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I.1. Optical microscopy 

In the world of biology discovery, seeing is believing.  

For centuries, the human eye has served as the primary tool. The human naked eye can 

resolve around 50 µm under optimal conditions. For example, it can see a strand of hair at arm’s 

distance (Frisk, 2012). Yet, in the world of biology, most structures and organisms are smaller 

than this limit. Examples include viruses, which range in size from 20 to 1 500 nm (Colson et 

al., 2017), or the microtubules with a diameter of around 25 nm (Wade, 1997), or the nuclear 

pore complexes, which measure around 100-150 nm in diameter (Wente and Rout, 2010).  

All of these structures are far below the resolution limit of the naked eye. Figure 1 

provides a visual representation of the relative scale of the biological structures and molecules, 

and it shows what our eyes can see as well as structures and molecules that exist on a scale 

much smaller than the width of a human hair.  

 
Figure 1. The scale of biological molecules and structures.  

Image from (What Is a Cell? | Learn Science at Scitable, no date) 

The limitations of our naked eyes lead us to rely on scientific tools. Between the 16th 

and 17th centuries, the first light microscopes were developed by Hans and Zacharias Janssen 

in around 1590 (Orchard and Nation, 2015). A microscope is equipped with a series of lenses 

capable of magnifying small biological structures. Thanks to this magnification, microscopy 

offers a resolution (page 9) around 200 nm, which is much better the naked eye, thus has become 

a central technique in cell biology.  



 

 

6 

I.1.1. Principle of optical microscopy 

 By converting emitted or transmitted light into a magnified image, optical 

microscopy reveals the “invisible” to the naked eyes. For instance, Figure 2 shows the principle 

of a simple two-lens optical microscope using a ray diagram. The light source is collected by 

the objective lens, then transmitted through the sample to magnify. The transmitted light is 

transferred to the eyepiece lens, then the observer can see the image. Microscopy image can be 

captured by a camera installed in the optical system, which can be considered as two-

dimensional matrix. Each element of this matrix is called pixel, that represents the smallest unit 

of an image, containing information such as intensity value and color. 

 
Figure 2. Ray diagram of the simplest two-lens microscope.  

Image from (Lee et al., 2011) 

The numerical aperture of the objective lens, that is function of its size, can’t be infinite, 

leading to imperfect restitution of images through an optical setup. The Point Spread Function 

(PSF) is a three-dimensional pattern coming from an infinitely small point light source through 

the optical system (will be detailed on page 9). Mathematically, microscopy images are formed 

by the convolution of the PSF with the sample. This convolution process, however, can lead to 
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the blurring and spreading of the original sample image, thus affecting the resolution of the 

microscopy image (Abbe, 1873). 

 The focal plane is at a specific distance from the objective lens where the sample is in 

sharp focus, the sample at this distance will be imaged with maximum clarity. The signals from 

regions of the sample below or above the focal plane overlap with the signals from the focal 

plane. As a result, the microscopy image has mixed signals: some are sharp, while others are 

blurred, which further impacts the resolution of the image. 

I.1.2. Broad classifications of optical microscopy 

Optical microscopy can be broadly categorized into two groups: bright-field and 

fluorescence microscopy: 

In bright-field microscopy, the light source goes through the sample and is collected by 

the objective lens. Depending on the refractive index of the tissues, the light's direction and 

speed change. When the sample is illuminated, the regions of the sample with a higher refractive 

index than the medium will bend the light more and appear darker in the formed image. 

Conversely, regions with a lower refractive index compared to the medium allow more light to 

pass through, appearing brighter. This contrast allows us to distinguish the sample from the 

medium and visualize its different components.  

Unlike bright field light microscopy that relies on the contrast of the specimen, in 

fluorescence microscopy (more details on page 11), we use fluorescent molecules also known 

as fluorescent dyes or fluorophores to label (or stain, tag) the specific biological structures or 

molecules of interest. The sample is illuminated with light of a specific wavelength and the 

fluorescent molecules absorb this excitation light and emit light at another wavelength 

(Lichtman and Conchello, 2005). Then the microscopy filters out the excitation light and 

collects the emitted fluorescence from the sample. This results in an image that only the labeled 

structures or molecules are visible. 

Figure 3 illustrates the principle of fluorescence via the Jablonski diagram, where the 

fluorophore absorbs a photon, reaching an excited energy state and then emits a longer 

wavelength while returning to ground state. Each time the fluorophore returns from the excited 
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state to the ground state, there is a small chance it become permanently non-fluorescent. This 

irreversible process is called photobleaching, leading to decreased fluorescent signal over time. 

 
Figure 3. Jablonski diagram.  

The fluorophore initially absorbs a photon (blue) at ground state (S0), raising an electron to an excited 

energy state (S1). Once in this excited state, the electron undergoes vibrational relaxation (orange). Due 

to the unstable nature of the excited state, the electron returns to the ground state typically within 

nanoseconds. The energy quantum of this difference is emitted via a photon (green) of a wavelength 

longer than the absorbed wavelength. Image from (Hochreiter, Pardo-Garcia and Schmid, 2015) 

 

Figure 4 illustrates the difference between bright-field and fluorescent microscopy 

images. In the panel A, the bright-field image provides general contrast, but is not specific to 

cellular structures. In the panel B, the fluorescent image displays fluorophore-labeled nuclei 

and cell cytoplasm, offering a high-contrast visualization of specific cellular components. 

 
Figure 4. Images of mouse alveolar macrophage cells  

This figure shows the bright-field (A) and fluorescence (B) microscopic images of mouse alveolar 

macrophage cells (RAW 264.7 Cells). Nuclei are blue and cell cytoplasm is green. Image from (Johnson 

et al., 2021) 
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This thesis focus on super-resolution microscopy technique (page 13), which is an 

advanced form of fluorescence microscopy.  

I.1.3. Point Spread Function (PSF) 

When light passes through the microscope's aperture, it undergoes a phenomenon called 

diffraction, resulting in the spreading and bending of the light waves (Abbe, 1873). The Point 

Spread Function (PSF) is the three-dimensional image formed by an infinitely small point light 

source going through the optical system. Due to diffraction, the resulting image consists of a 

central bright region, known as the Airy disk, surrounded by rings (Figure 5) (Cole, Jinadasa 

and Brown, 2011). Overall, the PSF determines the resolution of the microscope.  

 

Figure 5. PSF schematics and theoretical functions.  

Point source in the xy plane (a) and the yz plane (c). Simulated images for a theoretical PSF for the xy 

plane (b) and the yz plane (d). (e) The diffraction pattern of the minimum distance that the two objects 

can be apart. The red lines indicate the center of the Airy disk and the center of the first dark diffraction 

band within the Airy pattern. Image from (Cole, Jinadasa and Brown, 2011). 

I.1.4. Resolution 

The resolution in optical microscopy is defined by the minimal distance at which two 

objects can be distinguished through the optical system. Due to the diffraction, the image of a 

point source of light does not appear as a single point but as an Airy disk. When two objects 

are so close that their Airy disks are overlapped, these objects become indistinguishable. As a 

result, the resolution of conventional optical microscopy is typically limited by the diameter of 

the airy disk, which is approximately 200-300 nm.  
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The equation that describes the resolution limit of optical microscopy is given by the 

following formula: 

𝑑 ≈
𝜆

2𝑁𝐴
 

Where λ is the wavelength of the light used for microscopy, and NA is the numerical 

aperture of the objective. Although the diffraction-limited resolution of optical microscopy has 

long been considered as a fundamental constraint, the super-resolution microscopy techniques 

(page 13) have been developed to surpass this limit and provide higher resolution. 

I.1.5. Image noise 

The noise occurred in images acquired through optical systems is Poisson noise. 

Mathematically, the signal-to-noise ratio (SNR) is given by: 

𝑆𝑁𝑅 = 𝑁 

where N represents the number of photons collected.  

The more photons that are collected by the camera, the better the SNR becomes. A 

higher SNR means that the true signal can be more easily differentiated from the background 

noise. In practice, increasing the excitation laser power increases the photon collection, thus 

optimizes the image quality. 
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I.2. Fluorescence microscopy 

As discussed in Section above, the fluorescence microscopy allows visualizing specific 

structures or molecules of interest within a sample, thanks to labeling methods that allows 

fluorophores bound to the target molecules, such as proteins or DNA.  

I.2.1. Labeling 

Since most molecules in the cells are not fluorescent, we need to label the molecules of 

interest with fluorescent molecules. There are several techniques for labeling, including:  

• Direct immunofluorescence (Coons, Creech and Jones, 1941) 

Antibodies are specialized proteins produced by the immune system to recognize and 

bind to foreign substances (antigen) (Janeway, 2001). In fluorescent microscopy, 

antibodies can specifically recognize a target molecule. In direct immunofluorescence 

method, the antibodies are chemically conjugated with a fluorescent dye (Figure 6.a).  

• Indirect immunofluorescence (Coons, Creech and Jones, 1941) 

We apply an unlabeled primary antibody to bind the target molecule in cells. A 

secondary antibody, which is conjugated with a fluorescent dye is then applied. These 

secondary antibodies are bound to the primary thus allowing visualization of the target 

molecule (Figure 6.b). 
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Figure 6. Schematic representation of direct immunofluorescence (a) and indirect 

immunofluorescence (b).  

Image from (Vázquez-Gutiérrez and Langton, 2015) 

• Fluorescent protein fusion (Chalfie et al., 1994) 

The gene encoding the fluorescent protein is fused to the gene of the protein of interest. 

This fusion enables protein of interest to become fluorescent. 

• Click Chemistry (Kolb, Finn and Sharpless, 2001) 

The molecule or structure of interest will be attached with a “clickable” chemical tag. 

The fluorescent dye with a complementary "clickable" tag undergoes a “click” reaction 

with this tag. This chemical process allows the attachment of the fluorophore with the 

targeted molecules.  

I.2.2. Types of fluorophore 

Fluorophores come in various forms: 

• Organic dyes 

These are small molecules that can be conjugated (attached) to antibodies, nucleic acids, 

or proteins such as Alexa Fluor dyes (Panchuk-Voloshina et al., 1999) and Cyanine dyes 

(Mujumdar et al., 1993). 

• Fluorescent proteins 

These are proteins that are naturally fluorescent. The most famous example is Green 

Fluorescent Protein (GFP) (Chalfie et al., 1994) and its variants such as mCherry and 

mOrange (Shaner et al., 2004). 

Organic fluorophores generally emit brighter fluorescence and has larger range of 

excitation and emission wavelengths than fluorescent proteins, and they are often smaller and 

more chemically stable.  
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I.3. Super-resolution microscopy 

As mentioned above on page 9, conventional fluorescence microscopy is limited by the 

diffraction to 200-300 nm. Thus, it cannot resolve the structure or molecules at nanoscales.  

The development of super-resolution microscopy as an advanced extension of 

fluorescence microscopy, has overcome the diffraction limit, providing a higher resolution. 

Figure 7 presents the diffraction-limited and super-resolution microscopy images of a nuclear 

pore complex. Due to diffraction, the intricate details of the structure are not clearly resolved 

in the low-resolution image (Figure 9.f). Super-resolution microscopy, however, can provide a 

much higher level of detail, enabling the visualization of the finer features of the nuclear pore 

complex. 

 

Figure 7. Images of nuclear pore complex.  

(A) diffraction-limited image. (B) Super-resolution (SMLM) microscopy image. The SMLM technique 

will be detailed on page 16. Images acquired by M. Singh, Imaging and modelling unit, Institut Pasteur.  

I.3.1. Different techniques of super-resolution microscopy 

Three super-resolution techniques will be introduced in this section: Stimulated 

Emission Depletion (STED) (Hell and Wichmann, 1994), Structured illumination microscopy 

(SIM) (Gustafsson, 2000; Heintzmann, Jovin and Cremer, 2002) and Single-molecule 

localization microscopy (SMLM) (Lelek et al., 2021). Each of these approaches uses a different 

method to achieve the super-resolution:  

• Stimulated Emission Depletion (STED) Microscopy:  

B A 
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Stimulated emission is a process where an excited fluorophore is induced to a lower 

energy state by the presence of a photon. As illustrated in Figure 8.A, STED 

microscopy uses two high-intensity laser beams simultaneously: the first laser beam 

excites the fluorescent molecules in the sample, the second one is a donut-shaped 

depletion beam (STED beam) that de-activate the fluorescence emission at the periphery 

through stimulated emission. This allows narrowing the effective point spread function 

and thus improving resolution. 

• Structured Illumination Microscopy (SIM) 

SIM uses typically light with a sinusoidal pattern to illuminate the sample. This 

patterned light interacts with the structures, creating a more complex interference image. 

Multiple images are recorded with different phases and orientations of the patterned 

excitation light. Then, by using computational methods, this super-resolution 

information is extracted from these interference pattern. Figure 8.B depicts the principle 

of the SIM technique. 

• Single-Molecule Localization Microscopy (SMLM)  

SMLM relies on the stochastic switch-on-off event of fluorophore. Using this random 

blinking event, the localization of individual fluorophores can be estimated to construct 

super-resolution images (Figure 8.C). In this thesis, we applied this super-resolution 

technique to our research, and will explain the principle of SMLM in more details on 

page 16. 

 
Figure 8. Principle of super-resolution microscopy techniques.  

Left: STED microscopy. Middle: SIM. Right: Localization microscopy. Image from (Habuchi, 2014) 
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I.3.2. Comparison of STED, SIM and SMLM 

 STED microscopy can achieve resolution below 50 nm. Additionally, the image 

acquisition is relatively fast and the cost of post-processing computation is relatively low. 

However, the sample preparation is of moderate complexity. This is because STED relays on 

high-intensity lasers, limiting the choice of fluorophores to avoid the photobleaching. 

Additionally, the optical setups are complex because two laser beams should be perfectly 

aligned. SIM can provide resolution up to 100-150 nm. Its advantages are the easy sample 

preparation and the image acquisition is the fastest. SMLM stands out with the best resolution 

(20 nm or better). The trade-off is that it requires a longer acquisition time (often more than 30 

minutes) and involves more complex sample preparation and expensive computations for 

localization estimation (Habuchi, 2014; Schermelleh et al., 2019; Liu, Hoess and Ries, 2022).  

 Table 1 provides a comparison of these super-resolution microscopy techniques, 

highlighting their differences in terms of spatial and temporal resolution, as well as the 

complexity of sample preparation. 

Table 1. Comparison of STED, SIM and SMLM.  

In this table, red indicates the least favorable option, green represents the most favorable option, and 

yellow signifies a moderate option. 

 STED SIM SMLM 

Spatial resolution Below 50 nm 100-150 nm 20 nm or better 

Temporal resolution Moderate Fast Slow 

Sample preparation Moderate Easy Complex 

Computational post-

processing cost 

Low Moderate High 

Optical set-up Complex Moderate Easy 
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I.4. Single molecule localization 

microscopy (SMLM) 

As mentioned on page 15, among different super-resolution microscopy techniques, 

Single Molecule Localization Microscopy (SMLM) offers the highest spatial resolution (e.g., 

20 nm or better). It allows to resolve biological structures at or near the molecular scale, thus 

has become a powerful tool for studying cell biology.  

I.4.1. Principle of SMLM 

As illustrated in Figure 9, the SMLM relies on the principle that the spatial coordinates 

of individual fluorescent molecules can be accurately estimated if their PSFs do not overlap. 

To avoid this overlap, the emissions of fluorescent molecules are separated by time. This 

separation is typically achieved by the appearance and disappearance of PSFs. In practice, we 

need to sequentially acquire thousands of diffraction-limited image frames of the same field of 

view (FoV), ensuring that most fluorescent molecules are in the ON state in at least one frame 

of the acquisition sequence. These images are then computationally processed to detect all ON 

molecules and compute their coordinates by estimating the centroid position of each PSF. 

Finally, all the localizations are aggregated to construct a single, high-resolution image.  

Very often we acquire a widefield image at the beginning of the acquisition, which is a 

conventional diffraction-limited fluorescence microscopy image (Figure 9.f) 
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Figure 9. Principle of Single Molecule Localization Microscopy.  

(f) diffraction-limited image of the nuclear pores complex, with all fluorescent molecules switched ON. 

(g) Sequential diffraction limited images of the same field of view (FoV) as in (f), where only a few 

molecules are ON at the same time, while others are OFF. (h, i) In each frame, single molecules are 

computationally detected (h) and localized (i). (j) Localization table, where each row represents a 

distinct localization event and columns indicate x, y coordinates and additional information such as 

frame number and N. (k, l) The molecules are aggregated into a picture. E.g. a scatter plot (k), or 2D 

histogram (l). When we put all this information together, we get a 'super-resolution' image that lets us 

see the ring-like structure of nuclear pores. Image from (Lelek et al., 2021). 

I.4.2. Fluorophores for SMLM 

It exists different fluorophores to the appearance and disappearance of PSFs (Lelek et 

al., 2021): 

• Photoswitchable fluorophores 

Photoswitchable fluorophores, such as Alexa Fluor 647, Cy5 or Dronpa (Andresen et 

al., 2007), are molecules capable of undergoing transitions between “ON” and “OFF” 

states multiple times when exposed to specific wavelengths of light. This switching 
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between “ON” and “OFF” states occur in presence of an oxygen scavenger buffer 

solution (photoswitching buffer) that facilitates the photoswitching behavior of 

fluorescent molecules. 

• Photoactivatable fluorophores 

Photoactivatable fluorophores, such as PA-GFP (Photoactivatable Green Fluorescent 

Protein), PAmKate and PAmCherry (Lukyanov et al., 2005), are initially in the “OFF” 

state and can be switched to “ON “state either spontaneously or via  UV light. However, 

once in “ON” state, they generally cannot be switched back to the “OFF” state until the 

photobleaching.  

• Photoconvertible fluorophores 

Switched to the “ON” state, photoconvertible fluorophores can change their emission 

color to another when exposed to light of a specific wavelength. Some well-known 

photoconvertible are Eos and its derivatives, Dendra and mMaple, etc. (Lelek et al., 

2021).  

• Spontaneously blinking dyes 

Spontaneously blinking dyes can be switched between “ON” and “OFF” states without 

requiring a photoswitching buffer. These dyes include the silicon rhodamine dye 

HMSiR, HEtetTFER and FRD, etc. (Lelek et al., 2021). 

• Temporarily binding dyes 

Unlike the dyes mentioned above, that bind irreversibly to the molecules of interest, 

temporarily binding dyes spontaneously bind and unbind with the target molecules. 

When dyes are bound, PSFs appear, and when dyes are unbound, the PSFs disappear. 

Any organic dye (discussed on page 12) that exhibits sufficient fluorescence, such as 

Cy3B, can be used as temporarily binding dyes (Lelek et al., 2021).  

I.4.3. Different techniques of SMLM 

Depending on the dyes used, SMLM can be achieve using different techniques such as: 
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• Photo Activated Localization Microscopy (PALM) (Betzig et al., 2006) 

PALM uses photoactivatable or photoswitchable fluorescent proteins. At the beginning 

of the image acquisition, most fluorophores are in an “OFF” state, and a subset is 

photoactivated with a specific wavelength of light to emit fluorescence. Because PALM 

uses encoded fluorescent proteins, it is ideal for live-cell imaging. 

• Stochastic Optical Reconstruction Microscopy (STORM) and its variants (Rust, 

Bates and Zhuang, 2006; Heilemann et al., 2008) 

STORM and its variants, such as direct Stochastic Optical Reconstruction Microscopy 

(dSTORM), use photoactivatable or photoswitchable organic dyes instead of 

fluorescent proteins through suitable photoswitching buffers. STORM and related 

techniques achieve higher resolution than PALM, because organic dyes are generally 

both smaller and brighter than fluorescent proteins. 

• Points Accumulation In Nanoscale Topography (PAINT) (Sharonov and 

Hochstrasser, 2006) 

PAINT does not need photoswitching buffer, it capitalizes on the switching between 

free diffusion and immobilization binding of fluorophores to the target. DNA-PAINT 

(Schnitzbauer et al., 2017) is the most well-known variant of PAINT (Lelek et al., 

2021), where the transient immobilization is achieved by hybridization of DNA strands. 

The temporarily binding dyes described earlier are applied in PAINT-based methods. 

• Minimum Emission Fluxes (MINFLUX) (Balzarotti et al., 2017) 

MINFLUX merges the principles of localization microscopy, like PALM or STORM, 

using the depletion lasers as stimulated emission depletion (STED) microscopy (page 

13). This technique uses a donut-shaped excitation beam combined with a three-point 

estimator to determine the position of emitter accurately, as illustrated in Figure 10. 

 
Figure 10. MINFLUX excitation concept.  
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A doughnut-shaped excitation beam (green) is moved sequentially to four probing positions r0, r1, r2 

and r3 (colored circles; probing range L) near a single fluorophore (orange star). If the center of the 

doughnut perfectly aligns with the position of the fluorophore, no photons will be emitted. Image from 

(Sahl and Hell, 2019). 

I.4.4. Limitation of SMLM 

While SMLM has enabled researchers to achieve high resolutions imaging in 

microscopy, it still has its limitations. During SMLM acquisition, many thousands of 

diffraction-limited low resolution frames with exposure times of ~10-100ms are required to 

reconstruct a single high-resolution image. Consequently, although SMLM allows to visualize 

the biological structures at near nanoscale, image acquisition in SMLM is slow.  

Furthermore, the quality of the reconstructed images may be influenced by various 

factors such as noise due to limited number of collected photons per fluorophore, the potential 

overlapping PSFs and sample drift that occurs during the image acquisition. Additionally, 

SMLM can be limited by phototoxicity. Phototoxicity refers to the cellular damage that occurs 

when a biological sample is exposed to excitation light during imaging.  

I.4.5. Frustration pyramid for SMLM 

The limitation mentioned above often leads to 'frustration pyramid’. The frustration 

pyramid describes the trade-offs between spatial resolution, temporal resolution, the size of 

Field of View (FoV), signal-to-noise ratio (SNR) and phototoxicity in the context of SMLM. 

Balancing these components is crucial for high-quality SMLM imaging, especially in live cells. 

Figure 11 shows the frustration pyramid. For example, enhancing spatial resolution or 

SNR necessitates longer acquisition time, sacrificing the temporal resolution.  And in order to 

visualize larger FoV, either spatial or temporal resolution needs to be reduced. As for recovering 

the fast-cellular dynamics, we need to enhance the temporal resolution of SMLM. However, 

increasing temporal resolution leads to lower spatial resolution and SNR. Additionally, the 

phototoxicity increases when using higher intensity excitation light or longer exposure time. 
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Figure 11. Pyramid of frustration.  

Image from (Brameshuber et al., 2022) 

I.4.6. SMLM imaging in live cells 

Building on the trade-offs outlined above, SMLM imaging in live cells is challenging. 

These challenges are mainly due to the rapid cellular motion and relatively low temporal 

resolution of SMLM. The limited temporal resolution of SMLM makes it hard to collect enough 

localizations to provide a super-resolution snapshot before the biological structure rearranges. 

Additionally, the need for high laser (introduced on page 10) is problematic for live cells, 

because it leads to photobleaching and phototoxicity, especially when using UV activation 

(Shroff et al., 2008). As a result, SMLM imaging in live cells has mostly been limited to proofs 

of principle on relatively slow-moving structure (Shroff et al., 2008; Jones et al., 2011; Huang 

et al., 2013; Holden et al., 2014). 

There are other computational approaches for live-cell imaging: 

• Super-Resolution Radial Fluctuations (SRRF) method (Gustafsson et al., 2016) relies 

on the radial symmetry in each pixel of the image sequences during the acquisition. The 

radial symmetry of a pixel is high if the intensity value of a pixel and its neighbors lie 

along a circle. SRRF analyses the fluctuations in radial symmetry of each pixel over the 

entire acquisition. It then uses this information to assign the likelihood that each pixel 

belongs to a structure of interest. 

• Super-resolution Optical Fluctuation Imaging (SOFI) (Dertinger et al., 2009) relies 

on temporal fluctuations in fluorescence intensity at each pixel of the acquired image 

sequence during the fluorophore switched between “ON” and “OFF” states. SOFI 

computes higher-order correlation of these fluctuations, meaning the correlation 
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between the intensity in one pixel and another pixel across multiple time points. The 

information from these higher-order correlations is then used to reconstruct a new image 

with a high resolution.  

SRRF and SOFI allows the reconstruction of images in live cells. However, they 

generally provide lower spatial resolution compared to SMLM and the quality of the images 

depends on SNR of the original sequences. 

In response to these challenges, deep learning (page 23) has become a promising 

approach for enhancing the temporal resolution of SMLM imaging (Möckl, Roy and Moerner, 

2020), which will be discussed in the next section. 
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I.5. Deep learning  

Deep learning is a subset of artificial intelligence (AI), and it has revolutionized various 

fields, such as computer vision, natural language processing, speech recognition and robotics. 

Deep learning focuses on the use of artificial neural networks to learn representations of data 

with multiple levels of abstraction (LeCun, Bengio and Hinton, 2015).  

I.5.1. Structure of neural networks 

Artificial neural networks, inspired by the structure and function of the human brain, are 

made up of connected neurons (McCulloch and Pitts, 1943). These neurons, when properly 

trained with a large amount of data, can learn to approximate complex non-linear 

representations within the data. 

Neurons are the fundamental building block of artificial neural networks. A neuron 

consists of three main components: inputs, an activation function and an output. The Output 

(𝑦) is the result of applying the activation function (𝑓) to the weighted (	𝑤0,2,…4) sum of N 

inputs (𝑥0,2,…4) (Figure 12): 

𝑦 = 𝑓 𝑧 	

𝑧 = 𝑤7𝑥7 + 𝑏

4

7:0

 

Where b is the bias. Various activation functions can be used in artificial neurons, such 

as the sigmoid (𝑦 = 𝑆 𝑧 =
0

0;<=>
), hyperbolic tangent (tanh: 𝑦 =

<?>@0

<?>;0
), and rectified linear 

unit (ReLU 𝑦 = 𝑚𝑎𝑥(0, 𝑦)) functions. The output can serve as input to other neurons in a 

network.  
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Figure 12. Operation of a single artificial neuron.  

This figure illustrates the operation of a neuron (middle). The Output (𝑦) is the result of applying the 

activation function to the weighted (𝑤0,2,…4) sum of N inputs (𝑥0,2,…4). Image from (Krenn et al., 2023) 

A neural network is structured into layers, with each layer containing a number of 

neurons. The neurons in one layer are connected to the neurons in the subsequent layer. Overall 

there are three types of layer: the input layer, hidden layers and the output layer.  

Consider an example of image classification, where we aim to train a deep learning 

network to distinguish between image of cats and dogs:  

• The input layer receives the input of neural network, which could be the pixel values of 

the image.  

• The output layer produces the final output of the network, which in this case is two 

classes: cat (output = 0) and dog (output = 1). 

• Hidden layers are the layers between the input and output layers. The neurons in these 

layers transfer features, such as edges and shapes, from the input layer to the output 

layer. The term “deep” in deep learning refers to the depth of neural networks, 

representing by the number of hidden layers 

Three different types of layers are convolutional layer, pooling layers and fully 

connected layers: 

Convolutional layers consist in sliding a small window (also known as filter or kernel) across 

the image. Each convolution operation yields a 2D feature map, also known as a feature map 

(also known as channel). Mathematically, the convolution is defined as a sum of the 

elementwise multiplication of the kernel values and the input values (Figure 13). The number 

of filters in a convolutional layer determines the number of feature maps in the output of the 

layer. 
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Figure 13. Convolution operation.  

A 3X3 pixel kernel applied on input image, resulting in convoluted feature. Image from (Mandal, 2021) 

• Pooling layers down-sample the spatial dimensions of the input, thereby reducing the 

computational cost and enhancing the network's translation invariance. This means that 

the network can extract features from an image irrespective of their positions. Figure 

14 illustrates the two different types of pooling layers: max pooling and average pooling.  

 
Figure 14. Pooling layer.  

The max pooling (above) computes the maximum pixel value within a region of the image, defined by 

the size of the kernel. And the average pooling (below) calculates the mean pixel value within the region. 

Image from (Mandal, 2021). 

• Fully connected layers connect each neuron in one layer to every neuron in another 

layer. They are generally utilized in the final stages of the network for classification 

tasks (Figure 15). 
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Figure 15. Illustration of a typical CNN for classification task.  

The network is composed of convolution layers, pooling layers and fully connected layers. The output 

layer computes the classes of images. Image from (Phung and Rhee, 2019). 

I.5.2. Parameters 

Parameters of deep learning is learned through training phase so that the models make 

accurate predictions. These include weights and biases of neurons in neural networks (page 23), 

filters in Convolutional Neural Networks (page 25) and gate values in Recurrent Neural 

Networks (page 36). 

I.5.3. Training 

Deep learning models are computer programs that are trained to recognize patterns in 

data or make predictions (Machine Learning Models: What They Are and How to Build Them, 

2023). In the training process of a deep learning model 

In the training process of a deep learning model, the algorithm performs a sequence of 

computational steps to refine its parameters. This process begins with forward propagation, 

where data is fed into the input layer and passed through each layer of the network until an 

output is produced at the output layer.  

Next, a loss function, also known as cost or objective function, quantifies the difference 

between the network's predictions and the ground truth, particularly in the context of supervised 

learning (Goodfellow, Bengio and Courville, 2016) (page 28).  

After computing the loss function and its gradient according to the parameters of the 

neural network, the model undergoes gradient backpropagation to adjust it’s the parameters. 
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These gradients indicate the contribution of each neuron on the loss function. Based on these 

computed gradients, the parameters are then adjusted such that the loss function is minimized. 

The loss minimization leverages gradient-based optimization techniques, such as stochastic 

gradient descent, to iteratively update the model parameters (Rumelhart, Hinton and Williams, 

1986).  

Iteratively though forward propagation and backpropagation, the deep learning model 

progressively improves accuracy of the predictions, effectively learning from the training data. 

I.5.4 Validation and test phases 

During the validation phase, we evaluate the model’s prediction on unseen validation 

data (page 27). When model overfits, its performance decrease. Monitoring the model's 

performance on the validation data allows to stop the training when the validation performance 

starts to degrade, thus preventing overfitting. 

The test phase evaluates the performance of trained model on completely new data, after 

all tuning and training processes are complete. This involves in performing the trained model 

on real-world data. 

I.5.5. Data partition  

The data is the core of deep learning, however, simply having data is insufficient. 

Effective data partition ensures that the deep learning models generalize effectively to new, 

unseen data. This section introduces the data partition in deep learning: 

• Training data 

Training data is used to train the deep learning model, during the training phase (page 

26). The insufficient training data may lead to underfitting, meaning the model fails to 

learn the underling representation of the data (page 29).  

• Validation data 

In general, we split the data into training and validation data, however, the validation 

data is not used during the training. The loss function computed from the validation data 
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can determinate weather the model overfits. The overfitting is when a model fails to 

predict unseen data (page 29). 

• Testing data 

After training and validation, the testing data offers assessment of the model's 

performance, reflecting whether the model can be generalized to unseen data.  

• Cross-validation 

Cross-validation is used to 

 ensure that the model's performance doesn't depend on the data partition. In practice, 

the original training data is partitioned into multiple subsets. The model is trained and 

validated for multiple times, each time using a different subset as the validation data 

and the remaining subsets as the training data. The model performance is averaged over 

the cross-validation. 

I.5.6. Different learning paradigms 

Deep learning models are trained using either labeled, unlabeled, or mixed data. Based 

on the data, deep learning has four different learning paradigms: supervised learning, 

unsupervised learning, semi-supervised learning and reinforcement learning (Chollet, 2018): 

• Supervised learning 

When the input of training data is paired with the correct output (also known as ground 

truth), we apply supervised learning. Model is trained on this labelled data to learn to 

predict on new, unseen labeled data. This paradigm is commonly applied in various 

deep learning applications, including image classification(Simonyan and Zisserman, 

2015; Krizhevsky, Sutskever and Hinton, 2017), language translation (Sutskever, 

Vinyals and Le, 2014; Vaswani et al., 2017), and optical character recognition(Kim, 

2014). 

• Unsupervised learning: 
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Model is trained on an unlabeled dataset, meaning that the ground truth is not provided 

during training. Because the output variables are unavailable, unsupervised learning 

focuses on extracting meaningful patterns from the input data. Unsupervised learning 

can be used for data visualization (Maaten and Hinton, 2008), data denoising by learning 

the properties of the noise (Krull, Buchholz and Jug, 2019; Sheth et al., 2021), and 

clustering(Xie, Girshick and Farhadi, 2016). 

• Self-supervised learning 

Self-supervised learning combines both labelled and unlabeled data for training, the 

labels are often automatically generated from the input data itself (X. Chen et al., 2023). 

Similarly, using future input data as a target is also considered self-supervised learning, 

such as using past frames to predict the next frame in a video  (Sermanet et al., 2018).   

• Reinforcement learning 

In reinforcement learning, an “agent” interacts with its environment to maximize 

rewards or minimize penalties based on the actions it takes. For example, it can be 

applied to play Atari games (Mnih et al., 2013) or to compete in the game of Go at the 

highest level (Silver et al., 2017). 

I.5.7. Challenges of deep learning 

Despite considerable progress in the field of deep learning, it also faces several 

challenges, such as: 

• Underfitting 

Underfitting occurs when models fail to capture the patterns of the training data. The 

output quality of model is not in good agreement with the ground truth during the 

training and validation phase (Goodfellow, Bengio and Courville, 2016). 

• Overfitting 
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Overfitting occurs when a model captures not only the patterns of the training but also 

its noise. The model performs well on training data, but not on validation or testing data 

(Goodfellow, Bengio and Courville, 2016). 

• Model mismatch 

The model mismatch is when deep learning models exhibit artifacts when testing them 

on data that diverges from the training distribution (Recht et al., 2018).  
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I.6. Deep learning for computer vision 

Given that this thesis focuses on the application of deep learning to SMLM images, this 

section is dedicated to introducing various deep learning models specifically designed for 

computer vision tasks. 

Computer vision is one of the applications of AI, it allows interpreting and 

understanding visual information form of images or videos. The goal of computer vision is to 

replicate and even surpass the human visual system's capabilities. Computer vision has wide-

ranging applications that we enumerate in the following section. 

I.6.1. Different applications of computer vision  

Computer vision tasks include: 

• Image classification: assigning a label to an image based on its content (Boland and 

Murphy, 2001; He et al., 2016; Krizhevsky, Sutskever and Hinton, 2017). 

• Object detection: locating and identifying objects within an image (Redmon et al., 2016; 

Ren et al., 2016; Cheng et al., 2018). 

• Image segmentation: assigning a class label to each pixel on an image (Ronneberger, 

Fischer and Brox, 2015; Chen et al., 2018).  

• Image generation: generating new images that similar to a given dataset (Goodfellow et 

al., 2014). 

• Image translation: transforming an image from one domain to another (Ledig et al., 

2017; Karras, Laine and Aila, 2019) 

• Image restoration: Image denoising (Zhang et al., 2017; Krull, Buchholz and Jug, 2019) 

or image deconvolution (Xu et al., 2014). 

I.6.2. Convolutional Neuron Networks (CNNs) 

Convolutional Neural Networks (CNNs) are one category of the deep learning models 

that are widely used for computer vision tasks. The convolution operation allows CNNs to 

automatically and adaptively learn spatial hierarchies of features, like edges, corners, textures, 
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or more complex structures depending on the depth of the layer in the network (Lecun et al., 

1998).  

I.6.3. U-net 

U-Net is a CNNs-based architecture that was initially designed for biomedical image 

segmentation. It is designed to process images in a way that learns both fine details and larger 

contextual information. The Figure 16 illustrated the results of cell segmentation using U-net 

architecture. 

 
Figure 16. Result of U-net segmentation (Ronneberger, Fischer and Brox, 2015).  

(a) input image. (b) Segmentation result (cyan mask) with manual ground truth (yellow border). Image 

from (Ronneberger, Fischer and Brox, 2015). 

The architecture resembles the letter ‘U’ and comprises of two parts: the encoder path 

and the decoder path (Figure 17). The encoder path has a series of convolutional layers 

followed by a ReLU activation function and max-pooling layers. As we move deeper into the 

encoder path, the spatial dimensions of the feature maps decrease, and the number of channels 

increases. The decoder path mirrors the encoder path in reverse. It consists of a series of up-

sampling operations followed by convolutional layers. Additionally, at each level of the 

encoder path, the feature maps from the same level of the decoder path are concatenated, named 

as skip connections. These skip connections allows the network to preserve fine details in the 

output (Ronneberger, Fischer and Brox, 2015). 
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Figure 17. U-net architecture.  

Blue boxes are the multi-channel feature map whose number of channels is denoted on top of the box. 

The x-y-size is provided at the lower left edge of the box. White boxes are concatenated feature maps. 

The arrows denote the different operations. Image from (Ronneberger, Fischer and Brox, 2015). 

I.6.4. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) is an unsupervised deep learning model for 

generating data. GANs are made of two neural networks, a generator and a discriminator, that 

are trained against one another through an adversarial process. The generator is trained to 

generate data from random noise. It does this by gradually improving its ability to generate fake 

data (that look real to fool the discriminator) based on feedback from the discriminator. The 

discriminator is trained to distinguish between real data and fake data generated by the generator 

and compute a probability that the data is real. The discriminator is trained to correctly classify 

real and fake data, while the generator is trained to produce data that the discriminator cannot 

classify as real (Figure 18). 
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Figure 18. GAN model structure.  

Image from (Caper, 2022) 

Mathematically, the training process can be described by: 

𝑚𝑖𝑛F𝑚𝑎𝑥G𝑉 𝐷, 𝐺 = 𝔼L~NOPOP Q
𝑙𝑜𝑔𝐷 𝑥 + 𝔼U~N> > log 1 − 𝐷 𝐺 𝑧  

 

Where D(x) is the discriminator’s probability estimation of a real data x to be real, G(z) 

is the data generated by the generator given a noise vector z, D(G(z)) is the discriminator's 

probability estimation of a fake data to be real (Goodfellow et al., 2014).  

I.6.5. Pix2Pix 

Pix2Pix is a Conditional Generative Adversarial Network (cGAN). Unlike GAN, it is a 

supervised learning model. In pix2pix, the generator is conditioned on the input image to 

generate a corresponding image close to the ground truth. The discriminator is conditioned on 

the same input image and trained to distinguish real images and fake images generated by the 

generator. Pix2Pix can perform image-to-image translation, where the input image serves as a 

guide for the image generation in a controlled manner (Isola et al., 2018). 

As shown in Figure 19, the model is trained to predict the photo from the hand-drawing 

edges. The generator and discriminator are trained against each other and both are conditioned 

on the input image, which is the edges.  
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Figure 19. Conditional GAN.  

Model is trained to predict realistic photo from the edges. Both generator and discriminator are 

conditioned with the input image (edges). Image from (Isola et al., 2018). 

 

I.6.6. Exploiting the temporal information  

As mentioned on page 21, SMLM’s temporal resolution limits its applications for 

cellular dynamic studies. In order to enhance temporal resolution, in this thesis, we will benefit 

from deep learning based methods. Several deep learning architectures have been specifically 

designed to handle temporal information for computer vision tasks: 

3D Convolutional Neural Networks (3D CNNs): 

3D CNN is an extension of traditional 2D CNN (discussed on page 31). By adding the 

temporal information as the third dimension, the model can learn spatiotemporal features (Tran 

et al., 2015). Like 2D CNN, the translation invariance of 3D CNN allows it to capture the 

patterns in both spatial and temporal dimensions. 

Recurrent Neural Networks (RNNs):  

RNNs use sequential data. In an RNN, the output from a previous step is fed into the 

network as input for the next step, allowing the network to maintain the information from the 

past. The simplest form of RNNS, called vanilla RNN, is composed of input layers, recurrent 

(or repeating) layers and the output layers, as illustrated in Figure 20. However, for vanilla 

RNN, it is challenging to handle long sequences due to the vanishing and exploding gradient 

(Rumelhart, Hinton and Williams, 1986). For example, when the sequential length is large (e.g. 

ℎ\	𝑎𝑛𝑑	ℎ]), the capacity of handling the information diminishes.  
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Figure 20. Illustration of a vanilla RNN.  

The upper panel shows the vanilla RNN structure, where 𝑋] is the input layer, ℎ] is the output layer. 

The block A is the recurring module that allows to pass the sequential data from one step to the next 

step. The lower panel shows in details how this repeating module works. The output from the previous 

step is copied and concatenated with the input, then this concatenated information is fed into the network 

as the input for the next step. Images from (Understanding LSTM Networks -- colah’s blog, no date). 

Long Short-Term Memory (LSTM)  

LSTMs are a variant of RNNs. Compared to the vanilla RNN, which has one layer for 

each recurrent layer, the LSTM has four as depicted in Figure 21.  

 

 
Figure 21. The recurrent module of LSTM networks.  

Image from (Understanding LSTM Networks -- colah’s blog, no date). 
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As shown in Figure 21, the horizontal bar on the top of the diagram is cell state, it allows 

the information passing through the network during the training. While the gates (yellow 

blocks) update or remove the information from the cell state.  

Frist, the output from the previous step is concatenated with the current input and serve 

as input for the recurrent module. This new input passes through a sigmoid layer called the 

“forget gate”. The output of this layer is ranged between 0 (completely forget this information 

from cell state) and 1 (completely remember this information).  

Then, another sigmoid layer called the “input gate” computes which values of the input 

will be updated to the cell state. Then a tanh layer scales the input value between -1 and 1 and 

this will be multiplied by the output of the input gate. The output of this step will be added on 

the cell state.  

Finally, we apply a sigmoid layer which decides what information of the cell state will 

serve as output. Then, we apply the tanh layer on cell state and multiply it by the output of the 

sigmoid gate (called output gate). 

Thus, LSTMs allow to forget or update the information through the training process, 

they can better handle the data with long sequence (Hochreiter and Schmidhuber, 1997). 

Vision transformer for videos:  

The Transformer (Vaswani et al., 2017) was initially introduced for natural language 

processing. Unlike RNNs relying on recurrent layers to process sequential data, Transformers 

utilize attention mechanisms to handle dependencies between input and output. 

Before feeding the input into the Transformers, we pre-process the input data into a set 

of elements (tokens), this process is called tokenization. Then these tokens are mapped to fixed-

size continuous vectors using word embedding. In order to provide the information about the 

order and position of tokens in the sequence, positional encoding is added to the embedding 

vectors. 

 Taking an example of the processing of “Hello, world.”. This sequence could first be 

tokenized to tokens [“Hello”, “world”], and mapped to continuous vectors: for example, 

“Hello”: [0.1, 0.3, 0.2] and “world”: [0.5, 0.1, 0.7], and the position encoding for these tokens 
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could be [0.0, 0.0, 0.1] and [0.0, 0.0, 0.2] respectively. Thus, the input will be [0.1, 0.3, 0.2] + 

[0.0, 0.0, 0.1] = [0.1, 0.3, 0.3] for “Hello” and [0.5, 0.1, 0.7] + [0.0, 0.0, 0.2] = [0.5, 0.1, 0.9] 

for “world”. 

The fundamental concept of the Transformers is the attention mechanism, which is 

composed of key (K), value (V) and query (Q). Taking an example of searching for a website 

on Google. When we search (query) for a website, the Google search engine will map the query 

against the information (keys) associated with websites. Then the algorithm will list the 

websites (values) according to the relevance. In practice, the K, Q, and V are three copies of 

the input data. The attention mechanism denoted as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾d

𝑑e
𝑉 

where 𝑑e is the dimension of Q and K. Attention is computed by weighted values (V). 

The weights are calculated by the dot products of the query (Q) with all keys (K), scaled by 

𝑑e, and apply a softmax function. As illustrated in left panel of  Figure 22, the Q, K and V 

are computed by multiplying with weight matrices 𝑊g, 𝑊h and 𝑊i respectively. The output of 

such attention mechanism is called one “head”. Instead of single attention, the original paper 

used “multi-head attention” mechanism by concatenating h different attention outputs. This 

multiple attention is achieved by operating different weight matrices. The output of the multi-

head attention is then projected back into the original dimensions (Figure 22 right panel). 

 
Figure 22. Scaled Dot-Product Attention (left). Multi-Head Attention (right).  

Image from (Vaswani et al., 2017). 

Scaled Dot-Product Attention Multi-Head Attention
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The Figure 23 represents the architecture of the Transformer, which is overall an 

encoder-decoder structure. The encoder has N layers, and each of them has multi-head attention 

layer followed by layer normalization and feed-forward neural network (composed by point-

wise, fully connected layers) followed by layer normalization.  Similar to the encoder, the 

decoder has also N identical layers. Each layer of the decoder inserts a multi-head attention 

mechanism taking the output of the encoder as input. During the training, the parameters are 

updated over iterations. The parameters consist of the linear projects in the multi-head attention, 

the parameters of the feed-forward networks and layer normalization.  

 
Figure 23. The architecture of Transformer.  

Image from (Vaswani et al., 2017). 

Transformer models has been adapted for video analysis tasks. The videos are embedded 

into a sequence of token as the input of models. And the self-attention mechanisms allow to 

capture dependencies in the temporal dimension (Arnab et al., 2021; Liu, Ning, et al., 2021). 
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I.7. Deep learning-assisted Microscopy 

Several deep learning algorithms have been employed to microscopy techniques: 

I.7.1. Deep learning for SMLM localization 

Deep-STORM  

Deep-STORM is a model developed to reconstruct super-resolved images from low-

resolution diffraction-limited images. 

Deep-STROM is a fully convolutional encoder-decoder network. The encoder is 

composed of three 3×3 convolutional layers followed with 2×2 max-pooling layer. The decoder 

is composed of three deconvolution layers, each layer has 2 × 2 upsampling followed with 3×3 

convolutional layer (Figure 24) (Nehme et al., 2018). 

 
Figure 24. Deep-STORM convolutional architecture.  

Deep-STORM is trained to generate super-resolved images from diffraction-limited images of blinking 

emitters during the SMLM acquisition. Image adapted from (Nehme et al., 2018). 

Deep-STORM is faster than traditional localization methods, even when emitters are 

overlapped, the method exhibits good performance. Deep-STORM is robustness to changes in 

emitter density and SNR of the input data. However, it does not output a list of localization 

coordinates like traditional localization methods, this may limit its applications. 

DeepLoco  

DeepLoco is trained to compute the 2D and 3D localizations from single frame of low-

resolution image. 
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The DeepLoco model is composed of three parts: 1) A fully convolutional network that 

alternates between convolutions and spatial down-sampling three times. 2) A two-layer fully-

connected ResNet that uses skip connections to bypass one or more layers during the forward 

and backward passes (He et al., 2016). 3) Two linear layers that output K sources, where K is 

larger than the number of real sources. One linear layer outputs the weights, while another 

linear layer outputs the predicted spatial locations (Figure 25) (Boyd et al., 2018).  

 

Figure 25. DeepLoco architecture.  

The first two convolutions use 5 x 5 kernels and the other convolutions use 3 x 3 kernels. Image 

from(Boyd et al., 2018). 

Authors compared DeepLoco to the baseline methods which are the winners of 2D and 

3D localization challenges. DeepLoco is orders of magnitude faster than existing approaches, 

while achieving comparable accuracy. However, compared to Deep-storm, the DeepLoco 

architecture is more complex, thus the computational cost is higher.  

DECODE  

DECODE is trained to localize single emitters at high density in three dimensions with 

high accuracy. The output represents for each pixel the probability of detecting an emitter and 

the emitter’s spatial coordinates, brightness, the uncertainty of those predictions, and an 

optional background map (Speiser et al., 2021). DECODE consists of two stacked U-nets, three 
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consecutive SMLM frames fed into first frame analysis U-net, and the outputs are concatenated 

and fed into the second temporal context U-net (Figure 26).  

 
Figure 26. DECODE architecture.  

The DECODE (left) is trained to localize single emitters from multiple frames of SMLM acquisition 

(right). Image from (Speiser et al., 2021). 

DECODE performs simultaneous detection and localization of emitters, outperforming 

other algorithms in a publicly available benchmark. It enhances both localization and detection 

accuracy and outputs emitter coordinates and their uncertainties. The uncertainty estimation is 

unique feature compared to DeepLoco and Deep-storm for super-resolution image 

reconstruction and for SMLM data analysis. DECODE's performance on images of emitters of 

dense data can substantially boost localization density or reduce imaging times. 

I.7.2. Deep learning for microscopy image reconstruction 

enhancement 

U-net based microscopy image enhancement 

CARE (Content-Aware Image Restoration) 

CARE (Weigert et al., 2018) is a residual version of U-net architecture, aiming to restore 

image in fluorescence microscopy. CARE offers enhancements of image restoration for 

different microscopy imaging applications. Additionally, CARE computes the uncertainty 

estimation that provides insights into the reliability of the restored images. However, CARE 

cannot be applied to all image restoration problems. For instance, the intensity-based 

quantifications using care may might produce inaccurate or misleading results due to the 

nonlinear nature of the networks (Weigert et al., 2018). 

U-net-based method for SIM 

σ σ σ σ
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Traditional SIM (page 13) acquires either 9 or 15 images to generate super-resolution. 

Another U-net-based deep learning method was developed by (Jin et al., 2020) to reconstruct 

SIM images with fewer images. The u-Nets achieved results comparable to conventional SIM 

with fewer images. Their methods were demonstrated on live-cell super-resolution imaging 

with reduced photobleaching. 

ANNA-PALM  

ANNA-PALM stands for Artificial Neural Network Accelerated PhotoActivated 

Localization Microscopy. It aims to reconstruct super-resolved SMLM images from faster 

acquisition than conventional SMLM reconstruction. ANNA-PALM is inspired by Pix2Pix (as 

discussed on page 34). As illustrated in Figure 27, the training data consists of input: sparse 

SMLM images (generated from fewer low-resolution frames), and ground truth: dense SMLM 

images (high quality SMLM images with long acquisition times). The widefield diffraction-

limited images, usually taken at the beginning of the SMLM image acquisition, can be served 

as input. The wide-filed image provides complementary information, allows better 

reconstruction quality.  This has enabled, for example, to reduce the acquisition time of 

microtubules by a factor of up to 100, allowing to generate high-quality super-resolved images 

in few seconds of acquisition time only (Ouyang et al., 2018).  

However, the original ANNA-PALM method and its demonstration faced several 

limitations. First, ANNA-PALM had only been tested on images of limited diversity from a 

single laboratory. Second, the method is prone to exhibiting artifacts when applied to images 

obtained using different experimental conditions or protocols than the training data. Third, 

ANNA-PALM had only been demonstrated on fixed-cells and initial results on live cell images 

were unsatisfying. Because original ANNA-PALM is a 2D U-net-based cGAN, it cannot use 

the temporal information of the SMLM acquisition. 
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Figure 27. Simplified schematic of the ANNA-PALM training strategy.  

A standard SMLM image is generated from a large number of low resolution image frames (LR, frames 

1 to 60,000). This SMLM image defines the ground truth for training ANNA-PALM. Localizations 

computed from a smaller number of low resolution frames (here, 300), along with the corresponding 

widefield image (if available), are fed as input to ANNA-PALM. The loss function measures the 

consistency of the output image with the ground truth and the consistency of the generated output image 

with the widefield image (if available). Images adapted from (Ouyang et al., 2018). 

Deep CNN 

(Kumar Gaire et al., 2020) developed a deep CNN with ResNet framework, allows 

reconstructing high-density multicolor super-resolution images from low-density, 

contaminated multicolor spectroscopic SMLM (sSMLM) images with much fewer frames. 

sSMLM extracts the spatial locations and the corresponding spectral information of single-

molecule blinking events (Zhang et al., 2015). Using the deep CNN, the study was able to 

reconstruct two-color and three-color imaging  

DBlink  

DBlink is a model to reconstruct super-resolved video from low-resolution frames of 

SMLM data acquisition (Saguy et al., 2023). As shown in Figure 28, DBlink is a hybrid deep 

learning architecture that combines CNNs and bi-directional LSTM networks. The bi-

directional LSTM networks consist of two passes: the forward pass (green arrows) and the 

backward pass (red arrows), in which the information passes through frame by frame. The 

output frames of those passes are fed into a CNN as two input channels, and the CNN outputs 

the super-resolved video. 
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Figure 28. Architecture of DBlink.  

The super-resolved localization maps are computed by Deep-STORM from low-resolution frames 

containing stochastic blinking events. The localization maps serve as input to a CNN-LSTM network. 

The output is super-resolution video reconstruction of the structure. Scale bar, 2.5 µm. Image from 

(Saguy et al., 2023). 

  

DBlink enables the reconstruction of super-resolved movies from the localization maps 

of single molecules in an SMLM experiment, thereby allowing the recovery of nanoscale 

structures in live cells. As highlighted on page 36, the strength of LSTM is its capability to 

process sequential data. Nevertheless, capturing spatial features within a sequence is more 

challenging for LSTMs compared to CNNs, as discussed on page 31. To address this limitation, 

the DBlink model integrates CNNs. However, while CNNs extracts spatial information, they 

might compromise or dilute the temporal information processed by the LSTMs. An additional 

consideration is that since DBlink's training data generated from simulations, the quality of the 

model's reconstructions is dependent on how closely the simulated training data aligns with 

real-world experimental data. 
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I.8. Objectives of my thesis 

As introduced on page 43, ANNA-PALM allows to reconstruct high-quality super-

resolved images from much fewer low-resolution frames. However, the original ANNA-PALM 

method faced several limitations. First, ANNA-PALM had only been tested on 7 images from 

our laboratory. Second, the method exhibits artifacts when applied to images obtained using 

different experimental conditions or protocols than the training data. Third, ANNA-PALM had 

only been demonstrated on fixed cells. 

The objectives of my Ph.D. thesis are to address these limitations by: 1) improving the 

robustness of ANNA-PALM reconstructions when applied to data obtained from distinct 

laboratories, and 2) extending ANNA-PALM to reconstruct super-resolved time-lapse image 

sequences for dynamic biological structures in live cells. The results of my research will be 

detailed in the next section. 
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II. Results 

 

  



 

 

48 

  



 

 

49 

II.1. ShareLoc platform 
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II.1.1. Background 

As previously mentioned on page 16, the super-resolved SMLM image is generated 

from molecule coordinates using many thousands of raw low-resolution images. Consequently, 

the size of SMLM data often amounts to several gigabytes. This makes the SMLM data sharing 

challenging, either for raw data or molecule coordinates. While the SMLM technique is widely 

used for biological research (Lelek et al., 2021), SMLM datasets are not usually publicly 

accessible. Numerous repositories, such as Figshare (http://figshare.com/http://figshare.com), 

Zenodo (http://zenodo.org), or IDR (Williams et al., 2017), have been developed for sharing 

biological data. However, they are not specifically for gathering, visualizing and exploiting 

SMLM data. To address this, Wei Ouyang developed ShareLoc, an online platform 

(shareloc.xyz) dedicated to the collection and reuse of SMLM datasets acquired by the 

microscopy community.  

II.1.2. Summary of methods and results 

The FAIR principle stands for Findable, Accessible, Interoperable, and Reusable 

(Wilkinson et al., 2016), emphasizes the efficient and effective reuse of the data. Data sharing 

based on this principle can enhance collaborative endeavors both within the community and 

across disciplinary boundaries.  

ShareLoc platform ensures the FAIR principle in several ways:  

Zenodo repository 

ShareLoc is backed by Zenodo a data repository developed under the European 

OpenAIRE program and operated by CERN (the European Organization for Nuclear Research). 

With a Zenodo login, users can upload and store SMLM data (localizations and/or raw images) 

via the ShareLoc platform. When users upload data to the platform, a DOI (Digital Object 

Identifier) is automatically generated.  

SMLM data uploading 

During the uploading, the platform the platform features an auto-completion tagging 

system and allows for metadata assignment to SMLM data. Users also have the option to cite 
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relevant papers, further promoting transparency and context for data analysis. A ShareLoc 

administrator will review and approval the uploaded data, which will be displayed on the 

ShareLoc website. Once approved, the data becomes publically available for download, 

visualization, export, and reanalysis. 

*.smlm format 

Depending on the algorithms used for molecule localization, the format for SMLM 

localization data varies. To standardize the format and reduce the file size for faster 

transmission and loading times, Wei Ouyang introduced a lossless compressed file format with 

the *.smlm extension (Supplementary Note 1 on page 61). This format can store arbitrary 

metadata and can is adaptable for 3D or multicolor SMLM data. Users have the option to 

convert their data to the *.smlm format during both upload and download. 

Data annotation 

Data annotation establishes a link between the image content and biological 

information, such as the target protein, cell line, and experimental conditions (e.g., drug 

treatment). This could include technical parameters like the fixation protocol, resolution, and 

laser excitation, ensuring the reproducibility of SMLM data. Therefore, annotating the data is 

important for data sharing. To facilitate rapid data annotation, ShareLoc platform leverages an 

auto completion tagging system (Supplementary Note 2 on page 64).  

EMBL-EBI ontology lookup service 

ShareLoc's tagging system is built upon the EMBL-EBI ontology lookup service 

(https://www.ebi.ac.uk/ols/index) (Jupp et al., no date). The ontology for the SMLM data 

annotation represents vocabularies within the SMLM domain, and the hierarchy relationships 

between them. For instance, as illustrated in Figure 29, the nucleoporin Nup133 is part of the 

nuclear pore. Additionally, as depicted in Figure 30, the nuclear pore is part of nucleus which 

is a cellular component.  
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Figure 29. Illustration of ontology of nucleoporin "Nup133" 

This figure illustrates the ontology of nucleoporin "Nup133". On the second column, we can see the 

Nup133 is part of nuclear pore. Image from (QuickGO::Annotation List, no date). 

 
Figure 30. Chart of hierarchy relationship for "nuclear pore" 

This figure illustrates the hierarchy of “nuclear pore” with other vocabularies. The bottom box is nuclear 

pore, the flashes represent different relationships between “nuclear pore” and other structures. Image 

from (QuickGO::Term GO:0005643, no date). 
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In addition to existing ontologies related to biological structures (such as cell lines 

U2OS and U373, biological structures including microtubules, mitochondria and nuclear-pore) 

and the SMLM experimental conditions (like fixation solutions such as glyoxal and methanol), 

I developed a specialized ShareLoc ontology. The ShareLoc ontology serves as a 

supplementary resource, as illustrated in Figure 31. This ontology is automatically generated 

and can be updated through continuous integration (CI) on GitHub. The CI process permits the 

frequent integration of code that generates the ontology, thus allowing ShareLoc users to 

dynamically add tags as needed (Supplementary Note 2 on page 64). 

 
Figure 31. Screenshot of ShareLoc ontology on EMBL-EBI ontology lookup service website.  

Image taken from: (ShareLoc, no date). 

 

SMLM image visualization 

For quick and fluid visualization of SMLM localizations, ShareLoc features a browser-

based viewer based on ‘potree’. Potree is a method Potree is a technique capable of managing 

billions of localizations in a 3D point-cloud representation, offering features like zooming, 

panning, and rotation (Schutz, Krosl and Wimmer, 2019). This viewer requires no installations 

or updates and is compatible with all operating systems, including mobile devices (Figure 1c 

on page 58). 

ShareLoc allows users to share SMLM data through a link, via e-mail or Twitter. The 

platform currently contains a large collection of SMLM data, comprising more than 1.5 billion 

localizations from more than 11 million raw images across 270 fields of view. The collection 
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includes images of microtubules, actin filaments, nuclear pores, clathrin-coated pits and 

mitochondria (Supplementary Fig. 2 on page 67). We believe that ShareLoc can helps to 

accelerate the development of new analytical methods for SMLM and the reduce the redundant 

SMLM data acquired by the community for new biological information, ensuring 

reproducibility in SMLM imaging research and broadening its applications in life sciences.  

The published paper detailing these results will be provided below and perspectives of 

ShareLoc platform will be discussed on page 137. 

II.1.3. Contribution  

I contributed by testing and validating the functionalities of the ShareLoc platform, 

including uploading and downloading the SMLM localization data, drafting associated 

metadata, developing ShareLoc ontology and reporting bugs. Further, I wrote relevant 

documentation and made tutorial videos (available at: 

https://www.youtube.com/watch?v=tFaEXWmv01g&list=PLYwa6cS54RkkyS17FoaZcrX-

awRkqp6q5).  
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Article 1 (published): Ouyang, W.*, Bai, J.*, Singh, M.K., Leterrier, C., Barthelemy, P., 

Barnett, S.F.H., Klein, T., Sauer, M., Kanchanawong, P., Bourg, N., Cohen, M.M., Lelandais, 

B., Zimmer, C., 2022. ShareLoc — an open platform for sharing localization microscopy data. 

Nat Methods 19, 1331–1333. https://doi.org/10.1038/s41592-022-01659-0 (* equal 

contribution) 
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ShareLoc — an open platform for sharing 
localization microscopy data

S
i n g l e - m o l e c u l e  l o c a l i z a t i o n 

microscopy (SMLM) has matured 

into one of the most widely used 

super-resolution imaging meth-

ods and has been used to address 

a broad spectrum of biological research 

questions1. This success has inspired the 

community to develop numerous compu-

tational techniques to extract localizations 

from raw images or turn them into biologi-

cally meaningful quantities1–3. The develop-

ment of further analytical methods could 

greatly benefit from easy access to SMLM 

data generated worldwide. This is especially 

true for machine learning approaches and 

notably deep learning, whose performance 

hinges strongly on the amount of training 

data. However, despite the vast number of 

SMLM studies1, the overwhelming majority 

of SMLM data remains inaccessible to the 

community. Repositories such as Figshare 

or Zenodo, or the added-value repository 

IDR4,5, are generic in purpose and not opti-

mally suited for gathering, visualizing and 

exploiting SMLM data in a manner consistent 

with the FAIR principles (findability, acces-

sibility, interoperability and reusability)6. An 

important impediment for sharing SMLM 

data is that each super-resolution image is 

built by computing molecular coordinates 

from many thousands of raw, low-resolution 

images (Fig. 1a), which often total many giga-

bytes in size. Even localization files, albeit 

much smaller than the raw data, are usually 

too large to be sent by e-mail. Furthermore, 

they come in various formats, complicating 

reanalysis, while metadata are often unstruc-

tured or simply absent. Another restriction of 

generic data repositories is the lack of spe-

cific tools for visualizing SMLM data. Owing 

to these limitations, only a minuscule fraction 

of the globally acquired SMLM data is easily 

and publicly available, preventing their rea-

nalysis and slowing the development of more 

powerful analysis methods. Here, we present 

ShareLoc (https://shareloc.xyz), an open plat-

form designed to facilitate the sharing, visu-

alization, annotation, and community-based 

reutilization of SMLM data (see online quick 

tutorial movie7).

ShareLoc consists of (i) a storage service 

backed by Zenodo, a widely used open-access 

repository operated by CERN, and (ii) an 

extendable system of web plugins built 

upon ImJoy8, a state-of-the-art platform for 

developing and deploying interactive data 

science tools. With a Zenodo login, users can 

easily upload and store SMLM data (localiza-

tions and/or raw images up to 50 gigabytes) 

through the ShareLoc platform, automati-

cally generating a digital object identifier 

(DOI) (Fig. 1b). Upon review and approval 

by a ShareLoc administrator, the new data 

will be shown on the ShareLoc website and 

available for download, visualization, export, 

and reanalysis7. Each dataset can be linked to 

other datasets or analysis tools, and by default 

SMLM data are linked to a dedicated viewer 

plugin (see below).

To facilitate rapid transmission of SMLM 

data, we developed a losslessly compressed 

binary file format (extension *.smlm) that 

substantially reduces localization file sizes 

and loading times, is portable, compact and 

flexible (for example, it can store arbitrary 

metadata), and is easily adjusted for 3D or 

multicolor data (Supplementary Note 1 and 

Supplementary Fig. 1a, b). Although ShareLoc 

uses the *.smlm format internally, the plat-

form also supports the import of SMLM data 

in various standard formats and export as CSV 

files7, and has features for batch downloading 

and conversion of multiple datasets9 (see also 

Supplementary Software 1). Furthermore, we 

implemented a rapid WebGL-powered viewer 

plugin in ImJoy8, based on ‘potree’, a method 

designed for quick and fluid visualization of 

very large 3D point clouds that can handle bil-

lions of localizations and includes zooming, 

panning and rotation features7,10. This viewer 

is entirely browser-based, requires no installa-

tions or updates and operates across all oper-

ating systems, including mobile devices7 (Fig. 

1c). Moreover, it allows quasi-instantaneous 

visualization without requiring download 

of the entire dataset, akin to Google Maps, 

thereby facilitating access for users with low 

Internet bandwidth7.

Data on ShareLoc can be easily shared as a 

simple link, for example, by e-mail or Twitter7 

(Fig. 1c). ShareLoc already contains a pub-

lic repository of SMLM data totaling more 

than 1.5 billion localizations from more than  

11 million raw images in 270 fields of view, 

including images of microtubules, actin fila-

ments, nuclear pores, clathrin-coated pits 

and mitochondria, which are easily browsed 

from a ‘gallery’ view (Fig. 1c, Supplementary 

Fig. 2). We implemented a simple and flexible 

tagging system that allows users to annotate 

images using more than 7 million terms from 

pre-existing biomedical ontologies accessi-

ble through the EMBL-EBI ontology lookup 

service, but also to create new tags, where 

needed, in a dedicated new ‘SHARELOC’ 

ontology. A search bar allows users to find 

data using specific tags such as ‘microtubules’, 

‘dna-paint’ or ‘3d’7 (Supplementary Note 2).

The ShareLoc platform helps to address 

all four principles of FAIRness, which are cur-

rently lacking for SMLM6. Findability is ena-

bled by ShareLoc’s rich and flexible annotation 

and searching features. Accessibility is facili-

tated by the compact *.smlm format and the 

simple and fluid, low-bandwidth-compatible 

viewer. Interoperability is guaranteed by the 

open-source format and tools to import, 

export and convert SMLM data in widely used 

file formats. Reusability is ensured by the uni-

fied file format, structured metadata and links 

with ontologies. In another paper (Bai et al., 

unpublished data), we will illustrate the ben-

efit of data sharing on ShareLoc by showing 

how reanalysis of data from multiple labs can 

improve the robustness of super-resolution 

image reconstruction by deep learning. More 

generally, we believe that ShareLoc is poised to 

accelerate the development of new analytical 

methods for SMLM and the mining of SMLM 

data acquired by the community for new bio-

logical information, and will help to promote 

reproducible research in single-molecule 

imaging and its numerous applications in the 

life sciences.

Data availability
All data used in this study are available 

on the ShareLoc platform (https://share-

loc.xyz/#/?type=dataset&tags=) and on 

Zenodo (https://zenodo.org/communities/

 Check for updates
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Supplementary Note 1: The *.smlm data format 

This Note details our motivation for developing the *.smlm data format and its design 

principles. 

Storing and transmitting the data underlying typical SMLM experiments is challenging, 

because of the enormous file size. A typical experiment requires a sequence of ~104-

105 individual raw (diffraction limited) images for each super-resolution image and data 

volume can reach ~100 GB per experiment or more1. With fast, kHz-rate cameras, a 

SMLM system can output Terabytes per hour. The localization data computed from 

the raw images are much smaller, but still typically occupy several GB, because by 

default, localizations are generally stored as comma separated value (CSV) files, 

which trade off file size to optimize human readability. As a result, typical SMLM data 

files are too large for simple sharing methods such as e-mail.  

To address this, we designed a specific data format called 'SMLM' (*.smlm), which 

instead optimizes for size rather than human readability, and can reduce file size by 

6-fold or more compared to the CSV format. For example, a 7.16 GB *.csv localization 

table can be replaced by a 1.34 GB *.smlm file without any loss of information. To 

achieve this size reduction, we adopted two strategies. First, we use binary encoding 

rather than text encoding, implying that all numbers are represented by data types 

such as integer, float or double. Second, we compress the binary file using generic 

lossless compression algorithms that come with the standard zip file format2. In order 

to compensate the lack of human readability of binary formats, we add a 

complementary text file (hereafter called 'manifest file') to describe the structure of the 

localization table and store metainformation. See an example layout of a *.smlm file 

below. 

 
An example SMLM image (a) and the structure of its corresponding *.smlm file (b). a) Dual color 3D 

SMLM image of clathrin (red) and microtubules (cyan), from the Leterrier lab. b) Layout of the 

corresponding *.smlm file. The *.smlm file is a zip archive that contains two binary localization files (one 

for each color channel), and a manifest file with the fixed name ‘Manifest.json’. Note that the *.smlm 

format can also be used to store raw images, for example widefield images corresponding to the SMLM 

image. 

 

The manifest file is implemented in the widely supported JavaScript Object Notation 

(*.json) format and serves two purposes. First, it stores information that is needed for 
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a reader program to properly read the binary data, such as the data type (e.g. float or 

double), the number of rows, or the header. Second, it provides a human 

understandable summary of the localization table that does not require loading or 

unzipping the whole file.    

 
Example manifest file for the dual color SMLM image above (only excerpts are shown). The file contains 

several fields, including 'formats' and 'files'. The 'formats' field stores a set of formats describing the 

header (here: “frame”, “x”, “y”, etc.), the data type (in this case, float32 values), the shape, etc. of each 

column. The 'files' field specifies which format is used to read the corresponding localization file, and 

also includes meta information for each binary file, such as the number of rows (here: 382,733 and 

769,747, corresponding to the number of localizations for clathrin and microtubules, respectively), the 

number of raw image frames (39,999 for clathrin), the minimum, maximum and average values of 

computed x,y,z coordinates, etc. 

 

An important feature of the *.smlm format is its flexibility. Because the structure of the 

binary files is specified in the manifest file, it can be easily adapted to different types 

of applications. For example, in addition to the required columns specifying x and y 

coordinates, one can easily add a third column to specify the axial (z) coordinate in a 

3D SMLM image, as in the example above3. This only requires changing the “headers” 

in the ‘formats’ field.  It is similarly straightforward to add more columns, e.g. to specify 

additional parameters for each localization, such as the intensity, localization 

uncertainty, etc. It is even possible to add additional columns to store the raw pixel 

values of image patches centered on each localization. Another illustration of this 

flexibility are multicolor images. In multicolor SMLM, localizations from each color are 

typically stored in separate localization files. These can be stored in the same *.smlm 

file, by specifying their names in the ‘files’ field of the manifest file and indicating the 
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same format in the ‘format’ field, as also shown in the above example. Similarly, a 

*.smlm file can store both a localization table and the corresponding widefield image 

(in this case, the ‘formats’ field specifies both the table format and the image format). 

Another related example is tiled imaging, where images from many adjacent (or partly 

overlapping) fields of view are assembled into a much larger effective field of view. 

The many localization tables corresponding to each individual field of view can be 

saved together in a single *.smlm file, by specifying the names of the individual 

localization files in the ‘files’ field. In this case, each localization file can be given an 

‘offset’ field to store the spatial offset (e.g. the coordinates of the upper left corner) of 

each field of view.   
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Supplementary Note 2: ShareLoc data tagging system and ontology 

For optimal reuse, shared SMLM data should be annotated with metadata containing 

all information required to reproduce the data, including the experimental conditions, 

image acquisition and analysis protocols4. To facilitate such annotations, ShareLoc 

provides a simple and flexible, ontology-based tagging system. Users can choose tags 

as they wish, but in order to unify annotations and improve data searchability and 

reusability, ShareLoc encourages the use of terms from pre-existing ontologies. For 

example, terms such as “microtubules”, “nocodazole”, “formaldehyde” or “Alexa Fluor 

647” are defined in pre-existing ontologies and we encourage users to use such pre-

existing terms for data tagging wherever relevant. In practice, ShareLoc facilitates this 

using an auto-complete feature that automatically proposes ontology terms available 

through the EMBL-EBI ontology lookup service (EBI OLS; 

https://www.ebi.ac.uk/ols/index) as illustrated in the screenshot below.  

 

 
Typing “microtu” in the “Tags” box during data annotation yields a list of suggested ontology terms 

matching this character string.  

 

To address the need for SMLM-relevant terms that were absent from pre-existing 

ontologies, e.g. “dSTORM” or “DNA-PAINT”, we also created a new dedicated 

ontology called SHARELOC, available at: 

https://www.ebi.ac.uk/ols/ontologies/shareloc. In this ontology, tags are grouped in a 

number of categories, such as imaging modality, cell line, fluorophore, etc (see Table 

below). Technically, the SHARELOC ontology is defined as a shareloc.tsv file 

available on GitHub at: 

https://github.com/imodpasteur/ShareLoc.XYZ/blob/main/src/shareloc.tsv. Users can 

add new terms to this ontology by creating a pull request on Github, which causes the 

shareloc.tsv file to be updated and automatically converted into a shareloc.owl file, 

available on Github at: 

https://github.com/imodpasteur/ShareLoc.XYZ/tree/ontology/shareloc.owl, thereby 
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allowing the SHARELOC ontology to be imported into OLS. This continuous 

integration is performed using ROBOT commands available on GitHub at: 

https://github.com/imodpasteur/ShareLoc.XYZ/tree/main/utils/convert-owl.sh.  

On the ShareLoc home page, next to the search bar, tags can also be selected to filter 

the gallery view and search for specific data sets. For example, selecting the tags 

"microtubule", "alexa-647" and "nih3t3", will display only the SMLM data of 

microtubules imaged with Alexa-647 in NIH3T3 cells.  

 

 

Category Tag 

Modality palm, storm, dstorm, dna-paint, paint 

Cell line u2os, u373, cos7, ref52, msck, hela, nih3t3, yeast, e-coli 

Fluorophore alexa-647, alexa-555, alexa-532, cy5, cy3b, cf680, cf660, 
cf568, hmsir, atto-488, mos2, mapple, dendra2, pa-gfp, pa-
mcherry, dronpa, nile-red, jf-646, jf-568, pa-jf568, pa-jf646 

Labeling Strategy transient-transfection, stable-knock-in, endogenous-labeling-
crispr, direct-immuno-labeling, indirect-immuno-labeling, 
halo-tag, snap-tag, tetracysteine-tag, phalloidin 

Structure actin, microtubules, mitochondria, nuclear-pore, clathrin, 
vimentin, plasma membrane, intermediate filament, dna 

Target molecule nup133, nup96, tom22, alpha-tubulin, beta-tubulin, actin, 
vimentin, wga, escrt, ftsz, h2, h3, h1, polye 

Dimension 2d, 3d 

Camera em-ccd, scmos 

Reconstruction 
software 

thunderstorm, smap, smoiphot, zola-3d, picasso, quickpalm 

Buffer glox, catalase, mea, abbelight-safe-reagent, idylle-everspark 

Fixation 4% pfa, 1% pfa, pfa+gluta, glyoxal, methanol 

Other All other customized tags 

Examples of tags available in the SHARELOC ontology and organized by categories. 
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Supplementary Figure 1:  Localization data size and loading times for different 

file formats 

a,b) File sizes (a) and loading times (b) of n=21 different localization data sets, for 

three file formats: CSV (*.csv), TSF (*.tsf) and SMLM (*.smlm). The file sizes are 

expressed as percentage of the size of the corresponding raw image sequences. Each 

dot corresponds to a distinct data set. Dots for the same data sets in different formats 

are connected by grey lines. Boxplots show the first and third quartiles as box edges, 

the median as orange bars (median value as indicated), and whiskers show the full 

data range (except outliers). 
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Supplementary Figure 2: ShareLoc contains diverse SMLM data sets 

Examples of SMLM data available on the ShareLoc website. The data include images 

of actin filaments (a), clathrin coated pits (b), microtubules (c), mitochondria (d), 

nuclear pore complexes (NPC) (e), and vimentin (f). The contrast of some images has 

been adjusted for better visibility. 
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II.2. Improving the robustness of 

ANNA-PALM 
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II.2.1. Background 

As mentioned on page 29, a central question for deep learning methods is the robustness 

of model when input testing data diverges from the distribution on which it was trained. This is 

particularly relevant when considering variations of technical changes in SMLM data 

acquisition from different laboratories. For example, using different dyes with different 

emission wavelength might lead to different image resolution. The Full Width at Half 

Maximum (FWHM) of SMLM images measures the width at which the intensity profile is half 

of its peak value, which can be an indicator of the resolution. As depicted in Figure 32, the 

FWHM distribution for SMLM images varies across different laboratories. Moreover, 

biological perturbation, such as drug treatments, can also influence the distribution of super-

resolved SMLM images. For instance, Nocodazole drug treatment causes the depolymerization 

of microtubules, leading to changes in the microtubule network (Supplementary Figure 6 on 

page 110). 

 
Figure 32. WFHM of SMLM images from different laboratories. 

This figure displays the distribution of the WFHM values computed from dense SMLM images across 

different laboratories. Each color corresponds to a distinct laboratory. The WFHM values (y-axis) were 

computed using the intensity profiles drawn along lines perpendicular to the microtubules, with a total 

of 35 intensity profiles. Further details are available at  

https://docs.google.com/spreadsheets/d/1uohyqnrblcOshnzndooFcPhu3qkRtUScCt9h-

BjlZXQ/edit?usp=sharing. 

As illustrated in Figure 33, when test the ANNA-PALM model on an image obtained 

in a laboratory that was not represented in the training data, the reconstructed super-resolution 
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images by ANNA-PALM exhibit artifacts, e.g. at the intersections of microtubules. Therefore, 

it is crucial to provide a robust ANNA-PALM model when the test data is out-of-distribution.  

 
Figure 33. Training on shared SMLM data makes reconstruction of super-resolution images by 

deep learning more robust. 

This figure illustrates a version of ANNA-PALM trained on 92 fields of view (FoVs) from four different 

labs (bottom) to the original ANNAPALM, which was trained on 7 FoVs from only one lab (top). On 

the left are ANNA-PALM's inputs: a sparse SMLM image of microtubules from 300 low-resolution 

frames and its corresponding widefield image, from a fifth, independent lab. On the right, the super-

resolution images reconstructed by ANNAPALM (in pink) overlaid with the ground truth dense SMLM 

image from 40,000 low-resolution frames (in green). Intensity profiles along the indicated yellow arrow 

are displayed on the right. Scale bar: 1µm. 

II.2.2. Summary of methods and results 

An obvious approach to improve robustness of deep learning models is to retrain them 

using a larger and more varied training set (Hestness et al., 2017). Since ShareLoc platform 

contains a large collection of SMLM data of microtubules (Supplementary Figure 2 on page 

103),  I leveraged this data and re-trained ANNA-PALM (Ouyang et al., 2018).  

The the performance of the deep learning model depends on the quality of the 

reconstructed images. However, objectively evaluating the reconstruction quality is challenging 

(Maier-Hein et al., 2023). I investigated different metrics for the evaluation: 

• Visual inspection 
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By overlaying the deep learning model’s output on the ground truth, we can 

visually assess the reconstruction quality. As shown in the left panels of Figure 

33, this merged representation is an image in RGB (Red Green Blue) format. 

The ground truth is in the green channel and the models’ reconstruction is in 

blue and red channels. The mixture of the red and blue channel appears magenta. 

Consequently, the ground truth appears green and the output appears magenta, 

and the overlapped areas of those two will be shown in white, representing the 

agreement between reconstructions and ground truth. The green areas represent 

false negatives and the pink ones display false positives. 

• Intensity profile  

When we draw a line at the same location on both the ground truth and 

the model’s output, the intensity value of pixel along the line can be represented 

by the intensity profile line. Such representation is illustrated in Figure 33, 

where the y-axis is intensity values of the pixels, while the x-axis indicates the 

position along the line.  

• MS-SSIM (Multi-Scale Structural Similarity) 

MS-SSIM (Multi-Scale Structural Similarity) is an advanced version of the 

SSIM (Structural Similarity Index). SSIM allows to measure the similarity of 

two images at one scale while the MS-SSIM asses the similarity at various 

scales(Wang, Simoncelli and Bovik, 2003; Zhou Wang and Bovik, 2009). SSIM 

can provide more accurate quality assessment compared to traditional metrics 

such Mean Squared Error (MSE), as illustrated in Figure 34. 

SSIM can be calculated by: 

𝑆𝑆𝐼𝑀 𝑥, 𝑦 = 𝑙 𝑥, 𝑦 ∙ 𝑐 𝑥, 𝑦 ∙ 𝑠 𝑥, 𝑦

=
(2𝜇L𝜇o + 𝑐0)(2𝜎L𝜎o + 𝑐2)(𝜎Lo + 𝑐q)

(𝜇L
2 + 𝜇o

2 + 𝑐0)(𝜎L
2 + 𝜎o

2 + 𝑐2)(𝜎L𝜎o + 𝑐q)
 

where x and y are two images to compare, µ is mean of pixel value of x and y, 

s
2
 is the variance of pixel value of x and y and sxy is the covariance of x and y. 

This metric allows to compare the luminance (l), contrast (c) and structure (s) 
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between two images across multiple scales. It ranges between 0 and 1, where 1 

represents the perfect agreement between x and y. 

 
Figure 34. Comparisons of MSE (Mean Square Error) to SSIM and its variation. 

This figure illustrates the comparison of SSIM and its variation CW-SSIM (Complex Wavelet-SSIM) 

compared to the metric MSE. Panel (a) shows the original image and panels (b)-(l) show the images 

with different distortions. For example, as illustrated in Figure 34, panels (c) and (f) have the same MSE, 

however, visually (f) is more similar to original image in panel (a). Image from (Zhou Wang and Bovik, 

2009). 

I first investigated whether increasing the quantity of SMLM training data for ANNA-

PALM increases the quality of super-resolved images reconstructed by ANNA-PALM. In order 

to focus only on the effect of data quantity, I restricted the analysis to data from identical 

conditions acquired by Manish Singh (the same cell lines, culture conditions and imaging 

protocols). From the 81 available SMLM images, I randomly selected 21 for testing, while up 

to 60 were used for training (Supplementary Figure 3 on page 104).  

I compared ANNA-PALM models trained on a single SMLM image randomly chosen 

from these 60 images to the model trained on all 60 images. All models’ reconstructions are in 
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much better agreement with the ground truth than the sparse SMLM input image. Visually, the 

quality of reconstructed images is improved when trained on 60 images. Quantitatively, the 

reconstruction quality of model trained on 60 images improved significantly (measured by MS-

SSIM) (Figure 1 on page 98, Supplementary Figure 4 on page 105). 

Then I assessed the robustness of ANNA-PALM to imaging protocols changes, I tested 

its performance on data from a laboratory not represented in the training data. I re-trained 

ANNA-PALM on up to 92 microtubule images from 4 laboratories, compared to the original 

model, which was trained on 7 images from our laboratory only. As shown in Table 2, I tested 

the re-trained models on the data from fifth laboratory and applied the rotations for models M1 

to M4 (more details see Table 1 on page 94). 

Table 2. Retraining paradigm. 

Datasets Baseline 

M0 

Model 

M1 

Model 

M2 

Model 

M3 

Model 

M4 

Abbelight (19)  Test Train  

Train  
Train 

Christophe Leterrier’s lab (44)  

Train 

Test 

Christophe Zimmer’s lab (7) Train 

Train  Markus Sauer’s lab (8)  Test 

Pakorn Kanchanawong’s lab (22)  Train  Test 

Overall, re-training ANNA-PALM on the larger and more diverse dataset shared on 

ShareLoc improves reconstruction quality, when testing images are acquired from the fifth labs. 

For three out of four rotations, the retrained models (M1-M4) performed significantly better 

than the baseline model M0. For model M3, the median MS-SSIM increased slightly but was 

not significant, likely owing to the small number of test images (n=8) (Figure 2 on page 99, 

Supplementary Figure 5 on page 106). 

Finally, I investigated the robustness of ANNA-PALM models trained on a large 

number of technically diverse SMLM data (Table 2) to experimental perturbation of 

microtubule structures. The U2OS cell was incubated with 1µM of Nocodazole for 20 minutes. 

This treatment stimulated the. I applied the baseline model (M0) and models (M1-M4) above 

to sparse SMLM images of Nocodazole-treated cells, while only untreated cells were used as 

training data.  

The baseline model (M0) already performed well, as it recovered virtually all 

microtubule filaments with few false negatives. However, it also hallucinated some filaments 

in regions of background noise. The reconstruction quality of chemically perturbed microtubule 
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images improves when ANNA-PALM was trained on a larger and technically diverse dataset 

(Figure 3 on page 100, Supplementary Figure 7 on page 111). 

A manuscript detailing these results has been submitted and will be provided below and 

perspectives of ShareLoc platform will be discussed on page 138. 

II.2.3. Problematics during the retraining 

As previously discussed on page 43, both the sparse SMLM images and the widefield 

images are used as input for ANNA-PALM. Although the widefield images are optional, they 

can serve as complementary information to help reconstruct super-resolved images of higher 

quality (Ouyang et al., 2018).  

However, when retraining and testing ANNA-PALM using the SMLM data available 

on the ShareLoc platform, different dyes were used for different experiment, leading to different 

resolutions for widefield images. The original image registration method of ANNA-PALM 

(Reddy and Chatterji, 1996), implemented for widefield images of consistent resolution, is not 

suitable anymore. When widefield image resolutions varies, misalignment occurred between 

the widefield and dense SMLM images. This misalignment led to noticeable artifacts in the 

super-resolved SMLM images reconstructed by ANNA-PALM.  

To address this, I developed an adapted image registration method for different 

resolutions. As illustrated in Figure 35, the registration between widefield and dense SMLM 

images is essential for high quality ANNA-PALM reconstruction. After the adapted image 

registration, the reconstruction quality improves. 
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Before correct image registration

 
After correct image registration 

 
Figure 35. Registration of widefield and sparse SMLM data is essential for high quality 

reconstructions.  

This figure shows the comparison of ANNA-PALM reconstruction quality before (middle) and after 

(bottom) correct image registration. (a) and (b) are the input of ANNA-PALM, and (c) is the ground 

truth. (a) Widefield image. (b) Sparse SMLM image. (c) Dense SMLM image. (d)-(f) are the ANNA-

PALM reconstructions corresponding to different input data: (d) is the ANNA-PALM reconstruction 

taking only the widefield image (a) as input); (e) is the ANNA-PALM reconstruction taking only the 

sparse SMLM image (b) as input and (f) is the ANNA PALM reconstruction taking both the sparse 

image and the widefield image (a+b) as inputs. Note that the reconstruction in (f) contains multiple 

artifacts, due to a misalignment between widefield image and sparse image.  
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Article 2 (submitted): Bai, J.*, Wei, O.*, Singh, M.K., Lelandais, B., Zimmer, C., n.d. Sharing 

localization microscopy data makes deep learning-based image reconstruction more robust. (* 

equal contribution) 
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Abstract  20 

In single molecule localization microscopy (SMLM), sequences of low-resolution image frames 21 

are computationally transformed into images with a resolution improved by ~10-100 times. 22 

Because tens of thousands of low-resolution frames are typically required to assemble a single 23 

super-resolution image, the throughput and speed of SMLM remain extremely low. We 24 

previously demonstrated that a computational strategy based on deep learning (ANNA-PALM) 25 

can reconstruct high-quality super-resolution images of cellular structures such as 26 

microtubules from much fewer low-resolution frames, thereby increasing imaging throughput 27 

by up to ~100-fold. However, the quality of deep learning-based reconstructions is generally 28 

strongly dependent on the quantity of training images and their consistency with the test 29 

images. If training and testing data are inconsistent, e.g. when a model is applied to images 30 

acquired in another laboratory using different imaging protocols, or under different biological 31 

conditions, deep learning methods are prone to generating reconstruction artifacts. 32 

Robustness to such changes between training and testing data can in principle be improved 33 

by training models on larger and more diverse data sets, but an empirical demonstration for 34 

SMLM data is lacking. Here, we leverage Shareloc (shareloc.xyz), a recently developed online 35 

platform for SMLM data sharing, to retrain ANNA-PALM models on roughly ten times more 36 

SMLM images of microtubules than before, originating from five distinct labs. We demonstrate 37 

empirically that this retraining improves ANNA-PALM reconstruction robustness compared to 38 

the original ANNA-PALM model when applied to microtubule images from a distinct lab or to 39 

images of chemically disrupted microtubule networks. Thus, SMLM data sharing enhances 40 

the quality and robustness of super-resolution image reconstruction by deep learning. 41 
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Introduction 42 

Single molecule localization microscopy (SMLM)1 methods (including PALM2, (d)STORM3,4,  43 

DNA-PAINT5,6 and MINFLUX7) improve the spatial resolution of light microscopy down to a 44 

few tens of nanometers or less. Thanks to this considerable resolution improvement and its 45 

relative ease of implementation, SMLM is widely employed in life science research to image 46 

biological structures at near molecular resolution1. SMLM relies on the sequential acquisition 47 

of widefield, low resolution image frames, in which only a small random subset of fluorescent 48 

molecules emit light simultaneously, and hence appear as spatially isolated diffraction-limited 49 

spots. The spatial isolation of fluorescent spots from each other allows the coordinates of 50 

individual molecules to be computed with high precision and accuracy. The aggregated 51 

coordinates are then computationally assembled into a single super-resolution image. In order 52 

to generate a high-quality super-resolution image, the imaged structures must be sampled by 53 

a large number of single molecule localizations, which typically requires imaging ~104-105 low 54 

resolution frames8. As a result, SMLM is extremely slow, severely limiting imaging throughput 55 

or applications to studying cellular dynamics in live cells.  56 

The success of deep learning based artificial intelligence (AI) for processing imaging data has 57 

inspired the development of deep learning methods to improve various aspects of super-58 

resolution image reconstruction9–17. We previously developed ANNA-PALM9, a deep learning 59 

method that reconstructs (predicts) high-quality super-resolution images from a considerably 60 

reduced number of low-resolution frames (Figure S1). Using ANNA-PALM, we demonstrated 61 

that super-resolution images of microtubules can be reconstructed from ~102 times fewer 62 

single molecule frames than usually required, e.g. from ~300 frames instead of ~30,000 63 

frames, without trading off spatial resolution. This is only possible because strong prior 64 

information about the images is injected in the reconstruction process to compensate for the 65 

lacking single molecule localizations. ANNA-PALM learns this prior information by training a 66 

neural network on high quality super-resolution images obtained using standard SMLM 67 

imaging procedures, i.e. typically from ~104-105 low resolution frames.  68 

As for any machine learning algorithm, a central question is whether the trained model is 69 

robust to technical changes in data acquisition and whether it can generalize to data obtained 70 

under different experimental conditions. In our initial demonstration9, we trained ANNA-PALM 71 

on only seven SMLM images of microtubules obtained from a single lab (ours), using 72 

dSTORM. To explore the model's robustness, we assessed its performance at reconstructing 73 

images of microtubules acquired using DNA-PAINT, another SMLM technique, using different 74 

primary antibodies, different fluorescent dyes and different cameras, and obtained excellent 75 

reconstruction performance9. Nevertheless it remains to be determined to what extent ANNA-76 



 

 

82 

 

  

Bai, Ouyang et al. Aug 2023 

 4 

PALM, when trained on images from one laboratory, is transferrable to data acquired in other 77 

laboratories. Transferability of trained deep learning models across laboratories is important, 78 

as it removes the need to retrain them and thus considerably facilitates their uptake. However, 79 

transferability is not guaranteed a priori because deep learning methods are notoriously 80 

sensitive to apparently insignificant changes in imaging parameters. 81 

A related issue is robustness to biological perturbations. In our first study9, we tested this 82 

robustness by treating cells with Taxol, which stabilizes microtubules and to Nocodazole, 83 

which depolymerizes them. In both cases, ANNA-PALM reconstructions were in good 84 

agreement with the ground-truth. However, for Nocodazole-treated cells the reconstructions 85 

exhibited minor hallucinations (short dim filaments without clear counterparts in the ground 86 

truth image), suggesting that this experiment probed the limits to robustness. Such limitations 87 

call for ways to make ANNA-PALM more robust to changes in biological structures.  88 

Thus, an important goal is to further improve and test the robustness of ANNA-PALM-based 89 

super-resolution image reconstruction to both technical and biological changes. An obvious 90 

strategy to improve a deep model’s robustness is to train it on a larger and more diverse data 91 

set. However, this strategy was hitherto challenged by the scarcity of publicly accessible 92 

SMLM data sets. Recently, we developed ShareLoc, an open online platform (shareloc.xyz) 93 

designed to facilitate the sharing and annotation of SMLM data18. Taking advantage of this 94 

platform, we retrained ANNA-PALM models on much larger and more diverse data sets and 95 

empirically evaluated the reconstruction quality and robustness to changes of laboratories or 96 

to a biological perturbation. We find that the retrained models exhibit higher reconstruction 97 

quality, with fewer artifacts, especially when applied to SMLM data from labs outside of the 98 

training data or to previously unseen biological conditions. Our report thus provides more 99 

robust ANNA-PALM models for SMLM images of microtubules and shows how open data 100 

sharing and reuse improves AI-based super-resolution image reconstruction.  101 

 102 

Results 103 

Assembling a large and diverse set of microtubule SMLM images from ShareLoc 104 

From the ShareLoc platform, we downloaded 181 distinct SMLM images of microtubules, 105 

corresponding to 181 fields of view, and acquired in five different laboratories. In total, these 106 

data included ~2x109 single molecule localizations from ~8x106 low resolution image frames. 107 

These SMLM data were obtained for different cell lines, with different imaging protocols, that 108 

included labeling with different antibodies and/or dyes, different sample preparation and 109 

fixation techniques, cameras, objectives, laser excitation, and localization software, etc. 110 
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(Table 1, Table S1 and Figure S2). All these differences in imaging and acquisition parameter 111 

can potentially affect neural network learning and lead to different model outputs for the same 112 

test data. Hereafter, we trained ANNA-PALM models on different subsets of these data, and 113 

assessed their reconstruction performance on held-out test data. We first used test data from 114 

the same lab as the training data, but thereafter assessed model robustness by testing on 115 

data acquired in different labs or in different biological conditions.  116 

 117 

ANNA-PALM architecture and training strategy 118 

ANNA-PALM is a deep learning algorithm inspired by the pix2pix network19, a U-net based 119 

conditional generative adversarial network (cGAN). ANNA-PALM is trained to generate a high-120 

quality super-resolution image from rapidly acquired single molecule localization data  (Figure 121 

S1). More specifically, the training data consist in SMLM data of a specific biological structure 122 

(e.g., microtubules) computed from large numbers (e.g. 104-105) of consecutive low-resolution 123 

frames using standard localization algorithms. The SMLM images obtained from the entire 124 

sequence of frames are hereafter referred to as ‘dense’ SMLM images and serve either as 125 

target output for the neural network or as ground-truth for testing. By contrast, the input training 126 

data are images generated from a much smaller number of consecutive low-resolution frames 127 

(e.g. 200-500) from the beginning of the same sequence. Because these images have the 128 

same size as dense super-resolution images but are based on much fewer localizations, we 129 

refer to these images as 'sparse' SMLM images. ANNA-PALM takes a sparse SMLM image 130 

as input and the U-net is trained to generate an output image that is as close as possible to 131 

the corresponding dense SMLM image, as measured by a loss function that combines the L1 132 

norm and a multi-scale structural similarity index (MS-SSIM)20. Because ANNA-PALM is a 133 

cGAN, the U-net generator network is trained in an adversarial way against a discriminator 134 

network, which aims to determine whether its input image is real or artificial, conditioned on 135 

the sparse SMLM image. If a widefield image is available for the same field of view, it is also 136 

included in the input data, in addition to the sparse SMLM image, and both images are fed to 137 

both the U-net and the discriminator network. Furthermore, an additional term in the loss 138 

function measures the consistency between the generated super-resolution image and the 139 

widefield (low-resolution) image (if available) using a third neural network. All three neural 140 

networks (the U-net generator, the discriminator, and the network for widefield images) are 141 

trained simultaneously3. Our training strategy uses different types of on-the-fly data 142 

augmentation techniques. We employ generic methods such as rotations, translations and 143 

elastic deformations, but also methods specific to SMLM data, such as creating many different 144 

sparse SMLM images for the same dense SMLM image by random subsampling of low-145 
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resolution image frames, and adding random false localizations in the input data to mimic 146 

detection noise9.  147 

 148 

ANNA-PALM reconstruction quality increases with quantity of training images 149 

We first asked if increasing the quantity of SMLM training data increases the quality of super-150 

resolution images reconstructed by ANNA-PALM (Figure 1, Figure S4). In order to focus on 151 

the effect of data quantity alone, independently of the variability of technical imaging conditions 152 

or experimental conditions, we restricted this analysis to microtubule data acquired on the 153 

same cell types, in the same culture conditions and using the same imaging protocols (same 154 

microscope, same labeling, same fixation, same localization software) obtained within a single 155 

lab (ours). Out of 81 available SMLM images, we randomly chose 21 for testing and used up 156 

to 60 of the remaining images for training (Figure S3). 157 

We first considered how ANNA-PALM performed when trained on a single SMLM image, 158 

randomly chosen among the 60. Because the performance of such a model depends strongly 159 

on which training image was chosen, we considered 15 distinct models, each trained on one 160 

of the 60 images. We applied these 15 models to each of the 21 test images, using a sparse 161 

SMLM image (obtained from 300 low resolution frames) and the corresponding widefield 162 

image as inputs (Figure 1A). We compared the output images to the corresponding dense 163 

SMLM images (obtained from 15,000 to 60,000 frames, with an average of 58,568 frames; 164 

Table S1), which we considered as ground truth images (Figure 1B,C). Remarkably, ANNA-165 

PALM models trained on a single SMLM image already showed rather good reconstruction 166 

performance, since the vast majority of the microtubules present in the ground-truth images 167 

were correctly recovered by the ANNA-PALM predictions (Figure 1B,C and Fig S4B). The 168 

reconstructed images represented much better characterizations of microtubule filaments than 169 

the sparse SMLM input data. More quantitatively, the MS-SSIM of ANNA-PALM 170 

reconstructions (which lies between 0 and 1 and equals 1.0 for images in perfect agreement 171 

with the ground truth) ranged from 0.55 to 0.95, with a median value of 0.86 (and interquartile 172 

range 0.06), whereas the unprocessed sparse SMLM image had much lower MS-SSIM, 173 

ranging from 0.01 to 0.43 only, with a median of 0.1 (p<10-7) (Figure 1E and Figure S4C). 174 

The high quality of models trained on just one image may be come as a surprise, since deep 175 

learning methods, when trained from scratch, typically require large amounts of training data 176 

to achieve satisfying performance. We attribute this high performance to the relative simplicity 177 

of microtubule structures, combined with the large size of each super-resolution image (from 178 

858 by 858 pixels to 2600 by 2600 pixels, corresponding to a field of view of 17.15 µm by 179 

17.15 µm or 52 µm by 52 µm, respectively) and the resulting high internal redundancy, 180 
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combined with our aggressive data augmentation. Nevertheless, the reconstructed images 181 

also tended to display artifacts, including hallucinated filaments due to noise in the sparse 182 

SMLM images and blurry regions where filaments are close to each other, especially at 183 

microtubule intersections (Figure 1CD and Fig S4B).  184 

We then compared these reconstructions to those obtained with a model trained on all 60 185 

training images. Examples of reconstructed images are shown in Figure 1C and in 186 

Figure S4B. Visual inspection indicates that the quality of reconstructed images is markedly 187 

improved in comparison with the models trained on a single image. For example, artifacts such 188 

as hallucinated filaments mentioned above or blurred microtubule extremities were mostly 189 

absent when using the model trained on 60 images (Figure 1C,D). Quantitative evaluation on 190 

the 21 test images confirmed that reconstruction quality improved significantly, from a median 191 

MS-SSIM of 0.64 to a median of 0.86 (p<10-7) (Figure 1E).  Thus, our data empirically confirm 192 

that training on a larger SMLM data set of technically similar images significantly increases 193 

the quality of ANNA-PALM reconstructions. 194 

 195 

Training ANNA-PALM on ShareLoc data improves robustness to imaging protocols 196 

To assess the robustness of ANNA-PALM to changes in imaging protocols, we then tested its 197 

performance on data from a laboratory not represented in the training data (Figure 2). We first 198 

considered n=21 sparse SMLM images of microtubules from lab K as testing data (obtained 199 

from 300 low resolution frames). We then used ShareLoc data to retrain ANNA-PALM on 78 200 

SMLM images of microtubules from four labs (A, L, Z, S), leading to a new model hereafter 201 

called M4. (Note that more images would be available for training from lab Z, see above, but 202 

we limited the number of images to avoid excessive overrepresentation of data from a single 203 

lab). As a baseline model, we also considered our original ANNA-PALM model (hereafter 204 

called M0), which was trained on seven SMLM images of microtubules from our lab (lab Z) 205 

only (Figure 2B). Figure 2C shows an example SMLM image from lab K reconstructed with 206 

ANNA-PALM models M0 and M4 in comparison with the dense ground truth SMLM (obtained 207 

from 300 low resolution frames). Both models generated images in very good agreement with 208 

the ground truth and represented a very strong improvement over the sparse SMLM images, 209 

as measured by MS-SSIM (Figure 2A,C,F). However, model M0 also occasionally generated 210 

some low-intensity hallucinations (Figure 2C,D). These hallucinations mostly disappeared in 211 

the reconstructions of model M4. The improvement of the new model was quantitively 212 

confirmed for the n=17 images from lab K, as model M4 led to a very significant improvement 213 

of the MS-SSIM over M0 from a median of 0.63 to a median of 0.85 (p=10-3, Figure 2F). Visual 214 

inspection of other examples confirmed that the new model corrected many imperfections of 215 
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the baseline model (Figure S5). Next, we rotated the split between training and testing data 216 

among labs, using as test sets data from labs A, L, S and K, in turn, and training four models 217 

M1-M4 on the data from the four remaining labs, making use of all available images (between 218 

n=56 and n=92 images; Figure 2E). All models (M0-M4) reconstructed images in much better 219 

agreement with the ground truth than the sparse SMLM input image (Figure 2F and Figure 220 

S5B). For three out of four rotations, the new models (M1-M4) performed significantly better 221 

than the baseline model M0, with the median MS-SSIM increasing from 0.59 to 0.82 for M1 222 

(p<10-4, n=19) and from 0.56 to 0.85 for M2 (p<10-10, n=44), (see above for M4) (Figure 2D). 223 

For model M3, the median MS-SSIM increased slightly from 0.76 to 0.83, but this was not 224 

significant, likely owing to the small number of test images (p=0.34, n=8).  225 

Overall, these results indicate that training ANNA-PALM on the larger and more diverse data 226 

set provided by ShareLoc improves reconstruction quality of images acquired outside of the 227 

labs providing the training data. Thus, leveraging the quantity and diversity of SMLM images 228 

available online makes ANNA-PALM models significantly more robust to technical variations 229 

in image acquisition. 230 

 231 

Training ANNA-PALM on ShareLoc data improves robustness to biological 232 

perturbations 233 

Finally, we asked whether the ANNA-PALM models trained on a large number of technically 234 

diverse SMLM data are also more robust to experimental alterations of microtubule structures. 235 

This is not guaranteed a priori, since the training data contain variations in imaging 236 

parameters, but not variations in biological conditions. We therefore examined the 237 

performance of the four models above at reconstructing images of microtubules subject to a 238 

strong experimental perturbation. Specifically, we incubated U2OS cells with 1 µM of 239 

Nocodazole, a microtubule depolymerizing drug, for 20 minutes. This treatment stimulated the 240 

depolymerization of microtubules, which led to strong changes in the morphology of filaments 241 

(Figure S6). We applied both the baseline model M0 and models M1-M4 above to sparse 242 

SMLM images (with corresponding widefield images) of Nocodazole-treated cells (Figure 3A-243 

C). We stress that only untreated cells were used to define the training data, hence the 244 

Nocodazole-induced perturbations have not previously been seen by the neural networks and 245 

represent a novel event for all models.  Despite this, the baseline model (M0) already 246 

performed well, as it recovered virtually all microtubule filaments with few false negatives, as 247 

shown in Figure 3C (left) and Figure S7). However, it also hallucinated some filaments in 248 

regions of background noise (Figure 3C,D, left, Figure S7). This hallucinatory tendency is 249 

unsurprising, given that the model was trained exclusively on images of untreated cells, which 250 
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typically display much denser microtubule networks than Nocodazole-treated cells (Figure 251 

S6). Remarkably, however, most of these artifacts disappeared when using ANNA-PALM 252 

model M4 above, which was trained on 78 images from labs A, L, Z and S, and the overall 253 

reconstruction quality improved both visually and according to MS-SSIM (Figure 3C,D, right). 254 

Analysis of n=19 images of Nocodazole-treated cells confirmed a strong and very significant 255 

improvement of the reconstructed images from a median MS-SSIM of 0.73 to 0.83 using model 256 

M4 compared to the baseline model M0 (p<10-3, n=19) (Figure 3F). The same conclusion held 257 

true with models M1-M3, which were trained on subsets of 81, 52 and 92 images, respectively, 258 

from four of the five labs, again exclusively containing untreated cells (Figure 3E, Figure S7). 259 

In all cases, ANNA-PALM reconstructions were much better than with the baseline model, with 260 

the median MS-SSIM improving from 0.73 to between 0.88 and 0.90 (M1: p<10-5; M2: p<10-4; 261 

M3: p<10-5; M4: p<10-3 ; n=19) (Figure 3F).   262 

Thus, our results indicate that when ANNA-PALM is trained on a larger and technically more 263 

diverse set of microtubule images, the model also provides high quality reconstructions of 264 

chemically perturbed microtubule networks, despite never having been exposed to such an 265 

experimental condition. More generally, it suggests that training on diverse data from the 266 

community through ShareLoc allows image reconstruction models to generalize to novel and 267 

biologically meaningful alterations of the imaged structures.   268 

 269 

Discussion 270 

In this report, we took advantage of the ShareLoc platform to retrain ANNA-PALM models on 271 

a large and diverse set of SMLM images acquired by multiple independent laboratories. We 272 

assessed the performance of these models at generating high quality super-resolution images 273 

of microtubules from sparse, rapidly acquired single molecule data, in comparison with the 274 

baseline model9 , which was trained on only seven images from a single lab. We first showed 275 

that training ANNA-PALM on a larger number of images improves reconstruction quality when 276 

applied to test images from the same lab (Figure 1 and Figure S4).  While this result is not 277 

surprising qualitatively, our data establish that the improvement is notable and quantitatively 278 

significant for an increase of training data size by roughly one order of magnitude. We then 279 

showed that training ANNA-PALM on more images from multiple labs improves the ability of 280 

ANNA-PALM to reconstruct images from another lab without retraining, i.e. improves 281 

robustness to changes in technical imaging parameters (Figure 2, Figure S5). This ability of 282 

ANNA-PALM to reconstruct images from another laboratory without retraining is significant, 283 

since it broadens the scope of users to teams without the computational skills or computing 284 

resources (e.g. GPUs) required for model retraining.  285 
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Finally, we showed that training ANNA-PALM on ShareLoc data also strongly improves image 286 

reconstruction for chemically perturbed microtubules, even when such perturbations were 287 

entirely absent from the training data (Figure 3, Figure S7). Indeed, the reconstructed images 288 

displayed a strong disruption of the microtubule network in response to the Nocodazole 289 

treatment, thus revealing a phenotype that was not previously seen by the model. This is 290 

particularly meaningful, because it addresses the concern that deep learning-based image 291 

reconstruction may only recover phenotypes already present in the training data and may be 292 

biased against the discovery of new phenotypes21. The improved robustness of ANNA-PALM 293 

to altered phenotypes increases its applicability to high-throughput phenotypic screening 294 

approaches, for example in drug discovery22. Thus, training on diverse data such as those 295 

provided by ShareLoc, increases the potential of ANNA-PALM to uncover biologically 296 

meaningful changes in molecular structures. In order to facilitate the reuse of these models, 297 

we make them available on the ShareLoc platform for download.  298 

As a main limitation of our study, we acknowledge that thus far our claims are empirically 299 

supported only by analyses of microtubule images. Our focus on microtubules was motivated 300 

mostly by the availability of more than 100 microtubule SMLM images on ShareLoc. However, 301 

as we previously showed, the methodology underlying ANNA-PALM is generic and applicable 302 

to multiple other structures, such as nuclear pores or mitochondria9. Therefore, we expect that 303 

similar improvements in reconstruction quality will be possible for various biological structures 304 

once more data are available on ShareLoc to train adequate reconstruction models.  We hope 305 

that this demonstration of how SMLM data accessibility leads to more powerful deep learning 306 

models will further stimulate the community to enrich the ShareLoc platform with SMLM data 307 

of a wide range of molecular structures. With the anticipated upscaling of the quantity and 308 

variety of data on ShareLoc, we foresee that it will be possible to train much more powerful 309 

and robust ANNA-PALM models capable of analyzing a larger variety of biological structures 310 

with even larger gains of acquisition time. This in turn will help to overcome the current 311 

contradictions between temporal and spatial resolution and facilitate high-throughput and live 312 

cell super-resolution imaging. 313 
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TABLES 390 

Lab label A K L S Z 

Number of 

SMLM images 

with or 

without 

widefield 

image 

19 with 

widefield 

22 (17 with 

widefield, 5 

without 

widefield) 

44 (44 with 

widefield) 

8 (8 with 

widefield) 

7+81 (81 with 

widefield were 

used for Fig. 

1,S4; 6 with 

widefield + 1 

without 

widefield were 

used for Fig. 

2,3,S5,S7) 

Cell lines COS7 MDCK, 

REF52, 

NIH3T3 

COS7 U2OS, 

COS7 

U-373 MG 

Primary 

antibodies 

Mouse 

anti-alpha-

tubulin 

Rabbit anti-

alpha-tubulin 

 Mouse anti-

beta-tubulin 

or rabbit anti-

alpha-tubulin 

Rat anti-

alpha-tubulin 

Fluorophores Alexa-647, 

CF680 

Alexa 647 Alexa-647 Alexa-647, 

Alexa-532 

Alexa-647 

Localization 

software 

ThunderS

TORM 

ThunderSTO

RM 

 rapidSTORM ThunderSTO

RM 

PI or CEO Jean-

Baptiste 

Marie 

Pakorn 

Kanchanawo

ng 

Christophe 

Letterier 

Markus 

Sauer 

Christophe 

Zimmer 

Institution Abbelight, 

Cachan, 

France 

University of 

Singapore, 

Singapore 

Aix Marseille 

Université, 

CNRS, INP 

UMR7051, 

Marseille, 

France 

University of 

Würzburg, 

Würzburg, 

Germany 

Institut 

Pasteur, 

Université 

Paris Cité, 

Paris, France 

Table 1: Overview of SMLM data sets used to train or test ANNA-PALM 391 

The number of low-resolution frames underlying each SMLM image ranges from 4,947 to 392 

100,000 with a mean of 41,932 and a median of 40,000. For more details, see the spreadsheet 393 

Table S1.  394 
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FIGURE LEGENDS 395 

 396 

Figure 1: Training ANNA-PALM on larger data sets improves super-resolution image 397 

reconstruction  398 

(A) Input: a widefield image and a sparse SMLM image of immunolabeled microtubules not 399 

previously seen by the ANNA-PALM model were used as test data. The sparse SMLM image 400 

was obtained from the first 300 frames of an SMLM experiment and contains 21,703 401 

localizations. The images show a 10.24 m by 10.24 m region of interest, and the inset 1 m 402 

by 1 m.  403 

(B) Two ANNA-PALM models, M and M', were trained on SMLM images of microtubules from 404 

the same lab (lab Z). Model M was trained on a single SMLM image (i.e. a single field of view, 405 

FoV) from lab Z. Model M' was trained on 60 distinct SMLM images from lab Z.  406 

(C) ANNA-PALM output: the output images generated by the two models are shown in pink, 407 

superposed to the ground-truth, shown in green. The ground-truth is the dense SMLM image 408 

obtained from 60,000 frames and contains 1,358,693 localizations. The agreement between 409 

output and ground truth images is measured by the multi-scale structural similarity index (MS-410 

SSIM). For more examples, see Figure S4B.  411 

(D) Normalized intensity profiles of the two ANNA-PALM images and the ground-truth image 412 

along the yellow arrows shown in the insets of (C). Note that M incorrectly predicted a third 413 

peak of lower intensity between the two main peaks in region (i) (asterisk) and incorrectly 414 

predicted a valley of above-background intensity in between the two main peaks in region (ii) 415 

(asterisk), whereas M' correctly recovered two peaks separated by background in both cases.  416 

(E) Boxplots compare the MS-SSIM of ANNA-PALM reconstructions for models trained on a 417 

single image (M) or on 60 images (M’), or the unprocessed sparse SMLM input images, 418 

relative to the ground-truth, for n=21 test images from lab Z. To robustly assess ANNA-PALM 419 

performance when trained on a single image, we trained 15 models on 15 distinct, randomly 420 

chosen single images (not overlapping the test image set). Each dot corresponds to a single 421 

test image and indicates the MS-SSIM averaged over these 15 models. Horizontal orange 422 

lines show medians. Lower and upper box edges correspond to the 25 and 75% percentiles 423 

and whiskers show the full data range except for outliers. Grey lines connect values for 424 

identical test images. The filled black dots and connected by thicker lines correspond to the 425 

image shown in (C). Indicated p-values are from a signed-rank Wilcoxon test. Scale bars in 426 

(A), (C): 0.5 m. 427 



 

 

96 

 

  

Bai, Ouyang et al. Aug 2023 

 17 

Figure 2: Training ANNA-PALM on ShareLoc data improves reconstruction robustness 428 

to imaging protocols 429 

(A) Input: a widefield image and a sparse SMLM image of immunolabeled microtubules 430 

acquired by lab K. The sparse SMLM image was obtained from the first 300 frames of an 431 

SMLM experiment and contains 8,850 localizations.  The images show a 10.24 m by 432 

10.24 m region of interest, and the inset 1 m by 1 m. 433 

(B) Two ANNA-PALM models were trained: model M0 was trained on the same seven images 434 

from lab Z as previously9. Model M4 was trained on 78 images from labs A, L, Z, and S. The 435 

training data included no images from lab K.  436 

(C) ANNA-PALM output: the output images generated by the two models are shown in pink, 437 

superposed to the ground-truth shown in green. The ground-truth is the dense SMLM image 438 

obtained from 20,000 frames and contains 578,850 localizations. For more examples, see 439 

Figure S5. 440 

(D) Normalized intensity profiles of the two ANNA-PALM images and the ground-truth image 441 

along the yellow arrow shown in the insets of (C). Note that the two main intensity peaks were 442 

well recovered by both models in both regions; but with model M0, a third peak of lower 443 

intensity, corresponding to hallucinated filaments in (C), was predicted between the two main 444 

peaks (asterisks), whereas no such artifact was generated by model M4.  445 

(E) Overview of data sets used for training and testing the different models. Model M0 (trained 446 

on seven images from lab Z) was tested on images from each of the four other labs (A, L, S, 447 

and K), in turn. Models M1-M4 were trained on between 56 and 92 images pooled from four 448 

labs in different combinations, and tested on images from the remaining fifth lab, as indicated. 449 

(F) Boxplots compare the MS-SSIM of ANNA-PALM reconstructions using model M0 or 450 

models M1-M4 or the sparse SMLM data relative to the ground truth, on the same test data. 451 

Each dot corresponds to a single test image. The number of test images n is indicated. 452 

Medians are shown as horizontal orange lines. Lower and upper box edges correspond to the 453 

25 and 75% percentiles and whiskers show the full data range except for outliers. Grey lines 454 

link data points corresponding to the same image. Indicated p-values are from Wilcoxon 455 

signed-rank tests. Note that the median reconstruction quality improved for all four models 456 

M1-M4 compared to M0. The increase is significant for all models except M3. Scale bars in 457 

(A), (C): 0.5 m. 458 

 459 

Figure 3: Training ANNA-PALM on ShareLoc data improves reconstruction robustness 460 

to experimental perturbations  461 



 

 

97 

 

  

Bai, Ouyang et al. Aug 2023 

 18 

(A) Input: a widefield image and a sparse SMLM image of immunolabeled microtubules in 462 

cells exposed to a Nocodazole treatment. The sparse SMLM image was obtained from the 463 

first 300 frames of the sequence and contains 5,652 localizations. The images show a 464 

10.24 m by 10.24 m region of interest, and the inset 1 m by 1 m. 465 

(B) Two ANNA-PALM models were trained: model M0 (left) was trained on the same seven 466 

images from lab Z as previously9. Model M4 (right) was trained on 78 images from labs A, L, 467 

Z and S (as in Figure 2B). The training data only included untreated cells.  468 

(C) ANNA-PALM output: the output images generated by the two models are shown in pink, 469 

superposed to the ground-truth in green. The ground-truth is the dense SMLM image obtained 470 

from 60,000 frames and contains 759,390 localizations.  471 

(D) Normalized intensity profiles of the two ANNA-PALM images and the ground-truth image 472 

along the yellow arrows shown in the insets of (C). Note that both models correctly recovered 473 

the main intensity peak, but M0 incorrectly predicted secondary bumps (asterisks), 474 

corresponding to hallucinated structures in (C), which were absent from reconstructions by 475 

M4.  476 

(E) Overview of data sets used for training. Models are identical to those used in Figure 2, but 477 

applied to Nocodazole-treated cells from lab Z, as indicated.  478 

(F) Boxplots compare the MS-SSIM of ANNA-PALM reconstructions relative to the ground 479 

truth using model M0 or models M1-M4, on n=19 images of Nocodazole-treated cells. Each 480 

dot corresponds to a single test image. Medians are shown as horizontal orange lines. Lower 481 

and upper box edges correspond to the 25 and 75% percentiles and whiskers show the full 482 

data range except for outliers. Grey lines link data points corresponding to the same image. 483 

Indicated p-values are from Wilcoxon signed-rank tests. Note that the median reconstruction 484 

quality improves for all four models M1-M4 compared to M0 and that this increase is significant 485 

in all four cases. Scale bars in (A), (C): 0.5 m. 486 
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Figure S1: ANNA-PALM training strategy 

This Figure is a simplified schematic of the strategy used to train ANNA-PALM. A standard 

(“dense”) SMLM image is generated based on the localizations of single molecules computed 

from a large number of low resolution image frames (LR, frames 1 to 60,000). This dense 

SMLM image defines the ground truth for training ANNA-PALM. Localizations computed from 

a smaller number of low resolution frames (here, 300) are used to create a “sparse SMLM” 

image. Along with the corresponding widefield image (if available), the sparse SMLM image 

is fed as input to a U-net. The U-net is trained using stochastic gradient descent to output an 

approximation of the ground truth image, as defined by a loss function that measures the 

consistency of the output image with the ground truth. The U-net is trained in an adversarial 

manner against a conditional discriminator (not shown here) and the loss function also 

contains a term that measures the consistency of the generated output image with the 

widefield image (if available). For a more detailed description of ANNA-PALM, we refer to 

Figure 1 of Ouyang et al. Nat Biotech 2018.  
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Figure S2: SMLM images of microtubules from multiple labs 

This gallery shows SMLM images and corresponding widefield images (WF) of microtubules 

obtained from laboratories A (A), K (B), L (C), S (D) and Z (E). See Table 1 and Table S1. 

Scale bars are 10 m.  
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Figure S3: SMLM images of microtubules from lab Z   

This gallery view shows SMLM images of microtubules acquired in lab Z for this study, 

distinguishing images used for training (A) and testing (B). Scale bars are 10 m.  
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Figure S4: Training ANNAPALM on larger data sets improves reconstruction 
quality 

(A) This Figure compares ANNAPALM reconstructions by models trained on only one (M) vs. 

60 images (M’).  

(B) Examples of paired widefield and sparse SMLM images used as inputs to ANNA-PALM 

models M or M', along with the corresponding ground truth images (dense SMLM image 

obtained using all available frames). In the two bottom rows, the ANNA-PALM output image 

is shown in pink superposed to the ground-truth image in green. The MS-SSIM of the ANNA-

PALM image relative to the ground truth image is indicated on the top left. 

(C) Boxplots compare the MS-SSIM of ANNA-PALM reconstructions for models trained on a 

single image (M) or on 60 images (M’), or the unprocessed sparse input images (sparse 

SMLM) relative to the ground truth. This panel is identical to Figure 1E, except for the colored 

dots, which correspond to the images labeled with a dot of the same color in (B).    
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Figure S5: Training ANNA-PALM on ShareLoc data increases robustness to 
imaging protocols 

(A) Overview of data sets used for training or testing models M0 and M1.  

(B) Examples of paired widefield and sparse SMLM images used as inputs to ANNA-PALM 

models M0 or M1, along with the corresponding ground truth images (dense SMLM image, 

obtained using all available frames). In the two bottom rows, the ANNA-PALM output image 

is shown in pink superposed to the ground-truth image in green. The MS-SSIM of the ANNA-

PALM image relative to the ground truth image is indicated on the top left. 

(C) Boxplots compare the MS-SSIM of ANNA-PALM reconstructions using models M0 or M1 

or the sparse SMLM input data, relative to the ground truth, as in Figure 2F. Each dot 

corresponds to a distinct image and colored dots correspond to the images labeled with a dot 

of the same color in (B).    
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Figure S5  (continued): Same as above but for models M0 and M2.  
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Figure S5  (continued): Same as above but for models M0 and M3. 
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Figure S5  (continued) : Same as above but for models M0 and M4. 
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Figure S6: Nocodazole disrupts microtubule networks  

Top row shows SMLM images of microtubules exposed to 1 M of Nocodazole for durations 

of 15, 30 or 60 minutes and an untreated control. Bottom plot shows the fraction of image area 

occupied by microtubules for different Nocodazole treatment durations. This area was 

measured by applying the same Gaussian filter and threshold to all images and considering a 

region of interest in the same location. Each dot corresponds to a distinct image (n=10 images 

for each treatment duration). Bars show mean +/- standard error of the mean. Statistical tests 

are Mann-Whitney t-test with * indicating p<0.05, and ** indicating p<0.01. 
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Figure S7: Training ANNA-PALM on ShareLoc data improves reconstruction 
robustness to experimental perturbations 

(A) Overview of data sets used to train models M0 and M1. 

(B) Examples of paired widefield and sparse SMLM images used as inputs to ANNA-PALM 

models M0 or M1, along with the ground truth images (dense SMLM image, obtained using all 

available frames). In the two bottom rows, the ANNA-PALM output image is shown in pink 

superposed to the ground-truth image in green. The MS-SSIM of the ANNA-PALM image 

relative to the ground truth image is indicated on the top left. 

(C) Boxplots compare the MS-SSIM of ANNA-PALM reconstructions using models M0 or M1 

or the sparse SMLM input data, relative to the ground truth, as in Figure 2F. Each dot 

corresponds to a distinct image and colored dots correspond to the images labeled with a dot 

of the same color in (B).    
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Figure S7 (continued): Same as above but for models M0 and M2.  
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Figure S7 (continued): Same as above but for models M0 and M3.  
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Figure S7 (continued): Same as above but for models M0 and M4. 
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II.3. Extending ANNA-PALM to 

reconstruct super-resolved structural 

dynamics 
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II.3.1. Background  

As mentioned on page 21, SMLM acquisition relies on many low-resolution images, 

mostly limiting applications to fixed cells or structures undergoing slow dynamics. To 

reconstruct super-resolution movies of moving structures (e.g. microtubules) in live cells is very 

challenging.  

As illustrated in Figure 36, to ensure high temporal resolution and avoid motion blur, 

each time point of the reconstructed super-resolution movie is defined from only a small number 

of consecutive low-resolution frames. This leads to a strong under-sampling of the structure by 

single molecule localization events, leading to what we refer to as a sparse SMLM movie. Each 

time point of reconstructed super-resolution movie is generated by ANNA-PALM using sparse 

SMLM movie as input. 

 

Figure 36. Trade-offs of SMLM imaging in live cells.  



 

 

118 

This figure illustrates the challenges of live cell SMLM imaging of microtubules. The blue path shows 

an image generated from the entire sequence of 20,000 low-resolution frames (gray panel). This image 

is blurred by the dynamics of the structures. By contrast, the sparse SMLM movie generated from the 

localizations extracted in a smaller number of consecutive low-resolution frames (orange path) is under-

sampled and is generally not a super-resolution movie. Scale bar: 1µm. Images acquired by Manish 

Singh. 

As previously discussed, ANNA-PALM is capable of reconstructing high quality super-

resolution images from strongly under-sampled localization data. Initially I attempted to apply 

the original ANNA-PALM method to sequentially reconstruct each time point of the super-

resolution movie based on the individual time point from the sparse, under-sampled movie. For 

this purpose, I analyzed live-cell SMLM data of microtubules stained with mEos3.2 in U2OS 

cell lines, as illustrated in Figure 37.  

I first trained ANNA-PALM on sparse/dense SMLM images of fixed samples of these 

mEos3.2-labeled U2OS cells. For testing, I stacked consecutive sparse SMLM images 

(obtained from non-overlapping sets of 100 consecutive frames) together to form a movie 

(Figure 37 middle panel). This stacked movie was then fed as an input to ANNA-PALM, where 

each sparse SMLM image was processed independently. A predicted super-resolution movie 

was then obtained from the consecutive output images. 

However, the reconstructed movie was jittery, as evident from Video (available at: 

https://drive.google.com/file/d/1Xs8GIMJmKFJaXRX_yJnOB62rYzh4uAHo/view?usp=shari

ng). This is because the temporal sequence of image acquisition was not taken into account in 

the reconstruction process. Recognizing this limitation, I revised the ANNA-PALM 

architecture to harness and utilize this vital temporal information. 
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Figure 37. Using original ANNA-PALM to reconstruct live cell SMLM data yields suboptimal 

reconstructions. 

The top panel shows a low-resolution single molecule sequence of live U2OS cells with microtubules 

labeled with mEos3.2. The entire acquisition consists of 5,000 frames with an exposure time of 30 ms, 

amounting to a total of 150 seconds of acquisition. In the middle panel, a sequence of sparse SMLM 

images is generated, where each sparse SMLM image is obtained from 100 consecutive low resolution 

frames, hence corresponding to a time interval of 3s. These sparse SMLM images are separately fed as 

input to ANNA-PALM (green), generating a super-resolved movie (bottom panel).  

II.3.2. Exploiting temporal information using 3D CNNs 

As discussed on page 31, 2D CNNs can capture the spatial features and are invariant to 

translation. 3D CNNs can be used to extract temporal information in movies by considering 

time as the third dimension (Tran et al., 2015; Sakkos et al., 2018). The 3D CNN can capture 

changes in pixel intensities across time.  

Model structure  

Based on the ANNA-PALM (2D) architecture (as discussed on page 43), I implemented 

a model with an end-to-end 3D cGAN. This model is depicted in Figure 38 and referred to as 
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“ANNA-PALM 3D”. The generator is based on the U-net architecture, and the discriminator is 

a deep 3D convolution network. 

The training dataset comprises movies with 128 time points, each consisting of a 

128x128-pixel image. The kernel for each convolution layer has a size of 4x4x4 pixel, and it 

slides by 2 pixels each time (stride = 2). which effectively reduces the size of the subsequent 

feature maps by half for each deeper layer. To avoid overfitting, dropout is applied on three 

early deconvolution layers. With dropout, random subsets of neurons are dropped out at each 

iteration (Srivastava et al., 2014). 3D ANNA-PALM architecture has 178,332,418 trainable 

parameters, a significant increase compared to the 44,599,042 parameters found in its 2D CNNs 

with using a 128x128-pixel image as input. 

 
Figure 38. The architecture of ANNA-PALM 3D. 

This figure displays the architecture of ANNA-PALM 3D. The generator (top) is a U-net-based 3D 

CNNs. The discriminator (bottom) is a 3D CNNs network. The kernel size for each convolution layer is 

4x4x4 pixels with stride = 2.  

The input of the generator is the sparse SMLM movie and its output is a reconstructed 

super-resolved movie. The input data is concatenated with output and ground truth dense 

SMLM movie and fed into the discriminator. The super-resolved movie reconstructed by this 

3D ANNA-PALM model can be considered as the 3-dimensional interpretation from the sparse 
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SMLM movie where the first two dimensions are each time point of the SMLM movie and the 

third dimension is time (Figure 39). 

  
 

Figure 39. Illustration of SMLM movie considered as 3D representation. 

This figure shows different angle of 3D representation of SMLM movie simulation through Napari, a 

python-based image viewer (Ahlers et al., 2023). The yellow flesh represents temporal dimension, and 

the blue fleshes represent spatial dimensions. 

 

Loss function 

The loss function of the 3D ANNA-PALM is expressed as follows: 

𝐿 = 𝛽 𝛼 1 −𝑀𝑆_𝑆𝑆𝐼𝑀(< 𝑌 >,< 𝑌 >) + 1 − 𝑎 𝐺 ∗ < 𝑌 > −< 𝑌 >  

+𝛾(𝐿G + 𝐿F) 

where a, b and g are hyperparameters that represent the weights of the different loss 

terms. Inspired by validated cGAN networks, such as 2D ANNA-PALM (Ouyang et al., 2018) 

and pix2pix (Isola et al., 2018), I initiated set the values of these hyperparameters as a = 0.84, 

b = 50 and g = 1 during the training. Here, G denotes a Gaussian smoothing window, Y stands 

for the ground truth image and 𝑌 represents the prediction of 3D ANNA-PALM model. The 

term 𝐿G  and 𝐿F  refer to the generator and discriminator losses respectively, which are 

mentioned denoted as: 

𝐿G = 𝔼 𝑙𝑜𝑔𝐷 𝑌 + 𝔼 log 1 − 𝐷 𝐺 𝑌  

𝐿F = 𝔼 log 𝐷 𝐺 𝑌  
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Where 𝐷 𝑌 is the discriminator’s probability estimation of ground truth Y to be real, 

𝐺 𝑌  is the model’s prediction and 𝐷 𝐺 𝑌  is the discriminator's probability estimation of 

predicted data to be false for discriminator, real for generator (Goodfellow et al., 2014). The 

training process involves the min-max optimization on page 33. 

Training and testing strategies  

Developing a training strategy for 3D ANNA-PALM is challenging, because unlike for 

fixed cells, a clear ground truth, i.e. a dense SMLM movie, is lacking. The absence of ground 

truth also makes it difficult to assess reconstruction quality. To address these challenges, I 

proposed a method to generate super-resolution SMLM movies for training and validation in a 

way that can capture complex structural dynamics. 

The strategies consist in:  

• Training phase: 

The model is trained on paired sparse and dense SMLM movies generated from 

either synthetic or experimental images in fixed cells. These movies undergo 

deformations over time to simulate structural dynamics by deforming and 

superposing fixed images (will be explained on page 123). 

To avoid possible confusions: 

- Dynamic data generated from synthetic static images will be called “semi-

simulated SMLM movie” 

- Dynamic data generated from experimental static images will be called 

“hybrid-simulation-experimental SMLM movie”. 

• Testing phase: 

The trained model is tested on SMLM movies generated from synthetic or 

experimental images in live cells. These movies exhibit the structural dynamics 

that are more realistic/complex than simulated dynamic and hybrid-simulation-

experimental SMLM movies.  
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To avoid possible confusions: 

- Dynamic data generated from synthetic dynamic data will be called 

“simulated dynamic SMLM movie 

- Movies generated from experimental live cell images will be called 

“experimental SMLM movie”. 

Consequently, I evaluated the 3D ANNA-PALM model’s performance on the semi-

simulated/experimental SMLM movies. The goal was to discern whether the model could 

accurately recover structural dynamics that is not present in the training dataset. Then I 

compared the performance of the 3D ANNA-PALM model to the original 2D ANNA-PALM 

model Figure 37 for 2D model reconstruction. 

II.3.3. Training data generation  

Strategy to generate ground truth super-resolution movies 

As mentioned above, the ground truth for both semi-simulated and hybrid-simulation-

experimental SMLM movies are generated based on static real images, which are either static 

simulated images, or real images of fixed cells. As illustrated in Figure 40, I deformed, shifted 

and superposed two super-resolution images of microtubules in fixed cells. By overlaying these 

two images I created a complex dynamic of structures, in which the intersection of two 

filaments changes over time and filaments can pass each other.  

 
Figure 40. Illustration of training data simulation.  
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The ground truth SMLM movie (right) is generated by overlaying two fields of view (FoV), to which 

nonlinear deformations are applied over time. The input data (left) is generated by sub-sampling the 

ground truth images of each FoV. Each FoV measures 2.56µm *2.56µm. 

 

The deformation applied on fixed cell images is based on a fourth-order polynomial 

function of the x and y coordinates of each pixel. As illustrated in Figure 41, for a pixel located 

at (x, y), the deformation is given by: 

𝑑L,o 𝑥, 𝑦 = 𝑐\ + 𝑐0𝑥 + 𝑐2𝑥
2 + 𝑐q𝑥

q + 𝑐{𝑥
{ + 𝑐|𝑦 + 𝑐}𝑦

2 + 𝑐~𝑦
q + 𝑐�𝑦

{ 

where 𝑐�  are coefficients randomly generated following a uniform probability 

distribution, their cumulative absolute value remaining below a threshold 𝛼. For simulated 

dynamic movies of microtubules, I set 𝛼 = 2, because much smaller 𝛼 results in a deformation 

resembling a simple translation and a much larger 𝛼 causes the two FoVs to only overlap at the 

beginning of the movie. 

 
Figure 41. Illustration of 4th order deformation. 

This figure illustrates a synthetic static microtubule image before (green) and after (red) 4th order 

polynomial deformation. The FoV measures 2.56µm *2.56µm. 

For semi-simulated SMLM movies, the synthetic SMLM images of microtubules in 

fixed cells are generated using the same approach as in the original ANNA-PALM paper. As 

illustrated in Figure 42, the dense SMLM image is generated from a molecular dynamics 

simulation of polymers. Then a sparse synthetic SMLM image is generated by applying Poisson 

sampling to mimic the stochastic localizations of SMLM acquisitions (Ouyang et al., 2018).  
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Figure 42. Synthetic dense and sparse SMLM images. 

Synthetic SMLM images of microtubules are generated from simulated polymer chains. (a). Polymer 

chains are initialized randomly (each color represents a different polymer chain). (b). The stochastic 

temporal evolution of these chains leads to polymers adopting random semiflexible configurations. (c). 

The dense SMLM image is generated by convolving the zero-thickness curves in (b) with a Gaussian 

kernel of standard deviation 1.5 pixel. (d) Poisson sampling is applied to this probability density to 

generate a simulated sparse SMLM image. Images from (Ouyang et al., 2018). 

In total, I generated 274 semi-simulated SMLM movies as training data, examples of 

which are shown in Figure 43. 
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Figure 43. Illustration of training data for synthetic microtubules. 

This figure shows a full dynamics simulation: a semi-simulated SMLM movie. The panel (a) displays 

the simulated sparse SMLM movie, and the panel (b) presents the simulated dense SMLM movie. The 

movie contains 300 time points. 

Subsequently, I applied the same deformation and superposition approaches to the 

experimental data in fixed cells to generate hybrid-simulation-experimental SMLM movies. By 

leveraging the ShareLoc platform, I was able to generate a total of 79 SMLM movies. An 

example of training data is illustrated Figure 44.  

 
Figure 44. Illustration of training data for experimental data. 

This figure shows a full dynamics simulation: a hybrid-simulation-experimental SMLM movie. The 

panel (a) displays the simulated sparse SMLM movie, and the panel (b) presents the simulated dense 

SMLM movie. The movie contains 300 time points. The experimental image is microtubules stained 

with “Alexa 647” in fixed cells. 
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Furthermore, the implementation of 3D ANNA-PALM involves on-the-fly data 

augmentation for the training data, meaning that data augmentation is performed during the 

training process. Specifically, this augmentation includes image rotation and random cropping 

at each training iteration. 

Testing data generation  

The testing data generation consists in 1) simulated dynamic generated from the 

polymer simulation with stochastic temporal evolution (Figure 42.c), and 2) experimental 

SMLM movies generated from real live-cell SMLM acquisition.  

For the simulated dynamic SMLM movies, the structural dynamics are more complex 

than in the semi-simulated movies. This is because in the molecular dynamics simulation, each 

filament has its own stochastic movement. Different parts of the same polymer can move in 

different directions, therefore there is relatively little correlations between movements, whereas 

in the movies generated by deformations and superposition of two static images there are more 

correlations. In the molecular dynamics, the motions are more individual, whereas in the 

superposition movies the movements are more collective.  

Regarding the experimental SMLM movies, each time point is generated using X frames 

of SMLM acquisition in live cells. In our current experimental setup, the value of X can be 30, 

100, or 500 (Figure 37 top and middle rows). 

II.3.4. Results for synthetic microtubules  

I first trained and evaluated 3D ANNA-PALM model on semi-simulated SMLM movies 

of microtubules and then tested the model on the simulated dynamic SMLM movies, 

benchmarking the testing results against the original 2D ANNA-PALM model. For visual 

inspection of reconstruction quality, I generated kymographs. By plotting pixel intensities along 

a defined line across multiple frames, kymograph illustrates the structural changes over time.  

Figure 45 presents the results of the comparisons using kymographs. Through this tool, 

we can observe the capabilities of the 3D ANNA-PALM model in comparison to the original 

2D ANNA-PALM model. The continuous lines on the kymographs, represent the dynamic of 

microtubules. When there is a clear, continuous line in the kymograph, it indicates a successful 
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recovery of the microtubule dynamics, because the simulated motions are smooth and did not 

involve jumps. 

As shown in  

Figure 45.a, the input data is sparse and does not reveal the dynamics of microtubules. 

This makes it challenging to understand the structural dynamics of the microtubules in live cells. 

As shown in Figure 45.c, d, the 3D ANNA-PALM model consistently recovers the 

microtubule structure at each time point, while the 2D model reconstructions exhibit artifacts. 

This is because 3D ANNA-PALM extracts the spatial-temporal features. The kymographs 

confirm the enhancement of performance by incorporating temporal information and are 

relevant to the results of my first experiment that mentioned on page 119. 

As shown in Figure 45.c, the super-resolution movie reconstructed by 2D ANNA-

PALM model is jittery. Not only the reconstructed microtubules appear distorted, not consistent 

their characteristic shape, but there are also artifacts present in the reconstructions.  

As shown in Figure 45.d, the 3D ANNA-PALM model outputs a more refined super-

resolution movie. At each time point, the motions in these reconstructions are considerably 

smoother, and the shapes of the microtubules are generally well reconstructed 

The kymographs further confirm the value of incorporating temporal information, which 

aligns with the observations made in my first experiment detailed on page 119. 

However, while the 3D model offers significant improvements over the 2D 

reconstructions, it is not flawless. The model could be refined in the future, and this will be 

detailed on page 142. 
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Figure 45. Super-resolution movie reconstruction using 2D vs 3D ANNA-PALM  

Each panel of this figure shows 5 time points of the data, and the kymograph along the yellow line. (a) 

The input of the models. (b) The ground truth. (c) The reconstruction of the original ANNA-PALM. (d) 

the reconstruction of 3D ANNA-PALM. Each FoV measures 2.56µm *2.56µm. 

 

II.3.5. Quantitative analyses  

 We expect to reconstruction quality as function of localization rate and the velocity 

could be a valuable insight for the super-resolved movies reconstructed by 3D ANNA-PALM. 

However, in practice, we need information about the velocity and localization rate of 

experimental SMLM movie in live cells.  

Estimation of the localization from experimental data 

I computed the localization rate by counting localization number in each time point of 

the SMLM experimental movie. Nevertheless, determining the velocity is challenging due to 

the absence of a super-resolution movie. The average localization rate ranges between 110Hz 

to 380Hz per FoV of 2.56µm*2;56µm. 

Estimation of the velocity from experimental data 

I came up with a method to approximate the velocity. We acquire one widefield image 

after every X low-resolution SMLM frames (Figure 46). For instance, if X equals 100 frames 

and the exposure time for each low-resolution frame is 30ms, we can obtain one wide-field 

image every 3 seconds. We can then use this widefield movie to make an approximate 

estimation of the velocity. I manually measured the velocity of microtubules in the experimental 

data. In the widefield movies, I plotted the intensity profile along a line perpendicular to the 

fast-moving microtubules in each image. I then measured the displacement of the peak of the 

profile intensity over time. Given the time interval between two images, the velocity could be 

calculated. The maximum measured velocity ranged from approximately 60 to 90 nm/s. 
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Figure 46. Widefield movie acquisition. 

 

This figure illustrates the SMLM imaging in live cells where acquisition of widefield images alternates 

with acquisition of a number X of single molecule images.  

Based on this information, I varied the average velocity of synthetic microtubules in the 

testing data from 0 to 220 nm/s and the average rate of single molecule localization from 30 to 

1 600 Hz per FoV of 2.56µm*2;56µm. I then quantitatively assessed the reconstruction quality 

as function of those two factors, using the MS-SSIM metric.  

As shown in Figure 47.b, the reconstruction quality depends on both the localisation 

rate and the velocity. Over all, the reconstructed super-resolved SMLM movies are in much 

better agreement with the ground truth than the sparse SMLM movies. When the localization 

rate increases, each time point of the sparse SMLM movie is better sampled, leading to 

improved reconstruction quality. Conversely, when the velocity increases, the temporal 

information across consecutive frames in the input movie becomes more ambiguous, resulting 

in decreased reconstruction quality. According to MS-SSIM, for realistic parameter ranges 3D 

ANNA-PALM 3D produces reconstructions can be consider as good quality.  

 
Figure 47. Quantifying ANNAPALM 3D reconstruction quality as function of velocity and 

localization rate. 

In this figure, the x-axis represents the localization rate (in Hz per 2.56µm*2;56µm), while the y-axis 

represents the velocity of the moving structure (in nm/s). The color scheme of the graph indicates MS-

SSIM values, where green represents good reconstruction quality, and red indicates poor reconstruction 
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quality. Panel a shows the MS-SSIM of sparse movies and ground truth movies, panel b refers to the 

MS-SSIM between super-resolution movies reconstructed by 3D ANNA-PALM and the ground truth. 

The velocity and localization rate of experimental data in live cells are in the rectangular region on the 

figure. 

II.3.6. Preliminary results for experimental data of 

microtubules  

This section presents the preliminary results of experimental SMLM movies of 

microtubules reconstructed by 3D ANNA-PALM model. As mentioned above, the training data 

consisted in hybrid-simulation-experimental sparse and dense SMLM movies (see Figure 44) 

and the testing data consisted in experimental SMLM movies. Each time point of the hybrid-

simulation-experimental and experimental movies is generated from 50 frames of low-

resolution frames from SMLM acquisition, corresponding to 1.5 seconds.  

However, while testing the trained 3D ANNA-PALM model on the experimental data, 

the results proved sub-optimal (see Figure 48). The yellow arrows in the figure indicate the 

hallucination of the reconstruction.  
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Figure 48. Preliminary results of live cell SMLM reconstruction using 3D ANNA-PALM 

(a) and (c) show time points of input sparse SMLM movie, while (b) and (d) display the 3D ANNA-

PALM reconstruction. Each time point corresponds to 1.5s. Scale bar: 0.5 µm. 

Considering the quantitative results on simulations shown above (page 130), this poor 

reconstruction quality is most likely due to the non-consistency of velocity and localization rate 

between training and testing data: the model has been optimized for the conditions it was trained 

on, thus, the trained model might struggle to accurately reconstruct movies. More work is 

needed to diagnose the reasons and improve the performance of 3D ANNA-PALM on 

experimental data. We will discuss this in more detail on page 142. 
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III. Discussion 

 My Ph.D. research focuses on deep learning augmented SMLM reconstruction, aiming 

to improve the robustness of ANNA-PALM and extending it to reconstruct super-resolution 

movies in live cells. In this section I will discuss the results, their limitation as well as some 

perspectives. 
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III.1. ShareLoc platform  

As discussed above on page 51, ShareLoc platform makes SMLM data publicly 

available, ensuring the FAIR principles (Findability, Accessibility, Interoperability and 

Reproducibility) in several ways: built upon Zenodo, ShareLoc automatically generates a DOI 

(Digital Object Identifier) when users upload data, ensuring the accessibility and findability. 

Additionally, the platform facilitates the assignment of metadata when uploading SMLM data, 

ensuring the interoperability and reproducibility.  

ShareLoc promotes collaboration within the biological research community, since 

researchers can visualize, reuse, and reproduce SMLM data, aided by annotated protocols. 

Furthermore, the platform could enhance the developments of analytical tools like deep 

learning-assisted methods for SMLM data, as introduced on page 40.   

The ontology-based tagging system for metadata on ShareLoc allows to easily annotate 

the SMLM data (page 52). Based on this feature, ShareLoc could help search for structural 

homologs. By leveraging the hierarchal relationships among tags, we can potentially connect 

the related SMLM data. This could facilitate the research of relevant data.  

Another perspective is to extend the platform beyond the storage and visualization 

features. We could integrate plugins to provide computational tools, for example, to retrain 

models such as ANNA-PALM or localization algorithms. Researchers could benchmark, 

analyze, and derive insights all within the platform, without downloading large SMLM datasets.  

There are serval other generic open-access data repositories, such as FigShare 

(http://figshare.com/) Dryad (White et al., 2008), and IDR (Williams et al., 2017) etc. A 

potential avenue for future development could involve collaboration between these platforms 

pooling their resources and minimizing data redundancies. This collaboration could minimize 

redundancy of data stored on different servers. 
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III.2. Enhancing the robustness of 

ANNA-PALM 

III.2.1. Summary 

In deep learning methods, large and diverse training data enable the model to generalize 

the underlying distribution of the data (Goodfellow, Bengio and Courville, 2016). As outlined 

on page 71, depending on the different experimental conditions and the acquisition protocols, 

the SMLM data distribution, such as resolution or morphology of biological structures can be 

changed.  

Data sharing allows to increase the diversity and the quantity of the training data. In this 

thesis, I have demonstrated that re-training ANNA-PALM on larger and more diverse data 

significantly improves model robustness (page 72). Especially important is our observation that 

when the test data is obtained under different experiment conditions, the retrained model 

outperforms the model trained on homogenous data. 

III.2.2. Adding evaluation metrics 

As mentioned on page 74, I used MS-SSIM to assess the quality of image predicted by 

ANNA-PALM. While MS-SSIM remains our primary metric, alternative evaluations (Maier-

Hein et al., 2023) such as colocalization analysis (Dunn, Kamocka and McDonald, 2011) and 

IoU (Intersection Over Union) could be applied to provide a more complete assessment of 

reconstruction quality.  

Colocalization analysis allows to measure the spatial correlation between two channels 

of a dual-color image, determining if there is a significant, non-random overlap between two 

channels. In practice, colocalization can be used to assess the consistency of the ANNAPALM 

reconstruction with the ground truth image. 

The output of the model has different properties in terms of brightness, contrast and 

intensity value of pixels, etc. Consequently, to compare the IoU of the image generated from 
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model to the ground truth, it is necessary to segment images into binary form. As illustrated in 

Figure 49, the IoU is calculated by dividing the overlapping region of the ground truth and the 

output by the area of their union.  

 
Figure 49. Illustration of index intersection over union (IoU).  

Image from (Padilla, Netto and da Silva, 2020). 

The IoU index is dependent on the segmentation algorithm. I investigated different 

approaches to segment the images: Otsu's thresholding method and adaptive Gaussian 

thresholding methods (Otsu, 1979; Sankur, 2004; OpenCV: Image Thresholding, no date), as 

depicted in Figure 50.  

Otsu's method determines the binarization threshold by minimizing the intra-class 

variance of the two groups of pixel intensities. In the adapted Gaussian thresholding method, 

the threshold is a cross-correlation with a Gaussian window of the neighborhood of a pixel 

minus constant C. In the future, we could leverage IOU to assess the reconstruction quality of 

ANNA-PALM models. 
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Figure 50. Different segmentation algorithms yield different IOU scores.  

The images on the left side represent the ground truth, and on the right side are ANNA-PALM 

predictions. The upper panels display the original images; the middle panels display segmentations 

obtained by Otsu's thresholding method, and the lower panels show segmentations obtained by adaptive 

Gaussian methods. 

III.2.3. Transfer learning 

In order to save computational cost during the training phase, future work could also 

leverage transfer learning (Pan and Yang, 2010) or online training (Castro et al., 2018):  
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Transfer learning involves fine-tuning a pre-trained model for a similar yet distinct task. 

This is based on the observation that early layers in deep neural networks capture generic data 

representations, while the later layers are more specific to the task (Yosinski et al., 2014). In 

practice, the early layers of the neural network are “frozen”, meaning the parameters are held 

fixed after training on a first data set. The later layers are updated during training on a second 

data set. Fine-tuning the later layers of a pre-trained model enhances the performance for a 

particular task. The pertaining allows the model to reach better performance faster on the second 

data set than if it was trained from scratch. 

For example, if one wants to train ANNA-PALM to reconstruct dense SMLM images 

of microtubules with a new drug treatment, instead of training the model from scratch, we could 

use a model pre-trained on data shared on ShareLoc (as discussed on page 137) and fine-tune 

the later layers to enhance the performance with much fewer training iterations. 

SMLM data collection expends when users upload new data on ShareLoc. We could 

pre-train a more generic model that can handle many different types of structures and conditions 

on this dataset. Ideally this pre-trained model evolves continuously while the training data 

becoming larger. This could be achieved by leveraging online training.  

With online training, as fresh data emerges on platforms like ShareLoc, we do not need 

to retrain the model from scratch. The online learning allows models to learn new task without 

storing the old data (Castro et al., 2018). When new data comes in, the model’s parameters are 

updated based on the new data alone. However, the model may forget features learned from the 

previous data since it is always updating based on the newest data.  

In the future, I intend to leverage transfer and online learning, with a focus on 

determining the best training conditions that facilitate the integration of new data while 

retaining important features learned from prior datasets.  
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III.3. Extending ANNA-PALM for live 

cell imaging 

I have extended the ANNA-PALM model by using a 3D CNN-based architecture. This 

extension aims to reconstruct high-quality super-resolution SMLM movies in live cells, thereby 

capturing structural dynamics. The model consists of a conditional GAN (cGAN), where both 

the generator and discriminator are conditioned on the input data. 

I simulated training data by overlaying two deformed dense SMLM images from either 

synthetic or experimental images in fixed cells. For synthetic microtubule images, results show 

that adding temporal information as a third dimension yielded much better reconstruction 

quality compared to the original 2D ANNA-PALM model.  

Based on the synthetic microtubule data, I then quantitatively investigated the 

reconstruction quality as function of velocity of the moving structures and the localization rate. 

The reconstruction quality was evaluated using the MS-SSIM metric. The results indicated that 

the reconstruction quality increases when the structures move slower and when the localization 

rate is high. In order to determine the realistic range of these parameters for the experimental 

data, I computed the localization rate from experimental live-cell SMLM data and manually 

estimated the velocity from the widefield images alternating with the low resolution single 

molecule images. 

Building on these results, I then applied the 3D ANNA-PALM model to real-world 

SMLM data of microtubules in live cells. I applied the same training strategy, where the model 

was trained on dynamic simulations obtained from experimental SMLM images of 

microtubules in fixed cells. However, the reconstruction quality did not meet expectations 

despite its potential demonstrated for synthetic microtubules data. To address this and to further 

refine the model, future work could focus on the following areas:   

• Refining the dynamic simulations (page 143) 

• Incorporating widefield images (page 144) 

• Optimizing the use of temporal information (page 144) 

• Validating 3D ANNA-PALM on live cell experimental data (on page 145)  
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Once we have validated the 3D ANNA-PALM on SMLM data of microtubules in live 

cells, we could further enhance the model for more reliable and more general biological 

applications by: 

• Estimating the reconstruction uncertainty (page 147) 

• Training and testing on different biological structures (page 148) 

III.3.1. Refining the dynamic simulations  

As outlined on page 123, the dynamic simulation of semi-simulated SMLM movies is 

based on the deformed, overlaid fixed-cell images. However, when I applied similar 

deformations to generate hybrid-simulation-experimental SMLM movies, the dynamics seems 

to be insufficient. Thus, the simulation settings, such as velocity, localization rate and the 

deformation, could be further investigated, in order to generate more realistic dynamics. 

Furthermore, a more sophisticated approach of generating dynamic ground truth super-

resolution movies may help the model to output more accurate reconstructions. For this purpose, 

we propose to leverage an adversarial deep learning based approach. As depicted in Figure 51, 

we could use a cGAN to generate an SMLM movie using a single experimental dense SMLM 

image in fixed cells as input. The generator would use a recurrent U-net structure. The output 

of the network, a super-resolved movie, is then transformed into a low-resolution movie. This 

can be achieved either by a simple Gaussian blur or a neural network predicting the low-

resolution image from the super-resolution image (Ouyang et al., 2018). Then the discriminator 

distinguishes if the low-resolution movie is similar to the real-world widefield movie. The 

reconstructed super-resolution movies could serve as the ground truth for training data and 

should exhibit complex dynamics consistent with the dynamics observed in widefield movies.  
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Figure 51. A proposed GAN strategy to simulate more realistic dynamics. 

This Figure shows a potential neural network to generate the SMLM movies from experimental dense 

SMLM image (t1) in fixed cells. The generator consists in a recurrent U-net and a deep neural network 

that outputs low-resolution movie (top). The discriminator distinguishes if the low-resolution movie is 

similar to the real-world widefield movie (bottom). 

III.3.2. Incorporating widefield images 

Utilizing widefield images can provide complementary information that can enhance 

the quality of model's output (Ouyang et al., 2018). By incorporating widefield images, the 

model may achieve a better performance for reconstructing biological structures and capturing 

their dynamics. As a next step, we aim to not only use the widefield movies acquired during the 

SMLM data acquisition for training but also as an indicator to evaluate the quality of 

reconstructions (R. Chen et al., 2023).  

III.3.3. Optimizing the use of temporal information 

The temporal dimension is valuable for reconstructing the structural dynamics in live 

cells. Recent advancements in computer vision, particularly vision transformers (introduced on 

page 39), present a promising avenue to explore. The self-attention mechanism in transformers, 

which processes all embedded patches of movie simultaneously, might allow for better 

exploitation of temporal information  (Arnab et al., 2021; Liang et al., 2021).  
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I tried to innovate on the 3D ANNA-PALM model by replacing its U-net based 

generator with a video vision transformer consisting of six transformer encoder blocks. Inspired 

by (Arnab et al., 2021), the input data is embedded as shown in Figure 52. 

 
Figure 52. Illustration of input data embedding. 

This figure shows the input data embedding for the video vision-transformer. The operation is not only 

for the spatial dimensions, but also for the temporal dimensions. Image from (Arnab et al., 2021) 

Preliminary results, as presented in Figure 53, show this simple transformer’s output, 

the structure is overall recovered, however the output exhibits some hallucinations on the 

background.  

Considering CNNs’ ability to handle spatial, a possible perspective for future research 

is an exploration of the introduction of CNNs into vision transformers (Wu et al., 2021). This 

integration may potentially enhance the performance of vision transformers, hence improve the 

reconstruction quality. 

 
Figure 53. Preliminary result for video vision transformer architecture. 

This figure displays the first frame of the movie for the input data (left panel), the ground truth (the 

middle panel) and the model’s prediction (right panel). 



 

 

146 

III.3.4. Validating the 3D ANNA-PALM on live-cell 

experimental data 

As mentioned before, unlike for fixed cell imaging, the ground truth for live cell SMLM 

imaging is absent. Hence validation must be done by other methods. To validate the 3D ANNA-

PALM on live-cell experimental data imaging, we could potentially use specific imaging 

technique such as dual-color imaging in live cells. For example, we could perform dual color 

imaging of alpha and beta tubulins labeled with distinct dyes. These proteins form dimers that 

assemble into microtubules, hence the SMLM images of alpha-tubulin or beta-tubulin are 

essentially identical (Figure 54). For validation, we could separately feed SMLM sparse 

movies of alpha and beta tubulins into our 3D ANNA-PALM model. We could then assess the 

model by evaluating if the super-resolved movies reconstructed by the model are colocalized. 

This could allow us to gain additional insights into 3D ANNA-PALM’s performance. 

 

Figure 54. Dual-color imaging of alpha- and beta-tubulin as a tool for ANNAPALM validation. 

This Figure shows dual-color SMLM imaging of microtubules in fixed cells, with the two channels 

acquired simultaneously. Alpha tubulin was labelled with Alexa 555 (red) and beta tubulin with Alexa 
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488 (green). Scale bar: 1µm. Image from (ZEISS Elyra 7 with Lattice SIM
2
 Super-Resolution 

Microscope, no date). 

III.3.5. Estimating the uncertainty 

As discussed on page 72, the model mismatch is a central challenge for deep learning, 

thus computing uncertainty estimation of model’s output can provide an idea about how much 

we can trust the model's predictions. Uncertainty predictions are of particular importance in  the 

medical domain (Ovadia et al., 2019; Laves, Tölle and Ortmaier, 2020).  

Uncertainties can be estimated using Bayesian Neural Networks (BNNs) (Jospin et al., 

2022). In BNNs, the weights are computed as probability distributions. BNNs rely on Bayes' 

theorem, denoted as:  

𝑝 𝜔 𝐷 ∝ 𝑝 𝐷 𝜔 𝑝(𝜔) 

where 𝑝 𝜔 𝐷  is the posterior probability, representing the probability of the weights 

𝜔 given the data D, 𝑝 𝜔  is the prior of the weights and 𝑝 𝐷 𝜔  is the likelihood representing 

the probability of data given the weights.  

In practice, it is difficult to compute the posterior probability. Thus, I applied dropout 

as a Bayesian approximation (Gal and Ghahramani, 2016). With dropout, random subsets of 

neurons are dropped out at each iteration. This is usually done during training to avoid 

overfitting (Srivastava et al., 2014). However, for the Bayesian approximation, dropout is 

applied during testing. The model's output is then computed as the mean of N forward passes, 

while the uncertainty is computed as the variance of these N passes.  

Figure 55 displays preliminary results from performing N forward passes while using 

dropout during the test stage (N=20). A larger variance indicates higher uncertainty: for 

example, reconstructions at intersections exhibit higher uncertainty. In the future, and upon 

successful validation, we could leverage the uncertainty estimation to better assess whether we 

can trust the model’s prediction. 
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Figure 55. Preliminary result for uncertainty estimation. 

The first panel is the input for 3D ANNA-PALM. The second panel is the reconstruction of the model, 

computed as the mean of 20 forward passes. The third panel represents the ground truth, and the fourth 

panel illustrates the variance of 20 passes. 

 

III.3.6. Moving onto different biological structures 

Our current focus was on the demonstrations of 3D ANNA-PALM on microtubules, 

mainly because they are widely used to test super-resolution methods, and because they are 

relatively simple and highly redundant structures. However, the methodology is not restricted 

to microtubules or filamentary structures. Thus, future work will aim to generalize the model 

to handle different biological structures such as mitochondria or the nuclear pore complex. The 

established training strategy could be adapted to SMLM data of various biological structures.  

III.3.7. Conclusion 

Once the 3D ANNA-PALM model is validated for experimental SMLM data in live 

cells, we believe that our approach may pave the way for super-resolution imaging of dynamic 

structures in live cells.    

 Additionally, benchmarking 3D ANNA-PALM model against methods developed by 

other research groups, such as DBlink (Saguy et al., 2023) will offer insights into the relative 

performance of these approaches. 
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Abstract: 

While microscopy has been a central technique for cell biology since centuries, it has long been limited 

by diffraction to a resolution of ~200-300 nm. As a consequence, many molecular structures, such as 

viruses, nuclear pores, or microtubules were left unresolved. Single-molecule localization microscopy 

(SMLM) offers a high spatial resolution (e.g., 20 nm or better), allowing to resolve biological structures 

at or near the molecular scale. However, SMLM acquisition necessitates acquiring many thousands of 

low-resolution frames, mostly limiting its applications to fixed cells or to structures undergoing slow 

dynamics. To overcome this limitation, Ouyang et al. (2018) developed a deep learning-based approach 

called ANNA-PALM that can reconstruct a super-resolution image from much fewer low-resolution 

frames. However, the original ANNA-PALM method faced several limitations. First, ANNA-PALM 

had only been trained and tested on images from our laboratory. Second, the method exhibits artifacts 

when applied to images obtained using different protocols or experimental conditions than the training 

data. Third, ANNA-PALM had only been demonstrated on fixed cells.  

The objectives of my Ph.D. thesis are to address these limitations by 1) improving the robustness of 

ANNA-PALM reconstructions when applied to data obtained from distinct laboratories and 2) extending 

ANNA-PALM to reconstruct super-resolved time-lapse image sequences for dynamic biological 

structures in live cells.  

1. Improving the robustness of ANNA PALM: an obvious approach to improve robustness is to retrain 

the model using a larger and more varied data set. However, SMLM datasets are not usually publicly 

accessible. To address this, our lab developed ShareLoc, an online platform (shareloc.xyz) that allows 

the gathering and reuse of SMLM datasets acquired by the microscopy community. I first validated the 

platform's functionalities, curated SMLM data, implemented a ShareLoc ontology, and wrote relevant 

documentation. Next, I took advantage of ShareLoc data to retrain ANNA-PALM on larger and more 

diverse images and quantitatively evaluated the image reconstruction quality compared to the original 

model. I demonstrated that the robustness and reconstruction quality of ANNA-PALM significantly 

improved, notably when applied to images of microtubules taken under biological perturbation 

conditions never seen by the model during training.  

2. Extending ANNA-PALM to reconstruct super-resolution movies of moving structures in live cells: 

achieving high-quality super-resolution reconstructions of structural dynamics is challenging. To avoid 

motion blur, each frame of the reconstructed movie is defined from localizations in only a small number 

of consecutive low-resolution frames. This leads to a strong under-sampling of the structures by single 

molecule localization events and does not enable super-resolution. Although ANNA-PALM can 

reconstruct high-quality super-resolved images from under-sampled localization data, training ANNA-

PALM for live cells is more difficult, because a clear ground truth is lacking. The absence of ground 

truth also makes it difficult to assess reconstruction quality. To address these challenges, I first 

developed a method to generate ground truth super-resolution movies from static SMLM images 

obtained from long acquisition sequences. I implemented and tested this strategy using both simulated 

and experimental SMLM images. Second, I extended the ANNA-PALM architecture to 3D data, where 

the third dimension is time, in order to incorporate temporal information. I used simulations of 

microtubule dynamics to quantitatively evaluate the reconstruction quality of this approach in 

comparison with the original 2D ANNA-PALM, and as function of structure velocity and localization 

rates. The results show that incorporating temporal information considerably improves reconstruction 

quality and suggest that high quality live cell super-resolution movies of microtubules can in principle 

be reconstructed with realistic SMLM imaging parameters. Once validated on experimental data, our 

method should help pave the way for super-resolution imaging of dynamic structures in live cells. 

Keywords: [Deep learning, SMLM, Live cell imaging, Super-resolution microscopy] 
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[Reconstruction de microscopie de localisation à molécules uniques par apprentissage 

profond - Amélioration de la robustesse et progression vers l'étude de cellules vivantes] 

Résumé : 

La microscopie optique est une technique centrale en biologie cellulaire, mais la diffraction limite sa 

résolution à environ 200-300 nm. Par conséquent, de nombreuses structures moléculaires telles que les 

virus, les pores nucléaires ou les microtubules, ne peuvent pas être résolues. La microscopie de 

localisation à molécule unique (SMLM) offre une résolution spatiale élevée (20 nm ou mieux), 

permettant de résoudre les structures biologiques à l'échelle moléculaire. Cependant, la SMLM nécessite 

l'acquisition de plusieurs milliers d’images à base résolution, ce qui limite ses applications aux cellules 

fixes ou aux structures à dynamique lente. Pour surmonter cette limitation, Ouyang et al. (2018) ont 

développé une approche d'apprentissage profond appelée ANNA-PALM, capable de reconstruire des 

images super-résolutives à partir d'un nombre beaucoup plus réduit d'images à basse résolution. 

Cependant, la méthode ANNA-PALM originale  présente plusieurs contraintes. Tout d'abord, cette 

méthode présente des artefacts lorsqu'elle est appliquée à des images obtenues avec des protocoles ou 

dans des conditions expérimentales différents des données d'entraînement. Par ailleurs, ANNA-PALM 

n'a été démontrée que sur des cellules fixes.  

Ma thèse vise à résoudre ces limitations : 1) en améliorant la robustesse d’ANNA-PALM pour des 

données issues de laboratoires ou de conditions expérimentales différents et 2) en l’étendant à la 

visualisation super-résolutive de structures biologiques dynamiques dans les cellules vivantes.  

1. Amélioration de la robustesse d'ANNA PALM : notre laboratoire a développé ShareLoc, une 

plateforme en ligne (shareloc.xyz) qui permet la collecte, la visualisation et la réutilisation des données 

SMLM acquises par la communauté de microscopie. Dans un premier temps, j’ai validé les 

fonctionnalités de la plateforme, effectué la curation des données SMLM, implémenté l'ontologie 

ShareLoc et rédigé la documentation. Ensuite, j'ai ré-entraîné ANNA-PALM sur des images en plus 

grande quantité et plus variées partagées sur ShareLoc. J’ai évalué quantitativement la qualité des 

images reconstruites par rapport au modèle original. J'ai démontré une amélioration significative de la 

robustesse et de la qualité des reconstructions par ANNA-PALM, en particulier pour des images de 

microtubules prises dans des conditions biologiques différentes de celles des images d'entraînement.  

2. Extension d'ANNA-PALM à la reconstruction de films super-résolutifs de la dynamique structurelle 

en cellules vivantes : pour éviter le floutage dû à la dynamique des structures, chaque image super-

résolutive du film reconstruit est basée sur un faible nombre d'images consécutives à basse résolution, 

ce qui conduit à un sous-échantillonnage important de la structure, qui restreint la résolution. Bien 

qu'ANNA-PALM puisse reconstruire des images super-résolutives à partir de images sous-

échantillonnées, pour les cellules vivantes l’entraînement du modèle et l'évaluation de la qualité des 

reconstructions sont plus difficiles en raison de l'absence de vérité terrain. Pour relever ces défis, j'ai 

développé une méthode pour créer des vérités terrain super-résolutives dynamiques à partir d’images 

SMLM statiques. J'ai appliqué cette stratégie à des données simulées ainsi qu’à des données 

expérimentales de microtubules. Ensuite, j'ai étendu l’architecture d’ANNA-PALM à des données 3D 

dont la troisième dimension est le temps, afin d’exploiter l'information temporelle. J'ai utilisé des 

simulations de microtubules en mouvement pour évaluer quantitativement la qualité des reconstructions 

par cette approche, en comparaison avec la méthode ANNA-PALM 2D originale, et en fonction de la 

vitesse des structures et des taux de localisation. Les résultats montrent que l'incorporation 

d'informations temporelles améliore considérablement la qualité des reconstructions et suggèrent que 

des films super-résolutifs de grande qualité de microtubules dans des cellules vivantes peuvent en 

principe être reconstruits avec des paramètres d'imagerie SMLM réalistes. Une fois validée sur des 

données expérimentales, notre méthode devrait ouvrir la voie à l'imagerie super-résolutive de structures 

dynamiques en cellules vivantes. 

Mots clés : [Apprentissage profond, SMLM, Imagerie en cellules vivantes, Microscopie haute 

résolutive] 


