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1.1 Introduction

A significant challenge in the field of atomic and molecular systems is to gain a deeper un-
derstanding of their fundamental properties. This challenge is particularly pronounced
as the systems under study become increasingly complex and the necessity for efficient
exploration of their energy landscape to predict their behavior in diverse physical and
biological environments increases. This chapter will present the main concepts devel-
oped in this thesis in order to address the problem at hand and to contextualize the
existing state-of-the-art methods. A theoretical framework will be developed to in-
troduce the concept of electronic structures and define Schrödinger equations and the
Born-Oppenheimer approximation. Subsequently, potential energy methods will be pre-
sented, with each method addressing different problems and varying mainly in terms
of their accuracy and efficiency. Finally, global exploration methods will be introduced
to illustrate the diversity of techniques available for investigating the potential energy
surface (PES).
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1.2 Atomistic/molecular modeling and electronic struc-
ture

Atoms are composed of a nucleus containing protons and neutrons, surrounded by elec-
trons. The arrangement of electrons in the orbitals determines the chemical properties of
the atom and its interactions with other atoms. The properties of atoms and molecules
are governed by the laws of quantum mechanics, which describe the behavior of parti-
cles at the atomic and subatomic levels. The principles of quantum mechanics provide
a framework for understanding the structure of atoms and molecules, the nature of
chemical bonds, and the interactions between molecules.

Molecules are composed of two or more atoms held together by chemical bonds.
The specific arrangement of the atoms within a molecule determine its shape and prop-
erties. Molecules exhibit a wide range of properties and behaviors, which depend on
their composition, structure, and interactions. An understanding of the characteristics
of molecules is essential for the prediction of their behavior and properties in various
chemical processes.

1.2.1 Schrödinger equation

In 1926, Erwin Schrödinger, an Austrian physicist, introduced a wavefunction that de-
scribes how the quantum state of a physical system changes over time [139]. One of
the pivotal achievements in the field of Quantum Chemistry is the formulation of the
Schrödinger equation. This equation is one of the most important postulates of quantum
mechanic and has played a crucial role in our understanding of the subatomic world.

The time-dependent Schrödinger equation is written as:

i~
∂

∂t
Ψ(R, r, t) = ĤΨ(R, r, t) (1.1)

where ~ is the reduced Planck’s constant, ~ = h
2π , h is Planck’s constant equal to

6.62607015.10−34 J.s., i is the imaginary unit, Ψ(R, r, t) is the wavefunction of the
system, which contains information about the position of the nuclei R, the electrons r
and time t, and Ĥ is the Hamiltonian operator, associated to the total energy of the
system. For the particulary case of systems in a stationary state, meaning those where
properties do not vary over time, temporal and spatial variables are separated. The
state wave function (eigenfunction) is defined as:

Ψ(R, r, t) = e−i
Et
~ ψ(R, r) (1.2)

ψ(R, r) represent the spatial contribution to the wavefunction and can be obtained by
solving the time-independent Schrödinger equation. This equation is written as:

Ĥψ(R, r) = Eψ(R, r) (1.3)

The Hamiltonian operator plays a central role in the equation, dictating the dynamics
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of the system by defining the energy landscape within which the system evolves.
In this form, the Hamiltonian operator applied to the wave function ψ(r) equal to

the energy E of the system multiplied by the wave function. The Hamiltonian operator
is the sum of the kinetic operator and potential energy terms, and is defined as

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn (1.4)

where e and n refer to the electronic and nuclear components, respectively, and the sub-
scripts indicate the type of interaction (electron-electron, electron-nucleus, and nucleus-
nucleus). The kinetic energy terms T̂e and T̂n are the operators associated to the ki-
netic energies for electrons and nuclei. The potential energy terms V̂ee is the repulsive
Coulomb interaction between electrons, V̂en is the attractive nucleus-electron Coulomb
interaction and V̂nn the repulsive Coulomb interaction between nuclei. Defining a sys-
tem of particles with N electrons and M nuclei, the five terms of the Hamiltonian (Eq.
A.4) in atomic units (~ = me = e = c = 1) can be written as:

T̂e = −1
2

N∑
i=1
∇2
i (1.5)

T̂n = −1
2

M∑
A=1

1
MA
∇2
A (1.6)

V̂en = −
N∑
i=1

M∑
A=1

ZA
riA

(1.7)

V̂ee =
N∑
i=1

N∑
j>i

1
rij

(1.8)

V̂nn =
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.9)

where riA is the distance between the i-th electron and the A-th nucleus, rij is the
distance between the i-th and j-th electrons, RAB is the distance between the A-th and
B-th nuclei, ZA is the atomic number of the A-th nucleus and MA is the mass of the
A-th nucleus. Finally the Laplacian operator ∇2 is defined in cartesian coordinates as
∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
In pratice, solving the Schrödinger equation analytically for systems with more than one
electron is impossible. Therefore, numerical methods combined with approximations are
used to solve this equation.

1.2.2 Born-Oppenheimer approximation

In 1927, Max Born and Robert Oppenheimer introduced the Born-Oppenheimer ap-
proximation, which simplifies the Schrödinger equation by treating the electronic and
nuclear motions as independent variables [28]. The nuclear mass is much larger than
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the electronic mass (mp ≈ 1836me), making the electronic motion much faster than
the nuclear motion, which leads to a separation of variables to describe electronic and
nuclear motions. As a result, the electronic wavefunction can adjust instantaneously to
changes in the nuclear positions, and electrons move in a potential field generated by
the nuclei. The total wavefunction can be written as a product of electronic and nuclear
wavefunctions:

Ψ(r,R) = ψn(R)ψe(r; R) (1.10)

where ψn(R) is the nuclear wavefunction, and ψe(r; R) is the electronic wavefunction
that depends parametrically on the nuclear coordinates. The electronic problem can
be solve independently from the nuclear motion. At a given position of the nuclei, the
electronic problem can be obtain by solving a time-independent Schrödinger equation
for the electrons only:

Ĥeψe(r; R) = Ee(R)ψe(r; R) (1.11)

where Ee is the electronic energy and the electronic Hamiltonian operator is given as:

Ĥe = T̂e + V̂ee + V̂en (1.12)

Note that solving the equation A.11 leads to several solutions corresponding to different
electronic states. In many cases and in particular in the following of this thesis, only
the solution corresponding to the lowest energy eigenvalue is considered, also called the
electronic ground state. The dynamics of the nuclei is governed by the potential energy
obtained by adding the nuclear repulsion to the electronic energy:

E(R) = Ee(R) + V̂nn (1.13)

According to the equation A.13, the potential energy of the system can be calculated for
a given nuclear configuration. This approximation simplifies the Schrödinger equation
by reducing the number of variables and allows the definition of a potential energy
surface that describes the energy landscape of the chemical system. In addition to the
former approximation, the nuclei are often considered as classical particles (punctual
particles). They can therefore be treated from the Newton’s law making use of the PES
define in equation A.13.

1.3 Potential energy

To compute the potential energy of a system, several methods have been developed in
the field of computational chemistry, varying in complexity and accuracy as presented
in the figure A.1. The choice of the method size and computational cost are correlated,
so mention only cost the level of accuracy required and the computational cost. The
following section will present the principal methods utilized for the calculation of a
system’s potential energy, including those based on wave functions, as well as Density
Functional Theory (DFT), Density Functional Tight Binding (DFTB), Force Field (FF),
and Coarse-graining (CG).
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Figure 1.1: Potential energy scale.

1.3.1 Wave function based methods

The Hartree-Fock (HF) method [13, 81, 146, 61, 60] is a mean-field approach wherein
electrons are presumed to evolve independently within an effective potential shaped
by both nuclei and the ensemble of electrons. The method approximates the system’s
total multi-electron wave function as a product of single-electron wave functions. The
computational scheme involves solving a set of N single-particle Schrödinger equations
self-consistently.

Nevertheless, Fock identified a significant deficiency in Hartree’s formulation—its
noncompliance with the Pauli exclusion principle. This resulted in a wave function
that was not antisymmetric with respect to particle exchange. To rectify this, Fock
reformulated the wave function as a Slater determinant of single-electron functions,
incorporating the fermionic characteristics of electrons and introducing the exchange
energy term in the Hamiltonian. This resulted in the evolution of the original method
into what is now widely recognized as the Hartree-Fock method.

Despite its significant contributions, the Hartree-Fock method does not account for
correlation energy, the discrepancy between the exact quantum mechanical energy and
the energy estimated by Hartree-Fock calculations.

1.3.2 Density Functional Theory (DFT)

Density Functional Theory (DFT) [144, 153] was introduced by Hohenberg and Kohn in
1964 and further developed by Kohn and Sham in 1965. DFT is a quantum mechanical
theory used to investigate the electronic structure of many-body systems, primarily
atoms, molecules, and condensed phases. Unlike methods that are based directly on the
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wave function, DFT describes a system in terms of its electron density rather than its
wave function.

The foundation of DFT is built upon two Hohenberg-Kohn (HK) theorems [86]:

1. The first HK theorem states that the ground-state properties of a many-electron
system are uniquely determined by its electron density ρ(r). This implies that all
observable properties of the system are functionals of the electron density.

2. The second HK theorem provides a variational principle for the electron density.
It states that the total energy functional E[ρ] has its minimum value at the true
ground-state electron density of the system.

Based on these theorems, Kohn and Sham developed a practical scheme known as
the Kohn-Sham (KS) equations:[

− ~2

2m∇
2 + Veff(r)

]
ψi(r) = εiψi(r), (1.14)

where ψi(r) are the Kohn-Sham orbitals, εi are their corresponding eigenvalues, and
Veff(r) is the effective potential which includes the external potential, the Hartree po-
tential, and the exchange-correlation potential. The effective potential is expressed as:

Veff(r) = Vext(r) + VHartree[ρ(r)] + Vxc[ρ(r)]. (1.15)

The exchange-correlation potential Vxc[ρ(r)] is the most critical component in DFT
calculations and incorporates all the many-body effects. Determining an accurate func-
tional for Vxc is a major area of research within DFT.

DFT is considered more accurate and efficient than the Hartree-Fock (HF) method
as it inherently includes electron correlation effects. It is widely used for calculating the
electronic structure of molecules and predicting their properties.

1.3.3 Density Functional Tight Binding (DFTB)

Density Functional Tight Binding (DFTB) is a semi-empirical method that approx-
imates the electronic structure of a system using a minimal basis set. The DFTB
method was introduced by Elstner in 1998 [55]. It is based on the tight-binding ap-
proximation, which simplifies the electronic structure of a system. The DFTB method
is a popular computational chemistry tool for calculating the electronic structure and
predicting properties of molecules. It is particularly efficient for large systems and incor-
porates electron correlation effects. Chapter 2 will provide a more detailed presentation
of DFTB.

1.3.4 Force Field (FF)

The Force Field (FF) method [105, 6] is a classical approach used in computational
chemistry to estimate the potential energy of a system. This method, which is rooted
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in classical mechanics, employs the classical equations of motion to describe how the
positions and velocities of particles change over time. A FF method approximates the
potential energy of a system based on the positions of its atoms. They are particularly
effective for simulating large molecular systems due to their computational efficiency
compared to quantum mechanical methods. This increase in efficiency is accompanied
by a concomitant decrease in calculation accuracy. The potential energy U of a system
in the force field method is typically expressed as a sum of contributions from bonded
and non-bonded interactions:

U = Ubond + Uangle + Udihedral + Unon-bonded, (1.16)

with each component defined as follows:

Ubond =
∑
bonds

kbi (r − r0)2, (1.17)

Uangle =
∑
angles

kθi (θ − θ0)2, (1.18)

Udihedral =
∑

dihedrals
kφi [1 + cos(nφ− δ)], (1.19)

Unon-bonded =
∑

non-bonded pairs

[
Aij
r12
ij

− Bij
r6
ij

+ qiqj
4πε0rij

]
. (1.20)

Here, kbi , kθi , and kφi are force constants for bond lengths, bond angles, and dihedral
angle respectively; r0 and θ0 are the equilibrium values for bond lengths and bond
angles. φ is the dihedral angle, δ is the phase and n defines the number of minima or
maxima between 0 and 2π. Aij and Bij are parameters for the Lennard-Jones potential
describing van der Waals interactions, while qi and qj are the charges on atoms i and j,
and rij is the distance between them. ε0 is the vacuum permittivity.

The efficiency of FF methods enables the simulation of thousands to tens of thou-
sands of atoms by simplifying the interactions between atoms through the use of springs.
These methods are therefore indispensable for studies of large biomolecules such as pro-
teins and nucleic acids. Furthermore, the incorporation of non-bonded interactions,
such as van der Waals and electrostatic forces, enables a more precise representation of
molecular dynamics and properties.

1.3.5 Coarsed-graining (CG)

Coarsed-graining (CG) is an approach used to approximate the potential energy of a
system by reducing the number of degrees of freedom. The CG approach is based
on the concept of effective interactions, which simplify the energy landscape of the
system by grouping particles into coarse-grained beads. This method is widely used in
computational chemistry to calculate the potential energy of molecules and predict their
properties. CG is more efficient than atomistic methods in terms of the maximum size
of system that can be simulated within a suitable timeframe for large systems. This
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advantage is to put in perspective with the loss of precision.
The primary advantage of the coarse-graining method is its capacity to capture es-

sential physical properties of a system while omitting fine details that do not significantly
affect the overall behavior. By streamlining the computational model, CG methods can
substantially speed up calculations, making it possible to simulate macroscopic phe-
nomena and explore system behaviors on scales that are unattainable with conventional
atomistic approaches.

Developing a coarse-grained model involves selecting the appropriate coarse-grained
sites. Parameters are often derived from experimental data or high-level atomistic simu-
lations and need to be adjusted to ensure that the CG model reproduces specific desired
properties, such as phase behavior or diffusion coefficients. Once the model is developed,
it is crucial to validate and refine it by comparing its predictions with experimental
results or more detailed simulations, adjusting as necessary to enhance accuracy and
reliability.

Coarse-graining is extensively applied in the study of biological macromolecules like
proteins and nucleic acids [98, 137, 33], enabling researchers to investigate large-scale
conformational changes and complex interactions over extended periods. It is also a
critical tool in materials science, especially in the study of polymers and soft materials,
where understanding the structure and dynamics at a large scale is vital.

Despite its numerous benefits, coarse-graining also poses certain challenges, primarily
the loss of detailed atomic-level information which can be crucial for understanding spe-
cific properties such as reaction kinetics or detailed electronic attributes. Furthermore,
the success of a coarse-grained model hinges on the careful balance between the details
that are retained and those that are averaged out, necessitating a deep understanding
of the system and the modeling techniques.

1.4 Global exploration methods

The exploration of the Potential Energy Surface is essential to access information about
the most stable configurations, singular states or thermodynamics properties of a chem-
ical system. The PES or energy hypersurface E(R) is a representation of the potential
energy of a system as a function of its geometry, which can be defined according to the
atomic positions or internal coordinates. The PES, also called energy landscape, shows
the stable configurations and the transition regions between different configurations.
The PES can be used to determine the equilibrium geometry of a molecule, predict the
properties of molecules, simulate chemical reactions and the activation energy required
for chemical reactions to occur. To illustrate the concept, this surface can be represented
graphically as a two-dimensional surface, where the energy is plotted as a function of
the geometry of the chemical system (Fig. A.2). It should be noted that in reality, the
PES is defined by the number of coordinates of the system under study.

Characteristic states can be defined on the PES such as the local minima. For such
state, every first derivative of the energy with respect to geometric coordinates is equal
to zero and every second derivative is positive. The global minimum is the most stable
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Figure 1.2: Potential Energy Surface of a molecule.

configuration of the system.
A saddle point on a PES is a critical point where the gradient (first derivative) of the

energy with respect to all coordinates is zero, yet the Hessian matrix (second derivatives)
exhibits a mixed signature and contains both positive and negative eigenvalues. The
presence of at least one negative eigenvalue indicates a direction of instability, which
distinguishes a saddle point from a local minimum.

Saddle points are classified by their index, which is the number of negative eigenvalues
in the Hessian matrix at that point. This index determines the order of the saddle point:

• A first-order saddle point, often simply called a saddle point, has exactly one
negative eigenvalue. This type of saddle point typically represents a transition
state along a reaction pathway.

• Higher-order saddle points have more than one negative eigenvalue and represent
more complex transition states that may involve simultaneous changes in multiple
directions.

Understanding the order of saddle points is crucial for analyzing the pathway and
mechanism of chemical reactions. For instance, identifying first-order saddle points
is essential for locating transition states, which are pivotal for calculating activation
energies and reaction rates.

Computing the potential energy along a single degree of freedom is relevant to un-
derstanding the properties of a molecule for a simple study of a H2 system for example.
However, for other systems, the PES becomes more complex and numerous degenerate
basins may exist. In this context, exploring the PES becomes a challenging task as it
involves searching for the most stable configurations of the molecule and the transition
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states between different configurations. Several methods have been developed to explore
the PES. These methods encompass a diverse array of techniques, including those based
on Monte Carlo and Molecular Dynamics simulations, global optimization techniques,
as well as robotic-inspired approaches derived from path planning. Algorithms focused
on finding transition paths between energy basins, which are crucial for understand-
ing the dynamics of chemical reactions and predicting reaction/transition rates, will be
discussed in the Chapter 6.

1.4.1 Basic sampling methods

This section will introduce the most widely used sampling techniques employed to in-
vestigate the PES of molecules. Molecular Dynamic and Monte Carlo are effective for
global optimization methods obtaining thermodynamic properties for both and kinetic
properties for the Molecular Dynamics. Both of these methods employ the canonical
ensemble as the sampling framework.

1.4.1.1 Monte Carlo (MC)

The Monte Carlo (MC) method was developed by Metropolis and Ulam in the 1940s with
the objective of calculating multidimensional integrals [117]. The Monte Carlo (MC)
method is a fundamental stochastic technique used to explore the potential energy sur-
face of chemical systems by sampling configurations randomly. The most common Monte
Carlo methods is the Metropolis Monte Carlo (MMC). MMC proposed by Metropolis
et al. [118] is a widely used MC method that generates a sequence of configurations by
accepting or rejecting proposed moves based on the Metropolis criterion. The Metropo-
lis criterion is based on the Boltzmann distribution, which states that the probability of
a system being in a particular state depends exponentially on its energy. The Metropolis
criterion is given by:

Paccept = min
(

1, exp
(
− ∆E
kBT

))
(1.21)

where ∆E is the change in energy of the system, kB is the Boltzmann constant equal to
1.380649 10−23m2kgs−2K−1, and T is the temperature of the system. The Metropolis
criterion ensures that the system moves towards lower energy states, corresponding to
the most stable configurations of the molecule. The MMC method is widely used in
computational chemistry to explore the PES, optimize molecular structures, and simu-
late chemical reactions. The power of this method lies in its simplicity and versatility, as
it requires minimal assumptions about the system being studied. However, this method
can be inefficient if the random sampling does not cover the significant regions of the
PES effectively. This limitation is often mitigated by more sophisticated techniques in
other variants of Monte Carlo methods. The efficiency of the Monte Carlo technique
is highly dependent on the number of samples and the distribution from which these
samples are drawn, making it crucial to ensure a wide and representative coverage of
the state space to obtain accurate results.
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1.4.1.2 Molecular Dynamics (MD)

Molecular Dynamics (MD) simulations are a powerful tool for studying the dynamic
behavior of molecules by solving the classical equations of motion for the atoms in the
molecule. MD simulations are based on Newton’s laws of motion (Eq. A.22), which
describe how the positions and velocities of particles change over time. The equations of
motion are integrated numerically to simulate the motion of the atoms in the molecule.
MD simulations can be used to explore the PES, optimize molecular structures, and
simulate chemical reactions.

mi
d2ri
dt2

= −∂E
∂ri

= Fi (1.22)

where mi is the mass of the i-th atom, ri is the position of the i-th atom, E is the
energy of the system, and Fi is the force acting on the i-th atom. The force acting on
the atoms is calculated from the gradient of the potential energy.
To model the system, the equation of motion needs to be integrated using various
algorithms, most of which are based on Taylor series expansion. The Verlet algorithm
is the most commonly used algorithm and is expressed as follows:

ri(t+ ∆t) = ri(t) + vi(t)∆t+ ai(t)∆t2
2

vi(t+ ∆t) = vi(t) + ∆t
2 (ai(t) + ai(t+ ∆t))

(1.23)

where ri is the position of the i-th atom, vi is the velocity of the i-th atom, ai is
the acceleration of the i-th atom, and ∆t is the time step. The Verlet algorithm is
a symplectic integrator that conserves energy and momentum, making it suitable for
long-time simulations of molecular systems. One step Verlet algorithm is expressed as
follow:

1. Initialization of step ∆t, total simulation time T

2. Initializing initial conditions : t = 0, ri(0), vi(0)

3. Definition of function ai

4. While t < T :

(a) Calculation of ai(t)
(b) Calculation of ri(t+ ∆t)
(c) Calculation of ai(t+ ∆t)
(d) Calculation of vi(t+ ∆t)
(e) t = t+ ∆t

Each simulation takes place in statistical sets that define the thermodynamic quan-
tities and their relationships. The most commonly used sets are the micro-canonical
(NVE), canonical (NVT), and isothermal-isobaric (NPT) sets. In these sets, the pa-
rameters are kept constant according to the following nomenclature: E for energy, N for
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number of atoms, P for pressure, T for temperature, and V for volume. For example,
an NVT simulation will have a constant number of atoms, volume, and temperature.
Appropriate thermostats and barostats, such as Nosé-Hoover and Andersen, are used to
maintain pressure and temperature. However, this method can be inefficient for explor-
ing the PES of complex systems with high energy barriers, as the system may become
trapped in local minima. To overcome this limitation, enhanced sampling methods have
been developed to accelerate the exploration of the PES and improve the accuracy of
the results.

1.4.2 Enhanced sampling methods

Enhanced sampling methods are techniques designed to improve the efficiency of ex-
ploring the PES by overcoming the limitations of standard sampling methods. These
methods are particularly advantageous in systems with rugged energy landscapes, where
the presence of high energy barriers can impede the convergence of simulations. The
objective of enhanced sampling methods is to accelerate the exploration of the PES,
enhance the sampling of rare events, and improve the accuracy of the results. These
methods employ biasing potentials, reweighting schemes, or advanced algorithms to
guide the simulation towards important regions of the energy landscape. The aforemen-
tioned approaches do not permit the direct acquisition of the system’s thermodynamic
properties; however, certain methodologies have been developed to identify these prop-
erties through the analysis and re-weighting of the simulation results.

1.4.2.1 Parallel Tempering (PT)

Parallel Tempering (PT), also known as replica exchange method, is an advanced tech-
nique designed to ameliorate ergodicity and convergence issues in MC and MD simula-
tions. Initially introduced by Swendsen and Wang for MC simulations [152] and later
adapted to MD simulations by Sugita and Okamoto [150], PT is widely utilized across
various studies [50, 30, 151].

PT involves running multiple, simultaneous simulations at different temperatures.
This method allows systems to exchange configurations at regular intervals, promot-
ing the exploration of potential energy surfaces by enabling systems to overcome high
energy barriers that would otherwise hinder simulation convergence. Such exchanges
are governed by a carefully designed Metropolis-Hastings criterion, ensuring that the
detailed balance is maintained and the thermodynamic equilibrium is not violated. The
criterion for accepting a swap between replicas i and j with temperatures Ti and Tj is
given by:

p = min
(

1, exp
(
−∆E

(
1

kBTi
− 1
kBTj

)))
, (1.24)

where ∆E = (Ej−Ei) and Ei and Ej are the energies of the replicas i and j, respectively.
PT proves a particular efficiency in systems with rugged energy landscapes, where

numerous local minima are separated by high barriers. By allowing replicas at lower
temperatures (and thus higher resolution and stability) to exchange information with
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higher-temperature replicas, PT facilitates the crossing of energy barriers that would be
insurmountable at lower temperatures alone. This mechanism significantly enhances the
ability of the simulations to find the global minimum and accurately sample the PES.

1.4.2.2 Umbrella Sampling (US)

Umbrella Sampling (US) is a sophisticated computational technique developed to calcu-
late the free energy profile along a specified reaction coordinate. Introduced by Torrie
and Valleau [156], this method enhances the ability to explore PES effectively, particu-
larly in regions that are typically difficult to sample due to high energy barriers or low
probabilities of occurrence.

In the Umbrella Sampling approach, the potential energy of the system is deliber-
ately biased along the reaction coordinate. This biasing is achieved through the intro-
duction of an additional potential, known as the umbrella potential, which is designed
to make less probable states more accessible. By modifying the landscape of the PES,
US allows for more thorough sampling in regions of interest, such as transition states or
intermediate states in a chemical reaction.

The process involves performing a series of simulations, each with a slightly differ-
ent biasing potential applied to a particular segment of the reaction coordinate. The
data collected from these simulations are then integrated using techniques such as the
Weighted Histogram Analysis Method (WHAM) [101] to reconstruct the unbiased free
energy profile.

This method is extensively utilized in computational chemistry to study free energy
changes in chemical reactions, predict molecular properties, and understand complex
biochemical pathways.

1.4.2.3 Metadynamics

Metadynamics is a powerful computational method designed to enhance the exploration
of the PES and facilitate the calculation of free energy profiles. Introduced by Laio and
Parrinello [102], Metadynamics employs a history-dependent bias potential to prevent
the system from becoming trapped in local minima, a common challenge in molecular
dynamics simulations.

The core mechanism of Metadynamics [16] involves the periodic addition of Gaussian
potentials at the position of the system’s current state in a selected reaction coordinate.
This strategy discourages the system from revisiting previously sampled states by effec-
tively creating a repulsive memory of these states. Each Gaussian potential is charac-
terized by its width and height, which are critical for ensuring adequate exploration of
the PES without sacrificing the resolution of important features.

As the simulation progresses, these Gaussian potentials accumulate, creating a bias
that pushes the system to explore new regions. The system’s tendency to revisit certain
states decreases, allowing for a comprehensive exploration of the PES.

Metadynamics has become a widely used technique in computational chemistry for
studying complex chemical reactions and predicting molecular properties. It is partic-
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ularly valuable for mapping out free energy landscapes of molecular systems, explor-
ing transition states, and understanding the energetics of biochemical pathways. The
method’s ability to provide deep insights into the thermodynamics of molecular inter-
actions makes it an indispensable tool in the theoretical chemist’s arsenal.

1.4.3 Global optimization methods

Global optimization methods are techniques employed to efficiently sample the PES and
identify the most stable states of a chemical system. These methods are not designed
to obtain the thermodynamic properties of the system; rather, they are employed to
efficiently converge to the basins of the PES. These methods are not only applicable in
chemistry for optimizing molecular structures but also across various fields like physics,
economics, and operations research, where navigating complex functions to find optimal
solutions is essential.

1.4.3.1 Basin Hopping (BH)

Basin Hopping (BH) proposed by Li and Scheraga [109] and Wales and Doye [162]
is a MMC method that incorporates a local optimization stage. More precisely, BH
(see Fig. A.3) generates a sequence of configurations by performing local optimization
steps followed by random perturbations of the atomic positions. The local optimization
step minimizes the energy of the system by adjusting the atomic positions to reach
a local minimum on the PES. BH relies on a Metropolis criterion to accept or reject
a configuration obtained after the local optimization step. The random perturbations
introduce noise into the system, allowing it to escape from local minima and explore
different regions of the PES. The BH method is efficient to explore the PES, identify
the most stable configurations of the molecule.

1.4.3.2 Simulated Annealing (SA)

Simulated Annealing (SA) is a stochastic optimization technique inspired by the an-
nealing process in metallurgy, where materials are heated and then gradually cooled
to minimize their defects and increase ductility. This method, conceptualized by Kirk-
patrick, Gelatt, and Vecchi [97], is designed to find the global minimum of a function
over a large search space, making it ideal for complex optimization problems such as
molecular structure optimization.

The SA algorithm [157] starts with a high initial temperature to allow for extensive
exploration of the PES. This high-temperature phase helps the system to overcome
and escape from local minima early in the optimization process. As the temperature
decreases, the algorithm reduces the scale of exploration, fine-tuning the solution as it
approaches lower energy states. The temperature reduction must be carefully controlled
by a cooling schedule, which critically influences the balance between exploration and
exploitation.

Key to the SA method is the acceptance of new states during the search process,
which is governed by the Metropolis criterion (Eqn. A.21). This criterion allows the
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Figure 1.3: Basin Hopping method for exploring the PES.

algorithm to accept not only moves that lower the energy but also some that increase
it, thus avoiding the trap of local minima in the early stages.

The process continues by cyclically modifying the system’s configuration and gradu-
ally lowering the temperature until a minimum cooling temperature is reached or other
stopping criteria are met.

1.4.3.3 Genetic Algorithms (GA)

Genetic Algorithms (GA) are a class of stochastic optimization methods that mimic
the process of natural selection and evolution, as described by Darwin. This approach
was formalized by Holland [87] and is particularly useful in computational chemistry
for optimizing molecular structures. GAs operate by generating a diverse population
of candidate solutions, each representing a possible configuration of the molecule under
study.

The core of the GA method lies in its iterative process where the population evolves
over multiple generations towards an optimal solution. This evolution is driven by
genetic operators: selection, crossover, and mutation. Selection mimics natural survival
pressures by preferring individuals with higher fitness levels, allowing them to pass their
genes to the next generation. Crossover, or recombination, is a process where pairs
of individuals exchange segments of their genetic material to produce new variants,
combining beneficial traits from both parents. Mutation introduces random changes
to individual genes, providing new genetic variations and helping the population avoid
local minima by exploring new areas of the solution space.

Each iteration of the algorithm evaluates the fitness of all individuals in the popu-
lation, typically measured by how well they solve the optimization problem or meet the
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desired criteria. The genetic operators are then applied to create a new generation, ide-
ally with higher average fitness than the previous one. Over successive generations, the
population converges towards an optimal solution, mimicking the evolutionary process
of adaptation.

The flexibility and effectiveness of genetic algorithms make them particularly suitable
for problems where traditional optimization techniques struggle to perform well due to
the complexity of the landscape involving numerous local optima.

1.4.4 Robotics-inspired methods

Motion planning is a fundamental problem in robotics that involves the identification of
a collision-free path for a robot to move from an initial configuration to a goal configu-
ration. This can also be applied to a robotic arm with a limited number of joints that is
required to pick up an object, for example. A variety of algorithms have been developed
to achieve these objectives. These algorithms have evolved beyond their original scope
and have been employed in diverse fields, including industrial manufacturing, computer
animation, and computational structural biology. For instance, they have been utilized
in the context of protein folding and the optimization of molecular structures [26, 107,
124, 22]. In computational chemistry, these algorithms have been employed to effi-
ciently explore the PES. Contrary to the global optimization methods, these algorithms
are firstly designed to efficiently explore a high-dimensional space, but are not directly
aimed at finding the global minimum. Nevertheless, the last method presented named
Iterative Global Exploration and Local Optimization (IGLOO) [112] is a method that
combines both motion planning algorithm and local optimization. Some of these algo-
rithms are capable of identifying low energy states, as well as connecting them together
in order to identify the transition paths between them. These particularities will be
developed in greater detail in Chapter 6.

1.4.4.1 Probabilistic Roadmap (PRM)

The Probabilistic Roadmap (PRM) method, introduced by Kavraki et al. [96], is used
to solve high-dimensional motion planning problems.
The PRM works by iteratively sampling a configuration of the configuration space. If
the configuration is collision-free, it is added to the roadmap as a node. The new node is
connected to the roadmap by finding its nearest neighbors. If the path between the new
node and the nearest neighbors is collision-free, it is added to the roadmap as a straight
line. These steps are iterated until a stopping criterion is reached. The roadmap then
can be used to find a path between nodes using conventional graph search algorithms
such as Dijkstra or A* [22]. Extensions of PRM involving energy calculations, presented
next, have been proposed to explore the PES.

1.4.4.2 Probabilistic Conformational Roadmaps (PCR)

The Probabilistic Conformational Roadmaps (PCR) method proposed by Singh,
Latombe, and Brutlag [145] is a PRM-based method that generates a roadmap by
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accepting or rejecting new nodes using a probality function favoring low energy con-
formations. The probability function is evaluate as follow:

P (accept, q) =


1 if Eq < Emin
Emax − Eq
Emax − Emin

if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(1.25)

where Eq is the energy of the conformation q, Emin and Emax are threshold values fixed
for the system. For each edge eij , a weight is associated, representing the likelihood of the
transition between the connected conformations. A series of intermediate conformations
are generated along the path {qi = c0, c1, .., cn = qj} connecting the two nodes qi and
qj (number of intermediate conformations is a parameter). The weight of the edge is
computed as follow:

w(eij) = −∑n−1
i=0 log(Pi)

Pi = e
−

(Ei+1−Ei)
KT

e
−

(Ei+1−Ei)
KT +e−

(Ei−1−Ei)
KT

(1.26)

where Ei is the energy of the conformation ci, n the number of images, K is the Boltz-
mann constant and T is the temperature. PCR has been applied to find energetically
favorable motions of bio-molecules [8].

1.4.4.3 Stochastic Roadmap Simulation (SRS)

The Stochastic Roadmap Simulation (SRS) method [10, 11, 35, 36, 9] is an improve-
ment of PCR. The difference is the probability function, which is consistent with the
Metropolis criterion [118]. The probability function is evaluated as follows:

Pij =

 1
ni

exp(−∆Eij

KT ) if ∆Eij > 0
1
ni

otherwise
(1.27)

Pii = 1−
∑
j 6=i

Pij (1.28)

where ni is the number of neighbors of the node qi, ∆Eij is the energy difference between
the nodes qi and qj , K is the Boltzmann constant and T is the temperature. SRS was
used to predict ligand-protein interactions [8].

1.4.4.4 Rapidly-exploring Random Tree (RRT)

The Rapidly-exploring Random Tree (RRT) method, introduced by LaValle [103], is
used to solve high-dimensional motion planning problems. The RRT works by iteratively
sampling a configuration of the configuration space. If the configuration is collision-free,
it is added to the tree as a node. The new node is connected to the tree by finding
its nearest neighbor. The tree is expanded by adding new nodes in the direction of the
random sample. The main difference with this method and the PRM is that the new
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node is linked to the closest neighbor and not every neighbors where a path collision
free exist. The RRT method will be discussed in more detail in the Chapter 2.

1.4.4.5 Transition-RRT (T-RRT)

The Transition-RRT (T-RRT) method proposed by Jaillet, Cortés, and Siméon [92, 93]
is a RRT-based method that introduced a transition test to favor the exploration of
low-energy regions of the PES. The transition test is based on the Metropolis criterion
inspired from MC methods and is used to accept or reject new nodes based on the change
in energy and the temperature of the system. Contrary to MC method, the temperature
is auto-adaptative during the exploration to dynamically adjust the exploration of the
PES. The algorithm keeps track of every rejection and acceptance of the transition test
to adjust the temperature. The T-RRT method will be discussed in more detail in the
Chapter 6.

1.4.4.6 Iterative Global Exploration and Local Optimization (IGLOO)

The Iterative Global Exploration and Local Optimization (IGLOO) method [112] com-
bines the exploration of the PES with a local optimization. The IGLOO method is an
iterative algorithm composed of three main steps: an exploration step, a local optimiza-
tion step and a filtering step. The exploration step is performed using a RRT-based
method to explore the PES. The local optimization step is performed using a local op-
timization method to minimize the potential energy of the molecules. The filtering step
is used to remove redundant states and improve the efficiency of the exploration at the
next iteration. IGLOO was successfully applied to predict the structure of disaccha-
ride molecules on metal surfaces [1, 2]. IGLOO will be discussed in more detail in the
Chapter 2.

1.5 Contribution summary

The thesis contains several contributions to the field of computational chemistry.
An overview of the different chapters is given here.

Chapter 2: This chapter presents the coupling of the IGLOO and DFTB methods for
the exploration of the conformational space of molecules. IGLOO is inspired by robotics
motion planning, while DFTB is an approximate quantum chemistry method. The
implementation details entail interfacing software developed in our laboratories. The
IGLOO method, implemented in the MoMA software suite, is coupled with the DFTB
method, implemented in the deMonNano code. As a first study, the coupled approach
was applied to the alanine dipeptide, a small peptide. The exploration identified the
lowest energy conformations, thereby demonstrating the efficiency of the coupling in
reducing computational costs while maintaining an accurate description of the chemical
system.
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Chapter 3: This chapter examines the PES of phthalate molecules using the
IGLOO/DFTB coupling methodology introduced in the previous chapter. Phthalates
are a family of compounds that are widely used in consumer products. It is important to
understand their conformational behavior given the potential environmental and health
impacts of these compounds. The chapter starts with an introduction to phthalates,
emphasising their significance and the necessity for detailed energy landscape explo-
ration. The methodology entails initializing IGLOO with a multitude of initial states
to ensure comprehensive coverage and performing multiple independent runs to account
for the stochastic nature of the method. This approach revealed a multitude of energy
basins and facilitated the identification of stable conformations across a diverse range
of phthalate molecules. Significant findings include the identification of various confor-
mational minima, which were analyzed using both energetic and structural descriptors.
The aforementioned descriptors facilitated an understanding of the interactions within
phthalate molecules, including the effects of side-chain arrangements on molecular sta-
bility. Furthermore, the chapter compares DFTB and DFT calculations to validate
the former’s accuracy in representing phthalate energetics. The outcomes illustrate the
efficiency of the IGLOO/DFTB approach in delineating the intricate potential energy
landscapes of phthalates, furnishing valuable insights into their conformational dynam-
ics and stability. The chapter proposes the further application of this methodology to
other complex molecular systems, with the objective of generalizing the approach and
refining molecular energy exploration techniques.

Chapter 4: This chapter presents an innovative algorithm for the generation of atom-
istic models of aromatic hydrocarbons on a large scale. The primary focus is the inte-
gration of molecular graph-based generation techniques with atom and fragment addi-
tions, with particular emphasis on the maintenance of predefined constraints on chemical
structures. The introduction provides an overview of the significance of aromatic hydro-
carbons in various scientific fields, including astrophysics and environmental science. It
emphasizes the necessity for accurate models to simulate and understand their behavior
in different environments. The methodology comprises two principal components: the
SMILES Generator and the Structure Generator. The SMILES Generator algorithm is
designed to produce a series of SMILES strings that adhere to specified constraints on
the types and ratios of bonds and atoms. This is accomplished through a meticulous pro-
cess that encompasses the selection of fragment types, the selection of atoms within the
molecular graph, and the addition of fragments in order to incrementally construct the
molecular structure. Subsequently, the Structure Generator algorithm assumes control
to generate three-dimensional structures. This process involves the generation of initial,
unoptimized structures from the SMILES outputs. These structures are then optimized
through a series of steps aimed at minimizing self-collision and ensuring structural va-
lidity.

Chapter 5: This chapter examines the application of previously developed algorithms
to the study of substructures of hydrogenated amorphous carbon polymers. The chapter
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starts with an overview of the current understanding of substructures of hydrogenated
amorphous carbon polymers in the interstellar medium (ISM), emphasising their detec-
tion through infrared absorption bands and their pivotal role in various physico-chemical
processes in space. The methodology section outlines the production and analysis of
hydrogenated amorphous carbon polymers. Subsequently, metrics for evaluating the
generated structures are defined, focusing on both geometric and electronic descriptors.
A Geometric descriptor as Hill-Wheeler parameters, which assess the shape deforma-
tion from a perfect sphere is defined, and electronic descriptors such as the HOMO-
LUMO gap and London energy are computed, which provide insights into the electronic
properties of the structures. The application of these descriptors has shown significant
variations in the shapes and electronic properties of the substructures of hydrogenated
amorphous carbon polymers structures.

Chapter 6: This chapter adresses the transition paths between low-energy confor-
mations in molecular systems, presenting various computational techniques to map out
these pathways. The chapter begins by discussing the theoretical foundation provided
by Transition State Theory, emphasizing the importance of identifying the Minimum
Energy Path (MEP) which represents the most favorable route for a reaction to pro-
ceed. A variety of computational methods are discussed to identify and analyze these
transition paths. These include the dimer method for locating saddle points on the
potential energy surface, and advanced methodologies such as the Nudged Elastic Band
(NEB) method, which refines the path to minimize the energy along the reaction coor-
dinate. A preliminary methodology to explore the diversity of transition paths between
low-energy conformations is presented. The exploration of these paths is performed
using the stochastic algorithm T-RRT, which generates numerous paths. A similarity
measure is then applied to differentiate these paths, and a clustering method is then
used to identify common patterns. Subsequently, a representative path of each cluster
is selected for local optimization. The methodology is demonstrated on the alanine
dipeptide molecule, and preliminary results are presented.
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2.1 Introduction

2.1.1 Context: Conformational space exploration of molecules

Modeling is used to describe the process of representing a system in a way that is
conducive to the study of its properties. The selection of an appropriate representation
is dependent upon the size of the system or the level of detail required. An intuitive
representation of a system is by its atomic coordinates, which are defined as the
positions of the atoms in space. This representation is referred to as the all-atom
representation. Although this representation is intuitive, it is not always the most
efficient for exploring the conformational space of a molecule. An other way to represent
a molecule is to use internal coordinates, which can be defined by a number of geometric
parameters, including bond lengths, bond angles, and dihedral angles (Fig. 2.1). These
parameters serve to determine the shape and structure of the molecule. The dihedral
angle, also known as the torsion angle, is the angle between two planes, each defined by
three atoms in the molecule. This angle is frequently employed in the investigation of
biological molecules, such as proteins and nucleic acids, to track their conformational
modifications. In some systems, the rigid geometry assumption can be employed to
simplify the description of high-dimensional systems. This is achieved by reducing the
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(a) Bond (b) Angle (c) Dihedral angle or Torsion

Figure 2.1: Degrees of freedom in a molecule. Blue circles represent atoms and black
segments represent the bonds between them.

conformational space to a few degrees of freedom, such as dihedral angles, while other
degrees are fixed at an equilibrium value. This assumption is applicable to systems
where the impact of fluctuations in other degrees of freedom on the potential energy
can be neglected.

Depending on the system and the type of exploration, dihedrals angles can be suf-
ficient to represent the major modifications being prevalent on the total energy. While
a representation based on dihedral angles is sufficient for the global exploration of the
PES, a local optimization of the structure can be performed using a more detailed rep-
resentation. Based on this assumption, we present the coupling of a robotics-inspired
methods that explores the conformational space of molecules to find the lowest energy
conformation with a quantum chemical method. Dihedral angles are employed to repre-
sent the conformational space of the molecule during the global exploration, while each
low-energy conformation identified is then locally optimized using an all-atom represen-
tation. This strategy provides a good compromise between accuracy and computational
cost. Both algorithms are presented, and the implementation details of the coupling are
discussed.

2.1.2 State of the art: Exploration of the conformational space of
molecules

The theoretical prediction of physico-chemical properties of molecules such as chemical
reactivity, ionisation energies, spectroscopy often requires the knowledge of their low
energy conformations. When the Born-Oppenheimer approximation can be applied,
this involves the search for the most stable minima of the PES of the electronic ground
state. In the case of flexible molecules (for instance biomolecules, polymers, chemicals,
pollutants), the efficient exploration of their associated high-dimensional conformational
space remains a challenging task, especially when a level of description of the potential
close to an ab initio method is required. For this purpose, a cautious choice of the
combination between an adequate exploration strategy (limiting the number of single
point energy calculations to be performed, in particular over-sampling) and an appro-
priate level of description of the PES (compromise between the computational cost and
requested accuracy) is mandatory.
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A large majority of the PES exploration schemes [138, 27], that was presented on the
chapter 1, rely on either Monte Carlo[78] (MC) methods or Molecular Dynamics sim-
ulations[79] (MD). MC is a stochastic approach often performed within the Metropolis
algorithm where random displacements are accepted as a function of a temperature,
while MD propagates the nuclei positions by solving Newton’s equations of motion.
These methods are robust in exploring a conformational landscape and can provide a
thermodynamic interpretation. They can also be combined with periodic local minimiza-
tions to locate the bottom of the PES wells. Various strategies have been implemented
to improve the efficiency of MC- and MD-based methods. This includes for instance
simulated annealing [142], parallel tempering methods [152, 150, 151] or BH schemes
[109, 162], used either in their standard [4, 38, 37] or improved versions [170, 171, 34].
A disadvantage of these schemes is that they do not keep track of the visited regions,
which can lead to over-sampling of certain areas of the PES to the detriment of explo-
ration of others. In the case of free energy reaction path calculations, methods keeping
a knowledge of the visited space (e.g. umbrella sampling or metadynamics) have been
developed to increase the exploration efficiency [168, 16]. These latter require however a
priori knowledge of the reaction coordinates (collective variables), which prevents their
use in a context of blind exploration of complex PES. In summary, there is still work to
be done to develop efficient algorithms to discover potentially diverse energy basins, i.e.
without prior knowledge of the system of interest and requiring little or no adaptation
to a particular case study.

In recent years, methods inspired from robot motion planning algorithms have been
proposed to efficiently explore the conformational space of molecular systems [22, 73,
143]. These methods construct data structures (trees or graphs) that encode the explored
regions of the space, and avoid revisiting these regions. One of these algorithms is the
Rapidly-exploring Random Trees (RRT) [104], which was subsequently extended to the
exploration of energy landscapes aiming to find transition paths [93, 44, 56]. More
recently, the RRT and Basin Hopping (BH) algorithms have been combined to find
energy minima on a PES [135]. The strategy applied in this work, called Iterative Global
exploration and LOcal Optimization (IGLOO) [112], iterates RRT-based exploration,
local minimizations and filtering steps. The IGLOO algorithm will be detailed in the
next sections.

Various levels of theory exist to compute the energy for the visited points of the
PES. They range from high-level ab initio schemes with the wavefunction methods to
lower-levels such as force field approaches [80]. In between, Density Functional Theory
[125] (DFT) is the most common method used to study systems with tens to hundreds of
atoms. Unfortunately, the computational cost of DFT, although much lower than that
of wavefunction methods, remains a bottleneck in the framework of exhaustive PES
explorations, when millions of single point energy calculations are intended to be done.
An alternative method, namely the Density-Functional based Tight-Binding approach
(DFTB)[128, 141, 55, 147], relying on several approximations of DFT, preserves the
explicit quantum description of the electronic system while drastically reducing the
computational cost thanks to the use of parameterized integrals and a minimal valence
basis set. Its DFT ground usually makes it more transferable than force field models.
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In this chapter, we report the coupling of a non-redundant conformational space
exploration approach, namely the robotics-inspired IGLOO method, with the quantum
chemical DFTB potential. This enable efficient discovery of diverse energy basins while
preserving a highly-accurate level of description of chemical systems.

2.2 Exploration and energy calculation methods

In the following section each phase of the IGLOO algorithm is detailed and the coupling
with the DFTB method is presented. In addition, several local optimizations were
developed and are described in detail.

2.2.1 Rapidly exploring Random Tree (RRT) algorithm

qnew
qrand

qnear

Figure 2.2: Illustration of the RRT algorithm. Blue point are nodes which are geometry
of the system in the specific case of PES exploration. Edges that connect nodes between
them are represented in black for the already explored tree and in green for the new
explored nodes. Red segments are the frontier of the Voronoi cells.

The Rapidly-exploring Random Tree (RRT) [104] algorithm is a motion planning
algorithm that builds a tree rooted at an initial state and grows it by adding new states
in the direction of randomly sampled points in the configuration space. The tree is built
by connecting the closest state to the sampled point, and the new state is added to the
tree if it is reachable from the closest state. The algorithm is illustrated in Fig. 2.2 and
algorithm 1. A node qrand is sampled in the configuration space and the nearest node
qnear in the tree is found. A new node qnew is then created by moving from qnear to
qrand with a step size of δ.
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Algorithm 1: RRT-Exploration (Pseudo-code from [112])
input : Conformational space variables C

Algorithm parameters and energy function P
Initial conformations for the exploration (roots) Q

output: Set of trees containing conformations T
1 T ← Q
2 while not StoppingCriteria(P, T ) do
3 Ti ← SelectTree(T )
4 qrand ← SampleRandomConformation(C, Ti)
5 qnear ← GetNearestNeighbor(Ti, qrand)
6 qnew ← ExtendTree(P, qnear, qrand)
7 if ValidConformation(P, qnew) then
8 T ← AddNode(Ti, qnew)

9 return T

For robot motion planning, a state is a configuration of the robot, and the tree is built
in configuration space. In the context of molecular conformational space exploration, a
state is a conformation of the molecule, and the tree is built in conformational space.
In the following implementation, the conformational space is defined by the dihedral
angles of the molecule.

2.2.2 Iterative Global exploration and LOcal Optimization

The Iterative Global exploration and LOcal Optimization (IGLOO) algorithm performs
a global exploration of the conformational landscape of molecules to find the lowest
energy representatives. IGLOO relies on an exploration strategy originally proposed to
solve motion planning problems in robotics. More precisely, it applies a variant of the
RRT algorithm [104], adapted to the exploration of energy landscapes [40, 93]. Similarly
to other techniques that perform global optimization by iterating local searches, such
as the Basin-Hopping algorithm [109, 162], the RRT-based exploration is coupled with
a local optimization technique with the aim of descending into the energy basins. The
IGLOO algorithm interleaves global explorations and local minimization stages in an
iterative manner, also including a filtering stage to reduce the number of states con-
sidered in subsequent iterations. A more detailed description of these stages will be
provided below, together with the implementation details. More in-depth explanations
about IGLOO can also be found in a recent work [112], which demonstrates the good
performance of the algorithm compared to related methods for finding low-energy con-
formations of molecular systems. Note also that IGLOO was successfully applied to
predict the structure of disaccharide molecules on metal surfaces [1, 2].

2.2.3 Density-Functional based Tight-Binding

The DFTB method is an approximated DFT scheme developed in the mid-90’s [128, 141]
following the pioneering work of Foulkes and Haydock[64]. It is derived from a Taylor
expansion of the Kohn-Sham effective potential energy with respect to the electronic
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density fluctuation aroung a reference density:

ρ = ρ0 + δρ (2.1)

The molecular orbitals are expressed in a minimal valence basis set. At zeroth-order, the
algebra is equivalent to standard non-consistent semi-empirical Tight-Binding [76] and
the formal derivation allows for the tabulation of the Kohn-Sham and overlap matrices
elements in the atomic basis as diatomic terms from reference DFT calculations. The
energy consists in the usual "band structure" terms and a short-range repulsive term.
The energy of the zeroth-order DFTB could be expressed as:

EDFTB-0[ρ0] = Eband[ρ0] + Erep[ρ0] (2.2)

The band energy term corresponds to the sum of the occupied molecular orbitals energies
and is expressed as:

Eband[ρ0] =
Nocc∑
i

〈
ψi
∣∣∣Ĥ0

∣∣∣ψi〉 (2.3)

The ψi are the molecular orbitals and Ĥ0 is the Kohn Sham operator at the electronic
reference density, expressed in the atomic basis set as:

Ĥ0 = −1
2∇

2 + vext(r) +
∫

ρ0(r′)
|r − r′|

dr′ + vxc[ρ0] (2.4)

The repulsive term Erep[ρ0] is expressed as:

Erep[ρ0] = −1
2

∫ ∫
ρ0(r)ρ0(r′)
|r − r′|

drdr′ + Exc[ρ0]−
∫
vxc[ρ0]ρ0(r)dr + ENN (2.5)

where ENN is the nuclear repulsion but in pratice, it is replaced by a pair potential
repulsion contribution:

Erep[ρ0] = 1
2
∑
i 6=j

V ij
rep(Ri −Rj) (2.6)

where V ij
rep is a repulsion potential for the pair of atoms i and j at a distance Ri − Rj .

The values of each term are tabulated from DFT calculations on an isolated pair of
atoms.

This approach was further extended by Elstner et al.[55] to include second order
terms in the Taylor expansion. The second order DFTB energy is expressed as:

EDFTB-2nd[ρ0] = EDFTB-0[ρ0] + Ecoul[ρ0] (2.7)

The correction term often called Coulomb term Ecoul[ρ0] is expressed as:

Ecoul[ρ0] = 1
2

∫ ∫ ( 1
|r − r′|

+ δ2Exc[ρ0]
δρ(r)δρ(r′)

)
δρ(r)δρ(r′) drdr′ (2.8)
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At long distances, this correction accounts for the long-range electrostatic interactions
between point charges and, at short distances, it also includes exchange-correlation
contributions. In practice, it is expressed as a function of atomic charges:

Ecoul[ρ0] = 1
2
∑
i

∑
j

∆qi∆qjγij(Ri −Rj) (2.9)

where ∆qi is the charge deviation of the atom i from the neutral atom reference, γii
correspond to the Hubbard parameters of atoms UA and interatomic terms γij are com-
puted using a "Coulomb shielded" expression.

Whereas the electronic problem can be solved with a single diagonalisation in the case
of the zeroth-order DFTB, the introduction of second order contributions implies a self-
consistent search, often referred to as Self-Consistent-Charge (SCC), for the electronic
ground state density and energy. Indeed, the second order contribution induces charges
dependence of the operator. The SCC extension allows DFTB to address problems
for which the zeroth-order DFTB approach is not sufficient, in particular when atomic
charges deviate from the neutral atoms reference and/or when the Coulomb interaction
between atomic charges has a decisive role in the determination of structural or energetic
properties. More recently, DFTB has also been improved by including third order
terms in the Taylor expansion, which introduces a charge dependence of the chemical
hardness[169, 71]. The third order DFTB energy is expressed as:

EDFTB-3rd[ρ0] = EDFTB-2nd[ρ0] + Ehard[ρ0] (2.10)

The hardness derivation term Ehard[ρ0] is expressed as:

Ehard[ρ0] = 1
6

∫ ∫ ∫
δ3Exc[ρ0]

δρ(r)δρ(r′)δρ(r′′)δρ(r)δρ(r′)δρ(r′′) drdr′dr′′ (2.11)

In practice, considering the DFTB hypothesis stating that integrals considering more
than two centers are neglected, the hardness derivative term is expressed as:

Ehard[ρ0] = 1
3
∑
ij

∆q2
i ∆qjΓij (2.12)

where Γij is the derivative of the γ function respecting the charge by introducing the
Hubbard derivative parameter [53].

DFTB has been applied to compute various structural, energetic and thermodynamic
properties as well as vibrational and electronic spectra, covering a wide range of systems
like molecules, atomic or molecular clusters, extended materials or liquids [52, 54, 65,
53, 70, 100, 122, 123, 147, 132].
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2.3 Implementation details

2.3.1 Coupling of the IGLOO and DFTB methods

Our implementation of the coupled IGLOO/DFTB method is based on the interfacing
of softwares developed in our laboratories: (i) the IGLOO algorithm implemented in
the Molecular Motion Algorithms (MoMA) software suite (https://moma.laas.fr/) and
(ii) the DFTB energy calculation implemented in the deMonNano code (http://demon-
nano.ups-tlse.fr).

A schematic view of the coupling between IGLOO (MoMA) and DFTB (deMon-
Nano) is provided in Fig. 2.3 and the algorithm is detailed in algorithm 2. The master
code MoMA which is written in C++ , initiates requests to and receives data from
deMonNano which is written in Fortran. The two programs communicate through a
wrapper, allowing intercompatibility of software based on different programming lan-
guages. The protocol used for the communication is an INET socket [167] (a program-
ming interface that enables applications to send and receive data over a network, either
locally or via the Internet). The server-client architecture is used, with MoMA acting
as the server and deMonNano as the client. The interfaced software takes as input a
set of parameters required to initialize the algorithms, as well as a chemical structure
of a molecule. The main parameters of IGLOO are the number of (randomly sampled)
initial states and the step size used for the first iteration of the algorithm, which aims to
cover the conformational space roughly but globally. The step size is then self-adapted
in subsequent iterations, shrinking as the exploration focuses in the low-energy basins.
Other important parameters concern the stopping criteria. Several types of conditions
are considered to determine the end of the iterative process performed by IGLOO. They
are based on: (i) a maximum number of iterations; (ii) a limited computing time; (iii)
estimated convergence, based on the evolution of the lowest energy value. These criteria
are evaluated at the end of each iteration, and the first one to be satisfied stops the
algorithm. In general, the parameters corresponding to the i and ii criteria are set to
high values, so that the exploration iterates until estimated convergence is reached.

After the initialization, the IGLOO algorithm iterates three successive stages (see
[112] for deeper explanations on the method):

1. Exploration: At each iteration, IGLOO explores the conformational space using a
stochastic process starting from a set of states. For the first iteration, these states
are randomly sampled using a strategy inspired from the Poisson disk sampling
process to ensure good dispersion. A variant of the RRT algorithm is then applied
to explore reachable regions of the conformational space by growing random trees
rooted at the initial states. New states are added to the tree if they are below
an energy threshold, which is determined automatically and decreases with each
iteration of the algorithm. These “single point" energy calculations are made by
deMonNano, with MoMA providing the coordinates of a given conformation.

2. Local minimization: The explored conformations are minimized locally. Energy
minimization is performed by deMonNano using a conjugated gradient technique.

https://moma.laas.fr/
http://demon-nano.ups-tlse.fr
http://demon-nano.ups-tlse.fr
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Figure 2.3: Schematic description of the IGLOO (MoMA)/DFTB (deMonNano) cou-
pling.

In order to reduce computing time, several deMonNano executions can be per-
formed in parallel, taking advantage of the independence of the calculations.

3. Filtering: This step enables dense areas to be cleaned up locally, with the aim to
reduce the number of local minima from which the next iteration of the IGLOO
algorithm is initialized.

In the present work, the degrees of freedom chosen for the IGLOO scheme are the
molecular dihedral (torsion) angles, which are used both to perform geometric displace-
ments and to characterize similarities between different conformations. The choice of
dihedral angles is motivated by the fact that they are the most relevant degrees of free-
dom to describe the conformational space of a molecule. The dihedral angles are defined
by the atoms forming the torsion. The torsion that is selected to represent the structure
is that which represents the molecule’s core. Then, the torsions are ordered in a list
that is used to represent the conformation of the molecule. The list of torsions is used
to compute the distance between two conformations, which is used to determine the
next state in the tree during the exploration phase. The output of the IGLOO/DFTB
method is a set of files containing the Cartesian coordinates of each local minimum
found.

2.3.2 Local minimization schemes

A number of schemes were considered for the local minimization of the conformations
generated by IGLOO. The details of each of these potential solutions are provided below.
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Algorithm 2: IGLOO (Pseudo-code from [112])
input : Conformational space variables C

Algorithm parameters and energy function P
output: Set of local minima T

1 T ← ∅ ; n← 0
2 while not MaxNumberRoots(n, P ) do
3 q ← SampleRoot(C, P, T )
4 T ← AddMinimum(T , q)
5 n← n+ 1
6 while not StoppingCriteria(P, T ) do
7 T ′ ← RRT-Exploration(C, P, T )
8 foreach q ∈ T ′ do
9 qnew ← LocalMinimization(C, P, q)

10 T ← AddMinimum(T , qnew)
11 T ← FilterConformations(C, P, T )
12 P ← UpdateParameters(T , P )
13 return T

All-atom minimization using conjugated gradient : The first solution involved
the use of an all-atom minimization approach, via the conjugate gradient method, which
is a widely used iterative method for solving large systems of linear equations. This
method has been implemented by Mathias Rapacioli [163] in the deMonNano code. The
main idea of this method is to minimize the energy of a system by iteratively moving
in a conjugated direction of the previous step. The algorithm is initialized with an
initial configuration x0 and the gradient of the energy g. Depending on the degree of
freedom choosen, x0 can be Cartesian atomic coordinates or dihedral angles values. In
the LineSearch routine, the direction minimizing the energy is computed following a
quadratic approximation as:

E = E(x) + α
∂E

∂α
+ 1

2
∂2E

∂α2 (2.13)

where α is a parameter minimizing E(x+ α · direction) computed as α = −∂E
∂α /

∂2E
∂α2 . If

the value of α exceeds a specified threshold, the threshold value is assigned to α while
maintaining its sign, to prevent excessive displacement, which could block minimization.
Then, the new configuration is computed as xnew = xold ± α · direction. The sign ± is
determined by the configuration with the lowest energy. Note that after the first step,
direction is equal to −g+1 + β · direction.

The iterative process may be terminated if the maximum number of permitted steps
has been reached. It should be noted that this type of convergence is not favored. The
algorithm continues until convergence is achieved, which is determined by two parame-
ters: the maximum gradient of the system and the difference between the previous and
the current energy step. Both of these parameters must be below a specific threshold.
The issue with this solution is that MoMA only considers dihedral angles as degrees
of freedom, which means that the local minimization must be performed on a reduced
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set of degrees of freedom. But this strategy is used for the local optimization of the
structure obtained at the end of the IGLOO method.

Constrained local minimization using conjugated gradient: Therefore, the so-
lution was to constrain all degrees of freedom except the dihedral angles. This solution
was implemented during the thesis in the deMonNano code. To illustrate, consider an
angle noted ABC, which represents a degree of freedom of the molecule. This angle
could be subtracted from its contribution to the gradient.

Figure 2.4: Illustration of the angle ABC.

Let us consider the angle ABC. The cosine of this angle is given by the following
equation:

cos(θ) =
~BA · ~BC

|| ~BA|| · || ~BC||
= f( ~RA, ~RB, ~RC) = constant (2.14)

where ~RA, ~RB and ~RC are the positions of the atoms A, B and C. θ is the angle between
the vectors ~BA and ~BC and has to be constant in order to constrain this degree of
freedom. It should be noted that this method can be employed for other degrees of
freedom. For instance, the cosine function can be replaced by a bond length or a cosine
function on dihedral angles (this is implemented within the deMonNano code). For a
molecule containing angles, the Langragian is given by the following equation:

L = E − λ1(f1 − f̃1)− λ2(f2 − f̃2)− · · · − λn(fn − f̃n) (2.15)

where E is the total energy of the system, λi is the multiplier, f̃i is the targeted value
of the energy of the system without modification on the angle i and fi is the value
of the energy value with a modification on the angle i in the current conformation.
The Langragian of the system is reduced by the contribution of each deviation from a
constrained angle. The gradient of the energy with respect to the angle ABC is then
given by:

F = ∂L
∂R

= FR − λ1
∂f1
∂R
− λ2

∂f2
∂R
− · · · − λn

∂fn
∂R

(2.16)

where FR is the gradient of the energy at a minimization step and ∂f
∂R is the derivative

of the energy respecting the coordinates. This derivative is computed using the method
of finite differences.
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For each angle, the deviation between the targeted value and the current value is
computed and can be noted as:

∆ cos(θ1) = (f1 − f̃1) =
∣∣∣∂f1
∂R

∣∣∣ (−λ1
∣∣∣∂f1
∂R

∣∣∣− λ2
∣∣∣∂f2
∂R

∣∣∣− · · · − λn ∣∣∣∂fn

∂R

∣∣∣)
∆ cos(θ2) = (f2 − f̃2) =

∣∣∣∂f2
∂R

∣∣∣ (−λ1
∣∣∣∂f1
∂R

∣∣∣− λ2
∣∣∣∂f2
∂R

∣∣∣− · · · − λn ∣∣∣∂fn

∂R

∣∣∣)
· · ·
∆ cos(θn) = (fn − f̃n) =

∣∣∣∂fn

∂R

∣∣∣ (−λ1
∣∣∣∂f1
∂R

∣∣∣− λ2
∣∣∣∂f2
∂R

∣∣∣− · · · − λn ∣∣∣∂fn

∂R

∣∣∣)
(2.17)

Then, each λi can be obtained by solving the following equation system:
A1,1 . . . A1,n
... . . . ...

An,1 . . . An,n



λ1
...
λn

 =


∆ cos(θ1)

...
∆ cos(θn)

 (2.18)

where Ai,j =
∣∣∣∂fi
∂R

∣∣∣ ∣∣∣∂fj

∂R

∣∣∣. Obtaining the values of the λi allows the minimization of the
energy by substracting the contribution of the deviation from the constrained degrees of
freedom using equation 2.15. Given the constraints of the system under consideration,
which involve only dihedral angles, this approach is not well-suited to addressing the
problem at hand. The test was carried out on a phthalate molecule, where an energy
gradient lower than 10−3 Hartree was unattainable, due to the repercussions of the
error affecting an excessive number of constrained degrees of freedom.

Dihedral angles minimization using conjugated gradient: To overcome this
issue, a local minimization procedure was implemented that only considers dihedral
angles. This method was made by computing the numerical gradient (Equation 2.19)
of each flexible dihedral angles and then performing a local minimization using the
conjugate gradient method.

∂E

∂θi
= E(θi + δ)− E(θi − δ)

2δ (2.19)

In this context, the value of the parameter δ is relatively small. This approach was
implemented and tested during this thesis on phthalate structures. This method allows
for the convergence to a local minimum. This method is interesting to explore the
energy landascape of a constrained surface, and could be easly adapted to other degrees
of freedom as bond length, angles, etc. However, due to the formalism of the numerical
gradient, minimization is time-consuming, particularly in relation to the number of
considered angles.

Dihedral angles minimization using Monte Carlo scheme: The solution pre-
sented in the thesis relies on a Monte Carlo scheme coupled to single-point energy
computations using DFTB. This method relies on random displacement of the dihedral
angles and then compute the energy of the new conformation. If the energy is lower
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than the previous one, the new conformation is kept. Otherwise, the new conformation
is kept with a probability of e−∆E

kT where ∆E is the difference of energy between the new
and the previous conformation, k is the Boltzmann constant and T is a temperature
(user defined parameter). The temperature is set to value permitting to explore low en-
ergy regions. This method offers a satisfactory balance between precision and efficiency.
This method is employed in the local minimization step of the IGLOO algorithm. Fur-
thermore, minimization steps are parallelized in the IGLOO code, which allows for a
significant reduction of the computational time. The parallelization is performed using
the OpenMP library, which is a shared-memory parallelization library. The library per-
mits the splitting of minimization of each structure found at the exploration on many
threads, the number of which is defined by the user.

2.4 Application to the alanine dipeptide

To illustrate the method, we applied the IGLOO/DFTB coupling to the alanine dipep-
tide molecule. The alanine dipeptide is a small peptide and is a well-known benchmark
molecule for the exploration of the conformational space of peptides [93]. The alanine
dipeptide has two main flexible dihedral angles, presented in the figure 2.5.

Figure 2.5: Alanine dipeptide molecule.

The PES of the alanine dipeptide is shown in Fig. 2.6 and was computed using a
one-degree resolution. Each point was obtained using the zeroth-order DFTB formalism
(matsci parameter from [114]). Given that the molecule has a low dimensional explo-
ration space with only two degrees of freedom, basins could be found only by searching
on the two dimentionals plot of the PES. However, in the case of a high-dimensional
space, such methods will not be sufficient to identify the low-energy regions. Sampling
was made using the IGLOO/DFTB method, and the lowest energy conformations were
found. Only three exploration steps are shown in the Fig. 2.6. At each iteration, the
exploration is conducted in the vicinity of energetic basins, thereby demonstrating the
principal tenet of IGLOO, namely, that the method progressively approaches the low-
energy regions. Three low-energy conformations were identified, corresponding to the
three principal minima of the alanine dipeptide potential energy surface in the vacuum.
The exploration of the alanine dipeptide potential energy surface exemplifies the effi-
ciency of the IGLOO/DFTB coupling in exploring the conformational space of molecules
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Figure 2.6: Alanine dipeptide PES exploration.

and identifying the lowest-energy conformations. The method is efficient and provides
a satisfactory compromise between accuracy and computational cost.

2.5 Conclusion

In the present chapter, we have reported the coupling of a non-redundant conformational
space exploration algorithm named IGLOO with the quantum chemical DFTB potential.
Differents solutions were considered for the local minimization of the conformations
generated by the exploration phase of IGLOO: an all-atom minimization approach, a
constrained all-atom minimization approach and a local minimization procedure that
only considers dihedral angles. These methods were not well suited for the problem
at hand, but could be utilized for other application cases, for example for restrained
a bond length of a molecule, or a minimization scheme restrained to a specific angle.
Finally, a Monte Carlo minimization scheme on dihedral angles coupled to single-point
energy computation using DFTB was retained for its efficiency and its balance between
precision and efficiency. The method was applied to the alanine dipeptide molecule,
and the results demonstrated the efficiency of the IGLOO/DFTB coupling in exploring
the conformational space of molecules and identifying the lowest-energy conformations
in a simple conformational space. The coupling reported will be applied to phthalate
molecules to explore the conformational space of more complex molecules in the next
chapter.
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3.1 Introduction

In this chapter, we consider three molecules of the phthalate family as an example of
the application of the presented IGLOO/DFTB coupling. The energy landscapes of the
selected structures show numerous degenerate basins where our exploration scheme could
demonstrate its efficiency. The three investigated phthalate molecules are introduced,
accompanied by a detailed presentation of the descriptors utilized in the study. Next,
the structural excitation spectra of the molecules are studied, followed by an analysis
of the conformational energy landscape, which shows a different behavior of the three
molecules.

3.1.1 Phthalates family

Phthalates are commonly used in many consumer products such as PVC, coatings, adhe-
sives, perfumes and cosmetics due to their plasticising properties [7, 149]. For example,
phthalates prevent nail varnish from chipping, make perfumes last longer, make tool
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handles stronger and more resistant, and increase the effectiveness of adhesives. Their
global production is estimated at 3 million tonnes per year [108]. These molecules can
be released into the environment during the production, use and disposal of products
containing them, and these compounds can be found in water, air, soil and sediment.
They have been associated with a variety of adverse effects on human health [83] de-
pending on many factors, including dose, duration and route of exposure. In particular,
they can act as endocrine disruptors by interfering with the natural hormones in the
human body. Such effects were found in the premature development of breasts in Puerto
Rican girls [39]. Some phthalates have been associated with reduced sperm quality in
men, as well as birth defects in infants exposed in utero [95]. In this work, we focused
on three representative phthalate molecules, namely the DEHP (di(2-ethylhexyl)) ph-
thalate, which represents 50 % of the global phthalate production, the BBP (benzyl
butyl) phthalate, and the DBP (dibutyl) phthalate which represent about one tenth of
the DEHP production together. To our knowledge, no exhaustive exploration of their
energy landscape has been reported in the literature.

Phthalates are esters of phthalic acid composed of an aromatic benzene ring with
two ester groups on ortho position. They differ between each other by their terminal
groups. The generic form of phthalates is shown in Fig. 3.1-(a) together with the three
phthalate molecules explored in the present chapter, namely DBP (Fig. 3.1-(b)), BBP
(Fig. 3.1-(c)) and DEHP (Fig. 3.1-(d)). DBP and DEHP have two identical terminal
groups, while BBP has two different ones, a 4-carbon alkyl and a phenyl-terminated
chain.

(a) Phthlate generic form

(b) DBP (c) BBP (d) DEHP

Figure 3.1: Generic form of phthalate (a) and the three molecules investigated in this
work: dibutyl phthalate DBP (b), benzyl butyl phthalate BBP (c) and

di(2-ethylhexyl) phthalate DEHP (d). Carbon skeleton in black and oxygen atoms in
red. RA,B represent terminal groups of each side-chain.
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3.1.2 Methodology

IGLOO was initialized with one hundred initial states for each molecule. This number
was chosen to be large enough to ensure exhaustive exploration of conformational space.

Ten independent runs of the IGLOO/DFTB coupling were performed for each
molecule. Due to the stochastic nature of the exploration method, differences between
runs are to be expected. However, the algorithm showed very good reproducibility in
the case of BBP and DBP, finding nearly the same low-energy minima in each run.
In the case of DEHP, due to the higher dimensionality and the multiplicity of possible
intramolecular interactions, several new minima were generated with each additional
run. Consequently, the algorithm was run ten more times (twenty in total). No new
minima were discovered in the last few runs, which is reassuring in terms of exploration
convergence. The data analyzed below are the concatenated results of all runs of the
algorithm for each molecule.

Energy computations were carried out using the third-order DFTB formalism
(3ob parameters)[71, 72], combined with an empirical dispersion correction [174]. A
Fermi temperature of 100K was introduced to avoid convergence issues during the
self-consistent scheme. Local minimizations were performed using an all-atom conju-
gated gradient technique, as detailed in the chapter 2. In order to validate the DFTB
parameters and the dispersion correction, DFTB and DFT minima were compared on
a structural and energetic basis (see section Structural and energy comparison between
DFT and DFTB potentials). DFT calculations were performed using the Gaussian 16
set of programs[68]. The high-nonlocal and hybrid meta exchange-correlation M06–2X
functional[173] was used together with a 6-311++G(d,p) basis set. This combination
was chosen as it has been previously shown to describe phthalates energetics with
satisfactory performance [129]. Structural parameters result from full geometry
optimization in the gas phase, with no imposed constraint. Default SCF and geometry
optimization criteria were used.

3.2 Geometric descriptors

The local minima obtained from the global exploration performed with the
IGLOO/DFTB coupling were analysed on the basis of both energetic and struc-
tural descriptors. Descriptors characteristic of the relative orientation/organisation of
the side-chains were defined from dihedral angles and interatomic distances (Fig. 3.2).
Two dihedral angles were defined to describe the connection of the side-chains to the
central aromatic ring (θA and θB in Fig. 3.2-(a)) as well as four oxygen-oxygen distances
involving atoms belonging to two different chains: dOA1-OB1 , dOA2-OB2 , dOA1-OB2 and
dOA2-OB1 (Fig. 3.2-(b)). The smallest value between these four distances defines the
last descriptor, dminO-O. Similarly, the dminC-O (Fig. 3.2-(c)) criterion was defined as
the smallest distance between dCA-OB1 , dCB-OA1 , dCA-OB2 and dCB-OA2 . In addition, we
define (i) dC-O1 as the smallest distance between dCA-OB1 and dCB-OA1 and (ii) dC-O2 as
the smallest distance between dCA-OB2 and dCB-OA2 . Note that A and B are replaced by
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Bu (for butyl chain) and Be (for benzyl chain) for BBP because the chains are different
and the atoms are not equivalent from one chain to the other.

(a) Dihedral descriptors: θA and θB

(b) O-O distance descriptors: dOA1-OB1 , dOA2-OB2 , dOA1-OB2 and dOA2-OB1

(c) C-O distance descriptors: dCA-OB1 , dCB-OA1 , dCA-OB2 , dCB-OA2

Figure 3.2: Structural descriptors: (a) dihedral angles and (b)-(c) interatomic
distances. Carbon atoms are in green and oxygen atoms are in red. R balls in black

represent the terminal group of each side chain.

3.3 Structural excitation spectra

The structural excitation energy spectra obtained for the three investigated molecules
are presented in Fig. 3.3, the zero energy reference being that of the global minimum.
In the lower panels, each local minimum identified on the PES is represented by a
bar. In the upper panels, these bar spectra are convoluted with a gaussian kernel in
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(a) DBP

(b) BBP

(c) DEHP

Figure 3.3: Structural excitation energy spectra (bar and estimated density). For each
molecule, main peaks are illustrated by their characteristic structures (multiple
geometry could coexist in a peak). Global minima are depicted in the insets.
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order to provide an estimation of the isomers density as a function of the energy. In the
explorations, the highest energy isomers are located at 786 meV (DBP), 848 meV (BBP)
and 929 meV (DEHP) above their respective global minimum. One should keep in mind
that the present scheme aims at exploring the low energy regions of the PES, and the
exploration of the highest energy regions is expected to be less exhaustive. As a result,
the calculated isomers density at high energy is expected to be lower than the exact one.
First, the general aspect of the isomer density distributions differ for the three molecules.
These spectra can be characterized from the differences regarding their alternation of
energy ranges exhibiting high/low isomer densities. For the DBP molecules (Fig. 3.3-
(a)), the region of highest density extends from the global minimum energy to around
385 meV above it, with three peaks at 67 (peak A), 221 (peak B), and 308 meV (peak
C). Another high-density peak is observed at 501 meV (peak D) surrounded by energy
regions where almost no isomer was found. A final peak is identifiable at 642 meV
(peak E), made up of few high-energy isomers. For the BBP molecule (Fig. 3.3-(b)),
the isomer density is relatively low above the global minimum up to above 50 meV.
In the 50-450 meV energy range in which the majority of isomers is found, three main
high-density peaks are observed at around 81 meV, 260 meV, 418 meV (peaks A,B,C)
and their variant (resulting from structures presenting small geometric variations with
respect to those dominating the main peak) noted by ’ at 20 meV and 328 meV (peaks
A’ and B’). At higher energies, the density is low except around 601 meV and 727 meV
(peaks D and E) and the variant at 504 meV (peak D’) where other peaks are observed.
For the DEHP molecule, the general aspect of the isomer density distribution (Fig. 3.3-
(c)) is drastically different from the two previous ones. A unique and extended high
density region is observed between 50 and 550 meV above the global minimum energy,
the largest isomer density being located around 240 meV (peak A). A minor shoulder
is also observed at 373 meV (peak B).

Fig. 3.3 also shows the lowest-energy structure and isomers located at the maximum
of the density peaks for each molecule, pointing out the conformational variability.
Nevertheless, one should be aware that they may not be representative of all the isomers
making up the corresponding peak, since various structural patterns can contribute to
a given peak. Deriving general trends would require a deeper analysis of the interplay
between characteristic structural patterns and energies that will be addressed in the
following sections.

3.4 Structure-energy relationships

3.4.1 Distance based analysis

Although the three molecules are part of the same family, they exhibit different be-
haviours from an energetic point of view due to their terminal groups. Indeed, as the
two alkyl chains are small in the DBP molecule, the interaction between the oxygen
atoms is expected to drive the molecular energetics. The longer and ramified alkyl
side-chains in DEHP would give rise to steric hindrance and to multiple possibilities for
stabilisation through dispersive interactions. The interaction between the alkyl and aryl



3.4. STRUCTURE-ENERGY RELATIONSHIPS 41

chains in the BBP molecule can generate structures stabilized by Coulomb interaction
between the negatively charged aromatic carbon atoms and the positively charged hydro-
gen atoms of the butyl chain. In order to investigate relationships between the isomers
energies and their structures, we first focus on the distances between oxygen-oxygen and
carbon-oxygen atoms belonging to different side-chains.

On the pie charts of Fig. 3.4, the isomers are classified in four families depending
on which of the dOA1-OB1 , dOA2-OB2 , dOA1-OB2 or dOA2-OB1 distances is the smallest one
(dminO-O). It appears that the molecules with small side-chains (DBP and BBP) exhibit
similar distributions. The dOA2-OB2 is rarely the smallest one, i.e. the smallest distance
always involves at least one of the side-chains connected oxygens OA1 or OB1, and the
isomer population is equally shared in three groups by the attribution of dminO-O to
either dOA1-OB1 , dOA1-OB2 or dOA2-OB1 . The pie chart of the DEHP molecule is different,
with four almost similar quartiles. In this case, the smallest distance is attributed to
dOA2-OB2 in one case out of five, this increase of occurrence being probably due to steric
hindrance that prevents the oxygen atoms OA1 and OB1 from approaching each other.

On the pie charts of Fig. 3.5, the isomers are classified in two families depending on
which of the dC-O1 or dC-O2 distances is the smallest one (dminC-O). In the case of BBP,
dC-O1 and dC-O2 are both split in two subfamilies because RA and RB are different. For
the three molecules, the pie charts are dominated by the family dminC-O = dC-O1 . This
can be interpreted from the fact that O1 is less negatively charged than O2, reducing
coulomb repulsion with the slightly negatively charged COO function. DBP appears to
have a higher contribution of dC-O1 than the other two molecules.

The scatter plots in Figs. 3.4 and 3.5 allow to correlate oxygen-oxygen and carbon-
oxygen distances with energy distributions. It appears that for DBP and BBP, several
distinct high density regions can be identified regarding the energy correlation with ei-
ther the values of dminO-O and dminC-O or the density of minima per oxygen-oxygen
subgroup. In the case of DBP, the five different regions appear clearly, and they can
be easily identified by clustering method, as can be done for instance with a k-means
method (Fig. 3.8). These five regions correspond to different dominant O-O and C-O
interactions. As expected due to the presence of identical side-chains, a good super-
position of the dminO-O cross-interaction curves is observed (red and green curves Fig.
3.4), which reassures us about the quality of the exploration. We remind that the lowest
energy region of the structural excitation spectrum (Figs. 3.3 and 3.6-(a)) corresponds
to the peak A (from the most stable structure up to ∼ 150 meV). In these structures,
the smallest distances between atoms from the COO functions always involve a posi-
tively charged carbon atom (with a charge of ∼ 0.66e) from one chain and a negatively
charged oxygen atom O1 (with a charge of ∼ -0.35e) from the other chain (Fig. 3.6-(a)),
consequently, dminC-O systematically involve an O1 atom (dC−O1). This is consistent
with the fact that the COO group is globally negatively charged (about -0.25 e) and that
the charge carried by O1 atom is about -0.35 e whereas that of the O2 atom is about
-0.56 e. For isomers belonging to peak A, the alkyl chains remains close even if they are
from either side of the central phenyl group. Moreover, structures containing two O1
atoms pointing towards the carbon atom of the other chain COO group (highlighted by
dminO-O = dOA1−OB1) are particularly stable and gathered in the low energy region of
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(a) DBP (b) BBP (c) DEHP

Figure 3.4: Global distribution of dminO-O for all minima represented as a pie chart.
The scatter plots report the dminO-O values for each conformation and the curves

represent the relative density of the conformations, both depicted as a function of the
structural excitation energy. Isomers are classified according to the nature of dminO-O

(blue for dminO-O = dOA1-OB1 ; orange for dminO-O = dOA2-OB2 ; green for
dminO-O = dOA1-OB2 and red for dminO-O = dOA2-OB1).

the peak A (i.e. below ∼ 50 meV, see Fig. 3.4-(a)). The second and third peaks (B and
C) are mostly composed of structures where the two planes containing the COO groups
are perpendicular to each others (Fig. 3.6-(b/c)). One COO group is parallel to the
central phenyl and its O1 (in peak B) or its O2 (peak C) atom is involved in dminC-O.
Again, the charge differences between O1 and O2 could explain the energy ranking be-
tween the two peaks. In addition, the induced relative orientations of the side-chains in
peak C result in less favourable interactions between the two alkyl chains (Fig. 3.6-(c)).
In the last two peaks (D and E), the two planes containing the COO groups are perpen-
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(a) DBP (b) BBP (c) DEHP

Figure 3.5: Global distribution of dminC-O for all minima represented as a pie chart.
The scatter plots report the dminC-O values for each conformation and the curves

represent the relative density of the conformations, both depicted as a function of the
structural excitation energy. Isomers are classified according to the nature of dminC-O

(orange for dminC-O = dC-O1 ; blue for dminC-O = dC-O2).

dicular to the central phenyl, resulting in larger values for dminC-O and dminO-O than
reported for the other peaks (Figs. 3.6-(d/e), 3.4-(a) and 3.5-(a)). These peaks differ by
dminO-O = dOA1-OB2 or dminO-O = dOA2-OB1 in peak D or dminO-O = dOA2-OB2 in peak
E. This means that the side-chains are pointing in opposite (resp. similar) directions
in peak D (resp. peak E). Although stabilizing interactions between the alkyl chains
are almost absent in peak D structures whereas they are present in peak E, the steric
hindrance between these chains results in shortening the distances between OA2 and
OB2 (as can be seen from dminO-O = dOA2-OB2) and therefore increasing the coulomb
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(a) Peak A (b) Peak B

(c) Peak C (d) Peak D

(e) Peak E (f) Most stable DBP structure

Figure 3.6: Illustration of the ester groups relative orientation for characteristics
structures of the DBP structural excitation energy spectrum main peaks (Fig. 3.3-(a)).
The illustration depicts the relative orientation of the oxygen atoms. The DBP main

peaks are also illustrated with their sidechains (Fig. 3.7).

repulsion between these oxygen atoms.
The structural excitation spectrum of the BBP molecule is trickier to interpret. The

structures between the global minimum (Fig. 3.9-(f)) and 100 meV give birth to two
peaks A and A’ (Fig. 3.9-(a/a’)) for which the dminC-O distance always involves an
O1 atom, which minimizes the Coulomb repulsion (note that the charges of the oxygen
atoms are similar for the three molecules). The COO functions are parallel to each
other for peak A’ structures (with dminC-O involving the C of the butyl chain noted
CBu and O1 of the benzyl chain noted OBe1 ) whereas peak A structures contain a
mix of parallel and perpendicular structures (with a mix of dminC-O = dCBu-OBe1 and
dminC-O = dCBe-OBu1). Bringing the less negatively charged oxygen atoms O1 closer
together, as in peak A’, maximizes chain interactions and minimizes oxygen-oxygen
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(a) Peak A (b) Peak B

(c) Peak C (d) Peak D

(e) Peak E (f) Most stable DBP structure

Figure 3.7: Illustration of the side-chains relative orientation for characteristic structures
of the main peaks of the DBP structural excitation energy spectrum.
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Figure 3.8: Clustering by k-means method of the point cloud corresponding to the plot
of the dminO-O distance of the DBP molecule as a function of its structural excitation
energy. Red stars and blue ovals represent the center and the covariance of each cluster,
respectively.

Coulomb repulsion. This explains the location of peak A’ at lower energy than peak A.
Note that, in addition to the peak A’ features, the global minimum structure maximizes
the interactions between the hydrogen atoms of its alkyl chain with the phenyl group of
the other chain (Fig. 3.3-(b)). The structures present in peaksB andB’ (Fig. 3.9-(b/b’))
contain many various contributions, as can be seen from the dminC-O and dminO-O
distribution plots (Fig. 3.4-(b) and Fig. 3.5-(b)) and it is therefore challenging to derive
simple general trends. We note, however, that the smallest dminC-O are obtained for
dminC-O = dC-O1 and that dminO-O = dOA2-OB2 is minority. Peak C (Fig. 3.9-(c)),
on the other hand, is similar to peak C in DBP, with dminC-O involving an O2 atom
and a perpendicular orientation between the two COO functions with one of the latter
contained in the plane of the central phenyl. dminO-O consists solely of cross interactions
with a slight preference for dminO-O = dOBe2-OBu1 . Similar patterns are observed for
the structures belonging to peaks D and D’ (Fig. 3.9-(d/d’)) and those of the peak D
of DBP, i.e. with two COO planes perpendicular to the central phenyl and side-chains
pointing in opposite directions. Structures of the peakD’ are slightly more stable thanks
to the stacking of the two phenyl groups, which is associated to dminO-O = dOBe1-OBu2 .
Finally, representative structures of peak E of BBP (Fig. 3.9-(e)) are very similar to
those of peak E of DBP. The COO groups planes are perpendicular to the central
phenyl and parallel to each other, and the two carbonyl oxygen are on the same side.
In this group, the contribution of dminO-O = dOA1-OA2 and dminO-O = dOA2-OA1 is
almost absent in BBP although a minor contribution was observed in the DBP case.
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(a’) Peak A’ (a) Peak A (b) Peak B

(b’) Peak B’ (c) Peak C (d’) Peak D’

(d) Peak D (e) Peak E (f) Most stable BBP structure

Figure 3.9: Illustration of the side-chains relative orientation for characteristic structures
of the main peaks of the BBP structural excitation energy spectrum.
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We remind, however, that the exploration could be incomplete at such high energies
because the IGLOO scheme is mostly designed to explore the low energy regions of the
PES.

(a) Peak A

(b) Peak B

(c) Most stable DEHP structure

Figure 3.10: Illustration of the side-chains relative orientation for characteristic struc-
tures of the main peaks of the DEHP structural excitation energy spectrum.
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The structural excitation energy curve for DEHP (Fig. 3.3 (c)) is less structured
than the two previous ones. The dminC-O of the most stable structure (Fig. 3.10-(c))
involves an O1 atom, with the COO functions perpendicular to each other, and one
of them being in the plane of the central ring. In addition, the side-chains are close
to each other and on either side of the phenyl plane. From ≈ 75 meV, the chains can
be placed on the same side of the phenyl plane. Another structure appears from ≈ 87
meV with dminC-O = dC-O2 . Above this energy, the curve is a single broad distribution
up to 600 meV above the global minimum. At least two substructures, noted A (Fig.
3.10-(a)) at ≈ 240 meV and B (Fig. 3.10-(b)) at ≈ 380 meV, can be identified. The
dminC-O and dminO-O distributions of DEHP in the in Fig. 3.4-(c) and Fig. 3.5-(c) are
large and overlapping. The large number of possible interactions between the long alkyl
chains results in a continuum of isomers over the wide energy range for each previously
discussed structural feature. While it was, to a large extend, easy to attribute a
peak to a given structural characteristic for the two other molecules, the coexistence
of structurally distinct isomers at a given energy hinders a detailed analysis of the
DEHP structural excitation energy spectrum. Nevertheless, one can mention that peak
A is dominated by structures exhibiting dminC-O = dC-O1 and an equal repartition
between dminO-O = dOA1-OB1 , dminO-O = dOA1-OB2 and dminO-O = dOA2-OB1 . Note
that the slight difference between the dOA1-OB2 and dOA2-OB1 curves may be due to
the difficulty of achieving complete exploration of high-dimensional conformational
space. The presence of peak B is due to structures for which dminC-O = dC-O2 and
dminO-O = dOA2-OB2 . This peak is higher in energy because it combines strong Coulomb
repulsion (between the two most negatively charged O2 atoms and between an O2 atom
and the COO group) and loss of dispersive stabilisation due to a large distance between
the chains.

3.4.2 Structural and energy comparison between DFT and DFTB po-
tentials

Additional DFT local minimizations were performed on the representative structures of
the main peaks observed in Figure 3.3. Superimpositions of the corresponding DFTB
and DFT structures are depicted in Figures 3.11, 3.12 and 3.13 for DBP, BBP and
DEHP, respectively. Overall, the structural differences observed are minor except in
the case of peak D of DBP, peak B of BBP and peak B of DEHP for which a slight
modification of the orientation of the side-chains is observed. This is likely due to the
existence of multiple of very close minima in these zones of the DFTB and DFT potential
energy surfaces, as reflected by the continuum observed in the regions of these peaks in
the DFTB structural excitation energy spectra (Figure 3.3). However, the structures
concerned retain their main structural characteristics discussed above. A comparison of
the DFTB and DFT energy ranking is given in Figures 3.14, 3.15 and 3.16 for DBP,
BBP and DEHP, respectively. The hierarchy of minima is the same between the two
methods, with only one inversion observed, between peaks B and C of the DBP. These
results fully support our strategy of globally exploring the potential energy surfaces of
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(a) Peak A (b) Peak B

(c) Peak C (d) Peak D

(e) Peak E (f) Most stable DBP structure

Figure 3.11: Superposition of the representative structures of the main peaks observed
in the structural excitation spectrum of DBP after local minimization at DFTB and
DFT levels. DFTB: carbon and hydrogen in orange and oxygen in red. DFT: carbon
and hydrogen in blue and oxygen in cyan.
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(a’) Peak A’ (a) Peak A (b) Peak B

(b’) Peak B’ (c) Peak C (d’) Peak D’

(d) Peak D (e) Peak E (f) Most stable BBP structure

Figure 3.12: Superposition of the representative structures of the main peaks observed
in the structural excitation spectrum of BBP after local minimization at DFTB and
DFT levels. DFTB: carbon and hydrogen in orange and oxygen in red. DFT: carbon
and hydrogen in blue and oxygen in cyan.
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(a) Peak A

(b) Peak B

(c) Most stable DEHP structure

Figure 3.13: Superposition of the representative structures of the main peaks observed
in the structural excitation spectrum of DEHP after local minimization at DFTB and
DFT levels. DFTB: carbon and hydrogen in orange and oxygen in red. DFT: carbon
and hydrogen in blue and oxygen in cyan.
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Figure 3.14: Comparison of DFT and DFTB energies of the characteristic DBP struc-
tures of the main peaks of the structural excitation energy spectra: lines connect the
DFTB (left) and DFT (right) structural excitation energies (in meV) of the main peaks
structures identified in figure 3.3. The DFTB(resp. DFT) structural excitation energy
reference correspond to the lowest-energy structure computed at the DFTB(resp. DFT)
level.



54 CHAPTER 3. EXPLORATION OF THE PES OF PHTHALATE MOLECULES

0

100

200

300

400

500

600

700

800

St
ru

ct
ur

al
 e

xc
ita

tio
n 

en
er

gy
 (m

eV
)

DFTB DFTDFTB DFTDFTB DFTDFTB DFTDFTB DFTDFTB DFTDFTB DFTDFTB DFTDFTB DFT

0

100

200

300

400

500

600

700

800

Peak A'

Peak B

Peak B'

Peak C

Peak D

Peak E

Peak A

Peak D'

most stable

Figure 3.15: Comparison of DFT and DFTB energies of the characteristic BBP struc-
tures of the main peaks of the structural excitation energy spectra: lines connect the
DFTB (left) and DFT (right) structural excitation energies (in meV) of the main peaks
structures identified in figure 3.3. The DFTB(resp. DFT) structural excitation energy
reference correspond to the lowest-energy structure computed at the DFTB(resp. DFT)
level.
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Figure 3.16: Comparison of DFT and DFTB energies of the characteristic DEHP struc-
tures of the main peaks of the structural excitation energy spectra: lines connect the
DFTB (left) and DFT (right) structural excitation energies (in meV) of the main peaks
structures identified in figure 3.3. The DFTB(resp. DFT) structural excitation energy
reference correspond to the lowest-energy structure computed at the DFTB(resp. DFT)
level.



56 CHAPTER 3. EXPLORATION OF THE PES OF PHTHALATE MOLECULES

phthalate molecules at the DFTB level.

3.4.3 Dihedral angle based analysis

The distribution of the conformations resulting from the IGLOO/DFTB exploration can
also be visualized on a two-dimensional (2D) projection with respect to the dihedral an-
gles θA and θB (see Fig. 3.2 for their definition). The projections for the three molecules
are presented in Fig. 3.17, where each conformation corresponds to a point colored as
a function of its structural excitation energy. For clarity, the spectra on Fig. 3.3 are
presented again on top of the color-bars in Fig. 3.17. The figure shows two types of
projections for these 2D angular distributions. The first one, in the center of the figure,
is a classical representation on a Euclidean plane. In the second one, at the bottom
of the figure, the conformations are projected on the surface of a two-dimension torus.
This type of representation is less usual but better suited to the visualization of angular
values due to their periodicity.

(a) DBP (b) BBP (c) DEHP

Figure 3.17: Distribution of the conformations resulting from the IGLOO/DFTB
exploration. Top: Structural excitation spectra (Fig. 3.3) with color-bar. Middle:

Two-dimensional (2D) projection with respect to dihedral angles θA and θB. Bottom:
Projection on the surface of a two-dimension torus. In these plots, each conformation
corresponds to a point colored as a function of its structural excitation energy (upper

panel color-bar).
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An initial structural analysis of the molecules reveals symmetries in conformational
space that should be found in the dihedral angle analysis. Changing the signs of both θA
and θB is equivalent to performing a symmetric projection of the atom coordinates with
respect to a plane passing through the benzene ring. As this would lead to the same
isomer, the 2D Euclidean projections in the central row of Fig. 3.17 should be symmetric
with respect to the y = x axis (ascending diagonal). In addition, when the two terminal
groups are identical, exchanging the values of θA and θB also leads to the same structure
and, as a consequence, symmetry with respect to the y = −x axis (downward diagonal)
should also appear. The difference between the two side-chains of BBP induces a loss of
this second type of symmetry, particularly visible between the lower left and upper right
bands in the corresponding 2D Euclidean plot. All the previously mentioned expected
symmetries are recovered in Figure 3.17, which is reassuring regarding the quality of the
global exploration. The figure shows similar angular distribution for the three molecules.
All the low-energy conformations (colored in blue) are grouped within parallel bands in
the Euclidean projection, or rings on the surface of the torus. Note that each ring is
divided into two bands (one long and one short) on the Euclidean plane because period-
icity is not taken into account. Note also that some isomers of higher energies (colored in
yellow, orange and red) are located between these bands/rings. The energetic grouping
of DBP and BBP isomers shown in Fig. 3.3, can also be observed through well defined
colored regions on the 2D projections of Fig. 3.17-(a-b). In the plot corresponding to
DEHP (Fig. 3.17-(c)), energy basins are less clearly identifiable, reflecting, as previously
mentioned, the complex competition between several weak stabilizing interactions.

The 2D projections clearly show that θA and θB are strongly correlated. Considering
only the points in the blue bands/rings and using linear regression, we obtained θB+θA =
c with |c| in the [85-92◦] range and correlation coefficients larger than 0.97, the two
bands/rings differing by the sign of c. This correlation between the two dihedral angles
is illustrated in the animation provided at https://zenodo.org/records/12646922. The
reason for this correlation is probably due to the fact that low-energy conformations tend
to maximize the oxygen-oxygen distances between side-chains and, therefore, when one
chain rotates, the other does so accordingly. In our previous analysis of the structural
excitation spectrum, the high densities were mostly interpreted in the light of dminO−O
and dminC−O values, the later being strongly linked to the θA and θB values.

Finally, we can imagine transitions between conformations projected onto the two
low-energy bands/rings, passing through the high-energy yellow-red regions. However,
finding these transitions would require a variant of the IGLOO algorithm, focused on
sampling transition paths rather than low-energy basins. This work will be presented
in the chapter 6.

3.5 Conclusion

The methodology presented in Chapter 2 has been applied to the exploration of the con-
formational potential energy surface of three molecules representative of the phthalate
family: butyl benzyl phthalate (BBP), dibutyl phthalate (DBP) and di-(2-ethylhexyl)

https://zenodo.org/records/12646922
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phthalate (DEHP). This choice was motivated by their high impact on human health.
The results show that BBP, DBP and DEHP, despite belonging to the same family and
being close in size, present different conformational landscape properties. The general
aspect of the structural excitation energy spectra shows different isomer density distri-
butions for the three molecules. The DBP spectrum has well defined peaks while the
DEHP one exhibits a continuum of close-energy states. The BBP spectrum is at the
crossroads between these two previous behaviours. These differences have been ratio-
nalized making use of descriptors based on distances and dihedral angles.

DBP lower-energy structures are mostly governed by oxygen-oxygen coulomb inter-
actions. In the case of BBP, original structures, where the positively charged hydrogen
atoms of the butyl side-chain point toward the negatively charged aromatic carbon
atoms, allow to maximize coulomb interactions stabilization. Finally, DEHP long and
ramified side-chains induce steric hindrance and dispersive interactions, these latter be-
ing at the origin of competitions between plenty of isomers. These interactions drive
the geometric properties of the investigated phthalate molecules leading either to peaks
(DBP and BBP) or to a broad feature (DEHP) in characteristic O-O and C-O distances
distribution plots and to a strong correlation between the two dihedral angles describing
the side-chains orientation for the three molecules.

One should note that the phthalate molecules have been studied here in the gas phase
and that further research could provide a protocol for finding conformations that could
exist under more realistic conditions. The effects of the environment could be incorpo-
rated through QM-MM explicit [172] or implicit [90] solvent scheme. The IGLOO/DFTB
coupling implemented in this work, allowing the identification of low energy minima of a
molecule with no a priori knowledge of its potential energy surface, could be extended in
the future to the blind search of the minimum energy path between selected structures.

3.6 Data and Software Availability

Data presented in this chapter have been deposited on ZENODO:
https://zenodo.org/records/10040725.
As mentioned in the “Implementation details" section, the combined IGLOO/DFTB ap-
proach was implemented on the basis of the Molecular Motion Algorithms (MoMA) soft-
ware suite (https://moma.laas.fr/) and the deMonNano code (http://demon-nano.ups-
tlse.fr). Software binaries and user guidelines are available at:
https://gitlab.laas.fr/moma/binaries/igloo-dftb-coupling.

https://zenodo.org/records/10040725
https://moma.laas.fr/
http://demon-nano.ups-tlse.fr
http://demon-nano.ups-tlse.fr
https://gitlab.laas.fr/moma/binaries/igloo-dftb-coupling
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4.1 Introduction

Molecules are categorized into various families based on their structural features, bond-
ing patterns, and chemical properties. This classification helps in understanding their
behavior, reactivity, and applications in different fields of science and technology.

One primary distinction in molecular families is between inorganic and organic
molecules. Inorganic molecules are primarily composed of elements other than carbon,
such as metals, and often participate in ionic bonding. Conversely, organic molecules are
characterized by the presence of carbon atoms, linked predominantly by covalent bonds,
forming a vast array of structures from simple hydrocarbons to complex biomolecules.
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Among organic molecules, hydrocarbons are the simplest and most fundamental
class, consisting solely of carbon and hydrogen. Hydrocarbons are further divided into
two major categories based on the types of bonds between the carbon atoms: saturated
and unsaturated hydrocarbons. Saturated hydrocarbons, or alkanes, have single bonds
and are symbolized by the general formula CnH2n+2. Unsaturated hydrocarbons include
alkenes and alkynes, which contain double and triple bonds, respectively.
Transitioning to a more specialized family of molecules, aromatic hydrocarbons, also
known as arenes, constitute a crucial class of hydrocarbons distinguished by the presence
of one or more aromatic rings. These rings are planar, cyclic structures with delocalized
π-electrons that adhere to Huckel’s rule, which states that aromatic compounds must
have a specific number of π-electrons (4n + 2, where n is a non-negative integer) in
a closed loop of continuously overlapping p-orbitals. Aromatic hydrocarbons can be
classified into:

• Monocyclic Aromatic Hydrocarbons (Fig. 4.1): These contain a single aro-
matic ring, such as benzene, toluene (methylbenzene), and xylene (dimethylben-
zene).

• Polycyclic Aromatic Hydrocarbons (PAHs) (Fig. 4.2): These consist of
multiple fused aromatic rings, such as naphthalene (two fused benzene rings),
anthracene (three fused benzene rings), and phenanthrene (three fused benzene
rings).

(a) Benzene (b) Xylene (dimethylbenzene)

Figure 4.1: Illustration of Monocyclic Aromatic Hydrocarbons

This chapter presents a novel algorithm for the large-scale generation of atomistic
models of aromatic hydrocarbons. The algorithm leverages the capabilities of molec-
ular graphs combined with a three-dimensional structure generator to obtain diverse
structures, with a different arrangement molecular structures. The primary contribu-
tion of this work is the development of a two-part structure generation algorithm. The
algorithm is based on the generation of molecular graphs and the addition of atoms
and fragments to the graph. The development of this algorithm enables the creation
of extensive molecular databases, which are essential for applications in environmental
science, astrophysics, and materials science.
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(a) Naphthalene
(b) Dibenz[a,h]antracene

Figure 4.2: Illustration of Polycyclic Aromatic Hydrocarbons

4.1.1 Context: Aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) (discussed above) are a class of organic
compounds composed primarily of carbon and hydrogen atoms. The carbon atoms form
the skeleton of the rings, while hydrogen atoms are attached to the periphery to complete
the molecular structure. PAHs can be thought of as fragments of graphene, with a
honeycomb carbon structure bordered by hydrogen atoms. Among PAHs, naphthalene
(C10H8), with its two aromatic rings, is considered to be the simplest PAH, while benzene
(C6H6), although aromatic and the elemental building block of PAHs, is not considered
as a PAH.

PAHs are broadly divided into two main groups: peri-condensed and cata-condensed
PAHs. Peri-condensed PAHs have a compact structure in which most carbon atoms are
part of two or three different rings, forming nearly circular molecules such as coronene
(C24H12), circumcoronene (C54H18), or circumcircumcoronene (C96H24). In contrast,
cata-condensed PAHs have an open structure, with carbon atoms belonging to a maxi-
mum of two rings, resulting in linear or branched chain configurations (Fig. 4.2).

On Earth, PAHs occur naturally in petroleum and coal, resulting from the chemical
transformation of natural "product" molecules. They are also formed during the combus-
tion [67] of carbonaceous fuels such as wood, coal, diesel, fat, tobacco, and even during
the cooking of food. As a result, PAHs are found in vehicle exhaust, tobacco smoke, and
charred food. Notably, certain PAHs have been identified as carcinogenic and mutagenic
[75, 62], highlighting the importance of their study in the context of public health and
air pollution. Additionnaly, PAHs can be found in complex structures such as soot. For
example, PAHs have been identified in soot from domestic coal-burning stoves [166].

Soot, often referred to as black carbon, is a complex mixture of tiny particles com-
posed primarily of carbon. Soot is a major component of air pollution and can be found
in both urban and rural environments from a variety of sources, including vehicles,
industrial processes, and residential heating [25].

Soot formation is a process that involves the pyrolysis and incomplete combustion of
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hydrocarbon fuels. During this process, a series of complex chemical reactions occur that
result in the nucleation of small particles, followed by their growth and agglomeration
into larger aggregates. These particles consist of a core of elemental carbon with various
organic compounds [23].

Soot particles pose significant environmental and health risks. Environmentally, they
contribute to air pollution and climate change. Soot particles can absorb solar radiation,
affecting the Earth’s radiation balance and contributing to global warming. They also
play a role in the formation of acid rain and can lead to the deterioration of materials
and surfaces[130]. From a health perspective, soot particles are of concern because of
their ability to penetrate deep into the lungs and bloodstream, leading to respiratory
and cardiovascular disease. Long-term exposure to soot particles has been linked to
increased rates of asthma, bronchitis, heart attacks, and even premature death [127].

Experimental analysis such as Infrared spectroscopy can give an information about
the distribution of the functional groups inside a soot sample for example. To identify
specifically the type of structures presents inside a particle, a database demonstrating
a variety of aromatic hydrocarons is required. This database can be used to study the
properties of these molecules, such as their electronic and geometric descriptors, and
to compare them with experimental data. To create such databases, algorithms are
developed with various strategies to generate a large number of structures, following
constraints on chemical elements, functional groups, etc.

4.1.2 State of the art: structure generation algorithms

A structure generation algorithm is a method for generating a set of structures that sat-
isfy a set of constraints. Depending on the specifications, such algorithms can generate
structures from different families of molecules. Algorithms developed by Wahab et al. for
the Compas project (illustrated in Fig. 4.3) are able to generate polycyclic aromatic sys-
tems [160], cata-condensed hetero-polycyclic aromatic systems [115], and peri-condensed
polybenzenoid hydrocarbons [159]. These structure generations algorithms based on the
computation of random molecular graphs use CaGe [29], a chemical graph generation
software. This software generates all possible unoptimized molecules according to size
and chemical elements constraints. Structures are then locally optimized using xTB [15].
A Density Functional Theory (DFT) optimization is also performed to ensure the qual-
ity of the structures using ORCA[121, 120]. At each step, many filters are applied, such
as removing structures where bonds are created during xTB minimization, or structures
with a linear stretch longer than six rings (hexacene for example) because they have
non-negligible open-shell character [155, 18, 99] in the ground state, and such molecules
are relatively unstable. The generation of random structures following constraints is a
difficult task and the quality of the structures obtained is not always satisfactory, since
the algorithm of the Compas project has to refine the structures obtained in order to
converge to a database of structures that could exist.

The innovative algorithms introduced by Leguy et al. in their EvoMol framework
provide a novel methodology for the unbiased generation of molecular structures. These
algorithms employ an evolutionary strategy for molecular generation, enabling the explo-
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Figure 4.3: Illustration of the Flowchart of the data-generation process in the Compas
project from [160].



64 CHAPTER 4. LARGE-SCALE GEN. OF ATOM. MODELS OF AROM. HYD.

ration of both known and uncharted chemical spaces without the reliance on pre-existing
datasets. The fundamental principle underlying the EvoMol method is the implemen-
tation of a set of seven generic (depicted in Fig. 4.4) chemically meaningful mutations,
which are applied at the atomic level to construct molecular graphs in a sequential
manner [106]. EvoMol’s generation process begins with simple molecules, often starting

Figure 4.4: Illustration of the Flowchart of the data-generation process in the EvoMol
project from [106].

from methane, and employs mutations to expand the molecular structure in a controlled
manner. The generated molecular structures are guaranteed to be chemically valid at
each step due to the rigorous application of constraints that prevent the formation of
chemically impossible configurations. This is facilitated by the use of RDKit, a software
toolkit that aids in the manipulation and validation of chemical structures. RDKit en-
ables EvoMol to maintain a consistent representation of molecules as molecular graphs,
thus facilitating the subsequent stages of optimization and property evaluation. Sub-
sequently, EvoMol performs optimization based on specific target properties, such as
HOMO and LUMO energies. These properties are of great importance for applications
in organic electronic materials, where the role of molecular orbitals is significant. The
optimization process is conducted using DFT calculations in order to ensure that the
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generated molecules exhibit the desired properties.
The algorithms may be employed to generate structures based on experimental obser-
vations or to be browsed by experimentalists for the purpose of comparing properties
derived from their research.

4.1.3 A new strategy for Structure Generation

The primary objective is to randomly generate structures devoid of any a priori knowl-
edge and to investigate the impact of the structure on electronic and geometric descrip-
tors. Moreover, depending on the study, it may be advantageous to impose constraints
on certain properties. The presented algorithm will consider constraints on the number
of carbons in the structure, the ratio of aromatic C=C bonds to C-X bonds, the ratio of
olefinic CH2 to aliphatic CH3, and the ratio of aliphatic CH2 to aliphatic CH3. These
constraints were choosen to generate structures according to the article from Dartois
et al. [41]. This article will be detailed in the application of the algorithm presented in
Chapter 5.

As with the other methods discussed, the new algorithm developed (depicted in Fig.
4.5) in this chapter is based on molecular graphs. The generation process is based on
the addition of atoms and fragments to the molecular graph. The algorithm is capable
of generating structures that adhere to predefined constraints on the ratios of various
chemical bonds. Three-dimensional structures are generated by a process developed in
the Structure Generator section.

From an initial set of constraints, defined as the number of carbons by structures
and ratios on the functional groups (defining the type of bond added to the graph), the
developed algorithm is divided into two parts:

• The first part combine a SMILES Generator and a SMILES Filtering processes,
which generates a set of Simplified Molecular Input Line Entry System (SMILES),
respecting a set of constraints given by ratios and a total number of carbon atoms.
SMILES is a notation system for describing the structure of chemical species
using short ASCII strings (see Fig. 4.5 top right). SMILES strings can uniquely
represent molecular structures and are a compact and convenient way to encode
molecular information. A SMILES string typically contains atoms, represented by
their chemical symbols, and bonds between them, represented by various symbols
such as ’-’, ’=’, and ’#’ for single, double, and triple bonds, respectively. Number
can be used to indicate bonds between atoms that do not follow a linear or simple
sequence. These numbers are essentially "labels" that help close cycles or rings in
the molecular structure. For example, the SMILES string for coronene (C24H12) is
’C1=CC2=C3C4=C1C=CC5=C4C6=C(C=C5)C=CC7=C6C3=C(C=C2)C=C7’,
for ethanol (C2H6O) the SMILES string is ’CCO’. SMILES are filtered based on
criteria detailed bellow and are then used to generate a 3D structure.

• The second part combine a Structure Generator and a Structure Filtering pro-
cesses, which generates a set of 3D structures from the set of SMILES codes
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obtained from the first part. From a SMILES, a number NS of structures is gen-
erated. For NS>1, an acceptation test is performed based on distance between
the structures. Only structures above a distance threshold defined by the user are
kept.

The following sections provide a detailed account of each component of the methodology.

4.2 SMILES Generator

4.2.1 Overview

The SMILES generator is an algorithm designed to generate a set of molecular graph.
The algorithm, which is detailed in Fig. 4.6, generates a set of SMILES strings, respect-
ing the number of SMILES requested (NS), and a set of constraints on the ratios of
various chemical bonds:

ratioA = NaromaticC=Cbonds
NC−Xbonds

ratioB = NolefinicCH2
NaliphaticCH3

ratioC = NaliphaticCH2
NaliphaticCH3

(4.1)

Each ratio is defined to generate structures that adhere to the infrared observations
presented in the article [41] and will be more explained in the next chapter.

In the algorithm, each structure is defined as a RDKit mol object, which is a graph
representing the connectivity of the molecule with the constituting atoms and bonds that
connect them. For a generation, three main phases are performed until convergence on
the total number of carbon in the graph (NC), as follows: (i) Selection of the fragment
type, (ii) selection of the atom between each available carbon in the graph, and (iii)
addition of the fragment to the graph.

4.2.2 Fragment type selection

The fragment type selection phase is the process of choosing the type of fragment to be
added to the graph. Three types of fragments may be incorporated into the graph: a
single-bonded carbon, a double-bonded carbon, or an aromatic fragment. The selection
of the fragment type is contingent upon the constraints defined by the ratios ratioA,
ratioB, and ratioC . In order to determine which fragment should be appended to
the graph, a hierarchy is created between the constraints (ratios of 4.1) that must be
satisfied. A ratio is considered as satisfied if it is upper than the targeted ratio.
The hierarchy is randomly generated (one possible choice is ratioC > ratioA > ratioB)
and the first constraint that is not satisfied is used to determine the type of fragment to
be added. In the event that all constraints are satisfied, the default option is to add a
single bonded carbon atom. For example, if the order is ratioB > ratioC > ratioA, the
first ratio to be satisfied is ratioB, which represents the ratio between olefinic CH2 and
aliphatic CH3 carbons. Subsequently, the next step is to determine to how the graph
will be modified according to the fragment selected.
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Figure 4.6: Illustration of the Flowchart of the SMILES Generator.
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4.2.3 Molecular graph modification

The molecular graph modification phase may be executed in two distinct manners: a
modification of a bond within the graph (for instance, a single bond becoming a double
bond) or a selection of a carbon atom within the graph and the type of fragment to
be incorporated. The selection will depend on which ratio must be satisfied in order to
converge to the desired chemical composition. It should be noted that for modifications
that change a bond type in the graph (from single to double bond for example), no atom
is selected and a new fragment type selection is made with recalculated ratio. Note
that only carbon atom bonds are discussed below, and hydrogens bonds are implicit.
Furthermore, the following discussion will focus on the strategy used to increase each
ratio, given that they are correlated and, thus, increasing one will result in a reduction
of the others. The different options could be defined as:

• RatioA : In order to increase and reach the desired ratio, a random carbon atom
is selected within the graph. Following this, an aromatic fragment will be added
at the subsequent phase. In the event that the graph is empty, no atom will be
selected and an aromatic fragment will be added.

• RatioB : In the event that the graph is empty, the simplest option is to add an
ethene. Then, to increase this ratio in order to reach the desired value, several
possibilities exists. Two possible option are: (i) increase the number of olefinic
CH2 carbons or (ii) decrease the number of aliphatic CH3 carbons. For the first
option (i), a carbon atom, not in an aromatic ring is searched and a carbon atom is
double bonded to this one at the subsequent phase. For the second option (ii), if an
ethyl exist, the single bond between the carbon atoms of this group is converted
from a single bond to a double bond. Note that if (i) and (ii) are possible, a
random selection is made between them.

• RatioC : As discussed for the previous ratio, two options are possible to increase
the ratio: (i) increase the number of aliphatic CH2 carbons or (ii) decrease the
number of aliphatic CH3 carbons. For the first option (i), if a terminal double
bond between carbon atoms is found, the bond is converted to a single bond. For
the second option (ii), if a methyl group is found, a carbon is added to the graph
and single bonded to this group at the subsequent phase. As for the previous ratio,
if (i) and (ii) are possible, a random selection is made between them. If the graph
is empty, an ethane will be added to the graph.

4.2.4 Fragment addition

If an atom was selected at the molecular graph modification step (i.e. bonds were not
modified at the previous step), with the aim to be the linking atom from the graph
to the fragment, a valence check is conducted on this atom. For instance, if a single
bond will be added, the selected atom must be available to form a single bond. A
classical valence rule is employed for the addition of a single or double bonded carbon
atom or an aromatic fragments. A specific rule is incorporated if a double bond is
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introduced between a new carbon atom and the selected atom. A carbon atom is
considered to be exhausted if it already has a double bond and another double bond
is attempting to be added. This condition is created to prevent the formation of a
series of double bonds, which is not pertinent to the subject matter to be discussed
in the subsequent chapter. In both cases of single bond or double bond addition, the
underlying principle is straightforward. A new atom is introduced into the graph, and
the subsequent bond is established between the new atom and the selected atom. Two
distinct scenarios exist with regard to the addition of aromatic fragments. If the selected
atom is aromatic, the aromatic fragment will be a closure benzene ring, as defined in
Fig. 4.7. It is assumed that the aromaticity of the resulting structure will be preserved.
If the addition is not possible, the graph is preserve and a new round of fragment type
selection is made. Alternatively, the added fragment is selected from the set of possible
fragments (see Fig. 4.8): benzene ring, naphthalene, anthracene, phenanthrene, pyrene,
benzo[c]phenanthrene, chrysene, or tetracene. A single bond is then created between
the selected atom and the aforementioned fragment.

Figure 4.7: Addition of an aromatic fragment to the molecular graph for an aromatic
carbon. The red part represents the ring added to the graph.

For the case depicted in Figure 4.7, a problem occur with the RDKit library. To bond
an aromatic fragment illustrated in red dotted lines, two atoms in the graph are required.
The bonding process starts with one atom of the aromatic fragment connected to the
graph. Each atoms are identified by their index, which is updated when a element
is added to the graph, resulting in a wrong connection with the second atom of the
aromatic fragment and the graph. To avoid this problem, each atom is now identified
by its map number, which is a list of unique identifiers for each atom in the graph and is
not automatically updated when new atoms are added. The map number of new atoms
is then created after the end of the bonding process.
The algorithm iterates until the number of carbon atoms in the graph equals the targeted
number of carbons (NC) and the number of SMILES generated is equal to the number
of SMILES targeted (NS). Note that there is a protection in the algorithm if for more
than hundred iteration in a row, it is impossible to add atoms on the graph. In this case
the algorithm will reset the graph and start again. This procedure is used to avoid an
infinite loop in the algorithm. To improve the performance of the algorithm, different
instances of the code are run in parallel (embarrassingly parallel) using multi-threading.
Each thread is independent, with different ratios. Generated SMILES are stored and
used in the next part of the algorithm to generate 3D structures.
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(a) Benzene (b) Naphthalene (c) Anthracene (d) Phenanthrene

(a) Pyrene (b) Benzo[c]phenanthrene (c) Chrysene (d) Tetracene

Figure 4.8: Addition of an aromatic fragment to the molecular graph to a non
aromatic carbon

4.3 Structure Generator

4.3.1 Overview

For each SMILES, a set of three-dimensional structures is generated. A preliminary,
unoptimized structure (in PDB format) is generated from the SMILES using RDKit,
which serves as input (see Fig. 4.9). The Structure Generator (SG) is an iterative algo-
rithm that generates a set of structures, respecting the requested number of structures
(NStruct), the targeted distance between structures, and the number of fails allowed
(Nfails). At each iteration of the SG algorithm, three principal steps are carried out: (i)
structure sampling, (ii) geometric relaxation, and (iii) structure validation and energy
minimization. The algorithm iterates until the number of structures generated is equal
to the number of structures requested, or stops because it is impossible to generate a
structure based on the constraint given for this SMILES. The generated structures are
then stored in a database for further analysis.

4.3.2 Structure sampling

In order to perform the structure sampling phase, an object is constructed, containing
the connectivity information of the molecule from the initial PDB file and the list of the
dihedral angles of the molecule. For a torsion around a bond (a dihedral angle), several
combinations of atoms can be defined. Only one torsion is defined around a bond, the
remaining atoms are defined inside rigids (see Figure 4.10).
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Figure 4.9: Illustration of the Flowchart of the Structure Generator.

Figure 4.10: Illustration of the rigid definition in a molecule. Black dotted lines repre-
sent bonds to the rest of the molecule. Red lines represent the bonds between atoms
composing the dihedral angle, including the atoms 1,2,3 and 4. Rigid A is composed of
atoms 1,2,5 and 6 while Rigid B is composed of atoms 3,4,7 and 8. When a rotation is
performed on the dihedral angle, a move is performed on the entire rigid connected to
this dihedral angle, which can be rigid A or B. The other part of the molecule is also
rigid and follow the movement.
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When a rotation is performed on a dihedral angle, collisions are activated to the
rigids directly connected to atoms of this dihedral angle (i.e. a collision check could
be performed only on atom for which the collision is activated). Collisions are defined
atom by atom, for which a Van der Waals (VdW) sphere is associated. A user parameter
named VdW scale, is a ratio used on the VdW sphere to define a collision sphere around
each atom. If there is an intersection between collision spheres of two atoms, the latter
are considered to be in collision. This scale is lower during the sampling phase than
during the minimization phase. This is done to reduce the time required to sample a
structure, which is a demanding step, especting the relaxation step to remove constraints
of the molecule.
The sampling scheme follow an iterative process, by assigning random values between
−π and π to the dihedral angle of the structure, starting with the dihedral angle that
is the closest to the center of mass (determined on the unoptimized structure given by
RDKit) and extending to the extremity of the structure. Upon the allocation of a value
to a dihedral angle, the associated rigid collisions are activated, while the remaining
rigids for which their dihedral angles have not yet received a value are deactivated. At
each step, if a collision is detected, the value of the dihedral angle in question is modified,
and the collision is tested again. If the number of failures for this dihedral angle exceeds
a specified threshold (defined by the user), the dihedral angle allocation value phase is
restarted from the previous dihedral angles. Collisions are deactivated for every atoms
that are in the associated rigid.
If multiple fails happen at the same dihedral angle, the algorithm could restart from the
previous n-1 dihedral angle (where n is the position of the actual dihedral angle in the
dihedral list) to the n-i st dihedral angle (where i is the number of fails occurring for
this dihedral angle). For example, if this is the second time the algorithm has failed to
assign a value to a dihedral angle due to collisions, it will start the assignment process
two dihedral angles back. The algorithm will iterate until all dihedral angles have a
value and no collision are detected under a certain threshold. A security is added to
prevent a state where the algorithm is stuck in an infinite loop at the same dihedral
angle, by reseting the entire structure. Geometric relaxation is then performed on the
structure.

4.3.3 Geometric relaxation

After the structure sampling phase, a collision test is conducted on the generated struc-
ture. A collision may be identified due to the fact that the VdW scale is greater at this
stage than at the previous one (discussed in the previous section). The algorithm will
identify which atoms are colliding and attempt to eliminate the collision through a minor
perturbation to the dihedral angles associated with these rigids (i.e., the closest dihedral
angles to these atoms). Should a perturbation result in an increase in the number of
collisions, the structure will revert to its previous state. Furthermore, the subsequent
perturbation will be greater than the previous one until a conformation is identified
that exhibits a lower number of collisions than the best one obtained during iteration.
This scheme continues until a threshold of π

2 perturbation (empirically determined) is
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reached. Above this threshold, a low convergence rate was observed in the direction of a
less collision-prone state. Upon the identification of a less collision-prone structure, the
perturbation value is reset to its initial value, and the algorithm continues. The algo-
rithm iterates until no collisions are found or the number of iterations reaches a specified
threshold (user defined parameter). Subsequently, the structure is returned and a test
is conducted to ascertain whether it has no collision and is at a certain distance from
the existing structures.

4.3.4 Structure validation and energy minimization

To ensure that structures are sufficiently different from each other, the mean square de-
viation (MSD) between the generated structure and the existing structures is calculated
and defined by the equation 4.2.

MSDij = 1
NA

NA∑
k=1

(θik − θ
j
k)

2 (4.2)

where MSDij is the distance between structure i and structure j, NA is the number
of dihedral angles in the structure, θik is the k-th dihedral angle value in structure i,
and θjk is the k-th dihedral angle value in structure j. Note that the distance between
dihedral angles is between −π and π. For example, the distance between −π and π is
zero. Subsequently, the algorithm compares the MSD between the generated structure
and the existing structures. If the MSD is above a specified threshold defined by the
user, the structure is accepted. If the structure does not meet the requisite criteria, it
is rejected and Nfails is incremented. In the event that the number of fails exceeds the
maximum number of fails, the algorithm will reduce the VdW scale of the minimizer,
only once. This is done because for the same database of SMILES, a variety of structures
exists, some more branched than others. The algorithm tries to generate structure for
the whole database at once, without any user intervention. It should be noted that the
VdW scale is set higher initially to optimize as much as possible the distance between
atoms and reduce the computational time required for the local minimization performed
with deMonNano (discussed below). This change will decrease the sampling step speed,
but increase both geometric relaxation and deMonNano local minimization.
The reduction of the VdW scale parameter is a challenging step, especially for ramified
structures. It is a compromise between allowing for the incorporation of structures that
are not overly self-colliding (i.e. no bond created during a local minimization using the
conjugated gradient from deMonNano for example) and ensuring that the structures are
not rejected outright (i.e. structures that could be afterward relaxed using a geometric
minimizer). In the event that the number of failures exceeds the required number of
failures and the algorithm has already reduced the VdW scale, the algorithm will stop
and return the set of structures that have been generated thus far (if no structure was
generated, the initial structure will be returned). From the returned structures, a local
energy minimization using the conjugated gradient technique of deMonNano code [131] is
performed (discussed in the Chapter 2). This method is employed to relax every degrees
of freedom of each structures. Finally, the set of generated structures are returned.
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4.4 Conclusion

In this chapter, a novel algorithm for the large-scale generation of atomistic models
of aromatic hydrocarbons was developed. This innovative approach provides a robust
tool for generating diverse molecular structures without prior bias, while adhering to
specific chemical constraints. The integration of the SMILES formalism introduces a
new level of flexibility and efficiency. The dynamic creation and straightforward en-
coding of molecular structures enabled by this feature facilitate the widespread sharing
and reproduction of data across different platforms, which is precious for collaborative
research endeavors. Moreover, the Structure Generator enables the generation of three-
dimensional structures from SMILES-generated structures. The algorithm is designed
to ensure the structural integrity of the generated models, while also providing a mech-
anism for optimizing the geometry of the structures to relax atomics collisions. The
applications of these generated models extend beyond mere theoretical interest. In the
fields of environmental science and astrophysics, for instance, such databases could be
employed to identify structures from experimental analysis using infrared techniques for
example. Such information is of great importance to deciple chemical processes occurring
on Earth and in cosmic environments. Notwithstanding, the chapter also acknowledges
ongoing challenges, particularly in terms of computational efficiency and algorithmic
complexity. Future work could be conducted on the addition of new fragments possibly
including other types of atoms, the management of radical structures that are removed
from the algorithm, and the addition of new constraints to the algorithm. Next chapter
will focus on the application of the algorithm to the generation of a database of aromatic
hydrocarbons.
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5.1 Introduction

In the vast expanses of galaxies, the spaces between stars, collectively known as the
interstellar medium (ISM), are far from empty. Comprising approximately 10% of a
galaxy’s stellar mass [74], the ISM is a vibrant mix of gases, complex molecules, and
dust. Of particular interest is the dust component, which, despite constituting only
about 1% of the gas mass, plays a crucial role in the ISM by influencing a myriad
of physicochemical processes. The ability of dust particles to absorb and scatter stel-
lar radiation, re-emitting it at longer wavelengths, positions them as central actors in
the galactic theater. Two principal types of refractory interstellar dust are recognized:
silicates and carbonaceous dust.

In astrophysics, complex structures may be discovered and studied through obser-
vations made by telescopes at different wavelengths, from the ultraviolet to the radio.
For example, polycyclic aromatic hydrocarbons (PAH) are important molecules in astro-
physics, as they are possible starting materials for abiotic syntheses of materials required
by the earliest forms of life [134]. In order to identify molecules from observations, re-
searchers require access to a large database containing a wide range of structures with
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their key descriptors. For example, studying the infrared (IR) ISM spectrum can be
compared to a database of IR spectra to identify each contribution in that spectrum.
To obtain such database, a first step is to generate a large number of structures, re-
specting constraints based on previous IR analysis. As detailed in the Chapter 4, an
algorithm was developed to generate a database of structures, respecting constraints
based on the analysis from Dartois et al. [41].

For this purpose, a database has been generated and is intended to serve as a ref-
erence for future studies necessitating a collection of Hydrogenated amorphous carbon
polymer (a-C:H) substructures unit with specific ratios of functional groups. a-C:H,
which are defined as PAH precursor [41], are the best candidate to explain the Diffuse
ISM absorption observed in our galaxy and other galaxies [41]. Diffuse ISM refers to
a less dense region of the ISM. This database is then analyzed based on geometric and
electronic descriptors to provide insights into the properties of a-C:H substructures. The
results are compared to the properties of PAHs and other carbonaceous structures to
identify the similarities and differences between these materials.

5.1.1 Aromatic hydrocarbons in astrophysics

Aromatic hydrocarbons are a class of molecules that play a crucial role in astrophysics.
Each of the following structures were defined in the Chapter 4.

Polycyclic aromatic hydrocarbons (PAHs)
The importance of PAHs ranges from astrophysics to environmental science. In astro-
physics, PAHs are considered as important constituents of the ISM [154], participating
in space chemistry and influencing the formation of other molecules. Their study, in
particular through vibrational and emission spectra, helps to understand the chemical
composition and processes in the universe [154, 133, 59].

PAHs contribute significantly to the heating of the ISM through the photoelectric
effect, where ultraviolet photons eject electrons from PAH molecules, leading to the
heating of gas [158]. This process is crucial for maintaining the thermal balance in
various astrophysical environments, influencing star formation and the lifecycle of cosmic
dust [88]. Furthermore, PAHs are hypothesized to be responsible for the unidentified
infrared (UIR) bands observed in many astrophysical objects, including HII regions,
planetary nebulae, and the diffuse ISM [5].

Soots
In astrophysics, soot-like particles, often referred to as cosmic dust, play a crucial role
in various cosmic phenomena. These particles, primarily composed of carbonaceous
materials, are formed in the outflows of carbon-rich stars through nucleation and growth
processes similar to those observed in terrestrial soot formation [45]. The study of cosmic
dust provides insights into the lifecycle of stars and the evolution of galaxies.

Cosmic soot particles contribute to the ISM by acting as catalysts for the formation of
molecular hydrogen (H2), the most abundant molecule in the universe. These particles
provide surfaces where hydrogen atoms can combine to form H2, a process that is
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essential for star formation [161]. Additionally, cosmic dust grains absorb and re-emit
stellar radiation, affecting the thermal balance and chemistry of the ISM [48].

Hydrogenated amorphous carbon (a-C:H)
Hydrogenated amorphous carbon represents a significant component of the diffuse ISM
in our Milky Way and other galaxies. Composed of intertwined carbon and hydrogen
atoms, a-C:H grains are primarily detected through their distinctive infrared absorption
bands, which arise from the vibrations of C-H bonds. The spectral signatures of
a-C:H grains vary across different sightlines in the galaxy, prompting intriguing
questions about their distribution, properties, and the underlying mechanisms driving
their spatial and evolutionary variations. Given the difficulties in directly accessing
interstellar dust, a significant portion of our knowledge is derived from observations
conducted remotely via telescopes and from laboratory simulations that replicate ISM
conditions. These studies are further enhanced by analyses of extraterrestrial materials
that are more readily available on Earth, such as meteorites and interplanetary dust
particles collected from the upper atmosphere. The combination of these approaches
provides a comprehensive understanding of the complex processes occurring within the
ISM.
The presence of a-C:H grains in the diffuse interstellar medium but their absence in
dense interstellar clouds suggests that these particles undergo significant transforma-
tions depending on their environment. This discrepancy represents a key focus of this
research, as it may provide insight into the lifecycle of interstellar dust and its impact
on the ISM. Moreover, the optical emissions from a-C:H grains following UV or visible
light absorption, known as photoluminescence, demand a detailed study to ascertain
their contribution to the broader spectrum of interstellar emissions. Laboratory
characterizations and astrophysical relevance of this material have revealed that a-C:H
plays a crucial role in the lifecycle of dust, influencing phenomena such as hydrogen
formation, extended red emission, and acting as a precursor to polycyclic aromatic
hydrocarbons (PAHs) [77, 69, 140, 46, 21, 94].
Recent observations have revealed that Galactic diffuse interstellar dust features are
prevalent in external galaxies [91, 148]. These ISM dust features constitute a significant
fraction of the matter (at least 5 to 30% of the carbon cosmic abundance [47, 136])
that is essential for the evolution of dust and solid-phase chemistry in the ISM. The
ultraviolet photoproduction of an interstellar dust analog, which Dartois et al. refer to
as a-C:H, has been analyzed in detail to understand its potential role in the 2175 Å
extinction bump [21].
Martín-Doménech, Dartois, and Caro investigated the diffusion of photo-produced
hydrogen (H2) in a-C:H as a function of temperature, demonstrating that the desorption
and diffusion of hydrogen in these amorphous carbons are temperature-dependent. The
researchers illuminated key mechanisms for the photolysis of ISM dust [116].
Structures with similar IR spectra to the diffuse ISM are shown in [41]. A comparision
of these structures with the diffuse ISM (DISM) spectrum has been presented in
this article by Dartois et al. The authors have calculated the ratio of functional
groups present in the DISM structures. Using IR spectra, the authors define the
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ratio of aromatic C=C bonds to C-X bonds (ratioA), the ratio of olefinic CH2 to
aliphatic CH3 (ratioB), and the ratio of aliphatic CH2 to aliphatic CH3 (ratioC)
of the observed structures. From this analysis, the authors propose a model of
the substructure unit of a-C:H particles. The generation of a-C:H substructures
represents a key objective that motivates the development of the algorithm presented
in the Chapter 4. This algorithm can create different structures, having different IR
spectrum. It is noteworthy that the observed spectra from space are composed of a
variety of molecules and conformations. Obtaining a variety of structures is an in-
teresting opportunity to analyze the impact of structural differences on the IR spectrum.

5.1.2 Methodology

In their study, Dartois et al. (2005) produced a-C:H through the photolysis of various
organic molecule precursors at low temperatures. The substructures unit of a-C:H are
believed to be representative of a constituent from the DISM. From this film with IR
analysis, the olefinic and aliphatic ratios were estimated. Results show that the a-C:H
substructures exhibited a ratio of olefinic CH2 to aliphatic CH3 between 0.05 and 0.1.
The aliphatic CH2 to aliphatic CH3 ratio was evaluated between 1.80 and 2.20. The
aromatic contribution was evaluated and the results suggested that the ratio of aromatic
C=C in the a-C:H network is between 0.05 and 0.2.

(a) Species A
(b) Species B

(c) Species C

Figure 5.1: Structures taken from [41]. The design of species A was carried out on
ratios of olefinic, aliphatic, and aromatic compounds, as presented in [41]. The design
of species B and C was guided by the generally accepted structure of carbonaceous
interstellar dust, as outlined in Pendleton and Allamandola [126].

To facilitate comparison of the a-C:H spectra to the DISM spectra, three species
(presented in Figure 5.1) were selected that largely adhere to the detailed ratios. The
species A (Fig. 5.1a) was designed to respect the ratios, while the B and C (Fig. 5.1b
and 5.1c) were selected from the generally accepted structure of carbonaceous interstellar
dust, as outlined in Pendleton and Allamandola (2002).

The generation of random structures that respect this ratio represents a significant
challenge. The algorithm developed in the previous chapter was employed here to gen-
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(a) Circumcircumcoronene (C96H24)

(b) Linear structure (C96H194)

Figure 5.2: Illustration of the limit cases.

erate a-C:H substructures that adhere to the ratios of olefinic, aliphatic, and aromatic
compounds. The database was generated with the same number of carbon atoms as the
Circumcircumcoronene (C96H24, Fig. 5.2a). The number of carbon atoms was selected
to ensure that the constraints were respected, with a relatively high number of atoms be-
ing necessary for this purpose. In addition, a set of linear structure (C96H194, Fig. 5.2b),
again with 96 carbons atoms, was generated for comparision. The two aforementioned
structures served as limiting cases for the purpose of comparing the generated struc-
tures. The circumcircumcoronene is characterized by a complete aromatic character,
whereas the linear structure is that of an alkane.

In the following section, the database is firstly analyzed to determine the distribution
of the structures based on the ratios of olefinic, aliphatic, and aromatic compounds.
Geometric and electronic descriptors are then computed to analyze the shapes and the
electronic properties of the structures. The results are compared to the properties of
circumcircumcoronene and linear structures to identify the similarities and differences
between these materials.

5.2 Database analysis

The study was conducted in accordance with the stipulated ratios and total number of
carbon atoms. This results in the following constraints:

• The total number of carbon atoms is fixed to 96 (same as in the circumcircum-
coronene PAH, see Fig. 5.2a)

• ratioA : NaromaticC=Cbonds/NaromaticC−Xbonds between 0.05 and 0.2

• ratioB : NolefinicCH2/NaliphaticCH3 between 0.05 and 0.1

• ratioC : NaliphaticCH2/NaliphaticCH3 between 1.80 and 2.20
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Generated vs theoretical distribution
Prior to generating the structure of the a-C:H molecules, a numerical analysis was con-
ducted to ascertain the distribution of the structures following the different ratios. The
results are presented in Fig. 5.3. To generate this figure, all possible combinations with
96 carbon atoms were created and only atom-based ratios were calculated. Calculating
the ratioA is more challenging because it is based on the number of aromatic bonds
divided by the total number of bonds in the structure. This necessitates a complete
knowledge of the connectivity of the structure. Consequently, the ratioA is not con-
sidered in this plot. This distribution could be contrasted with the distribution of the
database (Fig. 5.4).
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Figure 5.3: Theoretical distribution of ratios B and C for the generated structures. The
red lines represent the constraints given in the article by Dartois et al. [41].

As can be observed, the distribution between the two figures exhibit some differences
in area containing few structures in Fig. 5.3. For example, no structure was found in
the database (Fig. 5.4) with a ratioC = 1.97. This is due to the fact that the ratio
A is considered in the second figure, and the addition of this constraint leads to an
impossibility to generate structures that have a ratioB = 0.065 for example. Moreover,
the distribution of the structures is not uniform, meaning that for a bar in one ratio, the
distribution of the structures in the other ratios could be different. This is illustrated
in Fig. 5.5a, for the ratioA between 0.05 and 0.06, distributions of ratioB and ratioC
are different from the Fig. 5.4. The same comment can be made for the ratioA between
0.06 and 0.07 in the Fig. 5.5b.
It should be noted that each figures presented at this step represent the distribution of
the generated SMILES, which is not the distribution of the 3D structures generated at
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Figure 5.4: Distribution of the ratios for the generated structures. The red lines repre-
sent the constraints given in the article by Dartois et al. [41]. Each bar represents every
structure available at a given interval ratio without considering the other ratios. For
example, for the bar of the ratioA between 0.05 and 0.06, ratioB could assume values
between 0.05 and 0.10.
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(a) Structures at a ratioA between 0.05 and 0.06, while
ratioB and ratioC are not fixed.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
NaromaticC = Cbonds/NaromaticC Xbonds

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f
 st

ru
ct

ur
es

ratioA

0.05 0.06 0.07 0.08 0.09 0.10
NaliphaticCH2/NaliphaticCH3

0

10000

20000

30000

Nu
m

be
r o

f
 st

ru
ct

ur
es

ratioB

1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20
NolefinicCH2/NaliphaticCH3

0

20000

40000

60000

Nu
m

be
r o

f
 st

ru
ct

ur
es

ratioC

(b) Structures at a ratioA between 0.06 and 0.07, while
ratioB and ratioC are not fixed.

Figure 5.5: In this figure, the value of ratioA is fixed, while the values of ratioB and
ratioC are not. This illustrates that for a given ratio, the distribution of structures is
not uniform across the other ratios.
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the next step.

Filtering and selection strategy
Structures containing radical fragments have been removed from the database because
they are not relevant for the study developed in this chapter. In addition, this type
of structure requires a specific electronic analysis to determine its multiplicity in
order to obtain its energetic descriptors and to be able to compare it with other
structures in the database. Removing this type of structure leads back to removing
structures with an odd number of atoms, since the number of carbon atoms is fixed at 96.

Figure 5.6: Database distribution for structures only based on two ratios. Each point
represent a structure, which is contained in a square (i.e. interval for the two ratios).
For example, in this database, 3 structures are available in A5, for a ratio1 between 2.20
and 2.30 and a ratio2 between 0.01 and 0.02 while no structure was generated in the
range of the square C5.

Subsequently, the structures to be generated are selected according to the procedure
outlined in Fig. 5.6. As illustrated in this figure, a database comprising only two
ratios is depicted. It is noteworthy that the identical strategy is employed for the
aforementioned database. In this figure, each conformation, defined by its ratio, is
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represented by a point in a square. Each square is defined by the interval of the two
ratios. The strategy employed for the selection of structures is an iterative process,
whereby ratios are examined. The initial step is to search for a structure within A1.
A single structure is identified and transferred to the generation stage. This structure
couldn’t be selected during subsequent iterations of the selection stage. This process is
repeated for each square, unless no structure is available in that square. It is important
to note that if no structure is found in a given interval, that interval is excluded from
further selection. Then, the selected SMILES are used in the structure generator to
obtained the 3D structures.

5.3 Descriptors definition

The generated structures obtained are analyzed based on both geometric and electronic
descriptors. Each of them was chosen because it represents a specific property of the
generated database. The definitions of these properties can be found in the following
subsections.

5.3.1 Geometric and structural descriptors

A pertinent geometric descriptor for characterizing the database are the Hill-Wheeler
parameters [31]. These parameters define the asphericity, i.e. the deformation of the
structure from a perfect sphere. In order to discuss the asphericity, it is necessary to
define the center of mass of the molecule. This is calculated as follows:

Rcom =
∑N
k=1mkrk∑N
k=1mk

(5.1)

wheremk is the mass of the atom k. This center of mass is used to recenter the molecule.
Then the inertia tensor is defined as:

I =

I11 I12 I13
I21 I22 I23
I31 I32 I33

 (5.2)

Each component are generally defined as:

Iij =
N∑
k=1

mk(‖rk‖2 δij − xi,kxj,k) (5.3)

where rk = (x1,k, x2,k, x3,k) is the position of atom k with mass mk. The indices i, j take
on values of 1, 2, or 3 for the Cartesian coordinates x1,k, x2,k, x3,k, respectively. The
Kronecker delta symbol is defined as:

δij =

1 if i = j

0 if i 6= j
(5.4)
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Using Equations 5.2, 5.3 and 5.4, diagonal elements of the inertia matrix is given by:

I11 = ∑N
k=1mk(x2

2,k + x2
3,k)

I22 = ∑N
k=1mk(x2

1,k + x2
3,k)

I33 = ∑N
k=1mk(x2

1,k + x2
2,k)

(5.5)

and off-diagonal elements are defined as:

I12 = I21 = −∑N
k=1mkx1,kx2,k

I13 = I31 = −∑N
k=1mkx1,kx3,k

I23 = I32 = −∑N
k=1mkx2,kx3,k

(5.6)

Principal moments of inertia are defined as the eigenvalues of the tensor I, which are
ordered as I1 ≥ I2 ≥ I3 ≥ 0. These are computed by the diagonalization of the tensor
I. The Hill-Wheeler parameters are then defined as:

Ip = 2
3r

2
c

[
1 + β sin

(
γ + (4k − 3)π

6

)]
, p = 1, 2, 3 (5.7)

where rc is the root mean square radius defined by:

rc =
(

1
N

N∑
k=1

r2
k

)1/2

(5.8)

The shape parameter β is defined in the range [0, 1], and it is used to measure the
oblateness of the cluster. Meanwhile, the parameter γ is defined in the range [0, π/3], and
is used to measure the cluster triaxiality. A perfect sphere is defined by the parameters
β = 0 and whatever value for the γ parameter. An axially symmetric prolate ellipsoid
is defined by the parameters 0 ≤ β ≤ 1 and γ = 0, while an axially symmetric oblate
ellipsoid is defined by the parameters 0 ≤ β ≤ 1 and γ = π/3. The Hill-Wheeler
parameters are illustrated in Figure 5.7.

These parameters are computed as follows:

β = I1−I2√
3 sin(tga)Imean

γ = 180
π tga

(5.9)

In practice, when the principal momenta of inertia are known, tga =
arctan

(√
3 I2−I1

2I3−I2−I1

)
and Imean = I1+I2+I3

3 . The determination of these two pa-
rameters enables the analysis of the variety of shapes exhibited by the generated
structures.

Other straightforward descriptors are defined to analyze the database, such as the
number of aromatic units by structure, which defines the number of aromatic cycles in
a structure. For instance, the coronene (C24H12) molecule has seven aromatic units,
while the molecule in Fig. 5.8 has six aromatic units. Moreover, the number of islands
is defined as the number of disconnected aromatic fragments that are not connected by
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Figure 5.7: Hill-Wheeler parameters, β and γ are the asphericity parameters, respec-
tively. Adapted from Fortunato[63]. Note that γ = nπ3 with n = 0, 1, 2, 3, 4, 5
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Figure 5.8: Illustration of C35H30.

an aromatic bond together. For example, the coronene has only one island, while the
C35H30 molecule represented in Fig. 5.8 has three islands. Then, the maximum size
of the islands for a molecule is defined as the number of aromatic units in the largest
island. For instance, the maximum size of the islands for coronene is seven, while that
of the molecule in Fig. 5.8 is three. The last simple descriptor used in the following
anaylis is the number of atoms for each structures. The number of carbon atoms being
fixed at 96, this descriptor characterizes the number of hydrogen atoms in the structure.

5.3.2 Electronic descriptors

In addition to geometric descriptors, electronic descriptors are employed to character-
ize the generated structures. A number of descriptors were calculated, including the
band energy, the repulsive energy, the electronic energy, the Fermy energy level, and
the (HOMO)-(HOMO-1) gap. However, these descriptors did not exhibit the requisite
behavior to effectively characterize the elements within the database.
The first discussed descriptor is the gap HOMO-LUMO, which is the difference between
the energy of the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). This descriptor is available on the deMonNano code and is
illustrated in Fig. 5.9. In addition, the London energy is a dispersion energy, named
after the physicist Fritz London who first described it in the 1930s [51]. It is a type of
van der Waals force that is induced between atoms or between non polar molecules. This
force arises due to the fluctuations in electron distribution within atoms and molecules,
leading to temporary dipole moments.

Subsequently, the ionization energy is employed, serving as a metric for the energy
required to remove an electron from an atom or molecule, thereby forming a positively
charged ion (cation). This is a pivotal electronic descriptor that furnishes data regarding
the stability and reactivity of a system. The ionization energy can be calculated as the
discrepancy in energy between the cationic and the neutral system. Finally, electronic
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Figure 5.9: Illustration of the gap between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO)

affinity represents the energy change when an electron is added to a neutral atom or
molecule, resulting in the formation of a negatively charged ion (anion). It is a measure
of the tendency of an atom or molecule to accept an electron. The electronic affinity can
be calculated as the difference in energy between the neutral and the anionic system. The
computation of both ionization energy and electronic affinity is based on the geometry
of the neutral form, with the addition or removal of an electron.

5.4 Results

From the presented descriptors, an analysis is made comparing both structural and
electronic descriptors. The results are presented in the following sections. For each fig-
ure there are extreme cases which are the circumcircumcorone in orange and the linear
structures in green which contain the same number of carbon atoms as the circumcir-
cumcoronene.

5.4.1 Geometry-based analysis

The Hill-Wheeler parameters β and γ are employed to analyze the generated struc-
tures. The results are presented in Fig. 5.10. The histograms on the right and top of
the plot show the distribution of β and γ, respectively. The circumcircumcoronene is
oblate, a result that is anticipated given the planar nature of the structure. Most of
the linear structures are prolate with some exceptions. As displayed, structures in the
database exhibit a wide range of shapes. Most of the generated structures are rather
spherical, as indicated by the small values of β. Nevertheless, some structures exhibit
prolate characteristics, as evidenced by the elevated values of β, indicating a degree of
asphericity.
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Figure 5.10: Hill-Wheeler parameters β and γ for the generated structures. The distri-
bution of structures is shown on the right and top of the plot for β and γ. The scales
employed for linear structures and those for database structures differ, given that the
latter is a more numerous category. The circumcircumcoronene has one structure and
is shown as an orange segment.

5.4.2 Structure-energy relationships

HOMO-LUMO gap distribution is illustrated in the Figure 5.11 according to dif-
ferent descriptors. Firstly, linear structures exhibit a HOMO-LUMO gap around 13
eV, whereas circumcircumcoronene is observed at 1.4 eV. The generated structures are
found to be relatively close to the circumcircumcoronene, with some exhibiting a smaller
HOMO-LUMO gap and a specific family appearing around 5 eV. As can be seen at the
bottom right of the Fig. 5.11, this family has a maximum size of islands equal to one,
indicating that this structure contains only single benzene spreads. Moreover, the num-
ber of aromatic units present in a given structure within this family ranges from three
to five. When an island with a size of naphthalene or larger is present in the structure,
the gap is less than 4 eV. Conversely, the gap roughly increases as the maximum size of
islands decrease as can be seen at the bottom right of the Fig. 5.11.

London energy distribution is illustrated in the Figure 5.12. The circumcircum-
coronene or the linear structure exhibit a lower degree of stabilization in terms of London
energy than the structures from the database. The bottom right of the Figure 5.12 in-
dicates that stabilization increases with the number of atoms for the database, showing



92 CHAPTER 5. APPLICATION TO A-C:H POLYMER

Figure 5.11: HOMO-LUMO gap of the database.

Figure 5.12: London energy of the database.
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(a) Extended structure (large β) with a low
stabilization based on London energy. (b) Compact structure (small β) with a high

stabilization based on London energy.

Figure 5.13: Illustration of the stabilization based on London energy.

that the larger the structures, the lower the London energy is (which is stabilizing). An
expected result would be that stabilization would be greater for linear structures than
for database structures, which is not the case. This phenomenon can be attributed to
aromatic compounds facing hydrogens atoms for structures of the database (see Fig.
5.13). The structures with the most stabilizing London energy are compact and spheri-
cal, while those with less stabilizing London energy are more extended. This is evidenced
by the bottom left of the Figure 5.12.

Ionisation energy is illustrated in the Figure 5.14. The ionization energy of cir-
cumcircumcoronene is 5.90 eV, while that of linear structures is approximately 8 eV.
This suggests that the delocalization of charge in the π system is more readily achieved
than in linear structures. The database encompasses a range of values from 5.5 to 7.35
eV. The loss of an electron is less unfavorable for a-C:H substructures than for linear
structures, as charge delocalization occurs. The larger the island, the more favorable
it is to lose electrons for the database. But this is not the only factor, otherwise the
ionisation energy of the circumcircumcoronene should be under the database. Follow-
ing observations, for a fixed number of the maximum size of islands, the ionization is
favored for structures having multiple islands distributed in the structure. Structures
with this island distribution could have better charge delocalization than the circumcir-
cumcoronene.

Electronic affinity is illustrated in Figure 5.15. Circumcircumcoronene is situated
around 2.4 eV, rendering it conducive to electron capture. In contrast, linear compounds
exhibit a markedly negative electron affinity, which renders it not conducive to electron
capture. It is observed that poor electron affinity is exhibited by linear structures and
structures with a maximum island size of one, and that this improves as the maximum
island size increases, as well as for circumcircumcoronene. The database encompasses a
range of energies between -1 and 2 eV, exhibiting a behavior intermediate between the
two other types of structures. In the database, capturing an electron therefore becomes
a favorable phenomenon from a certain size of island.

Figure 5.16 allows for the observation of the shift in electronic affinity with respect
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Figure 5.14: Ionisation energy of the database.
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Figure 5.15: Electronic affinity of the database.
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(a) Structures with a number of aromatic
units equal to five.

(b) Structures with a maximum size of is-
lands equal to two.

Figure 5.16: Illustration of the shift in electronic affinity with respect to the maximum
size of islands and the number of aromatic units.

to the number of aromatic units and the maximum size of islands. In order to prevent
a cumulative effect between the number of aromatic units and the maximum size of
islands, the number of aromatic units for figure 5.16a and the maximum size of islands
for figure 5.16b were fixed. The electronic affinity is more favorable for structures with
a larger maximum island size, as evidenced by the shift in the distribution of electronic
affinity. This is due to the fact that the larger the island, the less the structure is
destabilized by electron capture. A similar trend is observed in structures with a larger
number of aromatic units.

5.5 Conclusion

The analysis of the database generated in this study provides a comprehensive under-
standing of the relationship between the geometric and electronic descriptors of a-C:H
structures. The Hill-Wheeler parameters β and γ were employed to analyze the shapes
of the structures, revealing a wide range of shapes, from spherical to prolate. The
electronic descriptors, including the HOMO-LUMO Gap, London energy, ionization
energy, and electronic affinity, were employed to characterize the database. The results
indicate that the generated structures exhibit a variety of electronic properties.
We observed that: (i) generated a-C:H structures are mostly spherical, (ii) a family
with isolated rings exists in the database with a higher HOMO-LUMO gap than the
rest of the structures, (iii) the stabilization from the London energy increases with the
number of atoms, (iv) loss of an electron is less unfavorable for structures with bigger
islands due to charge delocalization, (v) the capture of an electron becomes a stabilizing
phenomenon when the the maximum size of islands increases.
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The database represents a valuable resource for further research into the properties
of a-C:H structures and their potential applications in the field of astrophysics. The
database will be released to be accessible with the different descriptors for the community
to be used. Moreover, the generation of the IR spectrum of each structures is still under
development, and will be added to the database. These spectra may help to understand
the type of structures present in differents studied sample. For example, it can help in
identifying structures from the diffuse ISM spectra.
The algorithm used to generate the database can be adapted to other systems, thereby
providing a versatile tool for the study of complex molecular structures. The constraints
on the ratio could be altered to encompass different values, transformed into a different
type of ratio, or simply removed to generate a database with a distinct distribution of
structures. Future work could focus on the application of the database to other systems,
such as polycyclic aromatic hydrocarbons (PAHs) or other carbon-based materials, in
order to further explore the relationship between structure and properties. An extension
to the structure based on other atoms could be considered.
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6.1 Introduction

Exploring the conformational space of a chemical system is a fundamental task in
computational chemistry, for which many methods of PES exploration have been
developed, as presented in Chapter 1. Among these methods, we presented in Chapter
2 a method, coupling the IGLOO global exploration algorithm and a DFTB potential,
to obtain various local minima on a PES, and its application to phthalate molecules was
described in Chapter 3. However, a missing piece of information remains, namely the
displacements required to go from one state to another. Methods have been established
to explore the transition paths, which allow to connect each state with each other.
Some algorithms focus on finding the minimum energy path (MEP), i.e. the path
between states where each point is located at a minimum for all directions tangent to
the path. Other algorithms are stochastic, resulting in the identification of multiple
potential paths from one state to another.
The potential energy used to evaluate the energy of conformations along a path
is defined by models with varying degrees of accuracy, as presented in Chapter 1.
Consequently, a bias may result in a path that is different from the experimental data.
Obtaining multiple paths reduces the impact of potential energy biases, since a path
favored by a given potential energy may differ from those favored by other potential
energies.
From the multiple paths generated, patterns could be identified and a probability of
observing a path could be calculated. To automatically determine these patterns and
discretized classes, clustering algorithms are used.
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This chapter develops a preliminary method to identify the different low energy paths
between two conformations of a molecule using a robotic-inspired algorithm named
Transition based Rapidly-exploring Random Trees (T-RRT). Due to the stochasticity
of the algorithm, a method was implemented to differentiate and group trajectories.
For this purpose, a review of measures and a presentation of a clustering method to
group similar paths into a class of paths are made. Then each representative trajectory
of a class is locally optimized using the Nudged Elastic Band (NEB) method to obtain
a minimized path between the two conformations. Note that this last part is only
presented in the method section, but not yet fully implemented.

6.1.1 Exploring transition path space

To describe the dynamics of conformational changes, the Transition State Theory (TST)
[57, 89, 165] is used. This theory is central to understand how conformational changes
progress from a state to another through a transition state (presented in Chapter 1).
This chapter focuses on the conformational changes of a molecule between two states
but the presented methods can also be used to characterize a reaction pathway.
In computational chemistry, algorithms that explore the transition path space can be
broadly categorized into two types: those that explore transition paths while searching
for transition states (requiring only a starting state) and those that are directly aimed at
exploring transition paths (depending on the algorithms, some require only the starting
state, others require both starting and final states). Note that in the latter category,
a distinction must be made between deterministic algorithms, which focus most of the
time on finding the MEP, and stochastic algorithms, which generate multiple potential
paths.

6.1.1.1 Saddle point search algorithms

Algorithms that search for transition states are designed to locate the high-energy con-
figurations along the reaction coordinate that act as a shifting point (detailed in the
Chapter 1) between different states.

Dimer method The Dimer method [84] is used to locate transition states on a poten-
tial energy surface, thereby facilitating the study of reaction mechanisms. Developed to
overcome certain limitations inherent in other transition state search methods, such as
the NEB method (explained below), the dimer method provides a more direct approach
to find saddle points without requiring an initial guess of the reaction path.

The core concept of the dimer method involves the use of a "dimer", which is essen-
tially two points or configurations that are close to each other on the potential energy
surface. This dimer is used to probe the curvature of the energy landscape by rotat-
ing and translating geometry in space to minimize the energy along one direction while
maximizing it along another. This process is facilitated by the calculation of the Hessian
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matrix, or an approximation thereof, which is less computationally costly compared to
methods that require the full Hessian calculation.

The Dimer method efficiently find the highest curvature directions by orienting the
dimer along low curvature directions and thus, indirectly probing the higher curvature
directions which correspond to the reaction coordinate. This characteristic makes the
dimer method particularly valuable for systems with complex energy landscapes, includ-
ing those with multiple minima and saddle points.

However, the dimer method has its drawbacks. It can be sensitive to the choice of
initial configurations and can converge slowly in the case of very flat landscapes. This
sensitivity can lead to increased computational time compared to other methods if not
properly managed. In addition, while the method is less dependent on a full Hessian
calculation, the accuracy of the approximations used can affect the precision of the
saddle point found.

Conjugated Peak Refinement (CPR) The Conjugated Peak Refinement (CPR)
method by Fischer and Karplus [58] is a technique used to locate saddle points on
potential energy surfaces. This method iteratively refines an initial guess of the saddle
point by following a conjugate direction that effectively balances the need to ascend
and descend the potential energy landscape. The process begins with an initial point,
and then alternates between moving along the direction of the negative gradient and
a conjugate direction that maintains orthogonality to previous search directions. By
continuously adjusting these directions, the CPR method converges towards the saddle
point.

Compared to the Dimer method, the primary difference between with CPR lies in
their operational strategies. CPR utilizes conjugate directions to maintain orthogonality
and efficiently converge to the saddle point, which can be more effective in complex land-
scapes with multiple minima and maxima. In contrast, the Dimer method’s reliance on
detecting negative curvature directions allows it to be particularly adept at finding sad-
dle points directly associated with reaction pathways. Additionally, the Dimer method
often requires fewer iterations to identify the saddle point due to its direct focus on neg-
ative curvature, whereas CPR might involve more extensive searches to refine the saddle
point accurately. Both methods are valuable in their respective contexts and are chosen
based on the specific characteristics of the potential energy surface being analyzed. The
CPR method requires careful handling of the Hessian matrix and its eigenvalues, which
can be computationally expensive and challenging in large systems.

6.1.1.2 Transition path search algorithms

The second category includes algorithms that aim to identify a transition path. De-
pending on stochastic or deterministic nature, these algorithms can generate multiple
potential pathways connecting states or converge to the MEP.

Elastic BandMethod (EB) The Elastic Band (EB) method, also known as the Plain
Elastic-Band method, is a computational technique part of the deterministic methods,
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and is used to identify MEP between two given states in a PES [49]. This method
constructs a path by generating a sequence of images, or replicas, that link the initial
and final states. These images are typically maintained at equidistant intervals along
the path with a string force to ensure a smooth transition.

The fundamental objective of the EB method is to minimize a total energy of the
path E, which is described by the following equation:

E(x1, . . . , xN−1) =
N−1∑
i=1

U(xi) + k∆α
2

N∑
i=1

|xi − xi−1|2

∆α2 (6.1)

U(xi) is the potential energy of image i and N represent the number of images. The last
term define an elastic energy due to the virtual springs between consecutive images with
k, being the spring constant and ∆α representing the segment length between images.

The dynamics of image adjustments are governed by:

ẋi = −∂E
∂xi

= −∇U(xi) + k
xi+1 + xi−1 − 2xi

∆α , i = 1, . . . , N − 1, (6.2)

This equation describes how each image moves in response to the forces exerted by the
potential energy and the springs. While this method is straightforward and intuitive,
one common challenge it faces is the "corner-cutting" phenomenon. This occurs when the
equidistant constraint on the images leads to the neglect of regions with sharp variations
in the potential landscape, potentially omitting important transition states or details of
the pathway.

Nudged Elastic Band Method (NEB) The NEB method [85, 12] follows a deter-
ministic scheme as the EB method. It improves upon the traditional EB approach by
selectively applying forces to guide the system along the minimum energy path. In the
NEB method, only the normal component of the potential force and the tangential com-
ponent of the spring force are considered, which helps in reducing unphysical artifacts
like corner-cutting observed in the EB method. The dynamics of image adjustments are
governed by:

ẋi = −[∇U(xi)]⊥ + (Fi · t̂i)t̂i, i = 1, . . . , N − 1 (6.3)

where Fi = k(xi+1 + xi−1− 2xi)/∆α and t̂i denotes the tangent vector along the elastic
band at xi. This equation describes how each image moves in response to the forces
exerted by the potential energy and the springs. These equations highlight the decom-
position of forces into components parallel and perpendicular to the path, ensuring that
the path smoothly transitions through the energy landscape without artificial distor-
tions.
Despite its advantages, setting the appropriate spring constant (k) in NEB is often chal-
lenging. An overly high k-value results in a rigid path that necessitates smaller steps
in the numerical solution of the ordinary differential equations (ODEs), while a too low
k-value makes the chain overly flexible, potentially deviating significantly from critical
saddle points, thus compromising the path’s accuracy.
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NEB variants To address these issues, variants like the Climbing Image-NEB (CI-
NEB) have been developed. CI-NEB enhances the identification of saddle points by
eliminating the spring force at the highest energy image and inverting the potential
force to push the image towards the peak of the energy barrier [85]. This is done by
selecting the image with the highest potential energy as the NEB calculation progresses.

Another variant, Energy Weighted-CI-NEB (EW-CI-NEB), modifies the spring con-
stant based on the potential energy of each image to improve resolution in areas of high
energy variation, as described by:

ki =

(1− αi)ku + αikl, if Ei > Eref

kl, otherwise
(6.4)

αi = Emax − Ei
Emax − Eref

(6.5)

where ku and kl are the upper- and lower-bound value of the spring constant. Ei
is the higher energy image of the pair of images connected by line segment i, Emax is
the current estimation of the maximum potential energy along the path, and Eref is a
reference energy choosen to be equal to the energy of either the starting or goal energy
minimum. This adaptive spring constant allows for increased resolution where needed,
and reduced resolution in more stable regions of the path.

Finally, NEB-TS is a technique used in subsequent iterations to refine the search
for the transition state (TS) after an initial NEB analysis. This method employs an
eigenvalue-following technique known as the partitioned rational function optimization
(P-RFO) to locate the TS by tracking the direction indicated by a selected eigenvalue
of the Hessian matrix, ensuring that this eigenvalue is negative while all others remain
positive, leading to a precise location of the first-order saddle point [14].

Transition Path Sampling Method (TPS) Transition Path Sampling (TPS)
method [24, 42] is a stochastic computational method employed to explore transition
pathways between two distinct states on a potential energy surface. This technique is
particularly advantageous for systems where transitions are rare and involve crossing
high energy barriers, such as in complex chemical reactions and biomolecular conforma-
tional changes.

TPS operates fundamentally by not just sampling states, but by sampling entire
pathways that the system takes from an initial state A to a final state B. This method
is initiated with an existing pathway, typically generated by a standard dynamical sim-
ulation, which provides a basic trajectory connecting the two states.

To refine and explore new pathways, TPS employs three primary Monte Carlo moves:
shooting, shifting, and branching. Each move is designed to explore the space of possible
transition paths thoroughly:

• Shooting is one of the key techniques in TPS. This move involves randomly select-
ing a point along the current path and slightly perturbing either the positions or
the momenta at this point. Following this perturbation, the system’s dynamics are
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integrated both forward to state B and backward to state A, thereby generating a
new candidate path. This new path is then subjected to a Metropolis acceptance
criterion, which assesses its feasibility based on how well it represents the under-
lying dynamics of the system. This process ensures that only physically plausible
paths are retained in the path ensemble.

• Shifting is another strategic move used in TPS. Instead of altering the path lo-
cally, as in shooting, shifting adjusts the entire path along the time axis. This
temporal adjustment can be either forward or backward, allowing the exploration
of different segments of the timeline where the transition might occur under vary-
ing conditions. This technique helps in discovering transition paths that are more
probable or efficient but might have been overlooked in the initial path sampling.

• Branching, the third technique, expands the exploration by starting new trajecto-
ries from various points along the existing path. This approach effectively allows
the system to explore new areas of the PES that might not be accessible from the
original path. By branching out in different directions, TPS can uncover diverse
transition mechanisms, providing a broader understanding of the possible ways
the system can evolve from state A to state B.

Despite the effectiveness of TPS in uncovering the intricate dynamics of complex
systems, it is computationally intensive. The need for detailed simulations across po-
tentially high-dimensional landscapes requires significant computational resources.

The Zero-Temperature String Method The Zero-Temperature String Method
[164] is a deterministic technique employed to identify the MEP. This method is partic-
ularly useful when the transition involves high energy barriers.

The string method conceptualizes the reaction path as a ’string’ stretched between
two energy minima, representing the initial and final states. This string is discretized
into a series of points known as ’images’ that depict configurations of the system along
the path. The method’s core objective is to relax this string into the lowest energy path
connecting the two minima.

• Initialization: Initially, the string is placed manually between the minima and
discretized into several images. These images are distributed evenly along the
initial guess of the path.

• Relaxation Process: Each image is then relaxed independently to minimize its local
energy, typically by using gradient descent techniques or other local optimization
methods. The relaxation is performed orthogonally to the string to ensure that
the images move towards the MEP without drifting along the path.

• Reparametrization: To maintain an even distribution of images along the path,
the string is reparametrized periodically throughout the relaxation process. This
reparametrization adjusts the positions of the images to keep them evenly spaced,
ensuring that each segment of the string equally contributes to the depiction of
the pathway.
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The process is iteratively repeated until the changes in the images positions between
successive iterations are minimal, indicating that the string has converged to the MEP.
This convergence suggests that the string now represents the most probable, energeti-
cally favorable pathway for the transition between the two states.
The Zero-Temperature String Method is highly efficient as it focuses solely on finding
the MEP without requiring the simulation of dynamic trajectories, making it faster
than methods based on full dynamical simulations. Additionally, it provides a precise
representation of the transition pathway, crucial for understanding complex reaction
mechanisms. However, the method’s success heavily depends on the initial placement
of the string and requires significant computational resources for the local optimization
of each image, which can be computationally intensive for large or complex systems.

Activation Relaxation Technique (ART) The Activation Relaxation Technique
(ART), as described in studies by Barkema and Mousseau [17, 111] is depicted in Fig.
6.1. This stochastic method is achieved through a two-step process: moving towards a
saddle point (activation), and ending at a new local minimum (relaxation).

Figure 6.1: Illustrative scheme of ART from [17].

The activation phase is a critical component of the ART where the system is driven
from a local energy minimum to an adjacent saddle point on the energy landscape. This
phase is initiated by perturbing the system slightly to move it out of its current stable
state. The goal is to induce a controlled ascent to a higher energy state, which represents
a transition state between different configurations. In practical terms, the activation
process begins by selecting an atom or a group of atoms and randomly displacing them
from their equilibrium positions. The method employed to find this direction involves
calculating the force acting on atoms and modifying it so that the system ascends
energy gradients instead of descending them, which is the typical behavior in energy
minimization techniques. This modified force vector propels the system upwards on the
energy landscape, effectively inverting the usual dynamics that seek energy minima.

The relaxation phase follows the activation phase where, after reaching or approach-
ing a saddle point, the system is allowed to relax towards directions where the energy
decreases. This process helps the system to follow a downhill path that ideally leads to



106 CHAPTER 6. A STOCHASTIC APPROACH FOR TPS

a new energy minimum, thus confirming whether the explored path constitutes a valid
transition between conformers.

ART’s ability to explore high-energy regions of the energy landscape and locate
transition states makes it a powerful tool for studying the kinetics and mechanisms of
transformations and reactions in complex materials.

Transition-based Rapidly-exploring Random Trees (T-RRT) The stochastic
technique, T-RRT algorithm, is a variant of the well-known RRT (discussed in Chapter
1) and permit the identification of transition paths [44, 43, 92, 93]. Unlike traditional
RRT, T-RRT incorporates a transition test that guides the expansion of the tree toward
energetically favorable regions. This transition test is based on the Metropolis crite-
rion, which is crucial for accepting new nodes into the tree structure. The acceptance
probability of a new node, represented by the following equation, reflects this criterion:

pij =

exp
(
−Ej−Ei

kBT

)
, if Ej > Ei

1, otherwise
(6.6)

Here, Ei and Ej denote the energies of the parent node and the newly proposed child
node, respectively, kB is the Boltzmann constant, and T symbolizes a temperature-
like parameter used to control the acceptance rate of new nodes. This parameter is
crucial as it allows the algorithm to occasionally accept higher-energy states, facilitating
the exploration of energy barriers and avoiding traps in local minima. Notably, the
temperature T is not an actual physical temperature but a tunable parameter within
the algorithm. In the context of this implementation, adjustments to T occur only when
Ej exceeds Ei. The adjustment is governed by:

Tnew =

T · 2−
Ej−Ei

energyRange if pij > 0.5
T · 2Trate otherwise

(6.7)

where Trate is a parameter influencing the rate at which the temperature increases.
energyRange is equal to the maximum value between one and the difference between the
threshold energy (an user parameter) and the lowest value found during the exploration.
This dynamic adjustment of T enhances the algorithm’s ability to adaptively explore
the PES.

6.1.2 Trajectory comparison and clustering

Among the methods used to identify the possible paths, some techniques are stochastic,
resulting in several pathways connecting a conformation to another. This necessitates
the use of a clustering method to group similar trajectories and identify the classes
of possible paths. Clustering is a fundamental technique in data analysis that groups
similar data points together based on a defined metric or similarity measure. In the
context of trajectory analysis, clustering methods are used to group similar trajectories
together, allowing for the identification of common patterns. Most clustering methods
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require a distance metric, or at least a similarity measure. Distances and clustering
methods presented in this Chapter are detailed from the article “Review and Perspective
for Distance-Based Clustering of Vehicle Trajectories” by Besse et al. [20].

6.1.2.1 Distance metrics or similarity measures

A trajectory can be define as a set of points in the configuration space, and the notion
of time is not considered in the trajectories defined here. Indexes defined the order of
the points in the trajectory, which can be noted as:

T i = {si1, si2, . . . , sin} (6.8)

where sik is a k-th line segment between configurations pik−1 and pik of the trajectory
i. The distance between two trajectories T i and T j is noted as D(T i, T j). Note that
distances presented bellow do not respect all the properties of a metric: symmetry,
triangle inequality or identity of indiscernibles.

Dynamic Time Warping (DTW) The Dynamic Time Warping (DTW) distance
[19] is a widely used metric for comparing time series data, including trajectories and
is part of warping based distances. This method aligns two sequences by stretching or
compressing them in indexes to find the optimal match. A method to solve this problem
is to define a ni × nj grid G. Each cell of the grid gk,l is defined by the pair (pik, p

j
l ).

Then a warping path W = w1, w2, . . ., w|W | crossing G is defined as:

w1 = g1,1,

w|W | = gni,nj ,

if wk = gki,kj
, then wk+1 = (gki+1,kj

or gki,kj+1 or gki+1,kj+1)
(6.9)

A warping distance is computed by minimizing a cost function between each pair of
points defining the warping path. The DTW distance between two trajectories T i and
T j is defined as:

D(T i, T j) = minW

 |W |∑
k=1

δ(wk)

 (6.10)

where W is the warping path and δ(wk) is the cost function which can be the Euclidean
distance between two points pik and pjk.

DTW is particularly useful for comparing trajectories with different lengths as it can
account for variations in the index dimension. However, the computational complexity
of DTW can be high, especially for large datasets, which may limit its applicability in
certain scenarios.

Haussdorf distance The Haussdorf distance is a metric used to compare two sets of
points in a metric space. It is defined as the maximum distance between a point in one
set and its closest point in the other set (see Fig. 6.2) and is defined as:
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Haus(X,Y ) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

(6.11)

where X and Y are two spaces and d(x, y) is the distance between two points x and y.
The distance could have multiple definitions depending on the context. In the context

Figure 6.2: Haussdorf distance between two spaces. The distance between the two spaces
is the maximum distance between a point in one space and its closest point in the other
space.

of trajectories and considering the monotonicity of segments defining the trajectory, the
distance between a point p1

i of the trajectory T 1 and a segment s2
i2 of the trajectory T 2

(see Fig. 6.3) is defined as:

Dps(p1
i1 , s

2
i2) =

{
‖p1
i1p

1,proj
i1

‖2 if p1,proj
i1

∈ s2
i2 ,

min(‖p1
i1p

2
i2‖2, ‖p

1
i1p

2
i2+1‖2) otherwise. (6.12)

where p1,proj
i1

is the projection of p1
i1 on the segment s2

i2 and p2
i2 and p2

i2+1 are the two
points defining the segment s2

i2 . The Haussdorf distance between two trajectories T 1

and T 2 is defined as:

DHausdorff(T 1, T 2) = max
{
Haus(T 1, T 2), Haus(T 2, T 1)

}

= max


max i1∈[1..n1]

j2∈[1..n2−1]
Dps(p1

i1 , s
2
j2),

maxj1∈[1..n1−1]
i2∈[1..n2]

Dps(p2
i2 , s

1
j1)


(6.13)
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Figure 6.3: Distance between a point p1
i and a segment s2

i2 .

where n1 and n2 are the number of points in the trajectories T 1 and T 2 respectively.
The Haussdorf distance is particularly useful for comparing trajectories that may have
different lengths or shapes, as it captures the maximum separation between the two sets
of points. The main trouble enlighted by [20] is that the Haussdorf distance does not
take into account the global shape of the trajectories, and is sensitive to the noise in the
trajectories.

Frechet distance The Frechet distance [66] is a metric used to compare two curves
in a metric space. It can be defined informally as "the minimum length of a leash that
allows a dog and its owner to traverse their respective paths simultaneously, with the
dog on one curve and the owner on the other" (see Fig. 6.4). Using the monotonous

Figure 6.4: Frechet distance between two trajectories T 1 and T 2.
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property of a segment, the Frechet distance between two segments is defined as:

DFrechet(s1
i1 , s

2
i2) = max

{
Dps(p1

i1 , s
2
i2), Dps(p1

i1+1, s
2
i2),

Dps(p2
i2 , s

1
i1), Dps(p2

i2+1, s
1
i1)

}
= εi1,i2 .

(6.14)

Then the Frechet distance between two trajectories T 1 and T 2 is computed by looking
at every pairs of segments between T 1 and T 2, and finding the minimum value of ε.

One Way Distance (OWD) The One Way Distance (OWD) [110] between a tra-
jectory T i and a trajectory T j is defined as the integral of the distance from points of
the piece wise linear representation of T ipl to T

j
pl divided by the length of the trajectory

T ipl:

DOWD(T i, T j) = 1
nipl

∫
pi∈T i

pl

Dpoint(pi, T j)dpi (6.15)

where Dpoint(pi, T j) is the distance between a point pi and the trajectory T j so that:

Dpoint(p, T ) = min
q∈Tpl

‖pq‖2. (6.16)

The OWD is not symmetric, but can be symmetrized by taking the mean of the OWD
between T i and T j and the OWD between T j and T i:

DSOWD(T i, T j) = 1
2
(
DOWD(T i, T j) +DOWD(T j , T i)

)
. (6.17)

This distance still does not satisfy the triangle inequality, and is time consuming.
The Symmetrized OWD is particularly useful for comparing trajectories with different
lengths and shapes.

Symmetrized Segment-Path Distance (SSPD) The Symmetrized Segment-Path
Distance (SSPD) [20] is a similarity measure that consider the entire shape of the tra-
jectories. The definition of the distance between a point and a segment is the same as
the equation 6.12. Then the distance between a point p1

i1 of the trajectory T 1 and the
trajectory T 2 is defined as:

DpT (p1
i1 , T

2) = min
i2∈[0,...,n2−1]

Dps(p1
i1 , s

2
i2) (6.18)

where n2 is the number of points in the trajectory T 2. With this definition, the Segment-
path distance (see Fig. 6.5) from a trajectory T 1 to a trajectory T 2 can be defined as
the mean of all distances from points of the trajectory T 1 to the trajectory T 2:

DSPD(T 1, T 2) = 1
n1

n1∑
i1=1

DpT (p1
i1 , T

2) (6.19)
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where n1 is the number of points in the trajectory T 1. The SPD is not symmetric, but
can be symmetrized by taking the mean of the SPD between T 1 and T 2 and the SPD
between T 2 and T 1:

DSSPD(T 1, T 2) = 1
2
(
DSPD(T 1, T 2) +DSPD(T 2, T 1)

)
. (6.20)

In the article of Besse et al. [20], the SSPD is presented as the most efficient distances
to compare trajectories, based on criteria such as comparaison of the entire shape of
trajectories, less sensibility of the noise or acceptable computational time.

Figure 6.5: Segment-Path Distance (SPD) between two trajectories T 1 and T 2.

6.1.2.2 Clustering method

The clustering methods [3] has to be chosen according to the distance used to com-
pare the trajectories. Some of the presented distances are not metric, so the clustering
methods has to be compatible with this kind of distance. For example, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [32] is based on the nearest
neighbor algorithm and necessitate a metric. For the clustering of trajectories using the
SSPD as a similarity measure, the Hierarchical Clustering analysis (HCA) is a suitable
method. HCA is a method designed to hierarchize elements based on their distance.
Two strategies exist to construct the hierarchy of clusters: agglomerative and divisive.
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In the agglomerative strategy (Fig. 6.6a), each element starts in its own cluster and
is successively merged with the closest cluster. In the divisive strategy (Fig. 6.6b), all
elements start in the same cluster and are progressively separated.

(a) HCA agglomerative strategy.

(b) HCA divisive strategy.

Figure 6.6: Illustration of Hierarchical Clustering Analysis.

The distance between trajectories and clusters should be distinguished. For example,
in the Figure 6.6a, a distance defined by SSPD for example could be defined between
elements B and C. But a method has to be established to have the distance between
the cluster formed by A and the cluster formed by B and C. Several algorithms were
designed to perform this task, including single linkage, complete linkage, average linkage,
centroid linkage and Ward’s method [119]. These algorithms differ in how they calculate
the distance between clusters and how they merge clusters during the clustering process.
For example, the single linkage algorithm calculates the distance between two clusters as
the minimum distance between any two elements in the two clusters, while the complete
linkage algorithm calculates the distance as the maximum distance between any two
elements in the two clusters. The choice of the clustering algorithm depends on the
nature of the data and the desired outcome of the clustering process.
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6.2 Methods

The identification of low-energy conformations, between which transition paths will be
searched, is achieved through the IGLOO/DFTB coupling, as detailed in Chapter 2.
From these minima, a method is proposed to generate transition paths between them
as presented in Fig. 6.7.

Figure 6.7: Workflow of the method.

T-RRT exploration: Firstly, the T-RRT algorithm is employed to identify poten-
tial transition pathways between two low-energy conformations. As explained in the
transition path search algorithms section, the T-RRT will generate several trajectories
connecting the minima. Parameters such as the temperature (which will be specified in
the results section) are set to obtain paths following as much as possible the low energy
regions of the PES. The exploration algorithm used is an Anytime version of the T-RRT
who continue to optimize the graph until a stopping criterion is reached. The time of
exploration is the criterion stopping this step. The result of this step is not a tree,
which give a direct solution between the initial and final states but a graph with several
paths connecting the two states. A path connecting differents states has to be extracted
using Dijkstra’s algorithm [22]. This algorithm focuses on finding a path in the graph
that minimizes a cost function. The trajectories obtained are then differentiated using
a similarity measurement method.

Similarity measure with SSPD: Subsequently, a similarity measure is required to
differentiate the trajectories. The SSPD is the chosen similarity measure as it strikes
an optimal balance between the global shape of the trajectories and local differences,
while also offering a better performance in terms of computation time compared to other
presented distances. It should be noted that conformations are defined by their dihedral
angle values. As detailed in Equation 6.12, a distance between points of the trajectories
must be established (a point here is a conformation). In order to achieve this, the
root mean square deviation (RMSD) is employed to compute the distance between two
points, with the following definition:

RMSD =

√√√√ 1
N

N∑
i=1

(
θ1
i − θ2

i

)2 (6.21)

where θ1
i and θ2

i are the dihedral angles values of the conformations 1 and 2 respectively
and N is the total number of dihedral angles in the conformations.
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As detailed in equation 6.12, a projection from a point (p1
i ) of the trajectory 1 to a

segment (s2
i ) of the trajectory 2 is required. For this purpose, an interpolation between

the two points defining the s2
i is performed to obtain the projection.

Clustering using HCA: A HCA is performed on the generated trajectories to obtain
the class of trajectories from the exploration. The HCA can be performed using a variety
of algorithms, as previously described. The available algorithms in the Python scikit-
learn library used, include single linkage, complete linkage, average linkage, centroid
linkage, and Ward’s method [119]. In order to determine the optimal number of clusters
and to analyze the quality of clustering for each algorithm, it is necessary to define both
intra and extra-cluster variances. However, these variances are not readily available for
trajectories defined in this manner. As developed in the article [20], a Between-Like and
the Within-Like criteria can be defined as:

BC =
K∑
k=1

D(T ex, T exCk
)

WC =
K∑
k=1

1
|Ck|

∑
Ti∈Ck

D(T exCk
, T i)

(6.22)

where |Ck| is the cardinality of the cluster Ck (the number of elements of the cluster), BC
defined the Between-Like criterion andWC the Within-Like criterion. The BC criterion
is defined to characterize the distribution between each cluster; thus, the objective in this
study is to have the most distinct clusters. The WC criterion is defined to characterize
the distribution within a cluster. The objective of this study is to define clusters having
the most similar elements inside. T ex represent the examplary trajectory, which is
defined as the closest trajectory of a set of trajectories. As an example, for the cluster
Ck in the set of trajectories T , an examplary trajectory could be defined as:

T exCk
= min

T i
Ck

i∈[0...nCk ]


nCk∑
j=1
j 6=i

D(T i, T j)

 (6.23)

The application of these criteria allows for the determination of the number of clus-
ters and the selection of the most appropriate linkage method, by comparing their
performance on these variances. Subsequently, the class of clusters is identified.

NEB local optimization: The exemplary trajectory of each cluster is used to
initialize a NEB calculation. This method is implemented in the deMonNano code
[131]. The NEB calculation is used to refine the transition path between the two low
energy conformations. Using the exemplary trajectory as input has the advantage of
providing a good first guess for the NEB calculation, which may facilitate convergence.
Note that this part is still under development and will not be discussed in the results
section.
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6.3 Results

As a first demonstration of the proposed methodology, the approach outlined in the
preceeding section was employed to analyze the alanine dipeptide, which was previously
discussed in the Chapter 2. A T-RRT exploration on two low energy conformations was
conducted with an initial temperature of 20 K and a temperature rate of 0.1. These
parameters were empirically defined in order to ensure optimal growth of the tree in a
reasonable time frame and to converge to paths with the lowest energy possible. The
SSPD distance was calculated for each of the 100 paths generated by the T-RRT algo-
rithm. This number of paths was selected to have an acceptable computational time
and to ensure that every possible low-energy path has been represented. Based on these
trajectories, a HCA was performed.
The BC and WC criteria were computed and yielded the following results in Fig. 6.8.
Usually, the sum of the intra and inter-cluster variance is constant. But the sum of the
described criteria BC and WC is not constant, which is why each of these criteria is
presented.
As can be observed, the single linkage algorithm exhibits a faster convergence than

Figure 6.8: Quality evaluation of the clustering method. The legend detailed the algo-
rithm used to perform the HCA.

other algorithms to a low Within-Like criterion, making it the better algorithm for per-
forming the HCA. This difference is not particularly pronounced, and results may vary
with larger chemical systems. A plateau is observed around 4 clusters, as can be seen
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in the bottom of Figure 6.8. After this number of clusters, the Within-Like criterion
does not exhibit a significant decrease. This analysis indicates that the clustering on the
T-RRT paths for the alanine dipeptide will be based on four clusters using the single
algorithm.
The HCA using a single linkage algorithm is performed and clustering results are pre-
sented in Fig. 6.9. The method was successful in grouping the paths into four distinct

Figure 6.9: Transition paths of alanine dipeptide using a single linkage.

clusters, each representing a different transition pathway between the two low-energy
conformations. Every cluster passes through a low-energy region to connect each mini-
mum, with the exception of cluster 3, which appears to only traverse a relatively high-
energy region. This path could be readily avoided by reducing the temperature of the
T-RRT algorithm if necessary. This class is of interest as a test case for the clustering
procedure, which is designed to split these types of paths into different clusters.

For each cluster, the examplary trajectory (define in the method section) is presented
in the Figure 6.10. As the number of points/conformations are not the same between
each trajectory, an interpolation is made for this figure. Although all the paths have
different shapes, each seems to reach a maximum energy level with a close value. As
discussed above, the trajectory for the cluster 3 passes only through a high-energy region,
which is not ideal. The trajectory from the cluster 0 passes through two energy barriers
and and go through a local minimum, which is identified in most studies of the alanine
dipeptide PES [82]. Trajectories from cluster 1 and 2 exhibit a similar shape, with a
local minimum close to the start or close to the end for cluster 1 and 2, respectively.
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Figure 6.10: Exemplary trajectory of each cluster.

6.4 Conclusion

This work presents methods for exploring the PES and identifying transition paths
between low-energy conformations, as well as for identifying saddle points on a PES.
Some of the algorithms presented for identifying transition paths are stochastic, and
can produce a large number of potential pathways. To analyze the results from multiple
runs of these algorithms, a similarity measure is required to compare the paths, and
several distances are presented. Then, a clustering method must be used to define the
class of trajectories. The Hierarchical Clustering Analysis was presented as a suitable
method for defining classes of trajectories. A methodology was proposed combining
T-RRT exploration, SSPD as a similarity measure and HCA as clustering method to
identify low energy paths between two conformations on the alanine dipeptide PES.
Following the successful testing of this methodology on a test case, further research
will be conducted to test more complex systems, specifically the phthalate molecule
presented in Chapter 3. Another objective is to refine the representative paths of each
trajectory class through the use of NEB calculations.
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7.1 General Conclusions

Several topics have been discussed in this thesis. All of them are connected by a main
theme, the exploration of high-dimensional spaces for molecular study and modeling.
In Chapters 2, 4, and 6, three distinct algorithms have been presented for exploring
spaces. These are the conformational space, which represents the different geometries
accessible for a molecule; the molecular space, which represents the diversity of molecules
available in a family; and the transition path space, which represents the paths connect-
ing different states. These algorithms serve distinct purposes, but they are linked to each
other, as the output of one can be used as input for another. In Chapters 3, 5, and 6,
these algorithms have been applied to diverse molecules, including a benchmark molecule
(alanine dipeptide), environmental pollutants (phthalates), and structures that can be
found in the ISM (substructure units of hydrogenated amorphous carbon polymer).

7.1.1 Global exploration of energy landscapes

The combination of IGLOO and DFTB allows for a non-redundant exploration of PES
at a relatively high level of theory, representing a promising approach to investigate
the conformational space of molecules. The method was shown to be able to explore
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the PES of the alanine dipeptide, and of phthalate molecules. The well-known main
minima were found for the alanine dipeptide, used here as a simple example to test
the method. Then, the coupling was used to explore the conformational PES of three
molecules representative of the phthalate family: BBP, DBP and DEHP. The selection
of these molecules was driven by their notable impacts on human health. Our findings
indicate distinct conformational landscape characteristics for these molecules, despite
their structural similarities and comparable molecular sizes. The analysis of structural
excitation energy spectra revealed distinct distributions, indicating that despite simi-
larities in their chemical composition, these molecules exhibit notable differences. DBP
demonstrated distinct peaks within its spectrum, suggesting a ordered set of low energy
conformations. In contrast, DEHP displayed a continuous spectrum, indicating a close-
energy state arrangement, while BBP exhibited intermediate characteristics, blending
traits of both DBP and DEHP.

To rationalize these differences, we employed descriptors based on specific molecular
distances and dihedral angles. The structural stability of DBP’s lower-energy configura-
tions appears to be predominantly influenced by oxygen-oxygen Coulomb interactions.
For BBP, conformations were observed where the positively charged hydrogen atoms
of the butyl side-chain are oriented towards the negatively charged aromatic carbon
atoms, enhancing Coulomb interaction stability. DEHP’s extended and branched side-
chains introduce steric hindrance and dispersive interactions, leading to a competitive
landscape among numerous isomers.

These interactions shape the geometric characteristics of the phthalate molecules,
resulting in distinct peaks for DBP and BBP, or a broader spectral feature for DEHP
in their respective O-O and C-O distances distribution plots. Furthermore, a significant
correlation was observed between the two dihedral angles defining the side-chain orien-
tations across all three molecules, underlining the complex interplay of forces shaping
their energy landscapes.

7.1.2 Large-scale generation of atomistic models of aromatic hydro-
carbons

A novel algorithm has been developed for the large-scale generation of atomistic mod-
els, focusing on hydrogenated amorphous carbon (a-C:H) structures. Using the SMILES
formalism, the approach provides flexibility and efficiency in generating molecular struc-
tures that adhere to specific chemical constraints.

The algorithm ensures structural integrity (by removing 3D structures with incorrect
connectivity) and optimizes geometry to minimize atomic collisions. The comprehensive
database of a-C:H structures, characterized by their geometric and electronic descriptors,
provides deep insight into the relationship between molecular geometry and electronic
properties. The structures of the database exhibit a wide range of shapes and specific
families. For instance, a family could be those with isolated rings and a higher HOMO-
LUMO gap. These results illustrate the database potential for further scientific studies.
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7.1.3 Transition paths sampling

A new strategy was proposed to generate and analyze multiple potential pathways con-
necting different minima on the PES. It relies on T-RRT for the transition path sampling.
This particular approach uses the SSPD as a similarity measure to effectively manage
and categorize the complex array of trajectories generated during the exploration. HCA
is then applied to classify these trajectories, ensuring a systematic approach to under-
standing pathway similarities and differences.

This integrated methodology has been successfully applied to identify low-energy
paths between conformational states of the alanine dipeptide on its PES, demonstrating
its ability to accurately delineate transition paths. An automatic scheme has been de-
veloped to discriminate between different generated paths for this system. As observed,
these trajectories have differents shapes, but a maximum energy state at a similar level.
Moreover, these trajectories have yet to be further refined through the application of a
NEB method.

7.2 Perspectives

Perspectives remain to enhance the exploration and develop new ideas. The perspectives
for this thesis are both in terms of application and methodology.

7.2.1 Extending the global exploration: environmental effects and new
chemical systems

The global exploration scheme based on the IGLOO/DFTB coupling has been applied to
phthalate molecules in the gas phase. To obtain properties comparable to experimental
data on environmental problems, a study has to be performed in a solvent such as water,
and possibly with multiple structures. A QM-MM explicit solvent raises the question
of how to organize it in the simulation box to have relevant properties. On the other
hand, an implicit solvent on the DFTB potential raises the question of the quality of
the added potential. Both options could be considered to address this problem. For
the multistructure problem, an exploration scheme has to be defined to handle not only
intermolecular but also intramolecular displacements.
Another perspective is the extension of the method to other chemical systems. It is
important to note that this method can be applied to several molecules, although few
have been tested that are particularly relevant. The coupling was used to molecules from
the azine family, but the results were not conclusive, due to non-physics behavior with
the DFTB potential of the carbon-nitrogen bond. Another possible application is on
the Tamoxifene, which is a drug used to treat breast cancer. The tools developed in this
thesis can allow for a fast selection of the most relevant structures and their electronic
and structural properties can be used to build chemical databases of polluting molecules.
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7.2.2 Exploring the a-C:H substructures and extending to other
molecular compositions

After having obtained both geometric and electronic properties of a-C:H substructures
units, infrared spectra is the next step, but the computational time to generate many
spectra is long. This work is still under development. Furthermore, the variations be-
tween the spectra of each structure will be examined using previously defined descriptors
to understand the impact of geometric or electronic changes on the IR spectra. In addi-
tion, the algorithm and the database need to be published so that the community can
use them.
Future work could be done on two different parts: the generation algorithms and the
properties obtained from the database. The generation algorithm could be extended to
other molecules by adding more fragments to the algorithm and changing the functional
group based constraint. This change would be easy to make, but required a testing phase
to ensure that the connectivity of each atom is respected. This topic is interesting for
other fields that require a database of structures, such as protein or ligand databases.
The database may be utilized as a training set for machine learning algorithms with
the objective of predicting the properties of a-C:H substructures. For example, the IR
spectrum could be employed as a training set for a model capable of predicting the IR
spectrum of novel a-C:H structures.

7.2.3 Developments of the transition paths method

Based on the methodology already developed for the generation of transition paths,
two options are now possible: (i) the application to more complex systems such as the
minima of the phthalate family, and (ii) the use of the generated paths as input to an
NEB calculation as a better input than the "straight line" between the minima. This
last point could be interesting as the stochastic nature of the T-RRT could lead to
different paths that NEB wouldn’t be able to find if it is simply initialized from a linear
interpolation between the initial and final states (as usually done).
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A.1 Introduction

Un défi de taille dans le domaine des systèmes atomiques et moléculaires est d’acquérir
une compréhension plus approfondie de leurs propriétés fondamentales. Ce défi est
d’autant plus important que les systèmes étudiés deviennent de plus en plus com-
plexes et que la nécessité d’une exploration efficace de leur paysage énergétique pour
prédire leur comportement dans divers environnements physiques et biologiques aug-
mente. Ce chapitre présentera les principaux concepts développés dans cette thèse afin
de répondre au problème posé et de contextualiser les méthodes de l’état de l’art. Un
cadre théorique sera développé pour introduire le concept de structures électroniques
et définir les équations de Schrödinger et l’approximation de Born-Oppenheimer. En-
suite, les méthodes d’énergie potentielle seront présentées, chaque méthode traitant de
problèmes différents et variant principalement en termes de précision et d’efficacité. En-
fin, des méthodes d’exploration globale seront introduites pour illustrer la diversité des
techniques disponibles pour étudier la surface d’énergie potentielle (SEP).
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A.2 Modélisation atomistique/moléculaire et structure
électronique

Les atomes sont composés d’un noyau contenant des protons et des neutrons, entouré
d’électrons. La disposition des électrons dans les orbitales détermine les propriétés
chimiques de l’atome et ses interactions avec d’autres atomes. Les propriétés des atomes
et des molécules sont régies par les lois de la mécanique quantique, qui décrivent le
comportement des particules aux niveaux atomique et subatomique. Les principes de la
mécanique quantique fournissent un cadre pour comprendre la structure des atomes et
des molécules, la nature des liaisons chimiques et les interactions entre les molécules.

Les molécules sont composées de deux ou plusieurs atomes reliés entre eux par des
liaisons chimiques. L’arrangement spécifique des atomes au sein d’une molécule déter-
mine sa forme et ses propriétés. Les molécules présentent un large éventail de propriétés
et de comportements, qui dépendent de leur composition, de leur structure et de leurs
interactions. La compréhension des caractéristiques des molécules est essentielle pour
prédire leur comportement et leurs propriétés dans divers processus chimiques.

A.2.1 Équation de Schrödinger

En 1926, Erwin Schrödinger, physicien autrichien, a introduit une fonction d’onde qui
décrit comment l’état quantique d’un système physique change au fil du temps [139].
La formulation de l’équation de Schrödinger est l’une des principales réalisations dans le
domaine de la chimie quantique. Cette équation est l’un des postulats les plus importants
de la mécanique quantique et a joué un rôle crucial dans notre compréhension du monde
subatomique.

L’équation de Schrödinger dépendante du temps s’écrit :

i~
∂

∂t
Ψ(R, r, t) = ĤΨ(R, r, t) (A.1)

où ~ est la constante de Planck réduite, ~ = h
2π , h est la constante de Planck égale

à 6.62607015.10−34 J.s., i est l’unité imaginaire, Ψ(R, r, t) est la fonction d’onde du
système, qui contient des informations sur la position du noyau R, des électrons r et du
temps t, et Ĥ est l’opérateur hamiltonien, associé à l’énergie totale du système. Dans
le cas particulier des systèmes en état stationnaire, c’est-à-dire ceux dont les propriétés
ne varient pas dans le temps, les variables temporelles et spatiales sont séparées. La
fonction d’onde d’état (fonction propre) est définie comme :

Ψ(R, r, t) = e−i
Et
~ ψ(R, r) (A.2)

ψ(R, r) représentent la contribution spatiale à la fonction d’onde et peuvent être obtenus
en résolvant l’équation de Schrödinger indépendante du temps. Cette équation s’écrit:

Ĥψ(R, r) = Eψ(R, r) (A.3)
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L’opérateur hamiltonien joue un rôle central dans l’équation, dictant la dynamique du
système en définissant le paysage énergétique dans lequel le système évolue.

Sous cette forme, l’opérateur hamiltonien appliqué à la fonction d’onde ψ(r) est égal
à l’énergie E du système multipliée par la fonction d’onde. L’opérateur hamiltonien
est la somme de l’opérateur cinétique et des termes d’énergie potentielle, et est défini
comme:

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn (A.4)

où e et n désignent respectivement les composantes électronique et nucléaire, et les in-
dices indiquent le type d’interaction (électron-électron, électron-noyau et noyau-noyau).
Les termes d’énergie cinétique T̂e et T̂n sont les opérateurs associés aux énergies ciné-
tiques des électrons et du noyau. Les termes d’énergie potentielle V̂ee représentent
l’interaction de Coulomb répulsive entre les électrons, V̂en l’interaction de Coulomb at-
tractive entre le noyau et les électrons et V̂nn l’interaction de Coulomb répulsive entre
les noyaux. En définissant un système de particules avec N électrons et M noyaux, les
cinq termes de l’hamiltonien (Eq. A.4) en unités atomiques (~ = me = e = c = 1)
peuvent être écrits :

T̂e = −1
2

N∑
i=1
∇2
i (A.5)

T̂n = −1
2

M∑
A=1

1
MA
∇2
A (A.6)

V̂en = −
N∑
i=1

M∑
A=1

ZA
riA

(A.7)

V̂ee =
N∑
i=1

N∑
j>i

1
rij

(A.8)

V̂nn =
M∑
A=1

M∑
B>A

ZAZB
RAB

(A.9)

où riA est la distance entre le i-ième électron et le A-ième noyau, rij est la distance
entre le i-ième et le j-ième électron, RAB est la distance entre le A-ième et le B-ième
noyau, ZA est le numéro atomique du A-ième noyau et MA est la masse du A-ième
noyau. Enfin, l’opérateur laplacien ∇2 est défini en coordonnées cartésiennes comme
∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
En pratique, il est impossible de résoudre analytiquement l’équation de Schrödinger pour
les systèmes comportant plus d’un électron. C’est pourquoi des méthodes numériques
combinées à des approximations sont utilisées pour résoudre cette équation.

A.2.2 Approximation de Born-Oppenheimer

En 1927, Max Born et Robert Oppenheimer ont introduit l’approximation de Born-
Oppenheimer, qui simplifie l’équation de Schrödinger en traitant les mouvements élec-
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troniques et nucléaires comme des variables indépendantes [28]. La masse du noyau
est beaucoup plus importante que la masse des électrons (mp ≈ 1836me), ce qui rend
le mouvement électronique beaucoup plus rapide que le mouvement du noyau, ce qui
conduit à une séparation des variables pour décrire les mouvements électroniques et nu-
cléaires. En conséquence, la fonction d’onde électronique peut s’ajuster instantanément
aux changements de positions du noyau, et les électrons se déplacent dans un champ
potentiel généré par le noyau. La fonction d’onde totale peut être écrite comme un
produit des fonctions d’onde électronique et nucléaire :

Ψ(r,R) = ψn(R)ψe(r; R) (A.10)

où ψn(R) est la fonction d’onde nucléaire, et ψe(r; R) est la fonction d’onde électronique
qui dépend paramétriquement des coordonnées nucléaires. Le problème électronique
peut être résolu indépendamment du mouvement nucléaire. À une position donnée
des noyaux, le problème électronique peut être obtenu en résolvant une équation de
Schrödinger indépendante du temps pour les électrons uniquement :

Ĥeψe(r; R) = Ee(R)ψe(r; R) (A.11)

où Ee est l’énergie électronique et l’opérateur hamiltonien électronique est donné comme
suit :

Ĥe = T̂e + V̂ee + V̂en (A.12)

Notez que la résolution de l’équation A.11 conduit à plusieurs solutions correspondant à
différents états électroniques. Dans de nombreux cas, et en particulier dans la suite de
cette thèse, seule la solution correspondant à la valeur propre la plus basse en énergie
est considérée, également appelée état fondamental électronique. La dynamique des
noyaux est gouvernée par l’énergie potentielle obtenue en ajoutant la répulsion nucléaire
à l’énergie électronique :

E(R) = Ee(R) + V̂nn (A.13)

Selon l’équation A.13, l’énergie potentielle du système peut être calculée pour une con-
figuration nucléaire donnée. Cette approximation simplifie l’équation de Schrödinger en
réduisant le nombre de variables et permet de définir une surface d’énergie potentielle
qui décrit le paysage énergétique du système chimique. En plus de la première approxi-
mation, les noyaux sont souvent considérés comme des particules classiques (particules
ponctuelles). Ils peuvent donc être traités à partir de la loi de Newton en utilisant les
SEP définis dans l’équation A.13.

A.3 Énergie potentielle

Pour calculer l’énergie potentielle d’un système, plusieurs méthodes ont été développées
dans le domaine de la chimie computationnelle, variant en complexité et en précision
comme présenté dans la figure A.1. Le choix de la taille de système atteignable avec la
méthode et le coût de calcul sont corrélés, de sorte que seul le niveau de précision requis
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et le coût de calcul doivent être déterminé. La section suivante présente les principales
méthodes utilisées pour le calcul de l’énergie potentielle d’un système, y compris celles
basées sur les fonctions d’onde, ainsi que la Density functional theory (DFT), la Density
Functional Tight Binding (DFTB), les champs de force (FF) et le coarse-graining (CG).

Figure A.1: Échelle d’énergie potentielle.

A.3.1 Méthodes basées sur la fonction d’onde

La méthode Hartree-Fock (HF) [13, 81, 146, 61, 60] est une approche de champ moyen
dans laquelle les électrons sont supposés évoluer indépendamment dans un potentiel ef-
fectif façonné à la fois par les noyaux et l’ensemble des électrons. La méthode approxime
la fonction d’onde multi-électronique totale du système comme un produit de fonctions
d’onde mono-électroniques. Le schéma de calcul implique la résolution d’un ensemble
de N équations de Schrödinger à une seule particule de manière autoconsistante.

Néanmoins, Fock a identifié une lacune importante dans la formulation de Hartree, à
savoir sa non-conformité avec le principe d’exclusion de Pauli. Il en résulte une fonction
d’onde qui n’est pas antisymétrique en ce qui concerne l’échange de particules. Pour y
remédier, Fock a reformulé la fonction d’onde sous la forme d’un déterminant de Slater
de fonctions à un seul électron, en incorporant les caractéristiques fermioniques des
électrons et en introduisant le terme d’énergie d’échange dans l’hamiltonien. C’est ainsi
que la méthode originale a évolué vers ce qui est aujourd’hui largement reconnu comme
la méthode Hartree-Fock.

Malgré ses contributions importantes, la méthode Hartree-Fock ne tient pas compte
de l’énergie de corrélation, c’est-à-dire de l’écart entre l’énergie mécanique quantique
exacte et l’énergie estimée par les calculs Hartree-Fock.



148 ANNEXE A. INTRODUCTION EN FRANÇAIS

A.3.2 Density functional theory (DFT)

La Density functional theory (DFT) [144, 153] a été introduite par Hohenberg et Kohn
en 1964 et développée par Kohn et Sham en 1965. La DFT est une théorie de mécanique
quantique utilisée pour étudier la structure électronique des systèmes à corps multiples,
principalement les atomes, les molécules et les phases condensées. Contrairement aux
méthodes basées directement sur la fonction d’onde, la DFT décrit un système en termes
de densité électronique plutôt que de fonction d’onde.

La DFT repose sur deux théorèmes de Hohenberg-Kohn (HK) [86] :

1. Le premier théorème HK stipule que les propriétés de l’état fondamental d’un
système à plusieurs électrons sont déterminées de manière unique par sa densité
électronique ρ(r). Cela implique que toutes les propriétés observables du système
sont des fonctionnelles de la densité électronique.

2. Le deuxième théorème HK fournit un principe variationnel pour la densité élec-
tronique. Il stipule que la fonctionnelle de l’énergie totale E[ρ] a sa valeur minimale
à l’état fondamental réel de la densité électronique du système.

Sur la base de ces théorèmes, Kohn et Sham ont développé un schéma pratique connu
sous le nom d’équations de Kohn-Sham (KS) :[

− ~2

2m∇
2 + Veff(r)

]
ψi(r) = εiψi(r), (A.14)

où ψi(r) sont les orbitales de Kohn-Sham, εi sont leurs valeurs propres correspondantes,
et Veff(r) est le potentiel effectif qui comprend le potentiel externe, le potentiel de Hartree
et le potentiel d’échange-corrélation. Le potentiel effectif s’exprime comme suit :

Veff(r) = Vext(r) + VHartree[ρ(r)] + Vxc[ρ(r)]. (A.15)

Le potentiel d’échange-corrélation Vxc[ρ(r)] est le composant le plus critique dans
les calculs DFT et incorpore tous les effets de nombreux corps. La détermination d’une
fonctionnelle précise pour Vtextxc est un domaine de recherche majeur en DFT.

La DFT est considérée comme plus précise et plus efficace que la méthode Hartree-
Fock (HF), car elle inclut intrinsèquement les effets de corrélation électronique. Elle est
largement utilisée pour calculer la structure électronique des molécules et prédire leurs
propriétés.

A.3.3 Density Functional Tight Binding (DFTB)

La Density Functional Tight Binding (DFTB) est une méthode semi-empirique qui ap-
proxime la structure électronique d’un système à l’aide d’un ensemble de base mini-
mal. La méthode DFTB a été introduite par Elstner en 1998 [55]. Elle est basée sur
l’approximation de la liaison forte, qui simplifie la structure électronique d’un système.
La méthode DFTB est un outil de chimie computationnelle populaire pour calculer la
structure électronique et prédire les propriétés des molécules. Elle est particulièrement
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efficace pour les systèmes de grande taille et intègre les effets de corrélation électronique.
Le chapitre 2 fournira une présentation plus détaillée de la méthode DFTB.

A.3.4 Force Field (FF)

Les méthodes de champ de force (FF) [105, 6] sont des approches classiques utilisées en
chimie computationnelle pour estimer l’énergie potentielle d’un système. Ces méthodes,
qui trouvent leurs racines dans la mécanique classique, utilisent les équations classiques
du mouvement pour décrire la manière dont les positions et les vitesses des particules
évoluent au fil du temps. Une méthode FF approxime l’énergie potentielle d’un système
sur la base des positions de ses atomes. Elles sont particulièrement efficaces pour simuler
de grands systèmes moléculaires en raison de leur faible temps de calcul par rapport aux
méthodes de la mécanique quantique. Cette augmentation de l’efficacité s’accompagne
d’une diminution concomitante de la précision des calculs. L’énergie potentielle U d’un
système dans la méthode du champ de force est généralement exprimée comme une
somme de contributions provenant d’interactions liées et non liées :

U = Ubond + Uangle + Udihedral + Unon-bonded, (A.16)

chaque composante étant définie comme suit :

Ubond =
∑
bonds

kbi (r − r0)2, (A.17)

Uangle =
∑
angles

kθi (θ − θ0)2, (A.18)

Udihedral =
∑

dihedrals
kφi [1 + cos(nφ− δ)], (A.19)

Unon-bonded =
∑

non-bonded pairs

[
Aij
r12
ij

− Bij
r6
ij

+ qiqj
4πε0rij

]
. (A.20)

Ici, kbi , kθi , and k
φ
i sont les constantes de force pour les longueurs de liaison, les angles

de liaison, et l’angle dièdre respectivement ; r0 et θ0 sont les valeurs d’équilibre pour les
longueurs de liaison et les angles de liaison. φ est l’angle dièdre, δ est la phase et n définit
le nombre de minima ou de maxima entre 0 and 2π. Aij et Bij sont les paramètres du
potentiel de Lennard-Jones décrivant les interactions de van der Waals, tandis que qi et
qj sont les charges sur les atomes i et j, et rij est la distance qui les sépare. ε0 est la
permittivité du vide.

L’efficacité des méthodes FF permet de simuler des milliers voire des dizaines de
milliers d’atomes en simplifiant les interactions entre atomes par l’utilisation de ressorts.
Ces méthodes sont donc indispensables pour l’étude des grandes biomolécules telles
que les protéines et les acides nucléiques. De plus, l’incorporation d’interactions non
liées, telles que les forces de van der Waals et les forces électrostatiques, permet une
représentation plus précise de la dynamique et des propriétés moléculaires.
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A.3.5 Coarsed-graining (CG)

La méthode Coarsed-graining (CG) est une approche utilisée pour approximer l’énergie
potentielle d’un système en réduisant le nombre de degrés de liberté. L’approche CG
est basée sur le concept d’interactions effectives, qui simplifie le paysage énergétique du
système en regroupant les particules en gros grains. Cette méthode est largement utilisée
en chimie informatique pour calculer l’énergie potentielle des molécules et prédire leurs
propriétés. La CG est plus efficace que les méthodes atomistiques en termes de taille
maximale du système qui peut être simulé dans un délai convenable pour les grands
systèmes. Cet avantage est à mettre en perspective avec la perte de précision.

Le principal avantage de la méthode de Coarsed-graining est sa capacité à capturer
les propriétés physiques essentielles d’un système tout en omettant les détails fins qui
n’affectent pas de manière significative le comportement global. En rationalisant le
modèle de calcul, les méthodes CG peuvent accélérer considérablement les calculs, ce
qui permet de simuler des phénomènes macroscopiques et d’explorer les comportements
des systèmes à des échelles impossibles à atteindre avec les approches atomistiques con-
ventionnelles.

L’élaboration d’un modèle à gros grains implique la sélection des sites à gros grains
appropriés. Les paramètres sont souvent dérivés de données expérimentales ou de sim-
ulations atomistiques de haut niveau et doivent être ajustés pour garantir que le mod-
èle CG reproduise les propriétés spécifiques souhaitées, telles que le comportement des
phases ou les coefficients de diffusion. Une fois le modèle développé, il est essentiel de le
valider et de l’affiner en comparant ses prédictions avec des résultats expérimentaux ou
des simulations plus détaillées, en procédant aux ajustements nécessaires pour améliorer
la précision et la fiabilité.

Le coarse-graining est largement appliqué à l’étude des macromolécules biologiques
telles que les protéines et les acides nucléiques [98, 137, 33], permettant aux chercheurs
d’étudier les changements de conformation à grande échelle et les interactions complexes
sur des périodes prolongées. Il s’agit également d’un outil essentiel dans la science des
matériaux, en particulier dans l’étude des polymères et des matériaux mous, où la
compréhension de la structure et de la dynamique à grande échelle est vitale.

Malgré ses nombreux avantages, le coarse-graining pose également certains prob-
lèmes, notamment la perte d’informations détaillées au niveau atomique, qui peuvent
être cruciales pour comprendre des propriétés spécifiques telles que la cinétique de réac-
tion ou les informations électroniques détaillées. En outre, le succès d’un modèle à
gros grains dépend de l’équilibre entre les détails qui sont conservés et ceux qui sont
éliminés, ce qui nécessite une connaissance approfondie du système et des techniques de
modélisation.

A.4 Méthodes d’exploration globale

L’exploration de la Surface d’Énergie Potentielle est essentielle pour obtenir des in-
formations sur les configurations les plus stables, les états singuliers ou les propriétés
thermodynamiques d’un système chimique. La SEP ou hypersurface énergétique E(R)
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est une représentation de l’énergie potentielle d’un système en fonction de sa géométrie,
qui peut être définie selon les positions atomiques ou les coordonnées internes. La SEP,
également appelée paysage énergétique, montre les configurations stables et les régions de
transition entre les différentes configurations. La SEP peut être utilisée pour déterminer
la géométrie d’équilibre d’une molécule, prédire les propriétés des molécules, simuler des
réactions chimiques et l’énergie d’activation requise pour que les réactions chimiques se
produisent. Pour illustrer le concept, cette surface peut être représentée graphiquement
sous la forme d’une surface bidimensionnelle, où l’énergie est tracée en fonction de la
géométrie du système chimique (Fig. A.2). Il convient de noter qu’en réalité, le SEP
est définie par le nombre de coordonnées du système étudié.

Figure A.2: Surface d’énergie potentielle d’une molécule.

Des états caractéristiques peuvent être définis sur la SEP, tels que les minima locaux.
Pour un tel état, chaque dérivée première de l’énergie par rapport aux coordonnées
géométriques est égale à zéro et chaque dérivée seconde est positive. Le minimum global
est la configuration la plus stable du système.

Un point de selle sur une SEP est un point critique où le gradient (dérivée première)
de l’énergie par rapport à toutes les coordonnées est nul, mais où la matrice Hessienne
(dérivée seconde) présente une signature mixte et contient à la fois des valeurs propres
positives et négatives. La présence d’au moins une valeur propre négative indique une
direction d’instabilité, ce qui distingue un point de selle d’un minimum local.

Les points selles sont classés en fonction de leur index, qui est le nombre de valeurs
propres négatives de la matrice hessienne en ce point. Cet indice détermine l’ordre du
point selle :

• Un point selle de premier ordre , souvent appelé simplement point selle, possède
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exactement une valeur propre négative. Ce type de point selle représente générale-
ment un état de transition le long d’un chemin réactionnel.

• Les points de selle d’ordre supérieur ont plus d’une valeur propre négative et
représentent des états de transition plus complexes qui peuvent impliquer des
changements simultanés dans plusieurs directions.

La compréhension de l’ordre des points de selle est cruciale pour l’analyse de la
voie et du mécanisme des réactions chimiques. Par exemple, l’identification des points
de selle du premier ordre est essentielle pour localiser les états de transition, qui sont
cruciaux pour le calcul des énergies d’activation et des vitesses de réaction.

Le calcul de l’énergie potentielle le long d’un seul degré de liberté permet de compren-
dre les propriétés d’une molécule pour une étude simple d’un système H2 par exemple.
Cependant, pour d’autres systèmes, la SEP devient plus complexes et de nombreux
bassins dégénérés peuvent exister. Dans ce contexte, l’exploration de la SEP devient
une tâche difficile car elle implique la recherche des configurations les plus stables de la
molécule et des états de transition entre les différentes configurations. Plusieurs méth-
odes ont été mises au point pour explorer une SEP. Ces méthodes englobent un large
éventail de techniques, y compris celles basées sur des méthodes Monte Carlo et de
dynamique moléculaire, des techniques d’optimisation globale, ainsi que des approches
inspirées de la robotique et dérivées de la planification de trajectoire. Les algorithmes
axés sur la recherche de chemins de transition entre les bassins d’énergie, qui sont es-
sentiels pour comprendre la dynamique des réactions chimiques et prédire les taux de
réaction/transition, seront examinés au chapitre 6.

A.4.1 Méthodes d’échantillonnage standard

Cette section présente les techniques d’échantillonnage les plus utilisées pour étudier
la SEP des molécules. La dynamique moléculaire et la méthode de Monte Carlo sont
efficaces afin d’obtenir des propriétés thermodynamiques pour les deux et des propriétés
cinétiques pour la dynamique moléculaire. Ces deux méthodes utilisent l’ensemble
canonique comme procédure d’échantillonnage.

A.4.1.1 Monte Carlo (MC)

La méthode de Monte Carlo (MC) a été développée par Metropolis et Ulam dans les an-
nées 1940 dans le but de calculer des intégrales multidimensionnelles [117]. La méthode
de Monte Carlo (MC) est une technique stochastique fondamentale utilisée pour explorer
la surface d’énergie potentielle des systèmes chimiques en échantillonnant des configu-
rations de manière aléatoire. La méthode de Monte Carlo la plus courante est celle de
Metropolis (MMC). La MMC proposée par Metropolis et al. [118] est une méthode MC
largement utilisée qui génère une séquence de configurations en acceptant ou en rejetant
les mouvements proposés sur la base du critère de Metropolis. Le critère de Metropolis
est basé sur la distribution de Boltzmann, qui stipule que la probabilité qu’un système
se trouve dans un état particulier dépend exponentiellement de son énergie. Le critère
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de Metropolis est donné par la formule suivante:

Paccept = min
(

1, exp
(
− ∆E
kBT

))
(A.21)

où ∆E est le différence d’énergie entre deux états du système, kB est la constante de
Boltzmann égale à 1.380649 10−23m2kgs−2K−1, et T est la température du système.
Le critère de Metropolis garantit que le système se déplace vers des états d’énergie plus
faibles, correspondant aux configurations les plus stables de la molécule. La méthode
MMC est largement utilisée en chimie informatique pour explorer les SEP, optimiser
les structures moléculaires et simuler les réactions chimiques. La puissance de cette
méthode réside dans sa simplicité et sa polyvalence, car elle nécessite un minimum
d’hypothèses sur le système étudié. Toutefois, cette méthode peut être inefficace si
l’échantillonnage aléatoire ne couvre pas efficacement les régions significatives des SEP.
Cette limitation est souvent atténuée par des variantes plus sophistiquées des méthodes
de Monte Carlo. L’efficacité de la technique de Monte Carlo dépend fortement du nombre
d’échantillons et de la distribution à partir de laquelle ces échantillons sont tirés. Il est
donc essentiel d’assurer une couverture large et représentative de l’espace d’état pour
obtenir des résultats précis.

A.4.1.2 Dynamique Moléculaire (DM)

La Dynamique moléculaire (DM) est un outil puissant pour étudier le comportement
dynamique des molécules en résolvant les équations classiques du mouvement des atomes
dans la molécule. Les simulations de DM sont basées sur les lois du mouvement de
Newton (Eq. A.22), qui décrivent comment les positions et les vitesses des particules
changent au fil du temps. Les équations du mouvement sont intégrées numériquement
pour simuler le mouvement des atomes dans la molécule. Les simulations de DM peuvent
être utilisées pour explorer les SEP, optimiser les structures moléculaires et simuler des
réactions chimiques.

mi
d2ri
dt2

= −∂E
∂ri

= Fi (A.22)

où mi est la masse du i-ème atome, ri est la position du i-ème atome, E est l’énergie du
système, et Fi est la force agissant sur le i-ème atome. La force agissant sur les atomes
est calculée à partir du gradient de l’énergie potentielle.
Pour modéliser le système, l’équation du mouvement doit être intégrée à l’aide de divers
algorithmes, dont la plupart sont basés sur l’expansion des séries de Taylor. L’algorithme
de Verlet est l’algorithme le plus couramment utilisé et s’exprime comme suit :

ri(t+ ∆t) = ri(t) + vi(t)∆t+ ai(t)∆t2
2

vi(t+ ∆t) = vi(t) + ∆t
2 (ai(t) + ai(t+ ∆t))

(A.23)

où ri est la position du i-ème atome, vi est la vitesse du i-ème atome, ai est l’accélération
du i-ème atome, et ∆t est le pas de temps. L’algorithme de Verlet est un intégrateur
symplectique qui conserve l’énergie et la quantité de mouvement, ce qui le rend adapté
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aux simulations à long terme des systèmes moléculaires. L’algorithme de Verlet à un
pas est exprimé comme suit :

1. Initialisation du pas ∆t, durée totale de la simulation T .

2. Initialisation des conditions initiales : t = 0, ri(0), vi(0)

3. Définition de la fonction ai

4. Tant que t < T :

(a) Calcul de ai(t)
(b) Calcul de ri(t+ ∆t)
(c) Calcul de ai(t+ ∆t)
(d) Calcul de vi(t+ ∆t)
(e) t = t+ ∆t

Chaque simulation se déroule dans des ensembles statistiques qui définissent les
quantités thermodynamiques et leurs relations. Les ensembles les plus couramment util-
isés sont les ensembles micro-canonique (NVE), canonique (NVT) et isotherme-isobare
(NPT). Dans ces ensembles, les paramètres sont maintenus constants selon la nomencla-
ture suivante : E pour l’énergie, N pour le nombre d’atomes, P pour la pression, T pour
la température et V pour le volume. Par exemple, une simulation NVT aura un nombre
d’atomes, un volume et une température constants. Des thermostats et barostats ap-
propriés, tels que Nosé-Hoover et Andersen, sont utilisés pour maintenir la pression et
la température. Toutefois, cette méthode peut s’avérer inefficace pour explorer les SEP
de systèmes complexes avec des barrières énergétiques élevées, car le système peut se
retrouver piégé dans des minima locaux. Pour surmonter cette limitation, des méthodes
d’échantillonnage améliorées ont été développées pour accélérer l’exploration des SEP
et améliorer la précision des résultats.

A.4.2 Méthodes d’échantillonnage avancées

Les méthodes d’échantillonnage avancées sont des techniques conçues pour améliorer
l’efficacité de l’exploration des SEP en surmontant les limites des méthodes
d’échantillonnage standard. Ces méthodes sont particulièrement avantageuses dans
les systèmes présentant des paysages énergétiques accidentés, où la présence de bar-
rières énergétiques élevées peut entraver la convergence des simulations. L’objectif des
méthodes d’échantillonnage avancées est d’accélérer l’exploration des SEP, d’améliorer
l’échantillonnage des événements rares et d’améliorer la précision des résultats. Ces
méthodes utilisent des potentiels biaisés, des schémas de repondération ou des algo-
rithmes avancés pour guider la simulation vers des régions importantes du paysage én-
ergétique. Les approches susmentionnées ne permettent pas l’acquisition directe des
propriétés thermodynamiques du système ; cependant, certaines méthodologies ont été
développées pour identifier ces propriétés par l’analyse et la repondération des résultats
de la simulation.



A.4. MÉTHODES D’EXPLORATION GLOBALE 155

A.4.2.1 Parallel Tempering (PT)

Le Parallel Tempering (PT), également connu sous le nom deméthode d’échange de
répliques, est une technique avancée conçue pour améliorer les problèmes d’ergodicité et
de convergence dans les simulations MC et DM. Initialement introduite par Swendsen
et Wang pour les simulations MC [152], elle a ensuite été adaptée aux simulations de
DM par Sugita et Okamoto [150], le PT est largement utilisé dans diverses études [50,
30, 151].

Le PT consiste à effectuer plusieurs simulations simultanées à différentes tempéra-
tures. Cette méthode permet aux systèmes d’échanger des configurations à intervalles
réguliers, ce qui favorise l’exploration des surfaces d’énergie potentielle en permettant
aux systèmes de surmonter des barrières énergétiques élevées qui, autrement, entrav-
eraient la convergence des simulations. Ces échanges sont régis par un critère de
Metropolis-Hastings soigneusement conçu, qui garantit que l’équilibre thermodynamique
n’est pas brisé. Le critère d’acceptation d’un échange entre les répliques i et j avec des
températures Ti et Tj est donné par :

p = min
(

1, exp
(
−∆E

(
1

kBTi
− 1
kBTj

)))
, (A.24)

où ∆E = (Ej − Ei) et Ei et Ej sont les énergies des répliques i et j, respectivement.
Le PT s’avère particulièrement efficace dans les systèmes aux paysages énergétiques

accidentés, où de nombreux minima locaux sont séparés par des barrières élevées. En
permettant aux répliques à basse température d’échanger des informations avec les ré-
pliques à température plus élevée, le PT facilite le franchissement de barrières énergé-
tiques qui seraient insurmontables aux seules températures plus basses. Ce mécanisme
améliore considérablement la capacité des simulations à trouver le minimum global et à
échantillonner avec précision les SEP.

A.4.2.2 Umbrella Sampling (US)

L’Umbrella Sampling (US) est une technique de calcul sophistiquée mise au point pour
calculer le profil d’énergie libre le long d’une coordonnée de réaction spécifiée. Introduite
par Torrie and Valleau [156], cette méthode améliore la capacité à explorer efficacement
les SEP, en particulier dans les régions qu’il est généralement difficile d’échantillonner
en raison de barrières énergétiques élevées ou de faibles probabilités d’occurrence.

Dans l’Umbrella Sampling, l’énergie potentielle du système est délibérément biaisée
le long de la coordonnée de réaction. Ce biais est obtenu par l’introduction d’un poten-
tiel supplémentaire, appelé umbrella potential, qui est conçu pour rendre les états moins
probables plus accessibles. En modifiant le paysage des SEP, l’US permet un échantil-
lonnage plus approfondi dans les régions d’intérêt, telles que les états de transition ou
les états intermédiaires dans une réaction chimique.

Le processus consiste à effectuer une série de simulations, chacune avec un potentiel
biaisé légèrement différent appliqué à un segment particulier du chemin de réaction. Les
données recueillies lors de ces simulations sont ensuite intégrées à l’aide de techniques
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telles que la Weighted Histogram Analysis Method (WHAM) [101] afin de reconstruire
le profil d’énergie libre non biaisé.

Cette méthode est largement utilisée en chimie informatique pour étudier les change-
ments d’énergie libre dans les réactions chimiques, prédire les propriétés moléculaires et
comprendre les voies biochimiques complexes.

A.4.2.3 Metadynamics

La Metadynamics est une méthode de calcul puissante conçue pour améliorer
l’exploration des SEP et faciliter le calcul des profils d’énergie libre. Introduit par
Laio and Parrinello [102], la Metadynamics utilise un potentiel de biais dépendant de
l’historique d’exploration pour éviter que le système ne soit piégé dans des minima
locaux, un défi courant dans les simulations de dynamique moléculaire.

Le mécanisme central de la Metadynamics [16] implique l’ajout périodique de poten-
tiels gaussiens à la position de l’état actuel du système dans une coordonnée de réaction
sélectionnée. Cette stratégie rend défavorable de revisiter les états précédemment échan-
tillonnés en créant une mémoire répulsive de ces états. Chaque potentiel gaussien est
caractérisé par sa largeur et sa hauteur, qui sont essentielles pour garantir une explo-
ration adéquate des SEP sans perdre en résolution des caractéristiques importantes.

Au fur et à mesure que la simulation progresse, ces potentiels gaussiens s’accumulent,
créant un biais qui pousse le système à explorer de nouvelles régions. La tendance du
système à revenir sur certains états diminue, ce qui permet une exploration complète
des SEP.

La Metadynamics est devenue une technique largement utilisée en chimie informa-
tique pour étudier les réactions chimiques complexes et prédire les propriétés molécu-
laires. Elle est particulièrement utile pour cartographier les paysages d’énergie libre des
systèmes moléculaires et explorer les états de transition.

A.4.3 Méthodes d’optimisation globale

Les méthodes d’optimisation globale sont des techniques employées pour échantillonner
efficacement les SEP et identifier les états les plus stables d’un système chimique. Ces
méthodes ne sont pas conçues pour obtenir les propriétés thermodynamiques du système
; elles sont plutôt employées pour converger efficacement vers les bassins de basse énergie
des SEP. Ces méthodes ne sont pas seulement applicables en chimie pour optimiser les
structures moléculaires, mais aussi dans divers domaines tels que la physique, l’économie
et la recherche opérationnelle, où il est essentiel de naviguer dans des fonctions complexes
pour trouver des solutions optimales.

A.4.3.1 Basin Hopping (BH)

Le Basin Hopping (BH) proposé par Li and Scheraga [109] et Wales and Doye [162]
est une méthode MMC qui incorpore une étape d’optimisation locale. Plus précisé-
ment, le BH (voir Fig. A.3) génère une séquence de configurations en effectuant des
étapes d’optimisation locale suivies de perturbations aléatoires du système. L’étape
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d’optimisation locale minimise l’énergie du système en ajustant les positions atomiques
pour atteindre un minimum local sur la SEP. Le BH s’appuie sur un critère de Metropolis
pour accepter ou rejeter une configuration obtenue après l’étape d’optimisation locale.
Les perturbations aléatoires introduisent du bruit dans le système, ce qui lui permet de
s’échapper des minima locaux et d’explorer différentes régions de la SEP. La méthode
BH est efficace pour explorer les SEP, identifier les configurations les plus stables de la
molécule.

Figure A.3: Méthode de Basin Hopping pour explorer les SEP.

A.4.3.2 Recuit Simulé (RS)

Le Recuit Simulé (RS) est une technique d’optimisation stochastique inspirée du proces-
sus de recuit en métallurgie, où les matériaux sont chauffés puis progressivement refroidis
pour minimiser leurs défauts et augmenter leur ductilité. Cette méthode, conceptual-
isée par Kirkpatrick, Gelatt, and Vecchi [97], est conçue pour trouver le minimum global
d’une fonction sur un large espace de recherche, ce qui la rend idéale pour les problèmes
d’optimisation complexes tels que l’optimisation de la structure moléculaire.

L’algorithme RS [157] démarre avec une température initiale élevée pour permettre
une exploration approfondie des SEP. Cette phase aide le système à passer les barrières
et à s’échapper des minima locaux au début du processus d’optimisation. À mesure
que la température diminue, l’algorithme réduit l’échelle d’exploration, en affinant la
solution à mesure qu’elle s’approche des états d’énergie inférieurs. La réduction de la
température doit être soigneusement contrôlée par un programme de refroidissement,
qui influence de manière critique l’équilibre entre l’exploration et l’exploitation.

La clé de la méthode RS est l’acceptation de nouveaux états au cours du processus
de recherche, qui est régi par le critère de Metropolis (Eqn. A.21). Ce critère permet à
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l’algorithme d’accepter non seulement les mouvements qui réduisent l’énergie, mais aussi
certains qui l’augmentent, évitant ainsi le piège des minima locaux dans les premières
étapes.

Le processus se poursuit en modifiant cycliquement la configuration du système et
en abaissant progressivement la température jusqu’à ce qu’une température minimale
de refroidissement soit atteinte ou que d’autres critères d’arrêt soient satisfaits.

A.4.3.3 Algorithmes Génétiques (AG)

Les algorithmes génétiques (AG) sont une classe de méthodes d’optimisation stochas-
tiques qui imitent le processus de sélection naturelle et d’évolution, tel qu’il a été décrit
par Darwin. Cette approche a été formalisée par Holland [87] et est particulièrement
utile en chimie informatique pour optimiser les structures moléculaires. Les AG fonction-
nent en générant une population variée de solutions candidates, chacune représentant
une configuration possible de la molécule étudiée.

Le point central de la méthode AG réside dans son processus itératif où la population
évolue sur plusieurs générations vers une solution optimale. Cette évolution est pilotée
par des opérateurs génétiques : la sélection, le croisement et la mutation. La sélection
imite les pressions naturelles de survie en privilégiant les individus ayant une meilleure
condition physique, ce qui leur permet de transmettre leurs gènes à la génération suiv-
ante. Le croisement, ou recombinaison, est un processus par lequel des paires d’individus
échangent des segments de leur matériel génétique pour produire de nouveaux variants,
en combinant les caractéristiques bénéfiques des deux parents. La mutation introduit
des changements aléatoires dans les gènes individuels, fournissant de nouvelles variations
génétiques et aidant la population à éviter les minima locaux en explorant de nouvelles
zones de l’espace de solution.

A chaque itération, l’algorithme évalue l’aptitude de tous les individus de la pop-
ulation, généralement mesurée en fonction de leur capacité à résoudre le problème
d’optimisation ou à répondre aux critères souhaités. Les opérateurs génétiques sont
ensuite appliqués pour créer une nouvelle génération, idéalement avec une aptitude
moyenne plus élevée que la précédente. Au fil des générations, la population converge
vers une solution optimale, imitant ainsi le processus évolutif d’adaptation.

La flexibilité et l’efficacité des algorithmes génétiques les rendent particulière-
ment adaptés aux problèmes pour lesquels les techniques d’optimisation traditionnelles
peinent à donner de bons résultats en raison de la complexité du paysage impliquant de
nombreux optima locaux.

A.4.4 Méthodes inspirées par la robotique

La planification des mouvements est un problème fondamental en robotique qui im-
plique l’identification d’une trajectoire sans collision pour un robot qui se déplace d’une
configuration initiale à une configuration cible. Ce problème peut également s’appliquer
à un bras robotique doté d’un nombre limité d’articulations, qui doit par exemple ra-
masser un objet. Divers algorithmes ont été développés pour atteindre ces objectifs.
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Ces algorithmes ont évolué au-delà de leur champ d’application initial et ont été utilisés
dans divers domaines, notamment la fabrication industrielle, l’animation par ordinateur
et la bioinformatique. Par exemple, ils ont été utilisés dans le contexte du repliement
des protéines et de l’optimisation des structures moléculaires [26, 107, 124, 22]. En
chimie computationnelle, ces algorithmes ont été employés pour explorer efficacement les
SEP. Contrairement aux méthodes d’optimisation globale, ces algorithmes sont d’abord
conçus pour explorer efficacement un espace à haute dimension, mais ne visent pas
directement à trouver le minimum global. Néanmoins, la dernière méthode présentée,
appelée Iterative Global Exploration and Local Optimization (IGLOO), est une méthode
qui combine à la fois l’algorithme de planification de mouvement et l’optimisation locale.
Certains de ces algorithmes sont capables d’identifier des états de faible énergie, ainsi
que de les relier entre eux afin d’identifier les chemins de transition entre ces derniers.
Cet aspect sera développé plus en détail au chapitre 6.

A.4.4.1 Probabilistic Roadmap (PRM)

La méthode Probabilistic Roadmap (PRM), introduite par Kavraki et al. [96], est util-
isée pour résoudre les problèmes de planification de mouvements en haute dimension.
La PRM fonctionne par échantillonnage itératif d’une configuration de l’espace de con-
figuration. Si la configuration est exempte de collision, elle est ajoutée au graphe en
tant que nœud. Le nouveau nœud est connecté au graphe en trouvant ses voisins les
plus proches. Si le chemin entre le nouveau nœud et les voisins les plus proches est
sans collision, il est ajouté au graphe sous la forme d’une ligne droite. Ces étapes sont
répétées jusqu’à ce qu’un critère d’arrêt soit atteint. Le graphe peut alors être utilisée
pour trouver un chemin entre les nœuds à l’aide d’algorithmes de recherche de graphes
tels que Dijkstra ou A* [22]. Des extensions de PRM impliquant des calculs d’énergie,
présentées ensuite, ont été proposées pour explorer les SEP.

A.4.4.2 Probabilistic Conformational Roadmaps (PCR)

La méthode Probabilistic Conformational Roadmaps (PCR) proposée par Singh,
Latombe, and Brutlag [145] est une méthode basée sur le PRM qui génère un graphe
en acceptant ou en rejetant de nouveaux nœuds à l’aide d’une fonction de probabilité
favorisant les conformations à faible énergie. La probabilité d’acceptation est évaluée
comme suit :

P (accept, q) =


1 if Eq < Emin
Emax − Eq
Emax − Emin

if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(A.25)

où Eq est l’énergie de la conformation q, Emin et Emax sont des valeurs seuils fixées pour
le système. A chaque arête eij est associé un poids représentant la probabilité de la
transition entre les conformations connectées. Une série de conformations intermédiaires
est générée le long du chemin {qi = c0, c1, .., cn = qj} reliant les deux nœuds qi et qj
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(le nombre de conformations intermédiaires est un paramètre). Le poids de l’arête est
calculé comme suit :

w(eij) = −∑n−1
i=0 log(Pi)

Pi = e
−

(Ei+1−Ei)
KT

e
−

(Ei+1−Ei)
KT +e−

(Ei−1−Ei)
KT

(A.26)

où Ei est l’énergie de la conformation ci, n le nombre d’images, K la constante de
Boltzmann et T la température. La PCR a été appliqué pour trouver les mouvements
énergétiquement favorables de biomolécules [8].

A.4.4.3 Stochastic Roadmap Simulation (SRS)

La méthode Stochastic Roadmap Simulation (SRS) [10, 11, 35, 36, 9] est une améliora-
tion de la PCR. La différence réside dans la fonction de probabilité, qui est conforme au
critère de Metropolis [118]. La fonction de probabilité est évaluée comme suit :

Pij =

 1
ni

exp(−∆Eij

KT ) if ∆Eij > 0
1
ni

otherwise
(A.27)

Pii = 1−
∑
j 6=i

Pij (A.28)

où ni est le nombre de voisins du nœud qi, ∆Eij est la différence d’énergie entre les
nœuds qi et qj , K est la constante de Boltzmann et T est la température. La SRS a été
utilisé pour prédire les interactions ligand-protéine [8].

A.4.4.4 Rapidly-exploring Random Tree (RRT)

La méthode Rapidly-exploring Random Tree (RRT), introduite par LaValle [103], est
utilisée pour résoudre les problèmes de planification de mouvement en haute dimen-
sion. La RRT fonctionne par échantillonnage itératif d’une configuration de l’espace
de configuration. Si la configuration est exempte de collision, elle est ajoutée à l’arbre
en tant que nœud. Le nouveau nœud est connecté à l’arbre en trouvant son voisin le
plus proche. L’arbre est étendu en ajoutant de nouveaux nœuds dans la direction de
l’échantillon généré aléatoirement. La principale différence entre cette méthode et la
PRM est que le nouveau nœud est relié au voisin le plus proche et non à tous les voisins
pour lesquels il existe un chemin sans collision. La méthode RRT sera examinée plus en
détail au chapitre 2.

A.4.4.5 Transition-RRT (T-RRT)

La méthode Transition-RRT (T-RRT) proposée par Jaillet, Cortés, and Siméon [92, 93]
est une méthode basée sur la RRT avec un test de transition pour favoriser l’exploration
des régions de faible énergie des SEP. Le test de transition est basé sur le critère de
Metropolis inspiré des méthodes MC et est utilisé pour accepter ou rejeter de nouveaux
nœuds en fonction du changement d’énergie et de la température du système. Contraire-
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ment à la méthode MC, la température est auto-adaptative pendant l’exploration afin
d’ajuster dynamiquement l’exploration des SEP. L’algorithme tient compte de chaque
rejet et acceptation du test de transition pour ajuster la température. La méthode
T-RRT sera examinée plus en détail au chapitre 6.

A.4.4.6 Iterative Global Exploration and Local Optimization (IGLOO)

La méthode Iterative Global Exploration and Local Optimization (IGLOO) [112] com-
bine l’exploration des SEP avec une optimisation locale. La méthode IGLOO est un
algorithme itératif composé de trois étapes principales : une étape d’exploration, une
étape d’optimisation locale et une étape de filtrage. L’étape d’exploration est réalisée à
l’aide d’une méthode basée sur la RRT pour explorer les SEP. L’étape d’optimisation lo-
cale est réalisée à l’aide d’une méthode d’optimisation locale afin de minimiser l’énergie
potentielle des états explorés. L’étape de filtrage est utilisée pour supprimer les états
redondants et améliorer l’efficacité de l’exploration à l’itération suivante. IGLOO a été
appliquée avec succès pour prédire la structure des molécules de disaccharide sur des
surfaces métalliques [1, 2]. IGLOO sera discuté plus en détail dans le chapitre 2.

A.5 Résumé des contributions

La thèse contient plusieurs contributions au domaine de la chimie computationnelle.
Un aperçu des différents chapitres est donné ici.

Chapitre 2: Ce chapitre présente le couplage des méthodes IGLOO et DFTB pour
l’exploration de l’espace conformationnel des molécules. IGLOO s’inspire de la plan-
ification des mouvements en robotique, tandis que DFTB est une méthode de chimie
quantique. La partie développement détail l’interface entre les deux logiciels développés
dans nos laboratoires. La méthode IGLOO, mise en œuvre dans le logicielle MoMA,
est couplée à la méthode DFTB, mise en œuvre dans le code deMonNano. Comme
première application, l’approche a été appliquée au dipeptide d’alanine, un petit pep-
tide. L’exploration a permis d’identifier les conformations énergétiquement favorables,
démontrant ainsi l’efficacité du couplage dans la réduction des coûts de calcul tout en
maintenant une description précise du système chimique.

Chapitre 3: Ce chapitre montre l’exploration des SEP de molécules de la famille des
phtalates en utilisant le couplage IGLOODFTB introduit dans le chapitre précédent. Les
phtalates sont une famille de composésc chimiques largement utilisés dans les produits
de consommation. Il est important de comprendre leur comportement conformationnel
étant donné les impacts de ces composés sur l’environnement et la santé. Le chapitre
commence par une introduction aux phtalates, soulignant l’importance et la nécessité
d’une exploration détaillée du paysage énergétique. Le couplage est initialisé IGLOO
avec une multitude d’états initiaux pour assurer une couverture complète et plusieurs
exécutions indépendantes sont effectuées pour tenir compte de la nature stochastique
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de la méthode. Cette approche a révélé de nombreux bassins de basse énergie et a fa-
cilité l’identification de conformations stables dans une gamme variée de molécules de
phtalates. Parmi les résultats significatifs, citons l’identification de divers minima con-
formationnels, qui ont été analysés à l’aide de descripteurs énergétiques et structurels.
Les descripteurs susmentionnés ont facilité la compréhension des interactions au sein des
molécules de phtalates, y compris les effets des arrangements des chaînes latérales sur la
stabilité moléculaire. En outre, le chapitre compare les calculs DFTB avec des calculs
DFT pour valider la précision du potentiel sur ces molécules. Les résultats illustrent
l’efficacité du couplage IGLOODFTB dans l’exploration des paysages d’énergie poten-
tielle complexes des phtalates, fournissant des indications précieuses sur leur dynamique
conformationnelle.

Chapitre 4: Ce chapitre présente un algorithme innovant pour la génération de mod-
èles atomistiques d’hydrocarbures aromatiques de grande taille. L’accent est mis sur
l’intégration de techniques de génération basées sur les graphes moléculaires avec des
ajouts d’atomes et de fragments, avec un accent particulier sur le maintien de contraintes
prédéfinies. L’introduction donne un aperçu de l’importance des hydrocarbures aroma-
tiques dans divers domaines scientifiques, notamment l’astrophysique et les sciences de
l’environnement. Elle souligne la nécessité de disposer de modèles précis pour simuler et
comprendre leur comportement dans différents environnements. La méthodologie com-
prend deux composantes principales : le SMILES Generator et le Structure generator.
Le SMILES Generator est conçu pour produire une série de SMILES qui respectent les
contraintes spécifiées sur les types et les ratios de liaisons et d’atomes. Pour ce faire,
il utilise un processus précis qui comprend la sélection des types de fragments, la sélec-
tion des atomes dans le graphe moléculaire et l’ajout de fragments afin de construire
la structure moléculaire de manière incrémentale. Ensuite, l’algorithme du Structure
Generator permet de générer des structures tridimensionnelles. Ce processus implique
la génération de structures initiales non optimisées à partir des SMILES. Ces structures
sont ensuite optimisées par une série d’étapes visant à minimiser l’auto-collision et à
garantir la validité de la structure.

Chapitre 5: Ce chapitre met en avant l’application des algorithmes précédemment
développés sur des sous-structures de polymères de carbone amorphe hydrogéné. Le
chapitre commence par un aperçu des connaissances actuelles sur les sous-structures des
polymères de carbone amorphe hydrogéné dans le milieu interstellaire (ISM), en met-
tant l’accent sur leur détection par les bandes d’absorption infrarouge et sur leur rôle
central dans divers processus physico-chimiques dans l’espace. La section méthodologie
décrit la production et l’analyse des polymères de carbone amorphe hydrogéné. Ensuite,
des paramètres d’évaluation des structures générées sont définis, en se concentrant sur
des descripteurs géométriques et électroniques. Un descripteur géométrique tel que les
paramètres de Hill-Wheeler, qui évaluent la déformation de la forme par rapport à une
sphère parfaite, est défini, et des descripteurs électroniques tels que l’écart HOMO-
LUMO et l’énergie de London sont calculés, donnant un aperçu des propriétés électron-
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iques des structures. L’évaluation de ces descripteurs a montré des variations significa-
tives dans les formes et les propriétés électroniques des sous-structures de polymères de
carbone amorphe hydrogéné.

Chapitre 6: Ce chapitre traite des chemins de transition entre les conformations de
faible énergie dans les systèmes moléculaires, en présentant diverses techniques de cal-
cul pour identifier ces chemins. Le chapitre commence par discuter de la base théorique
défini par la Transition State Theory, en soulignant l’importance de l’identification du
chemin d’énergie minimale (MEP) qui représente la voie la plus favorable pour une
réaction. Diverses méthodes de calcul sont examinées pour identifier et analyser ces
chemins de transition. Celles-ci incluent la Dimer method pour localiser les points de
selle sur la surface d’énergie potentielle, et des méthodologies avancées telles que la
méthode Nudged Elastic Band (NEB), qui affine le chemin pour minimiser l’énergie le
long de la coordonnée de réaction. Une méthodologie préliminaire pour explorer la di-
versité des chemins de transition entre les conformations de faible énergie est présentée.
L’exploration de ces chemins est réalisée à l’aide de l’algorithme stochastique T-RRT,
qui génère de nombreux chemins. Une mesure de similarité est ensuite appliquée pour
différencier ces chemins, et une méthode de regroupement est ensuite utilisée pour iden-
tifier les chemins identiques. Ensuite, un chemin représentatif de chaque groupe est
sélectionné pour être localement optimisé. La méthodologie est appliquée sur la dipep-
tide d’alanine et des résultats préliminaires sont présentés.
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Titre : Couplage de modèles de chimie quantique et d’algorithmes haute performance pour l’exploration globale du paysage énergétique de systèmes
atomiques et moléculaires

Mots clés : Modélisation atomique et moléculaire, Surfaces d'énergie potentielle, Exploration du paysage conformationnel, Algorithmes inspirés de la
robotique, Optimisation globale, Identification de chemins de transition

Résumé : L'objectif principal de cette thèse est de développer des méthodes efficaces pour caractériser les conformations des molécules à un niveau
quantique. Différentes méthodes dédiées au calcul de l'énergie potentielle d’une molécule sont examinées, ainsi que les schémas d'exploration globale
des surfaces d'énergie potentielle (SEP) les plus populaires sont présentés. Une contribution clé de cette thèse est le couplage de la méthode IGLOO
(Iterative Global exploration and LOcal Optimization), inspirée de la robotique, mise en œuvre dans le logiciel MoMA, avec le potentiel basé sur la
“Density-Functional based Tight-Binding” (DFTB), implémenté dans le logiciel deMonNano. IGLOO intègre l'algorithme de planification de mouvement
“Rapidly-exploring Random Trees” (RRT) avec des optimisations locales de l’énergie et un filtrage des structures. Une preuve de concept a été
réalisée par l'identification des conformations de basse énergie de la molécule de d'alanine dipeptide.
Le couplage IGLOO/DFTB a été appliqué à la cartographie des SEP de trois molécules de taille proche de la famille des phtalates (dibutyl phtalate
DBP, benzyl butyl phtalate BBP et di-2-éthylhexyl phtalate DEHP), donnant un aperçu détaillé de leurs différents paysages conformationnels. Divers
descripteurs géométriques ont été utilisés pour analyser leurs relations structure-énergie. Les interactions de Coulomb, l'encombrement stérique et les
interactions dispersives sont à l'origine des propriétés géométriques et une forte corrélation a été mise en évidence entre les deux angles diédraux
décrivant l'orientation des chaînes latérales des molécules de phtalate.
En complément, un algorithme innovant pour la génération à grande échelle de molécules, incluant une variété de conformations, est présenté. Il
combine la génération de graphes de molécules avec des techniques d'ajout d'atomes ou de fragments. Il est appliqué pour fournir une vaste base de
données de structures 3D de molécules de carbone amorphe hydrogéné (a-CH). L'analyse de la base de données générée dans cette étude permet
de comprendre la relation entre les descripteurs géométriques et électroniques des structures a-C:H. Ces propriétés sont comparées à celles des
hydrocarbures aromatiques polycycliques (HAP) compacts et des chaînes linéaires, qui représentent des cas limites.
Enfin, une revue des méthodes visant à identifier les points de selle et les chemins de transition entre les conformations de faible énergie sur la SEP
est présentée. Une première étape pour l'identification des chemins de transition entre les conformations de faible énergie à l'aide d'un algorithme de
planification de mouvement, connu sous le nom de Transition-based RRT (T-RRT), est présentée. Une mesure de similarité, désignée sous le nom de
Symmetrized Segment-Path Distance (SSPD), est utilisée pour comparer les trajectoires générées. Ensuite, une technique de regroupement, à savoir
Analyse de regroupement hiérarchique (HCA), est employée pour regrouper les trajectoires afin d'identifier les classes de chemin donnant la
dynamique des changements de conformation. La méthodologie a été appliquée avec succès à l'identification de chemins à faible énergie entre deux
minima de la SEP de l’alanine dipeptide.
Dans l'ensemble, les travaux présentent des avancées significatives dans l'exploration de SEP de molécules complexes au niveau quantique, y
compris (i) le couplage IGLOO/DFTB (ii) un nouvel algorithme pour la génération de structures 3D de molécules à grande échelle et (iii) un schéma
original permettant l'identification de multiples chemins de transition. Des corrélations entre les propriétés structurelles, énergétiques et électroniques
ont été mises en évidence pour les molécules polluantes de la famille des phtalates ainsi que pour les a-CH ayant une importance du point de vue
astrophysique. Ces contributions ouvrent la voie à de futures recherches visant à étendre ces méthodes à des systèmes plus grands et plus
complexes.

Title: Coupling of quantum chemistry models and high-performance algorithms for the global exploration of the energy landscape of atomic and
molecular systems

Key words: Atomic and molecular modeling, Potential energy surfaces, Conformational exploration, Robotics-inspired algorithms, Global optimization,
Transition path identification

Abstract: The primary aim of this thesis is to develop efficient methods for characterizing molecular conformations at a quantum level. Various
methods devoted to the computation of molecular potential energy are reviewed, as well as the most popular potential energy surfaces (PES) global
exploration schemes. In this context, a key contribution of this thesis is the coupling of the robotics-inspired Iterative Global exploration and LOcal
Optimization (IGLOO) method, implemented in the MoMA software, with the quantum Density-Functional based Tight-Binding (DFTB) potential,
implemented in the deMonNano software. The IGLOO algorithm integrates the motion planning Rapidly-exploring Random Trees (RRT) algorithm with
local optimization and structural filtering. A proof of concept has been done through the identification of low-energy conformations of the alanine
dipeptide.
The IGLOO/DFTB coupling has been applied to the mapping of the PES of three close-sized molecules of the phthalate family (dibutyl phthalate DBP,
benzyl butyl phthalate BBP and di-2-ethylhexyl phthalate DEHP), providing detailed insights into their different conformational landscapes. Various
geometrical descriptors have been used to analyze their structure-energy relationships. Coulomb interactions, steric hindrance, and dispersive
interactions have been found to drive the geometric properties and a strong correlation has been evidenced between the two dihedral angles
describing the side-chains orientation of the phthalate molecules. The results demonstrate the method's capability to identify low-energy minima without
prior knowledge of the PES.
Furthermore, an innovative algorithm for the large-scale generation of molecular structures, including a conformational variety, is presented. It
combines molecular graph generation with atom or fragment addition techniques. It is applied to provide an extensive database of 3D structures of
hydrogenated amorphous carbon (a-CH) molecules. The analysis of the database generated in this study provides a comprehensive understanding of
the relationship between the geometrical and electronic descriptors of a-C:H structures. These properties are compared with those of compact
Polycyclic Aromatic Hydrocarbons and linear chains, representing limit cases.
Finally, a review is given on methods aiming at identifying saddle points and transition paths between low-energy conformations on the PES. A first
step toward the identification of transition paths between low-energy conformations using a motion planning algorithm, known as Transition-based
Rapidly-exploring Random Trees (T-RRT), is presented. A similarity measure, designated as the Symmetrized Segment-Path Distance (SSPD), is used
to compare the generated trajectories. Subsequently, a clustering technique, namely the Hierarchical Clustering Analysis (HCA), is employed to group
similar trajectories in order to identify the common pathways, thereby providing valuable insights into the dynamics of conformational changes. The
methodology has been successfully applied to the identification of low-energy paths between two minima of the alanine dipeptide PES.
Overall, the research presents significant advancements in the exploration of complex molecular PES at a quantum level including (i) the IGLOO/DFTB
coupling (ii) a novel algorithm for 3D structure generation of large-scale molecules and (iii) an original scheme allowing for the identification of multiple
transition paths. Correlations between the structural, energetic and electronic properties have been evidenced for the polluting phthalate molecules and
astrophysically relevant hydrogenated amorphous carbon (a-CH) molecules. These contributions pave the way for future research, aiming to extend
these methods to larger and more complex systems.
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