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A) Introduction 

A) Introduction 

A.1) Metal nanoparticles and their self-assembled-monolayers 

Nanoparticles (NPs), have emerged as a basis in the field of nanotechnology due to their 

unique physical, chemical, and biological properties.1–3 They are composed of transition metals 

and exist as clusters from two to thousands of atoms. In this thesis, we focus on coinage metal that 

refers to metallic elements in the 11th group of the periodic table, namely gold, silver, and copper. 

These metals have been traditionally utilized in coin minting due to their exceptional malleability 

and ductility.4 Their high ionization potential and positive standard electrode potential make them 

valuable for currency, owing to their resistance to corrosion and oxidation.5 Over time, further 

properties have been uncovered, leading to diverse applications. 

From a biological perspective, silver has demonstrated remarkable efficacy as an 

antibacterial agent as presented in Figure A-1. Its inhibitory effect on bacterial growth is attributed 

to the disruption of the bacterial electron transport chain system. Initially, silver NPs (Ag-NPs) 

form bonds with ions on the bacterial membrane, rich in sulfur components. Subsequently, Ag+ 

ions are released within the bacterial cell membrane, traversing it effectively.6 

 

Figure A-1: Schematic of the antibacterial effect of silver nanoparticles adapted from Xueting Yan 
et al. (2018) 7 

 Therefore, two main mechanisms happen–the disruption of the cell membrane functions–

and–the generation of intracellular reactive oxygen species. Furthermore, the sustained influx of 

silver ions induces oxidative stress within the bacterial cell, thereby increasing the antibacterial 

effect and ultimately leading to bacterial death. A recent study showed the bacterial viability and 
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silver adsorption in Pseudomonas aeruginosa when treated with various concentrations of silver 

nanoparticles and silver ions.7 It demonstrates a concentration-dependent inhibition of bacterial 

growth by both forms of silver as represented on Figure A-2.  

 

Figure A-2: Viability of a bacteria depending on the concentration of silver nanoparticles and 
silver ions adapted from Xueting Yan et al.7 

The modulation of antibacterial effectiveness can be achieved through alterations in the 

shape, size, and concentration of silver nanoparticles. For instance, increasing the surface area of 

nanoparticles can enhance the release of Ag+ ions, intensifying the antibacterial impact. 

Additionally, smaller-sized nanoparticles with a higher surface area exhibit faster Ag+ ion release, 

further enhancing their antibacterial efficacy.8 

Beyond antibacterial properties, Ag-NPs exhibit diverse biological functionalities, 

including antifungal9, antiviral10, antiparasitic11, and anti-inflammatory12 effects as represented in 

Figure A-3. Gold nanoparticles can be used for photothermal therapy13, biocatalysis14, X-ray 

imaging15 , and drug delivery16.  
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Figure A-3: Applications of (a) silver and (b) gold nanoparticles. 

Experimentally, there exist various ways to prepare those NPs. The chemical, physical, and 

biological approach as presented on Figure A-4. Chemically, three components are needed, a metal 

precursor (AgNO3), a reducing agent (NaBH4), and then depending on the wanted size a stabilizing 

agent (Polyvinyl pyrrolidone).17 A chemical reduction then occurs and depending on the agents 

used one can produce rather small or large nanoparticles. For example, sodium borohydride and 

surfactin can be used respectively to produce rather “small” 3-28 nm. For large ones, Ascorbic 

acid produces nanoparticles up to 600 nm.18  The chemical reduction can be used also for the gold 

with Turkevich’s method. Allowing to get spherical gold nanoparticles from 10 to 20 nm. Based 

on the reduction of HAuCl4 as the metal precursor by the use of trisodium citrate which plays both 

agent role.  

This method gives high yields. Physically, the Ag-NP can be made by evaporation-

condensation and laser ablation. However, it requires too much energy and is time-consuming.18 

Biologically, Ag-NP can be produced with an eco-friendly pathway without any toxic by-products 

and without consuming too much energies. They can be formed using algae, yeast, or plants by 

bio-reduction of silver ions into SNP.19  
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Figure A-4: Process of the synthesis of silver nanoparticles adapted from Dhaka et al. (2023)17 

During the process, one can also easily choose the desired shape of the NP. Like spheres, 

pyramids, cubic, bars or prims as represented in Figure A-5.  

 

Figure A-5: Images of silver nanoparticles with different shapes and sizes made by TEM: (A) 
nanospheres, (B) nanoprisms, (C) nanobars and (D) nanowires. By SEM: (E) nanocubes, (F) 
pyramids, (G) nanorice, (H) nanoflowers Adapated from Loiseau et. Al (2019) 20 

The shapes have an impact on the reactivity of the NPs. As the reactivity depends mainly 

on a large proportion of facets. An important feature is that the NPs can be functionalized which 

involves the modification of a nanoparticle’s surface with specific molecules or ligands, gives 
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access to desirable properties, and enables their controlled interaction with the external 

environment. The functionalized NP can for example be used for the immobilization of histidine-

tagged proteins.21 Silver can also be mixed with different metals in order to create alloys, that have 

different applications like catalysis for example.22  

Chemical Functionalization of Nanoparticle Functionalization serves several key purposes; it 

can enhance the solubility of nanoparticles in various solvents and can be amphiphilic, hydrophilic, 

and/or hydrophobic depending on the tail of the ligands that it’s attached to it.23,24, prevent 

aggregation25, create specific interaction sites for targeted binding26, and modify the particle’s 

optical and electronic properties.27 In essence, the functionalization of NPs can be used to tailor 

specific properties as discussed before. NP can be bound with amino acids to get a biomedicine 

application for example.28 Some recent studies show also an interest in the functionalization of 

aromatic compounds.29  Here we focus on the study of sulfur compounds in NPs functionalization 

due to their strong covalent bonds with gold and silver.30,31 

Sulfur in Nanoparticle Functionalization Sulfur atoms have six electrons in their valence shell 

and are highly potent to form stable compounds, particularly with transition metals, where the 

formation of metal-sulfur bonds is both energetically favorable and kinetically stable. One sulfur 

group that is used is the thiol (-SH) which are characterized by the presence of a sulfhydryl group, 

a functional group consisting of a sulfur atom bonded to a hydrogen atom. When thiols are exposed 

to the surface of a metal there is a formation of thiolates passing from R-SH to R-S-Metal, notably 

gold and silver, they form self-assembled monolayers (SAMs), which are highly ordered, densely 

packed layers of molecules attached to the metal surface. Thiolate-metal bonds are particularly 

strong due to the formation of a stable covalent bond between the sulfur atom and the metal atom 

on the nanoparticle surface. This robust interaction enables the creation of stable and 

functionalized nanoparticle systems.  

Sulfur's Role Across Various Fields The relevance of sulfur-based functionalization extends 

across a wide range of fields, each showing the unique interactions between sulfur and 

nanomaterials for distinct purposes. 

In biomedicine, for example, the functionalization of nanoparticles with sulfur-containing 

compounds has been important in the development of targeted drug delivery systems, bioimaging 

agents, and biosensors. Functionalized nanoparticles can navigate biological barriers, recognize 
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specific biological targets, and respond to biological stimuli, thereby enhancing the efficacy of 

therapeutic agents while minimizing systemic side effects.32 

For catalysis, sulfur-functionalized nanoparticles are employed as catalysts due to their 

high surface area-to-volume ratio and the capacity for surface chemical modification. The presence 

of sulfur-based ligands can influence the electronic properties of the metal core, thereby enhancing 

its catalytic activity. The silver nanoparticles embedded in the sulfur-functionalized sponge act as 

a catalyst. For example, in the reduction of 4-nitrophenol to 4-aminophenol, the presence of silver 

nanoparticles speeds up the reaction.33  

Sulfur-functionalized nanoparticles have also found significant applications in the 

development of chemical and biological sensors. The thiolates can be used to detect specific 

analytes, which are measurable changes in the optical, electrical, or magnetic properties of the 

nanoparticles. These changes allow for sensitive and selective detection.34 

In summary, the functionalization of nanoparticles using sulfur-based chemistry is a 

versatile and powerful tool in nanotechnology. The ability of sulfur to form strong and specific 

bonds with metals, coupled with tunability, provides a platform for the design of advanced 

nanomaterials. The applications of these materials are diverse and impactful, with their use in 

biomedicine, catalysis, and sensing. As research progresses, the scope of sulfur in nanoparticle 

functionalization continues to expand, paving the way for new innovations in materials science 

and technology. 

Introduction to Self-Assembled Monolayers (SAMs) Self-assembled monolayers (SAMs) 

represent a class of ordered molecular assemblies that form spontaneously on surfaces by the 

adsorption of an active surfactant or molecule.35 This self-assembly process is driven by a balance 

of intermolecular forces and interactions with the substrate. SAMs are of great scientific and 

technological interest due as said before to their ability to form well-defined, functional surfaces 

with nanometer (nm) precision.36 Understanding the principles of SAM formation is critical for 

designing surfaces with specific properties for applications in sensor technology, catalysis, and 

biocompatible coatings, among others.37 

Spontaneous Organization The spontaneous organization of molecules into SAMs is essentially 

an energetically favorable process that occurs when molecules with a specific headgroup that has 
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an affinity for a particular substrate are introduced to that substrate under appropriate conditions. 

Molecules capable of forming SAMs have a tail group, which usually consists of an alkyl chain, 

and a headgroup, which interacts with the substrate. One of the main specificities of SAMs is their 

self-limiting growth; the formation of the monolayer stops once a single layer has formed. This 

characteristic is due to the saturation of available bonding sites on the substrate's surface and the 

equilibrium established between the adsorbed molecules and those in the surrounding phase (liquid 

or gas). This results in a monolayer with a uniform thickness that is determined by the length of 

the molecule's tail group.38 

The definition of the assembly is based on Wood’s notation.39 Where the adsorbate unit cell 

depends on the substrate unit cell. They are defined by two vectors b1 and b2 that are based on the 

vectors of the unit cell a1 and a2 where in the fcc (111) we have |𝑎!| = |𝑎"| and the assembly is 

written as #|$!||%!| × |$"||%"|%𝑅%&'() where 𝑅%&'() is the one from 𝑎! and 𝑎". For the sake of 

comprehension let’s give an example. For gold surfaces capped with alkythiolates, it is known that 

one of the most stable assembly is the (√3 × √3)𝑅30°, which we will call the 33 until the end of 

the study.40 Where |𝑏!| = √3|𝑎!|		and |𝑏"| = √3|𝑎"| with and 𝑅%&'() of 30° as represented on 

Figure A-6. This is how we define what we call the superlattice or the adsorbate unit cell.  

 

Figure A-6: Schematic of the difference between the surface and the adsorbate unit cell for gold 
capped with thiolates-SAMs. a1 and a2 corresponds to the unit cell vectors and b1 and b2 to the 
adsorbate vectors.  

Moreover, for gold the 33 is not the only one that has been found. A competition between 

the 33 structure and the 𝑐(4	 × 	2) which is accompanied by an important reconstruction of the 
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surface.40 Gold atoms are going out of the surface which means that there is reactivity occurring 

where there is the breaking of their bond followed by the formation of new ones with sulfurs as 

depicted in Figure A-7. It forms what we call staples.  

 

Figure A-7: STM images of (a) 33 decanethiol-SAM lattice and (b) c(4x2) hexanethiol lattice 
adapted from Vericat et al. (2010)40  

Nevertheless, one should be careful about the length of the alkane-chain. Lin tang et al. 

found that for methane and butane thiolates no trace of 33 is found but at low temperatures, it is 

the (3 x 4) assembly that is covering the surface.41 By annealing the temperature until 330K this 

assembly is totally replaced by a stripe phase where Au-adatoms are formed (“staples”), a binding 

between CH3-S-Au-S-CH3 but there is no trace of 33 superlattices. In any cases, the total coverage 𝜃* is the same for the three assemblies with a value of 0.33.  

 For the silver with a not-excessive concentration of alkyl-thiolates the (√7 × √7)𝑅19.1°  
assembly is found. Nevertheless, when one increases the concentration of alkyl-thiolates we have 

a reactivity happening on the surface called sulfidation which creates an Ag2S core-shell on the 

NP as presented in Figure A-8.42 
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Figure A-8: XANES spectrum of silver nanoparticles capped with R-S. Showing both assembly 
that are formed during the capping. Adapted from Marchioni et al. (2020)42 

 

Driving Forces Behind SAM Formation Several intermolecular and surface forces drive the 

formation of SAMs. These forces govern the ordering, orientation, density, and overall stability of 

the monolayer. One of the strongest interactions involved in the formation of SAMs is covalent 

bonding between the headgroup of the assembling molecule and the substrate. These metal-sulfur 

bonds are robust and result in highly stable monolayers. 43 The tail groups of the SAM-forming 

molecules, being long hydrocarbon chains, typically engage in van der Waals interactions, which 

include London dispersion forces and dipole-dipole interactions. Though individually weak, these 

forces collectively play a significant role in the lateral organization and packing of the molecules 

within the monolayer.43 

Hydrophobic Interactions: One can use hydrophobic alkyl chains to avoid contact with polar 

solvents contributes to the self-assembly process. When SAMs form on substrates immersed in a 

solvent, the hydrophobic tails aggregate to minimize their exposure to the solvent, while the polar 

or reactive headgroups interact with the substrate. These hydrophobic interactions drive the 

vertical orientation of the molecules and are key to forming a dense, ordered monolayer.44 

Electrostatic Interactions: For SAMs forming on charged or polar substrates, electrostatic 

interactions can also be influential. Molecules with charged or polar headgroups can be attracted 
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to a substrate with opposite charge or polarity, leading to an ordered arrangement of the molecules 

on the surface.45 

Hydrogen Bonding: In some cases, hydrogen bonding can contribute to the organization and 

stability of SAMs. This is particularly relevant when functional groups capable of forming 

hydrogen bonds are present in the headgroups or at the terminal end of the tail groups.46 

Thermodynamics and Kinetics of SAM Formation The thermodynamics of SAM formation are 

governed by a decrease in free energy associated with the process, making it spontaneous. This 

decrease in free energy comes from the various interactions described above and can include 

enthalpic and entropic contributions. The kinetics, on the other hand, describe the rate at which 

SAM formation occurs. Factors influencing the kinetics include the concentration of the 

assembling molecules, the temperature of the system, and the nature of the substrate. Kinetic 

barriers may need to be overcome for the formation of well-ordered SAMs. For example, the initial 

adsorption of molecules onto the substrate can occur in a disordered way. With time, thermal 

motion allows the molecules to reorganize into a more thermodynamically stable, ordered state. 

This process is often referred to as "annealing" in the context of SAMs and can result in increased 

crystallinity and better-defined structural properties.47 

Structural Considerations The final structure of a SAM is influenced by the intrinsic properties 

of the assembling molecules and the substrate, as well as the conditions under which self-assembly 

takes place. The length and flexibility of the tail groups, the size and reactivity of the headgroups, 

and the cleanliness and crystallography of the substrate surface all factor into the resultant SAM 

structure. Furthermore, environmental conditions, such as solvent, temperature, and atmosphere, 

play roles in the quality of the SAMs formed. Through manipulations of these variables, 

researchers can exert control over the SAM properties, tailoring the monolayers for various 

specific applications. The precise control over the interfacial properties offered by SAMs is one of 

the key reasons why they have become a fundamental tool in nanotechnology and surface science. 

The rich interplay between molecular interactions, surface affinities, and assembly conditions has 

made the study of SAMs a dynamic field of research, revealing fundamental insights into 

molecular self-assembly processes. As we move forward to examine the diversity among SAMs 

and their functional capabilities, it becomes clear that the capacity to tune these interfaces has 



A.1) Metal nanoparticles and their self-assembled-monolayers 

  
 

17 

profound implications for the advancement of nanotechnology, particularly in the area of 

nanoparticle functionalization. 

Different Types of SAMs To fully understand why thiolates hold in the self-assembled 

monolayers (SAMs) formation an important role, it is crucial to first explore the broader landscape 

of SAMs, their diverse chemical structures, and the resulting properties which influence their 

selection for specific applications. Different types of SAMs differ in their chemical nature, 

stability, ease of formation, and their potential to modify nanoparticles. 

Amine-Based SAMs SAMs containing amine groups at their terminal end can be adsorbed onto 

various substrates, forming either electrostatic or covalent bonds depending on the substrate 

material. Amine-based SAMs are often used on gold surfaces, where they can form relatively 

stable layers. However, they do not provide the same level of stability as thiolate-gold bonds. On 

the other hand, amine-based SAMs have found significant use compared to thiolates-SAMs as they 

have a greater resistance to oxidation.48 

Thiolates-SAMs Thiolate-based SAMs on gold are not only stable but also exhibit ease of 

formation. They can assemble from either solution or gas phase, and the process can be effectively 

controlled to yield well-defined monolayers with desirable properties such as controlled thickness, 

terminal functionality, and uniformity. Moreover, as said before the densely packed property of the 

SAM is led by the Van-Der-Waals forces that are on the alkyl-chain as presented in Figure A-9.  

 

Figure A-9: schematic of the reaction between alkyl-thiolates and gold surface. 
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The tail group is a site that can be reactive – depending on its composition – and that can either 

bind itself to other surfaces (or nanoparticles). A crucial part as it gives the specific desired 

solvability of the nanoparticles.  

Synthesis and Characterization of Thiol-SAMs Building upon their unique properties, 

the synthesis of thiol-based SAMs is relatively straightforward, involving the immersion of the 

metal substrate into a solution containing thiol molecules. The solvent not only serves as a medium 

for the thiols to reach the surface but also acts to solvate the alkanethiol chains and promote an 

ordered assembly as the SAM forms. The process can take anywhere from a few minutes to 24 

hours, depending on the desired quality and thickness of the SAM, and usually at room 

temperature, although temperature can be used to control the kinetics of SAM formation.  

 However, the conditions such as solvent type, concentration, temperature, and time, need 

to be optimized for the formation of a well-ordered SAM. Upon adsorption, the S-H bond is 

cleaved, and the sulfur atom binds covalently to the gold surface, resulting in the liberation of 

hydrogen. This interaction not only anchors the thiol to the gold substrate but also leads to the self-

assembly of an ordered monolayer due to the strong affinity between gold and sulfur, which is 

manifest in a high binding energy. It has been found that the binding energy for sulfur in the form 

of bound thiolate was around 42 kcal/mol with no restructuration and 50 kcal/mol with the 

formation of staples.49 The strong binding energy shows the stability of the thiol-gold bond, and it 

is this robustness that gives a monolayer with remarkable thermal and chemical stability. The 

resulting monolayer, characterized by its homogeneity and orderliness, presents a lot of 

possibilities for nanotechnology applications. A well-defined monolayer is crucial for applications 

where a predictable and uniform surface chemistry is required. 

Following synthesis, characterization techniques such as X-ray photoelectron spectroscopy 

(XPS), S K-edge X-ray absorption near edge structure (XANES), and atomic force microscopy 

(AFM) are employed to verify the presence, quality, and order of the SAMs.50  

XPS is a surface-sensitive quantitative spectroscopic technique that measures the elemental 

composition, chemical state, and electronic state of the elements that exist within a material. In the 

context of thiol-SAMs, XPS can be utilized to verify the presence and quantify the coverage of 

sulfur on the metal surface, offering insight into the binding efficiency and integrity of the 

monolayer. The binding energies associated with the sulfur 2p and gold 4f orbitals are of particular 
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interest.51 Shifts in these binding energies can indicate the formation of the gold-thiolate bond, 

which is a definitive sign of successful SAM formation. Furthermore, XPS allows for the detection 

of contaminants or oxidation products that may be present on the SAM as presented in Figure A-

10.30  

 

Figure A-10: Oxidization and reduction of gold surfaces by the use of XPS. Adapted from Xue et 
al. (2014)30 

By analyzing the chemical environment of the sulfur atoms, researchers can distinguish 

between different oxidation states of sulfur, enabling the identification of specific reactivity with 

for example the disulfide binding interactions.52 

XANES allows the study of the stability of thiolates-SAMs on gold or silver. It allows us 

to analyze the coordination environment of sulfur atoms within the thiolate groups, thus 

understanding specific interactions like the formation of Ag@Ag2S core@shell or staple 

formation for gold. It examines absorption near the core-level binding energies. The investigation 

of the adsorption site can also be made as presented in Figure A-11. 
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Figure A-11: XANES spectra of the thiolates-SAMs on Ag (111) surface. (a) corresponds to the 
experimental result compared to (b), (c), and (d) which are the DFT-based spectra for the on-top, 
bride, and hollow sites with variable Ag-S distance and bending angle. Adapted from Marchioni 
et al. (2020) 42 

Shows that the adsorption sites for the thiolate-SAMs on the Ag(111) are the on-top, bridge, 

and hollow with a preference for the former.42  

AFM, on the other hand, provides a topographical map of the surface, offering nanoscale-

resolution images that can reveal the physical structure of the SAM. Through AFM, one can 

determine the uniformity and homogeneity of the monolayer, detect the presence of domain 

boundaries, and measure the thickness and roughness of the SAM.53 A well-ordered thiol-SAM 

typically presents a smooth and uniform surface, while disruptions in the homogeneity may 

suggest incomplete surface coverage or the presence of multilayers. Gao et al. did a measurement 

using AFM of the interaction between ultra-thin thiol SAM and a gold surface. Also, forces can be 

determined using AFM allowing to see the influence of the pH on the strength of S-Au contacts as 

presented in a study by Xue et al. in Figure A-12.30 

a b 

c d 
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Figure A-12: Analyze of the forces/pN for the S-Au bonds for oxidized and reduce gold surfaces 
depending on the pH. Adapted from Xue et al. (2014)30 

Other techniques are also employed in conjunction with XPS and AFM to gain a more 

comprehensive understanding of thiol-SAMs. For instance, ellipsometry can be used to monitor 

adsorption/desorption processes and thickness. Moreover, it can be combined with AFM data 

presented by Solano et al. it can help in calculating the SAM's packing density. Contact angle 

goniometry provides information on the hydrophilic or hydrophobic nature of the SAM, which is 

critical for applications involving interfaces with biological systems or environmental factors.54 

One should also note the importance of infrared spectroscopy (IR) and surface plasmon 

resonance (SPR) in the characterization of SAMs. IR spectroscopy can identify the functional 

groups present on the SAM and confirm their orientation and binding state with the detection in 

the vibrational modes of thiols. SPR, meanwhile, is a sensitive method for studying the optical 

properties of SAMs and can be utilized to monitor the process of monolayer formation in real 

time.55 

The synthesis and characterization of thiolate-SAMs thus represent a synergy between 

simple chemisorption processes and advanced analytical techniques. Through this, researchers are 

able to fabricate monolayers with tailored functionalities and verify their quality and structure, 

ensuring their suitability for the intended nanotechnology applications. As the field continues to 

mature, these synthesis and characterization techniques will undoubtedly evolve, potentially 

enabling even greater control over the properties and performance of thiolate-SAMs. 
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Beyond the stability of the thiolate-gold bond, the chemical versatility provided by the thiol 

group plays an equally significant role for the applications of SAMs. The terminal end of the thiol, 

can be modified with various functional groups, leading to different surface properties to the SAM. 

This enables the engineering of surfaces that are hydrophilic or hydrophobic, positively or 

negatively charged, or reactive towards specific biomolecules. Such versatility is imperative when 

designing nanoparticles for different environments, such as in aqueous biological systems or non-

polar organic solvents. 

For instance, the presence of a carboxylic acid group (-COOH) at the end of a thiol 

molecule provides reactive sites for the conjugation of peptides, proteins, or DNA, turning the 

nanoparticle into a platform for biosensing or gene delivery.56 Hydroxyl (-OH) terminated thiolate 

can be used to anchor polymers or to create surfaces that resist protein adsorption, a feature 

desirable in medical implants.57 Additionally, the thiolate group itself can serve as a synthetic 

handle for the attachment of more complex molecules, such as PEG (polyethylene glycol), 

increasing their circulation time in the bloodstream.45 

In summary, the chemistry of thiols and their interaction with gold surfaces result in SAMs 

that are not only stable but also versatile in their functionality. The strength and specificity of the 

thiol-gold interaction led to well-defined monolayers that are essential for the reliable performance 

of nanotechnology applications. The functional diversity provided by the thiols enables the 

creation of surface chemistries tailored to a wide array of scientific and industrial needs, 

consolidating the position of thiol-based SAMs as a cornerstone in nanoparticle functionalization. 

Advantages of Thiolates-SAMs over Other SAMs Advantages of thiol-SAMs are abundant, as 

expressed before – the strong covalent bond – the van der Waals forces and its head-group allowed 

thiol-SAMs to have specific properties. Nevertheless, it is not only a matter of bond strength. The 

nature of the bond imparts stability to the monolayer, allowing it to withstand a range of 

environmental conditions, including variations in pH, temperature, and the presence of 

solvents.58,59, 60 In contrast for other functional groups used in SAMs, such as silanes, even if they 

are more stable at high temperatures the strength of the bond is lower than thiolate-SAMs with 

weaker attachment and reduced monolayer stability.61  

By contrast, other types of SAMs may require more complex syntheses involving multiple 

steps, stricter environmental controls, or more specialized equipment. For example, silane-based 
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SAMs often demand anhydrous and oxygen-free environments since the presence of water or 

oxygen can prematurely hydrolyze or oxidize the silane, complicating the preparation process.62 

In addition, silane SAMs may require curing at elevated temperatures to achieve optimal adhesion, 

further complicating their use.63,64 Moreover, thiol-SAMs can serve as templates for further 

modification. For instance, the thiol group is an ideal precursor for reactions with maleimides65 or 

disulfides66, allowing for the attachment of more complex molecules or the formation of multilayer 

structures. Consequently, thiol-SAMs can be engineered to present active biomolecules, such as 

enzymes or antibodies, in an oriented manner, vastly increasing the efficiency of biosensors or 

biochips. 

The ability to precisely control the density and orientation of the functional groups on a 

thiol-SAM is another important aspect. By adjusting synthesis parameters or employing mixed 

SAMs (combinations of different thiols), researchers can dictate the spatial arrangement of 

functional groups at the nanoscale, influencing the properties of the surface in a controlled manner. 

In comparison, other SAM-forming groups may not offer the same level of functional 

diversity or may not be as compliant with post-assembly modifications. For instance, silanes have 

a limited scope of functionalizable end groups due to steric hindrance and susceptibility to 

hydrolysis67, while phosphonates, despite having a robust attachment, lack the ease of formation 

of the thiols.68 

The ability to modify the surface of a thiolate-SAM post-assembly extends its advantages 

well beyond the initial surface treatment. This post-functionalization flexibility is important for 

applications that require dynamic or multi-step surface modifications. For example, in drug 

delivery systems, thiol-SAM-coated nanoparticles can be conjugated with targeting ligands and 

therapeutic agents.69 The biocompatibility and ease of introducing bioactive molecules on the 

thiol-functionalized surface also make thiol-SAMs ideal for medical device coatings and tissue 

engineering scaffolds.70  

Additionally, thiol-SAMs can be utilized in fundamental research to study intermolecular 

interactions at interfaces. Due to the control over surface chemistry that thiol-SAMs afford, they 

can act as model systems for exploring the principles governing molecular recognition, adhesion, 

and electron transfer even in recent studies.71,72,73  
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It's worth mentioning that while other SAM-forming compounds can also be used for 

subsequent modifications, the straightforward reactivity of thiols combined with their strong 

adherence to metal surfaces typically makes them the preferred choice for most applications that 

rely on post-assembly modifications. Overall, the inherent chemistry of thiols with metals, their 

simplicity of synthesis, and the multifunctional nature of thiol-SAMs define them as a superior 

choice for the functionalization of nanoparticles and other nanotechnological applications. These 

advantages make thiol-based SAMs indispensable tools in the expanding field of nanotechnology 

and are a testament to their unparalleled utility in both industry and academia. 

 

Challenges and Limitations of Thiol-SAMs Despite the numerous advantages that thiol-SAMs 

offer in nanoparticle functionalization, they are not without their limitations and challenges. As 

with any technology, understanding these restrictions is essential for developing strategies to 

overcome them and improving the overall functionality of these systems. They are then discussed 

in the following. 

1. Desorption of Thiol-SAMs Desorption, the process by which molecules detach from the 

surface they are bound to, represents another significant challenge. Thiol-SAMs can desorb 

from surfaces under certain conditions, particularly when subjected to mechanical stress74, 

exposure to solvents75, or elevated temperatures.76 Desorption compromises the stability of 

the functionalized surface and is of particular concern in applications involving fluidics or 

where the nanoparticles are used in biological environments. The development of more 

complex SAM architectures is one approach to enhance the resilience against desorption.49 

The use of bidentate or multidentate ligands, which bind to the surface at multiple points, 

can reduce the likelihood of desorption. For example, dithiols (with two thiol groups) can 

form more stable SAMs than their monothiol counterparts.77 Crosslinking on the surface 

of the nanoparticles78 or between nanoparticles can also enhance stability.79 

 

2. Assembly Defects and Quality Control Uniformity and defect control in SAM assembly 

are additional challenges. SAMs are typically formed under the assumption that each thiol 

molecule will find and bind to an available gold site in an orderly way. However, in 

practice, the assembly is often imperfect, leading to defects such as pinholes, overpacking, 
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or incomplete surface coverage. These imperfections can adversely affect the SAM's 

physical and chemical properties and can be particularly problematic when monolayer 

perfection is required. For silver, it can lead to the sulfidation phenomena which is 

accompanied by a high concentration of thiols that are creating a core-shell structure of 

silver sulfide on the silver nanoparticles.80 For gold nanoparticles, different assemblies are 

found with the formation of staples that gives enhancement of stability.81 Those phenomena 

are explained in more detail in section B-1. Advances in synthetic chemistry have allowed 

for the creation of thiol compounds with greater purity and uniformity, which has helped 

in reducing defects. Moreover, sophisticated characterization techniques such as AFM, X-

ray photoelectron spectroscopy (XPS)82, and scanning tunneling microscopy (STM)83 

enable researchers to detect and quantify defects in SAMs. By identifying the types of 

defects present and understanding their formation mechanisms, one can fine-tune the 

assembly process to minimize their occurrence. 

 

3. Environmental Sensitivity and Chemical Selectivity Thiolate-SAMs are also sensitive 

to the chemical environment. The presence of specific ions or molecules can interfere with 

the assembly process or affect the monolayer's stability post-formation. For example, 

certain metal ions can displace the thiol from the surface, or catalyze unwanted side 

reactions, leading to degradation of the SAM.84 To overcome this sensitivity, the use of 

protective coatings85 or encapsulation strategies has been proposed. Encapsulation of the 

functionalized nanoparticles within a biocompatible matrix can shield them from harsh 

environmental conditions while still allowing for the intended interactions with the target 

analytes.86 Additionally, the design of SAMs with specific chemical selectivity can prevent 

unwanted interactions.  

 

4. Challenges in Multilayer Formation For certain applications, the construction of 

multilayer SAMs is desirable. However, building subsequent layers on top of an existing 

thiol-SAM can be challenging due to the already-passivated surface. Additional layers may 

not adhere as strongly or may form with less control over the molecular orientation and 

density, impairing the multilayer's performance.87 Approaches to facilitate multilayer 

formation include the use of 'linker' molecules that can bind to the initial SAM and provide 
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functional groups for subsequent layer attachment.79 Layer-by-layer techniques, where 

alternating layers of positively and negatively charged molecules are assembled, offer a 

method for building multilayer structures with more control over the interlayer interfaces 

than for example co-adsorption method.88 

 

5. Integration with Other Materials Lastly, integrating thiol-SAMs with other materials can 

present compatibility issues. For example, thiol-SAMs formed on gold surfaces may not 

interact well with silicon-based electronics or certain polymer matrices.89 Researchers are 

working on developing intermediate layers and surface treatments to enable better 

integration of thiol-SAMs with a wider range of materials. In spite of these challenges, 

thiol-SAMs continue to be a focus of intense research due to their remarkable potential in 

nanoparticle functionalization. By understanding and addressing their limitations, 

researchers can expand the utility of these powerful systems in various technological and 

scientific applications. 

Current Research and Future Directions Recent years have witnessed a significant surge in 

research focused on enhancing the robustness and functionality of thiol-SAMs, which have been 

foundational in the continued advancement of nanoparticle functionalization technologies.90,8 A 

cross-disciplinary approach for chemistry, materials science, and nanotechnology has led to 

innovative strategies to improve the stability, selectivity, and overall efficacy of these SAMs. This 

continued research is critical for the development of next-generation devices across a range of 

fields, including biosensing, catalysis, and molecular electronics. 

Surface Coverage and Binding Efficiency One of the fundamental areas of research pertains to 

the optimization of surface coverage and binding efficiency of thiolate-SAMs. Efficient surface 

coverage is pivotal for the homogeneity and integrity of SAMs. Scientists have been developing 

new quantification methods for surface coverage of self-assembled thiol ligands bound onto 

GNPs.91,92 Such accurate quantification is essential for consistency in applications such as drug 

delivery and biosensing. These quantification techniques, such as those using nuclear magnetic 

resonance (NMR) spectroscopy, are revealing insights into the precise control of thiol-gold binding 

stoichiometry, providing a clearer understanding of the molecular arrangement and allowing for 

more accurate predictions of SAM behavior in various environments.93 
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Thiol-Gold Bond Strength A particularly significant area of research delves into the thiol-gold 

bond itself both experimentally and theoretically.94 Thiol-Au interactions are the cornerstone of 

thiol-SAM stability, yet the exact nature of this bond has been a topic of ongoing debate. Recent 

studies employing advanced spectroscopy and computational modeling have attempted to quantify 

the strength of thiol-gold interactions, aiming to fabricate more robust SAMs.30 Investigations into 

the electronic structure of the thiol-gold interface, for example, may contribute to the development 

of SAMs that maintain their structural integrity even in the presence of competing molecules or 

under extreme conditions.95 

Novel Thiol Derivatives and Multifunctional Ligands A substantial portion of current research 

is aimed at designing novel thiol derivatives that can overcome the intrinsic limitations of 

traditional thiols. Such research includes the synthesis of multifunctional thiol ligands that offer 

multiple points of contact with the metal surface, thus enhancing stability. There is also 

considerable interest in creating responsive thiol-SAMs that can change their properties in reaction 

to external stimuli such as light96, pH97, or redox conditions98, thus opening the door to new 

nanoparticle systems with switchable functionalities. 

Biocompatibility and Biomedical Applications In the realm of biomedicine, the biocompatibility 

of thiol-SAMs is a pressing concern. With the goal of minimizing immune reactions and improving 

the integration of nanoparticles within biological systems, researchers are investigating the 

biofunctionalization of thiolate-SAMs with peptides, proteins, and other biomolecules. This 

research is moving toward creating SAMs that mimic natural biological processes, facilitating 

interactions within the human body.79,99,100 For example, the functionalization with dithiols is being 

studied for the construction of more stable linkages that could withstand the dynamic environments 

encountered in vivo.101 

Environmental Stability Environmental stability continues to be a major area of interest. New 

methodologies are being explored to shield thiol-SAMs from oxidative and thermal degradation.102 

Innovations such as the development of antioxidant-rich SAM formulations that protect against 

oxidative species are being assessed for their efficacy in enhancing SAM longevity.79 

Synthesis Techniques and Scalability On the production side, the scalability of thiol-SAM 

synthesis is a central issue being addressed. Many thiol-SAMs are currently synthesized through 

batch processes that may not be suitable for large-scale production. Researchers are investigating 
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continuous flow synthesis and other scalable techniques that could meet the demands of industrial 

applications.103 Improvements in synthesis methods not only aim to enhance scalability but also 

seek to reduce defects in SAMs, which could greatly improve their reliability and performance in 

real-world applications.104 

Predictive Modeling and Simulation Advanced predictive modeling and computational 

simulations are becoming increasingly integral to thiol-SAM research. These tools are being used 

to predict the behavior of SAMs under various conditions, to design new SAM architectures, and 

to simulate the assembly process, potentially reducing the need for extensive empirical testing. 

Molecular dynamics (MD) using reactive force fields appeared to be the best computational tool 

to simulate such systems and get information on various properties.105,106 ReaxFF is one of the 

methods that is used in order to see the reactivity of gold and silver nanoparticles capped with 

alkyl-thiolates.107 Nevertheless, Machine learning algorithms are also beginning to make their way 

into the field, offering the possibility to create interatomic potential that would be used to do 

simulations on those systems with quantum accuracy at the cost of MD.108,109,110 Those specific 

tools are described in more detail in sections A-2.  

Integration with Emerging Technologies Finally, the integration of thiol-SAMs with emerging 

technologies is an avenue for future research. Developments in two-dimensional materials, such 

as graphene, present new opportunities for SAM applications.111 Additionally, the interfacing of 

thiol-SAMs with silicon-based electronics and other non-metal substrates is an area of ongoing 

innovation, which involves the development of new strategies to create compatible interfaces and 

harness the unique properties of SAMs on these novel platforms.112  

From an overall point of view, thiols-SAM capped on silver and gold are of strong use and 

researchers have still some information to get from them either experimentally or theoretically. In 

this thesis, we investigate the results and limits of the current existing methods and we are starting 

to create a new one that should be more precise than others that already exist using as said 

previously machine learning methods. 

A.2) Theoretical approaches for self-assembled monolayers on nanoparticles 

Different methods exist in order to simulate metallic structures for the prediction of the 

reactivity of SAMs on a metallic surface. For high accuracy, the use of first-principles methods 

like Density Functional Theory (DFT) with periodic boundary conditions is possible using 
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different codes like VASP or GAUSSIAN.113 Such an accurate strategy intends to compute the 

electronic density via an approximation of the Schrodinger equation for many electron systems. 

The main drawback of this method is its cost, as DFT scales poorly with the number of atoms 

considered thus it makes it impractical considering the simulation of nanoscale systems.114 

Nevertheless, DFT- DFT-tight-binding (DFTB) has been introduced to simplify the problem. 

Simplification is introduced in the Hamiltonian as it is used restricting it to a minimal basis set and 

via the inclusion of empirical parameters. From that, DFTB scales more favorably with the number 

of atoms passing from a N3 complexity to N. Thus, it is possible to study larger systems while 

keeping some essential physics of DFT. DFTB still provides information about electronic structure 

properties, a feature not shared by classical force fields. It can be used to study solid-state systems 

and complex nanostructures where a full DFT calculation would require too many resources.115 

Nevertheless, for larger-scale simulation, DFTB has its limit and the use of molecular dynamics 

(MD) becomes necessary.116 MD models interaction between atoms at longer nanoscale capturing 

the dynamics behavior of atoms. It is based on force fields parametrized to reproduce essential 

physical properties without requiring too many resources.117 Moreover, in order to strengthen the 

accuracy of the simulation MD reactive force fields are used.118 Contrary to classical force fields 

which assume fixed bonding configurations and predefined interaction parameters, they allow the 

bond formation and breaking of bonds. It dynamically adjusts the bonding configurations and 

interaction parameters as atoms approach or move apart. 

 

Figure A-13: Schematic showing the limit of each method for the simulation of large systems. 

An important feature when one wants to study the reactivity of thiol-SAMs on metallic 

surfaces as a restructuration of the surface can appear in some cases. ReaxFF is a reactive force 
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field described in more detail in section B) that provides insights into complex mechanisms that 

can occur.119 This thesis focuses on the use of this force field and studies its efficiency to accurately 

describe large nanoscale metallic systems capped with SAM-thiols.  

Furthermore, it is noteworthy to point out that with the advent of AI and machine learning, 

it is now possible to create interatomic potentials from first-principles datasets. This approach 

facilitates the development of accurate models that combine the precision of QM with the 

computational efficiency of molecular dynamics (MD), as illustrated in Figure A-13.120 A key 

advantage of employing machine learning potentials is their flexibility and ability to predict 

specific reactivity—such as staple formation—that may occur during the interaction of thiolate-

SAMs with gold, as described in the previous section.  

A.3) Objectives 

The first goal of the thesis is to use the ReaxFF method in order to see if the method is well 

suited for the study of silver and gold nanoparticles (NPs) capped with alkylthiolates. For silver, 

from experimental studies, only one stable superstructure has been found called the √7𝑥7𝑅19.1° 
(that we will call 77).121 On the other hand, for gold, different superstructures have been found the 

√3𝑥3	𝑅30° (called 33), and the c(4x3) for alkyl-chain longer than butane. The last conformation 

is accompanied by a specific phenomenon favored by gold surface defects - the restructuration of 

the metallic surface gives the formation of staples as represented in Figure A-14.122  

 

Figure A-14: Assemblies found for thiolates-SAMs on gold surfaces. 

 

Staple formation involves the disruption of gold atom bonds, prompting these atoms to 

relocate between two sulfur atoms. To accurately predict this reactivity, careful selection of the 

computational method is essential. As previously mentioned, quantum mechanics (QM) or hybrid 
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QM methods are unsuitable for such large systems, which may include surfaces and nanoparticles 

comprising thousands of atoms. Consequently, molecular dynamics simulations using force fields 

become necessary. However, classical force fields inadequately describe the Ag-S bond, as they 

typically favor hollow adsorption sites, contradicting XANES measurements that show a 

preference for on-top sites.123 Therefore, we have turned to reactive force fields, specifically 

employing ReaxFF to simulate bond breaking and formation during the simulation. This method 

also facilitates surface restructuring, striking a favorable balance between time consumption and 

accuracy. 

Moreover, due to the limit of the current parametrization of ReaxFF (explained in section 

B), a new approach was needed, merging quantum accuracy and MD costs for gold systems. ML 

was the best option as it proved itself to be more consistent than ReaxFF in terms of complexity 

for the reactivity of a small system.  
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B) Study of silver and gold systems using molecular dynamics  

B.1) Computational Methodology  

 As previously discussed, studying theoretically large systems such as gold or silver 

nanoparticles using quantum mechanics (QM) is impractical due to the thousands of atoms 

involved in the simulations. Although more accurate, employing QM for such large-scale 

simulations could take decades to yield initial results. Molecular dynamics (MD), in contrast, 

offers a better approach not only by decreasing the computational cost but also by its ability to 

handle diverse conditions and materials. In this section, MD is first introduced with some 

fundamentals. Following this, we provide a detailed description of a reactive force field known as 

ReaxFF, which is here used in simulations of thiolate-SAMs on silver nanoparticles using the 

LAMMPS software. It allows us to study reactive processes in nanoparticles, like the breaking and 

the formation of bonds, which is challenging for non-reactive classical force fields.  

B.1.a) Classical and reactive Molecular Dynamics 

Basics of Molecular Dynamics Molecular Dynamics (MD) involve the computational modeling 

of atomic and molecular movements over time governed by Newton’s law of motion. It allows one 

to observe the dynamical evolution of systems at atomic resolution, from femtoseconds to 

microseconds. The positions and velocities of atoms are updated iteratively using the force 

equation, �⃗� = m�⃗�, where �⃗� is the force applied, m is the mass, and a the acceleration. Each 

timestep Δt in an MD simulation involves recalculating the forces acting on each atom based on 

their positions and using these forces to update velocities and positions. The choice of  Δt is crucial, 

as too large timesteps can lead to numerical instabilities, while too small a time step can make the 

simulation unnecessarily computationally intensive. It should be adapted to the studied system 

depending on the elements that are considered in the system. The Nyquist theorem suggests that 

to accurately capture the dynamics of the fastest-moving atoms, the time step should be less than 

half the period of the fastest vibrations observed within the system. For more heavy nuclei such as 

gold or silver, 2 fs should be enough, but for lighter ones like hydrogens, carbons, or even sulfur, 

one should consider lowering the value to 0.25 fs to capture all the dynamics of the system. Then, 

for each timestep, the forces of each atom are calculated. From that, their positions are stored, 

allowing them to follow the system and analyze it by calculating different properties at the 

molecular level. For example, structural properties can be calculated from the radial distribution 
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function, giving how density varies as a function of distances or analyzing the different adsorption 

sites. We developed a program allowing us to calculate different properties at any point of the 

dynamics for gold or silver NP capped with thiolates-SAM that is presented in section 3b.  

MD also includes temperature and pressure effects, depending on the ensemble that is set 

up beforehand. Thus, thermodynamics analysis can be performed relative to the stability along 

those intensive properties. From that, it is possible to simulate, for example, the thermalization of 

thousands of atoms for a certain simulation time and study the stability of the thiolates-SAM during 

the dynamics on a nanoparticle like in Figure B-1.  

 

Figure B-1: Schematic of molecular dynamics of a silver nanoparticle capped with thiolates-SAMs 
for 1 ns by the increases of the temperature up to 300 K and a timestep of 0.5 fs 

MD simulations are based on the Hamiltonian equation of motion, where the total energy 

is the sum of the kinetic and potential energy function of momenta (p) and the position (r) as 

defined in equation B-1.  

H(r, p) 	= 	K(p) 	+ 	U(r) (B-1) 

First, the interaction model, also called force field, is chosen to compute the forces acting 

on each atom. Then, the atoms move during a specific time step, which updates the position and 

velocity using Newton’s law. The velocity Verlet algorithm is used to integrate Newton’s law.1 It 

calculated velocities at mid-step and then calculated the positions at the next step. Followed by the 

calculation of the accelerations at the next step from the potential and update the velocities. 
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In MD simulations, different ensembles can be used to model systems under various 

thermodynamic constraints. 

Ensembles and their applications Different ensembles are employed during simulations to 

replicate specific thermodynamic conditions accurately. The microcanonical ensemble (NVE), 

which stands for a constant number of particles (N), constant volume (V), and total energy (E), 

keeps the particles in an isolated system to stay in statistical equilibrium. It does not exchange 

energy or particles with its environment; it is the natural environment for MD.  Then, the canonical 

ensemble, named NVT, kept a constant temperature (T), as presented in Figure B-2.  

 

Figure B-2: Description of different ensembles that are used in MD simulations 

This ensemble requires the use of a thermostat, which gives the desired temperature during 

the simulations. The kinetic energy for N atoms is defined by equation B-2 and depends on the 

Boltzmann constant and the temperature and can be rewritten in terms of velocities. From that, the 

thermostat makes sure that the velocities are giving a constant kinetic energy.  

K = 12Fm+v+"
+

= 32Nk,T 
(B-2) 

One possible way is to rescale the velocities at each timestep by a scaling factor called λ 

which reupdate its value at each timestep. It scales the velocities by multiplying the old velocities 

by a value superior to one when the velocities are too small while, for the opposite situation, by a 
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factor inferior to one. Such scaling factor has a dependence on the desired temperature (T-./0). 
Thus, at each timestep, when the temperature (T.1/2.3)	is larger or lower than the desired one, the 

scaling factor is adapting its value. To well reproduce the rescaling effect on velocities and thus to 

keep the right kinetic energy, different algorithms are used that are called thermostats. Choosing 

the appropriate thermostat is essential for ensuring that the simulation not only reaches but also 

maintains the target temperature while correctly sampling the desired statistical ensemble. The 

Berendsen thermostat uses an exponential decay of the temperature.2  

λ = L1 + Δtτ N T-./0T.1/2.3 	– 	1P 
(B-3) 

It is used during a simulation to initialize the equilibration of the system, allowing to reach 

the wanted temperature easily by relaxing the system by uniformly rescaling the velocities by the 

equation B-3. Where τ is the strength of the coupling between the bath and the system. 

Nevertheless, the Berendsen thermostat does not guarantee the correct sampling of the canonical 

ensemble.3 A correction has been given by Bussi et al. where a stochastic rescaling is made, 

reproducing well the correct energy fluctuation for the kinetic energy matching Maxwell-

Boltzmann distribution.4  

The Nosé-Hoover (NH) thermostat is an extended system which is directly incorporating 

a fictious variable Q with a given mass. The magnitude of Q leads to a control of the temperature 

by an exchange between the heat bath and the system. The thermostat adjusts the velocity scaling 

by incorporating friction and random noise, generating a canonical ensemble. The main drawback 

appears when one is studying a small system using the NH thermostat since it does not reproduce 

an ergodic dynamic. Thus, the correct distributions are not generated.5 The NH chains method has 

been proposed by Martyna et al. and corrects this problem by adding thermostat variables linked 

into a chain to the original system dynamics.6 

The Langevin thermostat ensures that the energy distribution follows the canonical 

distribution.7 It provides a more physically realistic model of the heat bath interaction, including 

random collisions assuring equipartition ergodicity and frictional forces. It is a robust tool that 

combines deterministic dynamics with stochastic elements to simulate the right temperature. It is 

based on a damping term that removes energy from the system and allows it to keep a realistic 
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state without gaining continuous kinetic energy. The random force is used to ensure the system 

does not cool down and freeze. Its stochastic nature allows the system to mimic the random thermal 

motions found in a true thermodynamic ensemble.8 This method is particularly beneficial for 

simulations of biological systems where solvent interactions are significant.9 Despite its ability to 

simulate the canonical ensemble, the Langevin thermostat can lose momentum transfer 

information due to random forces.10 

Correctly setting the thermostat and the ensemble is crucial for simulating physical 

behaviors that closely mirror real-world phenomena, thus enhancing the reliability and 

applicability of simulation results.  

Potential energy and the use of Force fields To keep the right pace of the temperature during the 

MD, we just saw how to handle the kinetic energy, but the total energy is also defined in terms of 

potential energy U(r). Understanding the nuances of potential energy within molecular dynamics 

simulations is necessary for accurately predicting the physical and chemical behaviors of 

molecular systems. It is handled through the use of force fields, which embody two main categories 

of energetic contributions: the intra and inter-molecular ones. Indeed, force fields serve as 

mathematical tools that describe the energy landscape of a molecular system, influencing 

everything from molecular stability to reaction dynamics. They are based either on empirical data 

or first-principle calculations (HF, DFT…) and allow to correctly describe the system. Empirical 

parametrizations rely on experimental data, while first-principle methods like Hartree-Fock (HF) 

and Density Functional Theory (DFT) are based on fundamental quantum calculations (QM) 

principles. The choice between using an empirical or a first-principle force field often depends on 

the specific requirements of the simulation, including the desired accuracy and computational 

resources available. Often, a hybrid approach containing both strategies is used. They enable 

accurate modeling of interatomic interactions, which is crucial for predicting physical and 

chemical properties at a lower cost than QM calculations. They allow for the description of the 

time evolution of bonded and non-bonded interaction between atoms. It is a collection of equations 

and constants that reproduce molecular geometries and energies. A typical potential energy 

function used for force fields is shown here: 
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(B-4) 

The bond Stretching  Ubond, as presented on Equation B-4, is modeled as a harmonic 

potential where k+bond is the force constant for the bond,  𝑟4SS⃗  is the instantaneous bond length, and 𝑟5SSS⃗  

the equilibrium bond length. The energy increases as the bond length deviates from its equilibrium 

value. The Angle Bending  Uangle involves the bending of angles between bonds, k+angle is the force 

constant for bending,  θ+  is the actual angle, and θ5  is the equilibrium angle. This component 

penalizes deviations from the equilibrium angle. For torsional interactions  Udihedral, the energy is 

associated with the rotation about bond axes, where k+dihe represents the torsion force constant, n+ 
is the multiplicity of the dihedral angle, ϕ+  is the dihedral angle, and is the phase shift. For the 

intermolecular interactions, the first term is the van der Waals Forces, modeled using the Lennard-

Jones potential, which includes attractive and repulsive components. The parameters ϵ+7 and σ+7 
represent the depth of the potential well and the finite distance at which the inter-particle potential 

is zero, respectively. The other term is the Coulombic Forces. The electrostatic interaction between 

charged particles, where q7 are the charges,  r+7 is the distance between particles, and is the 

dielectric constant of the medium, adjusting the strength of the interaction. Other terms are also 

taken into account, like the improper term helping to get the correct geometry. It is important to 

set these parameters accurately to ensure the “real” behaviors and predict new phenomena under 

experimental conditions.  

Different force fields have been parametrized and optimized, and their performance is 

dependent on the approximation made (from QM) or experimental data that are used. AMBER 

(Assisted Model Building with Energy Refinement) is predominantly used for biomolecular 

simulations, such as proteins and nucleic acids.11 It has a good balance between accuracy and 

computational efficiency and is known for its well-tested parameter sets for biomolecules and its 

ability to simulate biologically relevant macromolecules effectively. Therefore, AMBER, with its 

robust parameter sets and efficient algorithms, remains a popular choice for researchers focusing 
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on biological molecules, where fast and reliable simulations are crucial. Nevertheless, its 

performance can be less optimal for systems involving novel drug-like compounds as it is not 

necessarily well-represented in its parameters set.12 Other force fields exist with their different 

applications. CHARMM (Chemistry at HARvard Macromolecular Mechanics), which can be used 

for a simulation involving complex biological systems and interactions, including membrane-

protein interactions.13 OPLS-AA (Optimized Potentials for Liquid Simulations-All Atoms) is 

suitable for ionic and organic liquids.14,15 AMOEBA (Atomic Multipole Optimized Energetics for 

Biomolecular Applications) is a more recent force field that uses multipole electrostatics rather 

than just point charges and includes polarizability. It offers enhanced accuracy in modeling 

electrostatic interactions due to its use of distributed multipole analysis, making it suitable for 

complex environments where polarization effects are significant. It increases the accuracy of 

simulations involving complex molecular interactions and specific solvent effects. In AMOEBA, 

polarizability is implemented through a dynamic response model, where the induced dipoles are 

calculated based on the local electric field. This approach allows AMOEBA to adaptively model 

the changing electron distribution around atoms as they interact with their environment, enhancing 

the accuracy of simulating molecular behavior under various conditions.16 The inclusion of 

polarizability in AMOEBA enables the simulation to capture changes in electron distribution that 

occur during chemical reactions. This feature is fundamental for accurately predicting reaction 

pathways and interaction energies, particularly in systems where polarization effects drive the 

chemical dynamics, such as the binding of ligands to metal centers like in our case with thiolate-

SAMs. However, this force field is not reactive and cannot reproduce the formation and the 

breaking of the bonds that can sometimes happen for complex reactivity. Nevertheless, it is widely 

used and gives accurate predictions for biological systems. Nowadays, AMOEBA+, integrates 

advancements such as machine learning potentials, which enhance its predictive power and 

efficiency.17 By learning from a vast dataset of molecular interactions, AMOEBA+ is designed to 

optimize the accuracy of its predictions while managing computational demands more effectively.  

As computational capabilities continue to advance, the development of more sophisticated 

and computationally efficient force fields will likely revolutionize our ability to simulate and 

understand complex molecular phenomena. Ongoing research into hybridization promises to 

bridge the gap between accuracy and efficiency, giving the next generation of molecular dynamics 

simulations. 
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Periodic Boundary Conditions Having discussed molecular dynamics (MD), ensembles, 

thermostats, and force fields, we now turn our attention to an essential concept in MD 

simulations—periodic boundary conditions (PBC). The use of MD allows us to simulate thousands 

of atoms, but for the study of a surface to understand, for example, the stability of our thiolates-

SAM on gold or silver, we cannot have an infinite space it would require too many resources.18In 

practical terms, PBC are essential for simulating bulk properties and extensive systems without 

the computational overhead of simulating an infinite number of atoms. By replicating a small 

section or ‘box’ of atoms across an infinite virtual lattice, PBC allows us to model extensive 

systems with finite computational resources. To counter this, PBC are introduced to replicate a 

specific box in all directions, as presented in Figure B-3. When a particle crosses one boundary of 

the simulation box, it re-enters from the opposite boundary. 

 

Figure B-3: Scheme of the periodic boundary conditions with at its center a silver surface capped 
with thiolates-SAMs 

This not only maintains the density of the system but also ensures continuous and realistic 

interaction dynamics among particles. Particles interact only with the closest periodic image of the 

other particles. The use of PBC can sometimes introduce artifacts, particularly in systems with 

significant surface effects or where the size of the box is comparable to the range of interaction 

forces. Care must be taken to choose a box size large enough to minimize such effects, ensuring 

that the system properties are not unduly influenced by the artificial periodicity. Moreover, to 

ensure all the physics into infinite periodic images of the long-range interactions between particles,  

the Ewald summation is also used.19 
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 For studies focusing on surface phenomena, such as the stability of thiolate-SAMs on gold 

or silver, PBC allows us to explore surface interactions under realistic bulk conditions. This 

approach is critical for accurately assessing how SAMs organize and bind to surfaces. While PBC 

are a powerful tool for simulating endless space, they must be applied with precociousness. The 

choice of boundary conditions, box size, and the method of interactions between periodic images 

must be carefully considered to avoid physical problems, such as phase behavior and diffusion 

characteristics. 

Molecular Dynamics set-up To initiate a molecular dynamics (MD) simulation, the first step 

involves selecting an appropriate interaction model, such as classical force fields like AMBER, or 

polarizable force fields such as AMOEBA or ReaxFF. Then, the coordinates of each atom are 

defined within a simulation box, configured to enforce periodic boundary conditions, effectively 

modeling infinite spatial continuity. Using software like TINKER for AMOEBA-based 

simulations, the MD process begins by initializing atomic positions and velocities, often assigning 

velocities based on the Maxwell-Boltzmann distribution to match the desired initial temperature. 

 

Figure B-4: Schematic of the different steps involved in a Molecular Dynamics simulation from 
the initial step to the end of the simulation. 
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The simulation parameters, including the choice of ensemble (e.g., NVT for constant 

temperature or NVE for constant energy), timestep, and total simulation time, are carefully selected 

to ensure accurate dynamics. During the simulation, forces on each atom are calculated at every 

timestep, using the chosen force fields to solve Newton’s equations of motion. This iterative 

process updates the positions and velocities of atoms, driving the system towards equilibration. 

Velocity rescaling is applied at each timestep to maintain the system at the target temperature, 

particularly in thermostatted ensembles like NVT, using algorithms such as the Berendsen 

thermostat. Several steps are required to extract the geometry during the simulation. From that, it 

can be calculated different properties to understand how the system is reacting to different 

conditions. When reaching the simulation time (tmax), the simulation ends. The pathway is 

presented in Figure B-4  

MD is then giving a good prediction for a large system, and its parametrization should be 

carefully chosen. As said before, to see reactivity, one needs to choose a reactive/polarization force 

fields that captures more precisely physical interactions. Therefore, this is mandatory if we want 

to capture the formation and breaking of bonds during the capping of thiolates-SAMs on gold and 

silver nanoparticles. 

B.1.b) ReaxFF 

The Reactive Force Field, called ReaxFF, is a computational tool enabling the perform 

accurate simulations of chemical reactions involving complex molecules and materials. Developed 

initially by Adri van Duin et al., it was designed to bridge the gap between quantum mechanics 

(QM) and classical force fields, offering a balance between computational efficiency and the 

ability to capture the nuances of chemical reactivity.20 ReaxFF distinguishes itself from traditional 

molecular dynamics simulations by its unique ability to handle bond formation and dissociation 

dynamically. This capability makes it exceptionally well-suited for studying a wide range of 

chemical processes, such as combustion21, catalysis22, and material degradation23, where bond-

breaking and bond-making are essential features. Its development was motivated by the need for 

a more robust and versatile model that could keep pace with the increasing complexity of the 

systems being studied, especially those that could not be adequately described by conventional 

force fields. Classical force fields, with their fixed bonding scenarios, are typically limited to 

simulating molecular dynamics without involving chemical reactions. In contrast, quantum 
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mechanical methods, while highly accurate in predicting chemical phenomena, are often 

computationally intensive and not feasible for large systems or long simulation times. 

ReaxFF combines the efficiency of classical force fields with a reactivity component; it 

allows the simulation of large-scale systems over practical timescales while still capturing critical 

chemical reaction events. This capability opens up new ways for exploring complex material 

behaviors and chemical processes in a more detailed and physically realistic manner. 

In practice, ReaxFF has enabled researchers and scientists to conduct simulations that were 

previously beyond reach. For instance, in Materials Sciences, ReaxFF has been applied to 

investigate the stability, mechanical properties, and reactive properties of polymers24, metals25 , 

and semiconductors26 under various conditions.  

The broad applicability and adaptability of ReaxFF stem from its parameterization, which 

can be tailored to fit specific chemical environments based on experimental data or high-level 

quantum calculations. New parametrizations using the ReaxFF processed have been made for 

different materials.27,28 This flexibility ensures that ReaxFF remains a powerful tool where realistic 

modeling of chemical phenomena is crucial for the development of new technologies and 

materials. Nevertheless, one should be prudent for transferability.  

Theoretical Foundations of ReaxFF To delve deeper into the theoretical foundations of the 

Reactive Force Field (ReaxFF), it is imperative to understand the formulation of its force fields 

and their differentiation from non-reactive force fields. The core of ReaxFF's capability lies in its 

force field formulation, which is distinctively built to handle the dynamic nature of chemical 

reactions. The force field used for ReaxFF is a complex function of the atomic coordinates and 

extends beyond mere pairwise interactions to include many-body terms. This approach is crucial 

in accurately describing bond-breaking/making events during a simulation. It is divided into two 

main blocks: the first, which is based on bond order, and the other on non-bonded interactions. 

Only the general equations are presented here to get an overview of the philosophy behind ReaxFF 

without going too deep into mathematical expressions.  At the heart of the ReaxFF simulation is 

the bond order calculation. Unlike classical force fields that assume a fixed bond order, ReaxFF 

dynamically calculates bond orders based on the distances between atoms and their hybridization 

states. The bond order in ReaxFF influences the strength of interactions, such as bond stretching, 
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bending, and torsion, and thus allows for the description of bond formation and breaking without 

the need to explicitly specify these events a priori. 

1. Energy Contributions The energy in a ReaxFF simulation is composed of several 

contributions, as presented in Equation B-5, reflecting the complex nature of reactive systems. 

These include terms for bond energy, lone pair energy, angles, torsions, over/under 

coordination penalties, van der Waals interactions, and Coulomb interactions. The balance and 

interplay among these energy terms allow ReaxFF to adapt dynamically to the changing 

molecular structure in a reaction pathway.  

E/:/ = E,:;< + E:=>? + E2;<>? + E.;@3> + E/:?A+:; + EBCD..3A + EE:23:F- + EAG>1+H+1 (B-5) 

The bond order energy is calculated from a bond order term BO+7I which is the foundation 

of this method. BO+7I is determined through three exponentials as presented in Equation B-6, each 

defined between a distance r+7 range depending on the type of bonds and dynamically adjusts 

during simulations.  

BO+7I = exp np-:,!. nr+7r5Ko
G#$,"o + exp np-:,L. nr+7r5Mo

G#$,&o + exp np-:,N. n r+7r5MMo
G#$,'o (B-6) 

The σ bond with p-:,! and p-:," from a distance between 1.5 Å and 2.5 Å. The first π bond p-:,L and p-:,O from 1.2 Å to 1.75 Å and the second π bond p-:,N and p-:,9 between 1 Å and 1.4 

Å. All those constant terms are updated during the simulation.  

 

Figure B-5: Evolution of the bond order 𝐵𝑂PQI  for carbon-carbon interactions concerning the 
distance 𝑟PQadapted from Adri Van Duin et al. paper (2011)29 
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As we can see in Figure B-5, the bond order evolves depending on the distance of the C-C 

bond with a maximum bond order of 3 at short interaction. It involves an exponential decay term 

to reflect the weakening of bonding interactions with increasing distance. It allows us to accurately 

model the longer range and partially bonded configurations of transition states. 

 

Figure B-6: Effect of coordinates correction on bond order of ethane molecule adapted from Adri 
van Duin et al. paper (2011) 29 

Nevertheless, BO+7I needs some corrections as it over or underestimates its value where all 

atoms exceed their valences. For example, for ethane in Figure B-6a, without the correction, the 

bond order for both carbons and hydrogens is overestimated. This means that the actual bond order 

calculation requires some corrections terms, as the values for those atoms should not exceed 4 and 

1. A correction factor based on the valence theory is then applied to the bond order to not exceed 

the bond order degree for each atom, which capped the specific values for each atom, as shown in 

Figure B-6b. This new formulation is then defined in Equation B-7.  

BO+7 = BO+7I . f!(∆+I, ∆7I). fO(∆+I, BO+7I ). fN(∆+I, BO+7I ) (B-7) 

The functional form of each function is described in the paper of Adri van Duin et al.29 The 

important term here,  ∆+I, corresponds to the degree of deviation of the sum of the uncorrected bond 

orders around an atomic center.  

However, small over/under coordination can remain to ensure the correction of two new 

constants appeared: the p:=>? and p2;<>?. The over-coordinate term creates a penalty on the 

system, ensuring that the E:=>? is going to zero for the undercoordinated system, thus ∆P 	< 	0 as 
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described in Equation B-8. For an undercoordinated atom, the resonance of the π-electron needs 

to be taken into account. E2;<>? defined in Equation B-9 is then used only if the bonds between 

atoms i and j partly have π-bond features.  

E:=>? = p:=>?. ∆+. N 11 + exp(λ9. ∆+)P 
(B-8) 

E2;<>? =	−p2;<>?. 1 − exp(λR. ∆+)1 + exp(−λS. ∆+) . f9(BO+7,M. ∆7) (B-9) 

Other terms require a reformulation to obtain a dependence on each energy term to the BO.  

Thus, the valence angle term goes to zero as the BO goes to zero, taking into account the effect of 

over/under coordination where the penalty is applied to the central atom. It depends on an 

equilibrium term ΘT  and the valence angle ΘPQU. The equilibrium term is linked to the sum of π-

bond orders around the central atom j. Thus, it changes the equilibrium angle based on the 

geometry of the central atom j and its neighbors. Other terms are included, like the torsion angles 

and the conjugated energy, which are important and described also by the BO.  

2. The non-bonded interactions van der Waals (VDW) and Coulomb Interactions are also taken 

into account to capture repulsive and attractive forces for each system, which is crucial to 

predict accurately the interactions, especially in complex molecular systems. For the VDW 

forces, a distance-corrected Morse potential is used, including a shielding interaction, defined 

in Equation B-10.  

EVdWaals = D+7 ⋅ yexp nα+7 ⋅ d1 − f!L{r+7|rvdW fo − 2 ⋅ exp n12 ⋅ α+7 ⋅ d1 − f!L{r+7|rvdW fo} 
(B-10) 

In ReaxFF, the shielding adjusts the strength of the interaction potential based on the local 

environment of particles. It allows the avoid excessively high repulsion between bonded atoms 

and atoms sharing a valence angle.  

For the Coulomb interaction,  atomic charges are calculated with the Electron Equilibration 

Method (EEM)30 method, which uses the electronegativity χ; and hardness γ;,7 parameters for 

each element in the system, optimized by quantum mechanical data. The colombic energy is then 

determined by Equation B-11. Other methods exist, such as the Charge Equilibration (Qeq), which 

uses ionization potentials and electron affinities to determine the charges.31 Its extension with the 
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Extended Qeq (EQeq) that relies on multiple ionization energies and electron affinities has been 

shown to improve the charge predictions for high-oxidation state transition metals.32  

ECoulomb = C ⋅ q+ ⋅ q7
nr+7L + N 1γ+7PLo

!/L (B-11) 

Where γ+7 is one of the coulomb parameters that can be optimized for example to reproduce 

the Qeq orbital overlap correction.  

The objectives of ReaxFF are to predict the heat of formations with errors of about 4 

kcal/mol, bond lengths within 0.01 Å, and angles within 2° from their literature values. The use of 

these potential energy functions allows ReaxFF to simulate molecular dynamics by solving 

Newton’s equations of motion for atoms, where the forces are derived from the potential energy 

gradients concerning atomic positions. Through these calculations, ReaxFF can dynamically adjust 

molecular structures, simulate reaction pathways, and predict products in chemical reactions—

capabilities that are important in understanding and designing chemical processes and materials. 

It is adding a new step that dynamically adjusts bonding scenarios based on the atomic positions 

and energies, allowing for the simulation of complex reactions.  

The next section will further elucidate the process of parameterization for gold and silver 

in ReaxFF, highlighting its importance in tailoring force fields for specific chemical environments. 

For the consideration of Au/S/C/H, the force field parameters were calibrated using a 

combination of experimental and DFT calculations by Järvi et al.29 First, an optimization of 

elemental sulfur interactions was performed, followed by S-C, S-H, and Au-C interactions, as an 

optimization of the Au-S parameters was finally done. The DFT functional used here was the 

Perdew-Burke-Ernzerhof (PBE), described in more detail in section C. They found that it is the 

best functional in terms of accurate prediction of experimental data. Binding and dissociation 

energies were then compared to DFT calculation for each interaction.  A four-layer slab was used, 

with the last layer fixed with different specific parameters. Overall, the authors calculated a 

cohesive energy for Au of about 2.98 eV, which agrees well with experimental and DFT results.  

By plotting the interatomic potential energy for S-S, S-C, and S-H, as presented in Figure B-7, 
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they observed that while they were able to mostly match DFT results, the S-S bond interactions 

remained underestimated.  

 

Figure B-7: The ReaxFF validation for the Au/S/C/H potential. (a) is the interatomic potential 
energy for S-S, and (b) is the distortion energy of AuCH and AuHH. (c) is the interatomic potential 
energy for S-H and S-C (d), is the simulation of a gold nanoparticle with a thiolates-SAM gold 
surface.   

The potential’s effectiveness was confirmed through its application in studying the 

interactions of gold clusters on thiol-monolayered gold surfaces. This simulation demonstrated the 

potential’s ability to accurately model the reactivity between gold and the surface sulfur, 

particularly noting the formation of S-Au-S bonds. Consequently, these results validate the 

potential capability to simulate complex interfaces that involve thiol groups and gold, highlighting 

its utility in understanding and predicting the behavior of such nanoscale systems. 
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The drawback of the parametrization done by van Duin et al. is that it does not accurately 

reproduce the geometry of gold-thiolate systems, particularly for the S-Au-S staple motifs. 

In practice, it is crucial to accurately describe this specific bonding observed 

experimentally in gold-sulfur systems. Bae et al. addressed this by reoptimizing both the Au-S and 

Au-Au bond parameters, as well as the S-Au-S angle bending parameters.33 They employed DFT 

with a polarized triple-zeta (TZP) basis set with a frozen core configuration for each element 

involved—gold atoms were treated with a [1s2−4f14] frozen core, sulfur atoms with a [1s2−2p6] 

frozen core and carbon atoms with a [1s2] frozen core. Additionally, the zeroth-order regular 

approximation (ZORA) was used to account for scalar relativistic effects, which is crucial for 

simulating the behavior of heavy elements like gold. Upon testing, it was found that the original 

ReaxFF parametrization inaccurately predicted the S-Au-S angle, deviating from the expected 

180° and not aligning with DFT calculations presented in Figure B-8. 

  

Figure B-8: Angle bending energy for S-Au-S. A comparison between the original ReaxFF (Van 
Duin et al.), the new ReaxFF (Bae et al.), and DFT calculation. Adapted from Bae et al. (2013) 
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The reparameterization aimed to refine this aspect, allowing for a more accurate 

representation of both small and large thiolate gold clusters. The new ReaxFF parameters improved 

the description of angle bending while maintaining bond accuracy compared to PBE-fitted models. 

Further advancements were made by extending the simulation to dynamic and reactive 

environments with detailed pathway analysis, offering a broader understanding of 

functionalization processes under realistic conditions. This approach helps in designing 

experimental strategies for gold functionalization in practical applications involving proteins.34 By 

incorporating parameters for nitrogen and oxygen, which are present in cysteine, the simulation 

successfully mimicked actual biological conditions. Additionally, the restructuring process and the 

formation of a staple were observed during prolonged simulations when the adsorbate was 

surrounded by water molecules, presented in Figure B-9. 

 

Figure B-9: Evolution of the torsion angle of the nitrogen group (in yellow) during a simulation 
of a gold surface surrounded by 330 water molecules and one cysteine. The evolution of the 
distance between an anchor gold atom and its initial position along the z-axis is also shown (in 
black). Adapted from Monti et al. (2016)34 

We just saw how an initial ReaxFF potential (for gold) could be reoptimized to be more 

accurate in the description of specific bonds (Au-S) to capture complex reactions or to match with 

new ligands containing new atoms (cysteine). Now, concerning silver, Dulong et al.27 developed a 

new reactive force field (ReaxFF) for silver clusters capped with thiolate self-assembled 

monolayers (SAMs), enhancing the existing parameters by comparing them with those developed 
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by Lloyd et al. for Ag/Zn/O systems.35 Initially, a comprehensive training set comprising 

theoretical data—including geometries, relative energies, potential energy surfaces, and atomic 

charges—was constructed to inform the parameterization process. The objective was to minimize 

the squared weighted errors (SSE) across these data points, normalizing each error by the standard 

deviation to fine-tune the ReaxFF predictions. The validation of the newly optimized parameters 

involved using a probability function, with simulations run across eight replicas to ensure 

statistical robustness. The theoretical data were calculated with DFT calculations employing the 

PBE functional, with silver modeled using the modLAN2DZ basis set, which incorporates 

pseudopotentials to enhance the accuracy. For sulfur, carbon, and hydrogen, the 6-311++G (2d, 

dp) basis set was utilized. Post-parametrization, the new ReaxFF model was compared with the 

ReaxFF(lit) from Lloyd et al., as depicted in Figure B-10, specifically analyzing the maximum 

deviations in Ag-Ag bonds across various cluster sizes. This comparison revealed that deviations 

decrease with larger clusters (a minimum of 20 silver atoms), affirming that the new model 

provides a more accurate description of Ag-Ag bonding in larger clusters compared to the previous 

model. 

 

Figure B-10: (a) Average distance and (b) distance deviation of the Ag-Ag bond for different 
cluster sizes. A comparison between the force fields of Lloyd et al.35 and Dulong et al. Adapted 
from Dulong et al. (2020).27 

Optimization of the cage-like Ag20 cluster was performed to determine if the interatomic 

distances align with those predicted by density functional theory (DFT). This cluster features 

diverse atomic sites, including facets, edges, and vertices. It should mimic the behavior of larger 

clusters yet possess a face-centered cubic (fcc) structure that does not demand excessive 

computational resources to treat it using DFT.  
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However, a significant limitation of the ReaxFF model is its uniform treatment of atoms of 

the same element within the cluster. This illustrates the model’s inherent constraints and highlights 

its inability to differentiate individual atoms based on their positions. While Lloyd’s initial 

potential tends to overestimate distances, Dulong’s revised ReaxFF model more accurately 

averages these distances. It achieves a mean value of 2.85 Å for silver, as presented in Figure B-

11. 

 

 

Figure B-11: Comparison of the distances for the Ag20 pyramid-like structure optimized by DFT, 
ReaxFF from Lloyd et al.35 , and ReaxFF from Dulong et al. The Au20 pyramid-like structure is 
also optimized by DFT and ReaxFF from Järvi et al.29 

 Comparatively, for gold, distances derived from Järvi’s potential averaged 2.88 Å, as 

presented in Figure B-11, which is not consistent with DFT calculations. (This inability to 

differentiate between atoms of the same type, a fundamental aspect of the ReaxFF approach, is a 

primary motivation for the development of new potentials discussed in Section C of the project.) 

To validate the revised potential, energies were analyzed, comparing results from DFT calculations 

with both Lloyd’s original and Dulong’s new ReaxFF models. This included evaluations from 

cluster energies to dissociation energies for Ag-Ag and Ag19-Ag interactions. Notably, the new 

model significantly improved the accuracy of energy estimations for small clusters, with the 

minimum energy error for cluster dissociations reduced to 1.2 kcal/mol, compared to the 15 

kcal/mol observed with the previous potential and presented in Figure B-12. 
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Figure B-12: Potential energy surface of the dissociation for the (a) dimer of silver Ag2 and (b) 
Ag20 pyramid-like structure. Adapted from Dulong et al. (2020)27 

The parameterization of the Ag-S system was conducted through the analysis of five 

distinct MeS-Ag20 isomers, each representing different sulfidation adsorption sites on the silver 

cluster.  

The ReaxFF potential developed by Dulong et al. aligns closely with DFT calculations, 

exhibiting energy discrepancies within the chemical accuracy threshold of less than 1 kcal/mol. 

This is detailed in Table 1, which presents the optimized geometry energies for Ag20-SCH3 isomers, 

comparing the results from DFT with the potential from Dulong et al. 
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Table B-1: Optimized geometry energies for different Ag20-SCH3 isomers. Comparing DFT with 
potential from Dulong et al. 

 

Furthermore, the energy hierarchy across various adsorption sites is maintained, as shown 

in Table B-1. The corresponding potential energy surface for the dissociation of the Ag-S bond 

closely matches DFT calculations, further validating the accuracy of the ReaxFF model developed 

by Dulong et al., as illustrated in Figure B-13. 

 

Figure B-13: Potential energy of the dissociation of Ag-S bonds. A comparison between ReaxFF 
was made by Dulong et al. and the DFT. Adapted from Dulong et al. (2020)27 

The primary goal of this research is to employ these parametrized force fields to explore 

the reactivity of silver surfaces and nanoparticles under various conditions. This includes studies 

on complex reactivity phenomena such as sulfidation, core-shell interactions, and the formation of 

defects during simulations, ensuring that the model can accurately predict these intricate chemical 

processes. 
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B.2) Computational strategy 

Our goal is to see if the present parametrization of ReaxFF potential can predict the correct 

reactivity on silver surfaces and nanoparticles when capped with alkylthiolates. Two different 

strategies have been used depending on the metal that we studied. For gold, three different FF 

exist, the first was created in 2011 by van Duin et al. and allows one to perform calculations on a 

system containing gold, sulfur, carbon, and hydrogen.29 As explained before, it has specifically 

been designed to study the cluster capping by SAMs. Then, the approach by Bae et al. is an 

improvement of the previous iteration of the force field.33  In this FF, the angle bending parameters 

have been improved as they saw that the PES for S-Au-S bending was not fitting DFT. Aikens 

changed the parameters to better describe those partial energies. The last potential,  created by 

Monti et al., has been parametrized to simulate the mechanism of interaction of a cysteine with 

gold in water solution.34 In this study, they also took into account the formation of staples and 

accurately parametrized their potential to reproduce such a feature.  From those three FF, we tried 

to see which one would simulate the best the SAMs of thiolates on gold surfaces. For silver,  the 

Dulong et al. potential is used.27 

B.2.a) NATOMOS 

NATOMOS (Nanoscale ATOMistic Optimized Simulations) is a program improved 

during the thesis, which is designed to provide comprehensive insights into the structural dynamics 

and adsorption characteristics of nanocrystals. Moreover, it allows one to create different 

structures using the SAMmaker module. 
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1. Creation of the different systems 

The SAMmaker tool developed in this thesis generates the positions of metallic atoms and 

ligands for √3x3R30°an	√7x7R19.1°self-assembled monolayers (SAMs). Initially, SAMmaker 

calculates the positions of the metallic atoms within an fcc (face-centered cubic) slab, with the 

highest layers corresponding to the (111) plane. The lines of the metallic atoms forming the (111) 

plane point in the x direction, as illustrated in Figure B-14.  

 

Figure B-14: √7𝑥7𝑅19.1° Metallic Surfaces in red-capped with sulfur in yellow created by 
SAMmaker 

The user can then define the positions of the ligands for the first lines in the x direction. 

The sulfur-headgroups ligands for the different assemblies are colored in yellow in Figure B-14. 

These ligands are then repeated in the y direction, taking into account a possible shift in the x 

direction. Users can customize several parameters, including the length of the alkyl chain (ranging 

from methane to butane), the restructured conformation, the number of gold layers constituting the 

surface, and the size of the simulation box, as depicted in Figure B-15. The program automatically 

calculates the appropriate box size to facilitate easy parameterization of periodic boundary 

conditions (PBC). 
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Figure B-15: Visualization of different assemblies that can be created by the use of SAMmaker. 
(a) is the surface of gold and SMe-Au-SMe staples. (b) the √3𝑥3𝑅30°assembly for unrestructured 
gold. (c) the √7𝑥7𝑅19.1° for silver. 

Another particularly useful capability of SAMmaker involves the capability of converting 

specific surface configurations into nanoparticles ranging from 2 to 10 nm in diameter. This 

transformation allowed for a comparative analysis between different nanoparticles and their 

corresponding surfaces. By doing so, we could investigate how nanoparticle size influences the 

stability and reactivity of thiolate-SAMs.    

Additional features: 

•Customizable Alkyl Chain Length: Users can select between methane and butane for the alkyl 

chain length, allowing for tailored simulations based on specific research requirements. Other 

ligands can be added depending on the file provided.  

•Restructured Conformation: The tool provides an option to specify the restructured 

conformation, enabling more accurate modeling of realistic surface interactions. 
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•Adjustable Surface Layers: The number of gold and silver layers constituting the surface can 

be adjusted, providing flexibility in modeling different surface thicknesses. 

•Automatic Box Size Calculation: SAMmaker automatically determines the correct size of the 

simulation box, ensuring proper parametrization of PBC and eliminating the need for manual 

adjustments. 

2. Analysis of the dynamics  

Reading Nanocrystal Data (readNC function): This function is the entry point of the simulation, 

where it reads the atomic coordinates from input files, setting the stage for subsequent analysis. 

This step is crucial as it establishes the initial conditions of the nanocrystals, defining how atoms 

are spatially arranged. The function ensures that the coordinates of gold or silver and ligand atoms 

are accurately parsed, providing the foundation for identifying structural features such as 

neighbors, edges, vertices, and facets. 

Analyzing Nanocrystals (anaNC0 function): Here, the program calculates the neighbors of each 

gold atom based on a set distance threshold. This is essential for classifying atoms into structural 

categories such as vertices, edges, and facets, which are pivotal for understanding the nanocrystal’s 

morphology and its potential reactive sites.  

Ligand Adsorption Analysis (analig function): This function identifies and categorizes adsorbed 

ligands by their relative positions to the gold atoms. Quantifying ligands at different adsorption 

sites provides insights into the binding efficiency and site-specific characteristics of the 

nanocrystal, which are crucial for understanding the ligand’s protective and functional roles, as 

discussed in the research articles.36 

Staple Finder (staplefinder function): This function searches for staple motifs, which are 

indicative of strong ligand binding and restructuration of the nanocrystal.  

 

SAM Finder (SAMfinder function): It identifies and analyzes self-assembled monolayers 

(SAMs) on the nanocrystal surfaces. The formation and analysis of SAMs are important for 

evaluating how modifications in the ligand or surface can affect overall nanocrystal behavior. 
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Output Generation: Finally, the program generates output files that can be used for further 

analysis or visualization. This includes detailed statistics about the nanocrystal and ligand 

configurations, which are crucial for publishing results or further computational analysis. 

  

 The program effectively integrates complex functionalities to simulate and analyze gold 

nanocrystals with ligands.  

 

B.2.b) Data treatment and analysis 

To validate the ReaxFF potential developed by Dulong et al. for accurately 

predicting the reactivity between thiolates-SAMs and silver surfaces, we employed several 

computational tools. Initially, SAMmaker was used to construct the thiolate-SAM silver 

surface assemblies, notably the 77 and 33 configurations. Periodic boundary conditions 

(PBC) were applied to maintain manageable surface sizes and prevent interactions with 

adjacent simulation cells. A space was intentionally left at the top of each surface to avoid 

unintended interactions with the surface below, as presented in Figure B-16. 

 

Figure B-16: Silver surfaces capped with thiolates-SAMs created by SAMmaker. 

Following the assembly creation, NATOMOS was utilized to assess the stability of 

the SAM during heating processes and thermal equilibration at 300K. This analysis also 

extended to exploring various properties to detect any reactive effects that might manifest 

under these conditions. 
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nanoparticle’s coalescence. But they are also useful to modify the properties of NPs, such as their 

solvability in specific solvents. Alkanethiolates are, for example, used to tune the antibacterial 

properties of silver NPs.3 Their presence modulates the Ag+ ion release and helps to avoid 

nondesirable side effects. Recently, the synthesis of atomically defined thiolate-protected 

nanoclusters was achieved, opening up many possible applications.4,5 

Our study focuses on the alkanethiolates SAM, which form on Ag(111) surfaces and NPs. 

Experimentally, a √7x7R19.1°	SAM (denoted as 77 SAM in the following) is observed.6,7 This 

geometry is denoted by Wood’s notation.8 It means that the thiolate head groups form a hexagonal 

assembly that is extended by √7 and turned by 19.1° with respect to the layer of Ag atoms on the 

Ag(111) surface. Moreover, experimental and theoretical studies have also shown that, due to the 

presence of thiolates, the silver surface can be restructured.4,5 In this case, a silver atom appears 

between three sulfur atoms of the thiolates due to bonds breaking on the surface. For Au (111) 

surfaces, two superstructures are found, c(2x4) and √3x3R30° SAMs (denoted as 33). The former 

is usually caused by the formation of staples, which corresponds to a restructuration of the surface 

and is found in the majority.9,10 For this first study, however, we focus on non-restructured silver 

facets.  

Silver NPs protected with thiolates have been widely studied by experiments in the last 

years11–17 using techniques like EXAFS (extended X-ray absorption fine structure), XANES (X- 

ray absorption near edge structure), or XPS (synchrotron-based X-ray photoelectron 

spectroscopy). These experiments led to two central questions. First, in some experiments, the 

presence of silver sulfide was observed between the Ag core and the surrounding thiolates.11,12,17 

However, other experiments found only a small amount of silver sulfide.13–17 The eventual origin 

of silver sulfides has not been elucidated until now.17 Second, very recent experiments indicate an 

on-top adsorption site for the thiolates. This is in contradiction to recent theoretical density 

functional theory (DFT) studies, which predict a preference for the bridge position on flat silver 

surfaces and NPs.18,19  

The aim of this paper is to apply the recently developed ReaxFF20 force field (FF) in order 

to perform molecular dynamics simulations of thiolate SAMs on silver. Recently, several aspects 

of silver NPs have been studied using FF simulations21–25 and DFT calculations.20 The FF studies 

handle aspects that are not in close relation with thiolate-coated NPs, as investigated here. These 
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aspects include the interaction between silver NPs and proteins,22 the interaction with amines,23 

and the formation of hollow silver NPs under laser irradiation.24 The DFT study investigates the 

adsorption of methanethiolates on both silver nanoparticles and (111) surfaces. The results 

revealed that bridge sites are the most thermodynamically stable adsorption locations, emphasizing 

their significance. Additionally, it was observed that smaller nanoparticles display increased 

reactivity, accompanied by significant adsorption energies, further highlighting their role as 

reactive platforms.  

However, to the best of our knowledge, there is only one study that focused on thiolates 

Ag(111) surfaces.25 These simulations do not succeed in reproducing the 77 SAM on silver that 

was experimentally found. Moreover, no simulation of silver NPs with thiolates has been 

published. The use of ReaxFF may improve this situation for three reasons.  

First, classical force fields using, for example, Lennard-Jones parameters naturally lead to 

hollow sites as preferred adsorption sites (see, for example, the study in ref 26). This is because the 

hollow sites enable more contact between the adsorbing atom and the metallic atoms. Therefore, 

such FFs have difficulties simulating 77 SAMs characterized by the adsorption of bridges and on-

top sites. Within the ReaxFF, the Ag−S interaction is handled as a bond, and angle-dependent 

interactions enable stabilization of the adsorption of bridge and on-top sites compared to the 

hollow sites. Thus, we will show here that the new FF is able to reproduce the 77 SAM on Ag 

(111) planes in agreement with the experiment.  

Second, the silver surface may be restructured. This can only be simulated with reactive 

FFs, allowing for the breaking of the Ag−Ag bonds; this would be the case for ReaxFF. Moreover, 

ReaxFF enables us to study if the thiolate is decomposed during adsorption, which may explain 

the formation of silver sulfide.  

Third, with the help of massively parallel computing, ReaxFF can investigate NPs made of 

a hundred thousand atoms in contrast to DFT methods. Thus, the largest system studied here is the 

butanethiolate-coated NP of 10 nm, made of 57 826 atoms. Moreover, the evolution with 

temperature can also be studied, which implies simulation lengths up to 4 ns. Such ReaxFF has 

already been applied for several metallic NPs made of cobalt, copper, and gold.27–31 In particular, 

for gold NPs, it predicts staple formation and on-top adsorption sites in full agreement with 

experiments.31 
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Here, the ReaxFF is used to calculate the properties of silver surfaces and NPs (with 

diameters ranging from 2 to 10 nm) coated with thiolates. To study the influence of chain length, 

methanethiolates and butanethiolates are used. While methanethiolates have been widely studied 

on flat silver surfaces, for NPs, usually longer chains with at least butane have been used. For the 

sake of comparison, we nevertheless investigated methanethiolate on NPs. In this first study, we 

start from non-restructured surfaces to see if the restructuring spontaneously happens, as 

previously observed for gold NPs with thiolates. We also ignored the presence of the solvent. It is 

expected that the solvent plays a minor role in the adsorption properties, which are mainly 

governed by the strong Ag−S interactions. However, it might be nonnegligible for the energy 

difference between 77 and 33 SAMs, which should be investigated in the future.  

The study focuses on nanocrystals of octahedral shape, which have been chosen since their 

facets are made of Ag (111) planes. This enables a direct comparison with the results obtained for 

the Ag (111) surfaces. Moreover, NPs of octahedral shape are often observed in experiments.32  

The structure of this article is as follows: First, we present the ReaxFF approach and the 

simulation protocol. We will then introduce the new analysis tools, SAMmaker and SAMfinder, 

that were specifically developed for this study. They allow the construction and finding of SAMs 

on metallic surfaces and NPs. Then, the stability of the thiolate SAMs on the Ag (111) surfaces is 

investigated. Finally, we turn to the predicted properties of the SAMs on NPs.  

B.3.b) Methods  

B.3.b.1) The ReaxFF model 

The reactive force field method proposed by van Duin et al.33 enables the formation and 

breaking of bonds during classical molecular dynamics simulations. The formalism is described in 

detail in the paper by Chenoweth et al.34 Here, we use the recently developed FF for AgSCH.20 It 

is able to reproduce the DFT values for the average distances between silver atoms in NPs with a 

precision of 0.05 Å. It also correctly describes the energetical and geometric properties of thiolates 

on an Ag20 pyramid arrangement.20  

The charges of the atoms are obtained through the usual electronegativity equalization 

method.35,36  
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B.3.b.2) Simulation Protocol  

Molecular dynamics simulations are carried out in the NVT ensemble using a time step of 0.25 

fs. The temperature is controlled using the Berendsen thermostat with a damping constant of 5 fs. 

The reliability of the Berendsen thermostat has been verified through simulations using the NVT 

Nose−Hoover thermostat, yielding identical results within the statistical margin. The parallel 

program LAMMPS is used for all simulations.37,38 First, an equilibration is performed by 

increasing the temperature from 0 to 300 K. The simulation is then continued at 300 K to obtain 

better-converged properties. To test correct equilibration and convergence, three runs are 

performed:  

• Equilibration: 0.3ns, convergence at 300K: 0.3 ns  

• Equilibration: 1 ns, convergence at 300K: 1 ns  

• Equilibration: 3 ns, convergence at 300K: 1 ns  

To obtain standard errors for all properties, three independent simulations are carried out, 

starting from different initial atomic positions for the SAM position with a shift of 0.05 Å. It has 

been found that in the case of NPs, an alkane chain strictly perpendicular to the silver surface has 

to be avoided since this leads to a strong reduction of the SAM frequency of about 30%. Indeed, 

the alkane chains go together and move the S atoms from their initial positions corresponding to 

the chosen SAM.  

B.3.b.3) Set up Tools  

A new Python tool called SAMmaker was developed to set up SAMs on flat surfaces and 

NPs. It has been included in the Python library NATOMOS. How this tool works is explained in 

the section 3a.  

We observed that it is very important to have a compact initial layer of alkane without 

strong repulsion to obtain stable SAMs. Therefore, all ligands are slightly declined and oriented in 

the same directions. Moreover, orientations with very small repulsions were searched for. Figure 

1 shows typical snapshots obtained after equilibration for 77 and 33 SAM of thiolates on the Ag 

(111) surface.  

To set up the NPs, the SAMs obtained with SAMmaker are transferred to the NP facets 

using the NATOMOS tool NTM_setup, which has been described in detail in a previous paper31  
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(and in section 3b and 3c). It is interesting to note that there are differences in the stability of SAMs 

for NPs compared to surfaces. Thus, starting from an orientation of the methanethiolate with the 

S−C bond perpendicular to the plane led to a well-defined SAM on the surface. 

 

Figure 1: Snapshots of a SAM of methanethiolates on Ag (111) at 300 K after equilibration of 0.3 
ns. (a) 77 SAM and (b) 33 SAM. The simulation box for each system is represented in black 

However, when the same orientation is used for the NPs, the SAM becomes unstable during 

the simulation. This shows the importance of well-defining the initial orientation to obtain a large 

degree of SAM.  

B.3.b.4) Analysis Tools 

The SAMs were analyzed with the help of the Python tool NTM_ana. It was described in 

detail in a previous paper.31 It determines the following properties studied in this paper:  

• the number of neighbors for the silver atoms,  

• the locations and types of the adsorption sites occupied by the ligands,  

• the average distances of neighboring ligand head groups. 

Please note that two atoms are counted as neighbors whenever the distance is smaller than 

the position of the minimum after the first peak of the pair distribution function (minimum for 

Ag−Ag: 3.75, Ag−S: 2.92, and S−S: 5.5 Å).  
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Here, a new function, SAMfinder, has been included in Ntm_ana. It allows the 

determination of the percentage of ligands participating in a SAM characterized as 33 or 77, for 

example. For this purpose, a percolation method is used. All properties obtained by the analysis 

are shown in Tables S1 to S4 in the Supporting Information.  

B.3.c) Results and Discussion  

B.3.c.1) Thiolate SAMs on Ag (111) Surfaces 

Simulations on two different thiolate SAMs on an Ag (111) plane were carried out (see Figure 

1). On one hand, the 77 SAM experimentally observed on non-restructured Ag (111) surfaces is 

studied. On the other hand, we also investigated the 33 SAM for silver, usually observed on an Au 

(111) when no staple formation occurs. The second SAM was chosen for the following reasons: 

The Ag (111) and Au (111) surfaces have the same geometry, leading to the same distances between 

the ligands in a given SAM. Moreover, staple formation, such as for Au (111), is not observed on 

Ag (111). Therefore, the 33 SAM without staples should also be possible for steric reasons on Ag 

(111). A successful force field should, however, predict that the 77 SAM is more stable than the 33 

SAM, in agreement with experiments.  

We now study the simulations starting from 77 and 33 SAMs as a function of the 

temperature. Figure 1 shows snapshots of both SAMs obtained at 300 K. First, the stability of the 

SAMs during the simulation is studied. Then, their energies and entropies are compared, and 

finally, their properties, such as the occupation of adsorption sites, are discussed. The temperature 

is continuously increasing. Every 50 K, the simulation is stopped and continued at a fixed 

temperature for 30k, 100k, and 300k steps corresponding to the three equilibrations (0.3, 1, and 3 

ns). This is done to ensure that the results are well-converged. Only the last third of these runs at 

fixed temperatures are used to calculate the SAM frequencies and energies.  

B.3.c.1.1. Stability of the SAMs on Silver Surfaces  

Figure 2 plots the percentage of thiolates belonging to 77 and 33 SAM for methane and 

butanethiolate obtained for the longest simulation run (3 ns), as determined with the module 

SAMfinder. 
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Figure 2: Frequencies of 77 (a) and 33 (b) SAMs of methane and butanethiolates on the Ag (111) 
surface for an equilibration step of 3 ns corresponding to an increase in the temperature. 

The results for both 77 and 33 SAMs at different simulation times are shown in the Figure 

S1. Please note that parts a and b show the frequencies obtained from simulations starting from 77 

and 33 SAM, respectively.  

 

Figure S 1: Frequencies of 77 (a) and 33 (b) SAMs of methane and butane 

In the case of butanethiolate, the 77 SAM occupied nearly the total surface up to 300 K, 

independent of the simulation time. This is also found for methanethiolate until 250 K. However, 

at higher temperatures, the percentage of methanethiolates in 77 SAMs decreases. This becomes 

more pronounced when the simulation time used for the equilibrations increases (see Figure S1). 

To investigate the stability of the 77 SAM at 300 K, the simulation run is continued for 1 ns at that 
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temperature (see Figure S2). We observed a complete disappearance of the 77 SAM for 

methanethiolate in contrast to butanethiolate, which rests stable.  

 

Figure S 2: Frequencies of 77 SAMs of methane and butane thiolates on Ag 

Studying the snapshots at 300 K (see Figure S3), we found a desorption of the 

methanethiolates, which is not observed in experiments. Thus, it shows the limit of our force field. 

Since we want to study stable SAMs, we only considered simulations before this happens (the first 

10 000 steps at 300 K).  

 

Figure S 3: Snapshot of both the methane (a) and butane (b) thiolates SAMs on Ag (111) surface 
after 4 ns. 

Figure 2 also shows the frequency of 33 SAMs starting from a perfect 33 SAM, where the 

frequency of SAM rapidly decreases to about 20% for the methane and stays stable for the butane 

with some fluctuation during the simulation. Note that the results are the same within the statistical 
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error for the 1 and 3 ns simulations. This indicates that the results are well-converged. The only 

exception is the simulation for methanethiolate at temperatures larger than 200 K, which has been 

explained by a very slow desorption of the thiolates. To be sure that a similar process does not 

happen for butanethiolate, we have continued the simulation at any temperature for 3 ns. The 

results are stable within the statistical errors.  

B.3.c.1.2. Energy and Entropy of the SAMs  

In order to compare the stability of both SAMs, we first calculate their binding energies per 

thiolates, defined as 

ΔEbind = 1nThio {EM-SAM − EMetal − nThioEThiolate| 
where EM‐SAM corresponds to the energy of the system, which corresponds to the SAMs in 

contact with the metal layer. EMetal and EThiolate are, respectively, the energies of the metal layer 

and of the single thiolate molecule. nThiocorresponds to the number of thiolates present on the 

surface. We show in the following the differences in binding energy between 77 and 33 SAMs. By 

calculating this difference, one can easily see that the calculation of EThiolate is not necessary, which 

allows us to decrease the possible errors that can emerge with the simulation of a small system 

using ReaxFF. Please note that the binding energy difference is negative, implies that the 77 SAM 

is energetically preferred.  

Figure 3 displays the evolution of the binding energies as a function of the temperature for 

methane and butanethiolates on silver for 3 ns.  
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Figure 3: a) Is the difference of binding energies between the 77 and the 33 SAMs and (b) the 
entropy is added as a function of the temperature for both butane and methanethiolates on the Ag 
(111) surface. Simulation length: 3 ns. 

In Figure S4, the results for 0.3 and 1 ns are shown. It is obvious that sufficiently long 

simulation runs must be carried out to obtain stable results.  

 

Figure S 4: Difference of binding energies between the 77 and the 33 SAMs as a function of the 
temperature for both butane and methane thiolates on the Ag (111) surface. Simulation length: (a) 
0.3 ns and (b) 1 ns 

In the case of methanethiolate, Figure 3 shows that the binding energy difference varies 

between −2 and −1 kcal mol−1. This indicates that 77 SAM is energetically favored. However, for 

butanethiolate, the binding energy difference is between −2 and 0 kcal mol−1. Hence, the energetic 

stabilization of the 77 conformations is not proved in this case.   
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In order to determine which SAM is the most stable, we need to consider the influence of 

entropy. It can be estimated from statistical mechanics using the partition function of translation. 

The free energy of a ligand in a SAM related to entropy can be obtained from equation:  

𝐹 = −𝑘𝑇 𝑙𝑛 𝑞W 
 

where qt is the partition function of translation for the ligand with mass m defined as  

𝑞W = 𝑉ℎL √2𝜋𝑚𝑘𝑇 

V is the volume in which the ligand can move for the SAM. The difference in free energy between 

both SAMs can then be calculated from  

𝛥𝐹 = −𝑘𝑇 𝑙𝑛 N𝑉RR𝑉LLP 

Using the relation 𝑆 = −#XYXZ%, it can be seen this ∆F is directly related to the entropy. It is now 

assumed that the ligand movement, perpendicular to the metallic surface, does not depend on the 

type of SAM, but on the metal-ligand interaction. Then the ratio of volumes can be approximated 

by V77/V33 ≃ S77/S33 where S77 and S33 are the surface per ligand for both SAMs. It can be 

calculated for the 33 and 77 SAMs as 20.37 Å2 and 15.84 Å2. The ligand molecule can move within 

the space left by the neighboring ligands. For the 33 SAM, this space is larger due to a larger 

surface per thiolate than that for the 77 SAM. It is, therefore, expected that the 33 SAM is 

entropically favored. In Figure 3b, the estimation of the entropy difference is added to show how 

it may influence the stability of the SAMs. The evaluation of the free energy part due to entropy 

at 300 K gave 0.149 kcal mol-1 between the 77 and the 33 SAM. This shows that the entropy favors 

33 SAMs, as expected. However, in the case of methanethiolate, the binding energy is much larger 

than the estimated free energy due to entropy. This means that the 77 SAM is the more stable 

assembly for our force field, which is in good agreement with the experiment. As discussed above, 

this conclusion cannot be made in the case of butanethiolate.  
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B.3.c.1.3) The Properties of the 77 SAMs  

We now look at the properties of the 77 SAMs, which will be important for the comparison with 

the results obtained in the following section for the NPs.  

It is important to note that during all simulations, no spontaneous decomposition of the ligands is 

observed. We first study the number of Ag neighbors around the silver atom. The expected numbers 

of 12 and 9 neighbors for the bulk and surface atoms, respectively, were obtained as shown in 

Figure S5.  

 

Figure S 5: Frequencies of atoms as a function of the number of Ag neighbors 

No spontaneous restructuring of the metallic layer is observed. DFT theory and 

experiments, however, have shown such a restructuration.6,7 This may mean that such a 

restructuring is too slow to take place in our simulations. In future simulations starting from a 

restructured surface, it is planned to study their stability and properties in comparison with the 

non-restructured layer investigated here.  

We now turn to the occupation frequencies of adsorption sites shown in Figure S6 for 

butanethiolates. A comparison of the results obtained after 1 and 3 ns shows agreement within the 

statistical accuracy, which indicates that the results are well converged.  
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Figure S 6: Occupation frequencies of adsorption sites on the facet for butane thiolates on Ag 
(111) surface at different simulation lengths, where respectively 1, 2 and 3 Ag neighbors 
correspond to on-top, bridge and hollow sites. 

A similar occupation of the on-top (52%) and bridge (48%) sites is found where the S atom 

is in contact with one or two silver atoms, respectively. These sites are typically occupied in 77 

SAMs when studied by DFT.6 Please note that we found that these sites are usually occupied in a 

way so that the adsorbing atom is shifted from the ideal on-top or bridge site.  

Finally, the average distance between the sulfur head groups of the ligands was determined 

(Figure S7). A value of 4.4 Å is found, which corresponds to the one expected for the 77 SAM.  

 

Figure S 7: Average distance between sulfur atoms neighbors of butane thiolates on a 77 SAM at 
different simulation lengths 1 ns and 3 ns. Result at the end of the equilibration at 300 K 
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B.3.c.2) Thiolate SAMs on Silver Nanoparticles  

Figure 4 shows the typical snapshot obtained for simulations of 2 and 10 nm NP with 

butanethiolate at 300 K (1 ns). 

 

Figure 4: Snapshots of the simulation of butanethiolate-covered silver nanoparticles of 2 nm (a) 
and 10 nm (b) at the end of the convergence step for 1 ns at 300 K. The ligands are removed to 
show any reconstruction of the metallic core in (c) and (d) snapshots. 

Figure S8 presents snapshots of 4 nm. The NPs of 2 and 4 nm are also shown without the 

ligands to make any restructuration visible. No spontaneous decomposition of the thiolates was 

observed. Therefore, the formation of silver sulfide observed in some experiments11,12,15 cannot be 

explained by these experiments. However, we cannot exclude that a restructured silver layer may 

lead to this kind of decomposition, which should be studied in the future. Also, other ligands such 

as allyl thiolate (for which silver sulfide has been often observed12,17) should be tested. 
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Figure S 8: Snapshots of the simulation of methane thiolate covered silver nanoparticles of 2 nm 
(a) and 4 nm (c) at the end of the convergence step for 1 ns at 300 K. The ligands are removed to 
show any reconstruction of the metallic core on b and d snapshots. 

We will now first study whether the 77 SAM is also stable on NPs. In the following, the 

properties, such as the occupation of adsorption sites and the distance between the sulfur atoms, 

are discussed for the NPs. The sulfur atoms on the edges in Figure 4 may give the impression of 

being separated from the alkane chains. This is not the case. They are oriented only to the facets 

of the NPs.  

B.3.c.2.1) Is the 77 SAM Stable on Nanoparticles?  

We now study the frequency at which 77 SAMs are found on the NPs for butanethiolates. 

For 4 nm, a butane frequency of about 78% is found at low temperatures, as shown in Figure 5. 

This is significantly lower than the frequencies between 90 and 100% observed on the flat surfaces 

(Figure 2).  
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Figure 5: Frequencies of 77 SAMs on NPs for butanethiolates depend on the temperature. 
Comparison between surfaces and NPs of different sizes from 2 to 10 nm; equilibration time of 1 
ns. 

To understand this difference, we studied where the SAMs are located (see Figure 6). 

Therefore, all sulfur atoms belonging to SAMs are colored yellow. They are found principally in 

the centers of the facets, and the SAM formation is perturbed by the edges.  

 

Figure 6: Snapshots of the simulation of 77 butanethiolate SAMs on Ag (111) nanoparticles of 4 
nm at the end of the convergence step for 1 ns at 300 K. Atoms belonging to the SAM are colored 
in yellow. 

By increasing the temperature, the SAM frequency decreases. A frequency of 77 SAMs of 

60% is observed at 300 K. Let us look at the evolution of the 77 SAM frequency with particle size 

(see Figure 5). From 2 to 10 nm, the SAM frequency decreases at 300 K for butanethiolate. 
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Nevertheless, depending on the NP diameter, the decrease is more or less pronounced. The more 

we increase the NP diameter, the more the coverage of the facets grows, and the SAM formation 

is then less perturbed by the edges. Figure S9 illustrates the stability profiles of 77 SAMs for both 

methane and butane thiolates on a 4 nm Ag (111) nanoparticle, observed over different simulation 

durations. It is evident that as the simulation length increases to 1 ns, particularly around 200 K, 

the instability of methane thiolates becomes more pronounced. 

 

Figure S 9: Frequencies of 77 SAM for both methane and butane thiolates SAMs on a 4 nm Ag 
(111) NP for different for 0.3 ns, 1 ns and 3 ns simulation length during the equilibration step 

 

B.3.c.2.2) The Structure of the Metallic Core  

We now turn to the number of neighbors observed for the silver atoms. For a perfect 

octahedron, 7 and 9 neighbors are found on the edges and facets, respectively. A change in these 

numbers would indicate a metallic restructuring due to the ligands, for example, on the edges. This 

local restructuring should be distinguished from the global one observed on silver surfaces in 

experiments. As explained in Section 3. Such general restructuring is impossible to see during 

ReaxFF simulations. Such a phenomenon was widely observed in the ReaxFF simulation for gold 

NPs, where the metallic atoms were extracted on the facets and, in particular, at the edges due to 

staple formation.28,31 Figure 7 shows the frequencies of silver atoms as a function of their number 

of neighbors for different NP sizes with butanethiolate SAMs. 
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Figure 7: Frequencies of silver atoms as a function of the number of neighbors for NPs from 2 to 
10 nm for butanethiolate (equilibration time of 1 ns and convergence time of 1 ns). The property 
was taken at the end of the convergence at 300 K. 

In Figure S10, the neighbor frequencies of 4 nm NPs are plotted for butanethiolate at 

different simulation times. The frequencies of neighbors agree for the three runs of different 

lengths, showing that these results are well converged.  

 

Figure S 10: Frequencies of silver atoms as a function of their number of neighbors for 4 nm for 
butane thiolate at different equilibration times from 0.3 ns to 3 ns. Property taken at the end of the 
convergence at 300K. 

By focusing on Figure 7, it can be seen that the neighbor frequencies for the NPs larger 

than 2 nm are similar to those of a perfect octahedron, with peaks for 7, 9, and 12 neighbors. Only 

at the edges do some atoms change their positions leading to atoms with 6 or 8 neighbors. These 
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results are very different from the ones found for gold NPs previously discussed.31 This shows that 

no surface restructuring spontaneously happens for large silver NPs.  

However, for the 2 nm NP, the behavior is markedly different (see black lines in Figure 5). 

A large fraction of atoms changes the number of neighbors, even on the facets. This change in 

morphology is confirmed in the snapshots shown in Figure S8.  

B.3.c.2.3) Location and Occupation of Adsorption Sites  

We first examine where the ligands are located on the NP surface. Ligands are counted for 

the vertices or edges if they are in contact with at least one silver atom on the vertices or edges, 

respectively. The remaining ligands are attributed to the facets. For example, in the case of 4 nm 

particles with butanethiolate, 55.7, 39.4, and 4.9% of the ligands are adsorbed on the facets, edges, 

and vertices, respectively. These frequencies do not significantly change during the simulation and 

correspond to the frequencies initially set up. Similar behavior was observed for all NP sizes and 

ligands. In Table S2, all frequencies giving the locations of ligands are collected.  

We now turn to the question of which adsorption sites the ligands occupy. In Figure 8, the 

frequencies of head groups as a function of their number of silver neighbors are shown for 

butanethiolate and different NP sizes. On a perfect Ag (111) surface, the headgroup of a ligand 

occupying the on-top, bridge, or hollow site has 1, 2, or 3 neighbors, respectively. For NPs larger 

than 4 nm, this is also true here since the degree of silver atoms extracted by ligands is very low, 

as previously shown, and the NP surface is well described by the Ag (111) plane. The frequencies 

of neighbors agree for the three runs with different simulation lengths (see Figure S11).  
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Figure 8: Occupation frequencies of S atoms in contact with a given number of silver atoms on 
the (a) edges and (b) facets for butanethiolates on the Ag (111) nanostructure from 2 to 10 nm with 
a simulation length of 1 ns at the end of the convergence at 300 K. 

Similar to the surface results discussed in Section 3.1, the ligands on the NP facets occupy 

only on-top and bridge sites, with a preference for the on-top site. Also, the NP size has little 

influence on the occupation frequencies, except for the smallest NP of 2 nm. On the NP’s edges, 

the results are quite different where the head groups are mainly in contact with two atoms, which 

indicates a preference for the bridge site. 

 

Figure S 11: Occupation frequencies of adsorption sites on the (a) edges and (b) facets for butane 
thiolates on an Ag (111) nanoparticle of 4 nm, where respectively 1, 2 and 3 Ag neighbors 
correspond to top, bridge and hollow sites. Results for equilibration times 0.3, 1 and 3 ns at the 
end of the convergence at 300 K. 
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The occupation of the on-top sites found on the facets and edges is in good agreement with 

recent S-edge XANES experiments,17 which clearly show an occupation of this site. Here, we 

show that this occupation is related to a dense assembly such as the 77 SAM, which can be realized 

only by occupying both on-top and bridge sites. This explains the occupation of the on-top sites 

even when the bridge sites are preferred, as shown in DFT calculations.18,19 In contrast, less dense 

assemblies such as the 33 SAM would imply only an occupation of the bridge site that is not 

consistent with experiments.  

In the gold NP ReaxFF simulations, an on-top site preference was also observed on the 

facets. In good agreement with experiments for gold NPs.31 A large fraction of ligands was also in 

contact with three or even four gold atoms, which is not the case for the simulation obtained here 

for silver NPs. Please note that, in particular, for the synthesis of NPs, first thiols are physisorbed, 

which leads to the formation of thiolate with a strong bond between the ligand and the silver atom. 

What happened with the H atoms of the thiols is still an open question; it may be adsorbed by the 

metal. In our work, the H atoms are ignored since they are much smaller than the thiolates and 

may easily fit in the voids between the ligand head groups. We have carried out simulations for the 

77 SAM placed on the silver surface H atoms between sulfur atoms. The frequency of SAMs is 

reduced by about 20%, which shows that these hydrogens may perturb the assembly.  

Finally, we study the average distances between neighboring sulfur head groups of the 

ligands. The S−S distances are shown in Figure 9 for butanethiolate and different NP sizes. The 

S−S distance is close to 4.4 Å for both the edge and the facet, as expected for a 77 SAM. For NPs 

larger than 4 nm, this distance does not evolve with the NP size or alkane chain length of the ligand. 

There is also no significant difference between the edge and the facet. In a previous simulation of 

gold NPs using nonreactive force fields,39,40 the S−S distances on the edges were found to be about 

0.2 Å smaller than those on the facets, which implies a different assembly on the edges. These 

results could not be confirmed by recent ReaxFF simulations of gold NPs. 
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Figure 9: Average S−S distance between first neighbors on the edges and facets of silver NPs from 
2 to 10 nm for butanethiolates at the end of convergence at 300 K for an equilibration length of 1 
ns. 

Here, we show that, also for silver, the S−S distance on the edges is not reduced. For smaller 

NPs of 2 nm, the average S−S distance increases to 4.5 nm, and the distances on the edges are 

slightly reduced with respect to the facets.  
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Conclusions  

We have shown here that the ReaxFF approach is able to yield a stable 77 SAM typical of 

butanethiolates on the Ag (111) surface, demonstrating its effectiveness in simulating and 

predicting surface adsorption behaviors with high accuracy. It is interesting to note that ReaxFF 

used in a recent paper to study gold NPs has shown completely different behaviors with the 

formation of staples on the Au (111) surfaces. The formation of staples is in good agreement with 

the experiment and the DFT calculation.19 This shows that ReaxFF yields different properties for 

both materials in contrast to other force fields. In the recent paper, it was also shown that ReaxFF 

was capable of reproducing the formation of staples on Au (111) surfaces. Thus, it is possible with 

ReaxFF to distinguish both materials, which is usually quite difficult for FFs since both metals are 

characterized by the same geometry. However, we observed that the 77 SAM of methanethiolate 

is not stable for very long simulations. In addition, the SAM for butanethiolate is not energetically 

favored with respect to other SAMs. This shows the model’s current parametrization limits. 

Moreover, the reconstructed surface usually observed for silver is made of silver adatoms on an 

Ag (111) surface. This corresponds to an important restructuring with respect to our systems, which 

is impossible to see during the ReaxFF simulations. But our simulations do not even show any 

perturbation of the silver layer in contact with the thiolates. This indicates the good stability of 

these unrestructured SAMs. It would be, however, interesting in the future to study already 

restructured silver surfaces with thiolates; the idea would be to compare the binding energies of 

these systems with the unrestructured ones obtained here. This would allow us to see which one is 

energetically preferred and if restructuration can be experimentally expected.  

The simulations here also show that dense assemblies such as the 77 SAMs found on the 

Ag (111) surface should appear on silver NPs. To the best of our knowledge, there are no available 

experiments studying this question. During the simulations, no decomposition of the alkanethiolate 

was found. The origins of the silver sulfide observed in some experiments are an open 

question.11,12,17 In the future, this question should also be investigated for restructured surfaces and 

other ligands.  

Also, no spontaneous restructuring of the NP surfaces was found, except for the small NPs inferior 

to 4 nm. A global restructuring of the silver surfaces, as observed in experiments, is not attainable 
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with ReaxFF simulations. In the future, we plan to perform simulations starting from a restructured 

surface and compare its binding energies with those found here.  

Two adsorption sites on silver NP facets were found: one on- top and another at the bridge 

site, where the former is preferred: this is in good agreement with recent experiments.  

Regarding the distance between S-headgroup ligands, we observed no difference between 

the facets and the edges.  

B.4) ReaxFF Simulations of Self-Assembled Monolayers on Gold Surfaces and Clusters 

The same approaches used for silver have been tested on gold. Three different potentials 

were used (previously described in section B.3): Agren et al., Aikens et al., and VanDuin et al. The 

binding energy was then plotted to observe how the assembly evolved during the simulation, as 

depicted in Figure B-17. We found that for the Aiken and Van Duin potentials, the simulations did 

not converge, stopping at 25 K and 150 K, respectively. Furthermore, direct visualization of the 

surface for both potentials revealed total deconstruction, with some atoms leaving the surface. 

However, with Agren’s potential, the binding energy evolved up to 300 K, and the surface appeared 

stable. 

 

 

Figure B-17: Binding energy for 33 methanethiolates-SAM on Au (111) from 0 K to 300 K using 
three different potentials. 

We wanted to see then if the Agren Force Fields was able to discriminate between gold 

atoms in the popular pyramid-like structure. By optimizing with Agren’s potential, we performed 

a radial analysis on an Ag20 pyramid like structure and we saw that compared to DFT the distances 
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are equivalents. Meaning that we lack of accuracy when regarding the precise interactions of Au-

Au bonds. 

 

Figure 15: Distances of Au-Au atoms for an optimized structure from ReaxFF and DFT. 

 

From that a question emerged for silver . Is the current force fields made by Dulong et al., 

is capable of predicting accurate distances on small and large clusters ?  

 

Figure B-18: Comparison of Ag-Ag distances between DFT and ReaxFF for (a) Ag25 and (b) 
Ag374 protected with akylthiolates. For the sake of comprehension, only silver and sulfur atoms 
are represented by the colors red and yellow, respectively.  

 As shown in Figure B-18b, for large clusters, the difference in distances between DFT and 

ReaxFF is quite small, with a high frequency at 0 Å. The deviation is more noticeable for Ag25, 

a 

b 
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depicted in Figure B-18a, where we have a large proportion, which is shifted to 0.1 Å, indicating 

less accuracy in describing the expected distances.  

This implies that the current parameterization of all the potentials created for gold or silver 

do not accurately predict the stability of different assemblies between the 33 and the 77, nor does 

it accurately describe each Ag-Ag distance. Therefore, new approaches are needed to achieve 

accurate descriptions for both small and large clusters and different surfaces. 
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C) Study of gold nanoparticles using machine learning potential 

C.1) Introduction 

As shown in the previous chapters, molecular dynamics simulations with reactive force 

fields do not accurately describe the phenomena that can happen when thiolates react with the gold 

(or silver) surfaces. Even if they are parametrized using ab initio reference calculations and they 

demand less computational resources than full quantum calculations, they appear not to be suited 

for these systems. The main reasons for these limitations are based on the definition of the methods 

themselves. Indeed, the mathematical functions used as functional forms for force fields often 

include drastic physics simplifications, leading to inaccuracies in describing complex molecular 

systems.1,2 To be more specific, ReaxFF struggles with model systems with complex interactions. 

For gold, it accurately predicts atomic diffusion, but when interactions with the thiolates are added, 

it struggles with surface reconstruction effects, as shown by the test performed using the three 

known potentials in the previous chapter. These limitations could also explain the non-sulfidation 

of the silver nanoparticles. Therefore, new methods should be used since accuracy has always been 

a more general problem when dealing with force fields. In that context, the emergence of deep 

learning approaches can serve as a new strategy to provide a more efficient way to describe these 

specific systems. 

Artificial intelligence is one of the most popular tools and can be used for a lot of things, 

including writing, creating images, videos, music, driving, and even talking. Among all its 

available tools, machine learning (ML) can be used for science, as illustrated by Figure C-1. In 

comparison to classical programming, ML approaches are trained based on statistical structures, 

and thanks to the large amount of available data that exists across all domains, one can easily train 

its own ML potential. 

 It is then possible to create a flexible model which can capture complex interactions. In 

practice, we will use Neural Network interatomic potentials whose parameters will be learned from 

ab initio calculations to predict complex interactions. For example, they should be well suited for 

the study of our gold systems that exhibit reactivity effects, such as for the formation of staples. 

Different potentials have already been created based on small gold clusters3 and gold-protected 

clusters with sulfur4 , but our goal here is to create a general model that can predict from small 

clusters to large nanoparticles capped or not with thiolates-SAMs. Over the years, different types 
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of ML models have been introduced.  Among them, we can cite the kernel method in the 1990’s 

based on decision boundaries between two sets of data that belong to different categories. It gives 

a linear regression in a non-linear space defined by a similarity Kernel over data points (or 

descriptors of data points).5 Such an approach is efficient in lattice dynamics simulations for 

calculating thermodynamics properties reproducing quantum data with high accuracy. 

Nevertheless, it involves high computational complexity with larger datasets, and the kernel 

selection requires a lot of trial and error, which can affect the efficiency of the learning.6 This is 

one of the reasons why people are also using Neural-Network (NN) based ML methods. They are 

built as follows:  

 

Figure C-16: Schematic of the machine learning process to create the desired potential depending 
on reference DFT calculations. 

So, as represented in Figure C-1, the objective of the ML approach is to fit the model to the 

true target Y, which can originate from DFT calculations, for example, including energies and 

forces. Indeed, it is going to use the input geometries to compute its prediction by successive data 

transformations and then, from the loss function, consider if the weight of each layer needs to be 

optimized. In the next section, we are going to focus more on the Neural Network “black box,” 

which allows us to translate the data to predict the right values. 

Neural network architecture NN can be used to process a lot of data following the procedure 

represented in Figure C-2. Each layer is composed of a specific number of neurons, which can 
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vary depending on the complexity of the task. A neuron (𝑋) is a fundamental computational unit 

that receives inputs from external sources or other neurons. Each neuron has weights (𝑊)  and a 

bias (𝑏) that are optimized during the training. Then take place the activation function(𝑓) which 

is used to reach the specification problem that the neuron is trying to solve. It is used to introduce 

a non-linearity (log), as represented in Figure C-2. The schematic of Figure C-2 displays how a 

single neuron is defined.  

 

Figure C-2: (a) Simple Neural Network architecture for an arbitrary number of inputs. (b) General 
neuron pathway with arbitrarily chosen log-loss functions. Adapted from Neural Network Design 
Book from Martin T. Haga7 

The input 𝑋P goes into the neuron, and then a summation is operated as defined in Equation 

C-1 to gather all the information from the input as the weight 𝑊P of each neuron adds the bias b. , 

𝑧 =F𝑊P𝑋P&

P[!
+ 𝑏 

(C-1) 

Where z represents the total input to the neuron from all incoming connections, where n is 

the number of inputs to the neuron. Then, it passes through a transfer function, which processes 

the scalar neuron output. Each neuron in the layer is connected to all inputs, and the output of one 

layer can be used as input for the next layer. Therefore, more than one layer can be used to capture 

complex patterns present within the data. In practice, a single-layer NN can only learn basic 

interactions and one to keep in mind the accuracy problem of FF potentials. However, higher layers 

can build upon the first layer, which determines only “simple features” to be refined and 

determined in more detail using the different features and their links between the different layers. 

Deeper networks, therefore, increase their “expressiveness,” which means that sufficient data and 
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computational resources are provided. From an overall point of view, it improves learning and 

allows for the generalization of unseen data. Figure C-3 shows a schematic of a multiple-layer NN.  

 

Figure C-3: Schematic of a three-layer neural network. Each one of them contains basic neural 
network parameters (activation function, weights, bias, etc..). Adapted from Neural Network 
Design Book from Martin T. Haga7 

 

C.2) Machine Learning for Interatomic Potential 

Neural network-based ML has significantly increased the development of interatomic 

potentials. Indeed, it enables atomistic simulations at ab initio level accuracy without requiring too 

much resources. So far, different methods have been developed: 

• Behler-Parinello introduces a neural network approach for representing high-

dimensional potential energy surfaces (PES) that significantly speeds up 

calculations while maintaining ab initio accuracy.8 Their method involves a 

generalized neural network structure where the total energy is a sum of atomic 

contributions learned through DFT-based training data. The network uses symmetry 

functions to describe atomic environments invariantly, allowing accurate 

predictions across varying system sizes and conditions.  

• SE(3)-Equivariant Graph Neural Networks, which handle geometric tensors, 

provide a better description of atomic environments.9 It can learn from less data 

(compared to other NN approaches) while achieving high accuracy. Some models 

have already been created based on this method, like Neural Equivariant 
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Interatomic Potentials (NequIP)9 or the Equivariant Hierarchy-based Graph 

Networks (EGHNs)10. 

In this Thesis, since Graph Neural Networks (GNN) have been used, we are going to define 

them in the next section and explain how they can be handled with ease in the context of the Force-

field-enhanced Neural Network Potentials (FeNNol) Python module. Within FeNNol, the first 

module that has been created is the module including the Force-Field-Enhanced Neural Network 

InteraXtions (FENNIX) framework.  

Overview of the FENNIX Framework   

FeNNix is a framework that can be used to build a force-field-enhanced ML model.11 It is 

a hybrid model combining machine learning and classical force fields to predict local energy 

contributions. The inclusion of long-range electrostatics and dispersion effects is also one of the 

main motivations for the creation of the framework. The ML model uses equivariant neural 

networks to predict the local properties of molecules.  It is based on the Allegro model, which 

makes it strictly local and allows for favorable computational scaling with the size of the system.12 

Moreover, the equivariance of Allegro allows for the prediction of tensorial properties such as 

atomic multipoles. More information concerning Allegro can be found in the article by Muesaelian 

et al.12, where the authors explain in more detail its architecture, which utilizes tensor products of 

learned equivariant representations to handle many-body potentials. They were able to obtain 

superior accuracy and scalability across various benchmarks as Allegro allowed them to predict 

out-of-distribution data by recovering the kinetic properties of complex materials. It also provides 

an accurate method for simulating atomistic dynamics with large systems and for long timescales.  

The workflow of the Allegro model can be given as follows. First off, each atom at its 

environment and neighboring 𝑁(𝑖) as defined in equation C-2: 

𝑁(𝑖) = �𝑗	s.t.�𝑅4\SSSSS⃗ � < 𝑟]� (C-2) 

Where 𝑗 corresponds to the indices of atoms that are considered neighbors of atom 𝑖 such 

that (s.t.) the distance between atom 𝑖 to atom 𝑗, presented by �𝑅4\SSSSS⃗ �, must be less than the cutoff 

radius 𝑟]. The cutoff defines the neighborhood around atom 𝑖 within which other atoms are 

considered to be neighbors. Then, we need to model the interactions between pairs of atoms.  
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1. Two-body (2B) Feature using a Multi-Layer Perceptron (MLP)  

To model these interactions, we employ a two-body descriptor {𝑥PQ , 𝑉PQ&(^| for each pair of 

atoms. The first component of this descriptor, 𝑥PQ"_ is derived from a multilayer perceptron 

(MLP). An MLP is a type of neural network that includes one input layer, one or more hidden 

layers, and an output layer. Each layer is fully connected to the next, allowing the network to 

capture complex relationships in the data. 

• First, a chemical species encoding is performed. Each atom’s chemical species is encoded 

using a one-hot encoding method, denoted as 𝐼(𝑍P) for atom i and 𝐼{𝑍Q| for atom j. One-hot 

encoding transforms categorical data into a binary vector. For example, if there are five 

possible types, and if atom i is of type 1, it would be represented as [1, 0, 0, 0, 0]. This study, 

which was based on the periodic table, represented each element using sine and cosine 

functions, reflecting the similarities and periodic trends among elements. The row and column 

indices of each element in the periodic table are coded separately. As shown in Figure C-4, the 

first part corresponds to the row and the other to the column. For the row, we then have a 

difference between the hydrogen and the other atoms that are from the same period (2nd) in 

the periodic table. In comparison, for the column, as shown on the right in Figure C-4, we have 

the same values for silver and gold because they are from the same group (11th). This type of 

coding allows good generalization and similarity inference in the ML model. 

 

Figure C-4: Positional encoding of different chemical species. (a) is one simple example with 
atoms in the same row (b) is the chemical species that are studied in this thesis. Adapted from Plé 
et al.  (2023)11 

In this thesis, the encoding of molecular systems is fundamentally based on their electronic 

structures, using a model known as SpookyNet. This model uses a detailed encoding scheme 

that incorporates several key aspects of each element within the system. Firstly, it uses the 
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atomic number, which provides a fundamental identifier that is intrinsic to the chemical 

properties and behavior of the element. In addition, the model encodes the total number of 

electrons, which is crucial for representing the electronic state of the element and its potential 

interactions within molecules. Furthermore, SpookyNet explicitly includes the spin state of the 

electrons, an essential quantum mechanical property that influences magnetic interactions and 

the overall stability of molecular structures. This inclusion is particularly significant as it 

allows SpookyNet to account for the diversity of molecular states, enabling it to predict 

properties across different electronic configurations with greater accuracy. 

 

• Then, when it is done, we need to represent the interatomic distances. The distance between 

atoms i and j, 𝑅PQ, is represented using a Bessel basis function, noted 𝐵{𝑅PQ|. This function 

projects the interatomic distance onto a basis that enhances the model’s ability to discern subtle 

variations of such quantity. The Bessel functions are particularly useful for representing wave-

like properties in space and are defined as 𝐵{𝑅PQ| = �𝐵!{𝑅PQ|, . . . , 𝐵`$%aPa{𝑅PQ|�. 
• The cutoff function, 𝑓]{𝑅PQ|, ensures that the influence of distant atoms diminishes smoothly 

as their separation approaches a predefined cutoff distance, 𝑟]. This function is crucial for 

maintaining computational efficiency (i.e., it reduces the number of operations to be 

performed) while focusing on locally relevant interactions. 

By using an MLP to process these inputs, we can generate a sophisticated description of atomic 

interactions, which are then utilized in molecular dynamics simulations to predict material 

properties more accurately. This method allows for flexibility in handling various atomic species 

and interaction distances, enhancing the predictive capabilities of computational models. 𝑥PQ"_ is 

then defined in equation C-3 as follows:  

𝑥PQ"_ = MLP"_�𝐼(𝑍P) ∥ 𝐼{𝑍Q| ∥ 𝐵{𝑅PQ|�𝑓]{𝑅PQ| (C-3) 

 

Where it is a concatenation ∥ (joining operation) between the electronic information from 

atom i (𝐼(𝑍P) ) and j (𝐼{𝑍Q|) merging both information into our two-body (2B) descriptor, then the 

projected radial basis 𝐵{𝑅PQ| composed of Bessel basis function is concatenated. From that, we 

get a descriptor, which is composed of all the chemical environments between atoms i and j.  
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𝑓]{𝑅PQ| corresponds to the function which is going smoothly towards zero when approaching the 

distance cutoff 𝑟].  
1. The local environment interaction  

The second component of the two-body descriptor 𝑉PQ&(^,"_ uses the two-body scalar embedding 

where the two-body equivariant features are projected onto a basis of real spherical harmonics 

𝑌PQ(^ and defined as: 

𝑉PQ&(^,"_ = �MLPembed
"_ {𝑥PQ"_|�&(^𝑌PQ(^ (C-4) 

 

It is composed of indices n, l, and p that maintain the equivariance concerning the 

symmetries. The use of equivariance is important as it demonstrates accurate descriptions of 

structural and kinetic properties for complex materials. It is defined as a tensor labeled with a 

channel index 𝑛, a rotational index 𝑙, and a parity index 𝑝.  The rotational index can have different 

values. 𝑙 = 0 corresponds to scalar/invariant quantities, 𝑙 = 1 to vector-like objects and is 𝑙 ≥ 2 

to objects encompassing higher-order tensors. The tensor product is calculated using the 𝑒3𝑛𝑛 

model,13 given the equivariant multiplication operation for two representations.  They have the 

particularity to satisfy two conditions :(i) its binarity and (ii) and its equivariance. To give an 

example, let’s consider the interaction between atoms i and j.  Atoms i have their environment 𝑁(𝑖) 
defined by the cutoff radius and all its chemical information is stored in a vector called I(Zi). It is 

seeing the atom j from a distance �𝑅4\SSSSS⃗ � which also has its chemical information stored in the vector 

I{Zj|. The embedding is then processed by first creating a global equivariant environment 

neighborhood composed of the two descriptors previously described and of a new feature, L, which 

is defined as the layer index. The equation becomes: 

𝛤P&(^,(c) = F ¢MLPembed
(c) #𝑥PQ(ce!)%£&(^ 𝑌PQ(^Q∈`(P)

 (C-5) 

The interaction is then processed using a tensor product creating a “latent space” composed 

of all possible combinations of rotational 𝑙 and parity indices 𝑝 that are allowed by symmetry.  m 
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is a multiplicity index that must be integrated as it helps distinguish between between (𝑙!, 𝑝!) ∧(𝑙", 𝑝") possible combinations that produce (𝑙, 𝑝). The latent space is defined as: 

𝐿PQ&g(^,(c) = #𝛤P&(!^!,(c)⊗𝑉PQ&("^",(c)%&g(^ (C-6) 

Where a tensor product ⊗ is applied between the local 𝛤P&(!^!,(c) environment of the atom 

𝑖  and the 𝑉PQ&("^",(c) interaction descriptor between atoms 𝑖 and j.  It contains all the combinations 

of rotational 𝑙 and parity 𝑝  that are allowed by symmetry. Then, to get the new pairwise 

embedding, the scalar product is redefined by:  

𝑥PQ(c) = 𝛼𝑥PQ(ce!) + ¨1 − 𝛼"𝑓]{𝑅PQ| ×MLPlatent
(c) ¢𝑥PQ(ce!) ∥ 𝐿PQ&g5!,(c)£&,g (C-7) 

Where the 𝛼 coefficient is a value ranging between 0 and 1 and allowing to easily propagate 

scalar information from the  𝐿 − 1 layer to the 𝐿 layer assuring communication between them. It 

can either be changed for each layer or set to a specific value. Then, the equivariant features are 

obtained by a linear combination of the element of the latent space with the same indices l and p 

from all channels and multiplicities.  

𝑉PQ&(^,(c) = F 𝑤&(,g&(^,(c)𝐿PQ&(g(^,(c)&(,g
 (C-8) 

 

Where 𝑤&(,g&(^,(c) is the weights that are optimized in the training procedure.  

2. The energy contributions  

The contributions of the total energy are defined by the product of the three different energies: 

𝐸OP1 =F𝐸PNN
P

+ F 𝐸PQC
P,QhP

+ F 𝐸PQD
P,QhP

 (C-9) 

Where 𝐸PNN  is the neural network contribution determined by processing the many-body 

descriptors previously described. It provides a local energy contribution to the short-range 

interactions, which remains limited by the rc cutoff radius. The neural network also provides 

atomic partial charges 𝑞PNN and atomic volumes 𝑣PNN. Then  𝐸PQC  is the electrostatic interaction 
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computed via a Coulomb potential. It depends on the number of valence electrons for both atoms 

i and j, respectively 𝑁P  and 𝑁Q and their partial charges, 𝑞P  and 𝑞Q , predicted by the neural network.  

𝐸PQC = 1𝑅PQ n𝑁P𝑁Q + 𝑁Q(𝑞P − 𝑁P)𝑓i d 𝑅PQ𝑟Pvdwf + 𝑁P{𝑞Q − 𝑁Q|𝑓i d 𝑅PQ𝑟Qvdwf
+ (𝑞P − 𝑁P){𝑞Q − 𝑁Q|𝑓j d 𝑅PQ𝑟Pvdwf 𝑓j d 𝑅PQ𝑟Qvdwfo 

(C-10) 

 

Where 𝑓i and 𝑓j are damping functions with 𝛼 and 𝛽 adjustable parameters that are 

assumed to be universal. 𝑟P,Qvdw are the environment-dependent van der Waals (vDW) radii of each 

atom i and j. They are defined as the ratio between the atomic volume predicted by the neural 

network 𝑣PNN and the volume of the atom without any interaction (𝑣Pfree ) which is defined as: 

𝑟Pklm = d𝑣PNN𝑣Pfreef
!L 𝑟Pklm,no)) 

(C-11) 

 

The final energetic contribution is the dispersion interaction 𝐸PQD  uses of pairwise 

Tkatchenko-Scheffler14 model:  

𝐸PQD = −2𝐶9,P𝐶9,QN𝐶9,P 𝛼Q𝛼P + 𝐶9,Q 𝛼P𝛼QP𝑅PQ9
𝜎PQ{𝑅PQ| (C-12) 

 

where 𝐶9  is a coefficient derived from the electron density using accurate free-atom 

reference data, which is used to determine the vdW interactions.11 𝛼P, 𝛼Qand  𝜎PQ{𝑅PQ| are the 

isolated atom polarizabilities and the sigmoid damping function respectively: 

𝐶9,P = d𝑣PNN𝑣Pfreef
" 𝐶9,Pfree, 𝛼P = d𝑣PNN𝑣Pfreef𝛼Pfree 

(C-13) 
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𝜎PQ{𝑅PQ| = ¯1 + 𝑒epq r)*ao)vdwso*vdwe!t°
e!

 

(C-14) 

 

Where 𝛾 and 𝑠 are adjustable parameters that are assumed universal. 

To summarize, the FeNNix framework utilizes the Allegro model to process chemical 

embeddings, applying symmetry operations equivariantly across all elements. It allows for 

accurate local environments and keeps track consistently of chemical properties. Allegro’s 

innovative approach not only ensures that symmetry operations are applied uniformly but also 

integrates a mechanism to adjust the weights of these operations during the neural network training 

phase, enhancing the model’s adaptability and accuracy. Once the embeddings are processed, the 

framework employs a local many-body descriptor to calculate the interaction energies between 

atoms. The FeNNix model can then determine the different energetics contributions from short- to 

long-range within molecular systems. It is a robust physical model to predict and analyze 

molecular energies with high precision. The schematic of the procedure is presented in Figure C-

5. 

 

Figure C-5: Procedure describing the FeNNix method. Adapted from Plé et al.  (2023)11 
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Training modules  

FeNNix’s training process is designed to mirror DFT-derived total energies  𝐸DFT  and 

forces  𝐹PQDFT. It forms the basis for a loss function that quantifies differences between the model’s 

predictions and the DFT benchmarks. Such quantification is essential for adjusting the model’s 

weights, thus tuning its predictions. Specifically, the loss function—typically a mean squared error 

for both energies and forces—guides systematic weight adjustments to enhance accuracy and 

reliability in predicting chemical properties. The training comprises four stages, starting with this 

foundational alignment defined as  

𝐿(!) = 𝜆u(𝐸DFT − 𝐸NN)" 

+𝜆YFF{𝐹PQDFT − 𝐹PQNN|"
`at

P[!

L

Q[!
 

+𝜆vF{𝑞PDFT − 𝑞PNN|"
`at

P[!
 

+𝜆kFd𝑣PwYZ𝑣Pfree − 𝑣PNN𝑣Pfreef
"`at

P[!
 

(C-15) 

The parameters 𝜆 can be set to get a specific trend within the learning. For example, one 

could set the parameters as 𝜆u = 𝜆Y which will give the same path during the learning. 

Alternatively, one could set  𝜆u < 𝜆Y to favor the learning of the forces over energies. This last 

parameterization accelerates the training procedure at the beginning.  This loss is then averaged 

over the configurations in a batch. This process favors the multi-output network and provides 

models with better generalization capability and flexibility. At this stage, all the parameters within 

the embedding are trained with a starting learning rate that we are calling here 𝜏P&P. Furthermore, 𝜏P&P is reduced when the error on the training set is converging, and this first stage stops when the 

learning rate reaches 10eO. 

In the second stage, the embedding is frozen for the multi-layered preceptors for charges 

and volumes. Therefore, the learning focuses only on short-range interactions. Then, by keeping 

the previous weight for 𝜆u and 𝜆Y the second stage begins, ensuring that the volumes and charges 
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are not modified during its process. It stops when the errors between the validation set and the train 

set drop to the same order.  

FeNNol framework 

Developed by Plé et al.15, FeNNol is an open-source Python library designed to enhance 

atomistic machine learning models. Leveraging the FeNNix model it simplifies the creation, 

training, and execution of molecular dynamics (MD) simulations across various systems. Built on 

the Jax framework, FeNNol supports GPU acceleration, making it highly efficient for complex 

model processing.15 

1. Chemical and radial encoding: To perform the learning, we need to parametrize first the 

encoding of the chemical environment. Different chemical encodings can be used with 

FeNNol. The one-hot encoding described before, one based on the electronic occupancy called 

TeaNet16, electronic structure encoding called SpookyNet17, position encoding presented 

previously in Figure C-4, and 4D encoding based on the Stowe-Janet-Scerri periodic table18. A 

combination of those encodings can also be done and optimized during the process.  

The radial encoding can be done using simple Gaussian basis, Bessel basis, inverse-

distance Gaussian, Fourier expansion, and Bernstein polynomials.  

2. Physics Modules Some modules can be used in FeNNol. They encompass, for example, the 

Coulomb module computing the electrostatic interactions between distributed charges. For the 

computations of long-range electrostatic interaction, the Ewald summation is used. The use of 

this technique effectively handles the computational challenges of the slow convergence of 

electrostatic interaction summation. It gives rapid convergence, flexibility, and accuracy.19 

Different modules can also be used to handle the dispersion/exchange interactions, charge 

equilibration, and repulsive pair potential.  

With this foundation, one can build their own FeNNol potential. A key aspect of this method 

is the introduction of a new embedding named CRATE (Configurable Resource from Atomic 

Environment), specifically developed to combine chemical and geometric information. It 

incorporates species embeddings along with radial and angular information. The embedding 

process also utilizes radial basis and angle embeddings and tensorial information, features that can 

be interconnected across different layers using message-passing. This method iteratively refines 
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an embedding vector for each atom, 𝑥P, within the system across multiple layers by incorporating 

data from the local environment. 

 

Initially, two distinct vectors are utilized: 𝑟P; which corresponds to information from a previous 

layer, and 𝑠P which combines local resources. The transformation process is governed by the 

following equations: 

𝑟P = 𝑊o(c)𝑥P + 𝑏o(c) (C-16) 

𝑠P = 𝑊a(c)𝑥P + 𝑏a(c) (C-17) 

Where 𝑊o(c) and 𝑊a(c) are weight matrices at the L-th layer of the NN. These matrices are 

responsible for transforming the input embedding vector 𝑥P into the new vector 𝑟P containing 

information from the previous layer and 𝑠P combining local resources. The bias vectors are 𝑏o(c) 
and 𝑏a(c) are added to the linear transformations to shift the output vectors 𝑟P and 𝑠P. Local 

geometric resources are then defined in Equation C-18 by a vector Ri:  

𝑅P = 𝑟P ∥ #			∥'∈res(c) 𝑔{𝑥P , {𝑠Q}|% (C-18) 

This vector 𝑅P contains all the local resources from atoms i and j and the information of the 

previous layer of atoms i (𝑟P). It is an iterative concatenation ∥'∈res(c), meaning that we concatenate 

all local resources computed for the layer L 𝑠Q, with the embedding 𝑥P using a function g. Each 

function g processes its inputs to compute a set of features that describe the geometric relationship 

between atom i and its neighbors 𝑔{𝑥P , {𝑠Q}|. It is then mixed through a Multi-Layer Perceptron 

(MLP) depending on the layer L to update the embedding.  

𝑥P(cs!) = σ{𝐹(c)| ⊙ 𝑥P(c) + 𝑢 #𝑀𝐿𝑃(c)(𝑅P)% (C-19) 

Where σ{𝐹(c)|  is a trainable “forget gate”. With σ, the sigmoid function is used as a weight 

to control the flow of information as it ranges between (0,1). 𝐹(c) represents a vector of trainable 

parameters.   

• A value close to 0 for σ{𝐹(c)|  means forget a lot of the previous information,  
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• A value close to 1 retains most of the information.  

The element-wise multiplication ⊙, applied the “gate” values to the embedding 𝑥P, which 

filters the embedding based on the relevance decided by the forget gate. This first part of Equation 

C-19 maintains a balance between old and new data, ensuring the model’s adaptability. On the 

right-hand side of Equation C-19, only the activation function 𝑢 is used to enable complex 

transformations.  

Regarding the radial resources 𝑔Prad, they are based on a radial basis 𝐵{𝑟PQ| which can be 

defined with Bessel functions, for example. As in FeNNix, it is multiplied by a function 𝑓{𝑟PQ| that 

tends to zero when atoms are outside the cutoff radius. It is defined as in equation C-20. 

𝑔Prad =F𝑠Q
Q

⊗𝐵{𝑟PQ|𝑓{𝑟PQ| (C-20) 

Where here we have a tensor product ⊗ between the local resources of the neighbors 𝑠Q of 

atom i with the radial basis.  

Concerning the angular resources, it is a combination of triplets of atoms. To build it, it is 

first reduced to a chemical-radial basis 𝐷PQ and 𝐷PU, which are considered as two edges. (In a Graph 

Neural Network, one can consider each atom as a node and each bond as an edge).  

�𝐷PQ�] = 𝑓½{𝑟PQ|F�𝐵¾{𝑟PQ|�%�𝑠Q�$¢𝑊ang(c)£%$]%$
 (C-21) 

Where 𝑓½{𝑟PQ| is the switching function which goes to 0 depending on the cutoff chosen by 

the user. 𝐵¾{𝑟PQ| is the radial basis for the triplet graph, and the 𝑊ang(c) is the trainable tensor. Then, 

from that, the angles between the two edges are projected into an angular basis ΘPQU and we get 

our angular scalar 𝑔Pang which is defined in Equation C-22:  

𝑔Pang =FΘPQU
{QU}

⊗{𝐷PQ ⊙𝐷PU| (C-22) 

Where we have a tensor product between the angular basis and result of the element-wise 

multiplication ⊙ between the two edges 𝐷PQ and 𝐷PU.  From this, we get the angular resources, 
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which depend on a cutoff that can be different from the one used for the radial resources of 

Equation C-20.  

The equivariant resources are then defined by three different components (equivariant 

tensors are defined with hat notation). First, an equivariant neighborhood basis from a chemical 

radial basis ρÀP(c). It depends on two parameters. The interaction feature 𝑏PQ(c) defined in Equation 

C-23, which is a tensor product between the embedding of atom j and the radial basis.  

Where 𝑊)(c) is a trainable weight matrix specific to the layer L that converts the radial 

chemical basis to a user-selected 𝑁]z%&&)(a equivariant channels. It allows the model to handle 

complex transformations, e.g. to ensure rotational invariance. The number of channels is kept small 

because of the computational cost.   

Second, the equivariant embedding of the interaction between atoms i and j at layer L.  

𝑉ÁPQ(c) = Â𝑉ÁQ(ce!)	𝑖𝑓	𝐿	 > 	1	𝑎𝑛𝑑	𝑚𝑒𝑠𝑠𝑎𝑔𝑒 − 𝑝𝑎𝑠𝑠𝑖𝑛𝑔𝑒𝑙𝑠𝑒	𝑌ÁPQ 	 	 (C-24) 

Where VÆ7({e!) is in the context of message passing the equivariant embedding (and 𝐿 ≠ 0) 

from the previous layer L-1 for atom j. The information from atom j is directly used to update the 

interaction for the current layer L. 𝑌ÁPQ depends on a user-defined maximum degree 𝑙g%| and is the 

tensor representing the direction coefficient between atom i and j in the real spherical harmonics.  

Then, from that, we can define, as expressed in Equation C-25, the chemical-radial basis 

ρÀP(() 

 

After forming the neighborhood basis ρÀP(c) we initialize the equivariant embedding 𝑉P(5) for 

the first layer L=0 as: 

𝑏PQ(c) = 𝑊)(c) #𝑠Q ⊗𝐵{𝑟PQ|𝑓{𝑟PQ|% (C-23) 

ρÀP(c) = ρÀP(ce!) +F𝑏PQ(c)Q
⊗𝑉ÁPQ(c) (C-25) 
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Where n, n’, m and λ are indices used to navigate and manipulate tensor components. 

¢W=(5)£;;(} indicates the weight matrix that maps input tensor components from index n’ to n. 

�YÆ+7�;(Finteraction tensor between atoms i and j capturing features indexed by n’, λ, and m.  

Then, after forming the neighborhood basis of Equation C-25 and the initialize embedding 

of equation C-26, a series of tensor products is done to update 𝑉ÁP: 
¢𝐿ÁP(c,W)£&}g = F ¢𝑊path(c,W)£^ Ë F 𝐶g!g"g~!~"~ ¢ρÀP(c)£&}!g!

¢𝑉ÁP(ce!,W)£&}"g"g!,g"

Ì
^[(}!,}"→})

 
(C-27) 

¢𝑉ÁP(c,W)£&}g =F¢𝑊k(c,W)£&&(¢𝑉ÁP(ce!,W) + 𝐿P(c,W)£&(}g&(
 (C-28) 

Where 𝐶g!g"g~!~"~  are Clebsch–Gordan coefficients for coupling different angular momentum 

states, allowing the model to preserve the symmetries of the system, such as rotationally 

equivariant representations. 𝑊path(c,W) is the path weight which are trainable parameters that weigh 

different tensors products paths. It allows the control of how symmetric components interact and 

influence the updated embedding, ensuring the stability of the iterative tensor products. Equation 

C-28 is just the update of the equivariant embedding 𝑉ÁP followed by channel mixing. 

Finally, the equivariant resources 𝑔PE3 at layer L is just a concatenation of the scalar irreps 

from the different 𝐿P(c,W) and is defined in Equation C-29: 

𝑔PE3 =∥W,& ¢𝐿P(c,W)£&55 (C-29) 

More information about long-range resources is also possible with FeNNol and all 

mathematical functions about it are expressed in the paper by Plé et al.15 In this thesis we did not 

use long-range resources. The main reason for using CRATE is its efficiency, as it requires less 

resources than the Allegro method. 

¢𝑉P(5)£&}g =F¢𝑊k(5)£&&(}&(
�𝑌ÁPQ�&(}g (C-26) 
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FeNNol training procedure  

1. The dataset and its evaluation: First, the dataset should be created. It should be composed of 

the cartesian coordinates, the energies, and the forces in a pickle format file. The batch size 

should be set up appropriately. This parameter determines the number of geometries processed 

during a single learning iteration.  

2. Optimization parameters: We used the Adabelief20 optimizer to train our models, which is a 

stochastic gradient descent with learning rate adaptability. It adjusts the learning rate based on 

the ‘belief’ in the observed gradient’s direction, determined by how closely the observed 

gradients follow the predicted one. If the actual gradient significantly deviated from its 

exponential moving average, it indicated low reliability. Consequently, AdaBelief takes smaller 

steps. Conversely, if it is too close to the predicted, larger steps are taken. The algorithm is 

explained and compared to the Adam optimizer in the paper from Zhuang et al.20 Some 

parameters during the learning can also be frozen to do fine-tuning or to perform transfer 

learning.   

3. Loss and stages: Different losses can also be defined – mean squared error, mean absolute 

error, or log hyperbolic cosine, for example. It can be set for either the whole system or per 

atom. Different stages can be performed. For example, if one wants to do a transfer learning21 

between different methods like DFT and ReaxFF, one can set a first learning on ReaxFF and 

then adjust them with DFT with another learning called transfer-learning. The number of 

epochs and learning rate can then be reparametrized for the second learning.  

MD simulations The FeNNol module allows users to select various ensembles and thermostats, 

including Langevin, Bussi-Parinello, or Nose-Hoover, and to specify simulation times. Users can 

also choose between periodic and non-periodic boundary conditions. It is also based on GPU, 

which speeds up the computation. This makes it particularly advantageous for conducting complex 

simulations that require extensive computational resources. 

Additionally, the inherent flexibility and precision of the FeNNol framework make it 

particularly suited for developing new potential models in material science, such as those for gold 

and its interactions with thiolates.  



C.3) Preparation of the training set 

  
 

127 

One of the primary motivations for this project is the development of an accurate potential 

to predict complex reactivities, such as the restructuring of thiolate self-assembled monolayers on 

gold surfaces.  

To initiate the machine learning process, it was essential to assemble a comprehensive ab 

initio reference dataset. This dataset is fundamental for the training mechanism, providing the 

necessary data points to teach the model how to accurately predict and simulate complex chemical 

reactions and interactions. The next chapter will detail the procedures followed to gather and refine 

this data, highlighting the sources, selection criteria, and preprocessing steps that ensure the 

dataset’s relevance and utility for training the FeNNol model. 

C.3) Preparation of the training set 

C.3.a) Quantum calculation  

To get accurate reference data for the data set, quantum methods such as DFT, CCSD(T), 

or MP2 are the best choices. They provide a full electronic analysis for each atom in a system. 

Based on the resolution of the time-independent Schrödinger equation using the electronic 

molecular Hamiltonian, H𝛹(𝑥, 𝑡)=E𝛹(𝑥, 𝑡). They can give information about total energies, 

forces, charges, and dispersion energy. These approaches use the Born-Oppenheimer 

approximation, which relates to the fact that electrons move much faster than nuclei, allowing the 

equation to be separated into electronic and nuclear parts.  

To approximate the wavefunction,  different methods can be used, and they are all based 

on the Self Consistent Field (SCF) procedure, which is an iterative method approximating the wave 

function / electronic density.22 Offering access to a set of orbitals. 

The Hartree-Fock (HF) method This method is based on a molecular orbital approximation 

where the total wavefunction of the system is the product of one-electron wavefunctions. Each one 

is defined as an orbital and is determined according to a basis set. This approximation considers 

the independence of every individual electron. It is a variational method that considers that the 

energy of the HF wavefunction is always greater than the exact value.23 The objective of the SCF 

using the HF method is then to determine the best coefficient that minimizes the energy. It includes 

the exchange energy, which accounts for the antisymmetry of the electronic wavefunction. Arising 

from the Pauli exclusion principle, it reflects the repulsion and correlated motion of the electrons. 
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It gives an accurate description of the electron distribution within a system.24 While Hartree-Fock 

provides a useful approximation of the wave function, it fails to account for electron correlation, 

leading to significant errors in systems where these interactions are strong. 

Full configuration interaction (FCI) Is the most accurate methods that consider all possible 

electron configurations for a given number of electrons and orbitals. In this method, the wave 

function is defined as a linear combination of determinants.  It belongs to the so-called post-

Hartree-Fock class of methods, as the initial molecular orbitals originate from an HF 

calculation.25,26 FCI constructs the wavefunction as a linear combination of all possible electrons 

and fully captures electron correlation, providing accurate energy estimation. Even though this 

method provides a very accurate electronic description, it is computationally costly, which makes 

it impossible to use for large systems on present computers. Indeed, its scaling is O(N!), where N 

is the number of orbitals that are used. The factorial growth comes from the detailed consideration 

of electron interaction across all configurations, one of the main arguments from which arises the 

use of possible quantum computing. Different methods have been developed to approximate the 

results of FCI without having extreme computational expenses, such as selected CI (sCI), which 

uses only a subset of the most important configurations based on the contributions to the overall 

wave function, reducing the required computational resources. 

Couple Cluster Singles and Doubles (CCSD) It’s a post-non-variational Hartree-Fock method 

that includes all single and double electron excitation from a reference determinant. Its name 

comes from the exponential ansatz of the cluster operator. It can also include a perturbative 

treatment of triple excitations CCSD(T), which is considered one of the most accurate methods for 

QM (or golden standard). Even though CCSD is less computationally intensive than FCI, it still 

captures a significant proportion of the correlation energy. The method is scaling at O(N6).27  

Density Functional Theory DFT is a class of methods that is widely used as it offers a good 

balance between accuracy and computational efficiency. DFT is used in both academic research 

and industrial applications, ranging from the development of new materials and drugs to the study 

of catalytic processes. It approximates the electron density rather than the wavefunction: 28  

1. Hohenberg and Kohn theorem: DFT is based on the Hohenberg-Kohn theorem, which states 

that the energy of the ground state of any interacting particle system is a function of the electron 

density.29 Moreover, it is a variational theorem where the energy is always greater or equal to 
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the exact energy. This means that the true ground state density minimizes the energy functional, 

providing a way to calculate properties by minimizing 𝐸[𝜌]𝑐𝑜𝑛𝑐𝑒𝑟𝑛𝑖𝑛𝑔 𝜌. From these 

statements, the Kohn-Sham method is used, offering a practical way to approximate this 

function.  

2. The Kohn-Sham (KS) model: This approach is a method that implements the principle of 

DFT. The total energy functional is decomposed into several terms. The kinetic energy of non-

interacting electron 𝑇a[𝜌] which defines a fictitious system of non-interacting electron which 

has the same density as the interacting one. 𝑉)|W[𝜌] is the external potential energy present here 

due to the external potential acting on the electrons. The Hartree energy, 𝐸�[𝜌] which is the 

classical electrostatic energy. Finally, the 𝐸|][𝜌] which is the exchange-correlation energy that 

accounts for the remaining non-classical interactions.30 To find the ground state density, the 

KS equations should then be resolved. They are derived by minimizing the total energy 

functional concerning the density under the constraints that density comes from orbitals that 

are solutions to a single-particle Schrödinger equation. This method reduces the many-body 

problem to a set of single-particle problems, thus decreasing computational costs. It gives a 

good balance between accuracy and cost. Different functionals have been proposed to describe 𝐸|][𝜌].  
3. The functionals: Different functionals are used to describe the exchange-correlation energy. 

In this study, we are focusing on gold, to choose the best functional which provides good 

accuracy without requiring excessive computational effort, one should follow the so-called 

Jacob’s ladder of DFT.31 It sorts the DFT functionals from the very simple ones to the most 

complex ones. The functional with the lowest accuracy is the local density approximation 

(LDA) where 𝐸|][𝜌] depends only on the density at one point. Then, the generalized gradient 

approximations (GGA) use both the density and its gradient at each point, greatly reducing the 

bond dissociation energy error and improving transition-state barriers. Next is the meta-GGA, 

which depends on the 𝑇a[𝜌]. Next, the hybrid functionals mix some amount of exact exchange 

within a GGA approach. It allows to mimic static correlation effects and produces a highly 

accurate functional coming of course with its cost.32 The choice of the right functional is then 

really important to capture all the electronic properties of a system. A benchmark study has 

been conducted on various functionals for neutral gold clusters, ranging from GGA to hybrid 
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ones. The Perdew-Burke-Ernzerhof (PBE) functional was found to give a minimal error, 

making it highly suitable for our study.3 

4. Basis sets: They are used to describe the electron density distribution. Different types of basis 

sets are used in DFT calculations. Slater-type orbitals (STOs) have the advantage of closely 

mimicking the actual shape and behavior of atomic orbitals with a correct structure, leading to 

a more accurate physical representation. They decrease exponentially, which matches the 

behavior of actual atomic orbitals. However, the major drawback of STOs in computational 

chemistry is their computational complexity, especially when it comes to evaluating 

multicenter integrals required for molecular systems.  For hydrogen-like atoms, they provide 

exact analytical solutions. Gaussian-type orbitals (GTO) provide a practical application for a 

wide range of chemical systems, from small organic molecules to large biological complexes 

and materials. Their use simplifies the calculation of molecular integrals as analytical 

expressions exist for multicentred integrals, making them more tractable than STOs. They are 

also computationally efficient and more flexible, where they can be combined to approximate 

a variety of orbital shapes and sizes with strong capabilities to model the electron cusp problem. 

Then, plane wave basis sets also exist and are suitable for the study of periodic systems in 

condensed matter physics and materials science. They are uniformed across space and can be 

optimized by adjusting a cutoff energy, which determines the maximum kinetic energy of the 

plane waves included in the basis set. Choosing the correct basis set, such as GTOs for 

molecular systems and plane waves for periodic systems, is crucial, as it affects the accuracy 

of the results and the computational resources required. 

5. Pseudopotentials and dispersion: To reduce computational requirements, pseudopotentials 

can be used. They replace the core electrons with an effective core potential (ECP), thus 

focusing on the valence electrons, which are the most responsible for chemical properties. 

Moreover, to accurately describe the physical and chemical properties of a system, one can 

also consider dispersion interactions. It arises from the correlated movements of electrons 

between atoms and molecules, which are not captured by conventional DFT due to their local 

treatment of electron correlation. These involve adding a correction term (i.e. dispersion-

corrected DFT) to the energy calculated by DFT to account for dispersion. It Is then renamed 

DFT-d2 or d3, depending on the empirical term calculated. For example, the use of Grimme’s 

dispersion.33  
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Overall, one should carefully combine the choices of the right functional, basis set, 

pseudopotential, and dispersion correction to get a satisfactory description of a given studied 

system. For gold systems, a vast literature of DFT studies exists. It has been found that the best 

functional to describe the bond between two gold atoms is the Perdew-Burke-Ernzerhof mixed 

with a d3 correction, also known as PBE-d3, which is a GGA functional. 34-35 This functional gives 

total energy properties in good agreement with the experiment with a low mean average error. 

Concerning the basis set, the Stuttgart basis sets are used, which are also called Stuttgart relativistic 

small core (RSC) effective core potential (ECP). RSC basis can handle heavy atoms without 

requiring too much resources and by still staying accurate.  It replaces the core electrons of an 

atom with a potential that effectively accounts for their shielding effects on the valence electrons. 

It also takes into account relativistic effects, which are crucial for the description of gold. Thus, 

there is a spin-orbit coupling happening for gold, which is defined as a relativistic interaction 

between the spin and the orbit motion of electrons. This relativistic effect leads to a contraction of 

the s and p orbitals and, conversely, a potential expansion of the d and f orbitals. The gold Stuttgart 

ECP incorporates these relativist effects into its formulation, making it more accurate and realistic 

than non-relativistic basis sets. Using such an approach strengthens the description of all the gold 

systems that need to be computer-using DFT to obtain reference energies and forces.  

C.3.b) Dataset preparation 

To perform the learning discussed in section C-3, one should have accurate ab initio 

reference computations. Here, with the use of FeNNol, we want to learn about energies and forces. 

Nevertheless, to do the calculation, we need to find different equilibrium and non-equilibrium 

systems to get a flexible potential. First, the goal was to find the different systems that were already 

existing in the literature. We took our reference structures from the Muller group36 , which consists 

of a large dataset of 63 015 low-energy atomically precise nanoclusters that are available for a lot 

of elements. Concerning gold clusters, structures from 3 to 55 atoms are gathered with both local 

and global minimum. As we are limited in terms of computational resources, we’ve decided to 

limit our calculation to a maximum number of 25 gold atoms. Another point that was considered 

is the switch in terms of geometry. It is known that from 12 to 15 gold atoms, the clusters go from 

a 2D to a 3D structure. We ensured ourselves to gather more data in this range for the potential to 

be able to differentiate between those. Therefore, we tried to gather as many geometries as we 

could from different studies and databases. In total, we were able to gather several minimum 
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structures that were equilibrated. Nevertheless, for the potential to be flexible, we needed to 

include non-equilibrium structures. 

Molecular dynamics simulations Using MD simulations via LAMMPS combined with ReaxFF, 

we were able to create non-equilibrium structures. We used the Monti et al. force fields37with a 

Berendsen thermostat, a timestep of 2 fs, and heating of the simulation box until 1300 K. To ensure 

that the system is beyond equilibrium, a small deviation of 0.25 Å was applied at each timestep 

during the simulation. A filter had also been applied at the end of each simulation to remove 

redundant geometries. A radial analysis was performed by comparing each pair of atoms during 

the simulation. If the geometry from the timestep 𝑡 is too close to the previous one at the timestep 𝑡 − 1 then it is removed from the dataset. To give an example, at a low temperature under 600 K, 

the different systems did not move enough as such temperature appears pretty low for such stable 

systems even with the use of deviation. Nevertheless, when reaching a higher temperature and 

arriving around the boiling point of gold, which is around 1337 K, the clusters started to move a 

lot, and we were able to get non-equilibrium systems. Moreover, we wanted to create a potential 

that can capture clusters for both chemistry at the surface and on the clusters. Nevertheless, we 

were not able to create reference data with a large number of atoms, so since it is stable with 

ReaxFF, we used it for the surface by simulating two different sizes of nanoparticles. The main 

drawback of using ReaxFF as a reference is that it does not accurately distinguish between each 

gold atom and treats them equally. This means that nanocrystals cannot see the differences between 

atoms located on edges and facets. Therefore, it does not accurately predict specific interactions, 

which may account for the lack of prediction for complex interactions. However, it can simulate a 

stable gold surface. Our idea was to combine ReaxFF's surface stability for gold systems with 

accurate DFT descriptions of gold clusters. This should allow us to obtain a flexible potential 

capable of capturing both surface types and cluster chemistry. 

 The process that uses the DFT reference data is presented in Figure C-6. First, global and 

local minimum are gathered from different databases and studies. Then, MD is applied on each 

structure using ReaxFF, and the filter is applied. DFT calculation is then done on each non-

redundant structure using the Gaussian software. The PBE function is used with the Stuttgart basis 

set and Grimme dispersion d3 correction. Note that we are using unrestricted functional, an 

important point since it allows for paired electrons to occupy different spatial orbitals. Therefore, 
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for an odd number of electrons, it is more flexible and describes more accurately the spin 

polarization. It ensures a good treatment of open-shell systems, which forces equal spin 

distributions. Moreover, gold atoms exhibit significant relativistic effects and spin-orbit coupling 

due to their high atomic number. Unrestricted PBE can better account for these effects because it 

allows for different spatial distributions of spin-up and spin-down electrons. This is crucial for 

accurately modeling the electronic structure of gold clusters.  

 

Figure C-6: Scheme of the dataset preparation. 

 From that, we got specific energies and forces for each system, and we prepared the dataset 

as presented in Figure C-7. Systems from 3 to 25 atoms were used, having a total of 15 946 

structures for the training along with 1500 structures for the validation. The cluster containing 22 

gold atoms has been excluded due to a problem of convergence.  

 

Figure C-7: DFT dataset properties with (a) the number of systems that are used in comparison to 
the number of atoms and (b) the relationship Between Energy per Atom and Maximum Force. 

Concerning the ReaxFF simulation, the dataset properties are presented in Figure C-8. We 

did a simple simulation on two nanoparticles of two different sizes, i.e., 2 and 4 nm, which are 
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called ns2 and ns4, respectively. We wanted to obtain non-equilibrium structures, so, as for the 

DFT dataset, an increase until 1300 K was done, along with a shift of each atom of about 0.25 Å.  

 

Figure C-8: ReaxFF dataset properties with (a) the number of systems that are used in comparison 
to the number of atoms and (b) the relationship Between Energy per Atom and Maximum Force 

The filter is also used in this part to avoid redundancies. In total, for the ReaxFF dataset, we 

have 21 812 training geometries along with 3849 validation geometries. Then, using both datasets, 

the learning process can begin.  

C.4) Development of a machine learning potential 

In the present context, all learning processes are based on accurately capturing the energies 

and forces. In this implementation, we utilized the CRATE module for the embedding process, 

which is specifically parametrized to handle the complexity of these interactions. The CRATE 

module is configured with a dimensionality of 512 and consists of 2 layers. For the radial basis 

functions, the model employs 10 Bessel functions, which are particularly effective in modeling the 

radial dependencies of atomic interactions due to their smooth, oscillatory nature. 

The embedding of atomic species is informed by their electronic structure, providing a 

nuanced representation that aligns closely with physical chemistry principles. This approach 

ensures that the embeddings reflect the inherent properties of each element, enhancing the model’s 

accuracy and predictive capabilities. 

For the computation of energies, the model leverages a dedicated Neural Network module, 

which is structured with [256, 128, 64, 32, 1] neurons across its layers. We interpret the output 

neuron as an atomic contribution to the potential energy of the system.  
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The different parameters used for defining the potential include a cutoff radius fixed at 5.3 

Å, beyond which interactions between atoms are not considered. Two message-passing are used, 

giving a receptive field of 10.6 Å. 𝐿g%| is equal to 2, 𝑁]z%&&)(a to 16 and two atom-centred 

channel-wise tensor products are used. The learning rate is initially set at 10-4 and gradually 

reduced to 10-5, facilitating stable convergence over training iterations. This careful management 

of the learning rate helps prevent overfitting and ensures that the model reliably learns the 

underlying patterns in the data. 

To have a flexible potential that can simulate both the surfaces and the clusters, a transfer 

learning procedure is performed. First, a learning procedure based on ReaxFF simulations is 

done. As this method, with the use of the fore fields made by Monti et al.37, gives stable gold 

surfaces, we will use it to have a good starting point for the simulation of the surfaces. Then, 

from that, the potential is refined using the DFT dataset. To ensure that the potential is working 

accurately, some tests are then performed: 

•  First, a comparison between the radial distribution function of each potential is done. The 

objective is to see if the surface stability can be reproduced with our different potentials. 

•  An energetic analysis is also performed by comparing the dissociation of one gold atom 

from the Au20 cluster, which is a pyramid-like structure. A comparison between our 

potentials, the DFT, and ReaxFF is performed.  

• A radial analysis is also done on the optimized Au20 cluster. To see if our potential can 

discriminate between each gold atom that is on the cluster and if it is close to the DFT 

calculation.  

C.4.a) ReaxFF-based potential 

As explained before, the FeNNol python module is used. It allows us to easily create 

machine learning potentials and then use them directly to perform MD simulations. The parameters 

that were used for the first step of the transfer learning on the ReaxFF dataset is a batch size of 64 

with a max epoch of 2k. The batch size, as explained in the previous section, is the structures that 

are considered at each epoch. As it is a GNN, we had to reduce the number of batch size as a lot 

of atoms are considered. Thus, it increases a lot the computation requirements. For 2 and 4 nm, we 

respectively considered a total of 230 and 1 834 atoms. During the learning, every pair of atoms is 

considered and needs to be analyzed to create a graph of the different layers.  
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By launching the learning with all the geometries, we saw that the learning was pretty slow, 

with a preprocessing time reaching 7.8 minutes, and considering that we had a total of 2k epochs, 

it would have taken 10 days to reach the end. Therefore, we considered having parallel learning 

with only ns2 to get fast learning and be able to change some parameters. We have then three 

different learning steps. The first is considering the same weight for both energies and forces where 𝜔) = 𝜔n = 1. Followed by a change in terms of weight, with 𝜔) = 2 ∧ 𝜔n = 1. We wanted to see 

how forcing the learning to go towards the energy impacts the accuracy of the learning. Both 

learnings are based only on the reference of the ns2 systems. The last is the slowest, with the same 

weight for both energies and forces, 𝜔) = 𝜔n = 1 but this time it considers both ns2 and ns4 

geometries. The reason behind this comparison is to see the different patterns depending on the 

number of geometries and weights, as presented in Figure C-9. By using the same weight for the 

energies and the forces as depicted in green in Figure C-9, we can see that the learning for the 

energies is going down quickly, reaching 0.641 kcal/mol per atom after only 15 epochs. 

Concerning the forces, we are going down also, but it took more epochs for the training to reach 

its plateau of 0.119 kcal/mol/Å. Moreover, for the energies, the errors are still considered pretty 

high as it is counted “per atom.” To counter this, we wanted to make the learning for the energy 

stronger by changing their respective weights with 2 for energies and 1 for forces represented in 

red.  

For the energies, it appears that it does not change at all the error as it is reaching its plateau 

as fast as with the previous learning with a value of 0.629 kcal/mol. Nevertheless, for the forces 

when using 𝜔) = 2 and 𝜔n = 1 (the red curve), there is a large influence where two different 

plateaux were reached. One after 100 epoch with a value of 0.778 kcal/mol/Å, which stays stuck 

until 1000 epoch. 
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Figure C-9: log plot of the mean average error along with the number of epochs for first learning 
from the ReaxFF dataset. (a) is the MAE of the energies and (b) of the forces. The green and red 
curves correspond to the learning only composed of the ns2 systems; the red uses different weights 
for the learning for the forces and the energies, and the blue one considers all the systems ns2 and 
ns4.  

Then, the learning is going down again, reaching another plateau at the same level as the 

first learning with a value of 0.211 kcal/mol/Å. Finally, by comparing it with the learning with all 

the geometries ns2 and ns4, we can see that for the energies, we are getting lower than the two 

others with a value of 0.575 kcal/mol. Concerning the forces, we are reaching 0.150 kcal/mol. 

Nevertheless, the values for the energies are still pretty high, but to see if we can still have stable 

surfaces, another analysis is done. 

Molecular Dynamics is then performed with the use of the three potentials. The temperature 

is set at 300 K using the NVT ensemble along with the Langevin thermostat. The system studied 

is the Au (111) surface with 8 layers, using 1 ns dynamic with a timestep of 2 fs.  By looking 

directly at the simulation as presented in Figure C-10, it appears that we have good stability on the 

surface with no differences between each learning.  
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Figure C-10: Visualization of the ending of each MD simulation made with the different 
potentials. The green corresponds to the learning of only the ns2 systems; the red has a different 
weight for the learning of the forces and the energies, and the blue one considers all the systems 
ns2 and ns4 

Nevertheless, to ensure this stability, the radial distribution function is plotted to see how 

the distances between atoms are evolving depending on the potential, as shown in Figure C-11. It 

provides a statistical description of each atom around its center. It allows us to see any differences 

in terms of description for each atom’s environment.  

There are no differences in terms of stability for all three MD simulations. There is a high 

intensity at 2.88 Å, which corresponds to the equilibrate distances found in MD simulation using 

ReaxFF. It means that the first potential is already capable of getting a stable gold surface by 

mimicking the normal behavior based on ReaxFF energies and forces. There is no real influence 

on the different weights for the learning. We’ve then picked the potential with the same weights 

containing ns2 and ns4 structures. 
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Figure C-11: radial distribution function for the three different MD simulations at 300K, 
performed using different learning parameters. The green curve corresponds to the learning limited 
to the ns2 systems, the red has a different weight for the learning for the forces and the energies, 
and the blue one considers all the systems ns2 and ns4.  

   

C.4.b) Refinement with DFT calculations 

  As explained previously, we are using the ReaxFF potentials while performing a final 

transfer learning on DFT reference data. The dataset preparation for the DFT is explained in section 

4b. Different learning procedures were performed to see the influence of the number of epochs to 

get a good yield between parameters from ReaxFF and DFT. 1k to 5k epochs are then used, as 

presented in Figure C-12. The goal is not to lose too much information from the previous potential 

and to gain enough from the clusters. The risk is, therefore, to overfit on clusters DFT dataset and 

to obtain unstable MD simulations on the Au (111) surface. In such a case, the surface would lose 

its stability and suffer from an agglomeration effect. This indicates that the stability of the surface 

obtained from the ReaxFF pre-learning is compromised. The opposite is also true: if the learning 

process on the DFT reference data is insufficient, the resulting precision for small clusters and the 

discrimination of each gold atom will also be inadequate. 
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Figure C-12: comparison between different transfer learning procedures from ReaxFF potential 
with ns2 using different numbers of epochs. 

Comparing the different epochs (as presented in Table C-1), one can see that the more we 

increase the number of epochs, the more the mean average error decreases. By reaching the 5k 

epoch, we can go down to 0.196 kcal/mol (per atom) and 1.493 kcal/mol/Å for the forces and the 

energies, respectively. 

Table C-2: Mean average errors for energies and forces for learning with different numbers of 
epochs 

Number of epochs MAE on energies 

(kcal/mol) 

MAE on forces 

(kcal/mol/Å) 

1000 0.598 2.196 
2000 0.361 1.862 
3000 0.314 1.828 
5000 0.196 1.493 

 

Nevertheless, by looking at the radial distribution function, it can be seen that when 

reaching 1k, we can reproduce the right distances for the surface for the equilibrium peak. But 

when looking to 2k and more, we have a shift on the left for the distances. Furthermore, this shift 

in distances can be directly seen by looking at the snapshots as presented in Figure C-13. It appears 

that it tends to cluster-like structures. The most stable conformations are those with the number of 

epochs corresponding to 1k and 3k, the others being overfitted. Nevertheless, for the 3k epochs 

case, it can be seen that the function appears smoother, which means that the system is melting, 
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which does not represent the wanted stability for the solid gold surface, which is not supposed to 

melt at 300 K.   

 

Figure C-13: Comparison between radial distribution functions at 300 K. Different numbers of 
epochs are presented in red 1k, green 2k, blue 3k, and black 5k and compared to a reference the 
black line, which corresponds to the distribution from the previous model. The end of the 
simulation is also presented on the right-hand side of the figure.  

So, to ensure that there is no stability for 2k and 3k, we did a test using different parameters. 

We performed the learning this time per atom for the energy instead of the whole system, and we 

used the same analysis. First, by plotting (see Figure C-14) both learning, we are getting an MAE 

for 2k at 0.061 kcal/mol per atom and 0.920 kcal/mol/Å for energies and forces, respectively. For 

3k, 0.057 kcal/mol per atom and 0.910 kcal/mol/Å are found. It means that using the learning per 

atom approach allows us to get a better accuracy even on the forces that are finally going down to 

the chemical accuracy.  
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Both presented learning procedures, then giving more or less the same MAE, but as before, 

to ensure the stability of the surface, we did perform MD simulations on it again at 300K. By 

plotting the distribution radial function, we can see, as presented in Figure C-15, that going up to 

3k does not give accurate distances. Contrary to the previous 2k model, it seems to give a more 

convenient model for the surface. 

 

Figure C-14: Mean average errors for forces and energies for ns2-ns4 transfer learning with two 
different numbers of epochs. In red and in blue, the number of epochs is respectively 2k and 3k. 

Nevertheless, by looking directly at the structure, one should notice that there is a problem 

of stability within the layers with a loss of signal at high distances. Finally, as discussed before, 

we have too smooth functions between peaks, meaning that the surface of gold is not as stable 

enough as it should be.  
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Figure C-15: radial distribution function for the transfer learning potential containing ns2 and ns4 
with different number of epochs. The red line is 2k epoch, and the blue line is 3k. The reference is 
in purple and corresponds to the potential from the previous potential only using ReaxFF 
geometries. 

This means that going up to 2k does not give a stable surface. Moreover, we saw that doing 

the learning per atom for energies can give better accuracy for the potential. From that, we 

narrowed our number of epochs from 1000 to 1500, which should avoid overfitting the DFT 

dataset, and we used the learning per atom for the energies. Doing that, our new potentials should 

be able to fit better with the DFT reference and keep the stability of the surface.  

Three different potentials were then analyzed using 1000, 1250, and 1500 epochs, 

respectively. Their respective MAE for energies and forces are given in Table C-2. As expected, 

the value of the errors for the forces is going lower when one is fitting the energies per atom. 

Meaning that we are now reaching more accurate potential.  

 

Table C-3: Mean average error of the energies (per atom) and forces for different numbers of 
epochs. 

Number of 
epochs 

MAE Energies (per 
atom) (kcal/mol) 

MAE 
Forces 

(kcal/mol/Å) 
1000  0.070 0.973 
1250  0.066 0.940 
1500 0.064 0.927 
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By comparing DFT energies and forces data to the results of the models, we observe a good 

linear regression for all three learnings, with MAE going down to chemical accuracy. To ensure 

the quality of each potential, we then validate them by looking at the distances of the Au20 pyramid-

like structure. If we can get better distances than those obtained using ReaxFF and close to DFT 

reference, let’s say with a deviation of 0.01 Å, this first test would show that the potential may be 

accurate for gold systems from small clusters to surfaces. Thus, it could be able to accurately model 

nanoparticles.  

To study further the quality of the potential, we took one vertex atom of the pyramid and 

increased its distance from the cluster. At each point, we calculate using DFT single points to get 

reference data.  To have good accuracy, we changed the spin from singlet to triplet at long-range 

(around 5 Å). We did the same single-point calculations with ReaxFF and our FeNNol potentials. 

As we can see in Figure C-16, for the dissociation energy, we are fitting much better than ReaxFF, 

and we are close to the DFT reference. The equilibrium distance is also pretty close to DFT. By 

looking at the different profiles, the 1250 epoch model seems to have the most appropriate 

potential. 

 

Figure C-16: Potential energy surface of the dissociation of one vertex gold atom from Au20 
pyramid-like structure with different potentials having different numbers of epochs along with 
DFT and ReaxFF profiles. The dashed lines correspond to the equilibrium distance for DFT and 
FeNNol in orange and for ReaxFF in red. 
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In particular, the FeNNol potentials are in better agreement between 3 and 4 Å, which 

should allow a better agreement for cluster geometries where the distances may strongly vary. 

Moreover, FeNNol is capturing the equilibrium distance with no deviation at 2.74 Å.  

To verify that, we also optimized the structure with our potentials and investigated the 

different distances on the Au20 cluster, as discussed in the previous section, since it depends on 

where the gold atom is placed, we have different distances. We considered then all the atoms on 

the vertex, on the edges, and the facets. In disagreement with DFT, ReaxFF predicts all distances 

as being identical, with an average distance of 2.88 Å. However, on the ML side, we can see we 

have different distances for each bond that matches with DFT with a deviation limited to about 

0.01 Å.  We are then assured that our model is discriminating each pair of atoms and can give a 

good PES dissociation profile.  

 

 

 

 ReaxFF 1000 epoch 1250 epoch 1500 epoch DFT 
Vertex-edge 2.88 2.75 2.75 2.75 2.76 
Edge-facet 2.88 2.85 2.85 2.85 2.86 
Facet-Facet 2.88 3.08 3.06 3.14 3.09 
Edge-Edge 2.88 2.70 2.71 2.70 2.71 

Edge-Edge facet 2.88 2.99 2.99 2.98 3.00 
 

Figure C-17: (a) schematic of the Au20 pyramid-like structure (b) distances for each pair of atoms 
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Moreover, the 1000 epoch potential is giving the most accurate distances compared to DFT 

with a difference of ± 0.01Å. In conclusion, we are finally able to obtain the potential to reproduce 

DFT results for clusters while maintaining a stable conformation for surfaces. Molecular dynamics 

can, therefore, easily be used with this potential to simulate different conditions with a high 

accuracy. 

C.4.c) Cluster potential 

 We succeeded in getting a flexible potential that can compute both surfaces and clusters. 

Nevertheless, even if the distances for the Au20 pyramid-like structure are accurate, we wanted to 

see if we could enhance the description for the clusters by only using the DFT reference data. We 

then focused only on the clusters, and we trained a new potential without using the ReaxFF dataset. 

The training from more than 16k different DFT-based clusters is done, and the results are displayed 

in Figure C-18. First, it appears that the model learns more from the forces than from the energies, 

but there is a cross-section at the end where the energies are going down to the chemical accuracy. 

Different numbers of epochs have been used, and 3k seems to be enough to get accurate energies 

with an MAE of about 0.612 kcal/mol for energies (not per atom) and 1.120 kcal/mol/Å for forces. 

By comparing with the DFT calculations, we see that we have a good agreement between DFT 

and our model. 

 

Figure C-18: (a) learning profile showing the MAE compared to the number of epochs. (b) 
Comparison between formation energy of the model and DFT. (c) Comparison between forces 
from the model and DFT. 
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Therefore, here also, we can reproduce DFT accuracy using our model. To validate the 

model, we did an MD simulation on non-encountered structures using different geometries from 

small to large clusters that contain more than 25 atoms.  

We compared the radial distribution of each pair of atoms to see if our model could 

differentiate between each gold atom. As previously, we studied the Au20 clusters. ReaxFF does 

not predict the same profile as the DFT for short and long-range interaction, and its equilibrium 

distance is around 2.88 Å. On the opposite, our model follows the dissociation energy profile until 

3.55 Å, which is the distance cutoff for the training as depicted in Figure C-19. Moreover, the 

equilibrium distance is the same at 2.74 Å. It means that for this cluster, the model reproduced well 

the DFT energetic. The next validation step is to see if it is possible to differentiate specifically the 

different distances depending on where the gold atom is located. 

 

Figure C-19: Potential energy surface of the dissociation of one vertex gold atom from Au20 
pyramid-like structure comparing FeNNol potential, DFT, and ReaxFF. The dashed lines 
correspond to the equilibrium distance for DFT and FeNNol in green and for ReaxFF in red. 

The gold atom in a cage-like cluster can occupy three distinct sites: the vertex, the edge, 

and the facet, as depicted in Table C-3. A thorough description of these sites is crucial for studying 

the reactivity of such clusters. Additionally, in regular bulk-like clusters, which exhibit surface 

reactivity, these sites must also be accurately represented in the model. To ensure our model’s 

capability to match with DFT, geometry optimization of the Au20 cluster was performed using all 
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three methods. DFT highlights the significance of atomic distances within the cluster, showing 

variations between different sites (see Table C-3). As anticipated, ReaxFF predicts all gold atoms 

to have the same distance, which contrasts with our observations. Our model aligns well with DFT, 

particularly for the equilibrium bond lengths. The FeNNol potential accurately matches the 

distances for facet-facet and edge-edge gold atoms, with other site predictions showing an error 

margin of approximately ± 0.01 Å. The ability of the FeNNol potential to distinguish between gold 

atoms is a critical feature, as it enables the detection of different reactivities on the cluster’s surface, 

a capability not shared by ReaxFF. 

 

Table C-4: Comparison between different methods based on the distances for each pair of atoms 
for the optimized Au20 pyramid-like structure.  

 ReaxFF FeNNol DFT 
Vertex-edge 2.88 2.75 2.76 
Edge-facet 2.88 2.85 2.86 
Facet-Facet 2.88 3.09 3.09 
Edge-Edge 2.88 2.71 2.71 

Edge-Edge facet 2.88 2.99 3.00 
 

We carried out another validation test using Au7 and Au27 to see if the model was capable 

of getting accurate distances for a small cluster and, more specifically, for the larger cluster that 

had not been seen during the training set (up to 25 atoms).  

 

Figure C-20: Difference in terms of distances between DFT and FeNNol between each pair of 
gold atoms (a) cluster composed of 7 gold atoms (b) cluster with 27 gold atoms. 
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 By looking at the relative difference of distances between each pair of atoms, we can see 

that we are close to the DFT results as depicted in Figure C-20, with a mean absolute error of 

0.047 Å for the Au27 and 0.079 Å for the Au7. 

Then, we did a test on the formation energy for clusters from 2 to 20 gold atoms to see if 

our model could fit with DFT compared to ReaxFF. Geometry optimization was performed, and 

the formation energies are depicted in Figure C-21.  

 

 

Figure C-21: Comparison of the formation energy for different optimized gold clusters between 
FeNNol, ReaxFF in red, and DFT in green.  

These results demonstrate that we are then able to get a proper potential that fits perfectly 

well with the DFT energy. The optimization with FeNNol was pretty fast, and when one wants to 

do MD as it uses GPU, it enhances the speed.  
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Conclusion 

Overall, we employed the FeNNol module alongside classical and quantum mechanical 

methods to develop a flexible machine-learning potential capable of accurately simulating gold 

nanoparticle systems. Our investigations revealed the effectiveness of integrating molecular 

dynamics (MD) simulations with density functional theory (DFT) calculations to refine our 

understanding of cluster dynamics and surface interactions. By focusing on a range of cluster sizes, 

we optimized the balance between computational demand and simulation accuracy. Our findings 

demonstrate that the FeNNol potential, when calibrated against both ReaxFF and DFT datasets, 

provides a robust tool for predicting the energetics and structural dynamics of gold clusters. 

Notably, our approach allowed for the differentiation between gold atoms within a structure, a 

crucial factor for advancing our understanding of cluster reactivity and stability. Radial distribution 

function analyses further supported the stability and accuracy of the potentials across different 

learning parameters. 

Further analysis will be performed to determine if our potential can predict the effect of 

higher temperatures up to the boiling point. The next step is to include thiolates to see if we can 

predict staple formations. We aim to gather a sufficient number of structures to capture all the 

different complex reactivities. The use of a large database should speed up the learning of our 

model, and we know that some researchers are currently gathering a lot of crystal structures.38 In 

parallel, more detailed simulations will be included to enhance the accuracy of the potential. For 

example, we plan to include CCSD simulations to improve the description of the bonding between 

Au-S, S-S, and S-C. Learning over charges will also be included to enhance the prediction accuracy 

of our model. Moreover, we want to include solvent effects. Our objective is to develop a highly 

accurate potential for gold capped with thiolates-SAMs.  

In the future, this potential could be used with more ligands, enabling applications such as 

studying the nanomaterial/biomolecule interface.  

This process has been fully automated, and the same process will be applied to silver. As 

explained in section B, this method could predict the sulfidation of the nanoparticle. Another idea 

is to use active learning, which could enhance the accuracy of our different potentials. Copper is 

also one of our objectives to predict for all three metals. However, it is more complicated than gold 

and silver due to its multiple oxidation states and lower stability. 
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General conclusion  

General conclusion General conclusion  
Throughout this study, we demonstrated that the current ReaxFF parametrization for the 

AgSCH potential, developed by Dulong et al., accurately predicts stable interactions between 

thiolates-SAMs. However, it was found that for butane thiolates, the energetically favored 

conformation (77) was not distinct from less stable assemblies (33), indicating that ReaxFF may 

not precisely calculate the correct energy for each conformation. Additionally, no spontaneous 

formation of silver sulfides was observed, suggesting a limitation in the model’s ability to predict 

nanoparticle surface restructuring, although small systems like ns2 and ns4 showed some 

destabilization. 

For larger nanoparticles, this destabilization was less pronounced due to a higher 

proportion of facets relative to edges. Experimental preferences for the on-top site and sulfur-head 

group distances in the 77 assembly were accurately predicted, confirming the potential’s reliability 

in simulating butanethiolates-SAM on silver. However, adjustments are necessary to improve 

energy descriptions across different systems.  

Regarding methanethiolates-SAMs, the stability predictions were inaccurate, potentially 

due to the same parametrization issues. Preliminary tests on gold using three different potentials 

did not allow for a detailed analysis due to these parametric constraints. 

To address these shortcomings, we employed machine learning with the FeNNol module 

package, facilitating the creation of tailored potentials for various systems. This involved preparing 

a dataset from theoretical studies and databases, leading to the generation of 15,430 non-redundant 

structures. These were subjected to single-point DFT calculations to obtain reference energies and 

forces, which informed the machine learning model. 

The model achieved chemical accuracy within 0.066 kcal/mol for energies and 0.940 

kcal/mol/Å for forces. By comparing the radial distribution function of the surfaces to stable 

reference surfaces, we confirmed that using 1000 epochs during training led to stable surface 

predictions. The potential also closely matched DFT distances in an Au20 pyramid-like structure 

within 0.01 Å, surpassing the accuracy of ReaxFF, especially in differentiating gold atoms based 

on their positional context. 
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In conclusion, while the existing ReaxFF parametrizations provided a foundation, the 

integration of machine learning significantly enhanced the accuracy and applicability of our 

simulations. In the coming months, further tests are planned to determine if our model can 

effectively differentiate between various isomers. Additionally, we aim to incorporate thiolates into 

our simulations. This step is crucial as it will enable us to refine the current gold potential into a 

more flexible model capable of capturing effects such as surface restructuring. Once this method 

is validated, a similar approach will be applied to silver to address more complex reactivities, such 

as sulfidation. These advancements will not only enhance the predictive power of our simulations 

but also broaden their applicability in understanding and designing nanomaterial interfaces. 
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Résumé en français  

Les nanoparticules (NPs) se sont imposées comme un pilier de la nanotechnologie en raison 

de leurs propriétés physiques, chimiques et biologiques distinctives. Ces particules, souvent 

composées de métaux de transition, varient de groupes de deux à des milliers d’atomes. Cette thèse 

explore la simulation de ces nanoparticules, en se concentrant spécifiquement sur les métaux 

précieux tels que l’or, l’argent et le cuivre. Ces métaux ont de nombreuses applications, comme 

l’argent en tant qu’agent antibactérien ou l’or en tant qu’agent anticancéreux. Pour l’argent, les 

ions se propagent dans la bactérie en interagissant directement avec son ADN et sa mitochondrie. 

Néanmoins, une trop forte concentration d’ions dans le corps peut entraîner des effets indésirables. 

Pour limiter et contrôler ces effets, on peut utiliser le thiolate. En raison de sa forte interaction 

covalente avec l’argent (ou l’or) et le soufre, cela favorise la stabilité de l’interaction. Cette 

interaction se manifeste sous la forme d’une monocouche auto-assemblée où le ligand forme une 

couche dense sur toute la surface. Différentes structures ont été trouvées en fonction du métal 

étudié. Pour l’or, deux structures existent : une avec une simple adsorption sur la surface à 

différents sites appelée la √3𝑥3𝑅30° (33). Cette appellation provient de la notation de Wood’s qui 

permet de définir l’assemblement en fonction de l’endroit où le substrat s’adsorbe.  De plus, une 

autre structure a été trouvée, accompagnée cette fois d’une restructuration de la surface. Certains 

atomes d’or sortent de la surface en cassant leur liaison pour se placer entre les atomes de soufre. 

Cette structure est très stable et favorisée par les défauts présents sur la surface d’une 

nanoparticule, par exemple. Quant à l’argent, en fonction de la concentration de thiol en 

interaction, cela peut soit s’adsorber normalement et créer la structure √7𝑥7𝑅19.1° (77), soit se 

restructurer et former ce que l’on appelle un effet de core@shell Ag2S autour de la nanoparticule. 

Cette étude est centrée sur ces différents systèmes. L’objectif est de déterminer si les méthodes 

actuelles permettent de prédire ces phénomènes de restructuration et de stabilité de cette 

monocouche auto-assemblée.  

La dynamique moléculaire est utilisée dans un premier temps car nous voulons étudier des 

systèmes assez larges qui ne sont pas modélisables avec des méthodes de chimie quantique. Nous 

avons utilisé un champ de force réactif appelé ReaxFF. Ce champ de force permet, pendant une 

simulation, la cassure et la formation de liaisons, ce qui permet d’observer la restructuration de la 

surface lorsque les thiolates sont déposés sur la surface. Dans un premier temps, un logiciel appelé 

SAM-Maker a été créé pour permettre à un utilisateur de créer les différentes structures. Il fait 
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maintenant partie du package NATOMOS, un outil d’analyse et de création de structures 

métalliques qui sera intégré à TINKER. Ainsi, nous avons créé deux structures d’argent : celle qui 

a été trouvée expérimentalement, la 77, et celle pour l’or, 33, en utilisant du méthanethiolate et du 

butanethiolate. Cela permettra de voir si le potentiel actuel est capable de prédire énergétiquement 

que la structure stable pour l’argent est bien la 77. Nous voulions aussi étudier l’impact de la 

longueur de la chaîne sur la stabilité de notre monocouche. 

Nous avons utilisé le potentiel AgSCH créé par Dulong et al. Nous avons réalisé des 

dynamiques en chauffant une boîte de simulation de 0 à 300K pour observer la stabilité de la 

simulation pendant cet état de chauffe. Différents temps de simulation ont été pris en compte : 0.3, 

1 et 3 ns avec un pas de temps de 0.25 fs. Une étape de vérification de la stabilité a aussi été 

introduite tous les 50 K pour vérifier la stabilité de notre dynamique. À la fin de la chauffe, une 

simulation supplémentaire est également effectuée pour vérifier que le système est stable à 300 K. 

Nous avons démontré ici que l’approche ReaxFF est capable de produire une monocouche stable 

de 77, typique des butanethiolates sur la surface Ag (111), démontrant son efficacité pour simuler 

et prédire les comportements d’adsorption de surface. Il est intéressant de noter que ReaxFF, utilisé 

dans un article récent pour étudier les NP d’or, a montré des comportements complètement 

différents avec la formation d’agrafes sur les surfaces Au (111). La formation de ces agrafes 

correspond bien à l’expérience et au calcul DFT. Cela montre que ReaxFF produit des propriétés 

différentes pour les deux matériaux, en contraste avec d’autres champs de force. Dans un article 

récent, il a également été démontré que ReaxFF était capable de reproduire la formation d’agrafes 

sur les surfaces Au (111). Ainsi, il est possible avec ReaxFF de distinguer les deux matériaux, ce 

qui est généralement assez difficile pour les champs de force puisque les deux métaux sont 

caractérisés par la même géométrie. Cependant, nous avons observé que la monocouche de 77 de 

méthanothiolate n’est pas stable pour des simulations très longues. De plus, la monocouche de 

butanethiolate n’est pas énergétiquement favorisée par rapport aux autres SAMs. Cela montre les 

limites de la paramétrisation actuelle du modèle. De plus, la surface reconstruite habituellement 

observée pour l’argent est constituée d’adatomes d’argent sur une surface Ag(111). Nos 

simulations ne montrent même aucune perturbation de la couche d’argent en contact avec les 

thiolates, ce qui indique la bonne stabilité de ces monocouches non restructurées. Il serait 

cependant intéressant à l’avenir d’étudier des surfaces d’argent déjà restructurées avec des thiolates 

; l’idée serait de comparer les énergies de liaison de ces systèmes avec celles obtenues ici pour les 
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systèmes non restructurés. Cela nous permettrait de voir lequel est énergétiquement stable et si une 

restructuration peut être expérimentée. Les simulations montrent également que des assemblages 

denses tels que les SAMs de 77 trouvés sur la surface Ag (111) devraient apparaître sur les NP 

d’argent. À notre connaissance, il n’y a pas d’expériences disponibles étudiant cette question. Lors 

des simulations, aucune décomposition de l’alkanothiolate n’a été trouvée. Les origines du sulfure 

d’argent observé dans certaines expériences restent une question ouverte. À l’avenir, cette question 

devrait également être étudiée pour des surfaces restructurées et d’autres ligands. Aucune 

restructuration spontanée des surfaces des NP n’a été trouvée, sauf pour les petits NP inférieurs à 

4 nm. Une restructuration globale des surfaces d’argent, comme observée dans les expériences, 

n’est pas réalisable avec les simulations ReaxFF. À l’avenir, nous prévoyons d’effectuer des 

simulations à partir d’une surface restructurée et de comparer ses énergies de liaison avec celles 

trouvées ici. Deux sites d’adsorption sur les facettes des NP d’argent ont été trouvés : un en position 

sur le dessus et un autre au site de pont, le premier étant préféré ; cela est en bon accord avec les 

expériences récentes. Concernant la distance entre les ligands du groupe S, nous avons obtenu la 

même valeur que d’autre études expérimentales et n’avons observé aucune différence entre les 

facettes et les bords.  

La même méthode a donc été envisagée pour l’or avec l’idée qu’il serait possible de prédire 

la stabilité de la restructuration. Néanmoins, même en ayant utilisé les trois potentiels existants, il 

nous a été impossible d’obtenir de bons résultats montrant ce phénomène. C’est pourquoi nous 

avons envisagé l’utilisation des algorithmes d’apprentissage pour créer un nouveau potentiel 

capable de prédire avec plus de précision les différents systèmes étudiés.  

FeNNol est un programme Python qui permet à un utilisateur de facilement créer son 

propre potentiel à partir de données qu’il aura créées au préalable. La partie la plus difficile de 

cette étude a été de réunir les différentes structures entre les différentes publications et banques de 

données. Au total, 300 structures ont été réunies, avec des clusters allant de 3 à 25 atomes d’or. 

Pour augmenter ce nombre et obtenir des structures non équilibrées, de la dynamique moléculaire 

a été effectuée. L’utilité d’avoir des structures hors équilibre permet au potentiel créé d’être 

beaucoup plus flexible en termes de réactivité qui pourrait se produire durant la dynamique. À 

partir des 300 structures, les dynamiques ont donc été faites en chauffant le système. Puis, un filtre 

est appliqué pour assurer qu’il n’y a pas de structure redondante. Ce filtre est basé sur une analyse 
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radiale de toutes les paires d’atomes, comparant les différentes géométries de chaque simulation. 

Au total, 15 946 structures uniques ont été créées. À partir de cela, des calculs DFT ont été faits 

en utilisant la fonctionnelle PBE et la base Stuttgart qui prend en compte les pseudo-potentiels et 

les effets relativistes. Depuis ces calculs, nous avons extrait les énergies et les forces de référence 

pour chaque système, qui serviront de référence pour le potentiel. Dans un premier temps, pour 

réussir à obtenir un potentiel flexible entre les clusters et les surfaces, un préapprentissage est 

effectué. Nous voulions des énergies et des références de surfaces d’une méthode qui permet de 

simuler des surfaces stables. Pour cela, nous avons utilisé ce que nous connaissions de ReaxFF, 

qui est capable de générer des surfaces d’or pur très stables. Deux tailles de nanoparticules ont 

donc été utilisées : 2 nm et 4 nm, donnant un total de 20 000 structures de référence. Pour s’assurer 

que les structures n’étaient pas trop similaires, la dynamique sur ces systèmes a été effectuée à très 

haute température, approchant la température de fusion de l’or. Le premier apprentissage basé sur 

les valeurs de ReaxFF est donc effectué. En analysant la fonction de distribution radiale, nous 

avons pu constater que le potentiel reproduisait bien les distances observées pour une surface 

parfaite, ce qui signifie que le potentiel est capable de reproduire ReaxFF. Néanmoins, cela ne 

suffit pas pour avoir un potentiel flexible sur les clusters, car ReaxFF n’est pas capable d’avoir une 

bonne précision pour les petits systèmes comme les très petits clusters. Pour cela, nous avons affiné 

notre modèle avec les références DFT calculées au préalable. Différents tests de paramètres ont 

été effectués et, après quelques optimisations, nous avons pu trouver le meilleur modèle. Il est 

capable d’avoir une surface stable et de décrire avec précision DFT les clusters. Pour s’en assurer, 

une analyse énergétique a été réalisée. Nous avons étudié le cluster Au20, connu pour avoir une 

forme pyramidale. Un atome d’or est donc arraché de ce cluster et l’énergie de dissociation est 

calculée pour chaque distance. Notre modèle est bien en accord avec la DFT sans aucun décalage 

pour la distance d’équilibre. N’ayant pas pris en considération les effets à longue portée pendant 

l’apprentissage, nous avons encore un peu de mal à décrire ce qui se passe à plus de 3.75Å. 

Cependant, cela reste très précis autour de l’équilibre. De plus, pour s’assurer de sa précision, nous 

avons optimisé le cluster et comparé les distances avec le même cluster pyramidal optimisé par 

DFT et par ReaxFF. En regardant chaque distance associée, nous avons constaté que, contrairement 

à ReaxFF, nous arrivons à discriminer chaque atome d’or en fonction de sa position avec une 

précision de 0.01 Å. D’autres tests sont à venir pour tester différents isomères et voir si notre 

modèle arrive à prédire leurs énergies précisément. Nous avons également créé un autre modèle 
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plus précis mais utilisable seulement pour les systèmes comprenant moins de 220 atomes d’or, car 

au-delà une chimie de surface peut apparaître. Ce potentiel est basé uniquement sur les références 

DFT et est capable de déterminer l’énergie de chaque cluster en accord avec la DFT. De plus, la 

courbe de dissociation est d’autant plus précise. Il est aussi capable de prédire des clusters qu’il 

n’a pas vus, avec plus de 25 atomes d’or, et d’avoir les bonnes distances et énergies. 

En conclusion, cette thèse a démontré l’efficacité des simulations basées sur le champ de 

force ReaxFF pour prédire la stabilité des monocouches auto-assemblées à base butanethiolates 

sur l’argent. L'utilisation d'algorithmes d'apprentissage a permis de créer des potentiels plus précis 

pour l’or, ouvrant la voie à des simulations encore plus fiables et détaillées. Ces avancées 

contribuent à une meilleure compréhension des interactions à l'échelle nano et offrent des 

perspectives intéressantes pour les applications futures des nanoparticules dans divers domaines. 
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#*********************************SAM_maker********************************* 
#1: import SAMmaker function 
#2: Launch the function by only specifying your periodicity and the number of layers that you need (ex: SAMmaker 
(2,8)) 
# note that you need the geometry of your ligand which is a typical xyz file like the following; 
5 
 
S          0.00910        0.02410       -0.00000 
C         -0.00001       -0.00001        1.82399 
H          1.02220        0.18723        2.28677 
H         -0.66575        0.71105        2.37279 
H         -0.32292       -1.02249        2.22332 
 
#3: Some questions will appear for you to specify the desire system  
#==> example: 
#==> <What kind of metal do you want for your surface? (Au or Ag) -> Ag 
#==> <What conformation do you want? (33, 77) -> 77 
#==> <Do you want the restructured surface? (y,n) --> n 
#==> <Which ligand do you want on your restructured surface? (m or b) ---> m 
#Then you'll get your xyz file with the desire surface. 
 
 
#**********************************NTM_setup********************************* 
#From your previous surface from SAM_maker  
 
#step 1 
#Specify $1 = program $2 = surface from SAM maker $3 = name of the output $4 = the mode $5 = number of atoms 
$6 = xyz file of the ligand used $7-$9 = simulation box 
#It is creating a csam file which is used in order to create the NP 
#exemple: 
python3 ntm_setup060722.py Ag_SCH3_77_m_Unrestructured.xyz data.surf 5 400 Methane_Thiolate.xyz 
20.09000 34.79690 300.0 
 
#step 2  
#Specify $1 = program $2 = the NP without ligands $3 = name of the output $4 = the mode $5 = number of atoms 
$6 = xyz file of the ligand used $7-$9 = simulation box 
#exemple 
python3 ../ntm_setup060722.py ../surface_xyz/nc6octa.xyz data.surf 2 4000 Methane_Thiolate.xyz 106 106 106 
 
#**********************************NTM_ana*********************************** 
#specify $1 = program $2 = simu xyz at each timestep $3 = the NP without ligands $4 = the step that you want to 
analyze $5-$7= simulation box $8= the metal that you have 
#exemple 
python3.11 ntm_ana090623.py toto_reax.xyz ns6Ag287_77N.xyz 0 106 106 106 silver >> anaAg.dat 
#The anaAg.dat is containing all the information for the specific simulation step 
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GUIDLINE FOR FENNOL  

First you need to have miniconda3 (https://docs.conda.io/projects/miniconda/en/latest/install)  
on your system and activate the jax_username environment (source jax_username). You should 
have this (jaxnff) [username@clustername] 

For the learning : 

You should have a file .yaml structured as follow  

device: cuda:1 #learning with gpu you can change that to device: cpu  

output_directory: run_dir #directory where the info is stored 

log_file: train.log #file where the train info is stored 

print_timings: True 

 

training: 

  dspath: /home/adamML/ML_training/gold_clusters/small_clusters/gold_clusters.pkl #the 
pickles that are read which contains the reference energies and the validations energies 
(pickles are format from python environment) 

  batch_size: 128 #The number of geometries that are tested 

  max_epochs: 1000 #The total number of steps that the learning is taking 

  nbatch_per_epoch: 200 #Number of steps that the NN is seeing the batch so for 128 
geometries the NN is seeing them 128x200 

  nbatch_per_validation: 50 #The number of steps that the NN is testing the learning with the 
validation  

  ema_decay: 0.99 #The decay of the loss function in order to average along the loss and not 
step onto minimum local 

  default_loss_type: mse #mean square error can be change to log for example 

  # default_status: frozen 

 

  weight_decay: 1.e-4 #The decay that is used for the different specific targets 

  decay_targets: 
[energy,embedding/species_linear_0,embedding/Wa_0,embedding/dxi_0,embedding/species_l
inear_1,embedding/Wa_1,embedding/dxi_1] #The targets 

  # decay_targets: [refine_embedding_1,energy] 

  energy_terms: [energy,repulsion] #The terms that are used for the energy learning 
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  print_stages_params: True  

  # print_model: True 

  frozen: [repulsion] #The repulsion is frozen which means that the NN is not changing it 
during the process. The repulsion comes from reference values 

 

  # coordinates_ref_key: coordinates_ref 

 

  stages: 

    train_spice1: 

      init_lr: 1.e-4 #The convergence criterion ? 

      lr: 1.e-4 

      final_lr: 1.e-5  

      # end_event: [rmse_f, 5.] 

      loss: 

        e: 

          key: total_energy 

          # ref: e_formation_dft 

          ref: formation_energy 

          # remove_ref_sys: True 

          weight: 1.e-1 #Weigh of the learning  

          unit: kcalpermol 

        f: 

          key: forces 

          ref: forces 

          weight: 1. #Weigh of the learning in this situation the NN is learning more from the 
forces 

          unit: kcalpermol 

          threshold: 3. 

   

model: 
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  cutoff: 5.3 #cutoff for the graph it won’t see things far from 5.3 A 

  energy_terms: [energy,repulsion] 

  preprocessing: 

    graph: 

      switch_params: 

        switch_type: polynomial 

        p: 3. 

        trainable: True 

    graph_filter_angle: 

      module_name: GRAPH_FILTER 

      cutoff: 3.5 

      graph_key: graph 

      graph_out: graph_angle 

      remove_hydrogens: True 

      switch_params: 

        switch_type: polynomial 

        p: 20. 

        trainable: True 

    angle_extension: 

      module_name: GRAPH_ANGULAR_EXTENSION 

      graph_key: graph_angle 

 

  modules: 

    embedding: 

      module_name: MACARON 

      dim: 512 

      dim_src: 64 

      dim_dst: 32 

      dim_angle: [8,32] 
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      nmax_angle: 4 

      nlayers: 2 

      radial_basis: 

        dim: 10 

        basis: spooky 

        trainable: True 

      radial_basis_angle: 

        dim: 8 

        basis: bessel 

        trainable: True 

      species_encoding: 

        # dim: 64 

        encoding: electronic_structure 

        trainable: False 

        zmax: 86 

      embedding_key: embedding 

      graph_angle_key: graph_angle 

      message_passing: True 

      mixing_hidden: [512,512] 

      activation_mixing: tssr2 

      angle_combine_pairs: True 

 

    energy: 

      module_name: NEURAL_NET 

      neurons: [256,128,64,32,1] 

      activation: swish 

      input_key: embedding 

      squeeze: True     
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    repulsion: 

      module_name: repulsion_zbl 

      trainable: True 

 

 

To launch > fennol_train nameofthefile.yaml 

 

To launch a dynamic: 

Need to have the file “input.fnl” constructs as follow: 

device cpu (or put cuda:0 to use gpu) 

model_file latest_model.fnx #model that will be use for the simulation from the learning 
(author’s note: use the best_model.fnx instead of the final one) 

print_variance yes 

 

xyz_input{ 

  file Au6.xyz    #Geo that will be use 

  indexed no      # Index for each atom  

  box_info no    # second line that is read to get the info of the box simu 

} 

estimate_pressure no 

nblist_stride = 20    #The number of step where the program is writing the geometry  

nblist_skin = 0.2    #the ?? 

 

nbeads 32 

 

nsteps = 1000000 #number of steps that is process 

dt[fs] = 0.5 #timestep 

gamma[THz] = 20. #property for langevin thermostat 

temperature = 300.  
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tdump[ps] = 1 #dumps for the temperature ? 

nprint = 100 #step where the info is printed 

 

thermostat LGV  

 

qtb{ 

  tseg[ps]=0.25 

  omegacut[cm1]=15000. 

  skipseg = 5 

  startsave = 50 

  agamma  = 1.e-1 

} 

Then the command to launch the input file is  

fennol_md input.fnl > log.out 

The geometries at every nblist_stride are stored in the .arc file and all the informations about the 

energies, the temperature are stored in the log.out. 

The .arc file can be directly read with VMD. 

 

 


