitudinal Spatiotemporal model

k indexed the K outcomes and m the Ns sources (see section 2.2.1), parameters are defined
in section 2.2.3.4. Extracted from Koval, 2020 p.175.
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A.1.2 Joint Temporal model

Te is the time of observation of the event and Be is the associated boolean whether the event
was observed or not (see section 3.2.1). Parameters are defined in section 3.2.3.1.
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A.1.3 Joint cause-specific Spatiotemporal model

K outcomes and Ns sources and Te is the time of observation of the event and Be is the
associated boolean whether the event was observed or not (see section 4.2.1), parameters
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are defined in section 4.2.3.1.
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A.2 Sufficient statistics

The convergence of the Monte-Carlo Markov Chain Stochastic Approximation Expectation-
Maximization (MCMC-SAEM) algorithm has been proven in Kuhn and Lavielle, 2004 for
models which lie into the curved exponential family. For such a family of distributions, the
log-likelihood can be written as:

log p(Y, z, θ,Π) = −Φ(θ,Π) + ⟨S(Y, z), f(θ,Π)⟩+A(Y, z,Π)

where Φ and f are smooth functions, and S are called the sufficient statistics. The sufficient
statistics are to be understood as a summary of the required information from the latent
variables z and the observations Y . Our models fall in such a category and sufficient statistics
are described below. Note that for the joint models, the same kind of decomposition was
done by Lavalley-Morelle et al., 2024.

The idea is to rewrite likelihood in the above form to get sufficient statistics. As a
reminder, note that there are N patients indexed by i and each has visits indexed by j.



114 Appendix A. Model equations

A.2.1 Longitudinal Spatiotemporal model

Extracted from Koval, 2020 p.175, see notation in section 2.2.1 and parameters in section
2.2.4.1, t0 = τ , ξ = 0
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A.2.2 Joint Temporal model

see notation in section 3.2.1 and parameters in section 3.2.3.1,
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ṽ0

2
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11⟩+ ⟨ [ṽ0]︸︷︷︸
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A.2.3 Joint cause-specific Spatiotemporal model

see notation in section 4.2.1 and parameters in section 4.2.3.1,
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√
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2σ2β
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2
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2σ2β
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− ln(σρ̃
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2σ2ρ̃
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11⟩+ ⟨ [ρ̃l]l︸︷︷︸

S13(Y,z)

,
1
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− LNs ln(σζ
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σ2ζ
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−N log(στ
√
2π)− 1

2σ2τ
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,− 1

2σ2τ
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σ2τ
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−N log(σξ
√
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2
+ ⟨ [ξ2i ]i︸︷︷︸
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,− 1
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1N ⟩+ ⟨ [ξi]i︸︷︷︸

S19(Y,z)
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1
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ξ1N ⟩

−NNs log(σs
√
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1
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+ ⟨ [s̃il2]il︸ ︷︷ ︸
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,− 1

2σ2s
1NNs⟩+

Ns∑
m=1

⟨ [s̃im]i︸ ︷︷ ︸
S21(y,z)

,
1

σ2s
[s]⟩

A.3 Maximization update rules

To find the update rule of the different parameters, we need to find the new parameter θ
that maximizes the log-likelihood. As expressions are convex in θ we can simply derive and
look for a critical point. We derive the log-likelihood with respect to each maximised fixed



A.3. Maximization update rules 117

effect. Note that only maximised fixed effects are updated by a maximization rule, other
parameters are latent variables that are sampled. ξ is first maximised and then set to 0 and
s = 0 and σs = 1. As a reminder, note that there are N patients indexed by i and that each
of them has ni visits indexed by j. At iteration c, we can use S̃(c+1) computed with the
parameters at iteration c and the formula of S(Y, z) to compute the parameters at iteration
(c+ 1).

A.3.1 Longitudinal Spatiotemporal model

Extracted from Koval, 2020 p.175, see notation in section 2.2.1 and parameters in section
2.2.4.1, and sufficient statistics section A.2

(σ2)c+1 ← 1

NK
[S̃

(c+1)
1 − 2S̃

(c+1)
2 + S̃

(c+1)
3 ]T1K

(ṽ0k)
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(c+1)
5

(g̃k)
c+1 ← S̃

(c+1)
7

(βo,m)
c+1 ← S̃

(c+1)
9

(τ)c+1 ← 1

N
S̃
(c+1)
11

(σ2τ )
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N
[S̃

(c+1)
10 − 2τ S̃

(c+1)
11 ]T1N + τ2

(σ2ξ )
(c+1) ← 1

N
[S̃

(c+1)
12 − 2ξS̃

(c+1)
13 ]T1N + ξ

2

A.3.2 Joint Temporal model

see notation in section 3.2.1 and parameters in section 3.2.3.1 and sufficient statistics section
A.2
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(ξ)(c+1) ← 1
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(c+1) ← 1

N
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14 − 2ξS̃
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15 ]T1N + ξ
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A.3.3 Joint cause-specific Spatiotemporal model

see notation in section 4.2.1 and parameters in section 4.2.3.1, and sufficient statistics section
A.2

(σ2)(c+1) ← 1

N
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2

A.4 Jacobian Likelihood

To faster personalisation, gradients are computed for ξi × σξ and τi × στ . Thus all the
equations must be multiplied by the standard deviation at the end, to get the implemented
formulas.

A.4.1 Joint cause-specific Spatiotemporal model

A.4.1.1 Longitudinal data attachment

From likelihood Longitudinal noise is supposed to follow Gaussian law, we have to derive
the following quantity per patient i and visit j for the outcome k:

log p(yi,j,k | z, θ,Π) = − log
(
σk
√
2π
)
− 1

2σ2
k
(yi,j,k − γi,k (ti,j,k))2

Jacobian Using the known formula of the derivative of the logistic function, we get:

Ci,j,k =
(1+gk)

2

gk
[yi,j,k − γi,k (ti,j,k)] [γi,k (ti,j,k)] [1− γi,k (ti,j,k)]

∂ log p(yi,j,k | z, θ,Π)
∂ξi

= 1
σ2 (v0,kψi (ti,j,k)× Ci,j,k)

∂ log p(yi,j,k | z, θ,Π)
∂τi

= − 1
σ2

(
v0,ke

ξi × Ci,j,k
)

∂ log p(yi,j,k | z, θ,Π)
∂si,m

= − 1
σ2 (Ak,m × Ci,j,k)
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A.4.1.2 Survival data attachment

From likelihood On the other side, the modelling of the survival process depends on
whether the event is observed or not for each patient i:

log p(tei , Bei | z, θ,Π) =
∑

l 1Bei=l
× log

(
ρle

ξi

νl

(
eξi (tei−τi)

νl

)ρl−1

exp (
∑

m ζl,msi,m)

)
−
∑

l

(
eξi (tei−τi)

νl

)ρl
exp (

∑
m ζl,msi,m)

Jacobian We thus get:

∂ log q(tei , Bei | z, θ,Π)
∂ξi

=
∑

l 1Bei=l
ρl − ρl ×

(
ψi(tei)
νl

)ρl
exp (

∑
m ζl,msi,m)

=
∑

l 1Bei=l
ρl + ρl × log (Si,l(tei))
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=
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1Bei=l
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=
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)ρl
exp (

∑
m ζl,msi,m)

=
∑

l 1Bei=l
ζl,m + ζl,m × log (Si,l(tei))

A.4.1.3 Random effects regularisation

From likelihood

log p(zre | θ,Π) =− N log
(
στ
√
2π
)
− 1

2σ2τ

∑
i

(τi − τ)2
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√
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)
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√
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Jacobian We thus get:
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Appendix B

Joint temporal model additional
results

In this appendix additional results on the Joint Temporal model are grouped.
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Figure B.1: Statistics on simulated data depending on the scenario
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with
different density of visits, Follow-up (F): scenario with different follow-up duration, Lon-
gitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise
(S): Scenario with different standard deviation on survival. Easy, Medium and Hard corre-
spond to an increased difficulty of simulated data for the estimation, more information on
simulation is available in section 3.3.1.2 and summarised in the table 3.3. Note that the
Longitudinal (L) and the Survival (S) scenarios have almost the same number of visits. The
Visits (V) and Longitudinal (L) scenarios have almost the same censoring rate for the easi-
est configuration, and the Survival (S) and Longitudinal (L) scenarios for the most difficult
configuration.
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Figure B.2: Fixed effects estimation bias from posterior distribution simulated datasets
Legend: In ordinate the normalised bias on the true value of the parameters, in abscissa the
different dataset for each scenario.
Patients(P): scenario with different number of patients, Visits (V): scenario with differ-
ent density of visits, Follow-up (F): scenario with different follow-up duration, Longitudinal
noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Sce-
nario with different standard deviation on survival. With (r) that indicates when the study
design corresponds to the real-like design. Easy, Medium and Hard correspond to an in-
creased difficulty of simulated data for the estimation, more information on simulation is
available in section 3.3.1.2 and summarised in the table 3.3.
Parameters: g: Curve value at t0: 1

1+g , σ: Estimated noise, ν: Scale of the Weibull distri-
bution, ρ: Shape of the Weibull distribution, t0: Population estimated reference time, στ :
estimated reference time standard-deviation, v0: Speed of the logistic curve, σξ: Individual
log-speed factor (the mean is fixed to 0 to ensure identifiability).
The distribution was computed using 30,000 MCMC iterations.



Table B.1: Intra-class correlation of random effects from the mean of posterior distribution on simulated datasets

Legend: ξ: the progression log-speed factor, τ : the individual estimated reference time. Intra-class correlations are computed between the random
effects estimated and the one simulated. Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits,
Follow-up (F): scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise
(S): Scenario with different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated data for the
estimation, more information on simulation is available in section 3.3.1.2 and summarised in the table 3.3.

Random Effect Scenario Patients (P) Visits (V) Follow-up (F) Longitudinal noise (L) Survival noise (S)
average CI95% average CI95% average CI95% average CI95% average CI95%

ξ
Easy 0.91 [0.90 0.92] 0.93 [0.92 0.93] 0.97 [0.97 0.97] 0.91 [0.90 0.92] 0.91 [0.90 0.92]
Medium 0.89 [0.87 0.91] 0.91 [0.90 0.92] 0.91 [0.90 0.92] 0.83 [0.81 0.85] 0.91 [0.90 0.92]
Hard 0.93 [0.91 0.95] 0.90 [0.89 0.91] 0.86 [0.84 0.87] 0.75 [0.72 0.78] 0.91 [0.90 0.92]

τ
Easy 0.96 [0.95 0.96] 0.97 [0.96 0.97] 0.98 [0.97 0.98] 0.96 [0.95 0.96] 0.96 [0.95 0.96]
Medium 0.94 [0.92 0.95] 0.96 [0.95 0.96] 0.96 [0.95 0.96] 0.88 [0.86 0.89] 0.96 [0.95 0.96]
Hard 0.96 [0.95 0.97] 0.94 [0.93 0.94] 0.92 [0.91 0.93] 0.66 [0.62 0.70] 0.96 [0.95 0.96]

B.1.3 Attenuation bias correction



Table B.2: Clinically meaningful estimated parameters signed bias on simulated data for the Joint Temporal model

Legend: CMEP: Clinically meaningful estimated parameters, bias: mean (SD) computed from the posterior distribution, corrected bias: the mean
extracted from the Robbin Monroe algorithm corrected for attenuation bias, truth: the value used for data simulation. Patients(P): scenario with
different number of patients, Visits (V): scenario with different density of visits, Follow-up (F): scenario with different follow-up duration, Longitudinal
noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Scenario with different standard deviation on survival. Easy,
Medium and Hard correspond to an increased difficulty of simulated data for the estimation, more information on simulation is available in section
3.3.1.2 and summarised in the table 3.3.

CMEP Scenario Patients (P) Visits (V) Follow-up (F) Longitudinal noise (L) Survival noise (S)
bias corrected bias truth bias corrected bias truth bias corrected bias truth bias corrected bias truth bias corrected bias truth

median
Easy 0.40 (0.07) 0.00 4.50 0.50 (0.08) 0.13 4.47 0.18 (0.05) 0.05 4.40 0.40 (0.07) 0.00 4.50 0.38 (0.06) 0.02 4.18
Medium 0.59 (0.13) 0.09 4.76 0.40 (0.07) 0.00 4.50 0.40 (0.07) 0.00 4.50 0.71 (0.11) 0.07 4.50 0.40 (0.07) 0.00 4.50
Hard 1.11 (0.21) 0.58 4.34 0.56 (0.09) 0.14 4.42 1.88 (0.24) 1.08 4.49 1.22 (0.15) 0.43 4.50 0.45 (0.08) 0.02 4.61

growth
Easy 1.37 (0.14) 0.45 -13.19 1.04 (0.13) 0.69 -13.22 0.25 (0.08) 0.50 -13.25 1.37 (0.14) 0.45 -13.19 1.37 (0.14) 0.50 -13.09
Medium 0.89 (0.19) 0.76 -12.47 1.37 (0.14) 0.45 -13.19 1.37 (0.14) 0.45 -13.19 2.92 (0.21) -0.59 -13.19 1.37 (0.14) 0.45 -13.19
Hard 1.68 (0.32) 0.37 -13.49 1.46 (0.15) 0.43 -13.39 2.75 (0.19) -0.26 -13.36 5.26 (0.24) -3.51 -13.19 1.32 (0.14) 0.56 -13.22

midpoint
Easy 0.10 (0.02) -0.06 2.93 0.08 (0.02) -0.07 2.90 -0.02 (0.01) -0.05 2.83 0.10 (0.02) -0.06 2.93 0.11 (0.02) -0.05 2.94
Medium 0.04 (0.03) -0.13 3.09 0.10 (0.02) -0.06 2.93 0.10 (0.02) -0.06 2.93 0.25 (0.03) -0.02 2.93 0.10 (0.02) -0.06 2.93
Hard 0.17 (0.04) 0.01 2.80 0.08 (0.02) -0.07 2.87 0.29 (0.03) -0.01 2.93 0.46 (0.05) 0.09 2.93 0.10 (0.02) -0.06 2.91



Table B.3: Intra-class correlation of random effects from personalization on simulated datasets for the Joint Temporal model

Legend: ξ: the progression log-speed factor, τ : the individual time-shit, . Intra-class correlations are computed between the random effects estimated
and the one simulated. Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-up (F):
scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Scenario
with different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated data for the estimation, more
information on simulation is available in section 3.3.1.2 and summarised in the table 3.3.

Random Effect Scenario Patients (P) Visits (V) Follow-up (F) Longitudinal noise (L) Survival noise (S)
average CI95% average CI95% average CI95% average CI95% average CI95%

ξ
Easy 0.87 [0.86 0.89] 0.89 [0.87 0.90 ] 0.96 [0.95 0.96] 0.87 [0.86 0.89] 0.87 [0.85 0.88]

Medium 0.83 [0.80 0.86] 0.87 [0.86 0.89] 0.87 [0.86 0.89] 0.75 [0.71 0.78] 0.87 [0.86 0.89]
Hard 0.90 [0.87 0.93] 0.86 [0.85 0.88] 0.79 [0.76 0.81] 0.67 [0.63 0.71] 0.87 [0.86 0.89]

τ
Easy 0.97 [0.96 0.97] 0.97 [0.97 0.98] 0.98 [0.98 0.98] 0.97 [0.96 0.97] 0.97 [0.96 0.97]

Medium 0.95 [0.94 0.96] 0.97 [0.96 0.97] 0.97 [0.96 0.97] 0.91 [0.90 0.92] 0.97 [0.96 0.97]
Hard 0.96 [0.95 0.97] 0.96 [0.95 0.96] 0.95 [0.94 0.96] 0.71 [0.67 0.75] 0.97 [0.96 0.97]



Figure B.3: Intra-class correlation of random effects on simulated datasets
Legend: Results are presented with mean with CI95%.
In ordinate, the two random effects: τ the individual time-shit and ξ the progression log-speed factor. Intra-class correlations are computed between the
random effects estimated and the one simulated.
In abscissa the different dataset for each scenario: Patients(P): scenario with different number of patients, Visits (V): scenario with different density
of visits, Follow-up (F): scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome,
Survival noise (S): Scenario with different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated
data for the estimation, more information on simulation is available in section 3.3.1.2 and summarised in the table 3.3. Datasets with (r) correspond
to the real-like dataset.
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B.1.4 Benchmark

Figure B.4: Average patient curve of the Joint Temporal model and reference models on
real-like dataset

Legend: Results are presented with mean over the 10-fold cross-validation and the maximum
and minimum variation for each model.
Panel A: Longitudinal: Spatiotemporal longitudinal model, Joint Temporal: the Joint Tem-
poral model, univ-JMbayes2: joint model with shared random effects, Truth: real average
patient that enabled data simulation,
Panel B: AFT: Accelerated Failure Time model, Two-stage model: AFT survival model
that uses as covariate random effects of the Longitudinal model, Joint Temporal: the Joint
Temporal model, univ-JMbayes2: joint model with shared random effects, Truth: real aver-
age patient that enabled data simulation.
Note that for the longitudinal process, the curves of the Truth, the Longitudinal and Joint
Temporal models are superimposed.

B.2 Real data study

B.2.1 Benchmark
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Figure B.5: Average patient curve of the Joint Temporal model and reference models on
PRO-ACT dataset

Legend: Results are presented with mean over the 10-fold cross-validation and the maximum
and minimum variation for each model.
Panel A: Longitudinal: Spatiotemporal longitudinal model, Joint Temporal: the Joint Tem-
poral model, univ-JMbayes2: joint model with shared random effects,
Panel B: AFT: Accelerated Failure Time model, Two-stage model: AFT survival model
that uses as covariate random effects of the Longitudinal model, Joint Temporal: the Joint
Temporal model, univ-JMbayes2: joint model with shared random effects.
Note that for the longitudinal process, the curves of the Longitudinal and Joint Temporal
models are superimposed.
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Appendix C

Joint cause-specific Spatiotemporal
model

Computation method for WAIC computation and some additional results for the Joint cause-
specific model are grouped.

Contents
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C.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2.1 Precision of the parameters estimated . . . . . . . . . . . . . . . . . 132
C.2.2 Shared latent age hypothesis . . . . . . . . . . . . . . . . . . . . . . 135

C.3 Application study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

C.1 WAIC

The WAIC was first defined by Watanabe, 2010 to compare the different Bayesian models.
We used the version of Vehtari, Gelman, and Gabry, 2017 with β = 1 and multiplied by
- 2 to be on the deviance scale. To compute it, the probability observation knowing the
parameters should be computed for each iteration.

As we used mixed-effects models, two types of likelihood could be computed for each
patient i, with θ̂ the model parameters estimated at the end of the computation and Π the
hyperparameters :

• the conditional likelihood for iteration c:

p((yi, tei , Bei) | ẑrei , zcfe, θ̂,Π)

with ẑrei the mean random effects estimated over the iterations,

• the marginal likelihood for iteration c:

p((yi, tei , Bei) | zcfe, θ̂,Π) =
∫
p((yi, tei , Bei), zrei | zcfe, θ̂,Π)dzrei
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The marginal likelihood is more robust (Millar, 2018) but is harder to compute as the
integral must be estimated. It is usually estimated using Laplace’s approximation which
corresponds to a Taylor expansion (Daxberger et al., 2021):

log(p((yi, tei , Bei) | zcfe, θ̂,Π)) = log(p((yi, tei , Bei), ẑrei | zcfe, θ̂,Π)) +
1

2
log | S | +D

2
log(2π)

withD the number of random effects and S Hessian (the second derivative) of random effects
at point ẑrei . For computational reasons, in the thesis, we estimated only the conditional
version of the WAIC.

C.2 Simulation study

C.2.1 Precision of the parameters estimated

C.2.1.1 Real-like dataset additional results

Table C.1: Intraclass correlation of random effects of the Joint cause-specific Spatiotem-
poral model estimated on the Real-like dataset

Legend: Mean intraclass correlation with 95% Confidence Interval estimated using the mean
of each individual posterior

Random effects Intraclass correlation
Log-speed factor ξi 0.86 [0.85 0.88]
Individual estimated reference time τi 0.94 [0.93 0.94]

Space shifts

Bulbar wi,0 0.98 [0.97 0.98]
Fine motor wi,1 0.96 [0.95 0.96]
Gross motor wi,2 0.97 [0.97 0.97]
Total wi,3 0.96 [0.96 0.97]

Survival shifts
VNI ui,0 0.94 [0.93 0.95]
Death ui,1 0.83 [0.81 0.85]
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C.2.1.2 No-link dataset additional results

Table C.2: Bias of the estimated parameters of the Joint cause-specific Spatiotemporal
model on the No-link simulated dataset

Legend: For each parameter of the model, the value used for simulation is reported with the
value of the mean of the stabilized posterior and the associated Credibility Interval at 95%
computed on the last 10,000 iterations of the stabilized MCMC-SAEM: (*) the simulated
value is in the 95% credibility interval, (<) the simulated value is underestimated, (>) the
simulated value is overestimated. Bias: difference to the true parameters divided by the true
parameters,-: put when the bias could not be computed as the true parameter equal to 0, ×:
no true value for this parameter exist (the number of sources was overestimated due to the
invalid shared latent age hypothesis), ξ, s, σs parameters are not present as they are fixed by
the model (ξ = 0, s = 0, σs = 1) and t0 = τ

Parameters name Simulated Estimated Bias (%)

Distribution of
random effects

Estimated reference time (mean) t0 1.115 * 1.152 [1.09, 1.215] 3.3 [-2.3, 9.0]
Estimated reference time (std) στ 0.988 * 0.99 [0.967, 1.013] 0.2 [-2.1, 2.5]
Individual log-speed factor (std) σξ 0.768 * 0.793 [0.767, 0.821] 3.3 [-0.1, 6.9]

Longitudinal
fixed effects

Curve values at t0: 1
1+g (gk)

g0 13.958 < 12.553 [11.947, 13.434] -10.1 [-14.4, -3.8]
g1 5.316 < 4.438 [3.949, 4.74] -16.5 [-25.7, -10.8]
g2 3.993 < 3.42 [3.225, 3.631] -14.3 [-19.2, -9.1]
g3 5.704 < 5.296 [5.119, 5.475] -7.2 [-10.3, -4.0]

Speed of the logistic curves (v0,k)

v0,0 0.069 * 0.071 [0.067, 0.075] 2.9 [-2.7, 7.8]
v0,1 0.188 * 0.198 [0.187, 0.213] 4.9 [-0.5, 13.0]
v0,2 0.198 * 0.202 [0.193, 0.21] 2.0 [-2.7, 6.1]
v0,3 0.113 * 0.113 [0.109, 0.117] 0.4 [-3.0, 4.0]

Mixing matrix (Ak,m)

A0,0 0.06 < 0.025 [0.016, 0.036] -58.3 [-73.3, -40.8]
A0,1 0.059 < -0.038 [-0.045, -0.033] -164.7 [-176.0, -155.9]
A0,2 × × -0.071 [-0.077, -0.065] ×
A1,0 -0.1 > -0.053 [-0.06, -0.043] 47.3 [39.8, 56.6]
A1,1 0.006 > 0.095 [0.088, 0.108] 1482.9 [1362.7, 1692.1]
A1,2 × × 0.016 [0.009, 0.025] ×
A2,0 0.0 * 0.008 [-0.009, 0.028] -
A2,1 -0.14 > -0.03 [-0.04, -0.014] 78.7 [71.2, 89.8]
A2,2 × × 0.144 [0.138, 0.151] ×
A3,0 0.01 < 0.004 [0.002, 0.007] -55.0 [-77.2, -30.8]
A3,1 0.0 < -0.008 [-0.01, -0.007] -
A3,2 × × -0.002 [-0.003, -0.0] ×

Estimated noises (σk)

σ0 0.065 < 0.059 [0.058, 0.059] -9.9 [-10.5, -9.3]
σ1 0.076 < 0.072 [0.071, 0.072] -5.9 [-6.6, -5.1]
σ2 0.074 < 0.069 [0.069, 0.07] -6.5 [-7.1, -5.7]
σ3 0.036 * 0.036 [0.036, 0.037] 0.0 [-0.8, 0.8]

Survival
fixed effects

Weibull scale (νl)
ν0 2.792 > 13.368 [11.838, 15.678] 378.8 [324.0, 461.5]
ν1 3.59 > 91.026 [75.775, 115.442] 2435.7 [2010.9, 3115.9]

Weibull shape (ρl)
ρ0 1.7 < 0.848 [0.789, 0.908] -50.1 [-53.6, -46.6]
ρ1 2.8 < 0.864 [0.783, 0.989] -69.1 [-72.0, -64.7]

HR Coefficients (ζl,m)

ζ0,0 -0.09 * -0.115 [-0.27, 0.001] -27.4 [-199.7, 100.9]
ζ0,1 -0.1 * 0.021 [-0.155, 0.179] 121.0 [-55.3, 279.3]
ζ0,2 × × -0.117 [-0.223, -0.014] ×
ζ1,0 0.09 > 0.979 [0.665, 1.355] 987.9 [638.6, 1405.5]
ζ1,1 0.0 < -0.541 [-0.73, -0.365] -
ζ1,2 × × -0.078 [-0.274, 0.089] ×
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Table C.3: Intraclass correlation of random effects of the Joint cause-specific Spatiotem-
poral model estimated on the No-link dataset

Legend: Mean intraclass correlation with 95% Confidence Interval estimated using the mean
of each individual posterior

Random effects Intraclass correlation
Log-speed factor ξi 0.90 [0.89 0.91]
Individual estimated reference time τi 0.94 [0.93 0.94]

Space shifts

Bulbar wi,1 0.97 [0.96 0.97]
Fine motor wi,2 0.94 [0.93 0.95]
Gross motor wi,3 0.96 [0.95 0.96]
Total wi,4 0.94 [0.93 0.95]

Survival shifts
VNI ui,1 -0.91 [-0.92 -0.9 ]
Death ui,2 0.01 [-0.05 0.07]
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C.2.2 Shared latent age hypothesis

C.2.2.1 Real-like dataset additional results

Table C.4: Comparison of the parameters estimated by the Joint cause-specific Spa-
tiotemporal model and the Longitudinal Spatiotemporal model on the Real-like dataset

Legend: For each parameter of the model, the value used for simulation is reported with
the value of the mean of the stabilized posterior and the associated Credibility Interval at
95% computed on the last 10,000 iterations of the stabilized MCMC-SAEM. Comparison:
test if the credibility interval are disjoint (*) the 95% credibility interval overlap, (<) the
credibility interval of the Joint model is below the one of the longitudinal model, (>) the
credibility interval of the Joint model is larger than the one of the longitudinal model, ξ, s, σs
parameters are not present as they are fixed by the model (ξ = 0, s = 0, σs = 1) and t0 = τ

Parameters name Simulated Joint Spatiotemporal Longitudinal Spatiotemporal Comparison

Distribution of
random effects

Estimated reference time (mean) t0 1.36 1.381 [1.336, 1.421] 1.419 [1.415, 1.429] *
Estimated reference time (std) στ 1.062 1.058 [1.038, 1.080] 1.078 [1.073, 1.088] *
Individual log-speed factor (std) σξ 0.725 0.749 [0.722, 0.780] 0.759 [0.755, 0.767] *

Longitudinal
fixed effects

Curve values at t0: 1
1+g (gk)

g0 13.958 13.002 [12.344, 13.712] 12.443 [12.22, 12.675] *
g1 5.316 4.549 [4.229, 4.850] 4.26 [4.185, 4.338] *
g2 3.993 3.639 [3.485, 3.828] 3.398 [3.316, 3.466] >
g3 5.704 5.428 [5.308, 5.534] 5.198 [5.133, 5.258] >

Speed of the logistic curves (v0,k)

v0,0 0.062 0.059 [0.056, 0.061] 0.057 [0.056, 0.059] *
v0,1 0.167 0.165 [0.157, 0.173] 0.162 [0.159, 0.166] *
v0,2 0.176 0.167 [0.161, 0.173] 0.164 [0.16, 0.167] *
v0,3 0.1 0.094 [0.091, 0.096] 0.091 [0.089, 0.093] *

Mixing matrix (Ak,m)

A0,0 0.06 0.059 [0.053, 0.067] 0.062 [0.052, 0.071] *
A0,1 0.059 0.059 [0.051, 0.066] 0.061 [0.051, 0.073] *
A1,0 -0.1 -0.107 [-0.115, -0.101] -0.112 [-0.118, -0.106] *
A1,1 0.006 0.009 [-0.003, 0.023] 0.01 [-0.011, 0.029] *
A2,0 0.0 -0.005 [-0.024, 0.007] -0.007 [-0.029, 0.015] *
A2,1 -0.14 -0.147 [-0.154, -0.138] -0.151 [-0.158, -0.144] *
A3,0 0.01 0.01 [0.009, 0.011] 0.011 [0.009, 0.012] *
A3,1 -0.0 -0.0 [-0.002, 0.001] -0.0 [-0.003, 0.002] *

Estimated noises (σk)

σ0 0.065 0.058 [0.057, 0.058] 0.058 [0.058, 0.058] *
σ1 0.076 0.073 [0.072, 0.074] 0.073 [0.073, 0.073] *
σ2 0.074 0.072 [0.071, 0.073] 0.072 [0.072, 0.072] *
σ3 0.036 0.036 [0.036, 0.037] 0.036 [0.036, 0.036] *
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C.2.2.2 No-link dataset additional results

Table C.5: Comparison of the parameters estimated by the Joint cause-specific Spa-
tiotemporal model and the Longitudinal Spatiotemporal model on the No-link dataset

Legend: For each parameter of the model, the value used for simulation is reported with the
value of the mean of the stabilized posterior and the associated Credibility Interval at 95%
computed on the last 10,000 iterations of the stabilized MCMC-SAEM, ×: no true value
for this parameter exists (the number of sources was overestimated due to the invalid shared
latent age hypothesis),Comparison: test if the credibility interval are disjoint (*) the 95%
credibility interval overlap, (<) the credibility interval of the Joint model is below the one of
the longitudinal model, (>) the credibility interval of the Joint model is larger than the one
of the longitudinal model, ξ, s, σs parameters are not present as they are fixed by the model
(ξ = 0, s = 0, σs = 1) and t0 = τ

Parameters name Simulated Joint Spatiotemporal Longitudinal Spatiotemporal Comparison

Distribution of
random effects

Estimated reference time (mean) t0 1.115 1.152 [1.09, 1.215] 1.098 [1.087, 1.107] *
Estimated reference time (std) στ 0.988 0.99 [0.967, 1.013] 0.999 [0.991, 1.003] *
Individual log-speed factor (std) σξ 0.768 0.793 [0.767, 0.821] 0.814 [0.81, 0.818] *

Longitudinal
fixed effects

Curve values at t0: 1
1+g (gk)

g0 13.958 12.553 [11.947, 13.434] 12.399 [12.137, 12.671] *
g1 5.316 4.438 [3.949, 4.74] 4.679 [4.599, 4.76] *
g2 3.993 3.42 [3.225, 3.631] 3.628 [3.554, 3.705] *
g3 5.704 5.296 [5.119, 5.475] 5.421 [5.355, 5.486] *

Speed of the logistic curves (v0,k)

v0,0 0.069 0.071 [0.067, 0.075] 0.068 [0.066, 0.07] *
v0,1 0.188 0.198 [0.187, 0.213] 0.181 [0.177, 0.186] *
v0,2 0.198 0.202 [0.193, 0.21] 0.186 [0.182, 0.191] >
v0,3 0.113 0.113 [0.109, 0.117] 0.106 [0.103, 0.108] >

Mixing matrix (Ak,m)

A0,0 0.06 0.025 [0.016, 0.036] 0.045 [0.039, 0.05] <
A0,1 0.059 -0.038 [-0.045, -0.033] -0.047 [-0.054, -0.042] *
A0,2 × -0.071 [-0.077, -0.065] -0.056 [-0.061, -0.05] <
A1,0 -0.1 -0.053 [-0.06, -0.043] -0.077 [-0.085, -0.071] >
A1,1 0.006 0.095 [0.088, 0.108] 0.071 [0.064, 0.081] >
A1,2 × 0.016 [0.009, 0.025] -0.016 [-0.025, -0.008] >
A2,0 0.0 0.008 [-0.009, 0.028] -0.003 [-0.015, 0.01] *
A2,1 -0.14 -0.03 [-0.04, -0.014] 0.016 [0.008, 0.026] <
A2,2 × 0.144 [0.138, 0.151] 0.144 [0.137, 0.151] *
A3,0 0.01 0.004 [0.002, 0.007] 0.006 [0.004, 0.009] *
A3,1 -0.0 -0.008 [-0.01, -0.007] -0.007 [-0.009, -0.005] *
A3,2 × -0.002 [-0.003, -0.0] 0.001 [-0.001, 0.002] *

Estimated noises (σk)

σ0 0.065 0.059 [0.058, 0.059] 0.059 [0.059, 0.059] *
σ1 0.076 0.072 [0.071, 0.072] 0.072 [0.072, 0.072] *
σ2 0.074 0.069 [0.069, 0.07] 0.069 [0.069, 0.069] *
σ3 0.036 0.036 [0.036, 0.037] 0.036 [0.036, 0.036] *
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C.3 Application study

Table C.6: Description of the parameters estimated by the Joint cause-specific Spa-
tiotemporal model for the Analysis dataset

Legend: m indexed the dimension of the ordering of longitudinal outcomes (spatial variabil-
ity), here with dimension two (two sources). Individual log-speed factor mean ξ, individual
spatial variability mean and standard deviation s, σs parameters are not present as they are
fixed by the model (ξ = 0, s = 0, σs = 1) and t0 = τ

Distribution of random effects
Estimated reference time (mean) t0

Estimated reference time (std) στ

Individual log-speed factor (std) σξ

Longitudinal fixed effects
Bulbar Fine motor Gros motor

Curve values at t0: 1
1+g (gk) g0 g1 g2

Speed of the logistic curves (v0,k) v0,0 v0,1 v0,2

Estimated noises (σk) σ0 σ1 σ2

Mixing matrix (Ak,m) A0,0 A1,0 A2,0

A0,1 A1,1 A2,1

Survival fixed effects
NIV initiation Death

Weibull scale (νl) ν0 ν1

Weibull shape (ρl) ρ0 ρ1

HR Coefficients (ζl,m) ζ0,0 ζ1,0

ζ0,1 ζ1,1
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Table C.7: Estimated parameters of the Joint cause-specific Spatiotemporal model on
the Analysis dataset

Legend: For each parameter of the model, the value used for simulation is reported with the
value of the mean of the stabilized posterior and the associated Credibility Interval at 95%
computed on the last 10,000 iterations of the stabilized MCMC-SAEM: (*) the simulated
value is in the 95% credibility interval, (<) the simulated value is underestimated, (>) the
simulated value is overestimated. Bias: difference to the true parameters divided by the true
parameters, ξ, s, σs parameters are not present as they are fixed by the model (ξ = 0, s =

0, σs = 1) and t0 = τ

Parameters name Estimated

Distribution of
random effects

Estimated reference time (mean) t0 0.889 [0.883, 0.902]
Estimated reference time (std) στ 0.974 [0.959, 0.986]
Individual log-speed factor (std) σξ 0.782 [0.772, 0.796]

Longitudinal
fixed effects

Curve values at t0: 1
1+g (gk)

g0 23.749 [23.053, 24.195]
g1 9.571 [9.393, 9.735]
g2 6.577 [6.376, 6.706]

Speed of the logistic curves (v0,k)

v0,0 0.042 [0.041, 0.043]
v0,1 0.125 [0.122, 0.127]
v0,2 0.144 [0.142, 0.148]

Mixing matrix (Ak,m)

A0,0 -0.023 [-0.025, -0.021]
A0,1 -0.059 [-0.061, -0.057]
A1,0 -0.026 [-0.029, -0.023]
A1,1 0.066 [0.064, 0.069]
A2,0 0.098 [0.096, 0.102]
A2,1 0.047 [0.044, 0.051]

Estimated noises (σk)

σ0 0.063 [0.063, 0.063]
σ1 0.075 [0.075, 0.075]
σ2 0.074 [0.074, 0.074]

Survival
fixed effects

Weibull scale (νl)
ν0 3.702 [3.622, 3.799]
ν1 4.223 [4.119, 4.31]

Weibull shape (ρl)
ρ0 1.862 [1.81, 1.906]
ρ1 3.338 [3.256, 3.472]

HR Coefficients (ζl,m)

ζ0,0 0.17 [0.147, 0.215]
ζ0,1 -0.049 [-0.078, -0.02]
ζ1,0 0.275 [0.25, 0.338]
ζ1,1 -0.154 [-0.178, -0.128]
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Appendix D

Software additional figures

In this appendix additional results are grouped.

Contents

D.1 Extraction of events from standard of care medical terms . . . . . . . . . . . 139

D.1 Extraction of events from standard of care medical terms

Figure D.1: Medical intervention terms related to gastrostomy using Medical Dictionary
for Regulatory Activities (MDRA)

Legend: SOC: Standard Of Care, each square represents a level in the medical intervention
terms tree, the numbers in parentheses are the number of possible terms at each level of the
tree, not selected levels and terms are represented with dashed



140 Appendix D. Software additional figures

Figure D.2: Medical intervention terms related to tracheostomy using Medical Dictionary
for Regulatory Activities (MDRA)

Legend: SOC: Standard Of Care, each square represents a level in the medical intervention
terms tree, the numbers in parentheses are the numbers of possible terms at each level of the
tree, not selected levels and terms are represented with dashed
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Appendix E

Carbon footprint

In this appendix we give an order of magnitude of the carbon footprint of this thesis.

Contents

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
E.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
E.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
E.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
E.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

E.1 Introduction

The notion of carbon footprint has gained increasing importance in recent years. It corre-
sponds the total amount of greenhouse gas emissions directly or indirectly attributed to an
individual, organization, or product. In this appendix, following the work of (Sauty, 2023),
we have assessed the carbon footprint associated with the research conducted for this thesis.
The objective was to give insights into our research’s contribution to global warming and
explore directions for future carbon footprint reduction.

E.2 Method

We estimated the emissions related to the conferences attended during this thesis. Esti-
mation of transportation-related emissions was made using data from the French database
ADEME (https://bilans-ges.ademe.fr/), the distances travelled and the mode of transporta-
tion. Nevertheless, due to the multimodal transportation from Paris to Thessaloniki, the
estimation was made using the website Mollow (https://www.mollow.eu/destination/
ath%C3%A8nes-gr%C3%A8ce). For conferences abroad, the option by plane was also esti-
mated for comparison.

We also took into account office-related emissions. They were extracted from the work
of (Sauty, 2023), and came from an internal committee at the Paris Brain Institute, utilizing
the "labo1.5" estimator (https://labos1point5.org/).

All the computations were run on individual computers and that specific electricity
consumption was thus considered inside the office-related emissions. Transportation from
home to office was also neglected as done by bike.

https://www.mollow.eu/destination/ath%C3%A8nes-gr%C3%A8ce
https://www.mollow.eu/destination/ath%C3%A8nes-gr%C3%A8ce
https://labos1point5.org/
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Precise figures were not of interest and the order of magnitude should be kept in mind.

E.3 Results

Table E.1: Estimation of the carbon footprint of this thesis.

Legend: For reference, 2000kgCO2-eq/year/person for all emissions (private and profes-
sional) is a symbolic threshold believed to be sustainable at the global scale.

Emissions (kg CO2-eq) % of emissions
Conferences Paris - Edinburgh 20 0.23

Paris - Newcastle 16 0.19
Paris - Milan 15 0.18
Paris - Toulouse 12 0.14
Paris - Thessaloniki 127 1.48

Institute Electricity 1,000 11.64
Heating/AC 3,600 41.91
IT hardware 3,800 44.24

Total 8,590 100

Compared to the field of deep learning, for which a lot of conferences are outside of
Europe, in biostatistics, European conferences of great quality exist which has enabled
controlling the carbon footprint associated. For the abroad conferences, the total carbon
footprint was 178 kg CO2-eq compared to its equivalent by plane of 2,156 kg CO2-eq. Most
of the carbon footprint of this thesis is related to the institute footprint with IT hardware
(44.24%) and heating/AC (41.91%).

E.4 Discussion

For reference, 2000kg CO2-eq/year/person for all emissions (private and professional) is a
symbolic threshold believed to be sustainable at the global scale. With a carbon footprint
of around 8.5 tons, work remains on office-shared facilities.

Efforts were made to reduce the footprint of this thesis using low-carbon transportation.
Nevertheless, such a reduction came as an individual responsibility with an associated in-
creased amount of time and money needed. The research community is currently calling for
global changes (Tao et al., 2021) and some hybrid conferences have been created to reduce
the impact of conferences (https://cuttinggardens2023.org/).

This footprint estimation could be improved by taking into account a more precise
footprint of the in-person conferences attended.

E.5 Conclusion

Through this estimation, we aim to promote awareness and advocate for more sustainable
practices within academic research, so that it will be less dependent on individual respon-
sibility in the future.

https://cuttinggardens2023.org/
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Submitted journal papers

1. J. Ortholand, S. Durrleman, S. Tezenas Du Montcel, Joint model with latent disease
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ABSTRACT 

Background: Studies showed the impact of sex and onset site (spinal or bulbar) on disease onset 

and survival in ALS. However, they mainly result from cross-sectional or survival analysis, and the 

interaction of sex and onset site on the different proxies of disease trajectory has not been fully 

investigated.  

Methods: We selected all patients with repeated observations in the PRO-ACT database. We 

divided them into four groups depending on their sex and onset site. We estimated a multivariate 

disease progression model, named ALS Course Map, to investigate the combined temporal changes of 

the four sub-scores of the revised ALS Functional Rating Scale (ALSFRSr), the forced vital capacity (FVC), 

and the body mass index (BMI). We then compared the progression rate, the estimated age at onset, 

and the relative progression of the outcomes across each group. 

Results: We included 1,438 patients from the PRO-ACT database. They were 51% men with spinal 

onset, 12% men with bulbar onset, 26% women with spinal onset, and 11% women with bulbar onset. 

We showed a significant influence of both sex and onset site on the ALSFRSr progression. The BMI 

decreased 8.9 months earlier (95% CI = [3.9, 13.8]) in women than men, after correction for the onset 

site. Among patients with bulbar onset, FVC was impaired 2.6 months earlier (95% CI = [0.6, 4.6]) in 

women.  

Conclusion: Using a multivariable disease modelling approach, we showed that sex and onset site are 

important drivers of the progression of motor function, BMI, and FVC decline.  
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INTRODUCTION 

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset heterogeneous neurodegenerative disease 

that occurs on average between 55 and 60 years. It is characterized by a degeneration of both upper 

and lower motor neurons1, and the average survival time from onset to death is three to four years2. 

The disease shows an important phenotypic variability, particularly in terms of the site of disease onset 

and progression3. The difference between the disease starting with dysarthria and dysphagia (bulbar 

onset) and the disease with limb weakness (spinal onset) is well documented. Among other, they differ 

in terms of incidence3; progression rate4–6; and survival duration4.  

Several epidemiological studies have shown a lower incidence of ALS in women compared to 

men4,7 as well as differences in the onset site and age at onset8. More recently genetic9 and imaging 10 

studies have enriched the knowledge on this sexual dimorphism. However, most of these results come 

from cross-sectional studies7,8 or survival4 studies. By design, the first one failed to capture the 

longtime effect of clinical or demographic variables, such as age or sex11. The second only presents half 

of the information on the disease progression by studying mortality, leaving aside the function in daily 

activities. Thus how the marked sexual dimorphism influences the progression and the presentation 

of each ALS form, has not been fully described. 

The originality of the present study is to investigate the interaction of sex and onset site on the 

whole progression of the following clinical proxies: BMI12, forced vital capacity (FVC)13, and sub-scores 

of ALS functional rating scales (ALSFRSr) 14. To do so, we have used a recent longitudinal model 

designed for neurodegenerative diseases15,16. This enabled us to study all the outcomes at the same 

time, consider the non-linearity of the progression of outcomes, and capture patients’ heterogeneity 

better than with classic models.    
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MATERIALS AND METHODS 

Study population 

We analyzed patients from the Pooled Resource Open-Access ALS Clinical Trials Consortium (PRO-

ACT) database. It is composed of an aggregation of 23 phase II and III clinical trials and one 

observational study. Information that could lead to any identification, such as the clinical trial, tested 

drug, study centres, or dates, was not included in the database. As the database is an aggregation, 

inclusion and exclusion criteria for patients to enter the cohort are multiple and will not be described 

here, more information could be found in the paper that presents the database 17. 

For our study, we selected patients with at least two visits for all the outcomes listed below. We 

collected: outcome values at all available visits; the sex of the participant; and the onset site (spinal or 

bulbar), a label that is available in the PRO-ACT database. We divided participants into four groups: 

men with bulbar onset, women with bulbar onset, men with spinal onset, and women with spinal 

onset.  

Outcomes 

We selected a set of outcomes that are important clinical proxies of ALS progression and are 

available in the PRO-ACT database. We considered the most widely used functional rating system in 

patients with ALS, namely the revised version of the ALS functional rating scale (ALSFRSr)14. The scale 

starts at a maximum theoretical value of 48 and decreases with the severity of the disease till zero. We 

considered the four ALSFRSr sub-scores assessing four distinct domains: bulbar, gross motor, fine 

motor, and respiratory functions. Each sub-scale has 12 points each14. In addition, we considered the 

FCV 13 that we normalized using the computed normal FVC18 and the BMI12. 
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We normalized the outcomes between 0 (the healthiest value) and +1 (the maximum pathological 

change). The four ALSFRSr sub-scores have been normalized using their theoretical maximum and 

minimum values. For FVC and BMI, we first applied a box-cox transformation (estimated on the whole 

PRO-ACT dataset) to get a standard normal distribution19,20,21. We then clipped the resulting value 

between -3 and 3 points and converted them to the 0 to 1 scale.  

In addition to these repeated measures, we collected the following covariates when available: 

riluzole use, trial arm (active, placebo, observational), age at first symptom, age at diagnosis, age at 

baseline, Mitos22 and FT9 scores23 at baseline. These data were not used as input for the disease 

progression model.  

ALS Course Map 

We used a disease progression model, named ALS Course Map, which is a multivariate non-linear 

Bayesian mixed-effects model15,16. The model estimates the progression of a series of outcomes from 

a longitudinal dataset. It estimates a subject-specific set of curves for each outcome and summarizes 

them at the population, or sub-group level. The model does not require imputation as it is robust to 

missing data 24. In addition, it does not require a standardized time between visits 24. 

ALS course map models the progression with a logistic pattern of outcomes development. As in 

other mixed effect models, two types of parameters are computed: fixed effect, referred to as 

population parameters, and random effect, referred to as individual parameters. Population 

parameters capture the average ALS progression from which patients deviation could be captured by 

three individual parameters: 
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The first individual parameter is the disease time shift, 𝜏!, expressed in years. It represents the 

delay between the estimated age at disease onset for patient i and the whole population. For instance, 

𝜏! = −1 means that the estimated disease onset of the patient occurs one year earlier than the 

average patient in the population. The estimation of the time shift takes all outcomes into account. 

There is a single time shift for a given subject. 

The second one is the progression rate, 𝛼!. It represents a value that multiplies the population 

progression rate to get the rate of the patient i. For instance, 𝛼! = 1.2  means that the disease 

progresses 1.2 times faster than the average patient in the population. The estimation of the 

progression rate also takes all outcomes into account. There is a single rate for a given subject.  

Finally, a series of inter-marker spacings, 𝜔!", expressed in months. One 𝜔!"  changes the onset of 

the outcome j of the patient i while keeping other outcomes fixed. For instance, 𝜔!" = +2 means that 

the j-th outcome changes two months earlier than for the average patient in the population, all other 

things being equal. Each subject has six inter-marker spacings, one per outcome in the model. Inter-

marker spacings are centred (i.e. their weighted sum equals zero) so that they do not interplay with 

the estimation of the time shift. 

We used the open-source software, Leaspy, to estimate the model parameters from a longitudinal 

dataset. The software is publicly available at: https://gitlab.com/icm-

institute/aramislab/leaspy/Experimental design. This disease progression model has been applied to 

other neurodegenerative conditions25,26. 

Statistical analysis 
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We trained the model with the whole data set composed of four groups. We assessed the 

convergence with a rank normalized R-hat diagnostic test using a threshold of 1.2. To study the 

goodness-of-fit of the model to the actual data, we compared the estimated value of each visit with 

its real available value to compute the reconstruction error. We compared the reconstruction error 

among groups. 

To test for the interaction of sex and onset site on the ALS course map individual parameters we 

used ANOVAs. We compared the individual parameters estimated by the ALS Course Map between 

sex and onset site interaction using ANOVAs. For significant results, we computed an independent 

pairwise Tukey-Kramer test27. Otherwise, we computed an ANOVA without interaction to test the 

influence of each covariate adjusted for the other. All the results are presented with a 95% confidence 

interval computed with pairwise Tukey-Kramer or ANOVA without interaction, depending on the 

interaction significance. We used the same comparison process to describe the cohort and compare 

the groups at baseline. For the cohort description, results are associated with the corrected sample 

standard deviation. Statistical tests were performed at a conventional 2-tailed type I error of 0.05. Data 

were analyzed using python software 3.8, using packages statsmodel28 and bioinfokit29. 

Standard Protocol Approvals, Registrations, and Patient Consents 

Data used in this study came from the PRO-ACT database which is institutional review board–

approved. Patients originally consented to participate in clinical trials that have been aggregated in the 

database. Every patient has been de-identified. We accessed the data following the access procedure 

detailed here: https://ncri1.partners.org/ProACT/Account/Register. 

Data availability 
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Access to the database PRO-ACT could be asked for through the procedure above. Further 

information for replication of the study is available in supplementary material in eReproducibility. 
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RESULTS 

Population 

Among the 8,571 patients (78,824 visits) in the PRO-ACT database, we dropped 220 values of BMI 

and 45 values of FVC that were out of the normalization range. We then selected the 1,463 patients 

with at least two visits for all the outcomes selected. Finally, we selected the 1,438 patients with 

information about the onset site. Note that sex was available for all patients. Their characteristics are 

presented in Table 1. The cohort was composed of 51% men with spinal onset, 12% men with bulbar 

onset, 26% women with spinal onset, and 11% women with bulbar onset. There were no significant 

differences in follow-up duration (1.00 ± 0.59 years); the number of visits per patient (11.6 ± 7.2 visits); 

and time between visits (34.5 ± 28.5 days) over the four groups. Nevertheless, we observed significant 

differences among groups for ages, time durations, and scores at baseline. 

ALS Course Map 

We can first extract qualitative results from the four groups’ trajectories. Figure 1 represents the 

progression of ALSFRSr subscores for each subgroup. Overall, curves are shifted on the right for 

patients with bulbar onset (Figure 1 B and D) compared to patients with spinal onset (Figure 1 A and 

C). Curves are also shifted on the right for women (Figure 1 A and B) compared to men (Figure 1 C and 

D), illustrating later onset for women compared to men.  

The model also exhibited differences in the timing of outcomes. For instance, it confirmed the 

progression order of ALSFRSr bulbar curve (orange) and ALSFRSr motor curves (red and green): they 

are switched between patients with spinal onset (Figure 1 A and C) and patients with bulbar onset 

(Figure 1 B and D). 
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Finally, we can note differences in speed. Patients with spinal onset (Figure 1 A and C and Figure 2 

purple and grey) seem to have steeper curves than patients with bulbar onset (Figure 1 B and D and 

Figure 2 cyan and pink). All these results are confirmed below by quantitative statistical tests. 

Estimated age at disease onset 

We found an interaction between the onset site and sex for the estimated disease onset (p = 

0.0020) (in supplementary materials eFigure 1). For patients with bulbar onset, the disease onset for 

men occurs 6.0 years earlier (95% CI = [2.6, 9.5]) than for women while for a woman with spinal onset, 

it occurs 4.7 years earlier (95% CI = [1.9, 7.4]) than for women with bulbar onset.  

Rate of progression 

We did not find any significant interaction between the onset site and sex for the rate of 

progression (p=0.14) (in supplementary materials eFigure 2). Patients with bulbar onset were found to 

progress 1.4 times faster (95% CI = [1.2, 1.6]) than patients with spinal onset independently of sex.  

Outcomes onset of impairment 

Respiratory function 

We found an interaction between sex and onset site for FVC (p<0.001) but not for ALSFRSr 

respiratory score (p=0.058), once corrected for the estimated age at disease onset and rate of 

progression (Figure 3 E and F). Among patients with bulbar onset, FVC is impaired 2.6 months earlier 

(95% CI = [0.6, 4.6]) in women than in men. Among men, FVC is impaired 5.4 months earlier (95% CI = 

[3.8, 7.0]) in patients with bulbar onset compared to spinal onset. Among women, the difference 

increases to 8.3 months (95% CI = [6.7, 9.9]). ALSFRSr respiratory scale changes 2.4 months earlier 

(95% CI = [0.7, 4.0]) for patients with bulbar onset compared to spinal onset independently of the sex. 
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Motor function 

We found an interaction between sex and onset site for gross motor (p<0.001) but not for fine 

motor scores (p=0.12), once corrected for the estimated age at disease onset and rate of progression 

(Figure 3 A and B). Among patients with spinal onset, ALSFRSr gross motor scale deteriorates 4.5 

months later (95% CI = [3.1, 6.0]) in women than in men. But ALSFRSr fine motor scale changes 3.5 

months earlier (95% CI = [2.6, 4.4]) in women than in men, independently of the onset site. Among 

men, ALSFRSr gross motor scale changes 10.6 months earlier (95% CI = [8.3, 12.8]) for patients with 

spinal onset compared to bulbar onset. Among women, the difference increases to 16.0 months earlier 

(95% CI = [13.7, 18.2]). ALSFRSr fine motor scale changes 10.2 months earlier (95% CI = [9.0, 11.3]) for 

patients with spinal onset compared to bulbar onset, independently of the sex. 

Bulbar function 

We did not observe any interaction between sex and onset site for ALSFRSr bulbar score (p=0.01), 

once corrected for the estimated age at disease onset and rate of progression (Figure 3 C). Among 

patients with bulbar onset, ALSFRSr bulbar scale changes 6.4 months earlier (95% CI = [1.6, 11.1]) in 

women than men. Among men, ALSFRSr bulbar scale changes 27.2 months later (95% CI = [23.4, 31.0]) 

for patients with spinal onset compared to bulbar onset. Among women, the difference increases to 

32.5 months later (95% CI = [28.7, 36.3]).  

BMI 

We did not observe an interaction between sex and onset site for BMI (p=0.17), once corrected 

for the estimated age at disease onset and rate of progression (Figure 3 D). BMI decreases 8.9 months 

earlier (95% CI = [3.9, 13.8]) in women than men, independently of the onset site. BMI decreases 10.0 
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months earlier (95% CI = [3.8, 16.1]) for patients with bulbar onset compared to spinal onset, 

independently of the sex.  
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DISCUSSION 

Sex and onset site interact with disease progression in ALS as demonstrated on all the clinical 

proxies studied, including disability, weight loss, and respiratory function. In particular, several proxies 

were affected earlier in women than in men.  

 

Concerning the effect on weight, we showed that BMI starts to decrease 9 months earlier in 

women than men, independently of the onset site. Considering the rapid progression of ALS, with a 

mean survival of 3-6 years, this inter-sex difference appears clinically meaningful. Weight loss is a 

classical consequence of bulbar impairment leading to dysphagia. But alterations in body weight are 

present in ALS patients already decades before clinical manifestation of ALS30 and are a negative 

prognostic factor associated with shorter survival 31. Weight loss is also associated with increased 

energy expenditure. It is present in almost half of the patients and is associated with shorter survival32. 

Inter-sex differences in metabolism may also affect the disease trajectory. The role of energy and lipid 

metabolism abnormalities in the pathogenesis of ALS is currently a focus of many studies in animal 

models and ALS patients33–36. Inter-sex differences in the percentage of body fat may also modify 

disease progression. It is higher in women37 and may vary with menopausal status38 . Studies 

comparing fat mass with impedancemetry or dual-energy X-ray absorptiometry are needed to better 

investigate the role of metabolism and the effect of sex on disease progression 3939.  

The effect of sex on the respiratory decline has not been reported so far. We showed that among 

patients with bulbar onset, FVC is impaired 2.6 months earlier in women than in men. This difference 
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is also clinically meaningful since respiratory distress is the main cause of death in ALS and the decline 

of FVC is the main criterion for the indication of non-invasive ventilation40.  

An unexpected result was that the ALSFRSr fine motor scale changes earlier in women, regardless 

of the onset site, but that the ALSFRSr gross motor scale changes later in women among patients with 

spinal onset. Further studies are needed to investigate whether these differences might be related to 

sexual dimorphism in the anatomic pattern of abnormalities, both in terms of susceptibility to 

neurodegeneration and compensatory mechanisms. The advances in neuroimaging enable an 

increasing number of research studies investigating cortical and subcortical structure in both health 

and disease conditions41,42. Note that a dimorphism of regions linked to fine motors has been shown 

in healthy participants 43. In addition, significant sex differences in the anatomical patterns of cortical 

and subcortical pathology have been shown in ALS41. Finally, these sex differences might be a bias in 

the self-evaluation of motor abilities using ALSFRSr. 

On the one hand, from a biological perspective, the mechanisms of sexual dimorphism in ALS have 

been shown at an anatomical level in specific brain regions, in vivo, thanks to imaging10 and related to 

sex-specific microglial regulation44, sex hormones45, or susceptibility to oxidative stress46. A study, 

performed on a large number of ALS women with natural menopause and well-defined oral 

contraceptive usage, has demonstrated that longer exposure to female hormones has neuroprotective 

effects on motoneurons in ALS (positive association between a longer reproductive condition, the 

susceptibility to ALS, and the survival of ALS patients)45. On the other hand, the overall heritability of 

ALS is estimated to be of approximately 21% using genome-wide association studies (GWAS) datasets9. 

The effect of sex was found to be different according to the type of mutation C9orf72 or SOD1 on ALS 

progression9. Recent studies on presymptomatic ALS phase support the emerging hypothesis of a 
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general disorder in development, both in animal47 and humans at cognitive48 and structural level49. 

From a developmental origin of health and disease perspective50, the well-known sexual dimorphism 

in physiological development could also play a role. 

A strength of our study is that our model was based on a large, multicentric, and longitudinal 

cohort. We used a mixed effect model following neurological research recommendation51. The model 

used is robust to missing data and does not require a standardized time between visits 24. Logistic 

curves were used to overcome common limitations on score analysis: curvilinearity, and potential floor 

or ceiling effects52. The reconstruction error of the model was of the same range as the one of the 

Alzheimer’s disease study 25, for which the model has been originally developed (eFigure 3 and eFigure 

4 in supplementary materials). 

Our study has several limitations. PRO-ACT may not be representative of the real-life ALS patient 

population. Since the database aggregates clinical trial data, there is an overrepresentation of men, 

young subjects, patients with spinal onset, and slow progressors. Nevertheless, these results could 

help better understand the progression of placebo arms and design strategies for patient stratification 

in clinical trials. Due to the high level of death censoring in PRO-ACT, we were not able to analyse the 

survival in addition to the disease progression. The outcomes selected has also their own limits. BMI 

does not capture the distinction between fat, muscle, or bone mass. We have also used the sub-scores 

of ALSFRSr separately as recommended14, but as lower motor neurons often dominate in the overall 

clinical presentation 5, the score might be ill-suited for other sub-form of the disease. A population-

based study showed the existence of plateaus in ALSFRSr mainly shorter than 6 months, with only 10% 

of patients with wider plateaus 53. Thus, modeling the progression of ALSFRSr subscores by logistic 

curves could be debated. Nevertheless, plateaus appear in high scores and are unlikely to change the 
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results since our patients’ average length of follow-up is one year. The absence of information on 

genetic mutation3; neuropsychological symptoms3, exposure to metals or agricultural factor54 and 

lifestyle55,56 also limits the interpretation of the results.  

To summarize, we showed that sex and onset site interaction is an important driver of ALS 

progression considering many clinical proxies such as disability, weight loss, and respiratory function. 

Pathophysiological mechanisms underlying these differences are elusive and may account for an 

interplay of biological, lifestyle, and environmental factors. Further studies in animal models and 

patients are needed to better understand their respective contributions.  
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Table 1: Patient characteristics Legend: data are expressed as mean± standard deviation (percentage of available data) or frequency (percentage), p-value: ANOVA interaction p-value, BM: 

bulbar men, BW: bulbar women, SM: spinal men, SW: spinal women, *: <0.05, **: <0.01, ***: <0.001

Outcomes Spinal Man Bulbar Man Spinal Woman Bulbar Woman p-value Subgroup relations 
Numbers Patients 757 126 405 150 

  
 

Visits 9236 1447 4771 1799 
  

 
Visits per patient 12.2 ± 10.0 11.5 ± 7.4 11.8 ± 9.0 12.0 ± 7.7 0.46 - 

Riluzole use Took at least once 533 (70%) 82 (65%) 286 (71%) 96 (64%) 
  

 
Never took 126 (17%) 31 (25%) 72 (18%) 29 (19%) 

  
 

No information on use 98 (13%) 13 (10%) 47 (12%) 25 (17%) 
  

Trial arm Active 378 (50%) 66 (52%) 204 (50%) 65 (43%) 
  

 
Placebo 210 (28%) 35 (28%) 115 (28%) 40 (27%) 

  
 

Observational 169 (22%) 25 (20%) 86 (21%) 45 (30%) 
  

Age First symptoms 52.3 ± 11.1 (100%) 53.1 ± 11.6 (100%) 54.1 ± 10.9 (100%) 59.5 ± 9.5 (100%) 0.0021 (SM,BM,SW)<BW   
Diagnosis 53.0 ± 11.1 (87%) 53.7 ± 11.7 (89%) 54.7 ± 10.6 (85%) 60.5 ± 9.5 (90%) 0.0012 (SM,BM,SW)<BW   
Baseline 54.1 ± 11.1 (100%) 54.6 ± 11.7 (100%) 56.0 ± 10.8 (100%) 61.1 ± 9.4 (100%) 0.0018 (SM,BM,SW)<BW  

Time duration Patient time of follow-up (y) 1.0 ± 0.7 (100%) 1.0 ± 0.6 (100%) 1.0 ± 0.8 (100%) 1.0 ± 0.6 (100%) 0.58 - 
 Time between visits (d) 34 ± 28 (100 %) 35 ± 28 (100 %) 35 ± 30 (100 %) 34 ± 29 (100 %) 0.33 -  

Disease duration (y) 1.8 ± 1.0 (100%) 1.4 ± 0.9 (100%) 1.9 ± 1.1 (100%) 1.6 ± 0.9 (100%) 0.61 B<S*** 
Outcomes at baseline Mitos 0.2 ± 0.5 (59%) 0.2 ± 0.5 (59%) 0.3 ± 0.5 (61%) 0.2 ± 0.5 (71%) 0.70 -  

FT9 1.8 ± 0.9 (59%) 1.9 ± 1.0 (59%) 1.9 ± 0.9 (61%) 1.9 ± 1.0 (71%) 0.52 -  
ALSFRSr score Total 37.2 ± 5.4 (59%) 37.4 ± 5.8 (59%) 35.9 ± 5.5 (61%) 37.3 ± 5.3 (71%) 0.19 W<M***   

Respiratory 11.3 ± 1.3 (59%) 11.1 ± 1.3 (59%) 11.2 ± 1.3 (61%) 11.1 ± 1.2 (71%) 0.73 -   
Bulbar 10.8 ± 1.5 (59%) 7.6 ± 2.1 (59%) 10.5 ± 1.7 (61%) 6.7 ± 2.3 (71%) 0.025 BW<BM<(SW,SM)   
Fine motor 7.6 ± 2.8 (59%) 9.2 ± 2.6 (59%) 8.0 ± 2.7 (61%) 10.0 ± 2.1 (71%) 0.39 M<W**;B<S***   
Gross motor  7.6 ± 2.5 (59%) 9.5 ± 2.5 (59%) 6.2 ± 2.4 (61%) 9.5 ± 2.3 (71%) 0.0012 SW<SM<(BW,BM)  

Forced vital capacity 75.9 ± 14.4 (97%) 70.3 ± 13.6 (96%) 74.6 ± 14.4 (96%) 68.7 ± 13.8 (97%) 0.83 B<S***  
BMI 27.1 ± 4.2 (98%) 26.8 ± 4.3 (97%) 26.4 ± 5.0 (98%) 25.6 ± 4.9 (98%) 0.46 W<M*** 
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Figure 1 Average progression of ALSFRSr subscores depending on sex and onset site: Respiratory(blue), Bulbar (orange), Fine Motor  (red), Gross Motor (green)
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Figure 2: Average subgroup progressions of FVC and BMI for each subgroup 

Legend: FVC: Forced vital capacity, BMI: Body mass index 

Average FVC progression for each subgroup

Average BMI progression for each subgroup

A

B
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Figure 3: Onset of impairment depending on sex and onset site  

The vertical axis presents the delay of outcome impairment onset in month compared to the mean onset of the whole population. The horizontal axis is for sex with estimation for the 
bulbar patients in blue and the spinal patients in orange. The graph displays the mean of this delay with its confidence interval. Results are corrected for the group rate of progression and 
estimated age at onset. ANOVA interaction p-value is below 0.001 for ALSFRSr gross motor, ALSFRSr bulbar, and FVC and equal to 0.058 for ALSFRSr respiratory, 0.12 for ALSFRSr fine 
motor, and 0.17 for BMI. FVC: Forced Vital Capacity (%), **: p-value for pairwise comparison <0.01 ,***: p-value for pairwise comparison <0.001 
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Abstract
Introduction Heterogeneity of the progression of neurodegenerative diseases is one
of the main challenges faced in developing effective therapies. With the increasing
number of large clinical databases, disease progression models have led to a better
understanding of this heterogeneity. Nevertheless, these diseases may have no clear
onset and biological underlying processes may start before the first symptoms. Such
an ill-defined disease reference time is an issue for current joint models, which have
proven their effectiveness by combining longitudinal and survival data.
Objective In this work, we propose a joint non-linear mixed effect model with a
latent disease age, to overcome this need for a precise reference time.
Method To do so, we utilized an existing longitudinal model with a latent disease age
as a longitudinal sub-model and associated it with a survival sub-model that estimates
a Weibull distribution from the latent disease age. We then validated our model on
different simulated scenarios. Finally, we benchmarked our model with a state-of-
the-art joint model and reference survival and longitudinal models on simulated and
real data in the context of Amyotrophic Lateral Sclerosis (ALS).
Results On real data, our model got significantly better results than the state-of-the-
art joint model for absolute bias (4.21(4.41) versus 4.24(4.14)(p-value=1.4e-17)),
and mean cumulative AUC for right censored events (0.67(0.07) versus 0.61(0.09)(p-
value=1.7e-03)).
Conclusion We showed that our approach is better suited than the state-of-the-art in
the context where the reference time is not reliable. This work opens up the perspec-
tive to design predictive and personalized therapeutic strategies.

ar
X

iv
:2

40
1.

17
24

9v
1 

 [
st

at
.M

E
] 

 3
0 

Ja
n 

20
24



2 J. ORTHOLAND ET AL

1 INTRODUCTION

Neurodegenerative disorders are an important burden for the healthcare system1. The heterogeneity of the pro-
gression of these diseases is a major challenge in the development of effective therapies, as in Parkinson’s Disease
(PD)2, Alzheimer’s Disease (AD)3 or Amyotrophic Lateral Sclerosis (ALS)4. With the increasing number of large
clinical databases, the development of disease progression models has helped in understanding this heterogeneity
better. Two main data types can be subjected to modelling: longitudinal data such as repeated measures of clinical
scores or biomarkers; or survival data, with the occurrences of events like death, surgical intervention or entry into
an institution. In some circumstances, the U.S. Food and Drug Administration might demand assessing treatment
efficacy using both types of outcomes, as for ALS5.

Data available for neurodegenerative disease is often sparse and covers only parts of the progression,
which emphasises the need to realign different patients’ ages depending on their disease stages to extract a full
typical timeline of the disease6. The date of the first symptom is often used to do so, even if it does not capture the
difference in terms of speed of progression. But in such disease the underlying biological processes start earlier
than the first specific symptoms of the disease, making the first symptoms reported by the patient not representative
of the disease onset and very subjective. For instance, in Alzheimer’s Disease, the progression of amyloid and
neurodegeneration biomarkers starts before the manifestation of the first clinical symptoms7. Similarly in ALS,
changes in metabolism start before a significant weight loss and the first motor symptoms8, which again complicates
the establishment of reliable reference time points for monitoring disease progression. Thus two challenges are
faced to extract a full typical progression of these diseases: mapping the disease onset and the speed of progression
of the patients.

Survival and longitudinal data are often associated with the same biological processes. In such a case,
modelling both data together results in more precise estimates and improves inference9. Joint models enable us
to do so. They are composed of three parts: a model for the longitudinal data, a model for the survival data and a
linkage, often a shared latent variable, which captures the association between the two types of data10,11,12,13,14.
Classical survival models are hazard-based regression models15. The most used is the Cox Proportional Hazard
(Cox) model16, with an effect on the hazard scale. Its main interests are that it does not require estimating the base-
line hazard function when used alone and that it is easy to interpret due to the proportional impact of covariates on
the baseline hazard. Nevertheless, the baseline hazard needs to be estimated for joint models10 and the proportional
assumption is often violated on long follow-up. Another family of models is the Accelerated Failure Time (AFT)
model17. In these models, covariates directly affect survival time, but modelling the hazard function is mandatory,
making it less used for survival analysis alone. Besides, the results may be harder to interpret.
Classical longitudinal models are mixed-effect models that allow for modelling repeated and correlated observa-
tions18. To capture the heterogeneity of the patient progression, in addition to population parameters, named fixed
effects, they have individual parameters, named random effects. These random effects capture the individual vari-
ability around the average disease progression. Linear mixed-effects models (LMM) are the simplest ones, yet they
are often inadequate as changes in clinical outcomes are non-linear over long periods of time, due to curvilinear-
ity and potential floor or ceiling effects19. The most common type of Non-Linear Mixed effects are Generalised
Linear Mixed-effect Models (GLMMs), a direct extension of LMM, which enables the estimation of non-linear
progression20. Such classical mixed-effect models rely on an empirical disease time axis which limits their tem-
poral resolution to the resolution of the reference time used to index the disease time axis21,22,6. To overcome this
issue, longitudinal models that capture the data-driven disease timeline behind the observable data, named data-
driven disease progression models, have been developed6. Among others, disease Progression score models have
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been developed23 and extended24,25 as well as models that allow direct integration of knowledge about different
stages of diseases26. Finally, some models have explored the creation of a latent disease age27,28,21,22. A non-linear-
mixed effect model based on Riemannian geometry was proposed to capture a latent disease age, from a population
sample, without the need for a reference time21,22. This model showed good performances in degenerative disease
by outperforming the 56 alternative methods for predicting cognitive decline in Alzheimer’s disease in the TAD-
POLE challenge29 30.
For the linkage structure between survival and longitudinal data, two types of modelling have been proposed: the
latent class model31 32 and the shared random effects model33. Such an approach aggregates similar patients which
could help better understand the heterogeneity even though the meaning of the different classes remains unknown.
It allows to calculate the probability of an individual belonging to a particular class but may result in some patients
being almost equitably distributed. Shared random effect models are often used to avoid these limits. Neverthe-
less, they have their own limitation: by including predictors of the longitudinal outcome in the survival model, they
usually focus on how longitudinal outcomes impact survival. Whatever their type, all these joint models rely on
GLMMs, necessitating the use of reliable reference times, which is not available in our context.

In this paper, we propose a latent age joint model suited for neurodegenerative diseases that overcomes
the need for a reliable reference time of the state-of-the-art joint models. To do so, we used an existing longitudinal
model with a latent disease age21,22 as the longitudinal sub-model and used its defined latent disease age as the link-
age structure. We associated a survival sub-model that estimates a Weibull distribution from the latent disease age.
After introducing the proposed joint model, we validate it using a sensitivity analysis on simulated data corre-
sponding to different real-like clinical scenarios. We then benchmark the proposed joint model against reference
models on simulated and real ALS data, and show that the proposed approach is better suited in the context of the
absence of a reliable reference time point reference time than the state-of-the-art.

2 MODEL

2.1 Generic Framework
2.1.1 Data
We consider𝑁 patients, associated with longitudinal data: repeated measures of one given outcome 𝑦. Each patient
𝑖 is followed for 𝑛𝑖 visits. For each visit 𝑗, we denote 𝑡𝑖,𝑗 the age at which the outcome is measured, and 𝑦𝑖,𝑗 the
value of the outcome for the patient at this visit.
We assume that we also observe an event 𝑒, and denote 𝑡𝑒𝑖 the age of the patient when the event is observed.
Nevertheless, the event may occur after the follow-up period. In this case, the event is said to be censored, in
opposition to observed. To distinguish censored and observed events, a boolean 𝐵𝑒𝑖 is associated with the time of
the event 𝑡𝑒𝑖 : 𝐵𝑒𝑖 = 0 if the event is censored and 𝐵𝑒𝑖 = 1 if the event is observed. If the event is censored, the time
of the last visit is used as the time of the event34.

2.1.2 Joint model structure
The objective of joint models is to describe the combination of two types of clinical data: longitudinal data and sur-
vival data, with their relationship. Here, the longitudinal process, 𝛾𝑖(𝑡), is the progression of an outcome, measured
by 𝑦𝑖,𝑗 at each time 𝑡𝑖,𝑗 for each visit 𝑗 of the patient 𝑖. The longitudinal process is estimated with a Gaussian noise
𝜖 ∼  (0, 𝜎) compared to the measure, so that: 𝑦(𝑡𝑖,𝑗) = 𝛾(𝑡𝑖,𝑗) + 𝜖𝑖,𝑗 . The survival process 𝑆𝑖(𝑡), the probability
that a patient 𝑖 experiences the event after age 𝑡 (𝑆𝑖(𝑡) = 𝑝(𝑡𝑒𝑖 > 𝑡)).To describe the model, we will further use the formalism of mixed-effects models18. Such models are composed
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of two types of parameters: parameters that differ from one patient to the other and enable to encapsulate the indi-
vidual variability, named random effects, and parameters that capture the population specificity and are shared by
all the patients, named fixed effects.

2.2 The Proposed Joint model
A non-linear mixed-effect model with a latent disease age was first introduced by Schiratti et al.21 and was more
broadly used for longitudinal process modelling of neurodegenerative diseases22 35. Both the latent age and the
modelling of the longitudinal process presented below are extracted from Schiratti et al.21,22.

2.2.1 The latent disease age: correction of individual variation
The idea of the latent disease age 𝜓𝑖(𝑡) is to map the chronological age of a patient into a latent disease age 𝑡𝑑
representative of the disease stage of the patient. Using the formalism described before, it can be written as :

𝜓𝑖(𝑡) = 𝑒𝜉𝑖(𝑡 − 𝜏𝑖) + 𝑡0 (1)
where 𝑒𝜉𝑖 is the progression rate of patient 𝑖, 𝜏𝑖 is its time-shift and 𝑡0 is the population estimated reference time.

In the proposed joint model, the idea is to encapsulate all the individual variability of the patient 𝑖, in
the latent disease age 𝜓𝑖, with random effects. The latent disease age is then used as the link between the longitu-
dinal and survival processes (𝛾𝑖(𝑡), 𝑆𝑖(𝑡)), which are estimated from the latent disease age with the composition of
functions that describe only the population (𝛾0, 𝑆0) and are shared by all patients with fixed effects.{

𝛾𝑖(𝑡) = 𝛾0(𝜓𝑖(𝑡𝑖,𝑗))
𝑆𝑖(𝑡) = 𝑆0(𝜓𝑖(𝑡))

For the survival modelling, instead of using time 0 as a start time , we use the reference time 𝑡0 and impose
∀𝑡 < 𝑡0, 𝑆0(𝑡) = 1. Indeed, 𝑡0 is estimated thanks to the visit times and corresponds to a time of a given value of the
score that most of the patients experimented with. Thus at that time, patients should not be dead. We have checked
that even for the existing longitudinal model most patients were still alive at 𝑡0.
Compared to joint models with shared random effects models of Rizopoulos et al.33, where 𝑆0(𝜓𝑖(𝑡)) = 𝑓 (𝛾0(𝜓𝑖(𝑡))
with 𝑓 a function of fixed parameters, the Proposed model only depends on the latent disease age, that could be
seen as an undergoing process.

2.2.2 Modelling longitudinal process
The modelling of the longitudinal process consists in computing the trajectory from the latent disease age defined in
part 2.2.1. We will study a clinical score with curvilinearity, and potential floor or ceiling effects19. Thus a logistic
function will be used to model the outcome value from the latent disease age 𝑡𝑑 . It is parametrized as follows:

𝛾0(𝑡𝑑) =
(
1 + 𝑔 × exp(−𝑣0

(𝑔+1)2

𝑔
(𝑡𝑑 − 𝑡0))

)−1 (2)
where 𝑡0 is the population estimated reference time defined in 2.2.1, 𝑣0 is the speed of the logistic curve at 𝑡0 and
1

1+𝑔
is the value of the logistic curve at 𝑡0. To get the real value of the outcome 𝑦𝑖,𝑗 , the latent disease age 𝜓𝑖(𝑡)

is first applied, then the longitudinal process from the latent disease age 𝛾0(𝑡) and finally a Gaussian noise 𝜖𝑖,𝑗 is
added. Note that we assume here that all the noises of visits are independent. The whole longitudinal process can
thus be written as:

𝑦𝑖,𝑗 = 𝛾0(𝜓𝑖(𝑡𝑖,𝑗)) + 𝜖𝑖,𝑗 = 𝛾𝑖(𝑡𝑖,𝑗) + 𝜖𝑖,𝑗 (3)
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2.2.3 Modelling survival process
The Weibull distribution is used to model the survival probability from the latent disease age 𝑡𝑑 :

𝑆0(𝑡𝑑) = 𝟙𝑡𝑑≥𝑡0 exp
(
−
(
𝑡𝑑 − 𝑡0
𝜈

)𝜌)
+ 𝟙𝑡𝑑<𝑡0

where 𝜈 represents the variability of the distribution and 𝜌 the shape of the data distribution. To get the individual
survival probability, we apply first the latent disease age and then the survival structure:

𝑆𝑖(𝑡) = 𝑆0(𝜓𝑖(𝑡))

= 𝟙𝜓𝑖(𝑡)>𝑡0 exp
(
−
(
𝜓𝑖(𝑡)−𝑡0

𝜈

)𝜌)
+ 𝟙𝜓𝑖(𝑡)≤𝑡0

= 𝟙𝑡>𝜏𝑖 exp
(
−
(
𝑒𝜉𝑖 (𝑡−𝜏𝑖)

𝜈

)𝜌)
+ 𝟙𝑡 ≤𝜏𝑖

From there we also compute the individual hazard, which is, assuming that a patient has survived for a time t, the
probability that he will not survive for an additional time 𝑑𝑡:

ℎ𝑖(𝑡) = −𝑆′
𝑖 (𝑡)
𝑆𝑖(𝑡)

= 𝟙𝜓𝑖(𝑡)>𝑡0
𝜌𝑒𝜉𝑖
𝜈

(
𝜓𝑖(𝑡)−𝑡0

𝜈

)𝜌−1

= 𝟙𝑡>𝜏𝑖
𝜌𝑒𝜉𝑖
𝜈

(
𝑒𝜉𝑖 (𝑡−𝜏𝑖)

𝜈

)𝜌−1

2.2.4 Proposed joint model
The proposed joint model referred to after as the Proposed model, is thus the combination of both a longitudinal
sub-model 𝛾𝑖(𝑡) and a survival sub-model 𝑆𝑖(𝑡) using the latent disease age 𝜓𝑖(𝑡) as a linkage structure:

⎧⎪⎪⎨⎪⎪⎩

𝜓𝑖(𝑡) = 𝑒𝜉𝑖(𝑡 − 𝜏𝑖) + 𝑡0
𝛾𝑖(𝑡) = 𝛾0(𝜓𝑖(𝑡)) =

(
1 + 𝑔 × exp(−𝑣0

(𝑔+1)2

𝑔
(𝜓𝑖(𝑡) − 𝑡0))

)−1

𝑆𝑖(𝑡) = 𝑆0(𝜓𝑖(𝑡)) = 𝟙𝜓𝑖(𝑡)>𝑡0 exp
(
−
(
𝜓𝑖(𝑡)−𝑡0

𝜈

)𝜌)
+ 𝟙𝜓𝑖(𝑡)≤𝑡0

(4)

2.3 Estimation
2.3.1 Parameters
We consider that all parameters of the structural model, described in part 2.2.4, are latent parameters following a
given distribution. From now on, we make a distinction between fixed and random effects. Random effects follow a
Gaussian distribution. Most fixed effects are assumed to be positive. To do this, they are not directly estimated, but
their logarithm is estimated. The new variable is written with a tilde in relation to the original variable (for instance,
�̃�0 = log(𝑣0)). Log fixed effects follow a Gaussian distribution with the average and the standard deviation defined
as hyperparameters. To ensure identifiability, we set 𝜉 = 0 and 𝑡0 = 𝜏. We end up with the following structure:

• Latent parameters (𝑧):
– Latent fixed effects (𝑧𝑓𝑒): log fixed effects sampled from Gaussian distributions parametrized by model

parameters and hyperparameters 𝑧𝑓𝑒 = {�̃�, �̃�0, �̃�, �̃�},
– Latent random effects (𝑧𝑟𝑒): estimated from Gaussian distributions parametrized by model parameters
𝑧𝑟𝑒 = {𝜉𝑖, 𝜏𝑖},



6 J. ORTHOLAND ET AL

• Model parameters (𝜃): fixed effects sampled from log-likelihood maximisation 𝜃 = {𝜎𝜉 , 𝜎𝜏 , 𝑡0, �̃�, �̃�0, �̃�, �̃�, 𝜎}
• Hyperparameters (Π): set by the user Π = {𝜎�̃� , 𝜎𝑣0 , 𝜎�̃� , 𝜎�̃�}

2.3.2 Log-likelihood
Log-likelihood can be divided into two different terms: data attachment which represents how well the model
describes the data (𝑦, 𝑡𝑒, 𝐵𝑒) and a prior attachment, which prevents over-fitting.

log 𝑝((𝑦, 𝑡𝑒, 𝐵𝑒), 𝑧, 𝜃 ∣ Π) = log 𝑝(𝑦, 𝑡𝑒, 𝐵𝑒 ∣ 𝑧, 𝜃,Π) + log 𝑝(𝑧, 𝜃 ∣ Π)

The first term, data attachment, can be divided again into two terms considering that survival and longitudinal
processes are independent regarding random effects. This is a quite common assumption in other papers10 31. We
can also separate the prior attachment term: two terms for the prior attachment of latent parameters (fixed and
random) and one term for the prior attachment of model parameters. We end up with the following expression :

log 𝑝((𝑦, 𝑡𝑒, 𝐵𝑒), 𝑧, 𝜃 ∣ Π) = log 𝑝(𝑦 ∣ 𝑧, 𝜃,Π)
+ log 𝑝(𝑡𝑒, 𝐵𝑒 ∣ 𝑧, 𝜃,Π)
+ log 𝑝(𝑧𝑓𝑒 ∣ 𝜃,Π)
+ log 𝑝(𝑧𝑟𝑒 ∣ 𝜃,Π)
+ log 𝑝(𝜃 ∣ Π)

The different log-likelihood parts are described below associated with their different assumptions. Note that the
total formula of the log-likelihood is available in annexe A.
Longitudinal data attachment
For longitudinal process modelling, we assume that patients and their visits are independent and that the noise of
the process follows a Gaussian distribution. We thus get:

log 𝑝(𝑦 ∣ 𝑧, 𝜃,Π) =
∑
𝑖,𝑗

log 𝑝(𝑦𝑖,𝑗 ∣ 𝑧, 𝜃,Π) =
∑
𝑖,𝑗

− log
(
𝜎
√
2𝜋

)
− 1

2𝜎2
(
𝑦𝑖,𝑗 − 𝛾0

(
𝜓𝑖

(
𝑡𝑖,𝑗

)))2

Survival data attachment
For survival process modelling, we once again assume that all patients are independent and that the modelling of
the survival process depends on whether the event is observed or not:

log 𝑝(𝑡𝑒, 𝐵𝑒 ∣ 𝑧, 𝜃,Π) =
∑
𝑖 log 𝑝(𝑡𝑒𝑖 , 𝐵𝑒𝑖 ∣ 𝑧, 𝜃,Π)

=
∑
𝑖 𝟙𝐵𝑒𝑖 × log

(
ℎ𝑖(𝑡𝑒𝑖)

)
+
∑
𝑖 log

(
𝑆𝑖(𝑡𝑒𝑖)

)

Note that if 𝜓𝑖(𝑡) < 𝑡0 log
(
ℎ𝑖(𝑡𝑒𝑖)

)
= −∞. To prevent estimation issues, we initialise the algorithm at a possible

point getting inspiration from barrier methods.
Latent random effects priors attachment
As patients are supposed to be independent of each other, we suppose that random effects are independent
conditionally to 𝜃 and Π. The regularization term associated, with 𝜉 = 0, is then:

log 𝑝(𝑧𝑟𝑒 ∣ 𝜃,Π) = log 𝑝(𝜏𝑖 ∣ 𝜃,Π) + log 𝑝(𝜉𝑖 ∣ 𝜃,Π)

= −𝑁 log
(
𝜎𝜏
√
2𝜋

)
− 1

2𝜎2𝜏

∑
𝑖(𝜏𝑖 − 𝑡0)2

−𝑁 log
(
𝜎𝜉
√
2𝜋

)
− 1

2𝜎2𝜉

∑
𝑖(𝜉𝑖 − 𝜉)2
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Latent fixed effects prior attachment
Each latent fixed effect is independently sampled from a posterior distribution. The regularization term associated
is then:

log 𝑝(𝑧𝑙𝑎𝑡 ∣ 𝜃,Π) = log 𝑝(�̃� ∣ 𝜃,Π) + log 𝑝(𝑣0 ∣ 𝜃,Π)
+ log 𝑝(�̃� ∣ 𝜃,Π) + log 𝑝(�̃� ∣ 𝜃,Π)

= −log
(
𝜎�̃�
√
2𝜋

)
− 1

2𝜎2�̃�

(
�̃� − �̃�

)2

− log
(
𝜎�̃�0

√
2𝜋

)
− 1

2𝜎2�̃�0

(
�̃�0 − �̃�0

)2

− log
(
𝜎�̃�
√
2𝜋

)
− 1

2𝜎2�̃�

(
�̃� − �̃�

)2

− log
(
𝜎�̃�
√
2𝜋

)
− 1

2𝜎2�̃�

(
�̃� − �̃�

)2

Model parameter prior attachment
Priors regarding model parameters are supposed to incorporate knowledge about the disease in the model. As we
suppose that the user has no prior knowledge, we turned these priors into non-informative ones, by artificially
setting the standard deviation of each to infinity.

2.3.3 Estimation Algorithm
The first step is calibration, it enables us to estimate fixed and associated random effects from a training data
set. Directly maximising the log-likelihood has no analytical solution. Thus we use an Expectation-Maximization
algorithm. Nevertheless, the computation of the expectation is also intractable due to the nonlinearity of the model.
Thus, we use a Monte-Carlo Markov Chain Stochastic Approximation Expectation-Maximization (MCMC-SAEM)
algorithm, as for the existing Longitudinal model. Its convergence has been proven by Kuhn et al.36 for models that
lie in the curved exponential family. The Proposed model falls into such a category and further details are given
in annexe B. To get the mean of the distribution of the model, we apply a Robbins-Monro convergence algorithm
to the last iterations37. More details are given by Koval et al.35 (p.41-43) and Schiratti et al.22 (p.106). Latent
parameters (defined in 2.3.1), are estimated during the estimating phase of the EM algorithm and model parameters
during the maximisation phase, using sufficient statistics. The total log-likelihood, the sufficient statistics and the
maximisation update rules, necessary for the computation, are given in the annexe A, B C.
The second step is personalisation. It is used to compute the random effects for new patients from a test data set.
During this step, we use previously computed fixed effects from calibration. Thus, only the random effects are
estimated, to get their longitudinal and survival processes. The solver minimise from the package Scipy38 was
used to maximise the log-likelihood. Note that for predictions, the survival probability is then corrected using the
survival probability at the last visit as in other packages33.
An implementation of the Proposed model is available in the open-source library leaspy (v2): https://gitlab.com/
icm-institute/aramislab/leaspy.

2.3.4 Attenuation estimation bias
Attenuation bias is a well-known phenomenon caused by noise in the input data. In the case of a basic linear
regression 𝑌 = 𝑎𝑋 + 𝑏, the fact that we only have access to �̂� = 𝑋 + 𝜖 with 𝜖 a random noise, leads to an
underestimation of the absolute value of the factor parameter 𝑎39. In the Proposed model, we estimate the latent
disease age �̂�𝑖(𝑡) for each patient, but we never have access to the exact latent disease age 𝜓𝑖(𝑡). Such uncertainty
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could lead to an underestimation of two fixed effects 𝜈−1 and 𝑣0 (1+𝑔)2𝑔
in both the survival and longitudinal process.

𝑆0(�̂�𝑖(𝑡)) = 𝟙�̂�𝑖(𝑡)>𝑡0 exp
(
−
(
�̂�𝑖(𝑡)−𝑡0

𝜈

)𝜌)
+ 𝟙�̂�𝑖(𝑡)≤𝑡0

𝛾0(�̂�𝑖(𝑡)) =
(
1 + 𝑔 × exp(−𝑣0

(1+𝑔)2

𝑔
(�̂�𝑖(𝑡) − 𝑡0))

)−1

As reported by Frost et al.40, attenuation bias is not an issue for prediction and should only be dealt with when
interpreting the fixed effects of the model. Several options exist to correct them41,42,43 but none was well suited to
our problem. Indeed, we cannot estimate the error on the latent disease age. Thus, we decided to correct our fixed
effects using the mean of random effects of the training sample computed during personalisation. This method will
be evaluated to make sure that it enables us to be closer to the simulated data.

2.4 Reference models
2.4.1 Reference models
We chose to benchmark the Proposed model against several reference models. First, we use one-process-only mod-
els. For the survival model, we use a Weibull AFT model to describe the survival process, using the Lifelines
package44. This model will be referred to as the AFT model. For the longitudinal model, we use the existing Longi-
tudinal model described in part 2.2 using the open-source leaspy library https://gitlab.com/icm-institute/aramislab/
leaspy. This model will be referred to as the Longitudinal model. We expect the Proposed model to be at least as
good as these two models.
Second, we use a two-stage model: a survival model that uses the random effects of the Longitudinal model as co-
variates45. Even though this model is subject to an immortal bias, it enables us to compare our model to a better
survival model than the AFT model. We use the Longitudinal model to extract random effects for each individual,
and then use them as covariates in a Weibull AFT model, using the Lifelines package44. This model will be re-
ferred to as the Two-stage model, and the Proposed model is expected to be at least as good as it.
Third, we use a joint model with shared random effects, to evaluate if the newly proposed structure could improve
estimation. To do so, we use a logistic longitudinal process, using the JMbayes2 package33. This model will be
referred to as the JMbayes2 model. All the model structure equations are summarised in annexe D in Table D1.

2.4.2 Clinically meaningful estimated parameters
Predictions of different models can easily be compared. Nevertheless, joint models are also used to make cohort
descriptions. Since each model has its own parameters, their comparison is difficult. To overcome this issue, the
idea is to extract clinically meaningful estimated parameters that can be easily used in cohort description. For the
survival process, we choose the median survival time, referred to as the median. For the longitudinal process, we
first assume a logistic shape of the curve. We then use the axis value and the slope at the inflexion point as clinically
meaningful estimated parameters. We later refer to them as midpoint and growth. Note that for all the different
models, we reported the formula used in table D2 in the annexe.
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3 SIMULATION: ROBUSTNESS TO STUDY DESIGN AND PERFORMANCE
BENCHMARK

3.1 Data
3.1.1 Data simulation method
Data were simulated under the Proposed model structure. We used the following procedure:

1. We simulated random effects using 𝜉𝑖 ∼  (
0, 𝜎2𝜉

)
and 𝜏𝑖 ∼  (

𝑡0, 𝜎2𝜏
).

2. We modelled the age at first visit 𝑡𝑖,0 as 𝑡𝑖,0 = 𝜏𝑖 + 𝛿𝑓𝑖 with 𝛿𝑓𝑖 ∼  (
𝛿𝑓 , 𝜎2𝛿𝑓

)
.

3. We set a time of follow-up per patient 𝑇𝑓𝑖 , with 𝑇𝑓𝑖 ∼  (
𝑇𝑓 , 𝜎2𝑇𝑓

)
and a time between two visits 𝛿𝑣𝑖,𝑗 =

𝑡𝑖,𝑗−1 − 𝑡𝑖,𝑗 , with 𝛿𝑣𝑖,𝑗 ∼  (
𝛿𝑣, 𝜎2𝛿𝑣

)
to simulate 𝑛𝑖 visits until 𝑡𝑛𝑖 ≤ 𝑡𝑖,0 + 𝑇𝑓𝑖 < 𝑡𝑛𝑖+1 .

4. We set the value of the outcome at each visit using 𝑦𝑖,𝑗 = 𝛾0(𝜓𝑖(𝑡𝑖,𝑗)) + 𝜖𝑖,𝑗 with 𝜖𝑖,𝑗 ∼  (
0, 𝜎2

).
5. For each patient, we simulated the event 𝑇𝑒𝑖 using 𝑇𝑒𝑖 ∼ 𝑒−𝜉𝑖 (𝜈, 𝜌) + 𝜏𝑖.
6. We considered that the event stopped the follow-up and that the follow-up censored the event. Thus all the

visits after the event were censored: 𝑡𝑖,𝑗 > 𝑇𝑒𝑖 and events after the last visit were censored: 𝑡𝑖,𝑚𝑎𝑥(𝑗) < 𝑇𝑒𝑖 .
Due to random assignment, some patients experienced the event (death) before their first visit. This censure also
changed the random effects distribution, as most of the patients censored were progressing fast. To consider this
bias, we corrected the true values of clinically meaningful estimated parameters, using the available true value of
random effects.

3.1.2 Simulated Scenarios
We simulated ALS real-like data with different data collection designs (noise, number of visits and patients). We
used an ALS dataset, PRO-ACT, described in part 4.1, to get estimated real-like values for parameters. Parameters
directly associated with the disease have been extracted from data analysis, using the Longitudinal and AFT models
(Figures E1, E2). For each scenario that studies the impact of a given parameter, we simulated three different
datasets, that corresponded to an easy, medium and complex situation.
Our first scenario concerned the number of patients needed for calibration. Due to PRO-ACT properties, we decided
to test three sample sizes: N = 200, 500, and 1,000, with other parameters being equal to real-like ones. The second
scenario enabled us to study the impact of the time of follow-up. Patients in PRO-ACT are followed for an average
of 0.96 years. We have tested three different average follow-up durations 𝑇𝑓 = 0.75, 1., 1.25. Visit frequency impact
was studied with our third scenario. In PRO-ACT, patients are seen on average every 1.47 months. We have tested
three different average times between visits 𝛿𝑣 = 3, 1.5, 1. Our fourth scenario enabled us to measure the impact
of longitudinal noise in data collection. On PRO-ACT, we have found a noise of 5% on the longitudinal outcome
using the Longitudinal model. Note that the test-retest error of ALSFRSr is around 2%46. We have thus decided
to test 𝜎 = 5%, 10% and 20%. Finally, our fifth scenario concerned noise in event distribution. We have found a 𝜌
on the survival process of 2.25. We have decided to test three events distribution (𝜌, 𝜈) = (3, 3.11),(2.25, 3.62), (2,
3.84) so that the mode of the distribution (𝜈

(
𝜌−1
𝜌

) 1
𝜌 ) does not change but the variation increases.

To make the results of our scenarios comparable, we put the same real-like dataset for all the medium difficulties
of the scenarios except for the patient and longitudinal noise one, for which the real-like dataset corresponds to
the easier one. We thus ended up with 11 distinct datasets for different study designs, all inspired by real data for
which simulation parameters are summarised in the table F3 in the annexe.
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3.2 Method
3.2.1 Sensitivity analysis
To make our sensitivity analysis on all the simulated scenarios (Table F3 in annexe), we first trained the Longitu-
dinal model during 2,000 iterations. Then, we ran the Proposed model with 70,000 iterations (on average an hour)
using the values of the Longitudinal model as initialisation. We then evaluated the quality of estimation in two steps.
Effects estimation
We wanted to assess how well the model could estimate fixed and random effects from simulated data whatever the
study design. For fixed effects, as done by Pan et al.47, we extracted data from the posterior distribution between the
30.000 and 60.000 iterations (just before the Robbins-Monro convergence phase37). The performance was assessed
using bias compared to true fixed effects that were used for simulation. To reduce the computation complexity of
random effects, we decided to extract the mean of the same range of iterations for each individual. As a metric, we
used the intraclass correlation between the mean of each individual and the true value that enabled the simulation.
Attenuation bias correction
As described in method 2.3.4, the Proposed model might be subjected to attenuation bias. We proposed a method
to reduce this bias and evaluate it, whatever the study design. To do so, clinically meaningful estimated parame-
ters, that are more interpretable than fixed effects, were used. First, the mean of fixed effects was computed through
the Robbins-Monro convergence (iteration 70,000). Then we ran personalisation on the training data and corrected
the extracted mean with the average of random effects. We use these corrected fixed effects to compute corrected
clinically meaningful estimated parameters. In parallel, clinically meaningful estimated parameters were computed
using the posterior distribution. We studied if the corrected value was in the 95% confidence interval (CI) of the
clinically meaningful estimated parameters using the posterior distribution.
The impact of the correction method on random effects was also evaluated. We used the results of the personali-
sation for random effects and computed the intraclass correlation between the personalised random effects and the
true value that enabled the simulation. Results were compared with the one from part 3.2.1 experiments.

3.2.2 Benchmark experiment on simulated data
All estimations and predictions of the models were compared using the real-like dataset (Table F3 in annexe). We
selected patients with at least 3 visits to ease the following prediction setup. A 10-fold cross-validation (90% -
10%) was used, with 70,000 iterations for each model (on average half an hour), initialised with parameters of the
Longitudinal model ran with 2,000 iterations.
Clinically meaningful estimated parameters on simulated data
As we could not compare the fixed effects of the different models, we chose to compare the clinically meaningful
estimated parameters, with the true one that enabled simulation.
For each model, we computed clinically meaningful estimated parameters (Table D2 in annexe) and applied the
dilution bias correction for both the Proposed model and the Longitudinal model described in part 3.2.1. Then,
the bias to true clinically meaningful estimated parameters was computed. We compared the 10-fold pooled bias
distribution of the Proposed model with the 4 reference models for the 3 clinically meaningful estimated parameters
using a Wilcoxon signed-rank test with a Bonferroni adjustment for multiple pairwise comparisons.
Prediction on simulated data
Finally, we wanted to evaluate both the goodness of survival and longitudinal predictions of the Proposed model
against reference models on simulated data. The fixed effects computed through the Robbins-Monro convergence
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(iteration 70,000) were used as a predictive model and will be referred to as the prediction model. Personalisation
was made using the first two visits of new patients and predictions were estimated on the remaining. The goodness
of longitudinal predictions was assessed using absolute errors. The goodness of survival predictions was assessed
using the C-index, for event order at 1 and 1.5 years, as in the ALS challenge48. Nevertheless, this method is not
proper for evaluation49, we thus added the mean cumulative dynamic AUC at 1 and 1.5 years for a correct measure,
but kept the C - index for comparison with existing results. We complement the metrics with Integrated Brier Score
(IBS), for absolute distance between real and estimated events. The predictions were compared using a Wilcoxon
signed-rank test with a Bonferroni adjustment for multiple pairwise comparisons. All the survival metrics were
computed using the package sksurv50.

3.3 Results
3.3.1 Data simulated
The number of visits simulated was relatively stable to 8,341 (31) except for the patient, visits and follow-up
scenarios (Figure G3). The censuring rate was between 80 and 85% for all datasets, except for the easy and hard
dataset of the follow-up scenario, with 60% and 90% censure (Figure G3).

3.3.2 Sensitivity analysis
Effects estimation
We evaluated the posterior distribution of fixed effects (Figure H4 in annexe). As expected with the attenuation
bias, 𝜈−1 was underestimated. 𝜈 was overestimated for the real-like dataset by 8.7 (2.9) % and reached the worst
results for the harder dataset of the follow-up scenario (Figure H4 in annexe). 𝑔 and 𝑣0 were also impacted but
shared the attenuation bias effect which results in smaller biases. The total bias on the growth will be described
after. For the real-like dataset, 𝑔 was underestimated by -5.2 (3.9) % and 𝑣0 by -6.7 (2.8)%. The worst results were
reached for the harder dataset of longitudinal noise scenarios (Figure H4 in annexe). A less expected result was that
𝜌was overestimated for the real-like dataset by 30.2 (5.5) % and often across scenarios (Figure H4 in annexe). This
could also be linked to the attenuation bias. For the four remaining parameters (𝜎, 𝜏, 𝜎𝜏 , 𝜎𝜉), average biases were
below 4% for the real-like dataset. Worst results were reached for the harder dataset of longitudinal noise scenarios
(𝜎 = 20%) for all these fixed effects (Figure H4 in annexe). The intra-class correlation between simulated random
effects and the mean of posterior random effects for each patient was between 0.75 and 0.97(Table H4 in annexe).
Attenuation bias correction
The attenuation correction bias was evaluated on clinically meaningful estimated parameters. Almost all corrected
clinically meaningful estimated parameters had a lower bias compared to those of the posterior, whatever the
scenario and difficulty of the dataset (Figure 1).
The corrected median absolute bias was below 0.43 years for a real value of 4.48 (0.12) years, for all scenarios
except the harder of patients and follow-up scenarios. The worst result was reached for the harder follow-up scenario
(𝑇𝑓 = 0.75). The corrected growth absolute bias was below 0.76 points for a real value of -13.19 (0.21) points
of ALSFRSr per year, for all scenarios, except for the harder longitudinal noise dataset (𝜎 = 20%). The corrected
absolute bias midpoint was lower than 0.13 years for a real value of 2.92 (0.06) years, whatever the scenario. The
worst result was reached for the harder dataset of the longitudinal noise scenario (𝜎 = 20%). All the detailed values
for biases are available in Table I5 in the annexe.
Random effects computed through personalisation were not different from those of the posterior mean (Figure I5
in annexe). Detailed values can be found in Table I6 in annexe.
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3.3.3 Benchmark experiment on simulated data
Clinically meaningful estimated parameters of reference models on simulated data
For the longitudinal process, The Proposed and Longitudinal models were closer to the Truth model compared to
JMbayes2 (Figure J6 A). Over 10-fold cross-validation, the midpoint was simulated to be 2.97 (0.02) years and the
growth of -12.97 (0.11) points of ALSFRSr per year. The Proposed model had a smaller absolute bias on both the
growth and midpoint compared to the JMbayes2 model: 0.59 (0.08) compared to 1.71 (0.12) points of ALSFRSr
per year (p-value = 3.9e-03) and 0.06 (0.01) compared to 0.43 (0.04) years (p-value = 3.9e-03)(Table 1). This was
expected due to the structure of the simulated data. The Longitudinal model had a smaller absolute bias on both the
growth and the midpoint compared to the Proposed model: 0.39 (0.08) compared to 0.59 (0.08) (p-value =3.9e-
03) and 0.04 (0.01) compared to 0.06 (0.01) (Table 1). This might be because the Longitudinal model has fewer
constraints and is applied to an easy task: the simulated data and the Longitudinal model have the same structure.
For the survival process. The Two-stages model and the Proposed model were close to the Truth at the beginning
of the progression. The JMbayes2 model overestimates the average patient survival (Figure J6 B). It was confirmed
by an absolute bias of 2.34 (0.14) years on the median compared to a truth value of 4.57 (0.03) years over 10-fold
cross-validation (Table 1). This issue might be linked to the non-linearity of the random effects in the simulation
process. The computed bias on the median was not significantly different for the Proposed model and the Two-stages
model. The computed bias on the median was lower for the Proposed model than for the AFT model: respectively
0.09 (0.04) and 0.8 (0.08) (p-value = 5.9e-03) (Table 1).

Prediction on simulated data
On simulated data, 6,382 longitudinal predictions were made at 0.58 (0.41) years from the last visit.
For the longitudinal process, the Proposed model had a significantly smaller longitudinal absolute prediction bias
compared to the JMbayes2 model: respectively 3.74 (3.8) and 4.09 (4.1) points of ALSFRSr (p-value = 3.9e-
27)(Table 2). The Longitudinal model had a smaller absolute prediction bias compared to the Proposed model:
respectively 3.73 (3.82) compared to 3.74 (3.8) (p-value = 3.3e-05).
For the survival process, the Proposed model significantly improved all metrics compared to the JMbayes2 and
AFT models. Again, for the JMbayes2 model, this might be due to the failure of the JMbayes2 model to handle the
non-linear relation between random effects. The survival predictions of the Proposed model were not significantly
distinct for any metric from the one of the Two-stages model.

3.4 Intermediate conclusion
We have evaluated the impact of attenuation bias on the Proposed model fixed effects and proposed a correction
that enabled us to reduce the absolute bias on clinically meaningful estimated parameters. On simulated data, the
Proposed model got results close to the Longitudinal model. Results in the survival process were in the same range
as the ones of the Two-stage model and outperformed the AFT model. All these results were promising and enabled
us to validate the Proposed model on simulated data.
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4 APPLICATION TO ALS DATA: VARIATION IN COHORT DESCRIPTION AND
PREDICTION PERFORMANCE BENCHMARK

4.1 ALS Data: PRO-ACT
Study population
We applied our method to data from an extraction of 2022 of the Pooled Resource Open-Access ALS Clinical
Trials Consortium (PRO-ACT) database. It is composed of an aggregation of 23 phase II and III clinical trials and
one observational study. It is a pseudonymised set of data with multiple inclusion and exclusion criteria for patients
to enter the cohort51. For the study, we selected patients with at least three visits for the longitudinal outcomes
described below (to ease prediction setup), age at first symptoms, symptom onset (spinal or bulbar) and sex.
Outcomes
As described by the FDA5, for ALS, clinical trials must demonstrate a treatment effect on function in daily activities
and death. Following this guideline, we considered the most widely used functional rating system in patients with
ALS, namely the revised version of the ALS functional rating scale revised (ALSFRSr) as longitudinal outcome52.
The scale starts at a maximum theoretical value of 48 and decreases with the severity of the disease till zero. For
computation reasons, it was normalized using its scale so that the 0 value was the healthiest score and +1 the
maximum disease score change. Tracheotomy was associated with death as a survival outcome, as in many ALS
studies and challenges48.

4.1.1 Method - Benchmark experiment on real data
We compared the estimation and prediction of the reference models on real data, using a 10-fold cross-validation
(90% - 10%). The Proposed model was run with 70,000 iterations for each model (on average an hour and a half)
and initialised with parameters of the Longitudinal model ran for 2,000 iterations.
Clinically meaningful estimated parameters on real data
We computed clinically meaningful estimated parameters from the Proposed model and the reference models to
see how different they could be.
Prediction on real data
We wanted to evaluate both the goodness of survival and longitudinal predictions of the Proposed model against
reference models, this time on real data. We used the same method as the one developed in part 3.2.2, but applied
to real ALS data.

4.2 Results
4.2.1 Data description
PRO-ACT datasets had similar or easier characteristics for estimation, compared to our real-like simulated dataset,
in terms of the number of patients, visits and time of follow-up (Table 3).

4.2.2 Benchmark on real data
Clinically meaningful estimated parameters on real data
For the longitudinal process. The Proposed model and Longitudinal model were close compared to the JMbayes2
model (Figure J7 A). Growth in points of ALSFRSr per year ranged from -13.95 (0.08) for the Longitudinal model
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to -15.351 (0.1) for the JMbayes2 model, thus a difference of almost 1.4 points per year. The midpoint ranged from
2.78 (0.01) for the Proposed model to 3.22 (0.014) for the JMbayes2 model, thus a difference of more than 5 months
(Table 4).
Survival curves were pretty close, even though the variation over 10-fold cross-validation was wider for the JM-
bayes2 model (Figure J7 B). Apart from the AFT model, the computed medians were close for all the models,
ranging from 4.14 (0.02) for the Two-stages model to 4.47 (0.09) for the JMbayes2 model thus a difference of
almost 4 months (Table 4).

Prediction on real data
On real data, 18,077 longitudinal predictions were made at 0.63 (0.55) years from the last visit.
For the longitudinal process, the Proposed model had a significantly smaller absolute prediction bias compared to
JMbayes2 respectively 4.21 (4.41) and 4.24 (4.14) points of ALSFRSr (p-value = 1.4e-17), but a larger absolute
prediction bias compared to the Longitudinal model (4.18 (4.38) (p-value = 2.2e-73)) (Table 5).
For the survival process, the Proposed model was significantly better than all the other models for ordering events,
with a mean AUC of 0.67 (0.07) (Table 5). The distance to the observed failure time was not significantly different
from the one of the JMbayes2 model with an IBS of 0.1 (0.01), but it was significantly smaller than the one of the
Two-stage model (0.11 (0.01) (p-value = 2.5e-04)) and the one of the AFT model (0.12 (0.01) (p-value = 1.1e-04))
(Table 5).

5 DISCUSSION

Our work showed the potential of a latent disease age joint model to overcome the need for a precise reference
time in neurodegenerative disease. After validating the Proposed model on simulated data, we showed how it
could improve prediction to forecast ALS progression. Compared to the AFT model and the Two-stage model,
the Proposed model outperformed significantly all the metrics, but the Longitudinal model performed slightly
better than the Proposed model. Event censoring may not bring much to the Longitudinal model in this case,
however, joint modelling corrected shortcomings of the two-stage model, such as immortal bias. Compared to
the JMbayes2 model, the Proposed model outperformed the longitudinal and event ordering metrics (C-index and
AUC). This shows that our latent disease age might be better suited to capture the heterogeneity of the progression
of degenerative diseases. Note that for the event distance metric (IBS) the JMbayes2 model and the Proposed model
did not perform significantly differently. This might be because the survival function of the JMbayes2 model, was
more flexible, using splines instead of a Weibull function. Finally, we compared the C-index performances of the
Proposed model, with those of the ALS challenges that also used PRO-ACT data48. With a C-Index around 0.7
(0.5), we ranked seventh, even though we used only ALSFRSr progression to help the prediction, the other models
being deep-learning models with multiple covariates. Longitudinal prediction got an absolute bias of 4.18 (4.38)
points of ALSFRSr which is correct for a scale design on 48 points but that could still be improved compared to
the Minimum Detectable Change (MDC) of 1.59 points of ALSFRSr53.

Prediction performances can be assessed in real datasets, using hidden visits. The Longitudinal model
gave the best longitudinal predictions. The clinically meaningful estimated parameters were close between the
Longitudinal and the Proposed models. The difference between the joint models on real data was 1.18 points of
ALSFRSr per year on the slope and more than 5 months on the midpoint. These differences were wider than the
absolute bias observed in the real-like simulated data. For survival, the Proposed model outperformed the other
models on the real data set. Compared to the JMbayes2 model, we observe a difference of almost 4 months for the
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median survival. This difference was of the same magnitude as the median absolute bias observed on the real-like
simulated data (Table 1).

We have tested the Proposed model in different clinical trial scenarios to give future users insights into
biases on clinically meaningful estimated parameters and guidelines as recommended12. Note that we studied ALS
disease with its own pathological and clinical study characteristics and that guidelines should be adapted in other
contexts. We showed that the Proposed model tends to overestimate the survival median and underestimate absolute
growth with scenarios increasing difficulty (fewer points, larger noise). Still, the following recommendations could
help keep this bias reasonably small. The parameter that impacted the estimation precision the most, was the noise
on longitudinal data. In clinical scores, it could be assessed with the Minimal Detectable Change (MDC) and can
vary from one disease to another: 10 % for MDS-UPDRS III (Parkinson),54, 10 % MMSE (Alzheimer)55 and 3%
ALSFRSr (ALS)53. In our simulation study, a longitudinal noise of 20% was too large to get good results, but
good results were reached with 10 % in our setting (corrected bias: [median: 0.07 year, growth: -0.59 point of
ALSFRSr/year, midpoint: -0.02 year]). The number of patients and the time of follow-up should also be considered.
For ALS, with a 4 to 5 years median of death from first symptoms, 6 months of follow-up induces too much bias on
the estimated median. Results with 1 year of follow-up, that correspond to real-like studies, were good (corrected
bias: [median: 0.005 year, growth: 0.45 point of ALSFRSr/year, midpoint: -0.06 year]). Note that observation time
in disease timing might also play a role here but we have not further investigated it. We showed that even with only
200 patients, the Proposed model has reasonable biases on clinically meaningful estimated parameters (corrected
bias: [median: 0.58 year, growth: 0.37 point of ALSFRSr/year, midpoint: 0.01 year]). Note that there might be a
balance with the number of visits (8 by default here). For 1,000 patients, we could reduce the number of visits to 4
per patient every 3 months again with a reasonable bias (corrected bias: [median: 0.14 year, growth: 0.43 point of
ALSFRSr/year, midpoint: -0.07 year]). Note that the visits were well-distributed during the whole follow-up time.

The main strength of our model, compared to the state-of-the-art is that it alleviates the proportional
hazard hypothesis while keeping an interpretable structure with the latent disease age. Compared to the JMbayes2
model, an underlying shared process is captured by the random effects and not a longitudinal-specific trend which
offers a modelling alternative.
Future work could be done to alleviate the assumptions about the independence of longitudinal noises at each visit,
which has already been addressed in some models31. The Proposed model has also been shown to be subjected
to attenuation bias, and although we attempted to address it, we still need to consolidate the hypothesis and the
estimation of a good correction for parameters like the 𝜌 parameter. To continue developing this model, future
improvements could include adding more flexibility to the survival function, integrating covariates and modelling
several longitudinal outcomes or events.

In conclusion, the proposed joint model with latent disease age enabled us to improve the performance
of most prediction metrics compared to existing joint models and alleviate the need for a precise reference time.
This model opens up the perspective to design predictive and personalized therapeutic strategies.
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Table 1 Absolute clinically meaningful estimated parameters bias of the Proposed model and reference models on
real-like dataset
Legend: Proposed: the proposed joint model with latent disease age, Two-stage model: AFT survival model that
uses as covariate random effects of the Longitudinal model, Longitudinal: existing longitudinal model with latent
disease age, AFT: Accelerated Failure Time model, JMbayes2: joint model with shared random effects.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-values are computed using a Wilcoxon
signed-rank test with Bonferroni correction between the Proposed model and each reference models. Results in
bold are the best for the clinically meaningful estimated parameter. Values of the clinically meaningful estimated
parameters that enabled the simulation, from which the biases were computed: -12.97 (0.11) points of ALSFRSr
per year for the growth, 2.97 (0.02) years for the midpoint, 4.57 (0.03) years for the median.

Proposed Two stages p-value Longitudinal p-value AFT p-value JMbayes2 p-value
growth (pt/y) 0.59 (0.08) - - 0.39 (0.08) 3.9e-03 - - 1.71 (0.12) 3.9e-03
midpoint (y) 0.06 (0.01) - - 0.04 (0.01) 3.9e-03 - - 0.43 (0.04) 3.9e-03
median (y) 0.09 (0.04) 0.14 (0.05) 3.2e-01 - - 0.80 (0.08) 5.9e-03 2.34 (0.14) 5.9e-03
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Table 2 Prediction metrics of the Proposed model and reference models on real-like dataset
Legend: Proposed: the proposed joint model with latent disease age, Two-stage model: AFT survival model that
uses as covariate random effects of the Longitudinal model, Longitudinal: existing longitudinal model, AFT: Ac-
celerated Failure Time model, JMbayes2: joint model with shared random effects.
Results are presented with mean (SD) over the 10-fold cross-validation. P-values are computed using a Wilcoxon
signed-rank test or pairwise t-test with Bonferroni between the Proposed model and each reference model. IBS
stand for Integrated Brier Score. ↓means that the metric should be minimised and ↑maximised. Results in bold are
the best for each metric. 6,382 longitudinal predictions were made at 0.58 (0.41) years from the last visit.

Proposed Two stages p-value Longitudinal p-value AFT p-value JMbayes2 p-value
Absolute bias ↓ 3.74 (3.80) - - 3.73 (3.82) 3.3e-05 - - 4.09 (4.10) 3.9e-27

IBS ↓ 0.08 (0.02) 0.08 (0.02) 3.2e-01 - - 0.11 (0.03) 5.3e-05 0.11 (0.03) 7.5e-05
Mean AUC (1y, 1.5y) ↑ 0.74 (0.10) 0.75 (0.09) 1.0e+00 - - 0.60 (0.08) 2.2e-03 0.60 (0.09) 3.3e-03

C-index 1.0y ↑ 0.73 (0.07) 0.73 (0.08) 1.0e+00 - - 0.60 (0.07) 3.1e-03 0.59 (0.07) 2.5e-03
C-index 1.5y ↑ 0.73 (0.07) 0.73 (0.07) 1.0e+00 - - 0.60 (0.07) 2.0e-03 0.59 (0.07) 1.9e-03
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Table 3 Characteristics of the PRO-ACT data
Legend: Results are presented with mean (SD) [class%]. There were no missing values in the dataset due to patient
selection.

Characteristics Values
Number of patients 2,528
Number of visits 23,143

Number of patients years 2,531
Percentage of censored events (%) 76.74

Number of visits per patients 9.2 (4.3)
Time of follow-up (years) 1.0 (0.6)

Time between visits (months) 1.5 (0.9)
Gender (Male) 1,575 [62.3 %]

Symptom onset (Spinal) 1,952 [77.2 %]
Age at first symptoms 54.0 (11.3)

Time from first symptoms to baseline (years) 1.6 (0.9)
ALSFRSr total (baseline) 37.9 (5.4)
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Table 4 Clinically meaningful estimated parameters bias of the Proposed model and reference models on real-like
dataset
Legend: Proposed: the proposed joint model with latent disease age, Two-stage model: AFT survival model that
uses as covariate random effects of the Longitudinal model, Longitudinal: existing longitudinal model with latent
disease age, AFT: Accelerated Failure Time model, JMbayes2: joint model with shared random effects.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-values are computed using a Wilcoxon
signed-rank test with Bonferroni correction between the Proposed model and each of the reference models.

Proposed Two stages p-value Longitudinal p-value AFT p-value JMbayes2 p-value
growth (pt/y) -14.17 (0.08) - - -13.95 (0.08) 9.8e-11 - - -15.35 (0.10) 4.6e-14
midpoint (y) 2.78 (0.01) - - 2.79 (0.01) 1.6e-04 - - 3.22 (0.01) 1.8e-13
median (y) 4.15 (0.03) 4.14 (0.02) 6.2e-01 - - 4.69 (0.02) 4.4e-11 4.47 (0.09) 2.0e-06
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Table 5 Prediction metrics of the Proposed model and reference models on PRO-ACT data
Legend: Proposed: the proposed joint model with latent disease age, Two-stage model: AFT survival model that
uses as covariate random effects of the Longitudinal model, Longitudinal: existing longitudinal model with latent
disease age, AFT: Accelerated Failure Time model, JMbayes2: joint model with shared random effects.
Results are presented with the mean (SD) over the 10-fold cross-validation. P-values are computed using a Wilcoxon
signed-rank test or pairwise t-test with Bonferroni between the Proposed model and each of the reference models.
IBS stand for Integrated Brier Score. ↓means that the metric should be minimised and ↑maximised. Results in bold
are the best for each metric. 18,077 longitudinal predictions were made at 0.63 (0.55) years from the last visit.

Proposed Two stages p-value Longitudinal p-value AFT p-value JMbayes2 p-value
Absolute bias ↓ 4.21 (4.41) - - 4.18 (4.38) 2.2e-73 - - 4.24 (4.14) 1.4e-17
IBS ↓ 0.10 (0.01) 0.11 (0.01) 2.5e-04 - - 0.12 (0.01) 1.1e-04 0.10 (0.01) 1.0e+00
Mean AUC (1y, 1.5y) 0.67 (0.07) 0.62 (0.08) 2.8e-03 - - 0.42 (0.07) 4.3e-05 0.61 (0.09) 1.7e-03
C-index 1.0y ↑ 0.69 (0.05) 0.63 (0.06) 4.0e-04 - - 0.41 (0.05) 1.1e-06 0.63 (0.06) 3.1e-04
C-index 1.5y ↑ 0.70 (0.05) 0.65 (0.05) 9.7e-04 - - 0.41 (0.05) 1.6e-06 0.66 (0.05) 1.8e-03
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Figure 1 Absolute estimated bias for clinically meaningful estimated parameters (median, growth and midpoint)
on all simulated datasets
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits,
Follow-up (F): scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises
on longitudinal outcome, Survival noise (S): Scenario with different standard deviation on survival. Easy, Medium
and Hard correspond to an increased difficulty of simulated data for the estimation, more information on simulation
is available in part 3.1.2 and summarised in the table F3 in annexe. Datasets with (r) correspond to the real-like
dataset.
corrected: mean bias extracted from Robbin Monroe algorithm corrected for attenuation bias, from posterior:
mean bias with CI 95% of the posterior MCMC chain. Values of the clinically meaningful estimated parameters
that enabled the simulation, from which the bias is computed, were 4.48 (0.12) years for the median, -13.19 (0.21)
point of ALSFRSr per year for the growth, 2.92 (0.06) years for the midpoint.
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APPENDIX

A LIKELIHOOD TOTAL

log 𝑝((𝑦, 𝑇𝑒, 𝐵𝑒), 𝑧, 𝜃 ∣ Π)

=
∑
𝑖,𝑗

− log
(
𝜎
√
2𝜋

)
− 1

2𝜎2
(
𝑦𝑖,𝑗 − 𝛾0

(
𝜓𝑖

(
𝑡𝑖,𝑗

)))2

+
∑
𝑖
𝟙𝐵𝑒𝑖 × log

(
ℎ𝑖(𝑡𝑒𝑖)

)
+
∑
𝑖
log

(
𝑆𝑖(𝑡𝑒𝑖)

)

− log
(
𝜎�̃�
√
2𝜋

)
− 1

2𝜎2�̃�

(
�̃� − �̃�

)2

− log
(
𝜎�̃�0

√
2𝜋

)
− 1

2𝜎2�̃�0

(
�̃�0 − �̃�0

)2

− log
(
𝜎�̃�
√
2𝜋

)
− 1

2𝜎2�̃�

(
�̃� − �̃�

)2

− log
(
𝜎�̃�
√
2𝜋

)
− 1

2𝜎2�̃�

(
�̃� − �̃�

)2

− 𝑁 log
(
𝜎𝜏
√
2𝜋

)
− 1

2𝜎2𝜏

∑
𝑖
(𝜏𝑖 − 𝑡0)2

− 𝑁 log
(
𝜎𝜉
√
2𝜋

)
− 1

2𝜎2𝜉

∑
𝑖
(𝜉𝑖 − 𝜉)2

B SUFFICIENT STATISTICS

The convergence of the Monte-Carlo Markov Chain Stochastic Approximation Expectation-Maximization
(MCMC-SAEM) algorithm has been proven in36 for models which lie into the curved exponential family. For such
a family of distributions, the log-likelihood can be written as:

log 𝑝(Y, z, 𝜃,Π) = −Φ(𝜃,Π) + ⟨𝑆(Y, z), 𝑓 (𝜃,Π)⟩
where Φ and 𝑓 are smooth functions, and 𝑆 are called the sufficient statistics. The sufficient statistics are to be
understood as a summary of the required information from the latent variables z and the observations Y in our case
(𝑦, 𝑡𝑒, 𝐵). Our model falls in such a category and sufficient statistics are described below.

The idea is to rewrite likelihood in the above form to get sufficient statistics. As a reminder, note that
there are 𝑁 patients indexed by 𝑖 and each has 𝑛𝑖 visits indexed by 𝑗.



J. ORTHOLAND ET AL 29

log 𝑞((𝑦, 𝑇𝑒, 𝐵𝑒), 𝑧, 𝜃 ∣ Π) =
∑
𝑖,𝑗

− log
(
𝜎
√
2𝜋

)
− ⟨[‖𝑦𝑖𝑗‖2]𝑖𝑗
⏟⏞⏟⏞⏟
𝑆1(𝑌 ,𝑧)

−2[𝑦𝑇𝑖𝑗𝛾0
(
𝜓𝑖

(
𝑡𝑖,𝑗

))
]𝑖𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆2(𝑌 ,𝑧)

+ [‖𝛾0
(
𝜓𝑖

(
𝑡𝑖,𝑗

)) ‖2]𝑖𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑆3(𝑌 ,𝑧)

, 1
2𝜎2

𝟏∑ 𝑛𝑖⟩

+ ⟨[𝟙𝐵𝑒𝑖 × log
(
ℎ𝑖(𝑡𝑒𝑖)

)
+
∑
𝑖
log

(
𝑆𝑖(𝑡𝑒𝑖)

)
]𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆4(𝑌 ,𝑧)

, 𝟏𝑁⟩

− ln(𝜎�̃�
√
2𝜋) + ⟨ [�̃�2]

⏟⏟⏟
𝑆5(𝑌 ,𝑧)

,− 1
2𝜎2�̃�

𝟏1⟩ + ⟨ [�̃�]
⏟⏟⏟
𝑆6(𝑌 ,𝑧)

, 1
𝜎2�̃�

[�̃�]⟩ −
1∑
𝑘=1

1
2𝜎2�̃�

�̃�
2

− ln(𝜎�̃�0
√
2𝜋) + ⟨ [�̃�20]

⏟⏟⏟
𝑆7(𝑌 ,𝑧)

,− 1
2𝜎2�̃�0

𝟏1⟩ + ⟨ [�̃�0]
⏟⏟⏟
𝑆8(𝑌 ,𝑧)

, 1
𝜎2�̃�0

[�̃�0]⟩ −
1∑
𝑘=1

1
2𝜎2�̃�0

�̃�0
2

− ln(𝜎�̃�
√
2𝜋) + ⟨ [�̃�2]

⏟⏟⏟
𝑆9(𝑌 ,𝑧)

,− 1
2𝜎2�̃�

𝟏1⟩ + ⟨ [�̃�]
⏟⏟⏟
𝑆10(𝑌 ,𝑧)

, 1
𝜎2�̃�

[�̃�]⟩ −
1∑
𝑘=1

1
2𝜎2�̃�

�̃�
2

− ln(𝜎�̃�
√
2𝜋) + ⟨ [�̃�2]

⏟⏟⏟
𝑆11(𝑌 ,𝑧)

,− 1
2𝜎2�̃�

𝟏1⟩ + ⟨ [�̃�]
⏟⏟⏟
𝑆12(𝑌 ,𝑧)

, 1
𝜎2�̃�

[�̃�]⟩ −
1∑
𝑘=1

1
2𝜎2�̃�

�̃�
2

−𝑁 log(𝜎𝜏
√
2𝜋) + ⟨ [𝜏2𝑖 ]𝑖

⏟⏟⏟
𝑆13(𝑌 ,𝑧)

,− 1
2𝜎2𝜏

𝟏𝑁⟩ + ⟨ [𝜏𝑖]𝑖
⏟⏟⏟
𝑆14(𝑌 ,𝑧)

, 1
𝜎2𝜏
𝜏𝟏𝑁⟩ − 1

2𝜎2𝜏
𝑁𝜏2

−𝑁 log(𝜎𝜉
√
2𝜋) + ⟨ [𝜉2𝑖 ]𝑖

⏟⏟⏟
𝑆15(𝑌 ,𝑧)

,− 1
2𝜎2𝜉

𝟏𝑁⟩ + ⟨ [𝜉𝑖]𝑖
⏟⏟⏟
𝑆16(𝑌 ,𝑧)

, 1
𝜎2𝜉
𝜉𝟏𝑁⟩ − 1

2𝜎2𝜉
𝑁𝜉

2

C MAXIMIZATION UPDATE RULES

To find the update rule of the different parameters, we need to find the new parameter 𝜃 that maximizes the log-
likelihood. As expressions are convex in 𝜃 we can simply derive and look for a critical point. We derive the log-
likelihood with respect to each maximised fixed effect. Note that only maximised fixed effects are updated by a
maximization rule, other parameters are latent variables that are sampled. 𝜉 is first maximised and then set to 0.
As a reminder, note that there are 𝑁 patients indexed by 𝑖 and that each of them has 𝑛𝑖 visits indexed by 𝑗. At
iteration 𝑘, we can use �̃� (𝑘+1) computed with the parameters at iteration k and the formula of 𝑆(𝑌 , 𝑧) to compute
the parameters at iteration (𝑘 + 1).
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D REFERENCE MODELS EQUATIONS

Model Inputs Effects Random effects structure Link functions
Fix Random 𝜓𝑖(𝑡) Longitudinal 𝛾(𝑡) Survival S(t)

Longitudinal t 𝑔, 𝑣0, 𝑡0 𝜉, 𝜏 𝑒𝜉(𝑡 − 𝜏) + 𝑡0
(
1 + 𝑔 × exp(−𝑣0

(𝑔+1)2

𝑔
(𝜓𝑖(𝑡) − 𝑡0))

)−1 -
AFT t 𝜈0, 𝜌0 - - - 𝑒𝑥𝑝

(
−
(

𝑡
exp(𝜈0)

)exp(𝜌0)
)

Two-stages 𝑡, 𝑥 = (𝜉, 𝜏) 𝜈0, 𝜈1, 𝜌0 - - - 𝑒𝑥𝑝
(
−
(

𝑡
exp(𝜈0+𝜈1𝑥)

)exp(𝜌0)
)

Proposed t 𝑔, 𝑣0, 𝑡0, 𝜌, 𝜈 𝜉, 𝜏 𝑒𝜉(𝑡 − 𝜏) + 𝑡0
(
1 + 𝑔 × exp(−𝑣0

(𝑔+1)2

𝑔
(𝜓𝑖(𝑡) − 𝑡0))

)−1
𝑒𝑥𝑝

(
−
(
𝜓𝑖(𝑡)
𝜈

)𝜌)

JMBayes2 t 𝛽0, 𝛽1, 𝛼, 𝑠𝑝𝑙(𝑡) 𝑏𝑖,0, 𝑏𝑖,1 (𝛽0 + 𝑏𝑖,0) + (𝛽1 + 𝑏𝑖,1)𝑡
(
1 + 𝑔 × exp(𝜓𝑖(𝑡)

)
)−1 exp

(
− ∫ 𝑡

0 exp(𝑠𝑝𝑙(𝑢) + 𝛼𝛾(𝑢))𝑑𝑢
)

Table D1 Specification of reference models
Legend: Longitudinal: existing longitudinal model with latent disease age, Two-stage model: AFT survival model that used as covariate random
effects of the Longitudinal model, AFT: Accelerated Failure Time model, Proposed: the proposed joint model with latent disease age, JMbayes2:
joint model with shared random effects. 𝑠𝑝𝑙(𝑡): spline function, 𝑥 = (𝜉, 𝜏) are extracted from the Longitudinal model and used as covariates,
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Model Survival Longitudinal
Median Growth Midpoint

Longitudinal - 𝑣0
(𝑔+1)2

4𝑔
log(𝑔) 𝑔

𝑣0(𝑔+1)2
+ 𝑡0

Two-stages available in package - -
AFT available in package - -

Proposed 𝜈 ln(2)
1
𝜌 𝑣0

(𝑔+1)2

4𝑔
log(𝑔) 𝑔

𝑣0(𝑔+1)2
+ 𝑡0

JMBayes2 from S(t) estimation −𝛽1∕4 −𝛽0

Table D2 Clinically meaningful estimated parameters formulas
Legend: Longitudinal: existing longitudinal model with latent disease age, Two-stage model: AFT survival model that uses as covariate random
effects of the Longitudinal model, AFT: Accelerated Failure Time model, Proposed: the proposed joint model with latent disease age, JMbayes2:
joint model with shared random effects.
If a function to extract the clinically meaningful estimated parameters was available in the package it was directly used and noticed as available in
the package. For the JMBayes2 package, we estimated the function S(t) to find the median of survival (from S(t) estimation).
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E ANALYSIS OF PRO-ACT FOR REAL-LIKE SIMULATION

Figure E1 PRO-ACT longitudinal and survival data
Legend: The spaghetti plot represents each patient trajectory of ALSFRSr from first symptoms. Survival corre-
sponds to time to death or tracheotomy.
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Figure E2 PRO-ACT longitudinal and survival data reparametrized in latent disease age
Legend: The spaghetti plot represents each patient trajectory of ALSFRSr from first symptoms in latent disease
age. Survival corresponds to time to death or tracheotomy in latent disease age.



F SUMMARY OF PARAMETERS FOR SIMULATION

Table F3 Data simulation parameters by scenario
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-up (F): scenario with
different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Scenario with
different standard deviation on survival. (r) indicate when ALS real-like parameters are used. For each scenario, three datasets are simulated [Easy,
Medium, Hard] that correspond to an increased difficulty of simulated data for the estimation, more information on simulation is available in part
3.1.2 and summarised in the table F3 in annexe. Note that the population estimated reference time, 𝑡0, correspond also to the mean time shift.

Type Parameters ALS Patient Visit Follow up Longitudinal Survival
Name Symbol real-like (r) number (P) density(V) (F) noise (L) noise (S)

Patients Patient number 𝑁 1,000 [r, 500, 200] r r r r

Random Effect
Time shift (std) 𝜎𝜏 1.04 r r r r r

Individual log-rate factor (mean) 𝜉 0 r r r r r
(std) 𝜎𝜉 0.73 r r r r r

Population estimated reference time 𝑡0 1.17 r r r r r
Longitudinal Speed of the logistic curve 𝑣0 1.13 r r r r r
Fixed Effects Curve value at 𝑡0: 1

1+𝑔
g 6.40 r r r r r

Estimated noise 𝜎 0.04 r r r [r, 0.1, 0.2] r
Survival Scale of the Weibull distribution 𝜈 3.62 r r r r [3.11, r, 3.84]

Fixed Effects Shape of the Weibull distribution 𝜌 2.25 r r r r [3, r, 2]

Visits
Time between 𝜏 and baseline (mean) 𝛿𝑓 0.4 r r r r r

(std) 𝜎𝛿𝑓 0.84 r r r r r
Time of follow up (mean) 𝑇𝑓 0.96 r r [2, r, 0.5] r r

(std) 𝜎𝑇𝑓 0.87 r r r r r
Time between visits (mean) 𝛿𝑣 1.47 r [1, r, 3] r r r

(std) 𝜎𝛿𝑣 0.5 r r r r r
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G SIMULATED DATA STATISTICS

Figure G3 Statistics on simulated data depending on the scenario
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits,
Follow-up (F): scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises
on longitudinal outcome, Survival noise (S): Scenario with different standard deviation on survival. Easy, Medium
and Hard correspond to an increased difficulty of simulated data for the estimation, more information on simulation
is available in part 3.1.2 and summarised in the table F3 in annexe. Note that the Longitudinal (L) and the Survival
(S) scenarios have almost the same number of visits. The Visits (V) and Longitudinal (L) scenarios have almost the
same censoring rate for the easiest configuration, and the Survival (S) and Longitudinal (L) scenarios for the most
difficult configuration.

H VALIDATION - POSTERIOR EFFECTS ESTIMATION
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Figure H4 Fixed effects estimation bias from posterior distributionon simulated datasets
Legend: In ordinate the normalised bias on the true value of the parameters, in abscisse the different dataset for
each scenario.
Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-
up (F): scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises on
longitudinal outcome, Survival noise (S): Scenario with different standard deviation on survival. With (r) that
indicates when the study design corresponds to the real-like design. Easy, Medium and Hard correspond to an in-
creased difficulty of simulated data for the estimation, more information on simulation is available in part 3.1.2
and summarised in the table F3 in annexe.
g: Curve value at 𝑡0:

1
1+𝑔

, 𝜎: Estimated noise, 𝜈: Scale of the Weibull distribution, 𝜌: Shape of the Weibull distri-
bution, 𝑡0: Population estimated reference time (mean time shift), 𝜎𝜏: Time-shift standard-deviation, 𝑣0: Speed of
the logistic curve, 𝜎𝜉: Individual log-rate factor (the mean is fixed to 0 to ensure identifiability).
The distribution was computed using 30,000 MCMC iterations.



Table H4 Intra-class correlation of random effects from the mean of posterior distribution on simulated datasets
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-up (F): scenario with
different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Scenario with
different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated data for the estimation, more
information on simulation is available in part 3.1.2 and summarised in the table F3 in annexe.
𝜏: the individual time-shit, 𝜉: the progression log-rate factor. Intra-class correlations are computed between the random effects estimated and the
one simulated.

Patients (P) Visits (V) Follow-up (F) Longitudinal noise (L) Survival noise (S)
average CI95% average CI95% average CI95% average CI95% average CI95%

𝜉 Easy 0.91 [0.90 0.92] 0.93 [0.92 0.93] 0.97 [0.97 0.97] 0.91 [0.90 0.92] 0.91 [0.90 0.92]
Medium 0.89 [0.87 0.91] 0.91 [0.90 0.92] 0.91 [0.90 0.92] 0.83 [0.81 0.85] 0.91 [0.90 0.92]

Hard 0.93 [0.91 0.95] 0.90 [0.89 0.91] 0.86 [0.84 0.87] 0.75 [0.72 0.78] 0.91 [0.90 0.92]
𝜏 Easy 0.96 [0.95 0.96] 0.97 [0.96 0.97] 0.98 [0.97 0.98] 0.96 [0.95 0.96] 0.96 [0.95 0.96]

Medium 0.94 [0.92 0.95] 0.96 [0.95 0.96] 0.96 [0.95 0.96] 0.88 [0.86 0.89] 0.96 [0.95 0.96]
Hard 0.96 [0.95 0.97] 0.94 [0.93 0.94] 0.92 [0.91 0.93] 0.66 [0.62 0.70 ] 0.96 [0.95 0.96]

I VALIDATION - ATTENUATION BIAS CORRECTION
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Table I5 Clinically meaningful estimated parameters signed bias on simulated data
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-up (F): scenario with
different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Scenario with
different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated data for the estimation, more
information on simulation is available in part 3.1.2 and summarised in the table F3 in annexe. bias: mean (SD) computed from the posterior
distribution, corrected bias: the mean extracted from the Robbin Monroe algorithm corrected for attenuation bias, truth: the value used for data
simulation.

Patients (P) Visits (V) Follow-up (F) Longitudinal noise (L) Survival noise (S)
bias corrected bias truth bias corrected bias truth bias corrected bias truth bias corrected bias truth bias corrected bias truth

median Easy 0.40 (0.07) 0.00 4.50 0.50 (0.08) 0.13 4.47 0.18 (0.05) 0.05 4.40 0.40 (0.07) 0.00 4.50 0.38 (0.06) 0.02 4.18
Medium 0.59 (0.13) 0.09 4.76 0.40 (0.07) 0.00 4.50 0.40 (0.07) 0.00 4.50 0.71 (0.11) 0.07 4.50 0.40 (0.07) 0.00 4.50

Hard 1.11 (0.21) 0.58 4.34 0.56 (0.09) 0.14 4.42 1.88 (0.24) 1.08 4.49 1.22 (0.15) 0.43 4.50 0.45 (0.08) 0.02 4.61
growth Easy 1.37 (0.14) 0.45 -13.19 1.04 (0.13) 0.69 -13.22 0.25 (0.08) 0.50 -13.25 1.37 (0.14) 0.45 -13.19 1.37 (0.14) 0.50 -13.09

Medium 0.89 (0.19) 0.76 -12.47 1.37 (0.14) 0.45 -13.19 1.37 (0.14) 0.45 -13.19 2.92 (0.21) -0.59 -13.19 1.37 (0.14) 0.45 -13.19
Hard 1.68 (0.32) 0.37 -13.49 1.46 (0.15) 0.43 -13.39 2.75 (0.19) -0.26 -13.36 5.26 (0.24) -3.51 -13.19 1.32 (0.14) 0.56 -13.22

midpoint Easy 0.10 (0.02) -0.06 2.93 0.08 (0.02) -0.07 2.90 -0.02 (0.01) -0.05 2.83 0.10 (0.02) -0.06 2.93 0.11 (0.02) -0.05 2.94
Medium 0.04 (0.03) -0.13 3.09 0.10 (0.02) -0.06 2.93 0.10 (0.02) -0.06 2.93 0.25 (0.03) -0.02 2.93 0.10 (0.02) -0.06 2.93

Hard 0.17 (0.04) 0.01 2.80 0.08 (0.02) -0.07 2.87 0.29 (0.03) -0.01 2.93 0.46 (0.05) 0.09 2.93 0.10 (0.02) -0.06 2.91

Table I6 Intra-class correlation of random effects from personalization on simulated datasets
Legend: Patients(P): scenario with different number of patients, Visits (V): scenario with different density of visits, Follow-up (F): scenario with
different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome, Survival noise (S): Scenario with
different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated data for the estimation, more
information on simulation is available in part 3.1.2 and summarised in the table F3 in annexe.
𝜏: the individual time-shit, 𝜉: the progression log-rate factor. Intra-class correlations are computed between the random effects estimated and the
one simulated.

Patients (P) Visits (V) Follow-up (F) Longitudinal noise (L) Survival noise (S)
average CI95% average CI95% average CI95% average CI95% average CI95%

𝜉 Easy 0.87 [0.86 0.89] 0.89 [0.87 0.90 ] 0.96 [0.95 0.96] 0.87 [0.86 0.89] 0.87 [0.85 0.88]
Medium 0.83 [0.80 0.86] 0.87 [0.86 0.89] 0.87 [0.86 0.89] 0.75 [0.71 0.78] 0.87 [0.86 0.89]

Hard 0.90 [0.87 0.93] 0.86 [0.85 0.88] 0.79 [0.76 0.81] 0.67 [0.63 0.71] 0.87 [0.86 0.89]
𝜏 Easy 0.97 [0.96 0.97] 0.97 [0.97 0.98] 0.98 [0.98 0.98] 0.97 [0.96 0.97] 0.97 [0.96 0.97]

Medium 0.95 [0.94 0.96] 0.97 [0.96 0.97] 0.97 [0.96 0.97] 0.91 [0.90 0.92] 0.97 [0.96 0.97]
Hard 0.96 [0.95 0.97] 0.96 [0.95 0.96] 0.95 [0.94 0.96] 0.71 [0.67 0.75] 0.97 [0.96 0.97]
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Figure I5 Intra-class correlation of random effects on simulated datasets
Legend: Results are presented with mean with CI95%.
In ordinate, the two random effects: 𝜏 the individual time-shit and 𝜉 the progression log-rate factor. Intra-class correlations are computed between
the random effects estimated and the one simulated.
In abscise the different dataset for each scenario: Patients(P): scenario with different number of patients, Visits (V): scenario with different density
of visits, Follow-up (F): scenario with different follow-up duration, Longitudinal noise (L): scenario with different noises on longitudinal outcome,
Survival noise (S): Scenario with different standard deviation on survival. Easy, Medium and Hard correspond to an increased difficulty of simulated
data for the estimation, more information on simulation is available in part 3.1.2 and summarised in the table F3 in annexe. Datasets with (r)
correspond to the real-like dataset.
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J BENCHMARK - SIMULATED AND REAL DATA

Figure J6 Average patient curve of the Proposed model and reference models on real-like dataset
Legend: Results are presented with mean over the 10-fold cross-validation and the maximum and minimum varia-
tion for each model.
Panel A: Longitudinal: existing longitudinal model with latent disease age, Proposed: the proposed joint model
with latent disease age, JMbayes2: joint model with shared random effects, Truth: real average patient that en-
abled data simulation,
Panel B: AFT: Accelerated Failure Time model, Two-stage model: AFT survival model that uses as covariate ran-
dom effects of the Longitudinal model, Proposed: the Proposed model, JMbayes2: joint model with shared random
effects, Truth: real average patient that enabled data simulation.
Note that for the longitudinal process, the curves of the Truth, the Longitudinal and Proposed models are super-
imposed.
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Figure J7 Average patient curve of the Proposed model and reference models on PRO-ACT dataset
Legend: Results are presented with mean over the 10-fold cross-validation and the maximum and minimum varia-
tion for each model.
Panel A: Longitudinal: existing longitudinal model with latent disease age, Proposed: the proposed joint model
with latent disease age, JMbayes2: joint model with shared random effects,
Panel B: AFT: Accelerated Failure Time model, Two-stage model: AFT survival model that uses as covariate ran-
dom effects of the Longitudinal model, Proposed: the Proposed model, JMbayes2: joint model with shared random
effects.
Note that for the longitudinal process, the curves of the Longitudinal and Proposed models are superimposed.
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