
HAL Id: tel-04771309
https://theses.hal.science/tel-04771309v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Engineering Instrumentation for Runtime Verification
and Monitoring

Chukri Soueidi

To cite this version:
Chukri Soueidi. Engineering Instrumentation for Runtime Verification and Monitoring. Mathematical
Software [cs.MS]. Université Grenoble Alpes [2020-..], 2024. English. �NNT : 2024GRALM021�. �tel-
04771309�

https://theses.hal.science/tel-04771309v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Centre de recherche Inria de l'Université Grenoble Alpes

Ingénierie de l'instrumentation pour la vérification de l'exécution

Engineering Instrumentation for Runtime Verification and Monitoring

Présentée par :

Chukri SOUEIDI
Direction de thèse :

Gwen SALAUN
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES

Directeur de thèse

Yliès FALCONE
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES

Co-encadrant de thèse

Rapporteurs :
KLAUS HAVELUND
SENIOR SCIENTIST, NASA JET PROPULSION LABORATORY
WALTER BINDER
FULL PROFESSOR, UNIVERSITA DELLA SVIZZERA ITALIANA

Thèse soutenue publiquement le 13 mai 2024, devant le jury composé de :
SADDEK BENSALEM,
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE
ALPES

Président

GWEN SALAUN,
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE
ALPES

Directeur de thèse

KLAUS HAVELUND,
SENIOR SCIENTIST, NASA JET PROPULSION LABORATORY

Rapporteur

WALTER BINDER,
FULL PROFESSOR, UNIVERSITA DELLA SVIZZERA ITALIANA

Rapporteur

SYLVAIN HALLE,
FULL PROFESSOR, UNIVERSITE DU QUEBEC A CHICOUTIMI

Examinateur

JULIEN SIGNOLES,
INGENIEUR DE RECHERCHE, CEA CENTRE DE PARIS-SACLAY

Examinateur

Invités :
YLIES FALCONE
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES

ii

Engineering Instrumentation for Runtime Verification and Monitoring

ABSTRACT

Runtime Verification is an essential dynamic verification technique that enables formal reasoning on program
executions based on specified properties. Runtime verification can be used in various stages of application
development or online in production environments. Instrumentation plays a critical role in ensuring that monitors
receive accurate traces that abstract needed information from the executing program. Otherwise, the integrity of the
monitoring process is compromised, rendering the results unreliable.

In this thesis, our primary focus is on online monitoring and concurrent programs. We identify three key challenges
in applying runtime verification to these areas: capturing the correct traces, effectively guiding the instrumentation
process, and assessing the validity of the collected traces. These challenges often render existing monitoring
frameworks inadequate in various scenarios. To address the first two challenges mentioned above, this thesis
introduces BISM, a bytecode-level instrumentation framework designed for JVM languages. BISM provides
high-level abstractions suitable for different types of users within the domain of runtime verification and fulfills the
following expressiveness capabilities.

First, BISM allows the extraction of events at the bytecode level accommodating the monitoring of properties
specified over events with various granularity levels. Second, BISM is designed to support writing static analyzers
within the instrumentation specification. This enables guiding the instrumentation process to consider property and
program semantics in order to optimize instrumentation. Third, BISM provides advanced users with the flexibility
of unrestricted code modification. This feature is essential for deploying inline monitors or enforcing certain
properties such as a sequential order of concurrent events.

Building on the capabilities of the instrumentation framework, we introduce a novel method for residual runtime
verification of parametric properties. This approach minimizes instrumentation points by integrating both property
semantics and program behavior and applies to a broad range of safety and co-safety properties. Notably, this
method is designed to be independent of external static analysis frameworks and can be performed fully within the
instrumentation process, allowing for modular integration into various runtime verification workflows.

For concurrent programs, we focus on the online monitoring of general behavioral properties. We highlight
the shortcomings of using linear traces for capturing the behavior of concurrent programs and propose that a
trace must satisfy two critical properties—soundness and faithfulness—to provide an accurate representation. To
meet these criteria, we introduce a trace-collection methodology that employs a real-time vector clock algorithm
to establish event causality in a non-intrusive manner. This algorithm can run off the program’s critical path,
minimizing the impact on the execution. Additionally, we present new criteria for assessing the validity of collected
traces in concurrent programs, addressing the third challenge mentioned above. We redefine the concept of trace
monitorability based on automata-based formalisms. Our refined definition integrates a causal dependence relation
extracted from a given property to identify non-permutable events within a trace. This allows us to evaluate whether
a trace contains sufficient order information to yield a sound monitoring verdict. We also develop and implement
an opportunistic monitoring framework that leverages existing synchronization points to synchronize thread local
monitors with a global monitor. This framework allows for the monitoring of global properties without the need for
additional synchronization mechanisms that could disrupt program execution.

Our contributions are evaluated through extensive experiments on various benchmarks, and real-world and synthetic
applications from the literature. We also utilize BISM in the broader context of dynamic analysis, particularly in
log analysis, testing coverage, and profiling. Collectively, these contributions enhance the reliability and efficiency
of runtime monitoring for concurrent programs. We substantiate our theoretical claims with implemented solutions,
providing practical tools for the advancement of the field.

Keywords: runtime verification, monitoring, instrumentation, concurrent programs.

iii

iv

Ingénierie de l’instrumentation pour la vérification de l’exécution

RÉSUMÉ

La vérification à l’exécution est une technique de vérification dynamique cruciale pour le raisonnement formel sur les
exécutions de programmes, applicable tant au développement d’applications qu’en ligne dans des environnements de
production. L’instrumentation joue un rôle crucial pour garantir que les moniteurs reçoivent des traces précises qui
abstraient les informations nécessaires du programme en exécution. Sinon, l’intégrité du processus de surveillance
est compromise, rendant les résultats peu fiables.

Cette thèse se focalise sur la surveillance à l’exécution et les programmes concurrents, en abordant trois défis
principaux : la capture des traces correctes, le guidage efficace de l’instrumentation, et l’évaluation de la validité
des traces collectées. Pour répondre à ces défis, nous introduisons BISM, un cadre d’instrumentation au niveau du
bytecode pour les langages JVM, offrant des abstractions de haut niveau pour divers utilisateurs dans le domaine de
la vérification à l’exécution.

BISM permet l’extraction d’événements au niveau du bytecode, accommodant la surveillance de propriétés
spécifiées avec divers niveaux de granularité. BISM permet également d’écrire des analyses statiques en spécifiant
l’instrumentation. Il offre aux utilisateurs avancés la possibilité de modifier de manière non restreinte et flexible le
code existant. Ces dernières caractéristiques sont essentielles pour déployer des moniteurs en ligne ou imposer
certaines propriétés comme un ordre séquentiel d’événements concurrents.

Nous introduisons aussi une méthode nouvelle pour la vérification à l’exécution résiduelle de propriétés paramétriques,
réduisant les points d’instrumentation et applicable à des propriétés de sécurité. Pour les programmes concurrents,
nous mettons en évidence les limites de l’utilisation de traces linéaires et introduisons une méthodologie de collecte
de traces utilisant un algorithme d’horloge vectorielle en temps réel, minimisant l’impact sur l’exécution. Cette
méthode intègre une relation de dépendance causale, permettant d’évaluer la validité des traces dans les programmes
concurrents pour un verdict de surveillance fiable.

Nos contributions sont évaluées à travers des expériences sur divers benchmarks et applications, utilisant BISM
dans un contexte plus large d’analyse dynamique, y compris l’analyse de logs, la couverture des tests, et le profilage.
Ces travaux améliorent la fiabilité et l’efficacité de cette surveillance pour les programmes concurrents, fournissant
des outils pratiques pour l’avancement du domaine.

Mots-clés: vérification à l’exécution, instrumentation, programmes concurrents.

v

vi

Acknowledgements

Completing this thesis has been an incredibly rewarding and exciting journey. I owe a great deal of gratitude to
several key individuals who have supported and guided me along the way.

First and foremost, I extend my deepest gratitude to my supervisor, Yliès Falcone, whose profound knowledge and
commitment to creating well-founded rigorous methods and tools have significantly impacted my work. Throughout
this journey, Yliès was consistently available for consultation, providing the encouragement and direction needed
to improve my research. His ability to see the bigger picture, coupled with his friendly and humane approach,
made the challenges of research much more manageable and enjoyable. I am forever grateful for his support and
guidance.

I am grateful for the opportunity to work with Sylvain Hallé, whose collaborations introduced new perspectives to
my work and greatly boosted my enthusiasm. My visits to the beautiful Chicoutimi and Saguenay region, where
Sylvain is based, were particularly inspiring and enriching.

Additionally, Gwen Salaün, my co-supervisor, offered essential support when it was needed. I would also like to
express my appreciation to Julien Signoles for his external follow-up and valuable insights.

Thanks to the esteemed members of my jury for their expert evaluation and valuable critiques. I am deeply thankful
to Klaus Havelund and Walter Binder for their thorough review and insightful feedback on my manuscript. Their
expert attention to detail and constructive suggestions were crucial in enhancing the quality of my thesis. Special
thanks to Sadek Bensalem for presiding over the jury.

I would also like to acknowledge Paul Attie, my master’s thesis supervisor from the American University of Beirut,
whose mentorship ignited my research interest and laid the foundation for my academic pursuits.

My experience was further enriched by the camaraderie and discussions with the entire CORSE team at Inria,
who graciously hosted me during my research. Particular thanks to Christophe Guillon, whose discussions were
invaluable. I am also grateful to Imma Presseguer for her administrative and friendly support, which helped make
my research experience smoother and more enjoyable.

Living and working in Grenoble, surrounded by the majestic mountains, provided inspiration and tranquility,
significantly contributing to my overall well-being and productivity during this journey. A special thanks to Antoine
El Hokayem, who provided useful feedback on my work on various occasions.

The unwavering support from my family has been a cornerstone throughout this journey. I am deeply appreciative
of my parents, whose faith in me has been a constant source of encouragement. Additionally, I would like to thank
my brother and sisters for their love and support.

Finally, I extend my deepest gratitude to my partner Lena. Her strength and love have been my essential support
system throughout this journey, and her encouragement has been invaluable.

vii

viii

Contents

1 Introduction 1
1.1 An Overview of Computer-Aided Verification 2

1.1.1 Static Approaches 2
1.1.2 Dynamic Approaches 3
1.1.3 Combining Static and Dynamic Approaches 4

1.2 Runtime Verification 4
1.3 Identified Challenges 6

1.3.1 Capturing Correct Traces (C1) 7
1.3.2 Guiding the Instrumentation Process (C2) 7
1.3.3 Trace Validity Assessment for Concurrent Programs (C3) 7

1.4 Detailed Problem Statement 8
1.4.1 Instrumentation Frameworks 8
1.4.2 Monitoring Concurrent Programs 9

1.5 Summary of Contributions 9
1.6 Structure of the Thesis 10
1.7 Associated Publications 11

2 Preliminaries 13
2.1 Programs, Methods and the CFG 13
2.2 Event Traces, Properties, and Monitoring 15
2.3 Parametric Monitoring 16
2.4 Upward Closure 17
2.5 Relations, Partial and Total Orders 18
2.6 Concurrent Executions 18

2.6.1 Actions 18
2.6.2 Execution Order 20
2.6.3 Concurrent Execution 21

2.7 Vector Clocks 21

I Program Instrumentation 23

3 Program Instrumentation and Existing Frameworks 25
3.1 Introduction 27
3.2 Understanding Instrumentation 27

3.2.1 Unveiling the Complete Picture 27
3.2.2 Observing the Execution 28

ix

3.3 Instrumentation for Runtime Verification 29
3.3.1 The Program 30
3.3.2 The Observation 30
3.3.3 The Analysis 32
3.3.4 The Instrumentation Language 32

3.4 Instrumentation Requirements 33
3.5 Evaluating Instrumentation 34
3.6 Existing Instrumentation Frameworks 34

3.6.1 Bytecode Manipulation Libraries 34
3.6.2 Aspect-Oriented Approaches 36

3.7 The Need for a Comprehensive Instrumentation Framework 40
3.8 Conclusion 41

4 A Comprehensive Instrumentation Model 43
4.1 Introduction 45
4.2 Instrumentation Model 45

4.2.1 Context Objects 45
4.2.2 Join points 46
4.2.3 Advice 46
4.2.4 Shadows 46
4.2.5 Selectors 49
4.2.6 Instruction Visibility 50
4.2.7 Transformers 50
4.2.8 Instrumentation Process 50

4.3 Transformer Composition 50
4.3.1 Motivations for Composition 50
4.3.2 Composition of Transformers 51
4.3.3 Transformer Collision 51
4.3.4 Order Matters 51

4.4 Conclusion 52

5 BISM: Bytecode Instrumentation for Software Monitoring 53
5.1 Introduction 55
5.2 BISM in a Nutshell 55

5.2.1 Overview 55
5.2.2 Design Goals and Features 56

5.3 BISM Instrumentation Language 57
5.3.1 Selectors 57
5.3.2 Static Context 59
5.3.3 Dynamic Contexts 61
5.3.4 Advice Methods 61
5.3.5 Instrumentation Scoping 62
5.3.6 User Configuration 62
5.3.7 Transformer Composition 63

5.4 The External DSL for BISM 64
5.4.1 Design Considerations 64
5.4.2 Pointcuts 64
5.4.3 Events 65
5.4.4 Monitors 65
5.4.5 Code Generation 66

5.5 Implementation 66
5.5.1 The DSL 68

5.6 An Observation Layer for BISM 69
5.7 Discussion 69
5.8 Conclusion 71

x

II Guiding Instrumentation with Residual Analysis 73

6 Residual Runtime Verification of Parametric Properties 75
6.1 Introduction 77
6.2 Residual Analysis of Parametric Properties 77
6.3 Residual Analysis via Intraprocedural Reachability Analysis 79

6.3.1 Motivating with an Example 79
6.3.2 Capturing a Program Model 80
6.3.3 Extending the Automaton of Bad Prefixes 82
6.3.4 Cutting the Behavior 83
6.3.5 Scope and Soundness of the Analysis 84

6.4 Implementation 85
6.5 Related Approaches 86
6.6 Conclusion 86

III Monitoring Concurrent Programs 87

7 Representative Traces for Concurrent Programs 89
7.1 Introduction 91
7.2 Trace Collection for Concurrent Programs 92

7.2.1 Issues with Linear Traces 93
7.3 Concurrent Traces 94
7.4 Sound and Faithful Concurrent Traces 94
7.5 Obtaining Sound Concurrent Traces 95

7.5.1 Atomicity and Instrumentation Requirements 95
7.5.2 The Reordering Algorithm 96
7.5.3 Algorithm Cost 96
7.5.4 Algorithm Correctness 96

7.6 Criteria For Monitorability 98
7.6.1 Monitor Causal Dependence 98
7.6.2 Trace Monitorability of Concurrent Executions 100
7.6.3 Optimal Faithfulness 100

7.7 Implementation 101
7.8 Related Approaches 101
7.9 Conclusion 102

8 Opportunistic Monitoring 105
8.1 Introduction 107
8.2 Opportunistic Runtime Verification 108
8.3 Implementation 110
8.4 Conclusion 111

IV Evaluation and Use Cases 113

9 Evaluation 115
9.1 Introduction 115
9.2 Evaluating BISM 116

9.2.1 Methodology 116
9.2.2 Advanced Encryption Standard (AES) 117
9.2.3 Financial Transaction System 118
9.2.4 DaCapo Benchmarks 121
9.2.5 Threats to Validity 122

9.3 Evaluating the BISM DSL 122
9.3.1 Performance Evaluation 123
9.3.2 User Experience Evaluation 123

xi

9.4 Evaluating the Residual Analysis 124
9.5 Evaluating Concurrent Traces 125

9.5.1 Effectiveness and Cost 125
9.5.2 Causal Dependence Relation in Specification Patterns 128

9.6 Evaluating the Opportunistic Monitoring 129
9.6.1 Readers-Writers 129
9.6.2 Other Benchmarks 130

9.7 Conclusion 132

10 UseCases 133
10.1 Introduction 133
10.2 Law of Demeter Checker 134
10.3 Code Analysis of Programs 134

10.3.1 Mc Cabe Complexity. 136
10.3.2 ABC Complexity. 136
10.3.3 Unused Variables. 137

10.4 Obfuscation 137
10.4.1 Renaming Obfuscator 138
10.4.2 Junk Code Obfuscator 138

10.5 Mutation of Programs 139
10.5.1 Return Mutator: Value Mutation 139
10.5.2 Instruction Mutator: Operator Mutation 139
10.5.3 Void Call Mutator: Statement Mutation 140

10.6 Runtime Verification and Enforcement 141
10.6.1 Good Java Practices: HasNext Property 141
10.6.2 Concurrent Executions: Forcing Advice Atomicity 141
10.6.3 Test Inversion Attack Detection and Enforcement 141

10.7 Logging 143
10.8 Dynamic Profiling 143

10.8.1 Call Graph 143
10.8.2 Object Allocation 143

10.9 Dynamic Analysis with Complex Event Processing 145
10.10Conclusion 145

11 Dynamic Program Analysis with BISM and Complex Event Processing 147
11.1 Introduction 149
11.2 Dynamic Program Analysis 150

11.2.1 Existing Approaches 150
11.2.2 Limitations 151

11.3 BeepBeep Overview 152
11.4 The BISM-BeepBeep Integration 153

11.4.1 Implementation 153
11.4.2 Runtime Verification: Monitoring and Synthesis 153
11.4.3 Profiling: The Dynamic Call Graph 155
11.4.4 Log Analysis: Complex Instrumented Events 155
11.4.5 Coverage: Versatile Metrics 157

11.5 Experimental Evaluation 159
11.5.1 Monitoring 159
11.5.2 Coverage 160
11.5.3 Profiling 160

11.6 Conclusion 161

V Conclusion and Perspectives 163

12 Conclusion and Perspectives 165
12.1 Contributions 165

xii

12.1.1 Program Instrumentation 165
12.1.2 Guiding the Instrumentation Process with Residual Analysis 166
12.1.3 Monitoring of Concurrent Programs 166
12.1.4 Contributions to the Broader Scope of Dynamic Program Analysis 167

12.2 Perspectives 167
12.2.1 BISM 167
12.2.2 Combinining Static and Dynamic Analysis 168
12.2.3 Monitoring of Concurrent Programs 169

Bibliography 186

VI Appendix 187

A Other Works 189
A.1 Leveraging Runtime Verification for the Monitoring of Digital Twins 189
A.2 Monitoring Business Process Compliance Across Multiple Executions with Stream Processing 189

Lists 191
A.3 List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and Examples 191
List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and Examples 191
List of Figures 194
List of Tables 195

xiii

xiv

CHAPTER 1

Introduction

COMPUTERS are now integral to our lives, serving as the backbone for a diverse range of infrastructure from
transportation systems like trains and planes, to communication networks, healthcare, financial services,

energy systems, and military operations. As software systems grow in scale and functionality, assuming increasingly
critical roles, their reliability has never been more important. Software failures can have devastating consequences on
human life, the environment, and the economy, as demonstrated by several disasters in recent history. For example,
the recent Boeing 737 MAX crashes, which claimed nearly 350 lives, were attributed to flawed flight control software
and highlighted deficiencies in software verification and validation [HBM20]. The fatal radiation overdoses from the
Therac-25 medical machine underscored the critical role of software quality in medical devices [LT93]. The 2010
Flash Crash revealed systemic vulnerabilities introduced by automated trading systems [KKST17]. Widespread
security vulnerabilities like Heartbleed further expose the risk of relying on insecure software libraries [DLK+14].

The software that powers our modern world, although structured and seemingly intuitive to users, stands on a
deceptively complex foundation of components. Even the most basic programs we use in our daily lives rely on an
intricate structure of hardware, operating systems, and programming languages. Each of these programs is a set of
instructions designed to instruct a computer to perform specific actions. During the creation of these instruction
sequences, developers might introduce software faults due to the usage of incorrect commands, wrong sequencing
of operations, or an inaccurate representation of user requirements. These faults can manifest as software errors
during the program’s execution which indicates that the program has entered into some wrong state. In turn, such
errors can lead to software failures which are deviations from the expected behavior of the software. A common
word that is often used to refer to these faults, errors, and failures is bugs.

Identifying and preventing bugs in software systems remains a non-trivial task. In his 1972 Turing Award
Lecture [Dij72], Dijkstra envisaged a future where each program would be validated by a mathematical proof of its
correctness. Despite early promising works such as [McC59, Hoa69] that have advanced formal proof systems for
program correctness, these techniques have found limited real-world application. The primary reason is scalability;
due to the complex nature of real-world software systems which often defies easy formalization [CHV+18]. The
complexity of modern-day software emerges from several factors. Firstly, the deliberately built layers of abstractions
in programming languages, while aiding in development by allowing programmers to focus on high-level tasks,
also may conceal the system’s full behavior. Secondly, software modularity creates complexities due to interactions
among different modules, while external dependencies like third-party libraries further complicate verification
efforts. Another significant challenge is concurrency, where asynchronous operations may lead to non-deterministic
behaviors. Additionally, the dynamic nature of software, affected by updates, user input, hardware interactions, and
environmental factors, add to these challenges.

As such, one of the very active fields in software engineering is software verification [IEE17] which aims to ensure
that software systems meet their defined specifications. Verification approaches are employed at various stages
of the software development life cycle to systematically identify and prevent bugs. While a complete a priori
verification is ideally desired for a program, there is no silver bullet when it comes to verifying a program statically

1

CHAPTER 1. INTRODUCTION

i.e., before executing it. As such dynamic verification approaches, which analyze the program during or after
its execution, are often employed to complement static verification techniques. In fact, in critical systems, the
combination of static and dynamic analysis has long become the norm and often even mandatory [BS93].

This work aims to contribute to enhancing the dependability of software systems by developing more rigorous
dynamic verification methods. Specifically, the work will address the limitations when capturing and abstracting
the system behavior for dynamic verification techniques, and the challenges of efficiently monitoring software
systems post-deployment.

1.1 An Overview of Computer-Aided Verification
Verification and validation are essential activities in software engineering, encompassing a broad range of tasks
such as code reviews, quality audits, performance monitoring, and simulations [IEE17]. While verification confirms
that the system meets specific requirements, validation ensures those specifications align with user needs. Although
often used interchangeably, verification is a necessary but not sufficient condition for validation. We here focus on
verification and more particularly on computer-aided approaches.

The central question that verification aims to answer is straightforward yet intricate: Does the system under
study operate according to specifications? Specifications are set by the user and define the expected properties
of the structure or behavior of a system and can be expressed in various ways, including formal specifications,
requirements, or constraints [DAC99, FCT10]. To add rigor to the verification process, formal methods are often
employed. These methods are often based on modeling and logic, and implemented in a structured framework
for specification, design, and verification. A cornerstone of formal methods is the notion of mathematical proof
to establish system correctness. This typically involves two key efforts: a modeling task and an algorithmic task.
The modeling task involves identifying appropriate models that encapsulate both the system’s behavior and the
properties being verified. Conversely, the algorithmic task is focused on developing an algorithm capable of
verifying these properties within the chosen model.

Before discussing further aspects, it is crucial to acknowledge the limitations of verification. Early results in the
theory of computation, such as Turing’s Halting Problem [Tur36] and Rice’s Theorem [Ric53], show that complete
algorithmic verification is an unsolvable problem in a general sense. This means that there are inherent limitations
to what can be algorithmically determined about programs in general and that many non-trivial semantic properties
of programs are undecidable. However, these theorems deal with general cases and that is what makes the field of
software verification challenging and interesting.

Verification techniques can be characterized by several factors, including but not limited to whether they produce
sound and complete results, the level of automation, the rigor involved, the syntactic and semantic knowledge of
the program they require, and the type of properties they can verify. Soundness and completeness are two important
properties of verification techniques. A technique is said to be sound if it does not produce false positives, i.e.,
it does not report a property as violated when it is not. A technique is said to be complete if it does not produce
false negatives, i.e., it does not report a property as satisfied when it is not. Moreover, techniques are generally
categorized into static and dynamic approaches. In the following subsections, we will informally present some of
these techniques.

This thesis focuses on runtime verification, a dynamic verification technique that we present in Section 1.2. In
Section 1.3, we then discuss the challenges we identified in runtime verification. In Section 1.4, we detail the
problem statement of this thesis. We then present a summary of our contributions in Section 1.5, the thesis structure
in Section 1.6, and the publications that resulted from this thesis in Section 1.7.

1.1.1 Static Approaches
Static verification operates without executing the program and encompasses methods such as model checking,
deductive verification, and static analysis.

Model Checking. Model Checking [CE81, QS82, BCMD91] is used to verify whether a model of the system
satisfies a given property. The model is typically a transition system that represents different states of the system’s
behavior and the property is usually expressed by the user in a temporal logic. A model-checking algorithm
exhaustively explores the state space of the model to verify whether the property holds. One example of model

INRIA - February 2024 2 Chukri Soueidi

1.1: An Overview of Computer-Aided Verification

checking is verifying the correctness of a network protocol design. One might formally define the states and
transitions of the protocol and use a model checker to verify that deadlock situations cannot occur. A main challenge
in model checking is the state explosion problem, where the number of states in the model that need to be explored
grows exponentially. For instance, in reactive systems where the system maintains an ongoing interaction with its
environment, the number of states can be infinite. Another challenge is the mismatch between existing models (that
represent programs and properties) and real-world systems. Existing models are often not effective in specifying
constructs of real-world systems. For example, a model may not be able to capture the behavior of a system that
relies on external libraries.

Deductive Verification. Deductive verification [Hoa69, Dij75] aims to formally prove that a program satisfies its
specification by using logical reasoning. It involves designing and attaching predicates to various nodes within a
program’s control flow graph. These predicates are typically checked using theorem provers to verify that they
hold whenever the control flow reaches these specific nodes. In this framework, a contract is often expressed
as preconditions and postconditions surrounding code fragments. Then a set of inference rules is used to prove
the partial correctness of this contract and thus the program. However, unlike some other verification techniques,
deductive verification often requires manual effort, as human input is often needed to specify conditions and
invariants.

Static Analysis. Static analysis [AC76, Hec77, CC77, NNH15] encompasses a wide range of approaches to
automatically verify the properties of a program without executing it. The static analysis aims to statically predict
the properties of the dynamic behavior of the program relying on conservative overapproximations, which often
lead to false positives. Static analysis can be used in program optimization, development, and verification. One of
the most common forms of static analysis is type checking, which is used to detect type errors such as assigning
an integer to a string variable. Another common form of static analysis is data-flow analysis, which can be used
to identify variables that are never used or to detect potential null pointer dereferences. Static analysis relies on
approximations of the program behavior which may also yield false positives.

While static techniques provide a robust analysis of a system’s behavior given the limitations we discussed, their
scope is limited to various unpredictable factors. Soft errors such as bit flips in memory, hardware failures, and
incorrect assumptions about the execution environment can introduce unforeseen errors that escape static analysis.

1.1.2 Dynamic Approaches
Dynamic verification techniques analyze the program during or after its execution. These techniques do not
necessarily require access to the source code and can treat the program as a black box analyzing its execution traces.
With access to the dynamic information generated by the program, dynamic techniques often produce fewer false
positives than static techniques which rely on approximations or inaccurate models. However, they are inherently
incomplete as they examine single execution paths.

We present some of these techniques informally below. We leave a more detailed discussion of runtime verification
in the next section.

Testing. Testing is the most adopted method to detect errors in programs. However, the only errors it detects are the
ones that are manifested during the executions of the given test suites. Testing is achieved by executing the program
with a set of inputs where then a test oracle compares the actual output with the expected output. Testing approaches
can be manual [IML09], model-based [JVCS07], with various automated testing tools [GKS05, Run06, Bec04].
Other approaches focus on generating test cases automatically [GA14, RC17, McM04]. Calculating various
coverage metrics is often associated with evaluating the quality of a test suite utilizing tools such as [JaC, jco].
Query-based testing [HSTV09], is a generalization of these metrics. For example, a query may impose that a
specific line be visited, then that a variable be assigned a specific value, etc. One of the main challenges in testing
is the difficulty of generating a comprehensive set of test cases that cover all possible execution paths. Another
challenge is the difficulty of generating test cases that expose errors. For example, a test case that does not cover a
particular execution path may not expose an error that occurs on that path.

Assertion Checking. Assertion checking [CR06, SKV17, AGVY11, RLL+13] involves inserting assertions into
the code that are checked during execution. Unlike other approaches, which often run separately and observe the

THESIS 3 Chukri Soueidi

CHAPTER 1. INTRODUCTION

System

Instrumentation
Trace

Monitor

Specification

Verdict

Figure 1.1: The typical setup of Runtime Verification.

running system, assertion checking is embedded directly into the code. For instance, assertions could be used to
ensure that an array index is within bounds. Hybrid approaches combining static and dynamic techniques can also
be used to minimize the assertions needed to be checked online [DKS13].

1.1.3 Combining Static and Dynamic Approaches
Given the limitations and strengths of both static and dynamic verification methods, combining static and dynamic
techniques is natural and widely adopted [EMN12]. Often, static methods such as deductive verification and static
analysis are employed in the development process to provide guarantees as early as possible. Complementing this,
dynamic methods like runtime verification and assertion checking verify the system during its actual operation.
Combining static and dynamic methods provides a comprehensive approach to software verification, effectively
addressing a broader set of challenges and mitigating the individual shortcomings of each technique.

Below are some methodical examples of combining static and dynamic verification techniques.

• Concolic Testing [GKS05, Sen07]: This approach combines static symbolic execution with dynamic
concrete execution to achieve broader code coverage and find tricky bugs. For instance, a concolic tester
might use symbolic execution to identify test cases that lead to a particular code path and then run those test
cases to find bugs. One example is to achieve high code coverage and identify edge cases that may lead to
failures.

• Residual Analysis [DP07, BLH12]: This method aims to reduce the overhead of runtime monitoring by
using static analysis to prune parts of the program that can be statically verified. This is done by analyzing the
property and the program to identify parts of the program or the property that are irrelevant to the verification
process.

• Bounded Model Checking [BCC+09]: This technique involves exploring the state space of a program by
checking the truth of a property over a finite initial segment of its execution paths. By using a constraint
solver, it verifies if a counterexample exists within the given bounds, making it feasible to explore more states
within a limited amount of time.

1.2 Runtime Verification
Runtime Verification (RV), also known as runtime monitoring [FHR13a, BFFR18a, FKRT21], is a lightweight
formal verification technique that focuses on analyzing a system during (or after) its execution to verify whether it
satisfies or violates a property. The property needs to be monitorable [FFM12, PH18] i.e., its truth or falsehood can
be determined by observing a finite prefix of the system’s execution, a concept we will elaborate on later in this
chapter.

RV focuses on individual program executions rather than exploring all possible scenarios (as in model checking)
and serves as a dynamic alternative for scenarios that are too complex for static verification methods. It can
be employed either during the testing phase as a formalized test oracle or during system deployment as part
of a fault protection strategy, where corrective actions may be taken if the specification is violated. RV has
been used in combination with formal static verification methods such as model checking [Leu12], deductive
verification [CAPS15] and static analysis [DP07, BLH10, ACP20], as well as informal dynamic methods such
as testing [CAS18] and debugging [JFMP17]. Runtime verification has been applied in a variety of domains
and industries such as software engineering [LHX+16], aerospace [PWNG13, ZAD+23], automotive [BFB12],
railroads [CZS+23], smarthomes [EHF22], gaming [VLGH17a], healthcare [JSW+16], and finance [CWG+17].

INRIA - February 2024 4 Chukri Soueidi

1.2: Runtime Verification

Runtime
Verification

application
area

analysis

debugging

software
& system

engineering

information
collection

failure
prevention
& reaction

testing

deployment

placement

architecture

stage

instrumentation

reaction active

passive

monitor

generation execution

decision
procedure

interference

invasive

non-invasive

specification

explicit

implicit

system
model

trace

role

evaluation

information

Figure 1.2: An overview of the taxonomy of Runtime Verification (from [FKRT21]).

Figure 1.1 illustrates the typical RV setup. The inputs to a runtime verification system are the system under study
and a specification that expresses a property of interest in the desired behavior of the system. Before executing
the program, the system is instrumented so that it produces a trace of events that abstracts its execution. Also, the
specification is used to synthesize a monitor, which is responsible for analyzing the execution trace and determining
whether the property is satisfied or violated. When the system is executed, the monitor consumes the trace of events
and outputs a verdict indicating whether the execution satisfies or violates the specification.

We now present a high-level overview of the major concepts involved in runtime verification. In [FKRT21], the
authors organized the various aspects of runtime verification into a taxonomy, we here present a summary of this
taxonomy. Figure 1.2 illustrates the taxonomy of runtime verification.

Trace. The predominant approach to modeling program behavior in runtime verification involves observing an
execution and abstracting it into a trace of events. Capturing all the information produced by the execution is
infeasible, so the trace is typically a sequence of observations that abstracts the behavior of interest in the program
for the monitor. Traces assume dual roles: firstly, they encapsulate the information extracted from the execution of
the program; secondly, they function as mathematical models for formal reasoning about the properties of the RV
technique. For instance, properties expressed using LTL formulae are usually interpreted over infinite traces of sets
of atomic propositions. Additionally, the collection of a trace often necessitates the association of information with
temporal markers. These could be timestamps, logical clocks, or other temporal abstractions.

Specification. A specification is a description of a property written with a well-defined formalism. It can be
explicitly defined using formal languages like temporal logic, regular expressions, or state machines. Other
properties can be implicitly and directly integrated within the monitor such as generic concurrency properties like
data-race and deadlock freedom. Moreover, some techniques focus on learning specifications from execution traces.
The choice of language for explicit specification depends on the specific verification requirements. For example,
temporal logic is suitable for expressing properties that reason about the ordering and timing of temporally distinct

THESIS 5 Chukri Soueidi

CHAPTER 1. INTRODUCTION

program states or events, whereas regular expressions are more suitable for expressing patterns related to the
occurrence of events within a sequence. Other specification languages include finite state machines[RCR15a, CP17],
stream equations [LSS+18, GS21], and first-order logic. The formalization of properties in terms of specifications
requires human effort and can be error-prone leading to resistance from practitioners.

Monitor. From each property, a monitor is synthesized which is the decision procedure for the property. A
monitor is spawned at runtime; it receives events of the trace and is responsible for analyzing the execution of the
system and determining whether the property is satisfied or violated. The synthesis process is usually automated
and performed offline. Monitors are typically implemented as state machines or formula rewriting [HR01] systems.
Typically online monitors incrementally consume events in a step-by-step manner on each program observation
yielding a verdict when the property is satisfied or violated. The verdict indicates whether the execution meets the
specification or not. Offline monitors consume the entire trace at once and produce a verdict at the end. Offline
monitors are typically used for post-mortem analysis. The verdicts usually correspond to a set of truth values. A
standard set of truth values is {⊤,⊥, ?}, where ⊤ and ⊥ respectively signify adherence and non-adherence to the
specifications, and the verdict ? implies that a definitive conclusion has not been reached yet. Monitors are often
monotonic in the sense that they do not change their verdict when more events are observed. The monitor should
also typically produce a verdict as early as possible. Offline monitors consume the entire trace at once and produce
a verdict at the end. Offline monitors are typically used for post-mortem analysis.

Instrumentation. Extracting traces typically relies on instrumentation, a technique that entails transforming the
base program to emit events that abstract its behavior. Instrumentation consists of two main steps: 1) identifying
the program points corresponding to the events of interest, and 2) inserting additional code into the base program
to extract information. A property is typically formalized using an alphabet of abstract events, denoted as Σa.
The program generates concrete events, denoted as Σc, which must be mapped into a trace of abstract events
compatible with the runtime analysis. Instrumentation serves as the mechanism for capturing these concrete events
and translating them into their corresponding abstract events, thereby constructing a trace that is compatible with
the monitor. Instrumentation is particularly suitable for runtime verification. It provides flexibility in capturing
concrete events by pinpointing arbitrary locations in the source code, as opposed to being limited to specific events
provided by the execution environment.

Deployment. The deployment of monitors in a system is a critical aspect that necessitates well planning to
determine how they are integrated within the program and its execution. In online monitoring, verification is
conducted concurrently with system execution. Conversely, offline monitoring involves post-execution analysis
of the system’s trace. The monitor can be placed to execute inline sharing the same execution environment and
address space as the system under observation, or they can be placed outline in a separate execution environment
and address space. In [CFA+17], the authors present a survey of the various deployment strategies for runtime
verification.

Interference and Reaction. The introduction of monitors into a system often leads to interference, affecting
aspects like memory or thread scheduling. This is particularly critical in real-time systems where additional delays
may be incurred. In terms of reaction, runtime verification techniques can be either passive or active. Passive
techniques solely observe the system and report or fail upon specification violations. Active techniques, such as
runtime enforcement, go beyond observation and directly intervene in the system to ensure compliance with the
specification. These active monitors are capable of actions like snapshotting, rolling back, and suppressing events,
and may even allow temporary deviations from the specification before restoring compliance or failing.

1.3 Identified Challenges
Runtime verification presents a multitude of challenges, particularly in the context of online monitoring and
concurrent programs. In this thesis, we focus on three challenges: 1) the capturing of correct traces, 2) guiding the
instrumentation process, and 3) the assessment of the validity of the collected traces. These challenges often render
existing monitoring frameworks inadequate in various scenarios. This limitation is counterproductive considering
that these frameworks have been refined to support diverse specification languages and to synthesize efficient
monitors. Each of these challenges will be discussed in detail in the following subsections.

INRIA - February 2024 6 Chukri Soueidi

1.3: Identified Challenges

System

Guided Instrumentation
Trace

Monitor

Specification

Verdict

Figure 1.3: Guided instrumentation in RV setup.

1.3.1 Capturing Correct Traces (C1)
Runtime verification approaches often implicitly assume that the acquired traces correctly represent the program.
However, this assumption is not always valid. Acquiring accurate and complete traces is crucial for runtime
verification, as they serve as the foundation for subsequent monitoring and analysis. If the traces are inaccurate
or incomplete, the integrity of the monitoring process is compromised, rendering the results unreliable. This
underscores the critical importance of reliable methods for trace collection. Several factors, such as the completeness
of captured events, their sequential order, granularity level, and the concurrency model of the program under
examination, affect trace quality.

Instrumentation is pivotal in this context, tasked with ensuring that monitors receive accurate and relevant informa-
tion specific to the monitoring scenario at hand. In concurrent programs, acquiring sound traces, i.e. traces where
the order of events is correct, necessitates specialized instrumentation techniques. For instance, capturing events in
the correct sequential order in concurrent programs might necessitate additional enforced synchronization to ensure
the atomic execution of program actions and the corresponding instrumented code which notifies the monitor.
Alternatively, reconstructing the causality and establishing the happens-before relationship between events requires
observing additional synchronization points during the execution. Both scenarios demand the capability to cover
and extract detailed low-level information from the program’s execution and often result in significant overhead
and interference. In some cases, the instrumentation process may require the ability to insert arbitrary bytecode
instructions in the program. Current widely adopted instrumentation frameworks, particularly those integrated
within monitoring frameworks, lack the adaptability to meet these requirements, thereby highlighting the need for
more adaptable solutions.

1.3.2 Guiding the Instrumentation Process (C2)
The instrumentation process commonly takes an alphabet of events as input and is tasked with capturing the
corresponding concrete events from the program execution. This process is often designed without considering the
semantics of the property or the program being verified, in some cases leading to either excessive or incomplete
instrumentation. The former results in unnecessary computational overhead when monitoring online, while the
latter may cause false negatives.

In many cases, the property can be considered to guide the instrumentation process (Figure 1.3). This integration
would involve a pre-instrumentation analysis phase that extends beyond simple event mapping. It can consider
both the property and program semantics to optimize the instrumentation points, improve the quality of the
collected traces, and reduce the overhead of instrumentation. Current frameworks for instrumentation generally
lack the flexibility to incorporate such weave-time analyses using the proper abstractions. A more adaptable
framework could facilitate the integration of different considerations into the instrumentation process such as
program semantics, property semantics, and the monitoring approach. This opens the path for the development of
more efficient instrumentation techniques that can be tailored to the specific monitoring scenario at hand.

1.3.3 Trace Validity Assessment for Concurrent Programs (C3)
Assessing the validity of a captured trace presents another challenge, particularly in the context of concurrent
programs. For example, if two concurrent events execute in parallel, they are incompatible with a monitoring
system designed to expect a total order of events. Attempting to linearize the trace of such concurrent events and
then passing it to the monitor would lead to unreliable results. In formal terms, such a trace is not monitorable, i.e.
there exists no monitor that can correctly verify the property using the trace. The trace may contain all the events
necessary to monitor a property but may be an inadequate model for the property. Trace monitorability involves a

THESIS 7 Chukri Soueidi

CHAPTER 1. INTRODUCTION

semantic assessment of the trace against the property under consideration. Inadequate trace models can lead to
false positives or false negatives during monitoring, making it crucial to establish robust methods for assessing the
monitorability of traces. This is particularly important in the context of concurrent programs, where the notion of
trace monitorability is not yet well-defined and the ordering relation of events in the trace is critical for determining
the usefulness of a trace. Therefore, equipping monitors with robust methods for assessing the monitorability of
traces can open the door for revisiting and extending the plethora of existing monitoring approaches that rely on
total order formalism to handle concurrent programs.

1.4 Detailed Problem Statement
The challenges we identified in Section 1.3 are intrinsically tied to the instrumentation and trace collection process.
In this section, we present our problem statement from two perspectives: instrumentation frameworks and concurrent
programs.

1.4.1 Instrumentation Frameworks
Given the challenges C1 and C2, we find that widely adopted instrumentation frameworks are inadequate. They
either lack the expressiveness required for low-level event capture and program modification or do not provide the
flexibility to guide the instrumentation process with semantic considerations.

In the landscape of program instrumentation, two categories of frameworks are commonly employed: low-level
code manipulation libraries and high-level aspect-oriented programming frameworks. Low-level libraries offer
comprehensive capabilities for fine-grained code coverage and transformations; however, their verbosity imposes a
steep learning curve. They do not offer the proper level of abstraction for instrumentation. Effective use of these
libraries necessitates a deep understanding of program traversal strategies and bytecode syntax and semantics.
Conversely, high-level frameworks simplify the instrumentation process by providing more abstract languages for
specification. These are widely adopted in existing runtime verification approaches. However, they often lack the
expressiveness required to capture intricate details of program execution, such as individual bytecode instructions,
stack values, and local variables. Moreover, the ability to modify the base program in these languages is restricted
to the language constructs provided by the framework. The dichotomy between these two types of frameworks
highlights the need for a more versatile solution that combines the best of both worlds: the expressiveness of
low-level libraries and the user-friendliness of high-level frameworks.

As such, monitoring tools relying on aspect-oriented programming frameworks like AspectJ [KHH+01a] are
often confined to coarse-grained events. While some monitoring scenarios require only high-level events, others
necessitate low-level details. For instance, while typestate property monitoring often focuses on high-level
operations such as method calls [KF19, DP07, BLH10], other monitoring scenarios, such as control-flow integrity,
require the capture of low-level details [KF19]. Being limited to coarse-grained events restricts the scope of what
the monitoring system can observe. This limitation is particularly counterproductive given that these monitoring
frameworks are refined to allow for various specification languages and produce efficient monitors. Their coupling
with the instrumentation framework, however, limits their expressiveness leaving their advanced capabilities unused.

Additionally, the pointcut/advice model of aspect-oriented programming frameworks does support custom analyses
in the instrumentation process. The user is restricted to specifying only the code to be inserted, without allowing
for compile-time program analyses that could incorporate syntactic or semantic considerations. For example, in the
context of dynamic dispatch analysis, it may be desirable to emit an event only when a method is overloaded by
another method in the same class. Such pre-instrumentation analysis is not feasible without resorting to cumbersome
compiler customizations, as seen in [ACH+05, AM07, BLH10].

As such various optimization opportunities are missed. For instance, in the context of residual runtime verifica-
tion [DP07, BLH10, ACP20], static verification can be employed to prune unnecessary instrumentation points,
thereby reducing monitoring overhead. This requires analyzing both the semantics of the property under verification
and program behavior during instrumentation. The absence of support for semantic inclusion in the instrumentation
process limits the optimization possibilities of the monitoring process.

The existing landscape of runtime monitoring lacks a comprehensive instrumentation framework that can address
the challenges of instrumentation in the context of various monitoring scenarios. In this thesis, we seek to provide
a framework that can combine the simplicity of the instrumentation model from aspect-oriented languages with

INRIA - February 2024 8 Chukri Soueidi

1.5: Summary of Contributions

the flexibility and control provided by bytecode manipulation libraries. This framework aims to fully utilize the
capabilities of existing monitoring methods and provides the foundation for enabling new monitoring approaches.

1.4.2 Monitoring Concurrent Programs
Given the challenges C1, C2 and C3, we find that existing monitoring techniques are not yet fully equipped for
the demands of online monitoring of concurrent programming. Concurrent programs introduce unique challenges
for dynamic verification. While a concurrent program behaves non-sequentially, the trace collection is sequential.
A correct trace must be both sound, providing no false information about event order, and faithful, containing all
necessary ordering information. Such a trace is ideally represented by a partial order over the relevant events.

Establishing this partial order between events is crucial for sound monitoring, yet computationally expensive.
Consider the general behavioral precedence property, which specifies that a resource can only be granted (event g)
in response to a request (event r), and can be expressed in LTL as ¬g W r (not g weak until r). The order of events
g and r is important for the satisfaction of this property and the happens-before [Lam78] relation between events
must be established. While the execution is concurrent, the trace is sequential. This mismatch between the trace
and the execution requires careful handling. Concurrent (parallel) events are arbitrarily ordered in a trace when
linearizing their execution, which may not correspond to the actual execution leading to false positives or false
negatives when monitoring. In that case, if g and r are concurrent events, then a monitor may produce either verdict.

Vector clock algorithms [CL02, MV20, AG05, RS04] have been typically employed in collecting partial orders.
However, very few (we know of [RGB20]) are directed towards online monitoring of behavioral properties; where
a final trace consists of property-related events only. These algorithms typically require blocking the execution; by
synchronizing the instrumentation, program actions, and algorithm’s processing to avoid data races [CL02]. This
introduces coarse-grained synchronization and interferes with the execution affecting scheduling and performance.
With the quadratic bound on their runtime complexity and the coarse-grained synchronization they introduce, one
might want to run such an algorithm off the critical path of the program. As such, existing techniques that target
behavioral properties and can establish causality, such as [CSR08, JS08, SCR12, HMR14a], are more suitable for
the testing phase instead of the deployment phase in production environments. These tools can also utilize the
extracted causal model to predict violations. However, most of them assume a sequentially consistent execution
model, limiting the space of possible event interleavings and thus their completeness. On the other hand, classical
monitoring frameworks, such as Java-MOP [CR05a], Tracematches [AAC+05a, BHL+10], MarQ [RCR15b], and
LARVA [CPS09b], that rely on totally ordered traces are not yet equipped for monitoring concurrent programs.
Many of these tools were developed to handle single-threaded programs. They linearize the execution of concurrent
events, using incorrect instrumentation and ordering assumptions, leading to unsound verdicts [RGB20]. Moreover,
these tools rely on AspectJ which is not expressive enough to capture the synchronization points in the program. As
such, again they are rendered unusable for monitoring behavioral properties in concurrent programs.

This thesis proposes methods for collecting representative traces and online monitoring techniques capable of
being deployed in production environments to address these challenges in sound trace collection and optimizing
instrumentation overhead and interference.

1.5 Summary of Contributions
The contributions of this thesis can be summarized as follows:

• We review the instrumentation process for runtime verification along with existing frameworks and techniques.

• We introduce a novel, dedicated, versatile, and expressive instrumentation framework tailored for the
collection of correct traces for runtime verification. Its expressiveness facilitates the capture of events at
multiple levels of granularity and its design allows the use to guide the instrumentation and incorporate
compile-time pre-instrumentation analyses (C1 and C2).

• We implement this framework in BISM, a state-of-the-art tool designed for JVM languages. The instru-
mentation language strikes a balance between expressivity and usability. BISM offers two languages for
instrumentation specification: an API-based approach, granting users granular control over the instrumenta-
tion process, and an external DSL approach focused on RV, providing a declarative mechanism for specifying
instrumentation.

THESIS 9 Chukri Soueidi

CHAPTER 1. INTRODUCTION

• We define residual runtime verification for parametric properties [CR09, BFH+12]. We instantiate it at the
intra-procedural level using novel overapproximation approaches for the program behavior that relies on the
upward closure of the monitor automaton. This technique integrates both the semantics of the property under
verification and the program to optimize the instrumentation process and reduce instrumentation points (C2).
It applies to both safety and co-safety properties and is agnostic to specific static analysis techniques. This
modularity enables seamless integration within RV approaches and in combination with traditional static
analyses. We evaluate its effectiveness on a set of benchmarks.

• We formalize and define trace soundness and faithfulness for concurrent traces. These trace qualities apply to
any set of monitorable properties and serve as guidelines for assessing the correctness in representing the
behavior of a concurrent program (C1).

• We present a novel approach for collecting concurrent traces from concurrent programs for online runtime
monitoring. This approach establishes on the fly the causal ordering of events using a novel vector clock
algorithm that does not require blocking the execution (C1).

• We define trace monitorability for concurrent traces based on automata-based formalisms. We introduce
a causal dependence relation derived from the given property and establish necessary conditions for trace
monitorability, thereby ensuring sound monitoring outcomes. (C2 and C3).

• We implement and evaluate the opportunistic monitoring approach for the online monitoring of multithreaded
programs. This approach, originally presented in [EH18], avoids additional synchronization when monitoring
a property using existing monitoring frameworks. Global properties are specified over regions of the program
assumed to execute atomically, whereas thread-local monitors are deployed for each thread. This approach is
capable of reasoning on concurrent events and monitoring general behavioral properties and is evaluated on a
set of benchmarks (C1, C2, and C3).

• We introduce a modular approach to dynamic program analysis for JVM-based languages that integrates
our instrumentation framework with a complex event processing engine [Hal18]. Equipped with the
ability to capture fine-grained events and perform guided instrumentation, this approach allows for the
decoupling of instrumentation and analysis. This enhances expressiveness, promotes reusability, and allows
for simultaneous and independent analyses. The approach is demonstrated to be versatile, and capable
of supporting various analyses such as monitoring, profiling, coverage measurement, and complex event
generation (C1 and C2).

• We present several use cases to demonstrate how BISM can be used as a generic tool for instrumenting and
analyzing programs. Using the same abstractions users can perform a range of static and dynamic analyses.
We demonstrate the use of BISM in activities such as mutation testing, obfuscation, and instrumentation for
other dynamic analyses.

• We evaluate our instrumentation framework and the proposed monitoring techniques using a comprehensive
set of benchmarks. The benchmarks include synthetic programs and real-world applications containing both
sequential and concurrent programs. Our results demonstrate the effectiveness of the proposed methods in
addressing the challenges of runtime verification (C1, C2, and C3).

1.6 Structure of the Thesis
This thesis is organized into several parts, each serving a distinct purpose in building the overall argument for the
contributions made in the fields of runtime verification and instrumentation.

Chapter 2: We review the basic concepts and definitions relevant to traces and runtime verification used
throughout the thesis.

Chapter 3: We review various concepts and considerations related to program instrumentation, laying the
groundwork for subsequent discussions.

Chapter 4: We present the instrumentation model of our framework, detailing the concepts of join points, advice,
shadows, selectors, and transformers.

INRIA - February 2024 10 Chukri Soueidi

1.7: Associated Publications

Chapter 5: We present the implementation of BISM, a state-of-the-art tool for JVM languages, which implements
our proposed instrumentation framework.

Chapter 6: We introduce and define the concept of residual runtime verification for parametric properties and
present our instantiation of this concept at the intra-procedural level using novel overapproximation approaches.

Chapter 7: We present the notions of sound concurrent traces and the monitorability of such traces, as well as
our approach for collecting them based on vector clocks.

Chapter 8: We present our contributions to the opportunistic monitoring of multithreaded programs.

Chapter 9: We present a comprehensive evaluation of our proposed framework and methods through various use
cases.

Chapter 11: We detail how expressive instrumentation can be combined with a Complex Event Processing engine
for wider dynamic program analysis, utilizing our instrumentation framework in monitoring, profiling, testing, and
coverage measurement.

Chapter 12: We summarize the contributions of this thesis and outline directions for future work.

1.7 Associated Publications
The work presented in this thesis has been published in the following publications:

[SKF20] (RV 2020, Tool Paper) We present our instrumentation framework BISM as a tool and evaluate it on a set
of benchmarks.

[SMF23] (STTT, Journal Article) We expand BISM, detail our instrumentation model, and include various
capabilities such as transformer composition.

[SF22a] (SAC ’22, Short Paper) We extend BISM to capture and prepare models that abstract program behavior at
the intra-procedural level.

[SF22b] (VSTTE 2022, Research Paper) We present residual runtime verification for parametric properties.

[SF23d] (SPIN 2023, Research Paper) We present sound concurrent traces for online monitoring.

[SEF23] (FASE 2023, Research Paper) We present opportunistic monitoring for multithreaded programs.

[SFH23a] (ISSRE’23, Tool Paper) We present a framework for dynamic program analysis using BISM and
complex event processing.

[SF23b] (RV 23, Tool Paper) We present a domain-specific language for BISM aimed at simplifying instrumenta-
tion specification for RV.

[SF23c] (RV 23, Tutorial Paper) We explore various scenarios of instrumentation for runtime verification, ranging
from basic monitoring to advanced use cases.

THESIS 11 Chukri Soueidi

CHAPTER 1. INTRODUCTION

INRIA - February 2024 12 Chukri Soueidi

CHAPTER 2

Preliminaries

Contents
2.1 Programs, Methods and the CFG 13
2.2 Event Traces, Properties, and Monitoring 15
2.3 Parametric Monitoring 16
2.4 Upward Closure 17
2.5 Relations, Partial and Total Orders 18
2.6 Concurrent Executions 18

2.6.1 Actions 18
2.6.2 Execution Order 20
2.6.3 Concurrent Execution 21

2.7 Vector Clocks 21

In this chapter, we recall concepts related to monitoring in general, programs, instrumentation, and verification. We
assume basic familiarity with automata theory such as the definitions of a finite-state machine, words, runs, and
acceptance, and refer to [HMU06] for more details.

2.1 Programs, Methods and the CFG
All the source code examples in this thesis are written in Java, however, the concepts and techniques presented apply
to any JVM language unless stated otherwise. Developers usually write their programs in a high-level language
such as Java [Ora23b], Kotlin [Jet23], and Scala [Lig23]. The source code is then compiled into an intermediate
form known as bytecode [Ora23c] which can be executed by the Java Virtual Machine (JVM) at runtime.

A program P can be defined as P = {C1,C2, . . . ,Cn}, where Ci is a class which contains a set of methods
{m1,m2, . . . ,mk}. We denote the set of all methods of a program P as Methods. A method m usually contains a
sequence of bytecode instructions, we denote its set of instructions as Instructionsm. Let also Instrs be the set of
all instructions in the program. Some methods in Java lack any bytecode representation, such as native methods
and abstract methods, and as such their set of instructions is empty. Native methods are implemented in native
languages via Java Native Interface (JNI) [Ora23a], and abstract methods have no implementation in their declaring
class.

Throughout this thesis, the term instruction refers explicitly to a bytecode instruction unless stated otherwise.
Bytecode instructions are more low-level than source code instructions, where a single source code statement can

13

CHAPTER 2. PRELIMINARIES

be translated into multiple bytecode instructions. We denote the set of all bytecode instructions in a program as
Instrs.

EXAMPLE 1 (JAVA METHOD) In the Listing 2.1, the Java method named m initializes an empty list l of type
String and populates it. An iterator it is then created for traversing the list l. The method then checks whether it
has a next element and, if so, advances it to that element. The method concludes by printing "done," signaling the
successful execution of its operations. We show in Listing 2.2 the simplified bytecode resulting from compiling the
method in Listing 2.1. Bytecode instructions in JVM operate on a stack-based memory model with access to a local
variable array and a constant pool. Each instruction has a set of operands and a result. The operands are pushed
onto the stack, the instruction is executed, and the result is pushed back onto the stack.

1 public void m() {
2 //Initialize a list of strings
3 List<String> l = new ArrayList<>();
4 l.add("A");
5
6 //Create an iterator to traverse the list
7 Iterator<String> it = l.iterator();
8
9 //Call next if iterator has more elements
10 if (it.hasNext())
11 it.next();
12
13 System.out.print("done");
14 }

Listing 2.1: A Java method example source code.

1 _new ArrayList
2 dup
3 invokespecial ArrayList.init ()V
4 astore 1
5 aload 1
6 ldc "A"
7 invoke List.add (Object;)Z
8 pop
9 aload 1
10 invokeinterface List.iterator ()Iterator;
11 astore 2
12 aload 2
13 invokeinterface Iterator.hasNext ()Z
14 ifeq L0
15 aload 2
16 invokeinterface Iterator.next ()Object;
17 pop
18 L0
19 getstatic System.out, PrintStream;
20 ldc done
21 invokevirtual PrintStream.print (String;)V
22 return

Listing 2.2: JVM Bytecode for the method in Listing 2.1.

Control Flow Graph and Basic Blocks. The control flow graph (CFG) of a method is a directed graph that
represents the control flow paths that can be taken during the execution. The control flow graph is constructed
statically by analyzing the bytecode of the method. Each node in the graph represents a basic block, which is a
maximal sequence of consecutive instructions that can only be entered at its first instruction and exited at its last
instruction.

DEFINITION 1 (BASIC BLOCK) A basic block b is a maximal sequence of consecutive bytecode instructions,
denoted as s1 . . . sn, which satisfies two conditions:

• It can only be entered at its first instruction, s1, and no other instruction within b can be the target of a
branch (jump) instruction.

• It can only be exited at its last instruction, sn, and no other instruction within b can be a branch
instruction or a return instruction.

INRIA - February 2024 14 Chukri Soueidi

2.2: Event Traces, Properties, and Monitoring

B1

_new ArrayList

dup

invokespecial ArrayList.init ()V

astore_1

aload_1

ldc "A"

invoke List.add (Object;)Z

pop

aload_1

invokeinterface List.iterator ()Iterator;

astore_2

aload_2

invokeinterface Iterator.hasNext ()Z

ifeq L0

B2

aload_2

invokeinterface Iterator.next ()Object;

pop

B3

L0:

getstatic System.out, PrintStream;

ldc "done"

invokevirtual PrintStream.print (String;)V

return

Figure 2.1: Control flow graph for the method in Listing 2.1.

We denote the instructions in a basic block b by b.instr. Other variations for the CFGs exist such as the Single-
Instruction CFGs where each node contains a single instruction. In this thesis, we use the standard CFG definition
where each node represents a basic block. Let Blocks be the set of all basic blocks in the program.

DEFINITION 2 (CONTROL FLOW GRAPH) A control flow graph for a method m is a directed graph
CFGm = (Bm,Em), where Bm is the set of basic blocks in m, and Em ⊆ Bm × Bm is the set of directed
edges between basic blocks.

An edge (b, b′) ∈ Em corresponds to a possible flow of control from basic block b to basic block b′. Here b′ is
a successor of b and b is a predecessor of b′. That means that after executing the last instruction of b, the next
instruction to be executed should be the first instruction of one of its successors. We use a boolean flag b.entry
to indicate if b is the entry basic block of the method. This block has no predecessors and is the first block to be
executed. Conversely, basic blocks with no successors are exit basic blocks, often characterized by a last instruction
being a return instruction. We use the boolean flags b.exit to indicate if b is the exit block of the method.

EXAMPLE 2 (BYTECODE AND CFG) Consider the method in Listing 2.1. The bytecode for this method is
shown in Listing 2.2. Figure 2.1 shows the control flow graph for this method. You can see that B1 is the entry
block and B3 is the exit block. The edges between the blocks represent the possible control flow paths. For example,
B1 can flow to B2 or B3 depending on the evaluation of the if statement in the source code (Line 10).

2.2 Event Traces, Properties, and Monitoring
Let Σ be a set of events, Σ∗ and Σω are the sets of all finite and infinite traces over Σ, respectively. A finite trace is a
sequence of events, a word in Σ, that can be modeled by a function t : [1, n]→ Σ for a trace of length n. We say
that an event belongs to the trace, noted e ∈ t, when e ∈ codom(t).

A property φ is a language over Σ which is a subset of Σ∗. Given a trace t in Σ∗, the set of prefixes of t, noted pre(t),

THESIS 15 Chukri Soueidi

CHAPTER 2. PRELIMINARIES

q0 q1 q2 q3
c u

Σ n u Σ

n

Figure 2.2: Monitor recognizing the language of bad prefixes for the SafeIterator property.

is defined as: pre(t) = {p ∈ Σ∗ | ∃s ∈ Σ∗ : t = ps}. The set of matching prefixes is the set of prefixes of a trace
within a given language L.

DEFINITION 3 (MATCHING PREFIXES [BLH12]) Given a language L ⊆ Σ∗ and a trace t ∈ Σ∗, the match-
ing prefixes of t in L is given by: matchL(t) = pre(t) ∩ L.

Many monitoring techniques and approaches essentially rely on the detection of bad and good prefixes, which are
intuitively the witnessing sequences allowing a monitor to conclude about monitoring the program based on the
trace observed so far.

DEFINITION 4 (BAD/GOOD PREFIXES [KYV01]) Given a language L ⊆ Σ∗ of finite traces over Σ (or of
infinite traces, L ⊆ Σω). A finite trace u ∈ Σ∗ is a bad prefix for L, if ∀w ∈ Σ∗ : uw < L (or ∀w ∈ Σω : uw < L,
if L is over infinite traces). Moreover, u is a good prefix for L, if ∀w ∈ Σ∗: uw ∈ L (or ∀w ∈ Σω : uw ∈ L, if L
is over infinite traces).

The languages of bad and good prefixes are extension-closed; since every continuation of a bad or a good prefix for
a language, L, by a finite word is also a bad (good) prefix for L. When monitoring at runtime, we are interested in
reporting a violation/satisfaction of a property from a trace as early as possible. Matching a bad (alternatively good)
prefix is sufficient to produce a final verdict since every continuation of the trace will produce the same result. For
instance, the techniques in [BLS11a, FFM12] synthesize a monitor (as a finite-state automaton) that recognizes the
good and bad prefixes of the language denoted by a temporal-logic formula or by an automaton over infinite traces.

EXAMPLE 3 (SAFEITERATOR MONITOR) Figure 2.2 shows the monitor that checks for the violation of the
SafeIterator property which specifies that "A collection in Java should not be updated when an iterator associated
with it is created and being used". Event c denotes the creation of an iterator associated with a list by calling
list.iterator(), event u denotes an update on a list by calling list.add(..), and event n denotes calling
the next method iterator.next() on an iterator. The monitor recognizes the bad prefixes in the traces received
from a running program. Note that the monitor reaches the accepting state when seeing the pattern c.n∗.u+.n, as it
suffices to conclude that the whole run violates the property. ∗

DEFINITION 5 (PROPERTY SATISFACTION) We say that a trace t ∈ Σ∗, satisfies a property φ ⊆ Σ∗ denoted
by t |= φ iff t ∈ φ. Alternatively, for a safety property φ with its language of bad-prefixes L, t |= φ iff
matchL(t) = ∅. And, for a co-safety property φ′ with its language of good-prefixes L′, t |= φ iff matchL′ (t) , ∅.

2.3 Parametric Monitoring
Monitoring is in practice often performed on parametric monitors that receive events accompanied by runtime
information about the objects producing them, allowing to monitor each set of related objects in the program
separately. There is a myriad of different approaches to parametric monitoring that differ in the manner they
interpret events with runtime information and project these to instances of monitors. See [CR09, BFH+12] for
example approaches and [HRTZ18a, FKRT21] for overviews. Here, we sketch a simple and general approach to
parametric monitoring that can be adapted to several existing approaches.

We denote the set of variables defined by a parametric monitor by X, and the set of values that these variables can
take by V . These values usually correspond to objects in the memory of the execution environment of the program.
A variable binding θ : X ⇁ V maps monitor parameters to their values and B is the set of all possible bindings in a

INRIA - February 2024 16 Chukri Soueidi

2.4: Upward Closure

program. A parametric event e⟨θ⟩ is then a pair (e, θ) ∈ Σ × B. We denote the set of all parametric events as Σ⟨X⟩
and a parametric trace as a word in Σ⟨X⟩∗.

EXAMPLE 4 (PARAMETRIC TRACES) Consider a scenario where a program creates two lists l1 and l2 and
then creates an iterator it on l1. While monitoring the property from Example 3, a parametric monitor may get
the following parametric trace τ = (u, [l 7→ o(l1)]) (c, [l 7→ o(l1), i 7→ o(it)]) (u, [l 7→ o(l2)]) (u, [l 7→ o(l2)])
(n, [i 7→ o(it)]) (c, [l 7→ o(l1), i 7→ o(it)]) (u, [l 7→ o(l2)]). The event (c, [l 7→ o(l1), i 7→ o(it)]) denotes the creation
of an iterator, event c, where the variable l, representing the associated list, is bound to the runtime object of l1
denoted by o(l1) and the variable i, representing the created iterator, is bound to the runtime object of it denoted by
o(it).

A parametric property ΛX.φ (notation borrowed from [CR09]) is then defined over traces of parametric events such
that ΛX.φ ⊆ Σ⟨X⟩∗. To monitor each group of related objects separately, a parametric monitor slices a parametric
trace according to the (dynamic) values from the program bound to the monitor parameters carried within events.
Slicing is achieved by projecting a trace τ on all seen bindings using a projection function denoted by τ↓θ. We omit
the formal details of the projection here for brevity. The projection results in a set of traces, we refer to as projected
traces, where each trace contains non-parametric events that correspond to related objects in the program and is
sent to a monitor that was spawned specifically for that slice.

DEFINITION 6 (PROJECTED TRACES) Given a parametric trace τ in Σ⟨X⟩∗, the set of projected traces is
denoted by Proj(τ) ⊆ Σ∗, and is defined as:

Proj(τ) =
⋃
θ ∈ B

τ↓θ

The above is a general definition of projected traces that can be instantiated in different ways to handle online
monitoring. At runtime, upon receiving new events from the program, these projected traces will be appended with
the new events and checked against the property using a monitor created and associated with the slice.

EXAMPLE 5 (PROJECTED TRACES) Consider τ from Ex. 4. A parametric monitor will check at runtime the
relation between o(l1) and o(l2)1 then accordingly produce Proj(τ) = {ucuuncu} if o(l1) = o(l2) or Proj(τ) =
{ucnc, uuu} if o(l1) , o(l2).

DEFINITION 7 (PARAMETRIC PROPERTY SATISFACTION) A parametric trace τ ∈ Σ⟨X⟩∗ satisfies a para-
metric property ΛX.φ denoted by:

τ |= ΛX.φ def
= ∀t ∈ Proj(τ) : t |= φ

2.4 Upward Closure
We recall the notions for subwords and their closures for regular languages. We refer to [KNS16] for full details
and borrow their definitions. For a word x ∈ Σ∗, the length of x is denoted by |x|, and for 1 ≤ i ≤ |x|, let xi denote
the i-th letter of x. We denote the empty word by ϵ. A subword is obtained by removing certain letters from a
word at arbitrary positions, and, a superword is obtained by inserting any number of letters into a word at arbitrary
positions. We say that a word x is a subword of y, denoted by x ⊑ y, equivalently y is a superword of x when there
are positions 0 < p1 < p2 < . . . pl ≤ |y| such that x[i] = y[pi] for all 1 ≤ i ≤ l = |x|.

EXAMPLE 6 (SUBWORDS) For Σ = {a, b, c}, we have ε ⊑ ab ⊑ acba. ∗

1This can checked with == in Java.

THESIS 17 Chukri Soueidi

CHAPTER 2. PRELIMINARIES

DEFINITION 8 (UPWARD CLOSURE OF A LANGUAGE) For a language L ⊆ Σ∗, the upward closure of L, is
denoted by ↑L and defined as {x ∈ Σ∗ | ∃y ∈ L : y ⊑ x}.

For any language L ⊆ Σ∗, we have L ⊆ ↑L. Moreover, a language L is upward-closed if L = ↑L. For a regular
language L recognized by a non-deterministic finite-state automaton (NFA), we can obtain an NFA recognizing
↑L by simply adding transitions without increasing the number of states. More precisely, given an automaton
A = (Σ,Q, δ,Q0, F) recognizing L, the NFA A↑ = (Σ,Q, δ′,Q0, F) recognizing ↑L is obtained by adding a self loop
on every state q ∈ Q and every letter s ∈ Σ such that δ′ = δ ∪ {⟨q, s, q⟩ | q ∈ Q, s ∈ Σ}.

EXAMPLE 7 (UPWARD CLOSURE) Consider the language L over the alphabet Σ = {a, b, c}, defined as words
containing the subword ab, i.e., L = {x ∈ Σ∗ | ab ⊑ x}. The upward closure of L, denoted as ↑L, includes all words
that have ab as a subword. For instance, if ab ∈ L, then ε ⊑ ab, and ε ∈ ↑L. Similarly, if acba ∈ L, words like
baacba or acbca are in ↑L. The upward closure encompasses words with the specified subword, allowing the
insertion of letters at different positions while maintaining the inclusion of ab.

2.5 Relations, Partial and Total Orders
Given two binary relations, S ⊆ X × Y and T ⊆ Y × Z, we denote their composition by S ◦ T = {(x, z) ∈ X × Z |
∃y ∈ Y : (x, y) ∈ S ∧ (y, z) ∈ T }. Let R ⊆ X × X be a binary relation on the set X, we can compose a relation with
itself n times, denoted by Rn such that R1 = R and Rn+1 = Rn ◦ R.

The transitive closure of R is the smallest relation on X that contains R and that is transitive (⟨x, y⟩ ∈ R and ⟨y, z⟩ ∈ R
implies ⟨x, z⟩ ∈ R), is denoted by R+ =

⋃∞
i=1 Ri. For a relation on a finite set of n elements, the transitive closure of

R can be determined by R+ =
⋃n

i=1 Ri. Moreover, the inverse of a relation R is denoted by R−1 = {⟨y, x⟩ | ⟨x, y⟩ ∈ R}.

EXAMPLE 8 (TRANSITIVE CLOSURE) For a binary relation R on the set X = {a, b, c} where R = {(a, b), (b, c)},
the transitive closure, R+, is: R+ = R ∪ {(a, c)} = {(a, b), (b, c), (a, c)}

A binary relation R ⊆ X × X is a partial order if it is reflexive (∀x ∈ X : ⟨x, x⟩ ∈ R), antisymmetric (⟨x, y⟩ ∈ R and
⟨y, x⟩ ∈ R implies x=y), and transitive. The transitive closure of R is the smallest relation on X that contains R and
that is transitive (⟨x, y⟩ ∈ R and ⟨y, z⟩ ∈ R implies ⟨x, z⟩ ∈ R), is denoted by R+ =

⋃∞
i=1 Ri. Moreover, R is a linear

or total order if it is connected (∀x, y ∈ X : ⟨x, y⟩ ∈ R or ⟨y, x⟩ ∈ R).

The set X together with the partial order R is called a partially ordered set denoted by (X , R). A subset Y of the
partially ordered set X is ordered by the restriction of R to Y , i.e. by R∩ (Y × Y). A linearization of a partial order R
is a total order R′ ⊆ X × X such that R′ ⊇ R. Any partial order on a finite set X can be extended to a total order on X.

EXAMPLE 9 (LINEARIZATION OF A PARTIAL ORDER) Given a set X = {a, b, c, d} and a partial order R =
{(a, b), (a, c), (c, d)}. You can see that not all elements in X are related to each other. For example, b and d are not
related. One linearization of R can be the total order R′ = {(a, b), (a, c), (c, d), (b, d)} another linearization can be
R′′ = {(a, b), (a, c), (c, d), (d, b)}

2.6 Concurrent Executions
In this section, we characterize a concurrent execution in a multi-threaded program. We introduce the notion of
actions, describe their attributes, and classify them into types. We then define the orders that govern the execution
of these actions and finally define a concurrent execution as a partially ordered set of actions.

2.6.1 Actions
An action represents the smallest observable execution step in a program. Observable in the sense that it is visible
to the execution environment, and can be monitored or debugged. Examples of actions are method calls, method
returns, and field reads. We define actions as follows:

INRIA - February 2024 18 Chukri Soueidi

2.6: Concurrent Executions

1.l0s 1.w0 1.u0s 3.l0s 2.w0

2.l1s 1.r1 2.u1s

2.r2

Figure 2.3: A concurrent execution of 1-Writer 2-Readers.

Formally, an action is defined as follows:

DEFINITION 9 (ACTION) An action is a tuple ⟨id, ctx⟩, where id is a unique identifier, and ctx is a set of
attributes given by ctx = {key 7→ value}.

We denote the set of all actions in an execution by A. The unique identifier id distinguishes different instances
of the same action. The context ctx may contain any static or dynamic information associated with the action.
For example, the context may contain the label lbl, the thread identifier tid, a resource identifier resid, a value
value, or a memory address. Although the label lbl is part of the context, it is often explicitly depicted for clarity
and to distinguish actions.

To retrieve attributes from an action context, we use the dot notation a.key which is defined as follows a.key =
value ⇐⇒ (key 7→ value) ∈ a.ctx. For instance, a.tid retrieves the thread identifier from the context of action
a, and a.lbl retrieves the label of the action a.

For certain actions, we depict them as lbl(tid, resource, value) to distinguish them from other actions. For
example, we depict a write action by write(1, x, 3) to indicate that a thread with id 1 wrote value 3 to variable x.

In diagrams and examples, we depict actions using the notation id.labeltidres. We omit resid when it is absent,
and id when there is no ambiguity.

The set of all program actions is denoted by A. We distinguish between two types of actions: regular actions (RAs)
and synchronization actions (SAs).

Regular actions are often relevant to the properties we aim to monitor. These actions are not used for coordination
and synchronization between threads.

EXAMPLE 10 (REGULAR ACTIONS) Fig. 2.3 shows the execution of a 1-Writer 2-Readers program with one
thread for the writer and two threads for the readers. Reader threads need to acquire a shared lock, also used by
the writer thread, to access the shared variable. While any reader thread holds the lock, another reader can also
acquire the lock concurrently, but the writer must wait until all readers have released the lock. Boxes with single
borders represent regular actions. We mention two actions highlighted in green, the regular actions 1.w0, 1.r1 with
lbl equals w and r, respectively. The first action is performed by the thread with tid equals 0 (the writer), and
the second action is performed by one of the threads with tid equals 1 or 2 (the readers). This example, while
illustrated within the context of a 1-Writer 2-Readers scenario, is versatile enough to represent any program that
utilizes a shared variable accessed by multiple threads under the MRSW lock pattern. Importantly, the operations
represented here, such as read and write, are conceptual and can be applied to higher-level operations in various
contexts, such as cache retrieval and cache update, not just limited to low-level memory operations. Regular actions
may be of interest to a monitor that checks the correctness of the program. We omit the labels for several actions
for brevity, however, these are actions that the program is executing and are of irrelevance to our example. ∗

Synchronization Actions. We refer to actions that provide synchronization for threads as synchronization actions
(SAs). We denote by SA ⊆ A the set of all synchronization actions executing in a program. These actions are used
for coordination and synchronization between threads when accessing shared variables in order to avoid thread
interference and memory consistency errors. For example, to avoid a race condition, two threads operating on
the same shared variable are required to synchronize their access in order not to have an inconsistent view of the
variable data. By using a lock, the execution environment enforces a critical section on the shared variable, where

THESIS 19 Chukri Soueidi

CHAPTER 2. PRELIMINARIES

each thread needs to acquire the lock to have access and then release it once done. For example, the unlock and
lock actions performed by the threads are synchronization actions.

DEFINITION 10 (RELEASE-ACQUIRE RELATION) We denote by RA ⊆ SA × SA, the relation which
specifies when two actions are capable of achieving together the release-acquire semantics on a shared variable
and hence synchronize an execution. Given two threads t and u, the following synchronization actions can
establish release-acquire semantics:

• unlock(t, l)/lock(t, l): release/acquire of lock l by t;

• fork(t, u)/begin(u): fork of u by t / first action by u;

• end(t)/join(u, t): last action t / u blocking until t ends;

• write(t, x, v)/read(t, x, v): value v on a volatile shared variable x;

• notify(t, s)/wait(t, s): notify/wait a signal s.

The relation RA can be derived from the specification of the programming language of the executing program,
making the detection of synchronization actions feasible. In terms of shared memory, when a thread tr executes a
release action, the visible side-effects of all actions (in particular writes) that were executed by tr are guaranteed to
be visible to the thread tr′ executing a corresponding acquire action. In Java, the semantics of release and acquire
are documented in the memory model [133].

EXAMPLE 11 (SYNCHRONIZATION ACTIONS) We can see in Fig. 2.3 from Example 10 the synchronization
actions depicted with double borders. The shown actions 1.l0s, 1.u

0
s corresponds to the locking and unlocking

actions of the lock with resid equals s by the thread with tid equals 0. ∗

2.6.2 Execution Order

In any concurrent execution, there is some causal precedence between actions. For two actions a and a′ in a
concurrent execution, we say that action a causally precedes action a′, denoted by a ≺ a′ when the execution of a′

depends on the execution of a. In other words, action a′ can only execute after a executes.

Thread Order. Actions executing in the same thread follow a thread order. The thread order is the total order of
all the actions performed by a single thread. The thread order guarantees that the order of actions in A performed
by thread t is the same as it would be generated by that thread running in isolation.

DEFINITION 11 (THREAD ORDER
p
−→) Let a and a′ be two actions that are executed in the program, the

thread order is a strict partial order
p
−→ ⊆ (A × A) such that:

p
−→ =

⋃
tr ∈ T

{ ⟨a, a′⟩ ∈ A × A | tid(a) = tid(a′) = id(tr) && a ≺ a′ }

Synchronization Order. Synchronization actions operating on the same resource induce a synchronization order
in an execution following the release-acquire semantics. Synchronization actions provide release-acquire ordering
semantics [133] and establish a synchronization order on the execution. Essentially, an acquire action a′ on a
resource by some thread synchronizes with the latest release action a, if it exists, on that same resource by some
other thread.

DEFINITION 12 (SYNCHRONIZATION ORDER
s
−→) Let a and a′ be two synchronization actions ∈ SA, the

INRIA - February 2024 20 Chukri Soueidi

2.7: Vector Clocks

synchronization order is a strict partial order
s
−→ ⊆ SA × SA such that:

s
−→ = {⟨a, a′⟩ ∈ SA × SA | resource(a) = resource(a′)

&& tid(a) , tid(a′)
&& ⟨a, a′⟩ ∈ RA
&& a ≺ a′}

Note that the thread order also orders synchronization actions produced by the same thread.

Execution Order The execution order of the actions is the combination of the thread order and synchronization
order.

DEFINITION 13 (EXECUTION ORDER
e
−→) The execution order

e
−→⊆ (A × A) is a partial order that is the

transitive closure of both thread and synchronization orders.

From the above definition, any ordering between two actions from different threads relies on the synchronization
order, Hence, if two threads never synchronize, there will be no order between any of their actions.

EXAMPLE 12 (EXECUTION ORDER) Fig. 2.3 shows an execution of a 1-Writer 2-Readers program. The solid
lines indicate the thread order and the dotted lines indicate the synchronization order. The execution order is the
transitive closure of both orders. ∗

2.6.3 Concurrent Execution

DEFINITION 14 (CONCURRENT EXECUTION) A concurrent execution is a partially ordered set of actions,
represented as a pair ⟨A,

e
−→⟩, where

e
−→⊆ A × A is a partial order over A.

Two actions a1 and a2 are related (i.e., ⟨a1, a2⟩ ∈
e
−→) if a1 happens before a2.

EXAMPLE 13 (CONCURRENT EXECUTION) Fig. 2.3 shows a depiction of a fragment of the execution of a
1-Writer 2-Readers program. Each line represents a thread, and each box represents an action. The solid lines
indicate the thread order and the dotted lines indicate the synchronization order. The execution is a partially ordered
set of actions, represented as a pair ⟨A,

e
−→⟩, where

e
−→⊆ A × A is a partial order over A.

2.7 Vector Clocks
We review notions of vector clocks as presented in seminal works [Mat88, Lam78]. A vector clock is a mapping
from the set of threads in a system to integers, denoted as V : T → Z+, where T is the set of all threads and Z+

represents the set of non-negative integers. There are three primary operations associated with vector clocks:

• Join (⊔): This operation computes the element-wise maximum of two vector clocks. Given two vector clocks
V1 and V2, their join V3 is defined such that ∀t ∈ T : V3(t) = max(V1(t),V2(t)).

• Comparison (≤): Vector clocks are compared by comparing their values element-wise. For two vector
clocks Va and Vb, we say Va ≤ Vb if and only if ∀t ∈ T : Va(t) ≤ Vb(t).

• Increment (inc): To increment the clock for a specific thread t, the inc function is used: inct(V) = λu. if (u =
t) then (V(u) + 1) else (V(u)).

THESIS 21 Chukri Soueidi

CHAPTER 2. PRELIMINARIES

EXAMPLE 14 (VECTOR CLOCKS) Consider a program with three threads T = {t1, t2, t3}. Initially, all vector
clocks are at zero: Vinit(t) = 0 for all t ∈ T . Let’s examine an example where these threads interact:

1. Thread t1 performs an action, so its clock is incremented: Vt1 = inct1 (Vinit).

2. Concurrently, thread t2 performs an action: Vt2 = inct2 (Vinit).

3. t1 and t2 synchronize, and t1 updates its clock by taking the join of its clock with t2’s: V ′t1 = Vt1 ⊔ Vt2 .

4. Finally, if t3 has not performed any action, and we wish to compare its vector clock with t1’s, we would find
that Vt3 ≤ V ′t1 .

Through this example, we see how vector clocks can be used to track the causality of events across different threads
in a concurrent or distributed program. ∗

INRIA - February 2024 22 Chukri Soueidi

Part I

Program Instrumentation

23

CHAPTER 3

Program Instrumentation and Existing Frameworks

Contents
3.1 Introduction 27
3.2 Understanding Instrumentation 27

3.2.1 Unveiling the Complete Picture 27
3.2.2 Observing the Execution 28

3.3 Instrumentation for Runtime Verification 29
3.3.1 The Program 30
3.3.2 The Observation 30
3.3.3 The Analysis 32
3.3.4 The Instrumentation Language 32

3.4 Instrumentation Requirements 33
3.5 Evaluating Instrumentation 34
3.6 Existing Instrumentation Frameworks 34

3.6.1 Bytecode Manipulation Libraries 34
3.6.2 Aspect-Oriented Approaches 36

3.7 The Need for a Comprehensive Instrumentation Framework 40
3.8 Conclusion 41

25

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

Chapter abstract
This chapter introduces instrumentation as a mechanism to observe the behavior of a program at runtime. Instru-
mentation is crucial in runtime verification because it should ensure that monitors are fed with relevant and accurate
information about the executing program under monitoring. While expressive instrumentation is desirable to handle
any possible monitoring scenario, instrumentation should also efficiently capture the just-needed information and
impact the monitoring program as little as possible. We comprehensively overview the instrumentation process,
its requirements, and considerations for single and multithreaded programs. We then present various metrics for
evaluating the efficiency and effectiveness of instrumentation. We compare existing instrumentation frameworks
and demonstrate how they can be used to instrument a program to monitor a property. We also discuss the
limitations of existing frameworks and how they can be addressed. We then present an outline for a comprehensive
instrumentation framework that can handle an extensive range of instrumentation needs.

INRIA - February 2024 26 Chukri Soueidi

3.2: Introduction

3.1 Introduction
Motivation. Verification and analysis techniques are designed to focus on certain behavioral aspects of the system
under study. Consequently, they require distinct behavioral models that accurately encapsulate the specific aspects
of the system that are relevant to their intended reasoning.

The predominant approach to modeling software behavior in monitoring and runtime verification involves observing
the software execution and abstracting it into a trace of events. Extracting these events frequently relies on
instrumentation, a technique that entails transforming the base program. Instrumentation consists of two main steps:
1) identifying the program points corresponding to the events of interest, and 2) inserting additional code into the
base program to extract information. Choosing the appropriate instrumentation framework for a monitoring scenario
is a crucial decision, as it involves a variety of important factors such as the observation granularity, specification,
and trace semantics [FKRT18]. The chosen framework must meet the monitoring goals and requirements.

Selecting the right instrumentation framework for a monitoring scenario in runtime verification is critical, as
it requires careful consideration of specific factors. These include the precise monitoring goals, the level of
observation granularity needed, the nature of the specifications to be monitored, and trace semantics [FKRT18]. It
is essential to ensure that the instrumentation framework aligns precisely with the intended results of the runtime
verification process. This alignment guarantees that the selected approach not only meets the defined monitoring
goals but also adheres closely to the requirements

Contributions. This chapter contributes to the understanding of the instrumentation process, its considerations,
and the differences between well-adopted instrumentation frameworks in runtime verification.

• We overview behavioral model generation for verification techniques.

• We compare alternative approaches to program observation.

• We discuss the instrumentation process and considerations for runtime verification. We look into these
considerations from the perspective of the program, the analysis and observation requirements, and the
instrumentation framework.

• We overview general requirements for instrumentation.

• We cover metrics for evaluating the efficiency and effectiveness of instrumentation.

• We compare existing instrumentation frameworks and outline a comprehensive instrumentation framework
that can handle an extensive range of instrumentation needs.

Chapter organization. The chapter is organized as follows. Section 3.2 presents the instrumentation process,
its role, alternative approaches. Section 3.3 covers the instrumentation considerations for runtime verification.
Section 3.4 discusses general requirements for instrumentation. Section 3.5 covers metrics for evaluating instru-
mentation. Section 3.6 compares existing instrumentation frameworks. In Section 3.7 we discuss the need for a
comprehensive instrumentation framework. In Section 3.8, we conclude the chapter.

3.2 Understanding Instrumentation
Dynamic analysis and verification techniques such as testing, profiling, and runtime verification involve examining
a program while it is running. These techniques analyze a behavioral model extracted from the program in
order to identify errors, bugs, or unusual behaviors. In this section, we overview a crucial component of these
techniques: instrumentation. We discuss various considerations that affect the choice of the instrumentation
technique. Specifically, we focus on managed languages, with a particular emphasis on JVM languages.

3.2.1 Unveiling the Complete Picture
Verification techniques necessitate abstracting the behavior of a program into a suitable model and subsequently
verifying whether this model adheres to properties. This model represents the actual behavior of the system
suppressing irrelevant details and enabling the application of automated analysis. The term model is extended here

THESIS 27 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

I.
Identify

II.
Collect

III.
Create

IV.
Validate

V.
Use

Figure 3.1: Cyclic process of model generation.

to include any artifact generated to represent the system’s behavior including logs, traces, automata, etc. Figure 3.1
illustrates the typical steps involved in the process of generating such models.

The model generation process begins by identifying elements of interest (I) within the program. This step
involves recognizing relevant elements based on user observation or a systematic analysis, which could include
structural components or specific actions. Following this, the process involves collecting information (II) from
these identified elements. Depending on the data required, this could be done statically or at runtime, especially
when certain required information, such as the values of variables or program input, is only available during
runtime. Once the necessary information has been gathered, along with any other assumptions, the next step
is creating the model (III). Typically, the model is a mathematical object or maybe a log file, designed to be
suitable for the analysis task. To ensure its accuracy and suitability for the intended analysis, the model may then
undergo a validation process (IV). Finally, the model is used for the intended analysis (V). It can serve various
purposes, such as being compared with another model in processes like model checking [CHVB18] or runtime
verification [BFFR18a], or it can be used to generate test cases, thereby achieving the desired analysis results.
While steps I and II assume a white-box approach to model generation, some processes start with execution traces,
such as specification mining [BF72, KBM14, OHF+14]. Moreover, these steps can overlap, and the cycle can be
reiterated for refinement.

3.2.2 Observing the Execution
Observation is crucial for the completion of steps I, II, and III of the model generation process for dynamic
techniques. Different methods can be utilized for observing an executing program, each offering unique capabilities.
Some are beyond the scope of this discussion, such as hardware performance counters and operating system tracing.
In the following, we focus on JVM-based languages.

Debugging Interfaces

Managed languages usually feature built-in debugging interfaces, such as the Java Debug Interface (JDI). Debuggers
can use these interfaces to manage a range of events, including setting breakpoints and watchpoints, performing
step-by-step execution, controlling threads, handling exceptions, and inspecting or modifying variables and
fields. However, while these debugging interfaces are powerful for step-by-step program inspection, they are
not inherently designed for automated or broad-scale data collection. Manual setting of breakpoints and data
extraction for thousands of events can be impractical, often leading users to resort to ad-hoc scripting for automation.
This requires proficiency in compatible scripting languages and familiarity with the debugger’s API. Moreover,
debugging interfaces are limited to the event types and information they inherently provide.

Execution Callbacks

Managed languages like Java provide capabilities to register callbacks for specific execution events via the Java
Virtual Machine Tool Interface (JVMTI). This native interface allows interaction with the JVM’s internal events,
including thread start and end, method entry and exit, field access and alteration, exception handling, and more. This

INRIA - February 2024 28 Chukri Soueidi

3.3: Instrumentation for Runtime Verification

Instrumentation
for RV

AnalysisIntegration

Assumptions

Properties

Language

Expressiveness

Abstraction

Model

Program Sequential

Concurrency

Transformation
time

Observation

Collection

Execution
Trace

Efficiency

Figure 3.2: Considerations for RV Instrumentation

level of coverage offers detailed JVM activity monitoring, including monitoring internal environment events not
directly linked to specific program instructions. Nevertheless, JVMTI presents limitations. Its scope of observation
is confined to the event types and data it provides. Should custom events or additional context information be
needed, the process can be complex and demand substantial platform knowledge.

Instrumentation

Instrumentation involves augmenting a program with additional code to collect data during its execution, often
automated with the help of instrumentation languages. Unlike other observation techniques, instrumentation lets
the user define events by identifying arbitrary sequences of instructions in the program, capturing a wide variety of
behavioral aspects from fine-grained events such as local variable assignments to coarse-grained ones like method
executions. While it is possible to perform instrumentation manually, it becomes significantly complex and prone to
errors for large programs or when only a compiled version of the code is accessible. Compared to other observation
methods, instrumentation is usually more portable, simpler, and performs better. In JVM, for instance, the added
code for instrumentation can be optimized by the Just-In-Time (JIT) compiler, which can significantly reduce the
instrumentation overhead. However, it can’t observe internal environment-executed events not directly linked to
specific program instructions, such as Java’s garbage collection. Also, injecting code can modify program behavior,
which can cause issues if the program is already in production.

3.3 Instrumentation for Runtime Verification
A property under runtime verification represents a set of constraints or behaviors that the system is expected to
adhere to, formalized in terms of abstract events drawn from an alphabet denoted as Σa. The process of runtime
verification usually encompasses three stages. First, a monitor is created from the property, referred to as monitor
synthesis. This monitor interprets events from a program and gives outcomes based on the property’s current
satisfaction. Next, the program is instrumented to generate relevant events for the monitor, known as system

THESIS 29 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

instrumentation. Seen as a generator of concrete events, denoted as Σc, the program’s execution should be mapped
into a trace of abstract events, rendering it suitable for runtime analysis. Instrumentation plays a key role in
capturing these concrete events and mapping them into corresponding abstract ones to construct the suitable trace
which is the model needed by the monitor.

These concrete events correspond to locations in the program source code, which we will refer to as program
shadows, and execute at specific points in the program. Throughout this thesis, we will adopt AOP terminology (see
3.6.2) and refer to these points in the execution as join points. The instrumentation process consists of adding extra
code, known as advice, around these program shadows to capture the concrete events when the program executes.
Lastly, the system’s execution is analyzed by the monitor, either in real-time or post-execution from logged events,
a phase termed execution analysis. Instrumentation is particularly suitable for runtime verification. It provides
flexibility in capturing concrete events by pinpointing arbitrary locations in the source code, as opposed to being
limited to specific events provided by the execution environment.

We now go through various considerations for various applications of instrumentation for runtime verification,
depicted in Figure 3.2. We will go through some of these in the following sections.

3.3.1 The Program
Various aspects of the program must be taken into consideration when selecting an instrumentation language.
Figure 3.3 depicts some of these considerations.

In concurrent programs, threads need to be synchronized so that they coordinate safely without interference.
While different threads interleave, many events may occur concurrently, and the order in which they occur is not
deterministic. If the property being monitored requires reasoning about concurrent events, causality between events
must be established. This is achieved by capturing the synchronization points in the program which correspond to
the execution of various concurrency primitives. In Java, for instance, programmers may use different concurrency
primitives while writing their programs such as locks, atomic variables, and concurrent data structures. Some of
these primitives present various challenges for instrumentation due to their complexity, low-level operations, and
subtle behavior. Moreover, capturing all synchronization points in a concurrent program with instrumentation is
often infeasible, and instrumentation should be able to capture the necessary ones. Given that instrumentation
can be costly, it is often desirable to minimize the number of instrumentation points. Moreover, the concurrency
primitives are also employed internally by various components of the Java Standard Library for instance. As such,
instrumentation may choose to target only visible synchronization points in the program under study. Moreover,
other high-level concurrency abstractions exist as well such as the fork-join framework or software transactional
memory [Lea00, HMPJH05] or message passing frameworks such as Akka [Akk22].

At the source level, it often necessitates compilation facilities and requires access to the application’s source code.
Weaving at the bytecode level has several advantages. It is often high-level enough to easily recognize constructs
of the original language, even without direct access to the source code. Moreover, it is portable across different
languages as many languages compile to the same bytecode such as Java, Scala, Kotlin, and Groovy.

Program transformation (weaving of instrumented code) can occur at different stages as well. Independent (or
build-time) instrumentation is possible anytime resulting in a new statically instrumented program. However, it is
limited to the code packaged within the application itself and may not extend to instrumenting Java class libraries
used by the application. Load-time instrumentation intercepts class loading and performs instrumentation before a
class is linked in the Java Virtual Machine (JVM). This allows also for targeting the libraries and core classes used
by the application.

3.3.2 The Observation
In runtime verification, event traces serve as models for property-based detection and prediction techniques. An
event typically captures an important action or a change in the system’s state that is under observation. They may
represent the program’s state at a specific execution point, or they can be triggered by a program action. Depending
on the analysis aim, data accompanying events may incorporate values from the program’s memory, and various
time representations like current time. Moreover, if events are tracking state changes, the observation should retain
some memory instead of having to extract all the values of pertinent variables at each event. Figure 3.4 depicts
some of the program observation considerations at runtime.

INRIA - February 2024 30 Chukri Soueidi

3.3: Instrumentation for Runtime Verification

Program

Sequential

Concurrency

Threads

Primitives

Shared
Memory

Transformation
time

Load-time

Independent

Figure 3.3: Program Considerations

Observation

Collection

Sync

Async

Execution
Trace

Events

Data

Timestamps

Order Causality

TotalEfficiency

Overhead

Interference

Figure 3.4: Observation Considerations

Analysis

Integration

In-process

Out-of-
process

Assumptions

Sequential

Concurrency

Atomic
Regions

Datarace
Freedom

Properties

Syntactic

Soundness

FaithfulnessTrace
Monitor-
ability

Figure 3.5: Analysis Considerations

Instrumentation
Language

Expressiveness

Guidance Level

Control

Abstraction

API/DSL

AOP

Model

Shadows

Visibility
Control

Context

Static

Dynamic

Selectors

Transformers

Composition

Collision

Figure 3.6: Language Considerations

When properties necessitate reasoning about program concurrency, establishing causality between events is
essential during trace collection. Causality is best represented as a partial order over events which aligns well
with different frameworks for understanding concurrent program behavior, such as weak memory consistency
models [ANB+95, AG96, MPA05], and Mazurkiewicz traces [Maz86, GK10]. Collecting the trace of events can
be done either synchronously or asynchronously. Synchronous refers to processing data simultaneously with its
collection, whereas asynchronous involves receiving events and processing them at a later time. Asynchronous
trace collection is ideal for scenarios where the monitoring overhead cannot be afforded and a small delay in the
verdict can be tolerated. For instance, in real-time systems where the system is expected to produce a result within
a defined strict deadline [SR94].

THESIS 31 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

3.3.3 The Analysis
The execution analysis considerations are depicted in Figure 3.5. Depending on the analysis different properties may
be desired. For example, if the analysis is to check for the occurrence of a specific event, then the instrumentation
should be able to capture the event. Other concurrency-related properties that are concerned with event ordering may
be desired such as soundness, faithfulness, and trace monitorability [SF23d]. These properties are affected by the
completeness and correctness of the instrumentation. Monitoring techniques generally operate with the assumption
of instrumentation completeness and correctness. Other approaches such as [TKH21] address runtime verification
with incomplete or uncertain information. Some approaches assume certain concurrency-related properties such
as data-race freedom and atomic regions to reduce the instrumentation points hence overhead and complexity.
Moreover, the analysis integration with the program has a direct effect on the instrumentation. For instance, for
out-of-process analysis, the instrumentation should extract all the necessary information to perform the analysis.
Whereas in in-process analysis, the analysis typically has access to the program’s state and can extract the necessary
information itself.

3.3.4 The Instrumentation Language
An instrumentation language should equip users to handle three key considerations: identifying relevant program
execution points where events are extracted, which correspond to program code elements; specifying the necessary
contextual information to be extracted with these events; and defining the destination of these events, detailing how
and where they will be consumed. The instrumentation language considerations are depicted in Figure 3.6.

Identifying relevant program locations can be at the bytecode level or the source code level. At these locations
which we refer to as shadows, a language should facilitate the extraction of either static or dynamic contextual
information. Static information refers to information that is available at compile time, such as the name of a method
or the type of a variable. Dynamic information refers to information that is only available at runtime, such as the
value of a variable or the current thread. Finally, the instrumentation language should provide a means to consume
the extracted information. This can be done by either adding a hook to a monitor class passing this information or
by weaving code to the program itself.

The usability of an instrumentation language is further characterized by two important aspects: its expressiveness
and the level of abstraction. Abstraction relates to the complexity of low-level details that users must deal
with in order to specify instrumentation. Instrumentation languages are typically provided either as external
domain-specific languages or as internal API-Based languages. External DSLs are often more accessible to domain
experts due to the syntax’s inherent focus on domain-specific concerns. In contrast, internal DSLs are implemented
within a host language; they integrate more seamlessly with it and are more accessible to developers familiar with
the host language. Moreover, the advice to be added to the program can be specified in multiple ways. For instance,
in AOP (see 3.6.2) this code is specified by the user as Java syntax. Other approaches would require inserting
bytecode instructions, while others might have an API to specify the advice.

On the other hand, expressiveness refers to the language’s ability to extract substantial information from the
bytecode and modify the program’s execution. We distinguish here 3 important factors for expressiveness: code
level, guidance, and control, depicted in Figure 3.7.

Instrumentation level. The instrumentation level refers to the scope and granularity of the information that can
be extracted. For instance, source code instrumentation can target and capture elements that are visible in the
source code like method calls, execution of methods, constructors, field setters, and getters. Whereas, the scope of
bytecode level instrumentation is the intermediate language of the program, which is more fine-grained as a single
source code instruction can be compiled into multiple bytecode instructions. With bytecode-level instrumentation,
a monitor can capture the execution of single bytecode instructions, stack values, and local variables.

Instrumentation guidance. Instrumentation guidance refers to the ability to guide the instrumentation process
programmatically. In many cases, the instrumentation can benefit from a compile-time analysis to either refine
the selection of program locations or extract complex contextual information. For instance, a residual analysis
performed pre-instrumentation on the program can identify instrumentation points that can be ignored at runtime.
In other cases, complex contextual information such as the control flow graph can be extracted. Without such
ability, a user is limited to the basic analysis provided by the instrumentation language to identify instrumentation
points and contextual information.

INRIA - February 2024 32 Chukri Soueidi

3.4: Instrumentation Requirements

Instrumentation control. Instrumentation control refers to the ability to modify the original program code using
the instrumentation language. Some languages are restricted and can only modify the program using a specific
DSL or API. In contrast, an unrestricted language can provide full control over the resulting instrumented program.
Here one might skip the execution of an event or modify the program’s control flow. However, this level of control
requires caution, as incorrect bytecode instructions can compromise the integrity of the bytecode.

Expressiveness

Control

Restricted

Arbitrary

Guidance

Guided

Non-guided

Level

Bytecode

Source
code

Figure 3.7: Instrumentation language expressiveness considerations.

3.4 Instrumentation Requirements
Correctness and Completeness Monitoring techniques assume the completeness and correctness of instrumenta-
tion in capturing events [BFFR18a], however, this assumption is not always valid. For manual instrumentation, it
is easy to miss identifying some locations of interest. Also, automated instrumentation can miss some events at
runtime due to errors and exceptions raised by the runtime. Some instrumentation techniques wrap the advice with
try-catch blocks to avoid system crashes. Although this guarantees the stability of the system, it can lead to missing
events without being noticed. It is recommended to disable exception handling when instrumenting the program for
the first time.

Non-interference. Ensuring non-interference is crucial to prevent disturbing the program’s critical behaviors.
Instrumentation should avoid altering aspects such as parallelism, event order, variable values, control flow, and
thread scheduling. In a study by [KABM12], the authors identify several interference problems, including deadlocks,
state corruption, and JVM crashes, which can be unintended byproducts of instrumentation.

Memory depletion. In-process monitoring makes memory management crucial. Large data storage for analysis
risks depleting memory and potentially crashing the application. Hence, an effective data management strategy
should be integral to information extraction with instrumentation. Efficient data structures can optimize memory
use and prevent interference with memory management. For example, using integer identifiers for event types
instead of string descriptions, or extracting unique hash IDs rather than retaining full object references, can be
beneficial when applicable.

Environment compatibility. Bytecode verification failures can occur in the JVM for instance due to issues such
as incorrect bytecode manipulation, invalid stack or local variable states, control flow problems, or incompatible
bytecode versions. In some cases, turning off bytecode verification can be a viable option, but it is not recommended

THESIS 33 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

as it can lead to unexpected behavior and crashes. Moreover, Java enforces a 64KB maximum limit per method,
and extensive instrumentation can exceed this limit, leading to compilation errors. These errors can sometimes be
avoided by deferring the event construction to a separate method and passing the required object references to it.

3.5 Evaluating Instrumentation
Overhead Evaluating the impact of instrumentation on a program often involves measuring execution time and
memory consumption overheads. For precise measurements, using a dedicated machine and repeating the process
multiple times is recommended. Profilers like [vis, jprb] can yield the most accurate measurements. Below, we
detail some techniques for measuring these overheads. To measure execution time overhead, compare the execution
time of the instrumented program with the original one. One method involves inserting timers (via instrumentation)
to capture timestamps at the program’s entry and exit points. A nonobtrusive alternative is using a command-line
benchmarking tool such as [SC], offering features like warmup runs and statistical analysis of results. Memory
consumption in the JVM is influenced by multiple factors, including the JVM internals and garbage collection. A
good estimate of memory consumption can be obtained by calculating the heap and non-heap memory usage after
forcing a garbage collection cycle, measured before the program’s exit point. A specialized memory measurement
virtual machine like [LBM15] can also be employed.

Affected classes, methods, and instructions. This metric quantifies the impact of instrumentation on the
program’s codebase. It is measured by counting the number of classes, methods, and instructions that have been
instrumented. This metric is useful for evaluating the overall coverage of the instrumentation process and its impact
on the codebase. For instance, when capturing method calls, consider all method calls invoked at runtime and
compare this to the number of those method calls that have been instrumented.

Instrumentation intensity. This synthetic metric provides an understanding of the extent of the code that has
been instrumented. It is a measure of the number of code instructions that have been adjusted for instrumentation
purposes, as a proportion of total code instructions. If a larger part of the code has been modified, the instrumentation
intensity is higher. This metric is useful for evaluating the overall coverage of the instrumentation process and its
impact on the codebase. For instance, when capturing method calls, consider all method calls invoked at runtime
and compare this to the number of those method calls that have been instrumented.

Instrumentation code latency. Instrumentation code latency measures exactly the time taken for the execution
of the added instrumentation code only. Here the time before and after the advice executes is measured or both
timestamps are extracted with the event and the difference is calculated at the monitor side. In concurrent programs,
this metric provides insight into the extent to which instrumentation is interfering and affecting the parallelism of
the program when compared to the original program and the overall overhead mentioned above provided that it also
includes extracting such timestamps.

3.6 Existing Instrumentation Frameworks
Several instrumentation tools and frameworks in different programming languages were developed. In this section,
we provide an overview of existing frameworks used for JVM program instrumentation. Nevertheless, there are
several tools to instrument programs in different programming languages. For instance, to instrument C/C++
programs AspectC/C++ [CKFS01, SLU05] (high-level) and LLVM [LA04] (low-level) are widely used.

We categorize these approaches into two main types: bytecode manipulation libraries and aspect-oriented ap-
proaches. Since expressiveness is a key factor in choosing an instrumentation framework suitable for an instrumen-
tation task at hand, we will discuss these frameworks from the lens of expressiveness (see Figure 3.7).

3.6.1 Bytecode Manipulation Libraries
Bytecode manipulation libraries offer interfaces for the static manipulation of Java bytecode. They enable low-level
coverage and facilitate extensive transformations of the bytecode. Such libraries find applications in various
domains, including but not limited to, compilers, profilers, obfuscators, and bytecode optimization tools.

INRIA - February 2024 34 Chukri Soueidi

3.6: Existing Instrumentation Frameworks

These libraries, while offering a lot of expressivity, demand a comprehensive understanding of Java bytecode
intricacies, making them less ideal for straightforward instrumentation tasks. For most of these frameworks, users
are expected to possess in-depth knowledge of JVM bytecode, including how to interact with local variables and
the operand stack. Furthermore, the precise ordering of bytecode instructions is critical to avoid invalid bytecode,
yet these libraries offer no guidance in this aspect. A significant challenge also arises in accessing dynamic context,
such as the receiver of a method invocation, requiring users to analyze and modify the bytecode to achieve this.
The absence of direction in handling dynamic context and the complexity involved in ensuring valid bytecode
underscore the limitations of these libraries for simple instrumentation tasks.

ASM [BLC02]. ASM is a Java bytecode manipulation framework utilized by several tools. ASM offers two
APIs that can be used interchangeably to parse, load, and modify classes: a visitor-based API and a tree-based
API. The visitor-based API is highly efficient, and optimized for quick traversal and manipulation of bytecode. On
the other hand, the tree-based API provides a more abstract approach to manipulating classes, as it represents the
bytecode structure as a tree structure. This makes it particularly useful for applications where multiple passes or
more complex manipulations are required.

1 // Necessary imports for ASM classes
2 import org.objectweb.asm.MethodVisitor;
3 import org.objectweb.asm.Opcodes;
4
5 // ... other code to parse bytecode, create a visitor, etc.
6
7 public class CustomMethodVisitor extends MethodVisitor {
8
9 public CustomMethodVisitor(int api, MethodVisitor methodVisitor) {
10 super(api, methodVisitor);
11 }
12
13 @Override
14 public void visitMethodInsn(int op, String owner, String name, String desc, boolean

itf) {
15 // Check if the method invocation is for creating an iterator from a List
16 if ("java/util/List".equals(owner) && "iterator".equals(name)) {
17 // Duplicate the iterator reference on the operand stack
18 mv.visitInsn(Opcodes.DUP);
19
20 // Load the List object onto the operand stack
21 mv.visitVarInsn(Opcodes.ALOAD, 1);
22
23 // Load the string "create" onto the operand stack
24 mv.visitLdcInsn("create");
25
26 // Invoke the static method receive of the class monitors/SafeListMonitor
27 mv.visitMethodInsn(Opcodes.INVOKESTATIC, "monitors/SafeListMonitor", "receive",

"(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/String;)V", false);
28 }
29
30 // Call the original method
31 super.visitMethodInsn(op, owner, name, desc, itf);
32 }
33 }

Listing 3.1: Simplified ASM code to capture an event on iterator creation and invoke a monitor.

EXAMPLE 15 (INSTRUMENTATION WITH ASM) Listing 3.1 demonstrates how to use the ASM framework
to capture the event of iterator creation from a Java List object from Example 1. The code extends the
MethodVisitor class from the ASM library and overrides the visitMethodInsn method. ASM ships
with several utility methods to parse the bytecode either from compiled java files (.class) or from byte arrays
that can be obtained from the JVM. We omit the code for parsing the bytecode and creating a visitor for brevity.
The visitMethodInsn method is invoked for each method invocation instruction in the bytecode. We specifi-
cally look for the invocation of the iterator method on a List object. When such an invocation is detected,
additional bytecode instructions are inserted to capture this event. In ASM, these instructions are added by visiting
the correct visitor for each instruction. For instance, mv.visitVarInsn(Opcodes.ALOAD, 1); at Line 21,
will insert LOAD 1 instruction into the bytecode. The aim is to correctly invoke a static receive method from a
hypothetical SafeListMonitor class and pass the needed information, which can then handle or log the event
as required.

THESIS 35 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

One can see from the example that using ASM requires a good understanding of Java bytecode. Moreover, the
index of the local variable containing the List object may be different in other methods, for instance, if the method
where the invocation is captured is static. This necessitates additional logic to determine the correct index. This
example is also simplified for brevity and does not include the necessary code for parsing the bytecode, creating a
visitor, or writing the modified bytecode to a file.

Javassist [Chi00]. Javassist is a versatile library for bytecode manipulation that offers two distinct levels of APIs
catering to different developer needs. The source-level API is designed for ease of use and allows modifications
to be made without a deep understanding of Java bytecode. This is particularly beneficial for developers who
prefer working at a higher level of abstraction and wish to avoid the complexities associated with low-level
bytecode manipulation. On the other hand, the bytecode-level API offers granular control over class modifications,
giving experienced developers the flexibility to implement advanced optimizations or transformations. Despite
its robust capabilities, it’s worth noting that using Javassist’s bytecode-level API requires a good grasp of Java
bytecode intricacies. Overall, Javassist provides a comprehensive set of tools suitable for a wide range of bytecode
manipulation tasks, from simple code injections to complex program transformations.

Soot [VRCG+99]. Soot is a multifaceted framework designed for Java application analysis as well as bytecode
optimization. One of its standout features is the provision of multiple intermediate representations (IRs) of the
code, such as Jimple and Shimple, which facilitate different types of analyses and transformations. These IRs
make it adaptable for various research and practical applications. Moreover, Soot comes with a rich set of built-in
static analyses, making it a powerful tool for complex tasks such as call-graph construction, data-flow analysis, and
points-to analysis. These built-in capabilities allow researchers and developers to focus more on custom analysis
logic rather than low-level implementation details. Despite its powerful features, Soot has a steep learning curve
and is best suited for those who have a deep understanding of program analysis concepts. It is widely used in
academic research for its versatility and is considered a go-to framework for those looking to perform in-depth
static analysis of Java applications.

BCEL [Apa]. The Byte Code Engineering Library (BCEL) provides an API for both static analysis and dynamic
manipulation of Java classes at runtime. It is particularly useful for developers building compilers, profilers, and
bytecode optimization tools. BCEL’s API comprises packages for analyzing Java classes even when source code
is not available, as well as for dynamically generating or modifying class objects. Additionally, it offers tools
for displaying target classes and for converting them into various formats such as HTML and assembly language.
BCEL does require users to have a solid understanding of Java bytecode.

Expressiviness of Bytecode Manipulation Libraries The presented frameworks are highly expressive instru-
mentation languages, offering the following key capabilities:

• Bytecode level instrumentation: They enable the extraction of events at the bytecode level, where individual
instructions can be targeted. This allows for the extraction of low-level information, such as local variables
and stack values.

• Guided instrumentation: The frameworks support guided instrumentation. Users have the flexibility
to write custom code that executes at weave time, guiding the instrumentation process. For example, in
Example 15, before adding instructions to the program at Line 18, users can implement static analyzers to
determine the necessity of specific instrumentation points.

• Arbitrary control: As demonstrated in Example 15, users have the freedom to insert any bytecode instruction,
offering arbitrary control over the instrumentation process. Moreover, users can traverse the program’s
bytecode in any order, allowing for more complex instrumentation scenarios. However, this level of control
requires caution, as incorrect bytecode instructions can compromise the integrity of the bytecode.

3.6.2 Aspect-Oriented Approaches
Aspect-oriented approaches simplify the specification of instrumentation directives by employing a pointcut/advice
model. In this model, users provide Java code snippets, known as advice, that are to be inserted into the code. These

INRIA - February 2024 36 Chukri Soueidi

3.6: Existing Instrumentation Frameworks

insertion points are specified by pointcuts, which capture the specific locations in the code where the advice should
be applied.

Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a broader programming paradigm that aims to increase modularity by
allowing the separation of what is called cross-cutting concerns. A cross-cutting concern is a concern that affects
multiple parts of an application but cannot be cleanly decomposed from the rest of the system in both design
and implementation. Examples of cross-cutting concerns include logging, authorization, and persisting data to a
database. Runtime verification is also a typical example of a cross-cutting concern that can benefit from AOP. These
concerns are often tangled with the business logic of the application, making it difficult to maintain and extend the
system. The primary motivation behind AOP is to mitigate problems induced by non-modular code, specifically:

• Code Scattering: Occurs when similar code is distributed throughout many program modules. Changing the
implementation requires finding and editing all affected code.

• Code Tangling: Occurs when two or more concerns are implemented in the same body of code or component.
This makes the code more difficult to understand and maintain.

AOP programs consist of the base program and a list of aspects. These aspects are composed with the program
using the join point model. Below we discuss the key concepts of this model.

• Join point: A well-defined point in program execution that can be identified, such as method invocation or
variable modification.

• Pointcut: An expression denoting a set of join points.

• Advice: The additional behavior, i.e. the crosscutting concern, that needs to be added at a particular join
point captured by a pointcut.

• Aspect: A construct that encapsulates pointcuts and advice.

An aspect weaver is responsible for composing the base program with the aspects. This process is called weaving.
The weaver traverses the base program and the aspects, looking for lexical points in the program that match the
pointcut designators. The matched lexical points are called join point shadows, and advice code will be injected
into those places. At run time, the advice will be executed at the run time instances of the lexical shadows which
are the join points. This weaving process can be performed at compile time, load time, or run time.

AspectJ

AspectJ [KHH+01b] is the standard implementation of aspect-oriented programming (AOP) for Java. AspectJ
ships with a fixed set of join points and pointcut designators that can be used to specify the locations where advice
should be applied. These join points include method calls, method executions, field access, object construction,
and exception handling. A rich pointcut expression language that includes statically and dynamically evaluated
pointcuts allows users to pick out join points and exposes data from the execution context of those join points. For
instance, users can specify that advice should be applied to all method calls within a particular package or to all
method calls that take a specific parameter. Moreover, dynamic pointcuts can be used to adapt the behavior of the
program based on runtime conditions. For example, users can specify that advice should be applied to all method
calls that take a parameter of type String and whose value is "foo". For dynamically evaluated pointcuts, the
weaver injects reflective code into the program. In the previous example, the reflective checks the value of the
parameter at runtime and executes the advice only if the condition is satisfied. Control flow pointcuts can also be
used to specify that advice should be applied to all method calls that are invoked from a particular method. For
example, the cflow pointcut can specify that advice should be applied to all method calls that are invoked from a
particular method.

AspectJ offers three types of advice: before advice, which executes before the join point, and after advice, which
executes after the join point. It also supports around advice, which allows users to override, delay, or alter the
execution of the join point. Users can implement aspects using a domain-specific language by writing .aj files,
or by using its internal API which uses annotations to decorate advice methods. In both cases, the advice code is
written in Java and is weaved verbatim into the program.

THESIS 37 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

EXAMPLE 16 (INSTRUMENTATION WITH ASPECTJ) In Listing 3.2 the SafeListAspect aspect defines a
pointcut named createIteratorCall. This pointcut captures the event of calling the iterator() method
on a List object. The after advice is where the user specifies the code to be executed when the pointcut is
matched. In this case, the advice invokes the receive method of a hypothetical SafeListMonitor class to
handle the event.

1 public aspect SafeListAspect {
2
3 pointcut createIteratorCall(List list): call(* List.iterator()) && target(list);
4
5 after(List list) returning(Iterator it) : createIteratorCall(list) {
6 monitors.SafeListMonitor.receive("create", list, it);
7 }
8
9 }

Listing 3.2: AspectJ instrumentation to send an event on iterator creation to a monitor.

AspectJ provides the following expressiveness features:

• Source code level instrumentation: AspectJ offers join points and access to contextual information only
at the source code level. This limits the ability to extract low-level information such as the execution of
specific bytecode instructions and the values of local variables and stack values, restricting the scope of
instrumentation and analysis. For instance, concurrency primitives such as synchronized blocks cannot
be targeted with AspectJ. Some extensions have been proposed to handle some of these primitives such as
in [BH10], however, these are not part of the standard AspectJ language. Moreover, in monitoring scenarios
where the user wants to capture the event of a specific bytecode instruction, such as the execution of a
conditional jump i.e. an if statement, AspectJ is not suitable.

• Non-guided instrumentation: AspectJ does not support custom analyses to guide the instrumentation. The
user is restricted to specifying only the code to be inserted. As seen in Example 3.2, users specify only the
code that will be weaved into the program such as in Line 6. Any additional code that might be required to
execute at weave-time to decide whether to insert the advice or not is not possible with AspectJ. That is why
implementing any sort of static analysis within AspectJ required cumbersome compiler customizations, as
seen in extending the AspectBench Compiler (abc) in [ACH+05, AM07, BLH10]. However, this compiler is
not maintained anymore.

• Restricted control: Modifying the base the program is restricted in AspectJ. Except for the around advice,
an advice is not allowed to modify the control flow of the base program. The around advice however offers
some control over the execution flow as it allows for overriding, delaying, or altering the execution of the
join point, primarily through the proceed() method. One can skip the execution of a join point, or execute it
multiple times.

DiSL

DiSL [MVZ+12] is an instrumentation framework targetting JVM programs. DiSL adopts the pointcut/advice
model from AspectJ while also providing low-level access to the bytecode. One of its distinguishing features is an
open join point model, which allows the user to create custom pointcuts by writing custom markers. Hence, users
are not restricted to the provided join point model, and can effectively mark any sequence of bytecode instructions
as a join point shadow. DiSL also offers a rich set of static and dynamic context objects that can be used to extract
information from the program which can also be extended by the user to facilitate the extraction of additional
customized information from the program. It also allows the insertion of thread and local variables into the program.

EXAMPLE 17 (INSTRUMENTATION WITH DISL) Listing 3.3 shows how to use DiSL to capture the event of
iterator creation from a Java List object. The code defines a custom marker named IteratorMarker that
captures the event of calling the iterator() method on a List object. Listing 3.4, shows the advice method
beforeCreateIterator which instruments the program to invoke the receive method of a hypothetical
SafeListMonitor class to handle the event.

DiSL offers only an internal API for specifying instrumentation where instrumentation specifications, custom
markers, guards, and context objects are fully written in Java. The advice code as seen in Listing 3.4 is mixed with

INRIA - February 2024 38 Chukri Soueidi

3.6: Existing Instrumentation Frameworks

Java syntax and DiSL API calls such as pc.getReceiver and dc.getStackValue. DiSL then compiles
the full body of the advice to produce the bytecode that will be weaved into the program. This differs from AspectJ
where the advice code is written in Java and is weaved verbatim into the program.

1 public class IteratorMarker extends AbstractDWRMarker {
2
3 public List<MarkedRegion> markWithDefaultWeavingReg(MethodNode method) {
4
5 List<MarkedRegion> regions = new LinkedList<MarkedRegion>();
6
7 // traverse all instructions
8 InsnList instructions = method.instructions;
9
10 for (AbstractInsnNode instruction : instructions.toArray()) {
11 // check for method invocation instructions
12 if (instruction instanceof MethodInsnNode) {
13 // add region containing one instruction (method invocation)
14 MethodInsnNode min = (MethodInsnNode) instruction;
15 if(min.name.contains("iterator") && min.owner.contains ("List"))
16 regions.add(new MarkedRegion(instruction, instruction));
17 }
18 }
19 return regions;
20 }
21 }

Listing 3.3: A DiSL custom marker to find iterator creation.

1 @Before(marker = CreateIteratorMarker.class)
2 public static void beforeCreateIterator(ArgumentProcessorContext pc, DynamicContext dc)
3 {
4
5 Object it = pc.getReceiver(ArgumentProcessorMode.CALLSITE_ARGS);
6 Object list = dc.getStackValue (0, java.util.List.class);
7
8 monitors.SafeListMonitor.receive("create", list, it);
9 }

Listing 3.4: A DiSL snippet that invokes a monitor.

DiSL is designed for instrumentation-intensive dynamic analysis scenarios. It implements advanced program
composition features such as polymorphic bytecode instrumentation [BMTA16] allowing multiple independent
instrumentations to be applied to the same program. It also runs the instrumentation process in a separate JVM
process, thereby minimizing perturbation in the observed program. Utilizing a native JVMTI agent, it captures
all class loading events in the observed JVM and forwards the classes as byte arrays to the DiSL framework
for instrumentation, which is performed using ASM. As such, DiSL requires executing the program in order to
instrument it.

DiSL provides the following expressiveness features:

• Bytecode level instrumentation: DiSL operates at the bytecode level, where it can target the execution of
any single bytecode instruction as a join point. This also allows it to extract high and low-level information
from the program, such as local variables and stack values as well as class fields and method parameters.
As such it offers a superset of the join points offered by AspectJ, in addition to the ability to extend those.
Moreover, since DiSL instruments from the native space by using a JVMTI agent, it can instrument all
classes loaded by the JVM, including system classes and classes loaded by other agents. These classes cannot
be instrumented using the Java agent approach used by AspectJ. As such, DiSL offers complete bytecode
coverage, ensuring that all methods with bytecode can be woven.

• Guided instrumentation: With the open join point model, DiSL allows users to define custom markers and
context objects, thereby providing more control and guidance for the instrumentation process. This model
overcomes the restrictions imposed by predefined join points such as in AspectJ, allowing for more flexibility
in instrumentation. As such, users can incorporate within these markers and context objects custom analyses
to guide the instrumentation process.

• Restricted control: DiSL does not allow users to freely insert arbitrary code and modify the control flow
of the program. This is to ensure that the instrumentation does not interfere with the program’s execution.

THESIS 39 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

However, it does allow users to specify the order in which snippets are inlined into the program. Unlike
AspectJ, DiSL does not support around advice, thereby avoiding control-flow modifications with the proceed()
method. As such, one cannot skip a join point from executing, or execute it multiple times. However, with
its support for adding local variables, the user can pass data around a join point. However, DiSL includes
a mechanism to implement custom transformation passes utilizing ASM to perform arbitrary bytecode
manipulation before applying the DiSL specifications.

3.7 The Need for a Comprehensive Instrumentation Framework
While bytecode manipulation libraries offer a high degree of control over program traversal, allowing for complex
manipulations that may be impractical or even impossible to achieve using AOP frameworks, they can be verbose
and necessitate deep expertise in low-level bytecode manipulation. On the other hand, AOP frameworks like
AspectJ and DiSL simplify the process of specifying what code to insert and where, they also impose limitations on
the kinds of transformations that can be achieved. While many scenarios covered in this thesis require the ability to
traverse a program’s bytecode and insert arbitrary code, this is not possible with AOP frameworks.

Having a comprehensive instrumentation framework that can be used for a wide range of scenarios is highly
desirable. As such, there is a pressing need for a more comprehensive approach to JVM code instrumentation. This
approach should integrate the ease of use found in AOP languages with the detailed control provided by bytecode
manipulation libraries. It should also offer high expressiveness in terms of bytecode coverage, instrumentation
guidance, and unrestricted program control. By addressing these gaps, the new approach could offer a balanced
and efficient solution for JVM code instrumentation. We sketch below the main challenges that such a framework
should address.

Expressiveness and abstraction. The current landscape presents a significant gap: the need for a framework
that merges the usability of AOP languages with the granular control of bytecode manipulation libraries. Such a
framework would ideally offer granular control with some high-level abstraction, facilitating both ease of use and
detailed manipulation capabilities. Ideally, this approach would combine the simplicity of the point-cut/advice
model from AOP languages with the flexibility and control of bytecode manipulation libraries.

Ability to guide the instrumentation. With AspectJ, users cannot conduct weave-time analysis as the code
snippets in aspects will be weaved with the program verbatim. The fixed pointcut/advice model does not allow for
such analysis, as it only provides the ability to specify the advice that will execute at runtime. This restricts the
ability to perform any pre-instrumentation analysis that incorporates syntactic or semantic reasoning. In the case
of DiSL, although it is possible to implement such analysis through the creation of custom markers and custom
context objects, these extensions ultimately rely on low-level bytecode manipulation and do not benefit from DiSL’s
high-level abstractions provided by its language.

Unrestricted control over the program. Moreover, AOP frameworks like AspectJ and DiSL offer restricted
control over the program transformation. This can be a significant limitation in certain scenarios where the user
needs to modify the control flow of the program. For instance, in concurrent programs to ensure the atomicity of
the program action and the surrounding advice, the user needs flexibility in targeting before and after the location
of interest in the program at the same time. Without freely inserting arbitrary code, this is not possible. Another
limitation is the ability to insert inline monitors into the program. For instance, to detect a test inversion attack, the
user might opt to duplicate the if statement in the program and inject a small monitor that detects the attack. This is
not possible with AspectJ and DiSL as they only allow the user to specify the advice that will execute at runtime.

Optimized performance. Minimizing the overhead of instrumentation is critical for many applications. For
instance, being able to reduce the number of instructions inserted into the bytecode can significantly improve the
performance of the instrumented program. For instance in AspectJ, advice is added as an external method, and
an invocation to this method is inlined next to the join point of interest. This can lead to a significant increase
in the number of instructions to be executed at runtime, producing more context switches and missing compiler
optimization opportunities. A better approach for runtime verification is inlining the advice inside the targeted
method, as the added code is seldom a complicated aspect added to the program. This is not possible with
AspectJ. This can lead to a significant increase in the number of instructions in the bytecode. A comprehensive

INRIA - February 2024 40 Chukri Soueidi

3.8: Conclusion

approach should aim to minimize performance overhead, making it suitable for real-time or resource-constrained
environments.

3.8 Conclusion
In this chapter, we overviewed the instrumentation process, its considerations and challenges. We also overviewed
the different instrumentation frameworks and libraries available for JVM instrumentation. We provided examples
of how to use these frameworks to instrument a Java program. We discussed the strengths and limitations of each
approach. We highlighted the gap between bytecode manipulation libraries and AOP frameworks, highlighting
the need for a more comprehensive approach to instrumentation. We also discussed the challenges that such an
approach should address. In the next chapter, we will introduce an instrumentation model that will be used to
implement a framework that addresses such a need.

THESIS 41 Chukri Soueidi

CHAPTER 3. PROGRAM INSTRUMENTATION AND EXISTING FRAMEWORKS

INRIA - February 2024 42 Chukri Soueidi

CHAPTER 4

A Comprehensive Instrumentation Model

Contents
4.1 Introduction 45
4.2 Instrumentation Model 45

4.2.1 Context Objects 45
4.2.2 Join points 46
4.2.3 Advice 46
4.2.4 Shadows 46
4.2.5 Selectors 49
4.2.6 Instruction Visibility 50
4.2.7 Transformers 50
4.2.8 Instrumentation Process 50

4.3 Transformer Composition 50
4.3.1 Motivations for Composition 50
4.3.2 Composition of Transformers 51
4.3.3 Transformer Collision 51
4.3.4 Order Matters 51

4.4 Conclusion 52

43

CHAPTER 4. A COMPREHENSIVE INSTRUMENTATION MODEL

Chapter abstract
This chapter introduces the instrumentation model for our proposed comprehensive instrumentation framework.
Drawing inspiration and borrowing terminology from Aspect-Oriented Programming (AOP), the model serves as
the theoretical underpinning for the tool implementation that follows. The model is designed to facilitate precise
and context-aware bytecode transformations, offering a robust mechanism for program instrumentation. The model
defines key constructs such as join points, shadows, selectors, and transformers. The model incorporates the
ability to perform compile-time analysis, providing additional data for making more informed selections. The
model also introduces the concept of composition of transformers, allowing for complex, chained transformations.
Through this model, we aim to provide a rigorous and extensible foundation that can accommodate a wide range of
instrumentation needs, from simple code insertions to complex behavioral modifications.

INRIA - February 2024 44 Chukri Soueidi

4.2: Introduction

4.1 Introduction
Motivation. Given the challenges, we highlighted in Chapter 1 and Chapter 3, there is a need for a comprehensive
instrumentation framework that can accommodate a wide range of instrumentation scenarios. The framework should
be comprehensive in the sense that it should encompass the capabilities of existing instrumentation frameworks and
add additional features to address the limitations we discussed. Such a framework should provide the appropriate
abstractions for the instrumentation process, also enabling the incorporation of compile-time analysis which can be
used to guide and refine the instrumentation process. Furthermore, it should be based on a foundation facilitating
its implementation and extension.

Contributions. This chapter serves as the theoretical underpinning for our proposed comprehensive instrumenta-
tion framework. The model is inspired by Aspect-Oriented Programming (AOP) and entails constructs such as join
points, shadows, selectors, and transformers. It also incorporates the ability to execute weave-time static analyzers,
providing additional data for making more informed and guided instrumentation. Furthermore, it introduces the
concept of composition of transformers, allowing for complex, chained transformations. We discuss the need for
composition and considerations that need to be taken into account when composing transformers.

Chapter organization. The remainder of this chapter is organized as follows: Section 4.2 introduces the main
elements of the instrumentation model namely the concepts of context objects, join points, shadows, selectors,
and transformers. In Section 4.3, we discuss the composition of transformers and how they can be used to
implement complex instrumentation scenarios in a modular fashion. We also cover how to detect collisions between
transformers. In Section 4.4, we conclude the chapter.

4.2 Instrumentation Model
In this section, we present the instrumentation model where each of the components corresponds to a specific aspect
of the instrumentation process. Recall from Section 2.1, that a program is represented as a set of methods, where
each method is represented as a control flow graph (CFG). We defined Methods be the set of all methods that have
bytecode representation, Blocks be the set of all basic blocks, and Instrs be the set of all instructions in the program.

4.2.1 Context Objects
We differentiate between two types of contextual information that are available in the program: static and dynamic.

Static context. The static context is a set of attributes available at compile-time. These attributes are extracted
from the source code. These include but are not limited to method names, class names, line numbers of instructions,
number of method parameters and types of method parameters. Additional contextual information can also be
generated as a result of some analysis performed at compile-time such as the control flow graph of a method. We
denote the set of all static contexts in the program as CS.

Dynamic context. The dynamic context is concerned with runtime attributes. These include but are not limited to
attributes like the thread executing an instruction, values of variables, or the state of the stack and heap at the time
an instruction is reached. They represent the dynamic state of the program at a specific point in time. For instance,
the values on the stack and heap are dynamic attributes. These values are often not known at compile-time and
can only be determined at runtime. However, we can know their addresses at compile-time. We denote the set of
dynamic attributes as CD.

Together, the static and dynamic contexts provide a comprehensive view of a single point in the program’s execution.
As such it is important to be capable of capturing as much information as possible about the program’s state at that
point. This is especially true for runtime verification, where the dynamic context can be used to make decisions
about the program’s behavior.

EXAMPLE 18 (STATIC AND DYNAMIC CONTEXT) In Example 1, we displayed the bytecode for a method m
that creates a List l with an associated Iterator i. In Section 3.6, we also showed several ways to capture
the method call that creates the iterator at Line 7 in Listing 2.1. Relevant information at this point of the execution

THESIS 45 Chukri Soueidi

CHAPTER 4. A COMPREHENSIVE INSTRUMENTATION MODEL

can be extracted from the static and dynamic contexts. For instance the method name m, the class name, and the line
number 7 are all static attributes. The dynamic context includes the objects that variables l and i point to in memory
at the time of the method call. For instance, Listing 3.4 shows in lines 5 and 6 how the DynamicContext dc
object can be used to access the dynamic context; the variables l and i point to.

4.2.2 Join points
A join point is essentially a configuration of the base program traversed during its execution. We denote the set of
all possible join points as Joinpoints. Join points represent specific points in the program where additional behavior
can be added or existing behavior can be modified.

DEFINITION 15 (JOIN POINT) A join point represents a specific point in the control flow of a program
where additional behavior can be inserted or existing behavior can be modified. A join point j ∈ Joinpoints is
represented as a tuple:

j = (CS,CD)

EXAMPLE 19 (JOIN POINTS) Consider the method m in Listing 2.1. The method call at Line 7 is a join point.
Other join points could be the entry and exit points of the method. Join points can be captured at different levels
of granularity. For instance, the execution of a single bytecode instruction can be a join point. It represents the
smallest observable unit of execution in the program.

4.2.3 Advice
The advice encapsulates the additional behavior that is to be inserted into the base program at specific join points.
The set of all possible advice functions is denoted as AD. Formally, an advice is the function adv defined as:

DEFINITION 16 (ADVICE FUNCTION) The advice function is defined as:

adv : Joinpoints→ Instrs

The advice function takes a join point and its associated static and dynamic contexts as inputs and returns a set
of bytecode instructions that are to be inserted at that join point. These instructions can either modify existing
behavior or introduce new functionality.

4.2.4 Shadows
Each join point has a corresponding part in the program code, which is called a shadow. Shadows are constructs
used to mark the code regions in the base program. It is at these regions that transformations are applied. A
shadow consists of a lexical element and a direction attribute. Lexical elements serve as the point of reference for
transformations. They correspond to the actual bytecode instructions, basic blocks, or methods in the program. A
lexical element element in the program is defined as:

element ∈ Instrs ∪Methods ∪ Blocks

A direction attribute indicates the relative position of the transformation concerning the lexical element. Let
Direction be a direction defined as:

Direction ∈ {before, after, enter, exit}

Shadows are pairs consisting of bytecode instructions along with a specified direction (before and after), or basic
blocks and methods along with an enter or exit direction.

INRIA - February 2024 46 Chukri Soueidi

4.2: Instrumentation Model

DEFINITION 17 (SHADOW) A shadow serves as a marker in the bytecode, indicating where a transformation
can be applied. A shadow s ∈ Shadows is defined as a tuple:

s = (Direction, element)

The set Shadows represents all the shadows that are identified in a program.

Shadows = ({before, after} × Instrs)
∪ ({enter, exit} × Blocks)
∪ ({enter, exit} ×Methods)

For a method m ∈ Methods, m.blocks ⊆ Blocks denote the basic blocks in CFGm, and m.instrs ⊆ Instrs denote the
indexed list of instructions in m.

DEFINITION 18 (METHOD SHADOWS) Shadowsm denotes the set of all shadows in method m.

Shadowsm = ({before, after} × m.instrs)
∪ ({enter, exit} × m.blocks)
∪ {⟨enter,m⟩, ⟨exit,m⟩}

The shadows of a method are restricted to its instructions and basic blocks. We give an example of the shadows in a
method.

1 m() {
2 ⟨enter,m0⟩
3 ⟨enter, b0⟩
4 ⟨before, i0⟩
5 _new ArrayList
6 ⟨after, i0⟩
7 ⟨before, i1⟩
8 dup
9 invokespecial ArrayList.init ()V
10 astore 1
11 aload 1
12 ldc A
13 invoke List.add (Object;)Z
14 pop
15 aload 1
16 ⟨before, i9⟩
17 invokeinterface List.iterator ()Iterator;
18 ⟨after, i9⟩
19 astore 2
20 aload 2
21 invokeinterface Iterator.hasNext ()Z
22 ⟨exit, b0⟩
23 ifeq L0
24 ⟨enter, b1⟩
25 aload 2
26 invokeinterface Iterator.next ()Object;
27 pop
28 ⟨exit, b1⟩
29 L0
30 ⟨enter, b2⟩
31 getstatic System.out, PrintStream;
32 ldc done
33 invokevirtual PrintStream.print (String;)V
34 ⟨exit, b2⟩
35 ⟨exit,m0⟩
36 return
37 }

Listing 4.1: JVM Bytecode and associated shadows for the method in Listing 4.2.

THESIS 47 Chukri Soueidi

CHAPTER 4. A COMPREHENSIVE INSTRUMENTATION MODEL

EXAMPLE 20 (METHOD SHADOWS) Listing 4.2 contains a Java method m that creates a List l with an
associated Iterator i. The method checks if i.hasNext() and calls i.next(). Listing 4.1 shows the
(simplified) bytecode for method m in black font. We show some of the shadows highlighted in the colors blue, red,
and olive green. We have two shadows for the method entry and exit points. Two shadows for each basic block (the
if-statement results in having three basic blocks), and for each instruction, two shadows to delimit the region before
it and after it (we omitted many of the instruction shadows for brevity). ∗

1 public void m() {
2 //Initialize a list of strings
3 List<String> l = new ArrayList<>();
4 l.add("A");
5 //Create iterator
6 Iterator<String> i = l.iterator();
7 //Call next if iterator has next
8 if (i.hasNext())
9 i.next();
10
11 System.out.print("done");
12 }

Listing 4.2: A method calling an Iterator.

Equivalence Between Shadows

A code region in the program can be targeted by transformations. Since shadows mark the bytecode regions, we
define the notion of equivalence between shadows which allows us to detect transformations that target the same
bytecode regions.

DEFINITION 19 (EQUIVALENCE RELATION OVER SHADOWS) The equivalence relation over shadows in
a method m is denoted by⇔m

s and defined as follows:

⇔m
s ⊆ Shadowsm × Shadowsm

def
= { ⟨enter,m⟩, ⟨enter,m.entryBlock⟩ } (1)
∪ { ⟨exit, b⟩, ⟨exit,m⟩ | b ∈ m.exitBlocks } (2)
∪ { ⟨enter, b⟩, ⟨before, i⟩ | b ∈ m.blocks ∧ i ∈ m.instrs

∧ i.index = b.first.index} (3)
∪ { ⟨after, i⟩, ⟨exit, b⟩ | b ∈ m.blocks ∧ i ∈ m.instrs

∧ i.index = b.last.index } (4)
∪ { ⟨after, i⟩, ⟨before, i′⟩ | i, i′ ∈ m.instrs

∧ ∃k ∈ [1, size(m.instrs)] :
i.index = k ∧ i′.index = k + 1 } (5)

In Definition 19, line (1) states that the region on method enter is equivalent to the region on basic block enter if the
block is the entry block of the method. Line (2) states that the region at a method exit is equivalent to the region
at the exits of all basic blocks that are exit blocks in the method. Line (3) states that the region at block entry is
equivalent to the region before the first instruction in the block defined by b.first. Line (4) states that the region at
the exit of a block is equivalent to the region after the last instruction of the block defined by b.last. Line (5) states
that the region after an instruction and before its consecutive are equivalent. We omit for brevity that pairs in the
relation are reflexive, symmetric, and transitive.

EXAMPLE 21 (EQUIVALENT SHADOWS IN A METHOD) Figure 4.1, depicts the CFG of a method m with 4
basic blocks (b1, b2, b3, b4) where b1 is the entry block, b2 and b4 are both exit blocks. In basic block b2, we
show two consecutive instructions i and j. In basic block b3, we show instruction k as the first instruction in the
block and instruction l as the last instruction. The filled grey boxes in the figure illustrate the equivalent shadows,

INRIA - February 2024 48 Chukri Soueidi

4.2: Instrumentation Model

 i

j

< exit, b4 >

< enter, b1 >

< enter, m >

< before, j >

< after, i >

< exit, m >

< exit, b2 >

(1)

(5)

(3)

(4)

b1

Method m

k

l

< enter, b3 >

< before, k >

< exit, b3 >

< after, l >

(2)

b4

b2b3

Figure 4.1: Illustration of shadows and their equivalence relation.

numbered as their corresponding line in Definition 19. From (1), we have ⟨enter,m⟩ ⇔m
s ⟨enter, b1⟩. From (2),

we have ⟨exit, b4⟩ ⇔
m
s ⟨exit, b2⟩ ⇔

m
s ⟨exit,m⟩. From (3), we have ⟨enter, b3⟩ ⇔

m
s ⟨before, k⟩. From (4), we have

⟨after, l⟩ ⇔m
s ⟨exit, b⟩. From (5), we have ⟨after, i⟩ ⇔m

s ⟨before, j⟩.

4.2.5 Selectors
The selector function takes a shadow, a static context CS, and a dynamic context CD as inputs and returns a set of
join points where transformations can be applied.

DEFINITION 20 (SELECTOR FUNCTION) A selector l ∈ Selectors is a function defined as:

l : Shadows × CS × CD → 2Joinpoints

Selectors facilitate the selection of join points. They are enabled for well-defined regions in the bytecode. The
associated compile-time analysis provides additional data for making more informed selections. Each selector is
associated with a compile-time analysis function that takes static context as input and optional domain-specific data
and returns static context that can be used for making more informed selections of join points.

DEFINITION 21 (COMPILE-TIME ANALYSIS FUNCTION) Each selector l is associated with a compile-
time analysis function analyse, defined as:

analyse : CS × Dd → CS

where Dd is a domain-specific data structure that can be used in the analysis.

THESIS 49 Chukri Soueidi

CHAPTER 4. A COMPREHENSIVE INSTRUMENTATION MODEL

4.2.6 Instruction Visibility
Each instruction in the program is assigned a visibility status that determines whether the instruction is a candidate
to be part of a shadow. This feature comes in handy later when we discuss the composition of transformers
(Section 5.3.7) since it allows us to control the visibility of instructions in the base program.

DEFINITION 22 (INSTRUCTION-LEVEL VISIBILITY) Let visible : Instrs→ {visible, invisible} be a func-
tion that maps each instruction to its visibility status.

An instruction with "visible" status is a candidate for transformation, while one with "invisible" status is ignored.

4.2.7 Transformers
Transformers are the building blocks of the instrumentation process. They encapsulate the logic for selecting join
points and applying transformations. A transformer consists of a set of selector functions, a compile-time analysis,
a set of advice functions, and a visibility function.

DEFINITION 23 (TRANSFORMER) A transformer t ∈ Transformers is a tuple defined as:

t = (Selectors, analyse,AD, visible)

The transformer function is responsible for selecting join points and applying transformations.

DEFINITION 24 (TRANSFORMER FUNCTION) The transformer function is defined as:

transform : Joinpoints × CS × visible→ 2Instrs

The transformer function focuses solely on the task of applying transformations to selected join points, thereby
adhering to the principle of separation of concerns. This design choice allows for greater modularity, as each
component—analysis, join point selection, and transformation—can be independently extended or modified. By
performing the analysis as a preprocessing step, the model gains efficiency and context-awareness, enabling more
precise transformations.

4.2.8 Instrumentation Process
The instrumentation process takes a program P, applies a composition of transformers, and produces a new program
P′. The instrumentation process is defined as:

instrument : P × Transformers × Shadows × CS × CD → P′

4.3 Transformer Composition
We allow more than one transformer in the instrumentation process. The transformers are applied sequentially to
the base program in the order specified by the user. We refer to applying multiple transformers in a single run as
transformer composition. In this section, we discuss the motivation for composing transformers (Section 4.3.1)
and address some concerns that may arise when multiple transformers target the exact program bytecode regions
(Section 4.3.3).

4.3.1 Motivations for Composition
Composition is needed in some cases and optional in others. Transformer composition is obligatory when it
is impossible to merge the code of two transformers in one transformer. This situation arises when there is a
dependency between transformers, and more than one pass is required to instrument the program. In other cases,
we may want to implement separate transformers based on their functionality for a cleaner code. We discuss the
two cases.

INRIA - February 2024 50 Chukri Soueidi

4.3: Transformer Composition

More than one pass. In many cases, transformations might require multiple passes on the same class. Since
our model can be used to implement static analyzers, this enables plenty of scenarios where static analysis can be
leveraged in combination with runtime verification. In such cases, a transformer can be implemented to perform
the analysis before the transformer is responsible for instrumenting the code for monitoring. Another example
is assuming that we are implementing a simple obfuscator that randomly changes the names of all methods in a
program. In this case, one pass is not enough; we need one pass to map the original names to the obfuscated names
and then another pass to change the classes and method names.

Modularity of transformers. At the core of aspect-oriented programming is achieving modularity to the cross-
cutting concerns of an application. Hence we inspire and encourage separating transformers based on their
functionality. This allows different team members to implement different transformers separately, where a single
transformer should logically handle one concern. Let us say we want to instrument a program to monitor at runtime
multiple safety properties. Implementing a single transformer for each property is more readable and favors reuse.

4.3.2 Composition of Transformers
The composition of transformers allows for chaining multiple transformations in a specific order, enabling complex
bytecode modifications. The output of a composition is a transformer that encapsulates the combined behavior of
all the individual transformers in the sequence.

DEFINITION 25 (COMPOSITION (c)) A composition c ∈ Composition is a sequence of transformers
t1, t2, . . . , tn such that:

c : Transformers × Transformers × . . . × Transformers→ Transformers

4.3.3 Transformer Collision
Transformers impose new “aspects" into the base program by inserting advice. When two transformers insert advice
that targets the same program bytecode regions, we say that the two transformers collide. BISM detects and reports
transformer collisions, which makes the composition more transparent to the user.

BISM detects collision after weaving the advice of multiple transformers into the base program. Recall Definition18
of the shadows of a method. Let Shadowst

m represent all the shadows used by BISM to insert the advice for
transformer t, in a method m, we have:

Shadowst
m ⊆ Shadowsm

To detect collision in a method, we check whether two transformers insert advice at equivalent shadows (Sec-
tion 4.2.4).

DEFINITION 26 (TRANSFORMER COLLISION) Transformer t collides with transformer t′ in method m, iff

∃ s ∈ Shadowst
m , ∃ s′ ∈ Shadowst′

m : s⇔m
s s′

Notice that the collision between transformers is symmetric, which means that the order of applying two transformers
is irrelevant to detect collision. Also, collision is reflexive, which means that collision is also detected when applying
the same transformer twice.

Several concerns may arise from collisions, such as determining the order of execution and the visibility among
aspects. We discuss these problems in the rest of this section.

4.3.4 Order Matters
The sequence in which transformations are applied can have a significant impact on the behavior of the final
instrumented program. This is particularly true when multiple transformers target the same join points, leading to
what we term as a collision.

THESIS 51 Chukri Soueidi

CHAPTER 4. A COMPREHENSIVE INSTRUMENTATION MODEL

DEFINITION 27 (ORDER-SENSITIVE TRANSFORMERS) Two transformers t1 and t2 are said to be order-
sensitive at a join point j in method m if and only if:

t1(j, S C, visible) . t2(j, S C, visible)

Two transformers are considered equivalent at a join point if their transformations yield the same functional
outcome, meaning that they produce identical changes in the program’s control flow, state, and observable behavior.
However, we will not delve into the full semantics of this equivalence relation, as it is beyond the scope of this
thesis.

EXAMPLE 22 (ORDER MATTERS) Consider two hypothetical transformers: one for logging method entries and
exits, denoted as tlog, and another for timing the execution of methods, denoted as ttime. Both transformers target the
same join points, specifically the entry and exit points of methods. This results in a collision.

If tlog is applied before ttime, the timing data will include the time consumed by the logging operations. Conversely,
if ttime is applied first, the timing data will only reflect the original method’s execution time.

This example illustrates that tlog and ttime are order-sensitive transformers according to Definition 27. ∗

In some scenarios, the sequence of transformations may not significantly impact the final instrumented program.
Therefore, it is crucial to understand the nature of each transformer and its interactions with others when determining
the sequence of transformations.

4.4 Conclusion
In this chapter, we presented a formal underpinning for our instrumentation framework. We introduced the
main concepts of the model, namely context objects, join points, shadows, selectors, advice, and transformers.
Transformers can incorporate compile-time analysis, providing additional data for making more informed and
guided instrumentation. We also discussed the composition of transformers and how they can be used to implement
complex instrumentation scenarios in a modular fashion. Transformers in composition can control the visibility of
program elements, allowing the transformers to filter out irrelevant elements based on some compile-time analysis.
We also covered how to detect collisions between transformers.

INRIA - February 2024 52 Chukri Soueidi

CHAPTER 5

BISM: Bytecode Instrumentation for Software Monitoring

Contents
5.1 Introduction 55
5.2 BISM in a Nutshell 55

5.2.1 Overview 55
5.2.2 Design Goals and Features 56

5.3 BISM Instrumentation Language 57
5.3.1 Selectors 57
5.3.2 Static Context 59
5.3.3 Dynamic Contexts 61
5.3.4 Advice Methods 61
5.3.5 Instrumentation Scoping 62
5.3.6 User Configuration 62
5.3.7 Transformer Composition 63

5.4 The External DSL for BISM 64
5.4.1 Design Considerations 64
5.4.2 Pointcuts 64
5.4.3 Events 65
5.4.4 Monitors 65
5.4.5 Code Generation 66

5.5 Implementation 66
5.5.1 The DSL 68

5.6 An Observation Layer for BISM 69
5.7 Discussion 69
5.8 Conclusion 71

53

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

Chapter abstract
In this chapter, we present BISM (Bytecode-Level Instrumentation for Software Monitoring), a lightweight
JVM bytecode instrumentation tool that features an expressive high-level control-flow-aware instrumentation
language. The instrumentation language is inspired by the aspect-oriented programming paradigm in modularizing
instrumentation however offering more flexibility in the instrumentation process. BISM allows capturing join points
ranging from bytecode instructions to methods execution and provides comprehensive static and dynamic context
information. However, it enables users to incorporate weave-time static analyzers that can be executed at the time of
instrumentation along with advice code. Hence both the instrumentation and the analysis are specified at the same
place using the same abstractions provided by the framework. We present the core API-based language of BISM
and its design choices. We then present an external DSL that we developed to provide a more user-friendly interface
for BISM targeted towards instrumentation for runtime verification. We then discuss its implementation detailing
the instrumentation process before presenting an observation layer that can be used to observe the execution of the
instrumented program.

INRIA - February 2024 54 Chukri Soueidi

5.2: Introduction

5.1 Introduction
Motivation. In the previous chapters, we highlighted various challenges in runtime verification that can be
tackled with a comprehensive instrumentation framework. Ensuring software reliability via runtime verification
entails overcoming a variety of challenges, such as soundly capturing fine-grained events (C1), and the ability to
incorporate weave-time analysis within the instrumentation process (C2).

Approach. We implement the instrumentation model we introduced in the previous chapter in the tool BISM
(Bytecode-level Instrumentation for Software Monitoring) targeting JVM-based languages. We design BISM to
provide the best of both worlds: the expressiveness of bytecode manipulation frameworks and the abstraction of
aspect-oriented programming (AOP) frameworks. This is done by having a different instrumentation mechanism
than the one used in AOP frameworks. To achieve this, writing instrumentation with BISM is achieved through
transformers, which are classes that encapsulate join point selection and advice inlining. However, users specify
advice using helper methods rather than directly writing code snippets. This approach enables users to write
weave-time analyses that can be executed at the time of instrumentation along with advice code. Hence both the
instrumentation and the analysis are performed at the same place using the same abstractions provided by the
framework.

Contributions. BISM contributes to the field of runtime verification in several ways. First, it provides a dedicated,
versatile, and expressive framework for collecting accurate traces (C1). Its design is such that it allows seamless
compile-time pre-instrumentation analyses, thereby enabling more advanced monitoring techniques (C2).

• We present BISM, a dedicated bytecode instrumentation tool for runtime verification, that is both flexible
and efficient.

• We balance expressiveness and abstraction in the BISM instrumentation language, inspired by AOP but
enabling the capabilities of bytecode manipulation frameworks.

• We present an external DSL for BISM that allows for a more straightforward, declarative specification of
instrumentation requirements.

• We demonstrate the architecture of BISM and its instrumentation workflow, along with the DSL implementa-
tion.

• We present an observation layer for BISM that allows for integrating various dynamic analyses with the
instrumentation process.

• We discuss and compare the difference between BISM and other instrumentation frameworks that we
previously presented in Chapter 3.

Chapter organization. Section 5.2 presents an overview of BISM, its design goals, and features. Section 5.3
introduces the language of BISM and the design choices taken. Section 5.4 presents the external DSL for BISM.
Section 5.5 discusses the implementation of BISM. Section 5.6 presents an observation layer for BISM. Section 5.7
compares BISM to other instrumentation frameworks. Finally, Section 5.8 concludes the chapter.

5.2 BISM in a Nutshell
In this section, we overview BISM and discuss the design goals and its objectives.

5.2.1 Overview
BISM is a bytecode instrumentation tool for JVM languages such as Java, Scala, Kotlin, and Groovy programs.
It is implemented on top of the bytecode manipulation library ASM [BLC02]. Figure 5.1 shows a high-level
overview of BISM. The user provides: the base program, and the instrumentation logic written in transformers with
BISM language (see Section 5.3). BISM encapsulates and performs 3 main steps that, in general, can describe
any instrumentation task. It parses the bytecode to obtain a representation of the base program, then generates the
needed transformations that are specified by the user in transformers, and finally weaves those transformations

THESIS 55 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

Class files

Transformers

Transformed
Classes

BISM

Transformation

Weaving

Bytecode Parsing

Figure 5.1: BISM overview.

into the base program to obtain an instrumented program. In Section 5.5, we provide more details of the BISM
instrumentation workflow.

5.2.2 Design Goals and Features
BISM is a tool on which RV tools can rely to perform efficient and expressive instrumentation. In this section, we
describe the design goals and features of BISM.

Instrumentation mechanism. BISM provides a mechanism to write separate instrumentation classes in standard
Java. An instrumentation class in BISM, which we refer to as a transformer, encapsulates the instrumentation
logic that is the join point selection and the advice to be injected into the base program. Advice is specified using
dedicated advice methods provided by the BISM language that allows bytecode insertion, method invocation, and
printing. Rather than directly writing code snippets, this approach enables users to write weave-time analyses
that can be executed at the time of instrumentation along with advice code. Hence both the instrumentation and
the analysis are performed at the same place using the same abstractions provided by the framework. Unlike
aspect-oriented programming tools that adopt the pointcut/advice model where the user is only capable of specifying
the code that should be injected, users can execute arbitrary code in the transformer class to perform compile-time
analyses on the base program to guide the instrumentation.

Access to program context. BISM offers access to complete static information about instructions, basic blocks,
methods, and classes. It also offers dynamic context objects that provide access to values that are only available at
runtime, such as local variables, stack values, method arguments, and results. Moreover, BISM allows accessing
instances and static fields of these objects. Furthermore, new local variables and arrays can be created within the
scope of a method to pass values needed for instrumentation.

Control-flow context. BISM generates the CFGs of target methods out-of-the-box and offers this information to
the user. In addition to basic block entry and exit selectors, BISM provides specific control-flow related selectors
to capture conditional jump branches. Moreover, it provides a variety of control-flow properties within the static
context objects. For example, it is possible to traverse the CFG of a method to retrieve the successors and the
predecessors of basic blocks. Edges in CFGs are labeled to distinguish between the True and False branches
of a conditional jump. Furthermore, BISM provides an option to display the CFGs of methods before and after
instrumentation, which provides developers with visual assistance for analysis and insights on how to instrument
the code and optimize it.

Compatibility with ASM. BISM uses ASM extensively and relays all its generated class representations within
the static context objects. Furthermore, it allows inserting raw bytecode instructions by using the ASM data types.
When inserting instructions, it is the user responsibility to write a code free from errors. If the user unintentionally

INRIA - February 2024 56 Chukri Soueidi

5.3: BISM Instrumentation Language

inserts faulty instructions, the instrumentation may fail. The ability to insert ASM instructions provides highly
expressive instrumentation capabilities, especially when it comes to inlining the monitor code into the base program,
but comes with the risk of producing unwanted behavior.

Instrumentation modes. BISM can run in two modes: build-time and load-time. In build-time, BISM acts as a
standalone application capable of instrumenting all the compiled classes and methods1. In load-time, BISM acts as
an agent (using JVM instrumentation capability2) that intercepts all classes loaded by the JVM and instruments
before the linking phase. The load-time mode permits to instrument additional classes, including classes from the
Java class library that are flagged as modifiable3. Instrumentation modes are complementary. BISM produces a
new statically instrumented standalone program in build-time mode, whereas, in the load-time mode, BISM acts as
an interface between the program and the JVM (keeping the base program unmodified).

Portability and ease of use. BISM is a lightweight tool written in Java and fitting in a single jar of less than 1MB.
It is hardware-agnostic and only relies on the presence of a JVM in the host software. The user only needs to add
the jar to the classpath (Java Runtime Environment variables) to compile new custom transformers. The tool has
been successfully tested on various operating systems and even embedded devices such as the Raspberry Pi.

5.3 BISM Instrumentation Language
In this section, we present the core instrumentation language of BISM or what we refer to as the BISM API. Full
details about the API can be found at [SFb]. The language allows the user to select join points (points in the program
execution), retrieve relevant context information, and inject advice (i.e., extra code) that can extract information
from these points or alter the behavior of the program.

Instrumentation in BISM is specified in Java classes named transformers. BISM language provides selectors
(Section 5.3.1) to select join points of interest, static and dynamic context objects (Section 5.3.2 and Section 5.3.3)
which retrieve relevant information from these points, and advice methods (Section 5.3.4) to specify the code to be
injected into the base program.

5.3.1 Selectors
Selectors provide a mechanism to select join points and specify the advice. They are implementable methods where
the user writes the instrumentation logic. BISM provides a fixed set of selectors classified into four categories:
instruction, basic block, method, and meta selectors. We list below the set of available selectors and specify the
execution they capture.

Instruction. BISM provides instruction-related selectors:

• BeforeInstruction captures the execution before a bytecode instruction.

• AfterInstruction captures the execution after a bytecode instruction. If the instruction is the exit point,
i.e. the last instruction of a basic block, it behaves the same way as the BeforeInstruction selector;
that is it captures the execution before that last instruction.

• BeforeMethodCall captures the execution just before a method call instruction and after loading all
needed values on the stack.

• AfterMethodCall captures the execution immediately after a method call instruction and before storing
the return value of the method call, if any, from the stack into a variable.

Basic block. In addition to the previous selectors, BISM provides basic block-related selectors that ease capturing
control-flow related execution points:

1Excluding the native and abstract methods, as they do not have bytecode representation.
2The java.lang.instrument package.
3The modifiable flag keeps certain core classes outside the scope of instrumentation. To the best of our knowledge, there is no exhaustive list

of classes with the before-mentioned flag.

THESIS 57 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

for each method

for each class

OnClassEnter

for each block

OnMethodEnter

for each instruction

if conditionalOnBBlockEnter

OnTrueBranch

OnFalsebranch

if method call

BeforeInstruction

BeforeMethodCallAfterMethodCall

AfterInstruction

OnBBlockExit

OnMethodExit

OnClassExit

else

Figure 5.2: Instrumentation loop of BISM.

• OnBasicBlockEnter captures the execution when entering the block, before the first real instruction4.

• OnBasicBlockExit captures the execution after the last instruction of a basic block; except when the
last instruction is a JUMP/RETURN/THROW instruction, then it captures the execution before that last
instruction.

• OnTrueBranchEnter captures the execution on the entry of a successor block after a conditional jump
on True evaluation.

• OnFalseBranchEnter captures the execution on the entry of a successor block after a conditional jump
on False evaluation.

Method. BISM also provides two method-related selectors:

• OnMethodEnter captures the execution on a method entry.

• OnMethodExit captures the execution on all exit blocks of a method before the return instruction.

Meta selectors. Finally, BISM provides two class related meta-selectors: OnClassEnter and OnClassExit.
These selectors do not capture execution points but can be used for introductions, such as adding new members to a
class. They have no semantic for the execution but are instead related to BISM execution. Selector OnClassEnter
is invoked when a class is loaded and OnClassExit after all methods have been instrumented. They are not
related to the static {...} block which is a function in Java classes. They can also be used to optionally
initialize and finalize the transformer execution for each instrumented class.

The order at which selectors are visited when applying a transformer is depicted in Figure 5.2. Knowing this
traversal flow helps the developer know in which order the advice weaving happens.

INRIA - February 2024 58 Chukri Soueidi

5.3: BISM Instrumentation Language

Class

Method

BasicBlock

Instruction

MethodCall

Contexts ASM nodesSelectors

onClass(Enter/Exit)

onMethod(Enter/Exit)

OnBasicBlock(Enter/Exit)
On(True/False)BranchEnter

(Before/After)Instruction

(Before/After)MethodCall

ClassNode

MethodNode

AbstractInsnNode

MethodInsnNode

has references

C
on

te
xt

 h
ie

ra
rc

hy

Figure 5.3: The static context tree related to selectors and ASM nodes.

5.3.2 Static Context
Static context objects provide access to relevant static information for captured join points in selectors. Each
selector has a specific static context object based on its category. These objects can be used to retrieve information
about bytecode instructions, method calls, basic blocks, methods, and classes. BISM performs static analysis on
the base program and provides additional control-flow-related static information such as basic block successors
and predecessors. The rich set of context information allows the user to have an expressive join point selection
mechanism from within selectors. Unlike AspectJ, BISM does not offer yet regular expressions to select join points,
but from the context objects, one can retrieve the method signature and therefore make the selection manually. It is
even possible to be more selective as BISM offers directly the static context of each bytecode instruction, which is
not accessible in AspectJ. The static context hierarchy and accessibility are summarized in Figure 5.3. Each context
provides access to the corresponding ASM node object and is accessible from the corresponding selector or by
traversing the hierarchy bottom-up as demonstrated in Listing 5.1.

1 public void beforeMethodCall(MethodCall mc, ...){
2 Instruction i = mc.ins; //Access the surrounding Instruction static context
3 BasicBlock b = i.basicBlock; //Access the surrounding BasicBlock context
4 Method m = b.method; //Access the surrounding Method context
5 ClassContext c = m.classContext; //Access the surrounding Class context
6 }

Listing 5.1: Hierarchy of Static context objects.

In the following, we detail commonly used properties for each context.

Common properties. At each selector, we need to identify the currently instrumented object and its location.
Static context objects contain some identifiers:

• a reference to its parent context, named after the parent type;

• multiple string identifiers for class and methods, such as name and signature;

• a unique (method-wise) integer identifier for basic blocks and instructions.

4Real instructions are instructions that actually get executed, as opposed to some special Java bytecode instructions such as labels or line
number instructions.

THESIS 59 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

Instruction context. The Instruction context provides relevant information about a single instruction:

• opcode: its opcode in the JVM instruction set;

• next/previous: neighbor instructions in the current basic block if they exist;

• isBranchingInstruction(): indicator of whether it is a branching instruction (multiple successors).
BISM takes care of comparing with the right opcodes and ASM node types.

It is also possible to retrieve information about the stack context at an instruction, as the information is embedded
into the class file :

• getBasicValueFrame(): returns a list of all local variables, stack items, and their types at the stack
frame before executing the current instruction;

• getSourceValueFrame(): returns a list of all local variables and stack items and their source i.e. which
instruction created/manipulated them.

Method Call context. This is a special type of Instruction context (only available in *MethodCall
selectors). In addition to its Instruction context, some specific information is provided, such as the caller
method name or the called method class and name.

Basic Block context. The BasicBlock context provides information about a basic block and its neighborhood
in the CFG:

• blockType: a type to easily identify its role (entry, exit, conditional, or normal block);

• getSuccessor/PredecessorBlocks(): all successors and predecessors of the basic block as per
the CFG;

• getTrue/FalseBranch(): the target block after this conditional block evaluates to true (false);

• getFirst/LastRealInstruction(): the first and last executable instructions (not labels) of this
block.

Method context. The Method context provides information about the currently visited method:

• name: the name of the method (not fully qualified);

• getEntryBlock/getExitBlocks(): the first and last blocks of the method;

• isAnnotated(String): checks for the existence of an annotation on the method;

• some signature information about the method such as its return type and list of formal arguments.

Class context. The Class context provides the name and ASM node of the currently instrumented class.

1 public class BasicBlockTransformer extends Transformer {
2
3 @Override
4 public void onBasicBlockEnter(BasicBlock bb){
5 String blockId = bb.method.className + "." + bb.method.name + "." + bb.id;
6 print("Entered block:" + blockId)
7 }
8
9 @Override
10 public void onBasicBlockExit(BasicBlock bb){
11 String blockId = bb.method.className + "." + bb.method.name + "." + bb.id;
12 print("Exited block:" + blockId)
13 }
14 }

Listing 5.2: A transformer for intercepting basic block executions.

In Listing 5.2, the transformer uses two selectors to intercept all basic block executions (onBasicBlockEnter
and onBasicBlockExit). BasicBlock bb is used to get the block id, the method name, and the class

INRIA - February 2024 60 Chukri Soueidi

5.3: BISM Instrumentation Language

name. The advice method print inserts a print invocation in the base program before and after every basic block
execution.

5.3.3 Dynamic Contexts
BISM also provides dynamic context objects at selectors to extract join point dynamic information. These objects
can access dynamic values from captured join points that are possibly only known during the base program
execution. BISM gathers this information from local variables and operand stack, then weaves the necessary code
to extract this information. In some cases (e.g., when accessing stack values), BISM might instrument additional
local variables to store them for later use. For brevity, we list some of the dynamic context methods and omit the
return type of the methods which is always a DynamicValue:

• getThis(): returns a reference to the class owner of the method being instrumented, and null if the class
or method is static;

• getThreadName(): returns a reference to the name of the thread executing the method being instru-
mented;

• getLocalVariable(int): returns a reference to a local variable by index;

• getStackValue(int): returns a reference to a value on the stack by index;

• getStatic/InstanceField(String): returns a reference to an instance/static field in the class
being instrumented.

BISM gives access to method-relative information. The runtime arguments passed to a method can be retrieved using
getMethodArgs(int). The method result (return value) can be retrieved using getMethodResult(). The
object on which the method is called can be retrieved using getMethodReceiver().

It is also possible to add new local variables of primitive types with a call to addLocalVariable(...). The
scope of the added variables is the method where they are created. This is useful for different purposes like to
pass data across selectors. Local arrays can also be added with the createLocalArray(Method, Class)
method. BISM weaves the necessary bytecode and returns a dynamic value to query and update freely, such as
clearing and appending elements. It is particularly useful when there is a need to pass objects between selectors in
a method without knowing how much space will be needed at runtime.

Listing 5.3 presents a transformer that uses the selector afterMethodCall to capture the return of an
Iterator created from a List object. It uses the dynamic context object using MethodCallDynamicContext
dc provided to the selector to retrieve the dynamic data. The example also shows how to limit the scope to a
specific method using an if-statement on the static context.

1 @Override
2 public void afterMethodCall(MethodCall mc, MethodCallDynamicContext dc){
3 if (mc.methodName.equals("iterator") && mc.methodOwner.endsWith("List")) {
4 //Access to dynamic data
5 DynamicValue callingClass = dc.getThis(mc);
6 DynamicValue list = dc.getMethodTarget(mc);
7 DynamicValue iterator = dc.getMethodResult(mc);
8
9 //Invoking a monitor
10 StaticInvocation sti = new StaticInvocation("IteratorMonitor", "iteratorCreation");
11 sti.addParameter(callingClass);
12 sti.addParameter(list);
13 sti.addParameter(iterator);
14 invoke(sti);
15 }
16 }

Listing 5.3: A transformer that intercepts the creation of an iterator from a List.

5.3.4 Advice Methods
A user inserts advice into the base program at the captured join points using the advice instrumentation methods.
Advice methods allow the user to extract needed static and dynamic information from within join points, also
allowing arbitrary bytecode insertion. These methods are invoked within selectors. BISM provides print methods

THESIS 61 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

with multiple options to invoke a print command. It also provides (i) invoke methods for static method invocation;
(ii) annotate methods for adding annotations to class, methods or fields and (iii) insert methods for inserting
bytecode instructions. These methods are compiled by BISM into bytecode instructions and inlined at the referenced
bytecode location. We list below the advice methods available in BISM.

Printing on the console. Instrumenting print statements in the base program can be achieved via method print,
which permits to write both on the standard and error output of the base program. These methods take either static
values or dynamic values retrieved in selectors. Listing 5.2 shows an example of using one of the print helper
methods to instrument the base program to print the basic block constructed id.

Invoking methods. Invoking external static methods can be achieved using the advice method invoke. An
object of type StaticInvocation or MethodInvocation should be constructed and provided with the
external class name, the method name, and parameters. Listing 5.3 depicts a transformer that instruments the base
program to call the external static method iteratorCreation. The constructor of the invocation takes the
class and method names as input in case of static methods. In the case of instance methods, the constructor takes as
dynamic value the object on which the method is called. Parameters can be added using addParameter(). It
supports either DynamicValue type or any primitive type in Java, including String type (any other type will
be ignored). After that, invoke weaves the method call in the base program.

Annotating the bytecode. Annotating elements of a class file allows the user to add some meta-data to the code.
It is possible to use the BISM advice annotate(...) to add runtime-visible annotations to either class, fields,
or methods. These annotations can be accessed via Java reflection, and they provide extra information for the input
program or some third-party API.

Raw bytecode instruction insertion. Inserting raw bytecode instructions can be achieved with insert methods.
When used, it is the developer’s responsibility to write correct instructions that respect the JVM static and structural
constraints. Errors can be introduced by ignoring the stack requirements and altering local variables. For Java 8 and
above programs, using the insert methods to push new values on the stack or create local variables requires modifying
the maxStack and maxLocals values. All static contexts give access to the needed ASM object MethodNode to
increment the values maxLocals and maxStack from within the join point.

5.3.5 Instrumentation Scoping
BISM provides many configuration features, such as limiting the scope of the instrumentation or passing arguments
to the transformers to modify their behavior. For example, the scope global argument permits matching classes and
methods by their names.

Specifying (scope=java.util.List.*, java.util.Iterator.next) will instrument all methods in the List class and only
the next method in the Iterator class. Moreover, static context objects can also be used to limit the scope of
instrumentation from inside selectors; they can provide more precise scoping information demonstrated in Listing
5.3. It is recommended using the scope argument when possible to avoid analyzing unwanted classes enhancing
instrumentation performance.

5.3.6 User Configuration
To favor usability, BISM execution accepts arguments both from the command line (which has higher priority) or
through a configuration file. Configurable settings such as printing the CFG files and dumping the instrumented
bytecode can be specified. The configuration file is more expressive as it also permits passing arguments to
transformers. A transformer may need arguments to modify its internal behavior, e.g., a flag for logging.

EXAMPLE 23 (BISM CONFIGURATION FILE) Listing 5.4 shows an example of a BISM configuration file. The
config tag contains the global configuration arguments. The transformer tag contains the list of transformers
to be executed. The arg tag is used to pass arguments to transformers. The scope argument specifies the scope
of the instrumentation. The blacklist argument specifies the classes to be excluded from the instrumentation.
The output argument specifies the output directory for the instrumented classes. The visualize argument
specifies that the CFGs of the instrumented methods should be dumped. ∗

INRIA - February 2024 62 Chukri Soueidi

5.3: BISM Instrumentation Language

1 <bism>
2 <config>
3 <transformer value="inst/IndirectCoverageTransformer.class,inst/OnExit.class"/>
4 <scope value="com.*"/>
5 <blacklist value="com.sun.*"/>
6 <output value="./out/instrumentation"/>
7 <visualize/>
8 </config>
9

10 <transformer></transformer>
11 <transformer>
12 <arg key="owners" value="com/Main"/>
13 <arg key="methods" value="main"/>
14 </transformer>
15 </bism>
16

Listing 5.4: BISM XML configuration file.

5.3.7 Transformer Composition
We here detail some features of BISM that ease the composition of transformers.

Collision report.

To detect a collision (Section 4.3.3), we compute equivalent shadows used for instrumentation by transformers.
BISM records the used shadows after weaving each transformer and reports all collisions after each run. The report
shows the exact locations of the collision along with the colliding transformers to the user.

Several concerns may arise from collisions, such as determining the order of execution and the visibility among
aspects. We discuss these problems in the rest of this section.

Controlling Visibility

When composing transformers, each transformer introduces a new set of instructions to the base program. The newly
added instructions are then part of the base program and become visible to the second transformer to target. In many
cases, we may want to hide these newly instrumented instructions in a composition. BISM provides the attribute
@Hidden that can be placed as an annotation on a transformer. When used, the newly added instructions are not
intercepted anymore by the selectors by following transformers. A prevalent scenario is to avoid instrumenting
previously added code. Let us look at the following example.

1 @Hidden
2 class CountMethodCalls extends Transformer {
3 onMethodCall(..) {
4 //Invoke methodCounterIncrement
5 }
6 }
7 @Hidden
8 class LogMethodCalls extends Transformer {
9 onMethodCall(..) {
10 //Invoke logger
11 }
12 }

Listing 5.5: @Hidden attribute on transformers.

EXAMPLE 24 (HIDDEN TRANSFORMERS) Listing 5.5 demonstrates two transformers: CountMethodCalls
which counts the number of method calls and LogMethodCalls which logs all method calls. We can see that the
join points captured by onMethodCall are shared between both transformers. Hence, the advice will be inserted
at the same bytecode regions, and we have a collision. A user might be only interested in logging the method
calls of the base program and does not want the logger to log counting calls introduced by LogMethodCalls.
Alternatively, the user might be interested in counting the method calls of the base program and not the log calls
introduced by CountMethodCalls. Adding the @Hidden attribute to the transformers hides the newly added
instructions from other transformers in a composition.

THESIS 63 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

Hidden instructions. BISM also allows transformers to hide arbitrary instructions of the base program from
other transformers by providing a mechanism to mark instructions as hidden. When an instruction is marked as
hidden, it is excluded from the available shadows and thus not exposed to selectors. Hence, it will not be intercepted
by the transformers that follow. This feature can be used for optimizing instrumentation by having one transformer
implement a static analyzer that hides particular instructions from the instrumentation transformer.

In general, to avoid instrumenting previously added advice, the user is encouraged to check the collision report and
use the @Hidden when needed.

5.4 The External DSL for BISM
In order to facilitate the use of BISM, we designed a new external DSL for BISM. This DSL is a textual specification
language that allows users to specify instrumentation logic in a more intuitive and concise manner. Targeting a
wider range of users, the DSL is designed with intuitive syntax, maps directly to the key requirements of program
instrumentation, and offers comprehensive coverage of program aspects while reducing specification complexity.

5.4.1 Design Considerations
In this section, we discuss the main design considerations for the new BISM DSL.

Intuitive syntax. Instrumenting a program generally involves specifying three key requirements: (1) program
points to capture (join points), (2) the information needed from these join points, and (3) the destination of these
events. The DSL addresses these requirements by providing exactly these three main constructs: (1) pointcuts, (2)
events, and (3) monitors to consume the captured events.

Expressiveness & abstraction. BISM API offers remarkable expressiveness for covering all program aspects
and extracting information from the executing program. We designed the DSL to retain this expressiveness
while considerably simplifying the specification and providing a higher abstraction level. However, the DSL’s
high-level abstraction may limit its ability to address certain low-level details or complex scenarios that require
more fine-grained control over the instrumentation process.

Efficiency and performance. Textual specifications for instrumentation often require parsing and compiling
transformations. We optimized the DSL implementation with a focus on performance, striving to achieve reasonable
execution times for parsing and applying instrumentation compared to using the native BISM API.

Usability simplification. Crafting a BISM transformer requires implementing a Java class using the provided
instrumentation API. The DSL is tailored to accommodate users with diverse expertise levels by eliminating
boilerplate code and low-level implementation details, ultimately enhancing productivity, minimizing errors, and
simplifying code maintenance.

Code Generation. The DSL creates API-based transformer code from user-defined textual specifications, al-
lowing further user customization for complex instrumentation. It also generates monitor interfaces, promoting
collaboration between developers and monitoring experts.

In the next section, we present the main abstractions and constructs provided by the DSL to address the user
requirements of runtime verification and instrumentation.

5.4.2 Pointcuts
Pointcuts enable users to specify the join points to capture from program execution. They can be denoted as
follows: a pointcut name, a BISM selector with a pattern, and an optional guard. Multiple selectors are chainable
using the || operator. The pattern restricts the scope of the selector to specific fields or methods, applying filters
such as types, method signatures, or field names. Matching can be achieved with wildcards; for example, "*
.set*(..)" matches any method that starts with "set". The optional guard allows the specification of a condition,
essentially a boolean expression using static context objects from the join point. The guard conditions may use

INRIA - February 2024 64 Chukri Soueidi

5.4: The External DSL for BISM

comparisons of booleans, numerics, and strings, and can be chained with the conjunction operator (&&) to create
complex conditions. In each DSL transformer, the definition of at least one pointcut is necessary.

pointcut pc1 after MethodCall(* BankAccount.*(..)) with (getNumberOfArgs = 3 &&
currentClassName = "Main")

|| after MethodCall(* *.*(..)) with (instruction.linenumber = 42)

pointcut pc2 before Instruction(* *.*(..))
with (isConditionalJump = true)

Listing 5.6: Example of pointcuts definition.

Listing 5.6 shows a composite pointcut pc1 that uses two selectors. The first selector captures calls to methods
defined by the classBankAccount, but only captures calls that are invoked from the "Main" class and the called
method has exactly three arguments. The second selector captures any method call occurring at line 42. This
second guard showcases BISM’s hierarchical context objects and how they can be accessed using dot notation.
Pointcut pc2 captures any instruction that is a conditional jump.

5.4.3 Events
Events encapsulate the information that needs to be extracted from a pointcut. Each event must be associated with a
single pointcut along with its arguments. Multiple events can be defined for each pointcut. An event includes a
name and zero or more arguments. Arguments may comprise single values or lists of values, which can include
BISM static or dynamic context objects, string literals, numbers, or lists. Lists are denoted as sequences of values,
separated by commas, and enclosed in brackets.

event e1("call", [getMethodReceiver, getMethodResult]) on pc1

event e2([opcode,getStackValues]) on pc2 to console(List)

Listing 5.7: Example of events definition.

Listing 5.7 shows an event named e1, associated with the pointcut pc1, that is defined with the string literal
"call" and a list of dynamic context objects which extract the callee object and the result of the method. Event
e2 is defined with a list of dynamic context objects (opcode, getStackValues) and is associated with the
pointcut pc2. The DSL also provides a construct to print an event to the console, which is particularly useful
during the debugging or profiling of a program. This event is associated with the output console(List) which
prints the event information to the console.

5.4.4 Monitors
Monitors define the extraction points of one or several events during program execution. Each monitor is identified
by a unique name, a class name, and the events it is set to listen to. Typically, the events are passed as parameters
during the invocation of a monitor method. A monitor can be defined as follows: a monitor name, a class name, and
the events it listens to. Events are mapped to the monitor method name with its argument types. Multiple monitors
can be defined and events can be sent to more than one monitor.

Listing 5.8 shows a monitor m1 corresponding to a class named com.MonitorX. Event e1 is mapped to the
method receive with the argument types String and List. The specification can be simplified by directly
associating the monitor with the event. However, this restricts the use of the event to only one monitor. Here is an
equivalent specification without the explicit definition of a monitor.

monitor m1{
class: com.MonitorX,
events: [e1 to receive(String, List)]

}

Listing 5.8: Example of a monitor definition.

THESIS 65 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

event e1("create",[getMethodReceiver,getMethodResult])
on pc1 to com.MonitorX.receive(String,List)

Listing 5.9: Simple monitor definition.

5.4.5 Code Generation
We here present the code generation facilities that bridge the gap between new and expert users of BISM, also the
gap between monitoring experts and program developers.

Transformers for Complex Instrumentation Tasks

The Java-based API transformers enable users to develop intricate analysis logic beyond the capabilities of the
DSL. For example, BISM utilized this approach for static analysis prior to program instrumentation in [SF22b].
Starting with a simple text-based DSL specification, users can gradually move to complex instrumentation logic
using a full-fledged Java transformer. To facilitate this transition, we generate and compile Java transformers
equivalent to the provided textual specification files. Consequently, these specification files can act as bootstrappers
for implementing more complex logic.

Monitor Interfaces

As discussed in Section 5.4.4, the process of creating an instrumentation specification often requires declaring
a monitor to listen for events. In collaborative scenarios, a monitoring expert consults the developer to identify
relevant events and their runtime context. Subsequently, the programmer creates a specification file capable of
locating and extracting the necessary events, leaving the monitoring expert solely responsible for implementing the
monitors. To optimize this collaboration, the DSL incorporates a feature to generate the monitor interfaces, that
need to be implemented to listen to events. This capability substantially improves interoperability between different
teams, fostering a more efficient and productive workflow when addressing complex instrumentation tasks.

package com;
import java.util.List;

public class MonitorX{
public static void receive(String a1, List a2) {
}

}

Listing 5.10: A program with a test inversion attack.

Listing 5.10 shows the generated interface for the monitor in Listing 5.8. The user can then implement the
receive method to perform the desired analysis logic.

5.5 Implementation
In this section, we provide some details about the BISM implementation. BISM is implemented in Java using about
7,000 LOC and 55 classes distributed in separate modules that interact and achieve its functionality. Below are the
main modules of BISM depicted in Figure 5.4 and their responsibilities.

• Core. This module handles the user input and the output. It is responsible for orchestrating the instrumentation
process, which we will detail in the remainder of this section.

• CFG. This module generates and stores the control flow graphs for the methods of the target program. It also
contains the basic data structures that represent and iterate methods in classes that are built on top of ASM
data structures.

• Transformers. This module exposes BISM instrumentation language for writing transformers. It also
handles the iteration of program classes for the generation of join points, static and dynamic context, and
applying the Transformer classes.

INRIA - February 2024 66 Chukri Soueidi

5.5: Implementation

DESCRIPTOR

MATCHER

TYPE

METHOD

Patterns

BLOCK

EDGE

CFG

CFG

GRAPHGEN.

Visualizer

TRANSFORMER

ITERATOR

CONTEXT

DYNAMIC

STATIC

Transformers

INSTRUMENTER

HANDLER

PROGRAM

TRANSFOMER

AGENT

Core

HELPERS

ASM

Figure 5.4: BISM modules with arrows indicating dependencies.

• GraphVisualizer. This module is responsible for generating CFG visualization. It uses the CFG module
to generate the CFG of the input program before and after instrumentation, and it outputs HTML files that
allow us to display the generated CFGs.

• Patterns. This module provides the pattern-matching logic for types, methods, and their signatures.

• ASM. This module provides the ASM library and its API to parse and generate bytecode.

BISM uses ASM under the hood for bytecode parsing, analysis, and weaving. It is provided as a runnable JAR
file that does not require any installation from the user except for having Java 8 or above installed. It can run in
two modes: build-time mode, as a standalone application to statically instrument a program, and load-time mode,
attached to a program as a Java agent. Fig. 5.5 shows a detailed view of the internal workflow.

(1) User Input. In build-time mode, arguments consist of a base program bytecode (.class or .jar) to be instrumented
and a list of transformers that specifies the instrumentation logic. In load-time mode, only the transformers are passed
as arguments and all classes loaded by the JVM are instrumented. BISM provides several built-in transformers that
can be directly used. Moreover, users can specify various runtime arguments to BISM or even the transformers,
from the console or through a configuration file.

(2) Parse Bytecode. For each class in the base program, BISM uses ASM to parse the bytecode and generate a tree
object containing all the class details, such as fields, methods, and instructions. The following three steps will be
performed on each class for every transformer specified in a run.

(3) Build CFG. BISM constructs the CFGs for all methods in the target class. If the transformer utilizes control-flow
join points (onTrueBranch and onFalseBranch), BISM eliminates all critical edges from the CFGs to avoid
instrumentation errors. This is done by inserting empty basic blocks in the middle of critical edges, which is only
applied if used while keeping copies of the original CFGs. Also, if the transformer uses join point onMethodExit,
all the exit blocks (which terminate with a return opcode) are merged into a single one to avoid duplication and
errors. This is done by adding a new block that contains a return of a suitable type; then, all other returns are
replaced by unconditional jumps to the added one. Moreover, if the users opted for the visualizer, the CFGs are
printed into HTML files on the disk.

(4) Generate Shadows and Context Objects. BISM iterates over the target classes to identify all shadows utilizing
the created CFGs. The relevant static and dynamic context objects are created and initialized using the static
information available and BISM analysis at each shadow.

(5) Transformer Weaving. The transformer is notified of each shadow and passed the static and dynamic objects.
The weaving loop is illustrated in Figure 5.2. BISM evaluates the transformations applied by a transformer using
the advice methods. After that, it accordingly weaves the necessary bytecode instructions into the target class.

(6) Output. The instrumented bytecode is then output back as a .class file in build-time mode or passed as raw

THESIS 67 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

Transformers

ASM

Parse
 Bytecode

Build
CFG

Transformer
Weaving

Instrumented
Program

.jar, .class
or raw bytes

Generate
Shadows & Context

Objects

Transformers

(2)

(3) (4)

(5)
(1)

(6)

Base Program
.jar, .class

or raw bytes

Built-In
Trans-
formers

BISM

CFG
.html CFG

.html

Figure 5.5: Instrumentation process in BISM.

bytes to the JVM in load-time mode. In case of instrumentation errors, e.g., due to adding manual faulty ASM
instructions by the user, a weaving error is emitted. If the visualizer is enabled, the instrumented CFGs are also
printed into HTML files on the disk.

5.5.1 The DSL

Specification
Processor

Generic
Transformer

Artifact
Generator

Instrumentation
Spec.

BISM
Target

Program

Instrumented
Program

Transformer
Java Code

Monitor
Java Code

Figure 5.6: Added modules on BISM (in blue) to support the external DSL.

We implemented the DSL as an extension to BISM with 6 KLOC of Java code 5. Figure 5.6 shows the three main
modules we added to BISM. The following sections describe each module in detail.

Specification Processormodule. This module takes the textual specification written by the user as input and
parses it to construct a specification object which is an intermediate representation of the needed transformations. It
also performs checks to ensure that the specification is valid such as removing duplicate rules and ensuring that the
specification is well-formed.

Generic Transformermodule. This module handles applying the transformations specified by the user to the
target program. It provides a transformer template that extends the Transformer type provided by BISM and
automatically generates the transformations. These transformations are then turned into bytecode instructions by
BISM that are then weaved into the target program.

Artifact Generatormodule. This module is activated whenever the user requests code generation facilities. It is
responsible for generating an equivalent transformer class that uses BISM API. It also generates a monitor class
that can be implemented and used to monitor the instrumented program’s behavior during runtime.

5Available at https://gitlab.inria.fr/bism/bism-dsl.

INRIA - February 2024 68 Chukri Soueidi

https://gitlab.inria.fr/bism/bism-dsl

5.7: An Observation Layer for BISM

5.6 An Observation Layer for BISM
In this section, we present an observation layer that bridges BISM and the instrumented program with any analysis
tool. This layer allows for incorporating various kinds of analyses into the instrumented program such as monitoring.

Users specify the instrumentation requirements using the BISM language and the analysis using their implementation
of choice. We implemented an integration layer that bridges the communication between the running instrumented
program and the analysis logic. This layer orchestrates a flexible, scalable pipeline whereby the program is the
producer of events that are then dispatched for analysis. It is composed of 4 main modules that work together
to receive, collect, and send events. Figure 5.7 shows the integration layer and its modules along with their
dependencies. A dotted edge in the graph indicates that the source module uses the destination module. The base
program is first passed to BISM for instrumentation along with Transformer files that specify the instrumentation
requirements (Step 1). BISM analyses the program and injects instrumentation code into the program (Step 2).
When the instrumented program is run, events are emitted and passed to the Observer module (Step 3).

The Observer module routes events into the Event module where custom events can be defined and created
(Step 4). In its most generic form, an event consists of a map of key-value pairs. Next, the Observation module,
receives the events (Step 5). An observation can be specified to operate in either synchronous or asynchronous
modes, depending on the requirements of the user. In synchronous mode, the events are pushed immediately to the
Event Processor. To ensure thread safety, event reception is synchronized using a lock. When operating in
asynchronous mode, events are placed in a non-blocking queue. A separate process running on the distinct thread
then removes the events from the queue. It creates a fork and delivers events simultaneously to subscribed event
processors. The fourth module, the Event Processor, provides an interface for observations to publish events
(Step 6). The module is also responsible for initializing the monitor specified by the user. Several processors can
be created to handle events, subscribing to events that the observer publishes. Event processors can subscribe to
specific events with the subscribe method which is true by default.

5.7 Discussion
In this section, we compare BISM with other instrumentation tools that we covered in Section 3.6 and discuss the
differences and similarities. Table 5.1 summarizes this comparison and separates between features that concern
expressiveness (in red) and features that concern abstraction (in blue).

Comparison with bytecode manipulation libraries. BISM is implemented on top of ASM to provide a superset
of its features and offer the user a higher level of abstraction. The choice of ASM over alternatives like Soot for
BISM was influenced by ASM’s faster performance and smaller size. Essential tasks that need to be handled by the
user with bytecode manipulation libraries such as program traversal, are already provided by BISM. Moreover,
complex tasks such as accessing dynamic contexts and extracting their values from a running program require
analyzing the code and adding bytecode instructions such as stack duplication and local variables assignments
at the correct locations. These tasks are handled by BISM, allowing the user to retrieve dynamic context via its
dynamic context objects. The same reasoning applies to the advice methods where the user inserts advice into the

Observation Layer

Event

Event
Processor

Observation
Async / Sync

Observer

Program

BISM

Instrumented
Program

Monitor

(1)

(2)

(3)

(7)

(4)
(5)

(6)

Figure 5.7: High-level design diagram for the observation layer. Solid lines show the flow of information. The
dotted lines show module dependencies.

THESIS 69 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

Feature BCEL ASM Javassist Soot DiSL AspectJ BISM
[Apa] [BLC02] [Chi00] [VRCG+99] [MVZ+12] [KHH+01b]

Bytecode Level Coverage ✓ ✓ ✓ ✓ ✓ ✗ ✓
Unrestricted Control ✓ ✓ ✓ ✓ ✗ ✗ ✓
Writing Guided Instrumentation ✓ ✓ ✓ ✓ ✓ ✗ ✓
No Bytecode Proficiency ✗ ✗ ✓– ✓ ✓ ✓ ✓
High-Level Abstractions ✗ ✓– ✓ ✓ ✓ ✓ ✓
Pointcut/Advice Model ✗ ✗ ✗ ✗ ✓ ✓ ✓–

Table 5.1: Comparison of the tools. In red are features concerning expressiveness, and in blue are features
concerning abstraction. ✓- Tool provides the feature, ✗- Tool does not provide the feature, ✓–- Tool partially
provides the feature.

base program and BISM handles the generation and weaving of the needed bytecode instructions.

Comparison with AspectJ. AspectJ offers the pointcut/advice model where the user specifies the advice using
Java syntax. Whereas with BISM, advice is specified with the advice methods (Section 5.3.4). Any other code
associated with selectors is executed statically during instrumentation time. As such, BISM can be used to implement
guided instrumentation, where the user can specify the instrumentation points and the contextual information using
custom static analyzers. Both BISM and AspectJ, provide two DSLs for specifying instrumentation, a Java-based
API and an external DSL.

AspectJ does not inline advice next to the join points. Instead, it always inlines advice in external classes, and the
base program is instrumented to call these external classes at the join points. This approach introduces significant
overhead and makes it difficult to inline advice next to the join points. In BISM, the advice methods are weaved
with minimal bytecode instructions and are always inlined next to the targeted regions.

AspectJ provides a rich set of pointcuts, static and dynamic, that can be used to target join points. BISM provides
a fixed set of statically evaluated selectors that can be used to target join points and does not provide dynamic
pointcuts such as cflow, this, args and if from AspectJ. However, AspectJ cannot capture all the join points that
BISM can capture. For example, AspectJ cannot capture the execution of an if statement. Moreover, AspectJ does
not provide a mechanism to access the full static context of the join point. Instead, it provides a limited set of
predefined static context objects. BISM, on the other hand, provides a richer set of static context objects that can be
accessed from any selector. Moreover, custom static context objects can be defined by the user. Users of AspectJ
are not required to have any knowledge of bytecode semantics, whereas BISM requires basic knowledge about
bytecode semantics from its users such as locating the location of an argument on the stack.

Comparison with DiSL. For writing advice, DiSL follows the pointcut/advice model where the user specifies
the advice using Java syntax. Whereas with BISM, advice is specified with the advice methods (Section 5.3.4).
Any other code associated with selectors is executed statically during instrumentation time. BISM, in addition to
its API-based instrumentation language, provides also an external DSL for specifying instrumentation, whereas
DiSL provides only an API-based instrumentation language. Both tools inline the advice code next to the join point
shadows. BISM provides a fixed set of selectors, whereas DiSL’s open join point model allows the marking of
any arbitrary sequence of bytecode instructions as a pointcut. Such functionality can still be achieved in BISM
using the instruction selectors. BISM provides built-in control-flow context from selectors to provide access to the
control-flow graph of the base program. These can still be achieved in DiSL by writing custom markers and context
objects. As for dynamic context objects, both BISM and DiSL provide equal access.

Both tools do not offer dynamic pointcuts such as cflow, this, args and if from AspectJ. However, implementing
these within a DiSL advice is straightforward since it provides typed dynamic context objects, whereas, with BISM,
it requires writing intricate bytecode instructions. Also, both tools are capable of inserting synthetic local variables.
Both BISM and DiSL require basic knowledge about bytecode semantics from their users such as locating the
location of an argument on the stack. However, since instrumentation with DiSL will probably require writing
custom markers and context objects, this knowledge becomes more essential and also requires additional ASM
syntax knowledge. DiSL allows only restricted modifications to the base program. It does not allow the insertion of
arbitrary bytecode instructions. However, it provides a mechanism to write custom transformers in ASM that can
be executed before DiSL’s pass. Whereas BISM allows the direct insertion of arbitrary bytecode instructions, and

INRIA - February 2024 70 Chukri Soueidi

5.8: Conclusion

hence unrestricted modifications to the base program.

All in all, DiSL provides more features (mainly targeted for writing dynamic analysis tools) and enables dynamic
dispatch amongst multiple instrumentations and analysis without interference [BMTA16], while BISM is more
lightweight, as will be shown by our evaluation. DiSL provides full bytecode coverage when performing load-
time instrumentation, as opposed to BISM which is restricted to the classes that can instrumented as per the
java.lang.instrument API. Hence, it can target any class that is loaded by the JVM, including core classes
such as the Thread class. Moreover, DiSL runs a separate virtual machine for instrumentation, while BISM runs
as a standalone tool and requires no installation.

Transformer composition. Composition and interference problems in aspect-oriented programming have been
studied in the literature. Interference between different aspects is commonly addressed as aspect interactions and
aspect interference. The main objective is to detect places of interaction between different aspects (collision of
transformers in BISM) and provide mechanisms to resolve conflicts. In [DFS02], a framework for the detection
and resolution of aspect interactions is presented. The work provides a formal model for aspect weaving and
a framework for detecting and resolving conflicts between aspects using static analysis. In [TC10], the work
focuses on unexpected behavior of combined advice (advice interference). They show that controlling the order
of execution of advice is not enough in some instances. They propose an AspectJ extension with a new resolver
around advice for resolving interference where there is a conflict. The introduced resolver can be implemented
separately and composed to resolve interference between other resolvers. BISM provides a built-in feature to
capture transformer collision after a run. However, we do not provide a mechanism for resolving conflicts, which
can be addressed in our future work. Composition conflicts are also studied in the literature concerning the base
program and a single aspect. In [HNB06] and [HNBA07], composition conflicts related to introductions to the
base program are modeled and detected using a graph-based approach. Introductions are constructs that affect the
structure of a class, such as changing the inheritance structure, and adding and removing methods. In BISM, such
introductions are possible since the user is free to use the ASM structure and modify the class structure. However,
we do not address such conflicts and keep the user responsible for avoiding them.

5.8 Conclusion
In this chapter, we presented, BISM, a new bytecode instrumentation tool for JVM programs. We detailed the
implementation choices we took for the BISM which combines elements from bytecode manipulation frameworks
and AOP frameworks. BISM capabilities subsume the expressiveness capabilities of bytecode manipulation
frameworks we covered in Section 3.3.4 and Section 3.6.1. However, it lacks the pointcut/advice model from
AOP frameworks as well as the dynamic pointcuts from AspectJ. BISM instrumentation mechanism allows for the
specification of weave-time analysis code and advice code together within the same constructs and using the same
abstractions. This enables guiding the instrumentation process to refine the instrumentation points. We presented a
DSL for BISM that allows for a more straightforward, declarative specification of instrumentation requirements
for runtime verification. We presented the architecture of BISM and its instrumentation workflow, along with the
DSL implementation. We also presented an observation layer for BISM that allows for integrating various dynamic
analyses with the instrumentation process.

THESIS 71 Chukri Soueidi

CHAPTER 5. BISM: BYTECODE INSTRUMENTATION FOR SOFTWARE MONITORING

INRIA - February 2024 72 Chukri Soueidi

Part II

Guiding Instrumentation with Residual
Analysis

73

CHAPTER 6

Residual Runtime Verification of Parametric Properties

Contents
6.1 Introduction 77
6.2 Residual Analysis of Parametric Properties 77
6.3 Residual Analysis via Intraprocedural Reachability Analysis 79

6.3.1 Motivating with an Example 79
6.3.2 Capturing a Program Model 80
6.3.3 Extending the Automaton of Bad Prefixes 82
6.3.4 Cutting the Behavior 83
6.3.5 Scope and Soundness of the Analysis 84

6.4 Implementation 85
6.5 Related Approaches 86
6.6 Conclusion 86

75

CHAPTER 6. RESIDUAL RUNTIME VERIFICATION OF PARAMETRIC PROPERTIES

Chapter abstract
In this chapter, we present a novel method for residual runtime verification of parametric properties, incorporating
the semantics of these properties into the instrumentation process with BISM. We introduce an approach that
utilizes reachability analysis on control flow graphs of methods, specifying lightweight weave-time static analyses
to identify safe execution paths at the intra-procedural level of programs. Such paths, guaranteed to preserve the
monitored property, can thus be ignored at runtime. This guides an instrumentation tool to select only the necessary
program points for observation. Our method, designed to be independent of external static analysis frameworks,
can be fully performed within the instrumentation process, allowing for modular and adaptable integration into
various runtime verification scenarios. This approach minimizes instrumentation points by integrating both property
semantics and program behavior, and is applicable to a broad range of safety and co-safety properties.

INRIA - February 2024 76 Chukri Soueidi

6.2: Introduction

6.1 Introduction
Motivation. One way to tackle the overhead challenges in runtime verification is to combine static and runtime
verification to offload the runtime monitor from verifying parts of the program that can be statically guaranteed to
preserve a property. While monitors typically depend on runtime information accompanying the events to decide a
verdict, such information is generally not available statically. However, some static guarantees can be provided by
relying on sound over-approximations of the behavior of the program. Here is where pre-instrumentation analysis
comes into play. By capturing a model of the program that abstracts and over-approximates its behavior, we can
perform such an analysis to find safe execution paths in the control flow at the intra-procedural level of programs.
Such paths are guaranteed to preserve the monitored property and thus can be ignored at runtime. This analysis
guides an instrumentation tool to select program points that should be observed at runtime. Eventually, the monitor
is left to perform runtime verification for the residual parts of the program that the analysis could not statically
prove safe. Moreover, we require that this analysis be lightweight and not depend on dataflow analysis, thus
separating the task of residual analysis from static analysis approaches; allowing for seamless integration with
many RV frameworks and development pipelines.

Methodology. We focus on properties that can be expressed by finite-state automata, such as typestate [SY86a]
errors, supporting different formalisms and monitoring approaches that allow specifications with data. These
monitoring approaches typically rely on the detection of bad and good prefixes, which are intuitively the witnessing
sequences allowing a monitor to conclude about monitoring the program based on the trace observed so far (see
Section 2.2). In such approaches, a parametric monitor receives a parametric trace with events carrying data and
spawns multiple monitors for different trace slices corresponding to sets of related objects [HRTZ18b].

Given a property and a program, addressing challenge C2 we are interested in answering the following questions:

• Q1: Can we fully verify the program statically? If yes, then there is no need to instrument and runtime
monitor it.

• Q2: If not, can we verify some parts of it? How can we find them so that we only monitor the residual parts?

Since Q2 is the general case of Q1, we focus on answering Q2. To achieve this, for each program method we
construct the CFG Automaton, that is capable of exploring all possible traces. Moreover, we over-approximate
the aliasing relations between objects in the program by assuming that the variables generating events within one
method may-alias. To deal with different trace slices, we extend the monitor representing the language of bad/good
prefixes to handle the overapproximations. After that, we perform a reachability analysis on the CFG Automaton
and the extended bad-prefix automaton to find safe execution paths that are guaranteed to preserve the monitored
property. Finally, we construct the residual instrumentation function which will be used by the instrumentation tool
to select program points that should be observed at runtime and ignore the safe ones.

Contributions. The contributions of this chapter can be summarized as follows:

1. We define the residual runtime verification for parametric properties.

2. We present the control-flow graph automaton, a behavioral model extracted from methods to abstract its behavior.

3. We instantiate residual analysis at the interprocedural level that does not depend on data-flow analysis.

4. We separate the problem of static analysis from the residual analysis, allowing for seamless integration with the
RV workflow.

Chapter organization. The chapter is organized as follows. Section 6.2 defines residual runtime verification and
its requirements. Section 6.3 describes our instantiation of residual analysis at the interprocedural level. Section 6.4
briefly presents the implementation of our approach. Section 6.5 reviews related research focusing on residual
analysis. Section 6.6 concludes the chapter.

6.2 Residual Analysis of Parametric Properties
Given a parametric property ΛX.φ (see Section 2.3) and a program P, we want to statically verify that P |= ΛX.φ.
The behavior of a program can be abstracted by the set of parametric event traces that it can produce at runtime. Let

THESIS 77 Chukri Soueidi

CHAPTER 6. RESIDUAL RUNTIME VERIFICATION OF PARAMETRIC PROPERTIES

[P] ⊆ Σ⟨X⟩∗ be such set for a program P. The verification problem can be stated as checking if all the parametric
traces of the program satisfy the property:

P |= ΛX.φ def
= ∀τ ∈ [P] : τ |= ΛX.φ

Recall that a parametric trace is extracted from the program at runtime and is then sliced by the monitor into a set
of projected traces (see Section 2.3). Any static verification technique aimed at verifying the program should then
be capable of exploring two key elements. First, it should be able to explore all the parametric traces in [P] that the
program can generate.

1 void m()
2 {
3 List l1 = ... ;
4 List l2 = ... ;
5
6 l1.add(..); // event u
7 Iterator it = l1.iterator();// event c
8
9 if(someflag) {
10 l2.add(..); // event u
11 l2.add(..); // event u
12 }
13
14 Object o = it.next(); // event n
15 it = l1.iterator(); // event c
16 l2.add(..); // event u
17 }

start

1-9

10-11

14-16

end

Figure 6.1: A method using Iterators in Java, and its CFG.

EXAMPLE 25 (PARAMETRIC TRACES) Figure 6.1, shows a Java method m along with its control-flow graph
(CFG). It retrieves 2 lists (lines 3,4), updates them (lines 6,10,11), creates iterators (lines 7,15), and calls the “next”
method on the iterator (line 14). Let us say we are interested in monitoring the SafeIterator property which
specifies that "A collection should not be updated when an iterator associated with it is created and being used".
By ignoring other methods in the program for now, this method depending on the evaluation of the condition on
Line 9 at runtime may produce the following [P] with two different parametric traces:

• τ = (u, [l 7→ o(l1)]) (c, [l 7→ o(l1), i 7→ o(it)]) (u, [l 7→ o(l2)]) (u, [l 7→ o(l2)]) (n, [l 7→ o(l1), i 7→ o(it)])
(c, [l 7→ o(l1), i 7→ o(it)]) (u, [l 7→ o(l2)]).

• τ′ = (u, [l 7→ o(l1)]) (c, [l 7→ o(l1), i 7→ o(it)]) (n, [l 7→ o(l1), i 7→ o(it)]) (c, [l 7→ o(l1), i 7→ o(it)])
(u, [l 7→ o(l2)]). ∗

As such the analysis needs to explore two parametric traces in total.

Second, from Definition 7, we know that a parametric trace τ is verified if all its projected traces are verified. As
such, for each parametric trace, the technique should also be capable of exploring the set of projected traces, that is
the different ways of slicing the parametric trace into a set of projected traces.

EXAMPLE 26 (PROJECTED TRACES) Consider τ from Ex. 25. Here depending on the aliasing relation between
o(l1) and o(l2), we can have three projected traces:

• If o(l1) = o(l2), then Proj(τ) = {ucuuncu}

• If o(l1) , o(l2), then Proj(τ) = {ucnc, uuu}

As such, the analysis needs to verify three projected traces in total for this parametric trace.

Exploring the parametric traces statically requires knowledge of the call graph of the program, whereas verifying
the projected traces requires knowledge of the aliasing relations between objects producing them. We know that

INRIA - February 2024 78 Chukri Soueidi

6.3: Residual Analysis via Intraprocedural Reachability Analysis

obtaining such information is generally undecidable statically. Pointer analysis may not always conclude with a
result, especially for Java programs. 1 Meanwhile, at runtime, this information is completely available. Yet, runtime
verification incurs overhead on the execution of the program where this overhead is typically positively correlated
with the size of traces. Our interest is then to statically verify parts of the program and leave a residual part for
runtime verification.

The residual analysis, we propose, statically identifies a set of instructions in the program, SP, that can be safely
silenced/ignored at runtime from the monitor side without affecting verification. Ignoring an instruction means that
there is no need to produce an event when it executes. As such, we want to construct the residual instrumentation
function. Let us denote the set of all instructions in the program by instrs. An execution of the program can be
abstracted by a sequence of instructions, which we denote by instrs∗.

DEFINITION 28 (RESIDUAL INSTRUMENTATION FUNCTION) The residual instrumentation function
residual : instrs∗ → (SP → Σ⟨X⟩∗) maps a run in the program to a set of instructions SP that can be
safely ignored during runtime without affecting the verification process. Ignoring an instruction implies that
no event is produced when it executes.

Let us note Runs ⊆ instrs∗ the set of all the possible (feasible) runs of a program P. Consider the function instrument
that maps a run in the program to a set of events produced by the monitor. Instrumenting the program with residual
should ideally produce shorter traces than instrument, however, for both, we should get the same monitoring verdict.

DEFINITION 29 (RESIDUAL ANALYSIS CONDITION) We can state the condition that should be met by
the residual analysis as follows:

∀r ∈ Runs : |residual(r)| ≤ |instrument(r)|
∧ residual(r) |= ΛX.φ ⇐⇒ instrument(r) |= ΛX.φ

To perform the residual analysis statically and produce the set SP, we can over-approximate the program behavior
by constructing a set [P̂] ⊇ [P]. This allows us to explore all the parametric traces that the program can produce but
also traces that the program might never produce. A residual analysis should then check whether silencing some
instructions does not affect the verification verdict of any trace in [P̂], and safely assumes the same effect in [P].
Yet, given that [P̂] is an over-approximation, the analysis may suffer from false positives, which are instructions that
can indeed be silenced however the analysis found the opposite. In what follows, we consider a subset [P̂m] ⊆ [P̂]
for our residual analysis, these are traces that are fully produced in single methods.

6.3 Residual Analysis via Intraprocedural Reachability Analysis
We demonstrate our instantiation of the residual analysis at the intraprocedural level using reachability analysis.
In Section 6.3.2, we capture the behavior of a method by using its control-flow graph to construct a representative
model that allows us to explore the parametric traces a method can generate. In Section 6.3.3, we deal with the
over-approximations by extending the bad-prefix automaton to handle different projections that might be produced
by a parametric trace. In Section 6.3.4, we then present the reachability analysis algorithm that finds safe and
violating paths in the control-flow graph; by cutting the behavior in a model-based checking approach. Finally,
in Section 6.3.5, we discuss the soundness of our analysis.

6.3.1 Motivating with an Example
Recall the program in Fig. 6.1 and Q1 and Q2 from Section 6.1. By manually inspecting the program and its
control-flow graph we see that, at runtime, it may violate the property if the execution enters the if block, labeled
(10-11) in the graph. More precisely, a violation can occur if both of the following conditions are met: (1)
someflag evaluates to true; and (2) if the variables l1 and l2 alias each other i.e., they refer to the same object
in memory. Let us consider that Condition (1) is only decidable at runtime. To generally decide Condition (2)

1In addition to the inability to construct the full static call graph of the program, Java allows for dynamic class loading and reflection which
often cause additional problems to pointer analysis.

THESIS 79 Chukri Soueidi

CHAPTER 6. RESIDUAL RUNTIME VERIFICATION OF PARAMETRIC PROPERTIES

statically, we need to perform pointer analysis on the program that checks all calling contexts m and return whether
l1 and l2 alias. In practice, we may get one of the following results about our query: the two objects must-alias,
may-alias, or must-not-alias. Moreover, pointer analysis often times out and never returns a result. However, to
answer Q1, we need to get the result that l1 and l2 must-not-alias, i.e., they refer to different objects in memory.
This is a sufficient condition to statically ensure that m will behave correctly at runtime regardless of the control
flow since the update actions on Lines 10-11 are not on the list iterated by iterator it. To answer Q2, by observing
Lines 15-16, we can see that, regardless of what happens at execution, these two instructions are safe and their
execution does not need to be monitored. Also, in Line 6, the instruction is safe since it updates the list before the
creation of the iterator.

Pointer analysis may not always conclude with a result, especially for Java programs. In addition to the inability to
construct the full static call graph of the program, Java allows for dynamic class loading and reflection which often
cause additional problems to pointer analysis. Our work relies on the idea that when statically analyzing cases such
as the one of Condition (2), one can safely assume that such two variables may-alias, even without performing
pointer-analysis. Also, we analyze methods separately and thus need to handle escaping references. Objects in the
program that are relevant to the property may escape from the method to a subroutine or a return statement and
produce events there. As such, we handle all instructions that may allow references to escape, such as method calls,
with special escape events.

Our over-approximation might miss some positive answers to Q1, therefore missing some optimization opportunities.
However, based on our observation (such as the experiments in Section 11.5), cases where one needs to perform
pointer analysis such as in Condition (2) are less frequent in many Java programs. As such, our approach mainly
addresses Q2 while it is also capable of answering Q1 but, in certain cases, less effectively.

6.3.2 Capturing a Program Model
Our analysis treats methods separately, however, we need to be careful. If a method receives as an argument an
object which is a type that is capable of producing events in the alphabet of the property, then we cannot assume
any previous behavior. As such, we exclude such methods from the analysis. This is easy to check given the static
context available to our analysis. For the same reason, we exclude all methods that operate on static instances of
the types involved.

For each method m, we map two types of instructions to events and discard all other instructions as they are
irrelevant to our analysis. We keep instructions that produce events in Σ, given by the property specification.
We also keep instructions that may allow any object reference to escape from the context of method m; we
introduce the new escape event (#) for such instructions. Escape events are assignments to class fields, method
calls that pass objects by references, in addition, to return statements that return objects [CGS+99]. However,
our analysis allows the user to specify a safe list of instructions, denoted by the set SafeList, defined over the
compile type information such as method names, package and type names, and opcodes. For instance, calling
System.out.print(l1.toString()) is a safe instruction. All instructions that are escape events and are
not in SafeList are added to the set Escm.

Given the alphabet of a property Σ and the control-flow graph CFGm = ⟨Bm,Em⟩, then for all b in Bm, we replace it
with b′ and map the instructions to events as follows.

b′.instr = b.instr.map

i 7→

i if instrument(i) ∈ Σ,
else if i ∈ Escm

ϵ otherwise

That is, we erase all instructions we are not interested in and replace them with ϵ, and keep the others intact. Method
calls that are not in SafeList are replaced by escape events #.

After removing the irrelevant instructions, we now proceed in splitting the nodes of CFGm such that each remaining
instruction is represented in a unique node containing its mapped event. We modify the control-flow graph, by
constructing a new graph as follows.

DEFINITION 30 (SPLIT CFG) Given the CFGm = ⟨Bm,Em⟩ with instructions mapped to events, we con-
struct a new modified graph SCFGm = ⟨B′m, E

′
m⟩ as follows:

INRIA - February 2024 80 Chukri Soueidi

6.3: Residual Analysis via Intraprocedural Reachability Analysis

B′m =
⋃
b ∈ Bm

split(b) , (1)

E′m = { ⟨b′, bi⟩ | ⟨b′, b⟩ ∈ Em, bi ∈ split(b) :

idxb(i) = 0 } (2)
∪ { ⟨bi, b j⟩ | bi, b j ∈ split(b) :

0 ≤ idxb(i) < |b.instr| − 1

∧ idxb(j) = idxb(i) + 1 } (3)
∪ { ⟨bi, b′⟩ | ⟨b, b′⟩ ∈ Em, bi ∈ split(b) :

idxb(i) = |b.instr| − 1 } (4)

where:

• idxb : b.instr → N returns the index of an instruction in a block b.

• split : Bm → 2Bm defined as split(b) = {bi | i ∈ b.instr} is a function that splits a basic block into
multiple nodes, such each one contains an instruction, ϵ or the escape event #. The first node of an entry
block is set as the entry node and the last node of an exit block is set as the exit node.

The newly created graph, SCFGm, is constructed as follows. All basic blocks in CFGm are split into multiple nodes,
one node per instruction (1). All incoming edges to an original block, are connected to the node representing the
first instruction of the original block (2). All nodes that are created from a single original block are connected
sequentially (3). All outgoing edges from the original block are now outgoing from the last split node (4).

A node in the new graph SCFGm contains one letter which represents: either an instruction that generates events in
Σ, or an escape event #, or an ϵ. The entry block in the new graph contains the first event of interest having b.entry
equals true. We merge two consecutive nodes containing ϵ, and move their edges accordingly.

The CFG Automaton is then constructed from the Split CFG SCFGm.

DEFINITION 31 (CFG AUTOMATON) Given the mapped SCFGm, the CFG Automaton is the non-
deterministic finite-state automatonAc

m = (Σ ∪ {#},Q, δ, q0, F) constructed as follows:

Q = {qb | b ∈ B′m} q0 = {qb | b ∈ B′m ∧ b.entry = true }

F = Q δ = {⟨qb, s, qb′⟩ | ⟨b, b′⟩ ∈ E′m ∧ b.instr = s}

Each node in the control-flow graph is now represented as a state in the CFG Automaton. We make all states
accepting states and merge states connected with ϵ transitions. Now, by traversing the CFG Automaton, we can
explore the paths that method m can take at runtime and thus the parametric traces it can produce.

q0 q1

q2 q3

q4 q5 q6 q7
u

c
u

c
u

n c u

Figure 6.2: The constructed CFG AutomatonAc
m

EXAMPLE 27 (CFG AUTOMATON) Figure 6.2, shows the CFG Automaton constructed from the method in
Figure 6.1. Each state corresponds to an instruction that we are interested in the program. Two traces can be
explored from the automaton in Figure 6.2, t1 = ucuuncu, which corresponds to the parametric trace τ from Ex. 25,
and t2 = ucncu. ∗

THESIS 81 Chukri Soueidi

CHAPTER 6. RESIDUAL RUNTIME VERIFICATION OF PARAMETRIC PROPERTIES

q0 q1 q2 q3
c u

Σ n u Σ

n

Figure 6.3: AutomatonAbadφ recognizing the language of bad prefixes for the SafeIterator property.

6.3.3 Extending the Automaton of Bad Prefixes

We first recall the definition of bad prefixes from Section 2.2. A bad prefix is a finite trace u ∈ Σ∗ such that
∀w ∈ Σ∗ : uw < L. As such a monitor is constructed to recognize the bad prefixes of a property. It suffices to find a
bad prefix in a trace to conclude that the whole trace violates the property.

EXAMPLE 28 (SAFEITERATOR BAD PREFIXES AUTOMATON) Figure 6.3 shows the monitor that checks for
the violation of the SafeIterator property. Note that the monitor reaches the accepting state when seeing the pattern
c.n∗.u+.n, as it suffices to conclude that the whole run violates the property. ∗

We now describe how our analysis handles the over-approximations and extends the bad prefix automaton.

Handling Variables May-alias

Recall from Section 2.3, that a parametric trace τ in Σ⟨X⟩∗ at runtime is projected into Proj(τ) to possibly multiple
traces in Σ∗, depending on the aliasing relationship between the objects carried in the events. At runtime, this
aliasing relationship is available for the parametric monitor to do the projection. However, statically for our residual
analysis this information is not available. Our central idea in this paper is to avoid performing data-flow analysis
and assume that the objects producing events in a method may-alias. For two events, our analysis should then
consider the case when the objects bound to them must-alias and the case when they must-not-alias. In the former
case, both events will be projected into the same trace, and in the latter, they will be projected into different traces.

EXAMPLE 29 (PROJECTED TRACES APPROXIMATION WITH MAY-ALIAS) Consider the trace t1 which can
be explored with the CFG Automaton from Ex. 27. At runtime, if the program takes such a control flow path, it
emits a parametric trace that produces either of the projected traces from Ex. 26 depending on whether l1 and l2
alias. Since we avoid producing the aliasing relation statically and assume that l1 and l2 may alias, we should then
consider in our residual analysis the disjunction of both cases. Thus the traces pt1 = {ucuuncu, ucnc, uuu} should
be checked by our residual analysis. As for t2 from Ex. 27, by the same reasoning, the traces to be checked are
pt2 = {ucncu, ucnc, u}. Hence for method m, the set of traces that should be checked is pt1 ∪ pt2. ∗

The CFG Automaton allows us to explore the different paths that the program can take at runtime, however, its
traces are too coarse. They may be polluted with events that do not correspond to the same trace at runtime. We
notice from above that this is equivalent to generating and considering all the subwords of a trace, where the real
trace can be any subword of a trace that can be explored with the automaton. Thus, to safely handle the different
projections, we use the upward closure, from Section 2.4, of the language of bad prefixes L. By using the upward
closure ↑L, we can recognize a bad prefix in a full trace or any subword of it since L ⊆ ↑L, allowing us to find bad
prefixes in all possible projected traces. However, we restrict the closure by removing the Σ self-loops from the
initial and final states as we want to find the shortest paths that match a bad prefix.

Handling Escape Events

In Section 6.3.2, when constructing the CFG automaton, we introduced the escape # events. Since our analysis
analyzes each method separately, we are oblivious to what might be happening in #-transitions. We have to assume
that they might produce events untracked by the method under analysis. To handle them safely, we add a #-transition
in the bad prefixes automaton from each state to all of its reachable states. Intuitively, this means when # event is
encountered in a path, we assume that the path is not safe anymore and that it might match a bad prefix.

INRIA - February 2024 82 Chukri Soueidi

6.3: Residual Analysis via Intraprocedural Reachability Analysis

q0 q1 q2 q3
c,#

###

u,#

Σ,# Σ,#

n,#

Figure 6.4: The constructed automatonA↑badφ .

Extending the Bad Prefixes Automaton

We proceed to show how we extend the automaton of bad prefixes to handle the multiple projected traces and the
escape events.

DEFINITION 32 (EXTENDED AUTOMATON OF BAD PREFIXES) Given the language of bad prefixes
L(badφ) recognized by automaton Abadφ = (Σ,Q, δ,Q0, F) with its extended transition function δ̂. The
extended automaton of bad prefixes is defined asA↑badφ = (Σ ∪ {#},Q, δ′,Q0, F) where:

δ′ = δ \ { ⟨q, s, q⟩ | s ∈ Σ ∧ (q ∈ F ∨ q ∈ Q0) } (1)
∪ { ⟨q, s, q⟩ | s ∈ Σ ∪ {#} ∧ q ∈ Q ∧ q < Q0 ∧ q < F} (2)

∪ { ⟨q, #, q′⟩ | q, q′ ∈ Q ∧ ∃w ∈ Σ∗ : δ̂(q,w) = q′ ∧ q′ < F} (3)

The extended automaton has the same states. We remove the self-loops from initial and final states, as we want to
find the shortest paths that match a bad prefix (1). We add the upward closure by adding Σ and # self-loops on all
other states (2). We add #-transitions from each state to the reachable states from it (3).

EXAMPLE 30 (A↑badφ FOR THE SAFEITERATOR PROPERTY) Figure 6.4, shows a construction of automaton
A↑badφ . Recall the pattern c.n∗.u+.n from Ex. 28, the new automaton will now recognize such a pattern while also
handling the two over-approximations above.

6.3.4 Cutting the Behavior
We now proceed to describe how we find violating paths in the method. The idea is to traverse the constructed
CFG automaton Ac

m state by state and check whether there is a path, starting from the visited state, that makes
the extended bad prefixes automaton reach a final state. We limit the discussion here to matching bad prefixes,
nevertheless, the same analysis works for matching good prefixes. However, when finding paths that match good
prefixes, these will be the safe paths.

Given an automaton, A, A(q) denotes A where q is set to be the initial state. Recall that, given a finite state
machineA(q) with its extended transition function δ̂ [HMU06], a state q is coreachable if there exists a word s ∈ Σ∗

such that δ̂(q, s) ∈ F. State q is reachable if there exists a word s ∈ Σ∗ such that δ̂(q0, s) = q and q0 is an initial
state.

Algorithm 1, shows how to mark all states in Ac
m as either safe (in Pm) or violating (in Vm). The algorithm

implements a depth-first search starting from the initial node ofAc
m. We maintain a work stack and visited set, in

lines (4,5,7,9,15), to hold automaton states to be visited and states that were already visited, respectively. For each
state q we visit, we set q as the initial node and find the intersection with theA↑badφ , line (11). If the intersection
is not empty (line 12), we find the set of all co-reachable states in the intersection automaton. Each state in the
intersection automaton Â corresponds to a state in Ac

m and A↑badφ . For each coreachable state in Â, we add its
corresponding state inAc

m to the setVm, (line 13). We do not revisit states that are already inVm (line 10) since
paths leading to a final state inA↑badφ are already explored by the intersection.

EXAMPLE 31 (PROPERTY VIOLATING STATES) Figure 6.5, shows the CFG Automaton constructed from the
program from Figure 6.1, where states marked in red exist in a property-violating path. The red states in the

THESIS 83 Chukri Soueidi

CHAPTER 6. RESIDUAL RUNTIME VERIFICATION OF PARAMETRIC PROPERTIES

Algorithm 1: Marking violating and safe paths

1 GivenAc
m = (Σ ∪ {#},Q, δ, q0, F),A↑badφ

2 Vm = ∅ // represents all states in a violating path
3 Pm = Q // represents all states in a safe path

4 work := q0 // represents a worklist stack
5 visited = ∅

6 while work not empty do
7 q = work.pop()
8 if q < visited then
9 visited = visited ∪ q

10 if q < Vm then
11 Â =Ac

m(q) ×A↑badφ

12 if L(Â) , ∅ then
13 Vm =Vm ∪ {{q′ | (q′,−) ∈ coreachable(Â)} ∩ reachable(Ac

m(q))}

14 foreach q
′′

in {q
′′

| ⟨q, s, q
′′

⟩ ∈ δ} do
15 work.push(q

′′

)
16 end
17 end
18 Pm = Pm \ Vm

q0 q1

q2 q3

q4 q5 q6 q7
u

c
u

c
u

n c u

Figure 6.5: Marking property violating paths in red, and safe in green.

automaton are the states that we need to instrument, and the green states are hidden from instrumentation. We can
see that instead of instrumenting at 8 different locations, we only have to instrument at 4 locations.

For our residual analysis, for each method m we analyze, we add the instructions corresponding to the states in
Pm to the set SP. As for the other states inVm, their corresponding instructions will be instrumented for runtime
monitoring.

6.3.5 Scope and Soundness of the Analysis
We first argue that our analysis only affects the traces that are fully produced in one method. Recall from
Section 6.3.2, that the nodes of CFG automatonAc

m correspond to instructions in method m that produce events.
We use the notation ev(q) to denote the corresponding event from an automaton state, and events(t) to denote all
events from a trace t. If some trace t contains events produced by instructions outside of m, then no instruction in m
that produced events in t was marked safe.

PROPOSITION 1 (SCOPE OF THE ANALYSIS) Given a parametric trace τ in [P]:

∀t ∈ Proj(τ),∀m ∈ Methods :
(∃i ∈ instrs\Instructionsm : instrument(i) ∈ t)

=⇒ { ev(q) | q ∈ Pm} ∩ events(t) = ∅

Proof. Assume that there exists some trace t that has events produced outside of m i.e. ∃i ∈ instrs\Instructionsm :
instrument(i) ∈ t is true. Such traces can be split into two types. Traces that contained events before the execution
of m at runtime (1), and traces that start from m but have some events that are produced outside of m at runtime

INRIA - February 2024 84 Chukri Soueidi

6.5: Implementation

(2). We will show that for both types of traces, the analysis would result in Pm = ∅. Since we exclude from the
analysis any method that receives a parameter of a type that generates events. Traces from (1), will not be affected
by analysis. For that to happen, method m should receive the objects generating the events. Therefore, m will be
excluded from the analysis resulting in Pm = ∅. As for (2), any escape of an object, which might produce events
outside m, is captured by the # transitions. From the construction of the bad-prefixes automaton and Algorithm 1,
such transitions will result in reaching a final state from any state in the CFG automaton, resulting in Pm = ∅.
Hence for both types of traces we have Pm = ∅, therefore {ev(q) | q ∈ Pm} ∩ events(t) = ∅ holds, and the proposition
holds. □

Proposition 1 in fact depends on the specification of the SafeList from Section 6.3.2. If some method was added by
the user that is not safe, i.e. allows references to escape, then the proposition will not hold. From the above, we
also see that our analysis only affects instructions that produce events only in traces that are collected fully in the
method itself since otherwise Pm = ∅. For soundness, we need to guarantee that at any run of the program, an event
that we marked safe in our residual analysis does not have any effect on deciding the violation/satisfaction of the
property for any projected trace at runtime. As we showed that the analysis only affects projected traces that are
fully produced in one method, we only reason about single methods when discussing soundness.

PROPOSITION 2 (SOUNDNESS OF THE ANALYSIS) Given a language L ⊆ Σ∗ and Pm resulting from the
analysis on method m, the analysis is sound iff

∀a1· · · ai· · · an ∈ Σ
+,∀i ∈ N :

matchL(a1· · · ai· · · an) , matchL(a1· · · ai−1ai+1· · · an)
=⇒ ai < { ev(q) | q ∈ Pm}

The condition states that given a projected trace at runtime, if we remove an event ai from it and get a different
match from the new trace i.e. matchL(a1· · · ai· · · an) , matchL(a1· · · ai−1ai+1· · · an), then our analysis must have not
statically marked ai as safe (ai < { ev(q) | q ∈ Pm).

Proof. The proof follows from the definition of Algorithm 1. Assume that when our analysis removes ai, then
matchL(a1· · · ai· · · an) , matchL(a1· · · ai−1ai+1· · · an). This means that ai is in an extension of a1· · · ai−1 that leads
to a final state in the monitor of the bad-prefixes of L, or else matchL(a1· · · ai· · · an) = matchL(a1· · · ai−1ai+1· · · an).
However, if ai is in such a path, then it will be added toVm as per Line 7 of Algorithm 1 since the algorithm finds
any path from a state in the CFG that reaches the final state of the automaton of bad-prefixes. Then ai is not in Pm

and ai < { ev(q) | q ∈ Pm} holds. □

6.4 Implementation

Our implementation is integrated into BISM. We augment BISM with specialized modules to facilitate residual
runtime verification. Specifically, we introduce a new transformer that performs the static verification and an
additional module for automata operations. For each property, we employ two transformers for each property: the
static analyzer for pre-instrumentation analysis and a second transformer for instrumenting the residual code.

Static analyzer transformer. The static analyzer is not a separate component but rather implemented as one of
the transformers in BISM. This transformer performs a one-pass pre-instrumentation analysis at the intra-procedural
level. It takes as input the property specification and identifies and hides the visibility of instructions that can
be statically verified as safe, thereby leaving only the residual, or unverified, portions of the program code for a
subsequent transformer that is responsible for instrumenting the residual code for runtime monitoring.

Automata operations module. To enable the static analyzer, we extend BISM with a specialized module that
enables automata-based analyses. This module is responsible for generating the Control Flow Graph (CFG)
automata for methods. It also extends these automata to capture bad prefixes and identifies execution paths that
could potentially lead to property violations.

THESIS 85 Chukri Soueidi

CHAPTER 6. RESIDUAL RUNTIME VERIFICATION OF PARAMETRIC PROPERTIES

6.5 Related Approaches
Many research approaches combine static and runtime verification. We focus here on some influential and most
recent tools devised for verifying general behavioral parametric properties in sequential programs via residual
analysis.

CLARA [BLH12, BLH10] handles properties that can be expressed by finite-state automata by partially evaluating
the runtime monitors at compile time and reducing the instrumentation points. It performs three-staged phases
of analysis with increasing precision. The more precise phase uses a demand-driven pointer analysis and handles
intra-procedural analysis. The first two phases of its analysis can be easily applied within our framework. However,
unfortunately, CLARA is no longer maintained and so is its underlying instrumentation tool the abc compiler [Fit00].
In [WCM13], the authors present two optimizations for [BLH12]. One optimization identifies changeless configu-
rations during the backward analysis; the other one uses local object information to refine the forward analysis and
backward analysis of the nop-shadow analysis. CLARVA [ACP20] extends CLARA [BLH12] to handle properties
expressed by DATEs (Dynamic Automata with Events and Timers [CPS09a]) where events are guarded by runtime
conditions and timers. Similar to our approach, it transforms Java code into an automaton-based model and allows
for the incorporation of control-flow analyses. CLARVA is capable of reducing the instrumentation points as well
as reasoning about and pruning the property itself. However, the analysis relies on constructing the callgraph
of the full program and on pointer analysis using Soot [VRCG+99]. Our approach is still capable of producing
optimizations with a single pass on the program and without any dependence on static analysis, separating the
limitations of static analysis from the residual analysis.

STARVOORS [CAPS15] combines deductive theorem proving with control-flow reachability analysis allowing to
target control and data-oriented properties. The formalism used for property specification is ppDATE (an extension
of DATE) where the automaton states are extended with pre/post-conditions (Hoare triples). The property is reduced
by pruning the transitions based on solving the triples with Java theorem prover KEY [ABH+06]. STARVOORS is
capable of handling control and data-oriented properties, however, it focuses on pruning the property and does not
reduce the instrumentation points.

In [Leu12, ZLD12], the authors present Predictive Semantics for runtime monitoring at the intra-procedural level.
In this setup, the program is analyzed, using the control flow graph (CFG) and program dependence graph (PDG),
to find predictive words. Predictive words are events that will occur in sequence in a control-flow path. Then,
the monitor at runtime will either receive a single event or a predictive word. This approach does not reduce the
instrumentation points, hence does not reduce the overhead of instrumentation, however, it emits predictive words
which may produce faster verdicts.

6.6 Conclusion
We introduce an analysis supporting residual runtime verification for parametric properties that can be expressed
by finite-state automata. Our approach over-approximates the behavior of the program and analyzes its methods
separately relying only on their control-flow graphs to statically identify safe regions. We have demonstrated the
effectiveness of our approach in monitoring the bad prefixes of a property, however, our approach can also be used
with good prefixes (when monitoring co-safety properties for instance). Our approach is capable of producing
overhead optimizations without any dependence on a specific type of static analysis, separating the task of static
analysis from the residual analysis and allowing for seamless integration with many RV frameworks. However, this
separation comes at the cost of over-approximation, which can be reduced by integrating static analysis results into
the residual analysis. It is fully implemented and integrated within the BISM instrumentation tool, which is the
state-of-the-art instrumentation tool for Java programs. We also demonstrated the significant performance benefits
at runtime.

INRIA - February 2024 86 Chukri Soueidi

Part III

Monitoring Concurrent Programs

87

CHAPTER 7

Representative Traces for Concurrent Programs

Contents
7.1 Introduction 91
7.2 Trace Collection for Concurrent Programs 92

7.2.1 Issues with Linear Traces 93
7.3 Concurrent Traces 94
7.4 Sound and Faithful Concurrent Traces 94
7.5 Obtaining Sound Concurrent Traces 95

7.5.1 Atomicity and Instrumentation Requirements 95
7.5.2 The Reordering Algorithm 96
7.5.3 Algorithm Cost 96
7.5.4 Algorithm Correctness 96

7.6 Criteria For Monitorability 98
7.6.1 Monitor Causal Dependence 98
7.6.2 Trace Monitorability of Concurrent Executions 100
7.6.3 Optimal Faithfulness 100

7.7 Implementation 101
7.8 Related Approaches 101
7.9 Conclusion 102

89

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

Chapter abstract
This chapter focuses on collecting representative traces from concurrent executions. We define a representative
trace as a trace that is both sound and faithful. A sound trace is a trace that does not provide false information
about the order of events. A faithful trace is a trace that includes all ordering information between events. To
collect representative traces, we present a reordering algorithm based on vector clocks that can operate either
synchronously or asynchronously with the program to establish event causality on the fly. We then present new
criteria for assessing the validity of the collected trace. We redefine the concept of trace monitorability based on
automata-based formalisms. Our refined definition integrates a causal dependence relation extracted from a given
property to identify non-permutable events within a trace. This allows us to evaluate whether a trace contains
sufficient order information to yield a sound monitoring verdict. With such information, existing monitoring
frameworks relying on total order formalisms can soundly monitor concurrent programs. We implement the trace
collection and assessment in a tool called FACTS implemented on top of BISM. The collected representative traces
can be used by existing monitoring frameworks to soundly monitor concurrent programs.

INRIA - February 2024 90 Chukri Soueidi

7.1: Introduction

7.1 Introduction
Motivation. In the context of concurrent programs, traces serve as a model for property-based detection and
prediction techniques which choose their trace collection approaches differently based on the class of targeted
properties. Some approaches target generic classic concurrency errors such as data-races [HMR14a, FF09],
deadlocks [BH05], and atomicity violations [FF04, WS06, MV20]. Other techniques target general behavioral
properties; those are typically order violations such as null-pointer dereferences [FPRS12], and typestate viola-
tions [JS08, HLR15, SCR12] and more generally runtime verification [LS09, FHR13b]. The need for establishing
causality in traces is particularly evident for properties involving concurrency [AG96, ANB+95, MPA05]. Existing
techniques either rely on vector clock algorithms, which are computationally expensive and not optimized for online
use [RGB20], or assume a sequentially consistent execution model [HS12a], limiting their applicability. Classical
monitoring techniques, initially designed for single-threaded programs, have been adapted for multithreaded
contexts but often produce unsound verdicts due to incorrect assumptions about event ordering [EF18]. We aim to
address these limitations by collecting representative traces suitable for sound online monitoring of concurrent
programs, particularly those involving general behavioral properties [MP90, Pat]. The objective is to improve the
expressiveness and reliability of existing monitoring techniques in concurrent settings.

Methodology. We first consider partially ordered traces of concurrent executions and qualify two properties that
determine if they are good representatives of an execution: soundness and faithfulness (Section 7.4). Soundness
holds when the trace does not provide false information about the order of events. Faithfulness holds when the trace
contains all the information about the order of events from the execution. We then address two research questions:

• RQ1 addressing C1 : Can we collect a representative trace of a concurrent execution on the fly with minimal
interference on the program?

Vector clock algorithms have been employed and refined for several decades now [CL02, MV20, AG05, RS04].
However, very few (we know of [RGB20]) are directed towards online monitoring of behavioral properties; where
a final trace consists of property-related events only. These algorithms typically require blocking the execution;
by synchronizing the instrumentation, program actions, and algorithm’s processing to avoid data races [CL02].
With the quadratic bound on their runtime complexity and the coarse-grained synchronization they introduce, one
might want to run such an algorithm off the critical path of the program. We present a vector clock algorithm that
does not require blocking the execution and can run either synchronously or asynchronously with the program.
This algorithm requires instrumenting and capturing all synchronization actions in the program. Asynchronous
trace collection is ideal for scenarios where the monitoring overhead cannot be afforded and a small delay in the
verdict can be tolerated. For instance, in real-time systems where the system is expected to produce a result within
a defined strict deadline [SR94]. Our algorithm constructs representative concurrent traces that are sound and very
often faithful. The algorithm might miss, in some marginal cases, ordering information resulting in sound but
unfaithful traces (see Section 7.5). As far as we know, it is unique in the context of monitoring behavioral properties
that can run off the critical path of the execution.

• RQ2 addressing C3: Is the collected concurrent trace good enough to soundly monitor a property?

Monitoring single-threaded programs depend on instrumentation, which is assumed to be correct, to provide all
relevant events [BFFR18a]. For concurrent programs, we notice that monitorability with classical approaches
depends also on the ordering information available in the trace (resp. the execution). Firstly, consider for instance
the precedence property seen previously. If events r and g happen to execute concurrently in the program, a sound
trace would have them as unordered events and a sound monitor should report a violation of the property. However,
in practice, when monitoring such property with an automaton, the partial order must be linearized before passing it
to the monitor. The linearization will produce an arbitrary order between r and g, for instance, r.g which would
make the oblivious monitor miss the violation. In such a case, the trace is not fit for monitoring the property and
the monitor should be warned. Secondly, in certain scenarios due to some partial instrumentation or logging failure,
some synchronization actions might be missing from the trace, resulting in unfaithful traces where some orderings
cannot be established. This also poses soundness problems to the monitor similar to the problems with lossy
traces [JTF17]. To handle the mentioned problems, we extract a causal dependence relation from a given property
to know which events cannot permute in a trace and check whether a trace contains enough order information
(Section 7.6). We then redefine trace monitorability for concurrent executions with a necessary condition on the
trace to guarantee a sound verdict when monitoring. If the condition is not met, we produce warnings for the
monitor. Figure 7.1 shows an overview of our methodology where we reconstruct a partial order trace of the

THESIS 91 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

pThread 0

Thread 1

r q

g

Program/Concurrent Execution

Instrumentation
p r

g

q

Linear Trace

p

g

r q

Partial Order

Reordering Algorithm

Mφ

Monitor

tmon(φ)

Trace
Monitorability

Checker

?

Verdict

true

N

Figure 7.1: A concurrent execution with a partial trace.

execution and check its monitorability.

Contributions. Here is a summary of our contributions:

• We introduce the properties of soundness and faithfulness to qualify representative traces, and show how a
representative trace correctly abstracts the execution and preserves the property of interest.

• We present a vector clock-based reordering algorithm that does not require blocking the execution and can
run either synchronously or asynchronously with the program.

• We redefine trace monitorability for concurrent executions and provide a necessary condition for sound
monitoring.

• We implement our contributions in a tool, FACTS, which attaches to programs running on the JVM.

Chapter organization. The rest of this chapter is organized as follows. Section 7.2 discusses trace collection and
the issue of using the linear traces as is. Section 7.3 define a concurrent trace. Section 7.4 introduces the properties
of soundness and faithfulness. Section 7.5 describes our vector clock algorithm for collecting representative traces.
Section 7.6 discusses the concept of trace monitorability and provides a necessary condition for sound monitoring.
Section 7.7 presents our implementation of the tool FACTS. Section 7.8 reviews some related work. Section 7.9
concludes the chapter.

7.2 Trace Collection for Concurrent Programs
Any monitor of a concurrent execution needs to first collect a trace of the execution. Recall the definition of a
concurrent execution in Def. 14. Trace collection is achieved by instrumenting the program. Additional code needs
to be instrumented into the program and executed. We refer to such actions that notify the monitor as notification
actions, denoted by the set NA ⊆ A.

Notification actions are often method invocations that also pass to the monitor needed context from the executing
actions. In general, we cannot interrupt the execution of a program action; we can intercept the points in time just
before or just after the execution of the instruction responsible for the action. Notification actions are associated
with a direction and execute either before or after the execution of their actions. Instrumentation is given by the
partial function notify : A × {before, after}⇀ NA.

When the instrumented program executes, a monitor (or any observer) receives the trace as a sequence of notifica-
tions. To handle concurrent threads producing notifications, a monitor should implement a locking mechanism to
protect itself from concurrent access. This mechanism forces a total order on the notifications. As such a linear
trace is a totally ordered set of notifications.

INRIA - February 2024 92 Chukri Soueidi

7.3: Trace Collection for Concurrent Programs

t0

t1

r nr

g ng

t0

t1

r nr

g ng

(a) Unsound instrumentation.

t0

t1

lm r nr um

lm g ng um

(b) Forcing atomicity.

Figure 7.2: Instrumenting concurrent events.

DEFINITION 33 (LINEAR TRACE) A linear trace is a totally ordered set (NA,
to
−→) of notification actions

such that
to
−→ is an arbitrary linearization of

e
−→ ∩ (NA × NA), the execution order restricted by the set NA.

7.2.1 Issues with Linear Traces

Monitoring approaches relying on total-order formalisms such as LTL and finite state machines require linear traces
to be fed to the monitors as their input consists of words. In this section, we discuss certain issues that arise when
using linear traces from concurrent executions.

Advice atomicity assumption. General purpose runtime verification frameworks such as Java-MOP [CR05a],
Tracematches [AAC+05a], and others [BFB+17] rely on instrumentation for extracting events for traces. As
mentioned, to handle concurrent programs, RV tools provide a feature to synchronize the monitor to protect it
from concurrent access and data races. As such, threads acquire a lock before notifying the monitor and release it
afterward. However, when a program action is executed, its advice will not always execute atomically with it unless
both are wrapped in a synchronization block.

EXAMPLE 32 (ADVICE ATOMICITY) Consider the traced execution in Fig. 7.2a where green boxes represent
program actions and yellow boxes represent their advice, in this case, the advice is a single notification action that
notifies the monitor, and arrows indicate the execution order of these actions. A context switch happens after the r
is executed (but before notifying the monitor), allowing the execution of g and its advice before nr. It is clear how
this would result in unsound results when monitoring the property r precedes g. ∗

This observation problem cannot be solved by simply checking for the absence of data races. One needs to guarantee
atomicity between all executing program actions and their advice. The problem will not appear if r and g are
synchronized and executed with their advice within mutually exclusive regions, such as in Fig. 7.2b. Nevertheless,
we might sometimes want to capture events from concurrent regions.

Forced atomicity. One way to solve the lack of advice atomicity is to force it. Forced atomicity can be achieved
by instrumenting synchronization blocks1 that wrap the program actions with their advice in mutually exclusive
regions. However, forcing atomicity introduces two new problems, one at the program level and the other at the
monitor level. First, it forces a total order between concurrent program actions; interfering with the parallelism of
the program and changing its behavior. One needs also to minimize the area for which the lock is applied and avoid
coarse-grained synchronization. From the monitor side, the verdict will be dependent on the specific scheduling
of the execution. Take r precedes g for instance, if these events are concurrent in the program, monitoring will
produce a different verdict at each run. Second, any information about parallel actions in the program is lost and
one can no longer determine whether two actions execute concurrently initially in the non-instrumented program.
In that case, it becomes impossible to express properties on the concurrent parts of the execution. Furthermore, RV
tools mentioned above rely on AspectJ [KHH+01a] for a high-level specification of instrumentation which is rather
unfitting to instrument synchronization blocks as it cannot instrument at the bytecode level.

1Such as synchronized in Java.

THESIS 93 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

7.3 Concurrent Traces
Our goal is to capture a representative trace from concurrent executions which we defined in Def. 14. We define a
concurrent trace as a subset of the execution actions, and a partial order over these actions.

DEFINITION 34 (CONCURRENT TRACE) A concurrent trace, denoted as t, is a partially ordered set t =

(E,
tr
−→) where:

• E is a set of trace events, such that E ⊆ A,

•
tr
−→ is a partial order that establishes the sequence of these events within the concurrent execution.

We note that the trace actions E are called events in monitoring and verification approaches. The trace events
E are assumed to be a subset of the execution actions, capturing the pertinent actions for monitoring purposes.
Furthermore, Σ, which are the events of interest for property monitoring, are considered as a subset of E, thus:

Σ ⊆ E ⊆ A

This subset relation simplifies the projection from captured traces to the set of events relevant for monitoring. While
different monitoring techniques may necessitate distinct projections, for the purpose of this thesis, we equate the
trace events E with the monitored events Σ. A discussion on projection techniques used in parametric monitoring
for instance can be found in Section 2.3.

7.4 Sound and Faithful Concurrent Traces
In this section, we show how a representative trace preserves the properties of an execution.

We first define the notion of trace soundness. Informally, a trace is a sound trace if it does not provide false
information about the execution.

DEFINITION 35 (TRACE SOUNDNESS) A concurrent trace t is said to be a sound trace of a concurrent
execution e (noted snd(e, t)) iff (i) E ⊆ A and (ii)

tr
−→ ⊆

e
−→.

To be sound, a trace (i) should not capture an action not found in the execution, and (ii) should not order unrelated
actions.

While a trace that does not provide incorrect information about the execution model leads to sound monitoring, a
trace can still not provide enough information about the order (for a monitor to determine a verdict). Faithfulness is
similar to completness; it is expensive as it requires capturing all relevant causality in the program. Informally, a
faithful trace contains all information on the order of events that occurred in the execution model.

DEFINITION 36 (TRACE FAITHFULNESS) A concurrent trace t is said to be faithful to an execution e (noted
faith(e, t)) iff

tr
−→ ⊇ (

e
−→ ∩E × E).

EXAMPLE 33 (SOUNDNESS AND FAITHFULNESS) Recall the execution from Example 13. For a be-
havioral property such as “no read or write happen concurrently with another read or write”, we
are interested in the actions r and w. The order relative to these events in the execution is →e0=

{⟨1.w0, r1⟩, ⟨1.w0, r2⟩, ⟨r1, 2.w0⟩, ⟨r2, 2.w0⟩, ⟨1.w0, 2.w0⟩}. Fig. 7.3b presents a linear trace of the execution t0 as
captured by Java-MOP using advice atomicity assumption, see Section 7.2.1. One can see that the order is
→t0=→e0 ∪{⟨r

1, r2⟩}. We notice that we have faithfulness (faith(e0, t0)) as→e0⊂→t0 . However we do not have
soundness (¬snd(e0, t0)) as the pair ⟨r1, r2⟩ <→e0 . Indeed, the reads happened concurrently. Fig. 7.3c shows a
trace that is neither sound nor faithful. Fig. 7.3d the trace captures thread order only. It is a sound trace, as it
only contains ⟨1.w0, 2.w0⟩, and therefore no wrong information. However, it is not faithful, as it is missing order
information. Fig. 7.3e presents a partial trace of the execution t3 that is both sound and faithful. Ideally, t3 is the
smallest concurrent trace collected to verify behavioral properties on reads and writes. ∗

INRIA - February 2024 94 Chukri Soueidi

7.5: Obtaining Sound Concurrent Traces

1.l0t 1.l0s 1.w0 1.u0s 1.u0t 4.l0t 3.l0s 2.w0

2.l1t 1.l1c i1 2.l1s 1.u1c 2.u1t r1 4.l1c d1 2.u1s 4.u1c

3.l2t 2.l2c i2 2.u2c 3.u2t r2 3.l2c d2 3.u2c

(a) Full Concurrent Execution (e0)

1.w0 r1 r2 2.w0

(b) S/F Linear (t0)

r0 1.w0 2.w0

(c) S/F Linear (t1)

1.w0 2.w0

r1

r2

(d) S/F Partial (t2)

1.w0
r1

r2
2.w0

(e) S/F Partial (t3)

Figure 7.3: Four different collected traces from the execution of 1-Writer 2-Readers.

A property can be used to define the set of correct concurrent executions. For the verification of the temporal
behavior of programs, the semantics of matching properties is applied on traces [MP95]. Effectively, at the semantic
level, a property partitions the set of all executions into correct and incorrect ones. Consequently, a property φ(Σ)
defined over Σ ⊆ A is a set of partial orders over Σ.

DEFINITION 37 (PROPERTY SATISFACTION) A concurrent execution (A,
e
−→) satisfies a property φ(Σ)

(noted (A,
e
−→) |= φ(Σ)) iff (

e
−→ ∩Σ × Σ) ∈ φ(Σ).

To check that a property has been satisfied, we simply “project” the order
e
−→ on Σ, that is, we restrict our information

about the execution to Σ. We then check if the projection belongs to the set of correct concurrent executions (φ(Σ)).

While our goal is verifying properties on the full execution of a program, we generally gather a subset of it as
a trace. As such, we are interested in the fact that verifying a property on the trace holds the same as it would
on the full execution. By construction (from Def. 35 and 36), we notice that the projections over Σ (Def. 37) of
some execution e and a trace t for a property over variables Σ ⊆ E ⊆ A where we have soundness (snd(e, t)) and
faithfulness (faith(e, t)) are the same. We deduce the following theorem.

PROPOSITION 3 (PROPERTY PRESERVATION) Given a concurrent execution e = (A,
e
−→), and a trace

t = (E,
tr
−→), and a property φ over Σ ⊆ E ⊆ A we have:

(snd(e, t) ∧ faith(e, t)) =⇒ (e |= φ(Σ) iff t |= φ(Σ)).

We say that t is an appropriate abstraction of e; e and t can be used interchangeably to verify properties over Σ. Since
our notion of a property is simply a set of traces, the presented results apply to any set of monitorable [FFM12, PH18]
properties.

7.5 Obtaining Sound Concurrent Traces
We present a vector clock algorithm that constructs sound concurrent traces. The algorithm differs from standard
algorithms in that it can run asynchronously, allowing scenarios where a delay can be tolerated. Most, if not all
vector clock algorithms in the literature block the execution to process the algorithm at each event.

7.5.1 Atomicity and Instrumentation Requirements
One of the features of the algorithm is its relaxed requirements for atomicity. Specifically, the algorithm does not
necessitate advice atomicity for its correct operation. This is a significant point as it reduces both the complexity

THESIS 95 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

and potential overhead associated with implementing the algorithm in a real-world system. Below are two
instrumentation requirements that are sufficient for the algorithm to operate correctly.

• Requirement 1: When an action a is instrumented with a before (or after) directive, the corresponding
notification action, na, is required to occure before a (or after a). Importantly, no other action from the same
thread is permitted to execute in between.

• Requirement 2: The algorithm requires before and after directives for instrumenting release and acquire
actions respectively. With this requirement, since the synchronization order is the only relation that orders
actions from different threads in the execution. Then, any two ordered actions from different threads must
either be themselves notifications for synchronization actions or must have at least one synchronization action
between them that has been observed and collected.

7.5.2 The Reordering Algorithm
Algorithm 2 maintains the following data structures. A map L : T → V holding the last timestamp seen by each
thread. A map R holding the last release action per resource, a mapW holding the last write of a value on a shared
variable, and a set Tts which represent the concurrent trace and will be populated with timestamped actions. On
each received notification action, the algorithm sets its timestamp to the latest timestamp seen by its thread (line 3).
Then, synchronization actions in SA (lines 4-5) are send to ReleaseOrAcquire, except for read or write. Actions
unlock, fork, end are represented with release, the algorithm puts them in the map entry in R associated with their
resource in R (lines 11-12). Actions lock, begin, join are represented with acquire, the algorithm retrieves the last
action that released its resource from R; if found 2, their vector clocks are merged (lines 13-15). The join is merged
with the last action seen by the finished thread. Actions read and write are handled with ReadOrWrite. They are
handled with the mapW which is indexed by a shared variable and a value. A write (lines 17-23) is only pushed
intoW when it does not conflict with the entry inW associated with its variable and value (discussed more in the
correctness section). A read is merged with the latest write (lines 24-26). After that, the timestamp is incremented
(line 6), and map L is updated (line 7). Events will be stored in the concurrent trace, and all synchronization actions
will be discarded (lines 8-9).

EXAMPLE 34 (CONCURRENT EXECUTION REORDERING) Consider the execution depicted in Fig. 7.3a in
Ex. 33. Table 7.1 shows the timestamps of events given by the algorithm in Algorithm 2. The final trace Tts will
contain event e1 = 1.w with e1.VC = [3,0,0], event e2 = 1.r with e2.VC = [5,6,0], event e3 = 2.r with e3.VC = [5,5,5],
and event e4 = 2.w with e4.VC [8,8,7]. You can notice that the two reads e2 and e3 are concurrent since neither
e2VC ≤ e3VC nor e3VC ≤ e2VC. Whereas reads are ordered with writes. The captured trace corresponds to the
sound and faithful trace from Fig. 7.3e.

7.5.3 Algorithm Cost
The Join, Comparison and Copy operations of vector clocks require Θ(k) time, linear in the number of threads k.
Increment operations on vector clocks, retrieving and inserting elements to the maps require O(1). The reordering
algorithm then requires O(n × k) time for a trace of n actions.

7.5.4 Algorithm Correctness
We now show how the algorithm always produces sound traces. After the algorithm ends, the collected linear trace
is timestamped into a concurrent trace represented by Tts that contains ordered pairs ⟨a, b⟩, such that a.VC ≤ b.VC.

Handling Release and Acquire actions. For handling release and acquire actions (except for reads and writes),
these actions already execute in a total order in any execution. The algorithm performs classical operations of
timestamp merging for matching actions. However, the correctness of our algorithm is dependent on instrumentation.
Since we do not force atomicity between an action and its notification, we must instrument actions that perform
vector clock merge operations i.e. acquire actions with the after directive and release actions with the before

2We omit some null checks to simplify the presentation of the algorithm, however, assume that joining e.VC with a null value does not affect
it.

INRIA - February 2024 96 Chukri Soueidi

7.5: Obtaining Sound Concurrent Traces

Algorithm 2: Vector Clock Algorithm

1 procedure ReceiveAction(e)
2 t = tid(e)
3 e.VC = copy(L(t))
4 if e is a synchronization action then
5 send e to the appropriate procedure
6 inct(e.VC)
7 L(t) = e.VC
8 if e is not a synchronization action then
9 Tts ← e // Add e to trace Tts

10 procedure ReleaseOrAcquire(e)
11 if e = release(t, r) then
12 R(r) = e // Update R
13 else if e = acquire(t, r) then
14 e′ = R(r)
15 e.VC = e.VC ⊔ e′.VC // Merge vector clocks

16 procedure ReadOrWrite(e)
17 if e = write(t, x, v) then
18 e′ =W(x, v)
19 if (e′ = null) ∨ (e′.VC ≤ e.VC) then
20 W(x, v) = e
21 else
22 W(x, v) = null // Conflicting write
23 end
24 else if e = read(t, x, v) then
25 e′ =W(x, v)
26 e.VC = e.VC ⊔ e′.VC

directive. The intuition is that if a release action is instrumented with the after directive, a context switch between
it and its advice can lead to having an unmerged consecutive acquire.

For any release and acquire actions that are instrumented correctly as per Requirements 1 and 2, the algorithm
ensures that if a matching release exists for an acquire, it has already been captured and processed. Below is a
sketch of the proof.

1. Given proper instrumentation, a release action’s vector clock is updated before the action is executed,
ensuring that any subsequent acquire action on the same resource will have a vector clock that can be safely
merged.

2. Therefore, when an acquire action is observed, if a matching release exists, it has already been captured and
processed.

When the program only uses lock and fork actions for synchronization, then our algorithm guarantees both soundness
and faithfulness of the concurrent trace since it captures all orderings, provided that they are all instrumented and
captured.

Handling Reads and Writes. Handling reads and writes is more demanding if we want to run the algorithm
asynchronously and do not want to force on them a total order in the execution. Reads and writes are instrumented
with after and before directives, respectively, including volatile and atomic variables [LBM+]. Atomic operations
such as compare-and-swap are handled differently since we check for the result of the operation before emitting an
action.

For any read r and write w actions that are instrumented correctly as per Requirements 1 and 2, the algorithm
ensures that r will either match its write and merge, or not. Below is a sketch of the proof.

1. On observing a read r on a shared variable x with a value v (line 24), the algorithm checksW(x, v) to find its

THESIS 97 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

Table 7.1: Step by step timestamping of events from the execution in Ex. 33 using Algorithm 2.

Step Event e Thread e.VC Step Event e Thread e.VC
1 1.lt 0 [1,0,0] 13 2.lc 2 [5,5,2]
2 1.ls 0 [2,0,0] 14 2.uc 2 [5,5,3]
3 1.w 0 [3,0,0] 15 3.ut 2 [5,5,4]
4 1.us 0 [4,0,0] 16 2.r 2 [5,5,5]
5 1.ut 0 [5,0,0] 17 3.lc 2 [5,5,6]
6 2.lt 1 [5,1,0] 18 3.uc 2 [5,5,7]
7 1.lc 1 [5,2,0] 19 4.lc 1 [5,7,7]
8 2.ls 1 [5,3,0] 20 2.us 1 [5,8,7]
9 1.uc 1 [5,4,0] 21 4.uc 1 [5,9,7]
10 2.ut 1 [5,5,0] 22 4.lt 0 [6,5,4]
11 1.r 1 [5,6,0] 23 3.ls 0 [7,8,7]
12 3.lt 2 [5,5,1] 24 2.w 1 [8,8,7]

matching write (line 25).

2. If prior to r, multiple writes w(t, x, v) and w′(t′, x, v) occurred writing on x the same value v, such that they
are not ordered i.e. conflicting (w.VC ≰ w′.VC and w′.VC ≰ w.VC), the map entryW(x, v) is cleared (line
22) to prevent unsafe merging.

3. Therefore, a read r will either find a non-conflicting write to merge with or not find a matching write at
all. We say the two writes on x, writing the same value v, are conflicting when they are not ordered, i.e.
w.VC ≰ w′.VC and w′.VC ≰ w.VC.

This might have consequences on the faithfulness of the trace and not its soundness. Faithfulness will only be
affected if (1) three or more threads are writing to the same variable the same value and in a concurrent region,
and (2) the program relies on those writes to synchronize. We reasonably believe that this is an infrequent case in
concurrent programs. However, for such programs, reads and writes can be instrumented to have advice atomicity;
by instrumenting synchronization blocks that wrap them with their advice in mutually exclusive regions. This will
force a total order on reads and writes and there will be no need for the procedure ReadOrWrite. They can be
treated as acquire and release and handled with procedure ReleaseOrAcquire.

Given both presented arguments, the algorithm generates a sound trace Tts. Given a concurrent execution denoted
by ⟨A,

e
−→⟩, the above steps guarantee that Tts satisfies the following condition which establishes the soundness of

the algorithm:
∀⟨a, b⟩ ∈ Tts × Tts : a.VC ≤ b.VC =⇒ ⟨a, b⟩ ∈

e
−→ (7.1)

7.6 Criteria For Monitorability
In this section, we discuss the criteria for sound monitoring with automata and concurrent traces. In Section 7.4, we
see that a sound and faithful trace represent a program execution and can be used interchangeably when verifying
a property. However, a concurrent trace (equivalently a concurrent execution) will contain unordered events; if
they are concurrent. Many monitoring approaches rely on finite state automata as they can be used for most of
the specification patterns [DAC99, Pat]. Such monitors expect a total order of events as their input consists of
words. Given that a concurrent trace is a partial order, it must be linearized before proceeding with monitoring.
A linearization of a partial order will impose an arbitrary order between unordered events. However, feeding the
monitor with faulty orderings of events might lead to an incorrect verdict. For the remainder of this section, we set
Σ as the set of events over which properties are specified. We distinguish it from E, which is the set of runtime
events that will possibly be projected to events in Σ.

7.6.1 Monitor Causal Dependence
When observing an automaton, we might find pairs of events whose order is irrelevant to its progress; they can
permute without affecting the verdict. The causal dependence relationD ⊆ Σ × Σ is a binary relation that is anti-
reflexive and symmetric. It contains all pairs of events whose correct order is necessary and their permutation would

INRIA - February 2024 98 Chukri Soueidi

7.6: Criteria For Monitorability

q2

q3 q3

q1

r, s, p s, q

p, q

q

r

rΣ1

p

s

(a) Response property P1

q1 q2

q3

aw, br, ar

bw

aw

bw, br, ar

Σ

(b) Property P2

Figure 7.4: Automata of Bad Prefixes.

lead the automaton to a different state. Hence, for all pairs of events that do not belong toD, their permutation after
a linearization (if they occur concurrently) can be safely tolerated. Moreover, ID = (Σ× Σ) \D is the independence
relation induced by the dependence relation D. For a deterministic automaton, ID is a reflexive and symmetric
relation. We extract ID by finding pairs of actions that would lead to the same state if permuted.

Algorithm 3: Generate ID for DFAA

1 Given DFAA = {Σ,Q, δ∗,Q0, F}
2 ID : Σ × Σ→ {tt, ff , ?} a map, initially all set to ?.
3 for (a, b) ∈ Σ × Σ do
4 if ID(a, b) , ? then continue
5 if a = b then ID(a, a) = tt; continue
6 for q in Q do
7 if δ∗(q, a.b) , δ∗(q, b.a) then
8 ID(a, b) = ID(b, a) = ff
9 continue to main loop

10 end
11 end
12 ID(a, b) = ID(b, a) = tt
13 end

Algorithm 3 extracts ID from a property specified as a DFA. The algorithm checks for all pairs (a, b) in Σ × Σ if
starting from any state in the automaton a.b would lead to a different state from b.a (lines 8-11). If that is the case,
then the automaton depends on receiving both symbols in order, and the pair is added to the dependency relation.
For pairs of the same symbol, it adds them into ID (line 5).

Note that, the causal dependence relation resembles trace equivalence from [Maz87] which constrains the allowed
linearizations of a partial order. However, here we extract the relation from the monitor itself, and it defines word
equivalence concerning an automaton, that is, the allowed permutations of letters in a word that would eventually
lead to the same verdict.

EXAMPLE 35 (MONITOR CAUSAL DEPENDENCE) We demonstrate with two example properties. P1 states
that event s responds to p between q and r. P2 is a mutual exclusion property that states that no read or write
should happen concurrently with another write. To monitor with a finite state machine monitor, the read and writes
are instrumented and delimited with events bw and aw represent before and after a write, br and ar for before and
after a read. Fig. 7.4 shows the violation automata of bad prefixes to monitor the properties. For each automaton,
we have:

• ID1 = {⟨s, q⟩}

• ID2 = {⟨br, ar⟩} ∗

From ID1 , we see that the monitor does not depend on the order between s and q. From ID2 , we see that the
monitor depends on the order between writes themselves, reads, and writes and reads.

THESIS 99 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

7.6.2 Trace Monitorability of Concurrent Executions
We first define the notion of necessary order for a concurrent trace, which indicates whether the trace has the needed
order based on the dependence relation.

DEFINITION 38 (TRACE NECESSARY ORDER) We say that a concurrent trace t = (E,
tr
−→) has the necessary

orderings w.r.t. a causal dependence relationD, noted tno(t,D) when:

∀ e, e′ ∈ E : ⟨e, e′⟩ ∈
tr
−→ ∨ ⟨e, e′⟩ < D

EXAMPLE 36 (TRACE NECESSARY ORDER) Back to property P2 from Example 35 and the traces depicted in
Fig. 7.3. Trace t3 is ordered enough for monitoring the property, whereas t2, a trace collected considering the thread
order only, does not capture the order between reads and writes. As such we have:

tno(t3,D2) = ⊤ tno(t2,D2) = ⊥ ∗

Let us recall the notion of monitorability from [KYV01, BLS11b]. A property φ is monitorable, denoted by
Mon(φ), if every prefix of every trace has a finite extension that allows its monitor to reach a verdict, be it positive
or negative. Monitoring with unsound traces leads to unsound verdicts. We redefine monitorability for concurrent
programs by adding necessary conditions on the traces.

DEFINITION 39 (TRACE MONITORABILITY OF CONCURRENT EXECUTIONS) Given a property φwith
its dependency relationD, and a trace t collected from a concurrent execution e. Property φ is monitorable
with t, noted t-Mon(φ) when Mon(φ) ∧ snd(e, t) ∧ tno(t,D).

First, the property φ should be monitorable in the classical sense, Mon(φ), or else we will not reach a verdict.
Second, the trace should be sound, snd(e, t), or else we will have an unsound verdict. Third, the trace should have
all the ordering information needed by the property as per its dependency relation, tno(t,D), or else a linearization
would produce an unsound trace. The above indicates that a concurrent trace does not need to contain all the
ordering information between events and that the notion of faithfulness can be relaxed when monitoring. Now,
if there is missing information in a sound and faithful concurrent trace, this means that the execution itself does
not contain the needed causality for monitoring the property. As such, the user is warned about the missing order
to address the problem, and a tradeoff is presented between concurrency and monitorability. On one hand, they
can synchronize the concurrent actions in the program to have them ordered, or they can force linearization of
unordered actions via instrumentation as discussed in Section 7.2.1. On the other hand, they can leave the actions
executing concurrently and afford inconsistent verdicts.

7.6.3 Optimal Faithfulness
Since an ordering is a set of pairs, we can now define a ratio to faithfulness as the number of existing ordered pairs
in a trace compared to the ordered pairs in an execution. For a given sound trace t = (E,

tr
−→), we define the trace

faithfulness ratio as R = |
tr
−→ |/|(

e
−→ ∩E × E)|. The faithfulness ratio cannot be greater than 1 for sound traces. If all

of the collected actions execute in synchronized regions in the program, then we get a faithful trace with R = 1.

Ideally, we want to instrument programs to capture traces with the smallest optimal faithfulness ratio, denoted
as Rφ. Such traces contain only necessary orderings for monitoring some property φ. Moreover, Rφ delimits the
boundary of monitorability. Obtaining lower faithfulness ratios leads to a non-monitorable execution. Obtaining
more than the optimal ratio means there might be a chance of optimizing instrumentation to lower the overhead on
the executing program.
Property 1 (Degrees of Faithfulness) Given some faithfulness ratios R′ and R′′ for a collected trace from an
execution e to monitor some property φ. If snd(e, t) and Mon(φ) hold, we have:

(1) R′ < Rφ =⇒ ¬t-Mon(φ)

(2) R′′ ≥ Rφ =⇒ t-Mon(φ)

INRIA - February 2024 100 Chukri Soueidi

7.8: Implementation

R′

Rφ

R′′ Faithful (R = 1)

Figure 7.5: Approaching optimal faithfulness.

One can check statement (1) by simply checking if the trace satisfies the tno condition. As for (2), it presents us
with an optimization opportunity, as we ideally want only to capture the orderings required for the monitor and
not the complete orderings in the execution. The optimization could determine the smallest set of synchronization
actions (SAs) required to capture the optimal faithful ratio. Fig. 7.5, shows a depiction of this optimization.
However, obtaining optimal faithfulness with instrumentation is an exciting challenge that we leave for future work.
Nevertheless, we show an example of optimizations that can help capture fewer synchronization actions from the
program.

EXAMPLE 37 (OPTIMIZING INSTRUMENTATION) Let us re-examine the concurrent execution presented in
Fig. 7.3a. The lock associated with the counter keeping track of readers, while useful to the program, can be omitted
as the additional order provided by locks and unlocks on the counter (c) can be obtained from the test read lock (t)
to order reads (r). However, this would not be the case if we want to establish an order for decrements (d). ∗

7.7 Implementation
We implemented the presented work as an extension to the observation layer for BISM we introduced in Section 5.6
We named the extension FACTS (Faithful and Sound Concurrent Traces). With BISM transformers, the user
specifies the actions needed for monitoring and selects the concurrency primitives they want to capture. We provide
a pre-defined set of transformers for the most common concurrency primitives, such as wait, notify, join,
lock, unlock, etc. Instrumentation extracts by default for each event the thread ID and event name (specified by
the user), the resource that is producing the event, class name, method name, and line number. The scoping feature
in BISM allows specifying different filters such as package, class, field names, etc. Instrumentation is performed at
load-time, and generated events are passed at runtime to the observation layer and then into the two modules we
detail below before being sent to the monitor.

Trace Reordering module. The vector clock algorithm processes the collected actions and pushes the times-
tamped monitoring actions into the concurrent trace, which is kept in memory or passed to the monitor. Depending
on the monitoring scenario, the algorithm can run on a separate thread from the executing program or in the same
thread. For representing vector clocks, we use tree clocks [MPTV22] in our implementation instead of classical
vector clocks. Tree clocks improved the overall performance of the reordering algorithm and gave us a sublinear
time on join and copy operations, in contrast to classic vector clocks, which always require Θ(k) time linear in the
size of the vector.

Monitorability Checker module. This module checks if the concurrent trace is monitorable as discussed in
Section 7.6. The takes as input a dependency relationD and runs attached to a running target program as a Java
agent. It runs in parallel with the reordering algorithm and is concerned only with checking the tno condition. It is
compatible with parametric slicing [CR09]; it slices events based on the runtime information bound to them. When
receiving a processed event from the vector clock algorithm, before sending the event to the monitor, the checker
checks if the event is ordered with the events from its slice (as per the dependency relation). If it detects missing
orderings, warnings are issued along with event names and their location in the code.

7.8 Related Approaches
In this section, we discuss property-based dynamic verification techniques for concurrent programs that rely on
traces. More specifically, on techniques developed for monitoring behavioral properties expressed in total order

THESIS 101 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

formalisms and refer to [BMP18] for a detailed survey. These techniques typically analyze a trace to either detect
or predict violations.

Detection techniques reason about single runs of a program. We mention runtime monitoring tools, namely
Java-MOP [CR05a], Tracematches [AAC+05a, BHL+10], MarQ [RCR15b], and LARVA [CPS09b] chosen from
the RV competitions [FNRT15, RHF16, BFB+17]. These tools support various specification formalisms such as
past-time linear temporal logic, context-free grammars, finite-state machines, extended regular expressions, and
Quantified Event Automata (QEA) [BFH+12]. Detection techniques do not establish causal orderings between
events and rely on trace collection approaches (discussed in Section 7.2.1) to order the collected events. We have
shown in this paper how this can produce unsound traces leading to unsound and inconsistent monitoring. These
tools can benefit from concurrent traces to guarantee the soundness of their verdicts. EnforceMOP [LR13] for
instance, can be used to detect and enforce properties (deadlocks as well). It controls the runtime scheduler and
blocks threads that might cause a property violation, sometimes leading to a deadlock. It requires forced atomicity
as the scheduler needs to decide at each step if the execution on some thread continues or not. In [CF16, ACF+22],
the authors present a monitoring framework for actor-based systems. The tool detectEr monitors Erlang applications
using traces collected using the native logging functionality. Our approach targets generic concurrency primitives
and can also be used with actor-based systems.

Predictive techniques reason about all feasible interleavings from a recorded trace of a single execution. Their
challenge is to construct sound and maximal causal models [SCR12] that allow exploring flexibly all feasible
interleavings. In [RS04], the authors present an instrumentation algorithm based on vector clocks, used in [SRA03,
JS08, CSR08] for generating the partial order from a running program. The algorithm maintains one vector clock
for each thread and two for each shared variable. It executes synchronously with the executing program and is
protected using synchronized blocks to force an overall sequentially consistent [Lam79] execution. Vector clock
algorithms typically require synchronization between the advice, program actions, and algorithm’s processing to
avoid data races [CL02]. Our algorithm can run synchronously or asynchronously with the program depending
on the monitoring scenario. As far as we know, it is unique in the context of online monitoring in establishing
order off the critical path without the need to block the execution to process. In [JS08, GZC+11] the work targets
type-state errors. jPredictor [CSR08] for instance, uses sliced causality [CR07] to prune the partial order such that
only relevant synchronization actions are kept. The tool is demonstrated on atomicity violations and data races;
however, we are not aware of an application in the context of generic behavioral properties.

In [FMRS12], the authors present ExceptioNULL that target null-pointer exceptions. Violations and causality are
represented as constraints over actions, and the feasibility of violations is explored via an SMT constraint solver.
GPredict [HLR15], for instance, targets generic concurrency properties. It allows the user to express properties with
regular expressions and provides explicit concurrency idioms such as atomic and parallel regions. It establishes
order by collecting thread-local traces and also producing constraints over actions. In addition to being incomplete
due to the possibility of not getting results from the constraint solver, the analysis from these tools might also
miss some order relations between events resulting in false positives. Of course, none of the presented predictive
techniques are complete, i.e., can produce all possible feasible interleavings that lead to violations, due to the
impossibility of constructing a complete causal model of the program. Furthermore, these techniques reason on
sequentially consistent execution models [HS12a], restricting the space of possible interleavings of programs.
The idea is that if a property is violated in a sequential consistency, then it will surely be violated in a more
relaxed execution model. Our work focuses on providing concurrent traces for online detection techniques, and
we have yet to explore their applicability in predictive contexts. Unfortunately, many tools from the mentioned
approaches [HLR15, CSR08, SRA03, JS08, CSR08] are not available. Apart from tools dedicated to data races
and atomicity violation detection, we found no available tools targeting general behavioral properties to compare
with; tools that can establish causal order and instrument various custom regular actions from the program for
monitoring.

7.9 Conclusion
We presented a general approach for defining and collecting traces of concurrent programs for the online monitoring
of behavioural properties. We investigated the limitations of linear traces and showed when they lead to inconsistent
and unsound verdicts. We established on the fly the causal ordering of events using a novel vector clock algorithm
that does not require blocking the execution. For monitoring frameworks relying on totally ordered traces, we
redefined the monitorability of concurrent traces to avoid unsound verdicts. We implemented our approach within

INRIA - February 2024 102 Chukri Soueidi

7.9: Conclusion

BISM to collect traces from JVM programs.

THESIS 103 Chukri Soueidi

CHAPTER 7. REPRESENTATIVE TRACES FOR CONCURRENT PROGRAMS

INRIA - February 2024 104 Chukri Soueidi

CHAPTER 8

Opportunistic Monitoring

Contents
8.1 Introduction 107
8.2 Opportunistic Runtime Verification 108
8.3 Implementation 110
8.4 Conclusion 111

105

CHAPTER 8. OPPORTUNISTIC MONITORING

Chapter abstract
In this chapter, we present the opportunistic monitoring approach for the online monitoring of multithreaded
programs leveraging existing runtime verification (RV) techniques. In the previous chapter, we presented an
approach to collect representative traces from concurrent executions. However, the cost of capturing synchronization
actions and establishing causality between events is expensive. In this new setting, local monitors are deployed to
monitor specific threads and communicate verdicts with a global monitor when reaching selected synchronization
points such as locks. At the cost of a small delay in the verdict, this approach reduces additional overhead and
interference with the program to synchronize monitors. In this chapter, we motivate the approach, provide a
summary of the approach, and present how it is implemented with BISM.

INRIA - February 2024 106 Chukri Soueidi

8.1: Introduction

8.1 Introduction
Motivation. Our focus is still on monitoring general behavioral properties targeting violations that cannot be
traced back to classical concurrency errors such as data races and atomicity violations. In the previous chapter, we
presented an approach to collect representative traces of concurrent executions. These traces can be used by existing
runtime verification tools that rely on total order formalisms to soundly check properties. However, although we
presented a non-blocking algorithm that can also run asynchronously, the cost of capturing synchronization actions
and establishing causality between events is still expensive.

We aim to monitor concurrent programs using existing approaches while reducing the overhead of instrumentation.
Within these existing approaches, two monitoring modes can be currently utilized to handle concurrency: per-
thread and global monitoring. In per-thread monitoring, each thread is monitored in isolation, and the monitors are
oblivious to events from other threads. Whereas in global monitoring, a global monitor is spawned and receives
all events from all threads. This monitor is guarded by a lock to ensure that no two threads can send events
concurrently.

EXAMPLE 38 (GLOBAL MONITORING) Figure 8.1 illustrates a high-level view of a concurrent execution frag-
ment of 1-Writer 2-Readers, where a writer thread writes to a shared variable, and two other reader threads read
from it. The reader threads share the same lock and can read concurrently once one of them acquires it, but no
thread can write nor read while a write is occurring. We only depict the read/write events and omit lock acquires
and releases for brevity. In this execution, the writer acquires the lock first and writes (event 1), then after one of
the reader threads acquires the lock, they both concurrently read. The reader performs 3 reads (events 2, 4, and
5), and the other reader performs 2 reads (events 3 and 6), after that the writer acquires the lock and writes again
(event 7). A user may be interested in the following behavioral property: “Whenever a writer performs a write, all
readers must at least perform one read before the next write”. Note that the execution here has no data races nor a
deadlock, and techniques focusing on generic concurrency properties are not suitable for the property. Monitoring
of this (partial) concurrent execution with both previously mentioned modes presents restrictions. For per-thread
monitoring, since each of the readers is a thread, and the writer itself is a thread, it cannot check any specification
that refers to an interaction between them. For global monitoring, it imposes an additional lock operation to send
each read event to the monitor, introducing additional synchronization and suppressing the concurrency of the
program.

1

2

3

4 5

6

7

Figure 8.1: Execution fragment of 1-Writer 2-Readers

In many cases, by reasoning about the concurrent program or making certain assumptions, one can optimize the
monitoring process. A central observation we made is that when the program is free from generic concurrency
errors such as data races and atomicity violations, a monitoring approach can be opportunistic and utilize the
available synchronization in the program to reason about high-level behavioral properties. In the previous example,
we know that reads and writes are guarded by a lock and do not execute concurrently (assuming we checked for
data races). We also know that the relative ordering of the reads between themselves is not important to the property
as we are only interested in counting that they all read the latest write. As such, instead of blocking the execution
at each of the 7 events to safely invoke a global monitor and check for the property, we can have thread-local
observations and only invoke the global monitor once either one of the readers acquires the lock or when the writer
acquires it (only 3 events).

Methodology. We present an approach to opportunistic runtime verification which was first introduced in [EH18].
We aim to (i) provide an approach that enables users to arbitrarily reason about concurrency fragments in the
program, (ii) be able to monitor properties online without the need to record the execution, (iii) utilize the existing
tools and formalism prevalent in the RV community, and (iv) do so efficiently without imposing additional
synchronization making it suitable for production environments. This proposes a two-level monitoring technique
that allows for the reuse of existing runtime verification tools. This approach minimizes computational overhead

THESIS 107 Chukri Soueidi

CHAPTER 8. OPPORTUNISTIC MONITORING

k k + 1 k + 2 k + 3

0.l0t 0.l
0
s 0.w

0 0.u0s 0.u
0
t 3.l0t 2.l0s 1.w

0

1.l1t 0.l
1
c 0.i

1 1.l1s 0.u
1
c 1.u

1
t r1 3.l1c 1.d

1 1.u1s 3.u
1
c

2.l2t 1.l
2
c 1.i

2 1.u2c 2.u
2
t r2 2.l2c 0.d

2 2.u2c

Figure 8.2: Concurrent execution fragment of 1-Writer 2-Readers.

and interference by eliminating the need for additional synchronization or the capture of program synchronization
actions. However, this method comes at the cost of adding a small delay to determine the verdict as the monitor
waits for the program to reach a synchronization point to check the property. The proposed approach is based on
the following key ideas:

1. Thread-Local Monitoring: The first level involves thread-local monitoring, where events within each thread
are totally ordered. This allows for the capture of properties specific to individual threads.

2. Scope Monitoring: The second level introduces the concept of scopes, which are regions in the program
that are guaranteed to follow a total order. These scopes are defined based on existing synchronization
actions in the program. A scope monitor aggregates the results of all thread-local monitors to perform global
monitoring upon reaching these scopes.

Our method is based on certain assumptions about the synchronization of the program. These assumptions are
reasonable for many concurrent programs, but may not hold for all programs. One of these assumptions is that the
selected synchronization actions are guaranteed to follow a total order. Moreover, scopes are assumed to execute
atomically at runtime.

The proposed approach enables more effective specification of behavioral properties by allowing reasoning about
specific concurrency fragments in the program. This is in contrast to existing methods that are limited to either
per-thread or global properties. It efficiently captures both local and global properties without imposing additional
computational overhead.

Contributions. This work was first presented in [EH18]. In this chapter, we summarize the approach and present
the implementation of the approach within BISM. In this thesis, we implement this approach within BISM which
allows us to capture various concurrency constructs in JVM languages. We also provide a more comprehensive
evaluation (see Section 9.6).

Chapter organization. The chapter is organized as follows. Section 8.2 present a summary with examples of the
approach. Section 8.3 presents the implementation of the approach. Section 8.4 concludes the chapter.

8.2 Opportunistic Runtime Verification
In this section, we will summarize the opportunistic RV approach.

Thread types and events. The approach first differentiates threads based on the type of events they produce.
Since an execution has a dynamic number of threads with numerous instructions, we introduce the notion of thread
types, denoted by T. A thread type converts relevant instructions into property events.

EXAMPLE 39 (EVENTS.) Consider the execution of the readers-writers program from Example 13. Depicted
in Figure 8.2 is a fragment of the execution, where a writer thread writes to a shared variable, and two other
reader threads read from it. Here we have two thread types: Trw = {reader,writer}. The events of interest are
Ereader = {read} and Ewriter = {write} corresponding to the green boxes in the figure.

INRIA - February 2024 108 Chukri Soueidi

8.2: Opportunistic Runtime Verification

k + 1 k + 2 k + 3

1.l0s 1.w0(write) 3.l0s 2.w0(write)

2.l1s 1.r1(read)

2.r2(read)

[threadid:0, type:writer]

[threadid:1, type:reader]

[threadid:2, type:reader]

Scope Channel
0 1 2

reader - na na

writer ⊤ - -

0 1 2

reader - ⊤ ⊤

writer na - -

0 1 2

reader - na na

writer ⊤ - -

Scope State
⟨⊥,⊤,⊥,⊤⟩ ⟨⊤,⊥,⊤,⊥⟩ ⟨⊥,⊤,⊥,⊤⟩

Figure 8.3: Example of a scope channel for 1-Writer 2-Readers.

Scopes. Within a concurrent execution, instructions in a given thread follow a total order while across threads,
instructions are interleaved. Threads synchronize with each other through synchronization actions, such as locks
and barriers. The opportunistic approach uses this synchronization to introduce the notion of a scope which allows
us to reason over concurrent regions rather than instructions. A scope is a project of the concurrent execution into
regions of interest. A scope is associated with a synchronizing predicate that delimits the scope region.

EXAMPLE 40 (SCOPE REGIONS) For the readers-writers program execution in Figure 8.2, we pick the resource
service lock, denoted by s, as scope delimiter. The scope region Rs(k + 1) includes actions between 1.l0s and
2.l1s, i.e., Rs(k + 1) = {1.w0, 1.u0s, 1.u

0
t, 2.l

1
t, 1.l

1
c, i
1}. The scope region Rs(k + 2) contains two concurrent reads:

1.r1, 2.r2. ∗

For reads and writes checking that the program is data race free is sufficient. However, for methods calls for
instance, exisiting tools such as [HLR15, FF04] can be further utilized to guarantee the atomicity of these regions.
Moreover, it is assumed that the program under consideration is properly synchronized and free from data races, as
the methodology relies on existing synchronization mechanisms to define scope regions.

In our setup, the selection of a synchronizing predicate is manual and part of the specification. This user-defined
nature allows for the customization of the scope based on the specific properties that are of interest. Given a
property, the user-defined scope regions should delimit events whose order is significant for that property. For
instance, for a property specifying that “between each write, at least one read should occur”, the scope regions
should separate read and write events. The granularity of these regions, particularly when multiple threads are
involved, is determined by the user’s choice of the synchronizing predicate. Analyzing the program to automatically
find and suggest suitable scopes for the user is an interesting but non-trivial challenge. This complexity arises
from the need to understand the semantics of the program and the properties to be verified, which may require
sophisticated static or dynamic analysis techniques.

Local properties. Within a scope region, properties are checked locally on each thread. A thread-local monitor
checks a local property independently for each thread. These properties can be likened to per-thread monitoring.
For any given thread, there is an established total order for all local events. As such the local properties are
compatible with existing Runtime Verification (RV) techniques.

EXAMPLE 41 (LOCAL PROPERTIES) A local property, defined for the thread type reader, specifies that a reader
should execute at least one read event. This requirement can be formulated using the classical LTL3 [BLS11b] as
φ1r ⇔ F(read). Similarly for the thread type writer, a local property specifies that a writer should execute at least
one write event, i.e., φ1w ⇔ F(write). Figure 8.3 shows the projection of the execution and for each thread the
result of evaluating the local properties over scope region. The evaluation of the local properties is recorded in the
scope channel which we will discuss in the following section.

THESIS 109 Chukri Soueidi

CHAPTER 8. OPPORTUNISTIC MONITORING

Scope state and scope properties. Now, the approach monitors per-thread local specifications based on thread
type and aggregates the results for each concurrency region to construct a scope state. The scope monitor evaluates
a sequence of such states which we call the scope trace.

EXAMPLE 42 (SCOPE PROPERTIES) Utilizing LTL, we formalize a set of three scope properties. These are
derived from the scope states and utilize the alphabet {activereader, activewriter, allreaders, onewriter}:

• Mutual exclusion for readers and writers: φ0 B activewriter XOR activereader.

• Exclusive writes: φ1 B activewriter→ onewriter.

• All readers process a written value: φ2 B activereader→ allreaders.

The global specification is thus defined as: G(φ0∧φ1∧φ2). The scope trace ⟨⊥,⊤,⊥,⊤⟩· ⟨⊤,⊥,⊤,⊥⟩· ⟨⊥,⊤,⊥,⊤⟩,
adheres to the given specification which is depicted in Figure 8.3. ∗

8.3 Implementation
In this section, the implementation of the approach is detailed, beginning with the communication of the monitor
verdicts, followed by how we express properties with existing tools, and then covering instrumentation.

Scope channel. A scope channel, depicted in Figure 8.3, retains information of the local thread properties
evaluation to create the scope state during execution. Each scope is linked to a unique scope channel with a distinct
timestamp. This channel offers each thread-local monitor a dedicated memory slot to record its evaluation of local
properties. Threads are restricted to write only in their allocated slots in the channel. The channel’s timestamp is
accessible to all threads within the scope, but only the scope monitor can increment it. For a given timestamp t,
local monitors can no longer write information for any scope state that has a timestamp less than t. This ensures
consistency of these states for any monitor associated with the scope.

Thread-local monitors. Each thread-local monitor is tasked with monitoring a specific local property for a
particular thread. Threads are identified by unique identifiers and types. Depending on the properties to be checked,
multiple monitors may be present on a single thread. These monitors are initiated at the thread’s creation. They
receive an event, conduct a check, and may record their result in the corresponding scope channel at the current
timestamp.

Scope monitors. Scope monitors are in charge of verifying properties at the scope level. When a thread involved
in the scope reaches a synchronizing action, it activates the scope monitor. This monitor depends on the scope
channel, shared among all threads, for access to all observations. It may also use additional shared memory for its
own state. The scope monitor is engaged atomically after a scope synchronizing action occurs. It first constructs the
scope state from the thread-local monitors’ results in the scope channel. Then, it executes the verification procedure
on this state. Finally, it increases the timestamp of the scope channel before completing.

Specification. We will emphasize using the properties discussed in the previous section. Locally, eventual read
and write are checked (represented as F(read) and F(write)), followed by counting the participating threads.
This leads to forming atomic propositions such as activereader, activewriter, allreaders, and onewriter,
indicating the presence of at least one reader, at least one writer, an equal number of reads to reader threads, and
exactly one writer performing a write, respectively. The scope properties are defined within the same scope, which
alternates between readers and writers.

Listing 8.1 shows how the opportunistic monitoring is specified by the user. The keyword selectors (Lines 1-3)
is used to define the synchronizing predicate. The predicate AR is evaluated by identifying an action marked
REENTRANTLOCK.ACQUIRE and align its context with the lockname key. The thread types are specified using the
types keyword (Lines 5-14). For each type, the initiating spawn event is pinpointed (Lines 7, 11), followed by the
identification of all other relevant events (Lines 8, 12). Here, the actions of reading and writing are distinguished
based on their respective action labels. Following the definition of thread types, the process of identifying scopes is
undertaken (Lines 16-18).

INRIA - February 2024 110 Chukri Soueidi

8.4: Conclusion

1 selectors {
2 event AR on "ReentrantLock.Acquire" when "%lockname == SharedArr.resourceLock"
3 }
4 types{
5 reader {
6 spawn on "Reader.Run"
7 event read on "SharedArr.read"
8 }
9 writer {
10 spawn on "Writer.Run"
11 event write on "SharedArr.write"
12 }
13 }
14 scope s0 (AR) {
15 property s0r on reader(read) is "LTL=F(read)"
16 property s0w on writer(write) is "LTL=F(write)"
17
18 atom activereader : count(s0r, T) > 0,
19 atom activewriter : count(s0w, T) > 0,
20 atom onewriter : count(s0w, T) == 1,
21 atom allreaders : count(s0r, T) == count(reader)
22
23 check "LTL=G(
24 (activereader XOR activewriter) && (activewriter => onewriter)
25 && (activereader => allreaders)
26)"
27 }

Listing 8.1: Readers-writers specification.

A singular scope, designated as s0, is introduced, with its synchronizing predicate clearly defined as AR (Line
14). The next step involves determining local properties, which entails naming each property (Lines 15-16) and
specifying the thread type and applicable events for each. After defining the local property, atomic propositions
essential for the scope state are developed (Lines 18-21). This is achieved by employing the count function,
which calculates the number of monitors across multiple threads that have returned a specific verdict for a local
property. Utilizing count to aggregate the outcomes of local properties facilitates the formation of necessary
atomic propositions for the scope state. The final step involves the introduction of the scope property (Lines 23-26),
by using the atomic propositions defined in the scope.

Instrumentation. The opportunistic approach is implemented using the BISM framework. In the previous
chapter, we discussed how we used BISM to instrument the program and capture concurrent traces. We provided
a pre-defined set of transformers for the most common concurrency primitives. This library allows us to capture
the synchronization actions of interest for the scope in the opportunistic setup. There we insert hooks to invoke
the scope monitor when a scope synchronizing action is reached. It also allows us to capture thread-spawning
events. Property events are also captured using regular transformers and hooks to the thread-local monitors are
inserted. Moreover, thread-spawning events are also captured using regular transformers. Monitors are synthesized
by passing the specified properties into the LamaConv [Ins], a tool employed for monitor synthesis.

8.4 Conclusion
This chapter represented the opportunistic approach for the online monitoring of multithreaded programs leveraging
existing runtime verification (RV) techniques. We motivated this approach and presented a summary of the
approach. Given the appropriate assumptions on the execution such as data race freedom, and atomicity of scope
regions, which can be checked using existing tools, the opportunistic approach can be used to monitor concurrent
programs. Moreover, by decentralizing the specification over local and global monitors, various interesting
behavioral properties can now be checked which was not possible before. We then presented how this approach
can be implemented so that the program can be instrumented to communicate with the local and global monitors
relying on the BISM framework.

THESIS 111 Chukri Soueidi

CHAPTER 8. OPPORTUNISTIC MONITORING

INRIA - February 2024 112 Chukri Soueidi

Part IV

Evaluation and Use Cases

113

CHAPTER 9

Evaluation

Contents
9.1 Introduction 115
9.2 Evaluating BISM 116

9.2.1 Methodology 116
9.2.2 Advanced Encryption Standard (AES) 117
9.2.3 Financial Transaction System 118
9.2.4 DaCapo Benchmarks 121
9.2.5 Threats to Validity 122

9.3 Evaluating the BISM DSL 122
9.3.1 Performance Evaluation 123
9.3.2 User Experience Evaluation 123

9.4 Evaluating the Residual Analysis 124
9.5 Evaluating Concurrent Traces 125

9.5.1 Effectiveness and Cost 125
9.5.2 Causal Dependence Relation in Specification Patterns 128

9.6 Evaluating the Opportunistic Monitoring 129
9.6.1 Readers-Writers 129
9.6.2 Other Benchmarks 130

9.7 Conclusion 132

9.1 Introduction
In this chapter, we empirically validate the theoretical and engineering contributions made in this thesis. The
evaluation covers assessing the performance and scalability of the proposed methods and tools, as well as their
expressiveness and ease of use.

Below is an overview of the chapter structure.

• In Section 9.2, we evaluate BISM to quantify the tool’s performance and expressiveness, utilizing a set
of benchmarks for validation. We compare it with other state-of-the-art tools, namely DiSL and AspectJ
(see Section 5.7), to assess its performance and scalability. We assess the performance of the instrumented

115

CHAPTER 9. EVALUATION

programs by each tool, comparing load-time and compile-time instrumentation scenarios and measuring the
overhead introduced by each tool.

• In Section 9.3 is dedicated to the assessment of the domain-specific language developed for specifying
instrumentation. We evaluate the ease of use, expressiveness, and efficiency of the generated instrumentation
code comparing it to AspectJ.

• In Section 9.4, we focus on the evaluation of our residual runtime verification approach presented in Chapter 6.
We measure the reduction in instrumentation points and the corresponding impact on runtime performance.
This is assessed through a set of benchmarks that test the approach’s scalability and effectiveness.

• In Section 9.5 evaluates our contributions to the monitoring of concurrent programs. We assess the soundness
and faithfulness of the collected concurrent traces and the efficiency of our real-time vector clock algorithm
presented in Chapter 7. The evaluation is performed using both synthetic benchmarks and real-world
applications.

• In Section 9.6 provides an evaluation of the opportunistic monitoring approach presented in Chapter 8. We
focus in our evaluation on the performance of the approach and its ability to monitor multithreaded programs
without introducing additional synchronization or significantly affecting program behavior.

• In Section 9.7 we conclude the chapter.

The results are intended to validate the proposed methods and tools, thereby contributing to their credibility and
potential for adoption in the field of runtime verification.

9.2 Evaluating BISM
We evaluate our instrumentation framework BISM that we presented in Chapter 5. We compare it with other state-
of-the-art tools, namely DiSL and AspectJ (see Section 5.7), to assess its performance and scalability. We assess the
performance of the instrumented programs by each tool, comparing load-time and compile-time instrumentation
scenarios and measuring the overhead introduced by each tool.

9.2.1 Methodology
Experiments and used programs. We compare BISM with DiSL and AspectJ in three different experiments.
Table 9.1 illustrates how the three experiments are complementary to each other. We used the latest versions of
DiSL 1 and AspectJ Weaver 1.9.4.

• The first experiment concerns the implementation of the Advanced Encryption Standard (AES). This
experiment shows how BISM can perform inline instrumentation by inserting new bytecode instructions
inside the target program to detect test inversion attacks on the application.

• The second experiment concerns a financial transaction system. This experiment shows how BISM can be
used to instrument the system to monitor user-provided properties. The financial transaction system is a
relatively small application with a low event rate.

• The third experiment concerns the DaCapo benchmark [BGH+06a]. This experiment shows how BISM
can be used to instrument the benchmark and monitor for the good usage of data structures (with classical
properties: HasNext, UnSafeIterator, and SafeSyncMap). DaCapo is a large benchmark classically used
when evaluating runtime verification tools as it produces events at a high rate.

For the first experiment, instrumentation is performed at the level of the control-flow graph. For the two other
experiments, the instrumentation is performed at the level of method calls to emit events. Note, AspectJ is not
capable of instrumenting for inline monitoring of control-flow events, so we do not include it in the first experiment
(with AES).

We run our experiments in both of BISM instrumentation modes, namely load-time and build-time. Running
an experiment in load-time mode serves to compare the performance when the tools act as an interface between

1From https://gitlab.ow2.org/disl/disl.

INRIA - February 2024 116 Chukri Soueidi

https://gitlab.ow2.org/disl/disl

9.2: Evaluating BISM

the base program and the virtual machine. Running an experiment in build-time mode serves to compare the
performance of the generated instrumented bytecode.

We note that DiSL wraps its instrumentation code with exception handlers. Exception handlers are not necessary
for our experiments and have a performance impact. To guarantee fairness, we switched off exception handlers in
DiSL.

Evaluation metrics. We consider three performance metrics: runtime, used memory, and bytecode-size. We are
interested in evaluating the instrumentation overhead, that is, the performance degradation caused by instrumentation.
For each metric, we use the base program as a baseline. For runtime, we measure the execution time of the
instrumented program. For used memory, we measure the used heap and non-heap memory after a forced garbage
collection. In load-time mode, we do not measure the used memory in the case of DiSL because DiSL performs
instrumentation on a separate JVM process.

Evaluation environment. To run the experiments, we use Java JDK 8u251 with 2 GB maximum heap size on an
Intel Core i9-9980HK (2.4 GHz. 8 GB RAM) running Ubuntu 20.04 LTS 64-bit. We consider 100 runs and then
calculate the mean and the standard deviation.

In what follows, we illustrate how we carried out our experiments and the obtained results2.

Table 9.1: A comparison between the experiments. LT is for load-time mode, and BT is for build-time mode. A
checkmark (✓) indicates that the experiment involves the metric or the feature, whereas a cross mark (✗) indicates
that the experiment does not involve the metric or the feature. Term NA abbreviates Not Applicable, and (-DiSL)
indicates that the DiSL tool has been excluded.

Performance
Metrics

Instrumentation
Level

Bytecode
Insertion

Comparison
with

Runtime
Used

Memory
Bytecode

Size AspectJ DiSL

AES
LT

✓
✓ (-DiSL) NA

Bytecode Level ✓ NA ✓
BT ✓ ✓

Transactions
LT

✓
✓ (-DiSL) NA

Source code Level ✗ ✓ ✓
BT ✓ ✓

DaCapo
LT

✓
✓ (-DiSL) NA

Source code Level ✗ ✓ ✓
BT ✓ ✓

9.2.2 Advanced Encryption Standard (AES)
Experimental setup. We compare BISM with DiSL in a scenario using inline monitors. We instrument an external
AES implementation to detect test inversions in the control flow of the program execution. The instrumentation
deploys inline monitors that duplicate all conditional jumps in their successor blocks to report test inversions. We
implement the instrumentation as follows.

In BISM, we use built-in features to duplicate all conditional jumps utilizing the ability to insert raw bytecode
instructions. In particular, we use the instrumentation selector beforeInstruction to capture conditional
jumps. To extract the opcode for each conditional jump, we use the static context object Instruction, and
to duplicate the operand values on the stack, we use the advice method insert3. We then use the control-flow
instrumentation locators4 to capture the successor blocks executing after every conditional jump. Finally, at the
beginning of these blocks, we utilize insert to duplicate the conditional jump instruction. A transformer that
detects test inversions and reinforces the control flow integrity can be found in Section 10.6.3.

In DiSL, we implement a custom StaticContext object to retrieve information from conditional jump instruc-
tions, such as the indices of jump targets and instruction opcodes. Note, we use multiple BytecodeMarker

2More details about the experiments and the material needed to reproduce them can be found at https://gitlab.inria.fr/bism/bism-experiments.
3Extracting stack values can be also alternatively achieved using dynamic context method getStackValue and adding new local

variables.
4OnTrueBranchEnter,onFalseBranchEnter.

THESIS 117 Chukri Soueidi

https://gitlab.inria.fr/bism/bism-experiments

CHAPTER 9. EVALUATION

Table 9.2: Number of emitted events in AES experiment.

Plain-text size (KB) 20 21 22 23 24 25 26 27 28

Events (M) 0.9 1.8 3.6 7.3 14.9 29.5 58.5 117 233

snippets to capture all conditional jumps. To retrieve stack values, we use the dynamic context object. We then store
the extracted information in synthetic local variables, and we add a flag to specify that a jump has occurred. Finally,
on successor blocks, we map opcodes to Java syntax to re-evaluate conditional jumps using switch statements.

100

100.5

101

101.5

102

102.5

103

20 21 22 23 24 25 26 27 28

Original DiSL BISM

Figure 9.1: AES load-time instrumentation runtime (ms).

Load-time evaluation. We consider different sizes of the plain text to be encrypted by AES. Figure 9.1 reports
runtime with respect to plain-text size, in load-time mode. BISM shows better performance over DiSL for all
plain-text sizes. We do not measure the used memory because DiSL performs instrumentation on a separate JVM
process which imposes a huge memory overhead. Also, AspectJ is excluded from this experiment as it cannot
capture control-flow events.

Build-time evaluation. We replace the original classes of AES with independently instrumented classes from
each tool. Figure 9.2 reports the runtime and used memory in build-time mode depending on plain-text size. BISM
shows less overhead than DiSL in both runtime and used memory for all plain-text sizes. Moreover, BISM incurs a
relatively small overhead for all plain-text sizes. Table 9.2 reports the number of generated events (corresponding to
conditional jumps) after running the code (in millions). The bytecode size of the original AES class is 9 KB. After
instrumentation, the bytecode size is 10 KB (+11.11%) for BISM, and 128 KB (+1,322%) for DiSL. So, BISM
incurs less bytecode-size overhead than DiSL. The significant overhead in DiSL is due to the inability to inline the
monitor in bytecode and having to instrument it in Java. We note that it is not straightforward in DiSL to extract
control-flow information in Markers, whereas BISM provides this out-of-the-box.

9.2.3 Financial Transaction System
Experimental setup. We compare BISM with DiSL and AspectJ in a runtime verification scenario to monitor
some properties of a financial transaction system. We use the implementation from CRV-14 [BFB+19a] to monitor
the following properties:

• Property P1: Only users based in certain countries can be Silver or Gold users.

• Property P2: The transaction system must be initialized before any user logs in.

• Property P3: No account may end up with a negative balance after being accessed.

• Property P4: An account approved by the administrator may not have the same account number as any other
already existing account in the system.

INRIA - February 2024 118 Chukri Soueidi

9.2: Evaluating BISM

100

100.5

101

101.5

102

102.5

20 21 22 23 24 25 26 27 28

Original DiSL BISM

(a) Runtime (ms).

0

2000

4000

6000

20 21 22 23 24 25 26 27 28

Original DiSL BISM

(b) Used memory (KB).

Figure 9.2: AES build-time instrumentation.

• Property P5: Once a user is disabled by the administrator, he or she may not withdraw from an account until
being activated again by the administrator.

• Property P6: Once greylisted, a user must perform at least three deposits from external before being
whitelisted.

• Property P7: No user may request more than 10 new accounts in a single session.

• Property P8: The administrator must reconcile accounts every 1000 external transfers or an aggregate total of
one million dollars in external transfers.

• Property P9: A user may not have more than three active sessions at once.

• Property P10: Transfers may only be made during an active session (i.e., between a login and logout).

For each property using a set of events, we instrument the financial transaction system to generate those events.
Such events mainly correspond on the system to method call with parameters or class field updates. For example,
monitoring Property P6 requires the following events: greylistUser(id), depositFromExternal(id)
and whitelistUser(id), where id is a unique user identifier. As test suite, we implement a custom set of
scenarios that covers all of the above properties, and an external monitor library with stub methods that only count
the number of received events. We implement instrumentation as follows:

• In BISM, we use the static context provided at method-call instrumentation selectors5 to filter methods by their
names and owners. To access the method calls’ receivers and results, we utilize methods getMethodArgs
and getMethodResult available in dynamic contexts. We then use argument processors and dynamic
context objects to access dynamic values and pass them to the monitor. The extracted values are then passed
to the monitor by invoking its appropriate method.

• In DiSL, we implement custom Markers to capture the needed method calls and use argument processors and
dynamic context objects to access dynamic values. We note that it required to create a custom marker for
each method call, which resulted in implementing 28 different marker classes.

• In AspectJ, we use the call pointcut, type pattern matching, and join point static information to capture
method calls and write custom advices that invoke the monitor.

Load-time evaluation. Figure 9.3 reports the runtime and used memory for the considered properties in load-time
mode (excluding DiSL in the case of used memory). BISM shows better performance over DiSL and AspectJ for
properties P2, P5, P6, P8, and P10, for five properties out of ten. Whereas DiSL shows the best performance for P3
and P4, and AspectJ shows the best performance for properties P1, P7, and P9. The similar results of the tools is
due to the fact that each property monitor augments the base program with a small number of advices at limited

5beforeMethodCall, afterMethodCall.

THESIS 119 Chukri Soueidi

CHAPTER 9. EVALUATION

0

200

400

600

800

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Original DiSL AspectJ BISM

(a) Runtime (ms).

0

5000

10000

15000

20000

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Original AspectJ BISM

(b) Used memory (KB).

Figure 9.3: Financial transaction system load-time instrumentation.

0

200

400

600

800

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Original DiSL AspectJ BISM

(a) Runtime (ms).

0

2500

5000

7500

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Original DiSL AspectJ BISM

(b) Used memory (KB).

Figure 9.4: Financial transaction system build-time instrumentation.

locations, ranging between two and five advices per property. Hence, the results in load-time mode reflect the
execution time of the woven advice more than the instrumentation overhead. Concerning used memory, BISM
incurs much lower overhead than AspectJ for all properties.

Build-time evaluation. We replace the original classes of the scenarios with statically instrumented classes from
each tool. Figure 9.4 reports the runtime and used memory for the considered properties in build-time mode. BISM
shows less runtime and used-memory overheads than both DiSL and AspectJ for all properties. Table 9.3 reports
the number of generated events after running the code (in thousands). The bytecode size of the classes of the
overall original scenarios is 44 KB. After instrumentation, the bytecode size is 56 KB (+27.27%) for BISM, 84 KB
(+90.9%) for DiSL, and 116 KB (+163.63%) for AspectJ. Hence, BISM incurs less bytecode-size overhead than
both DiSL and AspectJ.

Table 9.3: Number of events generated by the financial transaction system for each monitored property.

Property P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Events (k) 10 10 11 33 71 69 125 104 192 154

INRIA - February 2024 120 Chukri Soueidi

9.2: Evaluating BISM

9.2.4 DaCapo Benchmarks
Experimental setup. We compare BISM with DiSL and AspectJ in a general runtime verification scenario.
We instrument the benchmarks in the DaCapo suite [BGH+06a] (dacapo-9.12-bach), to monitor for the classical
HasNext, UnSafeIterator, and SafeSyncMap properties. The HasNext property specifies that a program should
always call method hasNext() before calling method next() on an iterator. The UnSafeIterator property
specifies that a collection should not be updated when an iterator associated with it is being used. The SafeSyncMap
property specifies that a map should not be updated when an iterator associated with it is being used. We only target
the packages specific to each benchmark and do not limit our scope to java.util types; instead, we match freely
by type and method name. We implement an external monitor library with stub methods that only count the number
of received events. We implement the instrumentation similarly to the second experiment:

• In BISM, we use the static context provided at method-call instrumentation selectors to filter methods.

• In DiSL, we implement custom Markers to capture the needed method calls.

• In AspectJ, we use the call pointcut, type pattern matching, and join point static information to capture
method calls.

We choose the following benchmarks: avrora, batik, fop, h2, pmd, sunflow and xalan. For each benchmark, Dacapo
provides a small, default and large workload. We choose the default workload which includes a number of warm-up
runs performed internally.

0

2500

5000

7500

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

(a) Runtime (ms).

0

100

200

300

avrora batik fop h2 pmd sunflow xalan

Original AspectJ BISM

(b) Used memory (MB).

Figure 9.5: DaCapo load-time instrumentation.

Load-time evaluation. Figure 9.5 reports the runtime for the benchmarks. BISM shows better performance over
DiSL and AspectJ in all benchmarks. DiSL shows better performance than AspectJ except for the pmd benchmark.
For the pmd benchmark, this is mainly due to the fewer events emitted by AspectJ (see Table 9.5). We notice that
AspectJ captures fewer events in benchmarks batik, fop, pmd, and sunflow. This is due to its inability to instrument
synthetic bridge methods generated by the compiler after type erasure in generic types. BISM also shows less
used-memory overhead over AspectJ in all benchmarks. Let us mention that we did not measure the used memory
for DiSL since it performs instrumentation on a separate JVM process.

Build-time evaluation. We replace the original classes in the benchmarks with statically instrumented classes
from each tool. Figure 9.6 reports the runtime and used memory of the benchmarks. BISM shows less runtime
overhead in all benchmarks, except for batik where AspectJ emits fewer events. BISM also shows less used-memory
overhead, except for sunflow, where AspectJ emits much fewer events.

Table 9.5 compares the instrumented bytecode. We report the number of classes in scope (Scope) and the
instrumented (Instr.), and we measure the bytecode-size overhead (Ovh.) for each tool. We also report the number
of generated events after running the code (in millions). BISM and DiSL generate the same number of events,
while Aspect (AJ) produces fewer events because of the reasons mentioned above. The results show that BISM

THESIS 121 Chukri Soueidi

CHAPTER 9. EVALUATION

0

2500

5000

7500

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

(a) Runtime (ms).

0

100

200

300

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

(b) Used memory (MB).

Figure 9.6: DaCapo build-time instrumentation.

Benchmark Scope Instr. Ref. BISM DiSL AspectJ Events (M)
KB KB Ovh.% KB Ovh.% KB Ovh.% # AspectJ

avrora 1,550 35 257 264 2.72 270 5.06 345 34.24 2.5 2.5
batik 2,689 136 1,544 1,572 1.81 1,588 2.85 1,692 9.59 0.5 0.4

fop 1,336 172 1,784 1,808 1.35 1,876 5.16 2,267 27.07 1.6 1.5
h2 472 61 694 704 1.44 720 3.75 956 37.75 28 28

pmd 721 90 756 774 2.38 794 5.03 980 29.63 6.6 6.3
sunflow 221 8 69 71 2.90 74 7.25 85 23.19 3.9 2.6

xalan 661 9 100 101 1.00 103 3.00 116 16.00 1 1

Table 9.4: For each benchmark in the DaCapo experiment, the table reports the number of classes in the scope
of instrumentation (Scope), the instrumented classes (Instr.), the original (Ref.) and generated bytecode size and
overhead per tool, and the number of emitted events, (#) for BISM and DiSL, and AspectJ separately.

incurs less bytecode-size overhead for all benchmarks. We notice that even with exception-handlers turned off,
DiSL still wraps a targeted region with try-finally blocks when the @After annotation is used. This guarantees
that an event is emitted after a method call, even if an exception is thrown.

9.2.5 Threats to Validity

One of the threats to the validity of our experiments is the non-determinism of the DaCapo benchmarks: avrora,
h2, pmd, sunfow, and xalan. We mitigate this by measuring the mean execution times over 100 runs. We also
measure dispersion (variance and standard deviation) and report it in the graphs. Another threat to validity is the
possible overhead caused by additional features found in DiSL and AspectJ. DiSL wraps its instrumented code with
exception handling and a dynamic bypass check. We mitigate this by disabling any source of additional overhead
in DiSL, to put it in the best configuration for performance comparison. Whereas, AspectJ generates additional
classes that contain the implemented advice at each instrumentation point. However, there is nothing we can do as
AspectJ is not customizable and not compatible with inline instrumentation.

9.3 Evaluating the BISM DSL

In this section, we provide an assessment of the DSL we presented in Chapter 5, specifically focusing on the
overhead it introduces and the user experience. The full details for the experiments can be found at [SFc].

INRIA - February 2024 122 Chukri Soueidi

9.3: Evaluating the BISM DSL

AspectJ DSL AspectJ API BISM DSL BISM API
0.0

0.5

1.0

1.5

2.0

2.5

(a) Mean execution time in seconds.

Time

Errors

Lines

Difficulty

API
DSL

(b) Comparison of API and DSL.

9.3.1 Performance Evaluation

For this evaluation, we compare the performance of the DSL with the BISM API and AspectJ approaches. We
use the financial transaction system from [BFB+19a], instrumenting it to extract events from method calls, field
operations, and method executions. We test four distinct approaches: (1) AspectJ DSL, in which an aspect (.aj)
is written with the DSL; (2) AspectJ API, in which an aspect is written in Java syntax using annotations; (3)
BISM DSL, our proposed DSL developed for BISM; and (4) BISM API, in which classical BISM transformers
are written. In order to ensure a fair comparison, we used features that are common across all four approaches.

Each benchmark was run 20 times and the results are reported 6. The results showed that BISM API outperforms
the other methods, running 1.14 times faster than BISM DSL, 1.7 times faster than AspectJ API, and 3.25 times
faster than AspectJ DSL. The performance results are illustrated in Figure 9.7a. This demonstrates that specifying
instrumentation using the API generally leads to faster execution due to the extra delay incurred in DSL approaches
from parsing the specification files. However, our proposed DSL outperforms AspectJ DSL and is even faster than
AspectJ API, highlighting the effectiveness and efficiency of our DSL in the context of software monitoring and
instrumentation.

9.3.2 User Experience Evaluation

Experiment design. We conducted an experiment in which 10 participants, with various experience levels in
Java and runtime verification, were instructed to write transformers for monitoring four different properties sourced
from [BFB+19b] using both methods. The experiment used a randomized block design. The participants were
randomly divided into two equal groups: Group A and Group B. Group A used the API for Properties 1 and 3 and
the DSL for Properties 2 and 4. In contrast, Group B used the DSL for Properties 1 and 3 and the API for Properties
2 and 4. This design allowed each participant to gain experience with both methods, enabling a fair comparison
between the two techniques across all properties.

Collected metrics. For each property, the participants are asked to record the time they took to write the
instrumentation, reported in minutes (Time). They also kept track of the number of mistakes they made during the
process that necessitated recompilation and another run (Errors). In addition, the number of lines of code written
for each transformer was noted, (Lines). Lastly, participants rated the difficulty of use on a scale of 1 to 5, where 1
signified very easy and 5 meant very hard, (Difficulty).

6The experiment utilized AspectJ AJC 1.9.7 and JDK 11.

THESIS 123 Chukri Soueidi

CHAPTER 9. EVALUATION

Results and analysis. In Figure 9.7b, we report each metric normalized to a 0-1 range based on their respective
minimum and maximum values. The results indicate a clear advantage of the DSL over the API for writing BISM
transformers. Across all properties tested, the DSL not only needed significantly less time to implement but also
resulted in fewer errors and less code. Furthermore, participants found the DSL easier to use. The good results
of the DSL can be largely attributed to its concise syntax and straightforward usage. However, it is important to
note that a considerable portion of errors in DSL mode were caused by improper referencing of the monitor and
its package name, and the need for full specification of return types in patterns. Future iterations of the DSL will
address these pattern specification issues.

9.4 Evaluating the Residual Analysis

We now report on our evaluation of the effectiveness of our approach. Full details can be found at [SFd].

Experimental setup. We compare the instrumentation overhead with our residual analysis, denoted by RRV, and
without the analysis, denoted by RV. We instrument with BISM the programs, in the DaCapo suite [BGH+06a],
for the monitoring of the classical SafeListIterator (P1), SafeMapIterator (P2), and SafeHasNext
(P3) properties. (P3) specifies that a program does not call the next method before calling the hasNext method
of an iterator. We include as escape events (#) all assignments to class fields, all method calls that pass objects by
references, and in addition, return statements that return objects [CGS+99]. We include in the SafeList all calls
to methods of Java classes. Other than the method calls relevant to the property and captured by instrumentation,
these calls do not produce events. We note that fop is the only single-threaded benchmark, however, we can use the
multi-threaded benchmarks as we checked that for the properties all the events in the projected traces are being
produced within the same thread. We consider 100 runs and then calculate the mean and the standard deviation7.

Evaluation metrics. We consider the number of affected instructions, methods, and classes by our residual
analysis (RRV) and without it (RV). We also consider the improvement factor. We are also interested in evaluating
the runtime overhead, that is, the performance degradation caused by instrumentation for monitoring. For runtime,
we measure the execution time of the instrumented program. For used memory, we measure the used heap and
non-heap memory after a forced garbage collection.

Table 9.5: For each program (Bench), and property (P1), (P2), and (P3), we report # of relevant classes, methods,
and instructions (Rel) producing events, number proved safe statically by our technique (Nop), # of events produced
at runtime (RV) and after our analysis (RRV), improvement factor for # of instructions instrumented and events
produced (Imp). K = 103, M = 106.

Bench Property # Classes # Methods # Instructions # Events

Rel Nop Rel Nop Rel Nop Imp RV RRV Imp

avrora P1 41 14 99 56 165 86 2.09 1.36M 1.36M 1.00
fop P1 123 33 275 103 700 210 1.43 729K 490K 1.49

sunflow P1 11 2 35 15 50 15 1.43 2.55M 1.27M 2.00
pmd P1 86 27 200 95 420 146 1.53 4.77M 778K 6.13

avrora P2 41 19 111 78 160 117 3.72 353K 246K 1.43
fop P2 100 28 206 85 2.9K 2.6K 9.19 545K 351K 1.55

sunflow P2 11 6 32 24 40 26 2.86 2.55M 1.27M 2.00
pmd P2 81 27 168 70 392 211 2.17 3.01M 2.6M 1.16

avrora P3 32 11 76 33 160 79 1.98 1.5M 1.29M 1.16
fop P3 70 7 145 31 376 67 1.22 1.07M 882K 1.21

sunflow P3 8 2 12 3 29 3 1.12 3.93M 2.65M 1.48
pmd P3 65 21 126 48 343 115 1.50 5.64M 5.23M 1.08

7We use Java JDK 8u251 with 16 GB maximum heap size on an Intel Core i9-9980HK (2.4 GHz. 16 GB RAM). We use the DaCapo version
9.12-bach.

INRIA - February 2024 124 Chukri Soueidi

9.5: Evaluating Concurrent Traces

0

1000

2000

3000

4000

5000

avrora fop pmd sunflow

Original RRV RV

(a) Execution time (ms).

0

20

40

60

80

avrora fop pmd sunflow

Original RRV RV

(b) Used memory (MB).

Figure 9.8: Evaluation for the three properties.

Results. In Table 9.5, we report the results. The table demonstrates the effectiveness of the residual analysis as
it reduces the number of instrumentation points by a factor of 2.5 on average (reaching 9.19), and accordingly, a
reduction in the number of generated events at runtime by a factor of 1.8 on average (reaching 6.13). We notice that
the reduction of instrumentation points does not always result in a reduction of runtime events for instance with
avrora with (P1), where we find methods that produce most of the events that we could not prove safe statically. We
also notice that most of our missed optimizations are due to escape # events (see Section 6.3.2). The more diverse
operations between events, the more missed optimization. However, the SafeList can be improved with the help of
escape analysis to include more instructions that we can guarantee are safe for our analysis and accordingly reduce
the number of escape events. We leave that for future work as we envision adding plugins to incorporate static
analysis. We also note that many of the events generated under classical instrumentation (RV) are irrelevant; they
occur in methods that do not produce enough events to reach a final state in the monitor. As such, our analysis is
effective in removing those from instrumentation. Figures 9.8 report the execution time and the memory usage for
the benchmarks with all three properties combined. The figures show that RRV results in better performance in all
benchmarks than classical instrumentation RV.

9.5 Evaluating Concurrent Traces
We demonstrate the effectiveness of our approach for capturing sound and faithful traces from Chapter 7. All
experiments can be found in the artifact repository [SFa].

9.5.1 Effectiveness and Cost
We measure the effectiveness and cost of obtaining sound and faithful concurrent traces. Apart from tools dedicated
to data races and atomicity violation detection, we found no available tools targeting general behavioral properties
to compare with; tools that can establish causal order and instrument various custom regular actions from the
program for monitoring. As such, we implemented the algorithm from [RS04], used in [SRA03, JS08, CSR08].
The implementation uses the same vector clock data structures, tree clocks [MPTV22], as in FACTS.

Experimental setup. We pick for our evaluation real-world Java applications from Renaissance [PRL+19] and
DaCapo Benchmarks [BGH+06b], and synthetic programs from [HS12a]. We monitor properties that can be

THESIS 125 Chukri Soueidi

CHAPTER 9. EVALUATION

expressed with total order formalisms to demonstrate our work and show how concurrent traces can help existing
monitoring approaches adapt to concurrent programs. We compare three concurrent trace collection approaches:
with FACTS in both asynchronous and synchronous modes, and with Algorithm A from [RS04] which cannot be
run in asynchronous mode.

We also collect linear traces as collected by Java-MOP [CR05a] and show the number of ordering corrections made
with concurrent traces. We instrument the programs to collect property-related events and for concurrent traces
also capture synchronization actions such as thread operations, synchronized blocks and methods, locks, reads and
writes to shared variables, and spawning actors [Agh86] in Akka [Akk22].

Benchmarks and specification.x The benchmarks are chosen to span different concurrency primitives such
as thread operations, synchronized blocks, and methods, lock operations, reads and writes, and spawning ac-
tors [Agh86] in Akka [Akk22].

Program akka-uct performs load balancing of tasks using an Unbalanced Cobwebbed Tree computation with
Akka [Akk22]. Worker tasks with different priorities, urgent and normal, are completed using actor nodes. We
monitor a response property stating that between the submission and the execution of a task with normal priority
(events q and r resp.) if an urgent task is submitted (event p) it should execute (event s) in between q and r.
The property is identical to P1 from Ex. 35. We have ID = {⟨s, q⟩} which is passed to FACTS. We specify
instrumentation to extract events from within the execution of the nodes and target node creation and send messages
for synchronization actions.

Program future-genetic executes a genetic algorithm optimization function using Jenetics [Jen18]. The program
has a sequence of parallel tasks executing with contention between them. We check whether dependent tasks
execute in parallel. The task execution is instrumented and delimited with a before task and after task events (bt
and at respectively). The property is a mutual exclusion property similar to P2 from Ex. 35 without q3 and the read
events. Here ID is empty and passed to FACTS. We specify instrumentation to capture events that execute within
the tasks and target synchronized blocks and methods and thread forks for synchronization.

We target type-state properties [SY86a] with the Dacapo benchmarks avrora and fop. We collect traces to monitor
the SafeIterator property that specifies that no thread should update a collection while another thread iterates over
it, and the HasNext property that requires calling hasNext() on an iterator before calling the next() operation.
With FACTS, events are extracted with runtime information so that they are matched in a parametric monitoring
setup [CR09]. Most of the Dacapo programs synchronize using synchronized blocks and methods, so we target
those for collecting SAs. For both properties, ID is empty and all events are expected to be ordered.

We also run an implementation of the Bakery lock algorithm [Lam74], bakery (f). The algorithm performs
synchronization using reads and writes. We introduce a bug such that synchronization between threads is faulty. We
check if events in the critical section are not overlapping, i.e., atomic. We also include a classic producer-consumer
program, prods-cons (f), which performs synchronization with locks. We also introduce a bug in locking consumers
which would spontaneously produce events without acquiring the lock of the shared resource. For both, we are
checking a property similar to P2 from Ex. 35, as such, a similar ID is passed to FACTS.

Results and analysis. Fig. 9.9a report the mean execution time for 20 runs of the benchmarked programs. We
first note that FACTS was capable of producing sound and faithful traces from all benchmarks as no marginal cases
(i.e. conflicting writes) were reported from our vector clock algorithm, even for the bakery for instance which relies
solely on reads and writes for synchronization. Second, running the algorithm in asynchronous mode, FACTS
(async), interferes minimally with the program as it incurs a considerably low overhead in most of the benchmarks.
Third, FACTS (sync) performs better than Algorithm A in most of the benchmarks. We fairly believe that our
algorithm interferes less with parallelism in the programs as it imposes finer-grained synchronization than Algorithm
A. This is highlighted with the bakery algorithm which synchronizes only using shared variables. Algorithm A
requires the update of vector clocks associated with a read or write to be atomic through synchronization, while our
algorithm does not. This causes the threads to spin more as more contention is added with Algorithm A. Forth,
for future-genetic and akka-uct, these programs use parallel tasks and message-passing (resp.) for managing
concurrency. We can see how capturing concurrent traces synchronously from them interferes severely with their
behavior. Algorithm A and FACTS (sync) timed out with future-genetic, while for akka-uct, Algorithm A is not
intended to handle message passing. Monitoring programs that use concurrency primitives with higher levels of
abstraction need better adaption in the future; for now, we better observe and monitor them asynchronously.

INRIA - February 2024 126 Chukri Soueidi

9.5: Evaluating Concurrent Traces

0

5

10

avrora fop bakery prodcons akka−uct genetic

Org FACTS (async) FACTS (sync) Alg. A (sync)

(a) Execution time (s) with trace reordering.

t-Mon
akka-uct ✗

future-genetic ✓
avrora ✓

fop ✓
bakery ✓

prods-cons ✓
bakery (f) ✗

prods-cons (f) ✗

(b) Trace Monitorability.

t-Mon Verdict

✓ T: 100% F: 0%
✗ T: 32% F: 68%

(c) Monitoring Soundness.

Figure 9.9: Experimentation Results.
Table 9.6: The table reports for each benchmark: the number of threads (Tr), execution time in seconds of the
benchmark (Exec), # of events (E) and their type (Type: S for synchronized, P for parallel), # of synchronization
action captured (SA) for FACTS, vector clock algorithm time in sec (VCA), monitorability check t-Mon, # of
faulty pair orderings (Faulty pairs) from linear traces. K = 103, M = 106.

ORG FACTS Linear Traces

Tr Exec |E| Type |SA| VCA Exec t-Mon Faulty Exec
akka-uct 64 3.3 1.28M P+S 3.2M 7.1 6.1 ✗ 686K 4.91

future-genetic 18 2.4 17M P+S 1.26M 18.1 9.2 ✓ - 9.1
avrora 8 4.5 2.5M P+S 3.2M 2.9 5.7 ✓ - 4.75

fop 1 1.2 1.6M S 7K 0.6 2.47 ✓ - 2.2
bakery 4 0.1 400K S 9.3M 7.4 4.5 ✓ - 0.17

prods-cons 28 0.002 112K S 242K 0.4 0.13 ✓ - 0.06
bakery (f) 4 0.1 400K S 8M 6.5 4.3 ✗ 75K 0.16

prods-cons (f) 28 0.002 112K S 212K 0.4 0.11 ✗ 21K 0.06

Table 9.9b, reports on the monitorability of the collected traces. The monitor is warned when t-Mon is false
as it may produce unsound verdicts. We introduce two buggy implementations prods-cons (f) and bakery (f),
where synchronization between threads is faulty and events execute without acquiring the locks, leading to missing
orderings in the executions (resp. the trace). We use both a correct implementation where t-Mon = ⊤ and the
faulty one where t-Mon = ⊥. We monitor with Java-MOP [CR05a] and collect the verdicts. A true verdict (T)
means the property is not violated. We report the results of 100 executions in Table 9.9c. We find that monitoring
with t-Mon = ⊤ yields a verdict true (32%) for some executions, while for others, it yields false (68%). FACTS is
capable of producing warnings in all executions of the faulty programs. In the correct program, verdicts are indeed
consistent because the execution of the events themselves is linearized.

Fig. 9.10 reports also in addition to the execution times of the programs the execution times for the vector clock
algorithms (labeled VCA). For (async) the algorithm time is excluded from the execution time.

Table 9.6 reports more details about the execution. The detected faulty pairs correspond to unordered events in
the execution that are arbitrarily ordered with linear traces. Their order differs in each execution depending on
the scheduler of the execution environment. However, they are captured correctly with concurrent traces. The
main result we have is that FACTS is capable of reporting the missing orderings and warns the monitor that the
execution is not monitorable. For akka-uct, urgent and normal tasks are executed concurrently. The concurrent

THESIS 127 Chukri Soueidi

CHAPTER 9. EVALUATION

0

5000

10000

avrora fop bakery prodcons akka−uct genetic

Org
Ex. with FACTS (async)

FACTS VCA (async)
Ex. with FACTS(sync)

VCA FACTS(sync)
Ex. with Alg. A (sync)

Alg. A VCA (sync)

Figure 9.10: Execution time (s) with vector clock algorithm running times.

trace is not enough and monitoring with linear traces produces unsound verdicts. For bakery and prods-cons,
the locking mechanism is faulty. Although the events are collected from supposedly synchronized regions, one
should never assume atomicity between events as one might be monitoring to check the atomicity assumption in
the first place. For avrora, the related events are all synchronized as they are produced by the same threads, and
hence here one can use linear traces. For fop, running on a single thread, linear traces are ideal and can be safely
used. For future-genetic, no reported faulty pairs as it seems related events are properly ordered. The execution
times with FACTS show that the cost is high when collecting representative traces. Compared to linear traces, the
overhead in the execution (Exec) is expected as FACTS is collecting extra synchronization actions. In many cases,
they are more than property events. However, the overhead can be reduced by targeting frameworks that provide
higher-level abstractions of concurrency and are built on top of low-level primitives, such as actor systems and
fork-join frameworks.

9.5.2 Causal Dependence Relation in Specification Patterns

We evaluate how much faithfulness can be relaxed while still being able to soundly monitor an execution. We
extract the independence relation ID of 55 event-based property specifications from [DAC99, Pat] written as
Quantified Regular Expressions (QREs). These specifications span commonly occurring patterns in the verification
of programs. They are classified into occurrence patterns (first two in green in Fig. 9.11) that target the occurrence
of a given event, and order patterns (in purple) that target the relative order in which multiple events occur during
execution. An example of an order pattern is the precedence property: some event S precedes some event P, which
can be used to specify a requirement that a resource can only be granted in response to a request.

For each specification, we generate an automaton and run Algorithm 3 to find pairs in Σ×Σwith causal independence.
We do not count pairs with the same symbol as these are in ID by definition. For an automaton with the alphabet
Σ, the total number of relevent pairs we consider is then (|Σ| × |Σ|) − |Σ|. The patterns contain specifications that
vary in |Σ| ranging from 1 to 6 letters, we exclude single-letter specifications. For example, for the property s
precedes p, we find that the pair (s, p) is not in ID. However, for the property s precedes p before r, we find that
the pair (s, r) in ID. When monitoring such a property, the concurrent traces are still monitorable even when S and
R are not ordered, hence, only requiring order between (s, p) and (p, r). Fig. 9.11 reports the average percentage
of pairs in ID grouped by pattern and alphabet size. We notice higher percentages for order patterns, which are

INRIA - February 2024 128 Chukri Soueidi

9.6: Evaluating the Opportunistic Monitoring

2 3 2 3 4 2 3 4 3 4 5 2 3 4 3 4 5 4 5 6
0%

10%

20%

30%

40%

Absence,
Existence

Universality Precedence Precedence
Chain

Response Response
Chain

Constrained
Chain

Figure 9.11: Percentage of pairs in ID grouped by pattern and alphabet size.

quite common when specifying properties for concurrent programs. For instance, precedence and response patterns
often go together and allow users to specify properties over the order of events performed by different threads. The
results show that most specifications contain pairs with causal independence, and that faithfulness can be often
relaxed when monitoring concurrent programs.

9.6 Evaluating the Opportunistic Monitoring
We here evaluate the opportunistic monitoring approach we presented in Chapter 8. We first opportunistically
monitor readers-writers, using the specification found in Example 42. We then demonstrate our approach with
classical concurrent programs. Full details about these experiments are available at [SF23a].

9.6.1 Readers-Writers
Experiment setup. We instrument the readers-writers program to include our monitoring approach and compare
it with a global monitoring approach using a specially designed aspect in AspectJ. We consider three distinct
scenarios: non-monitored, global, and opportunistic monitoring.

In the non-monitored scenario, there is no monitoring activity. For the second and third scenarios, global and
opportunistic monitoring are employed, respectively. It is important to note that global monitoring necessitates
additional locks at the monitor level for all concurrently occurring events. We ensure the program’s correct
synchronization and absence of data races using RVPredict [HMR14b].

Measures. We identify two key parameters: the number of readers (nreaders), and the width of the concurrency
region (cwidth). nreaders is used to specify the maximum number of parallel threads checking local properties
within a particular concurrency region. cwidth, meanwhile, quantifies the number of concurrent read operations
each reader executes when acquiring the lock, measured in terms of the number of read events.

An increase in the size of the concurrency regions results in increased lock contention, especially when multiple
concurrent events lead to the global monitor engaging a lock. For our experiments, we set the number of writers to
match the values of nreaders, which vary across a range including {1, 3, 7, 15, 23, 31, 63, 127}. Similarly, cwidth
takes values from the set {1, 5, 10, 15, 30, 60, 100,150}. The experiment involves 100,000 write operations and
400,000 read operations, with the reads evenly distributed among the readers. We measure the execution time (in
milliseconds) across 50 iterations of the program for each combination of parameters and scenarios.

Preliminary results. We present the results using averages and illustrate them with scatter plots and linear
regression curves in Figures 9.12 and 9.13. Figure 9.12 demonstrates the overhead change as the number of readers
(nreaders) varies. In the non-monitored base program, the execution time increases due to the rising lock contention

THESIS 129 Chukri Soueidi

CHAPTER 9. EVALUATION

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

500

1000

1500

1 3 7 15 23 31 63 127
Number of Readers

E
xe

cu
tio

n
T

im
e

(m
s

lo
gs

ca
le

)

Approach

●

●

●

Non−Monitored

Global

Opportunistic

Figure 9.12: Execution time for readers-writers when varying the number of readers.

and the Java Virtual Machine (JVM) managing more threads. In global monitoring, the overhead predictably
increases with the growing number of threads. As the number of readers increases, the program faces blockages on
reads, which ideally should occur concurrently. In opportunistic monitoring, we observe a stable runtime compared
to the original program, due to the lack of additional locks and only the delay from evaluating local and scope
properties affecting it. Figure 9.13 examines the overhead with changes in the concurrency region’s width (cwidth).
For the base program, we note a decrease in execution time as more reads happen concurrently without contention
on the shared resource lock. In global monitoring, a slight decrease occurs, while opportunistic monitoring shows
a more substantial reduction. The increase in concurrent events within a concurrency region brings to light the
overhead caused by the global monitor’s locking. The global monitor needs to lock to linearize the trace, impacting
concurrency. Comparing the patterns of global and opportunistic monitoring reveals that opportunistic monitoring
closely follows the speed improvement seen in the non-monitored program, while global monitoring is significantly
slower. We anticipated opportunistic monitoring to show a positive performance impact when concurrency regions
have a high density of events.

9.6.2 Other Benchmarks

We target classical benchmarks that use different concurrency primitives to synchronize threads. We perform global
and opportunistic monitoring and report our results using the averages of 100 runs in Figure 9.14. We use an
implementation of the Bakery lock algorithm [Lam74], for two threads 2-bakery and n threads n-bakery. The
algorithm performs synchronization using reads and writes on shared variables and guarantees mutual exclusion on
the critical section. As such, we monitor the program for the bounded waiting property which specifies that a process
should not wait for more than a limited number of turns before entering the critical section. For opportunistic

INRIA - February 2024 130 Chukri Soueidi

9.6: Evaluating the Opportunistic Monitoring

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

500

15001500

1 5 10 15 30 60 100 150
Concurrency Region Size (events)

E
xe

cu
tio

n
T

im
e

(m
s

lo
gs

ca
le

)

Approach

●

●

●

Non−Monitored

Global

Opportunistic

Figure 9.13: Execution time varying the number of events in the concurrency region.

monitoring, thread-local monitors are deployed on each thread to monitor if the thread acquires the critical section.
Scope monitors check if a thread is waiting for more than n turns before entering the critical section. We notice
slightly less overhead with opportunistic than global for 2-bakery and more overhead with opportunistic on n-bakery.
This is because of the small concurrency region (cwidth) which is equal to 1. As such, the overhead of evaluating
local and scope monitors by several threads, having a cwidth of 1, exceeds the gain in performance achieved by our
approach and hence not fitting for opportunistic monitoring.

We also monitor a textbook example of Ping-Pong algorithm [GR92] that is used for instance in databases and
routing protocols. The algorithm synchronizes, using reads and writes on shared variables and busy waiting,
between two threads producing events pi for the pinging thread and po for the pong thread. We monitor for the
alternation property specified as φ def

= (ping =⇒ Xpong) ∧ (pong =⇒ Xping). We also include a classic
producer-consumer program from [HS12b] which uses a concurrent FIFO queue using locks and conditions. We
monitor the precedence property, which specifies the requirement that a consume (event c) is preceded by a produce
(event p), expressed in LTL as ¬c W p. For both above benchmarks, we observe less overhead when monitoring
with opportunistic, since no additional locks are being enforced on the execution.

We also monitor a parallel mergesort algorithm which is a divide-and-conquer algorithm to sort an array. The
algorithm uses the fork-join framework [Lea00] which recursively splits the array into sorting tasks that are handled
by different threads. We are interested in monitoring if a forked task is returning a correctly sorted array before
performing a merge. The monitoring step is expensive and linear in the size of the array as it involves scanning it.
For opportunistic, we use the joining of two subtasks as our synchronizing action and deploy scope monitors at
all levels of the recursive hierarchy. We observe less overhead when monitoring with opportunistic than global
monitoring, as concurrent threads do not have to wait at each monitoring step. This benchmark motivates us to

THESIS 131 Chukri Soueidi

CHAPTER 9. EVALUATION

1

10

100

1000

2−bakery mergesort n−bakery ping−pong prods−cons

E
xe

cu
tio

n
T

im
e

(lo
gs

ca
le

 m
s)

Non−Monitored Global Opportunistic

Figure 9.14: Execution time of benchmarks.

further investigate other hierarchical models of computation where opportunistic RV can be used such as [DG08].

9.7 Conclusion
The results presented in this chapter validate our proposed methods and tools throughout this thesis. The evaluation
shows the fitness of BISM to be used as a generic tool for runtime verification of JVM-based languages. BISM
is capable of handling more use cases than other state-of-the-art tools, namely DiSL and AspectJ, and it is more
efficient in terms of performance and memory consumption. The additional DSL that is developed for BISM also
shows its effectiveness in terms of performance and ease of use.

The residual runtime verification evaluation shows its effectiveness in reducing the number of instrumentation
points and the corresponding impact on runtime performance. Such an analysis can be implemented easily within
BISM transformers using the same API that is used for instrumentation.

Moreover, for concurrent programs, the evaluation shows the ability of our proposed vector clock algorithm
implemented within FACTS to collect concurrent traces on the fly while interfering minimally with the program’s
execution compared to other trace collection approaches. We also showed how to assess a collected trace and
decide whether it is fit for monitoring or not while using automata-based properties. The opportunistic monitoring
assessment also shows how to monitor multithreaded programs without introducing additional synchronization or
significantly affecting program behavior.

INRIA - February 2024 132 Chukri Soueidi

CHAPTER 10

UseCases

Contents
10.1 Introduction 133
10.2 Law of Demeter Checker 134
10.3 Code Analysis of Programs 134

10.3.1 Mc Cabe Complexity. 136
10.3.2 ABC Complexity. 136
10.3.3 Unused Variables. 137

10.4 Obfuscation 137
10.4.1 Renaming Obfuscator 138
10.4.2 Junk Code Obfuscator 138

10.5 Mutation of Programs 139
10.5.1 Return Mutator: Value Mutation 139
10.5.2 Instruction Mutator: Operator Mutation 139
10.5.3 Void Call Mutator: Statement Mutation 140

10.6 Runtime Verification and Enforcement 141
10.6.1 Good Java Practices: HasNext Property 141
10.6.2 Concurrent Executions: Forcing Advice Atomicity 141
10.6.3 Test Inversion Attack Detection and Enforcement 141

10.7 Logging 143
10.8 Dynamic Profiling 143

10.8.1 Call Graph 143
10.8.2 Object Allocation 143

10.9 Dynamic Analysis with Complex Event Processing 145
10.10Conclusion 145

10.1 Introduction
In this chapter, we present several use cases to demonstrate the applicability of BISM in different contexts. We
aim here to demonstrate the ability of BISM to be used as a framework for bytecode analysis and instrumentation.
Note that all the use cases presented in this chapter can be implemented using bytecode manipulation libraries

133

CHAPTER 10. USECASES

such as ASM [BLC02] or Soot [VRCG+99]. The chapter is organized as follows. In Section 10.2, we use BISM to
detect violations of the Law of Demeter in a program. This property can be checked statically without executing
the program. In Section 10.3, we use BISM to compute several important code analysis metrics on a program.
In Section 10.4, we use BISM to obfuscate the program using two different techniques. In Section 10.5, we use
BISM in the context of mutation testing. We implement 3 different mutation operators and use BISM to apply
them to a program. In Section 10.6, we use BISM to enforce certain properties on the execution of a program.
In Section 10.7, we use BISM to log the execution of a program. In Section 10.8, we use BISM to profile the
execution of a program. In Section 10.9, we motivate the usage of BISM to implement a dynamic analysis tool
based on Complex Event Processing. In Section 10.10 we conclude the chapter.

10.2 Law of Demeter Checker
Our first use case checks a static property on a program using BISM. The Law of Demeter [Lie89] (LOD) is a
software engineering principle that states that a method in a class should have limited knowledge about other
classes. Specifically, it should only call methods of its class, methods of objects passed to it as arguments, objects
created locally within the method, and methods of static fields. This principle is aimed at reducing the coupling
between classes.

By adhering to the LOD, a class becomes less dependent on other classes, enhancing maintainability and the overall
structure of the code. In every method m of a class A, the calls are restricted to a specific set of classes:

• The class itself, i.e., A.

• Classes of the class fields of A.

• Classes of the method m parameters.

• Classes whose constructors are invoked in the method m body.

This restriction is crucial for ensuring that a class does not become overly reliant on the internal workings of other
classes, thereby promoting a more modular and robust design. Following the Law of Demeter leads to software that
is easier to maintain and extend. It fosters a design where classes are more isolated, reducing the impact of changes
in one part of the system on the rest.

Listing 10.1 shows a BISM transformer for checking the Law of Demeter. The transformer uses the method call join
points and filters for invocations of methods on objects. The onMethodEnter selector extracts the class name of
the method owner, the class names of the fields of the class and the class names of the method parameters to add
them to a set of allowed types. The beforeMethodCall extracts the class name of the method owner and checks
if it is in the set of allowed types. If it is not, it adds it to the map of potential violations. The onMethodExit
iterates over the map of potential violations and checks if the method owner is in the set of allowed types. If it is
not, it reports a violation.

Note that implementing such a checker in AspectJ is infeasible as it requires static context information that is
not available at weave time to the user. In [WL05], the authors present this use case as well as checking for side
effects in getter methods as motivation to implement an extension for AspectJ. They propose a solution that uses
statically executable advice which adds weave-time capabilities to AspectJ. With DiSL such a checker can be
implemented, however, it would require the user to run the program. We can see that implementing such static
checks is straightforward using BISM. The BISM transformer is implemented in a few lines of code and can analyze
the program statically without executing it.

10.3 Code Analysis of Programs
We consider the analysis of program codes along with quality metrics on class files. Software quality is a classic
concern in software engineering. Measuring software quality is instrumental in ensuring several properties such
as low technical debt, upgradable software, and secure coding. In [HWY09, KAX+99], white-box (i.e., based on
source code) analysis metrics are defined to measure quality, understandability, and maintainability. The higher level
of abstraction and the updatability of the source code (access to the documentation, comments, fully structured. . .)
are incentives for defining code analysis techniques on source code. As such, there is a lack of tools to compute
quality metrics on the bytecode.

INRIA - February 2024 134 Chukri Soueidi

10.3: Code Analysis of Programs

1
2 public class LawOfDemeterChecker extends Transformer {
3
4
5 HashSet<String> allowedTypes = new HashSet<>();
6 HashMap<String, String> potentialViolations = new HashMap<>();
7
8
9
10 public void onMethodEnter(Method m, MethodDynamicContext dc) {
11
12 allowedTypes = new HashSet<>();
13 potentialViolations = new HashMap<>();
14
15 // Rule 1 : the class itself,
16 // adds the class itself as permissable type
17 allowedTypes.add(m.classContext.classNode.name);
18
19 // Rule 2 : classes of the class fields,
20 // adds all classnames of fields into permissable types
21 m.classContext.classNode.fields
22 .forEach(f ->

allowedTypes.add(Type.getType(f.desc).getClassName().replace(".",
"/")));

23
24
25 // Rule 3 : classes of the method m parameters
26 // adds all parameter types into permissable types
27 Arrays.stream(Type.getArgumentTypes(m.methodNode.desc))
28 .forEach(t -> allowedTypes.add(t.getClassName().replace(".", "/")));
29
30 }
31
32
33 public void beforeMethodCall(MethodCall mc, MethodCallDynamicContext dc) {
34
35 // Rule 4 : classes whose constructors are invoked in the method m body
36 // if the call is a constructor call add to method permissable types and returns
37 if (mc.methodName.contains("<init>")) {
38 allowedTypes.add(mc.methodOwner);
39 return;
40 }
41
42 // if the method owner is already in method permissable, no need to add it as a

potential violation
43 if (allowedTypes.contains(mc.methodOwner)) {
44 return;
45 } else {
46 // the method call is not in method permissable, then add it to the potential

vioilations map
47 potentialViolations.put(mc.methodName, mc.methodOwner);
48 }
49
50
51 }
52
53
54 public void onMethodExit(Method m, MethodDynamicContext dc) {
55
56 System.out.println(allowedTypes);
57
58 // for all potential violations, if they are not in permissable then report a

violation
59 for (Map.Entry<String, String> pv : potentialViolations.entrySet()) {
60 if (!allowedTypes.contains(pv.getValue())) {
61 System.out.println("LOD violated in " + m.className + "." + m.name + " when

calling " + pv.getValue() + "." + pv.getKey());
62 }
63 }
64 }
65 }

Listing 10.1: Law of Demeter instrumentation.

THESIS 135 Chukri Soueidi

CHAPTER 10. USECASES

BISM permits accessing and computing many valuable properties that can be used to compute standard metrics
relying on the CFG of methods, the number of variables and method calls, and the program instructions. This
makes such analysis possible on legacy software.

While BISM does not provide access to the source code nor to some classical metrics like Lines Of Code or NPATH
complexity, it still provides essential static information. Next, we show how to compute the following software
quality metrics: Mc Cabe Cyclomatic complexity, ABC Metric, and the count of unused variables.

10.3.1 Mc Cabe Complexity.
The Mc Cabe Cyclomatic complexity [McC76] is defined as the maximum number of independent paths in a CFG.
For a CFG G, it is easily computable by: V(G) = |EdgesG | − |NodesG | + 2. In Listing 10.2, the transformer uses the
computed CFG to count the number of conditional edges inside it.

1 int edgeNumber;
2
3 @Override
4 public void onMethodEnter(...){
5 edgeNumber = 0;
6 }
7
8 @Override
9 public void onBasicBlockExit(BasicBlock bb,...){
10 switch (bb.blockType){
11 case CONDJUMP:
12 case SWITCH:
13 edgeNumber++;
14 }
15 }
16
17 @Override
18 public void onMethodExit(Method m,...) {
19 int c = m.getNumberOfBasicBlocks() - edgeNumber + 2;
20 Log("Cyclomatic complexity of "+m.name+" is : "+ c);
21 }

Listing 10.2: Mc Cabe cyclomatic complexity.

10.3.2 ABC Complexity.
To compute the ABC complexity, we only need to classify instructions and basic blocks. ABC complexity quantifies
software complexity by counting Assignments (A), Branching (B), and Conditionals (C) operations. Computing
ABC complexity [Fit00] relies on the capability to distinguish between branching, assignments, and conditional
jumps. Listing 10.3 shows a transformer that computes the complexity using blockType and opcode fields of
static contexts.

1 public void onMethodEnter(Method m,...) {
2 A=B=0;
3 C = m.methodNode.tryCatchBlocks.size();
4 //To count the try and catch as conditionals
5 }
6 public void beforeInstruction(Instruction ins,...) {
7 if (isAssignInstr(ins))
8 A++;
9 //Handle branches
10 if (ins.opcode == GOTO || ins.opcode == NEW || ins.isBranchingInstruction())
11 B++;
12 }
13 public void beforeMethodCall(...) {
14 B++;
15 }
16 public void onBasicBlockExit(BasicBlock bb,...) {
17 if (bb.blockType == CONDJUMP)
18 C++;
19 }
20 public void onMethodExit(Method m,...) {
21 Log("ABC of "+m.name+" is "+ Math.sqrt(A*A+B*B+C*C));
22 }

Listing 10.3: ABC complexity.

INRIA - February 2024 136 Chukri Soueidi

10.4: Obfuscation

10.3.3 Unused Variables.
We consider that a variable is not used in a method if it is never loaded within the method. For this, the transformer
in Listing 10.4 checks whether an instruction is a direct load which takes as a parameter a variable index and
pushes its value onto the stack. In such a case, the transformer retrieves the index of the variable and sets it as not
unused in the mapping implemented by boolean array unusedVars. The check is run on all instructions, and the
variables that have never been loaded on the stack are declared unused.

1 public void onMethodEnter(Method m,...) {
2 unusedVars = new boolean[m.methodNode.localVariables.size()];
3 Arrays.fill(unusedVars, true);
4 }
5
6 public void beforeInstruction(Instruction ins,...) {
7 if (ins.opcode >= LDC && ins.opcode <= SALOAD){
8 //Loading a local variable, therefore variable is used
9 if (ins.node instanceof VarInsnNode)
10 unusedVars[(ins.node).var] = false;
11 else if (ins.node instanceof IincInsnNode)
12 unusedVars[(ins.node).var] = false;
13 }
14 }

Listing 10.4: Unused variables.

10.4 Obfuscation
Obfuscation [CTL97] is an automated technique used to make the code of a program unintelligible to humans
while preserving its functionality. Obfuscation is used to protect intellectual property and to prevent reverse
engineering. We implement two obfuscation techniques using BISM: renaming and junk code insertion. These use
cases demonstrate BISM’s ability to freely manipulate the bytecode of a program without any restrictions. The
code uses the abstractions of the ASM library to manipulate the bytecode.

1 public class Renaming extends Transformer {
2 //An optional prefix to the renamed objects, use of UTF-8 is valid in bytecode, not

in source code.
3 final String prefix = " ";
4
5 public void onClassEnter(ClassContext c, ClassDynamicContext dc) {
6 for (FieldNode f : c.classNode.fields){
7 f.name = rename(c.name, f.name);
8 }
9 for (MethodNode m : c.classNode.methods){
10 m.name = rename(c.name, m.name);
11 }
12 }
13
14 public void onMethodEnter(Method m, MethodDynamicContext dc) {
15 for (LocalVariableNode v : m.methodNode.localVariables){
16 v.name = rename(m.className, v.name);
17 v.desc = Type.BYTE_TYPE.getDescriptor();
18 }
19 }
20
21 public void beforeMethodCall(MethodCall mc, MethodCallDynamicContext dc) {
22 remove(mc.ins);
23 insert(new MethodInsnNode(mc.ins.opcode, mc.methodOwner, rename(mc.methodOwner,

mc.methodName), mc.methodnode.desc));
24 }
25
26 public void beforeInstruction(Instruction ins, InstructionDynamicContext dc) {
27 if (ins.node instanceof FieldInsnNode){
28 remove(ins);
29 insert(new FieldInsnNode(ins.opcode, ((FieldInsnNode) ins.node).owner,
30 rename(((FieldInsnNode) ins.node).owner,((FieldInsnNode) ins.node).name),
31 ((FieldInsnNode) ins.node).desc));
32 }
33 }
34 }

Listing 10.5: Renaming obfuscation.

THESIS 137 Chukri Soueidi

CHAPTER 10. USECASES

10.4.1 Renaming Obfuscator

We present a simple renaming obfuscation that renames all the methods and fields of a program. Listing 10.5
shows the implementation of the renaming obfuscation. The transformer processes names with a fixed function
rename. We omit its implementation for brevity, however, this function renames the names into ones that contain
Unicode characters. This transformation can cause naive decompilers unable to retrieve a workable source code and
struggle to parse the Unicode characters. The renaming obfuscation is implemented using the OnClassEnter
and OnMethodEnter selectors. At the class enter join point (Lines 4-12), the transformer renames all the fields
and methods of the class. At the method enter join point (Lines 14-20), the transformer renames all the local
variables of the method and changes their type to byte. Before each method call, the transformer renames the
method name (Lines 22-25). Before each field access, the transformer renames the field name (Lines 28-32).

10.4.2 Junk Code Obfuscator

Another obfuscation technique is to insert junk code into the program. Listing 10.6 shows the implementation
of the junk code obfuscation. We use the selectors OnMethodEnter andOnMethodExit to add the junk
code (respectively the opaque predicate) after the real code (respectively before). These selectors ensure that the
position on each transformed method is only called once by method, which ensures that no duplication happens.
Method insertOpaquePredicate(..) inserts the opaque predicate at the beginning of the method based
on a random number and the bitstrings properties. It is easy to detect as it is static, but it is a proof of concept of
what an opaque predicate as defined in [CTL98] could be.

1 public class JunkCode extends Transformer {
2 static LabelNode l_junk, l_real, l_end;
3
4 public void onMethodEnter(Method m, MethodDynamicContext dc) {
5 l_real = new LabelNode();
6 l_junk = new LabelNode();
7 l_end = new LabelNode();
8 insertOpaquePredicate(m, l_real, l_junk);
9 }
10
11 public void onMethodExit(Method m, MethodDynamicContext dc) {
12 insert(new JumpInsnNode(Opcodes.GOTO, l_end));
13 //junky code
14 insert(new InsnNode(Opcodes.POP));
15 //To let the user think this code has an importance and needs to be executed

before real code
16 insert(new JumpInsnNode(Opcodes.GOTO, l_real));
17 insert(l_end);
18 }
19
20 private void insertOpaquePredicate(Method m, LabelNode real_code, LabelNode

junk_code){
21 /* Calculation */
22 insert(new TypeInsnNode(Opcodes.NEW, "java/util/Random"));
23 insert(new InsnNode(Opcodes.DUP));
24 insert(ASMFactory.invokeSpecial("java/util/Random", "<init>", "()V"));
25 insert(new InsnNode(Opcodes.DUP));
26 insert(ASMFactory.invokeVirtual("java/util/Random", "nextInt", "()I"));
27 insert(ASMFactory.invokeStatic("java/lang/Math", "abs", "(I)I"));
28 insert(new InsnNode(Opcodes.SWAP));
29 insert(ASMFactory.invokeVirtual("java/util/Random", "nextInt", "()I"));
30 insert(ASMFactory.invokeStatic("java/lang/Math", "abs", "(I)I"));
31 insert(new InsnNode(Opcodes.DUP_X1));
32 insert(new InsnNode(Opcodes.IOR));
33
34 /* jumping */
35 insert(new JumpInsnNode(Opcodes.IF_ICMPGT, junk_code));
36
37 /* Real code beginning */
38 insert(real_code);
39
40 m.methodNode.maxStack += 3;
41 m.methodNode.maxLocals += 1;
42 }
43 }

Listing 10.6: Junk code obfuscation.

INRIA - February 2024 138 Chukri Soueidi

10.5: Mutation of Programs

10.5 Mutation of Programs
We consider software testing and, more particularly, mutation testing (see [JH11] for a survey). Mutation testing
aims to ensure software quality by checking that slightly modified versions of a program (i.e., mutants) will not pass
the same tests as the original. Mutants emulate the programs that would be obtained as the result of programmers’
mistakes. There are various types of mutations of various complexity levels [DLS78, OU01]. We consider the
following types of often-occurring mutations:

• Value mutations, which change variable values in the program or return values.

• Operator mutations, which change the logical or arithmetical operators used across the program.

• Statement mutations, which change complex constructions, like method calls or even the CFG of the program.

In the following, we define an example mutator for each type of mutation, i.e., a transformer producing such
mutations.

10.5.1 Return Mutator: Value Mutation
The mutator in Listing 10.7 emulates the fact that a default return value has been forgotten in the program. Hence,
the target method always returns the same fixed value instead of the normally computed one. For this, the mutator
uses the onMethodExit join point and detects whether the parameter method m returns a value using the method
type. In such a case, the mutator removes the value from the stack. Then, a fixed value (here 0 for integers) is
pushed onto the stack to be returned.

1 onMethodExit(Method m,...){
2 //Detecting return type
3 if (getReturnType(m.methodNode.desc) == VOID_TYPE)
4 return;
5 //Remove return value from stack
6 if (getReturnType(m.methodNode.desc) .getSize() == 1)
7 insert(new InsnNode(POP));
8 else
9 insert(new InsnNode(POP2));
10
11 //Push fixed return value (0)
12 switch(getReturnType(m.methodNode.desc) .getSort()){
13 case INT:
14 insert(new InsnNode(ICONST_0));
15 break;
16 ...
17 }
18 }

Listing 10.7: Return mutator.

10.5.2 Instruction Mutator: Operator Mutation
The mutator in Listing 10.8 performs some replacements on a specified set of instructions. The mutator is generic
and relies on some abstract methods. A replacement instruction can either be randomly chosen or obtained using a
user-defined mapping between instructions. To do this for an instruction, the mutators check whether the instruction
is in its scope and if so, it replaces it.

1 beforeInstruction(Instruction ins, ...){
2 if (isCovered(ins)){
3 remove(ins);
4 if (negate) insert(negate(ins));
5 else insert(random(ins));
6 }
7 }
8 //Check whether a particular instruction is covered (type, position, ...)
9 abstract boolean isCovered(Instruction);
10 //Choose a random operation (compatible in terms of type, arg count ...)
11 abstract AbstractInsnNode random(Instruction);
12 //Negate the opcode of a given instruction when applicable
13 abstract AbstractInsnNode negate(Instruction);

Listing 10.8: Generic instruction mutator.

THESIS 139 Chukri Soueidi

CHAPTER 10. USECASES

We present two instances of the operator mutator, which are obtained by implementing the abstract methods.

• The mutator in Listing 10.9 targets conditional operators, which are detected as conditional jump instructions.
Another comparison operator replaces conditional operators without changing their destination.

• The mutator in Listing 10.10 targets binary arithmetic operators on integers. Arithmetic operators are replaced
either by a random operator or the complementary one (− and +, & and | for bitstring operators. . .).

1 //If it is a conditional
2 isCovered(Instruction ins) {
3 return ins.isConditionalJump();
4 }
5
6 //Choose a random if which is compatible in terms of type and arg count
7 random(Instruction insIf) {
8 if (insIf.opcode >= Opcodes.IFEQ && insIf.opcode <= Opcodes.IFLE)
9 return new JumpInsnNode(randomIFBetween(IFEQ,IFLE), insIf.node.label);
10 ...
11 }
12
13 //Negate the opcode of a given if
14 negate(Instruction ins){
15 if (ins.opcode == Opcodes.IFNULL || ins.opcode % 2 == 1)
16 return new JumpInsnNode(ins.opcode +1, ins.node.label);
17 else
18 return new JumpInsnNode(ins.opcode -1, ins.node.label);
19 }

Listing 10.9: Decision mutator.

1 final List<Integer> I2Opcodes = List(
2 Opcodes.IADD, Opcodes.ISUB,
3 Opcodes.IMUL, Opcodes.IDIV,...);
4
5 isCovered(Instruction ins){
6 //All double int operand arithmetic instructions
7 return I2Opcodes.contains(ins.opcode);
8 }
9
10 random(Instruction ins){
11 return new InsnNode(I2Opcodes.get(Math.random()*I2Opcodes.size()));
12 }
13
14 negate(Instruction ins){
15 return new InsnNode(ins.opcode + (I2Opcodes.indexOf(ins.opcode) % 2 == 0 ? 1 : -1));
16 }

Listing 10.10: Arithmetic mutator.

10.5.3 Void Call Mutator: Statement Mutation

The mutator in Listing 10.11 removes calls to methods with the void return type. For this, whenever there is a call
to such a method, the transformer unloads its parameters from the stack and removes the INVOKEX opcode. To
check for return types and unload the parameters differently regarding their sizes, the transformer iterates through
the method descriptor1 available through the static context attribute mc.methodnode.desc .

1 beforeMethodCall(MethodCall mc,...){
2 if (getReturnType(mc.methodnode) != VOID_TYPE)
3 return;
4 //Pop each argument, respecting its size
5 for (var arg: getArgumentTypes(mc.methodnode))
6 insert(new InsnNode(arg.getSize() == 1 ? POP : POP2);
7 remove(mc.ins);
8 }

Listing 10.11: Void call mutator.

1The descriptor is a string representing a type, for a method it permits to access the return and argument types.

INRIA - February 2024 140 Chukri Soueidi

10.6: Runtime Verification and Enforcement

10.6 Runtime Verification and Enforcement
In this section, we demonstrate how to use BISM to instrument for runtime verification and enforcement of
properties on the execution of a program.

10.6.1 Good Java Practices: HasNext Property
We first consider a simple property that is considered a good Java practice. The HasNext property on iterators
specifies that the hasNext() method should be called and return true before calling the next() method on an
iterator. We evaluated this property with BISM in Section 9.2.4. Listing 10.12 shows a BISM transformer for
instrumenting to monitor the property. The transformer is written with the BISM DSL. It specifies two pointcuts
to capture the method calls to hasNext() and next() on iterator objects. A type-matching pattern is used
to match the method calls on iterator objects. Events are then defined to extract two lists from the program, one
containing key names we chose and the other containing values. The values extracted are the event name and the
iterator object instance. The events are then sent to a monitor implemented in a separate class.

pointcut pc1 before MethodCall(* *.*Iterator.next())
pointcut pc2 before MethodCall(* *.*Iterator.hasNext())

event e1(["name", "iterator"], ["n",getMethodReceiver]) on pc1
event e2(["name", "iterator"], ["h",getMethodReceiver]) on pc2

monitor m1{
class: Monitor
events: [

e1 to observe(List, List),
e2 to observe(List, List)

]
}

Listing 10.12: HasNext instrumentation.

10.6.2 Concurrent Executions: Forcing Advice Atomicity
In Section 7.2.1, we discussed how to force the linearization of events in concurrent programs. Our goal here is to
force the atomicity of execution between a program action and its advice. To do so we need to target each join
point that corresponds to the program action at two different places: before and after the execution of the advice.
Before the execution of the join point, we need to acquire a lock and after the execution of the join point we need to
release the lock.

Listing 10.13 shows a transformer that forces the atomicity of the execution of a method call and its advice. We use
the beforeMethodCall join point to insert the code that acquires the lock before the execution of the method
call. We use the afterMethodCall join point to insert the code that releases the lock after the execution of
the method call. This is equivalent to inserting synchronized(Monitor.getLock()){ .. } blocks
around the method call.

It is important to note that this instrumentation scenario necessitates the capability for arbitrary code insertion. It
requires the ability to insert code at nonadjacent locations in the program. BISM offers a straightforward API to
insert arbitrary instructions at any point within the program, using the ASM syntax. Such instrumentation is not
possible with AspectJ or DiSL since they do not allow arbitrary bytecode insertion.

10.6.3 Test Inversion Attack Detection and Enforcement
Fault injection attacks aim to modify the behavior of the program by injecting faults in the program. They are often
used to perturb smartcards and chip behavior to gain unauthorized access or leak information. One type is the Test
Inversion attack which aims to break the control-flow integrity of a program. It targets conditional jumps in the
control flow of a program. More precisely, in a program, if a comparison ends up with a true verdict and therefore
directs the execution flow to the true branch, the test inversion attack will instead direct this flow to the false branch.
In Section 9.2.2, we evaluated the detection of test inversion attacks using BISM. We here show how to also enforce
the integrity of the control flow in a program using BISM.

THESIS 141 Chukri Soueidi

CHAPTER 10. USECASES

1 public class MethodCallsFA extends Transformer {
2 int lvUpdate;
3 @Override
4 public void beforeMethodCall(MethodCall mc, MethodCallDynamicContext dc) {
5 lvUpdate = mc.ins.basicBlock.method.methodNode.maxLocals;
6 mc.ins.basicBlock.method.methodNode
7 .visitMaxs(mc.ins.basicBlock.method.methodNode.maxStack + 1, lvUpdate + 1);
8
9 entermonitor(mc, lvUpdate);
10 StaticInvocation inv = new StaticInvocation(..);
11 invoke(inv);
12 }
13
14 private void entermonitor(MethodCall mc, int lvn) {
15 insert(new MethodInsnNode(Opcodes.INVOKESTATIC, "Monitor", "getLock",
16 "()Ljava/lang/Object;", false));
17 insert(new InsnNode(Opcodes.DUP));
18 insert(new VarInsnNode(Opcodes.ASTORE, lvn));
19 insert(new InsnNode(Opcodes.MONITORENTER));
20 }
21
22 @Override
23 public void afterMethodCall(MethodCall mc, MethodCallDynamicContext dc) {
24 insert(new VarInsnNode(Opcodes.ALOAD, lvUpdate));
25 insert(new InsnNode(Opcodes.MONITOREXIT));
26 }
27 }

Listing 10.13: Forcing advice atomicity.

Listing 10.14 shows the BISM transformer to detect and reinforce control flow integrity in case of a test inversion
attack. Before each conditional jump in a method, the transformer duplicates the stack values that are used in the
conditional jump. In each branch of the conditional, we inject code to reevaluate the condition and jump to this
second evaluation target in case we get the wrong verdict.

1 public class EnforceTest extends Transformer {
2 LabelNode l_t = new LabelNode();
3 LabelNode l_f = new LabelNode();
4 String message = "Test Inversion attack is detected. Jumping to correct branch.";
5 public void beforeInstruction(Instruction ins, InstructionDynamicContext dc) {
6 if (ins.isConditionalJump()) {
7 if (ins.stackOperandsCountIfConditionalJump() == 1)
8 this.insert(new InsnNode(Opcodes.DUP));
9 else
10 this.insert(new InsnNode(Opcodes.DUP2));
11 }
12 }
13 @Override
14 public void onBasicBlockEnter(BasicBlock bb, InstructionDynamicContext dc) {
15 if (bb.blockType == BlockType.CONDJUMP){
16 l_t = new LabelNode();
17 l_f = new LabelNode();
18 }
19 }
20 @Override
21 public void onTrueBranchEnter(BasicBlock jumpingBlock, InstructionDynamicContext dc)

{
22 this.insert(new JumpInsnNode(jumpingBlock.getLastRealInstruction().opcode, l_t));
23 print(message);
24 this.insert(new JumpInsnNode(Opcodes.GOTO, l_f));
25 this.insert(l_t);
26 }
27 @Override
28 public void onFalseBranchEnter(BasicBlock jumpingBlock, InstructionDynamicContext

dc) {
29 this.insert(new JumpInsnNode(jumpingBlock.getLastRealInstruction().opcode, l_t));
30 print(message);
31 this.insert(new JumpInsnNode(Opcodes.GOTO, l_f));
32 this.insert(l_f);
33 }
34 }

Listing 10.14: Test Inversion Enforcement instrumentation.

INRIA - February 2024 142 Chukri Soueidi

10.8: Logging

10.7 Logging
Logging is a classic example of a cross-cutting concern that is better implemented following the aspect-oriented
paradigm. Indeed, by using Java annotations, one can mark methods that require logging and avoid polluting the
source code with multiple logging instructions. This way, one can instrument the program and insert the logging
instructions only on annotated methods.

Listing 10.15 shows a transformer that instruments the program to log the execution of selected methods in
a program on method entries and exits. One way to mark methods that need to be logged in an application
by a developer is by creating a custom annotation and annotating the needed methods. The transformer looks
for a hypothetical @Log annotation inserted at methods in the base program. The annotation indicates that the
method needs to be logged. BISM provides access to annotations on methods through the static context. The
isAnnotated("Log") returns a boolean flag that indicates if the method is annotated with @Log. Then, a
simple log message is printed on the console. This example can be extended to extract and log the arguments passed
to the method (see Section 10.8.1).

1 @Override
2 public void onMethodEnter(Method m, MethodDynamicContext dc){
3 if (m.isAnnotated("Log")) //Checks annotation on method
4 println("Entering method: " + m.name);
5 }
6
7 @Override
8 public void onMethodExit(Method m, MethodDynamicContext dc){
9 if (m.isAnnotated("Log"))
10 println("Exiting method: " + m.name);
11 }

Listing 10.15: Logging method execution.

10.8 Dynamic Profiling
We demonstrate how to implement dynamic profiling with BISM. We collect dynamic context from a running
program, including the number of method invocations, runtime types of method arguments (Section 10.8.1), number
of allocated objects (Section 10.8.2), and return types (Section 10.8.2). We do not focus on implementing the
profiler tool but only on how to extract context using BISM.

10.8.1 Call Graph
We consider the dynamic call graph of a program which represents the calling relationship between methods in
program execution. For each method call in an execution, we are interested in extracting runtime information from
the caller and callee methods. Listing 10.16 shows the code of a transformer that instruments to extract the caller
and callee classes and method names along with their runtime arguments, at each method call. The arguments of
the caller and callee are extracted using the dynamic context method dc.getMethodArgs(). We instrument
two synthetic local arrays in the base program to store the extracted values locally in the method. For the caller,
the arguments are retrieved once at method enter to avoid repeating the argument extraction for each invocation
by the caller. At onMethodEnter, calling dc.getMethodArgs() will retrieve the needed values from the
local variables of the method. As for the callee, the dc.getMethodArgs() will retrieve the arguments directly
from the stack. Then, before each method call, an invocation to the profiler method callGraph is instrumented,
passing the static and dynamic information.

10.8.2 Object Allocation
Object allocation is an important metric in dynamic profiling that allows the user to know the number of created
objects in the program and estimate the used memory. Listing 10.17 shows a transformer that instruments to capture
allocated objects and arrays in a program. We use the beforeInstruction join point and filter for all NEW
opcodes. To extract the type of the created object, we use the access granted by BISM to the ASM instruction node
object and get more details from the bytecode instruction. The extracted static information is then passed to the
profiler by invoking its appropriate method.

THESIS 143 Chukri Soueidi

CHAPTER 10. USECASES

1 LocalArray callerArgs;
2 LocalArray calleeArgs;
3
4 public void onMethodEnter(Method m, MethodDynamicContext dc){
5 //Initialize the local arrays
6 callerArgs = dc.createLocalArray(m);
7 calleeArgs = dc.createLocalArray(m);
8
9 int args = m.getNumberOfArguments();
10 DynamicValue dv;
11 for (int i = 1; i < args + 1; i++) {
12 dv = dc.getMethodArgs(m, i);
13 dc.addToLocalArray(callerArgs, dv);
14 }
15 }
16 public void beforeMethodCall(MethodCall mc, MethodCallDynamicContext dc){
17
18 dc.clearLocalArray(mc, calleeArgs);
19
20 int args = mc.getNumberOfArgs();
21 DynamicValue dv;
22 for (int i = 1; i < args + 1; i++) {
23 dv = dc.getMethodArgs(mc, i);
24 dc.addToLocalArray(calleeArgs, dv);
25 }
26
27 //Invoke profiler
28 StaticInvocation sti = new StaticInvocation("Profiler", "callGraph");
29 sti.addParameter(dc.getThreadName(mc));
30 sti.addParameter(mc.method.fullName);
31 sti.addParameter(callerArgs);
32 sti.addParameter(mc.fullName);
33 sti.addParameter(calleeArgs);
34 invoke(sti);
35 }

Listing 10.16: Profiling the call graph.

1 @Override
2 public void beforeInstruction(Instruction ins,...) {
3 //Object creation opcodes
4 if (ins.opcode == Opcodes.NEW
5 || ins.opcode == Opcodes.NEWARRAY
6 || ins.opcode == Opcodes.ANEWARRAY
7 || ins.opcode == Opcodes.MULTIANEWARRAY) {
8
9 TypeInsnNode instruction = (TypeInsnNode) ins.node;
10 //Invoke profiler
11 StaticInvocation sti = new StaticInvocation("Profiler", "allocation");
12 sti.addParameter(ins.method.fullName);
13 sti.addParameter(ins.opcode);
14 sti.addParameter(instruction.desc);
15 invoke(sti);
16 }
17 }

Listing 10.17: Profiling object allocation.

Return Types

Listing 10.18 shows how to extract return types from methods. We use the afterMethodCall join point and
filter using the static context provided mc.returns which returns a boolean flag indicating if the method has
a return type in its signature. Then, we extract the return result into the dynamic value object dv. After that, an
invocation to the profiler is instrumented, which passes the needed information. We choose to box the return value
for a more generic implementation.

INRIA - February 2024 144 Chukri Soueidi

10.10: Dynamic Analysis with Complex Event Processing

1 @Override
2 public void afterMethodCall(MethodCall mc, MethodCallDynamicContext dc){
3 //If a method returns
4 if (mc.returns) {
5 //Get the result
6 DynamicValue dv = dc.getMethodResult(mc);
7
8 //Invoke profiler
9 StaticInvocation sti = new StaticInvocation("Profiler", "returnTypes");
10 sti.addParameter(caller);
11 sti.addParameter(mc.fullName);
12 sti.addBoxedParameter(dv);
13 invoke(sti);
14 }
15 }

Listing 10.18: Profiling return types.

10.9 Dynamic Analysis with Complex Event Processing
The capabilities of BISM can be extended by integrating it with other tools. One possibility is integrating with
Complex Event Processing (CEP) engines to perform dynamic analysis of programs. With the expressiveness
capabilities of BISM, namely the ability to extract events with various granularity levels and the ability to guide the
instrumentation process, we can integrate it with a CEP engine to perform various dynamic analyses on programs.
Such an engine would facilitate writing dynamic analyses instead of writing them from scratch and would provide a
unified interface for writing and executing them. In the next chapter (Chapter 11), we demonstrate the integration
of BISM with the BeepBeep CEP engine to perform dynamic analysis on programs.

10.10 Conclusion
In this chapter, we demonstrated the applicability of BISM in different contexts. The use cases demonstrate that
BISM can be used as a generic tool for analyzing programs both statically and dynamically. BISM can be used
effectively to perform a variety of static analyses since it facilitates the traversal of the program and access to its
static context. It does so by providing the appropriate abstractions. For dynamic analysis, BISM can be effectively
used to instrument the program to extract dynamic context and events. The extracted context can be used to perform
various dynamic analyses on the program.

THESIS 145 Chukri Soueidi

CHAPTER 10. USECASES

INRIA - February 2024 146 Chukri Soueidi

CHAPTER 11

Dynamic Program Analysis with BISM and Complex Event Processing

Contents
11.1 Introduction 149
11.2 Dynamic Program Analysis 150

11.2.1 Existing Approaches 150
11.2.2 Limitations 151

11.3 BeepBeep Overview 152
11.4 The BISM-BeepBeep Integration 153

11.4.1 Implementation 153
11.4.2 Runtime Verification: Monitoring and Synthesis 153
11.4.3 Profiling: The Dynamic Call Graph 155
11.4.4 Log Analysis: Complex Instrumented Events 155
11.4.5 Coverage: Versatile Metrics 157

11.5 Experimental Evaluation 159
11.5.1 Monitoring 159
11.5.2 Coverage 160
11.5.3 Profiling 160

11.6 Conclusion 161

147

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

Chapter abstract
This chapter bridges BISM and BeepBeep, a complex event processing engine, to provide a flexible and modular
approach to dynamic program analysis for JVM-based languages. This combination enhances expressiveness,
promotes reusability, allows simultaneous and independent analyses, and integrates seamlessly into JVM-based
projects. Various analyses such as monitoring, profiling, coverage measurement, and complex event generation are
demonstrated, showcasing the approach’s flexibility.

INRIA - February 2024 148 Chukri Soueidi

11.1: Introduction

11.1 Introduction
Motivation. Several complementary approaches are available to developers to ensure the quality and reliability
of the systems for which they are responsible. Dynamic program analysis [GS14] is a term that encompasses a set
of techniques, formal and informal, that involve examining a program while it is running or through a postmortem
analysis of its execution traces (logs), in order to identify errors, bugs, or unusual behaviors. Developers can
leverage dynamic program analysis in multiple ways. For example, profiling instruments a program in order to
retrieve information about performance or resource consumption [AGH+15] or examine the cause of possible
deadlocks in the presence of multiple threads [ABF+10, RB20]. A program can also be instrumented manually
using logging statements [CJ21]; the resulting logs can be analyzed to reveal anomalies in the operation of a system
[JR22], process telemetry or troubleshoot problems [BDDF16]. Runtime verification evaluates formal properties
related to the correctness of a running program as its execution unfolds [BFFR18b]. Finally, dynamic program
analysis can also complement existing software testing activities, for example by evaluating coverage metrics on a
test suite is being run [BL19].

Despite a myriad of existing approaches and tools for profiling, runtime verification, log analysis, and testing,
each typically addresses a specific analysis type, with significant limitations. For instance, runtime verification
allows users to check correctness properties, but these are limited to yes/no conditions, demonstrating limited
expressiveness. Profilers are primarily focused on identifying memory and performance issues, offering only a
handful of built-in analytics with little support for user-defined queries. Log analysis tools are limited as they do
not operate online and provide limited query options. Testing tools are capable of measuring coverage and test
success, but their capabilities do not extend beyond these functions.

Beyond these natural limitations, these tools often lack the required flexibility for incorporating unique or more
tailored analyses. In addition, each of these techniques comes with its particular set of concepts and tools evolving
independently of each other. Thus, a developer who wants to profile a program for memory consumption and
monitor an execution property at runtime will most likely need to employ two different tools, each instrumenting
the program in its own way, and requiring the use of different input languages or settings to specify the computation
they must respectively execute.

Methodology. Writing custom dynamic analysis tools requires handling two challenging tasks: instrumentation
and analysis. Selecting the right instrumentation framework becomes key in this context. For example, as discussed
in Chapter 3, bytecode manipulation libraries such as ASM [BLC02] and Soot [VRCG+99] allow for flexible
program traversal, extensive low-level coverage and bytecode transformations. Nonetheless, implementing basic
instrumentation with these can be quite verbose and demands a certain level of expertise from the user. In
contrast, aspect-oriented programming frameworks like AspectJ [Asp] provide a high-level language for specifying
instrumentation as well as analysis logic. However, AspectJ lacks bytecode coverage restricting its capability to
capture low-level events. Moreover, without the ability to guide the analysis by writing concise static analyzers
pre-instrumentation, users can only specify the code for injection into the program, making tasks like extracting
a method’s control-flow graph unattainable. Given these considerations, we use BISM which effectively bridges
the gaps between both approaches and offers a comprehensive solution to the instrumentation needs of dynamic
analysis.

However, having a powerful instrumentation platform is not sufficient to obtain a versatile dynamic program
analysis tool crossing over the four application domains discussed in Section 11.2.1. Frameworks such as BISM or
AspectJ indeed allow users to inject arbitrary pieces of Java code into the execution of an instrumented program;
thus, in theory, they are sufficient to allow the implementation of any calculation or analysis of the data extracted
from the execution of the said program. However, this offloads on the user the responsibility of programming from
scratch which can ultimately become a profiler, a coverage metric or a full-fledged temporal logic monitor. A better
(and more realistic) approach is to channel the instrumentation into a mechanism for expressing calculations at a
high level of abstraction while maintaining great flexibility and avoiding the pitfall of providing a predefined set of
hard-coded recipes.

This is where BeepBeep [Hal18] comes into play. Being a generic event stream processing platform with numerous
extensions, it is a good candidate to receive the data elements generated by an instrumented program, and let
the user shape arbitrary processing pipelines according to the specific use case at hand, expressed at a suitable
level of abstraction. BeepBeep processing units take care of buffering, synchronization between multiple streams,
and numerous other lowly tasks that a user would otherwise need to implement directly each time. The use of a

THESIS 149 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

higher-level processing library provides additional benefits: BeepBeep calculations themselves can be abstracted
further through the design of domain-specific languages; moreover, BeepBeep has explainability features, which
allows it to extract elements of a long event stream that explain the output of a calculation [Hal20].

Contributions. We introduce a flexible and modular approach to dynamic program analysis that effectively
addresses the limitations of existing tools, in particular their limited expressivity and tight coupling between
instrumentation and analysis. Our approach, designed for JVM-based languages including Java, Scala, Kotlin, and
Groovy, decouples the instrumentation and analysis process. We utilize BISM to instrument programs and extract
events. Simultaneously, we employ a complex event processing engine, BeepBeep [Hal18], to perform a diverse
range of analyses on the collected information. BeepBeep ships with off-the-shelf palettes for various purposes,
such as signal processing, XML manipulation, plotting, and finite-state machines. This combined approach offers
numerous improvements over existing tools. It enhances expressiveness in instrumentation by capturing both
high-level and low-level events, promotes reusability with straightforward BeepBeep pipeline recycling, and allows
both synchronous and asynchronous analyses on the same program execution, enhancing efficiency and isolation.
Additionally, it offers seamless integration into any JVM-based project and development pipeline.

Chapter organization. The rest of the chapter is organized as follows. Section 11.2 gives an overview of
existing solutions in dynamic program analysis and discusses their limitations. Section 11.3 provides background
information on BeepBeep. Section 11.4 presents our approach and demonstrates its flexibility by showcasing
different analyses, including monitoring, profiling, measuring branch coverage in unit tests, and generating complex
composite events. Section 11.5 experimentally compares the performance of the tool with existing solutions; finally
Section 11.6 concludes the paper and discusses future work.

11.2 Dynamic Program Analysis
As opposed to static program analysis, which reasons over the behavior of a system without resorting to executing it,
dynamic program analysis encompasses all techniques that collect information about a program while it is running.
This broad definition leads to a large variety of tools and approaches, which we describe and discuss in this section.

11.2.1 Existing Approaches
We here review relevant existing approaches to dynamic program analysis. For each of them, we describe the
principle of the approach and mention a few tools available to developers; our study focuses on Java and JVM-based
languages and solutions. We omit any discussion about runtime verification since it was covered in Chapter 1.

Profiling. A first subset of dynamic analysis solutions concentrate on profiling, which consist of gathering
statistics on the low-level execution of a program. A typical profiler collects information about the number of live
object instances present in the heap, the amount of memory consumed, the state of the call stack, and CPU usage.
Profiling is typically aimed at troubleshooting performance issues of a program, such as identifying bottleneck
methods, data races or memory leaks.

A simple yet free profiler for Java is VisualVM [vis], which offers these functionalities through a graphical interface
where the user can select the data elements to collect, display them as plots or explore them interactively. Other
tools, such as Trace Compass [tra] or JProbe [jpra], provide similar functionalities.

Log analysis. Another possible approach is to study the logs produced by a software system; log sources can
include execution logs generated from instrumented programs using logging libraries, server logs, system logs,
and even network packet captures. Off-the-shelf log analysis tools, such as EventLog Analyzer [eve], GoAccess
[goa] and Splunk [spl] offer functionalities to filter, search, aggregate and visualize data extracted from event logs,
typically by selecting through a range of predefined calculations.

Some of the aforementioned solutions can be used for the detection of anomalies in the execution of a software
system; some tools focus solely on this aspect, such as Logpai [HZHL16], Palisade [KDG+21] and MADneSs
[ZCB21]. Since a log can be seen as a form of prerecorded event stream we shall also mention in this category
a variety of solutions designed to perform calculations on streams, such as Esper [esp] and Siddhi [SGLN+11]
—although we find no record of their use for dynamic program analysis.

INRIA - February 2024 150 Chukri Soueidi

11.2: Dynamic Program Analysis

Testing and Coverage. Calculating the coverage achieved by a test suite can be seen as a form of dynamic
analysis, since it collects information about a program as it executes. In the realm of JVM-based languages, a
popular coverage measurement tool is JaCoCo [JaC], which operates as an agent passed to the Java Virtual Machine,
gathers coverage information about each line reached by a set of tests, and collates these results in the form of an
interactive dashboard. JaCoCo calculates line and branch coverage, and can also aggregate coverage measurements
by method, class or package. JCov, which comes built-in with the OpenJDK [jco], works in a similar way; in
addition to line and branch coverage, it also calculates block and field coverage.

Query-based testing, first introduced by Holzer et al. [HSTV09], is a generalization of these metrics. In this context,
a “query” is an expression from a language called FShell Query Language (FQL), which expresses a condition on a
sequence of observations made on a program. For example, a query may impose that a specific line be visited, then
that a variable be assigned a specific value, etc. To the best of our knowledge, the only runtime tool measuring
coverage in this manner is TestCov [BL19], which supports block, branch, and condition coverage, as well as
covering calls to an error-function.

11.2.2 Limitations
Writing custom dynamic analysis tools requires handling two challenging tasks: instrumentation and analysis.
Instrumentation is the automated process of modifying the program to extract relevant contextual information
during a run. The analysis is the process of analyzing the collected information to answer a desired query. Despite
the large array of solutions that touch on dynamic program analysis in some way or another, they all present
limitations on either of these facets.

Expressiveness

The first is the relative expressiveness and possibility for customization in each approach. Profilers focus on
troubleshooting performance issues; they provide a handful of built-in analytics with little to no customization or
support for user-defined calculations. Log analyzers sometimes lack the ability to provide online (i.e. real-time)
feedback and also restrict users to a set of predefined analytics. Runtime verification tools allow users to specify
their own properties, but this must be done in a relatively simple formal language; moreover, these properties are
restricted to a pass/fail verdict. Finally, testing tools can measure coverage and test success, but do not provide
insights on real-time system behavior.

To illustrate the issue, consider a data processing application that reads in large datasets, performs a series of
computations on the data, and outputs the results to a new file. Suppose the program occasionally crashes during
processing, possibly due to a file operation error, but that the cause of the crash or the steps leading to its reproduction
are not well understood. One may need to analyze the program from several viewpoints:

• Runtime verification checks for errors at runtime: Has the program tried to read or write to a file that is closed?
Does it open a file for writing while it is already open for reading?

• Profiling provides information about the program’s resources: How many files are simultaneously open for read
access?

• Log analysis can help answer questions such as: Has a component written an error message to the log? Are there
log entries that correlate with the occurrence of the error?

• Coverage provides information about the program’s execution in relation to its source code: What branches of
the code are executed when the program crashes?

One can observe that each of the tools above can contribute to part of the solution, but that most of the questions
could not be answered using a tool from a different category.

Tight Coupling

Many existing tools tightly couple instrumentation and analysis, leading to several limitations. The first of these is
restricted flexibility in customizing the analysis. One example is the inability to define new metrics like indirect
coverage [HC16] within JaCoCo. Secondly, the expressiveness of the analysis can be limited. Take the runtime
verification tool JavaMOP [CR05b], for example, which relies on AspectJ [Asp] for instrumentation. Although,
JavaMOP provide multiple plugins to express properties using different specification languages such as LTL and

THESIS 151 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

f
f n

n

P

{

Σ

f

P

n

Apply a function
to each event

Keep one event
every n

Trim the first n
events

Cumulate values of
a function

Fork a stream into
multiple copies

Slice a stream into
multiple sub-streams

Apply P to a sliding
window of events

Filter events based
on a control signal

f

Figure 11.1: BeepBeep’s basic processors (adapted from [Hal18]).

extended regular expressions. Its analysis expressiveness is bound by the set of events that AspectJ can extract from
the program limiting the ability to write specifications over more complex event patterns (see Section 11.4.4) or
over low-level events such as single bytecode instructions as AspectJ does not offer bytecode coverage.

A further limitation is the potential interference caused by integrating the analysis with the program execution.
Ideally, one should be able to perform various analyses on the same program execution. This, however, is not
achievable when the analysis is closely coupled with the instrumentation. For instance, if one wishes to visualize
the dynamic call graph of the program execution and collect coverage information, the program would need to be
instrumented twice; whereas it is possible to use the same events for both tasks. This approach is not only inefficient
but may also yield different results due to the instrumentation’s interference with program execution. Lastly, there
is a lack of reusability. When instrumentation and analysis are tightly coupled, reusing the instrumentation code for
different analysis types, or vice versa, becomes challenging.

More flexible analysis frameworks have been presented, such as ShadowVM [MKZ+13] for Java and Android,
which offers advanced analysis isolation and coverage features. It allows for the execution of multiple analysis
tools simultaneously and asynchronously. The analysis is written in unrestricted Java code. ShadowVM is not very
portable as it requires running three different processes: one for the observed program, one for the instrumentation,
and one for the analysis. These processes operate on three separate VMs, which must be installed on a host machine
and communicate using network sockets.

11.3 BeepBeep Overview
BeepBeep is a generic open source event stream processing library developed in Java [Hal18]. Contrary to most
runtime verification frameworks, which offer the user to write specifications using a specific language, BeepBeep’s
core library provides a handful of generic processor objects performing basic tasks over event streams. These
objects can be instantiated directly through Java code, and connected to form networks performing complex
calculations. BeepBeep has been used in a variety of case studies over many years [RRKH21, VLGH17b].

Processors

A processor is a basic unit of computation that receives one or more event traces as its input, and produces one or
more event traces as its output. Processors are represented graphically as a box with “pipes”; the core processors
provided by BeepBeep are illustrated in Figure 11.1.

The ApplyFunction processor lifts any function f into a processor that applies f on its input events to produce
output events. Fork is a variant that simply copies its input to multiple outputs, while TurnInto transforms each
input event into the same constant k. CountDecimate is a processor that keeps one event every k. The Trim
processor removes the first k events of the stream. Filter is a processor that discards events based on a stream of
Boolean values. The event at position n in the first stream is sent to the output, if and only if the event at the same
position in the second stream is the Boolean value true.

Some processors can be used to perform aggregations on a set of events. The Cumulate processor is designed to

INRIA - February 2024 152 Chukri Soueidi

11.4: The BISM-BeepBeep Integration

3

f
+

1

2

3

4
5

A B

C

(a) Pipeline
1 Fork f = new Fork(2);
2 CountDecimate c = new CountDecimate(3);
3 ApplyFunction a = new ApplyFunction(Numbers.addition);
4 Connector.connect(f, 0, c, 0).connect(f, 1, a, 1)
5 .connect(c, 0, a, 0);

(b) Code equivalent

Figure 11.2: Creating pipelines in BeepBeep (taken from [Hal18]).

“accumulate” the successive values of a binary function f . It is often used in conjunction with Window, which
performs the evaluation of a processor P for each interval of k successive events in the stream. Finally, the Slice
processor splits an incoming stream into multiple sub-streams, and passes each sub-stream into its own instance of
some other processor P.

Pipelines and Palettes

More complex computations can be achieved in two ways. The first is by creating new processors directly as Java
objects that are programmed to perform a specific type of processing. Extensions of BeepBeep with predefined
custom objects are called palettes; there exist palettes for various purposes, such as signal processing, XML
manipulation, plotting, and finite-state machines. In addition, BeepBeep also allows existing processors to be
composed; this means that the output of a processor can be redirected to the input of another, creating complex
processor chains. For example, Figure 11.2 shows a simple processor chain, both as a code snippet and as a
graphical representation.

11.4 The BISM-BeepBeep Integration
We now describe how BISM and BeepBeep are combined to create a flexible and modular dynamic program
analysis framework. We first present the architecture of the integration layer, and then describe how it can be used
to implement various analyses. We then present a selection of analyses, that we implemented using our integration
layer targeting Java programs. The artifact, containing the source code for the integration layer, the following
examples, and experiments, is available at [SFH23c].

The reader will see from these examples that our proposed approach generalizes existing work in two ways. First,
no single tool (be it a profiler, a log analyzer or a monitor) would be able to address all of these issues, whereas the
BISM-BeepBeep integration can address them all in one uniform framework. Moreover, some of the calculations
presented cannot be handled by any of the existing tools.

11.4.1 Implementation
The integration between BISM and BeepBeep is enabled via the observation layer described in Section 5.6 where
BeepBeep is the analysis engine. Figure 11.3 depicts this integration.

Within each analysis, users specify the instrumentation requirements using the BISM language and the analysis
using BeepBeep processors. The integration layer provides facilities such as synchronous and asynchronous
observation, event extraction, and event dispatching. Moreover, multiple analyses can be performed on the same
program execution.

11.4.2 Runtime Verification: Monitoring and Synthesis
Within our approach, various monitoring scenarios can be implemented. We here present a classical monitoring
scenario with events carrying data from the execution.

THESIS 153 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

Integration Layer

Event

Event
Processor

Observation
Async / Sync

Observer

Program

BISM

Instrumented
Program

BeepBeep

(1)

(2)

(3)

(7)

(4)
(5)

(6)

Figure 11.3: Integrating BISM and BeepBeep

pointcut pc1 before MethodCall(* *.Iterator.next())
pointcut pc2 before MethodCall(* *.Iterator.hasNext())

event e1(["ev","iterator"],["n",getMethodReceiver]) on pc1
event e2(["ev","iterator"],["h",getMethodReceiver]) on pc2

monitor m1{
class: bbadapter.Observer
events: [e1 to observe(List, List), e2 to observe(List, List)]
}

Figure 11.4: Instrumentation for SafeHasNext property.

Parametric Monitoring

For Java programs, typestate properties [SY86b] are essential for enforcing precise and structured usage of objects;
these properties typically constrain the permissible states of certain objects and are monitored by detecting violations
of the expected order of method invocations. When monitoring these properties, a parametric monitor receives a
parameterized trace and spawns multiple monitors for different trace slices corresponding to sets of related events.
Trace slicing is a natural fit for the Slice processor in BeepBeep. This processor takes two parameters: a slicing
function and a slice processor (the monitor in our case).

We implemented as a slicing function the algorithm from [CR09]. Figure 11.4 shows the transformer needed to
instrument the program with BISM. The integration layer exposes the Observer.observe function which
accepts 2 lists: one for event keys and one for event values. As such at each relevant join point, such events are
extracted. Figure 11.5 shows the pipeline to monitor the SafeHasNext property1. When an event is received, it is
passed to the slicing function. When seeing a new slice, a new monitor instance is automatically created. Else,
the event is sent to the appropriate existing monitor. Then after the monitor executes, the results from all monitor
instances are accumulated and the conjunction of verdicts is emitted.

1The property states that a program does not call the next method before calling the hasNext method of an iterator.

=?
1 hasNext

=?
1 hasNext

=?
1 next

=?
1 next

T

T T

T

f
m

o
f
*

}{

Σ
∧

Figure 11.5: Parametric monitoring of the HasNext property.

INRIA - February 2024 154 Chukri Soueidi

11.4: The BISM-BeepBeep Integration

By separating instrumentation from trace analysis, our approach provides enhanced flexibility for runtime verifica-
tion and monitoring. Firstly, there is a myriad of different approaches to parametric monitoring. They differ in
the manner they interpret events with runtime information and project these to instances of monitors. BeepBeep
ships with several palettes for constructing monitors using formalisms such as finite-state machines, first-order
logic, and temporal logic. This enables users to implement and experiment with various slicing approaches such as
[CR09, BFH+12, AAC+05b] using different event granularity levels –something not attainable with other tools.
Secondly, within our integration layer, we introduced the asynchronous observation option, which allows the
monitor to process events outside the critical path. This design is especially suitable for contexts like real-time
systems where monitoring overhead is infeasible [SR94].

Support for Monitor Synthesis

We also added support for the automatic generation of monitors from LTL and regular expressions. For LTL, we
used the LamaConv tool [Ins] to translate LTL formulas into equivalent automata and then into a BeepBeep Moore
Machine. We also added support for the generation of monitors from regular expressions using the brics [bri]
library. These regular expressions allow users to specify bad or good prefixes [KYV01] for safety and co-safety
properties. For instance, the language of bad-prefixes for the similar SafeIterator property is specified by the user
with the following regular expression c.n∗.u+.n. Here, event c denotes the creation of an iterator, event u denotes an
update on a collection, and event n denotes using the iterator(next). Matching this regular expression with a trace
means that the run violates the property.

11.4.3 Profiling: The Dynamic Call Graph
The dynamic call graph of a program is a directed graph representing the interprocedural control flow of methods
where directed edges indicate a call from one method to another. It is generated at runtime by analyzing the stack
trace starting from the program’s entry point. Due to the genericity of our approach, we can add two additional
properties on the call graph, invocations count on edges to count the number of times the caller called the callee,
and time spent on vertices which reports the total time spent in each method.

The instrumentation is straightforward, we capture the execution of each method with the onMethodEnter
selector and extract an event carrying the class and method name with its signature. In addition, we inject a timer at
the method entry to track the execution time. On method exit, we capture an event with onMethodExit carrying
with it also the timer value. Figure 11.6a, shows a pipeline for the BeepBeep processor that receives the events
and generates the call graph. The processor pushes method enters into a stack to pop them out on exit. The stack
processor (top left) receives as input: an event and a boolean flag of true or false indicating respectively whether
the event is a method entry or exit. On true, it emits the top element and then pushes the new event into the stack.
On false, it discards the new event, pops the stack, then emits the top element. The edges are finally aggregated
in the rightmost processor which maintains a graph structure that updates the weights of edges and adds up the
time spent in each method. Figure 11.6b, shows the dynamic call graph corresponding to a run of the financial
transaction system from [BFB+19a].

To make the analyses thread-aware, we can include a Slice processor and track the execution of each thread
separately. These graphs can then be combined into one graph.

The dynamic call graph is a valuable tool for dynamic analysis providing insight into the behavior of a program
during execution, and enabling developers to identify and address performance, security, and other issues in the
program. Without using a dedicated profiler, extracting such a graph would require some manual work to handle
the instrumentation, the graph construction, and extraction. Within BeepBeep, existing abstractions for graph
manipulation and exporting to the DOT format allowed us to implement this use case with minimal effort.

11.4.4 Log Analysis: Complex Instrumented Events
Our next application example leverages the fact that the processing layer of our analysis tool makes use of a
full-fledged event stream processing engine, which, in particular, provides functionalities for Complex Event
Processing (CEP) [Luc05]. The principle behind CEP is not to merely apply calculations on a stream of events but
rather to create so-called “complex” events out of a pattern of multiple lower-level events.

For example, in the context of dynamic program analysis, an open operation for a given file handle h, followed by

THESIS 155 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

f

f

f

f

f
m

m¬

[]

f?

(a) Pipeline

(b) Call graph

Figure 11.6: Generating the call graph of an instrumented program.

INRIA - February 2024 156 Chukri Soueidi

11.4: The BISM-BeepBeep Integration

f
¬

f[1] close
=?

[]

P1 P2

P3 P4

f[0]

(a) High-level pipeline

foo∨
=?

read f[1] write
=?

f
f[2]

f
+

f[2] f[3]
1

0

=?

f Σ
∧

f[1]

(b) Processor P4 checking if accesses are contiguous

Figure 11.7: A complex instrumented event for file operations.

multiple read actions and ended by a close on that same handle, could be summarized as a single “access to
file h” complex event. This event could summarize the access to the file by providing the number of bytes read,
the total time during which the file was open, or whether the successive read operations were contiguous (i.e.
each successive read starts at the position where the previous left off). In a sense, complex instrumented events
generalize runtime verification; the point here is not to merely detect the presence of a sequential pattern inside
an event trace (classical monitors suffice for this task), but rather to produce a higher-level composite event that
summarizes the occurrence of this pattern.

The BeepBeep engine has an extension named Complex containing processors suited for that task. In particular, this
extension provides a processor named RangeCep, which creates complex events out of a range of simple events.
The processor is parameterized by the following elements: 1) A processor πR signaling the range of contiguous
events of the input stream that should be taken into account in the construction of the complex event. 2) An array of
processors π1, . . . , πn that are fed the range of events identified by πR, and execute an arbitrary calculation. 3) A
function f , which ingests the output of each of the πi and produces a complex event out of them. This construct
generalizes the stream quantitative regular expressions of the StreamQRE system [MRA+17] by allowing patterns
not expressible as regular expressions.

In the case of the file access complex events described above, Figure 11.7a shows a summary of the high-level
pipeline using the RangeCep processor. Processor πR is defined to return ⊤ between the calls to open and close
for a given file handle. The πi are processors fetching the name of the file, the min/max of the range of bytes read in
this interval, the number of bytes read, and whether accesses are contiguous, respectively. The latter processor
pipeline is illustrated in Figure 11.7b. Finally, the function f simply aggregates these values into a tuple mapping
each attribute to the value calculated by the corresponding πi.

The presented complex events can be used in conjunction with the previously presented monitoring features,
providing richer semantics and allowing for new types of analyses. For example, complex events can be used to
detect and analyze patterns of events where the monitor can potentially ignore a lot of noise in the system, focusing
only on the significant patterns. Moreover, usages like anomaly detection can be implemented using such events.

11.4.5 Coverage: Versatile Metrics
Coverage analysis is a technique used to measure the effectiveness of a test suite. We here demonstrate two coverage
analyses that can help developers effectively test their code and improve their test suites. Both presented analyses
are implemented using the same instrumentation specification, which is a testament to the flexibility of decoupling
instrumentation from analysis. Notably, both analyses are unattainable within widely used frameworks like JaCoCo
where the tight coupling of instrumentation and analysis restricts any customization. Furthermore, such analyses

THESIS 157 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

can be not achieved with AspectJ instrumentation as they require access to low-level events.

Branch Coverage Under Different Execution Paths

Utilizing the control flow information that BISM can extract from a program, we can calculate the branch coverage
for each executing method. A high percentage of branch coverage indicates that the test suite is comprehensive and
covers a significant portion of the possible code execution paths, thereby reducing the likelihood of undetected
bugs or issues. One often overlooked aspect of branch coverage is aggregating the coverage statistics for a method
under different calling contexts which may aid developers to isolate problems tied to specific execution paths.

To measure branch coverage, we instrument the program to emit method access events on the first access of a
method and extract its control flow graph (CFG). The graph is extracted as a list of edges using the control-flow
static context objects provided by BISM. Also on each execution of a basic block in a method, we emit a block
entry event that tracks the transition edge from last executed block and the new one.

Figure 11.8 shows the pipeline that handles these events and performs the analysis. Method access events containing
the CFG edges are used to create a reference graph for each method. The Slice processor extracts the edges from
the event, unpacks them and generates a new graph. Then on each block entry event, the graph associated with the
stack trace ID sid is updated with the edge incoming with the event. The slice function maintains a stack of the
currently executing methods and tags each event with a stack trace ID which is a unique identifier for a specific
path in the dynamic call graph. Finally, on each graph we calculate the coverage percentages.

The above analysis allows for the generation of a comprehensive report, enabling users to filter coverage metrics by
methods and specific execution paths. Finally, a dashboard is generated that provides users the option to select a

f

f
[]

f
edges

sid

cov

}{

Figure 11.8: Calculating branch coverage pipeline.

path from the stack trace and view a detailed representation of the corresponding method’s CFG (at the leaf node).
Figure 11.9 shows a partial screenshot of the dashboard for a sample program. The nodes display the basic block
ID and line numbers of the source code.

Indirect Coverage

Indirect coverage is a metric introduced by [HC16], which is often overlooked in conventional coverage analysis. A
covered entity e (e.g. statement, branch, function) is said to be directly covered if there exists a test that directly
invokes the method m that contains e; otherwise e is said to be indirectly covered. To the best of our knowledge,
no existing tool can compute indirect coverage of a test suite (the authors of [HC16] provide none). Reusing the
same instrumentation specification from Section 11.4.5, we implemented a pipeline that perform this task; the
analysis yields a comprehensive report, outlining both direct and indirect coverage of basic blocks and instructions
for every executed method. It further provides the ratio of direct to indirect coverage for each method, enhancing
the visibility of test effectiveness. The following output illustrates the calculation of direct (DC) and indirect branch
(IC) coverage for a simple calculator program.

IC = {Calculator.genericAdd=[1(36-36)]}
DC = {Calculator.add=[1(5-5), 3(8-9)]}
DC Ratio = {Calculator.add=1.0, Calculator.genericAdd=0.0}
IC Ratio = {Calculator.add=0.0, Calculator.genericAdd=1.0}

This analysis reports for each method under the test suite the directly and indirectly executed basic blocks and
instructions. For example, the method genericAdd which is called by add was indirectly covered by the test

INRIA - February 2024 158 Chukri Soueidi

11.5: Experimental Evaluation

Figure 11.9: Screenshot from the branch coverage dashboard.

suite with a ratio of 1, meaning that none of its entities where directly covered.

11.5 Experimental Evaluation
In the following, we provide experimental measurements of the performance of our proposed tool for some of the
analyses presented in the previous section.

11.5.1 Monitoring
We compared the performance of our parametric monitors with well-established monitoring tools such as Java-
MOP [CR05b], and MARQ [RCR15a] on a program that creates lists of elements and iterates over them. Varying
the number of generated events per execution from 103 to 106, we report the total execution time and memory used
in Table 11.1. As expected, our approach performed slower in comparison to very well-optimized tools such as
JavaMOP and MARQ; however, a detailed time overhead and memory overhead shows a linear growth with the
size of the trace, as is the case for other tools.

Tool Execution Time (s) Used Memory (MB)
BISM-BeepBeep 78.36 9493
JavaMOP 11.31 2045
MARQ 4.159 828
Original 0.874 603

Table 11.1: Execution time and memory usage for each tool.

Figure 11.10 depicts the memory and execution time overhead for multiple executions with varying numbers of
events, comparing both an empty analysis and the aforementioned monitoring scenario within BISM-BeepBeep. A
notable dip in execution time is due to the JIT compiler. We observe that instrumentation contributes to 10% of the
overhead; almost all the running time is spent in BeepBeep’s slicing processor. Further inspection revealed that
this function doesn’t free memory of slices no longer in use, potentially explaining the slowdown, which could be
optimized.

In counterpart to this higher overhead, we highlight that our approach brings increased flexibility and modularity.
While the existing tools impose a limited specification language (finite-state automata, temporal logic or regular
expressions), one can use any slicing function from the literature and any monitor that can be constructed as a
BeepBeep pipeline, resulting in a much higher flexibility. For example, instead of checking that the SafeIterator

THESIS 159 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

0K 50K 100K 150K 200K 250K 300K
Number of Events

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ex
ec

ut
io

n
Ti

m
e

(s
)

Original Execution Time
EmptyAnalysis Execution Time
Monitoring Execution Time
Original Memory Usage
EmptyAnalysis Memory Usage
Monitoring Memory Usage

0

20

40

60

80

100

Us
ed

 M
em

or
y

(M
B)

Figure 11.10: Overhead comparison in BISM-BeepBeep: empty analysis vs. monitoring scenario.

property is respected for every iterator instance (a yes/no verdict), one could calculate the fraction of all iterators
that violate it in the last n program steps, something that is out of reach of JavaMOP and MARQ.

11.5.2 Coverage
We compared the performance of our branch coverage analysis with JaCoCo [JaC] using a benchmark that simulates
a financial transaction system [BFB+19a]. This comparison varied the number of produced events across different
runs. As depicted in Table 11.2, our approach’s execution time and memory usage were consistently slower than the
optimized JaCoCo tool, as anticipated. Yet, it’s crucial to put this difference in perspective: the absolute difference
is less than 1.5 seconds, which, for a task likely run only a few times daily, may be inconsequential for most users.
Beyond this, our method offers significant advantages, providing a much richer dataset. It captures the number of
times each branch is taken (transition frequency) and the coverage under unique execution paths, yielding a deeper
insight into system behavior. This extensive data means our method analyzes over double the paths than JaCoCo
and measures indirect coverage, which JaCoCo does not.

While JaCoCo instruments Boolean arrays into the program to track executed lines and subsequently generates a
report from these, it does require access to the compiled program for report creation. In contrast, our approach
extracts comprehensive events directly and eliminates the need for later access to the source code. Furthermore, our
method allows users to narrow down the instrumentation scope, allowing a focused analysis on specific modules of
interest, hence leading to a more targeted and efficient coverage assessment.

Metric Original JaCoCo BISM-BeepBeep
Execution Time (ms) 29 655 2080
Memory Usage (MB) 5.03 8.07 15.7
Unique Paths Analysed 71 189
Transition Frequency ✗ ✓

Table 11.2: Comparison of JaCoCo and BISM-BeepBeep.

11.5.3 Profiling
During our evaluation, we struggled to adapt existing profilers to solely generate dynamic call graphs. While
many of these tools inherently generate these graphs, their extensive suite of features and functionalities makes
it exceptionally challenging to isolate and report solely on this particular aspect. As such, we benchmarked
BISM-BeepBeep against a manual analysis we wrote with instrumentation with AspectJ, with results in Table 11.3,
using the same financial transaction system [BFB+19a]. Our approach utilized BeepBeep’s existing abstractions for

INRIA - February 2024 160 Chukri Soueidi

11.6: Conclusion

Method Execution Time (ms) Processing (ms)
Manual Code with AspectJ 2400 110
BISM-BeepBeep 1750 290
Original 800 -

Table 11.3: Benchmarking results for execution time.

graph handling and DOT format export, whereas the manual analysis needed tailored graph code and DOT format
expertise. Our method was quicker overall, but slower in isolated processing due to the competitor’s single-task
focus.

11.6 Conclusion
This chapter introduced a new approach that leverages the capabilities of BISM and BeepBeep, providing a flexible
and comprehensive framework for dynamic program analysis. We overcame many limitations of existing methods
that couple instrumentation and analysis processes, thereby increasing expressiveness, allowing synchronous and
asynchronous analyses, and promoting modularity and reusability. Our approach allows users to express instrumen-
tation requirements with a high level of abstraction allowing the specification of analyses with various granularity
levels of events. Moreover, the seamless integration and the minimal setup and configuration requirements facilitate
its incorporation into development workflows. Nevertheless, our approach has its limitations. First, there is an
overhead due to the abstraction and flexibility it provides, and it may not be as optimized as dedicated tools. Further,
compared to other frameworks that implement program observation techniques other than instrumentation, our
approach cannot capture internal events that the runtime environment executes such as dispose events of objects.
Looking ahead, there is substantial scope for future work. One possibility is extending the application of our
approach to blockchain languages like Ethereum. Given the increasing prevalence and importance of blockchain
technologies, this could open up new avenues for understanding and improving blockchain-based systems.

THESIS 161 Chukri Soueidi

CHAPTER 11. DYNAMIC PROGRAM ANALYSIS WITH BISM AND COMPLEX EVENT PROCESSING

INRIA - February 2024 162 Chukri Soueidi

Part V

Conclusion and Perspectives

163

CHAPTER 12

Conclusion and Perspectives

In this chapter, we conclude this thesis by summarizing the contributions made in this work and presenting some
perspectives for future work.

12.1 Contributions
We here present a summary of the contributions made in this thesis. We start with the instrumentation framework,
BISM, which enables the following contributions. We then present the contributions related to combining static
and dynamic analysis, the monitoring of concurrent programs and the contributions related to the broader scope of
dynamic program analysis.

12.1.1 Program Instrumentation
In response to the need for a comprehensive instrumentation framework, we presented a new dedicated, versatile,
and expressive instrumentation framework for runtime verification. This framework is designed to provide
three important features we identified as lacking together in existing instrumentation frameworks: the ability to
capture events at different levels of granularity, the ability to guide the instrumentation process with weave-time
analyses, and the ability to modify the program in an unrestricted manner. This instrumentation framework is
implemented in a new state-of-the-art tool for JVM languages, named BISM (Bytecode-Level Instrumentation for
Software Monitoring). BISM addresses the mentioned expressiveness requirements while providing a high-level
instrumentation language that can be used by various users.

BISM is designed to combine the expressiveness of bytecode manipulation frameworks and the abstraction of aspect-
oriented programming (AOP) frameworks. It captures events at the bytecode level, allowing for the monitoring
of properties specified over events with various granularity levels. It is designed to support writing weave-time
analyses within the instrumentation specification, enabling the guiding of the instrumentation process to consider
property and program semantics in order to optimize instrumentation. To achieve this, writing instrumentation is
achieved through transformers, which are classes that encapsulate join point selection and advice inlining. However,
users specify advice using advice methods rather than directly writing code snippets. This approach enables users to
write weave-time analyses that can be executed at the time of instrumentation along with advice code. Hence both
the instrumentation and the analysis are performed at the same place using the same abstractions provided by the
framework. It also provides advanced users with the flexibility of unrestricted code modification, which is essential
for deploying inline monitors or enforcing certain properties such as a sequential order of concurrent events.

BISM provides constructs, mapping directly to the requirements of runtime verification, to handle three key
functions: identification of points of interest, access to contextual information from the program, and the extraction
of this information. BISM also performs out-of-the-box analysis on the bytecode to provide additional information
about the program methods such as control-flow information and the states of the stack frames. BISM also allows

165

CHAPTER 12. CONCLUSION AND PERSPECTIVES

the composition of these transformers, enabling users to specify instrumentation in a modular and reusable manner.
Moreover, transformers in composition are capable of controlling the visibility of program parts, allowing for the
integration of various weave-time static analyzers within the instrumentation process.

BISM provides two distinct approaches for implementing transformers: an API-based and an external DSL approach.
With the API approach, users define transformers in Java classes, offering them a high degree of control over
the instrumentation process. The DSL approach, on the other hand, provides a declarative way of specifying
instrumentation directives, offering a subset of the language constructs available in the API approach, but in a more
concise and user-friendly manner.

We evaluated the performance of BISM and compared it to AspectJ and DiSL, two state-of-the-art instrumentation
frameworks, and showed that BISM can be used as an alternative to these tools for expressive runtime verification.
BISM incurs lower overhead in terms of bytecode size, memory usage, and execution time. We also demonstrated
that BISM was capable of handling instrumentation requirements that were not possible with AspectJ or DiSL.
These are mainly scenarios where unrestricted code modification is needed.

We also demonstrated the applicability of BISM in various static and dynamic analyses. For static analyses, BISM
provides the proper abstractions to traverse the program and extract information. Such analyses can be then easily
integrated into the instrumentation process.

12.1.2 Guiding the Instrumentation Process with Residual Analysis
Motivated by the new capabilities within the instrumentation framework, we presented a novel approach to
residual runtime verification of parametric properties. We instantiated it at the intra-procedural level using novel
overapproximation approaches for the program behavior. This technique integrated both the semantics of the
property under verification and the program to optimize the instrumentation process and reduce instrumentation
points (C2). The presented method applies to both bad and good prefixes, making it suitable for monitoring various
kinds of safety and co-safety properties. Unlike existing methods, our approach is independent of any specific
static analysis technique. This design decision allows for the modular integration of various static analyses without
altering the core residual analysis algorithm, thereby increasing the framework’s adaptability to diverse runtime
verification scenarios.

The proposed residual analysis is fully implemented and integrated into BISM. We also evaluated the scalability
of the approach using a set of benchmarks and showed that it could be used to significantly reduce the runtime
overhead of monitoring parametric properties. Overall, this work establishes a foundational framework for residual
runtime verification that is agnostic to the choice of static analysis, providing a robust and flexible mechanism for
performance optimization in runtime monitoring tasks.

12.1.3 Monitoring of Concurrent Programs
In this thesis, we focused on monitoring general behavioral properties of concurrent programs. These properties
target violations that cannot be traced back to classical concurrency errors, and they typically include order
violations such as null-pointer dereferences [FPRS12], and typestate violations [JS08, HLR15, SCR12].

We formalized two critical properties that a trace should fulfill to be considered a representative of a concurrent
program’s behavior: soundness and faithfulness. These qualities established a foundation for subsequent analyses
and methodologies. We introduced a generalized approach for collecting traces of concurrent programs aimed
at runtime monitoring. This approach was distinct in its use of a real-time vector clock algorithm, designed to
establish the causal ordering of events in a non-blocking manner. The non-blocking characteristic was crucial, as it
minimized interference with the program’s natural execution flow, thus preserving its functional and performance
characteristics to a higher degree compared to blocking alternatives.

For behavioral properties expressed in automata-based formalisms, we redefined the notion of monitorability for
concurrent traces. We extracted a causal dependence relation from a given property to know which events cannot
permute in a trace and checked whether a trace contained enough order information (Section 7.6). We then redefined
trace monitorability for concurrent executions with a necessary condition on the trace to guarantee a sound verdict
when monitoring.

To validate our theoretical contributions, we implemented a BISM extension named FACTS. This allowed us to
capture concurrent traces from programs and assess their monitorability. We evaluated the performance of FACTS

INRIA - February 2024 166 Chukri Soueidi

12.2: Perspectives

using a set of benchmarks and real-world applications. The results showed that FACTS was capable of capturing
concurrent traces with low overhead, making it suitable for deployment in production environments. We also
evaluated the monitorability of the captured traces and showed that the majority of the traces were monitorable.
This demonstrated the feasibility of monitoring concurrent programs using automata-based formalisms.

We also presented opportunistic monitoring, an approach for the online monitoring of multithreaded programs. We
deployed monitoring at two levels. At the first level, thread-local monitors were employed to monitor the execution
of individual threads. The second level introduced scope monitors which monitored global properties shared across
threads. This approach introduces a novel way of instrumenting multithreaded programs, taking advantage of
existing synchronization points in a program to monitor it, rather than introducing additional synchronization points,
which might interfere with the program’s behavior and introduce additional overhead. Scope monitors are evaluated
at the end of scope regions which are assumed to be atomically executing. Hence, by assuming the atomicity of
scope regions, we ensure that the thread-local monitors can accurately observe and report the state of the thread
within the region. Such a hierarchical setup enabled the expression of complex global properties that could not
be expressed by classical monitors that rely on linear traces. Moreover, by decentralizing the specification over
local and global monitors, various interesting behavioral properties can now be checked which was not possible
before. The evaluation of the opportunistic monitoring approach was performed using a set of benchmarks and
real-world applications. The results showed that the approach was effective in monitoring global properties without
the need for additional synchronization mechanisms that could disrupt program execution. The opportunistic
approach incurred a low overhead in terms of memory usage and execution time making it suitable for deployment
in production environments.

Overall, the contributions presented throughout this thesis aim to improve the reliability, efficiency, and reusability
of existing runtime verification techniques when monitoring concurrent programs.

12.1.4 Contributions to the Broader Scope of Dynamic Program Analysis
By utilizing the instrumentation framework, we presented a modular approach to dynamic program analysis for
JVM-based languages. This approach combined the instrumentation framework with a complex event-processing
engine to provide a comprehensive framework for dynamic program analysis. BISM provided the ability to capture
fine-grained events and perform pre-instrumentation analyses. The complex event processing engine provided the
ability to perform synchronous and asynchronous analysis, as well as the ability to combine multiple analyses. The
combination of these two components provides a flexible and expressive framework for dynamic program analysis.

Our approach allows users to express instrumentation requirements for dynamic analyses with a high level of
abstraction. It also facilitates the specification of analyses with various granularity levels of events. The capability
of performing synchronous or asynchronous analysis gives users additional flexibility, making it feasible to adapt to
the demands of different analysis scenarios. Moreover, the seamless integration with existing tools and the minimal
setup and configuration requirements facilitate its incorporation into development workflows.

12.2 Perspectives
In this section, we present some perspectives for future work.

12.2.1 BISM
We plan on extending the BISM language by adding more features to it. For the core BISM API, we plan to add
guards to selectors that will facilitate the filtering of join points to the user. Guards can be annotations that decorate
selectors. They allow users to specify a filter on important static information such as scope, method signature,
opcode for instruction, and others. Also, the dynamic pointcut if can also be considered to allow users to specify
guards based on runtime information. This would also be specified as annotations on selectors in order to avoid
adding conditional advice methods.

As for the DSL, it currently offers a focused syntax for instrumentation and runtime verification. However, it only
supports a subset of the BISM API features and lacks support for inserting arbitrary bytecode instructions. A full
integration of the DSL and the API can considered to provide a more expressive language. Moreover, we aim to
add enforcement constructs to the DSL (discussed below), allowing users to specify inlined enforcers.

THESIS 167 Chukri Soueidi

CHAPTER 12. CONCLUSION AND PERSPECTIVES

Runtime enforcement. Finally, using the bytecode insertion capabilities of BISM, the language of BISM can
be extended with abstractions targeting enforcement capabilities. This will allow users to specify enforcement
directives in the same way they specify instrumentation advice. For instance, a user can specify that an instruction
such as a method invocation in the base program can only be executed if a certain condition is satisfied. Otherwise,
the program is driven to skip the instruction, exit the method, or terminate the execution. Another enforcement
directive can be blocking a thread from executing before some instructions until a certain condition is satisfied.
Here BISM will be responsible for generating the bytecode for the enforcement specified with the high-level
directives and weaving it into the base program. As such effective runtime enforcement [FMRS18, FP19] tools can
be implemented.

Adapter for AspectJ. Many of the currently existing runtime verification tools such as JavaMOP [CR05a],
Tracematches [AAC+05a, BHL+10], MarQ [RCR15b], and LARVA [CPS09b] rely on AspectJ for instrumentation.
As such their analysis expressiveness is bound by the set of events that AspectJ can extract from the program
limiting the ability to write specifications over low-level events. Motivating these tools to move to BISM can be
considered future work. Developing an adapter that can convert AspectJ aspects to BISM transformers is a first
step towards enabling the use of BISM with these tools. This would allow the usage of pre-existing specifications
written in AspectJ with BISM. More importantly the use of BISM as a general-purpose instrumentation tool for
runtime verification.

Stateful instrumentation. BISM currently provides the ability to capture events at multiple levels of granularity.
These events are often observations of some program action. In state-based monitoring, each event might include
observations that might span several locations in the program. Consider a property that specifies that a certain
variable x should be greater than variable y at some point in the program. This property requires knowing the
values of x and y at different points in the program where either of the variables is updated since the values of
x and y need to be compared to check if the property is satisfied. As such, the values of x and y need to be
maintained across different locations in the program. This would require an additional layer that maintains shadow
variables for the relevant program variables. This layer would be responsible for updating the shadow variables
at the appropriate points in the program. BISM can be equipped with such instrumentation directives to support
state-based monitoring.

Wider targeting of JVM languages. While various JVM languages all compile down to the same JVM bytecode,
modern languages such as Scala, Kotlin, and Groovy provide unique features and constructs. These languages ex-
hibit distinctive features like functional programming constructs, pattern matching, and unique naming conventions,
resulting in bytecode that is complex and non-obvious. In order to instrument these programs with a bytecode
instrumentation tool, the users need to be fully aware of how these languages compile down to bytecode. This can
be challenging for users who are not familiar with the compilation process of these languages. To address this issue,
BISM can be equipped with dedicated APIs for these languages. This API can provide language-specific constructs
that can be used to specify instrumentation directives. For instance, the API can provide constructs for specify-
ing instrumentation directives for Scala’s match expressions. This will allow users to specify instrumentation
directives more concisely and naturally.

12.2.2 Combinining Static and Dynamic Analysis
Our work on the residual analysis showed promising results in reducing the number of instrumentation points. At its
core, our approach depends on guiding the instrumentation with fairly simple static analyzers that avoid data-flow
analysis. Nevertheless, to increase precision and restrict over-approximations, it can be extended to include specific
static program analysis techniques. The user might opt to include static call graph construction and escape analysis
for a more precise approximation of parametric traces, as well as pointer analysis for better approximations of
projected traces. For instance, demand-driven pointer analysis [SNQDAB16] can be used to refine the safe list of
instructions by making sure that references passed to unrelated method invocations do not point to objects that the
monitor is interested in.

Moreover, in cases where pointer analysis does not return a result, the program can be appended with runtime
assertions to check the aliasing relationship between references. For example, in Ex. 25, if someflag (at Line
9) evaluates to true and the program enters the branch, the program can be appended with an assertion at Line
10 to check that l1 and l2 do not point to the same object. If the assertion fails, the program can be driven to

INRIA - February 2024 168 Chukri Soueidi

12.2: Perspectives

take a branch where both list updates in Lines 10 and 11 are captured by instrumentation, else the program can
be driven to take the branch where these updates are ignored by the instrumentation. As such, some paths of the
program need to be duplicated, ones with advice to capture the events and others without advice to ignore them.
Given the unrestricted ability to control the program with BISM, such assertions and copying of paths can be easily
implemented.

Our current analysis is targeted toward single-threaded programs. Another interesting extension can be to handle
concurrent programs and handle thread-escaping references.

12.2.3 Monitoring of Concurrent Programs
We here present perspectives for future work related to the monitoring of concurrent programs.

Collection of Concurrent traces

Collecting concurrent traces for runtime monitoring opens the path to interesting research directions. Firstly,
monitoring techniques can be revisited and extended to take into account the partial order. Tools relying on total
order in traces can use concurrent traces to check if a trace has the needed causality and, if not, produce warnings.
Moreover, specifications (and formalisms) that can match traces obtained from our approach can be elaborated
to extend the expressiveness of monitoring to check concurrency-related behavioral properties. For example, our
approach is applicable for OpenMP runtimes; it can be used to verify the correctness of the scheduling algorithms
of tasks with data dependencies (e.g., [VBGR16]). We can verify that the runtime never schedules two dependent
tasks in parallel.

Secondly, it is now possible to define and quantify optimizations for capturing sound and faithful traces. How to
obtain optimal faithfulness (Section 7.6.3) with instrumentation is an interesting challenge. Approaches such as
sliced causality [CR07] can be inspiring. Sliced causality aims to build a more relaxed causal model that allows
exploring interleavings. It does so by applying static analysis with the help of a collected trace to determine data
and control dependent actions that should be kept in the causal model. We envision an approach where multiple
runs can guide instrumentation to reach the optimal faithfulness ratio. Thirdly, for scenarios where the execution
often produces traces that lack the needed causality, the user can be given facilities to enforce the needed causality.
Linearization of concurrent events can be achieved for instance on the fly by JVM hot swapping.

Finally, to reduce the overhead of capturing synchronization actions, instrumentation can be tailored to the
concurrency framework used in the program. Higher-level concurrency frameworks such as fork-join [Lea00] and
software transactional memory [HMPJH05] can be targeted taking advantage of the assumptions they make about
the correctness of the program. Tailoring instrumentation to these frameworks reduces the number of collected
synchronization actions. It requires assumptions about the correctness of these frameworks. These assumptions can
be checked using static and dynamic analysis.

Opportunistic Monitoring

While the preliminary results are promising, additional work needs to be invested to complete the automatic
synthesis and instrumentation of monitors. So far, splitting the property over local and scope monitors is achieved
manually and scope regions are guaranteed by the user to follow a total order. Analyzing the program to find and
suggest scopes suitable for splitting and monitoring a given property is an interesting challenge that we leave for
future work. The program can be run, for instance, to capture its causality and recommend suitable synchronization
actions for delimiting scope regions. Furthermore, the expressiveness of the specification can be increased by
extending scopes to contain other scopes and adding more levels of monitors. This allows for properties that target
not just thread-local properties, but also concurrent regions enclosed in other concurrent regions, thus creating a
hierarchical setting.

In [BSB17, BSS18], the authors present monitoring for hyperproperties written in alternation-free fragments
of HyperLTL [CS10]. Hyperproperties are specified over sets of execution traces instead of a single trace. In
the opportunistic monitoring setup, each thread produces its trace and thus scope properties we monitor can be
expressed in HyperLTL for instance. The time occurrence of events will be delimited by concurrency regions
and thus traces will consist of propositions that summarize the concurrency region. We have yet to explore the
applicability of specifying and monitoring hyperproperties within our opportunistic approach.

THESIS 169 Chukri Soueidi

CHAPTER 12. CONCLUSION AND PERSPECTIVES

INRIA - February 2024 170 Chukri Soueidi

Bibliography

[133] Java Specification Request (JSR) 133. Java Memory Model and Thread Specification Revision,
2004. http://jcp.org/jsr/detail/133.jsp.

[AAC+05a] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’05, pages 345–364. ACM, 2005.

[AAC+05b] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding trace
matching with free variables to AspectJ. SIGPLAN Not., 40(10):345–364, October 2005.

[ABF+10] Laksono Adhianto, S. Banerjee, Michael W. Fagan, Mark Krentel, Gabriel Marin, John M. Mellor-
Crummey, and Nathan R. Tallent. HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput. Pract. Exp., 22(6):685–701, 2010.

[ABH+06] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Philipp Rümmer, and Peter Schmitt. Verifying
object-oriented programs with key: A tutorial. volume 4709, pages 70–101, 01 2006.

[AC76] Frances E. Allen and John Cocke. A program data flow analysis procedure. Communications of the
ACM, 19(3):137, 1976.

[ACF+22] Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A
runtime monitoring tool for actor-based systems, 2022.

[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták,
Ondřej Lhoták, Oege De Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc: An
extensible aspectj compiler. In Proceedings of the 4th international conference on Aspect-oriented
software development, pages 87–98, 2005.

[ACP20] Shaun Azzopardi., Christian Colombo., and Gordon Pace. Clarva: Model-based residual verification
of java programs. In Proceedings of the 8th International Conference on Model-Driven Engineering
and Software Development - MODELSWARD,, pages 352–359. INSTICC, SciTePress, 2020.

[AG96] S. V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial. Computer,
29(12):66–76, December 1996.

[AG05] Anurag Agarwal and Vijay K. Garg. Efficient dependency tracking for relevant events in shared-
memory systems. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’05, page 19–28, New York, NY, USA, 2005. Association for
Computing Machinery.

171

http://jcp.org/jsr/detail/133.jsp

BIBLIOGRAPHY

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, MA, USA, 1986.

[AGH+15] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Feng Xia, and Muhammad Shiraz.
A review on mobile application energy profiling: Taxonomy, state-of-the-art, and open research
issues. J. of Netw. and Comp. App., 58:42 – 59, 2015.

[AGVY11] Edward Aftandilian, Samuel Z. Guyer, Martin T. Vechev, and Eran Yahav. Asynchronous assertions.
In Cristina Videira Lopes and Kathleen Fisher, editors, Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, pages 275–288. ACM, 2011.

[Akk22] Akka documentation. http://akka.io/docs/, 2022.

[AM07] Tomoyuki Aotani and Hidehiko Masuhara. Scope: an aspectj compiler for supporting user-defined
analysis-based pointcuts. In Proceedings of the 6th International Conference on Aspect-oriented
software development, pages 161–172, 2007.

[ANB+95] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal memory:
definitions, implementation, and programming. Distributed Computing, 9(1):37–49, March 1995.

[Apa] Apache Commons. BCEL (byte code engineering library). https://commons.apache.org/proper/
commons-bcel. Accessed: 2020-06-18.

[Asp] Aspectj. https://www.eclipse.org/aspectj/. Accessed: 2023-05-01.

[BCC+09] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu. Bounded
model checking. Handbook of satisfiability, 185(99):457–481, 2009.

[BCMD91] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, and David L Dill. Sequential circuit
verification using symbolic model checking. In Proceedings of the 27th ACM/IEEE Design
Automation Conference, pages 46–51, 1991.

[BDDF16] Titus Barik, Robert DeLine, Steven Mark Drucker, and Danyel Fisher. The bones of the system: a
case study of logging and telemetry at Microsoft. In Laura K. Dillon, Willem Visser, and Laurie A.
Williams, editors, ICSE, pages 92–101. ACM, 2016.

[Bec04] Kent L. Beck. JUnit - pocket guide: quick lookup and advice. O’Reilly, 2004.

[BF72] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples of their
behavior. IEEE Trans. Comput., 21(6):592–597, June 1972.

[BFB12] Jan Olaf Blech, Ylies Falcone, and Klaus Becker. Towards certified runtime verification. In
International Conference on Formal Engineering Methods, pages 494–509. Springer, 2012.

[BFB+17] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker, Klaus
Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger, Grigore Rosu, Julien Signoles,
Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. International Journal on Software
Tools for Technology Transfer, April 2017.

[BFB+19a] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker, Klaus
Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger, Grigore Rosu, Julien Signoles,
Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools Technol. Transf.,
21(1):31–70, 2019.

[BFB+19b] Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker, Klaus
Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger, Grigore Rosu, Julien Signoles,
Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First international competition on runtime verifica-
tion: Rules, benchmarks, tools, and final results of crv 2014. Int. J. Softw. Tools Technol. Transf.,
21(1):31–70, February 2019.

INRIA - February 2024 172 Chukri Soueidi

http://akka.io/docs/
https://commons.apache.org/proper/commons-bcel
https://commons.apache.org/proper/commons-bcel
https://www.eclipse.org/aspectj/

12.2: BIBLIOGRAPHY

[BFFR18a] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer Science, pages
1–33. Springer, 2018.

[BFFR18b] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime
verification. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of LNCS, pages 1–33. Springer, 2018.

[BFH+12] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard. Quantified
Event Automata: Towards Expressive and Efficient Runtime Monitors. In Dimitra Giannakopoulou
and Dominique Méry, editors, FM 2012: Formal Methods - 18th International Symposium, Paris,
France, August 27-31, 2012. Proceedings, volume 7436 of Lecture Notes in Computer Science,
pages 68–84. Springer, 2012.

[BGH+06a] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel,
Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo bench-
marks: Java benchmarking development and analysis. In Peri L. Tarr and William R. Cook, editors,
Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon,
USA, volume 41, pages 169–190, New York, NY, USA, October 2006. ACM.

[BGH+06b] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel,
Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović,
Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applications, volume 41 of
OOPSLA ’06, pages 169–190. ACM, October 2006.

[BH05] Saddek Bensalem and Klaus Havelund. Dynamic deadlock analysis of multi-threaded programs. In
Proceedings of the First Haifa International Conference on Hardware and Software Verification
and Testing, HVC’05, page 208–223, Berlin, Heidelberg, 2005. Springer-Verlag.

[BH10] Eric Bodden and Klaus Havelund. Aspect-oriented race detection in Java. IEEE Transactions on
Software Engineering (TSE), 36(4):509–527, July 2010.

[BHL+10] Eric Bodden, Laurie Hendren, Patrick Lam, Ondřej Lhoták, and Nomair A. Naeem. Collaborative
Runtime Verification with Tracematches. Journal of Logic and Computation, 20(3):707–723, June
2010.

[BL19] Dirk Beyer and Thomas Lemberger. Testcov: Robust test-suite execution and coverage measurement.
In ASE, pages 1074–1077. IEEE, 2019.

[BLC02] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to imple-
ment adaptable systems. In Adaptable and extensible component systems, 2002.

[BLH10] Eric Bodden, Patrick Lam, and Laurie Hendren. Clara: A framework for partially evaluating
finite-state runtime monitors ahead of time. pages 183–197, 01 2010.

[BLH12] Eric Bodden, Patrick Lam, and Laurie J. Hendren. Partially evaluating finite-state runtime monitors
ahead of time. ACM Trans. Program. Lang. Syst., 34(2):7:1–7:52, 2012.

[BLS11a] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September 2011.

[BLS11b] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for ltl and tltl. ACM
Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September 2011.

THESIS 173 Chukri Soueidi

BIBLIOGRAPHY

[BMP18] Francesco Adalberto Bianchi, Alessandro Margara, and Mauro Pezzè. A survey of recent trends in
testing concurrent software systems. IEEE Transactions on Software Engineering, 44(8):747–783,
2018.

[BMTA16] Walter Binder, Philippe Moret, Éric Tanter, and Danilo Ansaloni. Polymorphic bytecode instrumen-
tation. Softw. Pract. Exp., 46(10):1351–1380, 2016.

[bri] BRICS Automaton. http://www.brics.dk/automaton/. Accessed: 2023-05-30.

[BS93] Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods and standards.
Software engineering journal, 8(4):189–209, 1993.

[BSB17] Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based runtime verification for
alternation-free hyperltl. In Proceedings, Part II, of the 23rd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems - Volume 10206, page 77–93, Berlin,
Heidelberg, 2017. Springer-Verlag.

[BSS18] Borzoo Bonakdarpour, Cesar Sanchez, and Gerardo Schneider. Monitoring hyperproperties by
combining static analysis and runtime verification. In Leveraging Applications of Formal Methods,
Verification and Validation. Verification: 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part II, page 8–27, Berlin, Heidelberg, 2018. Springer-
Verlag.

[CAPS15] Jesus Chimento, Wolfgang Ahrendt, Gordon Pace, and Gerardo Schneider. Starvoors: A tool for
combined static and runtime verification of java. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9333(2012),
09 2015.

[CAS18] Jesús Mauricio Chimento, Wolfgang Ahrendt, and Gerardo Schneider. Testing meets static and
runtime verification. In Proceedings of the 6th Conference on Formal Methods in Software
Engineering, FormaliSE ’18, page 30–39, New York, NY, USA, 2018. Association for Computing
Machinery.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252, 1977.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logics of Programs, Workshop, 1981, pages 52–71, 1981.

[CF16] Ian Cassar and Adrian Francalanza. On implementing a monitor-oriented programming framework
for actor systems. In Integrated Formal Methods - 12th International Conference, IFM 2016,
Reykjavik, Iceland, June 1-5, 2016, Proceedings, pages 176–192, 2016.

[CFA+17] I Cassar, A Francalanza, L Aceto, A Ingólfsdóttir, et al. A survey of runtime monitoring instrumen-
tation techniques. In Proceedings Second International Workshop on Pre-and Post-Deployment
Verification Techniques, PrePost@ iFM 2017, pages 15–28, 2017.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff.
Escape analysis for java. SIGPLAN Not., 34(10):1–19, October 1999.

[Chi00] Shigeru Chiba. Load-time structural reflection in java. In Elisa Bertino, editor, ECOOP 2000 -
Object-Oriented Programming, 14th European Conference, Sophia Antipolis and Cannes, France,
June 12-16, 2000, Proceedings, volume 1850 of Lecture Notes in Computer Science, pages 313–336.
Springer, 2000.

[CHV+18] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. Handbook of model
checking, volume 10. Springer, 2018.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Handbook of
Model Checking. Springer Publishing Company, Incorporated, 1st edition, 2018.

INRIA - February 2024 174 Chukri Soueidi

http://www.brics.dk/automaton/

12.2: BIBLIOGRAPHY

[CJ21] Boyuan Chen and Zhen Ming (Jack) Jiang. A survey of software log instrumentation. ACM Comput.
Surv., 54(4), May 2021.

[CKFS01] Yvonne Coady, Gregor Kiczales, Michael J. Feeley, and Greg Smolyn. Using AspectC to improve
the modularity of path-specific customization in operating system code. In A Min Tjoa and Volker
Gruhn, editors, Proceedings of the 8th European Software Engineering Conference held jointly
with 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering 2001,
Vienna, Austria, September 10-14, 2001, pages 88–98. ACM, 2001.

[CL02] Harold W. Cain and Mikko H. Lipasti. Verifying sequential consistency using vector clocks. In
Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’02, page 153–154, New York, NY, USA, 2002. Association for Computing Machinery.

[CP17] Christian Colombo and Gordon J. Pace. Runtime verification using LARVA. In Giles Reger and
Klaus Havelund, editors, RV-CuBES, volume 3 of Kalpa Publications in Computing, pages 55–63.
EasyChair, 2017.

[CPS09a] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. Dynamic event-based runtime
monitoring of real-time and contextual properties. In Darren Cofer and Alessandro Fantechi,
editors, Formal Methods for Industrial Critical Systems, volume 7609, pages 135–149, Berlin,
Heidelberg, October 2009. Springer Berlin Heidelberg.

[CPS09b] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — Safer Monitoring of
Real-Time Java Programs (Tool Paper). In Dang Van Hung and Padmanabhan Krishnan, editors,
Seventh IEEE International Conference on Software Engineering and Formal Methods, SEFM 2009,
Hanoi, Vietnam, 23-27 November 2009, pages 33–37. IEEE Computer Society, 2009.

[CR05a] Feng Chen and Grigore Roşu. Java-MOP: A Monitoring Oriented Programming Environment for
Java. In Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, pages 546–550. Springer, April 2005.

[CR05b] Feng Chen and Grigore Roşu. Java-MOP: A monitoring oriented programming environment for
java. In Nicolas Halbwachs and Lenore D. Zuck, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 546–550, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[CR06] Lori A Clarke and David S Rosenblum. A historical perspective on runtime assertion checking in
software development. ACM SIGSOFT Software Engineering Notes, 31(3):25–37, 2006.

[CR07] Feng Chen and Grigore Roşu. Parametric and sliced causality. In Proceedings of the 19th Interna-
tional Conference on Computer Aided Verification, CAV’07, page 240–253, Berlin, Heidelberg,
2007. Springer-Verlag.

[CR09] Feng Chen and Grigore Roşu. Parametric trace slicing and monitoring. In Stefan Kowalewski and
Anna Philippou, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
246–261, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. J. Comput. Secur., 18(6):1157–1210,
September 2010.

[CSR08] Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. Jpredictor: A predictive runtime analysis
tool for java. In Proceedings of the 30th International Conference on Software Engineering, ICSE
’08, page 221–230, New York, NY, USA, 2008. Association for Computing Machinery.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating transforma-
tions. https://researchspace.auckland.ac.nz/handle/2292/3491, 01 1997.

[CTL98] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. Association for Computing Machinery, 1998.

[CWG+17] R. Calinescu, D. Weyns, Simos Gerasimou, M. Iftikhar, I. Habli, and T. Kelly. Engineering
trustworthy self-adaptive software with dynamic assurance cases. ACM, 2017.

THESIS 175 Chukri Soueidi

BIBLIOGRAPHY

[CZS+23] Ming Chai, Xinyi Zhang, Bernd-Holger Schlingloff, Tao Tang, and Hongjie Liu. Online hazard
prediction of train operations with parametric hybrid automata based runtime verification. Reliability
Engineering & System Safety, page 109621, 2023.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st International Conference on Software
Engineering, ICSE ’99, page 411–420, New York, NY, USA, 1999. Association for Computing
Machinery.

[DFS02] Rémi Douence, Pascal Fradet, and Mario Sûdholt. A framework for the detection and resolution
of aspect interactions. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2487:173–188, 2002.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

[Dij72] Edsger W Dijkstra. The humble programmer. Communications of the ACM, 15(10):859–866, 1972.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, 1975.

[DKS13] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. Common specification language for
static and dynamic analysis of c programs. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 1230–1235, 2013.

[DLK+14] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer,
Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al. The matter of heartbleed. In
Proceedings of the 2014 conference on internet measurement conference, pages 475–488, 2014.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the practicing
programmer. Computer, 1978.

[DP07] Matthew B. Dwyer and Rahul Purandare. Residual dynamic typestate analysis exploiting static
analysis. page 124, 2007.

[EF18] Antoine El-Hokayem and Yliès Falcone. In Christian Colombo and Martin Leucker, editors,
Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus, November 10-13,
2018, Proceedings, volume 11237 of Lecture Notes in Computer Science, pages 64–89. Springer,
2018.

[EH18] Antoine El Hokayem. Runtime Verification of Hierarchical Decentralized Specifications. Theses,
Université Grenoble Alpes, December 2018.

[EHF22] Antoine El-Hokayem and Yliès Falcone. Bringing runtime verification home: a case study on the
hierarchical monitoring of smart homes using decentralized specifications. International Journal
on Software Tools for Technology Transfer, 24(2):159–181, 2022.

[EMN12] Frank Elberzhager, Jürgen Münch, and Vi Tran Ngoc Nha. A systematic mapping study on
the combination of static and dynamic quality assurance techniques. Information and Software
Technology, 54(1):1–15, 2012.

[esp] Esper. https://www.espertech.com/esper, Accessed May 31st, 2023.

[eve] ManageEngine EventLog Analyzer. https://www.manageengine.com/products/eventlog, Accessed
May 31st, 2023.

[FCT10] Marco Montali Federico Chesani, Paola Mello and Paolo Torroni. A logic-based, reactive calculus
of events. Fundam. Informaticae, 105(1-2):135–161, 2010.

[FF04] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic atomicity checker for multithreaded
programs. SIGPLAN Not., 39(1):256–267, January 2004.

INRIA - February 2024 176 Chukri Soueidi

https://www.espertech.com/esper
https://www.manageengine.com/products/eventlog

12.2: BIBLIOGRAPHY

[FF09] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise dynamic race detection.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09, page 121–133, New York, NY, USA, 2009. Association for Computing
Machinery.

[FFM12] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf., 14(3):349–382, 2012.

[FHR13a] Yliès Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime verification. In Manfred
Broy, Doron A. Peled, and Georg Kalus, editors, Engineering Dependable Software Systems,
volume 34 of NATO Science for Peace and Security Series, D: Information and Communication
Security, pages 141–175. IOS Press, 2013.

[FHR13b] Yliès Falcone, Klaus Havelund, and Giles Reger. A Tutorial on Runtime Verification. In Engineering
Dependable Software Systems, pages 141–175. IOS Press, 2013.

[Fit00] Jerry Fitzpatrick. Applying the ABC metric to C, C++, and Java. In C++ Report, AOSD ’05, pages
245–264, New York, NY, USA, 01 2000. Association for Computing Machinery.

[FKRT18] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A taxonomy for classifying runtime
verification tools. In Christian Colombo and Martin Leucker, editors, Runtime Verification -
18th International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings,
volume 23 of Lecture Notes in Computer Science, pages 241–262. Springer, 2018.

[FKRT21] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf., 23(2):255–284, 2021.

[FMRS12] Azadeh Farzan, P. Madhusudan, Niloofar Razavi, and Francesco Sorrentino. Predicting null-pointer
dereferences in concurrent programs. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

[FMRS18] Yliès Falcone, Leonardo Mariani, Antoine Rollet, and Saikat Saha. Runtime failure prevention
and reaction. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification -
Introductory and Advanced Topics, volume 10457 of Lecture Notes in Computer Science, pages
103–134. Springer, 2018.

[FNRT15] Yliès Falcone, Dejan Nickovic, Giles Reger, and Daniel Thoma. Second international competition
on runtime verification CRV 2015. In Ezio Bartocci and Rupak Majumdar, editors, Runtime
Verification - 6th International Conference, RV 2015 Vienna, Austria, September 22-25, 2015.
Proceedings, volume 9333 of Lecture Notes in Computer Science, pages 405–422. Springer, 2015.

[FP19] Yliès Falcone and Srinivas Pinisetty. On the runtime enforcement of timed properties. In Bernd
Finkbeiner and Leonardo Mariani, editors, Runtime Verification - 19th International Conference,
RV 2019, Porto, Portugal, October 8-11, 2019, Proceedings, volume 11757 of Lecture Notes in
Computer Science, pages 48–69. Springer, 2019.

[FPRS12] Azadeh Farzan, Madhusudan Parthasarathy, Niloofar Razavi, and Francesco Sorrentino. Predicting
null-pointer dereferences in concurrent programs. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New York, NY,
USA, November 2012. Association for Computing Machinery.

[GA14] Stefan J. Galler and Bernhard K. Aichernig. Survey on test data generation tools - an evaluation of
white- and gray-box testing tools for c#, c++, eiffel, and java. STTT, 16(6):727–751, 2014.

[GK10] Paul Gastin and Dietrich Kuske. Uniform satisfiability problem for local temporal logics over
Mazurkiewicz traces. Inf. Comput., 208(7):797–816, 2010.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random testing.
In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, pages 213–223, 2005.

THESIS 177 Chukri Soueidi

BIBLIOGRAPHY

[goa] GoAccess. https://goaccess.io, Accessed May 31st, 2023.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1992.

[GS14] Anjana Gosain and Ganga Sharma. A survey of dynamic program analysis techniques and tools. In
Suresh Chandra Satapathy, Bhabendra Narayan Biswal, Siba K. Udgata, and J. K. Mandal, editors,
FICTA, volume 327 of Advances in Intelligent Systems and Computing, pages 113–122. Springer,
2014.

[GS21] Felipe Gorostiaga and César Sánchez. HLola: a very functional tool for extensible stream runtime
verification. In Jan Friso Groote and Kim Guldstrand Larsen, editors, TACAS, volume 12652 of
LNCS, pages 349–356. Springer, 2021.

[GZC+11] Qi Gao, Wenbin Zhang, Zhezhe Chen, Mai Zheng, and Feng Qin. 2ndstrike: Toward manifesting
hidden concurrency typestate bugs. SIGPLAN Not., 46(3):239–250, March 2011.

[Hal18] Sylvain Hallé. Event Stream Processing With BeepBeep 3: Log Crunching and Analysis Made Easy.
Presses de l’Université du Québec, 2018.

[Hal20] Sylvain Hallé. Explainable queries over event logs. In EDOC, pages 171–180, 2020.

[HBM20] Joseph Herkert, Jason Borenstein, and Keith Miller. The boeing 737 max: Lessons for engineering
ethics. Science and Engineering Ethics, 26(6):2957–2974, 2020.

[HC16] Chen Huo and James Clause. Interpreting coverage information using direct and indirect coverage.
In ICST, pages 234–243. IEEE Comp. Soc. 2016.

[Hec77] Matthew S Hecht. Data flow analysis of computer programs, 1977.

[HLR15] Jeff Huang, Qingzhou Luo, and Grigore Rosu. Gpredict: Generic predictive concurrency analysis.
In 37th IEEE/ACM International Conference on Software Engineering, ICSE 2015, Volume 1, pages
847–857, 2015.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory
transactions. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’05, page 48–60, New York, NY, USA, 2005. Association for
Computing Machinery.

[HMR14a] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race detection
with control flow abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, page 337–348, New York, NY, USA, 2014.
Association for Computing Machinery.

[HMR14b] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race detection
with control flow abstraction. SIGPLAN Not., 49(6):337–348, June 2014.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA,
2006.

[HNB06] Wilke Havinga, I Nagy, and Lodewijk M J Bergmans. An Analysis of Aspect Composition Problems.
Technical Report Technical Report IAI-TR-2006-6, 2006.

[HNBA07] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. A graph-based approach
to modeling and detecting composition conflicts related to introductions. ACM International
Conference Proceeding Series, 208:85–95, 2007.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

INRIA - February 2024 178 Chukri Soueidi

https://goaccess.io

12.2: BIBLIOGRAPHY

[HR01] Klaus Havelund and Grigore Rosu. Monitoring programs using rewriting. In Proceedings 16th
Annual International Conference on Automated Software Engineering (ASE 2001), pages 135–143.
IEEE, 2001.

[HRTZ18a] Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zalinescu. Monitoring events that carry
data. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of Lecture Notes in Computer Science, pages 61–102. Springer,
Cham, 2018.

[HRTZ18b] Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zălinescu. Monitoring Events that Carry
Data, pages 61–102. Springer International Publishing, Cham, 2018.

[HS12a] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[HS12b] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[HSF23] Sylvain Hallé, Chukri Soueidi, and Yliès Falcone. Leveraging runtime verification for the monitor-
ing of digital twins. In Preproceedings of the Workshop on Applications of Formal Methods and
Digital Twins, Lübeck, Germany, 3 2023. Informatics Library, University of Oslo. Co-located with
the 25th International Symposium on Formal Methods.

[HSTV09] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith. Query-driven program
testing. In Neil D. Jones and Markus Müller-Olm, editors, VMCAI, volume 5403 of LNCS, pages
151–166. Springer, 2009.

[HWY09] T. Honglei, S. Wei, and Z. Yanan. The research on software metrics and software complexity
metrics. In 2009 International Forum on Computer Science-Technology and Applications, 2009.

[HZHL16] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. Experience report: System log analysis for
anomaly detection. In ISSRE, pages 207–218. IEEE Comp. Soc. 2016.

[IEE17] IEEE. Ieee standard for system, software, and hardware verification and validation. IEEE Std
1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std 1012-2016/Cor1-2017), pages
1–260, 2017.

[IML09] Juha Itkonen, Mika Mäntylä, and Casper Lassenius. How do testers do it? an exploratory study
on manual testing practices. In Proceedings of the Third International Symposium on Empirical
Software Engineering and Measurement, ESEM 2009, pages 494–497. ACM / IEEE Computer
Society, 2009.

[Ins] Institute for Software Engineering and Programming Languages. LamaConv - Logics and Automata
Converter Library. www.isp.uni-luebeck.de/lamaconv.

[JaC] JaCoCo Java code coverage library. https://www.jacoco.org/. Accessed: 2023-05-01.

[jco] JCov. https://wiki.openjdk.org/display/CodeTools/jcov, Accessed May 31st, 2023.

[Jen18] Open-source Jenetics repository. https://github.com/jenetics/jenetics, 2018.

[Jet23] JetBrains s.r.o. Kotlin language documentation. https://kotlinlang.org/docs/home.html, 2023.
Accessed: 2023-04-30.

[JFMP17] Raphaël Jakse, Yliès Falcone, Jean-François Méhaut, and Kevin Pouget. Interactive runtime
verification - when interactive debugging meets runtime verification. In 28th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2017, Toulouse, France, October 23-26,
2017, pages 182–193. IEEE Computer Society, 2017.

[JH11] Y. Jia and M. Harman. An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering, 2011.

THESIS 179 Chukri Soueidi

www.isp.uni-luebeck.de/lamaconv
https://www.jacoco.org/
https://wiki.openjdk.org/display/CodeTools/jcov
https://github.com/jenetics/jenetics
https://kotlinlang.org/docs/home.html

BIBLIOGRAPHY

[jpra] JProbe suite: Complete Java performance tools suite. http://tan.com/jprobe, Accessed May 30th,
2023.

[jprb] JProfiler. https://www.ej-technologies.com/products/jprofiler/overview.html. Accessed: 2023-06-
01.

[JR22] Jisha M. Jose and S. R. Reeja. Anomaly detection on system generated logs—a survey study. In
Subarna Shakya, Robert Bestak, Ram Palanisamy, and Khaled A. Kamel, editors, Mobile Comp.
and Sustainable Inf., pages 779–793, Singapore, 2022. Springer Singapore.

[JS08] P. Joshi and K. Sen. Predictive typestate checking of multithreaded java programs. In Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, ASE
’08, page 288–296, USA, 2008. IEEE Computer Society.

[JSW+16] Yu Jiang, Houbing Song, Rui Wang, Ming Gu, Jiaguang Sun, and Lui Sha. Data-centered runtime
verification of wireless medical cyber-physical system. IEEE transactions on industrial informatics,
13(4):1900–1909, 2016.

[JTF17] Yogi Joshi, Guy Martin Tchamgoue, and Sebastian Fischmeister. Runtime verification of ltl on
lossy traces. Proceedings of the Symposium on Applied Computing, 2017.

[JVCS07] Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte. Model-based software
testing and analysis with C. Cambridge University Press, 2007.

[KABM12] Stephen Kell, Danilo Ansaloni, Walter Binder, and Lukáš Marek. The jvm is not observable enough
(and what to do about it). In Proceedings of the Sixth ACM Workshop on Virtual Machines and
Intermediate Languages, VMIL ’12, page 33–38, New York, NY, USA, 2012. Association for
Computing Machinery.

[KAX+99] T. M. Khoshgoftaar, E. B. Allen, Xiaojing Yuan, W. D. Jones, and J. P. Hudepohl. Assessing
uncertain predictions of software quality. In Proceedings Sixth International Software Metrics
Symposium (Cat. No.PR00403), 1999.

[KBM14] Ivo Krka, Yuriy Brun, and Nenad Medvidovic. Automatic mining of specifications from invocation
traces and method invariants. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, page 178–189, New York, NY, USA, 2014.
Association for Computing Machinery.

[KDG+21] Sean Kauffman, Murray Dunne, Giovani Gracioli, Waleed Khan, Nirmal Benann, and Sebastian
Fischmeister. Palisade: A framework for anomaly detection in embedded systems. J. Syst. Archit.,
113:101876, 2021.

[KF19] Ali Kassem and Yliès Falcone. Detecting fault injection attacks with runtime verification. In
Proceedings of the 3rd ACM Workshop on Software Protection, SPRO’19, page 65–76, New York,
NY, USA, 2019. Association for Computing Machinery.

[KHH+01a] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold.
Getting started with ASPECTJ. Com. ACM, 44(10):59–65, 2001.

[KHH+01b] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold.
Getting started with AspectJ. Commun. ACM, 44(10):59–65, 2001.

[KKST17] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The flash crash: High-
frequency trading in an electronic market. The Journal of Finance, 72(3):967–998, 2017.

[KNS16] P. Karandikar, M. Niewerth, and Ph Schnoebelen. On the state complexity of closures and interiors
of regular languages with subwords and superwords. Theoretical Computer Science, 610:91–107,
2016.

[KYV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form. Methods Syst.
Des., 19(3):291–314, October 2001.

INRIA - February 2024 180 Chukri Soueidi

http://tan.com/jprobe
https://www.ej-technologies.com/products/jprofiler/overview.html

12.2: BIBLIOGRAPHY

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In 2nd IEEE / ACM International Symposium on Code Generation and
Optimization (CGO 2004), 20-24 March 2004, San Jose, CA, USA, pages 75–88. IEEE Computer
Society, 2004.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun. ACM,
17(8):453–455, August 1974.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM,
21(7):558–565, July 1978.

[Lam79] Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690–691, September 1979.

[LBM+] Doug Lea, Joshua Bloch, Sam Midkiff, David Holmes, Joseph Bowbeer, and Tim Peierls. Jsr 166:
Concurrency utilities. https://www.jcp.org/en/jsr/detail?id=166.

[LBM15] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. Accurate and efficient object tracing for
java applications. In Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering, ICPE ’15, page 51–62, New York, NY, USA, 2015. Association for Computing
Machinery.

[Lea00] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 Java Grande Conference,
San Francisco, CA, USA, June 3-5, 2000, pages 36–43, 2000.

[Leu12] Martin Leucker. Sliding between model checking and runtime verification. In Shaz Qadeer and
Serdar Tasiran, editors, Runtime Verification, Third International Conference, RV 2012, Istanbul,
Turkey, September 25-28, 2012, Revised Selected Papers, volume 7687 of Lecture Notes in Computer
Science, pages 82–87. Springer, 2012.

[LHX+16] Owolabi Legunsen, Wajih Ul Hassan, Xinyue Xu, G. Ros, u, and D. Marinov. How good are the
specs? a study of the bug-finding effectiveness of existing java api specifications. ACM, 2016.

[Lie89] K. J. Lienberherr. Formulations and benefits of the law of Demeter. SIGPLAN Not., 24(3):67–78,
March 1989.

[Lig23] Lightbend Inc. Scala documentation. https://docs.scala-lang.org/, 2023. Accessed: 2023-04-30.

[LR13] Qingzhou Luo and Grigore Rosu. Enforcemop: A runtime property enforcement system for
multithreaded programs. In Proceedings of International Symposium in Software Testing and
Analysis (ISSTA’13), pages 156–166. ACM, July 2013.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime verification. The Journal of
Logic and Algebraic Programming, 78(5):293–303, May 2009.

[LSS+18] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander Schramm. TeSSLa:
runtime verification of non-synchronized real-time streams. In SAC, pages 1925–1933, 2018.

[LT93] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. Computer, 26(7):18–41,
1993.

[Luc05] David C. Luckham. The power of events – An introduction to complex event processing in distributed
enterprise systems. ACM, 2005.

[Mat88] Friedemann Mattern. Virtual time and global states of distributed systems. In PARALLEL AND
DISTRIBUTED ALGORITHMS, pages 215–226. North-Holland, 1988.

[Maz86] Antoni W. Mazurkiewicz. Trace theory. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz
Rozenberg, editors, Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
Part II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986, volume
255 of Lecture Notes in Computer Science, pages 279–324. Springer, 1986.

THESIS 181 Chukri Soueidi

https://www.jcp.org/en/jsr/detail?id=166
https://docs.scala-lang.org/

BIBLIOGRAPHY

[Maz87] A Mazurkiewicz. Trace theory. In Advances in Petri Nets 1986, Part II on Petri Nets: Applications
and Relationships to Other Models of Concurrency, page 279–324, Berlin, Heidelberg, 1987.
Springer-Verlag.

[McC59] John McCarthy. A basis for a mathematical theory of computation. In Studies in Logic and the
Foundations of Mathematics, volume 26, pages 33–70. Elsevier, 1959.

[McC76] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 1976.

[McM04] Phil McMinn. Search-based software test data generation: a survey. Softw. Test., Verif. Reliab.,
14(2):105–156, 2004.

[MKZ+13] Lukáš Marek, Stephen Kell, Yudi Zheng, Lubomír Bulej, Walter Binder, Petr Tůma, Danilo
Ansaloni, Aibek Sarimbekov, and Andreas Sewe. Shadowvm: Robust and comprehensive dynamic
program analysis for the java platform. SIGPLAN Not., 49(3):105–114, October 2013.

[MP90] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In
Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing, PODC
’90, page 377–410, New York, NY, USA, 1990. Association for Computing Machinery.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag
New York, Inc., 1995.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java Memory Model. In Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’05, pages 378–391. ACM, 2005.

[MPTV22] Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan. A tree clock
data structure for causal orderings in concurrent executions. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2022, page 710–725, New York, NY, USA, 2022. Association for Computing
Machinery.

[MRA+17] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and Sanjeev
Khanna. StreamQRE: modular specification and efficient evaluation of quantitative queries over
streaming data. In PLDI, pages 693–708, 2017.

[MV20] Umang Mathur and Mahesh Viswanathan. Atomicity Checking in Linear Time Using Vector Clocks,
page 183–199. Association for Computing Machinery, New York, NY, USA, 2020.

[MVZ+12] Lukás Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and Zhengwei Qi. DiSL:
a domain-specific language for bytecode instrumentation. In Robert Hirschfeld, Éric Tanter, Kevin J.
Sullivan, and Richard P. Gabriel, editors, Proceedings of the 11th International Conference on
Aspect-oriented Software Development, AOSD, Potsdam, Germany, pages 239–250. ACM, 2012.

[NNH15] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis. Springer,
2015.

[OHF+14] Tony Ohmann, Michael Herzberg, Sebastian Fiss, Armand Halbert, Marc Palyart, Ivan Beschastnikh,
and Yuriy Brun. Behavioral resource-aware model inference. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, page 19–30, New York,
NY, USA, 2014. Association for Computing Machinery.

[Ora23a] Oracle Corporation. The java native interface specification. Technical report, 2023. Accessed:
2023-04-30.

[Ora23b] Oracle Corporation. Java platform, standard edition. https://docs.oracle.com/en/java/, 2023. Ac-
cessed: 2023-04-30.

[Ora23c] Oracle Corporation. The java virtual machine specification, java se. Technical report, 2023.
Accessed: 2023-04-30.

INRIA - February 2024 182 Chukri Soueidi

https://docs.oracle.com/en/java/

12.2: BIBLIOGRAPHY

[OU01] A. Jefferson Offutt and Roland H. Untch. Mutation 2000: Uniting the Orthogonal, pages 34–44.
Springer US, Boston, MA, 2001.

[Pat] Patterns in property specifications for finite-state verification home page. https://matthewbdwyer.
github.io/psp/patterns.html.

[PH18] Doron Peled and Klaus Havelund. Refining the safety-liveness classification of temporal properties
according to monitorability. In Tiziana Margaria, Susanne Graf, and Kim G. Larsen, editors, Models,
Mindsets, Meta: The What, the How, and the Why Not? - Essays Dedicated to Bernhard Steffen on
the Occasion of His 60th Birthday, volume 11200 of Lecture Notes in Computer Science, pages
218–234. Springer, 2018.

[PRL+19] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin
Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and
Walter Binder. Renaissance: A modern benchmark suite for parallel applications on the jvm.
In Proceedings Companion of the 2019 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, SPLASH Companion 2019,
page 11–12, New York, NY, USA, 2019. Association for Computing Machinery.

[PWNG13] Lee Pike, Nis Wegmann, Sebastian Niller, and Alwyn E. Goodloe. Copilot: monitoring embedded
systems. Springer, 2013.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in
cesar. In International Symposium on programming, pages 337–351. Springer, 1982.

[RB20] Andrea Rosà and Walter Binder. P3: A profiler suite for parallel applications on the java virtual
machine. In Bruno C. d. S. Oliveira, editor, APLAS, volume 12470 of LNCS, pages 364–372.
Springer, 2020.

[RC17] Nisha Rathee and Rajender Singh Chhillar. A survey on test case generation techniques using UML
diagrams. JSW, 12(8):643–648, 2017.

[RCR15a] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. Marq: Monitoring at runtime with
QEA. In Christel Baier and Cesare Tinelli, editors, TACAS, volume 9035 of LNCS, pages 596–610.
Springer, 2015.

[RCR15b] Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at Runtime with
QEA. In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings, volume 9035 of Lecture Notes in Computer Science, pages 596–610. Springer,
2015.

[RGB20] Jake Roemer, Kaan Genç, and Michael D. Bond. Smarttrack: Efficient predictive race detection.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2020, page 747–762, New York, NY, USA, 2020. Association for Computing
Machinery.

[RHF16] Giles Reger, Sylvain Hallé, and Yliès Falcone. Third international competition on runtime ver-
ification - CRV 2016. In Yliès Falcone and César Sánchez, editors, Runtime Verification - 16th
International Conference, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, volume
10012 of Lecture Notes in Computer Science, pages 21–37. Springer, 2016.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems. Transac-
tions of the American Mathematical society, 74(2):358–366, 1953.

[RLL+13] Henrique Rebêlo, Ricardo Massa Ferreira Lima, Gary T. Leavens, Márcio Cornélio, Alexandre
Mota, and César A. L. Oliveira. Optimizing generated aspect-oriented assertion checking code for
JML using program transformations: An empirical study. Sci. Comput. Program., 78(8):1137–1156,
2013.

THESIS 183 Chukri Soueidi

https://matthewbdwyer.github.io/psp/patterns.html
https://matthewbdwyer.github.io/psp/patterns.html

BIBLIOGRAPHY

[RRKH21] Massiva Roudjane, Djamal Rebaïne, Raphaël Khoury, and Sylvain Hallé. Detecting trend deviations
with generic stream processing patterns. Inf. Syst., 101:101446, 2021.

[RS04] G. Rosu and K. Sen. An instrumentation technique for online analysis of multithreaded programs.
In 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings., pages
268–, 2004.

[Run06] Per Runeson. A survey of unit testing practices. IEEE Software, 23(4):22–29, 2006.

[SC] Sharkdp and Contributors. Hyperfine. https://github.com/sharkdp/hyperfine. Accessed: 2023-06-01.

[SCR12] Traian-Florin Serbanuta, Feng Chen, and Grigore Rosu. Maximal causal models for sequentially
consistent systems. In Runtime Verification, Third International Conference, RV 2012, Istanbul,
Turkey, September 25-28, 2012, Revised Selected Papers, pages 136–150, 2012.

[SEF23] Chukri Soueidi, Antoine El-Hokayem, and Yliès Falcone. Opportunistic monitoring of multi-
threaded programs. In Leen Lambers and Sebastián Uchitel, editors, Fundamental Approaches to
Software Engineering - 26th International Conference, FASE 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27,
2023, Proceedings, volume 13991 of Lecture Notes in Computer Science, pages 173–194. Springer,
2023.

[Sen07] Koushik Sen. Concolic testing. In Proceedings of the 22nd IEEE/ACM international conference on
Automated software engineering, pages 571–572, 2007.

[SFa] Chukri Soueidi and Yliès Falcone. Artifact for sound concurrent traces for online monitoring.
https://gitlab.inria.fr/monitoring/sound-concurrent-traces-for-online-monitoring-artifact. Accessed:
2023-09-01.

[SFb] Chukri Soueidi and Yliès Falcone. Bism documentation. https://gitlab.inria.fr/bism/bism-public.
Accessed: 2023-09-01.

[SFc] Chukri Soueidi and Yliès Falcone. Bism dsl experiments. https://gitlab.inria.fr/bism/
bism-dsl-experiments. Accessed: 2023-09-01.

[SFd] Chukri Soueidi and Yliès Falcone. Residual runtime verification with bism. https://gitlab.inria.fr/
monitoring/residual-runtime-verification-with-bism. Accessed: 2023-09-01.

[SF22a] Chukri Soueidi and Yliès Falcone. Capturing program models with bism. In Jiman Hong, Miroslav
Bures, Juw Won Park, and Tomás Cerný, editors, Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing, SAC ’22, page 1857–1861, New York, NY, USA, 2022. Association for
Computing Machinery.

[SF22b] Chukri Soueidi and Yliès Falcone. Residual runtime verification via reachability analysis. In
Akash Lal and Stefano Tonetta, editors, Verified Software. Theories, Tools and Experiments - 14th
International Conference, VSTTE 2022, Trento, Italy, October 17-18, 2022, Revised Selected Papers,
volume 13800 of Lecture Notes in Computer Science, pages 148–166. Springer, 2022.

[SF23a] Chukri Soueidi and Ylies Falcone. Artifact Repostiory - Opportunistic Monitoring of Multithreaded
Programs. https://doi.org/10.6084/m9.figshare.21828570, 2023.

[SF23b] Chukri Soueidi and Yliès Falcone. Bridging the gap: A focused dsl for rv-oriented instrumentation
with bism. In International Conference on Runtime Verification, pages 327–338. Springer, 2023.

[SF23c] Chukri Soueidi and Yliès Falcone. Instrumentation for rv: From basic monitoring to advanced use
cases. In International Conference on Runtime Verification, pages 403–427. Springer, 2023.

[SF23d] Chukri Soueidi and Yliès Falcone. Sound concurrent traces for online monitoring. In Georgiana
Caltais and Christian Schilling, editors, Model Checking Software - 29th International Symposium,
SPIN 2023, Paris, France, April 26-27, 2023, Proceedings, volume 13872 of Lecture Notes in
Computer Science, pages 59–80. Springer, 2023.

INRIA - February 2024 184 Chukri Soueidi

https://github.com/sharkdp/hyperfine
https://gitlab.inria.fr/monitoring/sound-concurrent-traces-for-online-monitoring-artifact
https://gitlab.inria.fr/bism/bism-public
https://gitlab.inria.fr/bism/bism-dsl-experiments
https://gitlab.inria.fr/bism/bism-dsl-experiments
https://gitlab.inria.fr/monitoring/residual-runtime-verification-with-bism
https://gitlab.inria.fr/monitoring/residual-runtime-verification-with-bism
https://doi.org/10.6084/m9.figshare.21828570

12.2: BIBLIOGRAPHY

[SFH23a] Chukri Soueidi, Yliès Falcone, and Sylvain Hallé. Dynamic program analysis with flexible
instrumentation and complex event processing. In 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE), pages 742–751. IEEE, 2023.

[SFH23b] Chukri Soueidi, Yliès Falcone, and Sylvain Hallé. Monitoring business process compliance across
multiple executions with stream processing. In Proceedings of the 27th International EDOC
Conference (EDOC 2023): Enterprise Design, Operations, and Computing, 2023. To appear.

[SFH23c] Chukri Soueidi, Yliès Falcone, and Sylvain Hallé. Artifact for Dynamic Program Analysis with
Flexible Instrumentation and Complex Event Processing. https://doi.org/10.5281/zenodo.8271121,
August 2023.

[SGLN+11] Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash Chaturanga, Srinath
Perera, and Vishaka Nanayakkara. Siddhi: A second look at complex event processing architectures.
In GCE, page 43–50. ACM, 2011.

[SKF20] Chukri Soueidi, Ali Kassem, and Yliès Falcone. BISM: bytecode-level instrumentation for software
monitoring. In Jyotirmoy Deshmukh and Dejan Nickovic, editors, Runtime Verification - 20th
International Conference, RV 2020, Los Angeles, CA, USA, October 6-9, 2020, Proceedings, volume
12399 of Lecture Notes in Computer Science, pages 323–335. Springer, 2020.

[SKV17] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. E-ACSL, a runtime verification tool
for safety and security of C programs (tool paper). In Giles Reger and Klaus Havelund, editors,
RV-CuBES 2017. An International Workshop on Competitions, Usability, Benchmarks, Evaluation,
and Standardisation for Runtime Verification Tools, 2017, volume 3 of Kalpa Publications in
Computing, pages 164–173. EasyChair, 2017.

[SLU05] O. Spinczyk, Daniel Lohmann, and M. Urban. AspectC++: An AOP extension for C. Software
Developer’s Journal, 01 2005.

[SMF23] Chukri Soueidi, Marius Monnier, and Yliès Falcone. International Journal on Software Tools for
Technology Transfer, pages 1–27, 2023.

[SNQDAB16] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow-and context-sensitive pointer analysis for java. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

[spl] Splunk. https://www.splunk.com, Accessed May 31st, 2023.

[SR94] K.G. Shin and P. Ramanathan. Real-time computing: a new discipline of computer science and
engineering. Proceedings of the IEEE, 82(1):6–24, 1994.

[SRA03] Koushik Sen, Grigore Rosu, and Gul Agha. Runtime safety analysis of multithreaded programs.
SIGSOFT Softw. Eng. Notes, 28(5):337–346, September 2003.

[SY86a] R E Strom and S Yemini. Typestate: A programming language concept for enhancing software
reliability. 12(1):157–171, January 1986.

[SY86b] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for enhancing
software reliability. IEEE Trans. on Softw. Eng., 12(1):157–171, 1986.

[TC10] Fuminobu Takeyama and Shigeru Chiba. An advice for advice composition in AspectJ. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 6144 LNCS:122–137, 2010.

[TKH21] Rania Taleb, Raphaël Khoury, and Sylvain Hallé. Runtime verification under access restrictions.
In 2021 IEEE/ACM 9th International Conference on Formal Methods in Software Engineering
(FormaliSE), pages 31–41, 2021.

[tra] Trace Compass. https://www.eclipse.org/tracecompass, Accessed May 30th, 2023.

THESIS 185 Chukri Soueidi

https://doi.org/10.5281/zenodo.8271121
https://www.splunk.com
https://www.eclipse.org/tracecompass

BIBLIOGRAPHY

[Tur36] Alan Mathison Turing. On computable numbers, with an application to the entscheidungsproblem.
J. of Math, 58(345-363):5, 1936.

[VBGR16] Philippe Virouleau, François Broquedis, Thierry Gautier, and Fabrice Rastello. Using data depen-
dencies to improve task-based scheduling strategies on NUMA architectures. In Euro-Par 2016:
Parallel Processing - 22nd International Conference on Parallel and Distributed Computing, 2016,
Proceedings, volume 9833 of Lecture Notes in Computer Science, pages 531–544, Cham, 2016.
Springer.

[vis] VisualVM: All-in-one Java troubleshooting tool. https://visualvm.github.io/, Accessed May 30th,
2023.

[VLGH17a] Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, and Sylvain Hallé. Automated bug finding in
video games: A case study for runtime monitoring. Computers in Entertainment (CIE), 15(1):1–28,
2017.

[VLGH17b] Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, and Sylvain Hallé. Automated bug finding in
video games: A case study for runtime monitoring. Comput. Entertain., 15(1):1:1–1:28, 2017.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan.
Soot - a java bytecode optimization framework. In Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research, CASCON ’99, page 13, USA, 1999. IBM
Press.

[WCM13] Chengsong Wang, Zhenbang Chen, and Xiaoguang Mao. Optimizing nop-shadows typestate
analysis by filtering interferential configurations. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8174
LNCS:269–284, 2013.

[WL05] Pengcheng Wu and Karl Lieberherr. Shadow programming: Reasoning about programs using
lexical join point information. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3676 LNCS:141–156, 2005.

[WS06] L. Wang and S.D. Stoller. Runtime analysis of atomicity for multithreaded programs. IEEE
Transactions on Software Engineering, 32(2):93–110, 2006.

[ZAD+23] Pei Zhang, Alexis Aurandt, Rohit Dureja, Phillip H Jones, and Kristin Yvonne Rozier. Model
predictive runtime verification for cyber-physical systems with real-time deadlines. In International
Conference on Formal Modeling and Analysis of Timed Systems, pages 158–180. Springer, 2023.

[ZCB21] Tommaso Zoppi, Andrea Ceccarelli, and Andrea Bondavalli. MADneSs: A multi-layer anomaly
detection framework for complex dynamic systems. IEEE Trans. Dependable Secur. Comput.,
18(2):796–809, 2021.

[ZLD12] Xian Zhang, Martin Leucker, and Wei Dong. Runtime verification with predictive semantics. In
Proceedings of the 4th International Conference on NASA Formal Methods, NFM’12, page 418–432,
Berlin, Heidelberg, 2012. Springer-Verlag.

INRIA - February 2024 186 Chukri Soueidi

https://visualvm.github.io/

Part VI

Appendix

187

APPENDIX A

Other Works

We here present other works that are not directly related to the main contributions of this thesis but can benefit in
later stages from the instrumentation framework presented in this thesis.

A.1 Leveraging Runtime Verification for the Monitoring of Digital Twins
[HSF23] S. Hallé, C. Soueidi, and Y. Falcone, “Leveraging Runtime Verification for the Monitoring of Digital

Twins,” in Preproceedings of the Workshop on Applications of Formal Methods and Digital Twins, Informatics
Library, University of Oslo, Lübeck, Germany, Mar. 2023, Co-located with the 25th International Symposium
on Formal Methods. [Online]. Available: https://www.duo.uio.no/handle/10852/101662

Abstract. The paper considers the problem of discovering divergences between the actions of a digital twin
and those of its real-world counterpart. It observes the similarities between this problem and an existing field of
formal methods called Runtime Verification (RV), and suggests leveraging and adapting RV techniques to this
effect. Concretely, three important aspects of the problem are identified and for which both theoretical and practical
challenges must be addressed.

A.2 Monitoring Business Process Compliance Across Multiple Executions
with Stream Processing

[SFH23b] C. Soueidi, Y. Falcone, and S. Hallé, “Monitoring Business Process Compliance Across Multiple
Executions with Stream Processing,” in Proceedings of the 27th International EDOC Conference (EDOC
2023): Enterprise Design, Operations, and Computing, 2023, to appear.

Abstract. Compliance checking is the operation that consists of assessing whether every execution trace of a
business process satisfies a given correctness condition. The paper introduces the notion of hyperquery, which
is a calculation that involves multiple traces from a log at the same time. A particular case of hyperquery is a
hypercompliance condition, which is a correctness requirement that involves the whole log instead of individual
process instances. A formalization of hyperqueries is presented, along with a number of elementary operations to
express hyperqueries on arbitrary logs. An implementation of these concepts in an event stream processing engine
allows users to concretely evaluate hyperqueries in real time.

189

Appendix

INRIA - February 2024 190 Chukri Soueidi

Lists

A.3 List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and
Examples

Definition 1 Basic Block 14

Definition 2 Control Flow Graph 15

Definition 3 Matching prefixes [BLH12] 16

Definition 4 Bad/Good prefixes [KYV01] 16

Definition 5 Property satisfaction 16

Definition 6 Projected traces 17

Definition 7 Parametric property satisfaction 17

Definition 8 Upward closure of a language 18

Definition 9 Action 19

Definition 10 Release-Acquire Relation 20

Definition 11 Thread Order
p
−→ 20

Definition 12 Synchronization Order
s
−→ 20

Definition 13 Execution Order
e
−→ 21

Definition 14 Concurrent Execution 21

Definition 15 Join point 46

Definition 16 Advice Function 46

Definition 17 Shadow 47

Definition 18 Method Shadows 47

Definition 19 Equivalence Relation over Shadows 48

Definition 20 Selector Function 49

Definition 21 Compile-Time Analysis Function 49

Definition 22 Instruction-Level Visibility 50

191

Appendix

Definition 23 Transformer 50

Definition 24 Transformer Function 50

Definition 25 Composition (c) 51

Definition 26 Transformer Collision 51

Definition 27 Order-Sensitive Transformers 52

Definition 28 Residual Instrumentation Function 79

Definition 29 Residual Analysis Condition 79

Definition 30 Split CFG 80

Definition 31 CFG Automaton 81

Definition 32 Extended automaton of bad prefixes 83

Definition 33 Linear Trace 93

Definition 34 Concurrent Trace 94

Definition 35 Trace Soundness 94

Definition 36 Trace Faithfulness 94

Definition 37 Property Satisfaction 95

Definition 38 Trace Necessary Order 100

Definition 39 Trace Monitorability of Concurrent Executions 100

Proposition 1 Scope of the analysis 84

Proposition 2 Soundness of the analysis 85

Proposition 3 Property Preservation 95

Example 1 Java Method 14

Example 2 Bytecode and CFG 15

Example 3 SafeIterator monitor 16

Example 4 Parametric traces 17

Example 5 Projected traces 17

Example 6 Subwords 17

Example 7 Upward Closure 18

Example 8 Transitive Closure 18

Example 9 Linearization of a Partial Order 18

Example 10 Regular Actions 19

Example 11 Synchronization Actions 20

Example 12 Execution Order 21

Example 13 Concurrent Execution 21

Example 14 Vector Clocks 22

Example 15 Instrumentation with ASM 35

Example 16 Instrumentation with AspectJ 38

Example 17 Instrumentation with DiSL 38

INRIA - February 2024 192 Chukri Soueidi

A.3: List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and Examples

Example 18 Static and Dynamic Context 45

Example 19 Join points 46

Example 20 Method shadows 48

Example 21 Equivalent shadows in a method 48

Example 22 Order Matters 52

Example 23 BISM configuration file 62

Example 24 Hidden transformers 63

Example 25 Parametric traces 78

Example 26 Projected traces 78

Example 27 CFG Automaton 81

Example 28 SafeIterator Bad Prefixes Automaton 82

Example 29 Projected traces approximation with may-alias 82

Example 30 A↑badφ for the SafeIterator property 83

Example 31 Property violating states 83

Example 32 Advice Atomicity 93

Example 33 Soundness and Faithfulness 94

Example 34 Concurrent Execution Reordering 96

Example 35 Monitor Causal Dependence 99

Example 36 Trace Necessary Order 100

Example 37 Optimizing Instrumentation 101

Example 38 Global Monitoring 107

Example 39 Events. 108

Example 40 Scope regions 109

Example 41 Local Properties 109

Example 42 Scope Properties 110

THESIS 193 Chukri Soueidi

Appendix

List of Figures

1.1 The typical setup of Runtime Verification. 4
1.2 An overview of the taxonomy of Runtime Verification (from [FKRT21]). 5
1.3 Guided instrumentation in RV setup. 7

2.1 Control flow graph for the method in Listing 2.1. 15
2.2 Monitor recognizing the language of bad prefixes for the SafeIterator property. 16
2.3 A concurrent execution of 1-Writer 2-Readers. 19

3.1 Cyclic process of model generation. 28
3.2 Considerations for RV Instrumentation 29
3.3 Program Considerations 31
3.4 Observation Considerations 31
3.5 Analysis Considerations 31
3.6 Language Considerations 31
3.7 Instrumentation language expressiveness considerations. 33

4.1 Illustration of shadows and their equivalence relation. 49

5.1 BISM overview. 56
5.2 Instrumentation loop of BISM. 58
5.3 The static context tree related to selectors and ASM nodes. 59
5.4 BISM modules with arrows indicating dependencies. 67
5.5 Instrumentation process in BISM. 68
5.6 Added modules on BISM (in blue) to support the external DSL. 68
5.7 High-level design diagram for the observation layer. Solid lines show the flow of information. The

dotted lines show module dependencies. 69

6.1 A method using Iterators in Java, and its CFG. 78
6.2 The constructed CFG AutomatonAc

m 81
6.3 AutomatonAbadφ recognizing the language of bad prefixes for the SafeIterator property. 82
6.4 The constructed automatonA↑badφ . 83
6.5 Marking property violating paths in red, and safe in green. 84

7.1 A concurrent execution with a partial trace. 92
7.2 Instrumenting concurrent events. 93
7.3 Four different collected traces from the execution of 1-Writer 2-Readers. 95
7.4 Automata of Bad Prefixes. 99
7.5 Approaching optimal faithfulness. 101

8.1 Execution fragment of 1-Writer 2-Readers 107
8.2 Concurrent execution fragment of 1-Writer 2-Readers. 108
8.3 Example of a scope channel for 1-Writer 2-Readers. 109

9.1 AES load-time instrumentation runtime (ms). 118
9.2 AES build-time instrumentation. 119
9.3 Financial transaction system load-time instrumentation. 120
9.4 Financial transaction system build-time instrumentation. 120
9.5 DaCapo load-time instrumentation. 121
9.6 DaCapo build-time instrumentation. 122
9.8 Evaluation for the three properties. 125
9.9 Experimentation Results. 127
9.10 Execution time (s) with vector clock algorithm running times. 128
9.11 Percentage of pairs in ID grouped by pattern and alphabet size. 129
9.12 Execution time for readers-writers when varying the number of readers. 130
9.13 Execution time varying the number of events in the concurrency region. 131

INRIA - February 2024 194 Chukri Soueidi

A.3: List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and Examples

9.14 Execution time of benchmarks. 132

11.1 BeepBeep’s basic processors (adapted from [Hal18]). 152
11.2 Creating pipelines in BeepBeep (taken from [Hal18]). 153
11.3 Integrating BISM and BeepBeep 154
11.4 Instrumentation for SafeHasNext property. 154
11.5 Parametric monitoring of the HasNext property. 154
11.6 Generating the call graph of an instrumented program. 156
11.7 A complex instrumented event for file operations. 157
11.8 Calculating branch coverage pipeline. 158
11.9 Screenshot from the branch coverage dashboard. 159
11.10Overhead comparison in BISM-BeepBeep: empty analysis vs. monitoring scenario. 160

List of Tables

5.1 Comparison of the tools. In red are features concerning expressiveness, and in blue are features
concerning abstraction. ✓- Tool provides the feature, ✗- Tool does not provide the feature, ✓–- Tool
partially provides the feature. 70

7.1 Step by step timestamping of events from the execution in Ex. 33 using Algorithm 2. 98

9.1 A comparison between the experiments. LT is for load-time mode, and BT is for build-time
mode. A checkmark (✓) indicates that the experiment involves the metric or the feature, whereas a
cross mark (✗) indicates that the experiment does not involve the metric or the feature. Term NA
abbreviates Not Applicable, and (-DiSL) indicates that the DiSL tool has been excluded. 117

9.2 Number of emitted events in AES experiment. 118
9.3 Number of events generated by the financial transaction system for each monitored property. 120
9.4 For each benchmark in the DaCapo experiment, the table reports the number of classes in the scope

of instrumentation (Scope), the instrumented classes (Instr.), the original (Ref.) and generated
bytecode size and overhead per tool, and the number of emitted events, (#) for BISM and DiSL,
and AspectJ separately. 122

9.5 For each program (Bench), and property (P1), (P2), and (P3), we report # of relevant classes,
methods, and instructions (Rel) producing events, number proved safe statically by our technique
(Nop), # of events produced at runtime (RV) and after our analysis (RRV), improvement factor for
of instructions instrumented and events produced (Imp). K = 103, M = 106. 124

9.6 The table reports for each benchmark: the number of threads (Tr), execution time in seconds of
the benchmark (Exec), # of events (E) and their type (Type: S for synchronized, P for parallel), #
of synchronization action captured (SA) for FACTS, vector clock algorithm time in sec (VCA),
monitorability check t-Mon, # of faulty pair orderings (Faulty pairs) from linear traces. K = 103,
M = 106. 127

11.1 Execution time and memory usage for each tool. 159
11.2 Comparison of JaCoCo and BISM-BeepBeep. 160
11.3 Benchmarking results for execution time. 161

THESIS 195 Chukri Soueidi

	1 Introduction
	1.1 An Overview of Computer-Aided Verification
	1.1.1 Static Approaches
	1.1.2 Dynamic Approaches
	1.1.3 Combining Static and Dynamic Approaches

	1.2 Runtime Verification
	1.3 Identified Challenges
	1.3.1 Capturing Correct Traces (C1)
	1.3.2 Guiding the Instrumentation Process (C2)
	1.3.3 Trace Validity Assessment for Concurrent Programs (C3)

	1.4 Detailed Problem Statement
	1.4.1 Instrumentation Frameworks
	1.4.2 Monitoring Concurrent Programs

	1.5 Summary of Contributions
	1.6 Structure of the Thesis
	1.7 Associated Publications

	2 Preliminaries
	2.1 Programs, Methods and the CFG
	2.2 Event Traces, Properties, and Monitoring
	2.3 Parametric Monitoring
	2.4 Upward Closure
	2.5 Relations, Partial and Total Orders
	2.6 Concurrent Executions
	2.6.1 Actions
	2.6.2 Execution Order
	2.6.3 Concurrent Execution

	2.7 Vector Clocks

	I Program Instrumentation
	3 Program Instrumentation and Existing Frameworks
	3.1 Introduction
	3.2 Understanding Instrumentation
	3.2.1 Unveiling the Complete Picture
	3.2.2 Observing the Execution

	3.3 Instrumentation for Runtime Verification
	3.3.1 The Program
	3.3.2 The Observation
	3.3.3 The Analysis
	3.3.4 The Instrumentation Language

	3.4 Instrumentation Requirements
	3.5 Evaluating Instrumentation
	3.6 Existing Instrumentation Frameworks
	3.6.1 Bytecode Manipulation Libraries
	3.6.2 Aspect-Oriented Approaches

	3.7 The Need for a Comprehensive Instrumentation Framework
	3.8 Conclusion

	4 A Comprehensive Instrumentation Model
	4.1 Introduction
	4.2 Instrumentation Model
	4.2.1 Context Objects
	4.2.2 Join points
	4.2.3 Advice
	4.2.4 Shadows
	4.2.5 Selectors
	4.2.6 Instruction Visibility
	4.2.7 Transformers
	4.2.8 Instrumentation Process

	4.3 Transformer Composition
	4.3.1 Motivations for Composition
	4.3.2 Composition of Transformers
	4.3.3 Transformer Collision
	4.3.4 Order Matters

	4.4 Conclusion

	5 BISM: Bytecode Instrumentation for Software Monitoring
	5.1 Introduction
	5.2 BISM in a Nutshell
	5.2.1 Overview
	5.2.2 Design Goals and Features

	5.3 BISM Instrumentation Language
	5.3.1 Selectors
	5.3.2 Static Context
	5.3.3 Dynamic Contexts
	5.3.4 Advice Methods
	5.3.5 Instrumentation Scoping
	5.3.6 User Configuration
	5.3.7 Transformer Composition

	5.4 The External DSL for BISM
	5.4.1 Design Considerations
	5.4.2 Pointcuts
	5.4.3 Events
	5.4.4 Monitors
	5.4.5 Code Generation

	5.5 Implementation
	5.5.1 The DSL

	5.6 An Observation Layer for BISM
	5.7 Discussion
	5.8 Conclusion

	II Guiding Instrumentation with Residual Analysis
	6 Residual Runtime Verification of Parametric Properties
	6.1 Introduction
	6.2 Residual Analysis of Parametric Properties
	6.3 Residual Analysis via Intraprocedural Reachability Analysis
	6.3.1 Motivating with an Example
	6.3.2 Capturing a Program Model
	6.3.3 Extending the Automaton of Bad Prefixes
	6.3.4 Cutting the Behavior
	6.3.5 Scope and Soundness of the Analysis

	6.4 Implementation
	6.5 Related Approaches
	6.6 Conclusion

	III Monitoring Concurrent Programs
	7 Representative Traces for Concurrent Programs
	7.1 Introduction
	7.2 Trace Collection for Concurrent Programs
	7.2.1 Issues with Linear Traces

	7.3 Concurrent Traces
	7.4 Sound and Faithful Concurrent Traces
	7.5 Obtaining Sound Concurrent Traces
	7.5.1 Atomicity and Instrumentation Requirements
	7.5.2 The Reordering Algorithm
	7.5.3 Algorithm Cost
	7.5.4 Algorithm Correctness

	7.6 Criteria For Monitorability
	7.6.1 Monitor Causal Dependence
	7.6.2 Trace Monitorability of Concurrent Executions
	7.6.3 Optimal Faithfulness

	7.7 Implementation
	7.8 Related Approaches
	7.9 Conclusion

	8 Opportunistic Monitoring
	8.1 Introduction
	8.2 Opportunistic Runtime Verification
	8.3 Implementation
	8.4 Conclusion

	IV Evaluation and Use Cases
	9 Evaluation
	9.1 Introduction
	9.2 Evaluating BISM
	9.2.1 Methodology
	9.2.2 Advanced Encryption Standard (AES)
	9.2.3 Financial Transaction System
	9.2.4 DaCapo Benchmarks
	9.2.5 Threats to Validity

	9.3 Evaluating the BISM DSL
	9.3.1 Performance Evaluation
	9.3.2 User Experience Evaluation

	9.4 Evaluating the Residual Analysis
	9.5 Evaluating Concurrent Traces
	9.5.1 Effectiveness and Cost
	9.5.2 Causal Dependence Relation in Specification Patterns

	9.6 Evaluating the Opportunistic Monitoring
	9.6.1 Readers-Writers
	9.6.2 Other Benchmarks

	9.7 Conclusion

	10 UseCases
	10.1 Introduction
	10.2 Law of Demeter Checker
	10.3 Code Analysis of Programs
	10.3.1 Mc Cabe Complexity.
	10.3.2 ABC Complexity.
	10.3.3 Unused Variables.

	10.4 Obfuscation
	10.4.1 Renaming Obfuscator
	10.4.2 Junk Code Obfuscator

	10.5 Mutation of Programs
	10.5.1 Return Mutator: Value Mutation
	10.5.2 Instruction Mutator: Operator Mutation
	10.5.3 Void Call Mutator: Statement Mutation

	10.6 Runtime Verification and Enforcement
	10.6.1 Good Java Practices: HasNext Property
	10.6.2 Concurrent Executions: Forcing Advice Atomicity
	10.6.3 Test Inversion Attack Detection and Enforcement

	10.7 Logging
	10.8 Dynamic Profiling
	10.8.1 Call Graph
	10.8.2 Object Allocation

	10.9 Dynamic Analysis with Complex Event Processing
	10.10 Conclusion

	11 Dynamic Program Analysis with BISM and Complex Event Processing
	11.1 Introduction
	11.2 Dynamic Program Analysis
	11.2.1 Existing Approaches
	11.2.2 Limitations

	11.3 BeepBeep Overview
	11.4 The BISM-BeepBeep Integration
	11.4.1 Implementation
	11.4.2 Runtime Verification: Monitoring and Synthesis
	11.4.3 Profiling: The Dynamic Call Graph
	11.4.4 Log Analysis: Complex Instrumented Events
	11.4.5 Coverage: Versatile Metrics

	11.5 Experimental Evaluation
	11.5.1 Monitoring
	11.5.2 Coverage
	11.5.3 Profiling

	11.6 Conclusion

	V Conclusion and Perspectives
	12 Conclusion and Perspectives
	12.1 Contributions
	12.1.1 Program Instrumentation
	12.1.2 Guiding the Instrumentation Process with Residual Analysis
	12.1.3 Monitoring of Concurrent Programs
	12.1.4 Contributions to the Broader Scope of Dynamic Program Analysis

	12.2 Perspectives
	12.2.1 BISM
	12.2.2 Combinining Static and Dynamic Analysis
	12.2.3 Monitoring of Concurrent Programs

	Bibliography

	VI Appendix
	A Other Works
	A.1 Leveraging Runtime Verification for the Monitoring of Digital Twins
	A.2 Monitoring Business Process Compliance Across Multiple Executions with Stream Processing

	Lists
	A.3 List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and Examples
	List of Definitions, Propositions, Theorems, Corollaries, Lemmas, and Examples
	List of Figures
	List of Tables

