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Résumé

Cette thèse étudie la turbulence incompressible bidimensionnelle (2D) avec trois
composantes de vitesse. De tels systèmes seront appelés écoulements 2D3C. Deux classes
principales sont considérées, les écoulements 2D3C cartésiens et les écoulements 2D3C
axisymétriques.

Pour la première classe d’écoulements, nous montrons que l’hélicité est associée à
une corrélation entre la vorticité verticale et un champ scalaire, représentant ici la vitesse
verticale. La mécanique statistique permet de prédire la persistance possible de structures
hélicoïdales à grande échelle. Cette prédiction est vérifiée par des simulations numériques
et son implication dans les applications de mélange est discutée. En effet, la corrélation
vorticité-scalaire déterminera l’efficacité du mélange dans les écoulements 2D.

Nous étudions ensuite, dans la turbulence axisymétrique, une transition critique entre
un écoulement purement poloïdal, un écoulement 2D et un écoulement 2D3C. Nous
transposons les idées à une géométrie toroïdale et soutenons que cette transition peut
jouer un rôle majeur dans les tokamaks, où une transition critique conduit à un meilleur
confinement du plasma.

Dans la dernière partie, nous illustrons comment l’hélicité peut être générée
spontanément. Nous effectuons des simulations de turbulence stratifiée instable en
présence d’un champ magnétique intense. Nous soutenons que le mécanisme de génération
d’hélicité observé pourrait être également observé dans des applications géophysiques si
une forte anisotropie est combinée avec des mécanismes linéaires d’injection d’énergie.
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Abstract

This thesis investigates two-dimensional (2D) incompressible turbulence with three
velocity components. Such systems will be called 2D3C flows. Two main classes are
considered, Cartesian 2D3C flows and axisymmetric 2D3C flows.

For the first class of flows we show that helicity is associated with a correlation between
the vertical vorticity and a scalar field, here representing the vertical velocity. Statistical
mechanics allows to predict the possible persistence of large-scale helical structures. This
prediction is verified in numerical simulations and its implication for mixing applications
is discussed. Indeed, the vorticity-scalar correlation will importantly affect the mixing-
efficiency in 2D flows.

We then investigate, in axisymmetric turbulence, a critical transition between a purely
poloidal 2D flow and a 2D3C flow. We transpose the ideas to a toroidal geometry and
argue that this transition can play a major role in tokamaks, where a critical transition
leads to enhanced plasma confinement.

In the final part, we illustrate how helicity can be generated, spontaneously. We carry
out simulations of unstably stratified turbulence in the presence of a strong magnetic
field. We argue that the observed helicity generating mechanism might be observed in
geophysical applications if strong anisotropy is combined with linear energy injection
mechanisms.
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1 Motivations and objectives

The beginning of the study of turbulence is often attributed to Leonardo da Vinci who
drew sketches of turbulent flows five centuries ago1. The modern study of turbulence
is obviously younger and starts, somewhat subjectively, with the work of Reynolds [2],
Richardson [3] and Taylor [4]. In particular Taylor introduced the concept of homogeneous
and isotropic turbulence, a kind of turbulence which, statistically, is invariant with respect
to rotations and translations. Three-dimensional homogeneous turbulence has received
since then received an enormous amount of attention, and entire textbooks have been
written on the subject (e.g. [1, 5, 6]).

Another field of research, greatly inspired by geophysical flows, is the study of two-
dimensional turbulence. Such flow, described by the movement of fluid motion in a plane,
can also be simplified, statistically, to yield two-dimensional homogeneous and isotropic
turbulence, where the same symmetries are satisfied as in the three dimensional case, but
now only with respect to translations and rotations in the considered plane. In particular
since the work of Kraichnan [7], and the discovery and statistical characterization of the
inverse cascade, two-dimensional turbulence has received an enormous attention2.

Flows in nature are however never purely two-dimensional nor isotropic. A whole
class of flows described approximately by two-dimensional theory does contain a third
velocity component. In the present manuscript we investigate such a subclass, which is
conceptually situated in between two-dimensional and three-dimensional turbulent flows.
Specifically, we investigate two-dimensional three-component (2D3C) flows. These flows
are characterized by the fact that they can be described by three velocity components,
which vary only in two space dimensions.

A major difference characterizing these flows, compared to either 2D or 3D flows
is the invariants. Whereas energy-conservation is a (almost) universal property of
turbulent flows in the absence of dissipation, 2D turbulence conserves also enstrophy
and 3D turbulence conserves helicity. The conservation of these quantities, which will be
introduced in the following chapter, will change the dynamics of the 2D3C flows considered
in the present work. Furthermore, we will be interested to see how the dynamics of a flow
change when we are close to the transition between 2D or 3D flows and the here considered
2D3C flows.

Even though our approach is fairly theoretical, we do have two specific applications
in mind and these applications are on the one hand the transition towards enhanced
confinement observed in tokamak fusion plasmas and the generation of helicity in
geophysical and astrophysical flows on the other. At first sight these two phenomena
have nothing in common. However, once we explore the dynamics of 2D3C turbulence,

1See for instance the cover-illustration of the textbook by Uriel Frisch [1].
2Kraichnan’s publication has been cited about 4000 times at the moment of this writing (source:

Google Scholar 9/10/2023).
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we can understand both effects as transitions towards 2D3C turbulence. For the first
application, tokamaks, the transition is between 2D2C flows and 2D3C flows, whereas the
generation of helicity is associated with a transition from 3D3C to 2D3C flow.

As a third application of the theoretical results in this thesis, we anticipate that helicity
in 2D3C flows is a quantity which is intimately related with the advection of a passive
scalar in two-dimensional flow. As such, we will show that we can understand why mixing
is very sensitive to initial conditions.

The present manuscript is then constructed as follows. In the next chapter, Chap. 2,
we introduce the necessary concepts. Chap. 3 discusses the numerical tools used to
investigate the different flows. Chap. 4 addresses the dynamics of Cartesian 2D3C flows,
with an application to mixing. Axisymmetric turbulence in unbounded geometry is
investigate in Chap. 5. The findings of this chapter are then transposed to more complex,
wall bounded geometry geometry, in Chap. 6, where it is argued that the transition
between 2D2C flows and 2D3C flows can be relevant to fusion research. The final chapter
before the conclusions, Chap. 7 illustrates how unstable stratification, combined with
a strong magnetic field allows to attain a 2D3C limit, where helicity can be generated
spontaneously.
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2 Introduction: some generalities about
turbulence

In this chapter we introduce some necessary concepts for the remainder of this thesis.
In particular we discuss the governing equations, the concept of inviscid invariants, the
description of turbulence in Fourier space, cascades of energy in 2D and 3D turbulence
and transitions between turbulent flows with different dimensionalities.

2.1 What is turbulence?
"Turbulence is everywhere" is a common sentence often heard during lectures of fluid
mechanics. Indeed turbulent flows can be encountered both in nature and engineering
applications, from quantum scales to interplanetary distances. Often turbulence is a
harmful property of the flow, for instance when the goal is to efficiently transport fluid
through pipes, where from an energetic viewpoint turbulence is undesirable, or during
airplane flights where planes and their passengers get shaken by turbulent bursts. However
there are cases where turbulence is beneficial. For instance mixing is more efficient
when a flow is turbulent. Even though turbulence is an ubiquitous phenomenon, it
takes such different forms in different physical systems that its precise definition is not
straightforward. Turbulence is therefore mostly defined by its characteristic properties
and we will refrain from an attempt to give a precise definition.

Turbulent flows of liquid, gas and plasma are characterized by a chaotic disorder.
Reynolds called turbulent flows "sinuous" [2], since in contrast to "direct" laminar flows,
turbulent trajectories seem less predictable and not "direct" but "sinuous" between two
points of the flow. These non-straight trajectories are caused by fluctuations, the size of
which can rarely be neglected in a turbulent flow. The fluctuations are often associated
with chaotic vortical motion and the associated vortices in a turbulent flow are rarely
stable for a long time. The fragmentation of vortices and other types of structures in a
flow leads to the coexistence of a wide range of length scales, and the inherent difficulties to
study multi-scale systems. Because of these particularities, it is, in general, not convenient
to use a deterministic approach to study turbulence. We will discuss later in this chapter
the appropriate statistical tools to study turbulent flows.

It was early noticed [2] that turbulence could be triggered, in pipes, by high velocities,
or kinetic energy. Another parameter is the viscosity of the flow, since flows with a small
viscosity, like most gases, become more easily turbulent than honey, in which kinetic
energy is rapidly dissipated by the viscous friction. In some sense turbulence seems the
manifestation of the difficulty of the flow to deal with its kinetic energy.

Regimes in mechanics are usually defined using non-dimensional control parameters.
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Figure 2.1: Entente Cordiale in fluid mechanics: Claude-Louis Navier and George Gabriel
Stokes.

In the experiment by Osborne Reynolds, it was observed that the transition from laminar
to turbulent flow was determined by the Reynolds number Re [2], defined as:

Re = uL

ν
(2.1)

with L a characteristic length of the flow (the pipe diameter for Reynolds), u a
characteristic velocity amplitude, and ν the kinematic viscosity. A more insightful
definition of the Reynolds number is that it measures the relative influence of advection
to viscous stresses on a fluid particle,

Re = advection
viscous stress , (2.2)

but to better interpret this interpretation we need to write the evolution-equation of a
fluid parcel, governed by the Navier-Stokes equations. That will be done now.

2.2 Governing equations
In this section we will focus, respectively, on the evolution equations of mass, momentum,
vorticity and advected scalar quantities.

2.2.1 The Navier-Stokes equations
The Navier-Stokes (NS) equations govern the dynamics of fluids. They are derived from
usual continuity equations, concerning density (i.e. mass) and momentum conservation.

We first consider the mass continuity equation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.3)

with ρ(x, y, z, t) the density and u(x, y, z, t) the velocity field. For this study we consider
an incompressible flow. This means that the density of a fluid parcel remains constant so
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that the material derivative of the density is zero,

Dρ
Dt = ∂ρ

∂t
+ u · ∇ρ = 0. (2.4)

This relation can be interpreted as a volume continuity equation: the volume of a fluid
parcel remains constant along a streamline. Combining these expressions, we obtain the
so-called divergence-free condition for incompressible flow,

∇ · u = 0. (2.5)

The Navier-Stokes equations are obtained by applying Newton’s second law to the
same kind of fluid parcel. It illustrates the conservation of the momentum ρu,

Dρu
Dt = ∂ρu

∂t
+ u · ∇ρu = Fint + Fext (2.6)

with Fext externally imposed forces and Fint represents the internal forces, respectively,
associated with stresses on the fluid particle. The stress tensor σ can be used to model
the internal forces with Fint = ∇ · σ. In fluid mechanics the stress tensor is split into a
pressure part PI and a deviatoric viscous part τ . P is called pressure. For an isotropic
flow P = σii.

We consider a Newtonian fluid, which means there is a linear relation between τ and
the the strain rate tensor S = ∇u so that

σ = −PI + τ with τ = µ
(
∇u + ∇uT

)
+ λ(∇ · u)I. (2.7)

With the incompressibility condition (2.5) the second term is null. The dynamic viscosity
µ will be considered constant in this study, leading to

∂ρu

∂t
+ u · ∇ρu = ρ

[
∂u

∂t
+ u · ∇u

]
and ∇ · τ = µ∆u. (2.8)

This yields the Navier-Stokes equation for a homogeneous, isotropic, Newtonian and
incompressible flow with constant viscosity,

∂u

∂t
+ u · ∇u = −1

ρ
∇P + ν∆u + F , (2.9)

with ν = µ/ρ the kinematic viscosity and F = Fext the external body-forces. These
forces can result for example from buoyancy, magnetic fields etc. The resulting equation
is nonlinear. The non-linear term u · ∇u (also called advection term) is the key of the
comprehension of chaos and turbulence (and it can be argued that it is this nonlinearity
which makes fluid mechanics really interesting...).

Since in most of the following we will focus on constant density flows, we will, unless
otherwise stated, absorb the density into the pressure,

P/ρ → P. (2.10)

Only in the last chapter of this thesis, Chap. 7, we will consider a case where fluctuations
of the density play a role. By taking the divergence of (2.9) and taking into account the
divergence-free condition, a Poisson equation can be obtained for the pressure,

∆P = ∇ · (F − u · ∇u). (2.11)
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If this expression is solved, the pressure can be eliminated from the system, so that, for
given external forces, the three equations for the components of u are determined by
three partial differential equations. This is not always analytically possible and in many
systems treating the pressure term is challenging. In particular this relation shows how
body forces and pressure are entangled in the dynamics of the Navier-Stokes equations
and their disentanglement in complex flows is a subject of recent research [8].

Equations (2.9) can be formulated in different coordinate systems. The Cartesian
formulation is the most generally used and we have there u = (u, v, w), ∇ = (∂x, ∂y, ∂z),
∆ = ∂2

x + ∂2
y + ∂2

z . For use in chapters 5 and 6, Eq. ((2.9)) will here be written in the
cylindrical coordinate system (r, θ, z). We decompose u = urer + uθeθ + uzez and write
(2.9) for the three components,

∂ur
∂t

+ u · ∇ur − u2
θ

r
= −∂P

∂r
+ ν

(
∆ur − ur

r2 − 2
r2
uθ
∂θ

)
+ Fr (2.12)

∂uθ
∂t

+ u · ∇uθ + uθur
r

= −1
r

∂P

∂θ
+ ν

(
∆uθ − uθ

r2 + 2
r2
ur
∂θ

)
+ Fθ (2.13)

∂uz
∂t

+ u · ∇uz = −∂P

∂z
+ ν∆uz + Fz (2.14)

with
u · ∇ = ur

∂

∂r
+ uθ

r

∂

∂θ
+ uz

∂

∂z
,

and
∆ = 1

r

∂

∂r

(
r
∂

∂r

)
+ 1
r2

∂2

∂θ2 + ∂2

∂z2 = ∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2 + ∂2

∂z2 ,

and incompressibility
1
r

∂rur
∂r

+ 1
r

∂uθ
∂θ

+ ∂uz
∂z

= 0. (2.15)

Obviously, the dynamics of the flow do not depend on the choice of the coordinate system.
We stress however that in the cylindrical formulation, the different components are not
interacting in the same manner as in the Cartesian system. For instance, focusing on the
left hand side of Eqs. (2.12)-(2.14), it is observed that the toroidal component uθ and the
radial component ur of the velocity are coupled by terms −u2

θ/r and uθur/r, allowing for
a direct energy transfer between the components, even in the absence of gradients. This
transfer will play a major role later on in this thesis, where axisymmetric turbulence will
be considered.

2.2.2 The evolution of vorticity.
Vorticity ω is defined as the curl of the velocity. It represents the local rotation rate of
the flow,

ω = ∇ × u. (2.16)
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The equation for the evolution of vorticity can be derived by taking the curl of (2.9).1

∂ω

∂t
− ∇ × (u × ω) = ν∇2ω + ∇ × F

so that we obtain the equation for the vorticity 2

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω + ∇ × F (2.17)

The vortex stretching term ω · ∇u is often mentioned as the cause of turbulence, or
the energy cascade. It represents the elongation of vortices (more particularly vortex
tubes) caused by strain. This stretching induces an energy transfer between different
lengthscales in a flow, and intensifies the local enstrophy. It can be noticed that the
elongation of vortices is only possible in a 3D domain.

We can curl once more to obtain,

∇ × ω = ∇ × ∇ × u = −∆u, (2.18)

Even though it is not directly intuitive what the curl of the curl represents, this quantity
plays an important role in the viscous dissipation of enstrophy.

2.2.3 Advection-diffusion in fluid flow
An important concept in this thesis will be the advection of a scalar field. In fluid dynamics
typical advected scalars are the temperature field, the density field of an immiscible liquid
or the concentration of a chemical species. The evolution of a scalar field ϕ in a flow can
be described by the advection-diffusion equation:

∂ϕ

∂t
+ u · ∇ϕ = ∇ · (D∇ϕ) +Q, (2.19)

with the D diffusion coefficient and Q a source term. Even though the scalar equation is
linear, the scalar field is in general characterized by an interesting multi-scale behavior,
reflecting the mode coupling by the advection term. The statistical characterization of a
scalar field in a turbulent flow is therefore not a trivial task.

In Chap. 4 we will use the fact that the same equation governs the dynamics of the
third component of a 2D3C velocity field.

1

u · ∇u = 1
2∇(|u|2) − u × (∇ × u) = 1

2∇(|u|2) − u × ω

∇ × ∇f = 0 ∀f
⇒ ∇ × (u · ∇u) = −∇ × (u × ω)

2

∇ × (u × ω) = (∇ · ω)u − (∇ · u)ω + u · ∇ω − ω · ∇u

∇ · ω = ∇ · ∇ × u = 0 and ∇ · u = 0
⇒ ∇ × (u × ω) = u · ∇ω − ω · ∇u
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2.2.4 Dimensionless representation of the equations
The dynamics of physical phenomena are often characterized using non-dimensional
control parameters. If the governing equations are known, a proper non-
dimensionalization allows often to isolate the important physical quantities in a system.
For instance, the Navier-Stokes equations (for constant density), can be transformed
into a non-dimensional equation using a velocity scale U and a length scale L (note
that alternative quantities, containing the dimensions length and time could also be
used). Rescaling all velocities u∗ = u/U all derivatives ∇∗ = L∇, time t∗ = tU/L
and P ∗ = P/U2, the Navier-Stokes equations write in dimensionless form

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇P ∗ + 1

Re
(∇∗)2u∗ + F ∗. (2.20)

The advection term (u∗ · ∇∗u∗) is the cause of the turbulence. Indeed, in its absence,
all other terms, of linear nature, do not allow different length scales to couple and no
chaos, nor multiscale physics will be observed. The relative magnitude of the advection
term allows therefore to measure the intensity of the origin of turbulence. On the
contrary viscosity helps to suppress the turbulence, through the diffusion and damping of
fluctuations.

The relative intensity of advection and viscous friction can thereby indicate if the flow
is laminar or turbulent. Indeed, comparing the relative intensity of the advection term
with the diffusive term one finds the Reynolds number Re [2], which was introduced in
Eq. (2.1),

Re = advection of momentum
viscous diffusion of momentum = O(u · ∇u)

O(ν∆u) , (2.21)

where O indicates ’order of magnitude’. Replacing these terms by the dimensionless
representation in (2.20), it is observed that one retrieves that the dimensionless terms
scale as Eq. (2.1),

Re = uL

ν
(2.22)

Analogously the Péclet number Pe can be defined as the ratio of the scalar field advection
and diffusion:

Pe = uL

D
(2.23)

and is similarly associated with the advection-diffusion equation (2.19). The ratio of the
scalar diffusivity and the kinematic viscosity is determined by the Schmidt number Sc.

Sc = ν

D
(2.24)

If the scalar field is the temperature the non-dimensional parameter is the Prandtl number
Pr.

2.3 Integral quantities
Integral quantities are defined here as the total value of a field, integrated over the flow
domain. In the following we will discuss energy, enstrophy, scalar variance, palinstrophy
and helicity. The most important integral quantities in our study, are those which are
conserved by the dynamics if external forces and viscosity are set to zero. These quantities
are called invariants in the following.
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2.3.1 Kinetic energy.
During this study we will repeatedly focus on energy transfer. The equation for the
pointwise kinetic energy density e(x, t) = 1

2 |u|2 can be deduced from the momentum
equation by taking the inner-product of (2.9) and u, resulting in the expression

∂e

∂t
+ u · (u · ∇u) = u · ∇P + νu · ∆u + u · F (2.25)

with

• u · (u · ∇u) = ∇ · (eu) 3 is the divergence the kinetic energy density flux eu.

• νu · ∆u = ν∆e− ν|∇u|2 4 is the ensemble of viscous energy dissipation and viscous
diffusion of kinetic energy.

• u · F is the energy injection rate induced by the body forces.

Regrouping the divergence of the different fluxes, the kinetic energy evolution can be
rewritten as,

∂e

∂t
= −∇ · [(P + e) u − νu × ω] − ν|ω|2 + u · F . (2.26)

This formulation immediately shows that if there are no fluxes into, or out of the flow
domain, the total kinetic energy is entirely governed by the integral of the last two
terms. Mathematically this is shown by eliminating the divergence terms using the Green-
Ostrogradski theorem ∫

R3
∇ · f dr =

∮
R2

f · dr, (2.27)

in the case of periodic or Dirichlet boundaries.
Indeed, introducing the total kinetic energy,

E =
∫
R3
edr, (2.28)

we obtain for its temporal evolution for such boundary conditions,

dE
dt = I − ε (2.29)

with
I =

∫
R3

u · F dr (2.30)

3

(u × ω)⊥u ⇒ u · (u × ω) = 0

⇒ u · (u · ∇u) = u · ∇
(

1
2 |u|2

)
4

∆u = ∇(∇ · u) − ∇ × (∇ × u) = −∇ × ω

⇒ u · (u · ∇u) = −u · (∇ × ω) = ∇ · (u × ω) − ω · (∇ × u)
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and ε = 2νW with the global enstrophy W defined by

W =
∫
R3
ω2 dr. (2.31)

The energy balance (2.29) reflects the variation of total kinetic energy caused by viscous
dissipation and external energy injection. As ε is always positive, the total kinetic energy
decreases without energy injection. For a stationary state all energy I injected is dissipated
at a rate ε. In the absence of external forcing and viscous stress, energy is thus conserved
by the system. This means that kinetic energy is an invariant of the system.

2.3.2 Enstrophy
An interesting observation is that the dissipation of energy is, in total, proportional to
the total enstrophy. The local enstrophy w = ω2/2 evolves as

∂w

∂t
+ ∇ · (wu) = ω · (ω · ∇u) + νω · ∇2ω + ω · Fω (2.32)

with Fω = ∇×F the curl of the forcing term. Integrating over the flow domain, the total
enstrophy is evolving as

dW
dt = PV S − εw + Iw (2.33)

where

Iw =
∫
R3

ω · Fω dr (2.34)

PV S =
∫
R3

ω · (ω · ∇u) dr (2.35)

εw = 2νB, (2.36)

the palinstrophy B in the system being defined by

B =
∫
R3

|∇ × ω|2 dr (2.37)

This evolution is somewhat similar to the kinetic energy balance, with an injection term
associated with the external forcing and a viscous dissipation term. However, the extra
term, representing the influence of the vortex stretching adds an additional, internal,
source of enstrophy to the system PV S. Because of this term, enstrophy is not an invariant
of the 3D Navier-Stokes equations, since it is not constant in the absence of forcing and
dissipation. However, and we will come back to this, vortex stretching is identically zero
in two-dimensional turbulence, making enstrophy an invariant of the two-dimensional
Navier-Stokes equations.

2.3.3 The scalar variance, or scalar "energy".
A global quadratic quantity ϕ2 can be constructed for a scalar. Like for the energy, the
total scalar’s variance S is given by

S =
∫
R3
ϕ2 dV
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As for the total kinetic energy, variations of S are caused by a dissipation term εS and an
external injection PS.

dS
dt = εS + PS (2.38)

with the dissipation
εS = D

∫
R3

|∇ϕ|2 dr (2.39)

so that S is an invariant of the system, since it is conserved in the case of zero diffusivity
D and zero injection.

2.3.4 Helicity
E, W and S are quadratic quantities obtained by squaring and integrating a vector or
a scalar field. But quadratic quantities can also be formed by the product of different
quantities. For instance we can consider the inner product of the velocity field u and the
vorticity field ω. For all positions x one can define a scalar field named kinetic helicity h

h(x) = u(x) · ω(x) (2.40)

More precisely helicity is a pseudo-scalar, since its sign changes under symmetry (vorticity
ω is itself a pseudo-vector). Pioneering studies of helicity were proposed by Moreau [9] and
Moffatt [10] who proposed the name "helicity" by analogy with the helicity of a particle in
quantum physics. More generally helicity defines the cross-product of a vector field with
its curl (notably in electromagnetism). Helicity was introduced as a tool to describe the
topology of the flow, as it is a measure the degree of knottedness of the vortex lines of
the flow, or as a measure of the chirality of the flow. It plays a role in dynamo action [11]
and we will discuss this further in Chap. 7.

The dynamic evolution of helicity is obtained by multiplying (2.9) with ω and (2.17)
with u and adding them

∂h

∂t
+ u · ∇h = −∇(Pω) + u · (ω · ∇u) + ν[ω · ∆u + u · ∆ω] + Fh (2.41)

with Fh = u · Fω + ω · F . The total helicity H is defined as

H =
∫
R3
h dr.

Since the vorticity and velocity are divergence free u · (ω · ∇u) = ∇(eω) so that

dH
dt = Ih + ϵh (2.42)

with
Ih =

∫
R3
Fh dr (2.43)

and
ϵh =

∫
R3
ν[ω · ∆u + u · ∆ω] dr. (2.44)

We see thus that helicity is again an invariant if F = 0 and ν = 0.
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The relative/normalised helicity hrel is in the following considered, to estimate the
strength of the correlation between the velocity field and the vorticity field,

Hrel(x) = H√
2EW

(2.45)

In case of a Beltrami flow
ω = λu (2.46)

we have Hrel = 1. An interesting feature is that the nonlinearity is zero in a Beltrami
flow.

The interpretation of helicity as a measure of correlation between fields can be
straightforward to generalize helicity over other quantities which link two fields. For
instance it can be interesting to study how a scalar field can be entangled with vortices
of a flow, and the influence of this correlation on the evolution of the scalar’s variance.
For this reason the scalar helicity can be introduced as a pseudoscalar by mimicking the
kinetic helicity.

hS =
∑
i

ϕωi (2.47)

This quantity is called the skew-diffusion [12]. It will be shown that the skew-diffusion is
intimately linked to the (kinetic) helicity, in particular in Chapter 7.

2.4 Homogeneous isotropic turbulence
The most commonly studied flow in theoretical studies of turbulence is, as we said,
homogeneous (invariance of the properties by translation) and isotropic (invariance
under rotation) turbulent flow, or HIT. More specifically, a turbulent flow can be only
statistically homogeneous or/and isotropic. Therefore, in the remainder of this thesis
homogeneity, isotropy and stationarity are tacitly understood in the statistical sense. The
ergodic assumption considers an equivalence between spatial, time and ensemble average
in HIT.

2.4.1 Correlation functions and spectra
The study of turbulence can be performed by studying the turbulent structures in a flow.
As in other domains in physics, correlation functions can be used to estimate how different
points of a field are correlated. One can then establish a hierarchy between structures by
illustrating the distribution of energy over the different eddy sizes of the flow. For that,
a useful statistical function is the two-point correlation function Rij, defined as

Rij(r, x, t) = ui(x, t)uj(x + r, t) = Rij(r, t), (2.48)

where the bar · denotes an ensemble average. The two-point correlation function is
independent of the position x for a homogeneous flow, and assuming isotropy there is
no dependence on the direction of the vector r. So Rii(r, t) gives directly an evaluation
of the energy for points separated by a distance r associated with the energy of eddies of
size r.

We can notice that

Rii(r = 0, t) = ui(x, t)ui(x, t) = 2E(t). (2.49)
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Studies of the dynamics of structures at different lenght scales in physical space can
be performed using Rij. Different length scales such as the longitudinal and transversal
integral length scales can, for instance, be introduced using Rij, which describe, in general
the large, energetic structures in a flow.

In order to study interactions and energy transfers between different scales of a flow,
it can be useful to use Fourier transformations F . For instance the Fourier transform û
of the velocity can be defined as

F [u(x, t)] = û(k, t) = 1
(2π)d

∫
R3
u(x, t)e−ik.xd3k, (2.50)

with d the dimension of space. The vector k is the Fourier mode (simply mode in the
following). The wavenumber k = |k| is an inverse of a lenght l. It allows to work directly
with the scales l of the turbulent eddies instead of the distance r and position x, which is
very useful if we want to know the distribution of the energy over the different eddy sizes.

A convenient mathematical property of Fourier transformations is the ability to
transpose differential operators to algebraic operators, which is particularly useful for
their numerical treatment as shown in Chapter 3.

F [∂if ] = ikif̂ F [∇ · u] = ik · u F [∇ × u] = ik × û F [∆u] = −k2û. (2.51)

The spectral tensor Φij is defined as the Fourier transform of the two-point correlation
function Rij,

Φij(k, t) = 1
(2π)d

∫
R3
Rij(r, t)e−ik·rdr.

More particularly
Rii(r = 0, t) = 2E =

∫
R3

Φii(k, t) dk

This shows that Φii(k, t) = |û|2(k, t) is the energy in each Fourier mode k. We can relate
this to the energy spectrum E(k), representing the energy at wavenumber k.

E(k) =
∫
R3

Φii(k)δ(|k| − k)dk =
∫
R3

|û|2δ(|k| − k) dk

E(k) will be one of the main quantities that will be used during this study as its represents
the distribution of the energy in each wave number k associated with lengthscales l, by
the relation l ∼ 2π/k. In 3D isotropy allows to simplify the integral over wavenumber
space by

dk → 4πk2dk (2.52)

and in 2D by
dk → 2πkdk. (2.53)

Therefore, if energy in Fourier-space is equally distributed over all modes, the kinetic
energy spectrum will yield,

E(k) ∼ kd−1 (2.54)

Such equilibrium states are not common in real-life turbulence, but they play an important
role in statistical mechanics approaches applied to turbulence, as we will discuss in
Chapter 4.
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The total kinetic energy density can be naturally obtained by summing the energy
distributed in each wavenumber k:

e =
∫ ∞

0
E(k) dk

The vorticity spectrum W (k) can be obtained from the relation (2.16) and rules (2.51)

u(k) = i

k2 k × ω(k) (2.55)

W =
∫ ∞

0
W (k) dk =

∫ ∞

0
dk
∫
R3

|ω̂|2δ(|k| − k) dk = 2
∫ ∞

0
k2E(k) dk. (2.56)

2.4.2 Dynamics of the velocity spectrum
The temporal evolution equation of the velocity spectrum E(k), also called Lin’s equation,
can be obtained from the Fourier transform of the Navier-Stokes equation (2.9), by
multiplying by the conjugate û∗(k, t) in order to have the equation for ϕii(k, t) and then
integrate over modes k with |k| = k, resulting in

dE(k, t)
dt = T (k, t) − 2νk2E(k, t) + I(k, t) (2.57)

with
I(k, t) =

∫
R3

R[û∗(k, t) · F̂ (k, t)]δ(|k| − k) dk

and
T (k, t) =

∫
R3

R[û∗(k, t) · F(NL(u))]δ(|k| − k) dk

with R real part of complex numbers and where we introduced,

NL(u) = u · ∇u + ∇P. (2.58)

In this expression T (k, t) is the spectral energy transfer function. It represents the
spectral transfer of energy from scale k to scale k+∆k. In general we have T (k, t) > 0 for
small scales which receive energy and T (k, t) < 0 for the largest scales which give their
energy, on average. Since the transfer term is not-dissipative or energy-producing (and
that is why it is called transfer), in a freely evolving flow all energy must eventually reach
the smallest scales where it can be dissipated.

The conservative nature of the flux is mathematically represented by the relation∫ ∞

0
T (k, t) dk = 0.

An other measure of the energy transfer is the spectral energy flux function Π(k) defined
by:

Π(k) = −
∫ k

0
T (k′, t) dk′ =

∫ ∞

k
T (k′, t) dk′. (2.59)

The spectral energy flux is the cumulative energy transfer of all modes of norm smaller
than the wave number k to higher wave numbers, or in the physical space from largest
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(larger than 1/k) to smaller structures. Then Lin’s equation (2.57) can be reformulated
with the spectral energy flux:

dE(k, t)
dt = −∂Π(k, t)

∂k
− 2νk2E(k, t) + I(k, t). (2.60)

In Kolmogorov’s theory, which will be discussed in the next section, it is assumed that
I(k, t) is injected at large scales (small wavenumber k). It means that in the inertial range
I(k, t) = 0, and for a stationary states:

∂Π(k, t)
∂k

= −2νk2E(k, t) (2.61)

Indeed to derive this expression we need to assume that dissipation can be neglected in
the inertial range so (∂Π(k, t))(∂k) −→ 0, which means that the spectral energy flux
is constant in the inertial range. It is logically equal to the dissipation rate ϵ and the
injection rate for a stationary state. The sign of Π indicates the direction of the energy
transfer. For 3D HIT, Π is positive which means that that the transfer goes from small
to large wave numbers.

2.4.3 K41 theory
Now that we have defined the convenient tools to investigate multi-scale statistics, we turn
to the phenomenological picture of how energy is distributed over scales. The seminal
concept of a cascade of energy was formulated poetically by Lewis Fry Richardson in 1922
[3]: Big whorls have little whorls that feed on their velocity, and little whorls have smaller
whorls and so on to viscosity - in the molecular sens.

The idea behind this poem is that a turbulent flow consists of structures, called eddies.
The turbulent energy of the flow is distributed over these eddies. Observations do then
suggest that energy goes from the largest-scale structures of the flow to the smallest
ones, in a process referred to as a cascade. This mechanism continues until eddies are
reached which are small enough so that the viscous friction of the flow can remove them
by dissipating their energy.

A statistical characterization of the energy cascade was proposed by Kolmogorov.
Kolmogorov’s predictions [13] are based on several hypothesis:

• Turbulence is fully developed, which means that there is a sufficient scale range. It
means in practice that it requires a fairly large value of the Reynolds number.

• The fluid is locally homogeneous and isotropic, which means that if the flow can
have anisotropy at large scales, at sufficient small scales statistical properties are
homogeneous and isotropic.

• At sufficient small scales all statistical characteristics are determined only by ϵ and
ν. Indeed ϵ remains constant and finite and is determined by large structures as
suggested by Taylor [4]

ϵ ∼ u3/L. (2.62)

• At sufficient small scales the flow shows a self-similarity at all scales. This self-
similarity depends only on ϵ and the length scale l (or the wave number k in spectral
space).
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Figure 2.2: Illustration of the energy cascade[1]

The scale range in which Kolmogorov’s assumptions can be applied is called the inertial
range. For smaller scales viscosity becomes too effective. These assumptions are very
useful because it means that parameters of the flow at small scales are combinations
of ν and ϵ and can be found with dimensional analysis. These parameters are called
Kolmogorov parameters. For instance

η =
(
ν3

ϵ

)1/4

is Kolmogorov’s length scale and characterizes the typical length scale where viscous
diffusion dominates the dynamics. Energy cascade from large to small scales until eddies
size reaches η. Wave numbers larger than kη = 1/η are said to be in the dissipative range.

For an isotropic flow ϵ one can derive [4] that

ϵ = 15ν
(
∂ui
∂xj

)2

(2.63)

The self-similarity of the flow can be used to find a law for the scale by scale energy
partition. Indeed this means that u(l) ∝ lpϵq. Equivalently in the spectral domain we
have E(k) = Cϵqkp

With ϵ ≈ u3
l /l, El ≈ u2

l ≈ kE(k) the energy of l-size eddies with l ≈ 1/k we can obtain
the Obukhov-Kolmogorov scaling law for 3D turbulence.

E(k) = Cϵ2/3k−5/3. (2.64)

Kolmogorov himself proposed a correction to this scaling [14], taking into account spatial
fluctuations of the dissipation rate, but the resulting corrections to the energy spectrum
turn out to be small and will not be of interest in our investigation.

2.5 Turbulence in less than three dimensions
Certain flows in nature are so anisotropic that their dynamics are close to two-dimensional.
This two dimensionality is either caused by geometrical factors, body forces (such as
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E(k) k-5/3

Figure 2.3: Theoretical energy spectrum E(k) according to Kolmogorov’s theory, resulting
from a conserved energy flux through scale space.

(a) (b)

Figure 2.4: Two examples of long-time coherent, close to 2D flow patterns. (a) Jupiter’s
red spot. (b) The oceanic currents on the Earth.

rotation, stratification or magnetic fields [15]), or both. Historically 2D turbulence
was proposed with the purpose to explain large coherent and stable structures in the
atmosphere. This self-organisation, like for oceanic currents, is caused by two phenomena:
the Coriolis acceleration caused by the Earth’s rotation [16, 17, 18, 19], and the density
stratification of the atmosphere. Indeed oceanographic and atmospheric turbulent flows
are self-organised thin layers (See e.g. Fig. 2.4), resulting in a confinement in the vertical
direction of the flow.

Artificial two-dimensional flows can also be created, notably in conducting flows like
liquid metals and plasma. In the presence of a magnetic field [20, 16] flows become almost
invariant along the magnetic field direction [21], allowing the dynamics perpendicular to
the field to be close to two-dimensional. This effect has been studied numerically [22, 23,
24] and experimentally [25]. These flows have therefore two dimensions of variation, but
three velocity components, since the dynamics along the field are not constrained.
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Figure 2.5: In the world of the Shadoks there is no direct energy cascade! Indeed, as
stated in Wikipedia: "Dans le monde des Shadoks, l’espace est représenté comme un plan
et, comme tel, il est plat. Il n’a donc pas de profondeur (comme tout l’univers shadokéen),
seulement le haut et le bas, la gauche et la droite". This particularity can partially explain
the specificities observed on planet Shadok.

In the following we will first discuss 2D turbulence and after that we consider the just
mentioned 2D3C flows. These latter will be considered in both Cartesian and cylindrical
coordinate systems.

2.5.1 2D turbulence
A perfectly two-dimensional turbulent flow is a turbulent flow which is restricted to a
plane. It can be described with two geometrical directions. In such flows the velocity
field has only two components which only vary in the two coordinate directions. Such
two-dimensional turbulent flow is somewhat theoretical in our three-dimensional world
and seems particularly interesting for Shadoks (see Fig. 2.5).

Nevertheless, strong confinement in one direction, or the effect of certain body forces
allows to observe close to two-dimensional turbulence. Examples are rapidly rotating
turbulence, atmospheric and oceanic flows at large length scales and magnetically confined
plasmas in the plane perpendicular to the magnetic field. Reviews on 2D turbulence are
[26, 27, 28, 29].

An important feature, distinguishing it from 3D turbulence is that it is characterised
by an inverse energy cascade. This means that a 2D flow shows a tendency to transfer
energy, injected at a certain scale, to larger scales. This is the opposite kind of cascade
compared to 3D turbulence. Nevertheless, 2D turbulence possesses also a direct cascade,
but of enstrophy, not of energy.

The inverse cascade allows to self-organize a flow into large structures. This difference
between 2D and 3D turbulence with respect to the energy transfer was already pointed
out by Ogura [30] and Fjortoft [31]. The presence of the inverse energy cascade implies
that in the world of the Shadoks a turbulent flow is characterized by large scale structures.
That is totally different from the Richardson cascade which causes the fragmentation of
eddies to form smaller vortices in 3D.

Particularities of two-dimensional turbulence were quantitatively studied by Kraichnan
[7], Leith [32] and Batchelor [33]. The so-called KLB model predicts the shape of the
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Figure 2.6: Energy spectrum for a two-dimensional flow

energy spectrum for an energy injected at the wavenumber ki:

Ek<ki(k) = Ceϵ
2/3k−5/3 Ek>ki

(k) = Cwβ
2/3k−3, (2.65)

where β = 2νB is the enstrophy-dissipation rate.
The energy spectrum in 2D is related to two distinct conservative quadratic quantities.

In 2D the vorticity has only one non-zero component, and the helicity is zero,

ω = ∇ × u⊥ = ωzez =⇒ h = u⊥ · ezωz = 0, (2.66)

with u = u⊥ = uxex + uyey.
We will now discuss the equations for two dimensional velocity and vorticity. The

two-dimensional velocity field is governed by

∂u⊥

∂t
+ u⊥ · ∇u⊥ = −∇P + ν∆u⊥. (2.67)

with ∂xux + ∂yuy = 0. For the vorticity this yields

∂ωz
∂t

+ u⊥ · ∇ωz = ν∆ωz. (2.68)

One can notice that the evolution of the vorticity, represented by a scalar field, is governed
by an advection-diffusion equation, as Eq. (2.19). Without the vortex stretching term5 the
vorticity is indeed simply advected by the two-dimensional velocity field. However, it is not
a passive scalar field since its value is tied to the velocity by the relation ωz = (∇×u⊥)·ez.

Mathematically since incompressible two-dimensional turbulence has two components
and incompressibility constrains its movement, the whole dynamics can be described
conveniently by a single scalar field, the stream-function. We define the stream function
ψ such that

ux = −∂ψ

∂y
uy = ∂ψ

∂x
(2.69)

5Vortex stretching ω · ∇u = ωz∂zu⊥ = 0
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With this definition ψ verifies the incompressibility equation (2.5). An other interesting
property is the relation with the vorticity: ωz = −∆ψ. These relations allow to reduce
(2.67) to an equation for ψ. Indeed 6 we obtain

∂ψ

∂t
+ ∆−1[ψ,−∆ψ] = ν∆ψ (2.70)

or, using this notation, the vorticity equation reads

∂ωz
∂t

+ [ψ, ωz] = ν∆ωz. (2.71)

with
[f, g] = ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
(2.72)

(also called Poisson bracket) and more particularly u⊥ · ∇f = [ψ, f ].
The fact that the vorticity is governed by an advection equation shows that enstrophy

is conserved in a 2D flow in the absence of dissipation. As for the energy, it leads to a
constant positive enstrophy flux in the range ki > k, associated with a direct enstrophy
cascade which ends in a dissipation range governed by the palinstrophy. For k < ki, the
energy flux is again constant which gives again the −5/3 scaling, but the flux is negative
which corresponds to an inverse cascade.

Asymptotically, the energy flux is negligible in the direct enstrophy cascade and so is
the enstrophy flux in the inverse energy cascade. The KLB model was early numerically
tested by Lilly for forced [34] and decaying turbulence [35], and later confirmed [36, 37, 38].
Experiments also confirmed the presence of the inverse energy cascade [39, 40].

The energy spectrum in the enstrophy cascade range has been modified by Kraichnan
[41] with a logarithmic correction, in order to account for the divergence of the enstrophy
when integrating the enstrophy spectrum. This correction to the spectrum (2.65) leads
to

Ek>ki
(k) = Cβ2/3k−3

[
ln
(

k

kmax

)]−1/3

. (2.73)

Thereby the enstrophy flux is constant, but the scaling is no pure power law anymore.
Moreover several numerical studies still show a steeper slope than −5/3 of the energy
spectrum in the inverse cascade and the precise value exponent remains a debated subject.

2.5.2 Cartesian two-dimensional three-component (2D3C) flow
We consider a flow which is two-dimensional turbulence but needs three scalar equations
to be fully described. In practice this corresponds to the asymptotic limit of very strongly
anisotropic flow as, for instance generated by strong rotation or the presence of a strong
magnetic field.

To understand this definition it can be interesting to study the Navier-Stokes
equations in a flat Cartesian coordinate system. We consider that the dynamics of all

6

u · ∇f = ux
∂f

∂x
+ uy

∂f

∂y
= −∂ψ

∂y

∂f

∂x
+ ∂ψ

∂x

∂f

∂y
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components are invariant along the third direction, ∂z = 0 yielding:

∂u⊥

∂t
+ u⊥ · ∇u⊥ = −∇P + ν∆u⊥

∂uz
∂t

+ u⊥ · ∇uz = ν∆uz

(2.74)

As for the vorticity in 2D2C flows, the third velocity component can be seen as a
scalar field advected by the flow. The total kinetic energy is still conserved, which is also
the case for both horizontal and vertical components individually. The dynamics of uz
are then equivalent to those governing a passive scalar, advected by two-dimensional, at
unity Prandtl number. It can be noticed that the vorticity is not a scalar field any more
since the third component is not zero,

ω = −∂uz
∂y

ex + ∂uz
∂x

ey +
(
∂ux
∂y

− ∂uy
∂x

)
ez

However with ∂z = 0 the vertical component of the vortex stretching is still zero.
Furthermore, the x and y components of the vorticity do not modify the dynamics

of ux and uy and the flow remains two-dimensional. An additional conserved quantity,
compared to pure 2D flow, is the helicity, which can also be decomposed into a vertical part
h⊥ = uzωz and a horizontal part h∥ = uxωx +uyωy. It can be noticed7 that 1

2h = h⊥ = h∥
and both parts of the helicity are thus conserved.

2.5.3 Axisymmetric 2D3C flows
Axisymmetric flows were studied early [42, 43], but only for the weaker case of a
statistically averaged axisymmetric flow. Recently several studies have been performed
for strict (i.e. instantaneous) axisymmetric turbulence [44, 45, 46, 47, 48, 49]. In this
geometrical configuration there is an invariance along an angular coordinate. In the
(r, θ, z) coordinate system this means that ∂θ = 0. Examples of axisymmetric geometry
are torii and cylinders (Fig 2.7).

From now we introduce the poloidal velocity uP = urer + uzez and the toroidal
velocity uT = uθeθ. With the property ∂

∂θ
= 0, equations (2.12)-(2.14) become



∂ur
∂t

+ (uP · ∇P )ur − u2
θ

r
= −∂P

∂r
+ νLur + Fr

∂uθ
∂t

+ (uP · ∇P )uθ + uθur
r

= νLuθ + Fθ

∂uz
∂t

+ (uP · ∇P )uz = −∂P

∂z
+ ν∆Puz + Fz

(2.75)

7

h⊥ = uz
∂ux

∂y
− uz

∂uy

∂x
h∥ = −ux

∂uz

∂y
+ uy

∂uz

∂x
=⇒ h∥ − h⊥ = −∂(uxuy)

∂y
+ ∂(uzuy)

∂x
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Figure 2.7: Examples of axisymmetric geometries: cylinder and torus. The invariance for
our definition of axisymmetric flow is along the toroidal direction.

with
uP · ∇P = ur

∂

∂r
+ uz

∂

∂z

∆P = ∂2

∂r2 + 1
r

∂

∂r
+ ∂2

∂z2

L = ∆P − 1
r2

The third velocity component is still only advected by the poloidal flow as in the
Cartesian case, but the Coriolis terms −u2

θ/r and uθur/r induce a coupling of the toroidal
velocity and the poloidal dynamics.

The toroidal component can be considered as an active scalar. The 2D3C flow is
thereby definitely an intermediate state between 2D and 3D flows, since even if an
invariance along the toroidal direction remains, the poloidal flow can be influence by
toroidal effects. The total kinetic energy is conserved but its two components can exchange
their energy through the influence of the Coriolis terms. However it can be shown by a
change of variables [44] that without a toroidal flow the 2D3C flow is equivalent to a
Cartesian 2D2C flow.

A stream function can again be defined,

ur = −∂ψ

∂z
uz = 1

r

∂rψ

∂r
, (2.76)

with Lψ = −ωθ and vorticity

ω = −∂uθ
∂z

er +
(
∂ur
∂z

− ∂uz
∂r

)
eθ + 1

r

∂ruθ
∂r

ez.

The toroidal vorticity component ωθ obeys the equation

∂ωθ
∂t

+ (u · ∇P )ωθ = ωθur
r

+ 1
r

∂u2
θ

∂z
+ νLωθ. (2.77)
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A new bracket can be introduced:

[f, g] =
(
∂f

∂r
+ f

r

)
∂g

∂z
− ∂f

∂z

∂g

∂r
. (2.78)

The dynamics of the 3D flow can be reduced to a system of two equations from (2.77) by
using relations between ψ, ωθ and uP .

∂ψ

∂t
= νLψ + L−1

(
[ψ,−Lψ] − Lψ

r

(
∂ψ

∂z

)
− 1
r

∂u2
θ

∂z

)

∂uθ
∂t

+ [ψ, uθ] = νLuθ + uθ
r

∂ψ

∂z
.

(2.79)

The details of this kind of flow are studied in Chap. 5 and 6.

2.5.4 Transitions between turbulent states
Whereas the transition from laminar to turbulent flow is a specific research domain with
its own approaches, the transition between different turbulent states is less well-defined as
a specialty. Nevertheless, over the last 20 years a significant amount of investigations have
addressed such transitions. The most well-studied one is probably the transition from 2D
to 3D turbulence. Starting from the pioneering study by Lesieur and Frisch [50], several
studies have investigated this transition, where the energy cascade flips from inverse to
forward, when the flow becomes progressively more three-dimensional.

In particular direct-numerical simulations have investigated this transition in thin fluid
layers in periodic domains [51, 52, 53] and experiments have also illustrated this [54]. A
recent review article gives a rather exhaustive survey of the literature [55].

Transition from 2D flow to axisymmetric turbulence was only recently studied [49, 56].
It is this kind of transitions which will be at the heart of the present PhD project. Indeed,
after introducing numerical tools in the following section, chapter 4 will investigate the
properties and specificities of 2D and 2D3C flows. Transitions between these flows will
be investigated in Chapters 5, 6 and 7.
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3 Numerical tools

In this part we introduce the numerical tools used for the different studies performed
during this thesis.

3.1 Direct numerical simulations of turbulence

3.1.1 Choice of a numerical simulation method
In fluid mechanics, a wide range of tools exist, all more or less adapted to the different
existing flow-types. Indeed, depending on the fluid type, the compressibility, the geometry
or the body forces, different methods can be adopted. In the study of turbulence, even
before discussing the numerical method, one needs to define a level of modeling. If
every detail of a flow is simulated at every time instant, one speaks of direct numerical
simulation. In practice, however, all methods discretize space and time in some way,
so that at sufficiently fine scales and times the method only approximates reality. In
turbulent flows, as we introduced in Sec. 2.4 the Kolmogorov scale represents the smallest
dynamically active scale. If the discretization is sufficiently fine in space and time to
resolve these scales and the smallest relevant time-scales, one classifies a simulation as a
direct numerical simulation.

However, in three-dimensional high Reynolds number turbulence it is often challenging
to resolve the full dynamics, from a numerical point of view. If one only needs the average
behavior of a flow, modeling is often introduced. In turbulence, the most general approach
to model a flow is the Reynolds Averaged Navier-Stokes (RANS) modeling approach.
The RANS method uses the Reynolds decomposition to split physical fields f(x, t) into
averaged parts f(x) and fluctuating part f ′(x, t). The RANS equations are derived from
the averaged NS equation with f ′(x, t) = 0. The essential difficulty of this method is
the closure of the resulting equation through the modeling of a term named Reynolds
stress which represents the contribution of the turbulent fluctuations on the mean-field.
The complexity of this modeling dictates the speed and the accuracy of the simulation,
ranging from models suitable for engineering approaches such as the k − ϵ model [57] to
sophisticated closure approaches such as the EDQNM model [58].

In the last decades, numerical power has increased so rapidly that more and more
flows can be simulated using direct numerical simulations, or using hybrid approaches
such as large eddy simulation, where a part of the scales of the flow is computed using
direct numerical simulation, while the remaining scales are modeled.

If new phenomena are investigated and the detailed behavior of a flow is not known,
and sufficient numerical resources are available, it is often, rather than using models, safer
to carry out direct numerical simulations. Such simulations can be considered numerical
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experiments, if one has sufficient certainty about the governing equations. Eventually
the choice of a method is often a compromise between the computational cost and the
desired accuracy. For this study we need to understand the behaviour of the turbulence
at all scales, particularly energy transfers between different scales. We have no detailed
understanding yet, since the system is relatively novel and part of its dynamics unknown.
This means that we cannot model it with sufficient certainty, even though first modeling
approaches have recently been developed [56]. We therefore use DNS methods.

Once it is decided that we carry out numerical experiments using direct numerical
simulations, one needs to think about the numerical implementation of the method.
Various formulations are available, depending on the spatial and temporal discretization,
modal projection, treatment of boundary conditions and time-stepping.

Two types of methods have been used for this work: the pseudo-spectral approach, a
variant of spectral methods, and a spectral element method, a variant of the finite element
method, borrowing properties from spectral methods.

3.1.2 Common features
Spectral methods and finite element methods are two ways to implement DNS methods.
They share several characteristics.

Discretization Both methods attempt to determine approximate solution of a system
of differential equations. For a physical field u(x, t), an approximate solution function
ũ(x, t) can be constructed with a projection on a set of N functions ϕi(x) named trial
functions such that:

ũ(x, t) =
N∑
1
ũi(t)ϕi(x) (3.1)

where ũi is called the expansion coefficient. The trial basis functions do not necessarily
satisfy the boundary conditions of the differential equations. We will see later that the
choice of the trial functions is the main difference between spectral methods and finite
element methods, and that it is the main characteristic of the SEM. The dimension N of
the basis determines the resolution of the numerical simulation.

Weighted residuals method Finite element methods and spectral methods are both
weighted residuals methods. Indeed since ũ is only an approximation of u, it cannot be a
solution of the differential equation (which admits an unique solution u). If we consider
the Navier-Stokes equation on a spatial domain Ω,

∂u

∂t
+ u · ∇u = −∇P + ν∆u + f , (3.2)

then we can define
L(u) = ∂u

∂t
+ u · ∇u + ∇P − ν∆u − f (3.3)

with L containing all the possible spatial and temporal operators applied on u and other
fields.

Ideally, L(u) = 0, but since ũ is only an approximation, L(ũ) is not exactly null. The
quantity L(ũ) is called the residual and the goal of the numerical method is, using the
weighted residuals methods, to find ũ which minimizes the residual.
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The purpose of a weighted residual method is the transformation of the differential
equation in a weak formulation by using a test (or weight) function w such that∫

Ω
L(u(x, t)w(x)dΩ = 0. (3.4)

This expression is also called the variational form, which means that we have to minimize
the quantity

∫
Ω
L(ũ(x, t))w(x)dΩ. In practice the residual is projected on basis functions

wi such that ∀i,
∫

Ω
L(ũ(x, t))wi(x)dΩ must be minimal.

3.2 Pseudo-spectral method

3.2.1 Spectral methods
Spectral methods are characterized by the decomposition of the solution function on a
basis of high-order polynomials or Fourier series. It is a global decomposition, which
means that the polynomials are non-trivial and regular on the whole domain.

There are different types of spectral methods such as Tau, Galerkin and collocation
methods. The last one is sometimes called pseudo-spectral method in fluid mechanics,
but for the present study the name pseudo-spectral method will be designated to indicate
another technique which will be described later.

We will concentrate on Galerkin methods which allows the orthogonality of the
projection. It also means that the trial functions must satisfy boundaries condition,
which is the main difference with the Tau approach. At the end a system must be solved
to obtain the expansion coefficients ũi(t).

3.2.2 Decomposition on a Fourier basis using the Galerkin method
A convenient decomposition uses a Fourier basis of trial functions ϕk defined by ϕk(x) =
eikx. The drawback is that the domain must be chosen so that the basis satisfies the
boundary conditions. For a 2D geometry a domain [0 : 2π] × [0 : 2π] with the base
(er, ez) will be chosen in the present work. A stream function ψ and azimuthal velocity
uθ can be approximated by ψ̃ and ũθ. These approximation functions can be expanded
on the truncated Fourier basis as follows,

ψ̃(t,x) =
∑
k

ψ̂k(t)eik.x ũθ(t,x) =
∑
k

ûθk(t)eik.x,

with k = krar + kzaz in Fourier space.

3.2.3 Solving differential equation using pseudo-spectral methods
Once the equations are projected on the Fourier basis, one can write equations for the
Fourier coefficients. For the 2D3C equations this yields, for instance,

∂ûθ
∂t

= νL̂ûθ + ûθ
R

∂ψ

∂z
− [̂ψ, uθ] (3.5)
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and
∂ψ̂

∂t
= νL̂ψ̂ + L̂−1

 ̂[ψ,−Lψ] − 1̂
R

∂u2
θ

∂z
− L̂ψ

R

∂ψ

∂z

 . (3.6)

In these equations all terms containing products of fields become convolutions between
the Fourier transforms,

L̂ψ
R

∂ψ

∂z
= L̂ψ

R
∗ ∂̂ψ
∂z

(3.7)

where the convolution product is indicated by ∗. The computation of such a convolution
requires N2 operations, which will make simulations prohibitively expensive when
thousands or even millions of modes are used, as needed to represent fully developed
turbulence.

At this moment intervenes the pseudo-spectral method. Instead of staying in the
Fourier (spectral) space, non-linear terms are computed in physical space. For that
purpose discrete Fourier transforms are used. More importantly the development of Fast
Fourier Transform algorithms has made this procedure very competitive for large numbers
of modes, where purely spectral methods become practically impossible to use.

Let us define vectors xmn = rmer + znez such that

rm = 2πm
N

zn = 2πn
N

(m,n) ∈ [−N/2, N/2 − 1] (3.8)

Then the discrete Fourier coefficient ψ̃k is defined by

ψ̃k(t) = 1
N2

∑
m,n

ψ(xmn, t)e−ik·xmn with ψ(xmn, t) =
∑
kr,kz

ψ̃k(t)eik·xmn (3.9)

For instance, in Eq. 3.7, L̂ψ/R = L̂ψ̂/R and ∂̂z(∂ψ) can be conveniently computed
in Fourier space. Inverse transforms are used to get Lψ/R and ∂ψ/∂z. Conversely, the
product is computed in physical space to avoid the need for a convolution product. Finally
discrete Fourier coefficients ˜LψR−1∂zψ

∣∣∣∣
k

are computed by the discrete Fourier transform.
This, pseudo-spectral method is less expensive (N log(N) operations instead of N2).

However, it introduces an aliasing effect. Indeed

L̃ψ
R

∂ψ

∂z

∣∣∣∣∣∣
k

= L̂ψ
R

∂ψ

∂z

∣∣∣∣∣∣
k

+ AN(u) (3.10)

Where the aliasing contribution AN(u) is resulting from the product term. A method
must be applied to avoid errors in the simulations. The most radical (but not necessarily
most optimized) method is to cut-off the Fourier modes generated by the product. This
so-called two-thirds approach is the one used in the present study.

It can be noticed that the use of the discrete Fourier expansion for the pseudospectral
method leads to a discretization of the NS equation very similar to the expression obtained
with the collocation method (vectors of discretization xmn can be seen as collocation
vectors. For this reason the collocation method is often called pseudo-spectral method
when the solution is approximated by a Fourier-series.
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3.2.4 GHOST code
GHOST (for Geophysical High-Order Suite for Turbulence [59]) is a pseudo-spectral
method code (in the meaning of collocation method) mostly written in Fortran90 and C.
It can solve equations in 2D and 3D for different physical issues like compressible flows,
MHD flows, plasmas, passive scalar... It uses a a hybrid parallelization method combining
MPI and OpenMP for the 3D version of the code, but for our 2D case it will be only a
MPI parallelization. Fourier transformations use the FFTW library. Visualizations have
been performed with Python scripts.

Time is discretized using a 2nd-order explicit Runge-Kutta scheme. As discussed in
the previous section, aliasing must be removed. GHOST uses the 2/3 de-aliasing: all
modes above a maximum value kmax = N/3 (N/3 = 2/3 × N/2) are set to zero in the
Runge-kutta algorithm, which means that

∀k > kmax ψ̂k(t) = 0 ûθk(t) = 0 (3.11)

For this reason, for a Nth-order Fourier expansion, Fourier spectra will be limited by
kmax.

Routines for 2D geometry with passive scalar were already implemented in GHOST.
It solves stream function and scalar equations. Global quantities are directly computed
in Fourier space. For the study of the axisymmetric case, the GHOST routines have been
modified by adding coupling terms from the Coriolis effect in the Runge Kutta routine.

Furthermore, for both the 2D3C and axisymmetric cases (Chaps. 4 and 5), the
diffusion-convection equation is turned into an equation for the third velocity component.
It has been verified that results in "flat" space can be obtained by pushing the curvature
radius R −→ ∞.

3.2.5 The inhouse LMFA code
Chronologically, the results in the last Chapter of this thesis, Chap. 7, were obtained
first. That study could have been carried out with GHOST. However, we used the three-
dimensional pseudo-spectral code of the Turbulence and Instability team [60] to carry out
that study. We will not give the details, since the priniciple characteristics are common
with GHOST. The main differences are that not the equation for the stream-function is
used, but the equations for the three velocity components are directily discretized.

3.3 Spectral element methods

3.3.1 Finite element method
The finite element method differs from the pseudo-spectral method by the fact that it
is a local method. It means that for a solution function of an equation, the goal of this
method is not to obtain the global approximation of the function like for the pseudo
spectral method, but rather to get an approximated solution function at several points
of the domain. The method needs the creation of a mesh on the domain with different
subdomains named finite elements. At each node of this mesh, the solution function can
be obtained and then interpolated on the element.
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The particularity of the finite element approach is that trial functions fi are non-trivial
only on a subdomain Ωi of the global domain. In contrary, for the pseudo-spectral method
the decomposition uses non-trivial function on the whole domain. It explains the better
adaptability of finite elements to account for complex geometry. Usually for the finite
element methods, trial functions are piecewise low-order polynomials. Each subdomain
is called "element". If N is the number of elements in the domain then the approximated
solution ũ is defined on each element i by ũi:

ũ =
N∑
1
ũifi (3.12)

The simulation resolution is NdE with N degree of basis polynomials, d the geometry
dimension (in our case d = 2) and E is the number of elements.

3.3.2 Nek5000 code: a spectral element code
The purpose of spectral element methods [61] is to combine the advantages of both spectral
methods and finite elements. In this method, weight functions used for the interpolation of
the solution are higher-order polynomials with global continuity (for instance Chebyshev
polynomials in the original formulation [61]). This allows a better approximation of
the function over the element compared to interpolations based on low order piece-wise
polynomial basis function, since resolution increases quadratic in 2D geometry. This
higher complexity of basis functions imposes more simple shapes for the elements of the
mesh, rectangular or hexahedral.

Finite element methods are easier to implement, more particularly for complex
geometry and need less calculation time for the integration, whereas spectral element
methods are more accurate more particularly for fast variations which can be generated
by turbulence in fluids. Spectral elements appear to be a good compromise between
the accuracy of pseudo-spectral methods and the geometrical flexibility of finite element
methods.

Nek5000 [62] is an open-source spectral element code developped in 1990 from Nekton
2.0 code and written in Fortran77 and C. It uses MPI for parallelization. Visualizations
of the flow have been made with ViSit [63]. NEK allows to compute a wide range of fluid
flows: compressible flows, heat transfer, MHD, combustion, particle dispersion, moving
walls...

By default in 2D geometry Nek5000 solves the Navier-Stokes equations for both
velocity components, and a scalar advection diffusion equation. The file .usr allows the
addition of external forces. It was used to add Coriolis terms as external forces. As
with GHOST it results in transforming the heat equation into an equation for the third
velocity component. Additional advection-diffusion equations can be added for the study
of mixing.

As a high order spectral element code it uses high order polynomials as basis functions.
Trial basis functions are Lagrange interpolating polynomials Li. Interpolating nodes are
Gauss-Lobato-Legendre nodes, more particularly in our multidimensional case tensor-
product polynomials.

The PnPn-2 method is used, meaning that that if a nth-order trial polynomial basis is
chosen for the decomposition of velocity, the pressure is projected on a polynomial basis
of order n−2. Moreover the trial basis functions for the decomposition of the pressure are
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Lagrange polynomials interpolating Gauss-Legendre nodes. Time discretization uses the
kth order Backward Difference Formula (BDFk). For the pressure equation the method
is an extrapolation of order k (EXTk).

The dealiasing approach is a kind of two-third truncation rule, slightly different from
that used by GHOST. Instead of an Nth-order expansion, the terms to which an inverse
discrete Fourier transform must be applied to calculate the convolution product are
expanded in a 3N/2 discrete Fourier series. However expansion coefficients above N/2
are set to zero.

3.4 Summary of methods used
In the remainder of this thesis, three different numerical codes are used.

• In the next 2 chapters, Chaps. 4 and 5 two-dimensional pseudo-spectral simulations
are carried out on a double-periodic domain, using GHOST.

• Then, in Chap. 6, since non-trivial (toroidal) geometry is considered with no-slip
boundary conditions, the spectral element code NEK5000 is used.

• In the last part, where again, periodic boundary conditions are used, this time in
three-dimensional flow, we use the house-code of the LMFA.
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4 Cartesian Two-dimensional three-
component turbulence

In this chapter1 we focus on two-dimensional flow with two or three velocity components.
We consider the Cartesian case, where the third component is perpendicular to the plane
of the 2D flow. There is no curvature involved. We first focus on Galerkin truncated
systems of 2D and 2D3C flows. In the 2D2C flows we encounter a surprising discrepancy
between theory and observations, which we attempt to explain.

Subsequently it is illustrated that in 2D3C flows the helicity plays an important role in
the determination of the statistical equilibrium, suggesting that it might also importantly
affect the dynamics. This is illustrated in the last part of this chapter where the role of
helicity in 2D3C flows and 2D mixing of a passive scalar is explored.

4.1 Equilibrium statistical mechanics
An impressive feature of two-dimensional turbulence is its tendency to self-organize,
forming large scale structures. Some examples were given in the previous chapter. An
understanding of this tendency was given by Onsager in 1949 [64], who suggested to
apply statistical mechanics to a point-vortex system. Such a structure-based statistical
mechanics was further explored by Joyce and Montgomery [65, 66] and more recently by
the works of Miller [67], Robert and Sommeria [68]. A concise review can be found in the
article of Eyink and Sreenivasan [69], and more comprehensive reviews are [70] and [71].

The point-vortex and coarse grained vorticity statistical mechanics are approaches
based on the observation that enstrophy, and small vorticity patches in general, are
advected conservatively in the two-dimensional Euler equations. An alternative statistical
approach in turbulence consists in considering, instead of vorticity patches in physical
space, the dynamics of modes, after a convenient decomposition. The most common
decomposition in turbulence research is the Fourier-decomposition, as discussed in
Sec. 2.4. Once a flow-field is decomposed on a large, but finite number of modes, the
statistically most probable state can be determined by statistical mechanics, once physical
constraints, such as energy conservation, are taken into account.

For three dimensional Euler-turbulence, statistical mechanics on a truncated set of
Fourier-modes yields, if the only constraint of the system is energy conservation, an
equipartition of energy between all the modes. This means that, statistically, every
Fourier mode contains the same amount of energy. This results was first obtained by
Lee in 1951 [72]. The definition of the kinetic energy spectrum (see Sec. 2.4) yields then

1For this chapter we acknowledge a collaboration with Tong Wu and Xi-Yuan (Bruce) Yin.
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that
E3D(k) = 8πk2

α
, (4.1)

with α a constant. The subscript 3D will be used only when the dynamics are three-
dimensional and the subscripts will be omitted for 2D and 2D3C cases, which are the
main subject of this chapter. Kraichnan modified this statistical mechanics after the
discovery of another constraint on 3D Euler-turbulence: helicity conservation, leading to,

E3D(k) = 8παk2

α2 − β2k2 . (4.2)

From this expression, which modifies only the largest wavenumber behavior of the
equilibrium, Kraichnan inferred that helicity should not tremendously influence the
dynamics of three-dimensional flow. This assumption turned out to be valid in most
non-pathological cases (see however some extreme cases [73] with very strong imposed
helicity, or turbulence where vortex-stretching has been removed artificially [74]).

After this short digression on three-dimensional turbulence, let us come back to two-
dimensional three-component turbulence, the main subject of this chapter. Since the third
velocity component is passively advected by the 2D2C flow, it is of interest to discuss
the pure two-dimensional flow first. In his seminal paper on two-dimensional turbulence,
Kraichnan [7] not only carried out the statistical mechanics of two-dimensional turbulence,
but he also inferred from the results that two-dimensional flows should show a tendency
to transfer the two conserved quantities (energy and enstrophy) in opposite directions.
From the statistical mechanics prediction of the kinetic energy spectrum,

E(k) = 2πk
α + βk2 , (4.3)

he inferred that, to approach this equilibrium, enstrophy should be dominantly transferred
to large k, while energy should then "cascade" in the inverse direction. This double-
cascade picture of two-dimensional turbulence has since this investigation been the corner-
stone of the description of two-dimensional turbulence. This illustrates the importance of
statistical mechanics applied to turbulent flows.

The prediction (4.3) was verified in early simulations of the two-dimensional Euler
equations. Indeed, the development of pseudo-spectral methods in the 1970s allowed to
solve non-dissipative simulations of truncated Euler dynamics. It was shown by [75, 76]
that the theory of Kraichnan roughly predicts the correct energy spectrum (4.3) of the
equilibrium state. It was however observed that "substantial deviations from equilibrium
are present at low wavenumbers. These are probably explained by the long dynamical time
scale of large scale turbulent eddies, so that continuing the calculation to much longer
times may give relaxation"[75]. However more recent numerical investigations showed
that these deviations persist even at very long times, and no hint of relaxation is observed
[77, 78]. In particular, when the ratio of energy to enstrophy is large, some discrepancy
is observed in the larger Fourier modes. We will come back to this in Sec. 4.2.4.

The third velocity component uz, which is advected as a passive scalar allows also
a description by statistical mechanics. The outcome is that the variance (or vertical
energy) is, as in 3D turbulence without helicity, equally distributed over all available
Fourier modes. There is however an additional invariant in the system, which is the
vertical helicity, determined by the integral correlation of vertical vorticity and velocity.
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This second invariant modifies the equilibrium distribution but has, in the context of two-
dimensional turbulence, received only very little attention. Only in references [79, 80, 81]
interest was paid to the influence of the vorticity-scalar correlation on two-dimensional
scalar mixing. We will assess the statistical mechanics of this quantity in 4.3.

Then to conclude this chapter, we will investigate how this invariant influences the
mixing of a passive scalar in two-dimensional Navier-Stokes turbulence in 4.4, when
viscosity and diffusion are present in the system.

4.2 Equilibrium statistical mechanics for two-dimensional
turbulence

In this section we consider the case of two-dimensional Euler turbulence, restricted to a
finite number of Fourier modes. The dynamics of this system are given by

∂u

∂t
+ u · ∇u = −∇P (4.4)

with ∇ · u = 0. The velocity is u(x, y, t) and the gradient acts in the plane ∇ = (∂x, ∂y).
After projecting on a Fourier base, only modes restricted to the interval k ∈ [kmin, kmax]
are retained. Eq. (4.4) does not contain any forcing or friction and conserves thereby
energy,

E =
∫ 1

2 |u|2(x) dx. (4.5)

Furthermore, as discussed in Chap. 2, enstrophy

W =
∫
ω2(x)dx (4.6)

is another invariant of the system. In these expressions ω = ∇ × u = ωez. The integral
balance is thus

dE

dt
= dW

dt
= 0. (4.7)

4.2.1 Predictions
In the appendix of this thesis we illustrate how equilibrium energy spectra can be obtained.
For the energy spectrum of two-dimensional turbulence the prediction is (as mentioned
in the introduction of this chapter),

E(k) = 2πk
α + βk2 (4.8)

Once the initial values of the kinetic energy and the enstrophy are fixed, for a given
wave number interval, α and β are fixed. This allows us to determine predictions for
other integral quantities, such as the palinstrophy and the mean-square stream-function.
Indeed, these quantities are not invariant, but since their values are determined by the
energy spectrum, they should tend to a constant value if the energy spectrum tends to
its equilibrium shape.
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Figure 4.1: Time evolution of the energy spectrum for W/E = 28.4 at t=0, 6, 10, 40, 100,
200, 300 and 500. The analytical prediction is also shown.

For instance, palinstrophy B is defined as

B =
∫

|∇ × ω|2 dx =
∫

|∇ × ∇ × u|2 dx (4.9)

and since the flow is incompressible, ∇ · u = 0 and :

B =
∫

| − ∆u|2 dx (4.10)

and by using 4.3 we have

B =
∫ kmax

kmin

k4E(k) dk

=
∫ kmax

kmin

2πk5

α + βk2 dk (4.11)

= 2π
[
α2

2β3 ln
(
α + βk2

max

α + β

)
− α(k2

max − 1)
2β2 + k4

max − 1
4β

]

For the mean-square stream-function
∫
ψ2dx, a similar expression can be derived, since

its value is determined by the integral of k−2E(k).

4.2.2 Numerical results at low resolution
Numerical simulations are performed with the parallel pseudospectral code GHOST [59]
(see Chap. 3). Equations for stream function are solved in a 2π-periodic square box with
a resolution N = 1282 for this first part of the investigation. The 2/3 method has been
used, therefore the cut-off of the spectra is kmax = 42. The initial condition is given by
the Gaussian spectrum

E(k) = Cke
−(k−k0)2/2σ2 (4.12)
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Figure 4.2: Time evolution of (a) inviscid integral invariants, energy and enstrophy, (b)
palinstrophy. The final value of the latter fits correctly with the predicted value.

with k0 = 4, σ = 2 and Ck is a chosen so that
∫ kmax

1
E(k) dk ≡ E = 1, where all

Fourier-phases are chosen randomly so that the initial conditions is structureless.
In Fig. 4.1 we show the evolution of the kinetic energy spectrum for a given initial

condition towards its equilibrium shape. It is observed that the long-time shape of the
spectrum is close to the prediction. An interesting feature is that at the energy spectrum
rapidly evolves for k ≈ 1 even though in principle these scales have the slowest dynamics.
This might be related to the ideas of Fox and Davidson [78], who suggested that in
2D Euler turbulence the transients should be governed by integral constraints which
determine the wave number dependence for k going to zero.

To conclude, at these resolutions, we observe that the energy distributions tend to
the equilibrium spectra predicted using statistical mechanics. This is a rather well known
result. How this agreement deteriorates for large wavenumber domains is less well-known
and will be discussed now.

4.2.3 Numerical results at large resolution
We use the same numerical setup but with a higher resolution 5122. The initial energy
spectrum is still given by the Gaussian function Eq. (4.12), but different mean wave
numbers k0 are chosen. This corresponds, on the level of the invariants to a modification
of the ratio W/E of the flow.

To relate this latter ratio to a physical quantity, we introduce the characteristic
wavelength

kc =
√
W/E. (4.13)

The energy is maintained at the same value, here E = 1, for all simulations. We modify
therefore kc by changing W .

Figure 4.3 shows that the shape of the final kinetic energy spectrum is, as expected,
dependent on the ratio W/E. Indeed, modifying this ratio changes the ratio of related
Lagrangian multipliers α/β. For small values of α/β, E(k) has an asymptotic dependence
2π/βk at small scales. On the contrary if α/β is large, the asymptotic prediction for the
energy spectrum is E(k) ≈ 2πk/α at large scales.
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Figure 4.3: Equilibrium energy spectrum for different values of kc/kmax for Gaussian initial
distribution.
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(a) (b)

Figure 4.4: Vorticity field for k ∈ [1 : 170], and (a) kc/kmax = 0.11 , (b) kc/kmax = 0.88.

An interesting result is the deviation to the theory for small wave numbers. This
deviation is stronger for small kc/kmax (i.e. small initial mean wavenumber k0),
particularly for kc/kmax = 0.11. For other cases there is less energy in small wave
numbers relatively to the total kinetic energy, so the deviation is not important for large
initial kc/kmax. This deviation was observed in the past [75, 78, 77], as mentioned in the
introduction, but no satisfactory explanation is known. In Fig. 4.4, we show a visualization
of the vorticity field, corresponding to the flow with the largest deviation from theory,
(kc/kmax) = 0.11. It is observed that, apart from noise, a large-scale condensate is
observed.

4.2.4 Coexistence of noise and structures
The presence of a condensate hints on the presence of phase-correlations. This suggests
that the different Fourier-modes are not statistically independent, which might violate
the assumption of ergodicity with respect to the statistics of the Fourier modes. Indeed,
this assumption is behind the derivation of the equilibrium energy spectra. We have at
this point no rigorous explanation, but, nevertheless, we have a suggestive description of
the phenomenology. Indeed, as we discussed in the introduction, the work of Onsager,
followed by Joyce, Montgomery, Miller, Roberts and Sommeria, proposed a different type
of statistical mechanics, not based on Fourier modes, but describing the dynamics of
point-vortices, or, in the later works, by coarse-grained vorticity. An outcome of these
statistical mechanics approaches was the derivation, in equilibrium, of a function relation
between vorticity and stream-function,

ω = F (ψ), (4.14)

indeed, if for every point in the flow such a relation exists, the nonlinearity vanishes, so
that one obtains a steady solution of the Euler equation. In Fig. 4.5, we show a scatter-
plot of ψ versus ω for a given time-instant. Clearly, the noisy cloud of points does not
fall on a single functional relation. Nevertheless, if the scatterplots are averaged in time
for many realizations, a clear functional relation, not very different from a hyperbolic sine

47



(a) (b)

Figure 4.5: (a) Scatter-plot of the vorticity against the stream-function for a given time-
instant. Every dot corresponds to a point (x, y) of the flow-field, where both the vorticity
and the stream-function are evaluated. The thick red line is a temporal average over many
scatter-plots, averaging all possible vorticity values for small bins of the stream-function.
(b) Decomposition of the energy spectrum E(k) into a condensate part and a noise part.
The noise part is closely described by the theoretical prediction.

is observed. We call this function F , and we assume that this function characterizes the
condensate.

We now compute, for a given time t for every point in space an estimate for the
vorticity of the condensate

ω(x, y, t) = F [ψ(x, y, t)] (4.15)

Subtracting now this "coherent" vorticity from the total vorticity,

ω′(x, y, t) = ω(x, y, t) − ω(x, y, t), (4.16)

we should get an estimate for the remaining noise. We illustrate in Fig. 4.6, that
this decomposition, at least visually, allows to clearly separate the condensate from the
underlying noise.

An interesting feature is now that, if we compute the energy and the enstrophy of
the noise-part of the flow and compute the associated Kraichnan spectrum, the analytical
prediction very closely predicts the simulated results (Fig. 4.5)(b).

The interesting feature of our approach is that we do not assume any particular shape
of the condensate or any particular coloring of the noise. The only assumption is that
there exists a function ψ = F (ω), which characterizes the condensate, without any other
constraints on the type of function.

We can conclude this section by saying that even though we have no rigorous results
explaining the shape of the spectrum, we show that we can understand the dynamics as a
coexistence of a condensate and noise, where the condensate is described by "point-vortex"
statistical mechanics, whereas the noise satisfies an energy distribution, consistent with
equilibrium statistical mechanics applied to Fourier modes.

48



Figure 4.6: Decomposition of the flow-field into a condensate and the underlying noise

4.3 Equilibria for 2D3C flows: the influence of helicity
Now that we have explored the parameter-space for two-dimensional two-component flow,
let us add the third component. We propose to investigate a statistically homogeneous and
isotropic incompressible turbulent flow with a three component velocity field, invariant
along the z–direction and without curvature. This means that the third component uz
is always perpendicular to the plane formed by the other two components (x, y). The
velocity u = uz + u⊥ is divided in two components, the part aligned with the z-direction
uz, and the velocity in the (x, y) plane, perpendicular to the z–axis. The specificity
compared to everyday 3D turbulence is that we have ∂z = 0 for all components of the
flow.

The equations we consider are then
∂u⊥

∂t
+ u⊥ · ∇u⊥ = −∇P (4.17)

∂uz
∂t

+ u⊥ · ∇uz = 0 (4.18)

with ∇ = (∂x, ∂y) and ∇ · u⊥ = 0. It can thus be seen in Eq. (4.17), that the planar
velocity is only advected by itself and independent from the vertical velocity: it is fully
two dimensional and is identical to the system in the first part of this chapter. The
vertical velocity equation is governed by an advection-equation and can be considered as
a passive scalar.

The individual dynamics of Eq. (4.17) has been considered in the foregoing. In the
present section we will therefore focus on the dynamics and statistics of uz(x, y, t). The
first questions is then: what are the invariants associated with Eq. (4.18)? The first,
perhaps most obvious, conserved quantity is the variance of uz, indeed, as mentioned in
Sec. 2.3.3, the variance of a passive scalar,

S =
∫
R3
u2
z dV, (4.19)

is an inviscid invariant. There is however another invariant which can play a role in the
dynamics of uz, which is associated with the planar velocity. This invariant is the helicity,
which we already introduced in Sec. 2.3.4.
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Figure 4.7: Time evolution of the invariants S and H.

In the present set-up, helicity can be divided in two parts, H⊥ and H∥,

H⊥ =
∫
R3

u⊥ · ω⊥ dx =
∫ (

−∂uz
∂y

ux + ∂uz
∂x

uy

)
dx (4.20)

Hz =
∫
R3
uzωz dx =

∫
uz

(
∂ux
∂y

− ∂uy
∂x

)
dx. (4.21)

How helical a flow is can be quantified using the relative helicity Hrel

Hrel = H√
SW⊥

(4.22)

with
W⊥ =

∫
R3
ω2
z(x)dx, (4.23)

representing the vertical enstrophy, related to the horizontal velocity field u⊥ so that
∇ × u⊥ = ezωz.

We recall that the other invariants of 2D3C flows are the horizontal energy E, and
related enstrophy W⊥. Since for a 2D3C flow H∥ = H⊥ = 1

2H, the total number of
independent invariants is therefore 4. Time evolution of the vertical energy and the
helicity are shown in figure 4.7 for Hrel = 0.61. Vertical energy and helicity are conserved
during the simulation, as expected.

In the appendix, it is shown how to derive equilibrium spectra for two-dimensional
Euler and 2D3C flows. The energy spectrum associated with the planar dynamics remains
unchanged,

E(k) = 2πk
α + β′k2 (4.24)

and the enstrophy spectrum is obtained from the relation W (k) = k2E(k). The novel
quantities, associated with the vertical velocity are

S(k) = 2πk
γ

α + βk2

α + β′k2 . (4.25)

With β′ = β − δ2/γ.
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Obviously, since the 2D dynamics are independent on the presence or absence of the
passive scalar, β′ should have the same value as β when γ = δ = 0. However, the relation
for β′ indicates how the values of γ and δ are interconnected with the value for β for
the dynamics of the scalar.2 The parameter δ is associated with the helicity and in the
helicity-free case, this parameter is equal to zero. We obtain then β′ = β and

S(k) = 2πk
γ

(4.26)

for the helicity-free equilibrium distribution of vertical energy. This linear relation reflects
an equi-partition of the energy over the modes with S(k) = 1

γ
. The helicity spectrum is

H(k) = 2πk
γ

δk2

α + β′k2 (4.27)

and it can be noticed that H(k) = δ

γ
k2E(k) = δ

γ
W (k), and the helicity spectrum is

proportional to the enstrophy spectrum. In order to obtain the value of the Lagrange
multipliers, we need to solve a system of 4 equations. For that the value of the 4 inviscid
invariants can be used:

Y =
∫ kmax

kmin

Y (k, α, β, γ, δ)dk.

This allows to determine, for a given initial condition, quantitative predictions for the
equilibrium spectra.

In figure 4.9 we show final spectra of the four invariant global quantities of the 2D3C
inviscid flow. Obviously, numerical simulations confirm the independence of the horizontal
velocity field from the helicity, and the spectrum E(k) for the different runs are therefore
statistically equivalent realizations of the same flow. Indeed, the spectra are, as in the
first part of this chapter, characterized by the expected k−1 slope at large wave numbers.
It seems that there some deviations at small scales, but these are not as dramatical as in
Sec. 4.2.4, since we consider again relatively low resolutions.

The most interesting observation for the following is that the vertical kinetic energy
spectra are dependent on helicity. This dependence is most important at large scales,
more particularly for k = 1. For larger wavenumbers, equipartition of the vertical energy
seems verified, as all spectra are proportional to k for larger wavenumbers.

In figure 4.8 we show a visualisation of the uz field for both a non-helical flow and a
fully-helical flow. They are very similar with no obvious difference between them despite
the different energy spectra. This is somewhat expected, since, even though the first
wavenumber contains more energy in the fully-helical flow than in the non-helical flow,
the peak at k = 1 contains only 3% of the vertical kinetic energy. However, this does by
no means indicate that we can neglect this difference.

Indeed, the fact that vertical kinetic energy modifies the large-scale properties of the
spectra is an indication that helicity might be a persistent quantity in 2D3C flows. Indeed,
equilibrium spectra give often an indication of cascade directions, as was illustrated by
Kraichnan [7], and very recently for the case of 3D turbulence without vortex stretching

2Another way to proceed is to consider first independently the case with γ = δ = 0 to determine α and
β, and then carry out a second analysis, including helicity and variance to determine the four constants
appearing in the second system. In the following the exact value of the constants is not used so this will
not change the results.
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(a) (b)

Figure 4.8: Visualisation of the vertical velocity field.

[82]. The implications of this for 2D3C turbulence will now be investigated for a more
realistic system in the presence of viscosity.

4.4 Application: decay of a passive scalar in two-
dimensional Navier-Stokes turbulence

In this section we will illustrate the predictive power of statistical mechanics for real,
viscous flow. Since Eq. (4.18) has the form of a scalar advection equation, the 2D3C flow,
in the absence of forcing, corresponds to the problem of the mixing of a passive scalar at
Schmidt number one.

∂u⊥

∂t
+ u⊥ · ∇u⊥ = −∇P + ν∆u⊥ (4.28)

∂ϕ

∂t
+ u⊥ · ∇ϕ = ν∆ϕ (4.29)

with ∇ = (∂x, ∂y) and ∇ · u⊥ = 0. To stress even more the equivalence with mixing,
we have introduced the notation uz = ϕ. We choose ν = 1/Re = 5.10−4, with again a
Gaussian initial distribution for the vertical and horizontal energy spectrum. We choose
k0 = 4 and σ = 2, and a resolution N = 2562. The turbulent flow decays without external
forcing.

The main goal is to assess the influence of the initial relative helicity Hrel on the
evolution of the the scalar variance S =

∫
ϕ2dr. For that we set as initial condition

ϕ = ϕ̃+ λω (4.30)

The part ϕ̃ is independent from u⊥ and the relative helicity can be modified by varying λ.
Both parts of the vertical velocity field are initialized with the Gaussian spectrum (4.12)
and random phases.

Fig. 4.10 shows the influence of the initial relative helicity on inviscid invariants of the
2D3C flow. A common characteristic with the inviscid flow is the independence of energy
and enstrophy from the initial relative helicity. On the other hand the evolution of the
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Figure 4.9: Spectra of inviscid 2D3C invariants for different values of Hrel for kmax = 42 and
kmin = 1.
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Figure 4.10: Time evolution of inviscid 2D3C invariants for different values of Hrel.

54



(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 4.11: Mixing of three scalar fields. The fields have the same initial variance and
spectral distribution. Furthermore the advecting velocity field is identical. The only
difference is the initial correlation between scalar and vorticity. Top-row Hrel = 0, middle
Hrel = 0.5, bottom Hrel = 1. From left to right, value of the scalar ϕ for t = 0, 1, 5, 10.

vertical kinetic energy is strongly correlated with the initial relative helicity. The higher
the initial relative helicity, the faster the vertical energy decreases.

All flows tend to Beltramize, since the relative helicity tends to 1 for all of them.
Even the case indicated by Hrel = 0 tends eventually to a Beltramized state. Indeed,
the helicity of this case is not strictly zero but less than a percent of its maximum value.
Eventually even a very small amount of helicity leads to a long-time persistent correlation,
dominating the final state.

To give a visual impression of the mixing process and the influence of the helicity
we show in Fig. 4.11 the decay of the Mixing of three scalar fields. The fields have the
same initial variance and spectral distribution. Furthermore the advecting velocity field is
identical. The only difference is the initial correlation between scalar and vorticity. Since
the color-scales are the same for the three-sets of visualizations, that already at t = 10
the scalar variance is significantly lower in the non-correlated case.

The fact that the scalar is correlated with the vorticity does therefore allow it to
persist longer in the flow. This is a rather intuitive result, since scalars which are exactly
centered on a rotating blob will not experience straining. However, the fact that we can
relate this observation to an invariant of the 2D3C system is an interesting feature, we
think.
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4.5 Conclusion of the chapter
In this chapter we showed that the statistical mechanics of two-dimensional turbulence
are still an intriguing subject. Indeed, it seems that when the energy is large compared
to the enstrophy, for a given range of lengthscales, a condensate forms which defies
Kraichnan’s statistical mechanics. The dynamics can be understood as a coexistence
of a force-free condensate and a back-ground noise, the latter being well described by
Kraichnan’s statistical mechanics.

Furthermore, two-dimensional three-component turbulence is an interesting system,
since it contains two additional invariants, compared to two-dimensional turbulence.
Whereas the variance of the third component is an "obvious" invariant, the presence
of the second invariant, helicity, is more surprising. Its physical interpretation should
perhaps not be searched for in terms of knottedness, as for helicity in three-dimensional
flows, but more directly as the pre-dominance of the sign of the helical motion of vertical
structures. This is also the interpretation which emerges when considering the generation
of helicity in unstable stratification in Chap. 7.

In the following we will see how these phenomena change when the third direction, in
which the dynamics are invariant is not straight anymore. That system is axisymmetric
turbulence.
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5 Transition and helicity in 2D
turbulence with curvature

5.1 2D3C flow with curvature
In the previous chapter, we investigated (standard) two-dimensional three-component
flow. Such flow is described by the velocity field

u = (ux(x, y), uy(x, y), uz(x, y)), (5.1)

where uz(x, y) is the out-of-plane velocity component. The dynamics of this system are
fully determined by ux, uy, whereas uz is advected as a passive scalar. When the out of
plane direction is not straight, but curved, an alternative 2D3C flow can be defined, where
the velocity field is then given, in cylindrical coordinates, by

u = (ur(r, z), uθ(r, z), uz(r, z)). (5.2)

This velocity field describes axisymmetric flow. An important difference with the flow in
the previous chapter is that now the out of plane velocity uθ can back-react on the planar
dynamics. Such a flow will be considered in the present chapter.

5.1.1 Previous results on axisymmetric turbulence
In the presence of strong magnetic fields, plasmas or conducting fluids tend towards 2D3C
dynamics. Indeed, the movement along the magnetic field direction is less-constrained
than the perpendicular direction, where the Lorentz force acts. The presence of a strong
toroidal magnetic field in fusion plasmas such as tokamaks has for a long time motivated
plasma physicists to consider 2D3C plasma dynamics with curvature. Nevertheless, in
the fluid dynamics community, the study of axisymmetric turbulence is relatively young.

Since the 2000s, in particular since the work of LeProvost, Chavanis and Dubrulle
[44], the fluid dynamics of (5.2) was investigated theoretically. The behavior is somewhat
similar to that of (5.1), but in the case of axisymmetric flow the planar and out-of-plane
dynamics are, as we just mentioned, not completely decoupled.

The statistical mechanics of this system were discussed in detail in [44, 46] and more
recently in [83]. The initial motivation was to develop a statistical mechanics theory
which could be applied to the von Karman experiment (see e.g. [84] for the experimental
set-up). The considered geometry was therefore in the initial studies a bounded cylinder.
The somewhat simpler 2D2C case, where uθ = 0, was theoretically investigated in the
framework of vortex-rings [85] and the case of the Taylor-Couette geometry in [47]. This
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rather late interest for axisymmetric turbulent fluid flow is probably due to the fact that
turbulent flow is in general not axisymmetric.

Indeed, in the turbulence modeling literature, statistically axisymmetric turbulence
has been treated, using RANS approaches [86]. In such flows only the time-averaged flow
is axisymmetric. However, surprisingly, the results derived for purely (instantaneous)
axisymmetric turbulence were verified in fully three-dimensional turbulence with time-
averaged axisymmetry only [45], giving thereby an additional motivation to continue this
line of research.

In the PhD projects of Bo Qu and Zecong Qin [87, 88], axisymmetric turbulence was
investigated using direct numerical simulations, aiming at the assessment of the theoretical
predictions. Indeed, experimentally, turbulent fluid flows are sometimes on average
axisymmetric, but never instantaneously. Therefore, even though surprising ressemblance
was observed between averaged experimental results and theoretical predictions, it seemed
important to verify whether the theory correctly predicted the flows for which it was
derived. Numerical results of decaying axisymmetric turbulence allowed to yield first
numerical evidence that some of the theoretical results were correct [48]. It was further
observed that in the 2D3C state of axisymmetric turbulence, helicity seemed to be
transferred to small scales [89].

This numerical line of research was pursued by Zecong Qin, [49, 56], who showed that,
in the presence of linear forcing terms, a critical transition can be observed between purely
poloidal and swirling flow. To understand the underlying dynamics, it is useful to compute
energy spectra, fluxes and transfer mechanisms. In Qin et al. [49] preliminary observations
were obtained in wall-bounded cylindrical geometry. However, Fourier-spectra are more
conveniently determined in periodic domains. Periodicity is however incompatible with
cylindrical coordinates in the radial direction.

In the present investigation we tackle this issue and consider a simplification which
allows to consider axisymmetric turbulence in a two-dimensional periodic domain. This
simplification leads to a set-up where we can verify whether the critical transition observed
in the cylinder in Qin et al. is associated with the closed cylinder, or that it survives in
the academic test-case of periodic boundary conditions. Furthermore, importantly, the
use of periodic boundary conditions allows the use of efficient pseudo-spectral numerical
methods.

5.1.2 Objectives and outline
The objectives of the present chapter are the following

• Show that axisymmetric turbulence can be investigated in two-dimensional double-
periodic geometry.

• Check that in such geometry the transition between purely poloidal and swirling
flow, as reported in [49] survives.

• Document the associated spectra and fluxes to understand the underlying physics

In Sec. 5.2 we will define the geometry and the governing equations of the system.
It is discussed how axisymmetric turbulence can be rendered compatible with periodic
boundary conditions. In Sec. 5.3 we study absolute equilibrium ensembles as in the

58



foregoing chapter. Then, in Sec. 5.4 we present the numerical results on the transition
between purely-poloidal and swirling flow in a forced-dissipative system.

An interesting additional result, not anticipated from the outset, is that the presence
of helicity can importantly modify the dynamics for some cases. This was observed for
certain flows only and the details are yet to be understood, but we report these preliminary
results in Appendix B.

5.2 Set-up and governing equations
In this section the governing equations are given, boundary conditions are discussed and
the forcing and damping terms are introduced.

5.2.1 Axisymmetric turbulence in a periodic domain
We repeat here, for the reader’s convenience, that in cylindrical coordinates the Navier-
Stokes equations are described by the three velocity coordinates ur, uθ, uz, which vary in
the r, θ, z directions,

∂ur
∂t

+ u · ∇ur − u2
θ

r
= −∂P

∂r
+ ν

(
∆ur − ur

r2 − 2
r2
uθ
∂θ

)
+ Fr

∂uθ
∂t

+ u · ∇uθ + uθur
r

= −1
r

∂P

∂θ
+ ν

(
∆uθ − uθ

r2 + 2
r2
ur
∂θ

)
+ Fθ

∂uz
∂t

+ u · ∇uz = −∂P

∂z
+ ν∆uz + Fz,

where the density, again assumed constant and uniform, is conveniently absorbed into the
pressure.

In this expression the Laplacian ∆ is defined as

∆ = 1
r

∂

∂r

(
r
∂

∂r

)
+ 1
r2

∂2

∂θ2 + ∂2

∂z2 , (5.3)

and the gradient operator as
∇ = ( ∂

∂r
,
1
r

∂

∂θ
,
∂

∂z
), (5.4)

and incompressibility is expressed by

1
r

∂rur
∂r

+ 1
r

∂uθ
∂θ

+ ∂uz
∂z

= 0. (5.5)

Axisymmetric turbulence consists of the special case where all quantities are invariant
in the azimuthal direction. This means that all terms involving an azimuthal derivative
∂/∂θ are zero. The resulting dynamics are therefore 2 dimensional, involving three velocity
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components. We introduce the notation uP = (ur, uz), so that we can write

∂ur
∂t

+ uP · ∇P ur − u2
θ

r
= −∂P

∂r
+ νLur + Fr,

∂uθ
∂t

+ uP · ∇P uθ + uθur
r

= νLuθ + Fθ,

∂uz
∂t

+ uP · ∇P uz = −∂P

∂z
+ ν∆Puz + Fz,

with
uP · ∇P = ur

∂

∂r
+ uz

∂

∂z
,

∆P = ∂2

∂r2 + 1
r

∂

∂r
+ ∂2

∂z2 , L = ∆P − 1
r2 ,

while solenoidality is expressed by

1
r

∂rur
∂r

+ ∂uz
∂z

= 0. (5.6)

The system is therefore similar to the 2D3C turbulence considered in the previous
chapter, with the difference that the invariant direction is now curved. Due to this
curvature, the dynamics change. Indeed, it is observed that on the left-hand-side of
these equations two additional terms appear, −u2

θ/r and uθur/r. These terms result from
the u · ∇u term expressed in cylindrical coordinates. Similarly, the Laplacian contains
additional terms, proportional to either r−1 or r−2. An interesting observation is then
that in the limit r → ∞ the influence of the curvature vanishes. In that particular limit
we therefore obtain the 2D3C system studied in the previous chapter.

5.2.2 Invariants
As was discussed in detail in the previous chapter, the invariants of the horizontal (ux, uy)
dynamics in 2D3C flow are the enstrophy and the energy. The additional invariants
associated with the advection of the passive scalar (or vertical velocity) are the helicity
H and the variance of the scalar S. Indeed the decay of this passive third component
is importantly affected by the initial condition, depending on its correlation with the
vorticity field. This correlation was shown to determine the final state in the absolute
equilibrium as was illustrated in Sec. 4.3. In particular the presence of helicity modified
the spectral behavior at the largest scales (smallest wavenumbers).

In axisymmetric turbulence, two classes of flow-states are generally distinguished. In
one case the toroidal velocity is zero and the resulting two-dimensional two-component
flow is actually equivalent to the canonical case of two-dimensional turbulence, as can
be shown through a change of variables [44]. The other, 2D3C or swirling flow, is
different from the 2D3C flow without curvature, since energy can be exchanged between
the poloidal and toroidal components through the curvature terms in the system.

In the purely poloidal 2D2C case, the invariants of the system are the poloidal kinetic
energy

EP = 1
2

∫
Ω
u2
r + u2

z dΩ (5.7)
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Figure 5.1: Illustration of slab-geometry, to investigate toroidal dynamics in periodic
geometry.

and its associated enstrophy
Z = 1

2

∫
Ω
ω2
θ dΩ. (5.8)

The dynamics start to differ from classical 2D turbulence when the toroidal velocity is
not zero anymore. In that case enstrophy is no longer an invariant of the system, but
helicity is

H =
∫

Ω
uθωθ dΩ. (5.9)

In addition, it is now the sum of the toroidal and poloidal energy which is conserved,

E = ET + EP = 1
2

∫
Ω
uθuθ dΩ + EP . (5.10)

Additional invariants are moments of the angular momentum and moments of a
generalized helicity. We have not focused on these in the present chapter but these
definitely deserve further focus and we will mention this in the perspectives.

5.2.3 Periodic boundary conditions
In the present chapter we want to retain the influence of curvature, but we want to
consider (simple) periodic boundary conditions. The trick that we introduce is that we
consider a small flow-domain and that we assume that the curvature is constant over
the size of the domain. Indeed, we assume that the considered flow domain represents
a small slab at a distance R from the major axis. Such an approach is rather usual in
the tokamak community and the geometry is shown in Fig. 5.1. We subsequently assume
that the numerical domain has a radial size L. In the limit L/R ≪ 1, the curvature can
then be considered approximately constant over the domain.

To illustrate this consider the coriolis term u2
θ/r. In the particular case we consider,

the value of this term varies from u2
θ/R to u2

θ/(R + L). The error made by considering
the curvature constant over the domain is then of order

Err = (u
2
θ

R
− u2

θ

R + L
) ≈ u2

θ

R
(1 − R

R + L
) = u2

θ

R

L

R + L
(5.11)
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so that the relative error, Err/(u2
θ/R) is, for R ≫ L of order O(L/R). Once the terms

involving explicitly the position r = R + r′ are replaced by terms where a constant
value R is used, periodic boundary conditions can be introduced. An implication of this
assumption is that we can only focus on flow structures of size smaller or equal to L,
which is small compared to the lengthscale R.

The set of equations used in the following is then

∂ur
∂t

+ uP · ∇Pur − u2
θ

R
= −∂P

∂r
+ νLur + Fr,

∂uθ
∂t

+ uP · ∇Puθ + uθur
R

= νLuθ + Fθ,

∂uz
∂t

+ uP · ∇Puz = −∂P

∂z
+ ν∆Puz + Fz,

where
uP · ∇P = ur

∂

∂r
+ uz

∂

∂z
,

and where
∆P = ∂2

∂r2 + 1
R

∂

∂r
+ ∂2

∂z2 L = ∆P − 1
R2 .

The incompressibility now becomes,

∂ur
∂r

+ ur
R

+ ∂uz
∂z

= 0. (5.12)

We have in these equations tacitly replaced the local radial coordinate r′ by r.
It is at this point convenient to introduce a stream-function ψ, associated with the

poloidal dynamics. For the exact equations, the relation between the stream-function and
the velocity reads ur = −∂ψ/∂z and uz = r−1∂(rψ)/∂r. In our slab-approximation this
becomes at leading order,

ur = −∂ψ

∂z
and uz = ψ

R
+ ∂ψ

∂r
. (5.13)

The relation between the stream-function and the toroidal vorticity is

ωθ = −Lψ, (5.14)

and Poisson brackets for our system write,

[a, b] =
(
∂a

∂r
+ a

R

)
∂b

∂z
− ∂a

∂z

∂b

∂r
.

This notation allows to write the full 2D-3C dynamics as a function of the two scalar
fields uθ(r, z) and ψ(r, z)

∂uθ
∂t

+ [ψ, uθ] = νLuθ + uθ
R

∂ψ

∂z
+ Fθ,

∂ψ

∂t
= νLψ + L−1

(
[ψ,−Lψ] − Lψ

R

(
∂ψ

∂z

)
− 1
R

∂u2
θ

∂z

)
+ Fψ,

ωθ = −Lψ,
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Figure 5.2: Poloidal and toroidal energy in the truncated axisymmetric system.

with Fψ = −L−1(∇ × FP ) · eθ, the poloidal force being defined by

FP = (Frer + Fzez). (5.15)

We have at this point succeeded to express the full 2D3C dynamics as the evolution of
two scalar fields, which are compatible with periodic boundary conditions. Such boundary
conditions allow to use pseudo-spectral methods, which simplifies the computation of the
derivatives, Laplacians and the inverse operators such as L−1.

5.3 Galerkin truncated Euler dynamics
Given the insights obtained from the last chapter, it seems useful to investigate the
equilibrium statistical mechanics of the periodic axisymmetric system.

A theoretical investigation of the Galerkin-truncated axisymmetric system is presented
in chapter 3 of Simon Thalabard’s thesis [90]. It is shown there that this approach, at least
from a theoretical point of view leads to somewhat ambiguous results. For instance, the
Galerkin truncation does not conserve kinetic energy. Indeed, the detailed conservation
of quantities depends on symmetry-properties of the nonlinearity expressed in a given
coordinate system. It seems that for cylindrical coordinates this symmetry is broken and
energy is no longer an invariant of the Galerkin-truncated system. This non-conservation
is similar to the case of two-dimensional turbulence, where many Casimir-invariants can be
defined [44], but where only energy and enstrophy are invariants which survive Galerkin-
truncation. This consequence of the truncation should not impact energy-conservation by
the nonlinearity in a sufficiently resolved forced-dissipative system.

However, for this reason (energy-non-conservation), we investigate here two specific
systems. The first one is the just derived (non-conservative) system, corresponding to
double-periodic axisymmetric dynamics. The second system is the simplified system
obtained by considering the 2D3C system (as in the previous chapter), while keeping
the Coriolis terms which allow to transfer energy between the different components.
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Figure 5.3: Temporal evolution of (a) energy (b) helicity during the relaxation to
equilibrium of the energy conserving truncated Euler system.

5.3.1 "Full" truncated axisymmetric Euler
Removing viscous and forcing terms from Eqs.(5.2.3), we obtain the system of the
following two coupled equations.

∂uθ
∂t

+ [ψ, uθ] = uθ
R

∂ψ

∂z
(5.16)

∂Lψ
∂t

+ [ψ,Lψ] = −Lψ
R

(
∂ψ

∂z

)
− 1
R

∂u2
θ

∂z
, (5.17)

ωθ = −Lψ. (5.18)

The left-hand sides of these equations correspond to the Cartesian 2D3C system, while
the right-hand sides couple the poloidal and toroidal components. As shown by Thalabard
[90], this system does not conserve energy.

Simulations are again carried out using GHOST, starting from random initial
conditions with spectral distribution (4.12). We initialize a spectrum with a finite amount
of helicity. We use the value R = 4π.

We illustrate the energy distribution between the components numerically in Fig. 5.2,
where we show a rapid transfer of energy between the velocity components for short time.
Then, for longer times, the total energy increases slowly.

We investigated the system and observed that for large values of R the system
conserves the energy. This is the desired behavior, since for large R the system degenerates
into the 2D3C dynamics discussed in Chap. 4. Nevertheless this variation of the total
energy is not a very desirable quantity so we do not further explore this truncated system.

5.3.2 Toy model
Indeed, since we are, in the following, interested in practical applications (such as
tokamaks, or geophysics), we do think that energy conservation is an important constraint
on the dynamics. We therefore also investigate the dynamics of the modified system,

∂uθ
∂t

+ (uP · ∇P )uθ = −uθur
R

(5.19)

∂ωθ
∂t

+ (uP · ∇P )ωθ = 1
R

∂2u2
θ

∂z2 , (5.20)

64



10
-3

10
-2

10
-1

 1  10

E
(k

)

k

Figure 5.4: Relaxation to absolute equilibrium of the energy conserving truncated Euler
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with ωθ = ∂zur−∂ruz. This system is obtained by taking the Cartesian 2D3C system and
adding the Coriolis terms resulting from the advection term in cylindrical coordinates. In
some sense, this is a hybrid formulation which breaks enstrophy conservation, compared
to 2D3C flows, but allows energy transfer between the components. Importantly this
formulation restores energy conservation. These features seem desirable if one is to study
axisymmetric turbulence.

We use the same numerical set-up and parameters as in the previous paragraph.
Results for the toroidal and poloidal energy and their sum are shown in Fig. 5.3(a).
From this figure two features are remarkable. Firstly energy is perfectly conserved, as
desired. Secondly, energy is at long times evenly distributed between the two components.
In Fig. 5.3(b) it is shown that the helicity is not conserved by the system. However, the
helicity of the flow decays only slowly, so that, during a long transient, helicity might play
a role in the dynamics.

In Fig. 5.4 we show the relaxation to absolute equilibrium of the system, as illustrated
by the evolution of the kinetic energy spectrum. The first observation, comparing to the
Cartesian 2D3C cases assessed in the foregoing chapter, is that for large k the spectrum
is proportional to k, whereas for the 2D3C system this was the case only for the Ez(k)
contribution, but not for the horizontal spectrum, which reflected enstrophy equipartition,
proportional to k−1. Since enstrophy is now not an invariant, the equilibrium distribution
does not need to satisfy this constraint and the equilibrium spectra are reflecting energy
equipartition.

A feature that we might overlook if we only consider the long-time equilibrium
spectrum, is that at short times energy increases at the lowest wavenumber. Indeed, while
the initial condition peaks around k = 6, at short times (t < 10), some energy seems to
accumulate around k = 1, before it drops towards equipartition. The underlying physics
of this transient are the fact that, even though helicity is not an invariant of the system.
The system degenerates towards a 2D3C system for R → ∞. For such systems helicity
conservation is manifested by a peak in the energy spectrum at the longest wavelengths
(here around k = 1). In the transient, a trace of this is thus visible (as is also illustrated
in Fig. 5.3(b) for the total value of the helicity). For large values of R, helicity might
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therefore play an important role in the physics of axisymmetric turbulence.

5.4 Axisymmetric turbulence with forcing and dissipation
In this section we first define the forcing-terms and justify the choice of the parameters
before presenting results on the transition between 2D2C and 2D3C axisymmetric
turbulence.

5.4.1 Definition of the forcing terms
In addition to periodic boundary conditions, which allow to consider a flow-dynamics
which, from a numerical point of view, is statistically homogeneous, it is convenient to
consider statistically stationary flow. For this we introduce forcing terms which introduce
energy into the flow. In engineering or geophysical flows, forcing terms are in general
associated with mean-velocity gradients, magnetic fields or buoyancy forces. All these
types of forcing introduce preferred directions into the flow and the statistics become
thereby anisotropic, and often inhomogeneous. To consider the most symmetric, academic
type of energy injection, isotropic forcing is used in the majority of theoretical studies
which do not focus on anisotropic or inhomogeneous flows. We will here consider a force
which does not explicitly introduce anisotropy in the poloidal plane.

A next question is which type of isotropic forcing is considered. A well known type
is random forcing, where the force is not correlated with the velocity field. In our study
we specifically use another type, which is linear forcing. The reason for this is that
an important number of natural phenomena are intimately associated with this type
of forcing. Indeed, many real-life turbulent flows, such as turbulent convection, and
boundary layer transition are generated by linear instabilities.

The easiest expression to understand such linear forcing is

dX(t)
dt

= cX(t) + other terms. (5.21)

The linear term cX(t), will lead, in the absence of other mechanisms to an exponential
growth of X(t). In many systems, such behavior is observed at small times, until nonlinear
terms become dominant. The direct use of a linear forcing term proportional to the
velocity in the Navier-Stokes equations was proposed by Lundgren [91]. Such forcing is
extremely simply to implement in numerical schemes. We investigated its properties in
isotropic turbulence, associated with the transition to sustained turbulence and this study
is reported elsewhere [92].

In reality, not all different lengthscales are equally unstable in natural flows, and often
a physical effect will trigger a linear instability at a given wavelength or wavenumber. It
is in these cases convenient to add a linear force term exclusively at a wavenumber, or a
small band of wavenumbers. The forcing terms we apply are defined as follows

Fr(k) = [CPur(k) − c3|uP |2(k)ur(k)] Π(k1, k2)
Fz(k) = [CPuz(k) − c3|uP |2(k)uz(k)] Π(k1, k2)
FT (k) = [CTuθ(k) − c3|uT |2(k)uθ(k)] Π(k1, k2)

(5.22)
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where the forced wavenumber intervals are defined by

Π(k1, k2) =

1 if |k| ∈ [k1, k2]
0 elsewhere

In these expressions we do not only show the linear forcing terms, but also cubic damping
terms which are proportional to |uP |2 ≡ |ur|2 + |uz|2 or |uT |2 ≡ |uθ|2. This combination
of linear and cubic damping terms is typical in studies of active turbulence such as in
the Toner-Tu model [93, 94, 95] and they were recently used to study two-dimensional
turbulence [96]. Indeed, in the absence of such damping, the energy in the forced modes
of two-dimensional turbulence too rapidly increases until nonphysical numerical artefacts
appear.

This forcing and damping acts thus at intermediate scales and the viscosity, as usual,
on the small scales. In the case where the turbulence is close to a 2D2C state, we expect an
inverse cascade of energy. The presence of such a transfer of energy towards the smallest
k values of the domain will lead to an eventual condensation until the system blows-up
due to numerical instabilities. We therefore add a hypofriction to the largest scales of the
system. To concentrate its influence to a narrow range of scales, we add to the right hand
side of the poloidal dynamics Eq. 5.2.3, to the equation of ψ a term −cψ∆−2ψ, which is
easily implemented in Fourier-space, by adding to the equation for the Fourier-coefficient
ψ̃ a term −cψk−4ψ.

5.4.2 Parameters
Now that we have defined the governing equations, the boundary conditions and the
energy input, we can proceed to a numerical integration of the system.

We need to define the size of the domain and the size of the energy injection scales
[k1, k2]. We define the size of the domain conveniently to be a square of size L = 2π, which
corresponds to a minimum wavenumber in the x, y–directions of unity. The resolution is
set to 5122 grid-points, which allows to carry out long simulations, which turns out to
be important in our simulations, since rare transitions can be observed between different
flow-states. The major axis R is chosen to be R = 4π. While this does not satisfy the
criterion L/R ≪ 1, we have chosen this value to assess the influence of the curvature.
Indeed, in the asymptotic limit where L/R ≪ 1, the influence of the curvature terms
becomes negligible and the system becomes equivalent to the one studied in the previous
chapter. The choice R/L = 2 must then be seen as a compromise to assess the effect
of curvature, while still using periodic boundary conditions. Furthermore, this is also
the order of magnitude of the curvature in the tokamak-like geometry in the following
chapter.

To allow for an assessment of energy, enstrophy and helicity cascades in both forward
and inverse directions in scale space, we choose the forcing scale of intermediate size, at
[k1 : k2] = [16 : 18]. Whereas this is a good choice to assess the presence of an inverse
cascade, leaving enough wavenumber space between the injection scale and the box-size,
it turns out that this choice will have an incidence on the influence of the curvature on
the dynamics.

The viscosity ν = 1/Re determines the smallest active scales and is adapted as a
function of the numerical resolution. Its value is here set at 1/4000. The parameters
associated with the forcing, CT and CP are the main control parameters of the system.
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Figure 5.5: Time evolution of poloidal energy (a) and toroidal energy (b) in two
simulations. For the first case CT/CP = 0.2 the flow is poloidal, as is illustrated by the
fact that the toroidal energy decays to a negligible value. For the second CT/CP = 2.0
and both energies show an evolution around a statistically steady state.

We fix one of these forcing parameters, setting CP = 10 and vary the value of CT in the
range CT ∈ [0 : 20]. Indeed, it was shown in [49] that the ratio of the constants was the
most important parameter to trigger the transition. The cubic damping parameter is set
to c3 = 2 · 10−5. The hypo-friction constant is set to cψ = 0.005.

5.4.3 Results on the critical transition
Two general classes of flows were identified in [49], swirling and non-swirling, the transition
being triggered by the forcing-anisotropy CT/CP . In the present set-up, we similarly assess
this transition. The initial condition from which we start is small amplitude Gaussian
noise with a spectral energy distribution Eq. (4.12), identical for both the poloidal and
the toroidal energy, but with independent random phases.

A parameter-scan is carried out, varying CT/CP and the poloidal and toroidal energies
of two characteristic runs are shown in Fig. 5.5. We similarly identified the two regimes.
For the case where CT/CP = 0.2, it is observed that the poloidal energy grows towards
a statistically steady state, whereas the toroidal energy decays from the initial condition
to negligibly small values. The dynamics of this case should be close to that of two-
dimensional turbulence.

For the other case shown in the Figure, CT/CP = 2, both toroidal and poloidal energies
approach a statistically steady state. The level of the poloidal flow, which is driven by
the same forcing-strength, is not significantly affected by this appearance of a toroidal
component. This shows that the toroidal flow does not exchange much energy with the
poloidal component and we will come back to this observation.

These results indicate that the critical transition [49] seems to persist in the present
set-up. This is illustrated in Fig. 5.6, where we show the ratio of the time-averaged values
of ET and EP during the statistically steady states. We can identify a critical value of
the ratio which is situated at order unity in between CT/CP |crit ≈ 0.3. For lower values of
the forcing ratio the flow tends to a strictly poloidal dynamics, which should in principle
be characterized by an inverse cascade of energy.
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Figure 5.6: (a) Influence of the forcing anisotropy CT/CP on the toroidal to poloidal
kinetic energy ratio. The ratio is computed using the time-averaged values of the two
kinetic energy components during the statistically steady state. Fig. (b) is a zoom on the
small values of the range of CT/CP .

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1 10 100

E
(k

)

k

k-5/3

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 1  10  100

E
(k

)

k

EP(k)
ET(k)

Etot(k)

Figure 5.7: Time-average energy spectrum CT/CP = 0.2 and CT/CP = 6.0
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Figure 5.8: Time-averaged flux spectra for CT/CP = 0.2 and CT/CP = 6.0

Energy spectra associated with the two flows are shown in Fig. 5.7. It is observed that
the scales larger than the forcing scale are not incompatible with a k−5/3 wavenumber.
This is the case for the poloidal spectra for values on both side of the critical transition.
Indeed, it is observed that for the case of CT/CP = 6 the inverse cascade survives, and is
not significantly affected by the presence of the toroidal component.

It is observed that the spectrum of the toroidal kinetic energy is much shallower,
reflecting the direct cascade of energy we already encountered in the last chapter for the
passively advected third component in 2D3C flow. The results confirm that this toroidal
energy is not significantly transported towards the large scales. Indeed, for k < kf we
observe an approximate equi-partition of toroidal kinetic energy with ET (k) ∼ k.

In Fig. 5.8 we plot the different fluxes of energy. Fig. 5.8(a) shows the dominant
flux towards large scales, corresponding to the negative part of the flux spectrum. For k
tending towards unity, the flux vanishes, which shows that the poloidal flux at the large
scales is absorbed by the large-scale friction. At large k a (smaller) positive flux of energy
is observed, directly dissipated by viscous dissipation.

In Fig. 5.8(b) we show the spectra associated with fluxes of poloidal and toroidal
energy, and their sum. It is observed that the toroidal flux is mainly towards large k,
reflecting the forward toroidal energy cascade. We also show that for the present choice
of parameters, the toroidal flux is an order of magnitude larger than the poloidal flux.

To give an idea of the flow structures, we show visualizations of both poloidal and the
toroidal fields for two typical cases in Fig. 5.9.

5.4.4 Influence of the curvature on the dynamics
The transition observed in the foregoing does not seem to affect the poloidal dynamics
significantly. As such, it seems that the dynamics are close to the Cartesian 2D3C flows,
where the toroidal component is passive.

In the present case, the global poloidal and toroidal kinetic energy balances read

dEP
dt

= IP − εP + T (5.23)
dET
dt

= IT − εT − T (5.24)

where IP and IT represent the energy injected by the forcing terms Eq. (5.22) and εP and
εT the dissipation mechanisms. Most importantly for our discussion, the coupling terms
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Figure 5.9: Visualizations of the flow-field during the statistically steady state for the
flows with CT/CP = 0.2 (left) and CT/CP = 6 (right). The displayed quantities are
vorticity ωθ (a,b), streamfunction ψ (c,d) and toroidal velocity uθ (e,f).
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in the energy balance allow for an average energy transfer between the components equal
to

T = ⟨u2
θur⟩
R

. (5.25)

The order of magnitude of this flux can be estimated by

O(T ) ∼ ETE
1/2
P

R
. (5.26)

The order of magnitude of the toroidal energy flux is set by the parameters used in the
forcing protocol, but are in particular determined by the lengthscale k−1

f where the forcing
acts. Indeed, for a scalar, an extension of Taylor’s estimate for the dissipation rate writes

O(ϵT ) ∼ ETE
1/2
P

k−1
f

, (5.27)

where we used the forcing-scale is taken as a typical lengthscale, since it is poloidal velocity
structures at these scales which act most vigorously at the injection scale of the scalar.

The fact that
k−1
f

R
≪ 1, (5.28)

determines that for an important part of the parameter space, the transfer T is negligible
compared to the fluxes associated with the nonlinear transfer of energy. Indeed, we have
R = 4π and kf ≈ 17, so that Rkf ≈ 200 and therefore only for rather extreme cases
the influence of the curvature becomes important. We illustrate this by computing the
wavenumber spectra associated with the term T in Eqs. (5.23) and (5.24). Even though the
terms in both global energy equations are equal, their scale distribution is not necessarily
so. These are given by

TP→T (k) = −
∫
R3

û∗
rû

2
θ

R
δ(|k| − k) dk (5.29)

TT→P (k) =
∫
R3

û∗
θûθur
R

δ(|k| − k) dk. (5.30)

In Fig. 5.10 we show the lengthscale distribution of the transfer between the toroidal
and poloidal components. An interesting feature of this transfer is that the transfer
between the components is not at all a process involving only one lengthscale. Indeed it
is observed that energy is extracted around the forcing scale from the poloidal component
and that it is injected into the poloidal component around the scale of the domain-size.

Perhaps an even more important information is that the strength of the transfer is
several orders of magnitude smaller than the nonlinear transfer for a given component.
Possibly by changing the forcing-scale, injecting toroidal energy in scales comparable to
R the curvature terms could become important. This is an important information and
will be taken into account in setting up the simulations in the next chapter.

5.4.5 Helicity formation
In the previous results we have not observed any influence of the helicity. In Chap. 4 it was
shown that helicity is associated with the k = 1 mode in the 2D3C system. Even though
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Figure 5.10: Spectral locality of poloidal/toroidal transfer

we have curvature, possibly this feature persists since our dynamics are not far from a
Cartesian 2D3C dynamics since the curvature flux is small compared to the nonlinear flux.
We have some preliminary results, which we did not manage to explore at the time of this
writing, where helicity seems to play a role, and these results are reported in Appendix
B.

5.5 Conclusion of the chapter
We have in the current chapter investigated axisymmetric turbulence in periodic "slab"
geometry. The results remain exploratory and the number of open questions is large
enough to dedicate a complete thesis to the dynamics. We here conclude this chapter but
insist on two points that will be of interest in the rest of this thesis.

The first observation is the subsistence of a critical transition between 2D2C and
2D3C dynamics. Indeed, in the following chapter (Chap. 6), we investigate the critical
transition from poloidal to three dimensional dynamics in toroidal geometry, mimicking
the dynamics of a tokamak.

Another insight is that, if the injection-scale is much smaller than the curvature scale,
the influence of the curvature on the 2D2C-2D3C transition is small. This is intuitively
understandable, since for very small scales l the influence of advection through turbulent
motion, compared to the effects of curvature should scale as l/R. In the next chapter we
inject therefore the energy at scales which are comparable to the domain size.

The other observation that we will come back to is the spontaneous generation of
helicity, observed near the onset of 2D3C flow (see Appendix B). In the final chapter of
this thesis (Chap. 7), we investigate the generation of helicity in a geophysically motivated
geometry, where unstable stratification (a linear forcing mechanism) is combined with a
strong magnetic field, allowing the field to approach the 2D3C limit.
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6 A fluid mechanics explanation for
enhanced confinement in tokamaks

Tokamak1 fusion plasmas can operate in two regimes, L-mode and H-mode. This latter
mode, where turbulence is reduced, is beneficial for the reactor performance and will be
essential to reach the goal of profitable energy production. Despite the observation of
the transition between these regimes in a wide range of fusion experiments, the origin
of the transition itself is not understood. What lacks is a generic global explanation of
what happens during the LH-transition. We show, using numerical experiments, that
on the level of a fluid description of the fusion plasma, observations can be explained
as the result of a transition of the turbulent plasma flow from a nearly two-dimensional
state, with three velocity components, to a purely two-dimensional flow, involving only
two components. This latter flow-state allows the self-organization of the plasma to a
quiescent dynamics, characterized by long-living coherent structures. When these large-
scale structures orient in the azimuthal direction, the radial transport is reduced. We
show thus that these two ingredients, the transition to poloidal dynamics plus symmetry
breaking, are essential to attain a flow field beneficial for confinement.

6.1 The LH transition and two-dimensional turbulence
Thermonuclear fusion is a sustainable and carbon-free energy source. It can thereby
constitute a game-changer in the context of energy regulation and climate change.
Currently the most advanced geometry to achieve the ultimate goal of a sustained large-
scale fusion reaction is the tokamak: in a torus-shaped reactor chamber, magnetic fields
are used to confine a plasma at a temperature of hundreds of millions degrees, in which
energy is produced by fusion of hydrogen isotopes. A schematic of toroidal geometry,
indicating the definitions of toroidal and poloidal directions, is shown in Fig. 6.1.

The largest obstacle for fusion is the confinement of a plasma. Indeed, if any reactor is
to produce energy by a fusion reaction, the ionized gas of hydrogen isotopes should be kept
at a sufficient temperature, with a sufficient density for a long enough period of time. This
triple criterion (time, density and temperature) has been known since the 1950s [97] and
the goal of almost any magnetically controlled fusion experiment is to enhance this triple
product. Currently, tokamaks cannot work without continuous injection of energy in the
plasma, and they produce less energy than they need to sustain the reaction. The ITER
experiment aims at showing that tokamaks can reach, and go beyond, the break-even
point.

1This chapter largely follows the preprint of the same title, with authors W. Agoua, B. Favier, J.
Morales & W.J.T. Bos
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Figure 6.1: Tokamaks are torus-shaped fusion reactors where the plasma is confined by a
magnetic field. The toroidal component of the magnetic field is dominant in realistic reactors.
In the simplified description considered here, we only consider this toroidal field and assume it
strong enough to render the plasma-dynamics invariant along the toroidal direction. This reduces
the dynamics to a two-dimensional system, with three velocity components: two components in
the poloidal plane, uP and one toroidal component uT . In the present schematic we indicate
the major and minor axes R and a, respectively. The color plot indicate the (toroidal) vorticity
associated with the poloidal velocity field.
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The main actor limiting the confinement in tokamaks is turbulence. The transport
of heat and matter by turbulent fluctuations degrades the confinement quality in all
existing tokamaks [98, 99]. The presence of some turbulence does seem inevitable given the
enormous gradients of temperature and magnetic fields in the plasma edge, but limiting
the intensity of this turbulence as much as possible in the reaction chamber is paramount.
This explains the tremendous importance given to a transition between two turbulent
states, observed first experimentally in the ASDEX experiment [100]. The transition
from a, highly turbulent, low-confinement mode (or L-mode) to a, more quiescent, high
confinement mode (H-mode), is observed to increase the confinement time considerably.
Knowing how to trigger such a LH-transition, and keep a plasma in H-mode, can thus be
essential for the design of a successful fusion-reactor.

The understanding of the LH-transition is however still incomplete. Different
propositions of theoretical frameworks can be found in reviews on the subject [101, 102]. It
is now well accepted that in H-mode, confinement is improved by the presence of shearing
motion at the edge of the plasma [103, 104, 105] and that interaction with the walls of
the plasma vessel might play a role in this dynamics [106]. Such shearing motion allows
to decorrelate radially propagating structures by a mechanism called shear-sheltering in
the fluid mechanics literature [107, 108]. In the tokamak community this insight has
had a major impact [109], in particular since magnetized plasmas show the formation of
zonal flows, radially-sheared poloidal flow structures, which contribute importantly to this
shear-sheltering [110, 111, 112]. Even though the dominance of these zonal flows seems a
well established feature of H-mode behavior, it does not explain why these structures are
only present in H-mode.

Our study, on the contrary, attempts to reveal the underlying, fluid-mechanical, origin
of the transition. We illustrate that the observations of typical LH-related phenomena
such as zonal flows, transport barriers and self-organization can be a consequence of a
well-defined, robust transition, from a nearly two-dimensional flow with three dominant
flow components, to a purely two-dimensional flow.

Indeed, in addition to zonal flows, another established ingredient of the H-mode is its
link with two-dimensional turbulence. It has been known since the works of Kraichnan
[7, 26] that a fluid flow in two space dimensions has the tendency to self-organize into
large-scale structures. Examples of such self-organization are cyclonic structures in the
atmosphere, and controlled numerical and physical experiments have verified this tendency
to self-organization [113, 40, 39]. The turbulence in plasmas seems to behave in a similar
manner [114], i.e., the turbulence also tends to form large scale structures. The link
between the formation of space-filling structures in two-dimensional flows and the H-
mode was stressed in experiments [115]. However, this does not explain why these effects
are limited to the H-mode. Clearly, the magnetic field is also present in the L-mode, so
that the dynamics should not be far from two-dimensional.

To understand the fluid mechanical difference between the two modes, one needs
recent insights from theoretical studies on axisymmetric turbulence, which we will now
briefly review. We consider purely axisymmetric flows, where not only the average
flow quantities, but also every fluctuation is exactly axisymmetric. In the absence of
magnetic fields or other body-forces, in neutral fluids such a flow in the turbulent regime
is difficult to establish. Therefore, in the fluid mechanics community, this type of flow has
received interest only recently, mostly in order to extend ideas from statistical mechanics
of two-dimensional flows to a case closer to three dimensions [44, 46, 47]. Since such a
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Figure 6.2: Spectral element mesh on the poloidal plane. The mesh consists of a central
part and a boundary-adapted circular part. The major radius of the torus is R and the
minor radius is denoted a.

turbulence is hard to reproduce experimentally, the assessment of theoretical ideas has
been mainly achieved through direct numerical simulations of the axisymmetric Navier-
Stokes equations [48, 116]. In a recent investigation [49] it was observed that a critical
transition between two types of axisymmetric turbulence can be observed, where one of
the flow states is characterized by typical two-dimensional behavior, i.e., self-organization
of large velocity structures, whereas the other flow is two-dimensional, but involves three
velocity components (see Fig. 6.3(a,b) for an illustration). Even though this latter state
is essentially 2D, the large-scale flow structures are inherently unstable and tend to loose
their energy to smaller scales, a feature reminiscent of 3D turbulence: this change in
cascade direction is a major difference between 2D and axisymmetric 2D3C turbulence

Whereas neutral fluid turbulence is rarely in a close to axisymmetric state, this changes
for the case of electrically conducting fluids, or plasmas. Indeed, the presence of a strong
azimuthal magnetic field limits the variations in the direction of the field [20, 117, 118].
In a tokamak, a strong toroidal magnetic field is present, which renders the flow close to
axisymmetric. In general the strength of this field is an order magnitude larger than the
poloidal field (associated with a toroidal current) which we will neglect in our approach.
The plasma in a tokamak is thereby close to a strictly axisymmetric state and can be
described, at first order, by an axisymmetric fluid flow. We suggest that the transition
which was discovered between two different axisymmetric turbulent states [49] should
carry over to the dynamics of tokamaks. To illustrate this possibility, we have set-up a
numerical experiment in toroidal geometry and we will show the confinement properties
of the two axisymmetric flow states from a pure fluid mechanics perspective.

In the next section, we describe in detail the model we use to describe a turbulent
plasma in toroidal geometry. In Sec. 6.3 we discuss the numerical details. In Sec. 6.4 we
present the results of our numerical experiments. Finally in Sec. 6.5 we conclude.

6.2 Modeling and governing equations
The system we consider is a plasma in toroidal geometry. Since we assume axisymmetry,
the dynamics can be described by a three-component dynamics in the poloidal plane.
This simplifies the numerical experiments considerably. The poloidal domain on which
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we focus is shown in Fig. 6.2, where we indicate the coordinate system. The major radius
is R and the minor radius a. The cylindrical coordinate system is centered around the
major (z-)axis of the torus. In this coordinate system the radial and vertical direction in
the poloidal plane are defined r, z. We also define a local coordinate system, centered in
the circular cross-section, with polar coordinates ρ, θ.

In the present section we will first introduce the fluid-description. Then we will focus
on the forcing protocol, representing the plasma instabilities, and we will explain how we
measure the confinement quality of the plasma.

6.2.1 A fluid mechanics modeling of tokamak plasmas
Plasmas can be described by a hierarchy of physical models [119]. The most precise,
but thereby also least tractable, description is a kinetic approach involving all charged
particles of the plasma and their nonlocal interactions [120]. The coarsest approach is
probably a fluid approach, where the plasma is described using continuum mechanics [121].
In the present investigation it is this latter description which is adopted. We will omit
all kinetic effects from our system. Furthermore we will assume the dynamics isothermal,
solenoidal and we do not model the detailed interaction of the plasma with electrical
currents and magnetic fields. The only influence of magnetic fields which is retained in the
present system is the influence of a toroidal magnetic field, assumed to be strong enough
to render the dynamics perfectly axisymmetric. Physically this corresponds to the fact
that charged particles can freely move along magnetic field lines, whereas perpendicular
motion is constrained by Coulomb-forces. This quasi-bidimensionalisation of the flow is
well documented in magnetohydrodynamical turbulence [21, 122] and can even be exact
when the magnetic Reynolds number is low enough [123].

In such an axisymmetric set-up, the dynamics are entirely described by the two velocity
components in the poloidal plane uP = (ur, uz), and one component uT perpendicular
to it (see Fig. 6.1). Such a system does not represent the instabilities associated with
temperature, density and magnetic field gradients. It is in tokamaks these gradients
which are at the origin of the turbulent fluctuations and these sources of instabilities are
here modeled explicitly by appropriate external force terms.

We start by writing the axisymmetric Navier-Stokes equations.

∂uP

∂t
+ uP · ∇uP + ∇P − ν∆uP = N P + FP (6.1)
∂uT
∂t

+ uP · ∇uT − ν∆uT = NT + FT . (6.2)

The pressure P , in which we absorbed the constant density, ensures incompressibility
through the condition

1
r

∂rur
∂r

+ ∂uz
∂z

= 0. (6.3)

The last terms on the left hand side represent the viscous stresses, with ν the kinematic
viscosity. In these terms the ∆ indicates the axisymmetric vector-Laplacian in polar
coordinates.

The left-hand-sides (LHSs) of Eq. (6.1) and Eq. (6.2), respectively, describe purely
two-dimensional fluid motion, represented by the velocity vector-field uP (x, t) advecting
the toroidal (out of plane) component of the velocity uT (x, t). In a toroidal geometry the
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curvature introduces the N terms, which couple the two fields. The curvature terms are

N P = u2
T/rer (6.4)

NT = −uTur/r. (6.5)

These terms are reminiscent of the vortex-stretching terms, essential in three-dimensional
energy transfer, but absent in purely two-dimensional systems. All toroidal derivatives,
∂/∂ϕ are zero since we consider the axisymmetric case. Physically this assumption is
justified by the presence of a strong toroidal magnetic field.

The terms FP and FT are forcing terms which we will discuss now.

6.2.2 Forcing protocol
An important feature associated with a heated magnetized plasma is the presence of a
number of instabilities leading to the generation of turbulent fluctuations. The forcing
terms FP and FT are added to our system to reproduce the main features of sources
of turbulent fluctuations in realistic plasmas (such as the interchange instability [119]),
which are located at the tokamak edge, where the pressure, density and temperature
gradients are large. The ensemble of these instabilities leading to turbulent fluctuations
are in our approach modeled together by artificial force terms.

To generate the poloidal velocity fluctuations, we add a Rayleigh-Bénard type
instability as follows. We compute the advection of a scalar-field by the poloidal velocity
field,

∂b

∂t
+ uP · ∇b = κ∆b+ S ′. (6.6)

The term S ′ represents a source of scalar in the edge region of the plasma. More precisely,
the value S ′ is constant and is non-zero only in a shell near the boundary. The boundary
condition at r = a is the Dirichlet condition b = 0. Thereby, on average a negative radial
gradient builds up between the radial location of the source term and the boundary. The
poloidal forcing term is

FP = CP beρ + Fβ. (6.7)

The first term in this expression leads then to the Rayleigh-Bénard-type (linear)
instability, through the coupling of the poloidal velocity (Eq. (6.1)) and the scalar
(Eq. (6.6)).

The second term, Fβ is a symmetry-breaking term, reminiscent of the anisotropic
nature of a magnetized plasma. Indeed, in magnetized plasmas, a natural tendency to
organize into concentric, toroidally invariant structures is observed related to the radial
density gradients. The resulting zonal-flows are equivalent to the zonal-flows in rapidly
rotating flows, such as the bands on Jupiter or the earth. To mimic this effect in the
present set-up a body-force is added to the poloidal forcing in the spirit of the Hasegawa-
Mima equation [124, 112],

Fβ = β′ρeT × uP . (6.8)

This contribution to the poloidal force does therefore not inject energy in the system. As
we will see below, the term Fβ term is not essential to trigger the transition from 2D3C to
2D2C, but it leads to enhanced confinement if the transition to a 2D2C state is obtained.
Simulations with and without this force will presented.
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The toroidal fluctuations are also assumed to originate from a linear mechanism and
are simulated by a linear forcing term. More precisely, for the toroidal forcing we use

FT = CT

[
uT − τ−1

σ

⟨uT r⟩
R

]
(6.9)

and is applied on the same shell as the source term S ′. The notation ⟨·⟩ indicates a
spatial average over the poloidal domain. The second term allows to avoid the build-up of
toroidal angular momentum. Indeed, the spontaneous generation of angular momentum
⟨uT r⟩ (or spin-up) in the system is of major interest [125], but we want to disentangle
this effect from the investigation of the transition between 2D2C and 2C3C flows. The
present form of the toroidal forcing term does therefore dominantly excite the toroidal
velocity fluctuations avoiding the build-up of mean angular momentum.

6.2.3 Passive tracer to measure confinement
Eventually, we are interested in the confinement quality of the plasma. In practice, a
good confinement in our system is associated with a small value of the radial turbulent
diffusion. To measure turbulent diffusion, a passive tracer is injected continuously in the
center of the domain, while homogeneous Dirichlet conditions are imposed on the wall.
The quantity ξ, which follows the flow as a small amount of ink in a water-flow, does
not affect the flow, but allows to measure the diffusion associated with the turbulent
fluctuations. The governing equation is, as Eq. (6.13) an advection-diffusion equation,

∂ξ

∂t
+ uP · ∇ξ = κ∆ξ + fξ (6.10)

where fξ = CξX(ρξ − ρ), where X is the heaviside function, ρξ the radius of the source
and Cξ a constant. When the turbulent fluctuations are strong, the diffusion allows
efficient transport of the scalar, thus bad confinement, and the temperature in the center
of the domain drops. Thereby the center-temperature (ξ(ρ = 0)) directly measures the
confinement quality of the flow.

6.3 Normalization and Numerical set-up
Before performing the numerical simulations, it is convenient to introduce an appropriate
normalization of the governing equations. This allows to identify the key parameters that
will be varied. In this section we discuss the non-dimensionalization, the parameters used
in our simulations and the numerical method,.

6.3.1 Dimensionless equations
In order to non-dimensionalize the equations, we choose as a typical timescale the inverse
of the poloidal forcing rate T ∗ = C−1

P . As lengthscale we use the minor radius L∗ = a.
This allows to normalize the equations using ũ = uT ∗/L∗, ∇̃ = L∗∇, and analogous for
∆, P, b, ρ, ∂t. Removing after normalization all tildes, for notational ease, we obtain the
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non-dimensional set of equations,

∂uP

∂t
+ uP · ∇uP + ∇P − 1

Re
∆uP = (6.11)

u2
T/rer + ber + βρeT × uP . (6.12)

and
∂b

∂t
+ uP · ∇b = 1

Pe
∆b+ S. (6.13)

These two equations define the poloidal dynamics. For the toroidal velocity component
we have in normalized form,

∂uT
∂t

+ uP · ∇uT − 1
Re

∆uT =

−uTur/r + γ

[
uT − τ−1

σ

⟨uT r⟩
R

]
(6.14)

and for the passive scalar
∂ξ

∂t
+ uP · ∇ξ = 1

Pe
∆ξ + fξ. (6.15)

In these equations we define,

Re = CPa
2

ν
, Pe = CPa

2

κ
(6.16)

γ = CT
CP

, β = β′a

CP
, S = S ′

aC2
P

. (6.17)

The parameter γ = CT/CP measures the toroidal forcing strength compared to the
poloidal forcing. This means that if γ is small, the instability mechanisms mainly drive
the fluid flow in the poloidal plane. This ratio γ is the main control-parameter of our
system.

6.3.2 Parameters
The major radius of the torus is R = 2 and the minor radius a = 1. The ratio R/a =
2 is of the order of magnitude of typical tokamaks. For instance the JET tokamak
is characterized by an aspect ratio R/a = 2.4, ITER by a value close to three, while
spheromaks have R/a ≈ 1.

The Reynolds number is Re = 5000, which is a high enough value to ensure turbulent
motion in our system. A change in its value does not qualitatively change the main results
of the present investigation, as long as the flow remains turbulent. The Péclet number is
chosen equal to the Reynolds number Pe = Re. The value of CP = 10 is fixed and the
forcing ratio γ is varied in the range γ ∈ [0, 1.8]. The value of β = 0; 2; 8. The relaxation
time for the suppression of angular momentum is τσ = 0.25.

For the active scalar b the injection shell near the boundary is defined by inner and
outer radii [ρ1 : ρ2] = [0.87a : 0.90a] and the value of the source term is S = 0.8. For the
passive scalar ξ the source term is confined to a circular surface of radius ρξ = 0.1 in the
center of the poloidal plane with injection rate Cξ = 0.1.
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6.3.3 Numerical set-up
Direct numerical simulations are performed using the Nek5000 code [126], a robust and
well-tested open source code, based on the spectral element method [61]. We solve the
discretized Navier-Stokes equations and two scalar advection-diffusion equations. We
impose simple non-slip boundary-conditions on the circular walls of the numerical domain
for the velocity, and trivial Neumann-conditions for the scalars.

All simulations of the axisymmetric system are performed on a 2D grid which allows
fast computations compared to a full three-dimensional description. The computational
domain is a disk representing a poloidal cross section of the tokamak (see Fig. 6.2). The
numerical grid consists of 640 spectral elements, with n = 12 the order of Lagrangian
interpolant polynomials. The time-step is adaptative with a Courant–Friedrichs–Lewy
condition CFL= 0.3. All results are reported during statistically steady states.

6.4 Numerical experiments of the fluid-mechanics of the LH
transition

Now that the system is modeled and the numerical set-up is specified, we will here discuss
the results of our simulations.

6.4.1 Characterization of the 2D3C-2D2C transition
The LH transition needs, from the fluid mechanics view-point, two ingredients. We will
first focus on the first part, the transition from a 2D3C to a 2D2C flow. We illustrate this
by changing the anisotropy of the forcing, γ = CT/CP . In Fig. 6.3(a) we show a time-
series of the toroidal and poloidal kinetic energy for a representative case (Re = 5000,
β = 0, CP = 10).

For t < 2850 the flow is in the 2D3C regime, with a value γ = 1.7. During this time
interval the order of magnitude of the two components of the kinetic energy is comparable
with a somewhat more bursty behavior of the toroidal kinetic energy. At t = 2850 the
strength of the toroidal forcing is instantaneously lowered resulting in γ = 1.35. This
value of γ is apparently below the critical value for the transition and the flow becomes
purely poloidal as is illustrated by the purely poloidal dynamics in Fig. 6.3(d). Indeed,
the value of the toroidal energy drops to zero. The poloidal energy is not significantly
affected. Decreasing the value of the toroidal force-coefficient can therefore trigger the
2D2C state.

In Fig. 6.3(b) we report the results of a parameter-sweep for the parameter γ = CT/CP
for a fixed value of CP . All the data for the energy corresponds to temporal averages in
a statistically steady state. We observe, when increasing γ, a critical transition from the
2D2C state (characterized by ET/EP = 0) to a 2D3C state, where the toroidal energy is
non-zero. The influence of the parameter β will be discussed below.

Visualizations of the flow-field in the two regimes are shown in Fig. 6.3(c,d). The main
feature is the non-zero value of the toroidal velocity fluctuations in Fig. 6.3(c). However,
another outstanding feature is the tendency to self-organization. Indeed, as observed by
inspecting the stream-function associated with the velocity pattern in the poloidal plane,
in the 2D2C regime [Fig. 6.3(d)] a large scale self-organization is observed consisting of
two counter-rotating toroidal vortex rings.
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Figure 6.3: (a) Time-evolution of the volume-averaged poloidal energy EP and toroidal
energy ET . For time t < 2850 the value γ = 1.7. For time t ≥ 2850 the value the ratio
of the forcing strength is lowered to γ = 1.35. The volume averaged energies illustrate a
transition from a 2D3C (c) to a 2D2C state (d), respectively. The movement is in these
visualizations plotted in the poloidal plane by colors indicating the strength of the stream-
function. The toroidal velocity is illustrated by the out-of-plane morphology. (b)Influence
of the forcing anisotropy on the ratio ET/EP for β = 0. The two values of the forcing
anisotropy γ = 1.35; 1.7 associated with the timeseries in Fig. 6.3 are indicated by red
and green symbols, respectively.
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Figure 6.4: (a) Stream-function patterns for 2D2C flows with two different values of the
symmetry-breaking force (β = 2 and β = 8). (b) Ratio of the scalar profiles associated
with a passive scalar injected in the center of the domain. In addition to values associated
with (a) and (b) we also show the profile for β = 0. In this representation TH(ρ) is the
scalar profile in the 2D2C regime and TL(ρ) the profile in the 2D3C regime. These profiles
are obtained by averaging over time and over the poloidal angle θ.

6.4.2 Assesment of the confinement quality of the flow
Indeed, the double toroidal vortex rings observed in Fig. 6.3(d) are a generic feature of
fluid simulations in toroidal geometry [127, 128]. Such a self-organization of the flow into
two toroidal vortex rings does not seem beneficial for confinement in the center of the
fusion-device, since the fluid or plasma between the large-scale structures will be rapidly
expelled. We have tested this by measuring the turbulent diffusion of a passive scalar,
injected in the center of the poloidal cross-section.

We solve the additional advection-diffusion equation (6.15), with a constant source
term in the center of the poloidal cross-section. By measuring the average profile of
the scalar, the confinement is quantified: a large value of the temperature in the center
corresponds to good confinement and, conversely, a low core-temperature indicates bad
confinement. Indeed, as illustrated in Fig. 6.4, for β = 0. the confinement is changed at
most 10% between the two regimes.

Switching from a 2D3C state to a 2D2C flow is thus not enough to enhance the
confinement properties of an axisymmetric toroidal fluid flow. The case of non-zero β,
corresponding to the presence of an anisotropic force in the poloidal dynamics, will be
discussed now.

6.4.3 The importance of symmetry breaking
Indeed, one additional effect is needed to enhance the confinement. This is the symmetry
breaking, allowing to modify the double vortex-pattern, observed in Fig. 6.3(d) to a
concentric pattern in the poloidal plane. In tokamak plasmas, this symmetry breaking is
associated with the strong radial gradients of density, pressure and temperature. We
show the effect of an anisotropic force-term in Fig. 6.4. The presence of this force
allows to re-organize the large-scale structuring in a more concentric pattern, beneficial
for confinement. In Fig. 6.5(b) we show the results of a parameter-scan for CT/CP for
the values of β = 0, 2, 8. For all three values, a critical transition is observed as in
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Figure 6.5: (a) Overview of the dependence of the system on the parameter CT/CP
for fixed CP and β = 8, where we also show how the confinement is enhanced by this
transition, as measured by the temperature in the center of the toroidal domain. (b)
Influence of the forcing anisotropy on the nature of the flow for three different values β,
associated with the symmetry-breaking term.

Fig. 6.3(b) around a given ratio γ. The transition is therefore present for simulations
with and without the symmetry breaking force, but the value of this critical ratio γ
decreases as a function of β.

Most importantly, the resulting 2D2C flow, for the non-zero values of β considered
here, confines the scalar significantly better. Indeed, in Fig. 6.5, it is observed that for a
same constant scalar injection rate, the temperature in the center of the domain increases
by a factor around two.

The transition of the flow is therefore triggered by the anisotropy of the forcing. This
transition allows to enter a fully poloidal flow regime for small values of CT/CP . Such a
purely poloidal flow has a tendency to self-organize. Indeed, in the absence of toroidal
flow, the system can be described by purely two-dimensional hydrodynamics. The shape
of the self-organized structures does depend on other factors, such as here the poloidal
β-effect.

6.5 Towards enhanced confinement
From the results presented in the previous paragraphs, it can be concluded that a recently
discovered critical transition in axisymmetric turbulence [49] survives in toroidal geometry,
forced by instabilities near the toroidal boundaries. Indeed, this mimics in a crude way the
dynamics of a tokamak, where a toroidally confined plasma develops instabilities at the
boundaries where the pressure, density and temperature gradients are most important.

The present results illustrate that the LH-transition, in the present simplified fluid
system, needs two ingredients. First, a dominance of the poloidal forcing over the
toroidal forcing is required to be under a threshold for the critical 2D3C instability.
Secondly, the self-organization resulting from the purely two-dimensional two-component-
dynamics needs a symmetry-breaking mechanism, alllowing the system to organize into
a concentric pattern in the poloidal plane (zonal flows). The main observations can then
be summarized by Fig. 6.5(a), showing simultaneously the dependence of the energy ratio
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and the confinement quality as a function of γ.
It is our newly obtained understanding that it is not the zonal flows which trigger

the LH-transition: they are the consequence of the 2D2C nature of the H-mode. In the
2D3C L-mode we observe, a forward energy cascade will destroy the coherence of large-
scale structures, preventing thereby the emergence of zonal flows. Once these zonal flows
appear, they enhance the confinement.

The observations reported here are simple and robust. We have not added any more
physics to the system than an axisymmetric fluid-description with linear force terms. We
think that this identification of the essential ingredients of the transition is the most
important insight that we have gained. The fact that the observations do not contain
any precise plasma-instability, magnetic-field structure or kinetic effects perhaps explains
why the LH-transition is so widely observed in the last four decades.

Note finally that while magnetohydrodynamical and kinetic effects are obviously
fundamental in understanding the details of the LH transition [102], the objective here
is to show that a minimal fluid dynamics model can reproduce its most important
characteristics. Indeed now that we have pinpointed the essential physics, further
understanding can be gained by transposing these ideas to a more realistic setting. For
instance, in future experimental campaigns it can be tried to, either enhance poloidal
energy injection, or to reduce toroidal fluctuations, leading to possibly unexplored
magnetic fusion confinement protocols.

6.6 Conclusion of this chapter
The dynamics observed in the present chapter have possibly an important relevance for
magnetically confined fusion research. In particular, in the context of the present thesis,
we show that the flow in the torus changes its nature from 2D2C to 2D3C. This change
should modify the invariants of the system and thereby the cascade properties.

Things that have not been observed are the generation of helical motion or mean
angular motion. Indeed the latter effect is artificially removed through our damping on
the toroidal velocity in Eq. (6.9). The influence of helicity on the dynamics seems however
an important issue for further research. Indeed, this will be subject of the next chapter,
where we investigate the transition from 3D3C turbulence to Cartesian 2D3C flows and
where we will illustrate that this allows the spontaneous generation of helicity.
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7 Spontaneous generation and reversal
of helicity in anisotropic turbulence

Helicity1 plays an important role in spectacular geophysical phenomena such as hurricanes
or the generation of the terrestrial magnetic field. The present chapter shows how helicity
can be created in a statistically homogeneous but anisotropic flow, driven by buoyancy.
If the flow is close enough to a two-dimensional limit, spontaneous symmetry-breaking
leads to the generation of mean helicity. In particular we explain these observations by
identifying a simple linear mechanism, the relevance of which is illustrated by simulations
of unstably stratified turbulence in a conducting fluid on which a magnetic field is imposed.
Finally it is shown that the self-organized state displays dynamical reversals of the sign
of the mean helicity.

7.1 On the origin and importance of helicity.
Helicity is associated with the cork-screw motion of fluid particles. As was discussed in
Sec. 2.3.4, the mean helicity [9] is a topological invariant of the Euler equations and is
defined as

H = ⟨u · ω⟩ (7.1)

where u is the velocity, ω = ∇ × u the vorticity, and the brackets denote an ensemble
average. Its value measures the knottedness of the vortex-lines in a fluid [10] and is zero
in a mirror-symmetric flow.

The presence of helicity is presumably important for the generation of the Earth’s
magnetic field [129, 130, 131]. Furthermore, helicity is strong in hurricanes [132, 133, 134]
and helical modes can be considered the building-blocks of the turbulent energy cascade
of turbulent flows [135, 136, 137, 138, 139]. It has been known that the presence of helicity
in isotropic turbulence does somewhat weaken the energy cascade [140, 141, 142]. These
effects become more drastic and alter completely the energy cascade when strong helical
forcing is used [73], a possibility anticipated some decades ago [143]. Also, in the presence
of body-forces such as the buoyancy force or rotation, the influence of helicity can affect
flow properties in a significant way [144, 145, 11]. Yet another interesting feature is that
an inhomogeneous distribution of mean-helicity can induce a mean flow [146, 147].

Helicity can thus play an important role in turbulent flows. Both in laboratory
experiments and numerical simulations aiming at the investigation of its effects, it is

1This chapter contains the results published in the publication, W. Agoua, B. Favier, A. Delache,
A. Briard & W.J.T. Bos, Physical Review E 103.6 (2021): L061101. The text is slightly remodeled to
integrate the results in the rest of this PhD manuscript.
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usual to inject helicity in a flow either by boundary conditions or by adding a helical
volume-force to the system. In the dynamo experiments of Riga and Karlsruhe [148, 149]
for example, a helical mean flow was imposed through the shape of the container. In
the Von Karman Sodium experiment [150], mean helicity is injected by counter-rotating
impellers. In numerical simulations, helicity is often injected by adding an ABC flow
containing mean-helicity [151, 152], or by starting from helical initial conditions [153, 154].
Using artificial forcing combined with strong rotation, helicity can be generated in a
more spontaneous manner [155]. Apart from this last reference, in most of the above
cited investigations, helicity is thus artificially imposed and its influence on the system
is subsequently assessed. In natural flows, a known source of helicity is Ekman pumping
[156, 157], or the interplay of inertial wave-packets with buoyancy [158, 159].

However, in the absence of statistical inhomogeneity or artificial forcing, is it possible to
generate helicity? In the present investigation, we will show how helicity can be generated
spontaneously by symmetry breaking of an initially non-helical system. It seems that the
mechanism presented in this paper is thereby fairly generic and a good candidate to
explain the genesis of helical motion in a number of geo- and astrophysical flows.

In the following we will derive a simple model, involving the linear interaction of skew-
diffusion (a quantity defined below in Eq.(7.5)) and helicity. Analyzing this model, we
will show that two ingredients are important for the current mechanism to operate: the
presence of an unstable density stratification, and strong anisotropy.

7.2 Unstably stratified turbulence, skew-diffusion and
helicity.

The governing equations of unstably stratified turbulence in the presence of a uniform
density gradient in the z-direction are, in the Boussinesq approximation,

∂tu + u · ∇u = −∇P + ν∆u + θez + F /ρ0 (7.2)
∂tθ + u · ∇θ = κ∆θ −N2u · ez (7.3)

∇ · u = 0 (7.4)
where P is pressure divided by the mean density ρ0, ν the kinematic viscosity, θ = ρg/ρ0
the buoyancy perturbation, with ρ the density fluctuation, g the acceleration due to
gravity, κ the diffusivity, N the Brunt-Väisälä frequency and F an additional body force
or damping term. Later on in this investigation we will apply a magnetic field to the
system, in which case the term F is associated with the Lorentz force.

In statistically homogeneous, mirror-symmetric flow, in the presence of a constant
mean density gradient, the large-scale dynamics of the system are characterized by the
kinetic energy ⟨u · u⟩ /2, buoyancy variance ⟨θ2⟩ and buoyancy flux ⟨uzθ⟩. These three
quantities measure the evolution of the flow and the interaction of the density and velocity
fields. When mirror-symmetry is broken, which corresponds to the presence of mean
helicity H, a new statistical correlation appears (zero in mirror-symmetric flow), the
skew-diffusion

Q ≡ Qz = ⟨θωz⟩ , (7.5)
a quantity introduced by Moffatt [12], and somewhat forgotten since. However, in recent
work this quantity was evaluated in isotropic helical turbulence on which a uniform passive
scalar gradient is imposed [160].
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An important insight, which motivates the present investigation, is that skew diffusion
can be generated by a linear mechanism in the presence of helicity. From the evolution
equations for u and θ [Eqs. (7.2)–(7.4)] we derive (in the absence of F ),

dQ

dt
= N2Hz −DQ − ϵQ, (7.6)

where the nonlinear damping and viscous terms are respectively defined by

DQ = − ⟨θω · ∇uz⟩ , ϵQ = (ν + κ) ⟨∇θ · ∇ωz⟩ . (7.7)

We thus see that the production term (first term in the rhs of Eq. (7.6)) is directly
proportional to the vertical component of the helicity Hz = ⟨uzωz⟩.

Analogously, when writing the equation for the helicity, it is observed that the skew-
diffusion appears as a production term,

dHz

dt
= Q−DH − ϵH , (7.8)

with
DH = ⟨ωzez · ∇P ⟩ , ϵH = ν ⟨∇ω : ∇u⟩ . (7.9)

The production term is not present if the scalar is passive. However, when back-reaction
through buoyancy is present, the system is thus piloted by a linear production mechanism
(first terms on the rhs of Eqs. (7.6) and (7.8)). The other terms in the system are nonlinear
damping DQ, DH and visco-diffusive terms ϵQ, ϵH .

In the absence of the nonlinear damping, we can expect growth of Hz and Q if diffusive
effects are small enough. The whole question is thus whether the nonlinear damping terms
are strong enough to annihilate the combined linear production of helicity and skew-
diffusion. There is an asymptotic limit where this should happen: from equations (7.6)-
(7.8) it can be deduced that a system invariant along ez (hereafter called 2D3C for two-
dimensional three-components) will not be damped by the nonlinear terms.

Indeed, in the 2D3C limit, the gradient of the velocity and pressure field reduces to
∇ = (∂x, ∂y, 0)T and consequently ω = ωzez. Therefore both DH and DQ are zero since
ez · ∇ vanishes. It seems therefore plausible that helicity (and skew-diffusion) will be
generated in systems close to the 2D3C limit 1. While the buoyancy force is anisotropic,
it is known to sustain fully 3D turbulent states [153, 161, 162] and is therefore probably not
sufficient on its own to reach the 2D3C limit. In the present investigation we will consider
both the case F = 0 and the case where this term is associated with an externally-imposed
magnetic field, allowing the flow to approach the 2D3C regime.

7.3 Numerical set-up and parameters
Details on the 12 simulations documented in this investigation are given now. The three-
dimensional Navier-Stokes equations and the buoyancy equation [Eqs. (7.2)–(7.4)] are
integrated using pseudo-spectral Direct Numerical Simulations (DNS) in a 2π-periodic
cube. The equations are integrated using a 3rd order Adams-Bashfort scheme and

1In this 2D3C limit, we note that the non-trivial relation between the contributions to the helicity
Hz = Hx +Hy can be derived using incompressibility.
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Figure 7.1: Kinetic energy spectrum E(k) for a typical run (G = 150) at 1283 and 2563

resolution.

dealiasing is performed by phase-shifting. Initial conditions are statistically homogeneous,
isotropic, with a peaked-initial spectrum around wavenumber k = 1.5. We start from
initial conditions with a small amount of helicity (the normalized amount of initial helicity
is of the order of a few percents). Any infinitesimal non-zero helicity is amplified by the
present linear instability mechanism, and the nonlinearly saturated state is independent
of the initial conditions. Simulation parameters are summarized in table 7.1. The
integral-scale Reynolds number is defined as RL = u′L/ν, with u′ =

√
2E/3, E being

the kinetic energy and L the integral lengthscale, L = 3π
4
∫
k−1E(k)dk/E. The Taylor-

scale Reynolds is given by, Rλ =
√

20E2/(3νϵ). Since the presence of the magnetic
field renders the dynamics close to two-dimensional with three-components, the required
resolution for a given Taylor-scale Reynolds number is much smaller than for an isotropic
three-dimensional flow. Indeed, for a three-dimensional isotropic turbulent flow, a well-
resolved simulation reaching a value Rλ ≈ 2300 would require a spatial resolution of
122883 grid-points [163].

The typical Reynolds number based on the RMS velocity fluctuation and integral
lengthscale is varying in the range RL ∈ [103, 104] for all runs with non-zero magnetic
field. The initial value of the normalized helicity is small in all runs. All results are
presented during a statistically steady state.

The simulations were performed at a resolution of 1283 grid-points. This modest
resolution allows to carry out long simulations which is useful to evaluate the long-time
behavior of the system in order to compute converged statistics during the statistically
steady state and to investigate reversals. However, consistency checks at a resolution of
2563 grid-points confirm the results. We illustrate this in Fig. 7.1, where we plot energy
spectra for the same physical parameters using both a resolution of 1283 and 2563 grid-
points. The spectra roughly superpose all the way to the cut-off wavenumber of the
1283 simulation. In particular, since we show that the helicity is piloted by the largest
wavelengths (smallest wavenumbers), this relatively modest resolution seems sufficient to
capture the physics of the system.
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B0 G Hz H̃z Ξ̃z RL Rλ γ
0.0 0 0.0 0.0 0.0 265 81.53 0.64

0.170 48.1 4.8 0.017 0.31 1063 285 0.85
0.200 66.7 12.5 0.033 0.48 1242 339 0.89
0.300 150 57.4 0.043 0.64 2328 601 0.93
0.400 267 155 0.056 0.67 3404 852 0.94
0.500 417 302 0.066 0.71 4952 1235 0.95
0.555 513 354 0.068 0.72 5752 1451 0.95
0.600 600 453 0.071 0.74 6882 1696 0.96
0.650 704 517 0.073 0.75 7483 1832 0.96
0.700 817 662 0.076 0.75 8238 2038 0.96
0.760 963 710 0.077 0.78 9024 2270 0.97
0.800 1067 826 0.078 0.80 9647 2337 0.97

Table 7.1: Parameters and steady state values of several integral quantities. All
simulations use ν = 0.0067, N = 0.6, η0 = 0.001, ρ0 = 1, µ0 = 1.

7.4 Results.
We first consider a reference case of buoyancy-driven turbulence without imposed
magnetic field [F = 0 in Eq.(7.2)]. Iso-enstrophy surfaces are shown in Fig. 7.2(a) for
the case N = 0.6 illustrating the presence of small-scale flow structures. Even though the
mechanism which generates the flow is inherently anisotropic, no generation of mean
helicity was observed, irrespective of the value of N , which was varied in the range
N ∈ [0.3, 4.5]. These initial tests show that in statistically homogeneous buoyancy-driven
turbulence without the presence of other effects, the strength of the nonlinear damping
is too large to allow for a spontaneous generation of mean helicity.

In order to reduce the importance of the nonlinear damping terms we add an additional
source of anisotropy to the simulations, in the form of an imposed vertical magnetic field
(F in Eq. (7.2)). Indeed the Joule-damping associated with the Lorentz-force, rapidly
tends to render the system invariant in the direction of the magnetic field if this latter
is strong enough [20, 117]. Equivalently, we could have added rotation to the system,
as in [145], which also allows to approach the 2D3C limit. We consider the quasi-
static approximation where the Lorentz-force appears in closed form [117] in the Navier-
Stokes equations, and the induction equation does not need to be solved. The Lorentz
force acts then as a damping on the velocity fluctuations and its influence writes in this
approximation, in Fourier representation,

F̂ = − B2
0

ηµ0
(cos2 ϕ)û, (7.10)

with µ0 the permeability, η the magnetic diffusivity and ϕ the angle between the wave-
vector associated with û and the direction of the magnetic field. This linear anisotropic
damping term is of interest to gradually reach a 2D3C state. We fix the value N = 0.6
and vary the value of B0. The control parameter is now the dimensionless number

G = B2
0

Nηρ0µ0
, (7.11)
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(a)

(b)

Figure 7.2: Enstrophy in unstably stratified turbulence (N = 0.6, ν = 0.0067). (a)
Without magnetic field [G = 0, see Eq. (7.11) ]; (b) with magnetic field, G = 300.
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Figure 7.3: (a) Time evolution of vertical kinetic helicity Hz and potential helicity Ξz for N = 0.6; G = 300.
(b) Normalized helicities H̃z, Ξ̃z as a function of G (for fixed N = 0.6).

which is varied in the range G ∈ [0, 1100]. For large values of G, the flow becomes almost
invariant in the vertical direction (see Fig. 7.2(b)). We quantify this by measuring the
vertically averaged kinetic energy compared to the total kinetic energy as in [164]:

γ = ⟨E⟩z
⟨E⟩

≡
⟨∥ 1

L

∫ L
0 udz∥2⟩

⟨∥u∥2⟩
, (7.12)

which varies from γ = 0.6 for G = 0 to γ = 0.95 for G = 1100. This illustrates that the
flow is close to the 2D3C limit for the largest values of G we considered.

We show in Figure 7.3(a), the results of a run where G = 300, illustrating that there
is helicity generation when the magnetic field is strong enough. Below G ≈ 40 the value
of the mean-helicity could not easily be disentangled from random fluctuations.

The typical behavior for large values ofG, as in Figure 7.3(a), is a linear phase (Nt < 5)
for which the growth rate is exponential as predicted by the linearized Eqs. (7.6)-(7.8),
followed by a saturation when damping terms can no longer be neglected. Eventually
helicity fluctuates around a steady state (Nt > 100).

In the following we average helicity over the statistically steady state. Fig. 7.3(b)
shows the relative vertical helicity

H̃z = ⟨uzωz⟩ /
(√

⟨u2
z⟩
√

⟨ω2
z⟩
)
. (7.13)

This quantity does not exceed 0.1, even for the largest values of the magnetic field strength.
We will now give an explanation for this observation.

An intuitive, structure-based interpretation of helicity generation in the present
flow is that the helicity corresponds to segregated patches of vertical vorticity with
a definite sign of vorticity while they rise, and the opposite sign when they descend.
The anisotropic damping by the magnetic field leads to an invariance in the vertical
direction of these patches. This would correspond, in a horizontal cut through the
domain, to a dominant value of the vertical helicity of one sign. This is assessed in
Fig. 7.4(a). In this visualization, both positive and negative small-scale helicity patches
are observed. Furthermore, comparing the vertical velocity component Fig. 7.4(b) and
vorticity Fig. 7.4(c), no clear spatial correlation is observed. It is thus not clear from these
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(a) (b)

(c) (d)

Figure 7.4: Horizontal cuts through the simulation domain for G = 500. The quantities
are (a) vertical component of local helicity hz, (b) vertical velocity uz, (c) vertical vorticity
ωz, (d) Stream-function ψz associated with the velocity in the horizontal plane.
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Figure 7.5: (a) Kinetic energy spectrum E(k) and helicity spectrum H(k) for G = 0.3.
(b) Spectra kE(k) and H(k). This representation shows that the largest scales of the
flow, where |H(k)| = kE(k), are fully helical.

pictures which structures are responsible for the mean helicity. This visually confirms the
small value of the relative helicity H̃z.

It will be shown that the helicity is not contained in the small vortical structures
visualized in Fig. 7.2(b) (or Fig. 7.4(c)), but in larger structures that are directly forced
by the buoyancy instability driving the turbulence and which are associated with a two-
dimensional condensate. With condensate we mean energy in the largest scales of a close
to two-dimensional flow. Such a condensate results from blockage of the forward energy
cascade for close-to-two-dimensional flow at large values of the magnetic field strength
[165].

Insights into the multi-scale nature of turbulent phenomena are obtained by
considering Fourier-spectra. We highlight in this section the spectral characterization of
the statistically stationary flow for G = 0.3. In Fig. 7.5(a) we show the three dimensional
kinetic energy spectrum E(k) computed as an average over a duration of t ≈ 60/N during
the statistically steady state of the run. It is observed that the spectrum displays an
approximate k−2 scaling for intermediate wavenumbers. It is interesting to note here that
this is quite similar to observations in high-resolution rotating stably stratified turbulence
[145].

In Fig. 7.5(a) the helicity spectrum is also shown. This spectrum coincides at large
scales and falls of somewhat less fast at larger wavenumbers. An interesting insight is
obtained by considering the Cauchy-Schwarz inequality which relates the two spectra,

|H(k)| ≤ kE(k). (7.14)

In the limiting case where |H(k)| = kE(k) the flow is Beltramized, which means that
the vorticity is aligned with the velocity. In Fig. 7.5(b) we show again the two spectra,
but with E(k) mulitplied by k. We show that the two spectra do coincide for k = 1,
which shows that the largest scales are corresponding to this Beltramized state where the
normalized helicity is equal to unity. This spectral consideration thereby confirms that the
largest scales of the flow are helical, as also suggested by the physical space investigation
of the flow structures.

In order to highlight these large scale structures in physical space, we introduce the
stream-function associated with the 2D motion, ψz such that ωz = −∆x,yψz, with ∆x,y
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the horizontal Laplacian.
Indeed, both ωz and ψz are associated with rotating velocity patterns, but the

vorticity is in general associated with small scale structures whereas the stream-function
characterizes larger-scale fluid motion. Visualizing ψz, in Fig. 7.4(d), it is observed
that the large-scale rotating motion is fairly well correlated with the vertical velocity
Fig. 7.4(b), which suggests that the mean-helicity is contained in the large-scale, two-
dimensional condensate-like structure of the flow. Indeed, considering the vorticity, it is
almost impossible to discern the helicity containing structures of the flow.

To substantiate these observations, we introduce a new quantity named potential
helicity, (whereas the former helicity is designated by kinetic helicity) defined by

Ξz = ⟨uzψz⟩. (7.15)

This quantity is shown to evolve in time very similar to the kinetic helicity, as shown in
Fig. 7.3(a).

The relative potential helicity

Ξ̃z = ⟨uzψz⟩ /
(√

u2
z

√
ψ2
z

)
(7.16)

is however observed to be significantly larger than the kinetic helicity (Fig. 7.3(b)). The
fact that this quantity, is close to unity and that the non-normalized value almost coincides
with the kinetic helicity shows that the helicity is contained in the largest structures,
associated with wavenumber k ≈ 1, which is confirmed by the spectra shown in Fig. 7.5.

Note that in a different limit, namely weak MHD turbulence, for the imbalanced case
with strong correlation between the magnetic field and the velocity field, condensates of
the residual energy were observed, associated with the breakdown of mirror symmetry at
the largest scales [166].

7.5 Reversals of the helicity.
The presence of strong fluctuations could possibly allow for the reversal of the sign of
the helicity. Indeed, both signs of the helicity are equally probable and it is natural to
wonder whether the system can spontaneously reverse the sign of the helicity. We have
investigated this possibility for small values of G, where the flow is not too close to its
2D3C limit. We show the results in Fig. 7.6 for G = 80. We indeed observe reversals.
We have shown in the visualizations and the spectra that the helicity is governed by the
largest scales of the flow. The reversals seem therefore related to the stability of the flow
structures associated with these scales. A complete statistical analysis of the reversals
and the underlying dynamics is beyond the scope of this chapter.

7.6 Conclusions of this chapter.
We presented a generic mechanism to generate helicity without the need for walls,
viscous effects or statistical inhomogeneity. The generation of helicity is piloted by the
interaction between skew-diffusion and helicity, represented by Eqs. (7.6) and (7.8). For
the mechanism to be effective, the flow needs the presence of an unstable density gradient
and a body-force which allows the system to attain a close-to-two-dimensional flow-state.
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Figure 7.6: Reversals of the value of the mean helicity can be observed for certain values
of the magnetic field (here G = 80).

The helicity is contained in condensate-like large-scale structures, associated with
wavenumber k = 1, which are better assessed using the stream-function associated with
the horizontal motion than using the vorticity.

The spontaneous nature of the helicity-generation and the random reversals invite
to speculate on the relevance of the present observations for planetary dynamos and
hurricane-genesis. Considering the combination of unstable stratification with other
effects such as system rotation seems a logical direction to further explore the present
class of symmetry breaking and its possible geophysical relevance.

Retrospective. This last chapter of the PhD manuscript reports on the first investigation
carried out during this PhD project. After the results we obtained after publication of
these results [167], such as the those reported in Chap. 4, it seems that the observed
results in the present chapter can be understood by the fact that in the 2D3C limit, to
which this flow transcends for strong magnetic field strength contains an invariant which
has tendency to accumulate at the largest scales of the system. This effect was illustrated
in the truncated 2D3C Euler system, illustrated in Fig. 4.9 where the k = 1 mode was
shown to represent the effect of mean-helicity. The fact that the helicity is here also
contained in a ’Beltramized’ k = 1 mode does not seem a coincidence and illustrates how
simple arguments using statistical mechanics can give insights into complex dynamics.
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Conclusions and Perspectives of this
Thesis

Conclusions
This thesis treated the subject of two-dimensional three-component turbulent flows. The
most interesting observations are perhaps found when a realistic flow approaches this limit,
either from the strictly 2D2C side, or starting from fully three-dimensional turbulence.

We will not repeat here all the observations of the ensemble of investigations of this
thesis, since partial conclusions can be found at the end of each results chapter. What
we think is interesting, is that combining theoretical ideas and simplified systems, specific
physical phenomena could be identified which do not only exist in truncated inviscid
systems, but which also have their application in realistic flows.

The three applications to more applied systems are

1. The influence of the vorticity-scalar correlation on mixing. In particular by singling
out that it is an inviscid invariant which determines the decay of scalar variance, we
can understand why mixing is so drastically affected by the initial vorticity-scalar
correlation.

2. The influence of the 2D2C to 2D3C transition on the self-organization properties
of turbulence, an effect which survives in the presence of toroidal solid boundaries,
and which thereby has its possible application to research on magnetically confined
nuclear fusion.

3. The generation of helicity in unstably stratified turbulence. Indeed, when linear
energy input (here by buoyancy) is combined with a body force which renders the
dynamics strongly anisotropic, the large-scale helicity, also observed in truncated
equilibrium states, can emerge spontaneously.

Perspectives
We have in this thesis obtained these results combining ideas from equilibrium statistical
mechanics and numerical simulations. The thereby obtained insights have also raised an
important amount of questions, which we will discuss now.

Skew diffusion in 2D3C turbulence. The correlation between vorticity and scalar seems
to play a very important role in the initial conditions of scalar mixing problems. We
observed that this quantity persisted, for the Euler system, in the k = 1 mode. What we
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do not know is whether this quantity, if it is injected at large wavenumbers, is transferred
to smaller wavenumbers. In other words: is there an inverse cascade of skew diffusion?

Turbulence with curvature. In Chapter 5 we left several open ends. Indeed, there
are theoretical and physical questions. What we mean by theoretical is that it would
be interesting to show in the Galerkin-truncated axisymmetric system, how energy
conservation is violated.

Furthermore, we would like to know how this can be fixed. Secondly, it would be of
interest to investigate whether the influence of curvature can become more important if
the toroidal injection scale is of the order of magnitude of the major radius R. Indeed, in
the present set-up we needed cubic damping to prevent the toroidal energy from growing
without bound. In previous studies [49] this extra damping was not needed and the
curvature allowed to damp the system sufficiently by coupling the toroidal and poloidal
dynamics.

The other invariants of the axisymmetric turbulence, angular momentum and
generalized helicity have not been investigated in the present investigation. This is an
interesting direction for further study.

Transition and confinement in toroidal geometry. Specifically this chapter opens an
important number of perspectives. Since tokamaks and other fusion devices such as the
RFP and stellarator have been studied extensively, it is more than interesting to put
the present results in the context of fusion-plasma research. For instance: what are the
underlying instabilities in a tokamak plasma. Are they of linear nature, is the anisotropy
of existing instabilities somehow characterizable by a quantity like CT/CP , possibly by
identifying the linear growth rate and the direction of instabilities in the tokamak edge.
Is it possible to inject more poloidal movement to calm the tokamak turbulence, pushing
it towards a 2D2C state? Also, the preliminary results in appendix B show that helicity
might play an important role in the axisymmetric system. Is this also the case in more
complex, toroidal geometry?

Reversals of helicity. In the end of Chap. 7 we showed that helicity can spontaneously flip
from one sign to another.We don’t think that there is a direct correlation with the inversion
of the Earth’s magnetic field. Firstly, because the characteristic times are different, and
secondly, because the alpha effect is not the only phenomenon responsible for generating
the magnetic field. However, this helicity inversion, coupled with other mechanisms, could
contribute to the weakening of the Earth’s magnetic field that precedes its reversal.

Altogether, it seems that this thesis is not the final contribution in the investigation of
two-dimensional three-component turbulent flows.

99



A Appendix: A kitchen recipe to
compute equilibrium energy spectra

This section shows how to compute equilibrium energy spectra once the invariants of a
system are known. We specify the results for two-dimensional incompressible flow. Details
and justifications can be found in [168, 90]. In particular, the second reference, Simon
Thalabard’s PhD manuscript gives a detailed procedure, which is definitely more rigorous
than the present "kitchen recipe".

A.1 The general case
The derivation of Kraichnan’s equilibrium distribution is as follows. We determine the
invariants of the system, and we decompose them on the number of coordinates n,
Gn1, Gn2, .... Their sum will allow to define a constant of motion,

Sn = α1Gn1 + α2Gn2 + ... (A.1)

The single mode partition function is then given by

Zn =
∫
Vn

exp[−Sn]dy1ndy2n..., (A.2)

where Vn is the phase-space containing all possible states yin. In general this integral can
be computed exactly. The average equilibrium modal distribution of quantity Gnp is then
directly obtained from this integrand using the relation

⟨Gnp⟩ = − 1
Zn

dZn
dαp

, (A.3)

which is the same as
⟨Gnp⟩ = −d ln [Zn]

dαp
. (A.4)

This method, simplifies the calculation once the Gaussian integrals are worked out. These
integrals are rather tedious to calculate analytically, but symbolic math software such as
maple allows to compute the Gaussian integrals rather rapidly.

A.2 Energy and enstrophy in 2D turbulence
We consider a two-dimensional incompressible turbulent flow. We will first define the
modal decomposition of the velocity field.

100



In two-dimensions, since incompressibility constrains the velocity to be perpendicular
to the wavevector, only one free velocity-direction exists in the kx, ky plane, ew = ek ×
ez. With ez, ek unit-vectors in the vertical direction and parallel to the wave-vector,
respectively. The velocity u(k) = ũ(k)ew is a complex quantity, so that two independent
real coefficients describe the velocity vector.

u(k) = ũ(k)ew = y1(k)ew + iy2(k)ew. (A.5)

The energy is given by

E(k) = 1
2⟨u(k) · u(k)∗⟩ = 1

2⟨y2
1(k) + y2

2(k)⟩. (A.6)

The vorticity is the curl of the velocity,

ω(k) = ik × ewũ(k). (A.7)

We have

k × ew = ϵijmkjϵmabk
−1kaδb3 (A.8)

= (δiaδjb − δibδja)k−1kjkaδb3 (A.9)
= k−1k3ki − kδi3 (A.10)

So that
ω(k) = i(k−1k3ki − kδi3)ũ(k). (A.11)

Since k3 = 0 (no variations in the vertical direction),

ω(k) = −ikũ(k)ez = ω(k)ez. (A.12)

The enstrophy is then

W (k) = 1
2⟨ω(k)ω(k)∗⟩ (A.13)

= 1
2k

2⟨ũ(k)ũ(−k).⟩ (A.14)

= k2E(k). (A.15)
(A.16)

A.3 Advection of the two-dimensional passive scalar
We consider that the flow advects a scalar θ. The scalar is also described by its real and
imaginary parts,

θ(k) = y3(k) + iy4(k). (A.17)
The scalar "energy" is given by

C(k) = 1
2⟨θ(k)θ(−k)⟩ (A.18)

= 1
2⟨y2

3(k) + y2
4(k)⟩. (A.19)
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The vorticity-scalar correlation, ⟨θω⟩ is an additional invariant of the system. Since this is
not a quadratic quantity, one should be careful with the Fourier-correlation ⟨ω(k)θ(k)∗⟩,
since it contains real and imaginary parts. The real part corresponds to the physical space
correlation.

Q(k) = ℜ [⟨ω(k)θ(k)∗⟩] (A.20)
= ℜ [⟨−ikũ(k)θ(k)∗⟩] (A.21)
= ℜ [⟨−ik(y1(k) + iy2(k))(y3(k) − iy4(k))⟩] (A.22)
= k⟨y2(k)y3(k) − y1(k)y4(k)⟩. (A.23)

We have expressed our 4 invariants as a function of the yi(k). We can now follow the
kitchen recipe.

A.4 Statistical mechanics predictions of the spectra
The generalized phase-space coordinates are thus yi(k) with i = 1..4. For every k, we
have four corresponding coordinates. We will call yi(k) ≡ yin. The conserved quantities
are

E =
∑
n

⟨En⟩, (A.24)

W =
∑
n

⟨Wn⟩, (A.25)

C =
∑
n

⟨Cn⟩, (A.26)

Q =
∑
n

⟨Qn⟩. (A.27)

We can therefore write for Sn,

Sn = αEn + βWn + γCn + δQn (A.28)

which can be written,

Sn = 1
2(α + βk2)(y2

1n + y2
2n) + 1

2γ(y2
3n + y2

4n) + kδ(y2ny3n − y1ny4n) (A.29)

The single-mode partition function is then

Zn =
∫∫∫∫ ∞

−∞
exp[−Sn]dy1ndy2ndy3ndy4n. (A.30)

This Gaussian integral can be computed (tedious, but Maple is a great help ...) and its
value is

Zn = 4π2

βγk2 − δ2k2 + αγ
. (A.31)

From this expression, one can derive the energy distribution,

⟨En⟩ = −d ln [Zn]
dα

, (A.32)
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yielding,
U(k) ≡ ⟨En⟩ = 1

α + βk2 − δ2

γ
k2
. (A.33)

This can be reformulated as
U(k) = 1

α + β′k2 . (A.34)

where β′ = β − δ2/(γ). So we find the same distribution as for classic 2D turbulence,
which should be so since the scalar is passive. For the scalar, we find,

C(k) ≡ ⟨Cn⟩ = 1
γ

α + βk2

α + βk2 − δ2

γ
k2

(A.35)

= 1
γ

α + βk2

α + β′k2 , (A.36)

which shows that the scalar spectrum is modified compared to the spectrum in the absence
of ⟨ωθ⟩, which is given by

C(k) = 1
γ
. (A.37)

How strong this modification is, depends on the initial correlation. The maximum
correlation is ⟨ωθ⟩=⟨|ω|⟩⟨|θ|⟩.
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B Appendix B: helicity generation in
axisymmetric turbulence

We present here results, which we have not completely explored. We therefore present
them like observations, with some speculation about the underlying physics. We think
it is interesting to report the observations in order to avoid the possibility to miss an
important physical feature.

In these simulations, the general set-up is identical to those in Sec. 5.4. We have
removed large-scale friction. For this case L = 2π which is not large. We use CP = 20,
cψ = 0 and c3 = 10−6, we keep the other parameters identical to those in Sec. 5.4. For
this set-up we found a critical forcing ratio for CT/CP ≈ 0.15.

In general, in forced two-dimensional turbulence in the absence of large-scale damping,
the kinetic energy accumulates until a condensate is formed. However, recent results on
approximately the same set-up as the one in our investigation, show that linear-forcing
combined with cubic damping leads to a (partial) suppression of the inverse kinetic energy
cascade [96]. We suspect that the same effect is present here. This arrest of the inverse
cascade is a topic of current research and might be related by the formation of coherent
structures of the size of the forcing, which do not actively interact with the larger flow
scales, which can be considered, for such flow, as uncorrelated noise. This explanation is
purely speculative, however.

In Fig. B.1 we show results for CT/CP = 0.2. For short times, the value of the
toroidal kinetic energy remains small, but does not decay as in Fig. 5.5(b). At longer
times, around t = 600 the toroidal energy suddenly rises to a larger value and remains in
this state for the rest of the simulated time. A hint of the origin of this sudden transition
is the appearance of mean-helicity in this case. Defining the relative helicity by

Hrel = H

2W 1/2E
1/2
T

, (B.1)

it is observed in Fig. B.1(d) that after the transition around t = 600, the normalized
helicity rises from small random fluctuations around zero to a plateau value, where the
relative helicity exceeds 80% of its maximum value.

For another flow, where CT/CP = 2.0, a bursty behavior is observed where at sudden
time-instants helicity takes non-neglible values. However, this seems to be a transient
effect.

In Fig. B.2, we show visualizations of the flows, corresponding to two cases where
helicity is strong. It is observed that the dynamics of vorticity, stream-function and
toroidal velocity are for these cases all dominated by highly energetic, helical vortices of
the size of the forcing-scale.
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Figure B.1: Temporal behavior of two specific cases with a forcing anisotropy close to
(CT/CP = 0.2), and not too far (CT/CP = 2.0) from the critical value separating 2D2C
and 2D3C dynamics. (a) Poloidal energy (b) toroidal energy (c) ratio of the energies (d)
normalized helicity.

Further research is needed to fully explore how strongly helical structures influence
axisymmetric turbulence in general. In particular, are these structures only artefacts of
the particular numerical set-up, or do they have a more general importance for research
on 2D3D turbulence.
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(a) (b)

(c) (d)

(e) (f)

Figure B.2: Visualizations of the flow-field during the statistically steady state for the
flows with CT/CP = 0.2 (left) and CT/CP = 2 (right). The displayed quantities are
vorticity ωθ (a,b), and toroidal velocity uθ (c,d)
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