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Résumé

Cette thèse de doctorat explore la dynamique de propagation des ondes de détente dans les cir-
cuits de réacteurs nucléaires, en se concentrant sur une configuration représentative d’un scénario
de type Accident de Perte de Réfrigérant Primaire (APRP) dans les Réacteurs à Eau Pressurisée
(REP). L’étude examine les charges de pression transitoires sur les structures internes, en par-
ticulier le cloisonnement du cœur du réacteur, induites par les ondes de détente générées par
la rupture brutale et totale (rupture guillotine) d’une des tuyauteries du circuit primaire de
refroidissement du REP. Cette analyse est menée en combinant des mesures expérimentales sur
un banc d’essai de géométrie simplifiée mais représentatif du scénario APRP et des simula-
tions numériques. Ces simulations sont réalisées en faisant appel à une hiérarchie de modèles
numériques : 1D, 2D axisymétriques et 3D, avec ou sans prise en compte des mécanismes
d’interaction fluide-structure. Les modèles 1D incluent des représentations simplifiées ou modèles
d’impédance des obstacles présents dans l’écoulement, indispensables pour réduire les coûts de
simulation de la propagation des ondes au travers d’un circuit complet. Ces obstacles sont des
diaphragmes de diamètre et d’épaisseur variables, représentatifs des singularités géométriques
présentes dans les circuits parcourus par les ondes de détente. La comparaison calcul/expérience
permet d’évaluer le potentiel prédictif des différentes stratégies mises en œuvre.

Le Chapitre 1 introductif du mémoire détaille le contexte et la motivation de l’étude menée en
mettant en évidence l’importance d’une compréhension approfondie des phénomènes physiques
associés au scénario APRP et la nécessité de modèles simplifiés pour simuler l’écoulement de
fluides dans les géométries complexes d’un REP. Une revue de la littérature récapitule les prin-
cipaux travaux dans l’analyse par voie numérique des réacteurs nucléaires et les simulations
d’écoulement transitoire. Une analyse des approches numériques développées pour la propaga-
tion d’ondes en présence d’obstacles avec description simplifiée est également menée pour des
applications hors contexte nucléaire.

Les Chapitres 2 et 3 présentent respectivement i) la plateforme expérimentale MADMAX utilisée
pour produire les mesures de référence ainsi que l’évolution de ses configurations au cours de la
thèse, ii) les modèles disponibles au sein du logiciel EUROPLEXUS et utilisés pour mener les
simulations numériques des configurations étudiées expérimentalement.

Le Chapitre 4 détaille les résultats des expériences et des simulations de la propagation des ondes
de détente à travers un unique diaphragme de géométrie modulaire. L’impact de la géométrie
des obstacles sur la propagation des ondes est analysé et les capacités prédictives de modèles
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numériques de complexité (et de coût) variable sont évaluées pour cette configuration de base.

Le Chapitre 5 élargit l’analyse à la configuration complète de MADMAX, incorporant une con-
duite de dérivation avec plusieurs diaphragmes positionnés dans cette conduite. La comparaison
détaillée des données expérimentales et des résultats des simulations révèle un bon accord dans
la capture du comportement transitoire et des différentiels de pression entre les conduites du
cœur et de la dérivation. Des configurations alternatives de MADMAX sont explorées dans le
Chapitre 6, mettant en évidence les effets de variation du nombre des diaphragmes et de leur
emplacement.

Les expériences sur la plateforme MADMAX et les simulations EUROPLEXUS réalisées dans le
présent travail contribuent à une meilleure compréhension des phénomènes d’écoulement tran-
sitoire dans les circuits de réacteurs nucléaires. Les comparaisons calcul/expérience proposées
fournissent des indications quantitatives sur la capacité prédictive des codes de simulation selon
les choix de description des singularités géométriques présentes dans l’écoulement. La conclusion
du mémoire propose quelques pistes d’analyses et d’améliorations pour l’avenir.

Mots-clés : Accident par Perte de Réfrigérant Primaire (APRP), Réacteur à Eau Pres-
surisée (REP), onde de raréfaction, interaction fluide-structure, simulation numérique, validation
expérimentale, EUROPLEXUS, installation MADMAX, diaphragme, écoulement transitoire,
sûreté des réacteurs nucléaires.
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Abstract

This doctoral thesis explores the dynamics of rarefaction wave propagation in nuclear reactor
circuits, focusing on a configuration representative of a Loss of Coolant Accident (LOCA) sce-
nario in Pressurized Water Reactors (PWR). The study examines transient pressure loads on
internal structures, particularly the reactor core baffle, induced by rarefaction waves generated
by the sudden and complete rupture (guillotine break) of one of the pipes in the primary cooling
circuit of the PWR. This analysis is conducted by combining experimental measurements on a
test bench with simplified geometry but representative of the LOCA scenario and numerical sim-
ulations. These simulations employ a hierarchy of numerical models: 1D, 2D axisymmetric, and
3D, with or without taking into account fluid-structure interaction mechanisms. The 1D models
include simplified representations or impedance models of the obstacles in the flow, essential for
reducing the simulation costs of wave propagation through an entire circuit. These obstacles
are orifice plates of varying diameter and thickness, representative of the geometric singularities
present in the circuits traversed by rarefaction waves. The comparison between calculations and
experiments allows for evaluating the predictive potential of the various strategies implemented.

Chapter 1 of the thesis introduces the context and motivation of the study, highlighting the
importance of a thorough understanding of the physical phenomena associated with the LOCA
scenario and the necessity of simplified models for simulating fluid flow in the complex geometries
of a PWR. A literature review summarizes the main works in the numerical analysis of nuclear
reactors and transient flow simulations. An analysis of the numerical approaches developed for
wave propagation in the presence of obstacles with simplified descriptions is also conducted for
applications outside the nuclear context.

Chapters 2 and 3 respectively present i) the MADMAX experimental platform used to produce
the reference measurements and the evolution of its configurations during the thesis, ii) the mod-
els available within the EUROPLEXUS software and used to perform the numerical simulations
of the experimentally studied configurations.

Chapter 4 details the results of the experiments and simulations of rarefaction wave propagation
through a single modular orifice plate. The impact of obstacle geometry on wave propagation is
analyzed, and the predictive capabilities of numerical models of varying complexity (and cost)
are evaluated for this basic configuration.

Chapter 5 expands the analysis to the complete MADMAX configuration, incorporating a by-
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pass pipe with several orifice plates positioned in this pipe. The detailed comparison of experi-
mental data and simulation results reveals good agreement in capturing transient behavior and
pressure differentials between the core and by-pass pipes. Alternative configurations of MAD-
MAX are explored in Chapter 6, highlighting the effects of varying the number and placement
of the orifice plates.

The experiments on the MADMAX platform and the EUROPLEXUS simulations conducted in
this work contribute to a better understanding of transient flow phenomena in nuclear reactor
circuits. The proposed calculations/experiments comparisons provide quantitative indications
on the predictive capacity of the simulation codes based on the choices of geometric singularity
descriptions present in the flow. The thesis conclusion proposes some avenues for future analysis
and improvements.

Keywords: Loss of Coolant Accident (LOCA), Pressurized Water Reactor (PWR), rarefac-
tion wave, fluid-structure interaction, numerical simulation, experimental validation, EURO-
PLEXUS, MADMAX facility, orifice plate, transient flow, nuclear reactor safety.
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Chapter 1

Introduction

1.1 Context and motivation

Loss Of Coolant Accident (LOCA) in a Pressurized Water Nuclear Reactor (PWR) consists in a
brutal and total opening (guillotine break) of one of the main coolant pipes. The transient rar-
efaction wave generated by the break propagates within the primary circuit and, when reaching
the reactor core (see Figure 1.1), crosses two zones displaying different geometric characteristics:
the reactor core itself (fuel assemblies) and the by-pass zone between the baffle and the core
barrel where several perforated reinforcement plates are arranged. This difference leads to non-
identical travel times of the rarefaction wave in the two zones, causing a transient pressure load
between the two sides of the baffle (see Figure 1.2). This phenomenon generates such stresses on
the baffle that it can cause the structure to deform, thus no longer guaranteeing its structural
integrity. These structures are of primary importance since internals are designed to ensure the
cooling of the fuel and the movement of the emergency control assemblies during the accident
(see for instance [3]; [4]; [5]).

Figure 1.1: PWR vessel and internal components [1].
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As all the details of the primary circuit cannot be modeled, simplified models are used to
represent the flow in some areas, such as between the perforated plates. Some of these models
are implemented in the fast-transient fluid-structure dynamics software EUROPLEXUS [6],
developed at DYN (Laboratory of Dynamics Studies at CEA Saclay in France), and validated
through experimental facilities.

(a)

Core
︷ ︸︸ ︷

By-pass

Fuel assembly

Mixing grid

Core barrel

Baffle

Reinforcement plate

Rarefaction wave

︸ ︷︷ ︸

(b)

Figure 1.2: (a) Baffle and perforated reinforcement plates [1]. (b) Simplified scheme.

The MADMAX facility has been developed at DYN with a focus on the study of a LOCA
scenario: MADMAX stands in French for “Modélisation de l’Accident de Dépressurisation -
Maquette Analytique-eXpérimentale”, which can be translated as “Depressurisation Accident
Modelling - Analytical-Experimental Mock-up”. More precisely the MADMAX experiment,
detailed in Chapter 2, has been designed 20 years ago to provide experimental results which
could be used to calibrate and/or to assess the accuracy of Finite Elements (FE) and Finite
Volumes (FV) simulations (including or not the Fluid-Structure Interaction (FSI) dynamics)
when applied to the numerical prediction of a rarefaction wave propagating across different
obstacles positioned in pipes, thus reproducing some key features of a LOCA configuration.

The phenomenon we intend to observe and analyze is a very rapid transient and we are
particularly interested in observing the first 10÷ 20 ms of the transient.

This work aims to significantly expand the validation scope of numerical models imple-
mented in EUROPLEXUS for representing obstacles by conducting unprecedented experimental
campaigns and numerical simulations on the MADMAX experiment. Previous seminal works,
particularly those by V. Faucher and colleagues (2012) [1], have influenced the current state-
of-the-art in nuclear reactor analysis and transient flow simulations, focusing on transient wave
propagation through perforated plates relevant to LOCA scenarios in PWRs. Faucher’s research
utilized a single orifice plate configuration and employed only a 1D model in EUROPLEXUS,
comparing it with experimental results and a simplified 3D model from another software.

Our work extends this foundation by exploring six different orifice plate configurations, per-
forming a sensitivity analysis on geometric characteristics, and incorporating 2D axisymmetric
calculations and Fluid-Structure Interaction (FSI). These new orifice plates were designed, man-
ufactured, and installed with significant personal involvement, and experiments were conducted
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personally with technical assistance. This research was initially presented at ICONE30 [7] and
later expanded in a 2024 publication [8].

Additionally, the study evolved to include scenarios with multiple orifice plates in three
configurations including not only the core pipe but also a by-pass pipe. These configurations
were simulated using EUROPLEXUS with various models, including a simplified 1D model,
a novel 1D model with FSI effects, and two innovative 3D reference models, one with fixed
structures and the other incorporating FSI dynamics. Each experimental setup modification
and the subsequent experiments were conducted with hands-on involvement.

1.2 State of the Art

Reference works in the context of nuclear applications

The recent state-of-the-art in the field of nuclear reactor analysis and transient flow simula-
tions remains significantly influenced by several seminal works, notably those by V. Faucher and
colleagues. As mentioned in the previous Section, Faucher et al. (2012) [1] conducted a compre-
hensive numerical and experimental analysis of transient wave propagation through perforated
plates, particularly relevant for simulating Loss of Coolant Accidents (LOCA) in Pressurized
Water Reactors (PWRs). Their work provided valuable insights into the fluid loading on inter-
nal structures, such as the reactor core baffle, under LOCA conditions. The analysis was carried
out on a single orifice plate configuration on the MADMAX device while an EUROPLEXUS
numerical simulation was carried out using only a 1D model for the representation of pipes and
obstacles, similar to the ones which will be developed and assessed in the present work. A com-
parison was then made between the experimental result, the EUROPLEXUS calculation and
a simplified 3D model performed with another commercial software. Some limitations of this
seminal work were: the assessment of the simplified 1D model for a single geometry of obstacle;
a limited instrumentation for the platform; the lack of assessment of the pressure differential
between a core pipe and a by-pass pipe, an important feature in the LOCA context.

The present work extends [1] by addressing the above mentioned limitations: the relevance of
simplified models is assessed for various orifice plate configurations, with a sensitivity analysis on
the geometric characteristics of the obstacle (thickness and diameter); the experimental platform
is equipped with a larger set of sensors; the experiment/simulation comparison is enriched with
new 2D axisymmetric calculations and the account of 2D/3D Fluid-Structure Interaction (FSI);
configurations involving the propagation of an expansion wave through a core pipe and a by-pass
pipe are experimentally and numerically investigated.

Faucher et al. (2014) [9] contributed to the further understanding of the fast transient me-
chanical consequences of LOCA on PWR internal structures. The coupled 1D/3D simulations
with fluid-structure interaction developed in this other seminal work offered a robust method-
ology for representing small geometric details, such as perforated plates near the reactor core,
crucial for industrial applications. This work was taken as a reference for the presentation of
the equations related to structural dynamics in Chapter 3 and the proper way to account for
Fluid-Structure Interaction in the analysis of the flow configurations.

Additionally, research conducted at the Commissariat à l’énergie atomique et aux énergies
alternatives (CEA) has been instrumental in advancing the understanding of transient flow phe-
nomena. Gibert and Schwab (1983) [10] investigated the reaction between sodium and water,
focusing on representing perforated plates traversed by a plane wave. Similarly, Izquierdo and
Valin (2011) [11] provided experimental results on depressurization wave propagation through
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singularities, offering insights into the comparison between experimental data and EURO-
PLEXUS calculations. The latter served as preliminary work to the results subsequently pre-
sented by Faucher et al. (2012) [1].

Numerous studies in the literature have addressed the pressure drop induced by geometric
obstacles under steady flow conditions. For instance, Idel’Cik (1969) [12] compiled a compre-
hensive database on this topic and we extensively used his work for calculating localized head
losses in the modeling of our simplified simulations. Additionally, several models have been
proposed to account for acoustic inertial corrections when waves propagate in a stationary flow,
as demonstrated by Baylac et al. (1971) [13] and Gibert (1988) [14]. However, these existing
models fall short of providing a complete representation of phenomena spanning from initial
pressurized steady state to final stationary leak flow in pipe break simulations, indicating the
potential benefit of combining different approaches.

Furthermore, computational tools and methodologies developed for fluid-structure interac-
tion analysis, as demonstrated by Pedroso (1986) [15] and Daru and Tenaud (2009) [16], have
facilitated the qualification of calculation methods for nuclear reactor components, ensuring
their structural integrity under transient conditions.

The works of Gibert (1988) [14] and Pedroso (1986) [15] were of particular interest in this
thesis for understanding and introducing the formulation of acoustic impedance for our simplified
model in Chapter 3.

One of the most significant developments pertains to the simulation of two-phase flows within
nuclear reactors. Radman et al. (2021) [17] proposed a segregated algorithm for simulating
dispersed two-phase flows in porous media, implemented within the OpenFOAM programming
library. This approach offers an efficient and accurate method for modeling physical interactions
in complex engineering systems.

Recent advancements in computational fluid dynamics have led to the development of so-
phisticated numerical methods for simulating aeroacoustic phenomena. Feuchter (2021) [18]
presented a lattice Boltzmann cumulant method for direct aeroacoustic simulation, offering a
promising tool for investigating aeroacoustic effects in nuclear reactor systems.

Mokhtari et al. (2020) [19] developed a wavelet-based approach for multiscale filtering of
compressible wave propagation in complex geometries in the framework of pressurized water
reactors depressurization transient analysis, contributing to the understanding of transient flow
phenomena in nuclear reactor systems. Radaideh et al. (2019) [20] analyzed loss of coolant
accident scenarios under the restriction of reverse flow, providing insights into flow behavior and
transient phenomena in nuclear reactor safety analysis.

Recent advancements by Faucher et al. (2021) [21] introduced a novel numerical framework
for solving strongly coupled fluid-structure dynamic problems, particularly applicable to PWR
fuel assemblies under axial flow and dynamic loading conditions. Their work emphasized the
importance of porous approaches and computational efficiency in simulating hydraulic coupling
between fuel assemblies.

The present contribution to the efficient simulation of transient flows in the presence of obsta-
cles has obviously benefited from the experimental and numerical frameworks developed in the
works we have briefly reviewed. The manuscript will detail in Chapter 2 how the experimental
set-up has been evolved and enhanced to produce an enriched set of validation measurements.
The state-of-the-art numerical treatments available in EUROPLEXUS and reviewed in Chapter
3 will be applied in Chapters 4, 5 and 6 to an extended set of flow configurations in order to
provide a thorough assessment of the predictive power of simplified models.
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Fast transient flows in the presence of obstacles outside the nuclear field

Many other works, not related to the nuclear domain, have been investigated throughout the
thesis in order to keep track of the various numerical strategies developed to simulate fast
transient flows in the presence of obstacles. These works cover a wide range of interesting
application fields, from aeroacoustics to gas dynamics and the analysis of shock waves (rather
than expansion waves) interacting with various types of obstacles. Unfortunately, very few of
these studies address the propagation of pressure waves in water or liquids in general; they focus
predominantly on air or gases. Additionally, the fluid-structure interaction phenomena we are
interested in do not produce the violent shocks considered in some if not most of the works cited
below.

Regarding the response of an orifice plate in an aeroacoustic regime, studies by Rienstra
and Hirschberg (2006) [22] and Hofmans et al. (2001) [23] offer valuable insights. Nonetheless,
the methodologies outlined in these studies are not directly applicable to the transient flows
under consideration here. Efforts have been made to extend head loss concepts to unsteady
flows, particularly in the context of friction losses in pipes. Two primary approaches have
emerged: one where the friction coefficient depends on the mean instantaneous velocity and its
spatial and temporal derivatives, exemplified by Brunone et al. (1991) [24], and another where
it depends on a weighted sum of mean velocity variations, as proposed by Zielke (1968) [25].
Further details and variations on these approaches can be found in studies by Adamkowski and
Lewandowski (2006) [26] and Vitkovsky et al. (2006) [27]. Despite these advancements, none
of these approaches directly addresses the physics of transient flows. However, they provide
valuable avenues for research, particularly in cases where combined stationary head loss and
acoustic correction impedance models are inadequate.

Numerical studies, such as those conducted by Mohsen et al. (2013) [28], have explored
the effects of area contraction on shock tube performance, providing insights into transient
flow behavior in test structures. Similarly, Britan et al. (2006) [29] investigated shock wave
attenuation by porous barriers, offering guidelines for mitigating shock wave effects in refuge
ventilation systems.

Experimental and theoretical investigations into shock wave interaction with orifice plates
have been conducted. Dadone and Pandolfi (1971) [30] proposed a theoretical model for esti-
mating shock wave effects on orifices within ducts, with experimental validation demonstrating
good agreement with numerical predictions. Additionally, Eckenfels (2021) [31] studied explo-
sion mitigation via perforated plates using an explosively driven shock tube, highlighting the
role of geometric effects and plate number in attenuating shock waves.

The transient behavior of pressurized pipelines with in-line valves has been examined by
Meniconi et al. (2014) [32], who analyzed energy dissipation and pressure decay during tran-
sients. Their study provides insights into the dynamics of pressurized flow systems and factors
influencing pressure fluctuations during transient events.

Furthermore, recent experimental work by Laffay et al. (2020) [33] investigated noise radi-
ated from airflow channeled through diaphragms and perforated plates, providing information
on acoustic modifications and sources in practical applications. Ciccarelli et al. (2018) [34]
conducted experiments to study detonation propagation in a circular tube fitted with repeated
orifice plates, contributing to the understanding of detonation phenomena and propagation
mechanisms. Cummings (1984) described acoustic power losses in orifices in the absence of
mean flow, offering insights into the interaction between high-amplitude sound waves and ori-
fice structures. Igra et al. (2001) [35] conducted experimental and theoretical studies on shock
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wave propagation through double-bend ducts, providing valuable information on shock wave
attenuation and flow behavior in complex geometries.

Moreover, numerical investigations conducted by Igra et al. (1996) [36] on the interaction
of a planar shock wave with a square cavity provide insights into complex time-dependent
processes and offer a reliable physical model for similar shock wave interactions with other
complex boundaries.

Colas et al. (2019) [37] developed an implicit integral formulation to model inviscid fluid flows
in obstructed media, providing a technique for computing compressible fluid flows in physical
domains cluttered up with many small obstacles. Abate and Shyy (2002) [38] reviewed exper-
imental and numerical results to highlight the flow phenomena and main physical mechanisms
associated with confined shocks undergoing sudden expansion, contributing to the understand-
ing of dynamic structure in such scenarios. Additionally, Romenski et al. (2019) [39] discussed a
multiphase model for wavefields numerical simulation in the context of compressible fluid flows
in elastic porous media, offering insights into modeling wave propagation in saturated elastic
porous media based on thermodynamically compatible system theory for multiphase mixtures.

Furthermore, recent studies by Igra et al. (2016) [40] have numerically investigated the
mitigation of shock waves by different combinations of plate barriers, showing their effectiveness
in attenuating transmitted shock waves. The propagation of shock waves within circular cross-
section shock tubes with sudden area changes has been studied by Jiang et al. (1997) [41],
providing insights into transient shock-wave phenomena and interactions in such configurations.
Kroner and Mai (2005) [42] presented numerical solutions to compressible flows in nozzles with
variable cross-section, contributing to the understanding of flow behavior in variable geometry
ducts.

Moreover, Rudinger (1960) [43] investigated the passage of shock waves through ducts of vari-
able cross-section, providing insights into the wave patterns and transient processes involved in
such configurations. Loske (2016) [44] studied shock wave interaction with abrupt area changes,
shedding light on the effects produced on fluid flow dynamics. Schulze et al. (2016) [45] inves-
tigated linearized Euler equations for the determination of scattering matrices for orifice and
perforated plate configurations in the high Mach number regime, contributing to the under-
standing of aeroacoustic phenomena.

Igra and Gottlieb (1985) [46] studied the interaction of rarefaction waves with area enlarge-
ments in ducts, providing analytical and numerical insights into wave patterns and flow behavior
in such configurations. Emanuel et al. (2005) [47] investigated the performance of a shock tube
with a large-area contraction, offering insights into shock wave behavior in shock tube configu-
rations with sudden area changes.

Falcovitz and Igra (2008) [48] proposed a model for shock interaction with sharp area reduc-
tions, contributing to the understanding of shock wave behavior in configurations with abrupt
area changes. Alligne et al. (2014) [49] proposed an integer linear programming (ILP) approach
for optimizing real-time pump schedules in water distribution systems, considering various con-
straints such as capacity, demand satisfaction, water quality, and maximum power consumption.

Menina et al. (2011) [50] developed a quasi-1D model to account for variations in section in
gas dynamics, particularly in ducts with abrupt area changes. Payri et al. (2004) [51] conducted
a comparative study of numerical schemes to solve one-dimensional fluid-dynamic equations in
tapered pipes under impulsive flow conditions, highlighting the importance of scheme selection
and equation arrangement for mass conservation. Rochette and Clain (2006) [52] proposed
a finite volume method with a VFRoe solver to simulate compressible gas flow in a variable
porous medium for two-dimensional geometries, considering non-conservative terms to account
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for porosity variation.
Erez et al. (2000) [53] investigated the membrane effect on turbulent mixing measurements

in shock tubes, highlighting the influence of the membrane on the evolution of the mixing
zone during different stages. Berger et al. (2015a) [54] conducted experimental and numerical
investigations of shock wave attenuation by geometrical means, particularly focusing on the
dependence of shock wave attenuation on various barrier geometries in corridor-like structures.
Ram et al. (2018) [55] experimentally studied the pressure buildup behind an array of perforated
plates impinged by a normal shock wave, considering factors such as the number of plates,
porosity, and gas type.

Sha et al. (2012) [56] numerically investigated blast wave attenuation by obstacles using a
5th-order WENO scheme and immersed boundary method, analyzing the effect of obstacle shape
on blast wave attenuation. Berger et al. (2015) [57] experimentally and numerically investigated
shock wave attenuation by dynamic barriers, demonstrating the feasibility of dynamic barriers
that adjust their orientation in response to shock wave loads, thereby reducing shock-induced
pressure downstream.

This analysis of the literature on fast transient flows over obstacles with a simplified geometric
description of the obstacles which was performed at the start of the PhD (and the scientific
watch keep during the PhD) did not lead eventually to the selection and implementation in
EUROPLEXUS of alternative simplified models with respect to those already available and
preliminary assessed in previous works.

1.3 Outline of the thesis

This section provides a comprehensive outline of the thesis. Chapters 2 and 3 deal respectively
with the experimental and the numerical tools applied to the present analysis of fast transient
flows in the presence of obstacles, while Chapters 4, 5, and 6 present the results and their
discussions.

Chapter 2: Evolution of Experimental Set-up

• Historical Context: Trace the evolution of the MADMAX experimental facility from
its inception in the early 2000s to recent modifications undertaken during the PhD thesis.

• Experimental Enhancements: Detail the modifications made to the experimental set-
ups, including introduction of modular orifice plates and changes in set-up configurations.

Chapter 3: Numerical Modeling Framework

• Theoretical Foundations: Explore the theoretical underpinnings of the numerical
models used in simulations, focusing on fluid-structure interaction concepts, fluid and
structural behavior models, and equations of state.

• Computational Techniques: Examine the spatial and temporal discretization meth-
ods employed in numerical simulations, such as finite element and finite volume methods.

• Hierarchy of Simulation Models: Present a hierarchical overview of the numeri-
cal models utilized in simulations, ranging from simplified 1D representations to more
intricate 2D axisymmetric and 3D models.

Chapter 4: Experimental and Numerical Results (Simplified Configuration)
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• Evaluation of Predictive Capabilities: Analyze experimental and numerical results
for the simplified configuration of the MADMAX experiment. Assess the predictive
capabilities of EUROPLEXUS in simulating rarefaction wave propagation through a
single obstacle.

• Comparative Analysis: Compare experimental data with simulation outputs, high-
lighting agreements and discrepancies. Discuss the strengths and limitations of 1D and
2D axisymmetric models in replicating experimental observations.

Chapter 5: Experimental and Numerical Results (Complete Configuration)

• Pressure Evolution Analysis: Investigate pressure evolution and dynamics in the
complete configuration of the MADMAX experiment. Examine experimental findings
and numerical simulations to understand the effects of multiple obstacles on wave prop-
agation.

• Insights into Model Performance: Provide insights into the performance of numer-
ical models in simulating complex fluid-structure interactions. Discuss the implications
of simulation results for optimizing experimental set-ups and refining numerical models.

Chapter 6: Experimental and Numerical Results (Alternative Configurations)

• Exploration of Novel Configurations: Explore experimental and numerical results
for alternative MADMAX configurations, including configurations with different num-
bers of obstacles and simultaneous presence of obstacles in core and by-pass pipes.

• Comparative Assessment: Conduct comparative analyses between experimental data
and numerical simulations for alternative configurations. Evaluate the accuracy and
computational efficiency of different numerical models in capturing system behavior.

Chapter 7: Conclusions and Perspectives
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Chapter 2

MADMAX experimental facility:
original set-up and new features

This chapter delves into the evolution of the MADMAX experimental facility, initially de-
signed in the early 2000s to analyze pressure loads induced by depressurization waves in parallel
pipelines. The original set-up featured a main pipe with a bursting disk and an auxiliary branch
mimicking a PWR vessel’s core and by-pass. Modifications in 2010 simplified the mock-up,
focusing on studying wave passage through an orifice plate. Recent experimental campaigns
(2022-2024), carried out in the framework of this PhD thesis, expanded on these modifications,
introducing setups with and without a by-pass pipe and incorporating modular orifice plates
of varying thickness and diameter or the presence of multiple orifice plates, to analyze their
impact on wave propagation. These developments aim to enhance the understanding of wave
dynamics and validate simulation codes for fluid dynamics research in the context of nuclear
safety, reflecting the facility’s continuous quest for accurate experimental data.

2.1 Original set-up

2.1.1 General description

The MADMAX experiment, originally called SMART and later Maquette APRP (LOCA Mock-
up), has been designed in the early 2000s to analyze the pressure loads on the structure generated
by different travel times of a depressurization wave in two parallel pipelines. Much of the
historical information regarding the experiment up to 2010 is derived from the internal technical
report by CEA authored by Faucher, Galon, and Izquierdo (2010) [58].

Figure 2.1 provides an overview of the experimental platform. It consists of a main pipe,
arranged vertically and fitted at its lower end with a bursting disk designed to cause a sudden
opening of the circuit. An auxiliary branch, of smaller cross-section and equipped with several
orifice plates, is connected to this main pipe. In analogy with the geometry of the core and
by-pass in a PWR vessel, the main pipe plays the role of the core, while the auxiliary pipe plays
the role of the by-pass and perforated reinforcement plates.

In the generic experiment the pipes are initially filled with water that is then pressurized
until it triggers the opening of a bursting disk (failure pressure at about 70 bar) located at the
bottom of the core pipe.

The orifice plates arranged at different heights in the by-pass pipe, to simulate the effect
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2.1 Original set-up

of the baffle reinforcement plates in the PWR core, have an orifice diameter of 17 mm and a
thickness of 5 mm.

Two water accumulators are disposed at the top end of the core pipe to supply the system
with water during several milliseconds. On the one hand, they speed up the fluid, to study the
combined effects of pressure drops and acoustic impedances at the orifice plates, and on the
other, they prevent the system from draining too quickly, enabling us to monitor the effects of
wave propagation in the water.
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Figure 2.1: Original design of the MADMAX experimental facility at DYN (CEA Saclay,
France). Dimensions in millimeters. Pipe diameters given are internal diameters.

The bursting disks used for the initial tests on the mock-up were precast metal disks, with
4-petal opening kinematics (see Fig. 2.2 (a)) once the maximum resistance pressure had been
exceeded. The opening time and effective opening cross-section obtained with such discs are
unknown parameters with a major influence on the measurements obtained from these tests.

In the initial mock-up configuration, there was also a Helmholtz resonator installed on the
junction pipe in order to smooth the profile of the depressurization wave. This component,
however, perturbed the measurements too much and was therefore removed.

In the first tests carried out between 2000 and 2001, some of the results measured on the
experiment deviated too much from some simplified calculations made with EUROPLEXUS,
which were closer to the analytical solution instead.

This suggested the hypothesis of perturbations in the experiment, due to the opening kine-
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2. MADMAX experimental facility: original set-up and new features

matics of the petal discs or to the presence in the junction pipe of the spigot designed to
accommodate the Helmholtz resonator when in use. In particular, the actual cross-sectional
area of fluid flow through the petal disk seemed uncertain, insofar as tests with a reduced leak-
age cross-section led to satisfactory correlations with the simulation, in contrast to those where
the entire cross-sectional area of the nozzle should be open.

This led to the resumption of experimental work on the mock-up, with prior simplification
of its geometry and improvement of the opening process under pressure, in order to remove the
uncertainties arising from the last series of tests and obtain a reliable and correctly interpreted
experimental reference solution.

(a) (b)

Figure 2.2: (a) Petal bursting disk used in the first tests (2000-2001) and (b) graphite
fragmentation disk used from 2010.

2.1.2 Mock-up modifications in 2010

In 2010, as well as seeking to reduce uncertainties to facilitate test interpretation, some modifi-
cations of the mock-up also reflected a change in the purpose of the experiments. In its initial
configuration, the mock-up was designed to quantitatively measure the pressure forces between
the two branches, which were then being sought to reproduce with EUROPLEXUS, in order to
validate the program’s capabilities for calculating the loading on the baffle screws in the event
of a LOCA (see Chapter 1).

Instead, with the modifications came the search for a reference solution for the passage of a
depressurization wave through an orifice plate. This solution must be as simple as possible, so
that it can be used for rigorous validation of a high-precision simulation code.

In the final configuration (see Figure 2.3), a single orifice plate was placed in the middle of
the main pipe. It is relatively thick compared with the diameter of the opening (50 mm thick for
a diameter of 30 mm), so that the delay in wave propagation it induces was clearly measurable.
The junction pipe is retained, to limit the flow at the opening at the bottom of the mock-up,
but the original tube, fitted with the resonator spigot, is replaced by a straight tube with no
geometric peculiarities. For these new tests, the by-pass is either open, with all the orifice plates
it originally contained then removed, or closed, at the locations of the lower and upper orifice
plates.

The petal-type rupture disks are replaced by fragmentation graphite disks. As soon as the
rupture pressure is reached, a rupture cone is released into the flow, freeing the entire opening
cross-section (see Fig. 2.2 (b)).
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2.1 Original set-up

The insertion of an orifice plate in the middle of the main pipe was foreseen in the initial
design of the model and did not require any structural modifications. As far as the by-pass
is concerned, it could be closed at the locations of the upper and lower orifice plates without
modification. What remains are the two elbows, shown in Figure 2.3. Their presence can disrupt
the propagation of the depressurization wave in the main pipe, but their removal would require
costly cutting and welding work, and has therefore not been carried out.
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Figure 2.3: MADMAX configuration in 2010. Dimensions in millimeters. Pipe diameters given
are internal diameters.

The experimental campaign realized in 2010 consisted of five tests. Some were carried out
with the by-pass in place, featuring either a fragmentation rupture disk or a petal disk, en-
abling the behavior of the two types of disk to be compared. One test was carried out with a
fragmentation disk and the by-pass closed.

For each test, an interpretation calculation with EUROPLEXUS is proposed. Some of the
results are presented and discussed in [1].

After this experimental campaign, the mock-up suffered an 8-year stop. Then in 2018,
in preparation for new experimental campaigns, the mock-up was put back into service and
requalified, and the last experiment carried out in 2010 was reproduced to check its repeatability.
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2. MADMAX experimental facility: original set-up and new features

2.2 Evolutions of the experiment and new experimental cam-
paigns in 2022-2024

2.2.1 Experimental set-up without by-pass pipe, with modular orifice plate

In the novel 2022/2023 experiments the overall setup remains very similar to the one of 2010,
but new orifice plates are now installed (see Fig. 2.4) with thickness and diameter that can
be changed to parametrically assess the geometry influence on wave propagation. The plate
thickness e can be set at 10 or 50 mm, while the diameter d can be set to three different sizes
(10, 30 and 50 mm). So, we have a total of six different configurations.

C1R
C1E

C6

C4

C7

C8

C2

C5

500

2697

2348

φ 202.7

φ 52.5
375

489

1034

500

500

500

492

Accumulators

Thin orifice
plate

pipe
Junction

Bursting disk

Core pipe

e = 10

Piston Nitrogen

Water

d

[10, 30, 50]

Sensors
Pressure

C1R
C1E

C6

C4

C7

C8

C2

C5

500

2698

2317

φ 202.7

φ 52.5
375

489

1034

500

500

500

502

Accumulators

Thick modular
orifice plate

pipe
Junction

Bursting disk

Core pipe

e = 50

Piston Nitrogen

Water

d

[10, 30, 50]

Sensors
Pressure

(a) (b)

Figure 2.4: Experimental set-up (all dimensions in millimeters): (a) thin orifice plates, (b)
thick modular orifice plate.
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2.2 Evolutions of the experiment and new experimental campaigns in 2022-2024

The new orifice plates were entirely designed in the context of the present thesis work, with
the assistance of the person in charge of the experimental platform in the DYN Laboratory
at CEA Saclay, Engineer Thibaut Gay-Peiller. Subsequently, they were manufactured by an
external company. The tasks performed in the present work included the installation of these
plates on the experimental device, with the support of the laboratory technician, Mr. Lehsen
Tarmoul, and the management of the full set of experiments presented and analyzed in this
manuscript, again with the assistance of the laboratory technician.

In order to investigate the influence of these geometric obstacles on wave propagation, eight
pressure sensors are placed along the pipes to measure the pressure of the fluid at the inner wall
of the pipe: a piezoelectric pressure sensor (C1E) and a piezoresistive pressure sensor (C1R)
are positioned at the same height in the junction pipe; six piezoelectric pressure sensors are
positioned along the core pipe, four below (C2, C4, C5 and C6) and two above (C7 and C8) the
orifice plate (see Fig. 2.4). The C1R sensor, providing a continuous measurement of absolute
pressure (unlike piezoelectric sensors, which are dynamic sensors detecting only rapid pressure
changes), is used to trigger the activation of the measurement acquisition system. Additionally,
it provides a dual verification measure for that point in the junction pipe.

2.2.2 Experimental set-up with by-pass pipe and multiple orifice plates

The experimental campaign on the simplified MADMAX configuration without by-pass pipe
concluded in February 2023. Subsequently, during the months of June and July 2023, the
experimental team, comprised of platform supervisors - including the present PhD candidate -
and technicians, proceeded with the re-installation of the by-pass pipe along with its six orifice
plates. This endeavor aimed primarily at replicating the original experiment configuration as
conceived during its design phase.

Due to the depletion of the available stock of bursting disks (the last disk was used in the
final experiment of February 2023) and a significant delay in the delivery of the new stock
(ordered in December 2022 and delivered almost a year later), the new experimental campaign
was launched in December 2023 and concluded at the end of February 2024.

During this experimental campaign, three different configurations of MADMAX with by-pass
pipe were tested, as depicted in Figures 2.5 and 2.6, and summarized as follows:

1. Configuration 1: free core pipe and 6 orifice plates in the by-pass pipe,

2. Configuration 2: free core pipe and 4 orifice plates in the by-pass pipe,

3. Configuration 3: 1 orifice plate [e = 10mm, d = 30mm] in the core pipe and 6 orifice
plates in the by-pass pipe.

The orifice plates in the by-pass pipe all have a thickness e = 5mm and an orifice diameter
d = 17mm, spaced 500 mm apart from each other. In Configurations 1 and 3, all six orifice
plates are retained, while in Configuration 2, the bottom and top ones have been removed,
leaving the four central ones.

Five new piezoelectric pressure sensors (D1, D2, D3, D4, and D5) are installed on the by-
pass pipe, positioned exactly midway between each pair of orifice plates. Consequently, they
are located at the same height as the sensors on the core pipe (C4, C5, C6, C7, and C8), which
remain installed on the device. All these sensors are identical. Sensor C2 is the same one
used in the previous experimental campaign. However, for the sensors on the junction pipe, it
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2. MADMAX experimental facility: original set-up and new features

was necessary to remove the piezoelectric sensor C1E due to damaged threading in its housing,
causing water leakage and pressure loss in the device. This sensor was temporarily replaced by a
threaded steel plug to ensure tightness. Fortunately, at the same height as the removed sensor,
there is also a second piezoresistive pressure sensor, previously labeled C1R in the configuration
without the by-pass, which we will now simply refer to as sensor C1.

Configuration 1 is chosen first because it is the complete configuration with which the exper-
iment was originally designed. Configuration 2 is designed to investigate the effect of a different
number of obstacles placed in series within the by-pass pipe, while Configuration 3 incorporates
the same number of orifice plates in the by-pass as Configuration 1, but an additional orifice
plate is added in the core pipe to analyze the effect of the simultaneous presence of obstacles
in both branches of the experiment, thus approaching even closer to the real industrial case
(see Figure 1.2). In the actual industrial case, there is the simultaneous presence of perforated
plate-type obstacles in the by-pass zone and fuel assemblies with mixing grids in the core zone.
The orifice plate in the core pipe of Configuration 3 of MADMAX is intended to represent the
core zone’s geometry in a simplified manner.
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Figure 2.5: MADMAX configurations 1 and 2 with by-pass pipe.
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2. MADMAX experimental facility: original set-up and new features

2.2.3 Historical overview of experimental campaigns 2022-2024

The results analyzed in Chapters 4, 5 and 6 of this thesis work correspond to a total of 9 experi-
ments: 6 configurations for the MADMAX set-up without by-pass pipe and 3 configurations for
the complete set-up with by-pass pipe. As is typical in most experimental studies, the presented
results constitute only a part of all the experimental tests conducted during the campaign. Many
tests are indeed reiterated to verify repeatability or need to be conducted again due to issues
such as data acquisition system malfunction, device damage, etc.

In the present work, an experiment is deemed successful if the following conditions are met:

• Sharp rupture of the bursting disk (complete separation of the failure cone and full opening
of the outlet section) within the range [60, 80] bar with some added tolerance to the factory
tolerance of the bursting disk, which would be [63, 77] bar.

• Full operation of the acquisition system, meaning that all sensors have recorded the signal.

If a bursting disk proves to be more resistant than expected, a pressure relief safety system
installed on the device prevents the pressure from exceeding 80 bar. In this case, the experiment
is interrupted and possibly retried later on the same disk a second time. If the disk does not
rupture on the second attempt, it is replaced with a new one.

The characteristic parameter determining the bursting pressure of the bursting disk is the
thickness e, as indicated in Figure 2.7. Before installing the disk on the experimental set-up, we
always perform a metrological measurement to verify the actual thickness: using a caliper, we
measure the thicknesses e1, e2, and e3, from which we derive the thickness e using the formula
provided in the figure.
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Figure 2.7: Bursting disk metrology.

In this thesis work, a total of 21 experiments were conducted during the period 2022-2024:
17 of these tests resulted in a bursting disk rupture, while 4 were terminated due to reaching
the maximum acceptable pressure without rupturing the bursting disk.

Out of these 17 tests, 10 pertained to the simplified configuration of MADMAX without
by-pass pipe. Among these, 3 tests were discarded due to total or partial malfunctioning of the
data acquisition system, leaving us with 7 valid tests for this configuration. Table 2.1 provides
an overview of all the 10 experiments conducted on this set-up. For each experiment, we indicate
the date, the configuration of the orifice plates used, the bursting pressure, the thickness of the
bursting disk, and whether the experiment was retained or discarded (with motivation). The
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2.2 Evolutions of the experiment and new experimental campaigns in 2022-2024

first entry in the table was a valid test, but it was excluded from the results because it was the
first test conducted since 2018, performed solely to verify the proper functioning of the entire
system without changing the configuration (the device had the old orifice plate used in the 2010
experimental campaign installed).

Table 2.1: History of MADMAX experiments without by-pass pipe.

Date Configuration Pburst Bursting disk e Retained
(dd/mm/yyyy) (bar) (mm)

01/06/2022
e = 50mm

68.4 14.4
NO

d = 30mm (recommissioning
(original set-up) test)

20/07/2022
e = 50mm

67.5 14.4
NO

d = 30mm (acquisition system
(modular) total malfunctioning)

21/07/2022
e = 50mm

78.0 14.4
NO

d = 30mm (acquisition system
(modular) partial malfunctioning)

21/07/2022
e = 50mm

74.3 14.4 YESd = 30mm
(modular)

25/07/2022
e = 50mm

73.3 14.4 YESd = 10mm
(modular)

25/07/2022
e = 50mm

76.3 14.4
NO

d = 10mm (acquisition system
(modular) partial malfunctioning)

26/07/2022
e = 50mm

62.3 13.2 YESd = 50mm
(modular)

25/01/2023
e = 10mm

66.8 14.4 YES
d = 30mm

23/02/2023
e = 10mm

67.8 14.4 YES
d = 10mm

27/02/2023
e = 10mm

68.7 14.4 YES
d = 50mm

The remaining 7 tests resulting in bursting disk rupture were conducted on the complete con-
figuration of MADMAX with by-pass pipe: 2 of these tests were discarded due to non-net rup-
ture of the bursting disk (failure cone fractured into multiple pieces causing a non-instantaneous
complete opening of the exit section), 1 was discarded due to total malfunctioning of the data
acquisition system (no sensor recorded the pressure signal), and another was discarded because
the bursting pressure was below the range [60, 80] bar. This leaves us with 3 valid experiments for

18



2. MADMAX experimental facility: original set-up and new features

this configuration. Four additional experiments were conducted on the complete configuration
of MADMAX, but they did not result in the rupture of the bursting disk.

Table 2.2 provides an overview of all the 11 experiments conducted on this set-up. For each
experiment, we indicate the date, the configuration of the orifice plates used, the bursting pres-
sure, the thickness of the bursting disk, and whether the experiment was retained or discarded
(with motivation).

As previously mentioned in Paragraph 2.2.2, we experienced a significant delay in the delivery
of the new stock of bursting disks for the implementation of the new experimental campaign.
This delay was due to the inability of the disk manufacturer to perform qualification tests on the
new disks using their test bench. The reasons provided by the company were multiple, in order:
replacement of a defective gasket on the test bench, breakdown of the device during testing,
workplace injury to the maintenance worker operating the device.

It is important to note that these disks need to be qualified as they are initially intended as
safety devices used in pressurized circuits to act as a kind of fuse in case of circuit overpressure.
In our specific case, however, these disks are used solely for scientific research purposes.

It should be noted that these new disks cannot be automatically certified using the data
from the disks used in the previous experimental campaign because they are manufactured from
a different batch of graphite, which may produce different mechanical characteristics.

The use of alternative solutions was not possible because the section of our experimental
device housing the bursting disk had been specifically modified to accommodate exactly that
model of bursting disk with those precise dimensions. Any alternative solution would have
required a modification of the device. Consequently, after months of delivery date delays, we (the
MADMAX platform management team composed of the PhD candidate and the DYN laboratory
experimental platform supervisor) proposed as a solution to the manufacturing company to carry
out ourselves the qualification tests of the bursting disks directly on MADMAX.

The qualification test involves initially using a bursting disk with a thickness derived from
tabulated data (which should ensure the desired bursting pressure within the tolerance range),
gradually pressurizing it until it ruptures. If the bursting pressure falls within the desired range,
the thickness is deemed valid; otherwise, further disks with different thicknesses are tested until
the desired range is achieved.

In November 2023, the company provided us with an initial trial disk (non-certified) with
a thickness of 14.5 mm for an initial test: two tests conducted with this disk (the first two in
the Table 2.2) did not rupture before reaching 80 bar (the maximum limit set by our device).
Subsequently, another five non-certified disks were sent to us with different thicknesses: 12.48,
13.36, 13.33, 12.99, and 13.45 mm. Tests on these five disks were conducted between December
14, 2023, and January 22, 2024, as described in the Table 2.2. Following the results of these
tests, we communicated the data to the manufacturing company, which was then able to send us
the stock of certified disks, all with a thickness of 13.49 mm, used in the last three experiments.

As can be seen from the table, a total of 9 experiments were conducted on Configuration 1,
out of which only 5 resulted in the rupture of the bursting disk, with only one yielding exploitable
results, that of December 14, 2023. Despite the success of this test, further tests were conducted
on the same configuration simply in an attempt to achieve another valid test with a bursting
pressure within the range [63, 77] bar. Unfortunately, this objective was not met, and it was
decided to consider the result of December 14, 2023, as definitive, as it still fell within the range
[60, 80] bar. Subsequently, by the end of February 2024, it was decided to move on to directly
testing Configurations 2 and 3, which fortunately yielded immediately satisfactory results. The
repeatability of these tests was not attempted simply due to a lack of time.
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2.2 Evolutions of the experiment and new experimental campaigns in 2022-2024

Table 2.2: History of MADMAX experiments with by-pass pipe.

Date Configuration Pburst Bursting disk e Retained
(dd/mm/yyyy) (bar) (mm)

27/11/2023 1 - 14.5
NO

(no burst
till 78.3 bar)

28/11/2023 1 -
14.5 NO

(same disk (no burst
as 27/11/2023) till 80.1 bar)

14/12/2023 1 61.6 12.48 YES

15/12/2023 1 ≈ 67.0 13.36
NO

(acquisition system
total malfunctioning)

15/12/2023 1 77.5 13.33
NO

(non-net rupture
of the bursting disk)

11/01/2024 1 - 12.99
NO

(cracked disk
around 70 bar)

12/01/2024 1 - 13.45
NO

(no burst
till 77.6 bar)

22/01/2024 1 57.7
13.45 NO

(same disk (Pburst

as 12/01/2024) too low)

23/01/2024 1 78.8 13.49
NO

(non-net rupture
of the bursting disk)

23/02/2024 2 68.0 13.49 YES

28/02/2024 3 76.5 13.49 YES

Duly equipped with the experimental tool which will provide reference measurements, we
proceed to review in the next Chapter the key components of the simulation tool which will be
used to numerically reproduce and thoroughly analyze the various MADMAX experiments.
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Chapter 3

EUROPLEXUS: simulation
framework and hierarchy of
numerical models

In this chapter, we aim to present the general framework of the simulation tool (EUROPLEXUS
software) used to perform the numerical simulations of the MADMAX experiments and to give
an overview of the hierarchy of numerical models utilized in our simulations.

EUROPLEXUS (EPX) [6] is a simulation software tailored for analyzing fast transient phenom-
ena involving structural-fluid interactions. It utilizes a conditionally stable explicit scheme for
time integration and employs a fully nonlinear solving algorithm capable of handling geometric
and material complexities.

In terms of structural dynamics, EPX offers specialized finite element models for analyzing
shocks, impacts, explosions, and wave propagation phenomena. It supports various material
models catering to both brittle and non-brittle materials.

For fluid dynamics, EPX features advanced finite element fluid models and finite volume schemes
for multi-component, reactive, or multi-phase flows. It allows for the study of blast effects from
explosions using methodologies like pressure-time curves and balloon models.

EPX excels in simulating fluid-structure interaction with techniques like direct coupling via La-
grange multipliers or fluid pressure forces transmitted to the structure. It supports Lagrangian,
Eulerian, and mixed Arbitrary Lagrange Eulerian (ALE) mesh descriptions, with automatic
rezoning algorithms to address mesh distortion issues. Furthermore, EPX offers an alternative
FSI approach where the structural mesh is embedded in the fluid mesh, facilitating the modeling
of severe structural damage without mesh rezoning.

The present chapter is organized as follows:

• we start by introducing the theoretical foundations of our models, introducing Fluid-
Structure Interaction (FSI) concepts and outlining fluid and structural behavior models.

• Euler equations for the fluid under different descriptions (Lagrangian, Eulerian, ALE) are

21



3.1 Theoretical foundations

presented. The discussion extends to the equation of state, detailing its application to
determine fluid pressure, considering various fluid materials.

• The integration of fluid modeling with dynamic equilibrium equations for structures in FSI
problems is explored, alongside the representation of specific elements using impedances
and boundary conditions.

• Finally, spatial and temporal discretization methods are briefly reviewed, including Fi-
nite Element and Finite Volume methods, essential for numerical simulations in EURO-
PLEXUS.

• The chapter concludes with a presentation of the hierarchy of models used for conduct-
ing simulations, progressing from simplified 1D models to novel and more detailed 2D
axisymmetric and 3D reference models, including FSI.

3.1 Theoretical foundations

In this section, we aim to furnish a theoretical framework underpinning the models integrated
within EUROPLEXUS for scrutinizing the dynamics of pipeline circuits during transient acci-
dental scenarios [59].

The term “Fluid-Structure Interaction” (FSI) is conventionally employed to depict the cou-
pled behavior of fluid and structures, encompassing various singularities inherent in both fluidic
(pressure drops, intricate components) and structural domains (junctions, supports).

In the following, we briefly present the models used to describe fluid and structure behaviors:
Euler equations with ALE description for the fluid and dynamic equilibrium equations for the
structure. Finally, we also briefly describe the boundary condition and impedance models used
in this study.

3.1.1 Fluid-Structure Interaction

Fast transient fluid-structure interaction (FSI) calculations can be performed with the EURO-
PLEXUS code. The structural calculation is always based on a Lagrangian description (mesh
deforming with the structure), whereas three different descriptions are possible for modelling the
fluid, depending on the application: Lagrangian as for structures; Eulerian, the most commonly
used for fluids, in which the mesh is fixed; and finally a mixed description called Arbitrary
Lagrangian-Eulerian (ALE) suitable for the specific case of FSI, in which the mesh deforms
arbitrarily and therefore its velocity can be different from that of the material points.

3.1.1.1 Fluid modelling

The fluid modeling [59] outlined below is based on the following assumptions:

• Compressible fluid

• Negligible heat conduction

• Negligible viscous forces compared to pressure and inertia forces

The model describing the fluid behavior consists of:
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3. EUROPLEXUS: simulation framework and hierarchy of numerical models

• Euler equations

– Mass conservation equation

– Momentum equation

– Total energy conservation equation

• Equation of state for the fluid material

Three different descriptions are possible to describe the fluid:

1. Lagrangian: the most suitable description for calculating structures (if deformations are
not excessive), as the reference domain (mesh) is attached to the material of the structure.
It can also be applied to describe a fluid, with some interesting properties when discretized
(e.g. no dissipation of wakes). The mesh nodes (or grid) follow the material points.

Figure 3.1: Scheme of the Lagrangian description. [2]

2. Eulerian: the most intuitive description for the fluid problem. The mesh remains fixed,
allowing the calculation of the movement parameters (velocity, acceleration, etc.) of the
material point at each instant.

Figure 3.2: Scheme of the Eulerian description. [2]

3. Arbitrary Lagrangian-Eulerian (ALE): a mixed description suitable for problems with
movements of both fluids and structures. The mesh deforms arbitrarily: the mesh velocity
is arbitrary and can be different from the velocity of the material particles.

Figure 3.3: Scheme of the ALE description. [2]
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As the general context we are dealing with is that of FSI, the Euler equations will be
presented in the following for the ALE description. This description can then be adapted,
through appropriate assumptions, to a Lagrangian or Eulerian description.

3.1.1.2 Structural analysis

The structural analysis in EUROPLEXUS is based on a Lagrangian description, which is suitable
for deformable structures. This approach allows for a mesh that is attached to the structure,
meaning it deforms simultaneously with the structure as it moves [59].

Once the momentum equation is formulated for the structure, it is discretized as follows:

• Spatial Discretization: Finite Element Method (FEM)

• Temporal Discretization: Centered Differences Method

The constraints are handled using the method of Lagrange multipliers. In EUROPLEXUS,
the penalty method is also available.

3.1.2 Euler equations for fluids

The general assumptions adopted in this study for the fluid modeling are the following ones:
compressible fluid; heat conduction and viscous forces negligible. These simplifications can be
justified by the nature and characteristic time of the phenomenon we aim to observe. We analyze
a phenomenon occurring at room temperature in a confined space, where there are no significant
temperature variations, allowing us to disregard thermal effects. Additionally, we are dealing
with a very rapid transient, and we are particularly interested in observing the first 10 ÷ 20
ms of the transient, during which the fluid does not move sufficiently to exhibit significant
viscous phenomena. The primary objective of this study is to observe the acoustic phenomena
generated by the abrupt depressurization of the circuit, for which the chosen model proves to
be quite adequate.

The governing Euler Equations are presented below in integral form using the ALE descrip-
tion. Figure 3.4 shows the fluid domain Φ, in which V (t) is the control volume, S(t) is the
control surface, n is the unit vector normal to the control surface, v is the velocity of the fluid
(i.e. of its particles), w is the velocity of the control volume interface.

S(t)

V (t)

n
v

w

Φ

Figure 3.4: Fluid domain.

Based on the relationship between v and w, considering a function f(x, t) scalar or vector-
valued defined on the domain Φ, and using the notation adopted by Letellier (see [60] for details
on the notation), we can distinguish the three descriptions as follows:
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3. EUROPLEXUS: simulation framework and hierarchy of numerical models

• If w = arbitrary , we refer to it as the ALE description.

We can write
d

dt
f(x, t) =

δ

δt
f(x, t) +

∂f(x, t)

∂x
· (v − w) (3.1)

where d/dt is the derivative with respect to time in the direction of velocity v, and δ/δt is
the derivative with respect to time in the direction of the velocity w of the control volume
interface.

• If w = v (the velocity of the control volume coincides with the material velocity), it is
referred to as the Lagrangian description.

We can write
d

dt
f(x, t) =

∂f(x, t)

∂t
(3.2)

• If w = 0 (the grid is fixed), it is referred to as the Eulerian description.

We can write
d

dt
f(x, t) =

∂f(x, t)

∂t
+

∂f(x, t)

∂x
· v (3.3)

3.1.2.1 Mass Conservation Equation

If we consider the volume V (t) that follows the movement of material particles, the mass M is
conserved within the volume, which can be expressed as:

dM

dt
=

d

dt

ˆ
V (t)

ρ(x, t) dV = 0 (3.4)

Consequently, according to equation (3.1), we deduce:

δ

δt

ˆ
V (t)

ρ(x, t) dV =

˛
S(t)

ρ(x, t)(w − v) · ndS (3.5)

where ρ(x, t) is the fluid density.

3.1.2.2 Momentum Equation

We consider that the variation of momentum of the volume V (t) is equal to the sum of volumetric
forces and surface forces. Therefore, we can write:

dQ

dt
=

d

dt

ˆ
V (t)

ρ(x, t)v dV =

ˆ
V (t)

ρ(x, t)g dV +

˛
S(t)

σ · ndV (3.6)

where Q is the momentum of the control volume, σ is the stress tensor, g is the gravitational
field.

We then deduce, still according to equation (3.1), that:

δ

δt

ˆ
V (t)

ρ(x, t)v dV +

˛
S(t)

[ρ(x, t)v ⊗ (w − v)] · ndS =

ˆ
V (t)

ρ(x, t)g dV +

˛
S(t)

σ · ndV (3.7)
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3.1 Theoretical foundations

Now, we aim to obtain a variational formulation associated with the conservation of
momentum. To do this, we start from the fundamental equation of dynamics expressed in the
Lagrangian formalism:

∇ · σ + ρg = ρ(x, t)
dv

dt
(3.8)

where (∇·) is the divergence operator.

If we now apply the principle of virtual power for a virtual velocity field v∗ (by multiplying
the above equation by v∗ and integrating it over the volume V ), we obtain:

ˆ
V
(∇ · σ) · v∗ dV +

ˆ
V
ρ(x, t)g · v∗ dV =

ˆ
V
ρ(x, t)

dv

dt
· v∗ dV (3.9)

Using equation (3.1), we obtain:

ˆ
V
(∇ · σ) · v∗ dV +

ˆ
V
ρ(x, t)g · v∗ dV =

ˆ
V
ρ(x, t)

δv

δt
· v∗ dV −

ˆ
V
ρ(x, t)

(
(w − v) · ∂v

∂x

)
· v∗ dV

(3.10)

By integrating by parts, we obtain:

ˆ
V
(∇ · σ) · v∗ dV =

˛
S
σ · n · v∗ dS −

ˆ
V
σ :

∂v∗

∂x
dV (3.11)

where the operator ≪ : ≫ represents a double contraction product.

Finally:

ˆ
V
ρ(x, t)

δv

δt
· v∗ dV =

ˆ
V
ρ(x, t)g · v∗ dV +

˛
S
σ · n · v∗ dS −

ˆ
V
σ :

∂v∗

∂x
dV

+

ˆ
V
ρ(x, t)

(
(w − v) · ∂v

∂x

)
· v∗ dV

(3.12)

3.1.2.3 Energy Conservation Equation

Considering the control volume V (t), the variation of the total energy per unit mass e (= specific
internal energy i + specific kinetic energy) is equal to the work of external forces. Therefore,
we can write:

dE

dt
=

d

dt

ˆ
V (t)

ρ(x, t)e dV =

ˆ
V (t)

ρ(x, t)g · v dV −
˛
S(t)

pv · ndS (3.13)

where E and e are respectively the total energy and the specific total energy of the control
volume.

Using equation (3.1), we obtain:

δ

δt

ˆ
V (t)

ρ(x, t)e dV =

˛
S(t)

ρ(x, t)e(w − v) · ndS +

ˆ
V (t)

ρ(x, t)g · v dV −
˛
S(t)

pv · ndS (3.14)

For a compressible fluid, the specific total energy e is:
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3. EUROPLEXUS: simulation framework and hierarchy of numerical models

e = i+
1

2
v2 (3.15)

where i is the specific internal energy.

Equation (3.14) can then be rewritten as follows:

δ

δt

ˆ
V (t)

ρ(x, t)

(
i+

1

2
v2
)

dV =

˛
S(t)

ρ(x, t)

(
i+

1

2
v2
)
(w − v) · ndS +

ˆ
V (t)

ρ(x, t)g · v dV

−
˛
S(t)

pv · ndS

(3.16)

We can equivalently write the previous equation in terms of the internal energy I of the
control volume (valid if the flow is steady, meaning there are no shocks [61]):

δI

δt
=

δ

δt

ˆ
V (t)

ρ(x, t)i dV =

˛
S(t)

ρ(x, t)i(w − v) · ndS −
˛
S(t)

pv · ndS (3.17)

3.1.2.4 Equation of state

The pressure p can be determined via an equation of state as a function of the density ρ and
the specific internal energy i:

p = p(ρ, i) (3.18)

In the present study two fluid materials are involved: water and nitrogen.

In the EUROPLEXUS calculations, water can be described using the FLUID model that
enables a fluid (liquid-like) behavior for continuous elements as an input option [62]. The
fluid (isothermal) can be perfect (non-viscous) or viscous. The expression used to compute the
absolute pressure p in the fluid is:

p = p(ρ) = pini + (ρ− ρini)c
2 (3.19)

where pini is the fluid pressure in the initial state, ρ is the current density, ρini is the initial
density and c is the sound speed, which is considered constant. An absolute minimum pressure
pmin attainable by the fluid must be declared (by default, pmin = 0), such that pmin ≤ pini. If it
is verified during the simulation that p < pmin then p = pmin is automatically imposed (constant
absolute pressure imposed to the fluid by the calculation in the event of cavitation) [62]. In
this model, equation (3.17) is thus decoupled from equations (3.5) and (3.7), the pressure being
calculated via the barotropic hypothesis (3.19).

To more accurately consider water vaporization and possible cavitation, it is possible to use
another model to represent the fluid, namely the WATER model [62], which uses tabulated
Equations of State (EoS) [63] to calculate the properties of water. In this work, this model is
particularly used to perform FSI calculations.

To represent nitrogen instead, the GAZP (perfect gas) model [62] is used and its absolute
pressure p is calculated using the perfect gas formulation:

p = ρ(γ − 1)i (3.20)
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3.1 Theoretical foundations

where γ is a constant and is the ratio between the specific heat at constant pressure cp and the
specific heat at constant volume cv.

Finally, it should be pointed out that in our calculations, the fluids in the accumulators are
always modeled by means of an ALE description: ALE-liquid and an ALE-gas separated by a
Lagrangian interface (representing the piston, w = v). The water in the rest of the of the pipes
is also modeled with ALE description in the case of the WATER model for FSI calculations,
while a purely Eulerian description (ALE description but with w = 0) is used in the case of
FLUID model calculations with fixed structures (non-deformable pipes).

3.1.3 Dynamic Equilibrium for Structures

In EUROPLEXUS, to solve a FSI problem, the Euler equations for the fluid described earlier
are coupled with the dynamic equilibrium equation for the structures [9; 64].

The dynamic equilibrium for structures can be described by the equation [9]:

ρ(x, t)
δ2q

δt2
+∇ ·

{
σ
[
ε
(
q
)]}

= f str
vol

(3.21)

where ρ(x, t) represents the local density for structures, q is the structural displacement, σ

is the structural Cauchy stress tensor, ε is the structural Almansi-Euler strain tensor and f str
vol

are the structural body forces.

In our work, to represent the structures (specifically, the steel piping), we use a solid material
model called LINE (see EPX User’s manual [62]), which allows us to represent a solid material
with linear elastic behavior. EPX numerically handles this model using the Finite Element
Method (FEM) with a Lagrangian description. We then associate the model with the actual
mechanical properties of the material under study (for steel: density ρ = 7800 kg/m3, Young’s
modulus E = 200GPa, and Poisson’s coefficient ν = 0.3).

3.1.4 Boundary conditions and impedances

To simulate the MADMAX experiment, in addition to the behavior of fluids and structures, it
is necessary to represent the presence of two specific elements in particular:

• the bursting disk,

• the geometric obstacles (the sudden changes in cross section, such as the presence of the
orifice plate).

These elements can be represented by a suitable directive called IMPEDANCES that enables
to input boundary conditions or impedance conditions.

Bursting disk It can be represented by an impedance called MEMBRANE, which introduces
a safety membrane to the extremity of a pipeline (1D), or on the axis of an axisymmetric reservoir
(2D). The membrane rupture occurs either when the pressure in the neighboring element exceeds
the rupture pressure, or when the time exceeds a prescribed value [62]. In the calculations, the
inputs provided are the initial pressure pini (equal to the pressure at which bursting disk rupture
occurs), the final pressure pend (atmospheric pressure) and the time constant ξ of the exponential
function that drives the initial pressure to the final pressure, shown in Eq. (3.22). The time
constant used was calibrated according to the experiments in [1].
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3. EUROPLEXUS: simulation framework and hierarchy of numerical models

pmemb(t) = pinie
− t

ξ + pend

(
1− e

− t
ξ

)
with 0 ≤ t ≤ ξ (3.22)

Orifice plate Geometric obstacles can be represented by means of an impedance called GRID,
which enables to model the influence of grids or rigid perforated plates on a fluid [62]. Initially,
under the acoustic assumption (non-linear entrainment terms and viscosity terms are neglected),
it can be shown that the pressure difference between the two sides of the obstacle, ∆p, is related
to the acceleration effect of the fluid at the hole of the orifice plate [15]. This effect can be
represented by means of an equivalent length Leq such that:

∆p = −Leq

s
q̇ (3.23)

where s is the cross-sectional area of the orifice and q̇ = dq/dt where q is the mass flow rate.

Considering, in addition, the effects of drag and viscosity and assuming that the methods
used for permanent flows at a singularity still apply, we can write (superposition of the effects):

∆p = −Leq

s
q̇ − 1

2
k

q2

ρ0S2
t

(3.24)

where k is the head loss coefficient, ρ0 is the average density of the fluid, St is the cross-sectional
area of the pipe.

In summary, it can be said that the modeling of the singularity consists of two terms: an
inertial acoustic term and a classic head loss term. In the calculations, we must provide as
input to the model, in addition to the fluid density and the speed of sound, two fundamental
parameters: the characteristic time τ and the head loss coefficient k.

The characteristic time τ can be computed, in the case of a perforated plate, through an
analytical formulation [14]:

τ =
St

s

Leq

2c
(3.25)

where Leq can be calculated using

Leq = 2

[
0.85− r

R
+ 0.15

( r

R

)2]
r + e (3.26)

where r is the radius of the orifice plate hole, R is the inner radius of the pipe and e is the
thickness of the orifice plate (see Fig. 3.5). In the case of a single cross-sectional change (sudden
enlargement or shrinkage), Leq reduces to:

Leq =

[
0.85− r

R
+ 0.15

( r

R

)2]
r (3.27)

The head loss coefficient k can be obtained from Idel’Cik correlations [12] for an orifice plate
or for single cross-sectional changes.
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St

s

p1 p2

q1 q2

R

r

e

Figure 3.5: Orifice plate scheme.

The reader is referred to the Appendix C for more details on numerical implementation of
the impedance GRID in EUROPLEXUS.

3.2 Numerical models: spatial and temporal discretization

As already mentioned, different approaches are available in EPX to perform the spatial dis-
cretization of the FSI problem: the Finite Element Method (FEM), used mainly for the struc-
tural component, but also suitable for fluids, and the Finite Volume Method (FVM); in particular
we will see here the Cell Centered Finite Volume (CCFV) formulation, used especially for the
treatment of the fluid component.

Time-discretization is operated using a second order explicit central differences scheme for
the FEM calculations, while a second order explicit Runge-Kutta scheme is used for the FVM
simulations.

In both FEM and FVM, the domain is divided into elements connected by nodes. In FEM,
certain quantities (such as density, internal energy, pressure, etc.) are defined at the mesh Gauss
points within the elements (in our FE simulations, we use elements with a single Gauss point),
while others (typically velocity, acceleration, etc.) are defined at the nodes. Conversely, in FVM,
all quantities are defined at the Finite Volume centroid. For a schematic view, refer to Fig. 3.6.

p

v

Mesh node

Mesh Gauss point

ρ

(a) FE mesh.

v

Mesh node

Finite Volume centroid

p

ρ

(b) CCFV mesh.

Figure 3.6: Finite Element and Cell Centered Finite Volume mesh schemes.
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3. EUROPLEXUS: simulation framework and hierarchy of numerical models

More details on numerical modeling can be found in the Appendices of the manuscript:

• Appendix A provides more information on the Finite Element Method (FEM) such as
implemented in EUROPLEXUS,

• Appendix B provides more information on the Finite Volume Method (FVM) such as
implemented in EUROPLEXUS,

• Appendix C details the numerical implementation of the IMPEDANCE GRID model used
in the simplified 1D approach to describe the orifice(s) implemented in the core pipe or/and
in the by-pass pipe of the MADMAX platform.

3.3 Models used in our simulations

This section aims to succinctly provide the hierarchy of numerical models used in this PhD
thesis for conducting simulations of the experimental configurations presented in Chapter 2.

We can first distinguish between two main set-ups of our experiment:

1. MADMAX simplified configuration: experimental set-up without by-pass pipe, with
modular orifice plate;

2. MADMAX complete configuration: experimental set-up with by-pass pipe and mul-
tiple orifice plates.

For each of the two set-ups, simulations are conducted using 1D models, referred to as Sim-
plified models, and more complex 2D axisymmetric or 3D models, referred to as Reference
models. It is important to remember that the primary objective of this work is to assess the rel-
evance and accuracy of the simplified 1D models in reproducing the rapid transient phenomenon
under investigation. To achieve this, we rely on a dual comparison for these 1D models:

• with experimental results, which include the full physics and constitute an absolute refer-
ence;

• and with the reference models, which share the same physical assumptions (inviscid com-
pressible flows) and constitue a numerical reference.

In Table 3.1, we provide a summary of the models used for simulations of the simplified
configuration of MADMAX. A simplified 1D model utilizing the IMPEDANCE GRID (intro-
duced in Paragraph 3.1.4) to represent the presence of an obstacle (the orifice plate) in the
pipeline is employed. This model will be detailed in Paragraph 4.2.2 in the subsequent chapter.
Two reference models are utilized in this case: a 2D axisymmetric model with fixed structures
and a 2D axisymmetric model with Fluid-Structure Interaction (FSI). These two models will
be detailed upon in Paragraphs 4.2.1 and 4.4.2, respectively. For the 1D model and the 2D
axisymmetric model with fixed structures, we use the Finite Element Method (FEM) for spatial
discretization, while for the 2D axisymmetric model with Fluid-Structure Interaction (FSI), we
employ a mixed approach, using the Finite Volume Method (FVM) for the fluid and FEM for
the structure. The reasons for these choices are as follows: for the 1D model, EUROPLEXUS
provides an IMPEDANCE GRID model only with a FEM discretization, making the choice
of FEM obligatory in this case; the 2D axisymmetric model with fixed structures was initially
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3.3 Models used in our simulations

chosen as the reference model for comparison with the 1D model, and for consistency, FEM was
initially selected. The FVM is also available in EPX for the 2D axisymmetric model, and it was
tested to observe differences with FEM, but the results were very similar, so it was decided to
keep the FEM results as the reference.

Table 3.1: Hierarchy of numerical models used for the simulations of MADMAX simplified
configuration without by-pass pipe.

Model Materials Description Numerical method

FLUID Eulerian FEM

1D with impedances
FLUID

ALE FEM
(simplified)

(accumulators)

GAZP
ALE FEM

(accumulators)

FLUID Eulerian FEM

2D axisymmetric
FLUID

ALE FEM
(reference)

(accumulators)

GAZP
ALE FEM

(accumulators)

WATER ALE FVM

WATER
ALE FVM

2D axisymmetric + FSI
(accumulators)

(reference)
GAZP

ALE FVM
(accumulators)

Linear elastic
Lagrangian FEM

(steel pipe)

Table 3.2 provides a summary of the models used for simulations of the complete configura-
tion of MADMAX with by-pass pipe. This time, two simplified 1D models are employed, one
with fixed structures and the other incorporating Fluid-Structure Interaction (FSI), as presented
together in Paragraph 5.2.3. Both utilize the IMPEDANCE GRID (introduced in Section 3.1.4)
to represent the presence of the orifice plates in the pipeline. Again, two reference models are
utilized in this case, but with the installation of the by-pass pipe, the axisymmetric assumption
is no longer valid. Therefore, we opted for 3D models: one with fixed structures and one with
FSI. These two models will be reviewed together in Section 5.2.2. In this case, we consistently
employ the Finite Element Method (FEM) for the 1D models for the same reasons described
earlier for the simplified configuration. For the 3D model with fixed structures and the one
with FSI, it was decided upfront to adopt the Finite Volume Method (FVM) and the mixed

32



3. EUROPLEXUS: simulation framework and hierarchy of numerical models

FVM/FEM approach, respectively.

Table 3.2: Hierarchy of numerical models used for the simulations of MADMAX complete
configuration with by-pass pipe.

Model Materials Description Numerical method

FLUID Eulerian FEM

1D with impedances
FLUID

ALE FEM
(simplified)

(accumulators)

GAZP
ALE FEM

(accumulators)

WATER ALE FEM

1D with impedances + FSI
WATER

ALE FEM
(simplified)

(accumulators)

GAZP
ALE FEM

(accumulators)

FLUID Eulerian FVM

3D
FLUID

ALE FVM
(reference)

(accumulators)

GAZP
ALE FVM

(accumulators)

WATER ALE FVM

WATER
ALE FVM

3D + FSI
(accumulators)

(reference)
GAZP

ALE FVM
(accumulators)

Linear elastic
Lagrangian FEM

(steel pipe)

3.3.1 Details of numerical resolution

FEM The following resolution schemes are used for simulations using the Finite Element
Method:

• Upwind scheme in space for the mass and energy conservation equations,

• Second order in space for the momentum equation,
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3.3 Models used in our simulations

• Second order explicit central differences scheme for time integration.

FVM The following resolution schemes are used for simulations using the Finite Volume
Method:

• Second order in space,

• Second order explicit Runge-Kutta scheme for time integration,

• HLLC (Harten–Lax–van Leer Contact) Riemann solver for the calculation of numerical
fluxes at interfaces between volumes,

• Green-Gauss reconstruction of the primitive variables (density, velocity, internal energy
per unit mass, mass fraction) at the inter-volume interfaces starting from the values at the
centroids and from the (spatial) gradients at the centroids,

• Limitation of Dubois for the reconstruction of the various quantities to adjust the value
of the gradient in order to ensure that the reconstructed values at the interfaces do not
violate some conditions.

FSI The coupling between the fluid (ALE and treated with FVM) and the structure (La-
grangian and treated with FEM) is realized by an FSI algorithm with the following character-
istics:

• Basic algorithm suitable for large motion and large deformation of structures (but mod-
erate rotations), but only provided these do not fail,

• Conforming spatial discretization for Fluid-Structure meshes (meshes at the interface be-
tween fluid and structure are perfectly coincident),

• Direct application of fluid pressure forces to the structure; the structure motion provides
weak feedback on fluid. The two calculations are performed in a staggered approach (non-
monolithic approach).
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Chapter 4

MADMAX without by-pass pipe,
with single modular orifice plate

This chapter discusses numerical and experimental results regarding the most simplified config-
uration of the MADMAX experiment which has been presented in Chapter 2, that without a
by-pass pipe and with a single orifice plate (with the possibility of changing its diameter and
thickness to perform a parametric study) located in the middle of the core pipe. The numer-
ical simulations are performed using EUROPLEXUS and the hierarchy of models described in
Chapter 3. The purpose, as already anticipated, is to evaluate the predictive capabilities of
EUROPLEXUS regarding the passage of a rarefaction wave through a single obstacle as simple
as an orifice plate. As anticipated in the introductory chapter, compared with previous works,
particularly that of Faucher et al. (2012) [1], we extend the study to six different orifice plate
configurations to perform a sensitivity analysis on the geometric characteristics of the obstacle
(thickness and diameter). In addition, the simulation/experiment comparison are enriched by
new 2D axisymmetric calculations and consideration of Fluid-Structure Interaction (FSI).

4.1 Experimental campaign

In the following, the results of the experimental campaign carried out by myself with the as-
sistance of the laboratory technicians and the person in charge of the experimental platform
in 2022/2023 with the six different geometric configurations of the orifice plate mentioned in
Subsection 2.2.1 are presented and analyzed. Each experiment is characterized not only by the
different geometric configuration of the orifice plate, but also by a specific bursting pressure
Pburst of the bursting disk (see Table 4.1).

Table 4.1: Experimental bursting pressure for MADMAX simplified set-up.

EXP
e = 10mm e = 10mm e = 10mm e = 50mm e = 50mm e = 50mm
d = 10mm d = 30mm d = 50mm d = 10mm d = 30mm d = 50mm

Pburst (bar) 67.8 66.8 68.7 73.3 74.3 62.3

From the factory data, each bursting disk is designed to open at 70 bar ± 10%, depending on
manufacturing tolerances and the environmental conditions of each experiment (actual thickness
of the disk, speed at which the device is pressurized, etc.). It can be observed from Table 4.1 the
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4.1 Experimental campaign

range [63, 77] bar is indeed almost the one covered in the experimental campaign (see Paragraph
2.2.3 for details).
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Figure 4.1: Experimental pressure evolution for all experiments and for all sensors.
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4. MADMAX without by-pass pipe, with single modular orifice plate

Fig. 4.1 shows the pressure evolution for all eight sensors positioned along the device (see
Fig. 2.4) during the first 10 ms after opening the bursting disk for all the experiments. At
the opening of the bursting disk a rarefaction wave is produced and propagates upwards in the
junction pipe; at the moment it reaches the connection with the core pipe the wave is partly
reflected back and partly transmitted into the core pipe depending on the ratio of the cross
sections of the two pipes.

As the junction pipe is relatively short, multiple transmissions/reflections can therefore be
observed in the 10 ms of observation, as can clearly be seen from the C1R/C1E sensors in
Fig. 4.1. The signal is consequently cascaded to the sensors in the lower part of the core pipe
(C2, C4, C5 and C6), the measured pressure of which decreases following a sequence of steps.
Before reaching sensors C7 and C8, the signal encounters the orifice plate from which it is partly
reflected back and partly transmitted through the orifice. The signal transmitted through the
orifice plate to sensors C7 and C8 is influenced by the geometry of the obstacle. It can be seen
that the pressure also decreases for these two sensors, but less significantly than the sensors at
the upstream (with respect to the direction of propagation of the rarefaction wave) of the orifice
plate.

It can be qualitatively deduced that this difference between the pressure signals for sensors
upstream and downstream of the orifice plate grows with a factor inversely proportional to the
diameter of the hole. By comparing the graphs in Fig. 4.1, the influence of varying orifice plate
thickness on wave propagation can also be deduced: for the same orifice diameter we can deduce
that by decreasing the thickness of the orifice plate the pressure signal is transmitted more
effectively and is less diffused when crossing the obstacle. In fact we can clearly see on the C7
and C8 sensors the characteristic pressure steps of the sensors upstream of the orifice plate. On
the other hand, the thickness e does not significantly affect the pressure difference between the
two sides of the obstacle.

4.2 Numerical simulations

Experiments are simulated using EUROPLEXUS with two different models of varying complex-
ity and computational cost:

• a 2D axisymmetric reference model with the obstacle fully described,

• a 1D model with the obstacle replaced by suitable impedance relations (see the description
provided in Paragraph 3.1.4)

All calculations are performed using the FLUID model (with fixed structures) described in
Paragraph 3.1.2.4.

For both models, the time constant involved in the aforementioned boundary condition which
drives the opening of the bursting disk (IMPEDANCE MEMBRANE, see Paragraph 3.1.4) is
equal to 0.12 ms and it was calibrated according to the experiments in [1] (calibration also
confirmed by the results of our experimental campaign). The value used for the speed of sound
in the fluid c takes into account the flexibility of the pipes, by means of the Allievi correction
[65], as well as the presence of gas dissolved in water (Wood formula [66; 67]). The average value
observed experimentally for c is 1310 m/s. In order to verify the accuracy of the experimental
value, c is calculated by Allievi’s correction that takes into account the geometric (diameter
and thickness) and mechanical (density ρ = 7800 kg/m3, Young’s modulus E = 200GPa and
Poisson’s coefficient ν = 0.3) characteristics of the steel pipe. If we do not initially consider
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4.2 Numerical simulations

the presence of dissolved gases in water (thus considering a water density of 1000 kg/m3 and
Bulk modulus of 2.231GPa), we obtain a value of c equal to 1335 m/s, already very close to
the experimental value. In order to precisely fit the experimental measurements, we assume
a very small volume fraction of gas (air) dissolved in water of approximately 2.6 × 10−5 (air
volume/water volume), which allows us to calculate, via Wood’s formula, the mean density
(999.974 kg/m3) and mean Bulk modulus (2.128GPa) of the water/air mixture to be used in
Allievi’s correction, thus obtaining a value of c equal to 1310 m/s.

Simulations are performed for all six geometric configurations using both models in which the
experimental device is represented in a simplified way, in particular by neglecting the presence
of the two connecting elbows between the core pipe and the by-pass pipe. In each simulation,
the initial fluid pressure is set equal to the experimental bursting pressures Pburst summarized
in Table 4.1 and its initial density is set to 1000 kg/m3. The initial pressure of the gas in the
accumulator is also set equal to Pburst as it is in equilibrium with the fluid.

4.2.1 2D axisymmetric calculations

A schematic of the mesh used for the 2D axisymmetric calculations is displayed in Fig. 4.3.
The mesh used is composed of quadrilateral elements of different sizes depending on the area.
The first region of quasi-uniform mesh size corresponds radially to the orifice diameter while
the second region of (larger) quasi-uniform mesh size corresponds to the core of the pipe. Both
regions are connected through a geometric progression for the radial mesh size, with a factor
close to 1.1.

The pressure sensors shown in Figure 4.3 correspond to the mesh elements that best repro-
duce the position of the actual sensors mounted on the experimental device. The real sensors
have a diameter of about 10 mm, and we approximate its vertical position (along y in the Figure
4.3) with that of its axis of symmetry: the numerical sensor corresponds to the single mesh cell
that is closest to this position. For the mesh chosen to perform the simulations after convergence
analysis (see 1 mm mesh in the Table 4.2) such a cell is 10 times thinner (1 mm side) than the
sensor, as shown in Figure 4.2.

WATER

Steel pipe

Pressure
sensor

φ10 mm

Mesh cell 1× 5 mm

Pressure sensor
axis of symmetry

Figure 4.2: Actual pressure sensor size and position compared with the corresponding mesh
cell representing the pressure sensor in the 2D axisymmetric simulations.

Due to the nature of the 2D axisymmetric mesh, it is impossible to faithfully reproduce the
topmost zone of the device, where the core pipe and the accumulators are connected (see Figure
2.4). This area has therefore been reproduced in a simplified manner (e.g. the two accumulators
are reduced to a single, larger accumulator), as shown in Fig. 4.3, while maintaining the actual
volumes (25 liters per accumulator and about 20 kg per piston).
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Figure 4.3: Scheme of the 2D axisymmetric mesh.
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4.2 Numerical simulations

As usual in numerical calculations, a mesh convergence analysis was carried out for all six
geometric configurations of orifice plate using meshes finer or coarser than the one shown in Fig.
4.3. Four different meshes were tested and we summarize their characteristics in Table 4.2.

Referring to Table 4.2, the 1 mm mesh corresponds exactly to that shown in Fig. 4.3. It
should be noted that the Progressive type only refers to non-uniformity in the radial (x) direction,
while all four meshes are uniform in the axial (y) direction. Only the 10 mm mesh is uniform
in both directions, the elements of which will therefore all be squares of 10 mm side. The
analysis is performed on all sensors for each geometric configuration. As an example, Fig.
4.4 shows the sensitivity analysis with respect to the cell size performed on the evolution of
the pressure difference between sensors C7 and C6, ∆P7−6, for the orifice plate configuration
[e = 50mm, d = 50mm]. It can be concluded from this comparison that the 1 mm mesh (mesh
of approximately 230000 elements) is sufficient to achieve grid convergence of the calculations
for ∆P7−6. Since a systematic analysis performed for various sensors and orifice geometries
leads to the same observation, the 1 mm mesh is the one retained in this chapter for the 2D
axisymmetric calculations.

Table 4.2: 2D axisymmetric mesh characteristics for sensitivity analysis.

Mesh name Mesh type
Smallest element Largest element

(mm×mm) (mm×mm)

0.5 mm mesh Progressive 0.5× 0.5 5.0× 0.5
1 mm mesh Progressive 1.0× 1.0 5.0× 1.0
3.3 mm mesh Progressive 3.3× 3.3 5.0× 3.3
10 mm mesh Uniform 10.0× 10.0 10.0× 10.0
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Figure 4.4: 2D axisymmetric mesh convergence for ∆P7−6. Configuration: [e = 50mm,
d = 50mm].

40



4. MADMAX without by-pass pipe, with single modular orifice plate

4.2.2 1D with impedances calculations

The 1D with impedances mesh consists of linear elements connected via point nodes (see Fig.
4.5). Each set of elements, representing a pipe section, is associated with its diameter, thus
enabling a change in section to be represented via a junction element. Figure 4.6 shows the
schematic of the 1D impedance mesh used in our simulations.

The main feature that distinguishes it from the 2D axisymmetric model is that this time
the orifice plate is not represented geometrically, but is replaced by the impedance called
IMPEDANCE GRID to which a characteristic time τ and a head loss coefficient k are then
associated. The values of these coefficients are summarized in Table 4.3 for the six geometric
configurations of the orifice plate, computed as described in Subsection 3.1.4.

1D element
node

Figure 4.5: 1D mesh scheme. The 1D element between the nodes corresponds to a 1D mesh for
a pipe of constant diameter. Each node corresponds to a change of pipe section or diameter.
In the present case, the mesh would correspond to 3 connected pipes of various diameters.
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Figure 4.6: Scheme of the 1D with impedances mesh.
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4. MADMAX without by-pass pipe, with single modular orifice plate

Table 4.3: Characteristic time and head loss coefficient for IMPEDANCE GRID.

Orifice e = 10mm e = 10mm e = 10mm e = 50mm e = 50mm e = 50mm
plate d = 10mm d = 30mm d = 50mm d = 10mm d = 30mm d = 50mm

geometry

τ (ms) 2.47 0.47 0.22 7.94 1.08 0.44

k (-) 294503 5399 666 261874 3178 427

All other cross-sectional changes, represented with black dots in Fig. 4.6, are associated
with another type of impedance called IMPEDANCE PCHA, which corresponds to imposing
only a classical head loss without the acoustic contribution present in IMPEDANCE GRID (see
Paragraph 3.1.4. This choice is based on the fact that the other section changes in question are
single cross-sectional changes (sudden enlargement or shrinkage). Consequently, the contribution
of the acoustic term in Equation (3.24) does not have the same significance as in the case of
the orifice plate (a sudden shrinkage immediately followed by a sudden enlargement). For the
orifice plate the frequency of the transmission/reflection phenomenon within its thickness plays
a crucial role in delaying the pressure signal transmission from one side of the obstacle to the
other (need to use the IMPEDANCE GRID). It is, however, much less significant in the case
of single cross-sectional changes, where the term for classical head loss (IMPEDANCE PCHA)
makes the most important contribution and is sufficient for their representation. As can be seen
in Figure 4.6, no impedance is associated with the single junction node between the core pipe
and the horizontal element of the accumulator zone. This is because, despite being a cross-
sectional change, the ratio between the two sections is very close to 1, making both the acoustic
effect and the head loss negligible.
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Figure 4.7: 1D with impedances mesh convergence for ∆P7−6. Configuration: [e = 50mm,
d = 50mm].
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4.3 Simulation-experiment comparison

With the 1D with impedances model, unlike the 2D axisymmetric model, it is possible
to break free from the axisymmetry assumption and thus obtain a more accurate geometric
representation of two accumulators and their connection to the core pipe, allowing for the
representation of two accumulators with directional changes as in reality.

As done for 2D axisymmetric simulations, a mesh convergence analysis is also performed for
the 1D model with impedances. Since there is obviously no radial dimension for the 1D mesh,
in this case all the tested meshes are uniform (the cells belonging to the 1D element between
two nodes are all of the same length or size). For this grid convergence study, it was sufficient to
test only three cell sizes: 1 mm, 3.3 mm and 10 mm. All three meshes are actually sufficient for
the convergence of the simulations, as can be seen from Fig. 4.7, which shows the convergence
analysis for the pressure difference between sensors C7 and C6, ∆P7−6, for the orifice plate
configuration [e = 50mm, d = 50mm]. This analysis led us to choose the coarsest 10 mm mesh,
thus consisting of around 1500 cells.

4.3 Simulation-experiment comparison

In this section, we aim to present a comparison between the numerical simulation results and
the experimental data. We will initially focus on the evolution of pressure variation across the
orifice plate to evaluate the effect of its geometry. Subsequently, we will analyze the difference in
accuracy between the two numerical models. Finally, we will present a numerical-to-numerical
comparison of the two models in predicting flow velocity, introducing a further novelty compared
to previous works, notably that of Faucher et al. (2012).

4.3.1 Evolution of the pressure variation through the orifice plate: effects of
the geometry

As previously done at the beginning of the chapter when we analyzed the experimental results,
we now aim to provide a qualitative assessment of the effect of the orifice plate geometry on the
evolution of the pressure variation through it, this time comparing the experimental results with
those of the two numerical models. It is important to recall that the orifice plate is installed
between the two sensors C6 and C7, located upstream and downstream of the orifice plate,
respectively. We are therefore interested in the transient pressure difference created between
these two sensors, ∆P7−6.

Figures 4.8 and 4.9 show the pressure difference between sensors C7 and C6, ∆P7−6, for all
the orifice plate configurations, comparing the results of the simulations with the experimental
results. The results are in good agreement with the experiments and one can clearly deduce the
effect of the orifice plate geometry: the smaller the diameter of the orifice plate hole, the greater
the pressure difference between the two sensors; the thickness does not significantly affect the
pressure difference between the two sides of the obstacle.
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Figure 4.8: Pressure difference between sensors C6 and C7, ∆P7−6, for all thin orifice plates
(e = 10mm).
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Figure 4.9: Pressure difference between sensors C6 and C7, ∆P7−6, for thick modular orifice
plate (e = 50mm).
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4.3 Simulation-experiment comparison

4.3.2 Accuracy of numerical models compared to experiments

As previously mentioned, observing Figures 4.8 and 4.9, it can be seen that both models are
in good agreement with the experimental results regarding the transient pressure difference
generated between the two sides of the orifice plate.

To provide a more comprehensive evaluation of the accuracy of the two models compared
to the experimental results, we present below a simulation/experiment comparison of pressure
evolutions on three specific sensors for all orifice plate configurations:

• the C1 sensor of the junction pipe in Figure 4.10, to assess the accuracy in reproducing
the bursting disk opening,

• and two sensors of the core pipe, the C5 sensor in Figure 4.11 and the C8 sensor in
Figure 4.12, located upstream and downstream of the orifice plate, respectively. We chose
sensors C5 and C8 instead of C6 and C7 in this case for two reasons: to provide additional
information compared to Figures 4.8 and 4.9, and to evaluate the pressure evolution in
regions slightly further from the orifice plate, where we are closer to a condition of plane
wave propagation in the experiment and in the 2D axisymmetric simulation.

For sensor C1, looking at Figure 4.10, it is evident that both models are capable of accurately
reproducing the transmission/reflection mechanism generated in the junction pipe by the opening
of the bursting disk. In particular, during the first 3 ms, the two models are almost perfectly
superimposed, with the 1D model better capturing the first four peaks. Subsequently, from the
fifth peak (at around 4 ms) to 6 ms, the 2D axisymmetric model proves to be the most accurate.
In the final part (t ≥ 6 ms), the pressure tends to zero more rapidly as the diameter of the
orifice plate decreases, suggesting that a larger orifice diameter allows for a greater flow from
the upper part of the device, thereby maintaining higher pressure in the junction pipe. In this
latter case, both models continue to show increasingly pronounced peaks as the orifice plate
diameter increases, whereas the experimental signal tends towards a plateau. In all cases, a
slight phase shift can be observed, which can be attributed to a not sufficiently accurate bottom
outlet condition (the opening of the bursting disk in the numerical models is driven by a simple
exponential function, as presented in Paragraph 3.1.4).

From Figure 4.11, we can deduce that for sensor C5, the two numerical models overlap almost
perfectly up to 4 ms, while accurately following the experimental curve up to 3 ms. The two
numerical models begin to diverge from each other for t ≥ 4 ms, with the 1D model showing an
underestimated pressure compared to both the 2D axisymmetric model and the experimental
curve. In general, for t ≥ 4 ms, the 2D axisymmetric model is the one that best follows the
experimental curve.

By looking at the pressure evolution for the individual sensor C8, PC8, in Figure 4.12 we
can again deduce the effect of the orifice plate thickness on the wave propagation through it: by
decreasing the thickness of the orifice plate the pressure signal is transmitted more effectively
and is less diffused when crossing the obstacle. In fact we can clearly see on the C8 sensor the
characteristic pressure footprint (the pressure steps) transmitted from the upstream of the orifice
plate. Regarding the accuracy of the models, in the first 3 ms, we observe that for the cases
with orifice diameters of 30 and 50 mm (Figures 4.12 (c)-(d)-(e)-(f)), the two models overlap
and follow the experimental curve with reasonable accuracy. In the case of d = 10mm (Figures
4.12 (a)-(b)), neither model is able to reproduce the slight pre-increase in pressure observed
experimentally between 2 and 3 ms. This phenomenon will be explained in Paragraph 4.4.2.3
when we consider the FSI mechanisms. For 3 ≤ t ≤ 5 ms, the models closely follow the trend of
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4. MADMAX without by-pass pipe, with single modular orifice plate

the experimental curve, except for the cases with d = 10mm, where they fail to reproduce the
same acoustic imprint (peaks) of the experimental curve (which we will see when considering
FSI mechanisms). Between 5 and 7 ms, there is a small plateau due to the return of the reflected
wave from the topmost part of the device (the first rarefaction wave traveled the entire height
of the device, slightly over 5 meters, in about 4 ms), after which the pressure starts to decrease
again. The plateau is accurately reproduced by both models only for configurations (c), (e),
and (f); for configuration (d), the 1D model is more accurate; in configurations (a) and (b),
both models slightly overestimate the pressure value, with the 1D model again showing greater
accuracy.

For both models, a major influence is also played by the value of the speed of sound, which
is considered uniform throughout the fluid, but which actually depends not only on the material
of the pipe, but also on its diameter and thickness (when taking pipes flexibility into account
to correct the value of the speed of sound in the fluid). We will explore this effect in detail in
Section 4.4 when considering the FSI mechanisms.
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Figure 4.10: Pressure evolution for sensor C1, PC1, for all orifice plates.
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Figure 4.11: Pressure evolution for sensor C5, PC5, for all orifice plates.
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Figure 4.12: Pressure evolution for sensor C8, PC8, for all orifice plates.
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4. MADMAX without by-pass pipe, with single modular orifice plate

4.3.3 Numerical prediction of the velocity evolution

From the simulations, in addition to the pressure field, it is possible to extract the values of
the fluid velocity for each node of the mesh. Unfortunately, no experimental measurements are
currently available for the velocity (how to perform such a measurement is being investigated
and perspectives will be given in the conclusion of the manuscript), but a comparison is made
between the results of the two models for the velocities at the same position of the pressure
sensors. For the 2D axisymmetric model, two velocity components are associated with each
node, one radial (along x) and one axial (along y), whereas the velocities of the 1D model have
one spatial component in the direction of flow. Therefore, to compare the two models, we chose
to extract only the y-components of the velocity for each node of the 2D axisymmetric model
and average them in the radial direction (weighted average over the mass).

4.3.3.1 Physical interpretation

Figure 4.13 shows the velocity evolution (y-component) at positions C6 and C7, for all geometric
configurations of the thick modular orifice plate and for the two numerical models. Velocities
have negative values because the flow is clearly going downwards with respect to the reference
system (y-axis pointing upwards). By comparing the two figures with each other, it can be
qualitatively deduced that the momentum conservation is respected above and below of the
orifice plate, apart from oscillations due to acoustics. Finally, regarding the effect of orifice plate
geometry, it can be seen that the larger the hole the higher the velocities and the more effectively
the signal is transmitted from position C6 to position C7.

4.3.3.2 Evaluation of numerical model accuracy

The two models are in good agreement for the first few milliseconds after the arrival of the
pressure signal, after which the curves tend slightly to diverge, with the 2D axisymmetric model
displaying lower velocities that tend to zero at some point, while for the 1D model it appears that
the velocity reaches a plateau. This latter behavior, which is particularly pronounced for position
C6 in configurations [e = 50mm, d = 10mm] and [e = 50mm, d = 30mm] (see Fig. 4.13 (a)), can
be explained by observing the pressure evolution for sensor C6 (Fig. 4.14 (a)): for the 1D model,
we observe that at a certain time, which depends on the orifice diameter (at approximately 6.5
ms for [e = 50mm, d = 10mm]-bullets, and 8.2 ms for [e = 50mm, d = 30mm]-triangles)
the pressure reaches approximately 0 bar (limit imposed by the calculation, see Eq. (3.19) in
subsection 3.1.2) and remains stable for a certain period of time, thus indicating the presence
of cavitation in the actual flow. Since the numerical models used in the present calculations do
not allow a proper description of the phyical cavitation we will refer to the occurrence of the
regime where the computed pressure reaches approximately 0 bar as a “numerical cavitation”;
for the configuration [e = 50mm, d = 30mm] only the 1D model shows numerical cavitation,
unlike the 2D axisymmetric model which agrees more closely with the experimental curve.

For the 2D axisymmetric model, on the other hand, the y-component of the velocity for
sensor C6, vy,C6, (Fig. 4.13 (a)) tends to zero in presence of numerical cavitation (velocity is
radially weight averaged over the mass; as will be discussed in Section 4.4, a localized density
drop is observed, Fig. 4.15, in the area of higher fluid velocity, Fig. 4.18, thus explaining why
vy,C6 tends to zero), but at the same time a significant x-component of the velocity, vx,C6,
appears (Fig. 4.14 (b)), highlighting a subsequent fluid acceleration in the radial direction (x)
towards the pipe wall.
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Figure 4.13: y-velocity at positions C6 (a) and C7 (b).

In the observation period presented here, [0, 10] ms, we do not observe the same effects on
the configuration [e = 50mm, d = 50mm], but looking at the tendency of the curves we can
expect to find similar behavior for observation periods longer than 10 ms.

52



4. MADMAX without by-pass pipe, with single modular orifice plate

(a)

0 1 2 3 4 5 6 7 8 9 10
Time (ms)

0

1

2

3

4

5

6

v x
,C

6 (
m
/s
)

e = 50 mm   
d = 10 mm
e = 50 mm   
d = 30 mm
e = 50 mm   
d = 50 mm
2D axisymmetric

(b)

Figure 4.14: (a) Pressure evolution for sensor C6, PC6, for all thick modular orifice plate
configurations and (b) x-velocity at positions C6.

Finally, considering the 2D axisymmetric model as reference and the difference with respect
to the 1D model with impedances on the prediction of velocity evolution, it can be deduced that,
despite the latter’s ability to reproduce pressure evolution in a somewhat satisfactory manner,
the same cannot be said about its predictive capacity for velocity evolution, particularly when
more complex and/or more realistic configurations are taken into account.

4.4 Fluid-Structure Interaction (FSI) calculations

In order to investigate in more detail the numerical cavitation phenomenon observed in some of
the simulations carried out so far and analysed in particular in the previous section, we show
below the results of some FSI calculations carried out with EUROPLEXUS on the case study
under consideration in this Chapter and explain the necessity of such calculations.

4.4.1 Motivation

In the 2D axisymmetric and 1D calculations performed so far with the FLUID model (no phase
change, fluid pressure calculated using Eq. (3.19)) and fixed structures (Eulerian description
for the fluid), numerical cavitation is produced locally (just below the orifice plate, observed at
sensor C6) by the attainment of a minimum threshold value for the fluid pressure, as already
explained in the previous section. This has an effect on the fluid velocity, as already described,
but a localised decrease in density can also be observed (see Fig. 4.15).
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(a) t = 7ms (b) t = 8ms (c) t = 9ms (d) t = 10ms

Figure 4.15: 2D axisymmetric FLUID density profile for configuration [e = 50mm, d = 10mm]
below the orifice plate.

The localised drop in density suggests the possible presence of cavitation but the FLUID
model does not allow a more accurate prediction since it does not take phase change into account.
The occurrence of fluid vaporization could be observed experimentally on the test-rig but the
current experimental device prevents such an observation since no porthole has been fitted along
the core pipe. It was therefore decided to perform complementary numerical simulations using
again EUROPLEXUS but with a new model to represent the fluid, namely the WATER model
[62], which uses tabulated Equations of State (EoS) [63] to calculate the properties of water and
allows phase change to be taken into account.

With the FLUID model, the value of the speed of sound in the fluid was adjusted by means of
the Allievi correction to take into account the flexibility of the pipe and the presence of dissolved
gases in the water (as explained in Section 4.2). On top of having a validity limited to simple
configurations, this description does not allow to represent the occurrence of cavitation in the
flow. Using the WATER model, on the other hand, employing the EoS and FSI calculations to
take into account the flexibility of the pipe, we obtain the correct value of the speed of sound
without applying the Allievi correction. In the WATER model, the equations (3.5), (3.7) and
(3.17) are solved in a coupled manner and the water properties calculated through the tabulated
EoS, giving us the possibility to take the phase change into account. The energy equation is
then solved for a homogeneous equilibrium water/steam model in which pressure is this time
both a function of density and internal energy.

4.4.2 2D axisymmetric FSI calculations

4.4.2.1 Set-up of the simulations

To perform 2D axisymmetric FSI calculations on the case under investigation, we first added
a mesh layer around the fluid to represent the pipe (see Fig. 4.16). The thickness of this layer

54



4. MADMAX without by-pass pipe, with single modular orifice plate

varies over the length of the pipe respecting the actual pipe thickness. In this case we used a
uniform squares mesh (cell characteristic size ≈ 1 mm) to facilitate a perfectly coherent coupling
between the fluid and the pipe (nodes and faces of the two meshes coinciding at the interface
between them).
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Figure 4.16: Scheme of the 2D axisymmetric mesh for FSI calculations. In the close-up on the
right (top: in the vicinity of the orifice plate, bottom: in the vicinity of the connection between
the junction pipe and the core pipe), the fluid domain is pictured in red while the solid domain

is pictured in blue.
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From a physical and numerical point of view, the two components, steel pipe and water, are
described as follows:

• Pipe (structure): spatial discretization using Finite Element Model (FEM), Lagrangian
description (the mesh deforms following the deformation of the solid), linear elastic ma-
terial model with associated steel properties (density ρ = 7800 kg/m3, Young’s modulus
E = 200GPa and Poisson’s coefficient ν = 0.3).

• Water (fluid): spatial discretization using Finite Volume Model (FVM), ALE description
(the fluid mesh can deform to follow the displacements of the surrounding structure, see
Section 3.1.2), WATER model to which we only give as input the initial pressure of the
fluid (corresponding to the bursting pressure) and the initial temperature (equal to the
ambient temperature), all other properties being calculated by EUROPLEXUS via the
tabulated EoS.

4.4.2.2 Qualitative observation of the computed flow

As mentioned above, by means of FSI calculations with the WATER model, it is possible to
assess whether a phase change actually occurs in the fluid (water vaporization): Fig. 4.17 shows
the 2D axisymmetric profile of the void ratio (vapour volume/total volume) in the section just
below the orifice plate.

It can clearly be deduced that cavitation is indeed generated as a vapour bubble that begins
to form near the axis of symmetry of the pipe a few tens of centimeters below the orifice plate
and that enlarges and elongates in the axial direction over time, moving in the direction of flow
(fluid flow downwards). The location of the phenomenon corresponds almost perfectly with that
observed in the calculations with the FLUID model shown in Fig. 4.15.

The occurrence of this phenomenon is very likely correlated with the strong acceleration of
the fluid at this location, as displayed in Fig. 4.18: at the axis of symmetry of the pipe, and thus
at the orifice plate hole, a high-speed wall-jet is created in the negative y-direction (maximum
velocity magnitude of 125 m/s) with cavitation appearing roughly at the head of this wall-jet.
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(a) t = 7ms (b) t = 8ms (c) t = 9ms (d) t = 10ms

Figure 4.17: 2D axisymmetric WATER void ratio profile for configuration [e = 50mm,
d = 10mm] below the orifice plate.

(a) t = 7ms (b) t = 8ms (c) t = 9ms (d) t = 10ms

Figure 4.18: 2D axisymmetric WATER velocity y-component, vy, profile for configuration
[e = 50mm, d = 10mm] below the orifice plate. In dark grey: 0 < vy < 2.5m/s.
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4.4.2.3 Quantitative analysis of the pressure evolution

Figures 4.19 and 4.20 display the evolution of the pressure difference between sensors C6 and
C7, ∆P7−6, respectively for the thin orifice plates (e = 10mm) and the thick orifice plates (e =
50mm). The evolution computed using the 2D axisymmetric calculations with non-deformable
structure (2D axi - blue line) previously analyzed in 4.3 are compared with the new calculations
with FSI (2D axi FSI - green line) and the reference experimental measurements. Figure 4.21
also provides the same comparison but with a focus on the first 4 ms of the time evolution;
distinct plots are proposed for each geometric configuration (defined by the values of e and d)
to allow a clear comparison between the 2 simulations and the corresponding experiment.

Early stage of the time evolution From Fig. 4.21 one can clearly see that calculations with
FSI are able to follow the experimental curve more closely in the first 4 ms. FSI simulations allow
us indeed to reproduce a particular phenomenon that we have always observed in experiments
but which could not be observed in simulations without taking the flexibility of the structure into
account: referring to Fig. 4.19, 4.20 and 4.21 we can see that for 1 < t < 2.3ms the experimental
pressure difference ∆P7−6 (red curve) undergoes a slight pre-increase before rising abruptly at
about t = 2.3ms, a trend that is nearly also followed by the FSI calculation (green curve), but
not by the 2D axisymmetric calculation with fixed structures (blue curve), which maintains a
∆P7−6 equal to zero up to 2.3 ms and then directly undergoes a brutal increase.

The aforementioned behavior can be explained by considering that the acoustic rarefaction
wave, generated as a result of the rupture of the bursting disk, not only propagates through
the fluid but also traverses the structure, albeit at a different velocity. To be more precise, in
the case of steel, the speed of sound is approximately 5100 m/s, which is more than three times
greater than the speed of sound in water. This discrepancy leads to the structural deformation
occurring prior to the arrival of the same acoustic signal in the water.

This pre-deformation causes the section of the pipe below the orifice plate to slightly expand
radially as the wave passes through it, resulting in a localized decrease in fluid pressure. Con-
versely, in the section of the pipe above the orifice plate, the opposite effect takes place as the
wave propagating within the structure encounters the discontinuity formed by the orifice plate
itself. Consequently, a slight pressure difference is established between the two sides of the orifice
plate in the initial moments, causing the upper portion to undergo a minor depressurization.
This, in turn, induces a slight radial constriction in that part of the pipe, leading to a minor
localized increase in pressure in the fluid located above the orifice plate.

Time evolution after 5 ms From Figures 4.19 and 4.20 one could say the FSI prediction
between 5 and 6 ms for the 2D axi FSI seems further away from the experiment than the baseline
2D axi, except for configurations [e = 10mm, d = 30mm] and [e = 10mm, d = 50mm], where
the models yield very similar results instead. This effect could be due to an inaccurate response
of the structure to the return of the wave reflected from the upper part of the device (the first
rarefaction wave traveled the entire height of the device, slightly over 5 meters, in about 4 ms):
the connection between the core pipe and the accumulators is simplified in 2D modeling (a single
accumulator placed on the same axis as the core pipe) compared to reality (two accumulators
connected at 90 degrees to the core pipe), thus not ensuring the same transmission/reflection
mechanisms and consequently a different response of the structure, which, when deforming in
the 2D axi FSI simulation, has a consequent effect on the local pressure.
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4. MADMAX without by-pass pipe, with single modular orifice plate

After 6 ms, the 2D axi FSI model generally appears to be closer to the experimental curve
compared to the 2D axi model with fixed structures.
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Figure 4.19: Pressure difference between sensors C6 and C7, ∆P7−6, for all thin orifice plates
(e = 10mm).
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Figure 4.20: Pressure difference between sensors C6 and C7, ∆P7−6, for thick modular orifice
plate (e = 50mm).
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Figure 4.21: Pressure difference between sensors C6 and C7, ∆P7−6, for all orifice plates.
Focus on 0 < t < 4ms.

Full time evolution at sensors C5 and C8 Figures 4.22, 4.23, 4.24 and 4.25 depict the
evolution of pressure at sensors C5 (below the orifice plate) and C8 (above the orifice plate) for
all geometric configurations. These trends further corroborate the presence of the phenomenon
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described previously: a slight, anticipated decrease in pressure for the fluid located below the
orifice plate (sensor C5) and a slight, anticipated increase for the fluid above it (sensor C8).
As previously explained, it is evident that the FSI simulation successfully replicates this phe-
nomenon, closely tracking the experimental curve. Conversely, in the fixed-structure simulation,
this phenomenon is absent. Notably, for sensor C8, the FSI simulation for thin orifice plates
(Fig. 4.24) excellently reproduces the experimental pressure oscillations observed for t > 3ms,
in contrast to the fixed-structure simulation.
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Figure 4.22: Pressure evolution for sensor C5, P5, for all thin orifice plates (e = 10mm).
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Figure 4.23: Pressure evolution for sensor C5, P5, for thick modular orifice plate (e = 50mm).
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Figure 4.24: Pressure evolution for sensor C8, P8, for all thin orifice plates (e = 10mm).
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Figure 4.25: Pressure evolution for sensor C8, P8, for thick modular orifice plate (e = 50mm).

Pipe deformation By conducting the FSI calculations, it becomes possible not only to ac-
count for the deformation of the pipe and assess its impact on wave propagation in the fluid
but also to evaluate the mechanical stress exerted on the structure. Specifically, the component
experiencing the greatest stress is the orifice plate, which, as observed thus far, undergoes an
increasingly abrupt transient pressure differential, especially as its orifice size decreases.

The geometric configuration of orifice plate that is most penalising from the point of view of

62
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deformation is the one with the smallest thickness (lower stiffness) and smallest orifice diameter
(higher generated pressure difference), i.e. configuration [e = 10mm, d = 10mm].

Figure 4.26 shows, as an example, the deformation undergone by the above-mentioned con-
figuration, at t = 7ms, in terms of radial (x-component) and axial (y-component) displacement.
It is evident that the orifice plate is subjected to a bending stress directed downward due to
the pressure differential existing between its two sides. To provide an order of magnitude, the
maximum displacements experienced by the orifice plate in the radial direction are of the or-
der of a few tens of micrometers, whereas in the axial direction, they are approximately in the
millimeter range (that is two orders of magnitude larger than the radial component).

(a) Displacement x-component.

(b) Displacement y-component.

Figure 4.26: 2D axisymmetric thin orifice plate [e = 10mm, d = 10mm] displacement profiles
at t = 7ms. In violet, the profile of the undeformed orifice plate at t = 0ms.

The x-component of displacement highlights how the upper fibers of the orifice plate are
subjected to tensile stress (displacements in the negative x-direction), while conversely, the
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lower fibers are subject to compressive stress (displacements in the positive x-direction), almost
symmetrically. Simultaneously, the y-component of displacement clearly illustrates the extent
to which the orifice plate undergoes deformation in the axial direction, downward (negative y-
direction), with a maximum displacement occurring at the orifice plate’s hole and progressively
decreasing to zero moving radially towards the junction area between the orifice plate and the
pipe.

(a) Without automatic rezoning.

(b) With automatic rezoning. In white, the profile of the undeformed orifice plate at
t = 0ms.

Figure 4.27: 2D axisymmetric mesh deformation for thin orifice plate [e = 10mm, d = 10mm]
at t = 7ms.

Lastly, it is noteworthy to mention that in the conducted FSI computations, an automatic
mesh rezoning algorithm available in EUROPLEXUS [62] was employed to control the grid
motion in the ALE computation. As previously explained, these FSI calculations utilize both
a Lagrangian description and an ALE description for the structure and the fluid, respectively.
This approach enables the structural mesh to deform in accordance with the solid’s deformation
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and allows the fluid mesh to deform in response to the structural displacement with which it is
coupled.

Figure 4.27 presents the deformation of the 2D axisymmetric mesh for the FSI computation
at t = 7ms in the vicinity of the orifice plate, an area where the grid is most perturbed. In the
case where the mesh rezoning algorithm is not employed (Fig. 4.27 (a)), the coupling approach
applied at the interface between the fluid and the structure (not detailed here for the sake
of simplicity) causes the grid motion in the ALE description (fluid mesh) to apply solely to
the elements in direct contact with the solid mesh, resulting in substantial distortions. As a
consequence, the fluid elements directly above the orifice plate progressively expand to follow
the structure’s displacement, while those below are squeezed. In particular, the latter, if too
much reduced in size, may lead to convergence issues in explicit numerical computations. The
time-step used in the temporal discretization is progressively adjusted during the simulation to
comply with the imposed stability condition, and it is directly proportional to the size of the
smallest mesh element. Consequently, if at any point, a mesh element becomes infinitely small,
a very small time-step will be calculated, such that the simulation will not converge.

As depicted in Figure 4.27 (b), the automatic rezoning algorithm effectively addresses the
issue described earlier, as it manages grid motion for the ALE calculation and successfully
maintains a nearly uniform fluid mesh throughout the simulation.

4.5 Conclusions

The propagation of a transient rarefaction wave through a pipe equipped with a diaphragm of
varying thickness and inner diameter has bee studied both experimentally on the MADMAX
platform and numerically using a hierarchy of model implemented in the EUROPLEXUS code.
The experiment provides reference results allowing to assess the accuracy of the numerical pre-
diction, depending on the level of simplification introduced in the simulation framework. At this
stage, no full 3D simulation has been performed (this will be investigated in the next chapter)
because it has been considered a 2D axisymmetric description of the core pipe and its envi-
ronment could provide a “reference” numerical result with which a truly simplified numerical
description could be compared. The geometry simplification introduced by the 2D asymmetric
simulation is limited to the description of the accumulator in the upper part of the core pipe; the
diaphragm is fully described. In the 1D numerical model with impedances, all section changes
are described using impedance conditions; the IMPEDANCE GRID condition described in 3.1.4
with complements in C is applied to describe the diaphragm.

The two numerical models investigated are both quite reliable for the simulation of the case
study under consideration, particularly with regard to the reproduction of the correct pressure
values at the sensors. As one would expect, the 2D axisymmetric model is generally in better
agreement with the experimental results, but the 1D model with impedances nonetheless pro-
duces satisfactory results, while at the same time allowing a significant gain in terms of greater
simplicity of representation (mesh creation) and shorter calculation time required: for simula-
tions up to a physical time of 10 ms, 1D calculations take about 3 minutes each, performed on
a single CPU, while 2D axisymmetric calculations, performed in parallel on multiple processors
(between 12 and 24 CPUs) take about 100 minutes on average, while the most precise calcu-
lations, 2D axisymmetric calculations with FSI, have come to take as long as nearly 24 hours
while performed in parallel on 36 processors.

Both models imply a simplified representation of the real geometry of the experimental de-
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vice, but despite this they can be considered quite valid: the presence of the two connecting
elbows on the core pipe is negligible in agreement with the experimental results and makes
the choice of an axisymmetric approximation reasonable; the simplified representation of ac-
cumulators does not adversely affect the numerical results at least over the observation period
considered in this study, but could turn out to lead to significant differences between numerical
and experimental results over longer observation periods.

Lastly, the FSI calculations with the WATER model and tabulated EoS enable us to com-
prehensively assess the phenomenon of cavitation and provide an initial evaluation of the defor-
mations and mechanical stresses experienced by the structure, particularly the orifice plate.
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Chapter 5

MADMAX with by-pass pipe and
multiple orifice plates

The present chapter discusses numerical and experimental results regarding the complete con-
figuration of the MADMAX experiment which has been presented in Chapter 2. In this config-
uration, the by-pass pipe has been reinstalled and multiple orifice plates can be arranged there
in series up to a maximum of six. The core pipe, at the same time, can be left free or one of the
orifice plates used for the simplified configuration can be installed in the middle of it. In this
chapter we specifically discuss the configuration with free core pipe and 6 orifice plates in the
by-pass pipe: it is the complete configuration for which the experiment was originally designed.
The numerical simulations are performed again using EUROPLEXUS following the hierarchy of
models presented in Chapter 3. The purpose is to evaluate the predictive capabilities of EURO-
PLEXUS regarding the passage of multiple rarefaction waves through multiple obstacles and to
estimate the pressure difference generated between the core pipe and the by-pass pipe. For the
first time, experimental results pertaining to this configuration are presented, along with novel
simulations that account for Fluid-Structure Interaction.

5.1 Experimental campaign

5.1.1 Overview of tested configurations

The complete configuration of MADMAX with 6 orifice plates (each of thickness e = 5mm and
orifice diameter d = 17mm) in the by-pass pipe and the free core pipe will be referred to as
Configuration 1. Two other configurations, respectively Configuration 2 and Configura-
tion 3 will be analyzed in the next chapter. The characteristics of the three configurations can
be summarized as follows:

1. Configuration 1: free core pipe and 6 orifice plates in the by-pass pipe,

2. Configuration 2: free core pipe and 4 orifice plates in the by-pass pipe,

3. Configuration 3: 1 orifice plate [e = 10mm, d = 30mm] in the core pipe and 6 orifice
plates in the by-pass pipe.

Configuration 2 is designed to investigate the effect of a different number of obstacles placed
in series within the by-pass pipe, while Configuration 3 incorporates the same number of orifice
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plates in the by-pass as Configuration 1, but an additional orifice plate is added in the core
pipe to analyze the effect of the simultaneous presence of obstacles in both branches of the
experiment, thus approaching even closer to the real industrial case. Details on the key steps of
the experimental campaign leading to the results analyzed hereafter can be found in Paragraph
2.2.2. An important parameter for the proper setup of the numerical simulations is the bursting
pressure. The bursting pressures corresponding to the three experiments are collected in Table
5.1.

Table 5.1: Experimental bursting pressure for MADMAX complete set-up.

EXP Configuration 1 Configuration 2 Configuration 3
(6 o.p. in by-pass) (4 o.p. in by-pass) (6 o.p. in by-pass

+ 1 o.p. e10d30 in core)

Pburst (bar) 61.6 68.0 76.5

5.1.2 Pressure evolution and flow description

Figure 5.1 shows the experimental measurements of pressure temporal evolution in the first 20
ms of transient for all installed sensors for Configuration 1. One piezoresistive pressure sensor
(C1) is installed on the junction pipe, six piezoelectric pressure sensors (C2, C4, C5, C6, C7,
and C8) are installed on the core pipe, and five piezoelectric pressure sensors (D1, D2, D3, D4,
and D5) are installed on the by-pass pipe. As visible from the diagrams in Paragraph 2.2.2, the
five sensors D1-D5 are at the same respective elevations as sensors C4-C8.
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(a) Junction pipe (C1) and core pipe (C2-C8).
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(b) By-pass pipe (D1-D5).

Figure 5.1: Experimental pressure evolution for all sensors for Configuration 1.

To achieve a better understanding of the physics at work in the experiment, we also provide in
this section snapshots of the flow taken from the 3D numerical simulations conducted on this
configuration. The purpose at this stage is merely to complement the local information provided
by the sensors with a global view of the flow features provided by the simulation - a quantitative
comparison between experiment and simulations will be performed in the next section.
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5. MADMAX with by-pass pipe and multiple orifice plates

Three zones can be distinguished in the experiment:

• the lower part, which ranges from the junction pipe to sensors C4-D1. Figures 5.3 and
5.4) provide pressure contours in this lower part at successive time instants;

• the middle part, which comprises the entire by-pass pipe and the corresponding part of the
core pipe, thus sensors C4-C8 and D1-D5. Figures 5.5 and 5.6) provide pressure contours
in this middle part at successive time instants;

• the upper part, above sensors C8 and D5 and which also includes the accumulators. Figures
5.7 and 5.8) provide pressure contours in this upper part at successive time instants.

The snapshots provided in Figures 5.3 to 5.8 display the pressure distribution along a vertical
section of the experiment at various time instants, focusing on four wave fronts propagating:

• the first at 61.6 bar corresponds to the initial rarefaction wave directly produced by the
bursting disk opening;

• the second, third and fourth take respectively place at 54 bar, 49 bar and 45 bar.

Of course, it should be noted that there is not an exact correspondence between the results of
the 3D simulation and the experimental ones. In particular, some differences are observed in
the acoustic signal propagation, especially in the by-pass pipe, as will be seen in the Section 5.3
(Simulation-experiment comparison) later on. Nevertheless, the overall trends of the pressure
evolution are reproduced quite satisfactorily so that these numerical flow fields can be used here
to provide a qualitative description of the experiment’s physics.

The physical interpretation of the experimental results for the junction pipe/core pipe part is
roughly the same as that presented for the simplified configuration of MADMAX in Section 4.1.
At the opening of the bursting disk a rarefaction wave is produced and propagates upwards in
the junction pipe; at the moment it reaches the connection with the core pipe the wave is partly
reflected back and partly transmitted into the core pipe depending on the ratio of the cross sec-
tions of the two pipes; as the junction pipe is relatively short, multiple transmissions/reflections
can therefore be observed in the first 10 ms of observation, as can clearly be seen from the C1
sensor in Figure 5.1 (a).

Referring to the results of the 3D simulation in Figures 5.3 and 5.4, we can clearly identify
the key moments concerning the propagation of the first rarefaction wave at 61.6 bar and how the
transmission/reflection mechanism acts in the junction pipe. Already at t = 0.1ms, the forma-
tion of multiple wave fronts can be observed: there is not a single wave front at 61.6 bar because
the bursting disk opening is not instantaneous but is controlled by an exponential function (as
described in Paragraph 3.1.4) that gradually opens the bursting disk over a characteristic time
imposed by the user (0.12 ms in our case). The front at 61.6 bar reaches the connection between
the junction pipe and the core pipe at t ≈ 0.38 ms (propagating at approximately 1310 m/s in
water according to Allievi’s correction and therefore having to travel the 50 cm length of the
junction pipe). There, part of the wave is transmitted, as mentioned, to the core pipe, while the
majority returns back, reaching the opening of the junction pipe in double the time (at the level
of the opening, with no bursting disk, we are in ambient conditions and with a ratio between
the opening section and the external environment equal to zero, causing a complete reflection
of the wave which will then propagate upwards again). The second wave front at 54 bar starts
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5.1 Experimental campaign

to propagate in the core pipe at t ≈ 1.15 ms, when the wave has thus traveled back up through
the junction pipe, and so on for the subsequent wave fronts.

Meanwhile, the first rarefaction wave propagating in the core pipe, the one at 61.6 bar,
reaches sensor C2 shortly after 0.7 ms and sensor C4 at around 1.5 ms, while it enters the by-
pass pipe at around 1.1 ms to encounter the first orifice plate at around 1.5 ms and subsequently
sensor D1 at about 1.8 ms.

The signal is cascaded to the sensors in the core pipe (C2, C4, C5, C6, C7 and C8), the
measured pressure of which decreases following a sequence of steps. The pressure signal between
one sensor and the following one in the core pipe (C2-C8) is simply delayed by the distance that
physically separates them.

Note that in this case, unlike the simplified configuration (Chapter 4), we do not observe
any significant transient pressure difference between sensors C2-C4 and sensors C7-C8, since
there are no obstacles in the core pipe. Instead, we only find, as mentioned, the delay due to
the distance between the sensors. However, we will encounter this behavior in Configuration 3,
which will be analyzed in the next chapter.

Regarding the evolution of pressure in the by-pass pipe (see Figures 5.1 (b) and 5.2), several
effects can be observed: for sensors D1-D5, firstly, there is a delay in the arrival of the pressure
signal compared to the corresponding sensors C4-C8. This delay is due to the longer path the
signal must travel due to the presence of the lower elbow pipe. Additionally, the effect of the
presence of the orifice plates is clearly visible, as the pressure in the by-pass for each sensor is
not only shifted forward but also remains slightly higher. This is because part of the pressure
signal is partly reflected by each orifice plate. Also, the change in section and direction between
the core pipe and the by-pass pipe has an effect on the pressure drop, but it can be considered
negligible compared to the effect of the orifice plates.

From Figures 5.1 (b) and 5.2, it can be observed that for sensors D4-D5, there is a peculiar
behavior: after the first pressure drop, the steps between successive pressure drops are wider
compared to those of sensors located lower (D1-D3). This is because while the rarefaction wave
propagates upward in the by-pass, it also continues to propagate in the core pipe, covering less
distance and entering the by-pass pipe from the upper elbow tube at around 3.5 ms (as shown
in Figure 5.5 (h)). Consequently, the wave entering from the top will interfere with the one
traveling through the by-pass from below, amplifying the pressure drop for the sensors located
higher in the by-pass, particularly D5. From Figure 5.6, it can be seen how the pressure gradually
equalizes across the various sections of the by-pass pipe, eventually reaching a nearly uniform
distribution around 8-10 ms.
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Figure 5.2: Experimental pressure evolution for sensors C4-C8 and D1-D5 for Configuration 1.

Finally, from Figure 5.1, we can observe around 10-11 ms that the pressure for all sensors
begins to rise again. This is due to the effect of the accumulators, which continue to inject water
into the pipes.

Figures 5.7 and 5.8 depict the pressure evolution in the upper part of the experiment, in-
cluding the accumulators: at t ≈ 5 ms, the first rarefaction wave reaches the accumulators, and
the pistons begin to move due to the depressurization on the fluid side, which disrupts the equi-
librium with the nitrogen on the other side. Consequently, the nitrogen expands in an attempt
to maintain pressure equilibrium with the fluid, thereby pushing the pistons (see Figure 5.9,
which shows the average nitrogen pressure evolution and the displacement in the y direction of
the two pistons relative to the initial position). By the end of the transient, in 20 ms, the two
pistons moved approximately 30 mm and the nitrogen pressure has dropped to approximately
57.8 bar, gradually increasing the pressure in the pipes.

Equipped with this knowledge of the main flow features associated with Configuration 1, let
us now proceed to the description of the numerical simulations also applied to the analysis of
this configuration.
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Figure 5.3: Pressure evolution in the lower part of MADMAX for 0 ≤ t ≤ 0.7ms (cross section
of 3D simulation).
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Figure 5.4: Pressure evolution in the lower part of MADMAX for 0.8 ≤ t ≤ 2.0ms (cross
section of 3D simulation).
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Figure 5.5: Pressure evolution in the middle part of MADMAX for 2.0 ≤ t ≤ 3.5ms.

74



5. MADMAX with by-pass pipe and multiple orifice plates

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

54

54

61.6

49

45

49

(a) t = 3.75ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

54

54

61.6

49

45

54

(b) t = 4.0ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

49

45

54

(c) t = 4.25ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

49

45

54

(d) t = 4.5ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

49

45

(e) t = 5.0ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

45

45

(f) t = 6.0ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

(g) t = 7.0ms

C4 D1

C5 D2

C6 D3

C7 D4

C8 D5

(h) t = 8.0ms

Figure 5.6: Pressure evolution in the middle part of MADMAX for 3.75 ≤ t ≤ 8.0ms.
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(a) t = 4.5ms (b) t = 5.0ms

(c) t = 6.0ms (d) t = 7.0ms

Figure 5.7: Pressure evolution in the upper part of MADMAX for 4.5 ≤ t ≤ 7.0ms.
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(a) t = 10.0ms (b) t = 12.5ms

(c) t = 15.0ms (d) t = 20.0ms

Figure 5.8: Pressure evolution in the upper part of MADMAX for 10 ≤ t ≤ 20ms.
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Figure 5.9: Accumulators’ average nitrogen pressure and pistons y-displacement for
Configuration 1 - 3D calculation.

5.2 Numerical simulations

5.2.1 Overview of the hierarchy of models

Four numerical models (summarized in Section 3.3) are employed to simulate the MADMAX
experiment using EUROPLEXUS. Specifically, two 3D models are used as numerical reference
models:

• a 3D FLUID model with fixed structures

• a 3D WATER model with Fluid-Structure Interaction (FSI)

Additionally, two simplified (and low-cost) 1D models are also investigated:

• one with fixed structures (similar to the one used in the 1D simulations of the previous
chapter on the simplified MADMAX configuration, see Paragraph 4.2.2),

• the other using WATER material, incorporating FSI without directly applying the Allievi
correction to the material.

In all four models, the time constant associated with the boundary condition governing the burst-
ing disk opening (IMPEDANCE MEMBRANE, see Paragraph 3.1.4), is configured to be 0.12
ms. For the two fixed-structure models utilizing the FLUID material (see Paragraph 3.1.2.4),
the user sets the speed of sound in the fluid, denoted as c, to 1310 m/s after applying the Allievi
correction [65].

As explained in Section 4.4, to observe phase change phenomena in the fluid such as cav-
itation, it is necessary to use the WATER model and perform FSI calculations. In this case,
the speed of sound in the fluid is not directly imposed by the user but is calculated through
tabulated EoS. For 3D FSI simulations, similar to what was done for the 2D axisymmetric case
with FSI (see Paragraph 4.4.2), a solid mesh is physically added externally to the fluid mesh,
representing the steel piping, as detailed in the following paragraph. However, for the 1D FSI
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5. MADMAX with by-pass pipe and multiple orifice plates

model, a solid mesh is not added; instead, elastic properties dependent on the geometry and
material of the piping are assigned to the 1D elements constituting the fluid. With knowledge of
these properties, EUROPLEXUS can calculate how much the piping will deform following the
passage of the pressure wave and consequently obtain the corrected speed of sound in the fluid
through the tabulated EoS [63].

Simulations are conducted for Configuration 1 using all four models, which will be also
applied in the next chapter to Configuration 2 and Configuration 3. In each simulation, the
initial fluid pressure is set to the experimental bursting pressures Pburst summarized in Table
5.1. The initial density is set to 1000 kg/m3 for the models with fixed structures, while it is
calculated through the tabulated EoS for the FSI simulations, by knowing the initial pressure
Pburst and the initial temperature (set equal to 20 ◦C). The initial pressure of the gas in the
accumulator is also set to Pburst to maintain equilibrium with the fluid.

5.2.2 3D/3D FSI calculations

Let us outline the modeling choices regarding the implementation of 3D and 3D FSI simulations.

5.2.2.1 Design and refinement of the 3D mesh

Overview of the mesh structure In Figure 5.10, the 3D mesh constructed (using the
software Gmsh [68]) for MADMAX Configuration 1 is displayed, highlighting its key elements:

• both the fluid and gas in the two accumulators are treated with an ALE description
and separated by a Lagrangian piston having the mass of the actual piston in the device
(approximately 20 kg);

• the remainder of the fluid is treated with an Eulerian description; characteristic dimensions
are provided (see Paragraph 2.2.2 for more details);

• the mesh is made of hexahedra, with a refinement increasing proportionally to the geom-
etry’s curvature. In the mesh generation process, the algorithm initially generates a mesh
composed of tetrahedra, each of which is subsequently subdivided into four hexahedra.
The choice to use hexahedra is motivated by EUROPLEXUS’s greater capability to han-
dle this type of element when employing the Finite Volume Method (FVM) for spatial
discretization.
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Figure 5.10: 3D mesh.
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Mesh generation process and choice of refinement level Starting from the 1D dis-
cretization of each edge of the geometry, the algorithm generates the 2D surface mesh composed
of triangles for the tetrahedral mesh, which are then subdivided into three quadrangles for the
hexahedral mesh. Finally, the respective 3D elements are generated inside the volume of the
geometry. Figure 5.11 illustrates the process of generating a 3D hexahedral mesh starting from
a simple initial geometry, such as a cylinder.
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Figure 5.11: 3D mesh generating process on a sample geometry (cylinder).

The sensitivity analysis on the mesh size is conducted by varying a parameter in the Gmsh
software called the Element Size Factor (ESF), which allows us to determine how many parts
each segment (circles, curves resulting from the intersection between cylinders, etc.) should
be discretized. In the generation of the tetrahedral mesh, each circle representing an edge of
the geometry is discretized into approximately 1/ESF 1D elements, which consequently become
2/ESF for the hexahedral mesh. For example, with ESF=0.04, each circle will be discretized into
25 1D elements for the tetrahedral mesh and consequently into 50 elements for the hexahedral
mesh.
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This approach logically results in larger elements corresponding to less significant curvatures
(outer diameter of the core pipe and the by-pass pipe) and smaller elements corresponding to
major curvatures (orifice plates and junction pipe). Table 5.2 summarizes the characteristics
of the meshes used for the sensitivity analysis in terms of the ESF for the 3D simulations of
MADMAX Configuration 1.

Table 5.2: 3D mesh characteristics for sensitivity analysis.

ESF # of elements
Smallest element edge Largest element edge

(mm) (mm)

0.1 77 276 2.67 31.8
0.08 150 236 2.13 25.5
0.05 495 636 1.34 15.9
0.04 914 272 1.07 12.7
0.03 2 123 980 0.80 9.6

Figure 5.12 illustrates the sensitivity analysis for the pressure difference between sensors
D3 and C6, ∆PD3-C6, conducted on 3D preliminary calculations for MADMAX Configuration 1
(performed before the experiment, assuming Pburst = 70bar). This analysis allowed us to choose,
in advance, the mesh with ESF = 0.04 as the mesh for conducting simulations, considered the
optimal solution in terms of the trade-off between computational cost and accuracy.
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Figure 5.12: 3D mesh sensitivity analysis on the mesh size for ∆PD3-C6.

5.2.2.2 3D FSI calculations

Modeling choices In Figure 5.13, the 3D FSI mesh, created using Gmsh [68], is depicted. As
can be easily observed, for the fluid part and the accumulators, it is practically the same mesh
as in the 3D case. However, outside the fluid, the mesh representing the steel piping structure
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has been added (shown in red in the figure). For the sake of simplicity in mesh generation, the
presence of the connecting flanges (visible in Figure 2.1) between the components of the core
pipe and the by-pass pipe has been neglected. Once again, the main geometric features and
modeling choices adopted are summarized in the figure. The mesh of the structure is perfectly
coherent with that of the fluid, with nodes and faces of the two meshes coinciding at the interface
between them.

ALE WATER

Lagrangian linear
elastic material

ALE GAZP
(accumulators nitrogen)

Stainless steel properties (ρ, E, ν)

e = 3.91 mm

Figure 5.13: 3D FSI mesh.
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From a numerical and mathematical standpoint, the characteristics of the two main compo-
nents, the steel tube and water, are exactly the same as those adopted for the 2D axisymmetric
FSI simulations (see Paragraph 4.4.2).

The structure is left completely free to deform in all directions, but it is numerically anchored
by blocking the displacements of the nodes located at the actual five vertical anchoring positions
of the experimental device. All five anchoring points are located on the outer surface of the core
pipe on the side opposite to the by-pass pipe (as seen in Figure 2.1, the device is anchored to
the steel structure and concrete blocks located on the left side in the photo). The five points
are located respectively, from bottom to top:

1. at the same height as sensor C2,

2. at the same height as the first connection between the core pipe and the by-pass pipe,

3. at the same height as sensor C5,

4. at the same height as sensor C7,

5. just before the flanges connecting the core pipe with the accumulator section.

Only the nodes on the outer surface of the structure mesh that are located at these five positions
are constrained in all directions, while the rest of the structure is free to move and deform. The
effects of gravity are neglected. The pre-load of the structure during the pressurization phase has
been assessed through static structural calculations, which show pre-deformations on the order
of tenths of a micron, thus considered negligible compared to the deformations subsequently
calculated with EUROPLEXUS.

Unfortunately, there are currently no sensors installed on the experimental setup to mea-
sure the dynamic deformation of the structure (in the perspectives of device improvement and
evolution) and thus validate the corresponding 3D FSI numerical results through a quantitative
comparison with experiment. Since section 5.3 of the present chapter is focused on a quantitative
comparison between simulation and experiment, it is decided to analyze in the next paragraph
the flow fields computed using the 3D FSI approach so as to assess the effects of the structure
deformation on the rarefaction wave propagation. We emphasize that for lack of reference mea-
surements this analysis should be considered as a qualitative interpretation of what the real
deformations undergone by the device would be.
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Numerical results The potential of 3D simulations with FSI includes the ability to evaluate
and visualize how the structure actually deforms in response to the rarefaction wave. In Figures
5.14, 5.15 and 5.16, the displacements of the structure along the y and z directions during the
water depressurization are shown for various time instances, with a focus on different areas of
the device. In all three figures, the displacements have been visually amplified by a factor 1000
to make them more appreciable and are displayed on the cross-sectional view of the structure
on the y − z plane. The z direction coincides with the axis of symmetry of the core pipe and
is directed upwards, while the y axis is radially directed towards the by-pass pipe (to the left
in the figures). The x direction is obviously perpendicular to these two and points out of the
plane, but we do not show the displacement values along x here as, for the by-pass pipe, they
are negligible compared to those in the other two directions.

Figure 5.14 focuses on the area of the junction pipe and its connection with the core pipe
in the first millisecond of the transient. It is observed that up to 0.5 ms, the junction pipe
tends to elongate longitudinally downwards and to contract radially due to the passage of the
first rarefaction wave. Instead, with the subsequent transmissions/reflections, the junction pipe
tends to rise upwards alternating phases of radial shrinkage and widening. The sheet steel that
connects the junction pipe to the core pipe undergoes significant deformations upwards in the
region closest to the axis of symmetry, while tending to bulge outwards in the radial direction.

Figures 5.15 and 5.16, instead, mainly focus on the analysis of the deformations simultane-
ously undergone by the core pipe and the by-pass pipe, from 2.5 ms until the end of the transient
at 20 ms. As anticipated, the absence of connecting flanges in the structure mesh does not allow
for the reproduction of the actual rigidity of the experimental device. In particular, the by-pass
pipe features six pairs of flanges, one pair for each orifice plate, which undoubtedly significantly
influence the inertia and rigidity of the system. Consequently, it is highly probable that the by-
pass pipe deformations shown by the 3D FSI simulation are overestimated compared to reality.
Nevertheless, we can observe that the core pipe, being anchored, undergoes much less signifi-
cant deformations compared to the by-pass pipe: a progressive radial constriction is observed in
the areas between the anchoring points during the depressurization phase (up to about 10 ms),
followed by a dilation effect due to the pressure increase caused by the accumulators (after 10
ms). The by-pass pipe undergoes a succession of bending modes at different time instances, as
if it were subjected to whip-like motions. It is interesting to note the deformation of the orifice
plates in the first 5 ms: the three lower-positioned orifice plates logically bend downward due to
the rarefaction wave entering from the first elbow pipe; whereas the two upper-positioned orifice
plates experience the opposite effect due to the rarefaction wave reaching them from above.
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(a) t = 0.25ms (b) t = 0.5ms

(c) t = 0.75ms (d) t = 1.0ms

Figure 5.14: Structure displacement (visually amplified by a factor 1000) along y and z
following water depressurization.
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(a) t = 2.5ms (b) t = 3.5ms

(c) t = 4.0ms (d) t = 5.0ms

Figure 5.15: Structure displacement along y and z following water depressurization.

87



5.2 Numerical simulations

(a) t = 8.0ms (b) t = 10.0ms

(c) t = 15.0ms (d) t = 20.0ms

Figure 5.16: Structure displacement along y and z following water depressurization.
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5.2.3 1D/1D FSI calculations

The 1D/1D FSI mesh for the MADMAX configuration with the by-pass pipe (shown in Figure
5.17) is simply an extension of the 1D mesh used for the simplified configuration presented in
Paragraph 4.2.2. In order to build it, the by-pass pipe was simply added in the form of a 1D
pipeline straddling the C4-C8 sensors with 90-degree direction changes representing the two
elbow pipes in a simplified manner.

As in the case of the simplified configuration without a by-pass pipe, the presence of the
orifice plates is no longer represented geometrically as for 2D axisymmetric and 3D calculations,
but is replaced by impedance relations of IMPEDANCE GRID type (see Paragraph 3.1.4) to
which the characteristic time τ and the head loss coefficient k are associated. This relation is
assigned to the mesh node where the orifice plate is located. The orifice plates installed in the
by-pass pipe all have a thickness e = 5mm and an orifice diameter of d = 17mm. This results
in a characteristic time τ = 0.297ms and a head loss coefficient k = 6962.
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Figure 5.17: 1D/1D FSI mesh scheme.
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All other cross-sectional changes, represented with black dots, are associated with another
type of impedance called IMPEDANCE PCHA, which corresponds to imposing only a classi-
cal head loss without the acoustic contribution present in IMPEDANCE GRID (see Paragraph
3.1.4. This choice, as already discussed in Paragraph 4.2.2, is based on the fact that the other
section changes in question are single cross-sectional changes (sudden enlargement or shrinkage).
Consequently, the contribution of the acoustic term in Equation (3.24) does not have the same
significance as in the case of the orifice plate (a sudden shrinkage immediately followed by a sud-
den enlargement). For the orifice plate the frequency of the transmission/reflection phenomenon
within its thickness plays a crucial role in delaying the pressure signal transmission from one
side of the obstacle to the other (need to use the IMPEDANCE GRID). It is, however, much
less significant in the case of single cross-sectional changes, where the term for classical head
loss (IMPEDANCE PCHA) makes the most important contribution and is sufficient for their
representation. As can be seen in Figure 5.17, no impedance is associated with the junction
nodes between the core pipe and the by-pass pipe, nor with the single junction node between
the core pipe and the horizontal element of the accumulator zone. This is because, despite being
cross-sectional changes, the ratio between the two sections is very close to 1, making both the
acoustic effect and the head loss negligible.

The mesh used for the 1D simulations with fixed structures is exactly the same as the one
used in the 1D FSI simulations, which is why only one scheme is shown for both in Figure 5.17.
As anticipated, no mesh is materially added to represent the structure in the FSI case. One
of the differences is in the type of material used to represent the water: FLUID model with
Eulerian description for the case with fixed structures (except for the water in the accumulators
which always uses an ALE description), while the WATER model with ALE description is used
for the FSI case.

As mentioned at the beginning of the Section 5.2, in the FSI case, to take into account
the flexibility of the structure elastic properties dependent on the geometry and material of
the piping are assigned to the 1D elements constituting the fluid. With knowledge of these
properties, EUROPLEXUS can calculate how much the piping will deform following the passage
of the pressure wave and consequently obtain the corrected speed of sound in the fluid through
the tabulated EoS.

Similarly to what was done for the simplified configuration, a sensitivity analysis on mesh
size again allowed us to select a mesh composed of 1D elements of 10 mm in length, totaling
about 2000 elements.

5.3 Simulation-experiment comparison

The 4 numerical models which have been previously described are now compared with the refer-
ence experimental measurements. This quantitative comparison is first focused on the analysis
of the computed and measured pressure evolutions for the various sensors in the core pipe and
in the by-pass pipe. Since the prediction of the pressure difference between the core pipe and
the by-pass pipe is a quantity of interest particularly relevant for safety analysis (in the indus-
trial case, the transverse stress generated on the core baffle - see Figure 1.2 - is directly due
to the pressure difference created between the core zone and the by-pass zone), a quantitative
comparison is also provided for such pressure differences. Finally, a synthetic view of the ac-
curacy of each numerical model is proposed through selected plots of errors (computed using
a L1 norm) between the numerical predictions and the measurements. These errors are also
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5. MADMAX with by-pass pipe and multiple orifice plates

put in perspective by a 2-criteria analysis including the computational cost as another criterion,
complementing the accuracy criterion.

5.3.1 Analysis of absolute pressure evolutions

Figures 5.18 and 5.19 show the pressure evolution for the four models in comparison with the
experimental results for sensors C1, C2, C4, D1, C6, D3, C8 and D5. For all sensors, it is
observed that the behavior is satisfactorily reproduced by all models in the first half of the
transient, up to 6 ms. Surprisingly, between 6 and 12 ms, 1D simulations yield higher accuracy
compared to 3D simulations. After that, the two 1D models tend to deviate slightly from the
experimental results, while the 3D models continue to be more accurate.

For the sensors in the core pipe (C2, C4, C6, C8), a common factor among all models is
that they perform well not only in reproducing the overall pressure trend but also in capturing
the acoustic characteristics of the signal, namely the pressure steps generated and propagated
by each transmission/reflection in the junction pipe. Unfortunately, the same cannot be said
for the sensors in the by-pass pipe (D1, D3, D5), where none of the four models manage to
reproduce the pressure step features satisfactorily, although they adequately capture the overall
trend.

The fact that the signal reaching the sensors in the by-pass pipe appears smoothed in simu-
lations can be attributed to two factors: the double change in direction of the elbow pipe, which
causes numerical diffusion due to a likely insufficient refinement of the mesh in those areas; or
the signal is numerically smoothed as it passes through the orifice plates, but given their small
thickness, this should not be the case. This latter hypothesis will be excluded in the next chapter
when discussing the configuration with four orifice plates, where the removed orifice plates are
the bottom and top ones, and we will see that even in their absence, the signal entering the
by-pass pipe has still lost its acoustic footprint when it reached sensor D1. However, it should be
emphasized that for the by-pass pipe sensors, the 3D FSI model is the one that best reproduces
the very first instants of the transient in terms of closeness to the experimental curve. This latter
observation, as previously explained for the 2D axisymmetric FSI model in Paragraph 4.4.2.3,
is justified by the fact that the presence of a deformable structure allows for the reproduction of
the pipe’s pre-deformation phenomenon. This phenomenon occurs because the speed of sound
in steel is approximately three times higher than in the fluid (refer to Paragraph 4.4.2.3 for
further details).

5.3.2 Analysis of relative pressure evolutions

To complete the information on all the experiment’s sensors, Figure 5.20 shows the transient
pressure difference between sensors D2-C5 and sensors D4-C7. It can be observed that in both
cases, during the first half of the transient phase, the pressure difference is positive, with peaks
around 10 bar, indicating that in this phase, as expected, the core pipe, not containing obstacles,
depressurizes more quickly than the by-pass pipe. Afterward, the pressure difference tends to
balance out around the midpoint of the transient, and then becomes negative (pressure in the
core pipe greater than pressure in the by-pass pipe), because in that phase the effect of the
accumulators is predominant in the core pipe and has more difficulty manifesting in the by-pass
pipe due to the presence of the orifice plates.
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5.3 Simulation-experiment comparison

5.3.3 Error analysis

To obtain a more quantitative assessment of the accuracy of the four models, we calculated
for each sensor the absolute error of each model with respect to the experimental measurement
and then calculated the average over the entire transient. Figures 5.22 and 5.23 show the mean
absolute error for the junction pipe sensor C1, for the core pipe sensors C2-C8 and for the
by-pass sensors D1-D5.

It can be inferred that, in general, the 3D/3D FSI simulations are more accurate than
the 1D/1D FSI simulations for all sensors, but in particular for sensors C1, C2, D4, and D5.
Contrary to expectations, the FSI models consistently exhibit slightly lower overall precision
with respect to their fixed structure counterpart, particularly the 1D WATER+FSI model,
which appears significantly less accurate for sensors D1-D5. Even the 3D WATER+FSI model
generally demonstrates lower precision compared to the 3D FLUID model (except for sensors C1
and C2), although the difference is small. If we instead consider the pressure difference between
the sensors of the by-pass pipe D1-D5 and the corresponding sensors in the core pipe C4-C8,
we observe from Figure 5.23 that the models incorporating FSI yield the smallest errors. The
prediction of the pressure difference between the core pipe and the by-pass pipe is the quantity
of major interest being particularly relevant for safety analysis in the industrial case, since the
transverse stress generated on the core baffle - see Figure 1.2 - is directly due to the pressure
difference created between the core zone and the by-pass zone.

Finally, we took the errors shown in Figure 5.23 and calculated their average across all five
pairs of sensors for each model, in order to construct the cost-accuracy graph shown in Figure
5.24. The computational cost is expressed in terms of computational time, but it should be
noted that both 3D calculations were performed in parallel on 64 processors, while for the 1D
calculations, it was sufficient to perform them on a single processor. As expected, 1D calculations
allow for a significant reduction in computational costs while still maintaining an acceptable level
of accuracy and definitely providing greater simplicity in mesh creation.
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Figure 5.18: Configuration 1 pressure evolution comparison for sensors C1 and C2.
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Figure 5.19: Configuration 1 pressure evolution comparison for sensors C4, D1, C6, D3, C8
and D5.
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Figure 5.20: Configuration 1 pressure difference between sensors D2 and C5, ∆PD2−C5, and
sensors D4 and C7, ∆PD4−C7.

C1 C2 C4 C5 C6 C7 C8
Pressure sensors

0

2

4

6

8

10

||P
ex

p
−
P s

im
|| 1

 (b
ar

)

3.
15
8

1.
61
8

2.
00
7

1.
80
2

1.
35
8

1.
35
8

1.
25
4

3.
28
8

1.
70
3

1.
89

1.
68
6

1.
32
5

1.
30
8

1.
10
8

8.
35
3

3.
31
7

2.
40
8

2.
20
1

2.
16
6

1.
93
1

1.
89
9

7.
64
1

2.
87
1

2.
26
8

2.
1

1.
79
5

1.
62

1.
50
2

MADMAX with by-pass pipe (6 orifice plates) 
 Mean absolute error for core sensors 
EXP vs 3D FSI/3D FLUID/1D FSI/1D FLUID

3D WATER+FSI
3D FLUID
1D WATER+FSI
1D FLUID

Figure 5.21: Configuration 1 mean absolute error for the junction pipe sensor and the core
pipe sensors.

94



5. MADMAX with by-pass pipe and multiple orifice plates

D1 D2 D3 D4 D5
Pressure sensors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

22P
ex

p
−
P s

im
22 1
 (b

 r
)

1.
96

6

1.
81

2

1.
93

4

1.
17

3

1.
12

7

1.
89

1

1.
62

9 1.
86

2

1.
10

1

1.
13

3

2.
67

6 2.
98

5

2.
76

1

2.
61

8

2.
19

5

2.
29

6

2.
28

3

1.
93

1

1.
96

3

1.
56

7

MADMAX 0i−h b1-pass pipe (6 orifice plates) 
 Mean absolute error for by-pass sensors 
EXP vs 3D FSI/3D FLUID/1D FSI/1D FLUID

3D WATER+FSI
3D FLUID
1D WATER+FSI
1D FLUID
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Figure 5.24: Configuration 1 computational cost of the four calculations with respect to their
precision.

5.4 Conclusions

This chapter explored the complete configuration of the MADMAX experiment, focusing on
Configuration 1, which includes a free core pipe and six orifice plates in the by-pass pipe.

Experimental results show the pressure evolution within the system, highlighting the delays
and pressure drops associated with the presence of orifice plates in the by-pass pipe. The
numerical simulations, conducted using EUROPLEXUS, encompass 3D and 1D models with and
without Fluid-Structure Interaction (FSI). These simulations capture the complex dynamics of
the experiment, including rarefaction wave propagation and pressure differentials between the
core and by-pass pipes.

Comparison between experimental data and simulation results reveals overall good agree-
ment, particularly in capturing the initial transient behavior. However, discrepancies arise in
replicating pressure steps and finer features in the signals recorded by sensors in the by-pass
pipe, indicating potential areas for model refinement. Notably, 3D models, especially those
incorporating FSI, exhibit higher accuracy than 1D models.

The chapter provides valuable insights into the performance of numerical models in sim-
ulating the MADMAX experiment, laying the groundwork for further analysis in subsequent
chapters.
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Chapter 6

Alternative configurations of
MADMAX with by-pass pipe

In this chapter, numerical and experimental experiments are performed and analyzed for two
alternative versions of MADMAX with by-pass pipes that have never been tested before: Con-
figurations 2 and 3, presented in Chapter 2 and also briefly mentioned and positioned at the
beginning of Chapter 5 with respect to Configuration 1 analyzed in the previous chapter. Nu-
merical simulations are again carried out with EUROPLEXUS following the hierarchy presented
in Chapter 3. The purpose this time is two-folded:

• to evaluate with Configuration 2 the effect of a different number of obstacles in the by-pass
compared to the full Configuration 1 with 6 orifice plates;

• to evaluate with Configuration 3 the effect of the simultaneous presence of obstacles in
the core pipe and the by-pass pipe. This configuration incorporates the same number of
orifice plates in the by-pass as Configuration 1, but an additional orifice plate is added
in the core pipe, thus approaching even closer to the real industrial case (see Figure 1.2).
In the actual industrial case, there is the simultaneous presence of perforated plate-type
obstacles in the by-pass zone and fuel assemblies with mixing grids in the core zone. The
orifice plate in the core pipe of Configuration 3 of MADMAX is intended to represent the
core zone’s geometry in a simplified manner.

6.1 Experimental campaign

The results of the experimental campaign carried out on MADMAX Configuration 2 and Con-
figuration 3, realized between January and February 2024, are summarized in this section.

Let us recall the two configurations (described in Paragraph 2.2.2) are characterized as follow:

1. Configuration 2: free core pipe and 4 orifice plates in the by-pass,

2. Configuration 3: 1 orifice plate [e = 10mm, d = 30mm] in the core pipe and 6 orifice
plates in the by-pass.

The corresponding bursting pressures of the two experiments are collected in Table 6.1.
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6.1 Experimental campaign

Table 6.1: Experimental bursting pressure for MADMAX complete set-up (alternative
configurations).

EXP Configuration 2 Configuration 3
(4 o.p. in by-pass) (6 o.p. in by-pass + 1 o.p. e10d30 in core)

Pburst (bar) 68.0 76.5

6.1.1 Analysis of measurements for Configuration 2

Figure 6.1 displays the experimental results of Configuration 2 for all the sensors. As previously
mentioned, this experiment differs from Configuration 1 solely due to the absence of two orifice
plates in the by-pass pipe, specifically the bottom and top ones. Comparing the results of
Configuration 2 in Figure 6.1 with those of Configuration 1 in Figure 5.1, it can be observed
that, apart from the different bursting pressure, the results are very similar for all sensors except
sensor D1.

We can clearly see, particularly from the zoom-in Figure 6.2, the effect of the absence of the
lower orifice plate on the pressure drop recorded at sensor D1: in Configuration 2, the pressure
at sensor D1 experiences only the delay due to the crossing of the elbow pipe compared to sensor
C4, but no difference is observed between the pressure levels at the first step (at 2 ms) as was
seen for Configuration 1. This effect at sensor D1 is reflected at sensors D2 and D3, which show
a lower pressure difference with sensors C5 and C6, respectively, compared to Configuration 1.
Furthermore, in Configuration 2, the pressure at sensor D1 even drops below the pressure at
sensor C4, suggesting that during that transient phase, this section of the by-pass pipe undergoes
a faster transient phenomenon. At the same time, we do not observe any significant effect of
the absence of the upper orifice plate on sensor D5, which practically shows the same behavior
as Configuration 1.
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Figure 6.1: Experimental pressure evolution for all sensors for Configuration 2.
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Figure 6.2: Experimental pressure evolution for sensors C4-C8 and D1-D5 for t ≤ 6ms.
Comparison between Configuration 2 (a) and Configuration 1 (b).

6.1.2 Analysis of measurements for Configuration 3

Figure 6.3 depicts the experimental results obtained for Configuration 3. This time, owing to
the presence of an orifice plate in the core pipe as well, the results notably differ from those of
the two previous configurations. We can observe in this configuration the combined effect of the
simplified setup presented in Chapter 4 (no by-pass pipe, with one orifice plate in the core pipe)
and Configuration 1 (by-pass pipe with 6 orifice plates and free core pipe). The pressure trend
for sensors C1-C8 closely resembles that of the experiment [e = 10mm, d = 30mm], shown in
Section 4.1, wherein exactly the same orifice plate was used in the core pipe (see Figure 4.1 (c)),
with the exception of the bursting pressure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (ms)

0

10

20

30

40

50

60

70

80

Pr
es
su
re
 (b

ar
) C1

C2
C4
C5
C6
C7
C8

(a) Junction pipe (C1) and core pipe (C2-C8).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (ms)

0

10

20

30

40

50

60

70

80

Pr
es
su
re
 (b

ar
)

D1
D2
D3
D4
D5

(b) By-pass pipe (D1-D5).

Figure 6.3: Experimental pressure evolution for all sensors for Configuration 3.

A notable transient pressure differential emerges between the sensors situated upstream (C2-
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C6) and those downstream (C7 and C8) of the orifice plate, resembling the scenario observed
without a by-pass pipe. This pressure differential is almost evenly dispersed across the sensors
within the by-pass pipe: starting with the lowest pressure level at sensor D1 (close to that
measured at sensor C4), followed by a gradual increase in pressure levels from sensor D2 to D4,
culminating at sensor D5 with values aligning closely with those of sensor C8.

6.2 Simulation-experiment comparison

In this section, following the approach adopted in the previous chapter for Configuration 1,
we present a sensor-by-sensor comparison between the experimental results of Configurations 2
and 3 and their corresponding numerical simulations. Once again, four numerical models are
employed: two reference models, namely 3D FLUID and 3D WATER+FSI, and two simplified
models, 1D FLUID and 1DWATER+FSI. The characteristics of these models are similar to those
detailed in Chapter 5 for Configuration 1; hence, they are not reviewed again in this chapter
and the reader is directed to Section 5.2 for further details. The only modifications made to
these models in the present chapter involve minor mesh manipulation: for Configuration 2, the
lower and upper orifice plates were removed from the by-pass pipe, while for Configuration 3,
the same mesh as Configuration 1 was used, albeit with the addition of an orifice plate in the
core pipe.

6.2.1 Configuration 2: MADMAX with 4 orifice plates in by-pass pipe

Here, we present the comparison between the experimental results of Configuration 2 and their
corresponding numerical simulations. Overall, there are no significant differences compared to
the observations made for Configuration 1 in the preceding chapter. The absence of the lower ori-
fice plate in the by-pass pipe results in a nearly negligible transient pressure differential between
sensors D1 and C4 (see Figure 6.4 (c) and (d)). Additionally, as previously noted in Section 5.2
of the preceding chapter, the pressure signal reaching sensor D1 appears more diffused in the
numerical simulations compared to the experimental measurement, which exhibits the charac-
teristic pressure step at approximately 2 ms. Given the absence of the orifice plate upstream
of sensor D1 in this case, we can conclude that the numerical diffusion effect is attributed to
the double change in direction of the elbow tube and a potentially insufficient refinement of the
mesh in the intersection zone with the core pipe.

If we compare with Configuration 1, the absence of the lower orifice plate in the by-pass pipe
also leads to a reduction in the transient pressure differential between the remaining sensor pairs
D-C above the D1-C4 pair, as shown in Figures 6.5 and 6.6. Specifically, upon comparing Figure
6.6 with the corresponding results of Configuration 1 in Figure 5.20, it can be observed that for
∆PD2−C5, the range shifts from [−5, 10] bar for Configuration 1 to [−4, 6] bar for Configuration
2, while for ∆PD4−C7, it shifts from [−5, 10] bar to [−2.5, 7.5] bar, based on the experimental
curves.
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Figure 6.4: Configuration 2 pressure evolution comparison for sensors C1, C2, C4 and D1.
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Figure 6.5: Configuration 2 pressure evolution comparison for sensors C6, D3, C8 and D5.

102



6. Alternative configurations of MADMAX with by-pass pipe

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (ms)

−6

−4

−2

0

2

4

6

Pr
es
s−
re
 ( 

ar
)

MADMAX with  y-pass pipe (4 orifice plates)

ΔPD2ΔC5 3D WATER +FSI
ΔPD2ΔC5 3D FLUID
ΔPD2ΔC5 1D WATER+FSI
ΔPD2ΔC5 1D FLUID
ΔPD2ΔC5 EXP

(a) D2-C5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time ((s)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Pr
es
s.
re
 (b

 r
)

MADMAX wi−h b0-pass pipe (4 orifice plates)
ΔPD4ΔC7 3D WATER +FSI
ΔPD4ΔC7 3D FLUID
ΔPD4ΔC7 1D WATER+FSI
ΔPD4ΔC7 1D FLUID
ΔPD4ΔC7 EXP

(b) D4-C7

Figure 6.6: Configuration 2 pressure difference between sensors D2 and C5, ∆PD2−C5, and
sensors D4 and C7, ∆PD4−C7.

Concerning the numerical models, a more substantial alignment is generally observed between
the 3D/3D FSI models and the experimental data, in contrast to the 1D/1D FSI models. This
observation holds particularly true when evaluating the mean absolute errors across all sensors
depicted in Figures 6.7, 6.8, and 6.9. When compared to the corresponding mean absolute errors
calculated for Configuration 1 (Figures 5.21, 5.22, and 5.23), the following observations can be
made: for each individual sensor (Figures 6.7, 6.8 for Configuration 2, and Figures 5.21, 5.22
for Configuration 1), there is a slight increase in the mean absolute error for Configuration 2
compared to Configuration 1 across all numerical models. However, there is also a concurrent
reduction in the mean absolute error relative to ∆PD−C (Figure 6.9 for Configuration 2 and
Figure 5.23 for Configuration 1). This observation might suggest that a lower number of obstacles
in the by-pass (Configuration 2) results in a reduced statistical error in reproducing the transient
pressure difference between the two branches of the experiment, as the numerical simulations
are less perturbed by geometric singularities.

Regarding the trade-off between computational cost and model accuracy, similar conclusions
to those presented for Configuration 1 can be drawn for Configuration 2: in a plane “Computa-
tional time vs Error or Accuracy”, the 4 models form a set of non-dominated choices, with the
3D WATER+FSI approach providing the best accuracy for the highest cost and the 1D FLUID
approach providing the lowest accuracy for the lowest cost.

The choice of one approach over another can be consequently determined, for example, by
the level of precision deemed acceptable (or conversely, by the maximum cost one is willing to
bear). In the context of nuclear safety, where a conservative approach is often adopted, the fact
that the 1D models overestimate transient pressure differentials between the core pipe and the
by-pass pipe might not necessarily be problematic as long as this overestimation remains within
certain limits.
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Figure 6.8: Configuration 2 mean absolute error for the by-pass pipe sensors.
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6.2.2 Configuration 3: MADMAX with 6 orifice plates in by-pass pipe and
1 orifice plate in core pipe

The Configuration 3 of MADMAX undoubtedly represents the most significant novelty among
all the experiments conducted in the experimental campaigns carried out during this thesis work.
Indeed, it is the first time that an experiment has been conducted on MADMAX simultaneously
incorporating the presence of orifice plates in the by-pass pipe and an orifice plate in the core
pipe.

The presence of the orifice plate with a thickness e = 10mm and an orifice diameter d =
30mm is reflected in the significant transient pressure differential generated in the core pipe
between the upstream (sensors C2-C6) and downstream (sensors C7-C8) of the orifice plate, as
discussed earlier in the chapter. This pressure differential is almost evenly dispersed across the
sensors within the by-pass pipe, D1-D5.

Figures 6.10 and 6.11 depict the pressure evolution for sensors C1, C2, C4, D1, C6, D3, C8,
and D5, comparing experimental measurements with the results from the four numerical models.
While the 3D/3D FSI models generally exhibit excellent agreement with the experimental results,
the 1D/1D FSI models demonstrate limitations in accurately reproducing the pressure plateau
for t ≥ 9ms for sensors C2-C6 in the core pipe. Both the experiment and the 3D/3D FSI models
reach a plateau around 10 bar (the pressure does not drop to ambient pressure levels due to the
accumulator thrust and the presence of the junction pipe, which limits the outflow), whereas
the 1D/1D FSI models seem to undergo complete depressurization, thus showing a plateau at
around 1 bar. This effect reflects on the sensors of the by-pass pipe, becoming progressively
less significant from the lowest sensor (D1) to the highest sensor (D5). For sensors C7 and C8,
beginning at t ≥ 11ms, there is a notable overestimation in the pressure levels calculated by the
1D/1D FSI models compared to both the experimental data and the 3D/3D FSI models.
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Figure 6.10: Configuration 3 pressure evolution comparison for sensors C1 and C2.
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Figure 6.11: Configuration 3 pressure evolution comparison for sensors C4, D1, C6, D3, C8
and D5.

For completeness, Figure 6.12 illustrates the transient pressure differentials between sensors
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D2 and C5, ∆PD2−C5, and sensors D4 and C7, ∆PD4−C7. In line with the earlier discussion, the
transient pressure differences for the sensor pairs D1-C4, D2-C5, and D3-C6 (all upstream of the
core pipe’s orifice plate) are positive, indicating that the pressure in that section of the device
is higher in the by-pass pipe compared to the core pipe, as the by-pass pipe encounters more
difficulty in emptying due to the presence of the six orifice plates. For these sensor pairs, the
peaks of the transient differential pressure are approximately 30 bar according to experimental
measurements and 3D/3D FSI calculations, while the 1D/1D FSI models show a significant
overestimation, with peaks reaching up to 40 bar.

For the sensor pairs D4-C7 and D5-C8, both downstream of the orifice plate in the core
pipe, the behavior of the transient pressure differential is diametrically opposite. Apart from
the transient zone for t ≤ 6ms, the trend is consistently negative, indicating a higher pressure in
the core pipe than in the by-pass pipe for this area of the experimental setup. This suggests that
the orifice plate in the core pipe alone presents more resistance to the emptying of the upper
part of the device compared to the six orifice plates arranged in the by-pass pipe. Furthermore
the thrust from the accumulators is more significant in the core pipe than in the by-pass pipe,
given that by design, they direct the flow along the same axis as the core pipe. The peak of the
transient pressure differential is approximately −25 bar according to both experimental results
and 3D/3D FSI calculations, while it is again overestimated at around −38 bar by the 1D/1D
FSI calculations.
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Figure 6.12: Configuration 3 pressure difference between sensors D2 and C5, ∆PD2−C5, and
sensors D4 and C7, ∆PD4−C7.

In line with the previous discussion, the mean absolute error between the simulations and
experimental results for sensors C1-C8 (see Figure 6.13) falls within the range [1, 3] bar for the
3D/3D FSI models, with higher errors observed for sensors C1 and C2, lower errors for sensors
C7 and C8, and intermediate errors for sensors C4-C6. The situation deteriorates significantly
for the 1D/1D FSI models, which exhibit errors in the range [6, 10] bar for sensors C2-C6 and
errors in the range [2, 4] bar for sensors C1, C7, and C8.

For sensors D1-D5 (see Figure 6.14), the mean absolute error falls within the range [1.4, 2.5]
bar for the 3D/3D FSI models, with a peak observed for sensor D4. In contrast, for the 1D/1D
FSI models, the error decreases nearly linearly from sensor D1 to sensor D5, ranging from a
maximum around 9 bar to a minimum around 1 bar.
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Figure 6.13: Configuration 3 mean absolute error for the junction pipe sensor and the core
pipe sensors.
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Figure 6.14: Configuration 3 mean absolute error for the by-pass pipe sensors.
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Regarding the transient pressure differentials between the sensors of the by-pass pipe (D1-
D5) and the sensors of the core pipe (C4-C8), it can be observed from Figure 6.15 that the
mean absolute error for the 3D/3D FSI models falls within the range [1, 3] bar, with the FSI
case consistently slightly more accurate. For the 1D/1D FSI models, the error range is [2, 6] bar,
with values around 5 bar for the pairs D1-C4, D2-C5, D3-C6, and D4-C7, which decrease to
approximately 2.5 bar for the pair D5-C8. The 1D WATER+FSI calculation is more accurate
than the 1D FLUID calculation for the pairs D1-C4, D2-C5, D3-C6, while the opposite is
observed for the pairs D4-C7 and D5-C8.
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Figure 6.15: Configuration 3 mean absolute error for pressure differences between core and
by-pass pipe sensors.

Regarding the trade-off between computational cost and model accuracy, similar conclusions
to those presented for Configuration 1 and Configuration 2 can be drawn also for Configuration
3. In a plane “Computational time vs Error or Accuracy”, the 4 models form again a set of
non-dominated choices, with the 3D WATER+FSI approach providing the best accuracy for the
highest cost and the 1D FLUID approach providing the lowest accuracy for the lowest cost.

In this case, regarding the choice of one approach over another, we can make considerations
similar to those made previously for Configuration 2. Everything depends on the level of preci-
sion deemed acceptable or the maximum computational cost one is willing to incur. By adopting
a conservative approach, as previously mentioned, the 1D models, which tend to overestimate
certain results, could be considered favorable. However, in this last analyzed configuration, the
discrepancies with the reference models are more significant compared to the two previous con-
figurations. This suggests that a more accurate approach might be necessary to meet specific
tolerance limits.
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6.3 Conclusions

This chapter has presented an investigation into two alternative configurations of MADMAX
featuring the presence of the by-pass pipe, denoted as Configurations 2 and 3. These configura-
tions were previously introduced in Chapter 2 and briefly mentioned at the beginning of Chapter
5.

Experimental campaigns were conducted to examine the behavior of these configurations,
providing valuable insights into the understanding of their physical features. Configuration 2,
characterized by a free core pipe and 4 orifice plates in the by-pass, exhibited similarities with
Configuration 1, except for minor variations due to the absence of two orifice plates in the by-
pass pipe. Configuration 3, which incorporated an orifice plate in the core pipe along with 6
orifice plates in the by-pass pipe, represented a novel setup that closely resembled real industrial
scenarios.

Comparative analyses between experimental data and numerical simulations were performed,
revealing notable findings. The 3D/3D FSI models generally demonstrated better agreement
with experimental results compared to the 1D/1D FSI models. In Configuration 2, the absence
of the lower orifice plate in the by-pass pipe led to a reduction in transient pressure differentials,
while Configuration 3 displayed unique pressure distribution patterns due to the combined effects
of orifice plates in both pipes.

The mean absolute errors between simulations and experiments varied across sensors and
models, with generally higher errors observed in the 1D/1D FSI simulations compared to the
3D/3D FSI simulations. Additionally, the trade-off between computational cost and model ac-
curacy remained consistent with previous observations, highlighting the advantages of 3D/3D
FSI models in capturing complex fluid-structure interactions accurately. However, it is worth
noting that despite the higher precision of 3D/3D FSI models over 1D/1D FSI models, the
significantly reduced computational cost of the latter makes them highly competitive. Further-
more, the overestimated results provided by 1D/1D FSI models can be considered conservative
in the field of nuclear safety.

In summary, the experimental and numerical investigations presented in this chapter offer
valuable insights into the behavior and performance of alternative MADMAX configurations,
contributing to the comprehension of rarefaction wave propagation phenomena in systems in-
volving multiple obstacles in different configurations.
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Conclusions and Perspectives

The investigation presented in this work provides a comprehensive understanding of rarefaction
wave propagation phenomena in Pressurized Water Nuclear Reactors (PWRs) during Loss of
Coolant Accidents (LOCAs). Through a combination of experimental campaigns conducted
on the MADMAX (Modélisation de l’Accident de Dépressurisation - Maquette Analytique-
eXpérimentale) facility and numerical simulations using EUROPLEXUS software, various con-
figurations and scenarios were explored to assess the predictive capabilities of simulation models
and enhance understanding of fluid-structure interactions in complex systems.

The initial focus on the simplified configuration of MADMAX, without a by-pass pipe and
featuring a single modular orifice plate, enabled a detailed parametric study of obstacle geometry
and its influence on rarefaction wave propagation. The numerical models employed, ranging
from 1D simplified representations to more detailed 2D axisymmetric and 3D reference models,
exhibited good agreement with experimental results, demonstrating their reliability in capturing
pressure dynamics and deformations within the system. Furthermore, the incorporation of Fluid-
Structure Interaction (FSI) effects in the simulations provided valuable insights into cavitation
phenomena and structural response, enhancing the fidelity of predictions.

Expanding on this groundwork, configurations involving the by-pass pipe and multiple orifice
plates were investigated, offering insights into more complex scenarios resembling real indus-
trial conditions. Comparative analyses between experimental data and numerical simulations
revealed the capabilities and limitations of different simulation models, highlighting the trade-
offs between computational efficiency and accuracy. While 3D/3D FSI models demonstrated
higher accuracy in capturing complex fluid-structure interactions, 1D/1D FSI models offered
competitive computational efficiency, albeit with slightly overestimated results. These findings
underscore the importance of selecting appropriate simulation models based on the specific re-
quirements of the analysis, balancing computational resources with desired accuracy.

Moreover, the exploration of alternative configurations, such as varying the number and ar-
rangement of orifice plates in the by-pass pipe, provided valuable insights into system behavior
and performance under different conditions. These investigations contribute to the broader un-
derstanding of rarefaction wave propagation phenomena in nuclear reactor systems and provide
valuable data for validating simulation codes used in nuclear safety assessments.

Overall, this work aims to contribute to the field of nuclear reactor analysis and transient
flow simulations, offering insights into the complex dynamics of rarefaction wave propagation
and FSI in PWRs. By combining experimental data with advanced numerical simulations, this
study advances our understanding of LOCA scenarios and provides a foundation for further
research aimed at enhancing the safety and reliability of nuclear reactor systems.
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Perspectives From both a numerical and experimental perspective, this work opens up signif-
icant avenues for scientific and industrial interests. One of the primary prospects is to investigate
the influence of different obstacles such as plates with multiple holes or pseudo fuel assemblies
and mixing grids in the core pipe.

From a purely numerical standpoint we would like to: i) to investigate the use of the
Finite Volume Method (FVM) for carrying out the 1D simulations, anticipating that the Finite
Element Method does not ensure as well as FVM conservation properties which are critical in
other more complex applications; this includes a development step for a Finite Volume acoustic
impedance model to be implemented in EUROPLEXUS; ii) to develop and implement a porosity
model for representing the central core zone (fuel assemblies and mixing grids).

From the experimental standpoint, new configurations may allow us to investigate the
influence of different obstacles such as plates with multiple holes or pseudo fuel assemblies and
mixing grids in the core pipe. Technical modifications of the experimental device, such as the
installation of new sensors (pressure, force, and deformation sensors), will enable a more in-
depth and precise investigation of the propagation dynamics of the rarefaction wave both in the
fluid and within the structure.

Several alternative configurations or experiment modifications have been proposed during the
course of this PhD work; unfortunately, due to time constraints, they could not be implemented.
However, they certainly remain among the primary prospects for future developments of the
experiment, especially since after completing the PhD, I will continue to work as a research
engineer at the DYN laboratory of CEA Saclay. Consequently, I will be overseeing future work
on the experiment myself, likely supervising future interns/PhD candidates.

From a scientific standpoint, the following advancements have been proposed:

• Testing on plates with multiple orifices, akin to those depicted in Figure 6.16, to assess
the reliability and precision of simplified numerical models for this type of configuration.
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Figure 6.16: Multi-orifice plates examples.

• Installation of a structure in the core pipe that more faithfully reproduces the central
zone of a nuclear reactor core, including fuel assemblies and mixing grids, as shown in
Figure 6.17. This configuration, requiring a preliminary study for the design of the new
component, would bring us closer to the real industrial case outlined at the beginning of
Chapter 1. In this case, from a numerical perspective, the implementation of a porosity
model for representing the zone is being considered.
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Pseudo fuel assembly Mixing grid

Figure 6.17: MADMAX configuration with pseudo fuel assembly and mixing grids.

From a technical standpoint, the following advancements are anticipated:

• Installation of new piezoresistive pressure sensors in parallel with the existing piezoelectric
sensors. The purpose can be summarized into two objectives: 1. duplicating the pres-
sure measurement with a different technology for each measurement point; 2. accurately
measuring longer transients (beyond 100 ms) to analyze the complete emptying phase of
the device (piezoelectric sensors, by their operational nature, do not allow for measuring
long transients as they rely on rapid voltage variations recorded by the sensor following
the passage of the pressure wave; piezoresistive sensors, on the other hand, are capable of
providing continuous measurement of absolute pressure). This evolution involves mechan-
ical modifications to the device to accommodate the installation of the new sensors. Such
modifications will be carried out by an external entity, and it is anticipated to complete
them by the end of 2024.

• Installation of force and deformation sensors on the structure to assess the mechanical
stresses it undergoes and to provide experimental validation for Fluid-Structure Interaction
(FSI) simulations.

• During the thesis, brief consideration was given to the possibilities of measuring fluid
velocity within the experimental device. The main techniques used in this field can be
summarized into two groups: Eulerian methods such as Particle Image Velocimetry (PIV),
Laser Doppler Velocimetry (LDV), or Hotwire, and Lagrangian methods such as Particle
Tracking Velocimetry (PTV), Ultrasound Doppler Velocimetry (UDV), or Smart particles.
All techniques requiring the use of high-speed cameras (PIV, PTV) are not suitable due to
the absence of a sufficiently large observation porthole on the experimental device. LDV
was tested through a small porthole present on the central section of the by-pass pipe, but
it did not yield any satisfactory results because the transient develops too rapidly, resulting
in a very low probability of detecting a particle as it passes through the lasers. UDV might
seem like the most reasonable solution, but it risks encountering the same issues as LDV, in
addition to having limitations in acquisition frequency with existing technologies and the
fact that attempting to observe an acoustic phenomenon using a method based on emitting
acoustic waves could in turn cause interference in the measurements. Furthermore, the
sensors used in UDV are essentially microphones that measure particle velocity using the
acoustic Doppler effect, and the commercially available devices we found do not withstand
high pressures.

As a result of the various technical limitations encountered, the idea of performing velocity
measurements on the experiment has been temporarily set aside but may be revisited in
the future.

115



116



Bibliography

[1] V. Faucher, F. Crouzet, P. Piteau, P. Galon, and P. Izquierdo. Numerical and experimental
analysis of transient wave propagation through perforated plates for application to the
simulation of LOCA in PWR. Nuclear engineering and design, 253:1–11, 2012.
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Appendix A

Finite Element Method

In the description given below, the Finite Element Method is used to handle fluids and structures.
Below, we outline the method applied solely to the fluid part. For the structural part, please refer
to the literature ([69] and in particular Section 2 - Table I in [70]). The domain is subdivided
into elements that are connected by nodes: certain quantities (such as density, internal energy,
pressure, etc.) are defined at the Gauss points of the element (in the case of EUROPLEXUS
fluid FE, there is only one Gauss point located at the element’s centroid), while other quantities
(typically velocity, acceleration, etc.) are defined at the nodes.

A.1 Spatial Discretization

The spatial discretization method used for the three conservation equations presented in the
previous chapter is described below.

Mass Conservation Equation

Assuming that the mass density ρ is uniform within the element, Equation (3.5) can be written
as follows:

δM e

δt
=

δ

δt

ˆ
Ve

ρ dV =

nface∑
k=1

ρk
˛
Sk

(
wk − vk

)
· nk dS =

nface∑
k=1

ρk
(
wk − vk

)
· nk · Sk (A.1)

where M e is the mass of the element, Ve is the volume of the element, nk is the normal to the k-
th face of the element, wk and vk are respectively the ”average” grid velocity and the ”average”
fluid velocity of the k-th face of the element (obtained after integration over this face), Sk is the
surface of the k-th face of the element, ρk is the weighted mass density at the k-th interface,
nface is the number of faces of the element.

The mass density ρk at interface ”k” is the weighted average of the mass densities of the two
elements adjacent to face k:

ρk =
1

2

[(
1− αk

)
· ρe +

(
1 + αk

)
· ρe’

]
(A.2)

where αk is the convective flux off-centering parameter. If (w − v) ·n ≤ 0, we take αk > 0. This
favors the density of the ”donor” element, which stabilizes the numerical scheme. In Europlexus,
the default choice is to use αk = 1 (full off-centering or Upwind scheme).
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A.1 Spatial Discretization

Momentum Equation

Taking into account the variational formulation of the momentum equation (Eq. (3.12)), the
following can be written for each element:

v∗(x, t) =

nbnoe∑
I=1

N I(x) · v∗I(t) v(x, t) =

nbnoe∑
I=1

N I(x) · vI(t) (A.3)

where v and v∗ (respectively the material velocity field and the virtual velocity field, see Section
3.1.2.2 for details) are velocity vectors that depend on the type of discretized element, “nbnoe”
is the number of element nodes, N I corresponds to the shape functions of the considered element
for node I, vI and v∗I are the velocity values at node I of the element.

Depending on the type of element considered (beam, tube, etc.), a certain number of degrees
of freedom may be associated with each node I. Denoting by i a degree of freedom associated
with node I, we can write the relative velocities as follows:

v∗i (x, t) =

nbnoe∑
I=1

N I(x) · v∗Ii (t) vi(x, t) =

nbnoe∑
I=1

N I(x) · vIi(t) (A.4)

The variational formulation of the momentum equation is recalled as follows:ˆ
V
ρ(x, t)

δv

δt
· v∗ dV =

ˆ
V
ρ(x, t)g · v∗ dV +

˛
S
σ · n · v∗ dS −

ˆ
V
σ :

∂v∗

∂x
dV

+

ˆ
V
ρ(x, t)

(
(w − v) · ∂v

∂x

)
· v∗ dV

(A.5)

Using relations (A.3), for each element, we can rewrite this equation as follows:

∑
e

[ˆ
Ve

ρ(x, t)
nbnoe∑
J=1

NJ δv
J

δt
·
nbnoe∑
I=1

N I · v∗I dV

]
=
∑
e

[ˆ
Ve

ρ(x, t)g ·
nbnoe∑
I=1

N I · v∗I dV

+

˛
Se

σ · n ·
nbnoe∑
I=1

N I · v∗I dS

−
ˆ
Ve

σ :

(
nbnoe∑
I=1

∂N I

∂x

)
v∗I dV

+

ˆ
Ve

ρ(x, t)

(
(w − v) · ∂v

∂x

)
·
nbnoe∑
I=1

N I · v∗I dV

]
(A.6)

This equation must be true for any v∗j . We then obtain (for I = 1, ...,nbnoe) vector equations:

∑
e

[
nbnoe∑
J=1

ˆ
Ve

ρ(x, t)N INJ dV
δvJ

δt

]
=
∑
e

[ˆ
Ve

ρ(x, t)gN I dV +

˛
Se

N Iσ · ndS −
ˆ
Ve

σ :
∂N I

∂x
dV

+

ˆ
Ve

ρ(x, t)

(
(w − v) · ∂v

∂x

)
·N I dV

]
(A.7)
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A. Finite Element Method

After discretization within each elemental volume (element), we can write more precisely:

∑
e

[M IJ
ij

]e δ {vJj }e

δt

 =
∑
e

[{
F I
i

}e
g
+
{
F I
i

}e
ext

−
{
F I
i

}e
int

+
{
F I
i

}e
t

]
(A.8)

where:

•
[
M IJ

ij

]e
is the consistent mass matrix of the element (upper index e):

[
M IJ

ij

]e
=

ˆ
V e

ρ(x, t)N I
i N

J
j dV (A.9)

This matrix is then made diagonal by condensation in Europlexus, i.e., by summing each
row and assigning this sum to the diagonal term.[

M̃ IJ
ij

]e
=

nbnoe∑
J=1

nddl∑
j=1

[
M IJ

ij

]e
(A.10)

where nbnoe is the number of nodes of the element and nddl is the number of degrees of
freedom per node.

•
{
F I
i

}e
g
corresponds to the discretization of the volume forces on the element. Its expression

is: {
F I
i

}e
g
=

ˆ
V
ρ(x, t)gN I dV (A.11)

•
{
F I
i

}e
ext

corresponds to the discretization of external forces other than volume forces:{
F I
i

}e
ext

=

˛
Se

N ITi dS with Ti = σij · nj (A.12)

•
{
F I
i

}e
int

corresponds to internal forces:

{
F I
i

}e
int

=

ˆ
Ve

σ
∂N I

∂xi
dV (A.13)

In our case, the stress tensor depends only on a scalar field, which is the pressure p in the
fluid:

σ = −pI where I is the identity tensor (A.14)

•
{
F I
i

}e
t
corresponds to the elemental contributions of the momentum transport terms:{

F I
i

}e
t
=

ˆ
Ve

N Iρ(x, t) (wj − vj) ·
∂vi
∂xj

dV (A.15)

After assembly over all elements, we can finally write the momentum equation in the following
form:

[
M̃ IJ

ij

] δ {vJj }
δt

=
{
F I
i

}
g
+
{
F I
i

}
ext

−
{
F I
i

}
int

+
{
F I
i

}
t

(A.16)
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A.1 Spatial Discretization

Energy Conservation Equation

For the energy conservation equation (Eq. (3.16)), we assume that the density ρ and pressure p
are uniform within the element.

δEe

δt
=

δ

δt

ˆ
Ve

ρ(x, t)

(
i+

1

2
v2
)

dV =
nface∑
k=1

ρk
(
i+

1

2
v2
) ˛

Sk

(wk − vk) · nk dS − pe
˛
Sk

vk · nk dS

(A.17)

Similarly, the equation written in terms of internal energy (Eq. (3.17)) can be discretized as
follows:

δIe

δt
=

δ

δt

ˆ
Ve

ρ(x, t)i dV =
nface∑
k=1

ρki

˛
Sk

(wk − vk) · nk dS − pe
˛
Sk

vk · nk dS (A.18)

Where:

• Ee: energy in the element

• Ie: internal energy in the element

• e = i+ 1
2v

2: specific total energy

• i: specific internal energy

• ρ: density

• Ve: volume of the element

• nk: normal to the k-th face of the element

• wk: average grid velocity of the k-th face of the element

• vk: average fluid velocity for the k-th face of the element

• Sk: surface of the k-th face of the element

• ρk: density weighted at the k-th interface

• pe: pressure in the element

Equation A.18 is the one solved by EPX when using the Finite Element Method.

The energy (ρe)k at interface k is defined as the weighted average of the energies of the two
adjacent elements:

(ρe)k =
1

2

[(
1− αk

)
(ρe)e +

(
1 + αk

)
(ρe)e’

]
(A.19)

where αk is the convective flux offset parameter. If (w − v) · n ≤ 0, we take αk > 0. This favors
the density of the ”donor” element, stabilizing the numerical scheme. In Europlexus, the default
choice is to use αk = 1 (full offset or Upwind scheme).
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A. Finite Element Method

A.2 Temporal Discretization

The method used for temporal discretization (in the ALE description) is the centered differ-
ence method.

At time step n, we know the grid geometry xn, the grid velocity wn, the fluid velocity at
the previous half-step vn−1/2, the element density ρn, the internal energy in, the interior and
exterior forces applied to this element Fn

int and Fn
ext, and the acceleration γn = dvn/dt.

Calculation of New Geometry

Knowing the acceleration at time step n, γn, and the fluid velocity at the previous half-time

step vn−1/2, the fluid velocity at the next half-time step vn+1/2 can be calculated, considering a
time interval ∆t: {

vJj
}n+1/2

=
{
vJj
}n−1/2

+∆t
{
γJj
}n

(A.20)

where the acceleration can be determined from Equation (A.16):

{
γJj
}n

=
δ
{
vJj

}n

δt
=
([

M̃ IJ
ij

]n)−1
·
({

F I
i

}n
g
+
{
F I
i

}n
ext

−
{
F I
i

}n
int

+
{
F I
i

}n
t

)
(A.21)

In the case of the ALE description, the grid velocity at the next half-time step wn+1/2

is now calculated (we will not go into the details of this calculation), and therefore, the new
geometric configuration xn+1 can be calculated:{

xJj
}n+1

=
{
xJj
}n

+∆t
{
wJ
j

}n+1/2
(A.22)

In the case of the Eulerian description the geometric configuration remains unchanged.

Calculation of Element Mass

Knowing the new domain configuration at time tn+1, we calculate for each element the new
volume of the element: ∣∣V e, n+1

∣∣ = f
(
xn+1

)
(A.23)

The new mass of the element is obtained from Equation (A.1):

M e, n+1 = M e, n +∆t
nface∑
k=1

ρk, n
˛
Sn+1
k

(
wk, n+1/2 − vk, n+1/2

)
· nk, n+1 dS

= M e, n +∆t
nface∑
k=1

ρk, n
(
wk, n+1/2 − vk, n+1/2

)
· nk, n+1 · Sk, n+1

(A.24)

Here, the mass increment is calculated from the material velocity and the previously calcu-
lated grid velocity at time step n + 1/2. Since the new geometry is known, here we take the
normal and surface of the k-th face for time step n+ 1. The density used to calculate the mass
flux for each of the element’s interfaces is determined from the densities of the two adjacent
elements, e and e′, using Equation (A.2).
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A.2 Temporal Discretization

Increment Calculation of Internal Energy

First, we calculate the first term of the internal energy increment ∆I1 using the following
discretization:

∆Ie1 = ∆t
nface∑
k=1

ρk, n i k, n
˛
Sn+1
k

(
wk, n+1/2 − vk, n+1/2

)
· nk, n+1 dS

= ∆t
nface∑
k=1

ρk, n i k, n
(
wk, n+1/2 − vk, n+1/2

)
· nk, n+1 · Sk, n+1

(A.25)

Similarly to before, it can be weighted based on the internal energies of two adjacent elements
to calculate the internal energy flux through an interface:

(ρ i)k, n = ρk, n i k, n =
1

2

[(
1− αk

)
· (ρ i)e, n +

(
1 + αk

)
· (ρ i)e’, n

]
(A.26)

We then determine the intermediate specific internal energy:

ĩ =
∆Ie1 + In

|M e, n+1|
(A.27)

Calculation of Density, Pressure, and Nodal Masses

The new density is determined from the element mass and its volume calculated from the new
grid geometry at step n+ 1:

ρe, n+1 =
M e, n+1

|V e, n+1|
(A.28)

The pressure is then determined by the equation of state and is calculated from the inter-
mediate specific internal energy and the density at step n+ 1:

pe, n+1 = F
(̃
i, ρe, n+1

)
(A.29)

Knowing the new density at time n+ 1, we then calculate for the element the masses to be
associated with the nodes using a condensation technique (to have only diagonal terms).

Calculation of Internal Forces and Convective Transport

The internal forces at step n+ 1 are calculated as follows:

{
F I
i

}e, n+1

int
= −

ˆ
V e, n+1

pe, n+1∂N
I

∂xi
dV (A.30)

The transport forces at time n+ 1 are determined by the discretized equation:

{
F I
i

}e, n+1

t
=

ˆ
V e, n+1

N Iρe, n+1
(
wn+1/2 − vn+1/2

)
·
(
∂vi
∂xi

)n+1/2

dV (A.31)

The integration is done over the volume in configuration n+1. The grid velocity and material
velocity are those determined at the half-time step. Integrals are numerically determined using
the Gauss integration method.
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A. Finite Element Method

Calculation of Internal Energy

The internal energy of the element can be calculated as follows (Eq. (A.18)) at step n+ 1:

In+1 = In +∆I1 −∆t

˛
Sn+1

pe, n+1 · vk, n+1/2 · nk, n+1 dS (A.32)

This last integral is transformed into an integral over the volume of the element. The previous
relation is approximated as follows:

In+1 = In +∆I1 −∆t

ˆ
V n+1

pe, n+1 ·
(
∂vi
∂xi

)n+1/2

dV (A.33)

Integration over the volume is done using the Gauss integration method.

Calculation of External Forces, Volume Forces, and New Accelerations

The external forces are calculated as follows:

{
F I
i

}n+1

ext
=

˛
S
N ITn+1

i dS with Ti = σij · nj

as well as the volume forces:

{
F I
i

}n+1

g
=

ˆ
V
ρn+1gN I dV (A.34)

We then calculate:

• The mass matrix at time n+ 1

• The new internal nodal forces

• The new transport nodal forces

We then determine the new acceleration:

{
γJj
}n+1

=
δ
{
vJj

}n+1

δt
=

([
M̃ IJ

ij

]n+1
)−1

·
({

F I
i

}n+1

g
+
{
F I
i

}n+1

ext
−
{
F I
i

}n+1

int
+
{
F I
i

}n+1

t

)
(A.35)

Stability

The scheme being explicit, it is conditionally stable. The CFL stability condition (Courant,
Friedrichs, Levy stability condition) imposes a maximum time step to ensure convergence of the
scheme.

The stability step is calculated for each element. The selected calculation step is then taken
as less than or equal to the smallest stability step of the considered domain (associated with
each element). For ”massive” elements, it can be shown that:

∆tstab ≤ min

(
Le

Ce +max (vei )

)
(A.36)

Where:
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A.2 Temporal Discretization

• Le is the smallest dimension of element e

• Ce is the speed of sound in element e

• vei is the component of the material velocity of element e

Since the calculations are often highly nonlinear, a safety factor α is taken to impose the
stability step. This coefficient generally depends on the problem being addressed. It can be
modified using the OPTION directive. By default, this coefficient is 0.8 in Europlexus.

∆tcalculstab = α∆tstab (A.37)
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Appendix B

Finite Volume Method

Similarly to what was done in the previous annex on FEM, here we present the main character-
istics of the other numerical method used in this work only for the fluid numerical treatment,
the Finite Volume Method (FVM). The conservation equations to be satisfied are exactly the
same as those used for FEM, except for the energy conservation equation, where total energy
(Eq. 3.16) will be used instead of internal energy.

In both FEM and FVM, the domain is divided into elements connected by nodes. In FEM,
certain quantities (such as density, internal energy, pressure, etc.) are defined at the mesh Gauss
points within the elements, while others (typically velocity, acceleration, etc.) are defined at
the nodes. Conversely, in FVM, all quantities are defined at the Finite Volume centroid. For a
schematic view, refer to Fig. 3.6.

We use the conservation law for a general vector quantity U . We can therefore write the
integral form of the governing equations as:

∂

∂t

˚
V
U · dV +

¨
S
FALE
C · n⃗dS =

˚
V
HdV (B.1)

The time derivative of the conservative variable can be cast in the form:

∂

∂t

˚
V
U · dV =

∂

∂t
(ŪV ) (B.2)

where:

Ū =
1

V

˚
V
U(x, y, z)dV FALE

C = FC − U · v⃗Grid U =


ρ
ρu
ρv
ρw

ρ(e+ u⃗2/2)

 (B.3)

The surface integral in Equation B.1 is approximated by the sum of the fluxes crossing the
faces. We suppose that the flux is constant along each individual face (sufficient for a second-
order scheme):

∂

∂t
(ŪV ) = −

[
Nface∑
k=1

FALE
C · n⃗kSk − V ·H

]
= −R (B.4)
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B. Finite Volume Method

In Europlexus, the time derivative of the conservative variables U use an explicit Euler
scheme (for first-order accuracy):

Ū t+∆tV t+∆t
vol − Ū tV t

vol = −∆t

[
Nface∑
k=1

(FC − U∗ · v⃗Grid) · n⃗kSk

]
= −R∆t (B.5)

thus:

Ū t+∆t =
Ū tV t

vol

V t+∆t
vol

− ∆t

V t+∆t
vol

[
Nface∑
k=1

(FC − U∗ · v⃗Grid) · n⃗kSk

]
(B.6)

where V t
vol and V t+∆t

vol are the volumes at t and t+∆t, while U t
vol and U t+∆t

vol are the conser-
vative variables at t and t+∆t

The Courant–Friedrichs–Lewy condition (CFL) is a parameter for obtaining the stability
inside the calculus of a model in Computational Fluid Dynamics (CFD). Its value lies between
0.1 and 1, and the conditions for respecting this range are the following ones: for a set of
iterations i, the condition of CFL is defined as in equation B.7, where ui is the velocity of fluid,
ci the sound speed, Li the total length of the space iterated, and ∆ti the time step iterated,
counting ∆ti as the minimal obtainable within the condition of CFLi:

∀i ∆ti <
CFLiLi

∥ui∥+ ci
(B.7)

This time step can be minimized maximizing the coefficient CFLi, letting it being equal to 1.
At this value, it is possible to assume that the CFL is equal to another coefficient; the stability
coefficient CSTA.

To satisfy the Geometric Conservation Law (GCL) an intermediate frame is used for the
fluxes computation:

Ū t+∆t =
Ū tV t

vol

V t+∆t
vol

− ∆t

V t+∆t
vol

[
Nface∑
k=1

(
FC − U∗ · v⃗t+∆t/2

Grid

)
· n⃗t+∆t/2

k S
t+∆t/2
k

]
(B.8)

Introduction of numerical fluxes for the discretization:

Ū t+∆t =
Ū tV t

vol

V t+∆t
vol

− ∆t

V t+∆t
vol

N/ace∑
k=1

FALE
k

(
UL, UR, v⃗

t+∆t/2
Grid

)
· n⃗t+∆t/2

k S
t+∆t/2
k

 (B.9)

with Left and Right States UL and UR.
Several numerical solvers are available in Europlexus (see EPX manual [62] and references
therein):

• Rusanov,

• HLLE,

• Godunov (for perfect gaz),

• HLLC (by default, used in our simulations),

• AUSM+ and variants,
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B. Finite Volume Method

• Specific Low-Mach solvers,

• . . .

In EPX two orders regarding the space discretization are implemented:

• Order 1, in which the unknown variables are constant and the values of UL and UR are
the same.

• Order 2, where the solution is linear on the control volume. This leads to a better precision
for the calculations.

First-order schemes are known to be too diffusive for many problems involving complexes
geometries. Therefore more accurate methods are required for this kind of flows. In FSI problems
the structure imposes the time steps and the solution compute with first order methods are stable
but not accurate enough.

Order 2 is the one used in this manuscript. UL and UR are rebuilt supposing a solution linear
on the control volume.
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B. Finite Volume Method
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Appendix C

Implementation of the
IMPEDANCE GRID model in
EUROPLEXUS

We aim to describe here how the IMPEDANCE GRID model presented in Paragraph 3.1.4 is
numerically implemented in EUROPLEXUS using the Finite Element Method in 1D.

Geometric obstacles can be represented by means of an impedance called GRID, which
enables to model the influence of grids or rigid perforated plates on a fluid [62]. Initially, under
the acoustic assumption (non-linear entrainment terms and viscosity terms are neglected), it can
be shown that the pressure difference between the two sides of the obstacle, ∆p, is related to the
acceleration effect of the fluid at the hole of the orifice plate [15]. This effect can be represented
by means of an equivalent length Leq such that:

∆p = −Leq

s
q̇ (C.1)

where s is the cross-sectional area of the orifice and q̇ = dq/dt where q is the mass flow rate.

Considering, in addition, the effects of drag and viscosity and assuming that the methods
used for permanent flows at a singularity still apply, we can write (superposition of the effects):

∆p = −Leq

s
q̇ − 1

2
k

q2

ρ0S2
t

(C.2)

where k is the head loss coefficient, ρ0 is the average density of the fluid, St is the cross-sectional
area of the pipe.

We are interested in an acoustic fluctuation around a steady flow with a flow rate Q0. The
previous equation can be written as:

∆p = −Leq

s
q̇ − 1

2
k
qQ0

ρ0S2
t

(C.3)

We then define:

τ =
St

s

Leq

2c
M0 =

Q0

ρ0cSt
α =

1

2
kM0 (C.4)

The previous equation becomes:
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C. Implementation of the IMPEDANCE GRID model in EUROPLEXUS

∆p = −2
cτ

St
q̇ − αc

q

St
= −2cτρ0

dvr
dt

− αcρ0vr (C.5)

The two parameters τ and α, assumed constant during the calculation, depend on the ma-
terial (fluid) properties and geometric characteristics of the singularity. The first term of the
previous equation is inertial while the second one is dissipative. For q = Q0, we recover the
singular head loss in steady flow.

Leq can be calculated using

Leq = 2

[
0.85− r

R
+ 0.15

( r

R

)2]
r + e (C.6)

where r is the radius of the orifice plate hole, R is the inner radius of the pipe and e is the
thickness of the orifice plate (see Fig. C.1). In the case of a single cross-sectional change (sudden
enlargement or shrinkage), Leq reduces to:

Leq =

[
0.85− r

R
+ 0.15

( r

R

)2]
r (C.7)

St

s

p1 p2

q1 q2

R

r

e

Figure C.1: Orifice plate scheme.

The head loss coefficient k can be obtained from Idel’Cik correlations [12] for an orifice plate
or for single cross-sectional changes.

In summary, it can be said that the modeling of the singularity consists of two terms: an
inertial acoustic term and a classic head loss term. In the calculations, we must provide as
input to the model, in addition to the fluid density and the speed of sound, two fundamental
parameters: the characteristic time τ and the head loss coefficient k.

The term for the linearized head loss with respect to the mean flow rate Q0 is discretized
as follows:

∆p1 = −αρn+1
donorcv

n+1/2
r (C.8)

where ρn+1
donor is the density of the donor element, c is the speed of sound (provided by the

user and constant), v
n+1/2
r is the relative velocity of the fluid with respect to the piping, and α

is the dissipative impedance.
The inertial term is modeled simply by adding mass (constant throughout the calculation)

to the variable part of the nodal mass of the node associated with the boundary condition
element. It is shown that this additional mass is given by [10]:

madd = (2 + α)
πD2

min

4
ρ0cτ̃ where τ̃ =

τ

1 + α/2
(C.9)
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where Dmin is the diameter of the passage section associated with the node connecting the
two neighboring elements.

Here, we describe in detail the procedure to obtain equation (C.9) from equation (C.5),
following the approach adopted by Gibert and Schwab [10].

Equation (C.5) represents an acoustic impedance that can be made dimensionless using

the Laplace transform (L.T.):
[
q̇(t)

L.T.−−−→ p̃ q(p̃)
]
and

[
q(t)

L.T.−−−→ q(p̃)
]
, where p̃ is the Laplace

variable and has the dimension of frequency (s−1).

Let’s recall equation (C.5):

∆p = −2τ
c

St
q̇(t)− α

c

St
q(t)

By using the Laplace transform, we obtain:

∆p = −2τ
c

St
p̃ q(p̃)− α

c

St
q(p̃) (C.10)

And in dimensionless form:

∆p
c
St
q
= −(2τ p̃+ α) with τ =

St

s

Leq

2c
and α =

1

2

k Q0

ρ0 c St
=

1

2
kM0 (C.11)

To evaluate the effect of a orifice plate (see Fig. C.1) on a progressive wave, we consider
S(p̃), R(p̃), and T (p̃): the Laplace transforms of the incident wave, the wave reflected by the
orifice plate, and the wave transmitted through the orifice plate, respectively.

To write the following equations, we consider an even simpler diagram (see Fig. C.2), where
the orifice plate’s geometry is “removed” because its effect will be replaced by the acoustic
impedance model. Let x be the direction of wave propagation, and we place the axes’ origin at
the singularity level.

0
x

St

p1

q1

p2

q2

Figure C.2: Simplified scheme of the orifice plate.

The pressure p1 to the left of the orifice plate is the result of the sum of the incident wave
and the reflected wave, taking into account the propagation time at the speed of sound c:

p1 = S(p̃) e−
p̃x
c +R(p̃) e

p̃x
c (C.12)

The pressure p2 to the right of the orifice plate is equal to the transmitted wave shifted by
the propagation time:
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p2 = T (p̃) e−
p̃x
c (C.13)

The flow rates q1 and q2 associated with these waves can be calculated using Euler’s equation:

∂q

∂t
+ St

∂p

∂x
= 0 (C.14)

which, using the Laplace transform, can be written as:

p̃ q + St
∂p

∂x
= 0 =⇒ q = −St

p̃

∂p

∂x
(C.15)

Now, let’s compute the derivative with respect to x of equations (C.12) and (C.13):

∂p1
∂x

=
p̃

c

[
−S(p̃) e−

p̃x
c +R(p̃) e

p̃x
c

] ∂p2
∂x

= − p̃

c
T (p̃) e−

p̃x
c (C.16)

Next, we calculate q1 and q2 on both sides of the orifice plate (at x = 0):

q1 =
St

c
[S(p̃)−R(p̃)] q2 =

St

c
T (p̃) (C.17)

Assuming that the flow rate is conserved through the orifice plate and using equation (C.11),
the following system of equations can be written:{

q1 = q2 = q

p2 − p1 = − c
St
q(2τ p̃+ α)

(C.18)

By replacing p1, p2, and q2 with their expressions from equations (C.12), (C.13), and (C.17),
respectively, at x = 0, we obtain:{

S(p̃) = R(p̃) + T (p̃)

p2 − p1 = T (p̃)− S(p̃)−R(p̃) = −(2τ p̃+ α)T (p̃)
(C.19)

Solving this system allows us to express T and R in terms of the source S:

T (p̃) =
S(p̃)

1 + α/2 + τ p̃
=

S(p̃)

1 + α/2
· 1

1 + τ̃ p̃
with τ̃ =

τ

1 + α/2
(C.20)

R(p̃) =
α/2 + τ p̃

(1 + α/2)(1 + τ̃ p̃)
S(p̃) (C.21)

We then obtain:

p2 − p1 = − α+ 2τ p̃

(1 + α/2)(1 + τ̃ p̃)
S(p̃) = −2R(p̃) (C.22)

and the ratio p2/p1, at x = 0, is:

p2
p1

=
T (p̃)

S(p̃) +R(p̃)
=

1

1 + α+ 2τ p̃
(C.23)
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Application: Added Mass at Node

Let’s consider two identical 1D elements of length L (Fig. C.3) and denote by St the section
corresponding to the node P separating the two elements. In our case, St is equivalent to the
section of the pipe.

1D Element 1D Element

P

m0 St

F 1 F 2v
Node

p1
ρ0c

p2
ρ0c

L L

x

Figure C.3: Elements extracted from the 1D mesh.

Each 1D element has two nodes, so the mass assigned to each of the two nodes for a single
element is ρ0·St·L

2 , which is half of the total mass of the element. Therefore, the total mass m0

assigned to node P for the two elements is:

m0 = ρ0 · St · L (C.24)

For a planar wave propagating from left to right, the pressure p is related to the velocity v
by:

p = ρ0cv (C.25)

This means that a force F2 is applied to the mass m0:

F2 = pSt = ρ0cvSt (C.26)

The reaction of the element is a force F1 such that:

F1 − F2 = m0
dv

dt
(C.27)

Using the Laplace transform
(
dv
dt

L.T.−−−→ p̃v
)
, we get:

F1 − F2 = m0p̃v = m0p̃
F2

ρ0cSt
(C.28)

F2

F1
=

1

1 + m0
ρ0cSt

p̃
(C.29)

Comparing equation (C.29) with equation (C.23) by taking α = 0

p2
p1

=
1

1 + 2τ p̃
(C.30)

We deduce by analogy the time constant τ :

τ =
m0

2ρ0cSt
(C.31)

Replacing m0 with its value, we find τ = L
2c , which is half of the wave transit time through

the element.
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An increase in mass m0 will result in an increase in the time constant, corresponding to an
increase in the length of the wave path. The mass madd added to node P is equal to:

madd = 2ρ0cStτ (C.32)

If we now consider α ̸= 0 and the definition of τ̃

τ̃ =
τ

1 + α/2
(C.33)

It follows that

madd = (2 + α)ρ0cStτ̃ (C.34)

Since St =
πD2

min
4 , we recover equation (C.9) (as desired):

madd = (2 + α)
πD2

min

4
ρ0cτ̃ (C.35)
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