
HAL Id: tel-04773984
https://theses.hal.science/tel-04773984v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling automated legal and ethical compliance for
trustworthy AI
Yousef Taheri Sojasi

To cite this version:
Yousef Taheri Sojasi. Modeling automated legal and ethical compliance for trustworthy AI. Artificial
Intelligence [cs.AI]. Sorbonne Université, 2024. English. �NNT : 2024SORUS225�. �tel-04773984�

https://theses.hal.science/tel-04773984v1
https://hal.archives-ouvertes.fr


SORBONNE UNIVERSITÉ

École doctorale 130 : Informatique, Télécommunications et Électronique
Laboratoire de Recherche en Informatique (LIP6)

THÈSE DE DOCTORAT

Pour obtenir le grade de Docteur en Informatique

En vue d’une soutenance publique
par

Yousef TAHERI SOJASI

Modeling Automated Legal and Ethical
Compliance for Trustworthy AI

Thèse sous la direction de Jean-Gabriel GANASCIA et Gauvain BOURGNE

Devant un jury composé de:

Pr. MARIE-JEANNE LESOT Sorbonne Université Présidente et Examinatrice

Pr. MADALINA CROITORU Université de Montpellier Rapporteuse

Dr. HDR FABIEN TARISSAN ENS Parsi-Saclay Rapporteur

Dr. CATHERINE TESSIER ONERA Examinatrice

Pr. JEAN-GABRIEL GANASCIA Sorbonne Université Directeur

Dr. HDR GAUVAIN BOURGNE Sorbonne Université Directeur



Abstract

The advancements in artificial intelligence have led to significant legal and eth-
ical issues related to privacy, bias, accountability, etc. In recent years, many
regulations have been put in place to limit or mitigate the risks associated with
AI. Compliance with these regulations are necessary for the reliability of AI sys-
tems and to ensure that they are being used responsibly. In addition, reliable
AI systems should also be ethical, ensuring alignment with ethical norms. Com-
pliance with applicable laws and adherence to ethical principles are essential for
most AI applications. We investigate this problem from the point of view of AI
agents. In other words, how an agent can ensure the compliance of its actions
with legal and ethical norms. We are interested in approaches based on logi-
cal reasoning to integrate legal and ethical compliance in the agent’s planning
process. The specific domain in which we pursue our objective is the process-
ing of personal data. i.e., the agent’s actions involve the use and processing of
personal data. A regulation that applies in such a domain is the General Data
Protection Regulations (GDPR). In addition, processing of personal data may
entail certain ethical risks with respect to privacy or bias.

We address this issue through a series of contributions presented in this
thesis. Starting by the GDPR compliance, we adopt Event Calculus with the
Answer Set Programming(ASP) to model agents’ actions and use it for planning
and checking the compliance with GDPR. A policy language is used to represent
the GDPR obligations and requirements. Then we investigate the issue of ethical
compliance. A pluralistic ordinal utility model is proposed that allows one to
evaluate actions based on moral values. This model is based on multiple criteria
and uses voting systems to aggregate evaluations on an ordinal scale. We then
integrate this utility model and the legal compliance framework in a Hierarchical
Task Network(HTN) planner. In this contribution, legal norms are considered
hard constraints and ethical norm as soft constraint. Finally, as a last step, we
further explore the possible combinations of legal and ethical compliance with
the planning agent and propose a unified framework. This framework captures
the interaction and conflicts between legal and ethical norms and is tested in a
use case with AI systems managing the delivery of health care items.

I



Keywords

Computational Ethics; Answer Set Programming; Planning; Event Calculus;
Hierarchical task networks; Voting systems; Legal compliance; Ethical compli-
ance; Legal knowledge representation; Trustworthy AI.

II



Résumé

Les avancées en intelligence artificielle ont conduit à des enjeux juridiques et
éthiques significatifs liés à la vie privée, aux biais, à la responsabilité, etc. Ces
dernières années, de nombreuses réglementations ont été mises en place pour
limiter ou atténuer les risques associés à l’IA. Le respect de ces réglementations
est nécessaire pour la fiabilité des systèmes d’IA et pour garantir une utilisation
responsable. De plus, des systèmes d’IA fiables doivent également être éthiques,
en assurant une conformité avec les normes éthiques. La conformité aux lois ap-
plicables et l’adhésion aux principes éthiques sont essentielles pour la plupart
des applications de l’IA. Nous étudions ce problème du point de vue des agents
d’IA. En d’autres termes, comment un agent peut-il garantir que ses actions
respectent les normes juridiques et éthiques. Nous nous intéressons aux ap-
proches basées sur le raisonnement logique pour intégrer la conformité juridique
et éthiques dans le processus de planification de l’agent. Le domaine spécifique
dans lequel nous poursuivons notre objectif est le traitement des données per-
sonnelles, c’est-à-dire, les actions de l’agent impliquent l’utilisation et le traite-
ment des données personnelles. Une réglementation applicable dans ce domaine
est le Règlement Général sur la Protection des Données (RGPD). De plus, le
traitement des données personnelles peut entrâıner certains risques éthiques en
matière de vie privée ou de biais.

Nous abordons cette question à travers une série de contributions présentées
dans cette thèse. Nous commençons par la question de la conformité au RGPD.
Nous adoptons le Calcul des Événements avec la Programmation par Ensem-
bles de Réponses (ASP) pour modéliser les actions des agents et l’utiliser pour
planifier et vérifier la conformité au RGPD. Un langage de policy est utilisé
pour représenter les obligations et exigences du RGPD. Ensuite, nous exam-
inons la question de la conformité éthique. Un modèle d’utilité ordinale plu-
raliste est proposé, permettant d’évaluer les actions en fonction des valeurs
morales. Ce modèle est basé sur plusieurs critères et utilise des systèmes de
vote pour agréger les évaluations sur une échelle ordinale. Nous intégrons en-
suite ce modèle d’utilité et le cadre de conformité juridique dans un planificateur
de Réseau de Tâches Hiérarchiques (HTN). Dans cette contribution, les normes
juridiques sont considérées comme des contraintes ”hard” et les normes éthiques
comme des contraintes ”soft”. Enfin, en dernière étape, nous explorons davan-
tage les combinaisons possibles de la conformité juridique et éthique avec l’agent
de planification et proposons un cadre unifié. Ce cadre capture l’interaction

III



et les conflits entre les normes juridiques et éthiques et est testé dans un cas
d’utilisation avec des systèmes d’IA gérant la livraison d’articles médicaux.

Mots-clefs

Éthique Computationnelle; Answer Set Programming; Planification; Calcul des
Événements; Réseaux de tâches hiérarchiques; systèmes de vote; Conformité
Juridique; Conformité éthique; Représentation des connaissances juridiques; IA
responsable; IA digne de confiance.

IV



Acknowledgments

I would like to warmly thank my supervisors Gauvain Bourgne, Jean-Gabriel
Ganascia for their continuous support and invaluable knowledge.

I would also like to thank Ken Satoh, Hisashi Hayashi, Kanae Tsushima, as
well as other members of the RECOMP project for their for their precious help,
intellectual rigour and kindness in these trying times.

I would also like to express my sincere gratitude the members of the Jury for
accepting to review my thesis. This work is part of the ”Real-time Compliance
Mechanism” RECOMP project, financed by the French Agence Nationale de la
Recherche (ANR, French Research Agency) under the reference ANR-20-IADJ-
0004.

V



Contents

Abstract I

Résumé III

Acknowledgments V

Table of Contents VIII

List of Figures IX

List of Tables X

Introduction XI

I State of the Art 1

1 State of the Art: Legal Compliance: 2
1.1 AI Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 GDPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Legal Knowledge Representation . . . . . . . . . . . . . . . . . . 5

1.3.1 LegalRuleML . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 The SPECIAL Policy Language . . . . . . . . . . . . . . . 10

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 State of the Art: Ethical Compliance: 17
2.1 Ethics of AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Normative Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Consequentialist Ethics . . . . . . . . . . . . . . . . . . . 21
2.2.2 Deontological Ethics . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Virtue Ethics . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Value Pluralism . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Ethical AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

VI



2.3.1 Artificial Moral Agency . . . . . . . . . . . . . . . . . . . 24
2.3.2 Classification of AMAs . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Computational Ethics Challenges . . . . . . . . . . . . . . 27
2.3.4 Implementation Approaches . . . . . . . . . . . . . . . . . 29

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 State of the Art: Modeling Tools: 31
3.1 Logic programming . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Answer Set Programming . . . . . . . . . . . . . . . . . . 34

3.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Event Calculus . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Hierarchical Task Network . . . . . . . . . . . . . . . . . . 40

3.3 Voting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Contributions 47

4 Legal Compliance: Automated Data Processing with GDPR
Compliance 49
4.1 Overall Model Architecture . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 A Personal Data Handling Use Case . . . . . . . . . . . . 51
4.1.2 Planning Component . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Compliance Engine . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1 Compliance Check for Consent . . . . . . . . . . . . . . . 59
4.2.2 Compliance Check for GDPR Regulatory Norms . . . . . 61

4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Ethical Compliance: A Pluralistic Ordinal Utility Model to
Evaluate Processing on Personal Data 63
5.1 Integration of AI Values . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 A: The Set of Alternatives . . . . . . . . . . . . . . . . . 66
5.1.2 ⟨N , R⟩: The Criteria Hierarchy . . . . . . . . . . . . . . 66
5.1.3 ρ: Leaf Criteria Assessment . . . . . . . . . . . . . . . . . 67
5.1.4 Ψ: Aggregation functions . . . . . . . . . . . . . . . . . . 70

5.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Legal and Ethical Compliance: A Data Processing Use Case
with Real-time Execution 77
6.1 Architecture Review . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Use case model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Planning Component . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Belief Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

VII



6.3.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Planning Example . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Compliance Component . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Ethical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 Real-time Execution . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6.1 Scenario I . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.2 Scenario II . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Unified Legal and Ethical Compliance: An Automated Delivery
System for Health Care Items 92
7.1 Use Case Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Model Components . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Planning Component . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3.1 Resource Allocation . . . . . . . . . . . . . . . . . . . . . 95
7.3.2 Demands Assignment to Agents . . . . . . . . . . . . . . 96
7.3.3 Route Planning . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Compliance checking . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.1 Normative Assessment . . . . . . . . . . . . . . . . . . . . 101
7.4.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4.3 Norm Relaxation . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

III Discussions 109

8 Conclusions: 110
8.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendices 128

A Codes: Data Processing with GDPR Compliance 129

B Codes: Pluralistic Utility Model 143

C Codes: Health Care Delivery System 150

VIII



List of Figures

1 Dependencies among chapters . . . . . . . . . . . . . . . . . . . . XV

1.1 LegalRuleML structure [115] . . . . . . . . . . . . . . . . . . . . 7
1.2 SPECIAL classes for regulatory obligations . . . . . . . . . . . . 13

2.1 Two dimensions of AMA development [185] . . . . . . . . . . . . 26

3.1 How the event calculus works [167] . . . . . . . . . . . . . . . . . 38
3.2 Task decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Multiple subplans . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Switching to an alternative plan . . . . . . . . . . . . . . . . . . . 42
3.5 Plan update after action execution . . . . . . . . . . . . . . . . . 43
3.6 Replan after action failure . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Modular structure . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Connection among servers . . . . . . . . . . . . . . . . . . . . . 52

5.1 Criteria hierarchy diagram . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Overall system architecture . . . . . . . . . . . . . . . . . . . . . 79
6.2 Nodes and connections in the network . . . . . . . . . . . . . . . 80
6.3 Examples of possible plans . . . . . . . . . . . . . . . . . . . . . . 86
6.4 Example of a single plan . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Compliance checking . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Ethical evaluation process . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Modules in autonomous delivery system. . . . . . . . . . . . . . . 95
7.2 Resource allocation example . . . . . . . . . . . . . . . . . . . . . 96
7.3 Demand assignment example . . . . . . . . . . . . . . . . . . . . 97
7.4 Map of the nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 Example of plans . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Normative assessment process . . . . . . . . . . . . . . . . . . . . 102
7.7 Various settings for compliance check . . . . . . . . . . . . . . . . 107
7.8 Relaxed settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

IX



List of Tables

2.1 Promoted values in consequentialist theories . . . . . . . . . . . . 22
2.2 The distinction between Ethics of AI and Ethical AI [168] . . . . 25

3.1 Properties of voting systems [148] . . . . . . . . . . . . . . . . . . 45

4.1 Automatically generated plans. . . . . . . . . . . . . . . . . . . . 60
4.2 Automatic compliance check of plans (Consent) . . . . . . . . . . 60
4.3 Automatic compliance check of plans (GDPR Chapter 5) . . . . 62

5.1 Recommendation algorithms’ features . . . . . . . . . . . . . . . 68
5.2 Leaf ordering of the recommendation systems . . . . . . . . . . . 69
5.3 Given setting for the children nodes . . . . . . . . . . . . . . . . 73
5.4 Preference of the parent nodes . . . . . . . . . . . . . . . . . . . 75

6.1 The attributes of each node . . . . . . . . . . . . . . . . . . . . . 81
6.2 The information of available processing . . . . . . . . . . . . . . 81
6.3 The information on personal data . . . . . . . . . . . . . . . . . 81

7.1 Actions’ preconditions and effects . . . . . . . . . . . . . . . . . . 98
7.2 The specified norms . . . . . . . . . . . . . . . . . . . . . . . . . 104

X



Introduction

Artificial intelligence (AI) systems are increasingly being used in applications
that directly impact human welfare and social functions, from healthcare and
transportation to law enforcement and employment. The AI advancements in
these applications have led to significant legal and ethical issues related to pri-
vacy, bias, accountability, surveillance, etc. In recent years, many regulations
have been put in place to limit or mitigate the risks associated with AI. These
regulations are designed to ensure that AI systems operate safely, ethically, and
transparently. The primary goals of AI regulations include managing risks, com-
plying with existing laws, and protecting individual rights while also protecting
public interests and promoting innovation. Compliance with these regulations
is necessary for the reliability of AI systems and to ensure that they are being
used responsibly.

Laws may fall behind technological advances, occasionally conflict with ethi-
cal principles, or fail to address specific issues. Hence, reliable AI systems should
also be ethical and ensure their alignment with ethical norms. According to the
EU Ethics Guidelines for Trustworthy AI [95], it is essential for AI systems to be
”lawful” and ”ethical” to achieve trustworthiness. The former means complying
with all applicable laws and regulations, and the latter means ensuring adher-
ence to ethical principles and values. According to this document, the third
requirement for a trustworthy AI is ”robustness”, that is out of the scope of
this thesis. Ethical guidelines usually discuss the development, deployment and
use of AI in a way that supports ethical principles and promotes good. These
guidelines explore ethical issues with AI systems, ensuring that their benefits
are maximized while minimizing potential harms and risks.

Compliance with the law and adherence to ethical principles apply to most
AI applications and should be met throughout the system’s entire life cycle.
There are areas of research in AI, especially in the machine learning (ML) com-
munity, to deal with these issues, such as fairness [155], privacy [193], and
explainability [121] in ML algorithms. Unlike these methods, we take a sym-
bolic approach and are interested in mechanisms based on logical reasoning to
address this issue. Our objective in this thesis is to study this issue in the
context of AI agents, particularly agents capable of planning, i.e. deriving a
series of actions automatically to achieve a certain objective in a deterministic
environment. Planning is used to model a variety of domains including robotics,
autonomous cars, etc. In addition, each domain concerns a different set of ap-

XI



plicable regulations. The specific domain in which we pursue our objective is
the processing of personal data. i.e., the agent’s actions involve the use and
processing of personal data.

This domain has received a lot of attention in recent years, especially from
the point of view of regulatory bodies. A significant regulation that applies in
this case is the General Data Protection Regulation (GDPR). GDPR imposes
strict requirements on the processing of personal data, including data used in
AI systems, and the data subject’s rights. There are also ethical concerns that
apply to the processing of personal data. They include the use of sensitive
categories of personal data, the use of large-scale processing, algorithmic bias,
etc.

According to the specified domain, the main research track in this thesis is
to study GDPR compliance and ethical alignment of an AI system that handles
personal data automatically. It is useful to note that the term ethical compliance
may suggest that ethics is only a set of rules, as in the case of law. Although
certain aspects of ethical reasoning involve rules, this is not the case in general.
In our context, ”ethically compliant” means that the agent is capable of morally
evaluating the options and choosing the best one according to some (specified)
principles.

As a motivating example, consider an agent who is confronted with one of
the following decisions.

1. Choosing a data set to process for a certain purpose;

2. Choosing a path to transfer personal data to a certain destination; and,

3. Choosing a processing to apply on personal data.

The agent makes one or a series of such choices automatically in order to
perform a processing on personal data or produce a specific output. A series
of choices is a plan to reach a certain desired state. The agent uses a planning
mechanism to automatically generate and select plans. The first interest is the
design of such an AI agent, i.e. how to model this agent’s actions and the
planning mechanism to handle personal data automatically? How can legal and
ethical evaluations be integrated into the agent’s reasoning process?

There are also a number of questions regarding the legal compliance of the
options. For example, what are the GDPR requirements in this example to check
the compliance of each option? How can these requirements be integrated into
the agent’s reasoning process? An important obligation of GDPR is the data
subject’s consent for processing of their personal data. How can a data subject’s
consent and other regulations be represented according to the requirements of
the GDPR? In terms of ethical evaluation, we might ask several questions that
contribute to ethical evaluation of options. For example, in the first case, what
categories of personal data entail higher risks? Which path is safe?, in terms of
data protection to transfer personal data? or which processing is less biased?

GDPR compliance checking requires expert knowledge and a formalized rep-
resentation of GDPR regulations. Legal knowledge representation is a field of

XII



computational law that deals with formalizing legal knowledge. Languages and
ontologies have been developed to represent different relations in legal docu-
ments and deontic rules like LegalRuleML[150, 14, 13]. In particular, a number
of ontologies and policy languages have been created to represent GDPR re-
quirements [52, 27]. These tools provide a formalization of GDPR concepts
that can be used for compliance checking; however, they need to be adapted
and integrated into the planning process.

The ethical evaluation of options is also challenging due to the lack of uni-
versal rules, the sensitivity to context, and the difficulty of representing ethical
principles. In addition, the evaluation process has to be expressive and rea-
sonable. In the computational ethics community, there are works that propose
models of ethical evaluations [82, 122]. These works mainly model ethical the-
ories[178], e.g. consequentialism and deontology, and evaluate their judgments
in ethical dilemmas such as the trolley problem or comparing morality of action
plans [48, 23]. These models are useful in showing the mechanism behind ethical
theories and their conflicts. However, adopting these models for our specific do-
main is not simple. In the case of deontological theories, the derivation of rules
and codes of conducts from fundamental principles is challenging. In case of
utilitarianist theories such as act utilitarianism, the notion of utility is essential
to evaluate options. But there is no expressive and consistent way to assign
utility values without introducing arbitrary numbers into our domain. Finally,
these ethical evaluation models do not consider legal compliance and possible
interactions or conflicts with legal norms.

The other challenge is the design of such an agent, the choice of a suitable
planning formalism, and integration with both the legal compliance and ethical
evaluation in a single architecture. Law and ethics overlap in many areas, but
the interaction between the two should be investigated, for example, which one
has priority over the other? Can both legal compliance and ethical evaluations
be combined as a single component?

The study of this problem is conducted in several steps. We start with
the GDPR compliance checking problem. That is, modeling an AI agent that
uses planning to handle personal data and checks the compliance of its actions
with GDPR. We adopt Event Calculus with Answer Set Programming(ASP) to
model agents’ actions, their effects, and preconditions, and abductive reasoning
to generate plans. The plans are then verified for compliance with GDPR. We
use a policy language, called SPECIAL [27], to translate and represent GDPR
requirements into ASP and use it to check the compliance of the plans. This
model is also capable of explaining missing regulations in case a plan is not
compliant. The proposed model is published in the JURISIN post-proceedings
[176] as a first contribution.

In the next step, we deal with the ethical evaluation problem. A literature
review was conducted to study the approaches for the ethical evaluation of
the plan. We start by the question of ”How several options can be compared
ethically?” In other words, which action is aligned with moral values? This
research led to the development of a pluralistic utility model [177]. This model
takes into account multiple criteria to represent moral values in a hierarchical

XIII



structure. Measurements are modeled on an ordinal scale and aggregated using
voting systems.

After addressing the legal compliance and ethical evaluation model sepa-
rately, we integrate both components together with a planning mechanism. The
planning formalism in this case is a version of the Hierarchical Task Network
(HTN) planner implemented in Prolog. An advantage of this planner is that it
supports execution and real-time replanning. Hence, the architecture enables
compliance checking in real time. In this architecture, legal regulations are con-
sidered hard norms, and ethical norms are considered soft norms. This means
that the satisfaction of legal norms is necessary, while ethical norms should be
satisfied as much as possible. This is one possible way to integrate the legal
compliance and ethical evaluation with the agent’s planning mechanism.

Finally, as a last step, we further explore architectures for integrating legal
compliance and ethical evaluation in the agent’s planning process. In this archi-
tecture, legal and ethical evaluations are integrated in a single component. This
enables the model to capture interactions or possible conflicts between legal and
ethical norms. This architecture is adopted to model a system that that handles
multiple agents for the delivery of health care items. In this use case, a planning
heuristic based on the event calculus is used to model agents actions and plan a
delivery route. This architecture allows modeling hard ethical norms and their
trade-off with the legal norms.

This thesis is organized as follows. Part I presents the state-of-the-art and
background required to read the contributions. In Chapters 1 and 2 we discuss
the state of the art in the legal domain and ethics, respectively. Chapter 3
presents the tools and technical background used in the contributions. Part II
contains the contributions made during the research in this thesis. In Chap-
ter 4 the data processing with the GDPR compliance checking framework is
presented. Chapter 5 describes the pluralistic ordinal utility model based on
multiple hierarchical criteria. In Chapter 6, both legal and ethical components
are integrated with an HTN planner. In Chapter 7 we explore other archi-
tectures to integrate legal and ethical components in the planning process and
present our new use case. Finally, in part III we discuss the conclusions and
future work.

This thesis can be read in either the presented order or in other orders con-
sidering the dependencies among the chapters. The dependencies are depicted
in Figure 1. For example, one way to read this thesis is to start with Chapters 1
and 3.1.2 and 3.2.1, which are the prerequisites for reading Chapter 4. Another
possible order is to start with Chapter 2, 3.1.2, and 3.3 which are required to
read Chapter 5 of the contributions.

XIV



Figure 1: Dependencies among chapters

XV



Part I

State of the Art

1



Chapter 1

State of the Art: Legal
Compliance

2



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 3

As artificial intelligence continues to evolve towards greater autonomy, mech-
anisms to comprehend and adhere to applicable laws and regulations are be-
coming more essential. The law represents a multifaceted system of rules and
regulations that govern society and influence its politics, economics, and social
interactions [21].

AI, as a tool with huge impact and the potential to harm individuals or
societies, should be used responsibly. Regulations serve as a crucial safeguard
to ensure the safety of AI systems and prevent harm to individuals and soci-
eties. Compliance with these regulations in the design and deployment of AI
systems can be challenging, especially in automated settings, which is of our
interest. Computational law is a branch of legal informatics that focuses on
the intersection of law and computer science. It is an approach to automate le-
gal reasoning that focuses on semantically rich laws, regulations, contract terms,
and business rules [126]. It plays a crucial role in areas such as document review,
compliance, case prediction, and legal research [106, 26]. Current applications of
computational laws include the automation of legal tasks and compliance check
[52, 81, 90], understanding legal texts by applying Natural Language Processing
(NLP) techniques [160, 56], detecting patterns in legal data and predicting case
outcomes using machine learning algorithms [187, 124], etc.

An important area in computational law is the representation of legal knowl-
edge for legal reasoning and compliance checking. In this thesis, we are inter-
ested in formalized approaches in knowledge representations that can be inte-
grated in the agent’s reasoning process and enable compliance checking.

This chapter presents a brief introduction to some of the significant AI reg-
ulations, in particular, GDPR, which we focus on in this thesis. We discuss rep-
resentation of legal knowledge in computational law and explain LegalRuleML,
a standard language to represent legal norms, regulations, guidelines, and poli-
cies in machine-readable format. In addition, we describe the SPECIAL policy
language that is used in the thesis to represent GDPR requirements.

1.1 AI Regulations

AI regulations refer to legal frameworks and policies established by governments
and regulatory bodies to govern the development, deployment, and use of ar-
tificial intelligence. The regulations aim to address various ethical concerns
related to AI, including privacy, transparency, accountability, fairness, safety,
and societal impact. Recently, there has been a trend in AI regulations. These
regulations are rapidly evolving, with various initiatives being proposed and im-
plemented globally. Each country or region may adopt its own approach to AI
regulation. Some of the most significant AI regulations and initiatives include.

• EU AI Act [60]: In April 2021, the EU proposed the AI Act, which
aims to regulate AI systems considered high-risk. It outlines requirements
for AI developers, users, and regulators, including data governance, trans-
parency, accountability, and human oversight.



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 4

• EU Digital Services Act (DSA) [59]: Adopted in 2022, significantly
tightens regulations on digital platforms operating within the EU. It en-
forces greater accountability for removing illegal content, increases trans-
parency around algorithmic decision-making, and strengthens user rights
in content moderation. Additionally, it imposes stricter controls on tar-
geted advertising and requires platforms to perform annual risk assess-
ments.

• EU Data Act [61]: Introduced by the European Commission in February
2022, aims to regulate the access and use of data generated from connected
devices across the EU. It facilitates data sharing, ensures fair access, pro-
tects privacy, and reduces dependency on major platform providers.

• USA California Privacy Rights Act (CPRA) [37]: CPRA regulate
the collection and use of personal data, including data used in AI sys-
tems. These regulations give consumers more control over their personal
information and impose obligations on businesses handling such data.

• USA Algorithmic Accountability Act [5]: Proposed in the United
States, this act aims to regulate the use of automated decision-making
systems by federal agencies. It requires impact assessments for high-risk
AI systems, ensuring fairness, transparency, and accountability.

Another significant regulation is the General Data Protection Regulation
(GDPR) [63]. Although not specific to AI, GDPR imposes strict requirements
on the processing of personal data, including data used in AI systems. In
this thesis, we limited our objective to domains that involve the processing of
personal data. Since our use case domain concerns with GDPR regulations, we
describe it in more detail in the next section.

1.2 GDPR

The GDPR is a comprehensive data protection regulation enacted by the Eu-
ropean Union (EU) to enhance the protection of individuals’ personal data and
harmonize data privacy laws across the EU member states. GDPR applies to
the processing of personal data of individuals within the EU, regardless of where
the processing takes place. It also applies to organizations outside the EU that
offer goods or services to individuals in the EU or monitor their behavior. Some
of the most important provisions in the GDPR include:

• Lawful Basis for Processing: Data controllers or processors must have
a lawful basis for processing personal data. Lawful bases include con-
sent, contract necessity, legal obligation, vital interests, public task, and
legitimate interests.

• Consent: Consent for data processing must be freely given, specific, in-
formed, and unambiguous. Individuals have the right to withdraw consent
at any time.



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 5

• Rights of Data Subjects: GDPR grants individuals several rights over
their personal data, including the right to access, rectify, erase, restrict
processing, data portability, and object to processing.

• Data Protection by Design: Data controllers must implement data
protection principles into the design of their systems and processes. They
should also adopt measures to ensure that only the necessary personal
data is processed.

• Data Transfers: GDPR imposes restrictions on the transfer of personal
data outside the EU to ensure an adequate level of protection. Adequacy
decisions, standard contractual clauses, binding corporate rules, and dero-
gation are mechanisms for lawful data transfers.

• Accountability: Organizations must demonstrate compliance with GDPR
principles by maintaining records of data processing activities and imple-
menting appropriate technical and organizational measures.

The GDPR provides a robust framework for protecting the privacy and
personal data of individuals. This regulation emphasizes individuals’ rights over
their data, including the right to access, rectify, and erase their information,
giving them greater control over their personal information. GDPR establishes
clear guidelines and principles to ensure data are processed in a lawful, fair, and
transparent way. It helps mitigate the risks associated with data processing and
promote trust between consumers and organizations by mandating strict consent
requirements and robust security measures. In the next sections, we introduce
legal ontologies that are used to codify regulations in a machine-understandable
manner. We focus particularly on ontologies that can be used to model GDPR
regulation.

1.3 Legal Knowledge Representation

Representation of knowledge and reasoning is essential to solve problems in a
given domain. This requires a structured framework for organizing and cate-
gorizing concepts like entities, rules, and relationships in a way that computers
can understand and process. An ontology is a formal specification of a shared
conceptualization in a given domain that is simplified and abstract [86]. A
conceptualization can be viewed in simple terms [78] as a tuple (D,R) where

• D is a set called the universe of discourse

• R is a set of relations on D

According to this definition, the members of the set R are ordinary math-
ematical relations on D, that is, sets of ordered tuples of elements of D. So
each element of R is an extensional relation, reflecting a specific world state
involving the elements of D. Ontologies in AI provide a basic framework for



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 6

knowledge representation. They are used to model the semantics of a domain
that allows reasoning, inference, and decision-making. Formal languages and
representation formats are used to develop ontologies such as OWL (Web On-
tology Language)[130, 10], RDF (Resource Description Framework)[53, 157],
and logic-based languages such as Prolog [49].

An important application area of ontologies is the legal domain. Fundamen-
tal concepts and entities within a legal domain involve contracts, statutes, case
law, legal roles, rights, obligations, and legal procedures. Ontologies capture the
structure and content of legal knowledge, often used in legal information sys-
tems and knowledge management [139]. The logical structure and rules of the
ontology can be used to perform tasks such as legal analysis, decision support,
compliance check, and legal reasoning.

Legal ontologies can be categorized as general-purpose or domain-specific.
The former consisted of core concepts that are common in law in different do-
mains. In contrast, domain-specific ontologies capture concepts in a limited
domain application. The domain of interest in our research is the compliance
with GDPR. Here, we describe a core legal ontology for representing legal rules
and a domain-specific ontology to represent GDPR policies.

1.3.1 LegalRuleML

LegalRuleML (Legal Rule Markup Language) [149, 150] is a standardized lan-
guage used to represent legal norms, regulations, guidelines and policies in a
machine-readable format. It extends RuleML (Rule Markup Language) [25], a
general purpose language for representing rules and logical assertions in XML,
incorporating features specific to legal documents. These features include legal
concepts, norms, obligations, permissions, and prohibitions. LegalRuleML pro-
vides as a rule interchange language for the legal domain and rule-based systems.
It is used in applications ranging from legal reasoning and decision support sys-
tems to automated compliance and analysis of legal text. In this section, we
briefly describe some features of LegalRuleML. More detailed explanations can
be found in [14, 13, 180].

Structure

LegalRuleML has a conceptual basis for representing, formalizing, and rea-
soning with legal provisions. It supports deontic operators (e.g. obligations,
permissions, prohibitions, rights) and supports multiple semantics of negation.
For example, consider the simple rule in the phrase ”every man is obliged
to walk”. This phrase can be formulated in Standard Deontic Logic [131] as
∀x[man(x) → OB(walk(x))]. This formula is encoded in LegalRuleML using
the XML format.

1 <lrml:PrescriptiveStatement key="someuniquekey">

2 <ruleml:Rule closure="universal">

3 <ruleml:if>

4 <ruleml: Atom >



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 7

Figure 1.1: LegalRuleML structure [115]

5 <ruleml:Rel iri="man" />

6 <ruleml:Var key=":x">x</ruleml:Var>

7 </ruleml:Atom>

8 </ruleml:if>

9 <ruleml:then>

10 <lrml:Obligation>

11 <ruleml:Atom>

12 <ruleml:Rel iri="walk" />

13 <ruleml:Var keyref=:x" />

14 </ruleml:Atom>

15 </lrml:Obligation>

16 </ruleml:then>

17 </ruleml:Rule>

18 </lrml:PrescriptiveStatement>

The tags lrml and ruleml refer to the ontological concepts in LegalRuleML
and RuleML, respectively. The premise of the rule encapsulated by the <

↪→ ruleml:if> tags and the conclusion using <ruleml:then>. The obligation
OB(walk(x)) is enclosed within the </lrml:Obligation> blocks. The predicates
”man” and ”walk” are connected to ontological concepts via the attribute iri

of the block < ruleml : Rel >. The rule is encoded as a prescriptive statement
using <lrml:PrescriptiveStatement> blocks. Prescriptive statements are used
to model deontic rules, i.e. statements that involve obligations, permissions, or
prohibitions.

Legal rules in general are more complex and concern contextual information.
They need to be linked to this information to be interpreted correctly. Legal-
RuleMl provides a structure for appointing this information with legal rules.
The general structure of a LegalRuleML document is illustrated in Figure 1.1.
The metadata include components to link the formal rules and the legally bind-
ing textual statements. Textual normative provisions are considered a legal
source and are referred to, using the block <lrml:LegalSources>. For example,



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 8

the following snippet is a legal source named ref9 that refers to a law in United
States Code [183]. The United States Code is the official codification of the
general and permanent federal statutes of the United States.

1 <lrml:LegalSource key="ref9"

2 sameAs="http://www.law.cornell.edu/wiki/lexcraft/

↪→ section_identifiers_lii"

3 />

4

Contextual information is essential for interpreting the legal rule. For ex-
ample, the norms and their associated rules have validity within a specific time
frame and with respect to three main legal axes: entry into force, efficacy, and
applicability. Legal documents may frequently need to be revised as societal
norms or judicial frameworks evolve. Hence, temporal information is crucial in
modeling legal rules. Other contextual information related to legal rules may
include agents and roles, authority, jurisdictions, and temporal information and
the strength of the rule (defeasible, defeater, strict). For example, consider the
rule rule1 with the following properties.

• rule1 has TemporalCharateristics tblock1

• rule1 has Strength defeasible

• rule1 has Author aut1

• rule1 has Jurisdiction US

• rule1 has Authority congress

The block <Context> contains the characteristics that are related to this
rule. These contextual information are associated with rule1 using the tag
<lrml:appliesCONTEXT>.

1 <lrml:Context key="ruleInfo1" hasCreationDate="#t8">

2 <lrml:appliesTemporalCharacteristics keyref="#tblock1"/>

3 <lrml:appliesStrength iri="lrmlv:Defeasible"/>

4 <lrml:appliesRole>

5 <lrml:Role iri="lrmlv:Author">

6 <lrml:filledBy keyref="#aut1"/>

7 </lrml:Role>

8 </lrml:appliesRole>

9 <lrml:appliesAuthority keyref="#congress"/>

10 <lrml:appliesJurisdiction keyref="jurisdictions:us"/>

11 <lrml:toStatement keyref="#rule1"/>

12 </lrml:Context>

13

The block <TemporalCharateristics> captures the temporal dimension of
the rules. In this example, it refers to the key #tblock1, that is, the period to
enter into force or the period of efficacy of the corresponding rule. #tblock1



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 9

is represented as follows, and the block <TimeInstants> is used to indicate an
specific time point.

1 <lrml:TimeInstants>

2 <ruleml:Time key="t1">

3 <ruleml:Data xsi:type="xs:dateTime">2012-07-21T00:00:00Z

4 </ruleml:Data>

5 </ruleml:Time>

6 </lrml:TimeInstants>

7 <lrml:TemporalCharacteristics key="tblock1">

8 <lrml:TemporalCharacteristic key="nev1">

9 <lrml:forRuleStatus iri="lrmlv:Efficacious"/>

10 <lrml:hasStatusDevelopment iri="lrmlv:Starts"/>

11 <lrml:atTimeInstant keyref="#t1"/>

12 </lrml:TemporalCharacteristic>

13 </lrml:TemporalCharacteristics>

14

The author of the rule and the associated authority are also crucial param-
eters in modeling rules. The blocks <Agent> and <Authority> are used to define
the author and the authority of the rules. They allow representing the prove-
nance and authorial tracking of the rules. The following XML code indicates
that the agent y.taheri is an author with label aut1. In addition, congress is
the authority that has the type Legislature.

1 <lrml:Agents>

2 <lrml:Agent key="aut1"

3 sameAs="unibo:person.owl#y.taheri"/>

4 </lrml:Agents>

5 <lrml:Authorities>

6 <lrml:Authority key="congress"

7 sameAs="unibo:organization.owl#congress">

8 <lrml:type iri="lrmlv:Legislature"/>

9 </lrml:Authority>

10 </lrml:Authorities>

11

Extensions

As mentioned earlier, LegalRuleML is a general-purpose language to represent
legal rules. Hence, it may fail to represent certain concepts that are specific
to a domain or regulation. GDPR is the domain of interest in this thesis. It
discusses concepts such as data processing, purposes, legal bases, and entities
such as controllers and processors that are specific to GDPR. LegalRuleML
needs to be extended to support modeling GDPR provinces. A domain-specific
ontology built on LegalRuleML to represent and formalize GDPR regulations
is PrOnto [151]. PrOnto incorporates concepts like data types and documents,
agents and roles, purposes and legal bases, and data processing operations in
LegalRuleML. It has been adopted in the DAPRECO knowledge base [19] to
formalize GDPR regulations using reified input / output logic [158].



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 10

1.3.2 The SPECIAL Policy Language

SPECIAL (Scalable Policy-awarE linked data arChitecture for prIvacy, trAns-
parency and compLiance) [27] is a formal language based on OWL2 to express
consent, business policies, and regulatory obligations. It is designed to automat-
ically check if personal data processing complies with the obligations set forth in
the GDPR. In SPECIAL data processing is encoded as business policies and the
data subjects consent as usage policies. Policies are modeled as OWL2 classes
that are combined by the operations ObjectUnionOf or ObjectIntersectOf. We
briefly describe the approaches to represent personal data processing, data sub-
ject’s consent, and regulatory norms in SPECIAL.

Personal Data Processing

In the SPECIAL policy language, personal data processing is modeled as a
business policy. The business policy is a description of the controller’s activity.
A data processing description encodes a formalized business policy consisting of
the following set of features:

• The data to be processed;

• The software that carries out the processing;

• The purpose of the processing;

• The entities that can access The results of the processing;

• The details of where the results are stored and for how long;

• The obligations that are fulfilled while (or before) carrying out the pro-
cessing;

• The legal basis of the processing.

An example of a personal data processing encoded as OWL2 classes is pre-
sented in the following frame.

1 ObjectIntersectionOf(

2 ObjectSomeValuesFrom(spl:hasData svd:purchasesAndSpendingHabit)

3 ObjectSomeValuesFrom(spl:hasProcessing svpr:Analyze)

4 ObjectSomeValuesFrom(spl:hasPurposes vpu:Marketing)

5 ObjectSomeValuesFrom(spl:hasRecipient svr:aCompany)

6 ObjectSomeValuesFrom(spl:hasStorage

7 ObjectIntersectionOf(

8 spl:hasLocation svl:EU

9 spl:hasDuration svdu:Indefinitely))

10 ObjectSomeValuesFrom(sbpl:hasDuty getValidConsent)

11 ObjectSomeValuesFrom(sbpl:hasDuty getAccessReqs)

12 ObjectSomeValuesFrom(sbpl:hasDuty getRectifyReqs)

13 ObjectSomeValuesFrom(sbpl:hasDuty getDeleteReqs)

14 ObjectSomeValuesFrom(sbpl:hasLegalBasis A6-1-a-consent)



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 11

15 )

Listing 1.1: A business policy in SPECIAL

The attributes of this business policy are described, respectively, as follows.
(i) The category of the personal data used in the processing is Purchases and
spending habits, (ii) the processing category is analyze, (iii) The purpose of the
processing is marketing, (iv) the recipient of the processing result is aCompany,
(v) the processing is carried out in a storage located in Europe and the duration
of data storage is Indefinite, (vi) the duties defined for this processing, for
example getValidConsent means that the specified software can read the data
sources if consent has been given, (vii) the legal basis of the processing is A6-1-
a-consent.

The business policy represents the class of all the operations that the con-
troller may execute. SPECIAL uses the W3C’s Data Privacy Vocabularies and
Controls Community Group, (DPVCG) [152] to assign standard values for the
attributes in the policy.

Consent Representation

According to GDPR, the most important legal basis for the lawful processing
of personal data is consent from the data subjects. Consent is represented as a
usage policy in SPECIAL that is a description of the processing for which the
data subject has given consent. Consent has the same attributes as a business
policy, but, without legal basis and duties. For example, consider the following
usage policy.

1 ObjectIntersectionOf(

2 ObjectSomeValueFrom(has_purpose createPersonalizedRecommendations )

3 ObjectSomeValueFrom(has_data serviceConsumptionBehavior)

4 ObjectSomeValueFrom(has_processing Transfer)

5 ObjectSomeValueFrom(has_recipient aCompany)

6 ObjectSomeValueFrom(has_storage

7 ObjectIntersectionOf(

8 ObjectSomeValueFrom( has_location:EU)

9 DataSomeValueFrom( has_duration DatatypeRestriction(

↪→ xsd:integerxsd:minInclusive "365" xsd:integer))))

Listing 1.2: A consent in SPECIAL

This usage policy represents the consent of a data subject to transfer their
Service Consumption Behavior data with the purpose Create Personalized Rec-
ommendations. The admissible recipient is aCompany, and the storage must be
located in Europe. In addition, the consent is valid for a duration of 365 days.

This usage policy describes the class of all the operations allowed by the data
subject. Data processing is compliant with the given consent if it is a subclass
of the permitted operations. In other words, a business policy BP is compliant
with the given usage policy P if SubClassOf(BP P).



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 12

Regulatory Norms

SPECIAL offers a partial encoding of GDPR for automated compliance check-
ing. The formalization covers the obligations that concern controllers and pro-
cessors. The requirements in GDPR that cannot be derived or checked automat-
ically are excluded. GDPR requirements in SPECIAL are encoded as classes
and linked using ObjectUnionOf, ObjectIntersectOf, and EquivalentClass ax-
ioms. Each class corresponds to a chapter or a set of articles in GDPR. A
schematic representation of the classes is shown in Figure 1.2. The encoded for-
malization part of GDPR is extensive; therefore, we only describe some relevant
classes. The full version of the formalization can be accessed on the SPECIAL
website 1.

The top-level class that formalizes the GDPR is GDPR_Requirements. It con-
tains all the processing that is compliant with the encoded obligations. This
class is equivalent to:

1 <!-- GDPR_Requirements: -->

2 ObjectUnionOf(

3 ObjectSomeValuesFrom(spl:hasData ObjectComplementOf(PersonalData)

4 )

5 ObjectIntersectionOf(

6 Chap2_LawfulProcessing

7 Chap3_RightsOfDataSubjects

8 Chap4_ControllerAndProcessorObligations

9 Chap5_DataTransfer

10 )

11 Chap9_Derogations

12 )

The combination of ObjectUnionOf and ObjectComplementOf in this encoding
implies that ”if data are personal, then chapters 2–5 or 9 must be fulfilled”.
In other words, according to this expression, a data processing is compliant if
it involves non-personal data, or the requirements of GDPR Chapters 2–5 are
satisfied, or some of the derogation in Chap9_Derogations applies.

Business policies that satisfy the regulations in Chapter 2 of the GDPR are
represented by class Chap2_LawfulProcessing. The regulations correspond to
Articles 6, 9, and 10. According to Art. 6, a business policy should have a legal
basis among those specified in this article. A processing that involves sensitive
data requires another set of legal basis according to Art. 9. Moreover, Art.
10 specify additional restrictions for processing criminal records. According to
these requirements, class Chap2_LawfulProcessing is equivalent to:

1 <!-- Chap2_LawfulProcessing: -->

2 ObjectUnionOf(

3 Art6_LawfulProcessing

4 Art9_SensitiveData

5 Art10_CriminalData)

1https://specialprivacy.ercim.eu/platform/pilots-policies-and-the-formalization-of-the-
gdpr



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 13

GDPR Requirements

6
Data ∈ Comp(PersonalData).

7
Chap2 LawfulProcessing

6
Art6 LawfulProcessing

6
Data ∈ SensitiveData as per Art9

Data ∈ CriminalConvictionData as per Art10

6
Art6 1 LegalBasis

: LegalBasis ∈ { Art 6 1 a Consent,

Art 6 1 b Contract, . . . ,
Art 6 1 f LegitimateInterest }

Art6 4 CompatiblePurpose

Art9 SensitiveData

Art10 CriminalData

Chap3 RightsOfDataSubjects

Chap4 ControllerAndProcessorObligations

Chap5 DataTransfer

6
7

Art48 TransfersNotAuthorisedByUnionLaw

6
AdequateLevelOfProtection as per Art45

AppropriateSafeguards as per Art46

Art49 Derogations

Chap9 Derogations

Figure 1.2: SPECIAL classes for regulatory obligations



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 14

A processing satisfies the requirements of Chapter 2 if the obligations of
Article 6 (Lawful Processing), Article 9 (Sensitive Data), or Article 10 (Criminal
Data) are fulfilled.

The next class is Art6_LawfulProcessing, which is defined as:

1 <!-- Art6_LawfulProcessing: -->

2 ObjectUnionOf(

3 ObjectSomeValuesFrom(spl:hasData

4 SensitiveData_as_per_Art9

5 )

6 ObjectSomeValuesFrom(spl:hasData

7 CriminalConvictionData_as_per_Art10

8 )

9 Art6_1_LegalBasis

10 Art6_4_CompatiblePurpose

11 )

12 )

This expression means that, when the data involved in the processing are
neither sensitive nor criminal conviction data, then the fundamental legal bases
of Art. 6(1) applies, or the processing is compatible with the original purpose
of collecting the data, as per Art. 6(4).

The class Art6_1_LegalBasis is equivalent to:

1 <!-- Art6_1_LegalBasis: -->

2 ObjectSomeValuesFrom( hasLegalBasis

3 ObjectUnionOf(

4 Art6_1_a_Consent

5 Art6_1_b_Contract

6 Art6_1_c_LegalObligation

7 Art6_1_d_VitalInterest

8 Art6_1_e_PublicInterest

9 Art6_1_f_LegitimateInterest

10 )

11 )

This expression means that a business policy fulfills the requirements of Art.
6(1) if it contains a clause ObjectSomeValueFrom( hasLegalBasis X ). In this
clause, X corresponds to a class among points a–f of Art. 6(1).

The next class that we describe here is Chap5_DataTransfer. This class con-
tains business policies that meet the requirements of Chapter 5 of GDPR. Ac-
cording to these requirements, a transfer of personal data to a third country,
i.e. a non-European country, is permissible if the third country guarantees an
adequate level of protection (cf. Article 45 ). In the case where the storage or
recipients are in a country, off the list in Article 45, then a transfer to a third
country is lawful only if the controller or processor has provided appropriate
safeguards (cf. Article 46 ). In addition, if Art. 45 and Art. 46 do not apply, a
transfer is only permissible if one of the derogations listed in Article 49 applies.
These requirements are encoded in OWL2 in the following way:



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 15

1 <!-- Chap5_DataTransfer: -->

2 ObjectUnionOf(

3 ObjectIntersectionOf(

4 Art48_TransfersNotAuthorisedByUnionLaw

5 ObjectUnionOf(

6 AdequateLevelOfProtection_as_per_Art45

7 AppropriateSafeguards_as_per_Art46

8 Art49_Derogations

9 )

10 )

11 ObjectComplementOf(

12 ObjectIntersectionOf(

13 ObjectSomeValuesFrom(spl:hasProcessing svpr:Transfer)

14 ObjectSomeValuesFrom(spl:hasStorage

15 ObjectSomeValuesFrom(spl:hasLocation svl:ThirdCountries)

16 )

17 )

18 )

19 )

The class AppropriateSafeguards_as_per_Art46 in this encoding formalizes
the list of appropriate safeguards stated in Article 46.

1 <!-- AppropriateSafeguards_as_per_Art46 -->

2 Art46_2_a_PublicAuthorities

3 Art46_2_b_BindingCorporateRules_as_per_Art47

4 Art46_2_c_DataProtectionClausesAdoptedByEC

5 Art46_2_d_DataProtectionClausesAdoptedBySupervisoryAuthority

6 Art46_2_e_ApprovedCodeOfConduct

7 Art46_2_f_ApprovedCertificationMechanism

8 Art46_3_a_ContractualClauses

9 Art46_3_b_ProvisionsInAdministrativeArrangements

This definition means that a business policy satisfies the requirements of
Art. 46 if it contains a clause X that represents one of the points a–f of Art.
46(2) or a-b of Art. 46(3).

1.4 Conclusions

The main objective of this thesis was to introduce knowledge representation
methods used in the legal domain. We also discussed the ontologies to represent
GDPR requirements, in particular the SPECIAL policy language. LegalRuleML
is a language that represents necessary concepts in regulations and uses it for
legal reasoning. i.e., inferring what obligations, permissions, or prohibitions
may hold in a specific situation. LegalRuleML covers a variety of concepts
that are essential to properly represent the requirements in law text. However,
not all of these concepts apply to automatic compliance checking. In contrast,
SPECIAL is a simpler policy language for representing requirements that can
be automatically checked.



CHAPTER 1. STATE OF THE ART: LEGAL COMPLIANCE 16

Depending on the domain and the level of legal coverage, a representation
approach can be adopted. Our specific domain concerns the legal compliance of
plans that involve operations on personal data. We are interested in modeling
constraints to check whether an action is allowed or not. Hence, a representation
of rules in deontic format is not necessary in our domain. SPECIAL only models
policies as operations that are allowed by GDPR instead of deontic rules. In
addition, it covers the obligations of the data controllers and processors that we
cover in our compliance checking model in Chapter 4.



Chapter 2

State of the Art: Ethical
Compliance

17



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 18

In this chapter, we discuss the ethical aspects of our research. We are in-
terested in (i) the ethical issues of AI particularly in relation to processing of
personal data, (ii) moral judgment and reasoning from the point of view of ethics
philosophy, and (iii) modeling and integrating of morality in AI.

Ethics is the study of what is right and wrong in human behavior and rea-
soning. It involves analyzing and proposing theories of ethics and morality, and
examines how individuals should act and why. Ethics is essential to guide human
behavior and influences how laws are formed and how society functions. Applied
ethics is a practical application of ethics in specific contexts such as bioethics,
environmental ethics, and AI ethics. For example, applied ethics might explore
the implications of conducting medical research on humans or the ethics of an-
imal rights. In case of AI, there are many guidelines that discuss the ethical
issues specific to AI. They discuss the risks that AI poses to fundamental val-
ues and principles. Guidelines are necessary for the ethical development and
deployment of AI systems. We explore these ethical guidelines and discuss the
values and principles that are at risk from AI. We particularly emphasize on
guidelines related to processing of personal data.

Normative Ethics is another branch of ethics that focuses on establishing
the standards for right and wrong behavior. It includes the study of ethical
theories such as utilitarianism, deontology, and virtue ethics. They propose
different criteria for evaluating morality of actions. These theories are essential
to understand moral judgment and reasoning. In addition, Computational ethics
is the field that studies modelling and the integration of moral reasoning in AI
agents. we explore this field and outline some of the challenges and general
approaches in designing ethical AI.

This chapter is organized as follows. In Section 2.1 we discuss the ethical
issues related to AI, particularly in relation to processing personal data. Section
2.2 presents the theories in normative ethics that are used for moral judgement
and reasoning. Finally, in Section 2.3, we explain computational ethics and the
challenges in the development of ethical AI.

2.1 Ethics of AI

The Ethics of Artificial Intelligence refers to moral considerations and implica-
tions in the development, deployment, and use of AI systems. As AI systems
increasingly perform tasks traditionally done by humans, including decision-
making in various contexts, ethical concerns about their impact on individuals
and society become crucial. The ethics of AI include a wide range of issues, from
individual rights and privacy to broader societal impacts and responsibilities.
Many AI ethics guidelines [117] that address these risks have been developed by
stakeholders, including governments, industry organizations, and research insti-
tutions. Guidelines ensure that AI systems are developed and used in a way
that is ethical, fair, transparent, accountable, and aligned with societal values
and human rights. We mention some of the important ethical issues of AI and
outline the principles that are at risk according to the guidelines[102, 117].



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 19

AI systems can be vulnerable to attacks and exploitation, posing risks to the
security and safety of individuals, such as adversarial attacks [42], data poisoning
[98], and model inversion [65]. The guidelines state that AI should never cause
foreseeable or unintentional harm [4, 80]. Harm is interpreted primarily as
discrimination [45], violation of privacy [45], or bodily harm [181, 4]. Moreover,
AI systems, particularly in the context of natural language processing [70] and
content generation [39], can be used to create and propagate misinformation and
manipulate public opinion, which endangers freedom and autonomy of users.

Furthermore, many AI algorithms, especially those based on deep learning
and neural networks, operate with limited transparency and explainability. This
can make it difficult to understand and trace the decisions made by AI algo-
rithms by human operators, raising concerns about accountability and trust.
Transparency is particularly important in applications that include data use,
human-AI interaction [50, 100, 4], automated decisions, and the purpose of
data use or the application of AI systems [110, 40]. In AI guidelines, trans-
parency is presented mainly as a way to minimize harm and improve AI [182,
45, 189] to emphasize its benefit for legal reasons [110], or to improve trust [100,
95].

Although many of the principles mentioned are interrelated, they are not the
only principles that are addressed in AI ethics guidelines [117]. Other values or
principles that are recommended to develop trustworthy AI are beneficence [35,
51, 171, 194], trust [66, 35], sustainability [16, 51], and dignity [20, 194, 85].

The specific domain of our research is the processing of personal data. Using
personal data may harm the privacy and harm of data subjects. In addition,
certain processing has the risk of being biased toward a certain group. Hence,
we explain the ethical issues related to privacy and bias in AI more specifically.

2.1.1 Privacy

AI algorithms such as deep learning often rely on large amounts of personal
data for training and inference. They can be used to collect personal data,
e.g. surveillance, or derive some personal data that are not authorized by data
subject, e.g. profiling. These potential risks of AI raise concerns about privacy
violations and data misuse. In AI ethics guidelines, privacy is often viewed as a
value to promote [45, 125], and as a right to be protected [50, 182, 62]. Privacy
concerns are also discussed in relation to data protection and data security [101,
80] and data security. Unauthorized access, data breaches, and inadequate data
protection measures can compromise individual privacy rights.

According to Ethics and Data Protection [97], published by the European
Commission, a processing operation may have higher ethical risks if it involves:

• Processing of ’special categories’ of personal data. They include, racial or
ethnic origin political opinions, religious or philosophical beliefs, genetic,
biometric or health data, sex life or sexual orientation;

• Processing of personal data concerning children, vulnerable people or peo-
ple who have not given their informed and explicit consent for processing;



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 20

• Complex processing operations and/or the processing of personal data on
a large scale and/or systematic monitoring of a publicly accessible area on
a large scale;

• Data processing techniques that are invasive e.g. surveillance, web crawl-
ing, profiling, that pose a risk to the rights and freedoms of research
participants, or techniques that are vulnerable to misuse; and

• Collecting data outside the EU or transferring personal data collected in
the EU to entities in non-EU countries.

In addition, this document discusses some of the measures to mitigate or
avoid ethical risks and achieve data protection by design. For example, Data
Minimization implies that data processing should involve only data that are
necessary and proportionate to achieve the specific task or purpose for which
they were collected (Article 5(1) GDPR). It applies not only to the amount of
personal data collected, but also to the extent to which they may be accessed,
further processed, and/or shared, the purposes for which they are used, and the
period for which they are kept. Another way to mitigate the ethical concerns
that arise from the use of personal data is to anonymize them so that they no
longer relate to identifiable persons. Anonymisation involves techniques that
can be used to convert personal data into anonymized data.

2.1.2 Fairness

AI algorithms, particularly those based on machine learning approaches, can
exhibit biases based on the data on which they are trained, leading to discrim-
inatory results. This can perpetuate or amplify existing societal biases and
inequalities, particularly in areas such as hiring, lending, and law enforcement.
The guidelines address concerns about algorithmic bias and discrimination, fo-
cusing on the need for diversity [62, 184], inclusion [15] and equality [15, 184]
and fairness in AI systems. Fairness is often associated with justice [50, 181,
100, 133] and the prevention or mitigation of unwanted bias [50, 133] and dis-
crimination [50, 45, 15, 62].

Fairness is a wide topic and applies to a variety of AI applications that
include algorithmic decision-making processes. Fairness also depends on the
context in which it is used. A significant area of application are the recom-
mender systems [118]. For example, consider a job recommendation system. A
fair system should not be biased toward any group of individuals, such as sex
or race, when proposing job opportunities. This view of fairness is based on
User Fairness, that implies, a fair recommender system for users should treat
different predefined groups of users or similar individual users fairly. Fairness
requirements in recommender systems are not limited to the user-side, i.e., users
who receive recommendations. another view over fairness is the item-side, i.e.
refers to the items to be ranked or recommended. This notion is called Item
Fairness, implying that a fair recommender system for items should treat dif-
ferent predefined groups of items or similar individual items fairly. The fairness



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 21

demands from user-side are usually about the quality of the recommendations
for them, while the fairness considerations from item-side usually focus on the
exposure opportunity of items in the ranking lists. Hence in our job recom-
mender example, the system is not also expected to be fair with respect to
different racial or gender groups, it should also be fair with regard to jobs that
are being recommended.

2.2 Normative Ethics

Normative ethics is a branch of ethical philosophy that investigates morally
right and wrong behavior and provides established ethical theories for ethical
reasoning and justifying moral choices. The 3 principal theories in normative
ethics that propose different criteria for what makes actions morally right or
wrong are Consequentialist Ethics, Deontology, and Virtue Ethics.

2.2.1 Consequentialist Ethics

Consequentialism is a class of normative ethical theories that states that the
consequences of an action are the ultimate basis for judgement about its right-
ness or wrongness. Thus, from a consequentialist point of view, a morally right
act is one that produces a good result. Consequentialists hold, in general, that
an act is right if and only if the act produces a greater balance of good over bad
than any available alternative. Different consequentialist theories differ in how
they define moral goods.

Hedonism, proposed by Bentham [22], claims that pleasure is the only in-
trinsic good and that pain is the only intrinsic bad. Hedonistic utilitarianism
holds that what matters is the aggregate happiness; the happiness of everyone.
According to this theory, all action should be directed toward achieving the
greatest total amount of happiness. Bentham believed that the value of a plea-
sure could be quantitatively understood and introduces a method of measuring
the value of pleasures and pains, via Hedonic Calculus. This method, calcu-
lates the value of pleasure or pain according to variables like intensity, duration,
uncertainty and remoteness. In contrast, John Stuart Mill [134], argue a qual-
itative approach. Mill proposed a hierarchy of pleasures, where higher quality
pleasure is more valued than lower quality pleasure.

Some contemporary utilitarians are concerned with maximizing the satis-
faction of preferences [31, 170, 88], hence preference utilitarianism. Preference
utilitarianism holds that an individual’s well-being depends on the level of sat-
isfaction of his or her informed self-regarding preferences. It involves promoting
actions that fulfill the preferences of those beings involved [170]. The concept of
preference utilitarianism was first proposed by John Harsanyi [89] and is mainly
advocated by concept and is more commonly associated with R. M. Hare, [88]
Peter Singer, [170] and Richard Brandt.[31]

Furthermore, many consequentialists deny that all values can be reduced to
any single ground, such as pleasure or desire satisfaction, so they instead adopt



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 22

Theory Promoted Value

Hedonism [22, 169, 134] Pleasure

Preference Utilitarianism [89] Satisfaction of Preference

Ideal Consequentialism [142] Pluralistic Values

Table 2.1: Promoted values in consequentialist theories

a pluralistic theory of value. Moore’s ideal utilitarianism [142], for example,
takes into account the values of beauty and truth (or knowledge) in addition to
pleasure.

2.2.2 Deontological Ethics

Deontology argues that the morality of an action is determined by whether
the action itself it complies with a set of duties or rules. The rightness or
wrongness of an action does not depend on its consequences, but on whether
it fulfills a duty. The outcomes or results of these actions are secondary to the
importance of following one’s moral duty. This principle contrasts sharply with
consequentialist theories, such as utilitarianism, which prioritize the outcomes of
actions in determining their moral worth. Deontological theories often adopt a
form of moral absolutism, arguing that certain moral principles should be obeyed
without exception. For example, if lying is wrong, deontological ethics would
hold that one should not lie, even if lying would bring about bad consequences.
For Kant and many deontologists, the moral value of an action is determined
by the agent’s intention and the good will behind it. Acting out of good will
means doing something because it is the duty and for no other reason. The
morality of an action, therefore, depends not on what happens as a result but
on the moral intention behind it. Deontological theories may vary according to
their foundational principles, the nature of the duties they emphasize, and the
sources of those duties.

Kantian Deontology [105] holds that morality is grounded in reason and that
certain categorical imperatives (universal moral laws) must be followed uncondi-
tionally. Kant’s most famous imperative, the Formula of Universal Law, states
that one should only act according to maxims that could be universally applied.
Essentially, one should only act in a way that one would want everyone else to
act in a similar situation. Another formulation of is the Formula of Humanity,
which mandates treating individuals as ends in themselves, not merely as means
to an end. This reflects a fundamental respect for the dignity of each person,
which should not be violated even if doing so would benefit others.

Ross, in contrast, proposes that there is a plurality of prima facie duties
that determine what is right [161]. Some duties originate from our own previous
actions, like the duty of fidelity (to keep promises and to tell the truth), and the
duty of reparation (to make amends for wrongful acts). The duty of gratitude
(to return the kindness received) arises from the actions of others. Other duties
include the duty of non-injury (not to hurt others), the duty of beneficence
(to promote the maximum of aggregate good), the duty of self-improvement



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 23

(to improve one’s own condition), and the duty of justice (to distribute benefits
and burdens equably). Ross argues that these duties are not absolute but prima
facie; they are binding unless they conflict with a stronger duty in a particular
situation. One problem the deontological pluralist has to face is that cases can
arise where the demands of one duty violate another duty, i.e. moral dilemmas.
Some deontologists believe in the Divine Command Theory, which states that
an action is right if God has commanded it to be right [192]. This type of
deontology bases moral duty on religious texts and beliefs, making it distinct in
that its moral laws are derived from a supernatural source.

2.2.3 Virtue Ethics

Virtue ethics, derived from the philosophical traditions of Aristotle and Plato, is
a moral theory that treats virtue and character as the primary subjects of ethics,
in contrast to rules (as in deontology) or consequences (as in consequentialism)
[173]. A virtue is a characteristic disposition to think, feel, and act well in some
domain of life [99]. Virtue ethics is concerned with the development of virtues
that should be embodied by people to live and act morally, such as courage,
temperance, wisdom, and justice. According to virtue ethics, ethical actions
cannot be separated from the character of the individual who performs them.

Virtue ethics often aims at the achievement of eudaimonia, translated as
flourishing or well-being. This concept is about living well and fulfilling one’s
potential. Aristotle proposes that living virtuously is necessary and central to
achieving eudaimonia, which is considered the highest good for humans. Addi-
tionally, Phronesis, or Practical Wisdom, is an important virtue in Aristotelian
ethics, which refers to the ability to make the right decision in complex sit-
uations. Practical wisdom aims at balancing different virtues in accordance
with the right reasons and the appropriate emotions. Unlike deontology and
consequentialism, virtue ethics is fundamentally agent-centered. It focuses on
what kind of person one should be, rather than exclusively on what actions one
should perform. Some modern versions of virtue ethics define virtues as traits
that tend to promote some other good that is defined independently of virtues,
thereby merging virtue ethics with consequentialist ethics [179].

2.2.4 Value Pluralism

In many cases, we refer to a set of values in order to discuss ethical issues. For
example, AI ethics guidelines refer to certain values such as privacy, fairness,
transparency, etc. that should be promoted and respected in the design and
development of AI systems (cf. Section 2.1). In this section, we discuss how
several values are incorporated into moral theories. The question about plural-
ism is whether different values are all reducible to one supervalue, or whether
they are several distinct values. Pluralists argue that there are really several
different irreducible values. Monism is the opposite view, which holds that there
is only one ultimate value. Moral theories can be pluralistic according to their
fundamental view of values. Consequentialists view values as what bring goods



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 24

in the world, such as friendship, knowledge, beauty, etc. Consequentialist the-
ories can be pluralist if they hold that there are many fundamental goods, e.g.
ideal utilitarianism. In contrast, monist utilitarians believe that there is only
one fundamental value and that is well-being or pleasure or happiness, as in
hedonism. They consider values such as friendship, knowledge, and so on as in-
strumental values that contribute to the foundational value. For deontologists,
morality is based fundamentally on moral principles. Pluralist deontological
theories presume that there are multiple fundamental principles. For example,
Ross’ theory is pluralist, as it presumes a plurality of prima facie duties. By
contrast, Kant was a monist, as he believed that there is one universal principle
from which all other principles are derived.

An issue in making a rational choice based on irreducibly plural values is
incommensurability [84, 43]. Incommensurability is the lack of a common unit
of value by which precise comparisons can be made [128, 43]. This implies
that values cannot be represented on a cardinal scale, which poses challenges
for normative theories. Especially utilitarian theories that aggregate values by
weighing and summing utilities. However, incommonsurability of values does
not imply that comparisons are impossible. Two items are ”incomparable”, if
there is no possible relation of comparison, such as ’better than’, or ’as good
as’ [43]. It is possible to say that one thing is better than the other, while it is
impossible to measure how much better it is.

2.3 Ethical AI

Ethical AI refers to AI systems that act and behave ethically. It is associated
with computational ethics that deals with the moral behaviors of Artificial Moral
Agents (AMAs). Computational ethics involves the design and implementation
of AI systems that can make ethical decisions. It is concerned with ensuring that
automated systems act in ways that are beneficial, fair and just [141]. Ethical
AI is distinguished from the ethics of AI, which involves the ethical principles,
rules, guidelines, policies, and regulations related to AI. Ethical AI focuses on
creating AI systems that inherently follow ethical principles, while ethics of AI
emphasizes the moral obligations of AI creators and the impacts of AI on society.
The distinction between the two concepts in interactions with AI, humanity and
society is shown in Table 2.2.

2.3.1 Artificial Moral Agency

Traditional ethical theories often presuppose certain capabilities, such as con-
sciousness, intentionality, and free will, which are disputed when applied to
machines. Moral agency involves the ability of an agent (an entity that can in-
stantiate intentional mental states capable of performing actions) to make free
choices, deliberate about what one should do, and understand and apply moral
rules correctly in paradigm cases [96]. AI systems, especially advanced ones
like autonomous vehicles, operate with a degree of autonomy in the sense that



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 25

Ethics of AI Ethical AI

AI
Principles of developing

AI to interact with
other AIs ethically

How AI should
interact with

other AIs ethically?

Human
Principles of developing AI
to interact with humans

ethically

How AI should
interact with

humans ethically?

Society
Principles of developing AI

to function ethically
in society

How AI should
operate ethically

in society?

Table 2.2: The distinction between Ethics of AI and Ethical AI [168]

they can perform tasks, make decisions, and respond to environments without
human intervention. However, this type of autonomy is largely constrained by
their programming and the parameters set by their developers.

Himma claims that moral agents need to have conscious and intentionality,
something that state-of-the-art systems do not seem to instantiate [96]. Sparrow
points out that while AI can be programmed to follow certain ethical guidelines
or make decisions based on predicted outcomes, these machines will never truly
”be ethical” because they lack the capacity for personal moral judgment and
the ability to understand or engage with ethical dilemmas genuinely [172].

In legal and ethical discussions, AI is generally not considered to have an
agency similar to that of humans. The lack of agency in AI has significant im-
plications for how responsibility and accountability are assigned in cases where
AI systems cause harm or operate unpredictably. Legal systems attribute lia-
bility and responsibility to the humans behind AI systems (developers, users,
and corporations) rather than to the AI systems themselves.

2.3.2 Classification of AMAs

Regardless of the debates on the possibility of artificial moral agents, a relevant
question is to what extent the moral decision-making process can be understood
and modeled or simulated by machines. Even the most complex artificial sys-
tems differ from human beings in important respects that are central to our
understanding of moral agency[137]. It is therefore common in machine ethics
to distinguish between different types of moral agents depending on how highly
developed their moral capacities are. Two well-known taxonomies of AMAs
have been proposed in the literature, Wallach and Moor [141].

Wallach and Allen introduce a framework for understanding the progression
from the current state of AI to sophisticated artificial moral agents[185]. This
framework considers two independent dimensions: autonomy and sensitivity to
values. Figure 2.1 illustrates the positions of various systems based on their
autonomy and ethical sensitivity:

• High Autonomy, Low Sensitivity: Systems such as autopilots op-
erate autonomously within specific domains, but lack ethical reasoning



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 26

Figure 2.1: Two dimensions of AMA development [185]

capabilities. These systems have significant autonomy, but limited ethi-
cal sensitivity. They are engineered to respect values such as safety and
passenger comfort, achieving these through precise monitoring and con-
trol mechanisms that limit their operational parameters to ensure ethical
outcomes.

• Low Autonomy, High Sensitivity: Systems such as ethical decision
support systems provide guidance based on ethical principles, but lack the
autonomy to act independently. These systems provide decision-makers
with access to morally relevant information, helping to make ethical deci-
sions without autonomous action. An example is MedEthEx [9], a medi-
cal ethics expert system that helps clinicians choose ethically appropriate
courses of action by analyzing specific cases through a series of questions.

The intersection of these dimensions illustrates the varying degrees of moral
capability that machines might possess, ranging from basic operational morality
to fully autonomous moral agents.

• Operational Morality: Operational morality refers to machines de-
signed with specific ethical considerations in mind, despite lacking auton-
omy or ethical sensitivity. An example provided is a gun with a childproof
safety mechanism. Such designs do not make ethical decisions but are
created with values that enhance safety and prevent harm.

• Functional Morality Between the basic operational morality and fully
realized moral agency, there lies a spectrum of functional morality. This
encompasses systems that may have significant autonomy but limited eth-
ical sensitivity, like autopilots, and those with minimal autonomy but en-
hanced capability to handle ethical considerations, like ethical decision
support systems.



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 27

The other taxonomy of AMAs in the machine ethics community is proposed
by Moor[141]. This taxonomy is based on the ethical impact and moral reason-
ing abilities of agents [141]. Different levels at which machines might function
as moral agents are mentioned, ranging from simple ethical impact agents to
sophisticated explicit and full ethical agents.

Ethical-Impact Agents

Machines as tools can impact ethical outcomes in significant ways. Moor ar-
gues that even without being fully ethical agents, machines as tools can have a
substantial ethical impact by replacing harmful human practices.

Implicit Ethical Agents

Moor explains that machines can be implicit ethical agents by being designed
to avoid unethical outcomes. This can be achieved not through an explicit
understanding of ethics, but through constraints and design features that pro-
mote ethical actions. For example, banking software that handles transactions
accurately and reliably can be seen to practice a form of ”implicit ethics.”

Explicit Ethical Agents

The concept of explicit ethical agents involves machines that can understand and
process ethical principles similar to how they handle other types of data. Moor
discusses the potential for machines to be programmed with complex ethical
reasoning models, such as those integrating deontic logic (rules of duty) and
epistemic logic (rules of knowledge).

Full Ethical Agents

Moor speculates on the possibility that machines become full ethical agents,
which would involve not only ethical reasoning abilities, but also traits typically
associated with human moral agents, such as consciousness and free will. He
acknowledges that this is a controversial and challenging idea as it touches on
deep philosophical questions about the nature of consciousness and morality.

2.3.3 Computational Ethics Challenges

According to Moor’s terminology, the primary objective in machine ethics is to
develop a machine that functions as an explicit ethical agent [6]. The complex
nature of ethics makes it challenging to clearly specify what a moral behavior is
and how it can be modeled computationally. James Gips proposed that creating
an ethical robot should be considered a major computing Grand Challenge [79].

The difficulties in machine ethics can be divided into two main categories,
namely philosophical and practical challenges [6]. The philosophical challenges
primarily concern the nature of ethics itself and whether it can be adequately



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 28

represented and processed by machines. Ethics involves subjective judgment,
cultural and situational nuances, and often a level of moral reasoning that might
require consciousness or emotions, qualities traditionally believed to be exclusive
to humans. On the practical side, the challenges relate to the actual implemen-
tation of ethical principles in AI systems.

Philosophical Challenges

The first issue in developing machine ethics is to know ”what constitutes a moral
behavior?”. In general, there is no consensus on what specifies moral behavior.
The existence of universally acceptable ethical standards is the subject of debate
between moral relativism and moral absolutism. Different cultures and societies
have different moral values, and even within a single culture, there are multiple
ethical theories (e.g., utilitarianism, deontology, virtue ethics) that can lead to
different conclusions about what is ethical. Creating systems that incorporate
this diversity and behave ethically in all cultural contexts is a significant chal-
lenge. In addition, the time-varying nature of values makes the development of
moral agents even more challenging. This requires systems to be adaptable and
update their ethical frameworks accordingly.

Ethics inherently involves judgments that are highly contextual and need
to be interpreted in complex, often ambiguous situations. This subjectivity
makes it challenging to create a set of fixed rules that can guide AI behavior
in all possible scenarios. Even if such rules exist, automatic systems might
encounter situations that were not anticipated by their designers, requiring them
to make decisions without clear ethical guidelines. Moreover, different ethical
frameworks can provide conflicting guidance in the same situation that leads
to ethical dilemmas. Balancing these conflicts in a computational model is
challenging. Sparrow, for example, argues that due to the deeply personal and
contextual nature of ethics and its ties to the life history and moral character
of individuals, ethics cannot be built into AI through programming or learning
from ethical data [172].

Practical Challenges

Formalizing abstract ethical principles into concrete computational algorithms
is a major challenge. This involves defining ethical principles in a way that
can be quantified and understood by machines. James H. Moor explores the
complex relationship between ethical decision-making and computational meth-
ods [140]. He evaluates past attempts by philosophers like Jeremy Bentham to
calculate ethical decisions based on utilitarian principles. Moor suggests that,
while certain aspects of ethical decision making might be computable, the com-
plexity of human values and the contextual nuances of ethical situations pose
significant obstacles.

In addition, when it comes to moral behavior, the process of making a cer-
tain decision is as important as the decision itself. This implies that the un-
derlying decision-making process must be transparent and understandable to



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 29

humans. Many advanced AI models operate as ”black boxes” where their inter-
nal decision-making processes are not transparent or fully interpretable. This
lack of transparency makes it difficult to understand and trust their ethical de-
cisions. This is even more crucial when it comes to the development of ethical
decision processes. Ensuring that AI systems can explain their ethical decisions
in a way that humans can understand is crucial for accountability and trust.
This poses a further challenge for moral machine development.

2.3.4 Implementation Approaches

There are several approaches to developing explicit ethical agents. These ap-
proaches vary depending on the domain to which they are applied and the chal-
lenges they address. Wallach et al. [186] propose a widely used categorization of
approaches in machine ethics. They distinguish three types of implementation
approaches, namely bottom-up, top-down, and hybrid.

Bottom-up

Bottom-up approaches focus on building systems that achieve specified goals or
standards through experiential learning from samples. These systems do not
rely on any ethical theory but can develop moral capacities through learning
with their environment. Bottom-up systems can adapt to new and unforeseen
situations, potentially developing sophisticated behaviors through continuous
learning. This approach mirrors the way humans learn and refine moral behavior
through experience. Some AI methods relevant to this approach are genetic
algorithms, neural networks, and reinforcement learning. A shortcoming of this
approach is that the decision process is often a ”black box”, i.e. not explainable
for humans. as a result, there is a risk that the machine learns the wrong rules.
Another difficulty is the lack of reasoning capacity to handle complex moral
decisions.

Top-down

Top-down methods, which are also adopted in this thesis, involve the explicit
implementation of ethical theories such as utilitarianism and deontology in AI
systems. This approach relies on specific moral rules or principles for ethi-
cal evaluation and solving dilemmas. Top-down approaches rely on structured
frameworks for moral reasoning. One of the significant issues is the inherent
complexity and often conflicting nature of ethical rules. Implementing these
rules in a way that allows for decision-making in diverse contexts is challenging.

Hybrid

A hybrid approach that combines elements of both top-down and bottom-up
methodologies. Effective AI systems should be able to evaluate actions using
top-down principles, while also being able to adapt and learn from bottom-up



CHAPTER 2. STATE OF THE ART: ETHICAL COMPLIANCE 30

experiences. In certain cases, this approach is necessary to cover all requirements
of machine ethics.

2.4 Conclusions

In this section, we discuss the ethical aspects of our research objective. We
briefly mentioned some of the ethical issues applied to AI according to AI guide-
lines. We discussed privacy and fairness concerns with regard to the processing
of personal data. In addition, we explained moral theories for ethical judgments
that are studied in normative ethics. These theories are essential in understand-
ing moral reasoning. We then explored moral decision making or the ability to
act morally from the point of view of an AI agent. We described some of the
challenges, taxonomies, and approaches in computational ethics. our aim in this
thesis is to develop an explicit agent capable of moral reasoning. We are inter-
ested in approaches top-down based on logical reasoning. We adopt ideas in
normative ethics, in particular utiltarianist theories, to design a framework for
moral evaluation in Chapter 5. We adopt a pluralistic view, use AI guidelines to
represent values, and compare alternatives. This framework is demonstrated in
comparing several processing on personal data that concern privacy and fairness.



Chapter 3

State of the Art: Modeling
Tools

31



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 32

In this chapter, we describe the tools and methods that we adopted in our
research. As mentioned earlier, we are interested in approaches based on log-
ical reasoning. We represent and model our problem in logic programming.
Throughout the research, we used ASP and Prolog as knowledge representation
and reasoning tools. In addition, we used logical frameworks for planning and
modeling agents of action. Aggregation methods are discussed in a wide variety
of areas with different approaches and applications. In our research, we are in-
terested in approaches for aggregating orders or preference relations. A suitable
candidate that we adopted is voting systems.

We describe logic programming in Section 3.1, and discuss two well-known
paradigms, namely Prolog and ASP. In Section 3.2 we explain the planning
methods adopted in our research; Event Calculus and Hierarchical Task Network
(HTN). Finally, Section 3.3, presents a brief overview of voting systems and their
properties.

3.1 Logic programming

Logic programming is a programming paradigm based on formal logic, partic-
ularly first-order logic. In logic programming, programs are written as a set
of logical statements, and computation is performed through logical inference.
This approach allows for a high level of abstraction, making it suitable for prob-
lems involving complex relationships, rules, and symbolic reasoning.

Logic programming has a wide variety of applications across different do-
mains, including Artificial Intelligence, database systems, and theorem proving.
Specifically in Artificial Intelligence, logic programming is used for knowledge
representation, reasoning, natural language processing, and expert systems. Due
to the declarative nature, logic programming languages are highly expressive for
problems involving complex relationships, rules, and facilitate reasoning about
the program and proving properties about it. The major logic programming
languages include Prolog and Answer Set Programming (ASP).

3.1.1 Prolog

Prolog was one of the first logic programming languages with its roots in first-
order logic. It was developed and implemented in Marseille, France, in 1972 by
Alain Colmerauer with Philippe Roussel, based on Robert Kowalski’s procedural
interpretation of Horn clauses [112]. The name originates from programmation
en logique, French for programming in logic. In this section, we briefly introduce
the basic concepts of programming in Prolog. A more detailed introduction to
Prolog can be found in [47, 32]

Terms Syntactically, all data objects in Prolog are terms. They are induc-
tively defined. A term is of one of the following forms:

• A variable in Prolog is a string of letters, digits, and underscores _, be-
ginning either with an uppercase letter or with an underscore. As in



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 33

first-order logic, they are logic variables that are placeholders for arbi-
trary terms. The occurrences of the name of an ordinary variable stand
for the same variable within one clause.

• An atom is a symbol name that starts with a lowercase letter or guarded
by quotes and is used to denote predicates. After the initial lowercase
letter, they can include digits and the underscore char _.

• A number. Fractional numbers use . as decimal point. Supported sizes
and precisions depend on the Prolog system. Most of the major Prolog
systems support arbitrary length integer numbers.

• A compound term has the form a(t1, . . . , tn), where a is an atom called
functor name, and t1, . . . , tn are the comma-separated list of argument
terms, which are enclosed in parentheses. The number of arguments is
called the term’s arity. It is greater than or equal to 1, as in the case
of n = 0 the compound term, collapses to the atom a. The functor
of the compound term of arity n is denoted as a/n. Lists and Strings
are special cases of compound terms; A List is an ordered collection of
terms. It is denoted by square brackets with the terms separated by
commas, or in the case of the empty list, by []. A string is a sequence
of characters surrounded by quotes, that is equivalent to either a list of
(numeric) character codes, a list of characters (atoms of length 1), or an
atom.

Clauses A Prolog program consists of a finite set of definite clauses. Rela-
tions are defined by means of clauses in Prolog programs. A definite clause is
characterized by a single element in the positive head. A clause can be either a
rule or a fact. A rule in Prolog is of the following form:

1 Head :- Body.

That is read as ”Head is true if Body is true”. Head is a predicate, that is,
just p in the case of a predicate with zero arguments or p(t1,...,tn) in the
case of a predicate with a functor of p/n. The Body of a rule consists of calls to
predicates, which are called the goals of the rule. It may contain the built-in
logical operator ,/2 that denotes the conjunction of goals and ;/2 that denotes
the disjunction. Conjunctions and disjunctions can only appear in the body,
not in the head of a rule. The full stop . denotes the end of the clause.

A clause whose body is known to be always true is called a fact. In this case,
the body of the clause is empty, and it is written as follows:

1 Head.

The collection of clauses with the same name and arity in the head defines a
predicate that is denoted by name/arity. A logic program is a set of predicates.
From a syntactical point of view, a predicate is just a term, either an atom in
the case of zero arguments or a compound term.

In addition to facts and rules, Prolog programs can also contain directives.
A directive is a rule with an empty Head, i.e., it is of the following form:



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 34

1 :- Body.

Backtracking The execution of a Prolog program begins when a single goal,
known as the query, is posted. Prolog uses backtracking to find all possible
solutions to a query. If a path of reasoning fails, Prolog will backtrack to the
previous decision point and try another path. From a logical perspective, the
Prolog engine attempts to find a resolution refutation of the negated query.
The resolution method used by Prolog is called SLD resolution [68]. If the
negated query can be refuted, then the query with the correct variable bindings
is a logical consequence of the program. In that case, all generated variable
bindings are reported to the user, and the query is said to have succeeded.

Negation The built-in Prolog predicate \+/1 provides negation as failure,
which allows for non-monotonic reasoning. In order to deal with negation as
failure, Prolog uses the SLDNF resolution [11] which is an extension of SLD.
The goal \+ illegal(X) in the rule

1 legal(X) :- \+ illegal(X).

is evaluated as follows: Prolog attempts to prove illegal(X). If a proof for
that goal can be found, the original goal (that is, \+ illegal(X)) fails. If no
proof can be found, the original goal succeeds. Therefore, the \+/1 prefix oper-
ator is called the ”not provable” operator, since the query ?- \+ Goal. succeeds
if the Goal is not provable. This kind of negation is sound if its argument is
”ground” (i.e., contains no variables). Soundness is lost if the argument con-
tains variables and the proof procedure is complete. In particular, the query
?- legal(X). now cannot be used to enumerate all things that are legal.

Currently, there are many implementations of the programming language
Prolog [156]. A well-known Prolog system is SWI-Prolog [191], which is com-
monly used for knowledge representation, reasoning, and semantic web applica-
tions. Prolog has many applications in solving AI-related problems, particularly
problems requiring symbolic representation and manipulation. It has been used
for theorem proof [174], expert systems[132], and automated planning [165], as
well as natural language processing[154, 114].

3.1.2 Answer Set Programming

Answer set programming (ASP) [119, 18, 75, 71] is a form of declarative pro-
gramming that is used to solve complex combinatorial search problems. It is
rooted in logic programming and non-monotonic reasoning, and it is particu-
larly useful in knowledge-intensive applications and problems where the solution
space needs to be explored systematically. ASP relies on the semantics of the
stable model (answer set) of logic programming [76], which is used to examine
the negation as failure. In ASP, search problems are reduced to computing sta-
ble models, and answer set solvers, which are designed to generate these stable



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 35

models, are used to perform the search.

We define the semantics of an answer set based on Gelfond [74] A rule of
Answer Set Programming is a clause of the form

l0 or . . . orlk ← lk+1, . . . , lm, not lm+1, . . . , not ln, (3.1)

where li’s are literals. A literal is an atom p or its negation ¬p. An atom is
an expression of the form p(t1, . . . , th) and all ti are terms composed of function
symbols and variables.

ASP formalism contains two negations that need to be distinguished: a
classical negation noted ¬ and a negation by failure or default negation noted
not. ¬p means that it can be proven that p is false and not p means that
p cannot be proven to be true in the absence of sufficient information. non-
monotonic properties are mainly due to this ”negation as failure” connector.
Literals possibly preceded by not are called extended literals. The literal p
extended counterpart ¬p is called the contrary. or is the other connector in
the formalism, which is called epistemic disjunction and is different from the
classical disjunction ∨. A formula A ∨ B of classical logic says that A is true
or B is true while a rule A or B, can be interpreted epistemically, which means
that every possible set of reasoners’ beliefs must satisfy A or satisfy B.

If r is a rule of type 3.1 then

• head(r) = l0, . . . , lk

• pos(r) = lk+1, . . . , lm

• neg(r) = lm+1, . . . , ln

• body(r) = lk+1, . . . , lm, notlm+1, . . . , notln

If head(r) = ∅ rule r is called a constraint that is used to eliminate unde-
sirable solutions by specifying conditions that must not hold. a constraint is
written as

← lk+1, . . . , lm, notlm+1, . . . , notln. (3.2)

A rule r such that body(r) = ∅ is called a fact and is written as

l0 or . . . or lk. (3.3)

Definition An ASP program is a pair {σ,Π} where σ is a signature and Π is
a collection of logic programming rules over σ.

To introduce the semantics of the Answer Set Programs, we need the follow-
ing terminology. The terms, literals, and rules of the program Π with signature
σ are called ground if they contain no variables and no symbols for arithmetic
functions. A program is called ground if all its rules are ground.



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 36

Consistent sets of ground literals on σ, containing all arithmetic literals that
are true under the standard interpretation of their symbols, are called partial
interpretations of σ. A literal l is true in a partial interpretation S if l ∈ S; l is
false in S if ¬ l ∈ S; otherwise l is unknown in S. An extended literal not l is
true in S if l ∈ S; otherwise, it is false in S.

The semantics of the answer sets of a logic program Π assigns to Π a col-
lection of answer sets that are partial interpretations of σ(Π) corresponding to
possible sets of beliefs which can be built by a reasoner on the basis of rules of
Π. The precise definition of answer sets will be first given for programs whose
rules do not contain default negation, i.e. Π+ = {r ∈ Π|neg(r) = ∅}.

Definition (Answer set of positive programs) A partial interpretation S
of σ(Π+) is an answer set for Π+ if S is minimal (in the sense of a set-theoretic
inclusion) among the partial interpretations satisfying the rules of Π+.

To extend the definition of answer sets to arbitrary programs, take any
program Π , and let S be a partial interpretation of σ(Π). The reduct, ΠS ,
of Π relative to S is the set of rules head(r)← pos(r) or for all rules in Π such
that neg(r) ∩ S = ∅. Thus, ΠS is a program without default negation.

Definition (Answer set) A partial interpretation S of σ(Π) is an answer set
for Π if S is an answer set for ΠS .

ASP formalism has clear semantics with well-defined mathematical meaning,
and there exist solvers that automate the computation of Answer Sets. ASP
solvers compute all stable models for a given program in two steps. In the first
step, the program variables are grounded, that is, they are instantiated by the
terms in the program. Through the second step, a ”sat” solver generates all
the interpretations that satisfy the instantiated rules. The ”sat” problem, that
is, the computation of all the interpretations that satisfy a given proposition
formula, is known to be an NP-complete problem. Clingo [104, 73] is a well-
known ASP solver that combines ”Clasp” [72] (the solver) and ”Gringo” (the
grounder). Clasp is an answer set solver for (extended) normal and disjunctive
logic programs. It combines the high-level modeling capacities of ASP with
state-of-the-art techniques from the area of Boolean constraint solving. Gringo is
a grounder that, given an input program with first-order variables, computes an
equivalent ground (variable-free) program. Its output can be further processed
with Clasp. ASP has a variety of applications that include decision support
systems for the space shuttle [146], metabolic network completion [67], and
train scheduling [1]. Moreover, it enables the formalization of ethical theories
and the verification of the validity of various statements in different scenarios
for each theory[69].



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 37

3.2 Planning

Planning in AI involves the process of creating a sequence of actions or steps
to achieve a specific goal or a set of objectives. AI planning is crucial for
developing intelligent systems that can operate automatically, adapt to changes,
and complete complex objectives in a structured manner. Planning has a wide
variety of applications that include: Managing resources in health care, self-
driving cars, optimizing routes and resource allocations in logistics, Navigating
environments in robotics.

There are different planning methods that are used to model states and ac-
tions. Each action has preconditions (conditions that must be true before the
action can be executed) and effects (the outcome or result of the action). Ac-
tions transform the state of the world from one state to another. A plan is a
sequence of actions that leads from the initial state to the goal state. There
are various types of planning, including classical, probabilistic, etc. The classi-
cal planning which we adopted in this thesis assumes a deterministic and fully
observable environment, using algorithms such as STRIPS (Stanford Research
Institute Problem Solver)[64] and GraphPlan[24]. Probabilistic planning deals
with uncertainty in actions and outcomes, often using Markov Decision Pro-
cesses (MDPs).

Planning, particularly used in computational ethics to model consequential-
ist and deontologist theories. In this section, we will present two planning for-
malisms, namely Event Calculus (EC) and Hierarchical Task Network (HTN).
The former is a well-known classical formalism, and the latter is a rather dif-
ferent planning paradigm based on decomposing complex tasks into simpler
subtasks.

3.2.1 Event Calculus

Event calculus is a formal language to represent and reason about events and
their effects over time. The original version of the event calculus, introduced
by Robert Kowalski and Marek Sergot in 1986,[113] was formulated as a logic
program and designed to represent narratives and database updates [111]. The
Event Calculus has been reformulated in various logic programming forms [135]
[54, 103, 163] in classical logic [166, 136], in modal logic [41, 46] and as an
”action description language” [103]. It has been extended and applied in many
contexts, including planning, cognitive robotics, abductive reasoning, and legal
reasoning [135].

The logical mechanism of the event calculus is summarized in simple terms
by Shanahan [167] in Figure 3.1. This mechanism can infer what is true when
given what happens when and what actions do. The part ’what happens when’
is a narrative of events, and the part ’what actions do’ describes the effects of
actions.

Figure 3.1 illustrates how event calculus can provide a logical foundation for
a number of reasoning tasks. These can generally be categorized into deductive



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 38

Figure 3.1: How the event calculus works [167]

tasks, abductive tasks, and inductive tasks.

• In a deductive task, the narrative of events and the effects of actions are
given, and we seek to find out what is true at a particular point in time.
In other words, “what happens when” and “what actions do” are given
and “what’s true when” is required. Deductive tasks include temporal
projection or prediction, where we seek to find out the outcome of a known
sequence of actions.

• Abduction is used to determine a sequence or narrative of events that need
to occur, given the effects of actions and a set of fluents that hold at a
specified point in time. This implies that ”what actions do” and ”what’s
true when” are supplied, and ”what happens when” is required, i.e. a
sequence of actions is sought that leads to a given outcome. Examples of
such tasks include temporal explanation, certain types of diagnosis, and
planning.

• Induction aims to derive the effects of actions from a given narrative of
events and information about the fluents that hold at different points of
time. In other words, in an inductive task, “what’s true when” and “what
happens when” are supplied, but “what actions do” is required. In this
case, we seek a set of general rules or a theory of the effects of actions
that explains observed data. Inductive tasks include scientific discovery,
learning, and theory formation.

The Frame Problem In Event Calculus terms, the frame problem [34, 129]
is the problem of expressing that in most cases a given action will not initiate
or terminate a given fluent. The event calculus solves the frame problem by
using a non-monotonic logic, such as first-order logic with circumscription [166]
or, as a logic program, in Horn clause logic with negation as failure [113]. Cir-
cumscription allows us to assume by default that the events known to occur are
the only events that occur. That is, there are no unexpected events. Circum-
scription is one of the several semantics that can be given to negation as failure
[77] and coincides closely with the stable model semantics [116]. Thus, event
calculus can be reformulated in the first-order stable model semantics that is



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 39

the mathematical basis of Answer Set Programming (ASP) [109, 116]. The ASP
formalization allows efficient answer set solvers to be applied to event calculus
reasoning.

Several versions of event calculus have been developed so far to deal with
specific problems. These extensions have been used to formalize the conditional
effects of events, nondeterministic events, concurrent events, events with delayed
effects, gradual changes, events with duration, triggered events, events with
indirect effects, continuous change, and the common sense law of inertia, [144,
135, 143]. In this work, we use a specific variant of the event calculus formulated
in ASP and adapted for planning tasks.

Axioms We use a simplified version of the event calculus, introduced in [23].
This version of Event Calculus relies on a formal representation of events and
states on a discrete set of time points. The time is represented in an explicit
linear form that associates states and events when a change happens in the
world. The axioms of the event calculus are presented below.

The transition between states occurs through events that take place at time
T . A state is characterized by fluents that hold or not, depending on the occur-
rences of events. An event may initiate a certain fluent or terminate it. In the
latter case, the fluent is marked as a negative effect. In addition, these events
depend on preconditions that must be met for the event to occur.

1 negative(neg(F)) :- effect(E,neg(F)).

2 initiates(E,F,T) :- effect(E,F), occurs(E,T), not negative(F).

3 terminates(E,F,T) :- effect(E,neg(F)), occurs(E,T),time(T).

4 clipped(F,T) :- terminates(E,F,T).

5

6 :- occurs(E,T), prec(F,E), not holds(F,T), act(E), time(T).

A fluent holds at T if it was initiated by an event occurrence at T − 1. This
is indicated by the predicate hold/2.. A fluent that is true at T continues to
hold until the occurrence of an event terminates it. These rules implicitly imply
the common sense law of inertia which states that a fluent holds at a time T , if
an event occurs and initiates it at an earlier time T − 1 and there is no other
event that occurs and terminates it at the time T − 1.

1 holds(F,0) :- initially(F).

2 holds(F,T) :- initiates(E,F,T-1), time(T).

3 holds(F,T) :- holds(F,T-1), not clipped(F,T-1), time(T).

In order to use the ASP formulation of event calculus for abductive reasoning
i.e. planning, we use the following rules.

1 0 {occurs(E, T):act(E)} 1 :- act(E), time(T),T<maxtime.

The choice rule 0 {occurs(E, T)} 1 :- act(E), time(T),T<maxtime. is used
to exempt the occurs/2 predicate from minimization in ASP, this is the generator
part that we use to solve a planning problem. Choice rules describe a set of
”potential solutions,” i.e. a simple superset of the set of solutions to the given
search problem.



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 40

3.2.2 Hierarchical Task Network

Hierarchical Task Network (HTN) planning is an approach to automated plan-
ning that decomposes complex tasks into simpler and more manageable subtasks
[145]. The objective of an HTN planner is to produce a sequence of actions that
perform some activity or task. The description of a planning domain in HTN
usually includes a set of tasks and a set of decomposition rules. The decom-
position rules specify how a task can be broken down into a set of subtasks.
An example of HTN planning is the travel problem [17]. Consider the plan-
ning problem of arranging travel, in which one has to arrange accommodation
and various forms of transportation. This problem can be viewed as a simple
HTN planning problem, in which there is a single task, ”arrange travel”, which
can be decomposed into arranging transportation, accommodations, and local
transportation. Each of these more specific tasks can successively be decom-
posed on the basis of alternative modes of transportation and accommodations,
eventually reducing to actions that can be really executed.

In this thesis, we use a special version of HTN called Dynagent [92], an on-
line forward-chaining total-order HTN planning algorithm. Similarly to other
planners, on task decomposition; however, Dynagent is an online planning algo-
rithm, which means it supports planning, execution, and replanning. The online
total-order forward chaining HTN planning Dynagent is formulated in Prolog.
Here, we briefly describe the components of this planner.

Definition. Fluents are used to represent the states. A fluent is an atom
of the form: P (T1, . . . , Tn) where n ≥ 0, P is a n − ary predicate, and each
Ti(1 ≤ i ≤ n) is a term.

Definition. A belief rule is of the following form: belief(F, [F1, . . . , Fn]) where
n ≥ 0, F is a derived fluent called the head, each Fi(1 ≤ i ≤ n) is a fluent, and
the set of fluents F1, . . . , Fn is called the body. When n > 0, F is a derived
fluent. When n = 0, the belief rule belief(F, [ ]) can be expressed as belief(F )
and F is called a fact. A dynamic fluent F is denoted by dy(F ). A dynamic
fluent can be asserted or retracted from the belief set while performing an action
or after an observation.

Definition. A task is a predicate of the form: T (X1, . . . , Xn) where n ≥ 0, T
is an n−ary task symbol, and each Xi(1 ≤ i ≤ n) is a term. When T is a 0−ary
task symbol, the task T () can be abbreviated to T . A task is either abstract
or primitive. The cost C of the task T , where C is a number (real number or
integer), is represented as cost(T,C). A plan is a list of tasks: [T1, . . . , Tn] where
n ≥ 0 and each Ti(1 ≤ i ≤ n) is a task, which is called the i− th action of the
plan. The cost of the plan [T1, . . . , Tn] is the sum of each cost of Ti(1 ≤ i ≤ n).

Definition. Action rules are used to represent the effect of an action. An
action rule is of the following form: action(A,C,E), where A is an action, C is



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 41

Figure 3.2: Task decomposition

a list of fluents called preconditions, E is a list of effects, an effect is of the form
initiates(F ) or terminates(F ), where F is a fluent.

Definition. Task-decomposition Rule represents the method to decompose a
task into subtasks. A task-decomposition rule is of the following form: htn(H,C,B)
where H is an abstract task called the head, C is a list of fluents called precon-
ditions, and B is a plan called the body.

Definition. A planning domain is composed of a set of beliefs and planning
knowledge. The belief set represents the current state of the world and the
knowledge of planning represents the effects of actions and the methods to
decompose tasks into subtasks. A belief set is the pair ⟨D,S⟩ where D is a
set of dynamic fluents, and S is a set of belief rules. Planning knowledge is
represented by the tuple ⟨AR, TDR,COST ⟩ where AR is a set of action rules,
TDR is a set of task-decomposition rules and COST is a set of the costs of each
task.

Here, we briefly describe the process used for planning in the online HTN
planner. More detailed explanations can be found in [91, 92].

Planning Process

Given a specification of a planning domain, the planner recursively decomposes
the abstract tasks into primitive subtasks before execution. The HTN planning
algorithm is forward-chaining and the task decomposition is conducted in the
same order as task execution. As shown in Figure 3.2, when taskA is decom-
posed into a plan, all previous tasks before taskA are already decomposed into
primitive subtasks. The preconditions (precond2 and precond3 ) of the task de-
composition, which are added to the preconditions of the first subtask (taskA1),
must be satisfied before task execution.

The HTN planning search space is an or-search tree of plans; it means that
a task can be decomposed to multiple plans. For example, in Figure 3.3, the



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 42

Figure 3.3: Multiple subplans

Figure 3.4: Switching to an alternative plan

task t3 in a plan is decomposed into three subplans [a1, a2, a3, a4], [b1, b2], and
[c1].

Replanning Process

In the Dynagent planning algorithm, each dynamic precondition (a dynamic
fluent) of a task in a plan is recorded. These preconditions serve as a protected
link that must be true before the execution of the task. When a dynamic belief
is updated and the protected link no longer holds, the corresponding plan is
removed from the frontiers of the or-search tree. The planner then switches the
current plan to the plan with the next-lowest cost and continues the best-first
search using the frontiers of valid plans. This is illustrated in Figure 3.4.

After a dynamic belief update, if a protected link, which was previously
false, becomes true, the corresponding plan becomes valid and is asserted to the
frontiers of the search tree. Since frontier plans are always ordered, if the new
plan has the lowest cost, the planner switches to the new plan and continues
the best-first search. A similar switching process occurs when an action cost is
updated. In this case, the plan’s overall costs are evaluated in the frontiers and
reordered in ascending order.

During execution of an action, the planner maintains all alternative plans
and updates them in case they become more optimal. As shown in Figure 3.5,
if an action is executed successfully, it will be removed from all the plans with
that action in the beginning. If the execution fails, the plans that begin with
that action are discarded. This is shown in Figure 3.6. In this case, the planning
agent stops the execution of the plan and restarts the best-first search using the



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 43

Figure 3.5: Plan update after action execution

Figure 3.6: Replan after action failure

valid plans on the frontiers until it finds an optimal plan.

3.3 Voting Systems

Aggregation of several measurements or orders is the subject of research in many
fields of AI, such as Multi-Criteria Decision Making(MCDM). These approaches
are used to analyze and solve decision problems that involve multiple criteria
[83, 12]. MCDM methods propose a way to combine the evaluation of criteria
over alternatives. Alternatives can be evaluated in several ways, for example,
pairwise comparison of alternatives [38], approval voting [28], ordinal ranking
of alternatives [107], and classification of alternatives [153, 195].

Voting systems are ways of aggregating several preference orders into a single
collective preference. They are used in conflict resolution, policy making, and
reaching a collective decision in elections or contests. Alternative methodological
techniques exist to address these issues, such as conflict analysis methods [108],
group decision support systems [2], and multi-criteria decision analysis [164].
The procedures used to aggregate the preference orders are called voting rules.



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 44

The preference orders may represent different things depending on the domain
in which they are used. In social choice theory, they represent the votes or
individual preferences of the voters. In MCDM, they represent the preference
order based on the criteria.

Voting rules are justified by an intuitive rationale and their properties are
well studied in the social choice theory. Due to well-defined and expressive
aggregators, voting rules are also applied in computational ethics problems,
for example, in conflict resolution and judgment aggregation [57], moral uncer-
tainty[127, 147], and solving dilemmas based on individual votes [36]. Here, we
present a brief review of voting systems and their properties. More details can
be found in [123, 30, 29].

A common voting rule is the plurality system, in which the winner is the
candidate with the highest number of votes. The plurality runoff is similar, with
the additional condition that the winner must be supported by more than half
of the voters. If no candidate satisfies this condition, the two candidates with
the highest number of votes proceed to the next round, and the plurality rule is
applied again. Borda’s rule is based on the points assigned to the alternatives
according to the rank they obtain in individual preference orderings. Given k
alternatives; the lowest rank gets 0 points, next to the lowest 1 point, the next
2 points, and the highest rank k− 1 points. The motivation behind the Borda’s
rule is to elect the alternative which on the average is positioned higher in the
individual rankings than any other alternative.

The mentioned methods are positional rules, i.e. the candidates get some
points based on the position in individual ranking. The aim is to choose a
candidate that is better positioned in the voters’ preferences, in some specific
sense, than other candidates. Another intuitive way to determine the winner is
by pairwise comparison, meaning that voters vote for their candidate in every
pair that can be formed.There are several voting methods that are based on such
pairwise comparisons of decision alternatives. They differ in how the winner is
determined once the pairwise votes have been taken. A common property of
most pairwise systems is the Condorcet winner, that is, they elect the candidate
that beats every other candidate in pairwise voting, when such a candidate
exists.

Examples of pairwise systems are Copeland’s rule, Dodgson’s method, and
the max-min method. Copeland’s rule is based on all (k − 1)/2 majority com-
parisons of alternatives. For each comparison, the winning candidate receives 1
point and the non-winning one 0 points. The Copeland score of a candidate is
the sum of his points in all pairwise comparisons. The winner is the candidate
with the highest Copeland score. Dodgson’s method aims to elect a Condorcet
winner when one exists. Since this is not always the case, the method looks
for the candidate that is closest to a Condorcet winner, in the sense that the
number of pairwise preference changes needed for the candidate to become a
Condorcet winner is smaller than the changes needed to make any other can-
didate a winner. The Max-Min method determines the minimum support of
a candidate in all pairwise comparisons, i.e. the number of votes he receives
when confronted with his toughest competitor. The candidate with the largest



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 45

Voting
Rules

Condocet
winner

Condocet
loser

Monotonicity Pareto Consistency

Plurality No No Yes Yes Yes
Plurality
run-off

No Yes No Yes No

Borda No Yes No No No
Copeland’s

rule
Yes Yes Yes Yes No

Dodgson’s
rule

Yes Yes Yes Yes No

Max-min
rule

Yes Yes Yes Yes No

Table 3.1: Properties of voting systems [148]

minimum support is the max-min winner.

3.3.1 Properties

As mentioned previously, an important property in voting systems is the Con-
dorcet winner. Lack of this property may cause non-transitive or cyclic pref-
erence orders, which is the case in the plurality rule. Another property is the
Condorcet loser. It requires that an eventual Condorcet loser be excluded from
the choice set. This property is generally accepted as a plausible constraint
on social choices. A compelling property that can be found in the literature is
monotonicity. This property implies that additional support should never hurt
the chances of a candidate getting elected. Pareto efficiency is another impor-
tant property in voting systems. It states that if every voter strictly prefers the
alternative A to the alternative B, then B is not the collective choice. Another
desirable property is consistency. It concerns choices made by subsets of vot-
ers. This means that if the subgroups elect the same alternatives, then these
alternatives should also be chosen by the group at large. Despite its intuitive
plausibility, consistency is not common among voting systems. The properties
of each voting rule are summarized in Table 3.1.

3.4 Conclusions

The objective of this chapter was to discuss the technical methods used in
research. For this purpose, we introduce Prolog and ASP as logic programming
tools. Then the planning formalism used for modeling the agents’ plans is
explained. Finally, voting systems as an aggregation approach. Voting systems
were only briefly introduced. In this thesis, we only made use of Copeland’s rule
as an aggregator in Chapter 5. Our contribution showed that voting systems
the underlying expressivity and intuition of voting rules make them a suitable



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 46

candidate for aggregation problems in ethical evaluations. Further investigation
of voting rules remains a future work.



Part II

Contributions

47



CHAPTER 3. STATE OF THE ART: MODELING TOOLS 48

In this part, we present the contributions in this thesis. Our research problem
concerns the legal and ethical compliance of AI agents’ actions. We first inves-
tigated this problem from the point of view of legal compliance. We proposed
a framework for planning based on event calculus and GDPR compliance check
in Chapter 4. The ethical aspect of our research problem was then explored. In
this part, our initial assumption was that legal constraint act as permissibility
criteria and ethical constraints as optimization criteria. This means that illegal
options are removed and that the best compliant option is chosen according to
ethical constraints. This is the other interpretation for the terms hard and soft
norms. This assumption implies that hard ethical norms are already reflected
in the law; however, that often holds, it is not always the case. In addition, con-
sidering ethical norms only as soft norms neglects the cases where some ethical
norms are in conflict with the legal norms. We adopted this view as a start-
ing step in the development of an ethical evaluation model. Therefore, in the
development of an ethical evaluation model, we made the assumption that all
options are permissible and the question was which is ethically the best? We
proposed a framework for ethical evaluation based on multiple values to address
this issue. The evaluations in this model are on an ordinal scale and aggregated
using voting systems. In the next contribution in Chapter 6 we integrate this
model with compliance framework (cf. Chapter 4) with HTN planner. We then
further investigated the issue of considering legal and ethical norms as hard and
soft norms, respectively. In Chapter 7 we propose an approach in which both
legal and ethical hard norms are integrated into a unified compliance model.
contrary to the previous contributions where we applied our model on data pro-
cessing scenarios; in our unified model is adopted and tested on a health care
delivery system.



Chapter 4

Legal Compliance

Automated Data
Processing with GDPR
Compliance

49



CHAPTER 4. LEGAL COMPLIANCE 50

Automatic compliance checking is a key topic in the field of computational
law. AI technologies pose many risks that have been subject to regularization in
recent years. One of the areas where most of the AI applications are concerned is
the processing of personal data. With the enforcement of the European General
Data Protection Regulation (GDPR), such applications must guarantee compli-
ance with the obligations set forth. The GDPR provides legal requirements for
the processing of personal data. Organizations, corporations, and developers
must take technical measures to assess the compliance of personal data process-
ing with GDPR. GDPR applies to applications where personal data is used or
processed. In this work, we are particularly interested in GDPR compliance
checking and automated data processing applications. Designing such a system
requires on the one hand a formalism to represent operations on personal data
and automatically derive a sequence of operations to perform certain processing.
On the other hand, we need a formalization of GDPR regulations that can be
integrated as constraints with this formalism.

Since the adoption of the GDPR, several tools have been introduced to facil-
itate compliance assessment for data controllers and processors. Some of these
methods are in the form of questionnaires or checklists that assess the compli-
ance of companies or organizations, for example, Microsoft Trust Center [3].
However, these methods are not suitable for automated compliance checking.
Others focus on building an ontological concept of GDPR, for example PrOnto
[149], a privacy ontology, based on LegalRuleML (cf. Section 1.3.1) for legal
reasoning and knowledge representation. These methods can be used to create
a repository of rules based on regulative and constitutive norms (cf. [159]) or
legal analysis. These methods focus on knowledge representation requirements
and hardly adapt to an automated data processing environment. Another body
of work in the legal domain is developing policy languages to represent regu-
latory norms that can be used to verify compliance of business processes [52,
27].

In this contribution, we propose a framework for automatic data processing
and compliance checking. We model data operations as agents’ actions. Data
processing is viewed as a planning problem. The agent can deduct a series of
operations to process personal data for a specific purpose. GDPR regulations are
integrated as constraints to check for compliance. We use ASP (cf. Section 3.1.2)
and Event Calculus (cf. Section 3.2.1) formalism to model the planning problem
and adopt the SPECIAL policy language(cf. Section 1.3.2) to represent GDPR
regulations. SPECIAL policy language is reformulated in ASP and integrated
in the agent’s, compliance checking process.

In other words, our framework has composed of two main components.

• Planning, Given a goal state, an initial state and a description of the
domain, this component generates all possible plans regardless of their
compliance.

• Compliance Engine, Given a plan, this component checks for its com-
pliance against GDPR regulatory norms. In the case of a non-compliant
plan, it explains the missing obligations.



CHAPTER 4. LEGAL COMPLIANCE 51

This chapter is organized as follows. In Section 4.1 we explain our modular
framework and describe how each component is constructed. In Section 4.2, we
evaluate our framework in two simple scenarios and discuss the results.

4.1 Overall Model Architecture

We consider an agent who handles personal data processing. We are concerned
about the compliance of the agents’ actions with GDPR. In order to model
both requirements of the planning domain and compliance checking, we adopt
a modular framework with 2 components. The first is the planning module
that contains the specification of storage, personal data in the system, and the
agents’ actions. Each action describes a transformation of the data or move it to
another storage. Given an initial state and a goal state, this module generates
all the possible plans which satisfy the goal. By plan, we refer to a sequence of
processing on personal data. The second module (Compliance engine) checks
if each plan is compliant with both regulatory norms and data subject’s given
consent, and can provide explanation of missing obligations in the case of non-
compliance. Figure 4.1 illustrates the structure of the framework.

Figure 4.1: Modular structure

4.1.1 A Personal Data Handling Use Case

We describe our framework by implementing it in a use case model. An inter-
national company also operates in multiple European countries and the United
States. The company has several sectors to provide services to customers. Each
sector owns a server to store personal data. The servers are connected through
an internal network and can transmit data between each other. One of the
servers is a computing server in which the company analyzes customer data for
various purposes. The company also has a partner as a data processor, which
provides analytic services to the company. Figure 4.2 illustrates the connec-
tion between the company’s servers and its partner processor, as well as their
location.



CHAPTER 4. LEGAL COMPLIANCE 52

Figure 4.2: Connection among servers

In order to provide services, the company needs to analyze the customer
data and use its result. When a sector requests the outcome of a particular
analysis, a sequence of processing should be performed to provide the result to
its corresponding server. We implement our framework in this scenario to design
an agent to automatically generate a sequence of data processing to provide the
requested output on a data and check for the compliance of generated sequences.

4.1.2 Planning Component

The key challenge in the design of the planning domain is formalizing actions,
states, and domain knowledge in a way that allows for both planning and com-
pliance checking. We assign GDPR-related attributes to domain objects to use
them for compliance checking. We describe the main parts of the planning
domain.

Storage

Storage in our framework basically represents anything capable of storing and
processing data. e.g. servers, cloud space, etc. We use the storage to represent
a server in our planning domain. We also use the connected/2 predicate to
represent that there is a connection between two storages. For example, below
the formalization of ASP means that s1, s2, and s3 are storage and there is
a connection between s1 and s2, and s1 and s3, which means that they can
transmit data.

1 storage(s1).

2 storage(s2).



CHAPTER 4. LEGAL COMPLIANCE 53

3 storage(s3).

4 connected(s1,s2).

5 connected(s1,s3).

Knowledge about other servers and the connection between them has been
formalized in the same way. In order to assess the compliance of these actions,
we need information about the action itself, as well as other complementary
information that is concerned with the GDPR. This information is represented
by the predicate has/3. For example, the code below shows the controller of the
storage s6 and s7 and the location of s1 and s2.

1 has(s6, controller, aProcessor).

2 has(s7, controller, aCompany).

3 has(s1, location, us).

4 has(s2, location, eu).

s4 and s6 are computing servers capable of analyzing data for various pur-
poses. Knowledge about the supported purposes of each one can be represented
in the following way.

1 has(s4, analysisPurpose ,marketing).

2 has(s4, analysisPurpose ,personalisedAdvertising).

3 has(s6, analysisPurpose ,optimisationForController).

Data

Personal data is represented by a resource. Each resource belongs to a data
subject and has a category. Consider two resources d1 and d2 where they have
categories Purchases and Spending Habit and Service Consumption Behavior
and this is represented in the following way in ASP.

1 resource(d1).

2 resource(d2).

3 has(d1, dataCategory, purchasesAndSpendingHabit).

4 has(d2, dataCategory, serviceConsumptionBehavior).

When performing actions on resources, they either move to another storage
or transform into a new data. We need to represent these data manipulations
in our domain. We define the predicate data that represents any personal data,
either a resource or the output of an analysis process on this resource with a
certain purpose.

1 data(D):-

2 resource(D).

3

4 data( analysisOutput(D,P) ):-

5 resource(D),

6 purpose(P).

If the attributes are static, we represent them as facts, and if they are dy-
namic, we represent them by fluents. Attributes like the storage of the data or
the content of a storage are impacted by actions.



CHAPTER 4. LEGAL COMPLIANCE 54

Actions Specification

The agent action in our domain represents a data processing. It supports the
transfer and analysis processing of personal data for several purposes. A transfer
action in our domain is characterized by the data, its current location, the
destination, and the purpose of the transfer. To perform an analysis action,
we require the data and storage where the processing is taking place and the
purpose of the analysis as well. We formalize the knowledge about agents actions
as follows:

1 act(transfer(D,A,B,P)):-

2 data(D),

3 storage(A),

4 storage(B),

5 purpose(P),

6 connected(A,B),

7 A!=B.

8

9 act(analyse(D,A,P)):-

10 data(D),

11 storage(A),

12 purpose(P) ,

13 has(A, analysisPurpose ,P).

Each action should be specified by its preconditions and effects. A transfer
action changes the storage of the data, or equivalently, it modifies the content
of the origin and destination storage. This is captured by the fluent predicate
hasData(A,D), which represents that storage A has data D.The analysis action
transforms the personal data into new data, which is the result of this analysis.
In the following, we represent the effects and preconditions of these actions.

1 prec( hasData(A,D), transfer(D,A,B,P)):-

2 act(transfer(D,A,B,P)).

3 effect(transfer(D,A,B,P), hasData(B,D)):-

4 act(transfer(D,A,B,P)).

5 effect(transfer(D,A,B,P), neg(hasData(A,D))):-

6 act(transfer(D,A,B,P)).

7

8 prec( hasData(A,D), analyze(D,A,P)):-

9 act(analyze(D,A,P)).

10 effect(analyze(D,A,P), hasData( A, analysisOutput(D,P) )):-

11 act(analyze(D,A,P)).

12 effect(analyze(D,A,P), neg( hasData(A,D) )):-

13 act(analyse(D,A,P)).

As an example, we describe the effects and preconditions of an action analy-
sis. prec( hasData(A,D), analyze(D,A,P)) means that in order to perform the
action, analyze(D,A,P) the fluent hasData(S,D) should hold, which means that
the corresponding data should be present in the corresponding storage. When
the action is performed, the data transform into the output and are represented



CHAPTER 4. LEGAL COMPLIANCE 55

by analysisOutput(D,P) . The last line effect(analyze(D,A,P), neg( hasData(

↪→ A,D) )) means that after the action is performed, the output data would be
replaced by the input data. The predicate neg( hasData(A,D) )) indicates the
negative effect of the action, which is the input data that is no longer stored in
the corresponding storage.

4.1.3 Compliance Engine

This module contains the required elements for compliance checking against
regulative norms and data subject’s consent. For this purpose, it should be
fed with legal specifications and formalization of the given consent. The legal
specification contains organizational measures, the legal basis for the processing,
and the duties defined for processing. The compliance engine has 3 main parts;
the first part assigns legal information to actions based on the legal specifica-
tions. Then it checks compliance with the regulatory obligations in the next
one. In the last part, we can check the compliance of these actions with the
data subject’s given consent. Each part is described in the following.

Actions as Business Policy

An action should be associated with legal information similar to the attributes
of a business policy in SPECIAL (see the example of a business policy in the
Listing 1.1). The legal information associated with an action must match the
description of a business policy to be compatible with the underlying policy
language. The following example shows how a transfer action is associated with
legal information using the format has(Action, GDPR_attribute, Value). For
example, knowledge about the legal basis at line 6 or appropriate safeguards
for a personal data transfer at lines 7 and 8. Notice that only a fragment of
the associated attributes are shown below, you can find the complete list in the
implementation codes in Appendix A, or in the code repository1.

1 has(transfer(D,A,B,P), dataCategory, X) :-

2 act(transfer(D,A,B,P)),

3 has(D, dataCategory, X).

4

5 has(transfer(D,A,B,P), storage, B):-

6 act(transfer(D,A,B,P)).

7

8 has(transfer(D,A,B,P), purpose, P):-

9 act(transfer(D,A,B,P)).

10

11 has(transfer(D,A,B,P), recipient, X):-

12 act(transfer(D,A,B,P)),

13 has(B, controller, X).

14

15 system_legal_basis(art6_1_a_Consent).

1https://gitlab.lip6.fr/taheri/planning-compliance-mechanism-policies.git.

https://gitlab.lip6.fr/taheri/planning-compliance-mechanism-policies.git


CHAPTER 4. LEGAL COMPLIANCE 56

16

17 has(transfer(D,A,B,P), legalBasis, X):-

18 act(transfer(D,A,B,P)),

19 system_legal_basis(X).

20

21 transfer_safeguard(s4, s1, art46_2_e_ApprovedCodeOfConduct).

22

23 has(transfer(D,A,B,P), measures, X):-

24 act(transfer(D,A,B,P)),

25 transfer_safeguard(A,B, X).

GDPR Regulatory Obligations

We define necessary predicates and axioms to produce a straightforward transla-
tion of the GDPR regulatory obligations encoded in SPECIAL policy language
and support for explainability in the case of non-compliance. As an example,
the obligation at the bottom level, Article 6-1 (legal processing) presented in
Section 1.3.2, has been translated into ASP using the predicate fulfills/2.
This rule means that an action O fulfills the obligations of Article 6-1, if it has
a legal basis as defined in the list. Note that in ASP pred(a;b) is equivalent to
pred(a) and pred(b).

1 art6_1_LegalBasis( art6_1_a_Consent;

2 art6_1_b_Contract;

3 art6_1_c_LegalObligation;

4 art6_1_d_VitalInterest;

5 art6_1_e_PublicInterest;

6 art6_1_f_LegitimateInterest).

7

8 fulfills(O, art6_1_LegalBasis):-

9 has(O, legalBasis, X),

10 art6_1_LegalBasis(X),

11 act(O).

Each regulation is named after its reference in the GDPR text, part of
the current supported obligations in this module are presented as a predicate
regulation. Here gdpr_Requirements represents the obligations at the highest
level.

1 regulation(art6_1_LegalBasis;

2 art6_lawfulProcessing;

3 art12_22_SubjectRights;

4 chap3_RightsOfDataSubjects;

5 chap2_LawfulProcessing;

6 art9_sensitiveData;

7 gdpr_Requirements).

In the SPECIAL policy language, the obligations are represented as equiva-
lency between classes. The classes are combined using the operators ObjectCompl
↪→ ementOf, ObjectUnionOf and ObjectIntersectOf. We translate these oper-



CHAPTER 4. LEGAL COMPLIANCE 57

ations using the predicates comp/1, inUniounOf/2, and inIntersectOf/2. For
example, the Listing 1.3.2 is translated as follows.

1 inUnionOf(art6_LawfulProcessing ,chap2_LawfulProcessing ).

2 inUnionOf(art9_SensitiveData, chap2_LawfulProcessing ).

3 inUnionOf(art10_CriminalData, chap2_LawfulProcessing ).

The predicate comp/1 is used as follows.

1 fulfills(P , comp(R1)):-

2 not fulfills(P , R1 ),

3 regulation(R1),

4 act(P).

The predicate inUnionOf/2 is defined in the following way. The first rule
means that if an action P fulfills the set of obligations of R2, and R2 is in the
set of unions of R1, then it also fulfills the set of obligations of R1.

1 fulfills(P,R1):-

2 fulfills(P,R2),

3 inUnionOf(R2,R1),

4 act(P).

5

6 fulfills(P,R1):-

7 not fulfills(P,R2),

8 inUnionOf(comp(R2),R1),

9 act(P).

The operations, are defined inIntersectOf/2, are defined in the following
way.

1 incompleteRequirment(P,R1):-

2 inIntersectOf(F2,R1) ,

3 not fulfills(P,R2),

4 act(P).

5

6 fulfills(P,R1):-

7 not incompleteRequirment(P, R1),

8 act(P),

9 inIntersectOf(_,R1).

An action is compliant if it fulfills all obligations of the fraction of the GDPR
at the top level. A plan contains several actions, and it is possible that only a
certain operation violates the plan compliance. In this case we are interested
to know which missing obligation caused the non-compliance, in order to do so,
we use the predicate missing/2 in the following ASP rule, it indicates that the
obligations of a certain article are missed.

1 missing1(P,R,R):-

2 not fulfills(P,R),

3 regulation(R),

4 act(P),

5 occurs(P,_).



CHAPTER 4. LEGAL COMPLIANCE 58

6

7 missing1(P,R1,R2):-

8 not fulfills(P,R2),

9 upperClass(R3,R2),

10 missing1(P,R1,R3),

11 regulation(R1),

12 regulation(R2).

13

14 missing(P,R):-

15 missing1(P,R,gdpr_Requirements),

16 not auxiliaryRegulation(R).

Data Subject’s Consent

Suppose that when collecting personal data, the user has given explicit consent
to transfer his Purchases and spending habits data for the purpose of marketing.
Based on this consent, data can only be disclosed to aCompnay, and it should
be stored only in Europe. We translate this consent using the same format as
Listing 1.2. Note that SPECIAL also supports time intervals for the validity of
consent, but we do not support it here. In our scenario, the data subject has
also given his consent to analyze processing with the same attributes.

1 has(c2, dataCategory, serviceConsumptionBehavior).

2 has(c2, processing, transfer).

3 has(c2, purpose, marketing).

4 has(c2, recipient, aCompany).

5 has(c2, storageLocation, eu).

In our modeling, a processing is compliant with the given consent if it has
the same attributes as the action. We check the compliance of an action with
the given consent using the following set of rules. It basically states that valid
consent of an operation is satisfied if there is a coherent consent for it; and
an action is coherent with a consent if there is no difference between the at-
tributes of the consent and the operation. We capture it by the predicate
validConsentSatisfied that is true when there is coherent consent for it.

1 non_coherent(P,C):- has(P,A, Z1) , has(C, A, Z2) ,Z1!=Z2, act(P), consent

↪→ (C).

2 validConsentSatisfied(P):- not non_coherent(P,C), act(P), consent(C).

4.2 Evaluations

Once we have modeled our domain knowledge, the planning module can be
used to generate plans by providing an initial state and a goal state. A plan is
generated to deliver the result of the processing of personal data to the server
asking for it. Consider that data d1 are initially stored on the server s1. We
represent this initial state by initially( hasData(s1,d1)).



CHAPTER 4. LEGAL COMPLIANCE 59

There is a request from the server s4 for the results of the analysis on the data
d1 with the purpose marketing. We represent this request by requestAnalysis

↪→ (s4, d7, marketing). This request is then translated into the goal of the
system that the output of this analysis should be stored on the storage that
requests it.

1 holds(goal,T):- holds( hasData(A, analysisOutput(D,P)), T ),

↪→ requestAnalysis(A,D,P).

2 :- not holds(goal, maxtime).

After providing the initial state and a goal state, all possible plans are gen-
erated to satisfy the given request. The plans are included in Table 4.1. Note
that all these sequences of actions are generated regardless of their compliance.
Each plan is a set of actions presented by the predicate perform/2 that indicates
the action and the time step in which it can be performed.

Having the plans generated by the previous module, the compliance engine
can distinguish the compliant plans with the noncompliant ones and also provide
a simple explanation for non-compliance by referring to the missing obligations.
A plan is compliant if all the actions in that plan are compliant. Below, we show
the compliance check result in two scenarios; Compliance checking with (i) data
subject’s consent and (ii) GDPR regulatory norms. In both cases, the initial
state and the goal state are the same and the same plans are generated by the
planning module (shown in Table 4.1), therefore the compliance engine assesses
the compliance of the identical plans but with different legal restrictions.

4.2.1 Compliance Check for Consent

In this scenario, the customer has given a customized set of consent for various
data processing. In particular, we assume that the data subject has given her
consent only for internal transfers in EU, so the compliance engine distinguishes
noncompliant plans if they are compatible with the data subject’s consent. Table
4.2 presents the compliance of each plan and the explanation of the missing
obligations.



CHAPTER 4. LEGAL COMPLIANCE 60

Plan Time Step Actions
1 transfer(d1,s2,s3,marketing)

2 transfer(d1,s3,s4,marketing)

1 3 analyse(d1,s4,marketing)

4 transfer(analyseOut(d1,marketing),s4,s7,

↪→ marketing)

5 transfer(analyseOut(d1,marketing),s7,s5,

↪→ marketing)

1 transfer(d1,s2,s1,marketing)

2 transfer(d1,s1,s4,marketing)

2 3 analyse(d1,s4,marketing)

4 transfer(analyseOut(d1,marketing),s4,s7,

↪→ marketing)

5 transfer(analyseOut(d1,marketing),s7,s5,

↪→ marketing)

1 transfer( d1, s2, s3, marketing)

2 transfer( d1, s3, s4, marketing)

3 3 analyse( d1, s4, marketing)

4 transfer( analyseOut(d1, marketing), s4,

↪→ s3, marketing)

5 transfer( analyseOut(d7, marketing), s3,

↪→ s5, marketing)

1 transfer(d1,s2,s1,marketing)

2 transfer(d1,s1,s4,marketing)

4 3 analyse(d1,s4,marketing)

4 transfer(analyseOut(d1,marketing),s4,s3,

↪→ marketing)

5 transfer(analyseOut(d1,marketing),s3,s5,

↪→ marketing)

Table 4.1: Automatically generated plans.

Plan Compliant Explanation
1

and Yes -
3

missing(transfer(d1,s2,s1,marketing),

↪→ art12_22_SubjectRights)

2 missing(transfer(d1,s2,s1,marketing),

↪→ chap3_RightsOfDataSubjects)

and NO missing(transfer(d1,s2,s1,marketing),

↪→ exceptions_as_per_Art23)

4 missing(transfer(d1,s2,s1,marketing),

↪→ chap9_Derogations)

missing(transfer(d1,s2,s1,marketing),

↪→ gdpr_Requirements)

Table 4.2: Automatic compliance check of plans (Consent)



CHAPTER 4. LEGAL COMPLIANCE 61

All the plans are generated automatically by the personal data managing
agent. The compliance check process is also done automatically in the second
module. Plan 1 and 3 are compliant, since they fulfill all the obligations set
forth in GDPR as well as the compliance with consent. Plan 2 and 4 are both
noncompliant for the same reason. The action transfer(d1,s1,s3,marketing

↪→ ) lacks the obligation of art12_22_SubjectRights since the transfer action
does not match the consent provided. When the obligations of a regulation are
missed, it also causes that the obligations of the super-class regulations to fail.
In this case, the action transfer(d1,s2,s1,marketing) misses the obligations of
chap3_RightsOfDataSubjects and gdpr_Requirements, as they are the top classes
of regulations in the policy formalization. Two other regulations have been
reported as missed obligations, exceptions_as_per_Art23 and chap9_Derogations

↪→ , this is because if the obligations of these regulations are fulfilled, it causes
the transfer action to comply with GDPR.

4.2.2 Compliance Check for GDPR Regulatory Norms

In this scenario, we suppose that all the necessary consent is provided, so con-
sent is no longer a restricting constraint. We check the compliance of plans
against GDPR regulatory norms, in particular obligations of GDPR Chapter 5
(Transfers of personal data to third countries or international organizations).

According to the SPECIAL policy language2 a transfer to a third country
is only possible if it is not among the unauthorized transfers by the Union
law Article 48 (Transfers or disclosures not authorized by the Union law) and
is equipped with measures to ensure a secure data transfer; these measures
could be one of the appropriate safeguards as in Article 46 (Transfers subject
to appropriate safeguards). Again, our aim is to check the compliance of the
plans shown in Table 4.1, under the assumption that all necessary consent is
provided, but there are no safety measures between the servers outside the EU
(third countries) and the servers located in the EU. The resulting compliance
report is indicated in Table 4.3.

2link to the documentations: https://specialprivacy.ercim.eu/platform/

pilots-policies-and-the-formalization-of-the-gdpr.

 https://specialprivacy.ercim.eu/platform/ pilots-policies-and-the-formalization-of-the-gdpr
 https://specialprivacy.ercim.eu/platform/ pilots-policies-and-the-formalization-of-the-gdpr


CHAPTER 4. LEGAL COMPLIANCE 62

Plan Compliant Explanation
1

and Yes -
3

missing(transfer(d1,s2,s1,marketing),

↪→ chap5_DataTransferToThirdCountry)

missing(transfer(d1,s2,s1,marketing),

↪→ adequateLevelOfProtection_as_per_Art45)

2 missing(transfer(d1,s2,s1,marketing),

↪→ appropriateSafeguards_as_per_Art46)

and No missing(transfer(d1,s2,s1,marketing),

↪→ art49_Derogations)

4 missing(transfer(d1,s2,s1,marketing),

↪→ chap9_Derogations)

missing(transfer(d1,s2,s1,marketing),

↪→ gdpr_Requirements)

Table 4.3: Automatic compliance check of plans (GDPR Chapter 5)

As shown in Table 4.3, plans 2 and 4 are not compliant, since the action
transfer(d1,s2,s1,marketing) misses the required obligations of GDPR Chap-
ter 5. The main missing elements are adequateLevelOfProtection_as_per_Art45

↪→ , appropriateSafeguards_as_per_Art46, or art49_Derogations. The transfer
action could be compliant if certain regulations among the missed ones are sat-
isfied.

4.3 Discussions

The goal in this contribution was twofold, (i) designing an agent to handle
personal data processing automatically, and (ii) compliance checking of these
plans with GDPR. To achieve these goals, we presented a framework for planning
and GDPR compliance checking. We used event calculus to formalize agent
actions on personal data and time-varying properties of the system. In order to
formalize GDPR obligation set and data subjects consent, we used SPECIAL
policy language. We described how knowledge of the planning domain and
legal knowledge for compliance checking can be represented and integrated. We
presented two scenarios in Section 4.2 and showed how our framework can be
used to for compliance checking.

The current work can be improved in several ways. We are dependent on the
legal ontology or policy language used to represent the GDPR requirements. In
the current contribution, we use SPECIAL as the underlying policy language,
which is a simple policy language that does not support deontic operations.
Using more comprehensive ontologies, such as LegalRuleML (cf. Section 1.3.1),
can enrich the current work.



Chapter 5

Ethical Compliance

A Pluralistic Ordinal
Utility Model to Evaluate
Processing on Personal
Data

63



CHAPTER 5. ETHICAL COMPLIANCE 64

Our specific research problem was the legal and ethical compliance of a plan-
ning agent who processes personal data. In this chapter, we investigate it from
the point of view of ethical compliance. We are interested in approaches that can
morally evaluate and select the ethically best option. The question is, according
to what criteria, two options can be morally evaluated? An answer could be
using utilities as in utilitarianist theories, to compare options, however, utilities
are often not quantifiable or measurable [33]. Moreover, using arbitrary values
as utility can not be justified and may lead to contradictions. Another answer
could be to use multiple values (cf. Section 2.2.4) as criteria for moral evalua-
tion. Most of the values related to AI are discussed in AI ethics guidelines, e.g.
privacy, fairness, transparency, etc. [102, 58]. We are interested in approaches
to consider moral values in the evaluation process. However, there are some
philosophical and computational challenges.

On the philosophical level, incommonsurability (cf. Section 2.2.4) of values,
i.e. lack of a cardinal measure to compare values, poses challenges in modeling
these values. Even if the values are not fully incommonsurable, it is not clear
how to compare them rationally. On the computational side, moral values may
represent abstract concepts or may have broad meanings [190], e.g., fairness,
which makes their representation challenging. In addition, there is no agree-
ment on a fixed list of AI values [162] or a universal interpretation of them.
Moreover, obtaining the evaluative criteria from fundamental principles is not
always feasible [138]. Some computational models allow the integration of mul-
tiple values in their modeling of utilitarian theories [8, 7]. However, they explore
quantifiable cases and aggregate values by weighing and summing. In certain
cases, it is possible to rationally compare options by quantification. However,
it may add arbitrary variables to the process that can bias the decision or lead
to counter-intuitive results. Other methods suppose utilities are given [122],
elicited from a known source for specific cases [120], or use arbitrary values to
explore ethical dilemmas without proposing a method to actually obtain them
[48, 23].

In this contribution, we propose a model for evaluating alternatives based
on their alignment with moral values. In many cases, intuition about which
option is better than another is easier to determine than a precise quantification.
Thus, we assume that values are incommonsurable but comparative in one of
the following ways. Given two values, A and B:

1. A and B are neither better or worse than each other;

2. Any amount of A, no matter how small, is more valuable than any amount
of B, no matter how large.

We model the evaluation of each value on the set of alternatives on an ordinal
scale. An ordinal preference allows for the logical reasoning that is essential for
ethical decision-making. In order to represent values in a disambiguate way, we
adopt a hierarchical multi-criteria model. Each criterion represents a certain
aspect of a moral value that can be used to order alternatives. The hierarchical
criteria structure provides an explicit and explanatory representation of moral



CHAPTER 5. ETHICAL COMPLIANCE 65

values and increases expressivity of the model. Given the specified preference
of two values on ordinal scale, in the case 1, we aggregate preferences using
voting systems, in particular Copland’s rule (cf. Section 3.3) and in case 2,
using lexical ordering. We demonstrate this model in a use case of choosing
the best ethically aligned recommendation system. To implement this use case,
we use ASP (cf. Section 3.1.2), the full implementation codes are available in
Appendix B.

This chapter is organized as follows. In Section 5.1 we introduce a formaliza-
tion of our proposed model and discuss the aggregation process. We make use
of a case study for ethical ordering of various recommendation systems. The ex-
amples run alongside formalizations to facilitate understanding of the abstract
model. In Section 5.2 we discuss the conclusions and future perspectives.

5.1 Integration of AI Values

In this section, we introduce a formalization of the model along with a use
case to facilitate understanding of the abstract model. We are interested in
evaluating the adherence or alignment of alternatives to a set of moral values.
To consider moral values in the decision process, we view them as criteria in
a hierarchical structure that can be decomposed into more basic, comparable
subcriteria. Evaluations are modeled as ordinal preference relationships over
alternatives.

More precisely, our framework aims to order a set of given alternatives based
on their adherence to a set of moral values. We indicate our model by A Hier-
archical Value Setting H, represented by the following tuple:

⟨A, ⟨N , R⟩, ρ, Ψ⟩ (5.1)

• A is the set of alternatives;

• ⟨N , R⟩ represents the hierarchy of criteria;

• ρ is a function that assigns an order to the criteria of the bottom level in
the hierarchy;

• Ψ is the family of aggregation functions.

We describe each component of the model on a use case of ordering recom-
mendation systems based on their alignment to moral values. This problem can
be of interest to service providers such as on-line job platforms, especially in
cases where they collaborate with several partners to provide job recommen-
dations to their users. It is also related with several ethical concerns, users’
personal data are used in order to obtain recommendations which concern pri-
vacy and fairness. The distribution of recommendations is also related to fair-
ness and performance of the overall recommendations, which are related to user
satisfaction and benefit of the system.



CHAPTER 5. ETHICAL COMPLIANCE 66

5.1.1 A: The Set of Alternatives

A, |A| ≥ 2 is the set of alternatives that will be ordered in the model based
on their alignment to a set of moral values in H. Alternatives have different
meanings depending on the context; however, they represent or refer to an action
or a mixture of actions.

We show the evaluation process of our framework on a simplified problem of
ordering 3 recommendation systems, namely {sys1, sys2, sys3}. Each alter-
native is represented in ASP using the predicate alt/1.

1 alt(sys1).

2 alt(sys2).

3 alt(sys3).

5.1.2 ⟨N , R⟩: The Criteria Hierarchy

The criteria hierarchy is a tree-like graph represented by the tuple ⟨N , R⟩ where
N is the set of nodes that represent criteria, R ⊆ N × N is the child relation
that assigns to each parent node its child nodes, in other words, this relation
associates each criterion with its sub-criteria in a hierarchical structure. We
denote the set of subcriterion or the children of a node n by r(n) = {x|(n, x) ∈
R, n ∈ N}. The root node in this structure is the top level criteria and is de-
noted by ϵ ∈ N . The nodes at the bottom of the structure (leaves) represent
evaluative criteria, i.e., criteria that can be evaluated based on the characteris-
tics of the given alternatives. The set of leaf nodes or leaf criteria is represented
by L = {n ∈ N |r(n) = ∅}.

The corresponding criteria hierarchy for the problem of ordering the rec-
ommender systems is specified by adopting the applying guidelines. We first
describe what moral values are taken into account and by which criteria the al-
ternatives are evaluated. Ethical evaluation in this context (cf. Section 2.1) con-
cerns i) privacy of users, since these systems process personal data. ii) Fairness
of the system with respect to jobs and users, and iii) Performance of the system
to provide the best recommendations. Thus, the set of values to be integrated
into the evaluation framework in this case is {Privacy, Fairness, Performance}.
Next, we identify how we can compare the alternatives with regard to these
moral values. In other words, what are the sub-criteria of the given moral
values that can evaluate alternatives.

• Privacy Privacy is one of the most concerning issues. We use the guide-
lines mentioned in Section 2.1.1 as a criterion to compare privacy in dif-
ferent alternatives. The applying guidelines in this case are the following.

– Data Minimization limiting access to data categories is an impor-
tant and obvious criterion for preserving the privacy of data subjects.
A system that uses fewer categories of personal data is ordered higher
by this criterion.



CHAPTER 5. ETHICAL COMPLIANCE 67

– Data Sensitivity Another important criterion is the number of sen-
sitive categories of data, e.g. political, racial, etc. Processing these
types of data entails an increased ethical risk to privacy.

– Scale and Complexity This is another important criterion related
to privacy. Using large-scale processing, that is, big data processing
with multiple unknown sources of personal data, increases the risk
of privacy [97]. According to this criterion, small-scale processing is
ordered higher than large-scale big data processing.

• Fairness The other value concerning mainly the processing in our use case
is fairness (cf, Section 2.1.2). In our context, fairness can be translated
as (Item Fairness) or users (User Fairness)[188]. User fairness can also
be decomposed into gender fairness ( gender fairness) and racial fairness
( race fairness). Bias in this case can be estimated statistical parity dif-
ference which is the difference in the ratio of favorable recommendations
between two monitoring groups. A recommendation system that has a
lower statistical parity difference among the monitored groups is ordered
higher by fairness criteria. We do not enter into details of calculating par-
ity or other scores. However, we suppose a score indicating the bias level
is given.

• Performance represents the intrinsic value of the recommendation sys-
tem that has been designed to serve. The notion of performance has vari-
ous significations according to the context; here, it represents how fit the
recommendations are and if the users are reacting positively to the gen-
erated recommendations. A system that has a better performance score
has more adherence to this value. Here, we suppose that performance
represents a single criterion without any sub criteria.

The value composition diagram in this use case is given by Figure 5.1. We
use the predicate child/2 in ASP to represent the hierarchy of criteria.

1 child(root,privacy).

2 child(root,fairness).

3 child(root,performance).

4

5 child(privacy, sensitivity).

6 child(privacy, minimization).

7 child(privacy, scaleComplexity).

8 child(fairness, item_fairness).

9 child(fairness, user_fairness).

10 child(user, racial_fairness).

11 child(user, gender_fairness).

5.1.3 ρ: Leaf Criteria Assessment

ρ is the function of evaluating alternatives based on the bottom level or leaf
criteria. This evaluation is modeled as an ordinal preference over alternatives



CHAPTER 5. ETHICAL COMPLIANCE 68

Root(ϵ)

Privacy Performance Fairness

Complexity Minimization Sensitivity UserFair ItemFair

GenFair RacFair

Figure 5.1: Criteria hierarchy diagram

Characteristics Sys1 Sys2 Sys3

Data Categories
dataHabit,
activity,
interests

interests,
politicalBelief

activity,
interests

Performance
metric

30% 25% 20%

Process Scale large large small

Gender parity 0,1 0,2 0,3

Racial Parity 0,2 0,4 0,1

Item Parity 0,3 0,6 0,4

Table 5.1: Recommendation algorithms’ features

and is represented as the following function.

ρ : L 7−→ 2A×A (5.2)

Where ∀l ∈ L, ρ(l) is a preference relation, given as a complete pre-order.

In order to apply the framework to our case study, we need to assess the
preference of the leaf criteria over alternatives according to their characteris-
tics. First, we must represent these characteristics or the knowledge about each
recommendation system that can be used for ethical evaluations. These char-
acteristics include i) knowledge about the required categories of data, ii) the
performance metric of each system, and iii) the scale and complexity of the
underlying algorithm, and the statistical parity for iv) gender fairness, v) racial
equality, and vi) the statistical parity for item fairness. The knowledge of the
available systems and their characteristics mentioned are shown in Table 5.1

This knowledge has been represented in the ASP using the predicate has/3



CHAPTER 5. ETHICAL COMPLIANCE 69

Leaf Criteria Preference

Minimization sys2 ∼ sys3 > sys1

Sensitivity sys1 ∼ sys3 > sys2

ScaleComplexity sys3 > sys1 ∼ sys2

Performance sys1 > sys2 > sys3

Gender fairness sys1 > sys2 > sys3

Racial fairness sys3 > sys1 > sys2

Item fairness sys1 > sys3 > sys2

Table 5.2: Leaf ordering of the recommendation systems

↪→ . Note that since Clingo has difficulties with grounding float numbers, so we
represent them using integers, for example:

1 has(sys1,requiredData,clickHabit ).

2 has(sys1,requiredData,activity ).

3 has(sys2,requiredData,interests ).

4 ...

5 has(sys1, perfMetric, 30 ).

6 has(sys2, perfMetric, 25 ).

7 has(sys1, gender_parity, 1 ).

8 has(sys2, racial_parity, 4 ).

9 has(sys3, item_parity, 4 ).

Having these characteristics, the associated functions for the leaf criteria
evaluate the alternatives in a pairwise manner based on the relevant character-
istics of each alternative. The preference of the leaf criteria is represented by the
predicate pref/3. We assume that the preferences are complete and transitive.
These preferences are represented as orders in Table 5.2. The preference of the
criteria are represented, by the relations ∼ and > for simplicity. ∼ means two
alternatives are equally preferred and > implies strict preference.

1 % Minimisation

2 has(Alt,nbData, N):-

3 N = #count{ Data : has(Alt, requiredData, Data)},

4 alt(Alt).

5

6 pref(minimization,Alt1,Alt2):-

7 has(Alt1, nbData, N1),

8 has(Alt2, nbData, N2),

9 N2>=N1.

10

11 %Sensitivity

12 has(Alt, nbSensitiveData, N):-



CHAPTER 5. ETHICAL COMPLIANCE 70

13 N = #count{ Data : has(Alt, requiredData, Data),

14 has(Data, category, sensitiveData)},

15 alt(Alt).

16 pref(sensitivity, Alt1, Alt2):-

17 has(Alt1, nbSensitiveData, N1),

18 has(Alt2,nbSensitiveData, N2),

19 N2>=N1.

20

21 %Scale and Complexity

22 rankAux(largeScale, 2).

23 rankAux(smallScale, 1).

24 pref(scaleComplexity,Alt1,Alt2):-

25 has(Alt1, processType, Type1),

26 has(Alt2, processType, Type2),

27 rankAux(Type1, R1),

28 rankAux(Type2, R2),

29 R2>=R1, alt(Alt1), alt(Alt2).

30

31 % Performance

32 pref(performance, Alt1, Alt2):-

33 has(Alt1, perfMetric, P1),

34 has(Alt2, perfMetric, P2),

35 P1>=P2, alt(Alt1), alt(Alt2).

36

37 % Item Fairness

38 pref(item_fairness,Alt1,Alt2):-

39 has(Alt1, item_parity,P1),

40 has(Alt2, item_parity,P2),

41 P1<=P2, alt(Alt1), alt(Alt2).

42

43 %Item Fairness

44 pref(racial_fairness,Alt1,Alt2):-

45 has(Alt1, racial_parity,P1),

46 has(Alt2, racial_parity,P2),

47 P1<=P2, alt(Alt1), alt(Alt2).

48

49 %Gender Fairness

50 pref(gender_fairness,Alt1,Alt2):-

51 has(Alt1, gender_parity,P1),

52 has(Alt2, gender_parity,P2),

53 P1<=P2, alt(Alt1), alt(Alt2).

5.1.4 Ψ: Aggregation functions

Ψ = {ψn}n∈N\L is a family of aggregators, used by each node to combine the
preference of its children. To each non-leaf node n, we associate an aggregator
ψn defined as a function from a vector of preference relations (whose size is the



CHAPTER 5. ETHICAL COMPLIANCE 71

number of children of n) to a preference relation :

ψn : (2A×A)|r(n)| 7−→ 2A×A (5.3)

Output of A Hierarchical Value Setting . Given a hierarchical value
setting H, using its aggregation function of the preference relation of all its
children, we can define the preference relation for each node n. We denote by
PH = {PH

n }n∈N the final set of preference for each node. It is defined inductively
as follows:

PH
n = ρ(n) if n ∈ L

= ψn(P
H
i1 , . . . , P

H
ip ) if r(n) = {i1, . . . , ip}

Therefore, given two alternatives a and b and a criterion n, aPH
n b means that

a is preferred to b according to criteria n. The final evaluation of the model
is then given by the preference of the node at the highest level, that is, PH

ϵ .
In the following, since we use a single hierarchical value setting, we remove the
superscript H from the PH

n notation.
We describe the aggregation process that can be used in our hierarchical

model to obtain the preference of a parent node based on the preference of its
children. To maintain the generality of the problem, we consider a finite set of
criteria C = {1, . . . , |C|}, such that each criterion i ∈ C specifies a transitive
and complete preference over the set of alternatives Pi ⊆ D, where D = 2A×A.
We discuss different rules to aggregate the ensemble of these preferences, as
noted by P = ⟨P1, . . . , P|C|⟩ ∈ D|C|, according to the available information on
the importance and priorities of the criteria. The preference obtained by the
aggregation rule is denoted by P ⊆ D.

Equal Criteria

When a criterion c1 is neither better nor worse than c2, their corresponding
preferences can be viewed as votes over alternatives. In such a case, the ag-
gregation rules in the social choice and voting theory can be used to combine
the preferences of the criteria. We denote this aggregator by ψv : D|C| 7−→ D
and the obtained preference by P v = ψv(P). We suppose that all criterion have
equal importance. There are general properties that are desired in voting rules,
like Pareto’s efficiency, monotonicity, etc. An important property in our case
is the Condorcet principle, the lack of which may cause a cyclic preference and
lead to loss of transitivity. We limit our choice to the rules that satisfy these
properties, e.g. Copeland’s rule, max-min, etc. For example, the Copeland rule
chooses the alternative that wins the most pairwise majority, for each a, b ∈ A
let rab be defined as follows:

rab =


1 |Sab| > |Sba|
1
2 |Sab| = |Sba|
0 |Sab| < |Sba|

(5.4)



CHAPTER 5. ETHICAL COMPLIANCE 72

Where Sxy = {i ∈ C|xPiy ∧ ¬yPix}, thus, according to Copeland’s rule,
an alternative wins in pairwise comparison if its overall score defined by the
following relation is higher.

aP vb⇔
∑
c∈A

ra,c ≥
∑
c∈A

rb,c (5.5)

Note that this is an example of a voting rule that have our desired properties,
other rules that satisfy the Condorcet principle can be used interchangeably.

Dominant Criteria

When any increase in a criterion C1 is not as valuable as that of the criteria
C2. In this case C2 is a dominant criterion. There may be one or a class of
such criteria that dominates the others, meaning that their preference has an
absolute priority over other criteria. We suppose that there are k ≤ |C| classes
of criteria such that C = ∪i∈{1,...,k}Ci, and the priority relation between the
classes is given by a total strict order ≻s⊆ 2C × 2C .

One way to aggregate criteria preferences in this case is to obtain the votes
in each class and order them in lexicographic order. More precisely, consider
the aggregation function ψl : D|C| × C2 7−→ D and its resulting preference
P l = ψl(P,≻s). The aggregation method in this case can be formulated as
follows, that is, a combination of voting rule and lexicographic aggregation, and
we call it the lexical aggregation function.

a P l b⇐⇒ ∃ i ∈ {1, . . . , k} ∧ a P v
Ci
b ∧

(∀ j ∈ {1, . . . , k} ∧ Cj ≻s Ci ⇒ a P v
Cj
b)

(5.6)

where a P v
X b = ψv(PX), PX ⊆ D|X| is the vector of preference of the crite-

ria in a set X ⊆ C, and ψv is the aggregation function based on a voting rule
as discussed in the previous section. When the only partition is C, then P l is
equivalent to P v.

We now describe the aggregation process for every parent node in our use
case, given a preference over their children. We assume that these preferences
are complete and use the lexical aggregation function to obtain the preference
of the parent nodes. The root node is the top node that represents the final
decision criteria. Here, we consider multiple priority settings for the root node
to show the functionality of the aggregator and expressivity of our model, as in
Table 5.3.

We represent the priority of the sub-criteria using the predicate childPref/3

in ASP as shown below.

1 childPref(privacy, sensitivity, minimization).

2 childPref(privacy, minimization, scaleComplexity).

3

4 childPref(fairness, user_fairness, item_fairness).



CHAPTER 5. ETHICAL COMPLIANCE 73

Parent node Children priorities

Privacy {Sensitivity} ≻s {Minimization} ≻s {Complexity}

User Fairness {genderFairness, racialFairness}

Fairness {userFairness} ≻s {itemFairness}

Root (1) {Privacy, Fairness, Performance}

Root (2) {Fairness} ≻s {Privacy} ≻s {Performance}

Root (3) {Fairness, Privacy} ≻s {Performance}

Root (4) {Fairness, Performance} ≻s {Privacy}

Table 5.3: Given setting for the children nodes

5 childPref(user_fairness, racial_fairness, gender_fairness).

6 childPref(user_fairness, gender_fairness, racial_fairness).

7

8 childPref(root, fairness, privacy).

9 childPref(root, privacy, performance).

The lexical aggregation function 5.6 has been implemented in the following
way in ASP.

1 prefLex(Node, Alt1, Alt2):-

2 childrenClass(Node,Class),

3 pVote(Node, Class, Alt1, Alt2),

4 is_dominant(Node, Class, Alt1, Alt2).

5

6 is_dominant(Node, Class,Alt1,Alt2):-

7 not is_dominated(Node, Class,Alt1,Alt2),

8 childrenClass(Node,Class),

9 pVote(Node, Class, Alt1, Alt2).

10

11 is_dominated(Node, Class, Alt1,Alt2):-

12 childrenClass(Node,Class),

13 pVote(Node, Class, Alt1, Alt2),

14 superiorThan(Node, Class1, Class),

15 not pVote(Node, Class1, Alt1,Alt2).

16

17 is_dominated(Node, Class, Alt1,Alt2):-

18 childrenClass(Node,Class),

19 pVote(Node, Class, Alt1, Alt2),

20 not superiorThan(Node, _, Class),

21 pVote(Node, Class, Alt2, Alt1).

22

23 superiorThan(Node, Class1, Class2):-

24 childrenClass(Node, Class1),



CHAPTER 5. ETHICAL COMPLIANCE 74

25 childrenClass(Node, Class2),

26 not inferiorThan(Node, Class1, Class2).

27

28 inferiorThan(Node, Class1, Class2):-

29 childrenClass(Node, Class1),

30 childrenClass(Node, Class2),

31 belongs(Node, Child1 , Class1),

32 belongs(Node, Child2 , Class2),

33 not childPref(Node, Child1, Child2).

34

35 childrenClass(Node, Class):-

36 belongs(Node, _ , Class).

37

38 belongs(Node, Child , Class):-

39 Class = #count{ Child1 :

40 childPref(Node , Child, Child1)},

41 child(Node, Child).

The predicate pVote/4 in the code above corresponds to a voting rule. In
our case, we have used Copeland’s rule in order to aggregate votes in each class.
The rule is translated in ASP in the following way, which is an implementation
of 5.5:

1 pVote(Node, Class, Alt1, Alt2):-

2 plural(Node, Class),

3 copeland_score( Node, Class, Alt1, S1),

4 copeland_score( Node, Class, Alt2, S2),

5 S1>=S2.

6

7 copeland_score( Node, Class, Alt, S):-

8 S= #sum{ S1:

9 nb_pairwise_wins( Node, Class, Alt, Alt1, N1),

10 nb_pairwise_ties( Node, Class, Alt, Alt1, N2),

11 S1 = N1*2+N2,

12 alt(Alt1)},

13 childrenClass(Node, Class), alt(Alt) .

14

15 nb_pairwise_ties( Node, Class, Alt1, Alt2 , N):-

16 N= #count{ N1 :

17 nb_strict_voters(Node, Class, Alt1, Alt2 , N1),

18 nb_strict_voters(Node, Class, Alt2, Alt1 , N2),

19 belongs(Node, Child, Class), N1=N2},

20 childrenClass(Node,Class), alt(Alt1), alt(Alt2).

21

22 nb_pairwise_wins( Node, Class, Alt1, Alt2, N):-

23 N= #count{ N1 :

24 nb_strict_voters(Node, Class, Alt1, Alt2 , N1),

25 nb_strict_voters(Node, Class, Alt2, Alt1 , N2),

26 belongs(Node, Child, Class), N1>N2},

27 childrenClass(Node, Class), alt(Alt1), alt(Alt2).

28



CHAPTER 5. ETHICAL COMPLIANCE 75

Parent Node Preferences

Privacy sys3 > sys1 > sys2

User Fairness sys1 > sys2 ∼ sys3

Fairness sys1 > sys3 > sys2

Root(1) sys1 ∼ sys3 > sys2

Root(2) sys1 > sys3 > sys2

Root(3) sys1 ∼ sys3 > sys2

Root(4) sys1 > sys2 ∼ sys3

Table 5.4: Preference of the parent nodes

29 nb_strict_voters(Node, Class, Alt1, Alt2, N):-

30 N = #count{ Child :

31 pref(Child, Alt1, Alt2),

32 not pref(Child , Alt2, Alt1),

33 belongs(Node, Child, Class) },

34 childrenClass(Node, Class), alt(Alt1), alt(Alt2).

The resulting orders based on the specified settings are shown in Table 5.4.
As mentioned previously, we consider several cases for the root node in order to
highlight the difference in the aggregation result. This shows our framework’s
ability to take into account contextual preferences on moral values.

When all root children are equally important as in the case of root (1) Sys1 or
Sys3 are the best systems, and Sys2 is ranked lower. When fairness is superior
to privacy and that is superior to performance, Sys1 is the first winner. In case
of Root(1) the orders are obtained by collective voting of all moral values, but
in case of Root(2) the orders of the dominant voter, i.e., fairness, are lexically
preferred to privacy and performance. The other results can be interpreted in
the same way.

Our framework can consider the contextual nature of ethical decision-making
by considering various specifications as a priority relation among values. For
example, in a healthcare scenario, we may wish to prioritize performance over
privacy, but in a marketing context, we tend to prioritize privacy over perfor-
mance.

5.2 Discussions

The proposed model for ethical evaluation provides an explicit representation
of ethical considerations in terms of moral AI values, clarifies the interpreta-
tion of these values, and can take their importance into account by prioritizing



CHAPTER 5. ETHICAL COMPLIANCE 76

them. An advantage of our model is that orders are obtained by rules of logical
aggregation through a reasoning process, which is essential in ethical decision
making. Our framework can also serve as a utility function for modeling conse-
quentialist theories. One of the future works is designing an ontology to collect
the principles and prescriptions in AI ethics guidelines, which can cover a broad
range of moral values.



Chapter 6

Legal and Ethical
Compliance

A Data Processing Use
Case with Real-time
Execution

77



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 78

In the previous contributions, we developed legal and ethical compliance
models separately. In this chapter, we investigate the issue of both legal and
ethical compliance together. An important question is how an agent’s actions
can be legal and ethical? Although law and ethics overlap on many norms, they
are not always the same. There maybe actions that are considered ethical but
not legal, or vice versa. In these cases, a conflict between legal and ethical norms
occurs. Addressing these challenges in general is challenging. We need to specify
the interaction between legal and ethical compliance to identify the possible
conflicts in the compliance checking process. We limit our focus to cases where
conflicts between legal and ethical norms do not occur. We suppose that the
deontic ethical rules are already reflected in the law, and therefore a legal option
is also ethically permissible. However, our concern is what alternative is the
best among the compliant ones? Here, legal norms can be seen as admissibility
criteria, and ethical norms as maximization criteria. We adopted this view in
this contribution, i.e. legal norms are seen as hard constraints that must be
satisfied, and ethical norms as soft constraints that should be satisfied as much
as possible. However, integration of the two components with planning in a
single architecture is a challenge.

In this chapter, we propose a model to integrate legal and ethical compliance
in an online HTN planning (cf. Section 3.2.2) architecture. In this architecture,
legal and ethical compliance is integrated in a modular way. HTN planning
handles both planning and execution and reacts to exogenous changes in the
environment while executing a plan. An advantage of this formalism is that it
enables real-time compliance checking. This contribution was made in collabo-
ration with other researchers, and the resulting work was published in RuleML
challenge [93] and in the VECOMP workshop [94].

This chapter is organized as follows. Section 6.1 presents the proposed ar-
chitecture. In Section 6.2 we explain the use case model that is used as a
demonstration. Sections 6.3, 6.4, and 6.5 describe the planning, legal compli-
ance, and ethical evaluation components, respectively. In Section 6.6 we explore
some real-time execution scenarios. Section 6.7 discusses the findings and future
research directions.

6.1 Architecture Review

The overall architecture is composed of three principal components, namely,
planning and execution, legal compliance checking, and ethical evaluation. These
components and the interaction between them are illustrated in Figure 6.1. The
planning and execution component is based on an online HTN planner. Gen-
erate plans based on beliefs or facts in the specified domain and execute these
plans. This component perceives and records changes in the operating environ-
ment and is able to update beliefs and perform replanning. The legal compli-
ance component checks the validity of the generated plans and filters out illegal
plans. The ethical checking component then receives legal plans as input, orders
them according to some specified ethical setting, and selects the best one to be



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 79

executed.

Figure 6.1: Overall system architecture

Given a task ( 1○), the planning component generates a least-cost plan using
the best-first search. The legal compliance component receives the plan as input
( 2○) and checks it and sends the compliance state of the plan back to the planner
( 3○). This process is repeated ( 2○- 3○) until a maximum number of legal plans
are obtained. These plans are then fed into the ethical evaluation component
( 4○) where they are ordered, and the best plan is sent to the planning component
( 5○). This component executes each action in the selected plan using the action
executor ( 6○), and communicates the effects or any unexpected changes to the
planning component ( 7○). The belief set in the planning component is then
updated according to the communicated results. The belief updates might affect
the possible plans or their legal/ethical evaluations, in this case a replanning is
triggered ( 2○- 5○).

6.2 Use case model

In order to show the characteristics and efficiency of our proposed approach,
we apply it in a data transfer and processing situation. A similar use case
model has been used in Section 4.1.1 as a demonstration of GDPR compliance
of data processing. The model mainly includes multiple nodes that are used to
transfer or process data and are connected as illustrated in Figure 6.2. Each
node represents a section of a corporation that is located at a different location,
which may be within the EU or outside the EU. Node 4 (marked as a square)
is the central node that serves as a cloud server to process data for different
purposes. Other nodes (marked as circles) are used to store and transfer data.



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 80

In this use case, users’ personal data are stored in circle nodes. Different sections
may ask to apply a processing on data and receive the output of the processing
at their corresponding node.

•2

•1 •3

■4

•6 •5

•7

Figure 6.2: Nodes and connections in the network

In order to perform a task, the system locates the data, transfers them to
the processing node, and applies a process with the corresponding purpose. Af-
ter processing personal data, the system delivers the output to the requested
node. The planner in our architecture generates possible plans to satisfy the
given task, i.e. the possible paths to transfer data and process them in the net-
work. Each possibility represents different behaviors of the system. According
to this architecture, these behaviors are verified by the legal checker for any in-
fringement of the (modeled) regulations. The legal checker rules out the illegal
plans, and the remaining plans are ordered by the ethical checker based on their
alignment with the ethical values (cf. Chapter 5).

There is additional information on this use case that enables testing our
architecture in different scenarios. Table 6.1 shows the information on the nodes.
The region is the location of each node. Since our focus is particularly on GDPR,
the regions are categorized as EU and NonEU. The region of the node is used in
the legal verification process. Transferring personal data outside the legislative
zone may have ethical implications for data subjects; it is also used in the
ethical verification process. The safety level corresponds to the safety protocols
supported by each node that can be high, medium, or low. Transferring data
through more secure nodes is necessary to avoid any possible breach that harms
user privacy. Thus, it is important in ethical checking process. The occupancy
level indicates whether a node is busy. It is used to minimize data management
time and improve the overall efficiency of the system.

Table 6.2 shows the processing available to apply on personal data. It in-
cludes information on the location of processing that is node 4 and the purpose
that is recommendation for all processing in this case. The bias level shows the
extent to which a processing can be biased with respect to a certain group. We



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 81

Node Region
Safety
Level

Occupancy
Level

1 EU medium normal

2 non EU medium normal

3 EU medium busy

4 EU high busy

5 E high normal

6 EU low busy

7 non EU high normal

Table 6.1: The attributes of each node

show this simply by positive integers. Each processing requires certain cate-
gories of data which are indicated by a list and the category name, e.g. c1, c2,
etc. Some of the categories are considered sensitive.

Processing Location Purpose
Bias
Level

Required
Categories

P1 node 4 recommendation 2 [c1,c2,c3,c4]

P2 node 4 recommendation 1 [c2,c3,c5]

P3 node 4 recommendation 3 [c1,c3,c6,c7,c8]

Table 6.2: The information of available processing

Last but not least, Table 6.3 shows information on personal data. This
includes their corresponding category, the node on which the data are stored,
and the data subject who is the owner of the personal data.

Data Category
Storage
Location

Owner

du11 c1 node 1 user 1

du12 c2 node 1 user 1

... ... ... ...

du27 c1 node 2 user 2

du28 c2 node 2 user 2

Table 6.3: The information on personal data

6.3 Planning Component

The planning component uses the online HTN planning algorithm described in
Section 3.2.2. Given a specification of the planning domain described in the
previous section, this component generates a sequence of data operations to



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 82

perform a task. This component also monitors the execution of a plan and
can modify it based on exogenous changes in the environment. The domain
specification includes primitive and abstract tasks, as well as the belief set,
which represents facts and fluents in the domain.

6.3.1 Belief Set

The belief set in our use case domain includes the information about nodes,
processing, and data. part of the belief set used to represent this information
in Prolog are discussed in this section.

Nodes The nodes and their connections are represented using the predicate
arc/2. The predicate connected/2 indicates that each arc among two nodes is
bidirectional. Information about the region in which a node is located is also
represented using the predicate nodeRegion/2. The region of a node indicates
above all the legislative zones, as processing and transferring personal data to
other regions may pose legal and ethical issues, therefore it needs to be checked.

1 belief(arc(node1,node2)).

2 ...

3 belief(arc(node2,node3)).

4 ...

5 belief(arc(node4,node7)).

6

7 belief(connected(Node1,Node2),[arc(Node1,Node2)]).

8 belief(connected(Node2,Node1),[arc(Node1,Node2)]).

9

10 belief(nodeRegion(node1,nonEu)).

11 ...

12 belief(nodeRegion(node3,eu)).

13 ...

14 belief(nodeRegion(node5,eu)).

The efficiency of data transfer depends on the occupancy and safety of the
nodes that are shown, respectively, using the predicates nodeOccupancy/2 and
nodeSafety/2. Occupancy of a node could be normal or busy, and the safety of
a node is a dynamic fluent that can take values low, medium, or high depending
on the safety protocols and security conditions of a node.

1 belief(nodeOccupancy(node1, normal)).

2 ...

3 belief(nodeOccupancy(node6, busy)).

4

5

6 belief(nodeSafety(node1, med)).

7 ...

8 belief(nodeSafety(node4, high)).

9 ...

10 belief(nodeSafety(node6, low)).



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 83

Personal Data The company is using personal data in order to generate
job recommendations for the users, we show a set of personal data as a list
in Prolog. The node in which dataset are stored is represented by dataSetAt

↪→ /2, for example, dataSetAt([du11,du12,du13,du14], node_user1) means that
the dataset which contains personal data du11,du12,du13, and du14 is located
in node_user1. in addition to the storage location, we also need information on
the data categories shown by dataCategory and whether a certain category of
personal data is sensitive or not, shown by categoryType. This knowledge may
be essential for legal and ethical evaluations in our architecture.

1 belief(dataSetAt([du11,du13,du16,du17,du18], node_user1)).

2 belief(dataSetAt([du11,du12,du13,du14], node_user1)).

3

4 belief(dataCategory(du11, c1)).

5 belief(dataCategory(du12, c2)).

6 ...

7 belief(dataCategory(du18, c8)).

Processing Each processing in this use case is represented as an object lo-
cated in a certain node with a particular purpose using predicates processAt/2,
processPurpose/2. The bias measure for each algorithm is also recorded and
is shown by the predicate bias_metric/2. This knowledge is used for ethical
checking, for simplicity, we use positive integers as bias values.

1 belief(processAt(p1, node_cloud1)).

2 belief(processAt(p2, node_cloud1)).

3 ...

4 belief(processPurpose(recommendation, p1)).

5 belief(processPurpose(recommendation, p2)).

6

7 belief(bias_metric(p2, 3)).

8 belief(bias_metric(p1, 2)).

6.3.2 Tasks

Two types of tasks can be defined in the planning component, primitive and
compound tasks. Both are explained in this section.

Primitive Tasks The primitive tasks in our use case include transfer and
run. These actions are formulated in HTN and described in this section. The
action transfer transfers the data from one node to an adjacent node.

1 action(transfer(Dataset , NodeOrig, NodeDest, _),[

2 dataSetAt(Dataset, NodeOrig),

3 connected(NodeOrig, NodeDest),

4 diff(NodeOrig, NodeDest)

5 ],[

6 initiates(dataSetAt(Dataset, NodeDest)),



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 84

7 terminates(dataSetAt(Dataset, NodeOrig))

8 ]).

The above rule specifies that the preconditions of the transfer action are
dataSetAt(Dataset, NodeOrig), connected(NodeOrig, NodeDest). It also speci-
fies that the effects of the action are to initiate dataSetAt(Dataset, NodeDest)

and to terminate dataSetAt(Dataset, NodeOrig).

The action run effectuates a certain process on the specified data set with
the specified purpose. The data set must be stored at the same node as the
process. The process output, i.e. recommendations, is obtained as new data set
after the processing, and the original data is removed.

1 action(run(Process, Dataset, Purpose),[

2 processPurpose(Purpose, Process),

3 requiredDataSet(Process, Dataset),

4 dataSetAt(Dataset, Node),

5 processAt(Process, Node)

6 ],[

7 initiates(dataSetAt([output(Process,Dataset)], Node)),

8 terminates(dataSetAt(Dataset,Node))

9 ]).

The run action specifies that the preconditions of the action are that, the
data set, and the process should be at the same location and Process should be
an available processing for the specified purpose. It also specifies that the effects
of the action are to initiate dataSetAt([output(Process,Dataset)], Node) , and
to terminate dataSetAt(Dataset,Node). The other primitive action is load which
is defined in the same way. This actions load the data set from the data base
to the server.

Compound tasks multiStepTransfer is a compound task for transferring
data to a destination node in multiple steps. This task is decomposed to a
transfer action from the origin node to an adjacent node, and a multistep trans-
fer from the adjacent node to the next one, until the data is reached to the
destination node.

1 htn(multiStepTransfer(Dataset,NodeFrom,NodeTo,Purpose),[

2 dataSetAt(Dataset,NodeFrom,Purpose),

3 connected(NodeFrom,Node)

4 ],[

5 transfer(Dataset,NodeFrom,Node,Purpose),

6 multiStepTransfer(Dataset,Node,NodeTo,Purpose)

7 ]).

8

9 htn(multiStepTransfer(Dataset,Node,Node,Purpose),[

10 dataSetAt(Dataset,Node,Purpose)

11 ],[

12 ]).



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 85

This compound task requires, the data set to be located at the origin node
dataSetAt(Dataset,NodeFrom) and the adjacent node to be connected to both
the origin node connected(NodeFrom, Node).

The top-level task is to processHandling that process some users’ data for
a particular purpose. In order to perform this processing, the data set is first
loaded on a node, then transferred to the processing node, and after applying
the process, the result is transferred to the destination node.

1 htn(processHandling(User, NodeTo, Purpose),[

2 availableProcess(Purpose, Process),

3 processAt(Process, NodeProcess),

4 requiredDataSet(Process, User, Dataset),

5 contains(Database, Dataset),

6 dataBaseAt(Database, NodeOrig)

7 ],[

8 load(Dataset, NodeOrig, Purpose),

9 multiStepTransfer(Dataset, NodeOrig, NodeProcess, Purpose),

10 run(Process, Dataset, NodeProcess, Purpose),

11 multiStepTransfer([output(Process, Dataset)],NodeProcess, NodeTo,

↪→ Purpose)

12 ]).

In order to perform this task, a processing must be available for this purpose
on a certain node availableProcess(Purpose, Process), processAt(Process,

↪→ NodeProcess) on the one hand, and on the other hand, the required data set
to perform that process must be stored on some node’s database.

6.3.3 Planning Example

Here, a simple example of planning is presented. The objective task is to process
the data set of the user u2 for the purpose of the ”recommendations”, and deliver
the result at ”node 5”. This objective is represented as the task processHandling

↪→ (u2, node5, recommendation). Then, the planner, decomposes this task to
executable actions.

The dataset of the user u2 is saved in a database at node 2. The objective
task is decomposed in the following way.

1. load the required data at node 2

2. transfer data through node 1 or 3 to node 4

3. run the selected process(P1/P2/P3) on data set

4. transfer the output to node 5 through node 3 or 7

Each choice of the processing and the transfer path leads to a different plan.
These plans are shown in Figure 6.3.

Here there are 4 pathways and 3 processing, so 12 possible plans are gener-
ated. An example of a plan is the following.



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 86

•2

load

��
transfer

��

transfer

��
•1

transfer --

•3
transfer

yy
transfer

��

■4

runP1/P2/P3

��
transfer

::

transfer

%%

•6 •5

•7
transfer

FF

Figure 6.3: Examples of possible plans

1 load( [du21,du22,du23,du24], node2,recommendation),

2 transfer( [du21,du22,du23,du24],node2, node1,recommendation),

3 transfer( [du21,du22,du23,du24],node1, node4,recommendation),

4 run( p1, [du21,du22,du23,du24], node4, recommendation),

5 transfer( [output(p1,[du21,du22,du23,du24])], node4, node7,

↪→ recommendation),

6 transfer( [output(p1,[du21,du22,du23,du24])], node7, node5,

↪→ recommendation)

This plan is shown in Figure 6.4 can be translated as:

1. load data set [du21,du22,du23,du24];

2. transfer it to node 1;

3. transfer it to node 4;

4. run the process P1;

5. transfer the data to node 7;

6. transfer the data to node 5.

6.4 Compliance Component

The compliance component verifies if a data processing sequence complies with
the specified obligations. A representation of GDPR regulations in the form of
policies is used to verify compliance. We have translated the SPECIAL policy



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 87

•2

load

��

transfer

��
•1

transfer --

•3

■4

runP1

��

transfer

%%

•6 •5

•7
transfer

FF

Figure 6.4: Example of a single plan

language (cf. 1.3.2) into Prolog in a very similar way, as in Section 4.1.3. The
compliance check process is the same as explained in Chapter 4.

Consider the example of generating recommendations for user u2 (cf. Sec-
tion 6.3.3). In this example, the user u2 has given their consent to process and
transfer their data set only inside Europe. The data category c4 is not autho-
rized to process for the purpose of recommendation. In this case, applying the
process P1 is not permitted, because c4 is among its required data categories [
↪→ c1,c2,c3,c4]. In addition, transferring data through node7 is not allowed,
because it is located outside Europe. In this case, the compliance component,
identifies and remove these plans. Here, in the same way as in Chapter 4, the
compliance component can highlight the missing obligations and requirements
of GDPR in case of non-compliance.

After the compliance checking, all plans that involve P1 as the processing
and transfer through node7 are removed by the compliance component. Here
from the total of 12 plans only 4 plans will be left. i.e. the plans that choose
either P2 or P3 and do not transfer data through node7.

6.5 Ethical Evaluation

The ethical evaluation component is responsible for evaluating and selecting
the best plan among the valid ones. The evaluation mechanism is based on the
model introduced in Section 5.1. Since in this contribution ethical norms are
considered as soft constraints, we call them soft norms instead of criteria as in
Section 5.1. In order to compare the input plans, they are evaluated according
to each soft norm. This process is depicted in Figure 6.6 These evaluations are
represented on an ordinal scale, i.e., each soft norm orders the plans according to



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 88

•2

load

��

transfer

��

missing: Data
subject’s consent

yy

��

•1

transfer --

•3

■4

runP1

��

transfer

%%

•6 •5

•7
transfer

FF

Figure 6.5: Compliance checking

its underlying criteria. After ordering plans according to multiple soft norms,
they need to be aggregated to in order to select the best plan. We consider
two types of aggregation behavior. An order may be superior to another; in
that case, the aggregated order is similar to the superior one, and the inferior
order is only taken into account when two alternatives have an equal order i.e.
lexicographical ordering. When two (or more) orders can be compromised, they
are seen as votes and aggregated by a (suitable)voting rule. Finally, all orders
can be aggregated by specifying the superiority and compromise relationship
among soft norms. The ethical evaluation component select the best plan by
identifying which one is more aligned with the given specification of values.

Plans Best PlanEthical Ranking

Rankings for all
Norms

Plan Ordering Aggregation

Soft Norms

Figure 6.6: Ethical evaluation process

The ethical evaluation component uses domain knowledge to order plans
and identify the best one. It takes as input a list of legal plans and orders
them according to the specified soft norms. The orders can be seen as the votes



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 89

of each norm on the input plans. The soft norms used in our use case are
indicated below. These norms concerning processing of personal data are partly
taken form AI ethics guidelines (cf. Section 2.1).

• Number of categories: Using fewer personal data categories respect the
privacy of the user.

• Number of sensitive data: Using less sensitive data avoids risks to the
privacy and safety of the user.

• Transfer regions: Avoiding transfers outside the legislative zone protects
personal data and the user’s safety.

• Node safety: using safer nodes respect the safety of the user personal
data and minimize the risk of any breach.

• Occupancy level: Using less busy nodes increase the efficiency of data
transfers and help increase the overall quality of the service.

• Algorithmic bias: Using processing that is not or less biased toward any
group is more fair.

Having specified all soft norms, the ethical evaluation component, first, or-
ders the plans according to each norm. Then these orders are aggregated ac-
cording to the given specification. The aggregation process is similar as Section
5.1.

Some examples of the specifications are represented in the following. Norms
that have equal importance represent a class and are noted by {.}. among the
classes, there is superiority relationship that is indicated by >.

1. {nodeSafety} > {nbSensitiveData, algoBias} >
{occupancyLevel, nbNonEU, nbDataCat}

2. {nodeSafety} > {nbSensitiveData} > {algoBias} >
{nbNonEU} > {occupancyLevel} > {nbDataCat}

In the first specification there are 3 classes; orders in each class are considered
as votes and are aggregated using Copeland’s rule. Then the alternatives, i.e.
plans are ordered logically according to votes of each class (cf. Section. 5.1).

In the first specification, nodeSafety has the highest importance than any
other soft norms. The next class includes nbSensitiveData and algoBias. That
means their corresponding orders over plans are to be aggregated using Cop-
land’s rule. Similarly, the vote of this class is strictly superior to the class
{occupancyLevel, nbNonEU, nbDataCat}. In the second specification all norms
are set in separate classes that ordered plans according to the superiority order.

Contrary to Section 5.1, here we adopted a special case of the pluralist utility
model; only with the root node. In other words, we don’t consider hierarchical
aggregation process in this section. Although this method is more expressive,
once the norms are identified, any reasonable aggregation could be applied. An
advantage of aggregating orders in this way is that it allows comparing different
soft norms (criteria) from other nodes.



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 90

6.6 Real-time Execution

In this section, we explain in two example scenarios. How a plan is executed
and how the planner reacts to the changes in the environment. Especially the
changes that affect compliance and ethical evaluation of plans.

6.6.1 Scenario I

This scenario aims to show how the system would react to the physical changes in
the operating environment, that is, the use case of connected networks explained
in Section 6.2. The objective is to process the personal data of the user u1 for
the purpose of recommendation. The data is initially stored in a database at
node 2 and the output of the processing is also requested at the same node. The
initial selected plan is to transfer the data through node 1 to node 4, apply the
processing p2, and transfer the output back to node 2 via node 1. As shown in
Table 6.1, node 1 and node 3 have the same values for every attribute except
occupancy level, where node1 is less busy than node 3; therefore, node 1 is
selected in the initial plan. During execution, when the data are loaded from
the database, the system realizes that node 1 is suddenly deactivated. The
planner would do a replanning and select node 3 as intermediate to send data
to node 4 and apply the processing, and transfer it back via node 3 again. After
applying the selected processing, the system recognizes that node 1 has been
reactivated. It takes into account the new change by forming a replanning from
the current state and chooses node 1 again as the intermediate node.

6.6.2 Scenario II

This scenario shows how the system would react to changes that affect the ethical
evaluation. The task given in this scenario is to use the personal data of u1 to
create recommendations and deliver the result at node 5. u1’s data is stored at
node 1. In order to perform the task, the planner transfers personal data from
node 1 to node 4 to run the selected process and choose an intermediary node
between node 3 or 7 to deliver the result to node 5. Since the safety level of
node 7 is higher, the ethical checker initially selects the plan that transfers data
through this node. However, while executing this plan, the system realizes that,
due to some external incidents, the safety level of node 7 has changed to low.
A re-evaluation is then initiated by the system, and the ethical checker selects
the path that passes through node 3, because it is safer. In this scenario, the
physical constraints are fixed; however, the properties which affect the ordering
of the ethical checker, and consequently the selected plan, are changed. The
re-evaluation process shows the functionality of our proposed architecture, and
the ethical checker component in similar situations.



CHAPTER 6. LEGAL AND ETHICAL COMPLIANCE 91

6.7 Discussions

The objective of this contribution was twofold; the first was to bring together the
previous contributions to legal and ethical compliance in a single architecture.
The second was to design a system that can handle compliance check in real
time. These objectives were fulfilled in the proposed architecture. We used an
on-line HTN formalism that cannot deal with changes and compliance issues in
real-time. Extensions of this work are also published in collaboration with other
researchers. In [94] the communications between components are improved so
that the system could operate more efficiently. In another work, this architecture
is implemented in distributed mode.

Some perspectives remain to be explored in future work. Analyze the com-
putational complexity of the proposed architecture and optimize the underlying
algorithms to improve efficiency. A way to improve efficiency in the implemen-
tation of the proposed model is to consider legal obligations as preconditions
of actions. In this way, we can avoid generating illegal plans. However, since
examining the legal checking process was in our interest, the legal compliance
module was implemented separately in the current work. Another work could
be considering more computationally efficient ways to aggregate orders in the
ethical evaluation component and to design an ontology to collect the principles
and prescriptions in AI ethics guidelines. A better way to support real-time
compliance is to adapt the compliance components to deal with incomplete in-
formation.

One of the drawbacks of the proposed architecture is that, since the legal
compliance and ethical evaluation components are performed in two separate
steps, some interactions cannot be modeled. This is based on the view that
whatever is considered legal is also ethical, which may not always be the case.
The ethical evaluation component is only viewed as an optimization step, rather
than as a verification of permissibility or compliance. In other words, ethical
norms are integrated as soft norms, and it is assumed that the hard ethical
rules are already reflected in law. This is not always the case, and there may
be ethical rules in conflict with legal norms. This distinction between legal and
ethical norms is useful in the implementation phase; however, it does not reflect
the difference and similarities between law and ethics. In the next chapter, we
proposed an architecture for a new use case that integrates both components
on a single component that can interact more efficiently.



Chapter 7

Unified Legal and Ethical
Compliance

An Automated Delivery
System for Health Care
Items

92



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 93

In Chapter 6 we integrated both legal and ethical compliance in a plan-
ning architecture. In the proposed architecture, legal norms were represented
as hard constraints, and ethical norms as soft constraints. This is based on the
assumption that hard ethical norms are already reflected in the law. From a
more fundamental point of view, legality means that an act is in accordance
with the law, and ethics is about concepts of right and wrong behavior. Al-
though in many cases the legal and ethical judgments coincide, they also differ
fundamentally. For example, testing medicines on animals, cutting an old tree,
or eating meat is considered legal in many countries, but some people believe
that they are not ethical. There are also actions that may be ethical but not
legal, for example, stealing medicine to save someone’s life or passing the red
light on a quiet street. Moreover, certain laws do not have anything to do with
ethics. For example, the law prescribes driving to the right in France and to
the left in England. Although these laws prevent chaos on the roads, they have
nothing to do with ethics. Although considering legal norms as hard and ethical
norms as soft constraints is useful in selecting the best compliant option in many
cases, it does not support hard ethical norms. In addition, viewing ethics as
soft constraints means that the model does not capture conflicts between legal
and ethical norms.

In this contribution, we explore a new architecture for integrating legal and
ethical compliance. Instead of treating legal and ethical norms differently in
separate components, we merge them in a single component. In other words, we
have a single norm repository where they are divided into soft or hard norms.
This model allows for the representation of hard ethical norms on one hand
and solving the conflicts between legal and ethical norms on the other. In the
proposed architecture, a series of combinatorial choices should be made in a
heuristic used for planning. Then a compliance check component reviews all
the options and selects the best compliant one. Two kinds of norms can be
modeled in this architecture, namely absolute and relative. Absolute norms are
equivalent to hard norms, and a violation of an absolute norm deems an action
impermissible or non-compliant. Relative norms have a comparative norm that
helps to identify the best aligned option. Relative norms are equivalent to soft
norms.

In order to test this method of integration, we applied it in the use case of an
autonomous delivery system in health care. The use case is a realistic model in
which the system should automatically make series choices, including planning
to fulfill the receiving demands. The system may face different dilemmas where
hard ethical and legal norms are in conflict. We also introduce a relaxation
mechanism that can be used to solve certain dilemmas. This problem is for-
mulated in ASP, and event calculus is used as a planning formalism. The full
implementation codes are available in Appendix C.

This chapter is organized as follows, in Section 7.1 we describe a case study
that is used to explain the new architecture. Section 7.2 presents a brief overview
of the overall architecture. In Section 7.3 we describe the heuristics used for
task assignments and planning. Section 7.4 presents the compliance component
in the proposed architecture. Finally, in Section 7.5, we discuss the findings and



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 94

future perspectives.

7.1 Use Case Model

The use case model describes a demand-delivery system in healthcare through
autonomous vehicles. Demands are made for certain resources at different lo-
cations. Resources may include medicine, medical equipment, and organs in
rare cases. This use case has applications in smart cities and logistics. There
are currently well-known companies that have deployed such delivery systems
in limited cases and are making experiments and investments to further develop
them. In this use case, a system operates several autonomous agents, including
autonomous vehicles or drones. The system receives requests from various parts
of a city and has to manage the demands, assign tasks to agents, and plan a
route for them. The system is subject to multiple legal and moral norms that
must be respected to ensure its ethical and legal use. To force the system to
respect these norms, we first propose a way to express each norm. We introduce
two types of norms, absolute and relative. Absolute norms are hard constraints
that must be respected by the system, and relative norms should be respected
but can be compromised and traded off by other norms. Absolute norms refer
to an obligation or prohibition, and relative norms refer to a precautionary rule
to reduce harm or increase a benefit. The system has a compliance mechanism
to check the compliance of system behavior and choose the best one considering
moral criteria. The system may also face dilemmas, from a compliance checking
point of view, which means that there are no compliant plans; however, in an
emergency mode, we would like the system to select a plan by relaxing certain
prohibitions.

7.2 Model Components

Here, we describe each component of the use case model and the knowledge used
in each part. The system takes as input a set of demands and gives as output a
combination which includes a resource assigned to each demand, a delivery task
assigned to each agent, and a planned route for that agent. The components of
the system and each of their input and interactions are represented in Figure
7.1

7.3 Planning Component

The planning module is made up of 3 components in a heuristic way. The first
component is resource allocation, then demand assignment and at the end route
planning. These components assign resources to the received demands and then
assign delivery tasks to an agent. The route planning component plan a route
for each agent in order to perform its delivery task. Each component is described
in detail in this section.



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 95

Resource
Allocations

Resources

Allocations Demand
Assignment

Agents

Route
Planning

Nodes

Assignments

Actions, Event
Axioms

Routes

Normative
Assesment

Norms
Absolute
Relative 

Violations,
Orders

Filtering,
Aggregation

Compliance
Settings

Selected
Combination

Demands

Plannig H
euristics

C
om

pl
ia

nc
e 

C
he

ck
in

g

Knowledge
Base

Process

Output

Axioms

Figure 7.1: Modules in autonomous delivery system.

7.3.1 Resource Allocation

This component takes as input the demands and the resource database and
assigns a resource to each demand. In this use case, each demand is made
for a single resource, and the resource allocation module basically generates all
possible ways the demands can be allocated. If there are sufficient resources,
the assignment would be one-to-one; otherwise, if there is only a single resource
and several demands have been made for that resource, this module generates
all possible assignments.

1 insufficientResource(Resource):-

2 demandedResource1(Demand, Resource),

3 demandedResource1(Demand1, Resource),

4 Demand !=Demand1.

5

6 sufficientResource(Resource):-

7 not insufficientResource(Resource),

8 resource(Resource).

9

10 allocatedResource(Resource, Demand):-

11 demandedResource1(Demand, Resource),

12 sufficientResource(Resource).

13

14 {allocatedResource(Resource,Demand)}:-

15 demandedResource1(Demand, Resource),

16 insufficientResource(Resource).

17

18 :- allocatedResource(Resource,Demand1),

19 allocatedResource(Resource,Demand2),

20 insufficientResource(Resource),

21 Demand1!=Demand2.

22



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 96

23 :- not allocatedResource(Resource,_),

24 insufficientResource(Resource).

Listing 7.1: Resource allocation module

The list 7.1 is the resource allocation program; A resource is insufficient
if there are more than two demands for it (line 1); otherwise, that resource
would be considered sufficient (line 6). Each sufficient resource will be assigned
to its corresponding demand. In case of insufficiency, we use a Choice rule
to generate all possible allocations (line 14). There are two cases among all
possible allocations that are not desired, and we use integrity rules to remove
them. The first is the case where an inadequate resource is allocated to more
than two demands (line 18), and the second is the case where an insufficient
resource is not allocated to any demand (line 23). This allocation mechanism
is useful when the system faces a scarcity of resources, and by generating all
possible cases allows examining which one is more compliant.

As an example, consider 3 demands d1, d2, d3 that are made, respectively,
for resources r1, r2, r2, as illustrated in Figure 7.2. In this case, r2 is an insuffi-
cient resource. Thus, there will be two possible allocations in which r2 is once
allocated to d2, and in the other it is allocated to d3.

d1 // r1

d2
))
r2

d3

55

Demands

Allocations+3

r1 // d1

d2

r2

55

d3

Allocation(1)

r1 // d1

d2

r2
))
d3

Allocation(2)

Figure 7.2: Resource allocation example

7.3.2 Demands Assignment to Agents

After the resource allocation step, the delivery task for demands with an allo-
cated resource is assigned to the available agents. Demand assignment takes as
input the allocations and information about the agent and generates all possible
assignments. For simplicity, we assume that agents could perform only a single
task, i.e. carry a single resource at a time. Furthermore, the agent’s initial
location is at the same place where the resources are stocked. Listing 7.2 shows
the demand assignment program in ASP.

1 {assignedDemand(Demand,Agent)}:-

2 allocatedResource(_, Demand),

3 agent(Agent).

4

5 :- assignedDemand(Demand,Agent1),

6 assignedDemand(Demand,Agent2),

7 Agent1!=Agent2.



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 97

8

9 :- not assignedDemand(Demand,_),

10 allocatedResource(_, Demand).

Listing 7.2: demand assignments to agents

To obtain all possible assignments, we use a choice rule that assigns an agent
to every demand to which a resource is assigned (line 1). Among the possible
answers, it is not desired that a demand is assigned to several agents or that a
single demand with an allocated resource is left unassigned. We use integrity
rules to remove these cases, respectively, at lines 5 and 9 of the Listing 7.2. As
an example, consider the allocation (1) in Figure 7.2, in which d1 and d2 are
allocated a resource but d3 is left unallocated. Suppose that we have 2 agents
available a1, a2, then the assignments will be as in Figure 7.3

d1 // a1

d2 // a2

Assignment(1)

d1 // a1

d2

55

a2

Assignment(2)

d1
))
a1

d2 // a2

Assignment(3)

d1
))
a1

d2

55

a2

Assignment(4)

Figure 7.3: Demand assignment example

7.3.3 Route Planning

In this section, we describe the route planning process. After assigning the de-
livery tasks, a route is planned for each agent with a delivery task. This process
takes as input knowledge about the nodes and their connections, the specified
actions of the agents, and the axiomatic formalization for handling actions. For
the latter, we have made use of event calculus, a well-known formalism for han-
dling events and their effects, which is also used for planning. When there is
more than one agent with an assigned task, since there are no assumed inter-
actions between the agents, we plan the route for each one independently. It is
also possible that more than two tasks are assigned to a single agent, in this case
since we suppose that the capacity of each agent is one, i.e. only one resource
can be delivered at a time, the agent is expected to deliver one of the resources,
move back to the stockroom to take the other resource and deliver it.

Agents can perform several actions, e.g. board, move, and deliver. boarding
means to pick up a resource and embark it in the vehicle; moving means going
from one node to the other; and delivering means to disembark the demanded
resource at a demanded location. We represent the variant state of the world
by fluents which are used to check for the preconditions and apply the effects of
a certain action after performing it. These preconditions and effects are noted
in Table 7.1.

As stated in Table 7.1, to perform the action board(Agent, Resource, X),
the agent’s repository must be empty empty (Agent) and must be in the same



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 98

Action Preconditions Effects

board(Agent,

↪→ Resource, X)

resourceAt(Resource

↪→ , X)

agentAt(Agent, X)

empty(Agent)

onBoard(Resource, Agent)

neg(resourceAt(Resource, X))

neg(empty(Agent))

move(Agent, X, Y) agentAt(Agent, X)
agentAt(Agent,Y)

neg(agentAt(Agent, X))

deliver(Agent

↪→ ,Resource,

↪→ Demand,X)

agentAt(Agent, X)
demandAt(Demand,

↪→ LocX)
onBoard(Resource,

↪→ Agent)

delivered(Agent,Resource,

↪→ Demand)

empty(Agent)

neg(onBoard(Resource, Agent))

Table 7.1: Actions’ preconditions and effects

location as the resource represented by the fluents resourceAt(Resource, X)

↪→ and agentAt(Agent, X). when a board action is performed, as an effect
onBoard(Resource, Agent) will hold afterward. The predicate neg/1 is used to
represent the negative effects, i.e. the effects that will no longer hold after per-
forming an action. Here neg(resourceAt(Resource, X)) and neg(empty(Agent))

indicate that after boarding, a resource will not be at its previous location and
the agent’s repository will no longer be empty. The other actions and their
preconditions could be described in the same way.

For every agent, the planner takes as input its assigned task and finds the
shortest possible sequence of actions that satisfy the associated demand(s). The
objective of the planning process is represented as a goal state in ASP and
the Event Calculus formalism, as in the Listing 7.3. It states that for every
assignment of demand to an agent that asks for a certain resource, that resource
must be delivered by that agent before the maximum time step. The algorithm
for finding the sequence of actions that satisfy the given goal in the shortest
possible time step is shown in Algorithm 1.

1 :- not holds(delivered(Agent, Resource, Demand), maxtime),

2 assignedDemand(Demand, Agent),

3 demandedResource(Demand, Resource).

Listing 7.3: The goal state

For example, in assignment (1) in Figure 7.3, demand d1 is assigned to a1
and the resource r1 is allocated to this demand according to allocation (1) in
Figure 7.2. Thus, the associated task of the agent a1 is to provide the resource
r1 and satisfy the demand d1. We suppose that the system is operating on a
simple map with 4 nodes that are connected to each other as in Figure 7.4, this
knowledge is represented in the ASP as in Listing 7.4.

1 location(locA;locB;locC;locD).

2 connected(locA, locB).



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 99

Algorithm 1 Planning algorithm

for every agent a do
if a has a delivery task then

t← 1
while Goal not satisfied do

Generate a plan to achieve the goal state in t steps.
t← t+ 1

end while
end if

end for

•B

•A

•D

•C

Figure 7.4: Map of the nodes

3 connected(locA, locC).

4 connected(locB, locD).

5 connected(locC, locD).

6

7 connected(X,Y):- connected(Y,X).

Listing 7.4: Nodes and connections

Agent a1 and resource r1 are initially in location A and r1 are asked in
location D, that is, d1 is initially at location D. These fluents are represented,
respectively, by initially ( agentAt(r1, locA)), initially (resourceAt(r1

↪→ , locA)) and initially (demandAt (d1, locD)). The planner would then
generate two possible sequences of actions, each with a different route that
satisfies the demand d1. These plans are shown in Listing 7.5 using the predicate
perform/2 which shows the action that must be performed in each time step. A
graphical representation of these plans is illustrated in the map graph in Figure
7.5(a).

1 %===Plan 1

2 performs(board(a1,r1,locA),0).

3 performs(move(a1,locA,locB),1).

4 performs(move(a1,locB,locD),2).

5 performs(deliver(a1,r1,d1,locD),3).

6

7 %===Plan 2

8 performs(board(a1,r1,locA),0).

9 performs(move(a1,locA,locC),1).



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 100

10 performs(move(a1,locC,locD),2).

11 performs(deliver(a1,r1,d1,locD),3).

Listing 7.5: Possible plans for a1

When more than one delivery task is assigned to an agent, as in association
(2) in Figure 7.3 the planner would also generate plans in which one resource
is delivered, and then the agent returns to the warehouse to load the other
resource and deliver it to its requested destination. This is because the agent
repository has the capacity of one; it is possible to model agents with higher
capacities; however, this is not necessary for our use case. Suppose that we have
another demand d2 at the point B that has asked for the resource r2, in this
case a possible plan would be the sequence in the listing 7.6, which is illustrated
in Figure 7.5(b). Note that this is one of the many possible plans, and other
similar plans to satisfy the same goal are also possible by choosing different
locations or order for delivery.

1 performs(board(a1,r2,locA),0).

2 performs(move(a1,locA,locB),1).

3 performs(deliver(a1,r2,d1,locB),3).

4 performs(move(a1,locB,locA),4).

5 performs(board(a1,r1,locA),5).

6 performs(move(a1,locA,locC),6).

7 performs(move(a1,locC,locD),7).

8 performs(deliver(a1,r1,d1,locD),8).

Listing 7.6: A possible plan for a1

•B

move

��•A

move

##

move

��

board��

•D
deliver

ss

•C

move
**

(a)Plannig with one task

•B��

deliver

ss

•A

move
**

move

��

board��

•D
deliver

ss

•C

move
**

(b)Plannig with two tasks

Figure 7.5: Example of plans

7.4 Compliance checking

The combination of allocations, assignments, and generated plans represents dif-
ferent alternatives in which the system can achieve its objective, that is, meet
the demands received. We anticipate that the system adheres to any applica-
ble norms that govern its functionality. Norms may have different implications



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 101

and/or nature depending on the problem of interest. In this model, we focus
primarily on norms related to morality and law. Both moral and legal norms are
imperative; in this context, moral norms correspond to regulating the system’s
behavior with regard to humans that may be affected by its actions. However,
legal norms are attributed to the system when specific conditions are met ac-
cording to certain regulations. There may be various normative behaviors that
are expected in such a system. Sometimes, the system must avoid certain ac-
tions or behaviors because they violate an obligation or infringe on a prohibition.
In certain cases, specific behaviors should be encouraged because they are more
desirable, or the system should refrain from behaviors that are less favorable.

7.4.1 Normative Assessment

To enforce such normative behavior, the system must be equipped with a compli-
ance mechanism that enables the specification and assessment of various norms.
To do so, we consider two types of norm, namely absolute and relative. An
absolute norm is a rule that refers to an obligation or a prohibition that can
be violated or complied with by an alternative. Relative norms are rules that
allow the comparison of two alternatives considering a desirable criterion. An
alternative is considered invalid or unacceptable if it violates an absolute norm;
in that sense, absolute norms can be considered as validity or hard constraints.
However, a relative norm represents prescriptive or precautionary advice to min-
imize a harm or maximize a benefit, and it states that an alternative is better
than or equal to another one according to the desired criteria. In other words,
relative norms are used to compare alternatives rather than verify their valid-
ity; thus, they can be viewed as soft constraints. Absolute and relative norms
are used to model, respectively, the deontological and utilitarianist nature of
normative decision-making.

As mentioned previously, absolute norms are modeled as hard or validity
constraints, so the system can filter out invalid alternatives that are considered
illegal or immoral when at least an absolute norm is violated. Relative norms
provide a means to compare alternatives on some scale that could be aggre-
gated. Although a comparison on different scales may be possible depending on
the problem, we utilized an ordinal scale and model the comparisons as pref-
erence relations. If an order by a relative norm prefers alternative a to b, it is
interpreted as ”everything else being equal, this relative norm prefers alterna-
tive a to b”. Orders from several relative norms can be aggregated according
to a given setting to determine the best alternative(s). Figure 7.6 illustrates
the process of normative assessment using the two types of norms. All absolute
norms must be met, and the satisfaction of relative norms should be maximized
on the basis of a given setting.

As shown in Figure 7.6 after removing the invalid alternatives, the remaining
ones would be ordered according to the relative norms and aggregated to obtain
a single order that identifies the best alternative. we will discuss the procedure



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 102

I

III

II

IV

Alternatives Valid
Alternatives

Ordered
Alternatives

Absolute Norms Relative Norms

II I
II

IV
III

III

I
IV

...

Aggregation

Figure 7.6: Normative assessment process

for the aggregation in the next section.

To show the functionality of the compliance process in our use case model,
we make more assumptions in our model and extend the knowledge base. The
system operates two types of agents, drones or autonomous vehicles, to deliver
to each resource. A specific type of agent may not be allowed to pass through or
fly over a certain location due to the municipal regulations of the city in which
the system is operating. In addition, each type has a different speed and cost
rate, which is used to calculate the duration and cost of a delivery, and that also
requires information about the distance between nodes on the map. Demands
can have different severity levels and time limits and correspond to subjects or
patients with different age categories.

This knowledge will be used in the evaluation of norm compliance.

1 %Agent’s type

2 type(a1, drone).

3 type(a2, autoBox).

4

5 %Prohibited zones

6 prohibited(drone, locB).

7 prohibited(autoBox, locC).

8

9 %Agent’s speed

10 speed(drone, 2).

11 speed(autoBox, 1).

12

13 %Distance between nodes

14 distance(locA, locB, 8).

15 distance(locA, locC, 8).

16 distance(locB, locD, 6).

17 distance(locC, locD, 4).

18

19 % Demand’s subject age category

20 ageCategory(d1, child).

21 ageCategory(d2, adult).

22



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 103

23 %Severity level of the Demands

24 severityLvl(d1, high).

25 severityLvl(d2, medium).

26

27 %Demand’s time limit

28 timeLimit(d1, 20).

29 timeLimit(d2, 30).

Listing 7.7: Additional knowledge for compliance check

Since the choices made by the system affect humans and are subject to
certain regulations, we expect its behavior to respect the moral and legal norms
specified in the compliance check process. The norms specified in this use case
model and their descriptions are listed in Table 7.2.



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 104

Norm Type Definition Description

forbiddenZone Absolute

Agents must not pass
through locations
that are forbidden
for them

This is a legally binding norm and
applies to the choice of the delivery
agent and the route planning step.

missdDemand Absolute
The system must not
miss any demand

This norm implies that the system
must choose an alternative so that
no demand is missed. This is not a
legally binding norm, but a moral
commitment of the system or the
responsible company operating it

severity Relative

Demands should be
prioritized according
to their severity or-
der, that is, a more
severe has higher pri-
ority

This is a pre-coutationary moral
norm that tk to reduce the risk
of any possible latency in delivery.
According to this relative norm, an
alternative in which more a severe
order is delivered faster has prority
over others

agePriority Relative

Demands should be
priortised according
to a predefined or-
der between age cat-
egories

This norm shows the preference of
the system over age categories as-
suming that everything else is con-
sidered equal in comparison alter-
natives. The predefined order is,
respectively, children, elderly and
middle-aged

costPriority Relative Minimize the cost

According to this norm an alterna-
tive that uses less overall cost to
meet the demands is considered to
have more benefit and therefore it
is preferable to a more costly alter-
native

Table 7.2: The specified norms

The norms stated in Table 7.2 are used as an example to show the com-
pliance check process in our model. Note that, for instance, the relative norm
agePriority is not to say that the priority order, that is, children over the elderly
and elderly over the middle-aged, is a morally acceptable order, but to show how
such kinds of moral preferences are integrated in our model. Furthermore, since
the system is running automatically and is expected to minimize the cost, it is
arguable that costPriority should not be considered a moral norm. In such a
case, we can hold two points of view; we either view it as moral criteria that is
beneficiary for some involved party, or view it as non-moral criteria that need
to be optimized along with other criteria which may be moral. We hold the first
view in this use-case model, since it suggests a unified way to handle relative



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 105

norms.

The absolute and relative norms, in Table 7.2, are represented in ASP using
the predicates absolute/1 and relative/1 as shown in the listing 7.8. In case of
forbiddenZone, the prohibition expands to every agent with an assigned demand,
which is indicated by the rule at line 1.

1 %Absolute Norms

2 absolute(forbiddenZone(Agent)):- assignedDemand(_, Agent).

3 absolute(missingDemand).

4

5 %Relative Norms

6 relative(severity).

7 relative(agePriority).

8 relative(costPriority).

Listing 7.8: Absolute and relative norms

After some auxiliary predicates and rules are defined, violations of absolute
norms and associated orders of relative norms are obtained. These violations
and orders are shown in the Listing 7.9. In the case of the absolute norms,
instead of checking the violation, we count the number violation because of a
mechanism called relation, which will be described later. The relative norms
severity and agePriority order the alternatives lexicographically based on a
predefined order of severity level and age categories.

1 %Absolute Norms

2 nbViolate(forbiddenZone(Demand), Plan, N):- nbBreachedLoc(Plan, Demand, N

↪→ ).

3

4 nbViolate(missingDemand, Plan, N):- nbMissedDemands(Plan, N).

5

6 %===== Relative Norms

7

8 pref(severity, Plan1, Plan2):-

9 lexicoPref(severity, Plan1, Plan2).

10

11 pref(agePriority, Plan1, Plan2):-

12 lexicoPref(agePriority, Plan1, Plan2).

13

14 pref(costPriority, PlanA, PlanB):-

15 overallCost(PlanA, C1),

16 overallCost(PlanB, C2),

17 C1<=C2.

Listing 7.9: Violations and orders

7.4.2 Aggregation

Violations and orders are used to find the most aligned valid alternative. An
alternative must comply with all the specified absolute norms to be considered



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 106

compliant. After this step, the orders of the compliant alternatives are aggre-
gated in order to choose the best. The aggregation process for the relative norms
is based on the voting system as explained in section 5.1.4.

When orders are aggregated using a given compliance setting, the violating
alternatives are first excluded to keep only the compliant ones. This is repre-
sented by the predicate compliant / 1 on line 1 of the Listing 7.10. After
filtering out noncompliant alternatives, we compare the alternatives and choose
the one that is preferred to every other alternative in the final aggregated order-
ing. This is indicated by the rule on line 5 and is represented by the predicate
winner/1.

1 nonCompliant(A):- criteria(C), absolute(C), nbViolate(C,A,N), alt(A), N

↪→ >0.

2 compliant(A):- not nonCompliant(A), alt(A).

3

4 loser(A):- prefRelative(B,A), compliant(A), compliant(B), A!=B.

5 winner(A):- not loser(A), compliant(A).

Listing 7.10: The best compliant alternative

The aggregation method allows you to specify various compliance settings
according to the conditions under which the system is operating. In our model,
we have introduced several absolute and relative norms. Each way of adjust-
ing the equivalency and superiority among the relative norms leads to different
settings for compliance. The flexibility of the input setting allows us to adapt
the functionality of the system to our desired behavior. When the system deals
with high-risk demands, we may prioritize harm preventive norms, e.g. severity
and age Priority over cost that is a beneficiary norm. And when the system
deals with low-risk requests, cost may be prioritized over severity and age Pri-
ority. We use a graphical representation to illustrate the input settings. Some
examples are shown in Figure 7.7. In this representation, the absolute norms
are separated with a line, the equivalent relative norms that form a class are
placed in a single column, and each class of relative norms is separated with
a dashed line. The classes on the left are considered superior to those on the
right.

As shown in Figure 7.7, in the settings(1) each relative norm forms a single
class in which, severity has superiority over age Priority and that also has a
superiority over cost. In the Settings(2) severity and age Priority are in the
same class, which means that their corresponding order will be aggregated by a
voting rule, and this collective vote has superiority over cost. In the setting(3)
all the relative norms are considered equivalent and so are in the same class.
And in the settings(4) cost is prioritized over severity and age Priority.

7.4.3 Norm Relaxation

There are situations in which no alternative is compliant, i.e. all of them violate
at least one absolute norm. Although such situations may rarely occur in a well-
deployed system, we expect it to have a mechanism to manage these situations.



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 107

missingDemand
forbiddenZone(d1),
forbiddenZone(d2),

severity agePriority costPriority

missingDemand
forbiddenZone(d1),
forbiddenZone(d2),

severity
agePriority costPriority

missingDemand
forbiddenZone(d1),
forbiddenZone(d2),

severity
agePriority
costPriority

Setting (1)

Setting (2)

Setting (3)

Absolute Relative

missingDemand
forbiddenZone(d1),
forbiddenZone(d2),

severity
agePrioritycostPrioritySetting (4)

Figure 7.7: Various settings for compliance check

For example, when there is a scarcity of resources, the system cannot avoid
missing some demand. In this case, the system is actually faced with a dilemma
between demands that can be fulfilled and those that must be skipped. Another
example is when certain demands are very urgent, so that the system’s capacity
is not enough, i.e. the agents cannot deliver them on time. In this situation,
let us suppose that there is a certain prohibited route that is taken and that
the system can meet these demands. Therefore, the system is faced with the
dilemma of violating the prohibition of the forbidden zone or the missing demand
obligation. One way to solve these dilemmas is to relax certain absolute norms,
i.e. treat an absolute norm as a relative norm. In this case, instead of checking
the violation of an absolute norm, we assign an order based on the number
of violations. The code snippet in the listing 7.11 shows how to integrate the
relaxation mechanism in the compliance check process, we use the relaxed/1

predicate to indicate the relaxation of an absolute norm.

1 pref(C, PlanA, PlanB):-

2 absolute1(C),

3 nbViolate(C, PlanA, N1),

4 nbViolate(C, PlanB, N2),

5 N1<=N2.

6

7 absolute(Criteria):- absolute1(Criteria), not relaxed(Criteria).

8 relative(Criteria):- relative1(Criteria).



CHAPTER 7. UNIFIED LEGAL AND ETHICAL COMPLIANCE 108

9 relative(Criteria):- relaxed(Criteria).

Listing 7.11: Knowledge representation

In our use case, when there is a scarcity of resources, by relaxing missig
demand obligation we can find a compromised plan. In other words, it is not
possible to fulfill all demands, but we want to fulfill as much as possible or miss
demands to a lesser extent. This is shown in setting (1) in Figure 7.8. Another
example is that the system’s capacity or the agents’ capabilities do not allow
the system to fulfill demands by choosing legal routes; in this, if the demands
are considered emergency, we may want to relax the forbidden Zone obligation.
This is shown in setting (2) of Figure 7.8

missingDemand
forbiddenZone(d1),
forbiddenZone(d2),

severity agePriority costPrioritySetting (1)

missingDemand
forbiddenZone(d1),
forbiddenZone(d2),

severity agePriority costPrioritySetting (2)

missingDemand

forbiddenZone(d1),
forbiddenZone(d2),

Figure 7.8: Relaxed settings

7.5 Discussions

One of the objectives of this contribution was to create a new architecture that
better captures the interaction between law and ethics. Moreover, we modeled
a new use case that sufficiently demonstrated the features of the proposed ar-
chitecture. This model shows that merging legal and ethical components in a
single component and categorizing them based on relativism better endorse the
dynamics between law and ethics.

The proposed architecture is a modeling of the real-world system to be able
to examine its behavior in different situations, particularly dilemmas. The com-
ponents in the planning part can be replaced by other more sophisticated mod-
ules, e.g. using another algorithm for resource allocations and a machine learn-
ing algorithm for path finding.

This contribution is at its early stage was an attempt to investigate other
architectures. Several perspectives remain to be explored; we introduced a
relaxation mechanism, but it was only tested manually. Developing a process to
automatize the relaxations should be considered in future work. In addition, we
need to test the architecture in other use cases to demonstrate its effectiveness.



Part III

Discussions

109



Chapter 8

Conclusions

110



CHAPTER 8. CONCLUSIONS 111

8.1 Summary of Findings

from a more technical point of view, the objective of this thesis was to model
GDPR compliance and ethical alignment mechanism for an agent with actions
that involve the processing of personal data. We studied this problem through-
out the presented contributions. We showed that Event Calculus or HTN plan-
ning is suitable for model data processing operations and planning. The GDPR
requirements were represented using the SPECIAL policy language. The policy
language provides a unified representation of GDPR obligations and data sub-
ject’s consent. We translated the requirements written in the OWL language,
into ASP and Prolog in order to integrate it with the planning formalism and
use it for the compliance checking of the plans.

We explored architectures to combine the components of legal compliance
and ethical evaluation with planning. Two possible ways to integrate these
components were proposed. In Chapter 6 we integrated legal norms as hard
norms and ethical norms as soft norms. For this purpose, we first developed
an ethical evaluation framework based on preference orders. This model uses
multiple criteria associated with moral values. These criteria order alternatives
and aggregate them using voting rules. An advantage of this model is that it can
be adopted in other contexts by changing the ethical specification. In addition,
using orders and intuitive voting rules for aggregation increases the expressive
power of the model.

This model is integrated with the HTN planner along with the compliance
check component. In the corresponding architecture, legal compliance has a
priority over ethical compliance because ethical norms are only used to order
plans rather than to decide whether they are morally right or wrong. Although
this method is useful in most cases, it does not capture ethical hard norms.
We then proposed a new architecture where the legal and ethical norms are
combined in a single component and integrated with the EC (cf. Chapter 7).
This architecture was tested in a use case of health care delivery system that is
different from the previous scenarios. This scenario shows that the models used
in this research are adaptable to new scenarios.

On the more philosophical side the difficulty in assigning consistent utilities
incommunsurability of values pose a major challenge especially in computational
ethics. We showed that using preferences and ordinal aggregation methods e.g.
voting systems can be useful to develop a rational decision making process. We
did not explore what kind of properties should an aggregation process have in
order to be considered rational. However, we addressed some obvious types of
irrationality, in particular in choosing the suitable voting system for aggrega-
tion. One reason why we chose Copeland’s rule in our contributions is because
of its Condorcet winner property. This property is essential to avoid cyclic
preferences, which is a paradoxical.

In addition, representing concepts such as moral values is a major challenge
for computational ethics. Values are often used for moral reasoning. It is es-
pecially used in the way humans talk about ethics. using moral values in the
reasoning process is more understandable by humans. We proposed an approach



CHAPTER 8. CONCLUSIONS 112

that can be used to represent moral values to some extent. In order to capture
the complex nature of the values, we propose a hierarchical structure in which
values are decomposed into simpler criteria. Another advantage of this repre-
sentation is that the reasoning process is more expressive. In other words, it is
clear what values are composed of in this model, in order to avoid ambiguity.
A major question was what are values composed of so that we can decompose
them? We showed that one effective ways to respond to this question is by using
AI ethics guidelines. There has been a trend of such guidelines that discuss a
variety of ethical issues related to AI systems. we adopted these guidelines in
our specific domain of study, which is personal data processing. We showed that
the criteria mentioned in these guidelines can be represented and used in the
reasoning process of AI agent.

8.2 Future Works

Although we tried to respond to the main research questions in this thesis, there
are many interesting directions that remain to be explored in the future. one
of these areas is the analysis of the efficiency and computational complexity of
planning with legal and ethical evaluations. During the experiments, we realized
that increasing the number of represented regulations for compliance checking
has a direct effect on the plan evaluations. The same result occurs when the
number of criteria increases in the list. The voting rule used to aggregate orders
is significantly important in the complexity of ethical evaluations. Condorcet
extensions are computationally more expensive because they need to compare
every possible pair of alternatives. The issue of computational complexity is
particularly important when our proposed models are applied to larger-scale
problems or used in real-world cases; however, it remains as a future work. In
addition, integration of planning with more sophisticated legal ontologies such as
LegalRuleML 1.3.1 allows covering more regulations and enables legal reasoning
with the planning agent. However, this is left for future research.

Moreover, voting rules and their application in implementing moral theories
is not sufficiently explored in this thesis. Because of the expressiveness and
intuitive process of the voting systems, they are a strong candidate to model
comparative approaches for ethical decision making. drawing parallels between
the properties of voting systems and their implications in moral decision making
could enrich this thesis to a large extent. However, this is also remains a future
work.

Another extension of the contributions made in this thesis could be dealing
with incomplete information. The frameworks proposed in this thesis deal only
with complete information. Therefore, we did not consider cases where part of
the information used for legal compliance is missing or some preference orders
in the case of ethical evaluation are incomplete. This is particularly important
when it comes to real-time legal and ethical evaluations, the agent may not have
access to some necessary information in certain time. a robust legal and ethical
framework should be equipped with mechanisms to deal with such cases.



CHAPTER 8. CONCLUSIONS 113

The next issue is uncertainty. Although we did some studies related to ethical
decision making under uncertainty [87, 147, 127, 55], this remained unexplored
in this thesis. Uncertainty in our context may be caused by the environment
in which the agent is operating or lack of certainty if a legal or ethical norm
applies in a specific case. The latter is called normative uncertainty. The issue
of uncertainty has been partially studied during this thesis; however, further
developments remain to be explored. This extension is particularly useful when
an ML algorithm retrieves certain information used for compliance checking
or ethical algorithms. Such algorithms have a large prediction capacity, but
usually have a degree of uncertainty about the output. Dealing with this kind
of uncertainty increases the adaptability of legal and ethical evaluations to more
specific or unobserved cases.

One of the avenues remained to be explored on the more philosophical side
is to model different methods discussed in value theory for rational decision-
making. These include, practical wisdom, super scales, basic preferences etc.
[128]. For example, a super scale discusses the possibility of rationally com-
paring plural values. The super scale has been discussed by philosophers in
different terms. Stocker [175] suggests that a ”higher-level synthesizing cate-
gory” can describe how comparisons are made. Chang [44] advocates that there
is a ”covering value” that makes the comparison of plural values possible. A
covering value is a more comprehensive value that has plural values as parts.
These theories seem to align well with our proposed pluralistic utility model.
For example, the specification of the preferences among values is a kind of super
scale on which we compare different values. However, we did not explore the
possible links in detail. A more in-depth investigation of these theories and their
computational modeling remain as a future work.



Bibliography

[1] Dirk Abels et al. “Train scheduling with hybrid ASP”. In: Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning.
Springer. 2019, pp. 3–17.

[2] Fran Ackermann and Colin Eden. “The role of group decision support
systems: negotiating safe energy”. In: Handbook of group decision and
negotiation (2010), pp. 285–299.

[3] Sushant Agarwal et al. “Legislative compliance assessment: framework,
model and GDPR instantiation”. In: Annual Privacy Forum. Springer.
2018, pp. 131–149.

[4] HLEG AI. “High-level expert group on artificial intelligence”. In: Ethics
guidelines for trustworthy AI 6 (2019).

[5] Algorithmic Accountability Act of 2019. S.1108, 116th Cong. (2019). 2019.
url: https://www.congress.gov/bill/116th-congress/senate-
bill/1108.

[6] Michael Anderson and Susan Leigh Anderson. “Machine ethics: Creating
an ethical intelligent agent”. In: AI magazine 28.4 (2007), pp. 15–15.

[7] Michael Anderson, Susan Leigh Anderson, and Chris Armen. “MedE-
thEx: a prototype medical ethics advisor”. In: Proceedings of the na-
tional conference on artificial intelligence. Vol. 21. 2. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999. 2006, p. 1759.

[8] Michael Anderson, Susan Leigh Anderson, and Chris Armen. “Towards
machine ethics”. In: AAAI-04 workshop on agent organizations: theory
and practice, San Jose, CA. 2004.

[9] Michael Anderson, Susan Leigh Anderson, and Chris Armen. “MedE-
thEx: Toward a Medical Ethics Advisor.” In: AAAI Fall Symposium:
Caring Machines. 2005, pp. 9–16.

[10] Grigoris Antoniou and Frank van Harmelen. “Web ontology language:
Owl”. In: Handbook on ontologies (2009), pp. 91–110.

[11] Krzysztof R Apt and Maarten H Van Emden. “Contributions to the
theory of logic programming”. In: Journal of the ACM (JACM) 29.3
(1982), pp. 841–862.

114

https://www.congress.gov/bill/116th-congress/senate-bill/1108
https://www.congress.gov/bill/116th-congress/senate-bill/1108
http://gunkelweb.com/robot-ethics/texts/toward_machine_ethics.pdf
http://gunkelweb.com/robot-ethics/texts/toward_machine_ethics.pdf
http://gunkelweb.com/robot-ethics/texts/toward_machine_ethics.pdf
http://gunkelweb.com/robot-ethics/texts/toward_machine_ethics.pdf


[12] Martin Aruldoss, T Miranda Lakshmi, and V Prasanna Venkatesan. “A
survey on multi criteria decision making methods and its applications”.
In: American Journal of Information Systems 1.1 (2013), pp. 31–43.

[13] Tara Athan et al. “LegalRuleML: Design principles and foundations”.
In: Reasoning Web. Web Logic Rules: 11th International Summer School
2015, Berlin, Germany, July 31-August 4, 2015, Tutorial Lectures. 11
(2015), pp. 151–188.

[14] Tara Athan et al. “Oasis legalruleml”. In: proceedings of the fourteenth
international conference on artificial intelligence and law. 2013, pp. 3–12.

[15] Anna Bacciarelli. “The Toronto Declaration: Protecting the right to
equality and non-discrimination in machine learning systems”. In: (2023).

[16] Kristine Bærøe, Ainar Miyata-Sturm, and Edmund Henden. “How to
achieve trustworthy artificial intelligence for health”. In: Bulletin of the
World Health Organization 98.4 (2020), p. 257.

[17] SSJA Baier and Sheila A McIlraith. “HTN planning with preferences”.
In: 21st Int. Joint Conf. on Artificial Intelligence. 2009, pp. 1790–1797.

[18] Chitta Baral. Knowledge representation, reasoning and declarative prob-
lem solving. Cambridge university press, 2003.

[19] Cesare Bartolini et al. “Towards legal compliance by correlating stan-
dards and laws with a semi-automated methodology”. In: BNAIC 2016:
Artificial Intelligence: 28th Benelux Conference on Artificial Intelligence,
Amsterdam, The Netherlands, November 10-11, 2016, Revised Selected
Papers 28. Springer. 2017, pp. 47–62.

[20] Michael Beil et al. “Ethical considerations about artificial intelligence for
prognostication in intensive care”. In: Intensive Care Medicine Experi-
mental 7 (2019), pp. 1–13.

[21] Thomas Beke. Litigation communication. Springer, 2014.

[22] Jeremy Bentham. “An introduction to the principles of morals and leg-
islation”. In: History of Economic Thought Books (1781).

[23] Fiona Berreby, Gauvain Bourgne, and Jean-Gabriel Ganascia. “A declar-
ative modular framework for representing and applying ethical princi-
ples”. In: 16th Conference on Autonomous Agents and MultiAgent Sys-
tems. 2017.

[24] Avrim L Blum and Merrick L Furst. “Fast planning through planning
graph analysis”. In: Artificial intelligence 90.1-2 (1997), pp. 281–300.

[25] Harold Boley, Adrian Paschke, and Omair Shafiq. “RuleML 1.0: the
overarching specification of web rules”. In: International Workshop on
Rules and Rule Markup Languages for the Semantic Web. Springer. 2010,
pp. 162–178.

[26] Michael J Bommarito II, Daniel Martin Katz, and Ron Dolin. “Motiva-
tion and Rationale for this Book”. In: ().

115

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f9722c3242d7a8302f8539afd717eda7ad8237dc
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f9722c3242d7a8302f8539afd717eda7ad8237dc


[27] Piero A Bonatti et al. “Machine understandable policies and GDPR com-
pliance checking”. In: KI-Künstliche Intelligenz 34 (2020), pp. 303–315.

[28] Steven J Brams. Approval voting. Springer, 2004.

[29] Felix Brandt, Vincent Conitzer, and Ulle Endriss. “Computational social
choice”. In: Multiagent systems 2 (2012), pp. 213–284.

[30] Felix Brandt et al. “Introduction to computational social choice”. In:
Handbook of Computational Social Choice (2016), pp. 1–29.

[31] Richard B Brandt. A Theory of the Good and the Right. Clarendon Press,
1984.

[32] Ivan Bratko. Prolog programming for artificial intelligence. Pearson ed-
ucation, 2001.

[33] Rachael A Briggs. “Normative theories of rational choice: Expected util-
ity”. In: (2014).

[34] Frank M Brown. The frame problem in artificial intelligence: Proceedings
of the 1987 workshop. Morgan Kaufmann, 2014.

[35] Banu Buruk, Perihan Elif Ekmekci, and Berna Arda. “A critical perspec-
tive on guidelines for responsible and trustworthy artificial intelligence”.
In: Medicine, Health Care and Philosophy 23.3 (2020), pp. 387–399.

[36] Krister Bykvist. “Moral uncertainty”. In: Philosophy Compass 12.3 (2017),
e12408.

[37] California Privacy Rights Act. California Civil Code, 1798.100 et seq.
2020. url: https://thecpra.org/.

[38] Marie Jean Antoine Nicolas de Caritat and Marquis De Condorcet. Essai
sur l’application de l’analyse à la probabilité des décisions rendues à la
pluralité des voix. 1785.

[39] Micah Carroll et al. “Characterizing manipulation from AI systems”.
In: Proceedings of the 3rd ACM Conference on Equity and Access in
Algorithms, Mechanisms, and Optimization. 2023, pp. 1–13.

[40] Center for Democracy & Technology. Digital Decisions. Online. Accessed
on 21st February 2019. url: https://cdt.org/issue/privacy-data/
digital-decisions/.

[41] Iliano Cervesato and Angelo Montanari. “A general modal framework
for the event calculus and its skeptical and credulous variants”. In: The
Journal of Logic Programming 38.2 (1999), pp. 111–164.

[42] Anirban Chakraborty et al. “A survey on adversarial attacks and de-
fences”. In: CAAI Transactions on Intelligence Technology 6.1 (2021),
pp. 25–45.

[43] Ruth Chang. “Incommensurability, incomparability, and practical rea-
son”. In: (1997).

[44] Ruth Chang. “Value incomparability and incommensurability”. In: The
Oxford handbook of value theory (2015), pp. 205–224.

116

https://thecpra.org/
https://cdt.org/issue/privacy-data/digital-decisions/
https://cdt.org/issue/privacy-data/digital-decisions/


[45] Raja Chatila, Kay Firth-Butterfield, and John C Havens. “Ethically
aligned design: A vision for prioritizing human well-being with autonomous
and intelligent systems version 2”. In: University of southern California
Los Angeles (2018).

[46] Luca Chittaro, Angelo Montanari, et al. “A modal calculus of partially
ordered events in a logic programming framework”. In: Proceedings of
the Twelfth International Conference on Logic Programming—ICLP’95.
1995, pp. 299–313.

[47] William F Clocksin and Christopher S Mellish. Programming in PRO-
LOG. Springer Science & Business Media, 2003.

[48] Nicolas Cointe, Grégory Bonnet, and Olivier Boissier. “Ethical Judg-
ment of Agents’ Behaviors in Multi-Agent Systems.” In: AAMAS. 2016,
pp. 1106–1114.

[49] Alain Colmerauer. “An introduction to Prolog III”. In: Communications
of the ACM 33.7 (1990), pp. 69–90.

[50] Commission Nationale de l’Informatique et des Libertés (CNIL), Euro-
pean Data Protection Supervisor (EDPS) & Garante per la protezione
dei dati personali. Declaration on Ethics and Data Protection in Artifi-
cial Intelligence. Online. Accessed on 9th April 2022. 2018. url: https:
/ / globalprivacyassembly . org / wp - content / uploads / 2018 / 10 /

20180922_ICDPPC-40th_AI-Declaration_ADOPTED.pdf.

[51] Geoff Currie, K Elizabeth Hawk, and Eric M Rohren. Ethical princi-
ples for the application of artificial intelligence (AI) in nuclear medicine.
2020.

[52] Marina De Vos et al. “ODRL policy modelling and compliance check-
ing”. In: Rules and Reasoning: Third International Joint Conference,
RuleML+ RR 2019, Bolzano, Italy, September 16–19, 2019, Proceedings
3. Springer. 2019, pp. 36–51.

[53] Stefan Decker, Prasenjit Mitra, and Sergey Melnik. “Framework for the
semantic Web: an RDF tutorial”. In: IEEE Internet Computing 4.6
(2000), pp. 68–73.

[54] Marc Denecker, Lode Missiaen, and Maurice Bruynooghe. “Temporal
reasoning with abductive event calculus”. In: Proceedings of the 10th
European Conference on Artificial Intelligence, ECAI92. John Wiley and
Sons; Chichester. 1992, pp. 384–388.

[55] Benjamin Djulbegovic. “Ethics of uncertainty”. In: Patient Education
and Counseling 104.11 (2021), pp. 2628–2634.

[56] Mauro Dragoni et al. “Combining NLP approaches for rule extraction
from legal documents”. In: 1st Workshop on MIning and REasoning with
Legal texts (MIREL 2016). 2016.

[57] Ulle Endriss. “Judgment aggregation”. In: (2016).

117

https://www.researchgate.net/profile/Nicolas-Cointe/publication/304137179_Ethical_Judgment_of_Agents'_Behaviors_in_Multi-Agent_Systems/links/5767b10108ae421c448d11d3/Ethical-Judgment-of-Agents-Behaviors-in-Multi-Agent-Systems.pdf
https://www.researchgate.net/profile/Nicolas-Cointe/publication/304137179_Ethical_Judgment_of_Agents'_Behaviors_in_Multi-Agent_Systems/links/5767b10108ae421c448d11d3/Ethical-Judgment-of-Agents-Behaviors-in-Multi-Agent-Systems.pdf
https://globalprivacyassembly.org/wp-content/uploads/2018/10/20180922_ICDPPC-40th_AI-Declaration_ADOPTED.pdf
https://globalprivacyassembly.org/wp-content/uploads/2018/10/20180922_ICDPPC-40th_AI-Declaration_ADOPTED.pdf
https://globalprivacyassembly.org/wp-content/uploads/2018/10/20180922_ICDPPC-40th_AI-Declaration_ADOPTED.pdf


[58] Ethics Guidelines for Trustworthy AI. European Commission. Apr. 8,
2019. url: https://ec.europa.eu/digital- single- market/en/
news/ethics-guidelines-trustworthy-ai (visited on 05/11/2022).

[59] European Commission. Digital Services Act: EU rules to ensure safe and
accountable online environment. Press Release. Press Corner. Apr. 2022.
url: https://ec.europa.eu/commission/presscorner/detail/en/
IP_22_2321.

[60] European Commission. Proposal for a Regulation of the European Par-
liament and of the Council laying down harmonised rules on artificial
intelligence (Artificial Intelligence Act) and amending certain Union leg-
islative acts. Tech. rep. European Commission, 2021. url: https://ec.
europa.eu/commission/presscorner/detail/en/ip_21_1682.

[61] European Commission. Proposal for a Regulation of the European Par-
liament and of the Council on harmonised rules on fair access to and
use of data (Data Act). European Commission Document. COM(2022)
68 final. Feb. 2022. url: https://digital-strategy.ec.europa.eu/
en/library/data-act-legislative-proposal-harmonised-rules-

fair-access-and-use-data.

[62] European Group on Ethics in Science and New Technologies. Statement
on Artificial Intelligence, Robotics and ‘Autonomous’ Systems. Online.
Accessed on 9th April 2022. 2018. url: https://op.europa.eu/en/
publication-detail/-/publication/dfebe62e-4ce9-11e8-be1d-

01aa75ed71a1.

[63] European Parliament, Council of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). 2016. url:
https://eur-lex.europa.eu/eli/reg/2016/679/oj.

[64] Richard E Fikes and Nils J Nilsson. “STRIPS: A new approach to the
application of theorem proving to problem solving”. In: Artificial intel-
ligence 2.3-4 (1971), pp. 189–208.

[65] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion
attacks that exploit confidence information and basic countermeasures”.
In: Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security. 2015, pp. 1322–1333.

[66] French National Ethical Consultative Committee for Life Sciences and
Health.Digital Technology and Healthcare: Which Ethical Issues for Which
Regulations? Paris, France, 2018.

[67] Clémence Frioux et al. “Hybrid metabolic network completion”. In: The-
ory and Practice of Logic Programming 19.1 (2019), pp. 83–108.

118

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_2321
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_2321
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682
https://digital-strategy.ec.europa.eu/en/library/data-act-legislative-proposal-harmonised-rules-fair-access-and-use-data
https://digital-strategy.ec.europa.eu/en/library/data-act-legislative-proposal-harmonised-rules-fair-access-and-use-data
https://digital-strategy.ec.europa.eu/en/library/data-act-legislative-proposal-harmonised-rules-fair-access-and-use-data
https://op.europa.eu/en/publication-detail/-/publication/dfebe62e-4ce9-11e8-be1d-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/dfebe62e-4ce9-11e8-be1d-01aa75ed71a1
https://op.europa.eu/en/publication-detail/-/publication/dfebe62e-4ce9-11e8-be1d-01aa75ed71a1
https://eur-lex.europa.eu/eli/reg/2016/679/oj


[68] Jean Gallier. “SLD-Resolution and Logic Programming”. In: Logic for
Computer Science: Foundations of Automatic Theorem Proving (2003),
p. 35.

[69] Jean-Gabriel Ganascia. “Modelling ethical rules of lying with Answer Set
Programming”. In: Ethics and information technology 9 (2007), pp. 39–
47.

[70] Ismael Garrido-Muñoz et al. “A survey on bias in deep NLP”. In: Applied
Sciences 11.7 (2021), p. 3184.

[71] Martin Gebser et al. Answer set solving in practice. Springer Nature,
2022.

[72] Martin Gebser et al. “clasp: A conflict-driven answer set solver”. In: Logic
Programming and Nonmonotonic Reasoning: 9th International Confer-
ence, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007. Proceedings 9.
Springer. 2007, pp. 260–265.

[73] Martin Gebser et al. “Clingo= ASP+ control: Preliminary report”. In:
arXiv preprint arXiv:1405.3694 (2014).

[74] Michael Gelfond. “Answer sets”. In: Foundations of Artificial Intelligence
3 (2008), pp. 285–316.

[75] Michael Gelfond and Yulia Kahl. Knowledge representation, reasoning,
and the design of intelligent agents: The answer-set programming ap-
proach. Cambridge University Press, 2014.

[76] Michael Gelfond and Vladimir Lifschitz. “The stable model semantics
for logic programming.” In: ICLP/SLP. Vol. 88. Cambridge, MA. 1988,
pp. 1070–1080.

[77] Michael Gelfond, Halina Przymusinska, and Teodor Przymusinski. “On
the relationship between circumscription and negation as failure”. In:
Artificial Intelligence 38.1 (1989), pp. 75–94.

[78] Michael R Genesereth and Nils J Nilsson. Logical foundations of artificial
intelligence. Morgan Kaufmann, 2012.

[79] J Gips. “Creating ethical robots: A grand challenge”. In: AAAI fall 2005
symposium on machine ethics. 2005.

[80] Google AI. Our Principles. Online. 2018. url: https://ai.google/
principles/.

[81] Guido Governatori and Sidney Shek. “Rule Based Business Process Com-
pliance.” In: RuleML (2). Citeseer. 2012.

[82] Umberto Grandi et al. “Logic-Based Ethical Planning”. In: AIxIA 2022–
Advances in Artificial Intelligence: XXIst International Conference of
the Italian Association for Artificial Intelligence, AIxIA 2022, Udine,
Italy, November 28–December 2, 2022, Proceedings. Springer Interna-
tional Publishing Cham. 2023, pp. 198–211.

119

https://ai.google/principles/
https://ai.google/principles/
https://arxiv.org/pdf/2206.00595 


[83] Salvatore Greco, Jose Figueira, and Matthias Ehrgott. Multiple criteria
decision analysis. Vol. 37. Springer, 2016.

[84] James Griffin. Well-being: Its meaning, measurement and moral impor-
tance. Clarendon press, 1986.

[85] SFR-IA Group, French Radiology Community, et al. “Artificial intel-
ligence and medical imaging 2018: French Radiology Community white
paper”. In: Diagnostic and Interventional Imaging 99.11 (2018), pp. 727–
742.

[86] Tom Gruber. What is an Ontology. 1993.

[87] S Hansson. The ethics of risk: Ethical analysis in an uncertain world.
Springer, 2013.

[88] Richard Mervyn Hare et al. Moral thinking: Its levels, method, and point.
Oxford: Clarendon Press; New York: Oxford University Press, 1981.

[89] John C Harsanyi. “Morality and the theory of rational behavior”. In:
Social research (1977), pp. 623–656.

[90] Mustafa Hashmi, Guido Governatori, and Moe Thandar Wynn. “Busi-
ness process data compliance”. In: Rules on the Web: Research and
Applications: 6th International Symposium, RuleML 2012, Montpellier,
France, August 27-29, 2012. Proceedings 6. Springer. 2012, pp. 32–46.

[91] Hisashi Hayashi and Ken Satoh. “Towards Legally and Ethically Correct
Online HTN Planning for Data Transfer.” In: NMR. 2022, pp. 4–15.

[92] Hisashi Hayashi et al. “Dynagent: An incremental forward-chaining HTN
planning agent in dynamic domains”. In: Declarative Agent Languages
and Technologies III: Third International Workshop, DALT 2005, Utrecht,
The Netherlands, July 25, 2005, Selected and Revised Papers 3. Springer.
2006, pp. 171–187.

[93] Hisashi Hayashi et al. “Multi-agent Online Planning Architecture for
Real-time Compliance”. In: RuleML Challenge (2023).

[94] Hisashi Hayashi et al. “Toward smooth integration of an online HTN
planning agent with legal and ethical checkers”. In: VECOMP Workshop
(2024).

[95] High-Level Expert Group on Artificial Intelligence. Ethical Guidelines
for Trustworthy AI by the European Commission. Tech. rep. European
Commission, 2019. url: https://ec.europa.eu/digital-single-
market/en/news/ethics-guidelines-trustworthy-ai.

[96] Kenneth Einar Himma. “Artificial agency, consciousness, and the criteria
for moral agency: What properties must an artificial agent have to be a
moral agent?” In: Ethics and Information Technology 11 (2009), pp. 19–
29.

[97] Ethics and data protection. European Commission, Sept. 14, 2018. (Vis-
ited on 09/14/2018).

120

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-and-data-protection_he_en.pdf


[98] Charles Hu and Yen-Hung Frank Hu. “Data poisoning on deep learning
models”. In: 2020 International Conference on Computational Science
and Computational Intelligence (CSCI). IEEE. 2020, pp. 628–632.

[99] Rosalind Hursthouse. “On virtue ethics”. In: Applied Ethics. Routledge,
2017, pp. 29–35.

[100] IBM. Everyday Ethics for Artificial Intelligence: A Practical Guide for
Designers & Developers. Online. Accessed on 20th February 2022. 2018.
url: https://www.ibm.com/watson/assets/duo/pdf/everydayethics.
pdf.

[101] Internet Society. Artificial Intelligence & Machine Learning: Policy Pa-
per. Online. Accessed on 21st February 2019. 2017. url: https://www.
internetsociety.org/resources/doc/2017/artificial-intelligence-

and-machine-learning-policy-paper/.

[102] Anna Jobin, Marcello Ienca, and Effy Vayena. “The global landscape of
AI ethics guidelines”. In: Nature machine intelligence 1.9 (2019), pp. 389–
399.

[103] Antonios Kakas and Rob Miller. “A simple declarative language for de-
scribing narratives with actions”. In: The Journal of Logic Programming
31.1-3 (1997), pp. 157–200.

[104] Roland Kaminski, Torsten Schaub, and Philipp Wanko. “A tutorial on
hybrid answer set solving with clingo”. In: Reasoning Web. Semantic
Interoperability on the Web: 13th International Summer School 2017,
London, UK, July 7-11, 2017, Tutorial Lectures 13 (2017), pp. 167–203.

[105] Immanuel Kant. Groundwork of the metaphysic of morals (HJ Paton,
Trans.) 1964.

[106] Daniel Martin Katz, Ron Dolin, and Michael J Bommarito. Legal infor-
matics. Cambridge University Press, 2021.

[107] John G Kemeny and LJ Snell. “Preference ranking: an axiomatic ap-
proach”. In: Mathematical models in the social sciences (1962), pp. 9–
23.

[108] D Marc Kilgour and Keith W Hipel. “Conflict analysis methods: The
graph model for conflict resolution”. In: Handbook of group decision and
negotiation (2010), pp. 203–222.

[109] Tae-Won Kim, Joohyung Lee, and Ravi Palla. “Circumscriptive event
calculus as answer set programming”. In: Twenty-First International
Joint Conference on Artificial Intelligence. 2009.

[110] Olli Koski, Kai Husso, et al. “Work in the age of artificial intelligence:
Four perspectives on the economy, employment, skills and ethics”. In:
(2018).

[111] Robert Kowalski. “Database updates in the event calculus”. In: The
Journal of Logic Programming 12.1-2 (1992), pp. 121–146.

121

https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf
https://www.ibm.com/watson/assets/duo/pdf/everydayethics.pdf
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/


[112] Robert Kowalski. “Predicate logic as programming language”. In: IFIP
congress. Vol. 74. 1974, pp. 569–544.

[113] Robert Kowalski and Marek Sergot. “A logic-based calculus of events”.
In: New generation computing 4 (1986), pp. 67–95.

[114] Adam Lally and Paul Fodor. “Natural language processing with prolog
in the ibm watson system”. In: The Association for Logic Programming
(ALP) Newsletter 9 (2011), p. 2011.

[115] Ho-Pun Lam and Mustafa Hashmi. “Enabling reasoning with Legal-
RuleML”. In: Theory and Practice of Logic Programming 19.1 (2019),
pp. 1–26.

[116] Joohyung Lee and Ravi Palla. “Reformulating the situation calculus and
the event calculus in the general theory of stable models and in answer set
programming”. In: Journal of Artificial Intelligence Research 43 (2012),
pp. 571–620.

[117] Fan Li, Nick Ruijs, and Yuan Lu. “Ethics & AI: A systematic review on
ethical concerns and related strategies for designing with AI in health-
care”. In: Ai 4.1 (2022), pp. 28–53.

[118] Yunqi Li et al. “Fairness in recommendation: A survey”. In: arXiv preprint
arXiv:2205.13619 (2022).

[119] Vladimir Lifschitz. Answer set programming. Vol. 3. Springer Heidelberg,
2019.

[120] Raynaldio Limarga et al. “Non-monotonic reasoning for machine ethics
with situation calculus”. In: AI 2020: Advances in Artificial Intelligence:
33rd Australasian Joint Conference, AI 2020, Canberra, ACT, Australia,
November 29–30, 2020, Proceedings 33. Springer International Publish-
ing. 2020, pp. 203–215.

[121] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis.
“Explainable ai: A review of machine learning interpretability methods”.
In: Entropy 23.1 (2020), p. 18.

[122] Felix Lindner, Robert Mattmüller, and Bernhard Nebel. “Evaluation of
the moral permissibility of action plans”. In: Artificial Intelligence 287
(2020), p. 103350.

[123] Christian List. “Social choice theory”. In: (2013).

[124] Yifei Liu et al. “Ml-ljp: Multi-law aware legal judgment prediction”. In:
Proceedings of the 46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. 2023, pp. 1023–1034.

[125] House Of Lords et al. “AI in the UK: ready, willing and able?” In: Re-
trieved August 13 (2018), p. 2021.

[126] Nathaniel Love and Michael Genesereth. “Computational law”. In: Pro-
ceedings of the 10th international conference on Artificial intelligence and
law. 2005, pp. 205–209.

122

https://www.researchgate.net/profile/Raynaldio-Limarga/publication/347202004_Non-monotonic_Reasoning_for_Machine_Ethics_with_Situation_Calculus/links/609e26bb458515c2658d2fde/Non-monotonic-Reasoning-for-Machine-Ethics-with-Situation-Calculus.pdf
https://www.researchgate.net/profile/Raynaldio-Limarga/publication/347202004_Non-monotonic_Reasoning_for_Machine_Ethics_with_Situation_Calculus/links/609e26bb458515c2658d2fde/Non-monotonic-Reasoning-for-Machine-Ethics-with-Situation-Calculus.pdf
https://gki.informatik.uni-freiburg.de/papers/lindner-etal-aij2020.pdf
https://gki.informatik.uni-freiburg.de/papers/lindner-etal-aij2020.pdf


[127] William MacAskill. “Normative uncertainty as a voting problem”. In:
Mind 125.500 (2016), pp. 967–1004.

[128] Elinor Mason. “Value pluralism”. In: (2006).

[129] John McCarthy and Patrick J Hayes. “Some philosophical problems from
the standpoint of artificial intelligence”. In: Readings in artificial intelli-
gence. Elsevier, 1981, pp. 431–450.

[130] Deborah L McGuinness, Frank Van Harmelen, et al. “OWL web ontology
language overview”. In: W3C recommendation 10.10 (2004), p. 2004.

[131] Paul McNamara. “Deontic logic”. In: Handbook of the History of Logic.
Vol. 7. Elsevier, 2006, pp. 197–288.

[132] Dennis Merritt. Building expert systems in Prolog. Springer Science &
Business Media, 2012.

[133] Microsoft. Responsible Bots: 10 Guidelines for Developers of Conversa-
tional AI. Online. Accessed on 19th February 2022. 2018. url: https:
//www.microsoft.com/en-us/research/uploads/prod/2018/11/

Bot_Guidelines_Nov_2018.pdf.

[134] John Stuart Mill. “Utilitarianism”. In: Seven masterpieces of philosophy.
Routledge, 2016, pp. 329–375.

[135] Rob Miller and Murray Shanahan. “Some alternative formulations of
the event calculus”. In: Computational Logic: Logic Programming and
Beyond: Essays in Honour of Robert A. Kowalski Part II. Springer, 2002,
pp. 452–490.

[136] Rob Miller and Murray Shanahan. The event calculus in classical logic-
alternative axiomatisations. Linköping University Electronic Press, 1999.

[137] Catrin Misselhorn et al. Artificial moral agents. 2022.

[138] Brent Mittelstadt. “Principles alone cannot guarantee ethical AI”. In:
Nature machine intelligence 1.11 (2019), pp. 501–507.

[139] Laurens Mommers. “Ontologies in the legal domain”. In: Theory and
Applications of Ontology: Philosophical Perspectives (2010), pp. 265–276.

[140] James HMoor. “Is ethics computable?” In:Metaphilosophy 26.1/2 (1995),
pp. 1–21.

[141] James HMoor. “The nature, importance, and difficulty of machine ethics”.
In: IEEE intelligent systems 21.4 (2006), pp. 18–21.

[142] George Edward Moore, Thomas Baldwin, and Thomas Baldwin. Prin-
cipia ethica. Vol. 2. Cambridge University Press Cambridge, 1903.

[143] Erik T Mueller. “Event calculus”. In: Foundations of Artificial Intelli-
gence 3 (2008), pp. 671–708.

[144] Erik T Mueller. “Event calculus reasoning through satisfiability”. In:
Journal of Logic and Computation 14.5 (2004), pp. 703–730.

123

http://seop.illc.uva.nl/entries/value-pluralism/
https://www.microsoft.com/en-us/research/uploads/prod/2018/11/Bot_Guidelines_Nov_2018.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/11/Bot_Guidelines_Nov_2018.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/11/Bot_Guidelines_Nov_2018.pdf
https://arxiv.org/pdf/1906.06668


[145] Dana S Nau et al. “SHOP2: An HTN planning system”. In: Journal of
artificial intelligence research 20 (2003), pp. 379–404.

[146] Monica Nogueira et al. “An A-Prolog decision support system for the
Space Shuttle”. In: Practical Aspects of Declarative Languages: Third
International Symposium, PADL 2001 Las Vegas, Nevada, March 11–
12, 2001 Proceedings 3. Springer. 2001, pp. 169–183.

[147] Ritesh Noothigattu et al. “A voting-based system for ethical decision
making”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 32. 1. 2018.

[148] Hannu Nurmi. “Voting systems for social choice”. In: Handbook of Group
Decision and Negotiation. Springer, 2010, pp. 167–182.

[149] Monica Palmirani et al. “Legal ontology for modelling GDPR concepts
and norms”. In: Frontiers in Artificial Intelligence and Applications 313
(2018), pp. 91–100.

[150] Monica Palmirani et al. “Legalruleml: Xml-based rules and norms”. In:
Rule-Based Modeling and Computing on the Semantic Web: 5th Interna-
tional Symposium, RuleML 2011–America, Ft. Lauderdale, FL, Florida,
USA, November 3-5, 2011. Proceedings. Springer. 2011, pp. 298–312.

[151] Monica Palmirani et al. “Pronto: Privacy ontology for legal reasoning”.
In: Electronic Government and the Information Systems Perspective: 7th
International Conference, EGOVIS 2018, Regensburg, Germany, Septem-
ber 3–5, 2018, Proceedings 7. Springer. 2018, pp. 139–152.

[152] Harshvardhan J Pandit et al. “Creating a vocabulary for data privacy”.
In:OTM Confederated International Conferences” On the Move to Mean-
ingful Internet Systems”. Springer. 2019, pp. 714–730.

[153] Zdzisaw Pawlak and Roman Sowinski. “Rough set approach to multi-
attribute decision analysis”. In: European journal of Operational research
72.3 (1994), pp. 443–459.

[154] Fernando CN Pereira and Stuart M Shieber. Prolog and natural-language
analysis. Microtome Publishing, 2002.

[155] Dana Pessach and Erez Shmueli. “A review on fairness in machine learn-
ing”. In: ACM Computing Surveys (CSUR) 55.3 (2022), pp. 1–44.

[156] Körner Philipp et al. “Fifty Years of Prolog and Beyond”. In: THEORY
AND PRACTICE OF LOGIC PROGRAMMING 22.6 (2022), pp. 776–
858.

[157] Shelley Powers. Practical RDF: solving problems with the resource de-
scription framework. ” O’Reilly Media, Inc.”, 2003.

[158] Livio Robaldo and Xin Sun. “Reified input/output logic: combining in-
put/output logic and reification to represent norms coming from existing
legislation”. In: Journal of Logic and Computation 27.8 (2017), pp. 2471–
2503.

124



[159] Livio Robaldo et al. “Formalizing GDPR provisions in reified I/O logic:
the DAPRECO knowledge base”. In: Journal of Logic, Language and
Information 29 (2020), pp. 401–449.

[160] Livio Robaldo et al. Introduction for artificial intelligence and law: special
issue “natural language processing for legal texts”. 2019.

[161] William David Ross. The right and the good. Oxford University Press,
2002.

[162] Catharina Rudschies, Ingrid Schneider, and Judith Simon. “Value plu-
ralism in the AI ethics debate–different actors, different priorities”. In:
The International Review of Information Ethics 29 (2020).

[163] Fariba Sadri and Robert A Kowalski. “Variants of the event calculus”.
In: (1995).

[164] Ahti Salo and Raimo P Hämäläinen. “Multicriteria decision analysis in
group decision processes”. In: Handbook of group decision and negotiation
(2010), pp. 269–283.

[165] Ute Schmid. Inductive synthesis of functional programs: universal plan-
ning, folding of finite programs, and schema abstraction by analogical
reasoning. Vol. 2654. Springer Science & Business Media, 2003.

[166] Murray Shanahan. Solving the frame problem: a mathematical investiga-
tion of the common sense law of inertia. MIT press, 1997.

[167] Murray Shanahan. “The event calculus explained”. In: Artificial intelli-
gence today: Recent trends and developments. Springer, 2001, pp. 409–
430.

[168] Keng Siau and Weiyu Wang. “Artificial intelligence (AI) ethics: ethics
of AI and ethical AI”. In: Journal of Database Management (JDM) 31.2
(2020), pp. 74–87.

[169] Henry Sidgwick. The methods of ethics. DigiCat, 2022.

[170] Peter Singer. “Practical ethics 2nd ed”. In: New York: Cambridge Uni-
versity (1993).

[171] Marianne WMC Six Dijkstra et al. “Ethical considerations of using ma-
chine learning for decision support in occupational health: an example
involving periodic workers’ health assessments”. In: Journal of Occupa-
tional Rehabilitation 30 (2020), pp. 343–353.

[172] Robert Sparrow. “Why machines cannot be moral”. In: AI & SOCIETY
36.3 (2021), pp. 685–693.

[173] Daniel Statman. “Introduction to virtue ethics”. In: Virtue ethics: A
critical reader (1997), pp. 1–41.

[174] Mark E Stickel. “A Prolog technology theorem prover: Implementation
by an extended Prolog compiler”. In: Journal of Automated reasoning 4
(1988), pp. 353–380.

[175] Michael Stocker. Plural and conflicting values. Clarendon Press, 1992.

125

https://informationethics.ca/index.php/irie/article/view/419
https://informationethics.ca/index.php/irie/article/view/419


[176] Yousef Taheri, Gauvain Bourgne, and Jean-Gabriel Ganascia. “A Com-
pliance Mechanism for Planning in Privacy Domain Using Policies”. In:
New Frontiers in Artificial Intelligence. Ed. by Katsutoshi Yada et al.
Cham: Springer Nature Switzerland, 2023, pp. 77–92. isbn: 978-3-031-
36190-6.

[177] Yousef Taheri, Gauvain Bourgne, and Jean-Gabriel Ganascia. “Modelling
Integration of Responsible AI Values for Ethical Decision Making”. In:
Workshop on Computational Machine Ethics, International Conference
on Principles of Knowledge Representation and Reasoning. 2023.

[178] Suzanne Tolmeijer et al. “Implementations in machine ethics: A survey”.
In: ACM Computing Surveys (CSUR) 53.6 (2020), pp. 1–38.

[179] Gregory Velazco y Trianosky. “What is virtue Ethics All About?” In:
Virtue Ethics (1997), p. 42.

[180] A Tutorial. “LegalRuleML: from Metamodel to Use Cases”. In: ().

[181] GOV UK. Initial code of conduct for data-driven health and care tech-
nology. 2019.

[182] UNI Global. 10 Principles for Ethical AI. Online. Accessed on 9th April
2022. 2017. url: https://uniglobalunion.org/wp-content/uploads/
uni_ethical_ai.pdf.

[183] United States Code. Title 17, Sec. 107. Accessed: date. url: http://
uscode.house.gov/.

[184] Cédric Villani, Yann Bonnet, Bertrand Rondepierre, et al. For a mean-
ingful artificial intelligence: Towards a French and European strategy.
Conseil national du numérique, 2018.

[185] Wendell Wallach and Colin Allen. Moral machines: Teaching robots right
from wrong. Oxford University Press, 2008.

[186] Wendell Wallach, Colin Allen, and Iva Smit. “Machine morality: bottom-
up and top-down approaches for modelling human moral faculties”. In:
Machine Ethics and Robot Ethics. Routledge, 2020, pp. 249–266.

[187] Bernhard Waltl et al. “Classifying legal norms with active machine learn-
ing.” In: JURIX. 2017, pp. 11–20.

[188] Yifan Wang et al. “A survey on the fairness of recommender systems”.
In: ACM Transactions on Information Systems 41.3 (2023), pp. 1–43.

[189] Meredith Whittaker et al. AI now report 2018. AI Now Institute at New
York University New York, 2018.

[190] Jess Whittlestone et al. “The role and limits of principles in AI ethics:
towards a focus on tensions”. In: Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society. 2019, pp. 195–200.

[191] Jan Wielemaker et al. “Swi-prolog”. In: Theory and Practice of Logic
Programming 12.1-2 (2012), pp. 67–96.

126

https://uniglobalunion.org/wp-content/uploads/uni_ethical_ai.pdf
https://uniglobalunion.org/wp-content/uploads/uni_ethical_ai.pdf
http://uscode.house.gov/
http://uscode.house.gov/
https://dl.acm.org/doi/pdf/10.1145/3547333
https://core.ac.uk/download/pdf/187716456.pdf
https://core.ac.uk/download/pdf/187716456.pdf


[192] Edward Wierenga. “A defensible divine command theory”. In: Nous
(1983), pp. 387–407.

[193] Runhua Xu, Nathalie Baracaldo, and James Joshi. “Privacy-preserving
machine learning: Methods, challenges and directions”. In: arXiv preprint
arXiv:2108.04417 (2021).

[194] Gary Chan Kok Yew. “Trust in and ethical design of carebots: the case for
ethics of care”. In: International Journal of Social Robotics 13.4 (2021),
pp. 629–645.

[195] Constantin Zopounidis and Michael Doumpos. “Multicriteria classifica-
tion and sorting methods: A literature review”. In: European Journal of
Operational Research 138.2 (2002), pp. 229–246.

127



Appendices

128



Appendix A

Codes: Data Processing
with GDPR Compliance

1 %=====================================

2 %=== Planning domain ==================

3 %======================================

4

5 %++++++++++++++++++++ inputs ++++++++++++++++++++++++++

6

7 %========= initial state =====================

8 initially( hasData(s2,d1)).

9

10 %======= gaol state ================================

11 requestAnalysis(s5, d1, marketing).

12 holds(goal,T):- holds( hasData(A, analysisOutput(D,P)), T ),

↪→ requestAnalysis(A,D,P).

13 :- holds(goal,T), not holds( hasData(A, analysisOutput(D,P)), T ) ,

↪→ requestAnalysis(A,D,P).

14 :- not holds(goal, maxtime).

15

16 #const maxtime=5.

17

18 %#show occurs/2.

19 #show missing/2.

20

21 %============ storage and data ================================

22

23 storage(s1; s2; s3; s4; s5; s6; s7).

24 connected(s1, s2).

25 connected(s1, s4).

26 connected(s1, s6).

27 connected(s2, s3).

28 connected(s3, s4).

129



29 connected(s3, s5).

30 connected(s4, s7).

31 connected(s5, s7).

32 connected(s6, s7).

33 connected(A,B):- connected(B,A).

34

35 %%%% storage properties: controller

36 has(s1, controller, aCompany).

37 has(s2, controller, aCompany).

38 has(s3, controller, aCompany).

39 has(s4, controller, aCompany).

40 has(s5, controller, aCompany).

41 has(s6, controller, aProcessor).

42 has(s7, controller, aCompany).

43

44 %%% storage properties: location

45 has(s1, location, us).

46 has(s2, location, eu).

47 has(s3, location, eu).

48 has(s4, location, eu).

49 has(s5, location, eu).

50 has(s6, location, us).

51 has(s7, location, eu).

52

53 has(s4, analysisPurpose ,marketing).

54 has(s4, analysisPurpose ,personalisedAdvertising).

55

56 has(s6, analysisPurpose ,optimisationForController).

57

58 resource(d1; d2; d3; d4; d5; d6; d7).

59

60 has(d1, dataCategory, purchasesAndSpendingHabit).

61 has(d2, dataCategory, serviceConsumptionBehavior).

62 has(d3, dataCategory, authenticationHistory).

63 has(d4, dataCategory, demographic).

64 has(d5, dataCategory, contact).

65 has(d6, dataCategory, interest).

66 has(d7, dataCategory, opinionData).

67

68

69 %================== action specification

70

71 %initiate actions with the given purpose

72 purpose(P):- requestAnalysis(_,_,P).

73

74 data(D):- resource(D).

75 data( analysisOutput(D,P)):- resource(D), purpose(P).

76 processedData( analysisOutput(D,P)):- data( analysisOutput(D,P) ).

77

78 has( analysisOutput(D,P), dataCategory, X):- data(analysisOutput(D,P)),

130



↪→ has( D , dataCategory, X).

79

80

81 act(transfer(D,A,B,P)):- data(D), storage(A),storage(B), purpose(P),

↪→ connected(A,B), A!=B.

82 prec( hasData(A,D), transfer(D,A,B,P)):- act(transfer(D,A,B,P)).

83 effect(transfer(D,A,B,P), hasData(B,D)):- act(transfer(D,A,B,P)).

84 effect(transfer(D,A,B,P), neg(hasData(A,D))):- act(transfer(D,A,B,P)).

85

86 act(analyze(D,A,P)):- data(D), storage(A), purpose(P) ,has(A,

↪→ analysisPurpose ,P), not processedData(D).

87 prec( hasData(A,D), analyze(D,A,P)):- act(analyze(D,A,P)).

88 effect(analyze(D,A,P), hasData( A, analysisOutput(D,P) )):- act(analyze(

↪→ D,A,P)).

89 effect(analyze(D,A,P), neg( hasData(A,D) )):- act(analyze(D,A,P)).

90

91 %=================== event calculus ===================

92

93 time(0..maxtime).

94

95 % effect axioms

96 negative(neg(F)) :- effect(E,neg(F)).

97 initiates(E,F,T) :- effect(E,F), occurs(E,T), not negative(F).

98 terminates(E,F,T) :- effect(E,neg(F)), occurs(E,T),time(T).

99 clipped(F,T) :- terminates(E,F,T).

100

101 holds(F,0) :- initially(F).

102 holds(F,T) :- initiates(E,F,T-1), time(T).

103 holds(F,T) :- holds(F,T-1), not clipped(F,T-1), time(T).

104

105 % precondition axioms

106 :- occurs(E,T), prec(F,E), not holds(F,T), act(E), time(T).

107

108 % action generator

109 0 {occurs(E, T)} 1 :- act(E), time(T),T<maxtime.

110 :- occurs(E1,T), occurs(E2,T) ,E1!=E2.

Listing A.1: The implementation of the planning domain

1 %%%% legal info inputs

2 %system_duties(art128_22_SubjectRights; art32_37_Obligations).

3

4 system_duties(getValidConsent; getAccessReqs; getRectifyReqs;

↪→ getDeleteReqs; art32_37_Obligations).

5

6 %comment or uncomment this line to check the obligations of chapter5 data

↪→ transfer

7 transfer_safeguard(s2, s1, art46_2_e_ApprovedCodeOfConduct).

8 transfer_safeguard(s4, s1, art46_2_e_ApprovedCodeOfConduct).

9 transfer_safeguard(s1, s6, art46_2_b_BindingCorporateRulesasperArt47).

131



10 transfer_safeguard(s7, s6, art46_2_b_BindingCorporateRulesasperArt47).

11 system_legal_basis(art6_1_a_Consent).

12

13 %======== assign legal info

14 % transfer action

15 has(transfer(D,A,B,P), dataCategory, X) :- act(transfer(D,A,B,P)), has(D,

↪→ dataCategory, X).

16 has(transfer(D,A,B,P), storage, B):- act(transfer(D,A,B,P)).

17 has(transfer(D,A,B,P), purpose, P):- act(transfer(D,A,B,P)).

18 has(transfer(D,A,B,P), processing, transfer):- act(transfer(D,A,B,P)).

19 has(transfer(D,A,B,P), recipient, X):- act(transfer(D,A,B,P)), has(B,

↪→ controller, X).

20 has(transfer(D,A,B,P), storageLocation, eu):- act(transfer(D,A,B,P)), has

↪→ (B, location, eu).

21 has(transfer(D,A,B,P), storageLocation, thirdCountries):- act(transfer(D,

↪→ A,B,P)), not has(B, location, eu).

22 has(transfer(D,A,B,P), storageCountry, X):- act(transfer(D,A,B,P)), has(B

↪→ , location, X).

23 has(transfer(D,A,B,P), legalBasis, X):- act(transfer(D,A,B,P)),

↪→ system_legal_basis(X).

24 has(transfer(D,A,B,P), duty, X):- act(transfer(D,A,B,P)), system_duties(X

↪→ ).

25 has(transfer(D,A,B,P), measures, X):- act(transfer(D,A,B,P)),

↪→ transfer_safeguard(A,B, X).

26

27

28 % analyse action

29 has(analyze(D,A,P), dataCategory, X) :- act(analyze(D,A,P)), has(D,

↪→ dataCategory, X).

30 has(analyze(D,A,P), storage, A):- act(analyze(D,A,P)).

31 has(analyze(D,A,P), purpose, P):- act(analyze(D,A,P)).

32 has(analyze(D,A,P), processing, analyze):- act(analyze(D,A,P)).

33 has(analyze(D,A,P), recipient, X):- act(analyze(D,A,P)), has(A,

↪→ controller, X).

34 has(analyze(D,A,P), storageLocation, X):- act(analyze(D,A,P)), has(A,

↪→ location, X).

35 has(analyze(D,A,P), legalBasis, X):- act(analyze(D,A,P)),

↪→ system_legal_basis(X).

36 has(analyze(D,A,P), duty, X):- act(analyze(D,A,P)), system_duties(X).

37

38

39 %====================================================

40 %===== data subject’s given consent =================

41 %====================================================

42

43 %%%%%%%%%%%%% data subject’s given consent

44 consent(c1;c2).

45

46 %%consent for transfering data

47 has(c1, dataCategory, purchasesAndSpendingHabit).

132



48 has(c1, processing, transfer).

49 has(c1, purpose, marketing).

50 has(c1, recipient, aCompany).

51 has(c1, storageLocation, eu).

52

53 % consent for analysing data

54

55 has(c2, dataCategory, purchasesAndSpendingHabit).

56 has(c2, processing, analyze).

57 has(c2, purpose, marketing).

58 has(c2, recipient, aCompany).

59 has(c2, storageLocation, eu).

60

61 % the below code represents the user‘s consent for transfering data to

↪→ third countries

62 % we can check for the obligations of chapter 3 data subjets rights by

↪→ commenting or uncommenting the code below

63 %* *%

64 consent(c3).

65 has(c3, dataCategory, purchasesAndSpendingHabit).

66 has(c3, processing, transfer).

67 has(c3, purpose, marketing).

68 has(c3, recipient, aCompany).

69 has(c3, storageLocation, thirdCountries).

70

71

72

73 %%%%%%%%%%%

74 % compliance checking

75 non_coherent(P,C):- has(P,A, Z1) , has(C, A, Z2) ,Z1!=Z2, act(P), consent

↪→ (C).

76 validConsentSatisfied(P):- not non_coherent(P,C), act(P), consent(C).

77 %%%

78

79 %========================================================

80 %========== policy layers ==============================

81 %========================================================

82 %the regulatory norms encoded in OWL are part of the SPECIAL policy

↪→ language taken from

83 % https://specialprivacy.ercim.eu/platform/pilots-policies-and-the-

↪→ formalization-of-the-gdpr

84

85 % inUnionOf

86 fulfills(P,F1):- fulfills(P,F2), inUnionOf(F2,F1), act(P).

87 fulfills(P,F1):- not fulfills(P,F2), inUnionOf(comp(F2),F1), act(P).

88

89 % inIntersectOf

90 incompleteRequirment(P,F1):- inIntersectOf(F2,F1) ,not fulfills(P,F2),

↪→ act(P).

91

133



92 fulfills(P,F1):- not incompleteRequirment(P, F1), act(P), inIntersectOf(_

↪→ ,F1).

93 fulfills(P , comp(F1)):- not fulfills(P , F1 ), regulation(F1), act(P).

94 %class hirerarchy

95 upperClass(A,B):-inUnionOf(A,B).

96 upperClass(A,B):-inIntersectOf(A,B).

97

98

99

100 missing1(P,A,A):- not fulfills(P,A),regulation(A), act(P), occurs(P,_).

101 missing1(P,A,C):- not fulfills(P,C), missing1(P,A,B), upperClass(B,C),

↪→ regulation(A),regulation(C).

102 missing(P,A):- missing1(P,A,gdpr_Requirements), not auxiliaryRegulation(A

↪→ ).

103 % plan compliance evaluation

104 %satisfies(non_compliance):- occurs( O,T) , not fulfills(O,

↪→ gdpr_Requirements).

105

106 %:- satisfies(non_compliance).

107

108 regulation(X):- auxiliaryRegulation(X).

109 %===================================================

110 %======= Regulatory nroms ==========================

111 %==================================================

112 %the regulatory norms encoded in OWL are part of the SPECIAL policy

↪→ language taken from

113 % https://specialprivacy.ercim.eu/platform/pilots-policies-and-the-

↪→ formalization-of-the-gdpr

114

115 %=================== SPECIAL =================================

116 %============= GDPR_Requirements =============================

117 %===========================================================

118 %*

119 ObjectUnionOf(

120 ObjectSomeValuesFrom(spl:hasData

121 ObjectComplementOf(PersonalData) % NonPersonalData

122 )

123 ObjectIntersectionOf(

124 Chap2_LawfulProcessing

125 Chap3_RightsOfDataSubjects

126 Chap4_ControllerAndProcessorObligations

127 Chap5_DataTransfer)

128 Chap9_Derogations

129 )

130 *%

131 %================== ASP translation ===========================

132

133

134 regulation(isSensitiveData;

135 isCriminalData;

134



136 art6_LawfulProcessing;

137 art6_1_LegalBasis;

138 chap2_LawfulProcessing;

139 chap9_Derogations;

140 art9_2_legalBasis;

141 art9_SensitiveData;

142 gdpr_Requirements).

143

144

145 auxiliaryRegulation(art6_LawfulProcessing_aux1; chap2_5_aux1).

146

147 inUnionOf(chap2_5_aux1, gdpr_Requirements ).

148 inUnionOf(chap9_Derogations, gdpr_Requirements ).

149

150 inIntersectOf(chap2_LawfulProcessing ,chap2_5_aux1).

151 inIntersectOf(chap3_RightsOfDataSubjects ,chap2_5_aux1).

152 inIntersectOf(chap4_ControllerAndProcessorObligations ,chap2_5_aux1).

153 inIntersectOf(chap5_DataTransferToThirdCountry ,chap2_5_aux1).

154

155 %============= SPECIAL ==================================

156 %============ Chap2_LawfulProcessing ====================

157 %========================================================

158 %*

159 ObjectUnionOf(

160 Art6_LawfulProcessing

161 Art9_SensitiveData

162 Art10_CriminalData

163 )

164 *%

165 %========== ASP translation ===============================

166

167 inUnionOf(art6_LawfulProcessing, chap2_LawfulProcessing ).

168 inUnionOf(art9_SensitiveData, chap2_LawfulProcessing).

169 inUnionOf(art10_CriminalData, chap2_LawfulProcessing ).

170

171 %================ SPECIAL ================================

172 %== Chap2_LawfulProcessing -> Art6_LawfulProcessing =====

173 %========================================================

174 %*

175 ObjectIntersectionOf(

176 ObjectSomeValuesFrom(spl:hasData PersonalData)

177 ObjectSomeValuesFrom(spl:hasData ObjectComplementOf(

↪→ SensitiveData_as_per_Art9))

178 ObjectSomeValuesFrom(spl:hasData ObjectComplementOf(

↪→ CriminalConvictionData_as_per_Art10))

179 ObjectUnionOf(

180 Art6_1_LegalBasis

181 Art6_4_CompatiblePurpose)

182 )

183 *%

135



184 %=============== ASP translation ============================

185

186

187 sensitiveData( opinionData; sexualData ; racialData ;ethnicData).

188 criminalData(criminal).

189

190 inIntersectOf(comp(isSensitiveData), art6_LawfulProcessing ).

191 inIntersectOf(comp(isCriminalData), art6_LawfulProcessing ).

192 inIntersectOf(art6_LawfulProcessing_aux1, art6_LawfulProcessing ).

193 inUnionOf(art6_1_LegalBasis, art6_LawfulProcessing_aux1 ).

194 inUnionOf(art6_4_CompatiblePurpose, art6_LawfulProcessing_aux1 ).

195

196 fulfills(P , isSensitiveData ):- has(P, dataCategory, X), act(P),

↪→ sensitiveData(X).

197 fulfills(P , isCriminalData ):- has(P, dataCategory, X), act(P),

↪→ criminalData(X).

198

199 %=================== SPECIAL ==================================

200 %=== Chap2_LawfulProcessing -> Art6_LawfulProcessing -> Art6_1_LegalBasis

201 %=========================================================

202 %*

203 ObjectSomeValuesFrom(hasLegalBasis

204 ObjectUnionOf(

205 Art_6_1_a_Consent

206 Art_6_1_b_Contract

207 Art_6_1_c_LegalObligation

208 Art_6_1_d_VitalInterest

209 Art_6_1_e_PublicInterest

210 Art_6_1_f_LegitimateInterest

211 )

212 )

213 *%

214 %============ ASP translation ===========================

215 legalBasis_art6_1( art6_1_a_Consent;

216 art6_1_b_Contract;

217 art6_1_c_LegalObligation;

218 art6_1_d_VitalInterest;

219 art6_1_e_PublicInterestOfficialAuthority;

220 art6_1_f_LegitimateInterest).

221

222 fulfills(P ,art6_1_LegalBasis ):- has(P, legalBasis, X), act(P),

↪→ legalBasis_art6_1(X).

223

224

225 %============= SPECIAL ==================================

226 %==== Chap2_LawfulProcessing -> Art9_SensitiveData ========

227 %==========================================================

228 %*

229 ObjectUnionOf(

230 ObjectSomeValuesFrom(spl:hasData ObjectComplementOf(

136



↪→ SensitiveData_as_per_Art9))

231 ObjectSomeValuesFrom(hasLegalBasis

232 ObjectUnionOf(

233 Art9_2_a_Consent

234 Art9_2_b_EmploymentAndSocialSecurity

235 Art9_2_c_VitalInterest

236 Art9_2_d_LegitimateActivitiesOfAssociations

237 Art9_2_e_PublicData

238 Art9_2_f_Juducial

239 Art9_2_g_PublicInteres

240 Art9_2_h_PreventiveOrOccupationalMedicine

241 Art9_2_i_PublicHealth

242 Art9_2_j_ArchivingResearchStatistics)

243 )

244 )

245 *%

246 %========= ASP translation =====================

247

248 inUnionOf(comp(isSensitiveData), art9_SensitiveData ).

249 inUnionOf(art9_2_legalBasis, art9_SensitiveData ).

250

251 legalBasis_art9_2( art9_2_a_Consent;

252 art9_2_b_EmploymentAndSocialSecurity;

253 art9_2_c_VitalInterest;

254 art9_2_d_LegitimateActivitiesOfAssociations;

255 art9_2_e_PublicData;

256 art9_2_f_Juducial;

257 art9_2_g_PublicInterest;

258 art9_2_h_PreventiveOrOccupationalMedicine;

259 art9_2_i_PublicHealth;

260 art9_2_j_ArchivingResearchStatistics).

261

262 %fulfills(P ,isSensitiveData ):- has(P, dataCategory, X), act(P),

↪→ sensitiveData(X).

263 fulfills(P ,art9_2_legalBasis ):- has(P, legalBasis, X), act(P),

↪→ legalBasis_art9_2(X).

264

265

266 %============== SPECIAL =================================

267 %====== Chap2_LawfulProcessing -> Art10_CriminalData ====

268 %=====================================================

269 %*

270 ObjectUnionOf(

271 ObjectIntersectionOf(

272 ObjectSomeValuesFrom(sbpl:hasDuty Art10_Requirements10)

273 Refinements_as_per_Chap9)

274 ObjectSomeValuesFrom(spl:hasData ObjectComplementOf(

↪→ CriminalConvictionData_as_per_Art10)

275 )

276 )

137



277 *%

278 %============= ASP translation ===================

279

280 regulation(art10_CriminalData;refinements_as_per_Chap9).

281

282 auxiliaryRegulation(art10_CriminalData_aux1;art10_CriminalData_aux11).

283

284 inUnionOf(art10_CriminalData_aux1, art10_CriminalData ).

285 inUnionOf(comp(isCriminalData), art10_CriminalData ).

286

287 inIntersectOf(art10_CriminalData_aux11 ,art10_CriminalData_aux1).

288 inIntersectOf(refinements_as_per_Chap9 ,art10_CriminalData_aux1).

289

290 %fulfills(P ,isCriminalData ):- has(P, dataCategory, X), act(P),

↪→ criminalData(X).

291 fulfills(P ,art10_CriminalData_aux11 ):- has(P, duty, art10_Requirements)

↪→ , act(P).

292

293 %================ SPECIAL =============================

294 %========== Chap3_RightsOfDataSubjects ================

295 %======================================================

296 %*

297 ObjectUnionOf(

298 Exceptions_as_per_Art23

299 ObjectSomeValuesFrom(sbpl:hasDuty Art12-22_SubjectRights)

300 )

301 *%

302 %============ ASP translation ==============

303

304 regulation(chap3_RightsOfDataSubjects;exceptions_as_per_Art23;

↪→ art12_22_SubjectRights).

305 auxiliaryRegulation(chap3_RightsOfDataSubjects_aux1).

306

307

308 inUnionOf(exceptions_as_per_Art23, chap3_RightsOfDataSubjects ).

309 inUnionOf(chap3_RightsOfDataSubjects_aux1 , chap3_RightsOfDataSubjects ).

310

311

312

313 %fulfills(P ,chap3_RightsOfDataSubjects_aux1 ):- has(P, duty,

↪→ art12_22_SubjectRights), act(P). %, validConsentSatisfied(P)

314

315

316 art_12_22_rights(getValidConsent;

317 getAccessReqs;

318 getRectifyReqs;

319 getDeleteReqs).

320 inUnionOf(art12_22_SubjectRights, chap3_RightsOfDataSubjects_aux1 ).

321

322 fulfills(P, art12_22_SubjectRights):- has(P, duty, X) , act(P),

138



↪→ art_12_22_rights(X),validConsentSatisfied(P) .

323

324 %fulfills(P, art12_22_SubjectRights):- fulfills(P ,art12_22_SubjectRights

↪→ ), validConsentSatisfied(P) ,act(P).

325

326

327 %================== SPECIAL ======================

328 %=== Chap4_ControllerAndProcessorObligations =====

329 %=================================================

330 %*

331 ObjectSomeValuesFrom(sbpl:hasDuty Art32-37_Obligations)

332 *%

333 %============== ASP translation ===================

334

335 regulation(chap4_ControllerAndProcessorObligations).

336 fulfills(P ,chap4_ControllerAndProcessorObligations ):- has(P, duty,

↪→ art32_37_Obligations), act(P).

337

338

339 %============= SPECIAL ===============================

340 %==== Chap5_DataTransferToThirdCountry ===============

341 %=====================================================

342 %*

343 ObjectUnionOf(

344 ObjectIntersectionOf(

345 Art48_TransfersNotAuthorisedByUnionLaw

346 ObjectUnionOf(

347 AdequateLevelOfProtection_as_per_Art45

348 AppropriateSafeguards_as_per_Art46

349 Art49_Derogations

350 )

351 )

352 ObjectComplementOf(

353 ObjectIntersectionOf(

354 ObjectSomeValuesFrom(spl:hasProcessing svpr:Transfer)

355 ObjectSomeValuesFrom(spl:hasStorage ObjectSomeValuesFrom(spl:

↪→ hasLocation svl:ThirdCountries))

356 )

357 )

358 )

359 *%

360 %====== ASP translation ===================

361

362 regulation(chap5_DataTransferToThirdCountry;

363 art48_TransfersNotAuthorisedByUnionLaw;

364 adequateLevelOfProtection_as_per_Art45;

365 appropriateSafeguards_as_per_Art46;

366 art49_Derogations).

367

368 auxiliaryRegulation(chap5_DataTransfer_aux1; chap5_DataTransfer_aux2;

139



↪→ chap5_DataTransfer_aux11; is_transfer ; to_thirdCountries).

369

370 inUnionOf(chap5_DataTransfer_aux1 , chap5_DataTransferToThirdCountry ).

371 inUnionOf(comp(chap5_DataTransfer_aux2) ,

↪→ chap5_DataTransferToThirdCountry ).

372

373

374 inIntersectOf(art48_TransfersNotAuthorisedByUnionLaw,

↪→ chap5_DataTransfer_aux1).

375 inIntersectOf(chap5_DataTransfer_aux11 ,chap5_DataTransfer_aux1).

376

377 inUnionOf(adequateLevelOfProtection_as_per_Art45 ,

↪→ chap5_DataTransfer_aux11).

378 inUnionOf(appropriateSafeguards_as_per_Art46 ,chap5_DataTransfer_aux11).

379 inUnionOf(art49_Derogations ,chap5_DataTransfer_aux11).

380

381

382 inIntersectOf(is_transfer ,chap5_DataTransfer_aux2).

383 inIntersectOf(to_thirdCountries ,chap5_DataTransfer_aux2).

384

385 fulfills(P ,is_transfer ):- has(P, processing, transfer), act(P).

386 fulfills(P ,to_thirdCountries):- has(P, storageLocation, thirdCountries),

↪→ act(P).

387

388

389 %============= SPECIAL ==================================

390 %= Chap5_DataTransferToThirdCountry ->

↪→ Art48_TransfersNotAuthorisedByUnionLaw =

391 %=======================================================

392 %*

393 ObjectUnionOf(

394 InternationalAgreement_as_in_Art48

395 ObjectComplementOf(CourtRequestFromThirdCountry_as_in_Art48)

396 )

397 *%

398 %=== ASP translation ===========================

399

400 regulation(internationalAgreement_as_in_Art48).

401 inUnionOf(internationalAgreement_as_in_Art48 ,

↪→ art48_TransfersNotAuthorisedByUnionLaw).

402 %inUnionOf(comp(courtRequestFromThirdCountry_as_in_Art48) ,

↪→ art48_TransfersNotAuthorisedByUnionLaw).

403 fulfills(P ,internationalAgreement_as_in_Art48 ):- has(P, processing,

↪→ transfer), has(P, storageCountry, us ), act(P).

404

405 % here we suppose that us is among the countries with an international

↪→ agreement with EU

406 %============== SPECIAL ==============================

407 %=== Chap5_DataTransferToThirdCountry ->

↪→ AppropriateSafeguards_as_per_Art46 ==

140



408 %=====================================================

409 %*

410 Art46_2_a_PublicAuthorities

411 Art46_2_b_BindingCorporateRulesasperArt47

412 Art46_2_c_DataProtectionClausesAdoptedByEC

413 Art46_2_d_DataProtectionClausesAdoptedBySupervisoryAuthority

414 Art46_2_e_ApprovedCodeOfConduct

415 Art46_2_f_ApprovedCertificationMechanism

416 Art46_3_a_ContractualClauses

417 Art46_3_b_ProvisionsInAdministrativeArrangements

418 *%

419 %============== ASP translation ====================

420

421 appropriateSafeguards_Art46(

422 art46_2_a_PublicAuthorities;

423 art46_2_b_BindingCorporateRulesasperArt47;

424 art46_2_c_DataProtectionClausesAdoptedByEC;

425 art46_2_d_DataProtectionClausesAdoptedBySupervisoryAuthority;

426 art46_2_e_ApprovedCodeOfConduct;

427 art46_2_f_ApprovedCertificationMechanism;

428 art46_3_a_ContractualClauses;

429 art46_3_b_ProvisionsInAdministrativeArrangements).

430

431 fulfills(P ,appropriateSafeguards_as_per_Art46 ):- has(P, measures , X

↪→ ), act(P), appropriateSafeguards_Art46(X).

432

433

434

435 %================ SPECIAL ==================================

436 %============ Chap5_DataTransferToThirdCountry -> Art49_Derogations =

437 %========================================================

438 %*

439 ObjectIntersectionOf(

440 ObjectUnionOf(

441 Art49_1_a_Consent

442 Art49_1_b_ContractByRequestOfDS

443 Art49_1_c_ContractInInterestOfDS

444 Art49_1_d_PublicInterest

445 Art49_1_e_LegalClaims

446 Art49_1_f_VitalInterest

447 Art49_1_g_PublicData)

448 ObjectComplementOf(AdequateLevelOfProtection_as_per_Art45)

449 ObjectComplementOf(AppropriateSafeguards_as_per_Art46)

450 )

451 *%

452

453 %============= ASP translation ==================

454

455

456 auxiliaryRegulation(art49_Derogations_aux1).

141



457

458 legalBasis_Art49_1(

459 art49_1_a_Consent;

460 art49_1_b_ContractByRequestOfDS;

461 art49_1_c_ContractInInterestOfDS;

462 art49_1_d_PublicInterest;

463 art49_1_e_LegalClaims;

464 art49_1_f_VitalInterest;

465 art49_1_g_PublicData).

466

467 inIntersectOf(art49_Derogations_aux1 ,art49_Derogations).

468 fulfills(P ,art49_Derogations_aux1 ):- has(P, legalBasis , X), act(P),

↪→ legalBasis_Art49_1(X).

469 inIntersectOf(comp(adequateLevelOfProtection_as_per_Art45) ,

↪→ art49_Derogations).

470 inIntersectOf(comp(appropriateSafeguards_as_per_Art46) ,art49_Derogations

↪→ ).

Listing A.2: The implementation of the compliance engine

142



Appendix B

Codes: Pluralistic Utility
Model

1 %========================================================

2 %======================== Alternatives ==================

3 %========================================================

4 alt(sys1;sys2;sys3).

5

6 has(sys1,requiredData,clickHabit ).

7 has(sys1,requiredData,interests ).

8 has(sys1,requiredData,activity ).

9

10 has(sys2,requiredData,interests ).

11 has(sys2,requiredData,politicalBelief ).

12

13 has(sys3, requiredData ,interests).

14 has(sys3, requiredData ,activity).

15

16 has(sys1, item_parity,3 ).

17 has(sys2, item_parity,6 ).

18 has(sys3, item_parity,4 ).

19

20 has(sys1, gender_parity,1 ).

21 has(sys2, gender_parity,2 ).

22 has(sys3, gender_parity,3 ).

23

24 has(sys1, racial_parity,2 ).

25 has(sys2, racial_parity,4 ).

26 has(sys3, racial_parity,1 ).

27

28 has(sys1, perfMetric,30 ).

29 has(sys2, perfMetric,25 ).

30 has(sys3, perfMetric,20 ).

31

143



32 has(sys1, processType, largeScale ).

33 has(sys2, processType, largeScale ).

34 has(sys3, processType, smallScale ).

35

36 %===================================================================

37 %======================== Hierarchical Structure ===================

38 %===================================================================

39

40 child(root,privacy).

41 child(root,fairness).

42 child(root,performance).

43

44 child(privacy, sensitivity).

45 child(privacy, minimization).

46 child(privacy, scaleComplexity).

47 child(fairness, item_fairness).

48 child(fairness, user_fairness).

49 child(user_fairness, racial_fairness).

50 child(user_fairness, gender_fairness).

51

52 node(Node):- child(Node,_).

53 node(Node):- child(_,Node).

54

55 %==================================================================

56 %======================= leaf criteria votes ======================

57 %==================================================================

58

59 % Minimisation

60 pref(minimization,Alt1,Alt2):-

61 has(Alt1, nbData, N1),

62 has(Alt2, nbData, N2),

63 N2>=N1.

64

65 has(Alt,nbData, N):-

66 N = #count{ Data : has(Alt, requiredData, Data)},

67 alt(Alt).

68

69 %Sensitivity

70 pref(sensitivity, Alt1, Alt2):-

71 has(Alt1, nbSensitiveData, N1),

72 has(Alt2,nbSensitiveData, N2),

73 N2>=N1.

74

75 has(Alt, nbSensitiveData, N):-

76 N = #count{ Data : has(Alt, requiredData, Data),

77 has(Data, category, sensitiveData)},

78 alt(Alt).

79 % knowledge about sensitive data categories

80 has(politicalBelief, category, sensitiveData).

81 has(opinionData, category, sensitiveData).

144



82

83

84 %Scale and Complexity

85 pref(scaleComplexity,Alt1,Alt2):-

86 has(Alt1, processType, Type1),

87 has(Alt2, processType, Type2),

88 rankAux(Type1, R1),

89 rankAux(Type2, R2),

90 R2>=R1, alt(Alt1), alt(Alt2).

91 rankAux(largeScale, 2).

92 rankAux(smallScale, 1).

93

94

95 % Performance

96 pref(performance, Alt1, Alt2):-

97 has(Alt1, perfMetric, P1),

98 has(Alt2, perfMetric, P2),

99 P1>=P2, alt(Alt1), alt(Alt2).

100

101 % Item Fairness

102 pref(item_fairness,Alt1,Alt2):-

103 has(Alt1, item_parity,P1),

104 has(Alt2, item_parity,P2),

105 P1<=P2, alt(Alt1), alt(Alt2).

106

107 %Item Fairness

108 pref(racial_fairness,Alt1,Alt2):-

109 has(Alt1, racial_parity,P1),

110 has(Alt2, racial_parity,P2),

111 P1<=P2, alt(Alt1), alt(Alt2).

112

113 %Gender Fairness

114 pref(gender_fairness,Alt1,Alt2):-

115 has(Alt1, gender_parity,P1),

116 has(Alt2, gender_parity,P2),

117 P1<=P2, alt(Alt1), alt(Alt2).

118

119 %==================================================================

120 %=========================== Aggregator ===========================

121 %==================================================================

122

123 % Implementation of votng rule with dominant voters

124 pref(Node, Alt1, Alt2):- prefLex(Node, Alt1, Alt2).

125

126 prefLex(Node, Alt1, Alt2):-

127 childrenClass(Node,Class),

128 pVote(Node, Class, Alt1, Alt2),

129 is_dominant(Node, Class, Alt1, Alt2).

130

131 is_dominant(Node, Class,Alt1,Alt2):-

145



132 not is_dominated(Node, Class,Alt1,Alt2),

133 childrenClass(Node,Class),

134 pVote(Node, Class, Alt1, Alt2).

135

136 is_dominated(Node, Class, Alt1,Alt2):-

137 childrenClass(Node,Class),

138 pVote(Node, Class, Alt1, Alt2),

139 superiorThan(Node, Layer1, Class),

140 not pVote(Node, Layer1, Alt1,Alt2).

141

142 is_dominated(Node, Class, Alt1,Alt2):-

143 childrenClass(Node,Class),

144 pVote(Node, Class, Alt1, Alt2),

145 not superiorThan(Node, _ , Class),

146 pVote(Node, Class, Alt2, Alt1).

147

148 superiorThan(Node, Layer1, Layer2):-

149 childrenClass(Node, Layer1),

150 childrenClass(Node, Layer2),

151 not inferiorThan(Node, Layer1, Layer2).

152

153 inferiorThan(Node, Layer1, Layer2):-

154 childrenClass(Node, Layer1),

155 childrenClass(Node, Layer2),

156 belongs(Node, Child1 , Layer1),

157 belongs(Node, Child2 , Layer2),

158 not childPref(Node, Child1, Child2).

159

160 childrenClass(Node, Class):-

161 belongs(Node, _ , Class).

162

163 belongs(Node, Child , Class):-

164 Class = #count{ Child1 :

165 childPref(Node , Child, Child1)},

166 child(Node, Child).

167

168

169 % voting rule

170

171 % in case of an only single voter no vote aggregation is needed

172 pVote(Node, Class, Alt1,Alt2):-

173 singleton(Node, Class),

174 belongs(Node, Child, Class),

175 pref(Child, Alt1, Alt2).

176

177 singleton(Node, Class):-

178 belongs(Node, Child1, Class),

179 not plural(Node, Class).

180

181 plural(Node, Class):-

146



182 belongs(Node, Child1, Class),

183 belongs(Node, Child2, Class),

184 Child1 != Child2.

185

186

187 % vote aggregation according to Copelands rule

188 pVote(Node, Class, Alt1, Alt2):-

189 plural(Node, Class),

190 copeland_score( Node, Class, Alt1, S1),

191 copeland_score( Node, Class, Alt2, S2),

192 S1>=S2.

193

194 copeland_score( Node, Class, Alt, S):-

195 S= #sum{ S1:

196 nb_pairwise_wins( Node, Class, Alt, Alt1, N1),

197 nb_pairwise_ties( Node, Class, Alt, Alt1, N2),

198 S1 = N1*2+N2,

199 alt(Alt1)},

200 childrenClass(Node, Class), alt(Alt) .

201

202 nb_pairwise_ties( Node, Class, Alt1, Alt2 , N):-

203 N= #count{ N1 :

204 nb_strict_voters(Node, Class, Alt1, Alt2 , N1),

205 nb_strict_voters(Node, Class, Alt2, Alt1 , N2),

206 belongs(Node, Child, Class), N1=N2},

207 childrenClass(Node,Class), alt(Alt1), alt(Alt2).

208

209 nb_pairwise_wins( Node, Class, Alt1, Alt2, N):-

210 N= #count{ N1 :

211 nb_strict_voters(Node, Class, Alt1, Alt2 , N1),

212 nb_strict_voters(Node, Class, Alt2, Alt1 , N2),

213 belongs(Node, Child, Class), N1>N2},

214 childrenClass(Node, Class), alt(Alt1), alt(Alt2).

215

216 nb_strict_voters(Node, Class, Alt1, Alt2, N):-

217 N = #count{ Child :

218 pref(Child, Alt1, Alt2),

219 not pref(Child , Alt2, Alt1),

220 belongs(Node, Child, Class) },

221 childrenClass(Node, Class), alt(Alt1), alt(Alt2).

222

223

224 %% ranking adjustment

225 primiryRank(Node, Alt, R):-

226 R1 = #count{ Alt1 : pref(Node, Alt, Alt1), alt(Alt1)} ,

227 R2 = #count{ Alt2 : pref(Node, Alt2,_)},

228 R = R2-R1+1, node(Node), alt(Alt).

229

230 correction(Node, R2 , R+1):-

231 R = #count{ R1 : primiryRank(Node,_,R1), R2>R1 },

147



232 primiryRank(Node,_,R2).

233

234 rank(Node, Alt , R):-

235 primiryRank(Node, Alt, R1),

236 correction(Node, R1 , R).

237

238 %root ranking

239 rankRoot(Alt,R):- rank(root,Alt,R).

240

241 %==================================================================

242 %======================== Input priorities ========================

243 %==================================================================

244 % Fixed Inputs

245 childPref(privacy, sensitivity, minimization).

246 %childPref(privacy, minimization, sensitivity).

247 childPref(privacy, minimization, scaleComplexity).

248 %childPref(privacy, scaleComplexity, minimization).

249

250 childPref(fairness, user_fairness, item_fairness).

251 childPref(user_fairness, racial_fairness, gender_fairness).

252 childPref(user_fairness, gender_fairness, racial_fairness).

253

254

255 % transitivity of the order

256 childPref(C, X,Z):- childPref(C, X,Y), childPref(C, Y,Z).

257

258

259 % variant inputs for the root to reproduce the result in the article

260

261 % case 1) fairness = privacy = pereformance

262

263 %childPref(root, fairness, privacy).

264 %childPref(root, privacy, fairness).

265 %childPref(root, privacy, performance).

266 %childPref(root, performance,privacy).

267

268

269 % case 2 fairness > privacy > pereformance

270

271 %childPref(root, fairness, privacy).

272 %childPref(root, privacy, performance).

273

274

275 % case 3 fairness = privacy > pereformance

276

277 %childPref(root, fairness, privacy).

278 %childPref(root, privacy, fairness).

279 %childPref(root, privacy, performance).

280

281

148



282 % case 4 fairness = pereformance > privacy

283

284 childPref(root, fairness, performance).

285 childPref(root, performance, fairness).

286 childPref(root, performance,privacy).

287

288

289 % case 5 fairness > pereformance > privacy

290

291 %childPref(root, fairness, performance).

292 %childPref(root, performance,privacy).

293

294

295 %=====================================================================

296 %=========================== output setting ==========================

297 %=====================================================================

298 % in order to run the code execute:

299 % clingo filename.lp 0

300

301 % show the rankoing of all nodes

302 #show rank/3.

303

304 % shows only the ranking of the root node

305 %#show rankRoot/2.

Listing B.1: The implementation of pluralistic utility model

149



Appendix C

Codes: Health Care
Delivery System

1 # -*- coding: utf-8 -*-

2 """drugDeliveryV5.ipynb

3

4 Automatically generated by Colab.

5

6 Original file is located at

7 https://colab.research.google.com/drive/1

↪→ E_UtcQpSNKNxZXMeOvBwJVNESvArcO4i

8

9 ## Start Here

10 """

11

12 pip install clingo

13

14 import clingo

15

16 """#Planning Component

17

18 ## Event Calculus

19 """

20

21 # Commented out IPython magic to ensure Python compatibility.

22 #Global Knowledge

23 eventCalculusStr="""

24

25 # %=================== event calculus ===================

26 time(0..maxtime).

27

28 # % effect axioms

29 negative(neg(F)) :- effect(E,neg(F)).

150



30 initiates(E,F,T) :- effect(E,F), performs(E,T), not negative(F).

31 terminates(E,F,T) :- effect(E,neg(F)), performs(E,T),time(T).

32 clipped(F,T) :- terminates(E,F,T).

33

34

35 holds(F,0) :- initially(F).

36 holds(F,T) :- initiates(E,F,T-1), time(T).

37 holds(F,T) :- holds(F,T-1), not clipped(F,T-1), time(T).

38

39 # % precondition axioms

40 :- performs(E,T), prec(F,E), not holds(F,T), act(E), time(T).

41

42 # % action generator

43 0 {performs(E, T)} 1 :- act(E), time(T),T<maxtime.

44 :- performs(E1,T), performs(E2,T) ,E1!=E2.

45

46 # %=================== event calculus ===================

47

48 """

49

50 """##Action Specifications"""

51

52 # Commented out IPython magic to ensure Python compatibility.

53 #global knowledge

54 actionsStr="""

55

56 # %=======================================================

57

58

59 act(board(Agent, Resource, LocX)):-

60 agent(Agent),

61 resource(Resource),

62 location(LocX).

63

64 prec(resourceAt(Resource, LocX), board(Agent, Resource, LocX)):-

65 act(board(Agent, Resource, LocX)).

66 prec(agentAt(Agent, LocX), board(Agent, Resource, LocX)):-

67 act(board(Agent, Resource, LocX)).

68 prec(empty(Agent), board(Agent, Resource, LocX)):-

69 act(board(Agent, Resource, LocX)).

70

71 effect(board(Agent, Resource, LocX), onBoard(Resource, Agent)):-

72 act(board(Agent, Resource, LocX)).

73

74 effect(board(Agent, Resource, LocX), neg(resourceAt(Resource, LocX))):-

75 act(board(Agent, Resource, LocX)).

76

77 effect(board(Agent, Resource, LocX), neg(empty(Agent))):-

78 act(board(Agent, Resource, LocX)).

79

151



80 # % move resource action

81 act(move(Agent, LocX, LocY)):-

82 agent(Agent),

83 location(LocX),

84 location(LocY),

85 connected(LocX, LocY).

86

87 prec(agentAt(Agent, LocX) ,move(Agent, LocX, LocY)):-

88 act(move(Agent, LocX, LocY)).

89

90 effect( move(Agent, LocX, LocY), agentAt(Agent, LocY) ):-

91 act(move(Agent, LocX, LocY)).

92

93 effect( move(Agent, LocX, LocY), neg(agentAt(Agent, LocX))):-

94 act(move(Agent, LocX, LocY)).

95

96

97 # %======= dliver action

98 act(deliver(Agent, Resource, Demand, LocX)):-

99 agent(Agent),

100 resource(Resource),

101 demand(Demand),

102 location(LocX).

103

104

105 prec(agentAt(Agent, LocX), deliver(Agent, Resource, Demand, LocX)):-

106 act(deliver(Agent, Resource, Demand, LocX)).

107

108 prec(demandAt(Demand, LocX), deliver(Agent, Resource, Demand, LocX)):-

109 act(deliver(Agent, Resource, Demand, LocX)).

110 prec(onBoard(Resource, Agent), deliver(Agent, Resource, Demand, LocX)):-

111 act(deliver(Agent, Resource, Demand, LocX)).

112

113 prec(active(Demand), deliver(Agent, Resource, Demand, LocX)):-

114 act(deliver(Agent, Resource, Demand, LocX)).

115

116

117 effect(deliver(Agent, Resource, Demand, LocX), delivered(Agent, Resource,

↪→ Demand) ):-

118 act(deliver(Agent, Resource, Demand, LocX)).

119

120 effect(deliver(Agent, Resource, Demand, LocX), empty(Agent) ):-

121 act(deliver(Agent, Resource, Demand, LocX)).

122

123 effect(deliver(Agent, Resource, Demand, LocX), neg(active(Demand)) ):-

124 act(deliver(Agent, Resource, Demand, LocX)).

125 effect(deliver(Agent, Resource, Demand, LocX), neg(onBoard(Resource,

↪→ Agent)) ):-

126 act(deliver(Agent, Resource, Demand, LocX)).

127

152



128

129

130 agent1(board(Agent, Resource, LocX),Agent):- act(board(Agent, Resource,

↪→ LocX)).

131 agent1(move(Agent, LocX, LocY),Agent):- act(move(Agent, LocX, LocY)).

132 agent1(deliver(Agent, Resource, Demand, LocX),Agent):- act(deliver(Agent,

↪→ Resource, Demand, LocX)).

133

134

135 """

136

137 """##Maps (Nodes and Connections)"""

138

139 # Commented out IPython magic to ensure Python compatibility.

140 outputStr="""

141 # %============ Goal State and Output ================================

142

143 :- not holds(delivered(Agent, Resource, Demand), maxtime), assignedDemand

↪→ (Demand, Agent), demandedResource1(Demand, Resource) .

144

145

146 #show performs/2.

147 # %#show initially/1.

148

149 """

150

151 # Commented out IPython magic to ensure Python compatibility.

152 mapStr="""

153

154 # %===========

155 # %nodes and connections

156

157 location(locA;locB;locC;locD).

158 connected(locA, locB).

159 connected(locA, locC).

160 connected(locB, locD).

161 connected(locC, locD).

162

163

164 connected(X,Y):- connected(Y,X).

165

166 distance(locA, locB, 8).

167 distance(locA, locC, 8).

168 distance(locB, locD, 6).

169 distance(locC, locD, 4).

170

171 distance(A, B, D):- distance(B, A, D).

172

173 prohibited(drone, locB).

174 prohibited(autoBox, locC).

153



175

176 """

177

178 """##Resources"""

179

180 resourcesInfoStr="""

181

182 resource(r1;r2).

183

184 initially(resourceAt(r1, locA)).

185 initially(resourceAt(r2, locA)).

186

187 """

188

189 """##Agents"""

190

191 agentInfoStr="""

192

193 agent(a1;a2).

194

195 type(a1, drone).

196 type(a2, autoBox).

197

198

199 speed(drone, 2).

200 speed(autoBox, 1).

201

202 depreciation(drone, 2).

203 depreciation(autoBox, 1).

204

205 initially(agentAt(a1, locA)).

206 initially(agentAt(a2, locA)).

207

208 initially(empty(a1)).

209 initially(empty(a2)).

210

211 """

212

213 """##Demands

214

215 ##Program: Resource Allocations

216 """

217

218 # Commented out IPython magic to ensure Python compatibility.

219 resourceAllocationStr="""

220 # %============= allocations ===================

221 # %single resource problem

222

223 insufficientResource(Resource):-

224 demandedResource1(Demand, Resource),

154



225 demandedResource1(Demand1, Resource),

226 Demand !=Demand1.

227

228 sufficientResource(Resource):-

229 not insufficientResource(Resource),

230 resource(Resource).

231

232 allocatedResource(Resource, Demand):-

233 demandedResource1(Demand, Resource),

234 sufficientResource(Resource).

235

236 {allocatedResource(Resource,Demand)}:-

237 demandedResource1(Demand, Resource),

238 insufficientResource(Resource).

239

240 :- allocatedResource(Resource,Demand1),

241 allocatedResource(Resource,Demand2),

242 insufficientResource(Resource),

243 Demand1!=Demand2.

244

245 :- not allocatedResource(Resource,_),

246 insufficientResource(Resource).

247

248 # %#show allocatedResource/2.

249 """

250

251 """##Program: Demand Assignments"""

252

253 # Commented out IPython magic to ensure Python compatibility.

254 demandAssignmentStr="""

255

256 {assignedDemand(Demand,Agent)}:-

257 allocatedResource(_, Demand),

258 agent(Agent).

259

260 :- assignedDemand(Demand,Agent1),

261 assignedDemand(Demand,Agent2),

262 Agent1!=Agent2.

263

264 :- not assignedDemand(Demand,_),

265 allocatedResource(_, Demand).

266

267

268 # %resourceDemandAgentAssign(Resource, Demand, Agent):- allocatedResource

↪→ (Resource, Demand), assignedDemand(Demand, Agent).

269

270 # %deliveryTask(Agent, Resource, Demand):- allocatedResource(Resource,

↪→ Demand), assignedDemand(Demand,Agent).

271 #show assignedDemand/2.

272 """

155



273

274 """##Program: Planning

275

276 #Compliance Component

277

278 ##Auxiliary Features

279 """

280

281 # Commented out IPython magic to ensure Python compatibility.

282 gettingFeaturesStr="""

283

284 # % cost informations

285

286 duration( move(Agent, LocX, LocY) , N):- act(move(Agent, LocX, LocY)),

↪→ type(Agent, X), speed(X, S), distance(LocX, LocY, D), N=D/S.

287 duration( deliver(Agent, Resource, Demand, LocX) , 1):- type(Agent,

↪→ drone), act(deliver(Agent, Resource, Demand, LocX)).

288 duration( deliver(Agent, Resource, Demand, LocX) , 1):- type(Agent,

↪→ autoBox), act(deliver(Agent, Resource, Demand, LocX)).

289 duration( board(Agent, Resource, LocX) , 2):- type(Agent, drone), act(

↪→ board(Agent, Resource, LocX)).

290 duration( board(Agent, Resource, LocX) , 1):- type(Agent, autoBox), act(

↪→ board(Agent, Resource, LocX)).

291

292

293

294 cost( move(Agent, LocX, LocY), C):- type(Agent, X), depreciation(X, N) ,

↪→ distance(LocX, LocY, D), C= N*D, act(move(Agent, LocX, LocY)).

295 cost( deliver(Agent, Resource, Demand, LocX) , 2):- type(Agent, drone),

↪→ act(deliver(Agent, Resource, Demand, LocX)).

296 cost( deliver(Agent, Resource, Demand, LocX) , 1):- type(Agent, autoBox),

↪→ act(deliver(Agent, Resource, Demand, LocX)).

297 cost( board(Agent, Resource, LocX) , 2):- type(Agent, drone), act(board(

↪→ Agent, Resource, LocX)).

298 cost( board(Agent, Resource, LocX) , 1):- type(Agent, autoBox), act(board

↪→ (Agent, Resource, LocX)).

299

300

301

302 cumulDuration(Plan, Agent, 0,D):- plan(Plan, performs(E,0)), agent1(E,

↪→ Agent) ,duration(E,D).

303 cumulDuration(Plan, Agent, T,D):- plan(Plan, performs(E,T)), agent1(E,

↪→ Agent) ,cumulDuration(Plan, Agent,T-1,D1), duration(E,D2), D = D1

↪→ +D2, T>0.

304

305 duration1(Demand, Plan, S):- plan(Plan, performs( deliver(Agent, _,

↪→ Demand, _), ArrivalTimeStep)), demand(Demand), cumulDuration(Plan

↪→ , Agent,ArrivalTimeStep,S).

306

307

156



308

309 duration2(Demand, Plan, S):-

310 demand(Demand),

311 plan(Plan,_) ,

312 duration1(Demand, Plan, S).

313

314 duration2(Demand, Plan, 99):-

315 demand(Demand),

316 not duration1(Demand, Plan, _),

317 not plan(Plan, performs(deliver(_,_, Demand,_),_)),

318 plan(Plan,_).

319

320

321

322 cost1(Demand, Plan, S):- S = #sum{

323 C : cost(E, C),

324 plan(Plan, performs(E,Tstep)),

325 plan(Plan, performs(board(_,Resource,_), StartTimeStep)),

326 plan(Plan, performs(deliver(_,Resource, Demand,_),ArrivalTimeStep)),

327 Tstep>= StartTimeStep, Tstep<= ArrivalTimeStep}, plan(Plan,performs(

↪→ deliver(_,Resource, Demand,_),_)).

328

329

330 cost2(Demand, Plan, S):-

331 demand(Demand),

332 plan(Plan,_) ,

333 cost1(Demand, Plan, S).

334

335 cost2(Demand, Plan, 0):-

336 demand(Demand),

337 plan(Plan,_),

338 not cost1(Demand, Plan, _),

339 not plan(Plan, performs(deliver(_,_, Demand,_),_)).

340

341

342 overallCost(Plan, S):- S = #sum{C: cost2(_, Plan, C)}, plan(Plan,_).

343

344

345

346 breached(Plan, Demand, LocB):-

347 plan(Plan, performs(board(Agent, Resource, _),T1)),

348 demandedResource1(Demand, Resource),

349 plan(Plan, performs( deliver(Agent, Resource, Demand, _) ,T2)),

350 plan(Plan,performs(move(Agent,_,LocB),Ti)),

351 Ti>T1, Ti<T2,

352 type(Agent, AgentType), location(LocB),

353 prohibited(AgentType, LocB), agent(Agent).

354

355

356 nbBreachedLoc(Plan, Demand, N):- N = #count{ LocB:

157



357 breached(Plan, Demand, LocB)

358 }, plan(Plan, performs( deliver(_,_, Demand, _) ,_)).

359

360

361

362 # %*

363 breached(Plan, LocB):-

364 plan(Plan,performs(move(Agent,_,LocB),_)),

365 type(Agent, AgentType), location(LocB),

366 prohibited(AgentType, LocB), agent(Agent).

367

368 # % if a cost is asssigned to each prohibited location then "count" turns

↪→ into "sum"

369 nbBreachedLoc(Plan, N):- N = #count{ LocB:

370 breached(Plan, LocB)

371 }, plan(Plan,_).

372 *%

373

374

375

376 missed(Plan, Demand):-

377 demand(Demand),

378 not plan(Plan, performs(deliver(_,_, Demand,_),_)),

379 plan(Plan,_).

380

381 missed(Plan, Demand):-

382 demand(Demand),

383 plan(Plan, performs(deliver(_,_, Demand,_),_)),

384 duration2(Demand, Plan, D1),

385 timeLimit(Demand, DL),

386 D1>DL,

387 plan(Plan,_).

388

389 nbMissedDemands(Plan, N):- N = #count{ Demand:

390 missed(Plan, Demand)

391 }, plan(Plan,_).

392

393

394

395 # %#show nbBreachedLoc/2.

396 #show nbBreachedLoc/3.

397 #show nbMissedDemands/2.

398

399 #show duration2/3.

400 #show overallCost/2.

401

402

403 """

404

405 """##Program: Auxiliary Features

158



406

407 ##Norms (Absolute + Relative)

408 """

409

410 # Commented out IPython magic to ensure Python compatibility.

411 normsStr="""

412 # % relative and absolute

413

414 absolute1(forbiddenZone(Demand)):- demand(Demand).

415 absolute1(missingDemand).

416

417

418 relative1(severity).

419 relative1(agePriority).

420 relative1(costPriority).

421

422

423

424 # % absolute1(forbiddenZone(Agent, Demand)):- assignedDemand(Demand,

↪→ Agent).

425

426 """

427

428 # Commented out IPython magic to ensure Python compatibility.

429 getOrdersStr="""

430

431 # %====Absolute Norms

432 nbViolate(forbiddenZone(Demand), Plan, N):-

433 nbBreachedLoc(Plan, Demand, N).

434

435 nbViolate(missingDemand, Plan, N):-

436 nbMissedDemands(Plan, N).

437

438

439 pref(C, PlanA, PlanB):-

440 absolute1(C),

441 nbViolate(C, PlanA, N1),

442 nbViolate(C, PlanB, N2),

443 N1<=N2.

444

445

446 # %====Relative Norms

447 pref(costPriority, PlanA, PlanB):-

448 overallCost(PlanA, C1),

449 overallCost(PlanB, C2),

450 C1<=C2.

451

452

453 # % Predefined orders for severity

454 pr(high, medium).

159



455 pr(medium, low).

456 pr(high, low).

457 pre(severity, Demand1 ,Demand2):-

458 severityLvl(Demand1, L1),

459 severityLvl(Demand2, L2),

460 pr(L1,L2).

461

462 # % Predefined orders for age category

463 pr(child, elderly).

464 pr(elderly, adult).

465 pr(child, adult).

466 pre(agePriority, Demand1 ,Demand2):-

467 ageCategory(Demand1, A1),

468 ageCategory(Demand2, A2),

469 pr(A1,A2).

470

471

472 lexicoNorms(agePriority;severity).

473

474 priortize(Demand, Plan1, Plan2):-

475 duration2(Demand, Plan1, D1),

476 duration2(Demand, Plan2, D2 ),

477 D1<=D2.

478

479

480 pref(Crit, Plan1, Plan2):- %lexicoPref(Crit, Plan1, Plan2).

481 priortize(Demand, Plan1, Plan2),

482 is_dominant(Crit, Demand, Plan1, Plan2).

483

484

485 is_dominant(Crit, Demand, Plan1, Plan2):-

486 not is_dominated(Crit, Demand, Plan1, Plan2),

487 lexicoNorms(Crit),

488 priortize(Demand, Plan1, Plan2).

489

490 is_dominated(Crit, Demand, Plan1, Plan2):-

491 priortize(Demand, Plan1, Plan2),

492 pre(Crit, Demand1, Demand),

493 Demand1!= Demand,

494 not priortize( Demand1, Plan1, Plan2).

495

496 is_dominated(Crit, Demand, Plan1, Plan2):-

497 priortize(Demand, Plan1, Plan2),

498 not pre(Crit, _, Demand),

499 lexicoNorms(Crit),

500 priortize(Demand, Plan2, Plan1).

501

502

503 #show pref/3.

504 #show nbViolate/3.

160



505 # %#show absolute1/1.

506

507 """

508

509 """##Aggregations"""

510

511 # Commented out IPython magic to ensure Python compatibility.

512 # evalStr="""

513 # alt(Plan):- plan(Plan,_).

514 #

515 #

516 # criteria(X):- absolute1(X).

517 # criteria(X):- relative1(X).

518 #

519 #

520 # absolute(Criteria):- absolute1(Criteria), not relaxed(Criteria).

521 # relative(Criteria):- relative1(Criteria).

522 # relative(Criteria):- relaxed(Criteria).

523 #

524 #

525 # pluralClass(C) :- belongs(A, C), belongs(B, C), class(C), A!=B.

526 #

527 # singleClass(C):- class(C), not pluralClass(C).

528 #

529 # superiorThan(X,Z):- superiorThan(X,Y), superiorThan(Y,Z).

530 #

531 #

532 # winner(A):- not loser(A), compliant(A).

533 # loser(A):- prefRelative(B,A), compliant(A), compliant(B), A!=B.

534 #

535 # compliant(A):- not nonCompliant(A), alt(A).

536 # nonCompliant(A):- criteria(C), absolute(C), nbViolate(C,A,N), alt(A), N

↪→ >0.

537 #

538 # #show winner/1.

539 #

540 # %%========

541 #

542 # % Implementation of votng rule with dominant voters

543 # prefRelative(Alt1, Alt2):-

544 # class(Class),

545 # pVote(Class, Alt1, Alt2),

546 # is_dominant( Class, Alt1, Alt2).

547 #

548 # is_dominant(Class, Alt1, Alt2):-

549 # not is_dominated(Class, Alt1,Alt2),

550 # class(Class),

551 # pVote(Class, Alt1, Alt2).

552 #

553 # is_dominated( Class, Alt1,Alt2):-

161



554 # class(Class),

555 # pVote(Class, Alt1, Alt2),

556 # superiorThan( Class1, Class),

557 # Class1!=Class,

558 # not pVote(Class1, Alt1, Alt2).

559 #

560 # is_dominated( Class, Alt1,Alt2):-

561 # class(Class),

562 # pVote(Class, Alt1, Alt2),

563 # not superiorThan( _, Class),

564 # pVote(Class, Alt2, Alt1).

565 #

566 #

567 # pVote( Class, Alt1, Alt2):-

568 # singleClass(Class),

569 # belongs(Criteria, Class),

570 # pref(Criteria, Alt1, Alt2).

571 #

572 # % vote aggregation according to Copelands rule

573 # pVote( Class, Alt1, Alt2):-

574 # pluralClass(Class),

575 # copeland_score( Class, Alt1, S1),

576 # copeland_score( Class, Alt2, S2),

577 # S1>=S2.

578 #

579 # copeland_score(Class, Alt, S):-

580 # S= #sum{ S1:

581 # nb_pairwise_wins( Class, Alt, Alt1, N1),

582 # nb_pairwise_ties( Class, Alt, Alt1, N2),

583 # S1 = N1*2+N2,

584 # alt(Alt1)},

585 # pluralClass(Class), alt(Alt) .

586 #

587 # nb_pairwise_ties( Class, Alt1, Alt2 , N):-

588 # N= #count{ N1 :

589 # nb_strict_voters( Class, Alt1, Alt2 , N1),

590 # nb_strict_voters( Class, Alt2, Alt1 , N2),

591 # belongs( Criteria, Class), N1=N2},

592 # pluralClass(Class), alt(Alt1), alt(Alt2).

593 #

594 # nb_pairwise_wins( Class, Alt1, Alt2, N):-

595 # N= #count{ N1 :

596 # nb_strict_voters( Class, Alt1, Alt2 , N1),

597 # nb_strict_voters( Class, Alt2, Alt1 , N2),

598 # belongs( Criteria, Class), N1>N2},

599 # pluralClass(Class), alt(Alt1), alt(Alt2).

600 #

601 # nb_strict_voters( Class, Alt1, Alt2, N):-

602 # N = #count{ Criteria :

603 # pref(Criteria, Alt1, Alt2),

162



604 # not pref(Criteria , Alt2, Alt1),

605 # relative(Criteria),

606 # belongs( Criteria, Class) },

607 # pluralClass(Class), alt(Alt1), alt(Alt2).

608 #

609 #

610 #

611 #

612 # """

613

614 class deliverySystem:

615 def __init__(self, mapInfo, deliveryAgentsInfo, resourcesInfo):

616 self.mapInfo=mapInfo

617 self.deliveryAgentsInfo=deliveryAgentsInfo

618 self.resourcesInfo=resourcesInfo

619

620 #auxiliary functions

621 def aggregateAssignments(self, assignDict):

622 aggDict = {}

623 for k, v in assignDict:

624 aggDict.setdefault(k, []).append(v)

625 return aggDict

626

627 def cartMultiplyLst(self, Lst1, Lst2):

628 Lst=[]

629 if Lst1 != []:

630 for x in Lst1:

631 for y in Lst2:

632 Lst.append( x + y)

633 else:

634 Lst=Lst2

635 return Lst

636

637

638 def allocationAssignment(self, demandsInfo):

639 demandAssignmentPrg = clingo.Control(["0"])

640 demandAssignmentPrg.add(’base’, [], demandsInfo)

641 demandAssignmentPrg.add(’base’, [], self.resourcesInfo)

642 demandAssignmentPrg.add(’base’, [], self.deliveryAgentsInfo)

643 demandAssignmentPrg.add(’base’, [], resourceAllocationStr)

644 demandAssignmentPrg.add(’base’, [], demandAssignmentStr)

645 demandAssignmentPrg.ground([("base", [])])

646 assignments=demandAssignmentPrg.solve(yield_=True)

647

648 self.assignmentsList=[]

649 for assignmnt in assignments:

650 usedAgents=[(str(atom.arguments[1]), str(atom)) for atom in

↪→ assignmnt.symbols(shown=True) if atom.name == ’assignedDemand’]

651 uniqueAgents = self.aggregateAssignments(usedAgents)

652 listAgent=[]

163



653 for k in uniqueAgents:

654 demandsPrgStr="\n {}".format(". \n ".join(uniqueAgents[k])) + "

↪→ ."

655 listAgent.append(demandsPrgStr)

656 self.assignmentsList.append(listAgent)

657

658

659 def generatePlans(self, allocAssignList, demandsInfo):

660

661 outPlans=[]

662 for assignment in allocAssignList:

663 assignmentPlans=[]

664 for agentTask in assignment:

665 maxTime=1

666 isUnSatisfiable= True

667 while (isUnSatisfiable and maxTime<20):

668 nbMaxTime="-c maxtime=" + str(maxTime)

669 prg2 = clingo.Control(["0", nbMaxTime])

670

671 prg2.add(’base’, [], eventCalculusStr)

672 prg2.add(’base’, [], actionsStr)

673 prg2.add(’base’, [], outputStr)

674

675 prg2.add(’base’, [], self.deliveryAgentsInfo)

676 prg2.add(’base’, [], demandsInfo)

677 prg2.add(’base’, [], self.resourcesInfo)

678 prg2.add(’base’, [], self.mapInfo)

679 prg2.add(’base’, [], agentTask)

680 prg2.ground([("base", [])])

681 out=prg2.solve(yield_=True)

682 #out=prg2.solve(on_model=lambda m: print("Answer: {}".format(

↪→ m)))

683 agnetPlans=[]

684 for answer in out:

685 sorted_model = [str(atom) for atom in answer.symbols(shown=

↪→ True)]

686 singlePlanLst=sorted_model

687 agnetPlans.append(singlePlanLst)

688 isSatisfiable=out.get().satisfiable

689 isUnSatisfiable = not isSatisfiable

690 maxTime=maxTime+1

691 #####

692 assignmentPlans=self.cartMultiplyLst(assignmentPlans,

↪→ agnetPlans)

693 outPlans= outPlans + assignmentPlans

694

695 # parsing all plans

696 self.plansStr=""

697 for i in range(len(outPlans)):

698 for j in outPlans[i]:

164



699 self.plansStr = self.plansStr + "plan(p{index}, {action}).".

↪→ format(index=i+1, action=j)+"\n"

700 self.plansStr=self.plansStr+"\n"

701

702 def generateMixture(self, demandsInfo):

703 self.demandsInfoStr=demandsInfo

704 self.allocationAssignment(demandsInfo)

705 self.generatePlans(self.assignmentsList, demandsInfo)

706 print(self.plansStr)

707

708 #Evaluation

709 def getFeatures(self, inputPlans):

710 costTimePrg = clingo.Control(["0"])

711 costTimePrg.add(’base’, [], actionsStr)

712 costTimePrg.add(’base’, [], self.deliveryAgentsInfo)

713 costTimePrg.add(’base’, [], self.demandsInfoStr)

714 costTimePrg.add(’base’, [], self.resourcesInfo)

715 costTimePrg.add(’base’, [], self.mapInfo)

716 costTimePrg.add(’base’, [], inputPlans)

717 costTimePrg.add(’base’, [], gettingFeaturesStr)

718 costTimePrg.ground([("base", [])])

719 outCostTime=costTimePrg.solve(yield_=True)

720

721 sorted_model = [str(atom) for atom in outCostTime.model().symbols(

↪→ shown=True)]

722 #print(" {}".format(".\n ".join(sorted_model))+ ".")

723 self.featuresStr=" {}".format(".\n ".join(sorted_model))+ "."

724

725 def normAssesment(self, featuresStr):

726 ordersPrg = clingo.Control(["0"])

727

728 ordersPrg.add(’base’, [], self.demandsInfoStr)

729 ordersPrg.add(’base’, [], featuresStr)

730 ordersPrg.add(’base’, [], normsStr)

731 ordersPrg.add(’base’, [], getOrdersStr)

732

733 ordersPrg.ground([("base", [])])

734

735 #outOrders=ordersPrg.solve(on_model=lambda m: print("Answer: {} ".

↪→ format(m)))

736

737 outOrders=ordersPrg.solve(yield_=True)

738

739 sorted_model = [str(atom) for atom in outOrders.model().symbols(shown

↪→ =True)]

740 #print(" {}".format(".\n ".join(sorted_model))+ ".")

741 self.assessments=" {}".format(".\n ".join(sorted_model))+ "."

742 #print(prefsStr)

743

744

165



745 def aggregate(self, assessments, inputSettingStr):

746 evalPrg = clingo.Control(["0"])

747

748 evalPrg.add(’base’, [], self.demandsInfoStr)

749 evalPrg.add(’base’, [], self.plansStr)

750 evalPrg.add(’base’, [], evalStr)

751 evalPrg.add(’base’, [], assessments)

752 evalPrg.add(’base’, [], normsStr)

753 evalPrg.add(’base’, [], inputSettingStr)

754

755

756 evalPrg.ground([("base", [])])

757

758 #outOrders=evalPrg.solve(on_model=lambda m: print("Answer: {} ".

↪→ format(m)))

759

760 outEvals=evalPrg.solve(yield_=True)

761

762 sorted_model = [str(atom) for atom in outEvals.model().symbols(shown=

↪→ True)]

763 self.selectedPlan=" {}".format(".\n ".join(sorted_model))+ "."

764

765 def evaluate(self, inputSettingStr):

766 self.getFeatures(self.plansStr)

767 self.normAssesment(self.featuresStr)

768 self.aggregate(self.assessments, inputSettingStr)

769 print(self.selectedPlan)

770

771 """#Scenarios"""

772

773 #Making an Instance of the system

774 deliveySystemInstance = deliverySystem(mapStr, agentInfoStr,

↪→ resourcesInfoStr)

775

776 """##Compliance Scenario:

777

778 ###Demand Information

779

780 <center>

781

782 | Demnd| Resource | Subject| Severity| Time limit| Location |

783 | -----| ---------|------- | --------|-----------|----------|

784 | d1 | r1 |Child | high | 20 | Node D |

785 | d2 | r2 |Elderly | medium | 30 | Node D |

786

787 </center>

788 """

789

790 demandsInfoStr1="""

791 demand(d1;d2).

166



792

793 demandedResource1(d1, r1).

794 demandedResource1(d2, r2).

795

796 ageCategory(d1, child).

797 ageCategory(d2, elderly).

798

799 severityLvl(d1, high).

800 severityLvl(d2, medium).

801

802

803 timeLimit(d1, 20).

804 timeLimit(d2, 30).

805

806 initially(demandAt(d1, locD)).

807 initially(demandAt(d2, locD)).

808

809 initially(active(Demand)):- assignedDemand(Demand,_).

810

811 """

812

813 """###Compliance Setting"""

814

815 # Commented out IPython magic to ensure Python compatibility.

816 #Compliance Setting:

817

818 # Relative

↪→ Absolute

819 # [costPriority]<[agePriority]<[severity] || forbiddenZone(d1),

↪→ forbiddenZone(d2), missedDemand

820

821

822 inputSettingStr="""

823 # %input setting

824 class( severityClass; agePriorityClass; costPriorityClass ).

825

826 belongs(severity, severityClass).

827 belongs(agePriority, agePriorityClass).

828 belongs(costPriority, costPriorityClass).

829

830 superiorThan(severityClass, agePriorityClass).

831 superiorThan(agePriorityClass, costPriorityClass).

832

833 """

834

835 deliveySystemInstance.generateMixture(demandsInfoStr1)

836

837 deliveySystemInstance.evaluate(inputSettingStr)

838

839 """##Dilemma Scenario 1:

167



840 ### (Insufficient Resource)

841 insufficient resources -> we can not avoid missing a demand in any case

↪→ -> so we relax missing demand

842

843 ###Demand Information

844

845 <center>

846

847 | Demnd| Resource | Subject| Severity| Time limit| Location |

848 | -----| ---------|------- | --------|-----------|----------|

849 | d1 | r1 |Child | high | 20 | Node D |

850 | d2 | r1 |adult | medium | 30 | Node D |

851

852 </center>

853 """

854

855 demandsInfoStr2="""

856 demand(d1;d2).

857

858 demandedResource1(d1, r1).

859 demandedResource1(d2, r1).

860

861 ageCategory(d1, child).

862 ageCategory(d2, adult).

863

864 severityLvl(d1, high).

865 severityLvl(d2, medium).

866

867

868 timeLimit(d1, 20).

869 timeLimit(d2, 30).

870

871

872 initially(demandAt(d1, locD)).

873 initially(demandAt(d2, locD)).

874

875 initially(active(Demand)):- assignedDemand(Demand,_).

876

877 """

878

879 """###Compliance Setting

880 (Relaxed)

881 """

882

883 deliveySystemInstance.generateMixture(demandsInfoStr2)

884

885 # Evaluation with compliance setting

886 #Compliance Setting:

887

888 # Relative

168



↪→ Absolute

889 # [costPriority]<[agePriority]<[severity] || forbiddenZone(d1),

↪→ forbiddenZone(d2), missedDemand

890

891 deliveySystemInstance.evaluate(inputSettingStr)

892

893 # Commented out IPython magic to ensure Python compatibility.

894 # Relaxed Setting1:

895 # missedDemand Obligation is relaxed

896 # Relative

↪→ Absolute

897 # [costPriority]<[agePriority]<[severity] < [missedDemand] ||

↪→ forbiddenZone(d1),forbiddenZone(d2)

898

899

900 inputSettingStr2="""

901 # % the input setting

902 relaxed(missingDemand).

903

904 class(missingDemandClass; severityClass; agePriorityClass;

↪→ costPriorityClass ).

905

906 belongs(missingDemand, missingDemandClass).

907 belongs(severity, severityClass).

908 belongs(agePriority, agePriorityClass).

909 belongs(costPriority, costPriorityClass).

910

911

912 superiorThan(missingDemandClass, severityClass).

913 superiorThan(severityClass, agePriorityClass).

914 superiorThan(agePriorityClass, costPriorityClass).

915

916 """

917

918 # Evaluation with relaxed setting

919 # Relaxed Setting1:

920 # missedDemand Obligation is relaxed

921 # Relative

↪→ Absolute

922 # [costPriority]<[agePriority]<[severity] < [missedDemand] ||

↪→ forbiddenZone(d1),,forbiddenZone(d2)

923 deliveySystemInstance.evaluate(inputSettingStr2)

924

925 """##Dilemma Scenario 2:

926 ### (Time Limit)

927

928

929 There is no compliant which satisfy all demands or does not miss any

↪→ demand

930

169



931 Relax forbidden Zone

932

933 ###Demand Information

934

935 <center>

936

937 | Demnd| Resource | Subject| Severity| Time limit| Location |

938 | -----| ---------|------- | --------|-----------|----------|

939 | d1 | r1 |Child | Medium | 10 | Node D |

940 | d2 | r2 |adult | High | 15 | Node D |

941

942 </center>

943 """

944

945 demandsInfoStr3="""

946 demand(d1;d2).

947

948 demandedResource1(d1, r1).

949 demandedResource1(d2, r2).

950

951 ageCategory(d1, child).

952 ageCategory(d2, adult).

953

954 severityLvl(d1, medium).

955 severityLvl(d2, high).

956

957

958 timeLimit(d1, 10).

959 timeLimit(d2, 15).

960

961

962 initially(demandAt(d1, locD)).

963 initially(demandAt(d2, locD)).

964

965 initially(active(Demand)):- assignedDemand(Demand,_).

966

967 """

968

969 """###Compliance Setting"""

970

971 deliveySystemInstance.generateMixture(demandsInfoStr3)

972

973 # Evaluation with compliance setting

974 #Compliance Setting:

975

976 # Relative

↪→ Absolute

977 # [costPriority]<[agePriority]<[severity] || forbiddenZone(d1),

↪→ forbiddenZone(d2), missedDemand

978

170



979 deliveySystemInstance.evaluate(inputSettingStr)

980

981 # Commented out IPython magic to ensure Python compatibility.

982 # Relaxed Setting2:

983 # missedDemand Obligation is relaxed

984 # Relative

↪→ Absolute

985 # [costPriority]<[agePriority]<[severity] < [forbiddenZone(d2)] ||

↪→ forbiddenZone(d1), missedDemand

986

987

988 inputSettingStr3="""

989 # % the input setting

990 relaxed(forbiddenZone(d2)).

991

992 class(forbidZoneClass; severityClass; agePriorityClass; costPriorityClass

↪→ ).

993

994 belongs(forbiddenZone(d1), forbidZoneClass).

995 belongs(severity, severityClass).

996 belongs(agePriority, agePriorityClass).

997 belongs(costPriority, costPriorityClass).

998

999

1000 superiorThan(forbidZoneClass, severityClass).

1001 superiorThan(severityClass, agePriorityClass).

1002 superiorThan(agePriorityClass, costPriorityClass).

1003

1004 """

1005

1006 # Evaluation with relaxed setting

1007 # forbiddenZone(d2) Obligation is relaxed

1008 # Relative

↪→ Absolute

1009 # [costPriority]<[agePriority]<[severity] < [forbiddenZone(d2)] ||

↪→ forbiddenZone(d1), missedDemand

1010

1011 deliveySystemInstance.evaluate(inputSettingStr3)

1012

1013 """#Dilemma Scenario 3:

1014 (Forbidden Zone as Legal)

1015

1016 Let’s say forbidden zone is a legal norm or a hard absolute norm

1017

1018 I can never be realxed under any circumstances

1019

1020 In such a case there wouldn’t be a compliant Plan(all plans conatin a

↪→ missied demand)

1021

1022 We relax the missing demand to satisfy demands as much as possible

171



1023

1024 ###Demand Information

1025

1026 <center>

1027

1028 | Demnd| Resource | Subject| Severity| Time limit| Location |

1029 | -----| ---------|------- | --------|-----------|----------|

1030 | d1 | r1 |Child | Medium | 10 | Node D |

1031 | d2 | r2 |adult | High | 15 | Node D |

1032

1033 </center>

1034 """

1035

1036 demandsInfoStr4="""

1037 demand(d1;d2).

1038

1039 demandedResource1(d1, r1).

1040 demandedResource1(d2, r2).

1041

1042 ageCategory(d1, child).

1043 ageCategory(d2, adult).

1044

1045 severityLvl(d1, medium).

1046 severityLvl(d2, high).

1047

1048

1049 timeLimit(d1, 10).

1050 timeLimit(d2, 15).

1051

1052

1053 initially(demandAt(d1, locD)).

1054 initially(demandAt(d2, locD)).

1055

1056 initially(active(Demand)):- assignedDemand(Demand,_).

1057

1058 """

1059

1060 """###Compliance Setting"""

1061

1062 deliveySystemInstance.generateMixture(demandsInfoStr4)

1063

1064 # Evaluation with compliance setting

1065 #Compliance Setting:

1066

1067 # Relative

↪→ Absolute

1068 # [costPriority]<[agePriority]<[severity] || forbiddenZone(d1),

↪→ forbiddenZone(d2), missedDemand

1069

1070 deliveySystemInstance.evaluate(inputSettingStr)

172



1071

1072 # Commented out IPython magic to ensure Python compatibility.

1073 # Relaxed Setting2:

1074 # missedDemand Obligation is relaxed

1075 # Relative

↪→ Absolute

1076 # [costPriority]<[agePriority]<[severity] < [missedDemand] ||

↪→ forbiddenZone(d1), forbiddenZone(d2)

1077

1078

1079 inputSettingStr4="""

1080 # % the input setting

1081 relaxed(missingDemand).

1082

1083 class(missingDemandClass; severityClass; agePriorityClass;

↪→ costPriorityClass ).

1084

1085 belongs(missingDemand, missingDemandClass).

1086 belongs(severity, severityClass).

1087 belongs(agePriority, agePriorityClass).

1088 belongs(costPriority, costPriorityClass).

1089

1090

1091 superiorThan(missingDemandClass, severityClass).

1092 superiorThan(severityClass, agePriorityClass).

1093 superiorThan(agePriorityClass, costPriorityClass).

1094

1095 """

1096

1097 # Evaluation with relaxed setting

1098 # Relaxed Setting1:

1099 # missedDemand Obligation is relaxed

1100 # Relative

↪→ Absolute

1101 # [costPriority]<[agePriority]<[severity] < [missedDemand] ||

↪→ forbiddenZone(d1),forbiddenZone(d2)

1102 deliveySystemInstance.evaluate(inputSettingStr4)

Listing C.1: Health care delivery system implementation code

173


	Abstract
	Résumé
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	I State of the Art
	State of the Art: Legal Compliance: 
	AI Regulations
	GDPR
	Legal Knowledge Representation
	LegalRuleML
	The SPECIAL Policy Language

	Conclusions

	State of the Art: Ethical Compliance: 
	Ethics of AI
	Privacy
	Fairness

	Normative Ethics
	Consequentialist Ethics
	Deontological Ethics
	Virtue Ethics
	Value Pluralism

	Ethical AI
	Artificial Moral Agency
	Classification of AMAs
	Computational Ethics Challenges
	Implementation Approaches

	Conclusions

	State of the Art: Modeling Tools: 
	Logic programming
	Prolog
	Answer Set Programming

	Planning
	Event Calculus
	Hierarchical Task Network

	Voting Systems
	Properties

	Conclusions


	II Contributions
	Legal Compliance: Automated Data Processing with GDPR Compliance
	Overall Model Architecture 
	A Personal Data Handling Use Case
	Planning Component
	Compliance Engine

	Evaluations
	Compliance Check for Consent
	Compliance Check for GDPR Regulatory Norms

	Discussions

	Ethical Compliance:  A Pluralistic Ordinal Utility Model to Evaluate Processing on Personal Data
	Integration of AI Values
	A: The Set of Alternatives
	N, R : The Criteria Hierarchy
	: Leaf Criteria Assessment
	: Aggregation functions

	Discussions

	Legal and Ethical Compliance: A Data Processing Use Case with Real-time Execution
	Architecture Review
	Use case model
	Planning Component
	Belief Set
	Tasks
	Planning Example

	Compliance Component
	Ethical Evaluation
	Real-time Execution
	Scenario I
	Scenario II

	Discussions

	Unified Legal and Ethical Compliance: An Automated Delivery System for Health Care Items
	Use Case Model
	Model Components
	Planning Component
	Resource Allocation
	Demands Assignment to Agents
	Route Planning

	Compliance checking
	Normative Assessment
	Aggregation
	Norm Relaxation

	Discussions


	III Discussions
	Conclusions: 
	Summary of Findings
	Future Works

	Appendices
	Codes: Data Processing with GDPR Compliance 
	Codes: Pluralistic Utility Model
	Codes: Health Care Delivery System


