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Résumé

Résumé

Les anomalies glucidiques et le syndrome métabolique sont des pathologies complexes
qui affectent une part significative de la population mondiale et impliquent des coûts
élevés en termes de dépistage et de traitement. La bêta-thalassémie majeure, une mal-
adie génétique rare entraînant une anémie sévère nécessitant des transfusions sanguines
régulières, est souvent associée à des complications endocriniennes graves, notamment des
anomalies glucidiques dues à une surcharge en fer causée par les transfusions. Ces com-
plications exigent une surveillance et un traitement constants, générant ainsi des charges
financières importantes pour les systèmes de santé et les patients. De même, le syndrome
métabolique, caractérisé par une combinaison de troubles métaboliques et cardiovascu-
laires, représente un enjeu majeur de santé publique. Son dépistage précoce, notamment
chez les adolescents, est crucial mais aussi coûteux, en raison de la nécessité d’effectuer
des tests biologiques sophistiqués.

Face à ces défis financiers et médicaux, l’objectif principal de cette thèse est de proposer
des outils de prédiction du risque des anomalies glucidiques chez les patients atteints de
bêta-thalassémie majeure et du syndrome métabolique chez les adolescents, en utilisant
des techniques de apprentissage automatique. Ces outils visent à aider les médecins à
personnaliser le traitement et le dépistage, tout en optimisant la gestion des ressources
financières et temporelles dans les systèmes de santé. En fournissant des prédictions
précises, il devient possible de concentrer les efforts de dépistage et de traitement sur les
patients les plus à risque, réduisant ainsi les coûts inutiles et améliorant l’efficacité globale
des interventions médicales.

L’intégration des outils de apprentissage automatique dans le domaine médical pose
cependant des défis, notamment en termes d’explicabilité et de fiabilité des prédictions.
Les médecins doivent comprendre et évaluer ces prédictions pour les intégrer en toute
confiance dans leur prise de décision clinique. Une autre difficulté réside dans le coût
élevé lié à l’extraction de variables biologiques nécessaires pour établir ces prédictions,
particulièrement dans le cadre du dépistage du syndrome métabolique.

Pour répondre à ces enjeux, cette thèse propose plusieurs contributions majeures. Pre-
mièrement, des modèles de prédiction ont été développés pour estimer le risque d’anomalies
glucidiques chez les patients atteints de bêta-thalassémie majeure et le risque de syndrome
métabolique chez les adolescents. Ces modèles fournissent aux médecins des informations
essentielles sur les patients à haut et à faible risque, leur permettant de personnaliser les
traitements et de cibler les dépistages avec une précision accrue. Cela contribue à une
meilleure gestion des ressources médicales et financières, en focalisant les efforts sur les
patients les plus vulnérables et en limitant les interventions coûteuses pour les individus
à faible risque.

Deuxièmement, cette thèse aborde la question de l’explicabilité des prédictions de ap-
prentissage automatique en intégrant des outils d’intelligence artificielle explicable. Ces
outils offrent aux médecins des moyens d’évaluer la fiabilité des prédictions, en leur don-
nant accès à des explications claires sur les facteurs influençant les résultats des modèles.
Cette transparence est cruciale pour renforcer la confiance des professionnels de santé
dans les outils prédictifs et les aider à intégrer ces informations dans la prise de décision
clinique.

1



Résumé

Troisièmement, une approche a été proposée pour réduire les coûts du dépistage du
syndrome métabolique en s’appuyant sur des variables cliniques plutôt que biologiques.
Cette démarche permet de maintenir une précision élevée des prédictions tout en réduisant
de manière significative les dépenses liées aux tests biologiques, rendant ainsi le dépistage
plus accessible et moins coûteux pour les systèmes de santé.

Enfin, la thèse propose une solution pour améliorer la fiabilité de l’explicabilité fournie
par les modèles de apprentissage automatique. En combinant les techniques d’intelligence
artificielle explicable avec une méthode d’augmentation de données, il est possible d’obtenir
des explications plus stables et robustes, ce qui renforce la confiance des médecins dans
la prédiction des risques de ces maladies. Des métriques ont également été développées
pour évaluer la fiabilité de cette approche, garantissant ainsi une explicabilité cohérente
et fiable, indépendamment des variations dans les ensembles de données.

En conclusion, cette thèse apporte des solutions innovantes pour améliorer la gestion
du risque des anomalies glucidiques chez les patients atteints de bêta-thalassémie majeure
et du syndrome métabolique chez les adolescents. En combinant les outils de apprentissage
automatique et l’intelligence artificielle explicable, elle permet d’optimiser l’utilisation des
ressources médicales et financières tout en renforçant la confiance des médecins dans les
systèmes de prédiction. Ces avancées contribuent à la personnalisation des soins et à
l’amélioration de l’efficience des systèmes de santé, répondant ainsi à des enjeux médicaux
et économiques majeurs.
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General Introduction

General Introduction

Problem Statement

Medical Motivation

Endocrine glands are organs that produce chemical substances called hormones, which
regulate many body functions such as metabolism, growth, reproduction, sleep, and mood
[Rosol 24]. The endocrine system, composed of these glands, produces and regulates hor-
mones and is essential for maintaining homeostasis. An endocrine disorder is a medical
condition that affects the normal function of the endocrine system [Rosol 24]. Given
that endocrinology naturally involves multiple organs and hormones, with widespread
effects throughout the body, abnormalities in this system can lead to a wide variety of
hormonal and metabolic pathologies [Kawa 21]. Some diseases are relatively common,
such as obesity, glucose disorders, metabolic syndrome, thyroid disorders, reproductive
disorders, and cardiovascular diseases [Kawa 21]. Consequently, the total number of pa-
tients affected by these pathologies represents a significant population, especially diabetes
and thyroid disorders, which are the most widespread endocrine diseases in the world ac-
cording to the World Health Organization [Biondi 19]. According to the International
Diabetes Federation, 537 million adults worldwide suffer from diabetes in 2023.

Moreover, endocrine disease treatment and screening can be costly and difficult to
manage, as seen in cases such as carbohydrate abnormalities in patients with beta-
thalassemia major (β-TM) or metabolic syndrome (MetS) screening in adolescents.

β-TM is a rare disease caused by a deficiency or absence in the production of the beta-
globin chain in red blood cells, leading to increased hemolysis (the destruction of red blood
cells) and severe anemia requiring regular, lifelong transfusions of compatible, phenotyped
blood [Taher 21]. The problem with these polytransfusions is that they induce iron over-
loads and deposits in vital organs such as the heart and liver, leading to fatal cardiac,
hepatic, or endocrine complications such as carbohydrate abnormalities [Patne 18]. With-
out treatment, the life expectancy for these patients is no longer than 20 years. However,
if properly treated, survival can extend beyond adulthood, through regular monitoring
aimed at early detection of complications [He 19]. Treatment consists mainly of regular
transfusions, with iron chelators added to delay the onset of post-transfusion complica-
tions. Splenomegaly (removal of the spleen) can reduce the need for transfusions but may
result in serious and fatal infectious complications. Stem cell transplantation (grafting)
remains the only curative treatment for these patients, but it is expensive and not always
available at the necessary dose [He 19].

Major financial and time burden limitations also exist for MetS screening. MetS is
characterized by various cardiovascular (including hypertension) and metabolic disorders
(insulin resistance, glucose intolerance, hypercholesterolemia, and abdominal obesity).
The combination of these symptoms is unanimously recognized as a major cardiovascular
and metabolic risk factor, with the main complications of MetS being cardiovascular
disease, diabetes and obesity [Grundy 04]. It constitutes a public health problem, with
an increasing incidence over the last few years, particularly among adolescents [Weiss 04].
Several groups of experts have proposed diagnostic criteria that have given rise to various
definitions of MetS to decide on prevention strategies. All the proposed definitions group
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together similar metabolic and cardiovascular abnormalities, but with variable detection
thresholds. These various definitions have had to be adapted for adolescents [Cook 03,
De Ferranti 06, Viner 05, Weiss 04]. The prevalence of MetS in children and adolescents
is increasing, in parallel with the upward trend in obesity rates. Obese children have a
high probability of remaining obese later in life, increasing obesity-related diseases such
as diabetes, hypertension, or heart disease. Although MetS has been extensively studied
in adults, little information is known about the disease in children and adolescents. There
is no consensus on the definition of MetS in children. Several definitions of MetS have
been proposed in the literature in this context. The definitions of Cook, De Ferranti,
Viner, Weiss, and the IDF are among the most widely used in the literature [Cook 03,
De Ferranti 06, Viner 05, Weiss 04].

Despite their widespread use, traditional screening methods have several drawbacks
and limitations, including screening uncertainty due to the existence of several definitions.
Moreover, the data collected during MetS screening sessions requires a significant financial
and time burden, especially for a large population. The main reasons for this high cost
are switching to blood testing and acquiring biological variables.

Motivation and objectives

Data science and machine learning (ML) are powerful tools and have shown promising
results by exploiting vast data, particularly in the medical field, as components of medical
decision support. They provide interactive solutions for predicting the risk of endocrine
diseases and identifying high- and low-risk individuals. This ML risk estimation is cru-
cial for doctors with various medical needs and can provide important information for
physicians.

For instance, risk prediction of carbohydrate abnormalities for patients with β-TM
helps doctors personalize and manage treatment and follow-up plans for patients. Simi-
larly, in the case of MetS, risk prediction helps doctors personalize screening and diagnosis,
saving significant time and financial resources, especially for large populations. In addi-
tion, a global risk prediction that considers various definitions of MetS for adolescents is
also valuable for physicians in improving screening accuracy.

However, applying ML for decision support in the medical sector poses several chal-
lenges, citing the lack of explainability and clarity of ML models and predictions for
physicians. Especially in assessing the reliability of predictions, doctors need assurance
that predictions are reliable and safe. This lack of explainability and confidence prevents
the integration of ML-based decision support systems into the medical sector. Even when
explainable ML (XAI) is applied, its reliability is questioned, particularly with changes
in test and training data, as each change alters the explainability provided by XAI.

Moreover, the high cost and time involved in extracting biological and clinical vari-
ables for risk prediction make such predictions impractical and increase the difficulty of
model integration into hospitals.

To achieve this, the main goal of this work is to tackle the limits identified previously
by several research questions (RQ) that will be targeted in this thesis wish are presented
below:

RQ1: How can we use ML by exploiting several datasets to predict the risk of the
diseases discussed above?
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RQ2: How can we explain the risk prediction and give physicians access to evaluate
its reliability?

RQ3: How can we ensure less costly risk prediction?

RQ4: How can we improve and evaluate the reliability of the explainability provided
by XAI?

The main objective of the thesis is to predict the risk of carbohydrate anomalies for
patients with β-TM and the risk of MetS in adolescents. The idea is to provide informa-
tion on identified high- and low-risk individuals to doctors for significant medical decision
support. In response to the limitations of ML, our goal is to study the XAI to explain ML
and its predictions and give doctors access to evaluate the reliability of the predictions of
carbohydrate anomalies. We also aim to use XAI to select clinical rather than biological
characteristics for risk prediction to reduce the financial burden of risk prediction in MetS
screening. Finally, we aim to study the reliability of XAI and propose an approach to
improve and evaluate this reliability.

Figure 1 illustrates several objectives of the thesis in a structured manner according
to chapter divisions.

Figure 1 – Thesis objectives and chapter organization
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Thesis Outline

The following parts of this thesis manuscript are organized as follows:

— Chapter 1 is an introductory chapter that presents primarily surveys the literature
within our research scope and then identifies the limitations of existing research ac-
tivities. Based on these limitations, the research questions and challenges targeted
in this thesis are presented. Hence, this chapter defines data science and artificial
intelligence (AI). Next, studying the state of the art in a wide scope regarding
the application of data science and ML for medical decision support. Finally, the
research scope is refined to study activities that predict the risk of carbohydrate
and MetS abnormalities, identifying limitations and defining research questions
and challenges.

— Chapter 2 is dedicated to analyzing and preparing the datasets used in the thesis.
Hence, it begins by defining the statistical and visualization approaches for data
analysis and pre-processing. Next, analyze and prepare the five datasets used in
the thesis, each involving a discussion of the approach used to improve data quality
and an argument for this choice. Finally, compare the data quality of the various
datasets and discuss the difference between private and public datasets.

— Chapter 3 presents the methodology and results for predicting the risk of carbo-
hydrate abnormalities in patients with β-TM and the risk of MetS in adolescents
using ML. Hence, it starts by defining supervised ML and the various classification
models with metrics designed to evaluate this classification. Then, it presents the
methodology for risk prediction with results. Finally, it presents the limitations
of our approaches, which are mainly related to the lack of explainability of the
prediction of carbohydrate abnormalities and the significant financial burden of
MetS risk prediction.

— Chapter 4 proposes solutions to the limitations and research questions posed
in the previous chapter. The focus is on studying Explainable Machine Learning
(XAI) to provide physicians with tools to evaluate the reliability of risk predictions
for carbohydrate abnormalities and select features to reduce the financial and time
burden of MetS screening. The chapter begins by defining XAI and exploring its
several types. It then presents the methodologies and results of XAI for assessing
risk prediction reliability and reducing financial burdens. While XAI has produced
promising results, the reliability of its explainability has been challenged. Each
time the training and test data changes, the explainability varies, making XAI
validation unreliable.

— Chapter 5 includes a response to the unreliability of XAI discussed in the previ-
ous chapter. This chapter presents a new approach for improving XAI reliability
by combining it with a data augmentation technique. We then define and develop
metrics to evaluate the reliability of XAI after this combination. The proposed
approach is tested on two public datasets (Hypothyroidism and Diabetes) and
validated on the three private datasets related to our thesis objectives (Glucidic
anomalies and MetS).
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Finally, we conclude this research by summarizing the contributions, discus-
sions, limitations, and perspectives.

Figure 2 presents each chapter’s thesis structure, research questions, objectives,
and discussion.

Figure 2 – Thesis outline and chapter contents
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Chapter I. State of the Art in Data Science and Machine Learning for Healthcare

I.1 Introduction

Data science and ML have revolutionized many areas, including medicine. These
disciplines offer significant potential for improving medical decision-making, especially in
the endocrinology service. In this chapter, we explore the current state of the art in data
science and ML research applied to endocrine diseases and aim to identify and present
limits related to this field.

This chapter begins with a general overview of data science and ML in Section I.2.
Then, in Section I.3, we examine how these techniques are used for screening, diagnosis,
prognosis, and treatment for medical decision support. Subsequently, we address the
current and potential impact of ML in our society, highlighting the specific challenges
and opportunities associated with endocrine diseases in Section I.4. In the same section,
we then present a review of the literature relating only to the risk prediction of the diseases
targeted in the thesis. We also establish the foundational problems and limits in Section
1.5 that we seek to address in this thesis. Finally, Section I.6 concludes the chapter.

I.2 Brief overview of Data Science and Artifi-
cial Intelligence

Data science is an interdisciplinary field that involves collecting, cleaning, exploring,
and modeling data to extract useful knowledge. This discipline combines concepts and
techniques from statistics, mathematics, computer science, and other related fields. Its
goal is to transform raw data gathered from various sources into actionable information
for decision-making, problem-solving, and discovering new knowledge across a wide range
of application areas [Nasution 23]. Figure I.1 summarizes the different concepts related
to data science.

Figure I.1 – Data science process
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I.2.1 Data Characterization, Analysis and Preparation

Analyzing and preparing data are essential steps to making ML work effectively. By
understanding the data through analysis, we can choose the best ways to prepare it for ML.
This ensures that the data is well-prepared and can be used effectively. We decide which
steps in data pre-processing are necessary and which are helpful additions to improve the
data for better ML results.

Before describing the various steps involved in data analysis, we discuss the various
data types and sources found in the literature, specifically focusing on medical data.

Various data types are available for analysis and ML in the medical field. These data
types presented in Table I.1 can be categorized into several groups based on their nature
and how they are obtained.

Data type Data Content Source Objectives of
ML

Reference

Images data MRI, mammography,
ultrasound, thermogra-
phy

Cameras Visual diagnosis,
screening, predic-
tion

[Castiglioni 21]

Tabular data Excel, CSV, TXT files;
biological and clinical
data

Screening sessions,
blood tests, patient
follow-up records

Risk prediction, di-
agnosis, personal-
ized treatment

[Hernandez 22]

Time-series data Sensor data, patient
follow-up records

Sensors, follow-up
records

Future event risk
prediction

[Bock 21]

Table I.1 – Summary of Data Types, Sources, Content, and Objectives

Medical data is available from public sources such as Kaggle, the UCL ML reposi-
tory, and data.gov. It can also be obtained through collaboration with hospitals to get
private datasets. Private datasets are particularly interesting and often linked to real
medical problems. However, they are generally raw and untreated. Therefore, it is im-
portant to consider various pre-processing and data preparation types to prepare them
for exploitation.

Data Analysis and Description

Data analysis is the process of inspecting data to discover useful information. Data
analysis has multiple facets and approaches, such as visualizations and statistical analyses.

Data visualization is a method for exploring and understanding the structure and
relationships within medical datasets. Visualization techniques enable the graphical rep-
resentation of data, facilitating the identification of patterns, trends, and anomalies. Bar
and pie charts visually represent categorical data distributions, while box and violin plots
display the distribution of numerical data and any outliers present. Scatter plots reveal
relationships between two variables, with each data point representing a single observa-
tion. Each visualization approach offers unique insights into several aspects of the data,
allowing researchers to uncover valuable information for further analysis and decision-
making.

In addition to visualization approaches, statistical tools provide formal methods for
analyzing and interpreting medical data. These tools allow for identifying relationships
between variables, estimating model parameters, and testing hypotheses. Hypothesis
tests, such as the t-test [Kim 15], ANOVA [St 89], and Chi-square test [Sharpe 15], are
used to assess the significance of differences between groups or variables. Linear regression
[Montgomery 21] is commonly employed to model the relationship between a dependent
variable and one or more independent variables, while logistic regression is used for bi-
nary outcomes. Analysis of variance (ANOVA) assesses the variability between groups in
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a dataset. Correlation analysis quantifies the strength and direction of relationships be-
tween continuous variables. Survival analysis evaluates the time until an event of interest
occurs. Time series analysis [Hamilton 20] examines data collected over time to identify
patterns and forecast future values. Clustering methods, such as K-means [Sinaga 20]
and hierarchical clustering [Nielsen 16], group similar observations together based on their
characteristics. Each statistical tool provides unique insights into the underlying patterns
and relationships within the data, enabling researchers to draw meaningful conclusions
and make informed decisions. Figure I.2 shows an overview of approaches to data analysis.

Figure I.2 – Data analysis approaches

Data Preparation and Pre-processing

Using interpretations from data analyses, we aim to identify which data pre-processing
must be done on the data, ensuring that it is clean, consistent, and well-structured for
subsequent steps. This part explores several approaches used to prepare and preprocess
data before applying analytical techniques.

Data cleaning is a fundamental step in preparing datasets for analysis, focusing on
identifying and rectifying errors, inconsistencies, and missing values. This process en-
compasses techniques, including handling missing values, outlier detection, removal, and
data imputation. Handling missing values involves employing strategies such as deleting
records with missing values, imputing missing values using statistical methods, or uti-
lizing predictive models to estimate missing values. Outlier detection and removal are
crucial in identifying and eliminating data points that significantly deviate from the rest
of the dataset, potentially indicating errors or anomalies. Additionally, data imputation
is employed to fill in missing values based on the available information within the dataset.

As for data transformation, which involves converting the dataset into a suitable for-
mat for analysis. Techniques for data transformation include feature scaling and feature
engineering. Feature scaling standardizes the range of features in the dataset, ensuring
that they have a similar scale and distribution, which is essential for many ML algorithms.
Feature engineering involves creating new features or transforming existing ones to im-
prove ML models’ performance. This may include encoding categorical variables, creating
interaction terms, or extracting relevant information from existing features.
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— Feature Scaling: Feature scaling is a technique used to standardize the range
of features in a dataset. It ensures that all features have a similar scale and
distribution, which is crucial for many ML algorithms. Common methods of feature
scaling include standardization (subtracting the mean and dividing by the standard
deviation) and normalization (scaling features to a specified range, such as [0, 1]).

— Feature Engineering: Feature engineering involves creating new features or
transforming existing features to improve the performance of ML models. This
may include encoding categorical variables using one-hot or label encoding tech-
niques, creating interaction terms by combining existing features or extracting
relevant information from existing features, such as text or image data.

— Dimensionality Reduction: Dimensionality reduction is a technique used to
reduce the number of features in a dataset while preserving as much informa-
tion as possible. This is particularly useful when dealing with high-dimensional
datasets, as it can help improve the performance of ML models and reduce compu-
tational complexity. Common methods of dimensionality reduction include princi-
pal component analysis (PCA) [Kurita 19] and linear discriminant analysis (LDA)
[Tharwat 17].

Figure I.3 shows the overview approaches to data analysis.

Figure I.3 – Data preparation approaches

I.2.2 Machine Learning Models Category

Once the data has been well-prepared, we move on to the stage of data exploitation
to ensure AI with learning. AI and ML are foundational technologies in analyzing com-
plex datasets and making data-driven decisions. This part overviews various ML and AI
techniques, categorizing them into supervised, unsupervised, semi-supervised, and rein-
forcement learning methods, as shown in Figure I.4.

There are four main types of learning for AI. The most widely used type is supervised
learning, which involves training a model on a labeled dataset, where the desired output
is known, to make predictions or decisions. Let us explore several common techniques in
supervised learning. We divide supervised ML models into three types. First, linear mod-
els are a class of algorithms that assume a linear relationship between input features and
the target variable, Such as Linear Regression [James 23], Logistic Regression [Das 21a],
Support Vector Machines (SVM) [Pisner 20], and Linear Discriminant Analysis (LDA)
[Zhu 22]. Then, tree-based models wish to partition the input space recursively into re-
gions, making decisions based on the input feature values. For example, the decision tree
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Figure I.4 – Machine learning types and models

model [Jo 21], Random forest [Rigatti 17], XGBoost [Chen 15], CatBoost [Hancock 20]
and LightGBM [Rufo 21]. Finally, deep learning and neural networks are subsets of ML
that utilize neural networks with multiple layers to learn complex patterns in data. Neural
networks are computational models inspired by the structure and function of the human
brain, composed of interconnected nodes organized in layers [LeCun 15].

While, unsupervised ML involves training models on unlabeled data to discover pat-
terns, structures, or relationships within the data. Unlike supervised learning, unsuper-
vised learning does not require labeled output, making it useful for clustering, dimension-
ality reduction, and anomaly detection [Hahne 08, Ayed 24].

As for semi-supervised ML, this is a hybrid approach combining elements of supervised
and unsupervised learning. It leverages a small amount of labeled data and a larger
amount of unlabeled data to improve model performance [Zhou 21b].

Finally, reinforcement learning is a type of ML that involves an agent interacting
with an environment to learn a policy that maximizes cumulative rewards over time.
It is inspired by behavioral psychology, where agents learn to make sequential decisions
through trial and error [Wiering 12].

I.3 Data Science and Machine Learning for Med-
ical Decision Support

ML has revolutionized the medical field, opening new horizons for medical decision-
making support [Shehab 22]. By mining vast medical datasets, ML enables healthcare pro-
fessionals to derive valuable insights and personalized recommendations [Varoquaux 22].
ML can detect complex patterns and recognize relationships between several medical at-
tributes using sophisticated algorithms, which is often difficult for humans to do [Janiesch 21].

The contribution of AI to medical decision support can be dedicated to risk prediction,
early detection, accurate diagnosis, or the most suitable treatment. This can provide in-
formation and instructions to the doctor to make the right decision regarding a diagnostic
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result, an additional test after screening, or patient-specific treatment and follow-up for
several medical services such as Endocrinology, Radiology, Cardiology, Neurology, and
oncology.

I.3.1 Screening

The main challenge of ML in disease screening is the earlier and more accurate detec-
tion of various medical disorders [Zuluaga-Gomez 19]. By exploiting the vast datasets,
these techniques can identify specific patterns and markers associated with specific dis-
eases. ML can also be used to develop predictive models that assess individual risk of
developing a disease using information such as medical history, genetic characteristics,
lifestyle habits, and environmental risk factors [Benmohammed 22]. These predictions
can help healthcare professionals identify individuals at higher risk and set up targeted
screening programs, enabling early intervention and appropriate diagnosis.

Moreover, data science enables advanced analysis of large quantities of medical data,
which can reveal subtle patterns and significant correlations between variables. For in-
stance, analysis of laboratory data and vital signs can help identify early indicators of
diseases such as cancer, heart disease, and endocrine disorders [Lassoued 18]. By inte-
grating ML techniques, it is possible to develop screening models that combine various
clinical and imaging data to improve the sensitivity and specificity of early diagnosis
[Ma 19]. According to physicians, applying ML and data science in disease screening
provides more accurate diagnostic tools, reduces errors, and improves clinical outcomes.
Identifying early signals of disease and enabling early intervention help save lives and
improve patient’s quality of life by promoting more effective, better-targeted treatments.

I.3.2 Diagnosis

While screening primarily focuses on early predictive capabilities, diagnosis empha-
sizes the use of ML to provide novel insights and substantial enhancements in the ac-
curacy and efficiency of medical diagnoses [Bohr 20]. Analyzing medical data, including
symptoms, medical history, clinical test results, and imaging data, enables the identifi-
cation of complex patterns and accurate classifications to be made [Bohr 20]. ML can
be used to develop diagnostic models that learn from large amounts of data and recog-
nize distinctive patterns associated with different diseases. These models can be trained
to detect subtle signs or combinations of features that sometimes escape the human eye
[Oh 18]. As an illustration, in the field of medical imaging, techniques enable the auto-
mated analysis of radiological images, such as X-rays, CT scans, ultrasounds, and MRIs
[Lassoued 18, Ma 19, Bohr 20].

This facilitates detecting and localizing tumors, lesions, and structural anomalies,
helping radiologists and clinicians formulate more accurate and rapid diagnoses. In addi-
tion, integrating ML with other medical data, such as blood test results or genetic infor-
mation, enables the development of more comprehensive and holistic diagnostic models.
These models can help assess the probability of the prevalence of a specific disease and
guide healthcare professionals toward appropriate investigations and treatments. By im-
proving the accuracy and speed of diagnoses, ML and data science contribute to more
informed medical decision-making, helping to optimize care and reduce diagnostic errors
[Esteva 21]. Ultimately, these techniques offer considerable potential to improve clinical
outcomes, reduce diagnostic delays, and promote earlier and more effective treatments,
leading to significant patient healthcare improvements.
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I.3.3 Risk Prediction

Identifying high-risk individuals and taking appropriate preventive measures is the
main objective for risk prediction using ML. Through in-depth medical data analysis,
these techniques enable the development of predictive models that assess individual risk
of developing a specific disease [Huang 23]. Using complex, multidimensional datasets,
including information such as medical history, risk factors, genetic data, and lifestyle
habits, ML algorithms can identify patterns, trends, and associations that often escape
human observation [Huang 23, Barragán-Montero 21, Aggarwal 21].

These predictive models enable identifying individuals at higher risk and implementing
early preventive interventions, such as lifestyle changes, regular medical monitoring, or
prophylactic treatments. In addition, ML and data science can also be used to predict the
progression of chronic diseases, such as diabetes or certain types of cancer, by integrating
longitudinal data on patients’ health [Peng 21]. This makes it possible to tailor treatment
and monitoring strategies to individual risk, leading to more targeted and effective health-
care. In summary, ML and data science offer considerable potential for disease prediction,
enabling early identification of at-risk individuals, personalized preventive interventions,
and overall health outcomes.

I.3.4 Treatment

ML and data science significantly contribute to the disease treatment field, offering
innovative possibilities for therapy optimization and clinical decision-making [Kolluri 22].
These techniques enable valuable information to be extracted from large medical datasets,
including clinical data, test results, treatment responses, and genetic data [Hall 23]. Using
this information, ML can be used to develop predictive models and decision support
systems that help healthcare professionals choose the most effective and personalized
treatments for each patient [Sarker 21].

These models can help identify sub-populations of patients who will benefit most from
a specific treatment, enabling a more targeted and individualized approach. In addition,
ML can also be used to optimize treatment protocols by analyzing clinical data and
identifying the most effective treatment regimens [Zhang 22]. This includes adjusting drug
doses, optimizing treatment schedules, and predicting potential side effects. Integrating
ML with real-time data makes it possible to monitor patients’ responses to treatments and
adapt therapies accordingly, promoting more favorable outcomes. In brief, ML and data
science open up new possibilities for disease treatment, helping select the most effective
therapies, personalize treatment protocols, and improve patient clinical outcomes. These
technological advances enable a more precise and individualized approach, paving the way
for precision medicine and improved healthcare.

I.4 Machine Learning in our World Today and
Prospects for Endocrine Diseases

Endocrine disease is a medical condition affecting the endocrine system, a network of
glands that produce and release hormones into the bloodstream. Hormones are chemical
messengers that regulate various bodily functions, such as metabolism, growth, reproduc-
tion, and mood.
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Endocrine diseases can result from hormone imbalances, dysfunction of specific en-
docrine glands, or problems with hormone receptors. Common endocrine diseases include
diabetes, thyroid disorders, adrenal gland disorders, pituitary gland disorders, and repro-
ductive hormone disorders.

Figure I.5 shows the several endocrine organs and the diseases associated with each
organ.

Figure I.5 – Endocrine organs and diseases

Endocrine diseases can have complex interactions with other health conditions, leading
to potential complications. As a demonstration, individuals with certain endocrine disor-
ders may have an increased risk of developing cardiovascular diseases. Hypothyroidism,
for instance, has been linked to an elevated risk of cardiovascular issues.

In addition, for patients with β-TM, a major risk is presented for having endocrine
diseases. The same goes for the link between obesity and MetS.

Furthermore, there is a well-established correlation between type 2 diabetes and obe-
sity, with obesity being a significant risk factor for the development of diabetes. Similarly,
both hyperthyroidism and hypothyroidism can contribute to metabolic imbalances that
may lead to weight-related issues, including obesity.

A risk prediction of an endocrine disease using ML by exploiting data is important
information for physicians to help manage patient complications and personalize follow-
up, treatment, or diagnosis.

In this section, we will present the literature review within the scope of our research.
It involves exploiting tabular biological and clinical data to predict the risk of specific
endocrine diseases using ML. Risk prediction and identifying high-risk and low-risk in-
dividuals have a specific context for each disease area. Mainly, we focused on the risk
prediction of carbohydrate abnormalities for patients with β-TM and the prediction of
MetS for adolescents. Also, the prediction of hypothyroidism and diabetes, since we will
be using two public datasets targeting these two diseases.

I.4.1 Carbohydrate Anomalies Risk Prediction in Patients
with β-TM

Beta thalassemia, a hereditary condition causing hemolytic anemia due to mutations
in the hemoglobin genes, is prevalent in regions around the Mediterranean. The ho-
mozygous form, termed β-TM or transfusion-dependent thalassemia, results in significant
hemolysis in early childhood, necessitating transfusions, and long-term therapy to re-
move excess iron from the body. These transfusions cause a buildup of iron in various
organs such as the heart, liver, spleen, and endocrine glands, with the liver typically
exhibiting the highest levels of iron overload, followed by the pancreas and the heart
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[Kattamis 22, Ali 21, Carsote 22, Sevimli 22]. Managing iron levels through ICT and en-
suring treatment adherence is crucial to mitigating complications associated with iron
overload and reducing morbidity and mortality. Monitoring iron levels is typically done
through serum ferritin levels and magnetic resonance imaging to assess liver iron concen-
tration and cardiac iron load using T2-weighted MRI, aiding in evaluating the effectiveness
of chelation therapy or determining the risk to end organs [Sevimli 22]. Despite these mea-
sures, complications arising from iron overload are rising, including endocrine issues and
disturbances in glucose metabolism [De Sanctis 23]. Diabetes, in particular, poses a sig-
nificant risk as it often becomes irreversible and is associated with other life-threatening
complications. Therefore, early detection of carbohydrate metabolism abnormalities pre-
ceding the onset of diabetes is crucial.

In β-TM patients, dysglycemia develops progressively, spanning from normal glucose
tolerance to impaired glucose tolerance and, in some cases, diabetes mellitus, occasionally
requiring insulin-dependent diabetes [De Sanctis 22]. Pre-diabetes manifests as impaired
fasting glucose or impaired glucose tolerance, both detectable through standardized oral
glucose tolerance tests [Care 23]. These glycemic irregularities typically surface during
the second and third decades of life in β-TM patients [Gomber 18]. Following interna-
tional guidelines, individuals with β-TM should undergo yearly screenings for glucose
abnormalities starting at 10 [Farmakis 22].

In this context, ML models were developed for risk prediction of carbohydrate anoma-
lies in patients with β-TM. Authors in [Yousefian 17] utilized the k-nearest neighbors
(KNN) algorithm and radial basis function network (RBFN) on the "ZAFAR" database
consisting of 255 Iranian patients diagnosed with β-TM and intermediate. They aimed
to forecast the likelihood of diabetes in individuals with major and intermediate beta-
thalassemia. The findings indicated an accuracy of 81.70% for RBFN and 69.12% for
KNN. Subsequently, in [Yousefian 19] authors employed a multilayer perceptron (MLP)
on the same dataset. Their results demonstrated that the application of MLP yielded an
improved accuracy of 89.48% compared to the earlier models.

I.4.2 MetS Risk Prediction in Screening Sessions

MetS represents a precursor condition associated with severe ailments like type 2 di-
abetes and cardiovascular diseases. It manifests through increased waist circumference,
elevated blood pressure, abnormal fasting blood glucose, insulin resistance, and dyslipi-
demia [Eckel 05]. The prevalence of MetS is escalating globally, particularly in both
developed and developing nations, correlating closely with obesity and insulin resistance
[Bitew 20, Reisinger 21]. Defined by the presence of multiple risk factors such as ab-
dominal adiposity, hypertension, elevated triglycerides, reduced high-density lipoprotein
cholesterol (HDL-C), and hyperglycemia, MetS predisposes individuals to various comor-
bidities and heightens the risk of developing T2D and cardiovascular events.

However, uncertainties persist regarding the definition and management of MetS in
younger populations [Magge 17]. Despite this, numerous studies have established a link
between MetS, diverse comorbidities, and the likelihood of cardiovascular complications
[Liu 21, Koskinen 17]. Consequently, early screening for metabolic disturbances is crucial
for assessing current complications and averting future health issues.

Yet, screening for MetS poses challenges due to the plethora of definitions utilizing
different percentile thresholds. Ford and Li identified over 40 definitions for children
and adolescents in 2008 [Ford 08]. These definitions often employ varying percentile
thresholds, with thresholds for abdominal adiposity, hypertension, hypertriglyceridemia,
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and low HDL-C varying depending on age, gender, and height. Among these, definitions
established by the International Diabetes Federation (IDF) in 2007 [Zimmet 07], Cook
[Cook 03], and De Ferranti [De Ferranti 06] are commonly referenced in the literature.

Diverse definitions contribute to uncertain screening when variations arise between
them. Additionally, the extensive biomarker extraction in screening presents a significant
challenge, along with the costs, time, and discomfort associated with large-scale screening
sessions, particularly for children. Consequently, using digital tools, particularly ML,
to predict MetS risk may offer valuable insights to specialists who can identify at-risk
individuals during screening.

In response to the rising prevalence of MetS, non-invasive predictive studies have
emerged, aiming to detect and prevent MetS at an early stage through simple means,
thereby avoiding invasive measures [Huh 21, Xu 22, de Kroon 08]. These predictive mod-
els rely on external data and do not necessitate invasive procedures. They predominantly
focus on anthropometric and lifestyle parameters, with some studies attempting to iden-
tify relevant factors in lifestyle-related information, considering gender as a crucial factor
[Gutierrez-Esparza 21]. While certain models excel in real-life scenarios, providing high
specificity but lower sensitivity, others achieve good results but are challenged by interpre-
tation due to model complexity [Romero-Saldaña 16, Datta 19]. Notably, interpretable
scoring systems based on artificial neural networks (ANNs) have been developed, enhanc-
ing transparency in risk assessment [Benmohammed 22, Shin 23].

I.4.3 Hypothyroid Risk Prediction

Thyroid disease is the most common endocrine disease worldwide, second only to dia-
betes, according to the World Health Organization [Biondi 19]. The most common thyroid
gland disorders, hyperthyroidism and hypothyroidism, have been identified in over 110
nations worldwide, impacting 1.6 billion people. Most of these cases are in Asia, Africa,
and Latin America [Alam Khan 02]. At this time, more than 25,000 emergency clinics
worldwide collect information regarding patients in different configurations. However,
studies use the time-consuming and expensive traditional approach [Sonuç 21] using tra-
ditional examination and quantifiable testing. According to medical professionals, early
illness diagnosis and treatment are essential to halt the progression of a disease or even
death. Even with much trial and error, clinical prediction is often considered a challenging
task [Mir 20]. The thyroid is a small gland near the neck’s base, located directly below
Adam’s apple [Bhaladhare 21]. Numerous bodily functions are regulated by the complex
network of glands that make up the endocrine system. The thyroid gland secretes hor-
mones that control metabolism in humans. While iodine deficiency is the most frequent
cause of hypothyroidism, there are other potential causes as well [Knudsen 02]. The thy-
roid gland’s hormones are T3, T4, and calcitonin, with T3 and T4 being the most literal
forms [Garg 16].

ML is a computer science field that has recently gained popularity in medical appli-
cations. Thus, ML could be used to forecast thyroid disease early. Several benefits of an
ML algorithm include high speed, self-learning, and fault tolerance to noise [Jordan 15].
Massive volumes of data (big data) that would normally be too complex or impossible to
process may now be analyzed by people using ML. It is possible to forecast hypothyroidism
using patient symptoms data and an ML model, a time-saving and money-efficient method
to help physicians make the most appropriate decisions. Several ML algorithms available
in the literature have been developed and tested for the risk prediction, detection, or
diagnosis of hypothyroidism. This application has proven highly effective.
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Several approaches for predicting, identifying, and categorizing thyroid diseases have
been published in the literature based on the thyroid dataset obtained from the UCI
Repository [Dua 17]. The effectiveness of several ML models for categorizing thyroid dis-
ease into normal, hypothyroidism, and hyperthyroidism groups was compared in [Razia 18].
The authors acquired the datasets from the ML collection of the University of California,
Irvine (UCI). There are 7200 samples in the dataset and 21 attributes for each sample.
According to the authors, decision tree (DT) performed 99.23% better than Support vec-
tor machine (SVM), Naive Bayes (NB), and multilinear regression (MLR). Nevertheless,
little information about data preprocessing is offered to determine whether the outcomes
apply to real-time datasets.

Authors in [Shankar 20] suggest using a multi-kernel SVM to categorize thyroid disor-
ders. On UCI thyroid datasets, the multi-kernel SVM achieved 97.49% performance accu-
racy. The performance is increased, and feature selection is carried out by the upgraded
gray wolf optimization. Authors in [Das 21b] used ML methods and specific features to
perform multiclass classification. There are four classifications for hypothyroidism. With
99.81% accuracy, random forest (RF) outperformed the KNN, SVM, and DT algorithms.
However, the authors did not address how well their suggested methodology for classifying
thyroid diseases performed. Still, there is potential for increased performance.

A MLP methods was proposed in [Hosseinzadeh 21] for the classification of thyroid
disorders. The accuracy is increased by 0.7% when the MLP is used in conjunction with
a group of six networks, as opposed to using only one MLP. While 99% classification
accuracy was achieved by MLP on huge dataset samples, deep learning approaches such
as MLP require high computer resources to train at a faster pace. Authors in [Mishra 21]
used the ML approaches of sequential minimal optimization (SMO), DT, RF, and K-star
classifier to predict hypothyroid illness. For this study, a sample size of 3772 unique
records is considered. RF and DT outperformed the other two approaches, with accuracy
scores of 99.44% and 98.97%.

Authors in [Alyas 22] conducted a comparative study of the ML approaches DT, RF,
KNN, and ANN to identify thyroid disease. To predict thyroid disease, the tests were
performed using the largest dataset and considered both sampled and unsampled data.
RF achieved the highest accuracy of 94.8% in its prediction. Researchers also used deep
learning models to predict the classification of thyroid diseases. For example, in [Jha 22],
classified thyroid diseases using a deep neural network (DNN) were developed. The UCI
dataset was used to evaluate performance. The authors found that DNN could classify
thyroid illness with 99.95% accuracy. However, a sizable dataset is needed to fully train
the model for performance evaluation. In addition, the deep learning models require
greater computer power to train.

The authors in [Chaganti 22] reported a feature engineering approach for ML and
deep learning models to predict thyroid disease. The approach used forward feature
selection, backward feature elimination, bidirectional feature elimination, and ML-based
feature selection using extra tree classifiers. Extensive experiments show that the extra
tree classifier-based feature yields the best results, with 99% accuracy and an F1 score
when used with the random forest classifier.
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I.4.4 Diabetes Risk Prediction

Diabetes, characterized by elevated blood sugar levels and associated organ damage
such as kidney failure [Abhari 19], poses significant challenges in diagnosis and manage-
ment. Computer programs have streamlined the development of IT systems based on
clinical data for disease identification, particularly in cases of insufficient insulin produc-
tion or utilization leading to diabetes [Allalou 16].

Predominantly, the most prevalent type of diabetes in adults is mellitus, with diagnos-
tic criteria including pre-determined factors like impaired fasting glucose or impaired glu-
cose tolerance as per the American Diabetes Association. Diagnosis may also rely on blood
glucose levels exceeding 200 mg/dL, assessed through HbA1c, oral glucose tolerance test,
or fasting plasma glucose tests [Mujumdar 19]. Juvenile type 1 diabetes, characterized
by insulin dependence, arises from insufficient insulin production by beta cells, occurring
across age groups from infants to adults [Andrews 95, Hasan 20, Rajendra 21, Chiu 94,
Yahyaoui 19]. Improper regulation of glucose levels can lead to various complications such
as heart problems, nerve disorders, and kidney-related issues [Cunningham 00].

Type 1 diabetes typically manifests before the age of 30, necessitating insulin depen-
dence for patients. In contrast, type 2 diabetes mellitus, often termed adult diabetes, is
non-insulin-dependent and results from decreased insulin secretion by β cells, exacerbated
by genetic predisposition, obesity, and unhealthy lifestyles, often emerging in middle age.
Type 2 diabetes can also precede gestational diabetes in females and certain ethnic pop-
ulations, impacting adolescents and children as well. Gestational diabetes is anticipated
based on maternal characteristics during pregnancy’s later stages and biomarkers through-
out gestation, with recent studies highlighting the elevated risk among pregnant women of
diverse ethnic backgrounds [Dutta 18]. Modern technology has facilitated the recording
of vast amounts of data, enabling the utilization of ML in disease management. Physi-
cians analyze clinical metrics such as blood pressure and temperature iteratively, guiding
treatment decisions through refined assessments [Magoulas 99]. Additionally, AI is piv-
otal in fuzzy-based classification and disease diagnosis using neural networks. Ensembles
of artificial neural networks enhance disease diagnosis accuracy, despite the challenges
posed by computer-aided comprehension [Huang 07].

In [Arunachalam 22], the SVM algorithm is proposed for diabetes classification. SVM
operates in a high-dimensional space through kernel functions, with 14 diverse attributes
utilized for classifying diagnosed diabetes, undiagnosed diabetes, pre-diabetes, and non-
diabetes cases. Performance analysis uses receiver operating characteristic (ROC) curves
and cross-validation functions, with RBF and linear kernel functions emerging as the top-
performing classification schemes. Additionally, researchers in [Kononenko 01] examine
early diabetes prediction using ML methods, leveraging data from various health organi-
zations. Supervised learning algorithms are employed for classification and comparative
analysis based on attributes, with a modified approach applied for feature selection and
algorithm mapping. Decision tree and random forest algorithms exhibit superior perfor-
mance, achieving a high specificity of over 98%. Authors in [Saru 19], an early diagnosis of
diabetes is proposed using fuzzy SVM. A dataset comprising eight attributes is collected
from the PID database, with data preprocessing applied to all attributes. Feature selec-
tion based on F-score optimization is performed to select the most relevant attributes,
leading to the classification of diabetes using fuzzy SVM. Additionally, a ML logistic re-
gression model is proposed for analyzing glycated hemoglobin (HbA1c) in type 2 diabetes
patients based on clinical datasets.
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I.5 Limits and Challenges of ML in Clinical Ap-
plications Related to Endocrine Diseases

Table I.2 summarizes the most important articles and those most closely linked to our
research perimeter, with their objectives and limitations.

Targeted
Disease Reference Objective ML Models Results Limitations

Carbohydrate
Anomalies [Yousefian 17]

Diabetes Prediction
in individuals with
β-TM

KNN, RBFN

Accuracy
81.70%
(RBFN),
69.12% (KNN)

Lack of explainability

Carbohydrate
Anomalies [Yousefian 19]

Diabetes Prediction
in individuals with
β-TM

MLP Accuracy
89.48% Lack of explainability

MetS [Datta 19] MetS risk prediction
Various ML algo-
rithms; comparative
analysis

High accuracy
Model complexity may
hinder practical imple-
mentation

MetS [Huh 21] MetS risk prediction External data-based
predictive models

High speci-
ficity, lower
sensitivity

Interpretation chal-
lenges due to model
complexity

MetS [Xu 22] Early detection of
MetS

Various ML ap-
proaches

Moderate sen-
sitivity and
specificity

Limited generalizabil-
ity across diverse pop-
ulations

MetS [Benmohammed 22]
Develop inter-
pretable ML models
for MetS prediction

Interpretable ML mod-
els

Transparency
in risk assess-
ment

High cost prediction

MetS [Shin 23] MetS risk prediction ANN High accuracy
High cost prediction
and lack of explainabil-
ity

MetS [Shin 23] Risk prediction of
MetS DT AUC 0.889 Lack of explainability

MetS [Mohseni-Takalloo 24] Risk prediction of
MetS SVM Accuracy

78.4% Lack of explainability

Hypothyroid [Shankar 20] SVM for thyroid dis-
order classification SVM Accuracy

97.49% Lack of explainability

Hypothyroid [Das 21b] Thyroid diseases
classification RF, KNN, SVM, DT RF accuracy

99.81% Lack of explainability

Hypothyroid [Hosseinzadeh 21] Thyroid disorder
classification MLP Improved accu-

racy Lack of explainability

Hypothyroid [Mishra 21] ML for hypothy-
roidism prediction DT, RF High accuracy Limited discussion on

model interpretability

Hypothyroid [Alyas 22] ML for thyroid dis-
ease prediction DT, RF, KNN, ANN Accuracy

94.8% Lack of explainability

Hypothyroid [Jha 22] DNN for thyroid dis-
ease classification DNN Accuracy

99.95% Training complexity

Hypothyroid [Alshayeji 23] Risk prediction of
hypothyroid SMOTE Accuracy

99.5% Lack of explainability

Diabetes [Saru 19] Early diagnosis of di-
abetes using SVM SVM Good F1-Score Lack of explainability

Diabetes [Arunachalam 22] SVM for diabetes
classification

SVM with RBF and
linear kernels Good AUC Lack of explainability

Diabetes [Sonia 23] Risk prediction of di-
abetes MLP Accuracy 97% Lack of explainability

Table I.2 – Summary of ML studies for various diseases risk prediction
Abbreviations : SVM: Support vector machines, DNN: Deep neural network, KNN: k-nearest neighbors, RBFN: Radial
basis function network, MLP: Multilayer perception, ANN: Artificial neural networks, DT: Decision tree, RF: Random

forest,

Several major challenges hinder progress in integrating AI models to manage endocrine
diseases. Firstly, a predictive model applicable in real clinical settings should meet specific
medical requirements regarding ethics, explainability, performance, and generalization.
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However, these ML models are often seen as black boxes due to their lack of explainability.
This lack of clarity limits their practical use in healthcare, especially in medical decision-
making. The main concern is: how can doctors trust a prediction made by AI?

Furthermore, despite advancements in AI explainability approaches, critical challenges
persist regarding the reliability of the explanations, particularly when changing training
and testing data. Stability, concordance, and generalization of explanations limit their
utility in varied clinical environments.

In addition, the cost of data acquisition can be high for certain diseases, especially in
screening sessions where a large population is targeted.

A holistic approach is necessary to overcome these challenges and fully harness the
potential of ML models for managing endocrine diseases. This includes enhancing model
explainability, considering the economic and practical aspects of screening and treatment,
and ensuring the reliability of explanations provided by AI approaches.

Table.I.3 summarizes the limitations of the literature in predicting the risk of endocrine
diseases, the research questions, and the objectives targeted in the thesis.

Table I.3 – Literature limitations and research questions addressed in the thesis

Limits Research questions Objectives

Lack of integration of ML models in
the medical sector for carbohydrate
abnormalities risk prediction

— How to make ML mod-
els ready for integration
in the medical sector?

— How to give confidence to
ML prediction?

— Developing explainable
approaches to endocrine
disease risk prediction

— Give physicians access to
evaluate the reliability of
prediction using XAI

Significant financial and temporary
costs for MetS screening — Can reducing features us-

ing XAI reduce financial
and temporary expenses?

— How can we reduce the
cost and time of screening
and treating endocrine
diseases using ML ?

Exploit XAI to avoid the transition
to biological features acquisition for
identifying subjects at low risk and
reduce financial and timing costs.

XAI reliability — How to improve XAI reli-
ability?

— How to assess XAI relia-
bility?

— Develop an approach to
improve XAI reliability

— Develop metrics to assess
XAI reliability

I.6 Conclusion

In this introductory chapter, we embarked on a survey through the areas of data science
and AI as they intersect with medicine, particularly endocrine diseases. We began by
delving into the fundamental concepts of data analysis, preparation, and ML techniques,
laying the groundwork for exploring how these methodologies can be applied in medical
decision-support systems. Then, we studied the literature review focusing on endocrine
diseases and specifically on risk prediction of the diseases addressed in this thesis, such
as carbohydrate anomalies in β-TM patients or MetS in screening sessions. By analyzing
the literature in this research area, we have identified and presented the limitations and
challenges targeted in this thesis. The main limitations and proposed challenges are
mainly related to integrating AI models in the medical sector, XAI, building confidence
in ML, the high cost of screening and diagnosis, and the reliability of XAI. As we pursue
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this thesis, we will explore these intricacies in greater depth, seeking to harness the power
of data science and AI for medical advancements and critically evaluate their impact and
implications for successful patient care and healthcare systems. In subsequent chapters, we
will explore specific methodologies, case studies, and potential avenues for overcoming the
challenges highlighted in this chapter. Our ultimate aim is to contribute to the ongoing
dialogue on the role of data-driven approaches in revolutionizing the management and
treatment of endocrine diseases.
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II.1 Introduction

The previous chapter presented the limits and challenges targeted in the thesis in
general terms. We aim to investigate these limitations further and define, develop, and
test solutions in depth to achieve our objectives. But first, we must analyze and prepare
the data, which is crucial to ensuring the success of a data-driven approach. Therefore, in
this second chapter, we delve deeper into the process of data analysis, characterization,
and management.

This chapter aims to provide a reliable foundation for the continuation of the thesis,
establishing a thorough understanding of the data we use and the methods we employ
to analyze and prepare it. By combining this knowledge with advancements in AI and
ML, we aim to enhance the management of patients with endocrine diseases, thereby
contributing to improved clinical outcomes and a better quality of life.

Section II.2 examines the data itself in detail, examining its source, nature, and signif-
icance, particularly from biological and clinical perspectives. We also discuss data quality,
statistical analysis methods, and distribution visualization. Next, Section II.3 addresses
the pivotal data preparation and preprocessing phase. This includes data transformation,
handling missing and outlier values, and standardization and normalization. Addition-
ally, we delve into feature engineering, an essential step in extracting pertinent information
from raw data. Finally, Section II.4 presents our findings from the discussed concepts and
techniques by analyzing and preparing datasets used in this thesis to predict endocrine
disease risks. We review public and private datasets, highlighting each case’s challenges
and specific considerations. After analyzing and preparing the datasets, we discuss and
compare the quality of several datasets at the end of the chapter.

In the sequel, we consider the dataset constituted by X as a matrix presenting the
features (INPUT), and y as representing the presence or absence of the disease. In other
words, the target to be predicted (OUTPUT), with f() being the prediction function.

II.2 Data Description Methodology

Data analysis and description are foundational to any data-driven research or decision-
making process. These steps involve comprehensively understanding the nature, source,
and characteristics of the data under investigation.

Firstly, elucidating the source and event behind the data is crucial. This involves
identifying where the data originates, whether generated from clinical trials, observational
studies, electronic health records, or other sources. Understanding the context in which
the data was collected provides valuable insights into its reliability, biases, and potential
limitations.

Secondly, categorizing and comprehending the several data types present within the
dataset is essential. This may include numerical, categorical, ordinal, or time-series data.
Recognizing the data types facilitates appropriate data handling techniques and statistical
analyses tailored to each type.

Furthermore, interpreting the data’s meaning from biological and clinical perspectives
is paramount. For instance, in medical research, variables may represent physiological
parameters, biomarkers, patient demographics, or clinical outcomes. Understanding the
clinical relevance of these variables is essential for drawing meaningful conclusions from
the data.
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In addition, data quality assessment is another integral aspect of data analysis and
description. This involves evaluating the data’s completeness, accuracy, consistency, and
timeliness. Data quality issues such as missing values, duplicates, or outliers can signifi-
cantly impact the validity and reliability of subsequent analyses and interpretations.

Statistical analysis techniques to identify data patterns, trends, and associations. De-
scriptive statistics, inferential statistics, and hypothesis-testing methods are commonly
used to summarize and draw inferences from the data.

Moreover, graphical distribution analysis techniques such as histograms, box plots, and
scatter plots are employed to explore the distribution and relationships between variables
visually. Visual representations aid in uncovering hidden patterns, outliers, and anomalies
within the data, enhancing data understanding and interpretation.

Data analysis and description comprehensively examine the data’s source, types, mean-
ings, quality, and statistical characteristics. These foundational steps lay the groundwork
for subsequent data preparation, modeling, and decision-making processes.

II.2.1 Data Types and Sources

Understanding the source and event behind the data is paramount in data analysis
and description, as it provides critical context for interpreting the collected information.
The events serving as data sources can vary depending on the nature of the study or
research being conducted. In medical contexts, data may be gathered during screening
sessions, follow-up medical visits, or the diagnostic process. Each event represents a
unique opportunity to collect pertinent information regarding the health and well-being
of the individuals under study.

Moreover, the types of data collected can encompass a wide range of formats, in-
cluding tabular data, medical images, time series, clinical texts, and more. Each data
type presents its own set of characteristics and challenges regarding analysis and inter-
pretation. For instance, tabular data are structured in tables with columns representing
several variables, often facilitating the application of ML algorithms. On the other hand,
medical images require specialized techniques for processing and analysis, such as image
segmentation and classification, to extract meaningful insights.

By comprehending the source and collection context of the data and the types of data
utilized, researchers can better interpret the outcomes of their analyses and formulate
relevant conclusions. This deep understanding of the data is essential for ensuring the
validity and reliability of data-driven studies and guiding clinical decisions and public
health policies.

II.2.2 Data Mining, Biological and Clinical Perspective

In medical data analysis, comprehending the significance of the variables within a
dataset from biological and clinical perspectives is paramount. Each variable encapsulates
crucial information about the individuals under study’s physiological, pathological, or
clinical aspects. Therefore, understanding these variables’ biological and clinical meanings
is essential for conducting meaningful analyses and drawing accurate conclusions.

From a biological perspective, variables in medical datasets often represent physiolog-
ical parameters, biomarkers, genetic markers, or other biological entities relevant to the
health condition being investigated. For example, variables may include blood pressure
readings, cholesterol levels, genetic mutations, or biochemical markers indicative of disease
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progression. Understanding the biological significance of these variables allows researchers
to discern underlying biological mechanisms, pathways, and interactions contributing to
disease development or progression.

On the other hand, from a clinical perspective, variables may encompass diagnostic cri-
teria, treatment modalities, patient demographics, or clinical outcomes. These variables
provide insights into the clinical manifestation of the disease, treatment efficacy, patient
prognosis, and overall healthcare management. For instance, variables may include diag-
nostic codes, medication dosages, surgical interventions, or patient-reported symptoms.
Understanding the clinical relevance of these variables enables researchers to assess disease
severity, predict patient outcomes, and tailor treatment strategies to individual patient
needs.

Moreover, interdisciplinary collaboration between biomedical scientists, clinicians, and
data scientists is crucial in elucidating the intricate relationships between biological mech-
anisms and clinical outcomes. Researchers can leverage their combined expertise to un-
cover novel insights, develop innovative diagnostic tools, and improve patient care by
bridging the gap between basic biological research and clinical practice.

To sum up, comprehending variables’ biological and clinical meanings within medi-
cal datasets is fundamental for conducting robust data analyses and deriving meaningful
insights. This multidimensional understanding empowers researchers to unravel the com-
plexities of disease pathogenesis, identify prognostic markers, and advance personalized
medicine approaches for improved patient outcomes.

II.2.3 Statistical Analysis

Statistical analysis is an aspect of extracting meaningful insights from medical datasets.
Various techniques are employed to assess relationships, test hypotheses, and interpret the
significance of findings. This section provides a detailed overview of correlation analysis,
hypothesis testing, and the interpretation of p-values.

Correlation Analysis

Correlation analysis evaluates the strength and direction of the relationship between
two or more variables within a dataset [Gogtay 17]. The Pearson correlation coefficient
(r) and Spearman’s rank correlation coefficient (ρ) are two commonly used correlation
coefficients.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2∑n

i=1(yi − ȳ)2
(II.1)

where xi and yi are the individual data points, x̄ and ȳ are the means of x and y
respectively, and n is the number of observations.

Spearman’s rank correlation coefficient (ρ) assesses the monotonic relationship be-
tween variables and is calculated based on the ranks of the data points.

ρ = 1 − 6∑ d2
i

n(n2 − 1) (II.2)

Correlation analysis helps identify variables’ associations but does not imply causa-
tion. Additional analyses or experimental studies may be needed to establish causal
relationships.
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Interpretation of p-values

In hypothesis testing, the p-value represents the probability of obtaining results as
extreme as or more extreme than the observed data, assuming the null hypothesis is true.
A small p-value (typically < 0.05) indicates strong evidence against the null hypothesis
[Gibbons 75].

It is important to interpret p-values in the context of the chosen significance level
(alpha) and consider potential sources of bias or confounding in the data.

II.2.4 Graphical Distribution Analysis

Graphical distribution analysis is an essential component of exploratory data analysis
(EDA) that involves visualizing the distribution and relationships within datasets. Vari-
ous graphical techniques are employed to gain insights into the underlying patterns and
structures of the data.

Histograms

Histograms are graphical representations of the distribution of data values, as shown
in Figure II.1, displaying the frequency of observations falling within predefined data
intervals or "bins." They are effective tools for visualizing the distributional characteristics
of a variable, including its central tendency and spread. Histograms help identify patterns
and anomalies in the data, such as outliers or multimodal distributions.

Figure II.1 – Histograms

Boxplots

Boxplots presented in Figure II.2, also known as box-and-whisker plots, offer a sum-
mary view of the data distribution by displaying key summary statistics such as quartiles,
medians, and potential outliers. They are useful for detecting outliers and comparing the
distributions of several variables or groups. Boxplots provide insights into the variability
and skewness of the data distribution.

Figure II.2 – Boxplot
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Density curve

Density curves, also known as probability density functions, represent the distribution
of a continuous variable by showing the relative likelihood of different outcomes. When
analyzing the shape of a density curve, we primarily look at its skewness, which indicates
the direction and extent to which the distribution deviates from a symmetrical, normal
distribution as shown in Figure II.3. A normal, or no skewed, distribution has a bell-
shaped curve, where the mean, median, and mode are all aligned at the center. Positively
skewed distributions, also known as right-skewed distributions, have a longer tail on the
right side, indicating that there are a few exceptionally high values pulling the mean
to the right of the median. Conversely, negatively skewed distributions, or left-skewed
distributions, have a longer tail on the left side, meaning there are a few exceptionally
low values pulling the mean to the left of the median.

Figure II.3 – Density Curve [Chiniah 16]

Correlation Matrices

Correlation matrices display the correlation coefficients between pairs of variables in
a tabular format or heatmap, as shown in Figure II.4. They allow for identifying linear
relationships between variables and help detect highly correlated variables. Correlation
matrices are useful for feature selection, identifying redundant variables, and understand-
ing the overall dependency structure within the dataset.

Figure II.4 – Correlation Matrices
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Bar Charts

Bar charts displayed in Figure II.5 effectively represent categorical data by displaying
bars of proportional lengths corresponding to the frequencies or values of the categories.
They provide a visual summary of categorical variables and help compare the relative fre-
quencies or values across several categories. Bar charts are useful for identifying patterns,
trends, and outliers in categorical data.

Employing these graphical techniques can help analysts gain valuable insights into
their datasets’ distributional characteristics and relationships. The appropriate visualiza-
tion method depends on the nature of the data and the specific research questions under
investigation.

Figure II.5 – Bar Charts

Violin Plots

Violin plots combine the advantages of density curves and boxplots by displaying the
data distribution as both a density curve and a boxplot simultaneously, as shown in
II.6. They are useful for visually comparing data distributions across several categories
or groups. Violin plots provide insights into the distributional characteristics of the data,
including skewness, multimodality, and presence of outliers.

Figure II.6 – Violin Plots [Hameed 24]
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II.3 Data Preparation and Pre-processing Tools

Data preparation and pre-processing are essential stages, tightly integrated with the
preceding data analysis and description phase. While data analysis provides insights into
the structure and characteristics of the dataset, data preparation and pre-processing are
pivotal steps to refine the data for further analysis. Data preparation ensures the in-
tegrity of the dataset by addressing issues identified during analysis, such as inconsisten-
cies, missing values, or outliers. Moreover, transformations and feature engineering tech-
niques applied during data preparation enhance the dataset’s suitability for subsequent
analyses, allowing for more accurate modeling and interpretation of results. Thus, these
interconnected stages collectively form a comprehensive approach to data exploration and
refinement, laying the groundwork for robust and insightful data-driven insights.

II.3.1 Data Digitization

Data digitization is critical in preparing datasets for ML tasks, converting raw data
into a format suitable for analysis and modeling. One common transformation technique
involves encoding categorical variables into numerical representations, a necessary step
as many ML algorithms require numerical input. Label encoding is a technique where
each category of a categorical variable is assigned a unique numerical label [Ayed 23].
While simple to implement, label encoding may introduce ordinality where none exists,
potentially leading to misinterpretation by the model. Alternatively, one-hot encoding
creates binary columns for each category in a categorical variable, with a value of 1
indicating the presence of the category and 0 otherwise. This technique avoids ordinality
issues and ensures each category is treated as independent, albeit at the cost of increased
dimensionality. Careful consideration must be given to the choice of encoding method
based on the data’s nature and the ML algorithm’s requirements. Data digitization may
involve scaling numerical features to a standard range or normalizing them to have a mean
of 0 and a standard deviation of 1, ensuring uniformity and comparability across features.
These transformation techniques play a crucial role in enhancing the effectiveness of ML
models by enabling them to effectively process and learn from the data.

II.3.2 Missing Values Management

Missing values in medical datasets can arise from various factors, such as errors in
data collection or entry, equipment malfunction, patient non-compliance, or the absence
of measurements for certain variables. These missing values can significantly affect the
quality and reliability of datasets, potentially leading to biased analyses and inaccurate
conclusions. The impact of missing values depends on their extent and the underlying
mechanisms causing their occurrence. Ignoring or mishandling these values can distort
statistical estimates, reduce statistical power, and undermine the validity of research
findings. Therefore, it is crucial to understand the causes and consequences of missing
values and implement appropriate strategies for their management.

A common approach to handling missing values is deletion, where observations with
missing values are removed from the dataset. This includes listwise deletion, where entire
observations with missing values are excluded, and pairwise deletion, where only the
specific variables with missing values are excluded from analyses involving those variables.
While deletion methods are straightforward to implement and can prevent bias due to
imputation, they can lead to a loss of valuable information and reduced sample size,
potentially affecting the generalizability and statistical power of the analysis.
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Imputation methods involve replacing missing values with estimated or predicted val-
ues based on observed data. Mean imputation replaces missing values with the mean of
observed values for that variable, while median imputation uses the median. Regression
imputation predicts missing values using regression models based on other variables in the
dataset. Imputation preserves sample size and retains valuable information, but it may
introduce bias and inaccuracies if the imputation model is unspecified or if the missing
data mechanism is not adequately accounted for.

Multiple imputation techniques generate several imputed datasets with plausible val-
ues for the missing data, allowing for uncertainty estimation and incorporating variability
due to imputation. This approach offers more robust estimates than single-imputation
methods but requires more computational resources and may be more complex to im-
plement. Multiple imputation is particularly useful when the missing data mechanism is
non-random or when there is significant uncertainty about the missing values.

Predictive mean matching (PMM) is a sophisticated imputation technique for handling
missing values in datasets. Unlike simple imputation methods that replace missing values
with fixed statistics such as mean, median, or mode, PMM utilizes predictive modeling to
estimate and impute missing values based on the relationships observed in the data. The
PMM approach involves several steps. First, a predictive model, such as regression or
decision trees, is trained on the observed data without missing values. This model learns
the complex relationships between the dataset’s features and target variable(s). Once the
model is trained, it is used to predict the missing values for the instances with missing
data.

However, instead of directly using the predicted values from the model, PMM employs
a matching technique to select the most similar observed instances (i.e., those without
missing values) as donors for imputing the missing values. The predicted value from the
model is then replaced with the observed value from the nearest neighbor, ensuring that
the imputed values are plausible and consistent with the distribution of the observed data.
One of PMM’s key advantages is its ability to preserve the underlying distribution and
variability of the data while imputing missing values. By incorporating information from
similar observed instances, PMM generates more realistic imputations that reflect the
true underlying relationships in the data. Additionally, PMM can handle both continuous
and categorical variables, making it a versatile imputation technique suitable for various
datasets.

Overall, PMM is a powerful approach for handling missing data that leverages predic-
tive modeling and nearest neighbor matching to generate accurate and reliable imputa-
tions. Its ability to retain the structure and characteristics of the original data makes it
a valuable tool for researchers and practitioners working with incomplete datasets.

II.3.3 Outlier management

Outliers are observations that significantly deviate from the rest of the data and can
disproportionately impact statistical analyses. They may arise due to measurement errors,
data entry mistakes, natural variability, or rare events. Outliers can distort the distribu-
tional characteristics of the data, bias parameter estimates, and affect the robustness of
statistical models. Therefore, it is essential to identify and manage outliers effectively to
ensure the validity and reliability of data analyses.

Various techniques exist for detecting outliers, including graphical methods, such as
scatter plots and boxplots, and statistical methods, such as z-scores, Mahalanobis dis-
tance, and clustering algorithms. Graphical methods visually inspect the data for unusual
observations, while statistical methods quantify the degree of deviation from the expected
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values. Outliers can also be detected using ML algorithms, such as isolation forests and
k-nearest neighbors, which identify observations that are significantly different from most
of the data.

Once outliers are identified, several strategies can be employed to manage them. One
approach is to remove outliers from the dataset by deleting them entirely or treating them
as missing values. While this approach can improve the robustness of statistical analyses,
it may lead to a loss of valuable information and a reduced sample size. Alternatively,
outliers can be transformed using robust statistical techniques, such as winsorization or
trimming, which replace extreme values with less extreme ones based on predetermined
thresholds. Another strategy is to use robust statistical models that are less sensitive
to outliers, such as robust regression or robust estimation techniques. These models
downweight the influence of outliers, leading to more stable parameter estimates and
improved model performance.

When managing outliers, it is essential to consider the underlying causes and context
of the data. Outliers may contain valuable information or represent genuine phenomena
that should not be disregarded hastily. Additionally, the choice of outlier management
strategy should be guided by the specific objectives of the analysis and the assumptions
underlying the statistical model. Sensitivity analyses and robustness checks can help
assess the impact of outlier management decisions on the validity and reliability of the
results.

II.3.4 Data standardization and normalization

Standardization and Normalization Types

Standardization and normalization are preprocessing techniques used to scale and
transform features in a dataset to a common scale, facilitating better performance of ML
models.

— Standardization: In standardization, also known as z-score normalization, each
feature is rescaled to have a mean of 0 and a standard deviation of 1. This is
achieved by subtracting the mean of the feature and dividing by its standard
deviation:

xstandardized = x − µ

σ
(II.3)

where x is the original feature value, µ is the mean of the feature, and σ is the
standard deviation.

— Normalization: Normalization scales each feature to a range between 0 and 1.
One common normalization technique is min-max scaling, which is calculated as:

xnormalized = x − min(x)
max(x) − min(x) (II.4)

where x is the original feature value, and min(x) and max(x) are the minimum
and maximum values of the feature, respectively.

Reasons for Standardization and Normalization

Standardization and normalization of features play a crucial role in improving the
performance of ML models. Improved convergence is one benefit, as many ML algorithms,
particularly gradient descent-based optimization algorithms, converge faster when features
are on a similar scale. Standardization and normalization ensure that features with larger
magnitudes do not dominate the optimization process. Another benefit is equal weighting,
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where these scaling techniques prevent features with larger scales from disproportionately
influencing the model’s learning process. By scaling features to a common range, each
feature contributes more equally to the model’s decision-making process. Additionally,
standardization and normalization enhance robustness to outliers. By scaling features to
a common scale, the impact of outliers and extreme values on the model’s performance is
reduced, making the models more resilient to such anomalies.

Models Benefitting from Standardization and Normalization

Several ML models benefit from standardization and normalization, including:
Standardization and normalization are essential for various types of ML algorithms.

For linear models, such as linear regression, logistic regression, and SVM, these scaling
techniques improve model performance by aiding in convergence and preventing any sin-
gle feature from dominating due to its scale. Distance-based algorithms, including KNN,
clustering algorithms like K-means clustering, and principal component analysis (PCA),
rely heavily on distance metrics and are sensitive to feature scales. Standardization and
normalization ensure that these algorithms perform optimally by maintaining a consis-
tent feature scale. Neural networks, particularly deep learning models, also benefit from
standardized or normalized inputs to facilitate better convergence during training. This is
especially important for batch normalization layers within neural networks, which require
inputs to be on a similar scale to function effectively.

II.3.5 Feature engineering

Feature engineering is the process of creating new meaningful features or transforming
existing features in a dataset to improve the performance of ML models. It involves
selecting, extracting, and modifying features to capture relevant information and patterns
beneficial for predictive modeling.

Creation of Informative Features

One aspect of feature engineering involves creating new features that are highly in-
formative concerning the target output based on existing features. This may include
generating polynomial features by combining existing features through multiplication or
raising them to higher powers. This allows models to capture non-linear relationships be-
tween variables. Additionally, creating interaction features by combining pairs of existing
features can capture synergistic effects or interactions between variables. For example,
in a medical dataset, the product of a patient’s age and blood pressure might be a more
informative feature than age or blood pressure alone. Constructing derived features based
on domain knowledge or insights from the data is also valuable. This could involve ag-
gregating or summarizing information from multiple variables to create new features that
better represent underlying patterns or relationships.

Dimensionality Reduction

Another aspect of feature engineering involves reducing the dimensionality of the
feature space to alleviate the curse of dimensionality and improve model performance.
Techniques such as principal component analysis (PCA), feature selection, and feature
extraction help identify and retain the most relevant features while discarding redundant
or less informative ones.
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Considerations and Best Practices

Feature engineering requires careful consideration of domain knowledge, data charac-
teristics, and modeling objectives. To avoid overfitting, a balance must be struck between
adding complexity and capturing relevant information. Iterative experimentation and val-
idation are crucial for evaluating the effectiveness of feature engineering techniques and
refining the feature set for optimal model performance.

II.4 Analyze and Prepare Several Datasets Used
in Thesis

After defining the various aspects of data analysis and pre-processing. In this section,
we present the application of these techniques to analyze, characterize, and prepare the
datasets used in the thesis.

We have exploited both public and private datasets of varying size and quality. This va-
riety serves, first and foremost, to address several medical problems and identify high- and
low-risk individuals. It will also enable us to test and compare our proposed approaches
presented in the following chapters on various datasets. Overall, we have exploited five
tabular datasets containing biological and clinical variables. Each dataset admits a binary
output presenting the disease’s presence or absence.

II.4.1 Public Datasets (Hypothyroid and diabetes)

Public datasets are vital in advancing research and fostering innovation in various
fields, including ML and data science. Academic institutions, research organizations, gov-
ernment agencies, and industry partners often make these datasets available. Platforms
such as Kaggle, the UCI ML Repository, data.gov, and Google Data provide access to
diverse datasets spanning multiple domains, including healthcare, finance, transporta-
tion, and social sciences. These datasets are meticulously curated, annotated, and openly
shared to facilitate collaboration, reproducibility, and knowledge dissemination within
the scientific community. Leveraging public datasets enables researchers, practitioners,
and enthusiasts to explore real-world problems, develop and validate ML models, and
gain valuable insights into complex phenomena. Additionally, public datasets serve as
benchmarks for evaluating algorithm performance, benchmarking new methodologies, and
addressing pressing societal challenges through data-driven approaches.

Hypothyroid Diagnosis Dataset

Data Analysis and Description of Hypothyroid Dataset : The dataset is from
the UCI ML Repository [Dua 17]. It comprises 3772 subjects with 29 features, including
a binary output column indicating the presence or absence of hypothyroidism. The age
range of the population in the dataset spans from 1 to 95 years, with 67.9% being female
and 32.1% male.

The positive class largely outweighs the negative class in the population, with 3387
cases identified as positive for hypothyroidism compared to only 291 identified as negative,
as shown in Figure II.7.

The majority of individuals detected as positive for hypothyroidism are women, ac-
counting for 67.1% of the population. In contrast, men comprise only 32.9%.
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Figure II.7 – Imbalanced output classes

The age group between 55 and 75 shows the highest likelihood of developing hypothy-
roidism, as depicted in Figure II.8.

Figure II.8 – Age distribution of positive subjects

Table II.1 displays the existing features in the dataset associated with their corre-
sponding definitions and types.

The correlation matrix in Figure II.9 indicates weak correlations between the features.
However, a relatively strong correlation between the output column "Target_hypothyroid"
and the TSH, T3, TT4, and FTI features suggests a significant relationship with the
output.

Figure II.9 – Correlation between features

The histograms in Figure II.10 reveal differences in scale among certain variables. This
emphasizes the necessity of data normalization when employing linear models or neural
networks for prediction.
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Table II.1 – Data description and type

Features Description Type

age Patient’s age Int

sex Gender of the patient Int

On thyroxine Whether patient currently taking thyroxine Bool

Query on thyroxine Patient is questioned about use of thyroxine Bool

On antithyroid meds Patient currently taking antithyroid medication Bool

pregnant If the patient now is pregnant Bool

Thyroid surgery Whether the individual has had thyroid surgery Bool

I131 treatment If the patient has receiving I131 treatment Bool

Query hypothyroid Patient thinks they have developed hypothyroidism Bool

lithium If patient currently taking lithium Bool

goitre Patient have goitre Bool

tumor If patient diagnosed with a tumor Bool

hypopituitary Patient hypopituitarism Flt

TSH Blood test results for TSH level Flt

T3 Blood test results for T3 level Flt

TT4 Blood test results for TT4 level Flt

T4U Blood test results for T4U level Flt

FTI Blood test results for FTI level Flt

TBG Blood test results for TBG level Flt

Target-hypothyroid Diagnosis of hypothyroidism Int

Abbreviations : Int: integer, Bool: Boolean, Flt: Float, TSH : Thyroid Stimulating Hormone, T3: Triiodothyronine, TT4:
Total Thyroxine, T4U: Thyroxine Uptake, FTI: Free Thyroxine Index, TBG: Thyroxine Binding Globulin

Figure II.10 – Features histogram

Unbalanced Data Manangment of Hypothyroid Dataset: The initial data pre-
processing step involves converting the dataset contents into a digital format. Some
columns need processing to transform them from text columns to binary form. After
converting the data into a digital format, we address missing values by replacing them
with average ones.
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An important aspect of data preprocessing involves analyzing the output class. Based
on our data analysis, we observed an imbalance between the two classes in the target
column. Imbalanced data can lead to inadequate model learning, affecting its ability to
accurately predict positive or negative values. Additionally, during the model’s testing and
validation phases, the selected data may be inconsistent, making the test phase unreliable.

Two solutions are available in this case. One technique is oversampling, which involves
duplicating instances of the minority class randomly to achieve a balanced distribution
between the two classes. The second proposed solution is undersampling, which involves
removing instances from the majority class to achieve a balanced distribution between
the two classes.

Most studies in the literature have utilized oversampling. However, this methodology
often leads to overfitting and can result in biased testing and validation processes. In
our study, we employ the undersampling technique. This approach reduces the dataset
volume but ensures reliable and unbiased testing and validation phases.

Figure II.11 displays the data after the undersampling process. The dataset volume has
been reduced from 3772 subjects to 582 subjects. Despite the size reduction, this approach
ensures improved learning for the ML model and a reliable testing and validation process.

Figure II.11 – Balanced output classes

Diabetes Prediction Dataset

Data Analysis and Description of Diabetes Dataset: This dataset originates from
the National Institute of Diabetes and Digestive and Kidney Diseases. Its objective is to
diagnostically predict whether a patient has diabetes based on specific diagnostic mea-
surements included in the dataset. The instances were selected with several constraints
from a larger database. Specifically, all patients in this dataset are females at least 21
years old of Pima Indian heritage. The dataset consists of several medical predictor vari-
ables and one target variable (Outcome). The predictor variables are Pregnancy, Glucose,
Blood Pressure, skin thickness, Insulin, BMI, Diabetes Pedigree Function, and Age. The
dataset contains 768 subjects, 268 being diabetic and 500 non-diabetic, as illustrated in
Fig. II.12.

Figure II.12 – Diabetes outcome target quantity
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This means that 65.1% of the population are diabetic, as shown in Figure II.13. This
proportion is appropriate for training and testing the model.

Figure II.13 – Diabetes outcome target percentage

Missing Values Management for Diabetes Dataset: Figure II.14 shows the per-
centage of the missing value. There are no data quality concerns for columns with a
percentage of missing values of less than 10%. However, for the two characteristics of
SkinThickness and Insulin, 29.56% and 48.1% of values are missing, respectively. There-
fore, a PMM imputation method was developed to handle these missing values.

Figure II.14 – Missing Values of diabetes dataset (%)

Outlier Manangment for Diabetes dataset: The boxplot in Figure II.15 shows the
features have almost the same scale. There is no need to normalize the data. Moreover,
there are no outlier values to remove.

II.4.2 Private Datasets collected by doctors (Carbohydrate
abnormalities and MetS)

In addition to using public datasets, our study benefits from access to private datasets
collected from hospital settings. These datasets provide valuable insights into specific
medical conditions and enable us to tailor our analyses to address pertinent clinical ques-
tions. In our research, we have gathered two distinct private datasets, each focusing on
several medical conditions.
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Figure II.15 – Box plot of diabetes datasets

These private hospital datasets offer unique opportunities for research and clinical in-
sights that complement our analyses of public datasets. By combining information from
diverse sources, we aim to comprehensively understand the complex interactions between
genetic, clinical, and environmental factors influencing disease pathogenesis and progres-
sion. Ultimately, our research endeavors with these private datasets strive to contribute
to advancements in medical knowledge, patient care, and public health initiatives.

β-TM Dataset

Data Analysis and Description of β-TM Dataset: This observational study was
conducted at the Adult and Pediatric Endocrinology-Diabetology Department, Doctor
Benbadis University Hospital (Constantine-Algeria). Data were obtained from a survey
conducted from 2016 to 2022 among Algerian patients with β-Thalassemia Major (β-TM)
receiving routine blood transfusion (TDT) from eastern Algeria. All patients were referred
from the pediatric and adult hematology regional departments to assess and manage en-
docrine and metabolic complications of β-TM according to recently updated guidelines
[Farmakis 22]. We excluded from this study all patients with other forms of thalassemia
or other congenital hemoglobinopathies, β-TM patients with severe chronic illness, malnu-
trition, or those receiving systemic glucocorticoid treatment within the previous 4 weeks.
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The data were collected through a questionnaire comprising items on socio-demographic
information, personal and family medical history, transfusion history, and details regard-
ing the date, type, and modalities of iron chelation treatment.

All patients underwent anthropometric measurements, including height (H) (cm) and
weight (kg). Body mass index (BMI) (kg/m2) was calculated. They also underwent
hormonal evaluation, including assessments of somatotropic, gonadotropic, thyrotropic,
and corticotropic functions, and evaluations of parathyroid gland function and vitamin D
levels.

All patients in the study underwent fasting blood glucose tests after at least 8 hours
of overnight fasting from the age of 10 and a standard 2-hour test after a 75-g oral glucose
tolerance test (OGTT). Blood samples were sent and analyzed at the central laboratory
of the University Hospital of Constantine using enzymatic methods and an automatic
analyzer (ADVIA Integrated Modular System). Insulin resistance was calculated using
the homeostasis model assessment of insulin resistance (HOMA-IR), as shown below:

HOMA − IR = Glycemia ∗ Insulinemia

22.5 . (II.5)

(glycemia mmol/l; insulin mUL).
Glucose tolerance was classified into three categories based on fasting blood glucose

levels: Normal fasting glucose (NFG) was defined as a glucose level below 100 mg/dL.
Patients with glucose levels ≥ 126 mg/dL on at least two occasions, or ≥ 200 mg/dL
after a glucose load, or randomly ≥ 200 mg/dL if symptoms were suggestive, were con-
sidered diabetic. Those with glucose levels between 100 and 125 mg/dL (6.1-6.9 mmol/L)
were considered impaired fasting glucose (IFG). Impaired glucose tolerance (IGT) was
diagnosed if blood glucose was between 140-199 mg/dL (7.8-11 mmol/L) 2 hours after a
glucose load. Individuals with impaired fasting glucose and/or impaired glucose tolerance
were designated as pre-diabetic according to the recommendations of "The International
Network of Clinicians for Endocrinopathies in Thalassemia and Adolescent Medicine"
(ICET-A) and the American Diabetes Association (ADA) [ElSayed 23, De Sanctis 16].

Blood transfusions were administered every 2-4 weeks to maintain the pre-transfusion
hemoglobin level above 9 g/dL. An iron chelator (deferoxamine, deferiprone, or de-
ferasirox) was routinely administered whenever the ferritin level exceeded 1000 ng/mL.
Our population’s measurement of iron overload relied solely on transfusion history and
serum ferritin levels since T2* MRI is not available at the University Hospital of Con-
stantine.

The main characteristics of the study population are shown in Table II.2. Our dataset
contains 80 subjects and 22 features (After feature selection). The mean age of 80 patients
(31 males, 49 females) with β-TM at the time of the study was 18,1 ± 5,9 years (range
10–30 years). There was no significant difference between the sexes. None were overweight
or obese. Nine subjects (11.3 %) had a family history of type 2 diabetes.

The age of starting chelation therapy was late (9.7 ± 3.6 years), with Deferoxamine
being the most commonly used iron chelator, followed by Deferasirox (56 patients, 70.0%
and 20 patients, 25.0%, respectively). It should be noted that Deferoxamine became
available for home use in Algeria in 2007, and only 4 out of 56 β-TM patients using
Deferoxamine had an infusion pump. Adherence to chelation therapy was irregular in 59
cases (73.8%). Two subjects (2.5%) in our series received combined therapy during the
study period. All poly-transfused patients in our series had post-transfusion iron overload,
with a median serum ferritin level of 4600.2 ± 4332.8 ng/ml. 51 patients (63.75%) had
ferritin levels above the critical threshold of 2500 ng/ml.
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Table II.2 – General characteristics of the study population with β-TM according to the
presence of disorders of glucose metabolism

Features Total Patients
with NGT

Patients
with IFG

Patients
with IGT

Patients
with dia-
betes

p-
value

N (%) 80(100) 49(61.3) 4(5.0) 14(17.8) 15(18.7) -

Age (yrs) 18,4 ± 5.9 15.9 ± 4.5 18.5 ±
10.2

20.9 ± 5.7 23.1 ± 5.1 ≤
0.001

Age at diagnosis of beta-
TM (months)

10.8 ± 6.5 11.4 ± 6.7 6.5 ± 0.6 10.4 ± 6.6 10.7 ± 6.5 0.378

Gender

Male 31(38.8) 16(51.6) 2(6.5) 6(19.4) 7(22.6)

Female 49(61.3) 31(63.3) 2(4.1) 8(16.3) 8(16.3) 0.424

Adherence to chela-
tion therapy

Regular 21(26.3) 6(28.6) 2(9.5) 4(19) 0(0) 0.264

Not regular 59(73.8) 27(45.8) 2(3.4) 10(16.9) 15(25.4)

Splenectomy

Yes 59(73.8) 29(49.2) 4(6.8) 12(20.3) 14(23.7) 0.0077

No 21(26.3) 18(85.7) 0(0) 2(9.5) 1(4.8)

Family history of
thalassemia major

Yes 46(57.5) 19(41.3) 3(6.5) 8(17.4) 8(17.4) 0.827

No 34(42.5) 14(41.2) 1(2.9) 6(17.6) 7(20.6)

Family history of di-
abetes

Yes 9(11.3) 7(77.7) 1(11.1) 0(0) 1(11.1) 0.383

No 71(88.8) 40(56.3) 3(4.2) 14(19.7) 14(19.7)

(BMI) kg/m2 18.3±2.5 18.1±2.5 20±1.5 18.1±3.1 18.5±2 0.4477

Serum Ferritin (ng/ml) 4600.2 ±
4332.8

3102.5 ±
1865.1

4450 ±
2311.6

8215 ±
7051

5959.4 ±
4960.8

≤
0.001

Hemoglobin before
transfusion (gr/dl)

7.4 ± 0.8 7.5 ± 0.8 7.4 ± 0.7 7 ± 0.8 7.4 ± 1.1 0.1686

FPG (mg/dl) 99.44 ±
39.58

82.94 ±
13.17

107.5 ±
11.82

97.07 ±
16.56

151.2 ±
64.62

≤
0.001

2h.post 75 g glucose
(mg/dl)

143.17 ±
58.81

109.02 ±
13.09

124.67 ±
12.86

160.21 ±
27.33

244.71 ±
58.26

≤
0.001

HOMA-IR 1.9±0.9 1.4±0.6 2.8±1.8 2.6±0.8 2.5±0.7 ≤
0.001

Data in Table II.2 are presented as n(%) or as mean ± SD, β-TM: β-Thalassemia major, HOMA: homeostasis model
assessment for insulin resistance, FPG: fasting plasma glucose, NGT: normal glucose tolerance, IFG: impaired fasting

glucose, IGT: impaired glucose tolerance, GHD: Growth Hormone Deficiency, ICT: Iron chelation therapy, DFO:
Deferoxamine, DFX: Deferasirox, DFP: Deferiprone, HSD: hyperparathyroidism secondary to vitamin D deficiency.

Out of the 80 patients investigated, 15 (18.7%) had diabetes mellitus (DM), 4 (5.0%)
had impaired fasting glucose (IFG), and 14 (17.8%) had impaired glucose tolerance (IGT).
On average, patients with diabetes were older than those without diabetes (23.1 ± 5.1
years vs. 15.9 ± 4.5 years, p-value ≤ 0.05). Ferritin levels were higher among patients
with diabetes compared to those with normal glucose tolerance (5959.4 ± 4960.8 ng/ml
vs. 3102.5 ± 1865.1 ng/ml, p-value 0.310), but the difference was insignificant.

All our patients had at least one endocrine disorder, with hypogonadism and hy-
poparathyroidism being more common in patients with diabetes (14 (30.4%) vs. 6 (75.0%),
p-value 0.033; 6 (40.0%) vs. 2 (13.3%), p-value ≤ 0.001, respectively), compared to pa-
tients without diabetes.
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Outlier Manangment for Critical Features of β-TM Dataset: According to doc-
tors, the HOMA-IR feature can be a very significant predictor of carbohydrate abnor-
malities. That is why we chose to analyze this characteristic and identify any outliers.
By examining Figure II.16, which visualizes the HOMA-IR violin plot, we found that the
density of this feature ranged from 0 to 3, with one relatively significant outlier greater
than 5. According to the doctors, this outlier may be both logical and significant, and its
presence is not attributed to a typing error. Hence, the decision was made to keep this
aberrant value.

Figure II.16 – HOMA-IR Violin Plot

Missing Values Management for β-TM Dataset: Due to the limited size of the
dataset, we excluded features with missing values exceeding 10% of the population [Waljee 13].
However, even after this step, 10 features still contained 1 to 3 missing values per feature.
To handle these missing values without introducing bias, we imputed the median value
for categorical columns to ensure they remain within existing classes, and the mean value
for continuous values.

MetS Datasets

Data Analysis and Description of MetS Dataset: We used two MetS sets of re-
search data as input. Detailed characteristics of this population and methods have been
described elsewhere [Benmohammed 15, Benmohammed 11]. The first dataset (DS1)
comprises 1,100 (537 boys and 563 girls) scholar adolescents [Benmohammed 15], the sec-
ond dataset (DS2) includes 305 scholar adolescents (133 boys and 172 girls) [Benmohammed 11].
In the DS1 a random selection was made in three stages: the academic institution (high
school and middle school); the classroom; and the students. While the DS2 included
adolescents living with overweight or obesity (International Obesity Task Force criteria
[Tj 00]) followed up in endocrinology department (Constantine University Hospital, Al-
geria). Table II.3 presents the description and type of each feature in the datasets.

All adolescents were aged 12 to 18 and were from city of Constantine (Algeria). In both
datasets, the adolescents had physical examinations and blood tests. Anthropometric
measurements included height (H) (cm), weight (kg), waist and hip circumferences (WC
and HC) (cm).
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Table II.3 – Summary of Features in MetS datasets

Features Description Type

Age Age of the individual Quantitative
Gender Biological sex of the individual Categorical
Weight Body weight of the individual Quantitative
Height The height of the individual Quantitative
BMI Body Mass Index Quantitative
WC Waist Circumference Quantitative
HC Hip Circumference Quantitative
FBG Fasting Plasma Glucose Quantitative
Chol Total cholesterol levels in the blood Quantitative
Tg Triglycerides level in the blood Quantitative
WC/HC The ratio of waist to hip circumference Quantitative
SBP Systolic Blood Pressure Quantitative
DBP Diastolic Blood Pressure Quantitative
MBP Mean Blood Pressure Quantitative
LDL-C Low-Density Lipoprotein Cholesterol Quantitative
HDL-C High-Density Lipoprotein Cholesterol Quantitative
TyG Triglyceride-glucose Index Quantitative
SM_Cook MetS according to Cook definition Categorical
SM_Idf MetS according to IDF definition Categorical
SM_Ferranti MetS according to De Ferranti defini-

tion
Categorical

WC/HC ratio and body mass index (BMI) (kg/m2) were calculated. Systolic and
diastolic blood pressure (SBP, DBP) were also measured by the international guidelines
of the National High Blood Pressure Education Program working group on high blood
pressure children and adolescent populations [Program 00]. Mean blood pressure (MBP)
was calculated as follows [Kodama 14]:

MBP = SBP (mmHg) + 2 × DBP (mmHg)
3

Blood samples were taken after 12 hours of fasting and analyzed at the central laboratory
of the Constantine University Hospital. Biological assessments included fasting plasma
glucose (FPG), triglycerides (TG), total cholesterol (TC), and HDL-C measurements
using enzymatic methods. Low-density lipoprotein cholesterol (LDL-C) was calculated
according to the Friedewald formula. Triglyceride glucose index (TyG) was calculated
according this formula:

TyG = ln
(

FPG (mg/dL) × TG (mg/dL)
2

)

Three definitions for MetS were used: 2007 IDF [Zimmet 07], Cook [Cook 03] and De
Ferranti [Magge 17] were calculated as shown in Table II.4.

The Table presented in II.5 displays the count and percentage of subjects identified as
positive or negative for MetS according to three definitions. Notably, as anticipated, the
prevalence of MetS is significantly higher in DS2. Furthermore, the prevalence is higher
based on the De Ferranti definition than the Cook and IDF definitions in both datasets.

Missing Values Management for MetS Dataset: When analyzing the missing val-
ues in both datasets, we noticed that there were already missing values in the output
columns. Managing these missing values can be delicate since the outputs are quite un-
balanced, with a very small number of MetS-positive subjects. For this reason, we prefer
to remove subjects with missing information on the existence of MetS to reduce the risk
of impact on the ML. For the other features considered input, we chose the PMM method
to cover them since these datasets admit a relatively large amount of data, which allows
us to have good imputation accuracy with the PMM.
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Table II.4 – Definition of the metabolic syndrome in adolescents according to the IDF,
Cook et al., and De Ferranti et al.

Definition Criterion

IDF[Zimmet 07] Abdominal adiposity (waist circumference ≥ 90th percentile by age & gender)
and two other criteria:

• Fasting glucose ≥ 100 mg/dL or known type 2 diabetes

• SBP ≥ 130 mmHg or DBP ≥ 85 mmHg

• Triglycerides ≥ 150 mg/dL or specific treatment

• HDL-cholesterol < 40 mg/dL if aged 10–16 y; < 40 mg/dL in men, < 50
mg/dL in women if > 16 y

Cook[Cook 03] Three or more of the following:

• Waist circumference ≥ 90th percentile by age & gender

• Fasting glucose ≥ 110 mg/dL

• SBP or DBP ≥ 90th percentile by age, gender & height or treatment

• Triglycerides ≥ 110 mg/dL

• HDL-cholesterol ≤ 40 mg/dL

De Ferranti[Magge 17] Three or more of the following:

• Waist circumference ≥ 75th percentile by age & gender

• Fasting glucose ≥ 110 mg/dL

• SBP ≥ 90th percentile by age, gender & height

• Triglycerides ≥ 100 mg/dL

• HDL-cholesterol < 45 mg/dL for boys 15–19 y, otherwise < 50 mg/dL

Table II.5 – Population positive and negative for MetS

Dataset Definition Positive Cases Negative Cases Positive % Negative %

DS1 Cook 24 1061 2.21% 97.79%
DS1 Ferranti 51 1034 4.70% 95.30%
DS1 IDF 10 1075 0.92% 99.08%
DS2 Cook 23 244 8.61% 91.39%
DS2 Ferranti 50 217 18.73% 81.27%
DS2 IDF 22 245 8.24% 91.76%

Outlier Manangment for Critical Features of MetS datasets: According to physi-
cians, the MBP, BMI, WC, and TyG characteristics can be important predictors for MetS
screening. Hence, we chose to study these variables and identify any outliers to ensure
a better ML model later on. As shown in Figure II.17, we observe the presence of some
outliers in the MBP, BMI, and WC characteristics. According to the physicians, these
values are relatively logical and not caused by typing errors. Additionally, we note that
these are more of a set of outliers rather than isolated individual values, which may be
significant for the ML model. Therefore, we decided to retain these outliers.

II.4.3 Discussion

Our aim in this chapter was to analyze and prepare the datasets used in the thesis.
Hence, we first defined the various data analysis and pre-processing methodologies. We
then applied them to the datasets to prepare them for ML.

Now that we’ve prepared the data, let us discuss the quality of each dataset for com-
parison, considering each dataset’s limitations in the following steps.

As shown in Table II.6, to compare these datasets, we have estimated evaluators such
as Quantity, which considers the number of features and subjects. Additionally, com-
pleteness considers the existence of missing values, outliers, and imbalanced output data.

46



II.5. Conclusion

Figure II.17 – Box Plot (MBP, TyG, BMI and WC)

Finally, relevance studies the significance of features relative to the output by calculating
the number of features with a high correlation and a p-value < 0.05. By studying these
metrics in Table II.6, we can observe that public datasets generally have better quantity
and completeness. They are often pre-processed for ML tasks. On the other hand, private
datasets collected in collaboration with hospitals exhibit lower quantity and completeness
but show good relevance with highly significant features.

Furthermore, public datasets are highly valuable for testing new methodologies. Pri-
marily, they offer a substantial volume of data devoid of missing values or outliers. Ad-
ditionally, since these datasets are referenced in the literature, numerous studies can be
leveraged to contextualize approaches and their outcomes. Conversely, private datasets
present intriguing opportunities for original research and findings, yet they may yield less
reliable results in ML applications due to limited data quantity and numerous missing
values. So, several limitations must be considered when testing ML or XAI in one of the
datasets, especially when discussing performance.

Table II.6 – Quality comparison of several datasets

Quantity Completeness Relevance

Features Subjects Balanced
output

Missing
values

Outliers Strong
correla-
tion

p-value <
0.05

DS_Hy 29 3772 yes no no 4 2
DS_D 8 864 no yes no 2 1
DS_B 22 80 no yes yes 6 5
DS_M 17 1085 yes yes yes 4 3
DS_MO 17 266 yes yes yes 4 3
Abbreviations: DS_Hy : Hypothyroid dataset, DS_D : Diabetes datasets, DS_B: β-TM dataset, DS_M : First MetS

dataset, DS_MO: Second MetS dataset
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II.5 Conclusion

In this chapter, we began by presenting several data analysis and preparation con-
cepts based on statistical tools and visualization graphs. We then applied our data sci-
ence knowledge and collaboration with medical specialists to analyze and prepare the
datasets used in the thesis. Finally, we compared several datasets and discussed their
qualities, essentially the difference between private and public datasets. Public datasets,
offering ample data without missing values or outliers, are tailored for evaluating proposed
novel approaches. Conversely, private datasets are distinctive because they are associated
with physicians’ specific challenges and characteristics strongly correlated with patient
discharge. Hence, exploiting private data sets for medical decision support using ML is
important. However, this data type must be well-treated and prepared for ML because of
the existence of missing values, outliers, and unbalanced data. The next step will be to
tackle the exploitation of these datasets by ML to predict the risk of targeted endocrine
diseases to propose solutions to physicians’ problems.
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III.1 Introduction

Once the data has been prepared previously, in this chapter, we aim to use information
from private datasets provided by doctors to predict the risk of carbohydrate abnormalities
and MetS, assist doctors in identifying individuals at high and low risk, and offer solutions
to their problems.

Hence, we start by presenting the main concepts of supervised ML in Section III.2,
with detailed explanations of the several linear and tree-based models. Also, the metrics
for evaluating a classification task were presented in the same section. Next, the method-
ologies proposed for risk prediction of the diseases targeted in this thesis and their results
are presented in Section III.3. Finally, Section III.4 is given to discuss the limits and
results, and Section III.5 concludes the chapter.

III.2 Supervised Models for Classification Task

In AI domain, supervised learning is a cornerstone methodology for tackling classifica-
tion tasks. The goal is to assign categorical labels to input data based on their features.
Supervised learning entails training a model on labeled datasets, where each data point
is associated with a known outcome or class label. Within this paradigm, classification
algorithms seek to discern patterns and relationships within the data, enabling the model
to generalize and make accurate predictions on unseen instances.

At its core, supervised classification involves the construction of a decision boundary
that delineates distinct classes within the feature space. Linear models, such as linear
regression and logistic regression, serve as fundamental tools for binary and multi-class
classification, leveraging linear combinations of features to delineate class boundaries.
SVM extend this paradigm by identifying the optimal hyperplane that maximally sepa-
rates several classes, enhancing classification performance in high-dimensional spaces.

Beyond linear methods, tree-based models offer a versatile framework for classification
tasks, capable of capturing nonlinear relationships and interactions among features. Deci-
sion trees partition the feature space into hierarchical segments based on simple decision
rules, culminating in a tree-like structure that facilitates intuitive interpretation. Ran-
dom forests, an ensemble of decision trees, aggregate the predictions of multiple trees to
enhance robustness and mitigate overfitting, making them well-suited for complex classifi-
cation problems. Additionally, gradient boosting algorithms like XGBoost, CatBoost, and
LightGBM iteratively refine predictive performance by sequentially fitting new models to
the residuals of previous iterations, thereby boosting overall accuracy and generalization.

III.2.1 Linear Models

Linear models represent a foundational class of algorithms in supervised learning,
particularly adept at tackling classification tasks. These models operate on the principle
of linear relationships between input features and the target variable, aiming to delineate
class boundaries through linear decision boundaries in the feature space.

Linear Regression

Linear regression is a fundamental statistical technique used for modeling the relation-
ship between a dependent variable and one or more independent variables. This model
can be adapted for binary classification by setting a threshold on the predicted values
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in classification tasks. It aims to find the best-fitting linear relationship between the in-
put features and the target variable, which is achieved by minimizing the residual sum
of squares (RSS) or maximizing the likelihood function. The model parameters (coeffi-
cients) are estimated using optimization techniques such as Ordinary Least Squares (OLS)
or gradient descent. The linear regression model is represented by the equation:

y = β0 + β1x1 + β2x2 + . . . + βnxn + ϵ (III.1)

where:

y is the predicted target variable,
β0 is the intercept term,
β1, β2, . . . , βn are the coefficients associated with each feature x1, x2, . . . , xn,

x1, x2, . . . , xn are the input features,
ϵ represents the error term.

Linear regression relies on several assumptions, including linearity, independence, and
homoscedasticity. The coefficients β1, β2, . . . , βn represent the change in the target vari-
able for a one-unit change in the corresponding feature, holding all other features constant,
while the intercept term β0 represents the value of the target variable when all features
are zero. Its strengths include simplicity, interpretability, and fast training and prediction
time for large datasets, but it is limited by assumptions of linearity, sensitivity to out-
liers and multicollinearity, and limited to linear decision boundaries for classification tasks.

Figure III.1 displays and summarizes the architecture of the linear regression model.

Figure III.1 – Linear regression architecture [Alyaseen 23]

Logistic Regression

Logistic regression is a statistical model used for binary classification tasks where the
target variable is categorical with two possible outcomes. Despite its name, it is a classi-
fication algorithm, not a regression algorithm. Logistic regression models the probability
that a given input belongs to a particular class using the logistic function (sigmoid func-
tion). The model parameters (coefficients) are estimated using optimization techniques
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such as maximum likelihood estimation (MLE) or gradient descent. The logistic regres-
sion model predicts the probability that an input x belongs to class 1 (y = 1) using the
logistic function:

P (y = 1|x) = 1
1 + e−(β0+β1x1+β2x2+...+βnxn) (III.2)

where:

P (y = 1|x) is the probability of the positive class,
β0 is the intercept term,
β1, β2, . . . , βn are the coefficients associated with each feature x1, x2, . . . , xn,

x1, x2, . . . , xn are the input features,
e is the base of the natural logarithm.

Logistic regression assumes that the relationship between the features and the log-
odds of the target variable is linear. Additionally, it assumes that the observations are
independent of each other. The coefficients β1, β2, . . . , βn represent the change in the log-
odds of the target variable for a one-unit change in the corresponding feature, holding all
other features constant. Logistic regression provides probabilistic predictions, allowing
for uncertainty estimation. Its strengths include being a simple and interpretable model
and being less prone to overfitting than more complex models. However, it assumes a
linear relationship between features and the log odds, which may not always hold, and it
is limited to binary classification tasks.

Figure III.2 displays and summarizes the architecture of the logistic regression model.

Figure III.2 – Logistic regression architecture [Baruah 24]

Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm for classification and regression tasks.
It aims to find the optimal hyperplane that best separates the classes in the feature space.
SVM works by finding the hyperplane that maximizes the margin, the distance between
the hyperplane, and the nearest data points (support vectors) from each class, as shown in
Figure III.3. This optimization problem can be solved using gradient descent or quadratic
programming techniques. In a binary classification task, the decision boundary of an SVM
can be represented as:

52



III.2. Supervised Models for Classification Task

f(x) = sign(wT x + b) (III.3)

where:

f(x) is the decision function,
w is the weight vector,
x is the input feature vector,
b is the bias term, and
sign(·) is the sign function.

SVM can handle non-linear decision boundaries in the input space by using the kernel
trick, which implicitly maps the input features into a higher-dimensional space where
a linear separation is possible. Common kernel functions include linear, polynomial,
Gaussian (RBF), and sigmoid kernels. SVM assumes that the data are linearly separable
or can be separated by a hyperplane with a margin. In cases where the data are not linearly
separable, soft-margin SVM allows for some misclassification by introducing a penalty
parameter C. The decision function of an SVM assigns a class label to each input based
on which side of the hyperplane it falls on. The sign of the decision function determines
the predicted class, and the function’s magnitude reflects the confidence in the prediction.
SVM is effective in high-dimensional spaces, versatile due to the kernel trick allowing for
non-linear decision boundaries, and memory efficient as it only uses a subset of training
points as support vectors. However, it is computationally intensive, especially with large
datasets, requires careful selection of hyperparameters such as kernel and regularization
parameter selection, and may not perform well with noisy or overlapping classes.

Figure III.3 – SVM architecture [Zuo 24]

III.2.2 Tree-based models

Tree-based models are a class of ML algorithms that rely on constructing a tree-like
structure to make decisions. These models are widely used for classification and regression
tasks. The main idea behind tree-based models is to recursively split the feature space
into smaller, more homogeneous subsets until predefined criteria are met.
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One of the most commonly used models in this category is the decision tree, which
divides the feature space into binary segments based on decision rules derived from the
data features. Each tree node represents a feature, and each branch represents a decision
rule based on that feature. The tree is constructed to minimize node impurity, often
measured by metrics such as the Gini index or entropy.

Tree-based models offer several advantages, including their ability to handle numerical
and categorical data, interpretability, and robustness to outliers. Additionally, they can
capture nonlinear relationships between input variables and the target variable.

Other tree-based models include random forests, which combine multiple decision
trees to reduce overfitting and improve predictive accuracy. XGBoost, CatBoost, and
LightGBM are ensemble tree-based algorithms developed to enhance the performance
and efficiency of tree-based ML. These models use advanced techniques such as boosting
to improve predictive accuracy while reducing computation time.

In summary, tree-based models are a powerful and versatile method for predictive
modeling in various application domains. They offer a trade-off between interpretability
and accuracy, making them a popular choice for many ML tasks.

Decision Tree

Decision trees are a popular and widely used supervised learning algorithm for classifi-
cation and regression tasks. Their popularity stems from their simplicity, interpretability,
and flexibility, which make them valuable tools for data analysis and ML. The fundamen-
tal idea behind decision trees is to build a model that resembles a tree structure, where
each internal node represents a decision based on a feature, each branch represents the
outcome of that decision, and each leaf node represents a final prediction or decision.

The learning process of decision trees begins with constructing this tree-like model
by recursively partitioning the feature space into smaller and smaller subsets. At each
step of this recursive process, the algorithm evaluates different criteria to determine the
best feature and corresponding split point for dividing the data. This process continues
until the data in each subset is as homogeneous as possible. The criteria for making these
splits often involve measures such as Gini impurity or entropy in classification tasks and
variance reduction in regression tasks. Gini impurity quantifies how mixed the classes are
in the data at each node, while entropy measures the disorder or uncertainty of the data.
In regression tasks, variance reduction helps identify splits that best reduce the variability
of the target variable.

Building decision trees involves several key concepts. For instance, Gini impurity and
entropy are used to assess the quality of splits, with lower impurity or entropy indicating
a better split. Information gain, calculated from these measures, guides the choice of
features and split points to maximize the effectiveness of each decision node. Additionally,
pruning techniques are employed to avoid overfitting by removing branches that do not
significantly improve the model’s performance on unseen data.

One of the significant advantages of decision trees is their interpretability. The tree
structure naturally represents decision rules that are easy for humans to follow and un-
derstand. This interpretability is further enhanced by the ability of decision trees to
handle both numerical and categorical data, making them versatile for various types of
problems. Through their straightforward decision-making process, decision trees provide
clear insights into which features are important for making predictions.

However, decision trees are not without their challenges. They are prone to overfitting,
especially when the tree is allowed to grow too deep or when the training data contains
noise. Overfitting occurs when the model captures the noise in the training data rather
than the underlying pattern, which can lead to poor performance on new, unseen data.
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Additionally, decision trees can be unstable, as small changes in the training data might
lead to different splits and, consequently, different trees. They can also be biased towards
features with more levels or towards the majority class in imbalanced datasets.

To address these challenges, careful tuning of hyperparameters such as tree depth,
minimum samples per leaf, and the criteria for splits is essential. Techniques such as
pruning are employed to cut back the tree to avoid overfitting and improve generalization.
Despite these challenges, decision trees remain a robust and flexible tool in the ML toolkit,
offering a balance of simplicity and power for various analytical tasks.

In summary, decision trees are a foundational technique in ML that provides a clear
and interpretable way to make predictions based on data. Their ability to handle both
classification and regression tasks makes them a versatile choice for many problems. How-
ever, achieving the best performance with decision trees requires careful complexity man-
agement and a thoughtful approach to their construction and evaluation.

Random Forest: Ensemble Learning with Decision Trees

Random Forest is an ensemble learning method that leverages the power of multiple
decision trees to enhance the accuracy and robustness of predictions. This approach is
widely used for both classification and regression tasks due to its high performance and
resistance to overfitting. At its core, Random Forest builds a collection of decision trees,
each of which is trained independently on a random subset of the training data and
features.

The process begins with constructing numerous decision trees, where each tree is
trained on a different random sample of the data. During training, a random subset
of features is considered at each node for making splits, which introduces variability
among the trees. This randomness helps to reduce the correlation between the trees and
thereby improves the model’s generalization performance. For classification tasks, the
final prediction is determined by a majority voting scheme, where the class predicted by
most trees is chosen as the final outcome. In regression tasks, the model’s prediction is
the average of the predictions made by all the trees in the forest.

The architecture of a Random Forest model is illustrated in Figure III.4, which sum-
marizes the process of building and combining multiple decision trees to form the ensemble
model.

Figure III.4 – Random forest architecture [Fuster-Palà 24]
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One of the primary advantages of Random Forest is its ability to achieve high accu-
racy across various datasets. The ensemble of diverse decision trees, combined with the
mechanisms of averaging for regression and voting for classification, makes Random For-
est robust to both overfitting and noise. This robustness stems from the model’s ability
to average out errors and variance across the many trees, which often leads to superior
performance compared to individual decision trees. Additionally, Random Forest can ef-
ficiently manage large datasets with high dimensionality, which is particularly useful in
real-world applications where data can be complex and voluminous.

However, Random Forest models are not without their challenges. One significant
drawback is their reduced interpretability compared to single decision trees. While a single
decision tree provides clear decision rules, a Random Forest consists of many trees with
intricate interactions, making it harder to interpret the model’s decisions. Furthermore,
training and tuning Random Forest models can be computationally intensive, especially
as the number of trees and the complexity of the data increase. The model also has several
hyperparameters that require careful tuning, including the number of trees, the maximum
depth of each tree, and the minimum number of samples required to split a node.

In conclusion, Random Forest stands out as a powerful and versatile ensemble learning
method that integrates the strengths of decision trees with techniques of randomness and
aggregation. This method is well-suited for a broad range of classification and regres-
sion tasks, offering high accuracy and robustness in practical applications. Despite its
challenges, particularly in terms of interpretability and computational demands, Random
Forest remains a popular choice for solving complex problems in ML.

XGBoost: Extreme Gradient Boosting

XGBoost, which stands for Extreme Gradient Boosting, is a highly efficient and scal-
able implementation of the gradient-boosting framework. Renowned for its exceptional
performance and flexibility, XGBoost has gained widespread popularity in both ML com-
petitions and real-world applications. This powerful ensemble learning method builds a
strong predictive model by combining the outputs of multiple weak learners, typically
decision trees.

The foundation of XGBoost lies in the gradient boosting framework, which itera-
tively improves the model by adding weak learners to correct the errors of the existing
model. This process involves minimizing a differentiable loss function through a stage-
wise approach where new trees are fitted to the negative gradient of the loss function.
XGBoost distinguishes itself by incorporating both L1 and L2 regularization terms into
the objective function, which helps to prevent overfitting and enhances the generalization
performance of the model. The regularization terms penalize the complexity of the model
parameters, encouraging simpler models that perform well on unseen data. Additionally,
XGBoost employs a depth-wise tree growth strategy and prunes trees during construction
to balance the trade-off between model complexity and computational efficiency. By prun-
ing branches that do not contribute significantly to reducing the loss function, XGBoost
optimizes both the accuracy and efficiency of the model.

A significant feature of XGBoost is its ability to provide insights into feature impor-
tance. The model calculates the contribution of each feature to the overall performance,
ranking features based on their importance scores. This capability not only aids in feature
selection but also enhances the interpretability of the model.

XGBoost is celebrated for its state-of-the-art performance across a variety of ML
tasks, including classification, regression, and ranking. The algorithm supports a range
of objective functions and evaluation metrics, offering flexibility to customize the model
according to specific needs. Its scalability is one of its key strengths, as XGBoost can
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efficiently handle large datasets with millions of samples and features. Furthermore, it
supports parallel and distributed computing, which accelerates the training process on
multicore CPUs and distributed computing environments.

However, XGBoost is not without its challenges. The model has numerous hyperpa-
rameters that must be carefully tuned to achieve optimal performance, which can make
the model selection and tuning process quite complex. Like other ensemble methods,
XGBoost models can be less interpretable than simpler models such as linear regression
or decision trees, due to the intricate interactions among multiple trees. Additionally,
training XGBoost models with large datasets or complex configurations can be computa-
tionally intensive, requiring substantial resources and time.

In summary, XGBoost is a powerful and versatile ML algorithm that excels in perfor-
mance, scalability, and flexibility. Its advanced capabilities make it a popular choice for
various predictive modeling tasks in both academic research and industrial applications.

CatBoost: Categorical Boosting

CatBoost is a gradient-boosting library developed by Yandex that is specifically de-
signed to handle categorical variables efficiently. This model is known for its robustness,
high performance, and ability to process categorical features without requiring complex
preprocessing. CatBoost’s design is based on an innovative algorithm incorporating novel
techniques to seamlessly manage categorical features.

CatBoost’s algorithm stands out for its ability to automatically handle categorical vari-
ables without manual preprocessing, such as one-hot encoding or label encoding. This
process is achieved through an efficient algorithm called Ordered Boosting, which directly
processes categorical features during model training. Like XGBoost and LightGBM, Cat-
Boost follows the gradient boosting framework, aiming to progressively improve model
performance by adding new weak learners. By using gradient descent, CatBoost opti-
mizes a differentiable loss function while applying ensemble learning. The algorithm also
incorporates L2 regularization to prevent overfitting and enhance the model’s general-
ization capability. This regularization adds a penalty term to the objective function,
promoting simpler and more robust models. Additionally, CatBoost is implemented in
C++ to ensure increased efficiency and speed. It supports parallel computation and GPU
acceleration, making it suitable for large-scale datasets and real-time applications.

One of CatBoost’s main advantages is its ability to eliminate the need for manual
preprocessing of categorical variables, reducing the risk of data leakage and simplifying
the modeling process. Its regularization techniques and efficient handling of categorical
features contribute to preventing overfitting and improving model generalization perfor-
mance. In terms of predictive accuracy and computational efficiency, CatBoost proves to
be a strong competitor among gradient-boosting libraries.

However, like any complex model, CatBoost presents certain challenges. Hyperpa-
rameter tuning can be time-consuming and requires substantial computational resources.
Additionally, CatBoost models may be less interpretable than simpler models, especially
when dealing with high-dimensional features or complex interactions between variables.
Finally, CatBoost may consume more memory than traditional ML algorithms, particu-
larly when used to process large datasets with many categorical variables.

In conclusion, CatBoost is a powerful and efficient gradient-boosting algorithm, par-
ticularly well-suited for handling categorical variables and achieving high predictive accu-
racy. Its ability to directly manage structured data containing categorical features makes
it particularly useful for various classification and regression tasks.
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LightGBM: Light Gradient Boosting Machine

LightGBM is a gradient boosting framework developed by Microsoft, designed to ef-
ficiently distribute and train large-scale datasets. This model stands out for its high
performance, scalability, and flexibility, making it a suitable choice for various ML tasks.
The uniqueness of LightGBM lies in its gradient-based learning algorithm that builds
decision trees in a leaf-wise rather than level-wise manner, reducing the number of splits
in the trees and enhancing training speed.

A key aspect of LightGBM is its leaf-wise tree growth strategy. Unlike traditional
methods that grow trees level-wise, LightGBM focuses on expanding leaves to capture
more complex patterns and achieve higher accuracy with fewer nodes. This approach
reduces the risk of overfitting and improves the model’s generalization performance. The
algorithm optimizes an objective function using gradient descent and constructs ensembles
of decision trees. It applies a gradient-based approach to find the best split points for
both continuous and categorical features, leading to faster training and better overall
performance. Additionally, LightGBM is highly scalable, capable of efficiently handling
large datasets thanks to its support for distributed training across multiple CPUs and
GPUs, as well as its out-of-core learning for datasets too large to fit into memory.

Among the notable advantages of LightGBM, its leaf-wise tree growth strategy and
histogram-based split approach make it extremely fast compared to other gradient boost-
ing frameworks. LightGBM can efficiently process large-scale datasets and complex mod-
els with millions of features. This framework delivers state-of-the-art performance on
various ML benchmarks and real-world datasets. Its ability to capture complex patterns
and directly handle categorical variables significantly contributes to its high predictive
accuracy. Furthermore, LightGBM offers a wide range of hyperparameter tuning options
and customization, allowing users to fine-tune the model for optimal performance. It sup-
ports custom loss functions, feature importance analysis, and early stopping techniques
to improve training efficiency.

However, using LightGBM comes with certain challenges. Hyperparameter tuning can
be lengthy and resource-intensive. Additionally, LightGBM may consume more mem-
ory than traditional ML algorithms, especially when training large models or managing
high-dimensional feature spaces. Memory optimization techniques may be necessary to
mitigate this issue. LightGBM models may also be less interpretable than simpler algo-
rithms, such as decision trees or logistic regression. Understanding the internal workings
of the model and interpreting feature importance can be difficult, particularly for complex
models with numerous features.

In summary, LightGBM is a powerful and efficient gradient boosting framework that
offers high performance, scalability, and considerable flexibility. It is well-suited for var-
ious ML tasks, including classification, regression, and ranking, and proves particularly
effective for processing large datasets and complex models.

III.2.3 Classification Evaluation Metrics

Evaluation metrics play a crucial role in assessing the performance of classification
models and quantifying their predictive accuracy. In this section, we discuss several
commonly used evaluation metrics for assessing the performance of risk prediction models.
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Accuracy

Accuracy measures the proportion of correctly classified instances among all the in-
stances in the dataset. It is used to analyze the model’s overall predictive ability, consid-
ering the predictive ability of both positive and negative disease subjects. The accuracy
metric is calculated as the ratio of correctly predicted instances to the total number.

Accuracy = TP + TN

TP + TN + FP + FN
(III.4)

Precision

Precision measures the proportion of true positive predictions among all positive pre-
dictions made by the model. It is calculated as the ratio of true positive predictions to
the sum of true positive and false positive predictions.

Precision = TP

TP + FP
(III.5)

Recall (Sensitivity)

Recall, also known as sensitivity, measures the proportion of true positive predictions
among all actual positive instances in the dataset. It is calculated as the ratio of true
positive predictions to the sum of true positive and false negative predictions.

Recall = TP

TP + FN
(III.6)

F1-Score

The F1-Score is the harmonic mean of precision and recall, balancing the two metrics.
It is calculated as 2 × Precision×Recall

Precision+Recall .

Specificity

Specificity measures the proportion of true negative predictions among all actual neg-
ative instances in the dataset. It is used to analyze the predictive capacity of the model’s
negative subjects.

The specificity metric is calculated as the ratio of true negative predictions to the sum
of true negative and false positive predictions.

Specificity = TN

TN + FP
(III.7)

AUC and ROC Curve

The Area Under the ROC Curve (AUC) measures the performance of a classification
model across several thresholds. The Receiver Operating Characteristic (ROC) curve is
a graphical representation of the true positive rate (sensitivity) against the false positive
rate (1-specificity) for varying threshold values.
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Confusion Matrix

A confusion matrix is a tabular representation of a classification model’s actual ver-
sus predicted classes. It provides a comprehensive view of the model’s performance by
summarizing the number of true positive, true negative, false positive, and false negative
predictions.

Figure III.5 – Confusion Matrix

Cross-Validation

Cross-validation is a resampling technique used to assess the performance of a pre-
dictive model by partitioning the dataset into multiple subsets. It involves training the
model on a subset of the data and evaluating its performance on the remaining data,
repeating this process multiple times to obtain an unbiased estimate of its performance.

Bootstrap

Bootstrap is a resampling technique used to estimate a statistic’s variability by repeat-
edly sampling with replacement from the original dataset. It provides a robust measure
of uncertainty and can be used to calculate confidence intervals for evaluation metrics.

Confidence Interval

A confidence interval is a range of values likely to contain the true value of a parameter
with a certain level of confidence. It quantifies the uncertainty associated with an estimate
and is commonly used to assess the reliability of evaluation metrics.

Negative Predictive Value (NPV) and Positive Predictive Value (PPV)

NPV measures the proportion of true negative predictions among all negative predic-
tions made by the model, while PPV measures the proportion of true positive predictions
among all positive predictions made by the model.

These evaluation metrics provide valuable insights into classification models’ perfor-
mance and help select the most appropriate model for risk prediction tasks.

C-index

The concordance index is the estimated probability of concordance between patients
[Tang 19]. It is the probability that 2 patients taken at random are ordered in the same
way on the outcome and the marker. This index measures the discriminating capacity of
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a marker (III.8) and takes a range from 0.0 to 1.0, where a value of 1.0 indicates a perfect
prediction of the risk and a value of 0.5 indicates a random prediction. It is formulated
as:

C − index = CP + 0.5.T

PP
(III.8)

where CP is the concordant pairs, T the ties and PP the permissible pairs.

III.3 Risk prediction of endocrine diseases for
medical decision support using ML

III.3.1 Risk prediction of carbohydrate abnormalities in pa-
tients with beta-TM

We aim to test several linear and tree-based models for predicting the risk of car-
bohydrate anomalies to choose the model that shows the best risk prediction, such as
logistic regression (LR), SVM, random forest (RF), XG-Boost, Catboost, and LightGBM
as shown in Figure III.6. To validate the risk prediction reliably, considering the limited
quantity of data in the beta-TM dataset, a bootstrap approach is used to compare models
by studying the confidence intervals of several metric evaluators such as accuracy, recall,
precision, and f1-score. But first, Before ML prediction,we test two embedded feature
selection approaches based on linear ML models to select the most significant features for
the prediction. Then, both models are compared using metrics such as the c-index, AUC,
precision, accuracy, and F1-score to ensure better input selection.

Figure III.6 – Carbohydrate abnormalities predictive models

As shown in Table III.1, the results between the two feature selection approaches were
very close. Ridge regression and Lasso regression have shown an accuracy of 90%. Lasso
showed a precision of 93% greater than that of Ridge 90%. On the other hand, Ridge had
a recall of 84% higher than that of Lasso 81%. Hence, to choose the best model, we consult
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the F1-score and the c-index which give results that encompass both the prediction of
positive values 1 or negative values 0. Ridge’s results are slightly superior to Lasso’s with
an F1-score of 87% and a c-index of 93% for Ridge and 86% and 92% for Lasso.

Table III.1 – Comparaison of Ridge and Lasso for feature selection

Metric Ridge Lasso
Accuracy 0.90 0.90
AUC 0.92 0.92
Precision 0.90 0.93
Recall 0.84 0.81
F1-score 0.94 0.91
c-index 0.93 0.92

The ROC of the two regressions are displayed in Fig.III.7. This shows that the AUC of
Ridge of 0.94 is better than Lasso of 0.84. The AUC values confirm that ridge regression is
best suited to our dataset for feature selection. Ridge regression has reduced The number
of features from 45 to 22. In other words, with only 22 features, we can achieve better
and faster results than with 45 features.

(a) ROC curve of Lasso (b) ROC curve of Ridge

Figure III.7 – ROC curve

Several tests were executed to find the best hyperparameters of each model for pre-
dicting carbohydrate anomalies. The final hyperparameters are presented in Table III.2.

Table III.2 – Models hyperparameters for risk prediction of carbohydrate anomalies

Models Hyperparameters

LR Tolerance: 1 × 10−4, Solver: ’lbfgs’

SVM Kernel: ’rbf’, Tolerance: 1 × 10−3

RF Trees: 800, Split function: "GINI"

XG-Boost Learning rate: 0.1, Trees: 100

CatBoost Iterations: 100, Learning rate: 0.05

LightGBM Trees: 100, Learning rate: 0.05

The study used the Bootstrap approach to compare and validate ML models on a small
dataset, with 1500 samples and 60% dataset size, to ensure reliable validation and an
accurate 95% confidence interval analysis [Bouthillier 21]. The minimum and maximum
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of 95% confidence intervals for each metric (Accuracy, Precision, Recall, F1-score) for
several models are shown in Table III.3. Catboost displays the best (minimal:maximal)
accuracy and F1_Score that is nearly equal to both LightGBM and XG-Boost. So,
visually, Catboost is the best model showing a good predictive ability for both positive
and negative subjects. We also see that the Recall of both LR and RF has a large
confidence interval, indicating a broad range of Recall values for these two models.

Table III.3 – Min-Max intervals for each model for carbohydrate risk prediction

Models Accuracy
[min: max]

Precision
[min: max]

Recall [min:
max]

F1_Score
[min: max]

RF [65.1: 95.1] [70.6: 100] [25: 92.9] [40: 91.7]

XG-
Boost

[84.4: 97.8] [81.2: 100] [64.7: 100] [78: 97.3]

CatBoost [86: 97.8] [80: 100] [69: 100] [81.1: 97.3]

LightGBM [83: 97.9] [75: 100] [68.8: 100] [77.2: 97.7]

LR [76: 95] [66: 100] [53.8: 100] [64.9: 92.9]

SVM [77: 97.6] [62.5: 100] [61.1: 100] [68.7: 96.6]

To compare models in a more trustworthy and visual way. Figure III.8 displays each
model’s confidence intervals for the F1_Score. The figure analysis reveals that confidence
intervals for CatBoost, XG-Boost and LightGBM are less wide and admit density peaks
between 0.8 and 1 of F1_Score. This contrasts with RF, LR, and SVM, where the
confidence interval is relatively wide, with F1_Score peaks lower than those of the other
models. In addition, The curves of CatBoost, XG-Boost and LightGBM have a normal,
non-skewed distribution with a minimal error margin, compared with the other models,
which have a negatively skewed curve with a larger margin of error. This means that the
CatBoost, XG-Boost, and LightGBM models perform better and are more accurate in
predicting carbohydrate abnormalities.

Figure III.8 – F1_Score distribution for several models of carbohydrate risk prediction

The mean values of the confidence intervals were calculated for all models with several
metrics to affirm the best model for predicting carbohydrate abnormalities in patients
with β-TM.

The model performance results are presented in Table III.4. Accuracy is a metric
that shows the predictive capacity in a general way, taking into account the prediction
of positive values 1 and negative values 0. The CatBoost showed a best accuracy of
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91.9%. For recall and precision, CatBoost admits the best Recall of 84.5% and XG-Boost
generated the best precision of 90.6%. This means that the XG-Boost performed better
when predicting positive values. On the other hand, CatBoost was the best predictor
of negative values. We now come to check the F1-Score metric, which combines both
precision and recall to affirm the choice of the model. CatBoost admits the best F1-
score of 91.9%, superior to XG-Boost’s 91.1%. CatBoost is, therefore, the most adapted
model for predicting carbohydrate abnormalities in patients with β-TM. In addition to the
previous comparison, we also compared our findings in Table III.4 to three models found
in the literature, which have been applied to two other datasets in beta-thalassemia. But
first, let us look at the difference between data sets. The dataset in [Yousefian 17] includes
18 characteristics and 255 subjects with β-TM and thalassemia intermediate. On the
other hand, our dataset contains only patients with β-TM. This may be advantageous for
prediction, as they are most at risk of carbohydrate abnormalities. Our database has only
80 patients, but there is a relatively even balance of 31 positive and 49 negative subjects.
There are 22 features, 6 of which are highly significant to carbohydrate abnormalities,
with a p-value less than 0.05. The models tested in the literature are KNN, RBFN, and
MLP, showing an accuracy of 69.1% , 81.7% , and 89.4% , respectively.

Table III.4 – Comparison between predictive models of carbohydrate abnomalies

Model Precision-
mean (%)

Recall-
mean
(%)

Accuracy-
mean
(%)

F1-
Score-
mean
(%)

Validation NB/PS/NG NF TT NF (p-
value≤0.05)

LR 83 76,9 85,5 78,9 Bootstrap 80/31/49 22 M 6

SVM 81,25 80,55 87,3 82,65 Bootstrap 80/31/49 22 M 6

RF 85,3 58,95 80,1 65,85 Bootstrap 80/31/49 22 M 6

XG-
Boost

90,6 82,35 91,1 87,65 Bootstrap 80/31/49 22 M 6

CatBoost 90 84,5 91,9 89,2 Bootstrap 80/31/49 22 M 6

LightGBM 87,5 84,4 90,45 87,45 Bootstrap 80/31/49 22 M 6

KNN
[Yousefian 17]

32.3 - 69.1 - No 255/74/181 18 M/I -

RBFN
[Yousefian 17]

42.9 - 81.7 - No 255/74/181 18 M/I -

MLP
[Yousefian 19]

61.73 81.08 89.4 - No 255/74/181 18 M/I -

Abbreviations: NB/PS/NG: Number of subjects/Positive target/Negative target, NF: Number of features, TT:
Thalassemia type, M: Major, M/I: Major/intermediate

III.3.2 Risk prediction of MetS in screening sessions

In this part, we aim to simultaneously predict the risk of MetS through a risk-scoring
calculation based on the SVM model for each MetS definition and then generalize and
normalize according to several outputs of MetS screening definitions.

We have two datasets as input. The first dataset (DS1) comprises 1,100 adolescent
[Benmohammed 15], while the second dataset (DS2) includes 266 adolescent [Benmohammed 11].
Each dataset has three output columns, individually indicating the presence or absence
of MetS for each definition (Cook, International Diabetes Federation (IDF) and De Fer-
ranti). Both datasets share the same features, with the distinction that subjects in DS2
are all overweight and obese. Consequently, a new multi-class column is introduced to in-
corporate information about overweight and obesity in this dataset. Subsequently, these
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two datasets are merged to establish a generalized predictive framework for conditions
correlating causally with MetS, particularly overweight and obesity. Hence, the initial
step of our methodology involves merging the two databases.

Next, the second step involves ensuring MetS prediction using svm to various def-
initions of MetS. Building upon this predictive capability, we extract risk coefficients
associated with each feature. Subsequently, we harness these risk coefficients to formu-
late the individualized risk function for each subject. Finally, we determine the optimal
threshold for classification by leveraging the risk functions, thereby categorizing subjects
into high or low-risk groups.

Finally, the third and final step involves merging the various scoring associated with
each definition to formulate a novel normalized scoring system of MetS screening.

MetS Risk Scorification with SVM

The risk estimation process is presented in Algorithm 1. We will initially develop and
ensure prediction using SVM model. Following this prediction, we will calculate each
feature’s importance or risk coefficients using the Soft Margin technique. Subsequently,
each subject’s risk function will be established based on the previously calculated risk
coefficients. Finally, the optimal classification threshold for risk functions tied to each
subject will be determined to ensure an ideal binary risk classification according to each
definition of MetS.

Algorithm 1 STEP 2: Risk estimation
Step 1. Develop the SVM model and ensure prediction.
Step 2. Calculate the Risk Coefficient for each feature.

min
w,b,ζ

1
2∥w∥2 + C

n∑
i=1

ζi (III.9)

subject to the constraints

yi(w · xi + b) ≥ 1 − ζi and ζi ≥ 0 for i = 1, ..., n (III.10)

where:
— w is the weight vector,
— b is the bias,
— C is the regularization parameter controlling the trade-off between margin maxi-

mization and classification error minimization,
— ζi are the slack variables allowing for margin violations,
— yi are the class labels,
— xi are the feature vectors.

Step 3. Development of the risk function for each patient :

Risk (patient) =
n∑

i=1
(Feature valuei × Risk Coefficienti) (III.11)

Step 4. Calculate the optimal threshold for classification (high or low risk).
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Risk Normalization

In the previous step, we proposed to develop a binary risk scoring system for the MetS
detection according to each definition. The current objective is to merge these scores to
create a normalized global score that considers all three definitions of MetS. As illustrated
in Figure III.9, a new column will be added to the database based on the three output
columns from the definitions to evaluate our methodology.

Figure III.9 – STEP 3: Risk normalization
Abbreviations : NPV: Negative Predictive Value, AUC: Area Under the Curve

Risk is presented in the form of a list for each definition. Each element of this list
presents the risk of a specific subject. The idea is to merge these three lists, element by
element, by the median value, to obtain a final list that considers all three definitions.

Results

To display the predictive performance of SVM for MetS screening, we chose specificity
and sensitivity as metric evaluators to show the predictive ability of both positive and
negative MetS values. High sensitivity, indicated by values close to 1, reflects a strong
ability to predict positive outcomes (subjects with MetS). Conversely, high specificity,
also close to 1, indicates a strong ability to predict negative outcomes (subjects without
MetS). In Table III.5, it is observed that for the IDF definition, specificity was 0.89,
while sensitivity was 0.59. This suggests our model better predicted negative outcomes
than positive ones under this definition. Conversely, for the De_Ferranti definition, the
model exhibited a strong predictive ability for positive outcomes, with a sensitivity of
0.87. Lastly, under the third Cook definition, the model demonstrated a strong predictive
ability for positive and negative outcomes.

Table III.5 – Sensitivity, Specificity, and Cut-off Values for Several Outputs

Output Sensitivity Specificity Cut-off
Output_Cook 0.70 0.89 1.01
Output_Idf 0.59 0.89 0.36

Output_Ferranti 0.58 0.87 127.85
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These evaluators have a limitation in that they are influenced by the distribution of
data across both classes of each output. Given that our outputs are relatively unbalanced,
with more negative than positive values, the ROC curve and AUC are considered more
reliable metrics for evaluating prediction accuracy. Parts (a), (b), and (c) of Figure III.10
display the three ROC curves corresponding to each definition. The AUC values for Cook,
IDF, and De_Ferranti were 0.84, 0.78, and 0.79, respectively, indicating strong predictive
ability for both positive and negative values.

(a) ROC curve Cook (b) ROC curve Idf

(c) ROC curve De Ferranti (d) ROC curve of unified risk

Figure III.10 – ROC curves

As highlighted earlier, sensitivity and specificity may not be optimal for evaluation,
particularly due to the imbalance in our data. In this section, our attention is directed
to the NPV, calculated at 0.70, indicating that 70% of those predicted as negative are
indeed negative. Value (NPV) becomes a crucial metric in our analysis, indicating the
proportion of negative predictions that are true negatives. Alongside NPV, the ROC
curve and AUC provide reliable evaluation metrics. In part (d) of Fig.III.10, the AUC is
0.81, demonstrating a strong predictive ability for identifying individuals with low risk of
MetS.

III.4 Discussion and limits

ML has shown promising results in predicting the risk of glucose abnormalities and
MetS. However, there are several limitations, both in gaining confidence in physicians’
risk prediction and discussing the cost and financial burden of collecting data for risk
assessment.

67



Chapter III. Machine Learning for Endocrine Diseases Risk Prediction

In predicting carbohydrate abnormalities for patients with β-TM, a very good perfor-
mance with a dataset of 80 patients raises doubts about the reliability of the prediction.
This doubt makes our risk prediction not suitable for the medical field. Therefore, the
question is, how can we provide enough information to physicians to assess the reliability
of the prediction?

In addition, for MetS screening, the acquisition and data in the datasets require a sig-
nificant financial burden, especially during screening sessions where multiple individuals
are targeted. This makes a primary step like risk prediction impractical. Therefore, a sec-
ond research question is how can we reduce the financial burden for MetS risk predictions
and screening?

III.5 Conclusion

In this chapter, we aimed to predict carbohydrate abnormalities and MetS using ML
and leveraging physician-supplied datasets. Therefore, we started by defining several
concepts of supervised ML and outlining linear and decision-tree based models. We then
explained various evaluation metrics, their significance, and how they can be interpreted.
Subsequently, we introduced two methodologies for predicting the two targeted diseases.
The results demonstrated promising performance for both diseases, showing good pre-
dictive capability for both positive and negative subjects. These strong performances
were maintained even when compared to other research found in the literature. How-
ever, we also identified limitations and challenges in these predictions. While there was
good predictive capacity with a small dataset of carbohydrate abnormalities, there were
doubts about the predictions’ reliability. Thus, the first limitation pertains to physicians’
assessment of prediction reliability. Furthermore, for MetS prediction, the high cost of
data acquisition and collection makes risk prediction less appealing and sometimes not
feasible.
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Chapter IV. XAI for Assessing Predictive Reliability and Managing Medical Financial
Expenses

IV.1 Introduction

In response to the last two research questions posed in the limitations of the previous
chapter, we propose in this chapter to leverage XAI to provide access to physicians to
assess the reliability of predicting glucose abnormalities. Furthermore, we aim to use XAI
to reduce the financial burden of predicting the risk of MetS screening sessions.

XAI has emerged as a crucial aspect of healthcare, especially in predicting and screen-
ing endocrine diseases. XAI refers to the ability of ML models to provide transparent and
interpretable insights into their decision-making process. In medical practice, understand-
ing why a model makes a particular prediction is often as important as the prediction
itself, particularly when dealing with critical patient care decisions.

In this chapter, we delve into the XAI and its significance in the context of supervised
models for endocrine disease risk prediction. We begin by elucidating various XAI ap-
proaches and methodologies in Section IV.2, which aim to provide a broad overview of a
model’s behavior and decision-making process. Subsequently, in Section IV. 3, we explore
several self-, model-dependent, and global XAI approaches based on linear or tree-based
models. Then, we describe several Post-Hoc and local XAI approaches focus on explaining
individual predictions made by ML models. Two prominent techniques in this domain are
SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-agnostic
Explanations). These methods offer insights into the specific factors contributing to each
prediction, enabling clinicians to understand and trust model decisions at the individual
patient level. Furthermore, we apply XAI techniques to interpret the predictions and to
evaluate this prediction of carbohydrate abnormalities in Section IV.5, and reduce the
financial cost of MetS screening in Section IV.6. By elucidating the underlying factors
driving model predictions, XAI facilitates a deeper understanding of disease risk factors
and aids in clinical decision-making. Lastly, Section IV.7 discusses the limitations and
challenges associated with XAI, including model complexity, interpretability tradeoffs,
and potential biases. Despite these challenges, integrating XAI techniques is promising
for enhancing ML models’ transparency, accountability, and trustworthiness in healthcare
settings. Finally, Section IV.8 concludes the chapter.

IV.2 XAI Methodology

XAI is a method for explaining a model’s predictions. The idea is to explain the main
reasons for a specific prediction, or based on which the model has created the classification
threshold.

Explainability is useful in cases where the model shows good performance, but also
when the performance is mediocre. If the model has shown good performance, it is essen-
tial to verify which variables are critical for this prediction and what exactly the prediction
is based on. In this case, with medical expertise, we can observe that some features are
logical from a medical standpoint (such as smoking for cardiovascular diseases), indicating
that the prediction is reliable. Otherwise, the prediction could be biased, based on a ran-
dom correlation that lacks medical logic, thus requiring a return to the feature selection
stage. Conversely, if the model has shown mediocre performance, analyzing explainabil-
ity, in collaboration with medical expertise, allows for revisiting the data preparation to
improve its quality.
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Various methods have been developed in the field of XAI to make ML models more
understandable. These methods can be categorized into different aspects based on their
application, extraction techniques, and scope of explanations. This section provides a
detailed overview of these aspects, divided into three main categories: whether the expla-
nation method is model-specific or model-agnostic, how explanations are extracted, and
whether explanations are for specific instances or the entire model as shown in Figure
IV.1.

Figure IV.1 – XAI Methods

IV.2.1 Is the Explanation Method Linked to a Specific Model
or Is It a Generic Application?

In the field of XAI, one of the fundamental questions is whether an explanation method
is inherently tied to a specific model or if it can be applied across various models. This
distinction can be divided into two primary categories: Model-Dependent methods and
Model-Agnostic methods.

Model Dependent Methods are those that are designed to work with specific types
of models or architectures. For example, decision trees and linear regression models are
inherently interpretable because their structures are straightforward and their decision-
making processes can be directly understood. These methods leverage the internal mech-
anisms of the model, such as the model’s architecture or parameters, to generate expla-
nations. They provide detailed insights into how individual predictions are made based
on the model’s internal logic. However, these explanations are closely tied to the model
they are designed for and may not be easily transferable to other models.

In contrast, Model Agnostic Methods are not tied to any particular model type. They
are designed to work with various models, including complex ones like deep neural net-
works. Techniques such as LIME and SHAP fall into this category. These methods apply
general principles or algorithms to interpret the outputs of different models. Although
they offer flexibility and can be used with many different models, they might not capture
the nuances of the specific model’s internal workings as effectively as model-dependent
methods.
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IV.2.2 How Is the Explanation Extracted?

Different methodologies can be used to extract explanations from AI models, broadly
classified into Self-Explainable Models and Post-Hoc Explanation methods.

Self-Explainable Models are designed with inherent interpretability features. These
models are built with the express goal of being understandable to humans. Examples in-
clude linear regression, decision trees, and rule-based systems. In self-explainable models,
the explanation is a natural byproduct of the model’s structure. For instance, decision
trees provide clear paths showing how each decision was made, and linear models offer
straightforward coefficients that indicate the influence of each feature on the predictions.
The main advantage of these models is that they provide explanations directly and trans-
parently as part of their operation, which can be very informative for users. However,
these models may not always be capable of capturing complex relationships in the data.

In contrast, Post-Hoc Explanation Methods refer to techniques applied after the model
has been trained. These methods do not alter the model itself but instead analyze the
model’s output to produce explanations. Examples of post-hoc methods include feature
importance metrics, saliency maps, and counterfactual explanations. For instance, SHAP
values can be used to decompose a model’s output into contributions from each feature,
and LIME can approximate the behavior of a black-box model with an interpretable
surrogate model. While these methods can provide insights into the workings of complex
models, they are often indirect and may not always provide a complete or accurate picture
of the model’s decision-making process.

IV.2.3 Does XAI Explain a Particular Instance or the Entire
Model?

The scope of XAI methods’ explanations can be categorized into Local Explanations
and Global Explanations based on whether they target specific instances or the entire
model.

Local Explanations focus on explaining individual predictions made by a model. These
methods concern understanding why a model made a particular decision for a specific in-
stance. Techniques such as LIME and individual feature attribution methods fall into
this category. For example, LIME generates explanations for specific predictions by ap-
proximating the model’s behavior with a simpler, interpretable model near the explained
instance. Local explanations are useful for understanding individual decisions and vali-
dating model behavior case-by-case basis. However, they do not provide a comprehensive
view of the model’s overall decision-making processes or general patterns.

In contrast, Global Explanations aim to provide insights into the overall behavior of
the model across all instances. These explanations seek to convey how the model functions
as a whole, describing general patterns or rules that govern the model’s predictions.
Techniques for global explanations include feature importance ranking, rule extraction
methods, and visualization of decision boundaries. Global explanations are useful for
understanding the broader decision-making framework of the model and assessing its
overall behavior, but they might lack the granularity needed for specific instances.
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IV.3 Self Explainable and Model Dependent Global
XAI Approaches

IV.3.1 Explaining Logistic Regression Results

Logistic regression is a widely used linear classification algorithm that models the
probability of a binary outcome by fitting a logistic function to input features.

This function predicts the probability that a given instance belongs to a specific class.
In logistic regression, each feature is assigned a coefficient that quantifies its impact on
the log-odds of the outcome variable. A positive coefficient means that an increase in the
feature’s value is linked to a higher likelihood of the positive class, whereas a negative
coefficient suggests the opposite. The magnitude of the coefficient indicates the strength
of influence. The exponential of these coefficients represents the odds ratio, which quan-
tifies the change in odds of the positive class for a one-unit increase in feature value. An
odds ratio above 1 suggests an increase in odds, while one below 1 indicates a decrease.
Additionally, logistic regression provides p-values for each coefficient, highlighting the
statistical significance of the feature-outcome association; a p-value below 0.05 typically
indicates significant predictive capability. The intercept term represents the log-odds of
the positive class when all features are zero, adjusting the decision boundary to account
for the baseline probability. To calculate the importance coefficients of features, the input
features are first standardized to a mean of 0 and a standard deviation of 1, ensuring all
features are comparable. The model is then trained on this standardized dataset to obtain
coefficients. The importance of each feature is determined by the absolute value of its co-
efficient, reflecting the feature’s influence magnitude, irrespective of direction. Optionally,
these importance coefficients can be normalized to sum to 1, offering a relative measure
of feature importance. Through these steps, logistic regression results can be interpreted,
providing insight into the importance of each feature in predicting the outcome.

IV.3.2 Explaining SVM Results

SVM is a robust supervised learning algorithm primarily used for classification tasks,
effectively finding the hyperplane that optimally separates the classes in the feature space.
SVM identifies critical training data points, known as support vectors, which are nearest
to the decision boundary and are essential for defining this boundary and classifying
new data points. The margin, or the distance between the decision boundary and these
closest support vectors, is maximized by SVM to enhance the classification confidence.
SVM can accommodate nonlinear decision boundaries through kernel functions such as
linear, polynomial, and radial basis functions (RBF), with the choice of kernel significantly
impacting the model’s flexibility and performance. In a linear SVM, each feature is
given a coefficient, highlighting its influence on the decision boundary. The coefficients
linked to the support vectors are especially critical as they directly shape the decision
boundary’s position and orientation, with any changes in these values potentially altering
classification results. To ascertain the importance of features within SVM, the process
starts with scaling the input features to uniform ranges and then training the SVM model
on this scaled dataset to extract coefficients for each feature. These coefficients signify
the importance of each feature in defining the decision boundary, with larger coefficients
indicating a stronger influence on classification outcomes. Optionally, these coefficients
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can be normalized to sum to 1, offering a relative measure of feature importance. This
methodical approach allows for a detailed interpretation of SVM results, providing insights
into the significance of each feature in the classification process.

IV.3.3 Decision Tree

Decision trees are versatile and interpretable ML models extensively employed for both
classification and regression tasks. These models are structured with nodes, branches,
and leaves, where each node represents a decision based on a feature, branches depict the
outcomes of these decisions, and leaves indicate the final predicted class or value. A key
aspect of decision trees is their inherent ability to measure feature importance, highlighting
how frequently a feature is utilized in making decisions; features that are closer to the
tree’s root or appear higher in the tree hierarchy significantly influence the final prediction.
Decision trees employ specific splitting criteria like Gini impurity or information gain to
select the optimal feature and threshold for data segmentation at each node, aiming to
enhance the purity of the resulting subsets. However, to mitigate overfitting, especially in
noisy data scenarios, decision trees may require pruning techniques such as cost complexity
pruning, which trims unnecessary branches to streamline the model. The interpretability
of decision trees lies in their capacity to form clear and comprehensible decision rules
that can be visually represented and easily understood, allowing for a straightforward
explanation of how predictions are derived. To interpret decision tree models effectively,
one typically begins by visualizing the tree to comprehend its structure and decision-
making process. Assessing feature importance through the depth and frequency of nodes
within the tree helps identify critical features, while tracing decision paths from the root
to the leaves elucidates how specific predictions are made and which features are pivotal.
Evaluating the splitting criteria provides additional insights into how the model partitions
the feature space and selects thresholds, thus offering a comprehensive understanding of
the decision-making process. Following these interpretative steps can give one a deeper
insight into decision tree models and their predictive behaviors.

IV.3.4 Random Forest explanations

Random forests are advanced ensemble learning methods that leverage multiple de-
cision trees to enhance predictive accuracy and generalization. These models build an
ensemble of decision trees, each trained on a randomly selected subset of the training
data and features, which collectively work to diminish overfitting and bolster robustness
by integrating the predictions from multiple trees. Random forests assess feature im-
portance by measuring how significantly each feature reduces the impurity across the
nodes in the trees, considering features that yield substantial impurity reductions across
the ensemble as more crucial for prediction accuracy. Bootstrap aggregation, or bagging,
generates diverse data subsets for each tree, effectively minimizing variance and delivering
more stable and reliable predictions. The correlation among trees within a random forest
plays a critical role; less correlated trees tend to enhance the ensemble’s performance
by providing a variety of independent predictions. Additionally, random forests use out-
of-bag (OOB) error estimation as a method to evaluate model performance, leveraging
data not included in the training of each tree to provide an unbiased accuracy estimate.
To interpret random forest models, one should examine the average decrease in impurity
caused by each feature across all trees, consider the ensemble prediction that aggregates
the outputs of all trees—typically through majority voting or a weighted average—and
utilize visualization tools like tree plots or partial dependence plots to deepen under-
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standing of the decision-making process. The out-of-bag error is crucial for assessing the
model’s generalization capabilities. Following these interpretive steps, one can thoroughly
understand random forest models’ workings and predictive strengths.

IV.4 Post-Hoc Explanations and Model Adap-
tive Local XAI Approaches

IV.4.1 SHAP (SHapley Additive exPlanations)

SHAP is a powerful method for explaining the output of ML models. It provides
insights into individual predictions by indicating how each feature contributes to the
model’s output. The foundation of SHAP values lies in cooperative game theory, which
ensures several desirable properties such as local accuracy, missingness, and consistency
in its explanations.

To understand how SHAP values are calculated, we need to delve into the mathemat-
ical details of the process. The calculation involves decomposing the model’s prediction
for a specific instance into contributions from each feature. For a given prediction f(x),
where x is the input instance, SHAP values for a particular feature i are computed using
the following formula:

ϕi(f, x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |!

(
f(xS∪{i}) − f(xS)

)
(IV.1)

In this equation, N represents the set of all features, and S ⊆ N \{i} denotes subsets of
features that do not include feature i. The term xS∪{i} refers to the instance with feature
values from subset S along with feature i, while xS represents the instance with feature
values from subset S. The cardinality of subset S is denoted by |S|. This approach ef-
fectively breaks down the model’s prediction into additive contributions from each feature.

The interpretation of SHAP values reveals how each feature impacts the model’s out-
put. Positive SHAP values indicate that the feature increases the prediction, whereas
negative values suggest a decrease. For instance, large positive SHAP values highlight
features that significantly enhance the model’s output for a particular instance, while
large negative SHAP values indicate features that substantially reduce the output. Con-
versely, SHAP values close to zero signify that the feature has minimal impact on the
model’s output for that instance.

SHAP’s application varies depending on the types of models it is used with, and
different variants of SHAP are suited for different contexts. Below is an overview of its
application with various models, such as linear, tree-based, and neural networks.

— Linear SHAP: SHAP provides a straightforward and intuitive way to understand
the importance of features for linear models, such as linear regression or logistic
regression. Linear SHAP calculates Shapley values based on the model’s coeffi-
cients, making it clear how each variable contributes to the final prediction. This
is particularly useful for models where interpretability is crucial, such as economics
or medical research.
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— Tree SHAP: Tree SHAP is specifically designed for tree-based models, including
random forests and boosting models (such as XGBoost). This SHAP variant lever-
ages the tree structure to efficiently compute Shapley values. Tree SHAP can
handle the complex interactions and non-linearities inherent in these models, pro-
viding an accurate explanation of each variable’s contribution to the prediction.
This helps users understand which features most influence the model’s decision.

— Deep SHAP: Neural networks are often considered "black boxes" due to their com-
plexity. Deep SHAP combines Shapley values with backpropagation techniques to
explain neural network predictions. Using Deep SHAP, it is possible to visualize
the contributions of individual neurons and specific layers, aiding in the interpre-
tation of decisions made by complex models like convolutional neural networks
(CNNs) or recurrent neural networks (RNNs).

— Kernel SHAP: Kernel SHAP is a more general method that can be applied to any
model type, including those for which specific SHAP variants do not exist. It uses
a sampling approach to estimate Shapley values and is particularly useful for mod-
els where the exact computation of Shapley values would be too computationally
expensive. Kernel SHAP is flexible and can adapt to various types of data and
models, although it may be less efficient for very complex or large models.

To make the most of SHAP values, various visualization techniques can be employed.
Summary plots offer an overview of feature importance across multiple predictions, while
dependence plots illustrate the relationship between a feature and the model output. Ad-
ditionally, force plots provide a detailed view of individual SHAP values for a specific
prediction, showing the contributions of each feature. Figure IV.2 displays an example of
a SHAP visualization, demonstrating these concepts in practice.

Figure IV.2 – SHAP visualization example

IV.4.2 LIME (Local Interpretable Model-agnostic Explana-
tions)

LIME is a technique designed to explain individual predictions made by ML models.
By offering locally faithful explanations, LIME helps users understand how a model arrives
at specific decisions. The core idea behind LIME is to approximate complex models
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with simple, interpretable surrogate models, such as linear regressions, which can be
easily understood and analyzed. Importantly, LIME is model-agnostic, meaning it can be
applied to any black-box model without needing to know its internal mechanics.

To generate LIME explanations, the method works by fitting a simple, interpretable
model to a set of perturbed samples around the instance of interest. These perturbed
samples are created by randomly modifying the feature values of the original instance,
while keeping the label constant to maintain the relationship between the features and the
prediction. The process for calculating LIME explanations is mathematically expressed
as:

f̂lime(z) = arg min
w

N∑
j=1

sim(x, zj)(f(zj) − wT zj)2 + Ω(w) (IV.2)

In this equation, f̂lime(z) represents the prediction of the surrogate model for a per-
turbed sample z, while N denotes the number of perturbed samples used. The term
sim(x, zj) is a similarity function that measures how close the perturbed sample zj is to
the original instance x. The coefficients of the surrogate model are represented by w, and
Ω(w) denotes a regularization term that helps prevent overfitting of the simple model.

The interpretation of LIME explanations revolves around understanding how feature
values influence the model’s predictions. Positive coefficients in the surrogate model
indicate that increasing a feature’s value leads to higher predictions, whereas negative
coefficients suggest a decrease in predictions with increasing feature values. Large positive
coefficients highlight features that have a significant impact on the prediction for the
instance, while large negative coefficients indicate features that substantially reduce the
prediction. Features with coefficients close to zero have minimal impact on the prediction.

To visualize LIME explanations, several techniques can be employed. Feature impor-
tance plots are commonly used to illustrate which features most influence the model’s
predictions. Additionally, bar charts or heatmaps can be used to provide a detailed view
of the contributions of each feature for individual instances. These visualizations offer a
clearer picture of the model’s behavior and decision-making process.

LIME is used in various areas, including model debugging, comparison, and trust
verification. By enabling users to explore and understand the model’s behavior, LIME
helps identify influential features, detect potential biases, and verify the reliability of
predictions. By providing interpretable explanations for complex models, LIME supports
better model management and trust in ML systems.

IV.5 XAI for reliability assessment of the pre-
diction of carbohydrate abnormalities in
patients with β-TM

In the previous chapter, we tested several ML models for risk prediction of carbohy-
drate abnormalities. The CatBoost model showed better performance, which will satisfy
the predictive capabilities expected by physicians as shown in IV.3. However, such per-
formance with a dataset containing only 80 subjects is slightly ambiguous. Hence, this
section aims to identify the most important contributors to such a prediction. Then,
physicians will be offered this ranking of contributors to judge and evaluate the reliability
of the prediction from a medical point of view.

77



Chapter IV. XAI for Assessing Predictive Reliability and Managing Medical Financial
Expenses

If the most important characteristics have a medical logic, in this case, the prediction
was based on a well-explained and reliable logic. Otherwise, if the most important features
have no strong association with carbohydrate abnormalities, and the most related features
admit a weak ranking, in this case, the prediction has probably been based on a false
correlation between the variables, and these variables should be removed to avoid basing
the ML.

Figure IV.3 – Figure III.6 Extension: Carbohydrate Abnormalities XAI

The graph Fig.IV.4 shows the ranking of the features that contribute most to the
prediction of the CatBoost model, in descending order from top to bottom. Features
are shown on the y-axis and Shapley values on the x-axis. The color decay from red to
blue indicates whether the value of each characteristic is large or small (red: maximum
values, blue: minimum values). Each point on the graph represents the Shapley values
for each specific characteristic associated with a patient. Thus, the number of points
for each entry equals the number of patients. The characteristics are ranked from most
important (top) to least important (bottom) in predicting carbohydrate abnormalities.
When the smallest value of a characteristic admits a negative Shapley value and the largest
admits a positive Shapley value, the more important this characteristic, the higher the
risk of having carbohydrate abnormalities. If a characteristic has a maximum value with
negative Shapley values and a minimum value with positive Shapley values, the smaller
the characteristic, the higher the risk of developing carbohydrate abnormalities.

Medical expert reports: By analyzing the diagram presented in Figure IV.4, we
interpret that the most important variables for predicting carbohydrate anomalies are
respectively, the 2-hour post 75g glucose, FPG (Fasting Plasma Glucose), HOMA-IR,
and Serum Ferritin. In previous research, doctors have identified these features as good
predictors of carbohydrate diseases. So, it ensures the reliability and confidence of doctors
for our prediction, as it is primarily based on these variables identified as the most crucial.

Finally, the reliability measures of XAI showed a concordance of 0.96, indicating strong
agreement with the model’s assessment of the features’ importance. Stability of 0.35 shows
moderate variation in feature impact.
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Figure IV.4 – Shapley Visualization (feature importance ranking on model output)
Abbreviations: β-TM : β-Thalassemia major, HOMA: homeostasis model assessment for
insulin resistance, BMI: Body mass index FPG: fasting plasma glucose.

IV.6 XAI for a Low-cost Risk Prediction of MetS
in Screening Sessions

The datasets collected during MetS screening sessions consist of biological and clinical
variables. According to physicians, extracting biological variables for a large population
during a MetS screening session requires a significant financial and time burden. To reduce
these financial burdens, we have considered limiting the use of biological characteristics
and favoring the use of clinical variables. Our idea is to identify low-risk individuals by
exploiting only clinical variables, thus avoiding the need for blood tests to extract biolog-
ical characteristics for this population. Therefore, we have ensured that blood tests are
used only for at-risk people, considering the three MetS definitions (IDF, Cook, or Fer-
renti). The aim is to exploit the XAI to select the most important clinical characteristics
to create the MetS risk function and identify low-risk individuals.

However, the obvious question arises regarding XAI feature selection and data fusion
as shown in Figure IV.5. Is it better for prediction to merge the data and then select the
features, or is it better to select the features and merge them?
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Figure IV.5 – Data fusion and selection

Feature selection and data fusion: Data fusion is the process of combining data from
multiple sources to create a more complete and accurate representation of a situation or
phenomenon. By merging information from different sources, the objective of data fusion
is to improve the overall quality of the data. It is a very important method, especially for
the generalization of ML-based approaches.

A state-of-the-art review was conducted to examine the various types of data fusion.
Data fusion is divided into three main types: data-level fusion, feature-level fusion, and
decision-level fusion [Khaleghi 13, Ayed 15, Jing 18]. Data-level fusion involves merging
raw data before preprocessing and feature selection. The idea behind this type of fusion
is to exploit the maximum amount of data for preparation and selection. On the other
hand, feature-level fusion involves merging data after preparation and selection. Finally,
decision-level fusion combines the different classification results by using multiple datasets
or multiple outputs.

In our study, we will compare the two fusion approaches (data-level and feature-level).
The first approach involves selecting features (with SHAP and random forest) from each
dataset and then merging the selected features. Conversely, the second approach involves
merging the data into a single dataset (DS_Merged) and then exploiting this dataset for
feature selection.

Finally, decision-level fusion will be studied and applied to combine the classification
results of the three definitions of MetS screening to estimate a unified risk that considers
the three different definitions.

Feature Selection Before Data Fusion (feature-level): Table IV.1 shows the most
important features for each data set related to the three definitions of MetS.

Table IV.1 – Feature Importance Ranking Before Data Fusion for Several MetS
definitions and Datasets

Database_Output 1st 2nd 3rd 4th
DS1_Cook MBP Tg WC HDL-C
DS1_Idf HDL-C WC MBP FBG

DS1_Ferranti MBP Tg HDL-C TyG
DS2_Cook HDL-C FBG TyG Tg
DS2_Idf FBG TyG HDL-C MBP

DS2_Ferranti HDL-C Tg TyG MBP
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The goal is to identify the key characteristics to consider when selecting variables from
both datasets and the three definitions. Therefore, the frequency of variable matches
deemed important in both datasets and all three definitions is detailed in section (d) of
Fig.IV.6. It is observed that HDL-C is a crucial variable across all definitions and datasets,
with a matching frequency of 6. Additionally, MBP is identified as an important variable
5 times. Furthermore, a review of Table IV.1 reveals that MBP and HDL-C consistently
rank as the most significant variables in the entire dataset.

Feature Selection After Data Fusion (data-level): Parts (a), (b), and (c) of Figure
IV.6 illustrate the most significant features following data fusion for each definition. The
y-axis represents features, while the x-axis represents Shapley values. The color gradient
from red to blue indicates the value of each feature, with red denoting the highest values
and blue denoting the lowest values. Each point on the graph represents the Shapley
value for a specific attribute linked to a patient. The features on the graph are arranged
in descending order of importance.

(a) SHAP values related to
Cook

after data fusion
(b) SHAP values related to Idf

after data fusion

(c) SHAP values related to De
Ferranti
after data fusion

(d) Most important features before data fusion (e) Most important features after data fusion

Figure IV.6 – Feature selection results

Table IV.2 shows the most important characteristics using the merged database and
according to the three definitions.

In part (e) of Fig.IV.6, the frequency of occurrence of the most crucial variables is
depicted. By referencing Table IV.2 and part (e) of Fig.IV.6, it is evident that MBP,
TyG, and WC emerge as the most significant variables.
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Table IV.2 – Feature Importance Ranking for After Data Fusion

Dataset 1st 2nd 3rd 4th
DS_Merged_Cook MBP TyG WC Weight
DS_Merged_Idf TyG WC HDL-C MBP

DS_Merged_Ferranti TyG MBP HDL-C WC

Comparison and Assessment: The comparison between the variables selected by the
first and second approaches highlights the impact of changing the data utilized by the
random forest model on feature selection. Before data fusion, the most critical features
were MBP and HDL-C, whereas after data fusion, the emphasis shifted to MBP, TyG,
and WC.

Given the medical expertise and the goal of identifying low-risk individuals with clinical
features favored over biological ones to streamline MetS screening and make it more cost-
effective, the decision to select MBP and WC for MetS risk prediction aligns with the
objective of minimizing the need for extensive blood tests in a large population during
screening. This strategic selection of features can enhance the efficiency and affordability
of the screening process for MetS.

Medical expert reports: Indeed, according to the doctors, the features identified as
important for the prediction show a strong correlation with the presence of metabolic
syndrome. This confirms the reliability of our data fusion and feature selection.

For feature selection, the doctors preferred to choose clinical features rather than
biological ones to avoid requiring blood tests for patients predicted to be negative for
MetS by the AI. Using only clinical variables significantly reduces the individual and
social burden of MetS screening. The features to be selected, according to the doctors’
recommendations, are WC and MBP.

Identifying Low-risk Individuals: The risk prediction performances using only MBP
and WC for the three MetS definitions are summarized in Table IV.3.

For the IDF definition, the model achieved a specificity of 0.9 and a sensitivity of
0.78. This indicates that based on this definition, the model better predicted positive
values than negative ones. In the case of the De_Ferranti definition, the model exhibited
a strong predictive ability for negative values, with a sensitivity of 0.94. Lastly, for the
Cook definition, the model demonstrated good predictive ability for positive and negative
subjects, indicating a balanced performance across the two categories. These results
provide valuable insights into the model’s predictive capabilities based on the selected
features (MBP and WC) for each MetS definition, highlighting its strengths and areas for
improvement in risk prediction.

Table IV.3 – Sensitivity, Specificity, and Cut-off Values for Several Outputs using Only
MBP and WC

Output Sensitivity Specificity Cut-off
Output_Cook 0.80 0.85 0.059
Output_Idf 0.78 0.90 0.031

Output_Ferranti 0.94 0.61 0.142
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Evaluators like sensitivity and specificity are limited by their sensitivity to class distri-
bution imbalance, particularly when one class significantly outweighs the other. In such
cases, the ROC curve and AUC (Area Under the Curve) are more reliable metrics for
assessing predictions.

The ROC curves for the three MetS definitions (Cook, IDF, and De_Ferranti) are
illustrated in parts (a), (b), and (c) of Figure IV.7. The corresponding AUC values for
Cook, IDF, and De_Ferranti were 0.90, 0.89, and 0.85, respectively. These AUC values
indicate that the model exhibits good predictive ability for both positive and negative
values across the several definitions, providing a comprehensive assessment of the model’s
performance in handling the class imbalance and making predictions for MetS risk.

(a) ROC curve Cook (b) ROC curve Idf

(c) ROC curve De Ferranti (d) ROC curve of unified risk

Figure IV.7 – ROC curves

Focusing on individuals predicted as negative for MetS across all definitions makes the
Negative Predictive Value (NPV) a crucial metric for evaluating the model’s performance.
An NPV of 0.878 indicates that 87.8% of the population predicted as negative for MetS are
truly negative, highlighting the model’s ability to correctly identify individuals without
MetS.

Furthermore, the ROC curve depicted in part (d) of Fig.IV.7 showcases the model’s
performance in predicting unified MetS risk. The corresponding AUC of 87% signifies
a strong predictive capacity for the overall risk assessment, underscoring the model’s
effectiveness in accurately identifying individuals without MetS across several definitions.

By leveraging NPV, ROC curves, and AUC, the evaluation process provides a com-
prehensive and reliable assessment of the model’s predictive capabilities, particularly in
correctly identifying individuals without MetS, which is crucial for effective screening and
risk assessment strategies.
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IV.7 XAI Limits

The XAI has effectively explained the risk prediction, ensuring practitioners’ con-
fidence in this prediction. In other words, the variables on which ML was based are
medically logical according to reliable references. This makes the prediction confident
and ready to be integrated into healthcare.

Furthermore, XAI has provided promising results for evaluating the reliability of pre-
dicting carbohydrate anomalies. Additionally, using SHAP has been decisive in eliminat-
ing biological variables for MetS screening when predicting the low-risk subjects, signifi-
cantly reducing individual and social financial burdens by eliminating blood tests for this
population.

However, the reliability of explanations provided by XAI approaches remains a critical
challenge [Yeh 19, Kumar 20, Schwartzenberg 20, Marx 23]. These challenges include
the difficulty of valid and relevant explanations for new training and testing data. The
explanation changes each time the test and training data selection is changed, especially
for small datasets [Ketata 23]. Hence, there is ambiguity regarding generalization and the
robustness of explainability. In addition, XAI approaches may admit a lack of consistency,
where explanations can vary considerably for similar instances, raising concerns regarding
their stability. Furthermore, there may be a difference between the importance of features
evaluated by the model and the importance reflected in the explanations, calling into
question the concordance of the explanations.

These limitations push our research towards a very important question regarding the
reliability of XAI. How can we improve the reliability of XAI? How can we evaluate the
reliability of XAI?

IV.8 Conclusion

In conclusion, this chapter has demonstrated the pivotal role of XAI in assessing
the reliability of predictive models for endocrine disease risk prediction and managing
financial medical expenses. The application of XAI techniques to predict carbohydrate
abnormalities in β-TM patients and for risk prediction in MetS screening sessions has
shown promising results in improving diagnostic accuracy and reducing financial burdens.
However, the reliability of XAI explanations remains a challenge, particularly concerning
their generalization, consistency, and concordance with model evaluations.
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V.1 Introduction

At the end of the previous chapter, we presented XAI’s limitations and challenges,
especially regarding reliability. In this chapter, we propose approaches to improving
XAI’s reliability and then develop metrics to evaluate the reliability of this improvement.

However, an ML-based prediction provided to practitioners is generally considered
opaque information. When this prediction is accompanied by explainability, it becomes
clearer. Indeed, explainability can vary when the data selected for testing and training
changes. This variability leads to a lack of confidence in the reliability of explainabil-
ity validation, highlighting the need for improvement and thorough reliability studies.
Therefore, we propose to provide practitioners with predictions that include more reliable
explainability, validated by the combination with a data sampling technique and assessed
using metrics that evaluate the reliability of the provided explainability.

Our study aimed to develop a structured approach to improve and assess the reliability
of explanations provided by XAI approaches in healthcare. The main contributions of this
study are as follows:

— Combining the explainable ML approach with a data sampling method to improve
the reliability of the explainability.

— We define and develop metrics to assess the reliability of explainability after com-
bining it with a data sampling technique.

— Develop a global metric for reliability assessment of XAI.
Our ultimate goal is to increase practitioners’ confidence in ML by exploiting tabular

datasets (Biological and Clinical) to predict the risk of abnormalities for each subject,
assisting physicians in personalizing the screening or treatment of diseases. Consequently,
several case studies are proposed to test and validate our approach on various datasets
and ensure its applicability and effectiveness in real-world scenarios. We first test the
proposed methodology on two public datasets (hypothyroidism and diabetes), which are
generally well-treated and high-quality. We include thyroid disorders and diabetes be-
cause, according to the World Health Organization, they are the most common endocrine
diseases worldwide. In these two case studies, our generic approach will be assisted by
two XAI applicability approaches (SHAP and LIME) as these two XAI approaches are
the most used in the literature in the context of endocrine disease prediction. Moreover,
these approaches are relatively generic, can be applied to several ML models, and are not
limited by a specific model. Then, we propose to apply and validate our approach in the
two private datasets in relation with the medical issues (β − TM and MetS).

Through this research, we aim not only to improve the understanding of the deci-
sions made by ML models in healthcare, but also to facilitate wider adoption of these
technologies by providing reliable, actionable explanations to healthcare professionals.

We begin this chapter by presenting research works close to our context in Section V.2.
Then, we present our approach in Sections V.3 and V.4. Next, the tests and application
of the proposed approach in two case studies for predicting the risk of hypothyroidism
and diabetes are presented in Section V.5. Then, validate the approach for β − TM and
MetS in Section V.6 and discuss the limits and perspectives in Section V.7. Finally, the
conclusion of the chapter in Section V.8.
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V.2 Related Works

To assess XAI’s performance, various subjective and objective metrics have been de-
veloped [Coroama 23]. Subjective metrics rely on user feedback regarding clarity, trans-
parency, and satisfaction, while objective metrics utilize mathematical and statistical tools
to evaluate the reliability of data-driven explainability. The range of metrics employed is
contingent on the nature of the data and the specific field of application.

In partnership with an expert, XAI can achieve optimal accuracy. A recent study by
the author of [Rosenfeld 21] explored advanced imaging techniques in radiology for disease
detection, demonstrating that the XAI agent achieved a remarkable 99.5% accuracy rate.
Providing medical professionals with clear explanations of classification errors is crucial
in critical decision-making domains. The study introduced four criteria for evaluating the
explanations provided by the agent: performance disparity between the agent’s model and
the explanation’s logic, the number of rules, the number of features utilized in constructing
the explanation, and stability. These criteria underscore the shortcomings of current
research, which often oversimplify the logic of initial models without considering legal,
ethical, or safety implications. They offer the advantage of being independent of the task
or employing the XAI algorithm.

Within the realm of recommendation systems, there is a tendency to interchange spe-
cific terms, as highlighted by Tintarev and Masthoff [Doshi-Velez 17]. They stress the
importance of user transparency, persuasiveness, scrutability, effectiveness, satisfaction,
efficiency, and trust, alongside traditional accuracy measures like precision and recall. To
evaluate the efficacy of explanations within these systems, they introduced metrics such
as transparency, scrutability, trust, effectiveness, persuasiveness, efficiency, and user satis-
faction. These metrics are designed to ensure that users comprehend the rationale behind
recommendations, enabling them to rectify the system when necessary and fostering trust
through clear and effective explanations.

Researchers have demonstrated that system design can influence perceived trustwor-
thiness. Trust is evaluated by authors in [Fogg 01] through methods such as surveys or
by assessing user engagement indicators like login frequency or sales. The concept of
persuasiveness involves motivating users to make purchases or try products, as gauged by
their responses to explanations. Effectiveness allows users to eliminate unsuitable choices
through informative explanations, while efficiency, particularly relevant in chat systems,
measures the speed of task completion, often quantified by the number of explanations
required. User satisfaction, reflecting the system’s utility and user-friendliness, is deter-
mined through user feedback metrics.

Doshi-Velez and Kim introduced in [Doshi-Velez 17] various concepts related to the
quality of system explanations. They discussed how explanations can empower users to
make corrections (actionability and correctability), establish causal links between inputs
and outputs [Holzinger 19], and provide comprehensive system descriptions (complete-
ness). They also addressed the ease of understanding explanations (comprehensibility
[Askira-Gelman 98]), the selection of relevant features (faithfulness), and the alignment
of explanations with expert knowledge (justifiability). Other aspects such as explanation
consistency across similar inputs (robustness [Alvarez-Melis 18]), the ability to scrutinize
unsuccessful training instances (scrutability), and the focus on essential explanatory fea-
tures (simplicity) were also explored. Additional considerations included sensitivity to
input variations, explanation stability, and truthfulness (soundness), with a discussion
on the prioritization of completeness versus soundness [Kulesza 13]. The authors noted
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that while concepts like transparency, interactivity, and security are commonly discussed
in XAI, formal definitions and practical applications are still lacking, underscoring the
interdisciplinary nature of this field.

Authors in [Hsiao 21] introduced seven cognitive metrics: explanation quality, user
satisfaction, user engagement and curiosity, trust in the system, user comprehension,
performance, and system usabilityFactors like explanation stability, robustness of the
classification model, and computational requirements of explanation methods are crucial
for time series classificationctive models of behavior, and utilizing factor analysis to ex-
plain behavior based on feature significance. These metrics are predominantly subjective
and necessitate user feedback for accurate assessment. The categorization of evaluation
methods targets specific user groups, including AI novices, domain experts, and AI pro-
fessionals. Key interpretability metrics focus on the user’s cognitive model, the utility
and impact of explanations, trust in the system, and overall performance in human-AI
collaborative tasks in [Mohseni 21].

Computational evaluation encompasses measures such as explanation accuracy, which
closely links model consistency, explanation reliability, and model trustworthiness, inde-
pendent of human-centered studies. For time series classification, factors like explanation
stability, robustness of the classification model, and computational requirements of ex-
planation methods are crucial. The authors in [Nguyen 20b] analyzed the effectiveness
of saliency maps in providing explanations that pinpoint critical components for predic-
tions within time series data. A truly informative explanation highlights parts crucial
for accurate prediction. The stability and robustness of these explanations are tested
through repeated trials, assessing their resilience to changes and the computational re-
sources needed for generating such explanations.

The authors of [Zhou 21a] discussed explainability in AI as a combination of inter-
pretability (how understandable explanations are to humans) and fidelity (how accurately
explanations reflect the model’s behavior). They argued against the feasibility of universal
computation metrics for evaluating XAI methods due to factors like the subjective nature
of explanations, varying contexts, dependencies on users and models, and specific types of
explanations required. Objective evaluation metrics were categorized into model-based,
attribution-based, and example-based explanations. Model-based explanations involve
using or creating models to elucidate ML algorithms, with metrics like model size, inter-
action strength, or complexity. Attribution-based metrics focus on feature significance or
ranking, employing metrics such as monotonicity or sensitivity. Example-based explana-
tions utilize similar instances from the dataset, with metrics like non-representativeness
and diversity [Nguyen 20a].

Arrieta in [Arrieta 20] proposed the development of specific evaluation metrics for
future enhancements, focusing on the quality, utility, and satisfaction derived from expla-
nations, improving the audience’s mental model, and assessing the impact of explanations
on model performance and user trust. Tools like goodness checklists, satisfaction scales,
and computational measures were mentioned to assess explainer fidelity and reliability.

The study also explored using Bayesian Networks in various applications, highlighting
BayLime as an enhancement of the LIME technique to address instability and enhance
consistency and robustness through Bayesian reasoning [Zhao 21]. The importance of
explaining Bayesian networks, particularly in legal contexts, was acknowledged [Vlek 16].

A review of explanation methods for Bayesian networks outlined essential proper-
ties such as content, communication, and adaptation to user needs in [Lacave 02]. Em-
phasis was placed on explaining the knowledge base, reasoning process, and evidence-
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supporting conclusions. Communication involved presenting explanations, including for-
mat and probability expression. Adaptation refers to tailoring explanations to the user’s
knowledge level and information requirements.

In 2024, authors in [Arreche 24] proposed an end-to-end framework to evaluate XAI
methods for network intrusion detection. This framework evaluates global and local scopes
and analyzes metrics like descriptive accuracy, sparsity, stability, efficiency, robustness,
and completeness.

Table V.1 presents a compilation of various metrics introduced in academic literature,
detailing the goals of each study and the specific applications involving data and models.

Table V.1 – XAI Evaluation Metrics Summary

Reference Metric Metric Definition Study Objective Metric
Type

Data Model

[Rosenfeld 21] Performance (D),
Number of rules
(R), Number of
features (F), Sta-
bility (S)

Difference in performance
between the agent’s model
and the explanation’s logic.

Demonstrate the effec-
tiveness of XAI in en-
hancing diagnostic accu-
racy in radiology.

Objective Images Neural
Net-
works

[Tintarev 07] transparency,
persuasiveness,
scrutability,
effectiveness,
satisfaction, effi-
ciency, trust

Metrics evaluate how well
a system communicates its
decision-making process,
convinces users, and allows
for inspection.

Assess the role of clar-
ity and user control
in recommendation sys-
tems acceptance.

Subjective - -

[Fogg 01] Login Frequency,
Sales

Indicators of how often
users log in and the volume
of sales, reflecting engage-
ment and trust.

Investigate how system
design influences user
trust and engagement
metrics.

Obj/Subj - -

[Doshi-Velez 17] Actionability,
Correctability,
Causality, faith-
fulness, justifia-
bility, robustness,
soundness.

Focus on the user’s abil-
ity to act upon, correct ex-
planations, and understand
cause-effect relationships.

Evaluate how well
XAI systems enable
user interaction and
understanding through
explanations.

Obj/Subj - -

[Hsiao 21] Explanation
Quality, User
Satisfaction, pro-
ductivity, usabil-
ity/interaction.

Cognitive metrics that
gauge the clarity, help-
fulness, and satisfaction
levels of explanations from
the user’s perspective.

Identify and measure
cognitive metrics reflect-
ing user interaction with
XAI systems.

Subjective - -

[Nguyen 20a] Explanation Sta-
bility, Robustness

Evaluate how consistent
and resilient the explana-
tions are to changes and
noise.

Explore the consistency
and resilience of expla-
nations in time series
classification.

Objective Time
Series

-

[Zhou 21a] Model Size,
Complexity,
Monotonicity,
Complexity.

Assessments of the ex-
planatory model’s size,
intricacy, and the pre-
dictability of feature
importance.

Assess the interpretabil-
ity and accuracy of ex-
planations across several
models and data types.

Objective Images,
Tabu-
lar

-

[Arrieta 20] Goodness Check-
list, Satisfaction
Scale

Tools to evaluate the ef-
fectiveness, adequacy, and
satisfaction with the expla-
nations provided.

Develop and refine met-
rics for evaluating expla-
nation effectiveness and
user satisfaction.

Subjective - -

[Lacave 02] Explanation Fo-
cus, Explanation
Level.

Criteria for determining
the scope, depth, and ap-
proachability of explana-
tions in Bayesian networks.

Review and define the
necessary properties
of explanations in
Bayesian networks for
user understanding.

Obj/Subj - Bayesian
Nets

[Arreche 24] Accuracy, spar-
sity, stability,
efficiency, ro-
bustness, and
completeness

End-to-end framework. evaluate both global and
local scopes of XAI for
network intrusion detec-
tion.

Objective - -
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Our study examines how alterations in training and testing data impact the feature
ranking generated by XAI. Consequently, our objective is to integrate the XAI method-
ology with a data sampling technique to enhance the validation process of XAI results.
Subsequently, we devised a comprehensive metric centered on generalizability, concor-
dance, and stability to assess the dependability of the XAI and its amalgamation with
k-fold validation.

V.3 XAI Reliability Improvement

The challenge with explainable ML is that whenever the selection of test and training
data for prediction is changed, the explainability of the prediction outcomes leads to a
novel order of feature contributions [Ketata 23]. To overcome this problem and improve
the reliability of the explainability, we propose to combine the extraction of importance
coefficients by XAI approaches with the k-fold technique. Subsequently, metrics were
developed to study the generalization, concordance, and stability of the combination of
XAI and k-fold as shown in Figure V.1.

Figure V.1 – Process of the proposed methodology for XAI improvement and evaluation

V.3.1 K-fold Technique Definition

The k-fold cross-validation method is a commonly used technique to assess the perfor-
mance of ML models. It involves dividing the original dataset into k equal-sized subsets
(or "folds") as shown in Figure V.2.

Figure V.2 – k-fold technique [DA SILVA 23]
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The original dataset is divided into k equal-sized subsets (folds). Each fold contains
an approximately equal distribution of the data. The model is trained k times, with each
iteration using a different fold as the validation set and the remaining k − 1 folds as the
training set. For example, in the first iteration, the first fold is used as the validation set
and the other folds are used for training. In the second iteration, the second fold is used
as the validation set, and so on.

The main advantages of k-fold cross-validation are reduced variance and better data
utilization. Common choices for the value of k include 5-fold and 10-fold cross-validation,
although other values can also be used depending on the dataset size and available com-
putational resources. However, smaller values of k may result in higher variance in per-
formance estimates, while larger values may increase computational burden.

V.3.2 Combining XAI Approaches with k-fold Technique

For this purpose, data were divided into k samples or files using the k-fold technique.
For the first iteration, one of the k samples was chosen as the validation set, with the
remaining k-1 samples serving as the training set for model learning. Then, for each
iteration, the data file selected as validation data is used for training, and one of the
files selected previously for training is used for validation. We concatenate the feature
importance coefficients for each iteration in the XAI list. Eventually, we obtain a list
of feature importance coefficients divided into multiple sub-lists, each resulting from a
prediction made using distinct training and test datasets, as shown in Figure V.3. As a
result, visualizing the explainability of each variable’s significance to prediction is more
generalizable and reliable for validating the feature importance ranking.

Figure V.3 – XAI with k-fold
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V.4 Metrics for Assessing XAI Reliability

We have now come to present the metrics for the reliability assessment of XAI.

Generalizability Metric

The objective of this part is to identify the value of k in k-fold, where the ranking of
the best feature contributors remains unchanged. The idea is to calculate the augmented
XAI coefficients for several values of k. Subsequently, we computed the average absolute
of the coefficients for each feature. Thus far, we have a separate list for each value of
k, that contains the average importance coefficient for each feature. Each list provides
a distinct rating of features for each k. Subsequently, Spearman correlation similarity
analysis was conducted to examine the generalizability or variability of the feature ranks
across various k values. Ultimately, a matrix was generated to display the correlation
among all k values and construct a curve to assess the variation between each pair of
consecutive k values. We propose studying the generalizability metric to first choose the
optimum k value in the k-fold approach and to study whether the feature importance
ranking provided by XAI changes when the data selected for testing or training changes.
In other words, we aim to check whether the final feature ranking is generalizable and
stable within the dataset. This metric is based on calculating the similarity (correlation).
Therefore, it was between 0 and 1. A value of 1 indicates maximum generalizability.
However, a value of zero indicates zero similarity.

The algorithm 2 describes the computing process of similarity between features im-
portance ranking.

Concordance Metric

This metric evaluates the correlation between the feature importance provided by
XAI, named XAI_coefficients and those provided by the predictive model explanation
(impurity-based importance for the predictive model) [Stassin 23]. A high correlation
indicates that the explanations provided by the XAI agree with the intrinsic importance
of the features according to the model, which is a reliable and significant indicator of
explainability. We propose to study concordance to assess the degree to which the final
ranking of the most important features provided by XAI is directly correlated with the
importance of these features in the kernel of the model in the ML process.

The concordance equation is presented below (V.4).

Concordance = Φ(IModel, IXAI) (V.4)

where Φ represents the Pearson correlation function, Imodel is the vector of feature impor-
tance as assessed by the model, and IXAI is the vector of mean feature importance derived
from XAI.

The concordance was also between 0 and 1. A higher concordance indicates good
reliability.

Stability Metric

This measure assesses the extent to which the explanations provided by XAI are
consistent for similar instances [Munoz 23]. A small distance close to zero means that
similar instances receive similar explanations, indicating good stability in how the model
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Algorithm 2 Generalizability analysis of feature sorting based on k values
Step 1. Increase the XAI coefficient extraction for each k-value
Step 2. Compute the average absolute values of the XAI coefficients for each feature
represented by the following formula.

M = 1
m

m−1∑
i=0

|XAI_coefficientsi| (V.1)

where m is the number of subjects

Step 3. Generate a list of values, including the mean absolute values of the feature
importance for each k-value :

Lj = [M0j, M1j, ..., M(n−1)j] (V.2)

for j in [1,...,n], where n is the max value of k

Step 4. The similarity between the ranked lists for all k values was calculated using the
Spearman correlation presented by the following formula:

Generalisation = ρ(Lj, Lj+1) (V.3)

where ρ refers to Spearman correlation.
Step 5. Display the Generalisation_metric between feature ranks for each k value.

assigns importance to features. This metric is dedicated to assessing the stability of
the explainability provided by XAI for two similar instances. In other words, it is a
useful metric for evaluating the certainty of its explainability. The stability metric is an
important assessment in conjunction with the generalizability metric because unstable and
uncertain explainability can affect the similarity between feature rankings as a function
of k values, thus causing disorder in the generalizability metric.

The equation for stability is presented below (V.5).

Stability = 1
N

N∑
k=1

d(Sk1, Sk2) (V.5)

where N is the number of pairs of similar instances examined, d represents euclidean
distance function , and Sk1 and Sk2 are the XAI value vectors for the k pair of similar
instances.

The euclidean distance is calculated by the following formula (V.6) :

d(S1, S2) =
√√√√ n∑

i=1
(S1i − S2i)2 (V.6)

where S1 and S2 are two vectors of the XAI values for compared instances, and S1i, S2i

are the corresponding components in these vectors.

93



Chapter V. XAI Reliability Improving and Assessment

Global Metric for Reliability Assessment

The final metric we have devised integrates generalization, stability, and concordance
considerations. A heightened metric value (equal to 1) for generalizability or concordance
signifies strong reliability. Conversely, a lower stability metric approaching zero suggests
robust reliability. Therefore, the ultimate reliability metric is determined as the product
of generalizability and concordance, subtracted from 1 minus stability, as illustrated in
Equation (V.7). Consequently, the reliability_metric also falls within the range of 1 to 0.
A reliability value nearing 1 denotes optimal XAI reliability.

Reliability = Concordance · Generalizability · (1 − Stability) (V.7)

V.5 Test the Proposed Methodology in Several
Public Datasets for Endocrine Risk Predic-
tion

V.5.1 Hypothyroidism Risk Prediction for a Low-cost Diag-
nosis

Risk Prediction of Hypothyroidism Using Random Forest

We conducted various tests to optimize the hyperparameters of the random forest
model. The optimal hyperparameters were set as 300 trees in the forest, "GINI" as the
split quality measure, and a maximum depth of 10. To ensure a robust evaluation of risk
prediction, we assessed the metrics using a 10-fold cross-validation (k=10). The random
forest model exhibited performance metrics of 99.1% accuracy, 99.5% precision, 98.8%
recall, and 99.1% F1-score.

SHAP Reliability Improvement and Assessment

To improve the reliability of explainable ML, in this section, we analyze the variability
in the sorting feature importance for every k value. The correlation matrix presented in
Figure V.4 illustrates the degree of similarity in the feature ranks across the various k
values. When the value of k is less than 5, there is a limited correlation between k-values.
The rankings of the features showed major changes. This implies a lack of generalization
by only applying SHAP without K-fold or even with small k-values. Starting from k =
27, we observed that the ranks have nearly identical similarity, which is equal to one.

To effectively visualize the similarity, Figure V.5 shows the correlation between con-
secutive k values to assess the consistency of the rankings. Figure V.5 demonstrates that
starting from k=27, there is a strong correlation between rankings, with an approximate
value of 1. Therefore, the ranking remained mostly unchanged.

Based on this analysis, we can confidently state that utilizing a combination of Shap-
ley and k-fold with a value of k=27 is the most reliable method for studying the most
important features in the dataset, with a generalization metric equal to 1. The ultimate
ranking of feature importance is displayed in Figure V.6 in descending order from top to
bottom.

We begin by explaining how to analyze the graph. Features are shown on the y-
axis, and Shapley values on the x-axis. The color blue and red indicates whether the
characteristic values for each subject are at minimum (blue) or maximum (red).
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Figure V.4 – Correlation matrix between feature rankings: SHAP for hypothyroid

Figure V.5 – Correlation between characteristic rankings of successive k values : SHAP
for hypothyroid

Each point on the graph represents the Shapley value for each specific characteristic
associated with a patient. Therefore, the number of points for each entry was equal to
the number of patients. The characteristics were ranked from the most important (top)
to the least important (bottom) in predicting hypothyroidism. If the biggest values (in
red) of a variable admit positive Shapley values, it means that the bigger the variable,
the greater the risk of having the anomaly (Output = 1). Alternatively, if the smallest
values of a variable admit positive shapley values, the smaller that variable is, the greater
the risk of having the anomaly.
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As shown in Figure V.6, TSH was the most important feature for the risk prediction of
hypothyroidism. We can see the difference between the TSH SHAP values and the SHAP
values of other features. The final ranking of the top contributors is highly reasonable
from a medical perspective. This means that our forecast and risk assessment outcomes
are dependable and are not influenced by random chance or skewed data.

Figure V.6 – SHAP with k-fold after study k-value (k=27) : SHAP for hypothyroid

We computed the developed metrics to assess the reliability of SHAP after combining
it with the k-fold. The preceding curve shows that generalizability is perfect and equal to
one. The stability of the similarity between the several feature classifications was perfectly
correlated. In addition, SHAP with k-fold has a very good concordance of 0.994 and a
good stability of 0.087. Therefore, the overall reliability metric is 0.91, which is good
reliability.

LIME Reliability Improvement and Assessment

In this section, we display the same reliability assessment methodology with the same
graphs presented in the previous section with SHAP and k-fold to study the combination
of LIME and k-fold.

Figure V.7 shows that by combining LIME and k-fold for k values below 17, the
correlation is very weak. This demonstrates the lack of generalizability of LIME without
the application of k-fold, even with low k values. However, for k values above 17, the
correlation is much higher and very close to 1.

By analyzing the variation of similiraties in Figure V.8, we can see that, unlike SHAP,
the generalization metric is well perturbed and not stable. This means that the feature
ranking was not similar for several k-values.
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Figure V.7 – Correlation matrix between feature rankings: LIME for hypothyroid

However, we can see a trend towards stability with a correlation between 0.75 and
1 from k = 23. Hence, the generalization metric has an average value of 0.875. The
concordance was relatively good at 0.81, and the stability was very good at 0.017. This
means the LIME and k-fold approach were stable and certain of its explainability. On
the other hand, it is non-generalizable and not sufficiently correlated with the internal
interpretability of random forest. This provided an overall reliability metric of 0.69,
affirming a lack of LIME and k-fold reliability for the hypothyroid case study.

Figure V.8 – Correlation between characteristic rankings of successive k values : LIME
for hypothyroid

Figure V.9 shows the ranking of the feature importance after combining LIME and
k-fold. The TSH variable was ranked as the most important variable, as shown by LIME
and SHAP. However, there is a change in the importance of the other variables, which
leads us to compare the reliability of the two explainability approaches.
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Figure V.9 – LIME with k-fold after study k-value (k=27) : LIME for hypothyroid

V.5.2 Diabetes Risk Prediction

Risk Prediction of Diabetes Using Random Forest

To provide a reliable risk prediction evaluation, we applied a k-fold cross-validation
(k=10) to show the metric raters. Random forest showed a moderate performance in
predicting diabetes risk. Accuracy 76.8%, precision 69.0%, recall 59.5% and F1-score
62.8%.

SHAP Reliability Improvement and Assessment

The correlation matrix presented in Figure V.10 shows that for k less than 8, the
correlation is lower and perturbed than that for k greater than 9, which is a strong
correlation. Hence, the ranking of features after the combination of SHAP and k-fold was
stable quickly and perfectly from k = 10.

Moreover, the curve in Figure V.11 shows that from k=10, the correlation is perfectly
equal to 1. Even for k values below 9, the correlation was strong between 0.975 and 1.

After combining SHAP and k-fold, Figure V.12 shows that glucose was the most
important variable for predicting diabetes risk. In addition, all other variables were
important for prediction, particularly BMI and age.

Finally, the generalizability of SHAP and k-fold was perfectly equal to 1, proving
an identical feature importance ranking. The concordance of this combination and the
random forest explanation was also significant at 0.98, with a good stability of 0.01.
Hence, a very good global reliability score of 0.97 for the combination of SHAP and k-fold
for the diabetes case study.

LIME Reliability Improvement and Assessment

The correlation matrix presented in Figure V.13 shows a weak and skewed correlation
for the combination of LIME and k-fold, demonstrating the lack of generalizability of
LIME in this case study.

The same is true for the correlation curve shown in Figure V.14, which confirms
that the LIME and k-fold combination is not stabilized. Hence, the LIME and k-fold
combination lack generalizability. Therefore, the generalizability metric is the mean value
of all correlations. This mean value was equal to 0.7.
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Figure V.10 – Correlation matrix between feature rankings: SHAP for diabetes

Figure V.11 – Correlation between characteristic rankings of successive k values : SHAP
for diabetes

Figure V.15 shows the feature rankings for LIME, which differ from those for SHAP.
This confirms the need to study the reliability of both approaches.

The concordance between LIME plus k-fold and Random Forest explainability was
very low, equal to 0.27 with a stability of 0.01. This means a high degree of surety in
the explainability provided by LIME and k-fold, but not sufficiently correlated with the
internal interpretability of random forest. In addition, LIME and k-fold showed poor and
unstable generalizability, which shows the lack of similarity between the different rankings
of the most important features, leading to poor reliability. Hence, the global reliability
score is 0.187.
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Figure V.12 – SHAP with k-fold after study k-value (k=10) : SHAP for diabetes

Figure V.13 – Correlation matrix between feature rankings: LIME for diabetes

V.5.3 Discussion

In this study, we propose to combine the k-fold technique with the SHAP and LIME
approaches. Subsequently, we developed metrics to evaluate the concordance, general-
ization, stability, and overall reliability of this combination. We then tested and applied
these to two different datasets to predict hypothyroidism and diabetes. Table V.2 sum-
marizes the results obtained for both case studies. First, we noticed a difference in the
ranking of the most important features between SHAP, kfold and LIME, kfold. This adds
to the obligation to evaluate and compare the reliability of these two combinations.
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Figure V.14 – Correlation between characteristic rankings of successive k values : LIME
for diabetes

Figure V.15 – LIME with k-fold after study k-value (k=32) : LIME for diabetes

This can be observed from Table V.2, that the SHAP approach with k-fold was more
generalizable and less influenced by changes in the test and training data for both case
studies. This combination achieved feature ranking stability more quickly in the sec-
ond case study, which may be explained by either the lower number of features or the
higher amount of data in the second case study compared with the first. However, for
the combination of LIME and k-fold, feature ranking did not achieve stability for either
case study, indicating a lack of generalizability and a significant influence on changing the
selected test and training data. Additionally, the SHAP and k-fold combinations showed
strong concordance with the internal explainability of Random Forest at 0.994 and 0.98
respectively in both case studies, ensuring the convergence of SHAP explainability even
when combined with k-fold. In contrast, the LIME plus k-fold approach showed poor con-
cordance, especially for the second case study at 0.27, indicating that combining k-fold
with LIME was not effective or reliable. Both approaches provide stable explanations for
the two case studies. The good stability of the LIME with k-fold indicates the relative
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suitability of this approach. The good stability of LIME with k-fold, poor concordance,
and poor generalizability raise doubts about the effectiveness of the LIME with k-fold.
In contrast, the SHAP and k-fold combination demonstrated excellent stability, concor-
dance, and generalizability. Finally, the overall reliability score effectively demonstrates
that the explanations provided by the SHAP and k-fold combination were reliable at 0.91
and 0.97 for both hypothyroidism and diabetes predictions. Moreover, without this com-
bination, the explainability of SHAP remains influenced by the change in training and test
data presented when the k variable is weak in the correlation curves. This supports the
usefulness of our idea of combining SHAP and k-fold. In contrast, the LIME and k-fold
combination showed mediocre scores, particularly for predicting the risk of diabetes, with
a reliability score of 0.18.

Table V.2 – Summary of XAI reliability assessment

Metrics
Thyroid prediction Diabetes prediction

SHAP LIME SHAP LIME

Generalization 1 0.875 1 0.7

Concordance 0.994 0.81 0.98 0.27

Stability 0.087 0.017 0.01 0.01

Overall reliability 0.91 0.69 0.97 0.18

Finally, in this study, we proposed not only to share an identification of at-risk in-
dividuals that is ambiguous for practitioners but also to provide a reliable explanation
of this identification combined with k-fold and metrics to assess this reliability and its
degree of certainty. A reliable XAI such as SHAP combined with k-fold and metrics that
address its reliability, such as generalizability, concordance, and overall reliability, can
increase physicians’ confidence in the prediction and its explanatory power. This may
lead to greater integration of ML models for risk prediction in hospitals, particularly in
the context of endocrine diseases.

V.6 Validation of the Proposed Methodology
in Several Private Datasets for Endocrine
Risk Prediction

After testing the proposed approach on two study cases using two explicability frame-
works. In this part, we aim to apply and validate the combination of SHAP with k-fold
and the various proposed metrics on real-case studies using private data sets, in response
to doctors’ problems.

V.6.1 β-TM

Figures V.16 and V.17 show that from k=3 the stability of the similarity between
feature rankings is almost perfect. A small disturbance is apparent, but the correlation
between 098 and 1 remains strong. There is a small disturbance that prevents perfect
stability. This may be due to the small amount of data or to the missing data management.
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Figure V.16 – SHAP with k-fold for Beta Thalassemia correlation matrix

Figure V.17 – SHAP with k-fold for Beta Thalassemia Correlation curve

The generability metric is calculated as the average of the correlations in the event
of non-stability. Hence, generalizability is 0.99. There is a good concordance of 0.97
but poor stability of 0.3. This poor stability is probably due to the lack of data for the
beta-thal dataset.

Figure V.18 shows the final ranking of the most important features with k=3 with a
reliability of 0.67.

Figure V.18 – SHAP with k-fold features importances ranking for Beta Thalassemia
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V.6.2 MetS

Figures V.19 and V.20 show that from k=18 the stability of the similarity between
feature rankings is perfect and equal to 1. This means perfect similarity between the
ranking of characteristics for different training and test data.

Figure V.19 – SHAP with k-fold for MetS correlation matrix

Figure V.20 – SHAP with k-fold for MetS correlation curve

The generalizability metric is therefore perfect and equal to 1. A good concordance
of 0.8 and a stability of 0.001. The final reliability of SHAP with k-fold is therefore 0.72.
The generalizability metric achieved permanent stability in this case study, unlike the
first case study for predicting carbohydrate abnormalities. This can be explained by the
Mets dataset admitting more subjects and fewer features. Hence, it is more obvious that
there should be a permanent classification. Unlike the carbohydrate anomalies dataset,
which has more features and less data.

V.7 Limits and perspectives

In this work, we proposed an approach to improve and evaluate the reliability of XAI
validation in response to a specific limitation related to explainability change provided by
XAI when training or test data is changed. This specific and limited scope is embedded
within several other XAI limitations in the literature.
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Our proposed approach to enhance and evaluate the reliability of XAI is limited to
basic ML models that exploit tabular data. It may not be applicable to deep learning
models and to other types of data, such as images. Our study tested this methodology
in only two case studies using the Random Forest model. Our findings indicated that the
combination of SHAP and k-fold validation is reliable, based on the evaluation metrics
developed in this study.

However, the combination of LIME and k-fold validation showed poor performance.
This lack of reliability could be attributed to the fact that LIME is typically used as a
local explainer. It may also be caused by the uncertainty of the AI model. Since it is a
frequent problem, many models in the literature are likely over-optimistic due to leakage
and over-fitting. Our focus in this article was more on the reliability of XAI, and we
hope in future projects to study the impact of model reliability and optimization on XAI
reliability. Another assumption is presented on the limited performance of LIME with
k-fold about the data quantity. Based on our analyses, a high number of features may
affect the stability of the XAI feature ranking, especially when the number of subjects
is relatively small. However, a high number of subjects with a low number of features
may increase the stability of feature ranking as a function of k values. This prompted
us to investigate this combination further using several ML models and case studies in
the future. In addition, in our research, we have proposed a combination of the k-fold
technique with SHAP and LIME approaches, and we envisage testing other data sampling
techniques in place of k-fold to discuss the reliability of the validation produced by this
combination.

Combining the XAI approach with external validation may also lead to reliable XAI
validation[Riley 24]. Therefore, it looks interesting to test this combination for reliable
validation of the XAI.

Ultimately, XAI aims to ensure and strengthen confidence in predictions by identifying
the basis for these predictions. This explainability is crucial in the medical field, as it is
a sensitive area where a prediction can recommend specific treatments or tests. However,
a thorough study of the reliability of XAI is also essential to reinforce this confidence.
Evaluating and improving the reliability of XAI is, therefore, a priority, motivating us to
delve deeper into this field in our future research.

V.8 Conclusion

In conclusion, this chapter proposes a novel approach to improving the reliability of
XAI by combining XAI techniques with the k-fold technique. By leveraging k-fold cross-
validation, we aim to address the challenge of varying explainability outcomes when the
selection of test and training data is changed. Integrating k-fold with XAI approaches,
such as SHAP and LIME, offers a promising avenue to enhance the generalization, con-
cordance, and stability of explainability in predictive models.

Through the development of metrics to assess the reliability of this combined approach,
we have provided insights into its performance in predicting hypothyroidism and diabetes.
Our findings highlight the importance of evaluating the generalizability and concordance
of feature rankings between several XAI techniques and the k-fold technique.

Notably, the combination of SHAP and k-fold demonstrated superior generalizability,
stability, and concordance performance, indicating its reliability in providing interpretable
explanations for predictive models. In contrast, the combination of LIME and k-fold
showed limitations in generalizability and concordance, underscoring the importance of
careful consideration when integrating XAI techniques with cross-validation methods.
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Finally, we have validated the combination of SHAP with k-fold on our private datasets.
The reliability of this combination was very good for both study cases, with some disrup-
tion of generalizability probably due to the difference in data quality.

Overall, our proposed methodology offers a systematic approach to improve the relia-
bility of XAI in predictive modeling for endocrine disease risk prediction. By enhancing
the transparency and interpretability of ML models, we contribute to building trust and
confidence in their application in clinical decision-making processes. Further research is
warranted to explore additional methods and techniques for enhancing the reliability of
XAI and advancing its utility in healthcare settings.
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VI.1 Conclusion

In response to physicians’ pressing need for improved screening and treatment per-
sonalization, this thesis presents novel approaches for predicting the risk of carbohydrate
abnormalities and MetS. The goal is to identify individuals at high and low risk, thereby
enhancing treatment personalization and screening efficiency.

In the first chapter, we reviewed our research domain’s current state of the art, iden-
tifying key limitations and challenges. The second chapter delved into data analysis and
characterization, discussing the quality of both public and private datasets. This anal-
ysis laid the groundwork for leveraging these data to predict risks and support medical
decision-making. Two distinct approaches were developed to predict glycemic anomalies
and MetS, demonstrating promising results in distinguishing high- and low-risk individ-
uals. However, the practical applicability of these models in clinical settings remains
constrained by their lack of explainability, with many physicians perceiving these ML
models as opaque black boxes. Despite achieving good performance with small datasets,
ensuring prediction reliability remains a significant challenge. Additionally, the high cost
of extracting biomarkers for MetS prediction limits the practicality of this approach for
widespread screening.

In response to these challenges, Chapter 4 introduced two innovative approaches to
enhance prediction reliability and increase physician confidence using XAI. The first ap-
proach utilized XAI to assess prediction reliability, while the second focused on using
clinical variables instead of biological ones to reduce MetS screening costs. Our results
indicated a notable improvement in the reliability of glycemic anomaly predictions and a
significant reduction in the financial burden of MetS screening without compromising pre-
dictive accuracy. Nevertheless, XAI has limitations, such as variability in explainability
when training and test datasets are modified.

To address these limitations, Chapter 5 proposes an advanced approach to improving
and evaluating XAI reliability. This approach combines XAI with a data augmentation
technique and defines specific metrics to assess the reliability of this combination. We
tested this method on two case studies, demonstrating that the integration of SHAP with
k-fold cross-validation yields promising results, thereby enhancing confidence in XAI’s
reliability.

VI.2 Contributions

To sum up, we recall below the main contributions of the thesis:

— Risk prediction of carbohydrate abnormalities and MetS: We developed
methods to identify individuals at high and low risk of carbohydrate abnormali-
ties in patients with β-TM and the risk of MetS in adolescents during screening
sessions. These contributions are crucial as they aid physicians in personalizing
treatment and screening plans based on the risk levels of their patients, improving
patient outcomes, and optimizing the management of financial resources within
healthcare systems. By focusing on high-risk patients, we ensure that they re-
ceive the necessary attention and interventions. We also allow for a more efficient
allocation of medical and financial resources by potentially reducing unnecessary
interventions for low-risk individuals.
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— XAI to assess prediction reliability of carbohydrate abnormalities: We
incorporated XAI to provide doctors with insights into the reliability of predictions
regarding carbohydrate abnormalities. By analyzing the main features contributing
to these predictions, physicians can understand the reasoning behind the model’s
outputs. This transparency builds trust in the AI system, allowing doctors to
make more informed decisions and better communicate with their patients about
the risks and recommended treatments.

— Reduce the financial cost of MetS screening using XAI: Through using
XAI, we demonstrated that it is possible to predict the risk of MetS using only
clinical variables, excluding the need for more expensive biological tests. This
finding has significant financial implications, as it allows for cost-effective screen-
ing processes. By focusing on clinically available data, healthcare providers can
maintain accuracy in their predictions while significantly reducing the overall costs
associated with MetS screening.

— Improve and evaluate XAI reliability: To enhance the reliability of XAI, we
combined it with a data sampling technique. This approach improves the validation
of explainability by considering changes in the data used for training and testing
the models. By doing so, we ensure that the explanations provided by the AI
are consistent and robust across different datasets, thereby improving the general
trustworthiness of the system. Then we developed a comprehensive set of metrics
to assess the reliability of XAI systems. These metrics include stability, which mea-
sures how consistent the explanations are over different runs; concordance, which
assesses the agreement between different explainability methods; generalizability,
which evaluates how well the explanations apply to new, unseen data; and overall
reliability, which provides a holistic view of the system’s trustworthiness. These
metrics offer a robust framework for evaluating and improving the reliability of AI
explanations in clinical settings.

VI.3 Limits and Perspectives

Despite the significant contributions of this thesis, several limitations have been iden-
tified, along with avenues for future work.

Since it is a frequent problem, many models in the literature are likely overoptimistic
due to leakage and overfitting. Our focus in this research was more on XAI reliability,
and we hope to study the impact of model reliability and optimization on XAI reliability
in future projects. In addition, in our research, we have proposed a combination of the
k-fold technique with SHAP and LIME approaches, and we envisage testing other data
sampling techniques in place of k-fold to discuss the reliability of the validation produced
by this combination. Combining the XAI approach with external validation may also
lead to reliable XAI validation. Therefore, it looks interesting to test this combination
for reliable validation of the XAI.

Our proposed approach to enhance and evaluate the reliability of XAI is limited to
basic ML models that exploit tabular data. It may not apply to deep learning models
and other data types like images. Using the Random Forest model, our XAI reliability
study was tested in only two case studies. Our findings indicated that the combination of
SHAP and k-fold validation is reliable, based on the evaluation metrics developed in this
study. However, the combination of LIME and k-fold validation showed poor performance.
This lack of reliability could be attributed to the fact that LIME is typically used as a
local explainer and may also be caused by the uncertainty of the AI model. Another
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assumption is presented on the limited performance of LIME with k-fold about the data
quantity. Based on our analyses, a high number of features may affect the stability of the
XAI feature ranking, especially when the number of subjects is relatively small. However,
a high number of subjects with a low number of features may increase the stability of
feature ranking as a function of k values.

The small database for predicting glycemic anomalies in patients with β-TM was also
an important limitation. We plan to collect more data and explore other models, such
as deep learning, to enhance ML reliability. This would allow for better generalization
of results and improved risk prediction capability among these patients. We also plan
to exploit deep learning models to analyze the predictive capacity of both carbohydrate
abnormalities and mortality together, following a strong causal relationship between these
two outputs as a result of physician interpretations.

Only three definitions of MetS were tested for standardized risk prediction of MetS,
indicating a limitation in the variety of definitions considered. To improve the general-
izability of risk prediction, we aim to gather data on other MetS definitions, providing a
more comprehensive understanding and adaptability to several patient groups.

In conclusion, while this work proposed an approach to improve and evaluate the re-
liability of XAI validation in response to a specific limitation related to explainability
change provided by XAI when training or test data is changed, this specific and limited
scope is embedded within several other XAI limitations in the literature. Ensuring and
strengthening confidence in predictions by identifying the basis for these predictions is
crucial, especially in the medical field, where a prediction can recommend specific treat-
ments or tests. Evaluating and improving the reliability of XAI is, therefore, a priority,
motivating us to delve deeper into this field in our future research. Ultimately, we want
to deploy the models developed with the XAI reliability study on an electronic board and
conduct real-world tests on the proposed approach in hospitals.
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Résumé : L’objectif de cette thèse est
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ennes à l’aide de la science des données
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est d’exploiter cette identification de risque
pour aider les médecins à gérer les ressources
financières et personnaliser le traitement
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tients atteints de bêta-thalassémie majeure,
ainsi que pour le dépistage du syndrome
métabolique chez les adolescents. Une

étude d’explicabilité des prédictions a été
développée dans cette thèse pour évaluer
la fiabilité de la prédiction des anomalies
glucidiques et pour réduire les coûts fi-
nanciers associés au dépistage du syndrome
métabolique. Enfin, en réponse aux lim-
ites constatées de l’apprentissage automa-
tique explicable, nous proposons une ap-
proche visant à améliorer et évaluer cette
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jeux de données.
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jor, and screening for metabolic syndrome
in adolescents. An explainability study of

the predictions was developed in this the-
sis to evaluate the reliability of predicting
glucose anomalies and to reduce the finan-
cial burden associated with screening for
metabolic syndrome. Finally, in response
to the observed limitations of explainable
machine learning, we propose an approach
to improve and evaluate this explainability,
which we test on several datasets.
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