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Professeir, INRIA, CNRS and École polytechnique Président

Salvatore RUGGIERI
Professeur, University of Pisa Rapporteur

Jean-Michel LOUBES
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Abstract

This dissertation explores the intersection of privacy, fairness, and causality within
the realm of machine learning (ML) and data-driven decision-making. The disser-
tation’s main contributions can be summarized as follows: (1) we investigate the
applicability of statistical and causality-based fairness notions in diverse application
domains, evaluating their alignment with stakeholder preferences and societal norms
in algorithmic decision-making systems; (2) we conduct a systematic and formal study
on the impact of local differential privacy (LDP) on fairness. We quantitatively assess
how ML model decisions change under varying levels of privacy and data distributions.
Additionally, we empirically examine the fairness implications of collecting multiple
sensitive attributes under LDP; (3) we study causal discovery through the lens of
algorithmic fairness, analyzing how the causal discovery process influences the structure
of causal graphs and, consequently, fairness conclusions. Furthermore, we propose a
novel data generation mechanism to produce biased synthetic datasets based on causal
graphs and specified bias levels, exploring the influence of different causal discovery
algorithms on various causal structures and the degree of introduced bias. Overall, this
thesis contributes to the growing body of literature on ethical and responsible artificial
intelligence by offering theoretical insights complemented by practical considerations
for policymakers, practitioners, and researchers seeking to develop fairer algorithmic
systems that adhere to privacy and explainability principles.
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Résumé
Cette thèse explore l’intersection complexe et multidimensionnelle de la confidentialité,
de l’équité et de la causalité dans le cadre de l’apprentissage automatique et des systèmes
de prise de décision algorithmiques. L’objectif est de comprendre comment ces trois
notions fondamentales interagissent et de proposer des méthodes pour améliorer la
conception de systèmes plus éthiques et responsables. Dans ce contexte, nous apportons
plusieurs contributions majeures: (1) nous examinons l’applicabilité des notions d’équité
statistiques et basées sur la causalité dans divers domaines d’application, en particulier
dans des systèmes où les décisions sont partiellement ou entièrement automatisées.
Nous analysons leur alignement avec les préférences des parties prenantes, ainsi qu’avec
les normes et attentes sociétales. Cette analyse s’appuie sur des exemples concrets
issus de différents secteurs tels que les ressources humaines, la finance et la santé.
L’objectif est d’évaluer dans quelle mesure les méthodes existantes d’évaluation de
l’équité peuvent être ajustées ou améliorées pour garantir des décisions algorithmiques
plus transparentes et justes; (2) nous menons une étude systématique et formelle sur
l’impact de la confidentialité différentielle locale sur l’équité des décisions issues de
modèles d’apprentissage automatique. Dans ce cadre, nous analysons la relation entre
les niveaux de confidentialité imposés par les mécanismes de confidentialité différentielle
locale et la performance équitable des modèles. En quantifiant les changements dans
les décisions algorithmiques en fonction de différents niveaux de protection de la
confidentialité et en examinant les variations induites par des distributions de données
hétérogènes, nous mettons en lumière des compromis importants entre confidentialité
et équité. Par ailleurs, nous abordons une question particulièrement peu explorée :
l’impact de la collecte de plusieurs attributs sensibles, tels que la race et le genre, sous
les contraintes de la confidentialité différentielle locale. Nous montrons empiriquement
que la collecte simultanée de ces attributs, dans un contexte de protection de la
confidentialité, peut accentuer ou atténuer les disparités observées dans les décisions
algorithmiques; (3) nous explorons la découverte causale à travers le prisme de l’équité
algorithmique. Plus précisément, nous analysons comment les méthodes de découverte
causale influencent la structure des graphes causals et, par extension, les conclusions sur
l’équité des décisions algorithmiques. Nous proposons un cadre théorique qui permet de
comprendre comment l’incertitude ou les erreurs dans la découverte de relations causales
peuvent impacter l’équité de manière significative. En examinant les implications de
la découverte causale sur les relations de dépendance entre variables sensibles et
résultats, nous mettons en évidence les défis liés à l’utilisation de graphes causals pour



iii

garantir l’équité dans les systèmes de prise de décision. Pour approfondir cette analyse,
nous développons un mécanisme innovant de génération de données synthétiques. Ce
mécanisme est conçu pour produire des ensembles de données biaisées, basées sur des
graphes causals spécifiques et des niveaux de biais contrôlés. Ces ensembles de données
synthétiques permettent d’étudier l’influence de différents algorithmes de découverte
causale sur des structures causales complexes et le degré de biais introduit dans les
décisions algorithmiques. En fournissant un cadre d’expérimentation reproductible,
nous contribuons à une meilleure compréhension des méthodes de correction du biais
dans les graphes causals. Dans l’ensemble, cette thèse contribue de manière significative
au corpus croissant de la littérature sur l’intelligence artificielle éthique et responsable.
Elle propose des perspectives théoriques et pratiques visant à aider non seulement les
chercheurs, mais aussi les décideurs politiques et les praticiens dans le développement
de systèmes algorithmiques plus justes et plus transparents. Nos travaux soulignent
l’importance de concevoir des modèles d’apprentissage automatique qui respectent
à la fois les principes de confidentialité et d’équité, tout en maintenant un haut
degré d’explicabilité. En intégrant ces trois dimensions, nous offrons des solutions
qui permettent de répondre aux préoccupations sociétales croissantes concernant
l’utilisation des algorithmes dans des domaines sensibles. Nos résultats peuvent ainsi
servir de guide pour la conception de politiques publiques et de meilleures pratiques
dans le développement et le déploiement d’algorithmes, avec pour objectif ultime de
promouvoir une intelligence artificielle au service de tous.
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Chapter 1

Introduction

1.1 The Ethics of Artificial Intelligence

August 2016.

Allegheny County, Pennsylvania, USA.

An automated system called the Allegheny Family Screening Tool (AFST)
assigned a risk score of child maltreatment for a 14-year-old living in a bad-
conditioned house three times higher than for a 6-year-old potentially facing
abuse and homelessness. Why does this discrepancy occur?

AFST was found to be unfair as it uses referral calls made by neighbors to
report child abuse or maltreatment to make its predictions. The problem is that
the community calls the child abuse hotline to report non-white families at a
much higher rate than it does to report white families. In other words, AFST
uses a hypothetical proxy for child harm, namely referral calls, not actual child
abuse [82]. As a result, these discriminated families are subject to greater
scrutiny and more requirements to satisfy. Eventually, they will likely fall
short of these requirements and confirm the system’s predictions.

As we all know, artificial intelligence (AI) is already significantly impacting
society, and this impact will only increase in the future. With the rise of AI, key
questions span a variety of ethical, technical, and societal aspects. What ethical
guidelines should govern the development and deployment of AI? How can we ensure
fairness and avoid bias in AI algorithms? What are the implications of AI on privacy,
and how can we protect individuals’ data? How can we make AI systems more
understandable and interpretable? What regulatory frameworks are needed to ensure
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responsible AI development and use? What are the potential long-term societal and
cultural impacts of widespread AI adoption? How can we ensure that AI benefits
humanity rather than exacerbating existing inequalities?

Addressing these questions involves an interdisciplinary joint effort among computer
scientists, socialists, ethicists, policymakers, and the broader public to shape the future
development and integration of AI responsibly and beneficially.

Many organizations have launched initiatives to establish ethical principles that
focus on maximizing the societal benefits of AI while minimizing potential harm.
Examples of such organizations include the AI Ethics Guidelines by the European
Commission [83], the IEEE Global Initiative on Ethics of Autonomous and Intelligent
Systems [109], the NoBIAS project funded by European Union’s Horizon 2020 research
and innovation program [7], the China Global AI Governance [49], and Partnership on
AI [105].

Some of the central principles of AI ethics include, among others, fairness, privacy,
explainability, and safety. In the following sections, we present the three specific
subdomains of AI ethics that are the focus of this thesis, namely fairness, privacy, and
causality1.

1.1.1 Fairness

Automated systems are increasingly making decisions across various domains. These
systems strive to make optimal decisions by analyzing relevant historical data and
employing Machine Learning (ML) algorithms. However, to maximize efficiency,
ML algorithms can systemize discrimination against a specific population, typically
minorities. In one notable case, researchers at MIT found that commercially available
facial recognition systems showed higher error rates when identifying darker-skinned
individuals and women compared to lighter-skinned individuals and men [43]. This bias
may lead to unfair outcomes, such as misidentification by law enforcement or denial
of access to services based on flawed facial recognition technology. Another example
is the use of automated resume screening systems by companies during the hiring
process. Studies have shown that these systems can inadvertently discriminate against
candidates based on gender, race, or socioeconomic background [67]. For instance, if
historical hiring data is biased toward certain demographics, the algorithm may learn
and propagate these biases, leading to unfair outcomes for underrepresented groups.

1Causality is closely linked to explainability because it can help identify the root causes behind AI
decisions or predictions.
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These biases in data can pose more significant risks when applied to other critical
or sensitive contexts. For instance, numerous cases exist in medical fields where the
data used are biased toward particular demographics, posing potential hazards for
marginalized populations. One example is the case of a widely used commercial
algorithm used to predict healthcare needs and costs, which was found to allocate
healthcare resources away from Black patients disproportionately [176].

Types of Bias in AI. Various types of bias may manifest, potentially resulting in
unfairness across diverse downstream learning tasks. The data used for the model
training introduces the most known type of bias. Common examples of bias in data
include historical bias, measurement bias, representation bias, etc. Historical bias may
reflect systemic inequalities and disparities that have existed in society over time and
is influenced by stereotypes, prejudices, or subjective judgments that reflect societal
attitudes and biases prevalent at the time of data collection. Measurement bias refers
to a type of bias that arises from inaccuracies or inconsistencies in the measurement
process used to collect data. It can occur because proxies are generated differently
across sub-populations. An example of this type of bias was observed in the recidivism
risk prediction tool COMPAS [56], where prior arrests and friend/family arrests were
used as proxy variables to measure an individual’s likelihood of reoffending. This stems
in part from the increased scrutiny and policing of minority sub-populations, resulting
in higher arrest rates [227]. Representation bias arises when the data used to train or
test a model does not accurately represent the real-world population or distribution of
interest. In other words, the data is not sufficiently representative, yielding incomplete
representations of certain groups [133, 53]. For instance, in 2016, Beauty.AI, an
automatic face analysis system supported by Microsoft, was used to identify the most
attractive contestants based on facial symmetry, wrinkles, and other features. The
competition garnered approximately 6000 entrants from over 100 countries. Of the 44
winners, the overwhelming majority were white, with a small number of Asian winners,
and only one winner had dark skin. While Beauty.AI did not intend to favor light skin
as a beauty standard, the input data biases effectively steered the algorithmic judges
to this conclusion [125].

ML algorithms can also introduce bias called algorithmic bias, mainly if the algo-
rithms are not designed to account for fairness considerations. That is, algorithmic
bias occurs when the bias is introduced solely by the algorithm, independent of bias in
the input data [21].
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Bias can also occur during the deployment and use of AI systems, mainly if applied
in contexts where they were not appropriately trained or validated. [164] includes a
more comprehensive list of the types of bias.

Algorithmic Discrimination. Like bias, discrimination is also a source of unfairness.
While bias can stem from factors such as data collection, sampling, and measurement,
discrimination refers to the unfair or prejudicial treatment of individuals or groups
based on specific sensitive attributes such as race, gender, age, disability, or religion.
Discrimination can take on various forms, namely, direct and indirect. Another type of
discrimination worth noting is explainable discrimination. These three forms will be
briefly introduced in what follows.

• Direct Discrimination. Direct discrimination refers to explicit disparate treat-
ment of individuals or groups based on specific attributes. Typically, these
attributes are recognized by law as traits against which discrimination is pro-
hibited. Computer science literature refers to them as protected or sensitive
attributes. An example of direct discrimination is when an employer refuses
to hire a qualified candidate solely because of their race. In this scenario, the
employer’s decision to discriminate against the candidate is explicit and based
entirely on their race, without considering their qualifications or abilities.

• Indirect Discrimination. Indirect discrimination occurs when seemingly neu-
tral rules, practices, or policies disproportionately disadvantage individuals or
groups with particular sensitive attributes, even if those attributes are not ex-
plicitly used to make decisions, leading to unequal outcomes. An example of
indirect discrimination is using residential zip codes as a proxy for determining
creditworthiness or eligibility for financial services, such as loans or mortgages.
This practice, known as redlining [187], involves denying or limiting access to
financial products and services based on the neighborhood or area in which
individuals reside. Although zip code appears to be a non-sensitive attribute, it
may correlate with race because of the population of residential areas [197].

• Explainable Discrimination. Explainable discrimination refers to instances
of discrimination with an apparent and identifiable reason or explanation for
the disparate treatment or unequal outcomes experienced by individuals or
groups. Unlike direct and indirect discrimination, where discrimination is evident,
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explainable discrimination may appear justified based on seemingly legitimate at-
tributes [119]. For instance, hiring practices may unduly benefit candidates from
privileged professional backgrounds or specific educational qualifications. Conse-
quently, these attributes might be cited to justify and elucidate the discrepancies
between different groups.

Fairness Notions. Given the subjectivity inherent in understanding the concept of
fairness, the literature has introduced several diverse and nuanced notions to grasp its
multifaceted dimensions better. Fairness notions are formally defined to evaluate and
measure discrimination adeptly within data or algorithmic decisions, facilitating the
identification of biased outcomes. These notions can be broadly categorized into three
main categories: group fairness, individual fairness, and causality-based fairness, each
addressing distinct aspects of fairness in decision-making processes.

• Group Fairness Notions. This type of fairness notion aims to ensure fair
treatment for entire groups, particularly those distinguished by specific sensitive
attributes such as race, gender, or age. Group fairness notions can be characterized
by the properties of the joint distribution of the sensitive attribute, the true
decision, and the prediction. This means we can write them as some statement
involving properties of these three attributes resulting in the following fairness
criteria: independence, separation, and sufficiency [24]. Independence means that
the sensitive attribute is statistically independent of the prediction. Separation
refers to a category of fairness notions that, to varying extents, ensure conditional
independence between the prediction and the sensitive attribute given the true
decision. Finally, sufficiency represents a category of fairness notions that, to
different degrees, ensure conditional independence between the true decision and
the sensitive attribute given the prediction.

Overall, while group fairness notions play a crucial role in promoting fairness and
transparency in algorithmic decision-making and are relatively easy to apply, they
may oversimplify the complexities of real-world contexts, overlooking individual
differences and nuances within demographic groups.

• Individual Fairness Notions. This type of fairness notion emphasizes fairness
at the individual level, focusing on treating similar individuals similarly [75]. In
other words, individual fairness seeks to ensure that similar individuals receive
similar outcomes or decisions, regardless of their membership in any particular
group or demographic category. One issue in the practical application of individual
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fairness is determining what constitutes fair treatment at the individual level,
which can be subjective and context-dependent. In particular, it is difficult
to establish a similarity measure and identify the relevant attributes for which
individuals should present a resemblance. Another problem is that individual
fairness can lead to overlooking systemic or structural factors contributing to
broader inequalities between groups.

• Causality-based Fairness Notions. This third type of fairness notion differs
from the aforementioned statistical fairness (group and individual) approaches
in that they are not totally based on data but consider additional knowledge
about the structure of the world in the form of a causal model. This broader
understanding enables us to grasp how data is generated and how variable changes
propagate within a system. Many of these fairness notions are framed in terms
of non-observable factors, such as interventions (to emulate random experiments)
and counterfactuals (which contemplate hypothetical scenarios beyond the actual
world). The main challenge in applying causality-based fairness notions is that
they may require extensive, high-quality data to construct accurate causal models,
which are not always readily available, particularly in applications of the real world.
Another problem regarding the applicability of these notions is the calculation
of unobservable quantities (interventions and counterfactuals), which may prove
impossible in some cases. This problem is called (un)identifiability [181].

Challenges and Complexities of Achieving Fairness in AI. Achieving fairness
in AI presents several challenges and complexities that could make fairness difficult
to achieve in practice. One of the problems relates to legal and ethical considera-
tions. Specifically, achieving fairness in AI involves navigating the legal and ethical
frameworks that govern discrimination, privacy, and civil rights. Critical challenges
include complying with regulations such as the General Data Protection Regulation
(GDPR)2 and ensuring alignment with ethical principles such as privacy, transparency,
and accountability. Another question concerns the choice of evaluation measure used to
assess fairness. Defining and measuring fairness in AI systems is complex and context-
dependent. Developing robust assessment measures that capture different aspects
of fairness, such as group fairness and individual fairness, is a significant challenge,
primarily because some notions of fairness are incompatible and cannot be carried out
simultaneously [24, 166, 8]. Another challenge related to the opaque aspect of group
bias mitigation arises from the reliance on complex and non-transparent models to

2https://gdpr-info.eu/



1.1 The Ethics of Artificial Intelligence 7

reduce the influence of sensitive attributes in ML. This includes deep learning, ensemble
models, or sophisticated data projections [132]. Moreover, there are trade-offs between
fairness and other desirable properties of AI systems, such as accuracy, efficiency, and
interpretability [4, 135]. Balancing these trade-offs requires careful consideration of AI
decisions’ societal impact and ethical implications. Thus, addressing these challenges
requires a multidisciplinary approach involving researchers, policymakers, ethicists,
and technologists to develop fair and reliable AI systems that benefit society.

1.1.2 Privacy

In the data context, privacy protects sensitive information, such as personal identifiers,
medical records, financial transactions, and online activities, from unauthorized access,
use, or disclosure. In 2014, Anthem Inc., one of the largest health insurers in the U.S.,
experienced a data breach affecting nearly 80 million individuals, compromising their
personal and medical information3. In 2018, it was revealed that Cambridge Analytica,
a political consulting firm, harvested the personal data of millions of Facebook users
without their consent. This data was used to create psychological profiles for targeted
political advertising during the 2016 U.S. presidential election. The scandal raised
concerns about using personal data for political manipulation and led to investigations
into Facebook’s data privacy practices4.

Data anonymization is a process used to protect the privacy of individuals by chang-
ing or removing identifiable information from data sets. This technique ensures that
data cannot be used to identify specific individuals while preserving its usefulness for
analysis and research purposes. Anonymization techniques such as k-anonymity [228],
l-diversity [149], and t-closeness [142] ensure that individual records in a dataset cannot
be distinguished from each other w.r.t identifying attributes specifically, thus reducing
the risk of re-identification. While these techniques provide a degree of privacy by
obscuring individual identities, they may not always offer strong guarantees against
re-identification attacks. In 2006, Netflix released a large dataset containing anonymous
movie ratings of thousands of users and their demographic information for contest
entrants. Despite efforts to anonymize the dataset by removing personally identifiable
information, such as names and addresses, the researchers demonstrated that it was pos-
sible to re-identify individuals by combining the Netflix dataset with publicly available
information from another movie platform, the Internet Movie Database (IMDb) [171].

3https://coverlink.com/case-study/anthem-data-breach/
4https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
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In response to these challenges, researchers and practitioners have turned to a more
robust framework for privacy called differential privacy (DP) [76].

Differential Privacy (DP). DP is a rigorous framework that guarantees strong
privacy by adding carefully calibrated noise to query responses or data. The key
concept in DP is the notion of plausible deniability. In other words, under the DP
framework, any query or analysis performed on a dataset should not reveal sensitive
information about any individual, regardless of what other information an adversary
may have. Essentially, DP assures that including or excluding an individual’s data
from a dataset will not substantially alter the likelihood of any given outcome [74].
This assurance is quantified by a parameter ε, indicating the privacy protection degree.
A smaller ε corresponds to a narrower gap between datasets with and without a specific
record, thereby indicating a higher level of privacy. Other beneficial properties of
DP include sequential composition and robustness to post-processing [77]. Sequential
composition allows for quantification of the privacy level ε such that the total privacy
level when crossing information from several sources is always bounded by the sum of
the privacy levels of each individual source. The robustness to post-processing implies
that regardless of any subsequent data processing or function applied to differentially
private data, the output remains differentially private. Central DP (CDP) and Local
DP (LDP) are two variants of DP that differ in their approach to protecting privacy.

• Central Differential Privacy (CDP). CDP is the initial design of DP, which
operated assuming the central server responsible for data collection and pro-
cessing could be trusted. In CDP, the central server applies privacy-preserving
mechanisms to the aggregated data before releasing the results or performing
further analysis. The primary goal of CDP is to provide strong privacy guarantees
while enabling centralized data collection and analysis. However, the assumption
of trust in central servers became increasingly problematic as concerns about
data breaches, unauthorized access, and misuse of personal information grew.
This led to the need for a privacy setting where the server is assumed to be
untrusted.

• Local Differential Privacy (LDP) [121]. LDP emerged as a solution that
decentralizes privacy protection, allowing users to perturb their data locally before
sharing it with a central authority. This approach reduces reliance on centralized
trust and minimizes the risk of data breaches. In other words, in the context of
LDP, the server is assumed to be untrusted. This means that data is obfuscated
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before it is sent to the server, ensuring that it cannot infer any individual’s private
information directly from the data it receives. Users have greater visibility and
control over data handling, promoting trust and cooperation in data-sharing
ecosystems. Several high-tech companies such us Google [79], Apple [229], and
Microsoft [69] have shown interest in and adopted LDP techniques to enhance
user privacy while maintaining data utility.

1.1.3 Causality

The study of causality has evolved over centuries, drawing on insights from philosophy,
science, statistics, and other disciplines. In recent decades, advances in statistical
methods and computational techniques have led to significant progress in causality.
Researchers have developed sophisticated models, such as structural equation modeling
(SEM) [37], instrumental variable analysis [223], and Bayesian networks [104], to
address complex causal questions in epidemiology, public health, and ML.

Several approaches have been developed to elucidate and quantify causal rela-
tionships between variables. The main two approaches are experimental studies and
observational studies. Experimental studies, including randomized controlled trials
(RCTs) [224], are the gold standard for establishing causality. In an experimental study,
researchers manipulate an independent variable (the treatment) and measure its effect
on a dependent variable (the outcome) while controlling for potential confounding
variables5. However, in some cases, conducting RCTs may be unethical or impractical.
For example, it may be unethical to withhold a potentially life-saving treatment from
participants, especially if there is strong evidence supporting its efficacy. In such
cases, observational studies can be a good alternative. Observational studies involve
observing naturally occurring phenomena without intervention by the researcher. While
observational studies cannot establish causality as definitively as experimental studies,
they can still provide valuable insights into causal relationships.

Causal inference and causal discovery are two related but distinct areas within the
broader study of causality. While they share the common goal of uncovering causal
relationships between variables, their approaches and methodologies differ. We present
each of them in the following.

Causal Inference. Causal inference is the process of making inferences about causal
relationships between variables based on observed data. This involves determining

5Confounding variables are variables that are common causes of both the treatment and the
outcome.
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whether one variable causes changes in another variable and estimating the magnitude
and direction of the causal effects. Causal inference often relies on statistical methods
and frameworks, such as Pearl’s structural causal models (SCMs) [182] and Rubin’s
potential outcomes framework [110]. Formally, the two frameworks are equivalent [183,
167]. However, each is more equipped to address different problems in particular
situations. For example, accounting for the many causal pathways in real applications
can be more straightforward using SCM. On the other hand, potential outcome
framework is preferred when estimating individual-level causal effects.

• Structural Causal Model (SCM) Framework. The SCM framework is a
mathematical framework used to represent causal relationships among variables in
a system. It provides a formal way to describe how variables causally influence one
another and how interventions or changes to the system affect its behavior. The
SCM framework is widely used in economics, epidemiology, social sciences, and
ML for causal inference, prediction, and decision-making. Causal assumptions
between variables are captured by a directed acyclic graph (DAG) G = (V, E),
where vertices V represent variables and directed edges E represent functional
relationships between the variables. The DAG relates causal structure and joint
distribution in the data through the Markov condition, where every variable
is conditionally independent of its nondescendants given its parents. Directed
edges can have two interpretations. A probabilistic interpretation where the
edge represents a dependency among the variables such that the direction of the
edge is irrelevant. A causal interpretation where the edge represents a causal
influence between the corresponding variables such that the direction of the edge
matters. In the presence of a cause-effect relation between two variables A and
Y , a confounder is a third variable C, which affects both the cause A and the
effect Y .

The SCM framework allows researchers to predict the effects of interventions
or changes to the system by simulating counterfactual outcomes under different
intervention scenarios. Counterfactuals represent what would have happened if
certain variables had taken different values, allowing researchers to assess the
causal impact of interventions on the system. Interventional and counterfactual
quantities are causal quantities that can be computed from observational data
under some identifiability conditions [181]. These conditions outline the criteria
dictating when and how causal quantities can be computed from observational
data.
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• Potential Outcomes Framework. Unlike the SCM framework, expressing
causal relations in the potential outcome framework starts at the unit level. A
unit i is the atomic research object. For example, every patient corresponds to a
unit i in a clinical trial investigating the effectiveness of a new drug (treatment)
for reducing blood pressure in patients with hypertension. The potential outcome
aims to compare observed “factual” outcomes with hypothetical “counterfactual”
outcomes that would have occurred under different treatment conditions. It
defines causal effects as the difference between the observed and counterfactual
outcomes. For the clinical trial example, the potential outcome framework allows
us to compare the observed outcomes (blood pressure measurements) with the
counterfactual outcomes (what would have happened if the patient received
a different or no treatment at all?). In observational studies (in contrast to
experimental studies), only one potential outcome can be observed: the factual
outcome. The counterfactual potential outcome is usually impossible to observe.
The potential outcome framework is widely applied to various fields, including
epidemiology, social sciences, and economics.

SCM vs. Potential Outcomes. Although both causal frameworks are considered
equivalent [183], interesting differences exist between them. Depending on the task at
hand, one framework might be more appropriate to use than the other. For example,
reasoning about causal effects at the individual (unit) level is more straightforward with
the potential outcome framework [167]. On the other hand, considering the different
paths of causal effects (direct, indirect, and spurious) is much easier to achieve using
SCMs and causal graphs. More generally, the potential outcome framework is more
suitable for causal inference problems where the goal is to narrowly estimate the causal
(treatment) effect of a cause variable A on an outcome variable Y . There are two justifi-
cations for this point. First, developing estimators of causal effects and counterfactuals
can be more straightforward using the potential outcome framework [260]. Second,
the potential outcome framework can decompose the sources of inconsistency and
bias into unaccounted-for baseline differences between individuals and treatment effect
bias [167]. SCMs and causal graphs, however, are more suitable in causal discovery
problems where the goal is to learn the causal relations among a set of variables [98].
The potential outcome framework is not well equipped for such issues because the
causal effect of variables other than the treatment (sensitive attribute) is not defined.
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Causal Discovery. The main impediment to causal inference is the unavailability of
the true causal graph, which can be set manually by experts in the field but is very
often generated using experiments (also called interventions). Identifying the causal
graph is called causal discovery or structural learning. Causal discovery methods aim
to uncover causal relationships by analyzing patterns in data, identifying statistical
dependencies, and inferring causal structures from observed correlations.

A large number of causal discovery algorithms exist in the literature. Most of these
algorithms fall into three categories: constraint-based, score-based, and procedures that
exploit semi-parametric assumptions. In the constraint-based category, algorithms such
as PC [218], FCI [219], and σ-CG [88] rely mainly on the (conditional) independencies
in the data to discover causal relations between variables. Therefore, their efficiency
depends on the reliability of the conditional independence test procedure. Score-based
algorithms, such as GES [52], FGES [193], and HCR [41] rely instead on goodness-of-fit
tests. They learn causal graphs by maximizing a scoring criterion such as the Bayesian
Information Criterion (BIC) [203], which trades off accuracy (fitness of graph to the
data) with complexity (the number of parameters in the model). Algorithms in the
third category, such as LiNGAM [207], PNL [269], and DCDI [39] use additional
assumptions to learn causal relations more efficiently and in more detail. The most
common assumptions relevant to the third category are the linearity of the model and
the non-gaussianity of the regression residuals. Algorithms in the first two categories
do not make strong assumptions about the parametric form or functions of causal
connections. Therefore, they can theoretically be applied to more scenarios than the
third category. However, most available implementations of constraint-based and score-
based causal discovery algorithms model variables as multivariate Gaussian mixture,
which implies linearity and Gaussianity of all continuous variables. Causal graphs
returned by algorithms in the third category are more accurate than those of the two
first categories, which are simply Markov equivalence classes. Two graphs belong to the
same Markov equivalence class when they imply the same independence constraints. In
such cases, researchers can leverage domain-specific background knowledge to eliminate
specific causal relations, thereby reducing the set of valid causal graphs.
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1.2 Summary of Contributions

The contributions of this dissertation are outlined as follows.

1. We examine prevalent fairness notions, exploring their inherent tensions and
incompatibilities. Using several toy examples, we also provide how the various
fairness notions can be computed in practice. [Chapter 3/Section 3.2]

2. We propose a decision diagram integrating a set of fairness-related features of
real-world scenarios that can help researchers, practitioners, and policymakers
answer the question of “which notion of fairness is most appropriate to a given
real-world scenario and why?”. [Chapter 3/Section 3.3]

3. We provide a guideline to help select a suitable causality-based fairness notion
given a specific real-world scenario and a ranking of these fairness notions
according to Pearl’s causation ladder, indicating how difficult it is to deploy each
notion in practice. [Chapter 3/Section 3.4]

4. We summarize the main identifiability results concerning the specific problem of
discrimination discovery, emphasizing graphical criteria. In particular, we compile
key findings on the identifiability of causal and counterfactual effects of particular
relevance to ML fairness, including identifiability (Pearl’s SCM framework) and
estimation (potential outcome framework). [Chapter 3/Section 3.4]

5. We empirically study the impact of collecting multiple sensitive attributes un-
der LDP on fairness by applying seven state-of-the-art LDP protocols. More
specifically, we compare the impact of these LDP protocols under a homogeneous
encoding when training ML binary classifiers, and we show that fairness and
LDP can go hand in hand. [Chapter 4/Section 4.2]

6. We propose a novel privacy budget allocation scheme for LDP that considers
the varying domain size of sensitive attributes. Our approach generally led to a
better privacy-utility-fairness trade-off in our experiments than the state-of-the-
art solution. [Chapter 4/Section 4.2]

7. We investigate the impact of training a model with multiple sensitive attributes,
obfuscated under LDP guarantees, using two variants (independent and com-
bined) of the widely recognized k-ary randomized response mechanism [115].
Our findings reveal that multidimensional LDP approaches (independent and
combined) show differences in their impact on fairness, particularly under weak
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privacy guarantees. Moreover, LDP obfuscation disproportionately affects a
specific protected group, which depends heavily on the distribution of the true
decision. [Chapter 4/Section 4.3]

8. We conduct a systematic and formal study of the effect of LDP on fairness.
Specifically, we perform a quantitative study of how the fairness of the decisions
made by the ML model changes under LDP for different levels of privacy and data
distributions. In particular, we provide bounds in terms of the joint distributions
and the privacy level, delimiting the extent to which LDP can impact the fairness
of the model. We characterize the cases where privacy reduces discrimination and
those with the opposite effect. We validate our theoretical findings on synthetic
and real-world datasets. [Chapter 4/Section 4.4]

9. We conduct experimental analysis to demonstrate how the causal discovery
procedure affects the structure of the causal graph, thereby influencing fairness
conclusions. Specifically, we show how different causal discovery approaches
can lead to diverse causal models, with even minor variations between them
substantially impacting fairness conclusions. [Chapter 5/Section 5.2]

10. We propose a mechanism that accepts a causal graph and a specified discrimi-
nation level as inputs, producing a biased synthetic dataset that adheres to the
causal graph’s structure while maintaining the desired level of discrimination.
Employing this mechanism, we investigate the influence of different causal dis-
covery algorithms on various causal structures and the degree of introduced bias.
[Chapter 5/Section 5.3]

1.3 List of Publications

The material presented in this dissertation has appeared in the following publications.

1. Survey on Fairness Notions and Related Tensions [8]

This paper has been accepted and published in the EURO Journal on Decision
Processes 2023 proceedings. Chapter 3/Section 3.2 presents the main contribution
of this paper.

Abstract. Automated decision systems are increasingly used to make consequen-
tial decisions in problems such as job hiring and loan granting, hoping to replace
subjective human decisions with objective machine learning (ML) algorithms.
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However, ML-based decision systems are prone to bias, resulting in unfair deci-
sions. Several notions of fairness have been defined in the literature to capture the
different subtleties of this ethical and social concept (e.g., statistical parity, equal
opportunity, etc.). Fairness requirements must be satisfied while learning models
create tensions among the notions of fairness and other desirable properties such
as privacy and classification accuracy. This paper surveys the commonly used
notions of fairness and discusses the tensions between them and between fair-
ness and accuracy. Different methods to address the fairness-accuracy trade-off
(classified into four approaches: pre-processing, in-processing, post-processing,
and hybrid) are reviewed. The survey is consolidated with experimental analysis
on fairness benchmark datasets to illustrate the relationship between fairness
measures and accuracy in real-world scenarios.

2. Machine learning fairness notions: Bridging the gap with real-world
applications [156]

This journal paper is accepted and published in IPM (Information Processing
and Management) 2021. Chapter 3/Section 3.3 presents the main findings of
this paper. A preliminary version of this paper was presented at the BIAS 2020
workshop and published in the SIGKDD ACM Explorations Newsletter 2021.

Abstract. Machine Learning (ML) based predictive systems are increasingly
used to support decisions that critically impact individuals’ lives, such as college
admission, job hiring, child custody, criminal risk assessment, etc. As a result,
fairness emerged as an important requirement to guarantee that ML predictive
systems do not discriminate against specific individuals or entire sub-populations,
particularly minorities. Given the inherent subjectivity of viewing the concept of
fairness, several notions of fairness have been introduced in the literature. This
paper is a survey of fairness notions that, unlike other surveys in the literature,
addresses the question, “Which notion of fairness is most suited to a given real-
world scenario and why?”. Our attempt to answer this question consists in (1)
identifying the set of fairness-related characteristics of the real-world scenario at
hand, (2) analyzing the behavior of each fairness notion, and then (3) fitting these
two elements to recommend the most suitable fairness notion in every specific
setup. The results are summarized in a decision diagram that practitioners and
policymakers can use to navigate the relatively large catalog of ML fairness
notions.
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3. Identifiability of Causal-based ML Fairness Notions [157]

This paper was accepted for presentation and published in the proceedings of the
14th International Conference on Computational Intelligence and Communication
Networks (CICN) 2022. This study is presented in Chapter 3/Section 3.4.3.

Abstract. Machine learning algorithms can produce biased outcomes/predictions,
typically against minorities and under-represented sub-populations. Therefore,
fairness is emerging as an important requirement for the safe application of
machine learning-based technologies. The most commonly used fairness notions
(e.g., statistical parity, equalized odds, predictive parity, etc.) are observational
and rely on mere correlation between variables. These notions fail to identify
bias in the case of statistical anomalies such as Simpson’s or Berkson’s para-
doxes. Causality-based fairness notions (e.g., counterfactual fairness, no-proxy
discrimination, etc.) are immune to such anomalies and hence more reliable for
assessing fairness. However, causality-based fairness notions are defined in terms
of quantities (e.g., causal, counterfactual, and path-specific effects) that are not
always measurable. This is known as the identifiability problem and is the topic
of a large body of work in the causal inference literature. The first contribution
of this paper is a compilation of the major identifiability results that are par-
ticularly relevant to machine learning fairness. To the best of our knowledge,
no previous work in ML fairness or causal inference provides such systemization
of knowledge. The second contribution is more general and addresses the main
problem of using causality in machine learning: extracting causal knowledge from
observational data in real scenarios. This paper shows how this can be achieved
using identifiability.

4. When Causality Meets Fairness: A Survey [158]

This journal paper is accepted and published in JLAMP (Journal of Logical
and Algebraic Methods in Programming) 2024. This study is presented in
Chapter 3/Section 3.4.

Abstract. Addressing the problem of fairness is crucial to safely use machine
learning algorithms to support decisions with a critical impact on people’s lives,
such as job hiring, child maltreatment, disease diagnosis, loan granting, etc.
Several notions of fairness have been defined and examined in the past decade,
such as statistical parity and equalized odds. However, the most recent notions
of fairness are causal-based and reflect the now widely accepted idea that using
causality is necessary to address the problem of fairness appropriately. This
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paper examines an exhaustive list of causal-based fairness notions and studies
their applicability in real-world scenarios. As most causal-based fairness notions
are defined in non-observable quantities (e.g., interventions and counterfactuals),
their deployment in practice requires computing or estimating those quantities
using observational data. This paper offers a comprehensive report of the different
approaches to infer causal quantities from observational data, including identifia-
bility (Pearl’s SCM framework) and estimation (potential outcome framework).
The main contributions of this survey paper are (1) a guideline to help select a
suitable fairness notion given a specific real-world scenario and (2) a ranking of
the fairness notions according to Pearl’s causation ladder, indicating how difficult
it is to deploy each notion in practice.

5. (Local) Differential Privacy has NO Disparate Impact on Fairness [16]

This paper was accepted for presentation and published in the proceedings of
the Conference on Data and Applications Security and Privacy (DBSec) 2023.
It won the best paper award at the conference. The results of this paper are
presented in Chapter 4/Section 4.2.

Abstract. In recent years, Local Differential Privacy (LDP), a robust privacy-
preserving methodology, has gained widespread adoption in real-world applica-
tions. With LDP, users can perturb the data on their devices before sending it
out for analysis. However, as collecting multiple sensitive information becomes
more prevalent across various industries, collecting a single sensitive attribute
under LDP may not be sufficient. Correlated attributes in the data may still
lead to inferences about the sensitive attribute. This paper empirically studies
the impact of collecting multiple sensitive attributes under LDP on fairness.

6. On the Impact of Multi-dimensional Local Differential Privacy on
Fairness [154]

This paper was accepted for presentation and published in the proceedings of
the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD) 2024 – Journal track of Data
Mining and Knowledge Discovery. The results of this paper are presented in
Chapter 4/Section 4.3.

Abstract. Automated decision systems are increasingly used to make consequen-
tial decisions in people’s lives. Due to the sensitivity of the manipulated data
and the resulting decisions, several ethical concerns need to be addressed for the
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appropriate use of such technologies, particularly fairness and privacy. Unlike
previous work, which focused on centralized differential privacy (DP) or on local
DP (LDP) for a single sensitive attribute, in this paper, we examine the impact of
LDP in the presence of several sensitive attributes (i.e., multi-dimensional data)
on fairness. Detailed empirical analysis on synthetic and benchmark datasets
revealed very relevant observations. In particular, (1) multi-dimensional LDP is
an efficient approach to reduce disparity, (2) the variant of the multi-dimensional
approach of LDP (we employ two variants) matters only at low privacy guarantees
(high ε), and (3) the true decision distribution has an important effect on which
group is more sensitive to the obfuscation. Last, we summarize our findings as
recommendations to guide practitioners in adopting effective privacy-preserving
practices while maintaining fairness and utility in machine learning applications.

7. A Systematic and Formal Study of the Impact of Local Differential
Privacy on Fairness: Preliminary Results [155]

This paper was accepted for presentation and published in the proceedings of the
Computer Security Foundations Symposium (CSF) 2024. This study is presented
in Chapter 4/Section 4.4.

Abstract. Machine learning (ML) algorithms rely primarily on the availability
of training data, and, depending on the domain, these data may include sensitive
information about the data providers, thus leading to significant privacy issues.
Differential privacy (DP) is the predominant solution for privacy-preserving ML,
and the local model of DP is the preferred choice when the server or the data
collector is not trusted. Recent experimental studies have shown that local DP
can impact ML prediction for different subgroups of individuals, thus affecting
fair decision-making. However, the results are conflicting in the sense that some
studies show a positive impact of privacy on fairness while others show a negative
one. In this work, we conduct a systematic and formal study of the effect of local
DP on fairness. Specifically, we perform a quantitative study of how the fairness
of the decisions made by the ML model changes under local DP for different
levels of privacy and data distributions. In particular, we provide bounds in
terms of the joint distributions and the privacy level, delimiting the extent to
which local DP can impact the fairness of the model. We characterize the cases
where privacy reduces discrimination and those with the opposite effect. We
validate our theoretical findings on synthetic and real-world datasets. Our results
are preliminary in the sense that, for now, we study only the case of one sensitive
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attribute and only statistical disparity, conditional statistical disparity, and equal
opportunity difference.

8. Causal Discovery for Fairness [34]

This paper was accepted at the NeurIPS workshop on algorithmic fairness through
the lens of causality and privacy and published in the conference proceedings
2022. The results of this paper are presented in Chapter 5/Section 5.2.

Abstract. Fairness guarantees that ML decisions do not discriminate against
individuals or minority groups. Identifying and measuring fairness/discrimination
reliably is better achieved using causality, which considers the causal relation,
beyond mere association, between the sensitive attribute (e.g., gender, race,
religion, etc.) and the decision (e.g., job hiring, loan granting, etc.). However, the
big impediment to using causality to address fairness is the unavailability of the
causal model (typically represented as a causal graph). Existing causal approaches
to fairness in the literature do not address this problem and assume that the
causal model is available. In this paper, we do not make such an assumption, and
we review the major algorithms used to discover causal relations from observable
data. This study focuses on causal discovery and its impact on fairness. In
particular, we show how different causal discovery approaches may result in
different causal models and, most importantly, how slight differences between
causal models can significantly impact fairness/discrimination conclusions.

9. Causal Discovery on Biased Data

This paper will be submitted to the 39th Annual AAAI Conference on Artificial
Intelligence. The results of this paper are presented in Chapter 4/Section 4.4.

Abstract. Leveraging cause-effect relations between variables is essential to
appropriately address various problems in several scientific fields. However, a
crucial drawback in using causality is the lack of ground truth of the causal
model that underlies the generating process for real-world data. Currently, few
datasets are documented with a proper causal structure, most of which are
bivariate. Moreover, these datasets often exhibit inherent biases that can impact
the fairness of models trained on them. A promising way to overcome these
issues is the generation of data synthetically. This paper aims to study the
behavior of causal discovery algorithms in the presence of biased data. To this
end, we introduce a mechanism that takes a causal graph and a discrimination
level as input and generates a biased synthetic dataset satisfying the causal
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structure of the graph with a desired discrimination level. Using this mechanism,
we could observe how various causal discovery algorithms are impacted by the
type of causal structures and the amount of injected bias. The mechanism also
allowed us to study the behavior of causal discovery algorithms when outcome
distribution is modified (by shifting the binarization threshold). The most
notable observation is that in the presence of fair/unbiased data, causal discovery
algorithms fail to correctly identify crucial parts of the causal structure (e.g.,
the direct edge between the sensitive and outcome nodes, confounding paths,
etc.), which produces misleading fairness conclusions when causal based fairness
notions are used.

1.4 List of Awards

During my Ph.D. studies, I obtained the following awards.

• IP Paris PhD best poster award in computing, data, and AI. The poster sum-
marises the work related to our Paper: Causal Discovery for Fairness [34]
(December 2022).

• Best paper award in the Conference on Data and Applications Security and
Privacy. Paper: (Local) Differential Privacy has NO Disparate Impact on Fair-
ness [16] (July 2023).

• Best poster award and three-minute pitch winner at the BigTech Tunisia Digital
Summit/Tunisian AI Society Poster Session 2024. Paper: A Systematic and
Formal Study of the Impact of Local Differential Privacy on Fairness: Preliminary
Results [155] (June 2024).

1.5 Thesis Roadmap

The rest of the thesis is organized as follows.
In chapter 2, we provide background and necessary preliminaries on the three topics

included in the thesis: fairness, privacy, and causality.
Chapter 3 presents the various studies we conducted on the applicability of fairness

notions in real-world applications. Section 3.2 introduces our survey paper, presenting
several fairness notions and discussing their tensions. Section 3.3 considers the applica-
bility of statistical fairness notions. Finally, Section 3.4 considers the applicability and
suitability of causality-based fairness notions.
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Chapter 4 presents our studies on the relationship between privacy and fairness.
This chapter investigates how privacy-preserving techniques can influence fairness
measures. Sections 4.2 and 4.3 present two of our empirical studies on the impact of
multidimensional LDP on fairness. Finally, in Section 4.4, we present our systematic
and formal study on the impact of LDP on fairness.

Chapter 5 presents our studies on how causal discovery algorithms impact fairness
conclusions, examining the nuanced interplay between causal models and fairness
assessments. Section 5.2 presents our work on causal discovery for fairness, highlighting
how slight differences between causal models can significantly impact conclusions
regarding fairness and discrimination. Section 5.3 presents our study on how different
causal structures and varying data bias levels impact the performance of causal discovery
algorithms and, consequently, fairness conclusions.

Chapter 6 summarizes the key findings of our research and discusses their impli-
cations for the field of ML. We reflect on the contributions of our work, highlight its
limitations, and propose directions for future research. This chapter aims to clearly
understand how our findings can inform ongoing and future efforts to ensure fairness
and privacy in ML.





Chapter 2

Preliminaries and Notations

2.1 Introduction

This chapter aims to provide readers with essential context, theoretical frameworks,
and foundational knowledge crucial for understanding this dissertation’s research
findings and arguments. Essential terminology and concepts used throughout the thesis
are introduced. The first section of the chapter is dedicated to necessary notation
and preliminaries for fairness. The following section focuses on privacy, notably the
local privacy setting, which is the thesis’s focus. The last section provides essential
terminology and concepts of causality.

Notation. Table 2.1 summarizes the notation used throughout this thesis. Note
that we always consider a single sensitive attribute A and assess fairness w.r.t. that
attribute. However, the LDP mechanism can be applied to a set of sensitive attributes
that we denote as A.
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Symbol Description

A Set of sensitive attributes (privacy viewpoint)
A Sensitive attribute (fairness viewpoint), A ∈ A
X Set of non-sensitive attributes
Y True decision, Y ∈ {0, 1}
Ŷ Prediction, Ŷ ∈ {0, 1}
xi i-th coordinate of vector x

z = L(v) Protocol L perturbs v into z under ϵ-LDP
A′ Locally differentially private sensitive attribute, A′ = L(A)
A′ Set of locally differentially private sensitive attributes, A′ = L(A)
kj Domain size of the j-th attribute
da Number of sensitive attributes, da = |A|
S Original dataset, S = (A, X, Y )
S ′ Dataset with obfuscated sensitive attributes, S ′ = (A′, X, Y )

Table 2.1 Notations.

2.2 Fairness

Variables are denoted by uppercase letters, while lowercase letters denote specific
values of variables (e.g., A = a, Y = y). Let V , A, and X be three random variables
representing, respectively, the total set of attributes, the sensitive attributes, and the
remaining attributes describing an individual such that V = (X, A) and P [V = vi]
represents the probability of drawing an individual with a vector of values vi from the
population. For simplicity, we focus on the case where A is a binary random variable
where A = 0 designates the protected group, while A = 1 designates the non-protected
group. Let Y and Ŷ be binary random variables representing, respectively, the true
decision (e.g., health-care intervention, hiring, admission, releasing on parole) and the
prediction of the classifier where Y = 1 designates a positive instance (e.g., accepting
a loan), while Y = 0 is a negative one (e.g., denying a loan). Typically, the prediction
Ŷ is derived from a score represented by a random variable R where P [R = r] is the
probability that the score value equals r.
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2.2.1 Classification of Fairness Notions

Fairness notions are defined as a mathematical condition involving either Ŷ or R

along with the other random variables. As such, we are not concerned with the inner
workings of ML systems and their fairness implications. What matters is only the
score/prediction value and how fair/biased it is.

Most of the proposed fairness notions are properties of the joint distribution of the
above random variables (X, A, Y , Ŷ , and R). They can also be interpreted using the
confusion matrix and the related metrics (Table 2.2).

Table 2.2 Metrics based on confusion matrix.

Actual Positive Actual Negative

Y = 1 Y = 0

Predicted
Positive

TP
(True Positive)

FP
(False Positive) PPV = T P

T P +F P
FDR = F P

T P +F P

Ŷ = 1 Type I error Positive Predictive Value False Discovery Rate
Precision Target Population Error
PV+
Target Population Error

Predicted
Negative

FN
(False Negative)

TN
(True Negative) FOR = F N

F N+T N
NPV = T N

F N+T N

Ŷ = 0 Type II error False Omission Rate Negative Predictive Value
Success Predictive Error PV-

ww
TPR = T P

T P +F N
FPR = F P

F P +T N
OA = T P +T N

T P +F P +T N+F N
BR = T P +F N

T P +F P +T N+F N

True Positive Rate False Positive Rate Overall Accuracy Base Rate
Sensitivity Model Error Prevalence (p)
Recall

ww
FNR = F N

T P +F N
TNR = T N

F P +T N

False Negative Rate True Negative Rate
Model Error Specificity

Group fairness notions fall into three classes defined in the properties of joint
distributions: independence, separation, and sufficiency [24]. These properties are
used in the literature to prove the existence of tensions between fairness notions. That
is, it is impossible to satisfy all fairness notions simultaneously except in extreme,
degenerate, and dump scenarios.

Independence. Independence implies that the sensitive feature A is statistically
independent of the classifier Ŷ (or the score R).

Ŷ ⊥ A (or R ⊥ A) (2.1)
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In the case of binary classification, independence is equivalent to statistical parity as
defined in Eq. (3.1). This category also includes conditional statistical parity Eq. (3.2).

Separation. Separation means that the prediction Ŷ is conditionally independent of
the sensitive feature A given the true decision Y .

Ŷ ⊥ A | Y (or R ⊥ A | Y ) (2.2)

In the case where Ŷ is a binary classifier, the formulation of separation is equivalent
to that of the equalized odds (Eq. (3.3)). Equal opportunity (Eq. (3.4)), predictive
equality (Eq. (3.5)), balance for positive class (Eq. (3.10)), and balance for negative
class (Eq. (3.11)) are all relaxations of separation.

Sufficiency. Sufficiency implies that the sensitive attribute A and the target variable
Y are conditionally independent given the prediction Ŷ .

Y ⊥ A | Ŷ (or Y ⊥ A | R) (2.3)

In the case of binary classification, sufficiency is equivalent to conditional use accuracy
equality (Eq. (3.6)). Using the score R, Calibration (Eq. (3.13)), and well-calibration
(Eq. (3.14)) can be considered as sufficiency [54]). Relaxation of sufficiency yields
predictive parity (Eq. (3.7)), which also does not satisfy exactly the same incompatibility
result as sufficiency.

Table 3.1 (Chapter 3/Section 3.2.2) lists some of the most known fairness notions
and their classification.

2.3 Privacy

2.3.1 Local Differential Privacy

The focus of this thesis is solely on the local setting of DP (i.e., LDP) [121]. In
other words, we assume that the centralized server in charge of aggregating data
from individual users is not guaranteed to be trustworthy. Specifically, each user
applies an ε-LDP mechanism to their data before submission to a central server. The
server subsequently aggregates the ε-LDP data for statistical purposes (e.g., mean or
frequency estimation). Formally, LDP is defined as follows:
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Definition 1 ε-LDP. A randomized algorithm L satisfies ε-LDP, where ε is a positive
real number representing the privacy parameter, if for any pair of input values v1, v2 ∈
dom(L) and any possible output z of L:

P[L(v1) = z] ≤ eε · P[L(v2) = z].

In essence, LDP guarantees that it is unlikely for the data aggregator to reconstruct
the data source regardless of the prior knowledge. The privacy level ε controls the
privacy-utility trade-off for which lower values of ε result in tighter privacy protection.
Like central DP, LDP also has several important properties, such as immunity to
post-processing and composability [77], defined as follows.

Proposition 1 Post-Processing [77]. If L is ε-LDP, then for any function f , the
composition of L and f , i.e., f(L) satisfies ε-LDP.

Proposition 2 Sequential Composition [77]. Let L1 be an ε1-LDP protocol and
L2 be an ε2-LDP protocol, then, the protocol L1,2(v) = (L1(v),L2(v)) is (ε1 + ε2)-LDP.

2.3.2 LDP Protocols

LDP has been proposed for many tasks, including statistical analysis, data mining, ML,
location privacy, etc [259, 256]. This thesis will use state-of-the-art LDP frequency
estimation protocols [15, 245]. Frequency (or histogram) estimation is a primary
objective of LDP as it is a building block for more complex tasks such as heavy
hitter estimation [26], joint distribution estimation [126, 195], ML [150], and frequency
monitoring [17, 79, 69, 14].

In this subsection, we briefly review several state-of-the-art LDP frequency estima-
tion protocols. Note that this thesis will focus exclusively on the user-side randomization
process, specifically on learning over locally differentially private data. This means
we will apply ML models to users’ randomized data rather than concentrating on
server-side frequency estimation. Let A = {a1, . . . , ak} be a sensitive attribute with a
discrete domain of size k = |A|.

Randomized Response (RR). RR was proposed by Warner [246] to provide
“plausible deniability” to individuals responding to embarrassing (binary) questions in
a survey. RR is formally defined as:

RR(a) =

a with probability p = eε

eε+1 ,
a with probability q = 1

eε+1 ,
(2.4)
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where a = 1 if a = 0 and, viceversa, a = 0 if a = 1. p denotes the probability that the
reported value is the true value, and q is the probability that the value is reported at
random. It is easy to prove that RR satisfies ε-LDP as p/q = eε.

k-Ary Randomized Response. Kairouz et al. [115] generalized RR to domains of
arbitrary size k (with k ≥ 2), and proposed the well-known k-RR mechanism, which
is one classical technique for achieving LDP on categorical/discrete data. k-RR uses
no particular encoding. Given a value a ∈ dom(A), k-RR(a) outputs the true value a

with probability p, and any other value a′ ∈ dom(A) \ {a}, otherwise. More formally:

∀z ∈ dom(A) : P[k-RR(a) = z] =

p = eε

eε+k−1 if z = a,
q = 1

eε+k−1 if z ̸= a.
(2.5)

where z is the perturbed value sent to the server.

Binary Local Hashing (BLH). Local Hashing (LH) protocols [26, 245] can handle
a large domain size k by first using hash functions to map an input value to a smaller
domain size g (typically 2 ≤ g ≪ k), and then applying k-RR to the hashed value. Let
H be a universal hash function family such that each hash function H ∈H hashes
a value in A into [g], i.e., H : A → [g]. With BLH, [g] = {0, 1}, each user selects at
random one hash function H, calculates b = H(v), and perturbs b to z as:

P[z = 1] =

p = eε

eε+1 if b = 1,
q = 1

eε+1 if b = 0.

The user sends the tuple ⟨H, z⟩, i.e., the hash function and the perturbed value.
Thus, for each user, the server can calculate the subset of all values v ∈ A that hash to
z, i.e., S (⟨H, z⟩) = {v|H(v) = z}.

Optimal LH (OLH). To improve the utility of LH protocols, Wang et al. [245]
proposed OLH in which the output space of the hash functions in family H is no
longer binary as in BLH. Thus, with OLH, g = ⌊eε + 1⌉, each user selects at random
one hash function H, calculates b = H(v), and perturbs b to z as:

∀i ∈ [g] : P[z = i] =

p = eε

eε+g−1 if b = i.
q = 1

eε+g−1 if b ̸= i.
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Similar to BLH, the user sends the tuple ⟨H, z⟩ and, for each user, the server can
calculate the subset of all values v ∈ A that hash to z, i.e., S (⟨H, z⟩) = {v|H(v) = z}.

RAPPOR. The RAPPOR [79] protocol uses One-Hot Encoding (OHE) to interpret
the user’s input v ∈ A as a one-hot k-dimensional vector. More precisely, v = OHE(v)
is a binary vector with only the bit at position v set to 1 and the other bits set to 0.
Then, RAPPOR randomizes the bits from v independently to generate z as follows:

∀i ∈ [k] : P[zi = 1] =

p = eε/2

eε/2+1 if vi = 1,

q = 1
eε/2+1 if vi = 0,

where p + q = 1 (i.e., symmetric). Afterward, the user sends z to the server.

Optimal Unary Encoding (OUE). To minimize the variance of RAPPOR, Wang
et al. [245] proposed OUE, which perturbs the 0 and 1 bits asymmetrically, i.e.,
p + q ̸= 1. Thus, OUE generates z by perturbing v as follows:

∀i ∈ [k] : P[zi = 1] =

p = 1
2 if vi = 1,

q = 1
eε+1 if vi = 0.

Afterward, the user sends z to the server.

Subset Selection (SS). The SS [244, 261] protocol randomly selects 1 ≤ ω < k

items within the input domain to report a subset of values Ω ⊆ A. The user’s true
value v has a higher probability of being included in the subset Ω, compared to
the other values in A \ {v}. The optimal subset size that minimizes the variance is
ω = max

(
1,
⌊

k
eε+1

⌉)
. Given a value v ∈ A, SS(v) starts by initializing an empty subset

Ω. Afterwards, the true value v is added to Ω with probability p = ωeε

ωeε+k−ω
. Finally, it

adds values to Ω as follows:

• If v ∈ Ω, then ω − 1 values are sampled from A \ {v} uniformly at random
(without replacement) and are added to Ω;

• If v /∈ Ω, then ω values are sampled from A \ {v} uniformly at random (without
replacement) and are added to Ω.

Afterward, the user sends the subset Ω to the server.
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Thresholding with Histogram Encoding (THE). Histogram Encoding
(HE) [245] encodes the user value as a one-hot k-dimensional histogram, i.e., v =
[0.0, 0.0, . . . , 1.0, 0.0, . . . , 0.0] in which only the v-th component is 1.0. HE(v) perturbs each
bit of v independently using the Laplace mechanism [76]. Two different input values
v1, v2 ∈ A will result in two vectors with L1 distance of ∆ = 2. Thus, HE will output z
such that zi = vi + Lap (2/ε). To improve the utility of HE, Wang et al. [245] proposed
THE such that the user reports (or the server computes): S(z) = {v | zv > θ}, in
which θ is the threshold with optimal value in (0.5, 1).

2.4 Causality

We recall that a directed acyclic graph (DAG) G = (V, E) is composed of a set of
variables/vertices V and a set of (directed) edges E between them such that no cycle
is formed. Let P be the probability distribution over the same set of variables V .
G and P are related through the Markov condition if every variable is conditionally
independent of its non-descendants given its parents. Assuming the Markov condition,
the joint distribution of variables V1, V2, . . . ∈ V can be factorized as:

P[V1, V2, . . .] =
∏

i

P[Vi|Pa(Vi)] (2.6)

where Pa(Vi) denotes the set of parents of Vi.
Pairing a DAG G and a probability distribution P such that they are related with

the Markov condition forms a Bayesian network (BN) B = ⟨G,P⟩ [179]. A causal
Bayesian network (CBN) [181] is a BN where edges have causal interpretations. That
is, an edge between two variables Vi and Vj (Vi → Vj) means that if all other variables
are fixed to some values and we change the value of Vi, then Vj will possibly change,
but never the other way around. A directed edge Vi → Vj indicates a causal relation
from the cause variable Vi to the effect variable Vj. A partially directed acyclic graph
(PDAG) is a particular DAG type containing directed and undirected edges. A causal
graph has three basic causal structures: a mediator (Fig. 2.1a), a confounder (Fig. 3.8b),
and a collider (Fig. 2.1c).

Conditional independence between variables can be graphically identified using the
d-separation criterion [181]. A path1 p is d−separated (or blocked) by a set of vertices
W if and only if (1) if p contains a mediator structure (X →M → Y ) or a confounder

1A path is a sequence of directed edges between two variables not necessarily pointing to the same
direction. For instance, A← C → Y in Fig. 3.8b is a path, although the edges are not pointing in the
same direction.
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M
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A Y
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A YM
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(d) Combined

Fig. 2.1 Basic causal structures.

structure (X ←M → Y ), then M is in W and (2) if p contains a collider structure2

(X → Z ← Y ), then the collider Z and all its descendants are not in W . If a set W

d-separates (blocks) every path from X to Y , then X and Y happen to be conditionally
independent given W . For instance, in Fig. 2.1d, the set W = {C, M} d−separates
A and Y , hence A and Y are conditionally independent given {C, M} (A ⊥ Y |C, M).
Similarliy, A ⊥ Y |M and A ⊥ Y |C in Fig. 2.1a and Fig. 2.1b, respectively. Note that,
in the presence of a mediator or a confounder between two variables, these two variables
become dependent (A⊥̸Y in Figs 2.1a and 2.1b). However, in the presence of a collider
Z, A and Y become independent (A ⊥ Y in Fig. 2.1c), but when conditioning on the
collider Z, they become dependent (A⊥̸Y |Z).

DAGs with the same d-separation properties are called Markov equivalent and imply
the same conditional independence relations. Any maximal collection of DAGs, which
are Markov equivalent, is called a Markov Equivalence Class (MEC). A completed
partially directed acyclic graph (CPDAG) is a particular type of PDAG that serves as
representative for Markov equivalence classes of DAGs.

As was stated in Section 1.1.3, there are two fundamental frameworks to mathemat-
ically represent and characterize causal relations between variables: structural causal
model [181] and potential outcome [110]. The terminology and the notation for both
frameworks are introduced in what follows.

Structural Causal Model (SCM) Framework. A structural causal model [181]
is a tuple M = ⟨U, V, F,P[U ]⟩ where:

• U is a set of exogenous variables that cannot be observed or experimented on
but constitute the background knowledge behind the model.

• V is a set of observable variables that can be experimented on.
2Called also v-structure.



32 Preliminaries and Notations

• F is a set of structural functions where each fi is mapping U ∪ V → V \{Vi}
which represents the process by which the variable Vi changes in response to
other variables in U ∪ V .

• P[u] is a probability distribution over the unobservable (latent) variables U .

Unobserved variables U , typically not represented in the causal diagram, can be mu-
tually independent (Markovian model) or dependent on each other (semi-Markovian
model). In semi-Markovian models, each Ui ∈ U is used in at most two functions in F .
In causal diagrams of semi-Markovian models, dependent unobservable variables (un-
observed confounders) are represented by a dotted bi-directed edge between observable
variables. Fig. 2.2 shows causal graphs of Markovian model (Fig. 2.2a), semi-Markovian
model (Fig.s 2.2b) and semi-Markovian model after intervening on Z (Fig. 2.2c).

UA UY

A Y

Z

UZ

(a)

A Y

Z
(b)

A Y

Z = z

(c)

Fig. 2.2 Markovian and semi-Markovian causal models.

Potential Outcome Framework. As was mentioned in Section 1.1.3, expressing
causal relations in the potential outcome framework starts at the unit level. A unit
i is the atomic research object. In fairness problems, the unit typically refers to an
individual. For example, every candidate corresponds to a unit i in a job hiring scenario.
More specifically, the sensitive attribute of the candidate (e.g., gender) corresponds
to the treatment in the potential outcome terminology. Given an outcome random
variable Y , applying a treatment A = a on a unit i yields a different random variable
called the potential outcome Yi(A = a) = Y a

i . For example, if A = 1 refers to male,
A = 0 refers to female, and Y is the hiring decision, Y 0

i is the potential hiring decision
of unit i when the gender (treatment) is female. Consequently, if the treatment variable
A is binary, there are two potential outcomes Y 0

i and Y 1
i . In observational studies (in

contrast to experimental studies), only one potential outcome can be observed: the
factual outcome. The other potential outcome is usually impossible to observe and is
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called the counterfactual outcome. For example, if a job candidate i is female (A = 0)
and is not hired, the potential outcome Y 0

i is observed and is equal to 0. However,
the potential outcome of that candidate i had she be male Y 1

i is impossible to observe
because this requires going back in time (impossible) and changing the sex of that
individual to male (not ethical in the cases where it is possible).

2.4.1 Intervention and do-operator

An intervention noted do(V = v) is a manipulation of the model that consists of
fixing the value of a variable (or a set of variables) to a specific value regardless of
the corresponding function fv. Graphically, it consists of discarding all edges incident
to the vertex corresponding to variable V . Fig. 2.2c shows the causal diagram of
the manipulated model after intervention do(Z = z) denoted MZ=z or Mz for short.
The intervention do(V = v) induces a different distribution on the other variables.
For example, in Fig. 2.2c, do(Z = z) results in a different distribution on Y , namely,
P[Y |do(Z = z)]. Intuitively, while P[Y |Z = z] reflects the population distribution
of Y among individuals whose Z value is z, P[Y |do(Z = z)] reflects the population
distribution of Y if everyone in the population had their Z value fixed at z. The obtained
distribution P[Y |do(Z = z)] can be considered as a counterfactual distribution since
the intervention forces Z to take a value different from the one it would take in the
actual world. Such counterfactual variable is noted YZ=z or Yz for short3. The term
counterfactual quantity is used for expressions that involve explicitly multiple worlds.
In Fig. 2.2b, consider the expression P[ya′ |Y = y, A = a] = P[ya′ |y, a]. Such expression
involves two worlds: an observed world where A = a and Y = y and a counterfactual
world where Y = y and A = a′ and it reads “the probability of Y = y had A been
a′ given that we observed Y = y and A = a. In the common example of job hiring,
if A denotes race (a :white, a′:non-white) and Y denotes the hiring decision (y:hired,
y′:not hired), P[ya′|y, a] reads “given that a white applicant has been hired, what is
the probability that the same applicant is still being hired had he been non-white”.

Nesting counterfactuals can produce complex expressions. For example, in the
relatively simple model of Fig. 2.2b, P[ya,za′ |y′

a′ ] reads the probability of Y = y had (1)
A been a′ and (2) Z been z when A is a′, given that an intervention A = a′ produced
y′. This expression involves three worlds: a world where A = a, a world where Z = za′ ,
and a world where A = a′. Such complex expressions characterize direct, indirect, and
path-specific effects.

3The notations YZ←z and Y (z) are used in the literature as well. P[Y = y|do(Z = z)] = P[YZ=z =
y] = P[Yz = y] = Y[yz] is used to define the causal effect of z on Y .
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Causal inference aims to determine if the outcome of automated decision-making
is fair or discriminative. Several causality-based fairness notions are defined in the
literature (Section 3.4.2) and expressed in terms of joint, conditional, interventional,
and counterfactual probabilities. Applying a causality-based fairness notion requires
inputting a dataset D and a causal graph G. While joint probabilities (e.g., P[X =
x, Y = y, Z = z]) and conditional probabilities (e.g., P[Y = y|X = x]) can be trivially
estimated from the dataset D, probabilities involving interventions or counterfactuals
cannot always be estimated from D and G. When a probability can be estimated from
observable data (D), it is said to be identifiable. Otherwise, it is unidentifiable (More
details on identifiability will be presented in Section 3.4.3).

2.4.2 Causal Assumptions

Causal inference relies on causal assumptions inherent in the potential outcome and
Pearl’s SCM frameworks.

Causal Markov Condition [181] (SCM). There is a general consensus that it
is fundamental to causal inference and, hence, typically required. This assumption is
already explained above (Eq. (2.6)).

Causal Faithfulness [181] (SCM). A causal graph G and a probability distribution
P over the same variables V are faithful to each other if all and only the conditional
independence relations that hold in P are entailed by the Markov condition and
d-separation in G. An example of faithfulness violation is when two variables are
dependent on the causal graph but independent in the data. Consider the graph in
Fig. 2.1a. If, in the data, A on Y are exactly balanced out by the indirect causal effect
A→M → Y , A and Y will appear independent in the data while they are dependent
in the graph. In that case, a causal discovery procedure assuming faithfulness will
return a collider structure on M (A→M ← Y ) as a causal graph.

Causal Sufficiency [181] (SCM). Causal sufficiency implies that there are no
latent (hidden) confounders between variables in V. It is a very strong assumption,
as its absence or presence may lead to very different causal graphs. Violation of
causal sufficiency may sometimes be detected from data. An example of a causal
sufficiency violation could be in a study examining the relationship between smoking
and lung cancer. If the study only considers smoking as the sole factor influencing lung
cancer and ignores other potential confounding variables such as air pollution, genetic
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predisposition, or occupational exposure to carcinogens, it would violate the principle
of causal sufficiency.

SUTVA [110] (Potential Outcome). SUTVA (Stable Unit Treatment Value
Assumption) has two requirements. First is the absence of interference among units. In
the job hiring example, it means that the hiring decision for a candidate is independent
of the hiring decisions of all other candidates. Second, there is only one version of the
treatment. This is more relevant in medical scenarios when a treatment (medication)
has different versions (e.g., different dosages). This requirement is typically satisfied
for fairness scenarios as the treatment generally corresponds to an individual’s intrinsic
attribute (e.g., gender, race, etc.).

Ignorability [110] (Potential Outcome). Ignorability is satisfied when the sensi-
tive attribute A and the potential outcome variables Y 0 and Y 1 are independent given
observable variables X. That is, A ⊥ Y 0, Y 1|X4. This corresponds to the absence of
hidden (unobservable) confounders. In the SCM framework, it is equivalent to the
causal sufficiency assumption.

Positivity [110] (Potential Outcome). Positivity states that there should be a
non-zero probability of receiving each treatment level for any combination of covariates.
That is, P[A = a|X = x] > 0, for all a, and x. In other words, every individual in the
population should have a chance of being exposed to each treatment or intervention
being studied, regardless of their covariate values. This assumption is crucial for
ensuring that all relevant population subgroups are represented in the data and
that causal effects can be estimated for all individuals. Violations of the positivity
assumption can lead to biased estimates and unreliable causal inferences.

2.4.3 Causal Discovery Algorithms

The three main categories of causal discovery algorithms are constraint-based, score-
based, and procedures that exploit semi-parametric assumptions. This section describes
one representative algorithm of each category5. Check [98] for a more comprehensive
list of causal discovery algorithms.

4Strong ignorability is a stronger assumption requiring independence between the potential outcomes
and any covariate X (X ⊥ Y 0, Y 1).

5Except for the first category, as PC and FCI are both constraint-based algorithms and FCI is
considered a variant of PC.
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PC [218]. The PC algorithm is a constraint-based causal discovery algorithm used
to identify causal relationships between variables in observational data. The algorithm
is based on conditional independence tests and uses a series of statistical tests to infer
the presence or absence of causal relationships between variables.

The PC algorithm consists of two main steps. The first step is the skeleton identifi-
cation, where the algorithm begins by constructing an undirected graph, called the
skeleton, that represents the conditional independence relationships between variables
in the data. This step involves performing conditional independence tests to determine
which pairs of variables are conditionally independent given other variables. The second
step consists of the orientation of the edges, where the algorithm attempts to orient
the edges of the graph to establish causal directions between variables. These rules are
based on patterns observed in conditional independence relationships and help to infer
causal directions between variables. The output of PC is a CPDAG. The conditional
independence tests used to discover the skeleton of the graph for PC have an α value
for rejecting the null hypothesis, which is always a hypothesis of independence or
conditional independence.

FCI [221]. The FCI algorithm [219] is also a constraint-based algorithm and is
considered a generalization of the PC algorithm. The main difference between PC and
FCI is that the latter considers the presence of common hidden confounders between
observed variables. Consequently, instead of producing a DAG, the output of FCI is a
partial ancestral graph (PAG) with possibly four types of edges: , , , , .
The “ ” mark represents an undetermined edge mark. In other words, “ ” can be
either a tail “ ” or a head “ ”. shows that there are hidden confounders between
the two variables on either side of the arrow. X Y implies that either X causes
Y or there are hidden confounders between both variables. X Y might be: X

causes Y , Y causes X, there are common hidden confounders between both variables,
X causes Y and there are hidden confounders between both variables, or Y causes X

and there are hidden confounders between both variables. As in the first step of the
PC algorithm, FCI relies on statistical independence tests to infer the skeleton of the
graph. In the second step, FCI deviates from the PC algorithm.

After orienting all the edges in the graph as , the algorithm starts with an
orientation rule to detect the v-structures in the graph.

Another rule specific to FCI is the detection of Y-structures. Four variables define
a Y-structure when: C1 → X ← C2 and X → Y . Within the Y-structure, C1 and
C2 are independent of Y conditional on X. This conditional independence helps
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exclude the possibility of a latent confounder between X and Y . When FCI detects
a Y-structure in the graph, no latent confounders exist between X and Y ; otherwise,
FCI assumes that possibly latent confounders exist [162].

Afterward, FCI applies four additional rules to direct the remaining edges. Note
that FCI is limited to several thousand variables. Because FCI is a variant of PC, the
same assumptions hold for FCI, except causal sufficiency, which allows FCI to work in
the presence of hidden confounders.

GES [52]. Greedy Equivalence Search (GES) is a score-based algorithm that, unlike
PC and FCI, starts with a completely disconnected graph and then adds, deletes, and
modifies edges in a particular order until reaching the causal model that maximizes
a regularized performance score, called BIC score, that stands for Bayes Information
Criterion [203] (BIC) which is a likelihood-based model selection criterion. A first
remark about GES is that its output is not necessarily a directed acyclic graph (DAG)
but a CPDAG, representing a Markov equivalence class of causal DAGs. GES consists
of searching over an abstract search space (graph) of states and transitions. Each state
is an equivalence class of DAGs, all with the same BIC score and are represented as
a CPDAG. The search objective is the state that maximizes BIC score, hence, the
abstract output of GES is an equivalence class of DAGs.

The greedy strategy of GES consists of repeatedly following the best forward
transition at each state that it encounters until a local maximum is reached, i.e., until
the next state reduces the BIC score, and then, analogously, repeatedly following the
best backward transition until a local maximum is reached. These two consecutive
algorithms that form GES are called the forward and backward phases.

The computation of the neighboring states of a given state (for both phases) is
carried out by finding edges X → Y that can be added (or removed) in such a way that
the resulting PDAG can be extended, i.e., transformed into a DAG by smartly deciding
the direction of the undirected edges. Once the DAG is computed, it is completed to
obtain the CPDAG that represents the equivalence class containing it.

LiNGAM [208]. LiNGAM is an algorithm based on causal asymmetries that,
unlike the previously discussed algorithms, yields a unique directed graph (DAG) and
corresponding parameters. However, the stronger causal discovery power comes at
the expense of more assumptions that must be satisfied. LiNGAM requires linearity
and non-gaussianity of the variables to recover causal directions and learn functional
relationships [207]. The approach is closely related to the Independent Component
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Analysis (ICA) algorithm as they both base their premises on the Darmois-Skitovic
theorem [177]. The theorem implies that fitting a backward model (trying to regress
the cause on the effect) to the data would result in dependence between cause X and
the residuals of the effect Y , allowing to correct the causal direction.

DirectLiNGAM [208] is a variant of LiNGAM which, in contrast to the ICA version,
is not based on iterative search and, therefore, does not require initial guess or similar
parameters and is guaranteed to converge to the right solution. The DirectLiNGAM
algorithm implementation learns the causal graph in two steps. First, it finds the
causal order of the variables: an ordered list, where the first is the exogenous variable
(has no parents in the graph), the second is the child of the exogenous variable with
the most descendants, etc. Next, the causal order is used to compute the adjacency
matrix that specifies the strength of the connections. Specifically, starting from the
end of the list, each variable is regressed on all the others that come before it in the
causal order (potential parents).

2.4.4 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the preliminaries
and background information essential for understanding the context of the thesis. It
began by discussing the fundamental concepts of fairness, including classifying fairness
notions. Then, an overview of LDP, exploring some state-of-the-art LDP protocols,
is provided. The last section of this chapter provided the necessary background for
causality. In the next chapter, we will delve into our contribution to the applicability
of fairness notions in real-world applications.



Chapter 3

Fairness Notions and their
Applicability

3.1 Introduction

One of the key contributions of this thesis is its endeavor to narrow the gap between
fairness metrics and their practical implementation in real-world contexts. Fairness,
particularly in decision-making scenarios, inherently involves subjective considerations.
Therefore, a critical aspect revolves around selecting appropriate evaluation metrics to
assess fairness. Defining and quantifying fairness within AI systems is multifaceted
and contingent on specific contexts, rendering it complex, primarily because some
notions of fairness are incompatible and cannot be carried out simultaneously [24, 166].
The purpose of this chapter is threefold: first, to provide a comprehensive overview
of fairness notions and their related tensions to contextualize our research within
the broader academic discourse (Section 3.2); second, to introduce our work on the
applicability of statistical fairness notions in real-world contexts (Section 3.3); and third,
to present our study on the applicability and suitability of causality-based fairness
notions in practice (Section 3.4).

3.2 Fairness Notions and Related Tensions

With the recent interest in fairness, many notions have been defined to capture different
aspects of fairness. As fairness is a social construct [111] and an ethical concept [237],
defining it is still prone to subjectivity. Hence, the aim of replacing subjective human
decisions with objective ML-based decision systems resulted in notions and algorithms
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still exhibiting unfairness. Therefore, although the different notions of algorithmic
fairness appear internally consistent, several of them cannot hold simultaneously and
hence are mutually incompatible [24, 166, 101, 32, 130]. As a consequence, practitioners
assessing and/or implementing fairness need to choose among them.
Contributions. In this study, we examined prevalent notions of fairness, exploring
the inherent conflicts within these notions. We also explored tensions between fairness
and privacy. In this chapter, we solely focus on presenting fairness notions and tensions
among them, and we leave the tension between fairness and privacy for Chapter 4.
Outline. Section 3.2.1 discusses related work. Section 3.2.2 briefly presents commonly
used fairness notions (group and individual) and their formal definitions. Section 3.2.3
describes the tensions and incompatibilities among the various fairness notions. Sec-
tion 3.2.6 draws the conclusion.

3.2.1 Related Work

With the increasing need for ethical concerns in decision-making systems that have
severe implications for individuals and society, several survey papers have been proposed
in the literature in recent years. In this section, we revisit these survey papers and
highlight how our survey deviates from them. Mehrabi et al. [164] proposed a broader
scope for their overview: in addition to concisely listing 10 definitions of fairness metrics,
they discussed different sources of bias and different types of discrimination, they listed
methods to mitigate discrimination categorized into pre-processing, in-processing, and
post-processing, and they discussed potential directions for contributions in the field.
However, they did not discuss any tensions between fairness notions, which we discuss
in depth in this survey. The survey of Mitchell et al. [166] includes an exhaustive list
of group and individual fairness notions and outlines most of the impossibility results
among them. They also discussed in detail a “catalogue” of choices and assumptions
in the context of fairness to address the question of how social goals are formulated
into a prediction (ML) problem. Their survey does not tackle the problem of tensions
between fairness and other ethical considerations in decision-making systems as is
studied in this work.

Tsamados et al. [237] compiled an overview of the ethical problems in AI algorithms
and the solutions proposed in the literature. In particular, they provided a conceptual
map of six ethical concerns raised by AI algorithms, namely inconclusive, inscrutable,
misguided evidence, unfair outcomes, transformative effects, and traceability. The first
three concerns refer to epistemic factors, the fourth and the fifth are normative factors,
and the fifth is relevant to both epistemic and normative factors. The epistemic factors
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are related to the relevance of the accuracy of the data, while the informative factors
refer to the ethical impact of AI systems. Although the survey explores a broad scope
related to ethical concerns in AI, it remains at a conceptual level. It does not address
how these ethical concerns are implemented in practice and how they conflict in detail,
which we explore in depth in this study.

Other works discussing the trade-off between fairness notions include the work
by Kleinberg et al.[130], which discussed the suitability of specific fairness notions
in a specific setup. In particular, they discussed the applicability of calibration and
balance notions. The survey of Berk et al. [32] studied the trade-offs between different
group fairness notions and between fairness and accuracy in a specific context, namely:
criminal justice risk assessments. They used simple examples based on the confusion
matrix to highlight relationships between the notions of fairness.

In another research direction, Friedler et al. [89] discussed tensions between group
and individual fairness. In particular, they defined two worldviews, WYSIWYG and
WAE. The WYSIWYG (What you see is what you get) worldview assumes that the
unobserved (construct) space and observed space are essentially the same. In contrast,
the WAE (we’re all equal) worldview implies no inherent differences between groups of
individuals based on potentially sensitive attributes.

3.2.2 Fairness Notions

We recall some notations used in this chapter. Let V , A, and X be three random
variables representing, respectively, the total set of attributes, the sensitive attributes,
and the remaining attributes describing an individual such that V = (X, A) and
P[V = vi] represents the probability of drawing an individual with a vector of values
vi from the population. For simplicity, we focus on the case where A is a binary
random variable where A = 0 designates the protected (unprivileged) group, while
A = 1 designates the non-protected (privileged) group. Let Y and Ŷ be binary random
variables representing, respectively, the true decision and the predicted outcome where
Y = 1 designates a positive instance, while Y = 0 is a negative one. Typically, the
predicted outcome Ŷ is derived from a score represented by a random variable R where
P[R = r] is the probability that the score value equals r.

All fairness notions presented in this section address the question: “Is the out-
come/prediction of the ML system fair towards individuals?”. As stated in Chapter 2,
most of the proposed fairness notions are properties of the joint distribution of the
above random variables (X, A, Y , Ŷ , and R). They can also be interpreted using the
confusion matrix and the related metrics (Table 2.2).
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A straightforward approach to address the fairness problem is to ignore any sensitive
attribute while training the ML system. This is called fairness through unawareness1.
We don’t treat this approach as a notion of fairness since, given a model prediction,
it does not allow us to tell whether the model is fair. Besides, it suffers from the
basic problem of proxies. Many attributes (e.g., home address, neighborhood, attended
college) might be highly correlated to the sensitive attributes (e.g., race) and act as
proxies of these attributes. Consequently, in almost all situations, removing the sensitive
attribute during the training process does not address the problem of fairness [99].

Table 3.1 depicts the fairness notions presented in this chapter along with their
classification.

1Known also as: blindness, unawareness [166], anti-classification [57], and treatment parity [144].



3.2 Fairness Notions and Related Tensions 43
Ta

bl
e

3.
1

C
la

ss
ifi

ca
tio

n
of

st
at

ist
ic

al
fa

irn
es

s
no

tio
ns

.
(∗

no
tio

n
ne

w
ly

de
fin

ed
in

th
is

st
ud

y)

Fa
irn

es
s

N
ot

io
n

R
ef

.
Fo

rm
ul

at
io

n
C

la
ss

ifi
ca

tio
n

Ty
pe

St
at

ist
ic

al
pa

rit
y

[7
5]

P[
Ŷ
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In Appendix A.1.1, we use a simple job hiring scenario to explain how the fairness
metrics presented in what follows are computed in practice.

Statistical Parity [75]. Statistical parity (a.k.a demographic parity [136], indepen-
dence [23], equal acceptance rate [280], benchmarking [214], group fairness [75]) is
one of the most commonly accepted notions of fairness. It requires the prediction to
be statistically independent of the sensitive attribute (Ŷ ⊥ A). Thus, a classifier Ŷ
satisfies statistical parity if:

P[Ŷ = 1 | A = 0] = P[Ŷ = 1 | A = 1] (3.1)

In other words, the predicted acceptance rates for both protected and unprotected
groups should be equal. Using the confusion matrix (Table 2.2), statistical parity
implies that TP+FP

TP+FP+FN+TN should be equal for both groups.
Statistical parity is appealing in scenarios where a preferred decision is over an-

other—for example, being accepted to a job, not being arrested, being admitted to a
college, etc.2. What really matters is a balance in the prediction rate among all groups.

Statistical parity is suitable when the true decision Y is untrustworthy due to some
flawed or biased measurement3. An example of this type of problem was observed in
the recidivism risk prediction tool COMPAS [10]. Because minority groups are more
controlled, and more officers are dispatched in their regions, the number of arrests
(used to assess the level of crime [227]) of those minority groups is significantly higher
than that of the rest of the population. Hence, for fairness purposes, in the absence
of information to precisely quantify the differences in recidivism by race, the most
suitable approach is to treat all sub-populations equally w.r.t recidivism [114].

Statistical parity is also well adapted to contexts where some regulations or standards
are imposed. For example, a law might impose an equal hiring or admission of applicants
from different sub-populations.

The main problem of statistical parity is that it does not consider a potential
correlation between the true decision Y and the sensitive attribute A. In other words,
statistical parity will be misleading if the underlying base rates of the protected and
unprotected groups differ. In the ideal case (ŷ = y), this will lead to loss of utility [101].
For example, Fig. 3.1 illustrates a scenario for hiring computer engineers where equal
proportions of male/female applicants have been predicted hired (60%), thus satisfying

2This might not be the case in other scenarios such as disease prediction, child maltreatment,
where imposing a parity of positive predictions is meaningless.

3This is also known as differential measurement error [241].
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statistical parity. However, when considering the true decision and, more precisely, the
base rates that differ in both groups (0.3 for men versus 0.4 for women), the classifier
becomes discriminative against female applicants (50% of qualified female applicants
are not predicted to be hired). More generally, statistical parity is not recommended
when the ground truth is available and used during the training phase as one might
justify the disparity against the unprivileged group by use of this ground truth [264].

Fig. 3.1 A scenario for a hiring system where statistical parity is not recommended. Fi and Mi

(i ∈ [1 − 10]) designate female and male applicants, respectively. The grey shaded circles indicate
applicants who belong to the positive class, while white circles indicate applicants belonging to the
negative class. The dotted vertical line is the prediction boundary. Thus, applicants at the right of
this line are predicted to be hired, while applicants at the left are predicted not to be hired.

Another issue with this notion is its “laziness”; if we hire carefully selected applicants
from the male group and random applicants from the female group, we can still achieve
statistical parity, yet lead to negative results for the female group as its performance will
tend to be worse than that of male group. This practice is an example of self-fulfilling
prophecy [75] where a decision maker may simply select random members of a protected
group rather than qualified ones and, hence, intentionally build a bad track record
for that group. Barocas and Selbst refer to this problem as masking [25]. Masking is
possible to game several fairness notions, but it is particularly easy to carry out in the
case of statistical parity.

Conditional Statistical Parity [58]. Conditional statistical parity (a.k.a also
conditional discrimination-aware classification in [120]) is a variant of statistical parity
obtained by controlling on a set of legitimate attributes4. The legitimate attributes
(we refer to them as E) among X are correlated with the sensitive attribute A and
give some factual information about the true decision Y while leading to a legitimate
discrimination. In other words, this notion removes the illegal discrimination, allowing
the disparity in decisions to be present as long as they are explainable [58]. In a
hiring system, possible explanatory factors that might affect the hiring decision for
an applicant could be the education level and/or the job experience. Suppose the
data comprises many highly educated and experienced male applicants and only a few

4Called explanatory attributes in [120].
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highly educated and experienced women. In that case, one might justify the disparity
between predicted acceptance rates between both groups and, consequently, does not
necessarily reflect gender discrimination. Statistical parity holds if:

P[Ŷ = 1 | E = e, A = 0] = P [Ŷ = 1 | E = e, A = 1] (3.2)

In practice, conditional statistical parity is suitable when one or several attributes
justify a possible disparate treatment between different groups in the population. Hence,
choosing the legitimate attribute(s) is a very sensitive issue as it directly impacts the
fairness of the decision-making process. More seriously, conditional statistical parity
gives a decision-maker a tool to game the system and realize a self-fulfilling prophecy.
Therefore, it is recommended to resort to domain experts or law officers to decide what
is unfair and tolerable to use as legitimate discrimination attribute [120].

Equalized Odds [101]. Unlike the two previous notions, equalized odds (separation
in [23], conditional procedure accuracy equality in [32], disparate mistreatment in [264],
error rate balance in [54]) considers both the predicted and the actual outcomes.
Thus, the prediction is conditionally independent of the sensitive attribute, given
the true decision (Ŷ ⊥ A | Y ). In other words, equalized odds require that both
sub-populations have the same TPR and FPR (Table 2.2). In a hiring example, this
means that the probability of an applicant who is actually hired to be predicted hired
and the probability of an applicant who is actually not hired to be incorrectly predicted
hired should be the same for men and women:

P[Ŷ = 1 | Y = y, A = 0] = P[Ŷ = 1 | Y = y, A = 1] ∀y ∈ {0, 1} (3.3)

Unlike statistical parity, equalized odds is well-suited for scenarios where the ground
truth exists, such as disease prediction or stop-and-frisk [28]. It is also suitable when
the emphasis is on recall (the fraction of the total number of positive instances that
are correctly predicted positive) rather than precision (making sure that a predicted
positive instance is actually a positive instance).

A potential problem of equalized odds is that it may not help close the gap between
the protected and unprotected groups. For example, consider a group of 20 male
applicants, of which 16 are qualified, and another equal size group of 20 females, of
which only 2 are qualified. If the employer decides to hire 9 applicants while satisfying
equalized odds, 8 offers will be granted to the male group, and only 1 offers will be
granted to the female group. While this decision scheme looks fair in the short term,
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in the long term, however, it will contribute to confirming this “unfair” status-quo and
perpetuate this vicious cycle5.

Because the equalized odds requirement is rarely satisfied in practice, two variants
can be obtained by relaxing Eq. (3.3). The first one is called equal opportunity [101]
(false negative error rate balance in [54]) and is obtained by requiring only TPR equality
among groups:

P[Ŷ = 1 | Y = 1, A = 0] = P[Ŷ = 1 | Y = 1, A = 1] (3.4)

In a job hiring system, this is to say that we should hire an equal proportion of
individuals from the qualified fraction of each group.

As TPR = TP
TP+FN (Table 2.2) does not take into consideration false positives, equal

opportunity is entirely insensitive to the number of false positives. This is an important
criterion when considering this notion of fairness in practice. More precisely, equal
opportunity should not be considered when a disproportionate number of false positives
among groups has fairness implications. The scenario in Table A.3 in Appendix A.1.1
shows an extreme case of a job hiring dataset where the male group has a large number
of false positives (Male 7− 100) while equal opportunity is satisfied.

To decide about the suitability of equal opportunity in a job hiring system, the
question that should be answered by stakeholders and decision-makers is “If all other
things are equal, is it fair to hire disproportionally more unqualified male candidates?”.
The employer shouldn’t have several false positives (regardless of gender), as the
company will end up with unqualified employees. For a stakeholder aiming to guarantee
fairness between males and females, having more false positives in one group is not
critical, provided these two groups have the same proportion of false negatives (a
qualified candidate who is not hired).

In the scenario of predicting which employees to fire, however, a false positive (firing
a well-performing employee) is critical for fairness. Hence, equal opportunity should
not be used as a measure of fairness.

The second relaxed variant of equalized odds is called predictive equality [58]
(false positive error rate balance in [54]), which requires only the FPR to be equal in
both groups.

5If the job is a well-paid, male group tends to have a better living condition and affords better
education for their kids, and thus enable them to be qualified for such well-paid jobs when they grow
up. The gap between the groups will tend to increase over time.
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In other words, predictive equality checks whether the accuracy of decisions is equal
across protected and unprotected groups:

P[Ŷ = 1 | Y = 0, A = 0] = P[Ŷ = 1 | Y = 0, A = 1] (3.5)

In a job hiring example, predictive equality holds when the probability of an applicant
with an actual weak profile for the job being incorrectly predicted to be hired is the
same for both men and women.

Since FPR = FP
FP+TN (Table 2.2) is independent of false negatives, predictive equality

is entirely insensitive to false negatives. Hence, predictive equality should not be used
in scenarios where fairness between groups is sensitive to false negatives. Such scenarios
include hiring and admission, where a false negative means qualified candidates are
rejected disproportionally among groups. Predictive equality is acceptable in criminal
risk assessment scenarios as false negatives (releasing a guilty person) are less critical
than False positives (incarcerating an innocent person).

Predictive equality is particularly suitable for measuring the fairness of face recogni-
tion systems in crime investigations where security camera footage is analyzed. Fairness
between ethnic groups with distinctive facial features is very sensitive to the FPR. A
false positive means an innocent person is flagged as participating in a crime. Suppose
this false identification happens at a much higher rate for a specific sub-population
(e.g., dark-skinned ethnic group) than the rest of the population. In that case, it is
clearly unfair for individuals belonging to that sub-population.

Looking at the problem from another perspective, choosing between equal opportu-
nity and predictive equality depends on how the outcome/label is defined. In scenarios
where the positive outcome is desirable (e.g., hiring, admission), fairness is typically
more sensitive to false negatives rather than false positives; hence, equal opportunity is
more suitable. In scenarios where the positive outcome is undesirable for the subjects
(e.g., firing, risk assessment), fairness is typically more sensitive to false positives than
false negatives, and hence predictive equality is more suitable.

Conditional Use Accuracy Equality [32]. Conditional use accuracy equality
(also called sufficiency in [23]) is achieved when all population groups have equal
PPV = TP

TP+FP and NPV = TN
FN+TN (Table 2.2). In other words, the probability of

subjects with PPV truly belonging to the positive class and the probability of subjects
with NPV belonging to the negative class truly should be the same:

P[Y = y | Ŷ = y, A = 0] = P[Y = y | Ŷ = y, A = 1] ∀y ∈ {0, 1} (3.6)



3.2 Fairness Notions and Related Tensions 49

Intuitively, this definition implies equivalent accuracy for male and female applicants
from both positive and negative predicted classes [242]. By contrast to equalized odds
(Eq. (3.3)), one is conditioning on the algorithm’s predicted outcome, not the actual
outcome. In other words, this notion emphasizes the precision of the ML system
rather than its sensitivity (a tradeoff discussed later in Section 3.3.3). A relaxation of
conditional use accuracy equality requiring only equal PPV among groups is called
predictive parity [54] (called outcome test in [214]) and is formally defined as follows:

P[Y = 1 | Ŷ = 1, A = 0] = P[Y = 1 | Ŷ = 1, A = 1] (3.7)

In a hiring system, this is to say that the prediction used to determine the candidate’s
eligibility for a particular job should reflect the candidate’s actual capability of doing
this job, which is harmonious with the employer’s benefit.

Like predictive equality (Eq. (3.5)), predictive parity is insensitive to false negatives.
Hence, predictive parity should not be used in any scenario where fairness is sensitive
to false negatives.

Choosing between predictive parity and equal opportunity depends on whether
the scenario at hand is more sensitive to precision or recall. Typically, predictive
parity is more suitable for precision-sensitive scenarios, while equal opportunity is
more suitable for recall-sensitive scenarios. Precision-sensitive scenarios include disease
prediction, child maltreatment risk assessment, and firing from jobs. Recall-sensitive
scenarios include loan granting, recommendation systems, and hiring. Very often,
precision-sensitive scenarios coincide with situations where the positive prediction
(Ŷ = 1) entails a higher cost [264]. For example, a predicted child maltreatment case
will result in placing the child in a foster house, which will generally entail a higher
cost compared to a negative prediction (low risk of child maltreatment), in which case
the child stays with the family and typically no action is taken.

Overall Accuracy Equality [32]. Overall accuracy equality is achieved when overall
accuracy for both groups is the same. Thus, true negatives and true positives are
equally considered and desired. Using the confusion matrix (Table 2.2), this implies
that TP+TN

TP+FN+FP+TN is equal for both groups. In our example, it is to say that the
probability of well-qualified applicants being correctly accepted for the job and non-
qualified applicants being correctly rejected is the same for both male and female
applicants:

P[Ŷ = Y |A = 0] = P[Ŷ = Y |A = 1] (3.8)
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Overall accuracy is closely related to conditional use accuracy equality (Eq. (3.6)).
The main difference is that overall accuracy aggregates positive and negative class
misclassifications (false negative and false positive). Aggregating together false positives
and false negatives (and hence true positives and true negatives) without distinction is
often misleading for fairness purposes. In real-world applications, it is uncommon for
true positives (or false negatives) and true negatives (or false positives) to be desired
simultaneously and without distinction.

Treatment Equality [32]. Treatment equality is achieved when the ratio of false
positives and false negatives is the same for both protected and unprotected groups:

FN
FP (a=0) = FN

FP (a=1) (3.9)

Treatment equality is insensitive to the numbers of true positives and true negatives,
which are important to identify bias between sub-populations in most real-world
scenarios. Berk et al. [32] note that treatment equality can serve as an indicator to
achieve other kinds of fairness. Table A.5 in Appendix A.1.1 shows a dataset that fails
to satisfy all previous notions, yet treatment equality is satisfied. Treatment equality
can be used in real-world scenarios where only the type of misclassification rate matters
for fairness.

Total Fairness [32]. Total fairness is another notion which holds when all aforemen-
tioned fairness notions are satisfied simultaneously, that is, statistical parity (Eq.( 3.1)),
equalized odds (Eq.( 3.3)), conditional use accuracy equality (Eq.( 3.6)), overall accu-
racy equality (Eq.( 3.8)), and treatment equality (Eq.( 3.9)). Total fairness is a very
strong notion that is difficult to hold in practice. Table A.6 in Appendix A.1.1 shows a
toy example where total fairness holds.

Balance. The predicted outcome Ŷ is typically derived from a score R which is
returned by the ML algorithm. All aforementioned fairness notions do not use the
score to assess fairness. Balance for positive class [130] focuses on the applicants
who constitute positive instances and is satisfied if the average score R received by
those applicants is the same for both groups. The intuition behind this notion is that a
balance for the positive class should be assured. Thus, a violation of this balance means
that applicants belonging to the positive class in one group might receive steadily lower
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predicted scores than applicants belonging to the positive class in the other group:

E[R | Y = 1, A = 0] = E[R | Y = 1, A = 1] (3.10)

Balance of negative class [130] is an analogous fairness notion where the focus is on
the negative class:

E[R | Y = 0, A = 0] = E[R | Y = 0, A = 1] (3.11)

Both variants of balance can be required simultaneously (Eq. (3.10) and Eq. (3.11)),
which leads to a stronger notion of balance. Since no previous work reported such a
fairness notion, for completeness, we define it and call it overall balance.

Definition 2 . Overall balance is satisfied iff:

E[R | Y = y, A = 0] = E[R | Y = y, A = 1] ∀y ∈ {0, 1} (3.12)

Balance fairness notions are relevant in the criminal risk assessment scenario because
a divergence in the score values of individuals from different races may indicate a
difference in the type of crime that can be committed (a high-risk score typically
means a serious crime). Balance fairness notions are also suitable in the teacher firing
scenario since any discrepancy between the average evaluation scores of fired teachers
in different groups is a clear indicator of bias. On the other hand, balance fairness
notions can be misleading in the presence of clusters of samples sharing very similar
attribute values and having score values near the positive/negative outcome threshold.
In such a case, the average score of the positive/negative class can change significantly
due to a slight increase/decrease in the threshold value.

Calibration [54]. Calibration (a.k.a. test-fairness [54], matching conditional fre-
quencies [101]) relies on the score variable as follows. To satisfy calibration, for each
predicted probability score R = r, individuals in all groups should have the same
probability of actually belonging to the positive class:

P[Y = 1 | R = r, A = 0] = P[Y = 1 | R = r, A = 1] ∀r ∈ [0, 1]6 (3.13)

Eq. (3.13) is very similar to Eq. (3.7), corresponding to predictive parity. Calibration is
a stronger notion of fairness than predictive parity as it does not depend on a threshold

6Normalizing the score value to be in the interval [0, 1] makes it possible to interpret the score as
the probability to predict the sample as positive.
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value. If calibration is satisfied, it will remain as such, no matter which threshold
value is chosen. Therefore, it is suitable for scenarios where the threshold is not fixed
and will likely be tuned to accommodate a changing context. A first example is the
acceptance score in loan granting applications, which may change abruptly due to
economic instability. A second example is the child maltreatment risk assessment,
where the threshold for intervention (withdrawing a child from his family) depends on
the available seats in foster houses.

Well-Calibration [130]. Well-calibration is a stronger variant of calibration. It
requires that (1) calibration is satisfied, (2) the score is interpreted as the probability
of truly belonging to the positive class, and (3) for each score R = r, the probability of
truly belonging to the positive class is equal to that particular score:

P[Y = 1 | R = r, A = 0] = P[Y = 1 | R = r, A = 1] = r ∀ r ∈ [0, 1] (3.14)

Intuitively, for a set of applicants who have a certain probability r of being hired,
approximately r percent of these applicants should truly be hired.

All the notions discussed above are considered group fairness, where the common
objective is to ensure that groups that differ in their sensitive attributes are treated
equally. These notions, mainly based on statistical measures, generally ignore all
attributes of the individuals except the sensitive attribute A. Such treatment might
hide unfairness. Dwork et al. [75] stated that group fairness, despite its suitability
for policies among demographic sub-populations, does not guarantee that individuals
are treated fairly. The fairness notions that follow attempt to address such issues by
not marginalizing over non-sensitive attributes X of an individual; therefore, they are
called individual fairness notions 7.

Causal Discrimination [92]. Causal discrimination implies that a classifier should
produce exactly the same prediction for individuals who differ only in the sensitive
attribute while possessing identical attributes X. In a hiring example, this is to say
that male and female applicants with the same attributes X should have the same
predictions:

7The term individual fairness is used in some papers to refer to fairness through awareness
(Eq.( 3.16)). In this thesis, individual fairness refers to notions that cannot be considered group
fairness notions.



3.2 Fairness Notions and Related Tensions 53

X(a=0) = X(a=1) ∧ A(a=0) ̸= A(a=1) ⇒ ŷ(a=0) = ŷ(a=1) (3.15)

In a hiring system, this implies that male and female applicants who otherwise have
the same attributes X will either be assigned a positive prediction or both assigned a
negative prediction. At a first glance, causal discrimination can be seen as an extreme
case of conditional statistical parity when conditioning on all non-sensitive attributes
(E = X). However, conditional statistical parity is a group fairness notion that is
satisfied if the proportion of individuals having the same non-sensitive attribute values
and predicted accepted in both groups (e.g., male and female) is the same. This is
why Eq. (3.2) is expressed in terms of conditional probabilities. Causal discrimination,
however, considers every individual separately regardless of her contribution to sub-
population proportions.

Causal discrimination is suitable for use in decision-making scenarios where it is
very common to find individuals sharing exactly the same attribute values; for example,
admission decision-making based mainly on test scores and categorical attributes.
To apply this fairness notion to a loan granting scenario where there are only a few
individuals with exactly the same attribute values, Verma and Rubin [242] generated,
for every applicant in the dataset, an identical individual of the opposite gender. The
result of applying causal discrimination is the percentage of violations in the entire
population (i.e., how many individuals are unfairly treated).

Fairness Through Awareness [75]. Fairness through awareness (a.k.a individual
fairness [91, 136]) is a generalization of causal discrimination, which implies that similar
individuals should have similar predictions. Let i and j be two individuals represented
by their attribute values vectors vi and vj . Let d(vi, vj) represent the similarity distance
between individuals i and j. Let M(vi) represent the probability distribution over the
prediction outcomes. For example, if the outcome is binary (0 or 1), M(vi) might be
[0.2, 0.8] which means that for individual i, P[Ŷ = 0] = 0.2 and P[Ŷ = 1] = 0.8. Let D

be a distance metric between probability distributions. Fairness through awareness is
achieved iff, for any pair of individuals i and j:

D(M(vi), M(vj)) ≤ d(vi, vj) (3.16)

For a hiring example, this implies that the distance between the distribution of
outcomes of two applicants should be, at most, the distance between those applicants.
A relevant feature to measure the similarity between two applicants might be the
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education level and the job experience. Thus, the distance metric d between two
applicants could be defined as the average of the normalized difference (the difference
divided by the maximum difference in a dataset) of their education level and their
job experience: Let NE be the normalized difference of the education level of two
applicants and NJ be the normalized difference of the job experience of two applicants.
Let Evi

and Evj
be the education levels of individuals i and j, respectively. Let Jvi

and Jvj
be the job experiences of individuals i and j, respectively. Let mE and mJ be

the maximum differences between the education level and the job experience in the
dataset. Therefore, the distance metric is defined as:

d(vi, vj) = NE + NJ

2 ,

where NE = |Evi −Evj |
mE

and NJ = |Jvi −Jvj |
mJ

.
The distance between outcomes could be the Hellinger distance [173], which can be

used to quantify the similarity between two probability distributions.
Fairness through awareness is more fine-grained than any group fairness notion

presented earlier in this section. It is important to mention that, in practice, fairness
through awareness introduces some challenges. For instance, it assumes that the
similarity metric is known for each pair of individuals [129]. A challenging aspect
of this approach is the difficulty of determining an appropriate metric function to
measure the similarity between two individuals. Typically, this requires careful human
intervention from professionals with domain expertise [136]. For instance, suppose a
company intends to hire only two employees while three applicants i1, i2, and i3 are
eligible for the offered job. Assume i1 has a bachelor’s degree and 1 year related work
experience, i2 has a master’s degree and 1 year related work experience, and i3 has a
master’s degree but no related work experience (Fig. 3.2). Is i1 closer to i2 than i3?
If so, by how much? This is difficult to answer, especially if the company overlooked
such specific cases and did not carefully define and set a suitable and fair similarity
metric to rank applicants for job selection. Thus, fairness through awareness cannot
be considered suitable for domains where trustworthy and fair distance metrics are
unavailable.

3.2.3 Tensions Between Fairness Notions

It has been proved that there are incompatibilities between fairness notions. For
instance, it is not always possible for a predictor to satisfy specific fairness notions
simultaneously [24, 54, 264, 166, 66]. In the presence of such incompatibilities, the
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Fig. 3.2 An example showing the difficulty of selecting a distance metric in fairness
through awareness.

predictor should relax some fairness notions by partially satisfying all of them. In-
compatibility8 results are well summarized by Mitchell et al. [166] as follows. Before
listing the tensions, it is important to summarize the relationships between fairness no-
tions. In addition, we define a new fairness notion for completeness, namely, negative
predictive parity (Definition 3).

The following proposition formally states the relationship between equalized odds,
equal opportunity, and predictive equality.

Proposition 3 . Satisfying equal opportunity and predictive equality is equivalent to
satisfying equalized odds:

Eq. (3.3)⇔ Eq. (3.4) ∧ Eq. (3.5)

Conditional use accuracy equality (Eq. (3.6)) is “symmetric” to equalized odds
(Eq. (3.3)) with the only difference of switching Y and Ŷ . The same holds for
equal opportunity (Eq. (3.4)) and predictive parity (Eq. (3.7)). However, there is no
“symmetric” notion to predictive equality (Eq. (3.5)). We define such a notion for
completeness and give it the name negative predictive parity.

Definition 3 . Negative predictive parity holds iff all sub-groups have the same
NPV = TN

FN+TN :

P[Y = 1 | Ŷ = 0, A = 0] = P[Y = 1 | Ŷ = 0, A = 1] (3.17)

8The term impossibility is commonly used as well.
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Proposition 4 . Satisfying equalized odds or conditional use accuracy equality always
leads to satisfying overall accuracy.

Eq. (3.3) ∨ Eq. (3.6)⇒ Eq. (3.8)

The reverse, however, is not valid. An ML system that satisfies overall accuracy
does not necessarily satisfy equalized odds or conditional use accuracy equality. Check
Appendix A.1.1 for an example (Table A.4) that satisfies overall accuracy but does not
satisfy equalized odds or conditional use accuracy equality.

Statistical Parity (Independence) versus Conditional Use Accuracy Equality
(Sufficiency). Independence and sufficiency are incompatible, except when both
groups (protected and non-protected) have equal base rates or Ŷ and Y are independent.
Note, however, that Ŷ and Y should not be independent since the predictor is completely
useless otherwise. More formally,

Ŷ ⊥ A ∧ Y ⊥ A | Ŷ =⇒ Y ⊥ A ∨ Ŷ ⊥ Y

(independence) (strict sufficiency) (equal base rates) (useless predictor)

It is important to mention that this result does not hold for the relaxation of
sufficiency, particularly predictive parity. Hence, the output of a predictor can satisfy
statistical parity and predictive parity between two groups having different base rates.

Statistical Parity (Independence) versus Equalized Odds (Separation). Sim-
ilar to the previous result, independence and separation are mutually exclusive unless
base rates are equal or the predictor Ŷ is independent of the true decision Y [24]. As
mentioned earlier, dependence between Ŷ and Y is a weak assumption, as any useful
predictor should satisfy it. More formally,

Ŷ ⊥ A ∧ Ŷ ⊥ A | Y =⇒ Y ⊥ A ∨ Ŷ ⊥ Y

(independence) (strict separation) (equal base rates) (useless predictor)

Considering a relaxation of equalized odds, equal opportunity, or predictive equality
breaks the incompatibility between independence and separation.

Equalized Odds (Separation) versus Conditional Use accuracy Equality
(Sufficiency). Separation and sufficiency are mutually exclusive, except where groups
have equal base rates. More formally:



3.2 Fairness Notions and Related Tensions 57

Ŷ ⊥ A | Y ∧ Y ⊥ A | Ŷ ⇒ Y ⊥ A

(strict separation) (strict sufficiency) (equal base rates)

Both separation and sufficiency have relaxations. Considering only one relaxation
will only drop the incompatibility for extreme and degenerate cases. For example,
predictive parity (relaxed version of sufficiency) is still incompatible with separation
(equalized odds), except in the following three extreme cases [54]:

• both groups have equal base rates.

• both groups have FPR= 0 and PPV= 1.

• both groups have FPR= 0 and FNR= 1.

The incompatibility disappears completely when considering relaxed versions of
both separation and sufficiency.

3.2.4 Relaxation

Almost all fairness notions presented so far involve strict equality between quantities,
mainly probabilities. In real scenarios, however, opting for an approximate or relaxed
form of fairness constraint is more suitable. The need for relaxation might be due to
the impossibility of applying fairness strictly on the application at hand, or it is not a
requirement to impose an exact constraint [128].

Fairness notions can be relaxed by considering a threshold on the ratio or difference
between quantities. For instance, the requirement for statistical parity (Eq. (3.1)) can
be relaxed in one of the two following ways:

• By allowing the ratio between the predicted acceptance rates of protected and
unprotected groups to reach the threshold of τ (a.k.a p% rule defined as satisfying
this inequality when τ = p/100 [264]):

P[Ŷ = 1 | A = 0]
P[Ŷ = 1 | A = 1]

≥ 1− τ ∀ τ ∈ [0, 1] (3.18)

For τ = 0.2, this condition relates to the 80% rule in disparate impact law [86, 25].

• By allowing the difference between the predicted acceptance rates of different
groups to reach a threshold of τ [75]:

∣∣∣P[Ŷ = 1 | A = 0]− P[Ŷ = 1 | A = 1]
∣∣∣ ≤ τ ∀ τ ∈ [0, 1] (3.19)
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A notable difference between the two types of relaxation is that the second one
(Eq.( 3.19)) is insensitive to which group/individual is the victim of discrimination as
the formula uses the absolute value.

Fairness through awareness can be relaxed using three threshold values, α1, α2, and
γ as follows [262]:

P
[
P
[∣∣∣M(vi)−M(vj)

∣∣∣ > d(vi, vj) + γ
]

> α2

]
≤ α1. (3.20)

The relaxation is allowing M(vi) −M(vj) to exceed d(vi, vj) by a margin of γ,
but the fraction of individuals differing from them by γ should not exceed α2. If the
fraction exceeds α2, the individual is said to be α2-discriminated against.

Other relaxations can allow for more flexibility in applying fairness notions. For
instance, Eq. (3.2) of conditional statistical parity can be modified by relaxing the
strict equality E = e as follows:

P[Ŷ = 1 | e− τ ≤ E ≤ e + τ, A = 0] = P[Ŷ = 1 | e− τ ≤ E ≤ e + τ, A = 1] (3.21)

3.2.5 Group vs. individual fairness

Compared to individual fairness notions, the main concern for group fairness notions
is that they are only suited to a limited number of coarse-grained, predetermined
protected groups based on some sensitive attribute (e.g., gender, race, etc.). Hence,
group fairness notions are unsuitable in the presence of intersectionality [61, 168],
where individuals are often disadvantaged by multiple sources of discrimination: their
race, class, gender, religion, and other inner traits. Typically, statistical fairness can
only be applied across a small number of coarsely defined groups, and hence failing
to identify discrimination on structured subgroups (e.g., single women), also known
as “fairness gerrymandering” [123]. A simple alternative might be to apply statistical
fairness across every possible combination of sensitive attributes. There are at least two
problems with this approach. First, this can lead to an impossible statistical problem
with a large number of sub-groups, which may lead, in turn, to overfitting. Second,
groups that are not (yet) defined in anti-discrimination law may exist and may need
protection [243]. Another issue with group fairness notions is their susceptibility to
masking. Most group fairness notions can be gamed by adding arbitrarily selected
samples to satisfy the fairness notion formula, that is, to “make up the numbers”.

Compared to group fairness notions, individual fairness notions have the drawback
that they can result in “unjust disparities in outcomes between groups” [35]. Another
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critical issue for similarity-based individual fairness (e.g., fairness through awareness)
is the difficulty of obtaining a similarity value between every pair of individuals. For
example, even assuming that the similarity can be quantified between all individuals
in the training data, it might be challenging to generalize to new individuals [35].

Several researchers assume that both group and individual fairness are prominent
yet conflicting and suggest approaches to minimize the trade-offs between these notions
[35]. For instance, [? ] defines two different worldviews, WYSIWYG and WAE. The
WYSIWYG (What you see is what you get) worldview assumes that the unobserved
(construct) space and observed space are essentially the same. In contrast, the WAE
(we’re all equal) worldview implies no innate differences between groups of individuals
based on specific potentially discriminatory characteristics. These two worldviews
highlight the tension between group and individual fairness. For instance, in a job
hiring example, the WYSIWYG might be the assumption that attributes like education
level and job experience (which belong to the observed space) correlate well with
the applicant’s seriousness or hard work (properties of the construct space). This
is to say there is some way to combine these two spaces to compare true applicant
aptitude for the job correctly. On the other hand, the WAE claims that all groups will
have almost the same distribution in the construct space of inherent abilities (here,
seriousness and hard work), chosen as essential inputs to the decision-making process.
The idea is that any difference in the groups’ performance (e.g., academic achievement
or education level) is due to factors outside their individual control (e.g., the quality
of their neighborhood school) and should not be considered in the decision-making
process. Thus, the choice between fairness notions must be based on an explicit
worldview choice. Under a WYSIWYG worldview, only individual fairness notions
achieve fairness (and group fairness notions are unfair). Under a WAE worldview, only
group fairness notions achieve non-discrimination (and individual fairness notions are
discriminatory)9.

3.2.6 Conclusion

Implementing fairness is essential to guarantee that ML- based automated decision
systems produce unbiased decisions and avoid unintentional discrimination against
some sub-populations (typically minorities). This study discusses an important issue
related to implementing fairness.

9The authors use the term fairness when discussing individual fairness and non-discrimination
when discussing group fairness.
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That is, several reasonable fairness requirements cannot be satisfied simultaneously.
This means that fairness practitioners have to choose among them. In the following
section, we present our work aimed at bridging the gap between fairness notions and
real-world applications. Specifically, we address the challenge of the applicability of
statistical fairness notions and the identification of fairness-relevant criteria to help
select the most appropriate notion of fairness for a given scenario.
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3.3 Applicability of Statistical Fairness Notions

In the context of automated decision-making, a consensual definition of fairness can
be formulated as: “absence of any prejudice or favoritism towards an individual or
a group based on their intrinsic or acquired traits” [164]. Mathematically, however,
there is no consensual definition of fairness. Research papers often focus on a specific
real-world scenario of an automated decision system and propose a fairness definition
tailored to that scenario and its specificities. Consequently, several notions of fairness
have been introduced in the literature (Section 3.2.2).

The very reason for having different flavors of fairness notions is how suitable each
one is for specific real-world scenarios. Discussion about the suitability (and sometimes
the applicability) of the fairness notions is very limited and scattered through several
papers [166, 91, 264, 130, 58, 24]. In this work we show that each ML-based automated
decision system can be different based on a set of criteria such as: whether the ground-
truth exists, difference in base-rates between sub-groups, the cost of misclassification,
the existence of a government regulation that needs to be enforced, etc. We then
discuss the suitability and applicability of each fairness notion based on the list of
criteria.

The results of this study are summarized in a decision diagram that hopefully can
help researchers, practitioners, and policymakers to identify the subtleties of the ML-
based automated decision system at hand and to choose the most appropriate fairness
notion to use or at least rule out notions that can lead to wrong fairness/discrimination
result.
Contributions. We propose a decision diagram (Fig. 3.3) integrating a set of fairness-
related features of real-world scenarios that can help researchers, practitioners, and
policymakers answer the question of “which notion of fairness is most appropriate to a
given real-world scenario and why?”.
Outline. The rest of the section is organized as follows. Section 3.3.1 discusses
related work. Section 3.3.2 lists notable real-world ML systems where fairness is
critical. Section 3.3.3 identifies a set of fairness-related characteristics of ML systems to
recommend and/or discourage using fairness notions. The decision diagram is provided
and described in Section 3.3.4, and Section 3.3.5 concludes the section.

3.3.1 Related work

In addition to the studies discussed in Section 3.2.1, we include further research on
the applicability of fairness notions in real-world applications. In 2015, Zliobaite [281]
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compiled a survey about fairness notions that have been introduced previously. He
classified fairness notions into four categories: statistical tests, absolute measures,
conditional measures, and structural measures. Statistical tests indicate only the
presence or absence of discrimination. Absolute and conditional measures quantify the
extent of discrimination, with the difference being that conditional measures consider
legitimate explanations for the discrimination. These three categories correspond
to notions of group fairness. Structural measures correspond to individual fairness
notions10. Most of the fairness notions listed by Zliobaite are variants of the group
fairness notions. For instance, the difference of means test (Section 4.1.2 in [281]) is a
variant of balance for positive class (Eq. (3.10)). Although he dedicated one category
to individual notions (structural measures). Regarding the applicability of notions, the
only criterion considered was the type of variables (e.g., binary, categorical, numeric,
etc.). The survey of Verma and Rubin [242] described a list of fairness notions similar
to the list in Section 3.2.2. To illustrate how each notion can be computed in real
scenarios, they used a loan granting real use case (German credit dataset [18]). Verma
and Rubin did not address the applicability aspect in their work.

Brief discussions about the suitability of specific fairness notions can be found in a
few papers. For instance, Zafar et al. [264] mentioned some application scenarios for
statistical parity and equalized odds. Kleinberg et al. [130] discussed the applicability
of calibration and balance notions. Through a discussion about the cost of unfair
decisions on society, Corbett-Davies et al. [58] analyzed the impact of using statistical
parity, predictive equality, and conditional statistical parity on public safety (criminal
risk assessment). Unlike the scattered discussions about the applicability of fairness
notions found in the literature, this study provides a complete reference to systemize
the selection procedure of fairness notions.

3.3.2 Real-world Scenarios with Critical Fairness Require-
ments

As the work focuses on the applicability of fairness notions, we provide a list of
notable real-world ML systems where fairness is critical. Failure to address the fairness
requirement in these scenarios will lead to unacceptably biased decisions against
individuals and/or sub-populations. These scenarios will provide concrete examples of
situations where certain fairness notions are more suitable than others.

10Zliobaite does not use group vs individual notions, but indirect and direct discrimination.
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Job Hiring. ML systems in hiring are increasingly used by employers to automatically
screen candidates for job openings11. Commercial candidate, screening ML systems,
include XING12, Evolv [140], Entelo, Xor, EngageTalent, and GoHire. Typically, the
input data used by the ML systems include affiliation, education level, job experience,
IQ score, age, gender, marital status, address, etc. The ML systems output a decision
and/or a score indicating how suitable/promising the application is for the job opening.
A biased ML system leads to rejecting a candidate because of a trait that she cannot
control (gender, race, sexual orientation, etc.). Such unfairness causes prejudice against
the candidate but can also be damaging for the employer as excellent candidates might
be missed.
Granting Loans. For decades, statistical and ML systems have been used to assess
loan applications and determine which are approved and with which repayment plan
and annual percentage rate (APR). The assessment proceeds by predicting the risk
that the applicant will default on her repayment plan. Loan Granting ML systems
currently in use include FICO, Equifax, Lenddo, Experian, TransUnion, etc. The
common input data used for loan granting include credit history, loan purpose, loan
amount requested, employment status, income, marital status, gender, age, address,
housing status, and credit score. An unfair loan-granting ML system will either deny a
deserving applicant a requested loan or give her an exorbitant APR, which, in the long
run, will create a vicious cycle as the candidate will be very likely to default on her
payments.
College Admission. Given the large number of admission applications, several colleges
are now resorting to ML systems to reduce processing time and cut costs13. Existing
college admission ML systems include GRADE [247], IBM Watson14, Kira Talent15.
The candidates’ features typically include their previously attended institutions, SAT
scores, extra-curricular activities, GPAs, test scores, interview scores, etc. The predicted
outcome can be a simple decision (admit/reject) or a score indicating the candidate’s
potential performance in the requested field of study [? ]. Unfair college admission ML
systems may discriminate against a certain ethnic group (e.g., African-American [201]),

11In 2014, the automated job screening systems market was estimated at $500 million annual
business and was growing at a rate of 10 to 15% per year [248].

12A job platform similar to LinkedIn. It was found that this platform ranked less qualified male
candidates higher than more qualified female candidates [137].

13While the final acceptance decision is taken by humans, ML systems are typically used as a first
filter to “clean-up” the list from clear rejection cases.

14A platform that uses natural language processing and personality traits to help students find the
suitable college for them.

15A Canadian startup that sells a cloud-based admissions assessment platform to over 300 schools.
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which could lead, in the long term, to economic inequalities and corrupt the role of
higher education in society as a whole.
Criminal Risk Assessment. There is an increasing adoption of ML systems that
predict risk scores based on historical data to guide human judges’ decisions. The most
common use case is to predict whether a defendant will re-offend (or recidivate). Exam-
ples of risk assessment ML systems include COMPAS [56], PSA [152], SAVRY [165],
predPol [190]. Predicting risk and recidivism requires input information such as the
number of arrests, type of crime, address, employment status, marital status, income,
age, housing status, etc. Unfair risk assessment ML systems, as revealed by the highly
publicized 2016 proPublica article [10], may result in biased treatment of individuals
based solely on their race. In extreme cases, it may lead to wrongful imprisonment of
innocent people, contributing to the cycle of violation and crime.
Teachers Evaluation and Promotion. ML systems are increasingly used by decision
makers to decide which teachers to retain after a probationary period [44] and which
tenured teachers to promote. An example of such ML systems is IMPACT [196].
Teacher evaluation ML systems take as input teacher-related features (age, education
level, experience, surveys, classroom observations), student features (test scores, so-
ciodemographics, surveys), and principals-related features (surveys about the school
and teachers) to predict whether teachers are retained. A biased teacher evaluation
ML system may lead to a systematic, unfair low evaluation for teachers in poor neigh-
borhoods, which, very often, happen to be teachers belonging to minority groups [192].
In the long term, this may lead to a significant drop in students’ performance and the
compromise of overall school reputation [178].
Child Maltreatment Prediction. The objective of the ML systems in child maltreat-
ment prediction is to estimate the likelihood of substantiated maltreatment (neglect,
physical abuse, sexual abuse, or emotional maltreatment) among children. The system
generates risk scores, triggering a targeted early intervention to prevent child mal-
treatment. Predictive risk model [238] has been developed to estimate the likelihood
of substantiated maltreatment among children enrolled in New Zealand’s public ben-
efits system. AFST (Allegheny Family Screening Tool) [82] is designed to improve
decision-making in Allegheny County’s child welfare system. The features considered
in this ML system include contemporaneous and historical information for children and
caregivers. An unfair ML system may use a proxy variable to predict decisions based
on the community rather than which child gets harmed. For example, a major cause
of unfairness in AFST is the rate of referral calls; the community calls the child abuse
hotline to report non-white families at a much higher rate than it does to report white
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families [82]. In the long term, this creates a vicious cycle as families that have been
reported will be the subject of more scrutiny and more requirements to satisfy, and
eventually, will be more likely to fall short of these requirements and hence confirm
the prediction of the system.
Health Care. For decades, ML algorithms have been processing anonymized electronic
health records and flagging potential emergencies, to which clinicians are invited to
respond promptly. Examples of features that might be used in disease (chronic condi-
tions) prediction include vital signs, blood tests, socio-demographics, education, health
insurance, home ownership, age, race, and address. The outcome of the ML system is
typically an estimated likelihood of getting a disease. A biased disease prediction ML
system can misclassify individuals in certain sub-populations disproportionately more
than the dominant population. For instance, diabetic patients have known differences
in associated complications across ethnicities [217]. Another example is described by
Obermeyer et al. [176] where for the same prediction score, African-Americans were
found to be sicker (more health issues) than whites because the ML system was relying
on the cost of health services in the previous year (African-Americans were spending
less on health services than whites) to predict the cost of health care in the coming
years. Consequently, white patients were benefiting more from additional help pro-
grams than African Americans. More generally, because different subpopulations might
have different characteristics, a single model to predict complications is unlikely to be
best-suited for specific groups in the population even if they are equally represented in
the training data [227]. Failure to predict disease likelihood promptly may, in extreme
cases, impact people’s lives.
Online Recommendation. Recommender systems are among the most widespread
ML systems in the market, with many services to assist users in finding products or
information that are of potential interest [113]. Such systems find applications on
various online platforms such as Amazon, YouTube, Netflix, Linkedin, etc. An unfair
recommender of ML systems can amplify gender bias in the data. For example, a
recommender ML system called STEM, which aims to deliver advertisements promoting
jobs in Science, Technology, Engineering, and Math fields, is deemed unfair as it has
been shown that fewer women compared to men saw the advertisements due to gender
imbalance [139]. Datta et al. [62] found that changing the gender bit in the Google
Ad setting resulted in a significant difference in the type of job ads received: men
received much more ads about high-paying jobs and career coaching services toward
high-paying jobs compared to women.
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Facial Analysis. Automated facial analysis systems are used to identify perpetrators
from security video footage, to detect melanoma (skin cancer) from face images [81], to
detect emotions [65, 84, 222], and to even determine individual’s characteristics such
as IQ, propensity towards terrorist crime, etc. based on their face images [252]. Flawed
ML systems may lead to biased outcomes, such as wrongfully accusing individuals
from specific ethnic groups (e.g., Asians, dark-skinned populations) for crimes (based
on security video footage) at a much higher rate than the rest of the population. For
instance, African Americans have been reported to be more likely to be stopped and
investigated by law enforcement due to a flawed face recognition system [97]. An
investigation of three commercial face-based gender classification systems found that
the error rate for dark-skinned females can be as high as 34.7% while for light-skinned
males, the maximum error rate is 0.8% [40].
Others. Other ML systems with fairness concerns include insurance policy predic-
tion [213], income prediction [164, 276, 80, 204, 6], and university ranking [163, 178].

3.3.3 Fairness Notion Selection Criteria

To systemize the procedure for selecting the most suitable fairness notion for a specific
ML system, we identify a set of criteria that can be used as a roadmap. We check
whether each criterion holds in the problem at hand or not. Telling whether a criterion
is satisfied does not typically require expertise in the problem domain. We note here
that in some cases, these criteria can indicate whether a fairness notion is suitable and
whether it is “acceptable” to use in the first place.
Ground Truth Availability. A ground truth value is the true and correct observed
outcome corresponding to a given sample in the data. It should be distinguished from
an inferred subjective outcome in historical data, which is decided by a human. An
example of a scenario where ground truth is available is when predicting whether
an individual has a disease. The ground truth value is observed by submitting the
individual to a blood test16 for example. An example of a scenario where ground
truth is unavailable is predicting whether a job applicant is hired. The outcome in
the training data is inferred by a human decision-maker, which is often a subjective
decision, no matter how hard she tries to be objective. It is important to mention
here that the availability of the ground truth depends on how the outcome is defined.
Consider, for example, a college admission scenario. If the outcome in the training
data is defined as whether the applicant is admitted or rejected, ground truth is not

16assuming the blood test is flawless.
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available. If, however, the outcome is defined as whether the applicant will ultimately
graduate from college with a high GPA, ground truth is available as it can be observed
after a couple of years.
Base Rate is the Same Across Groups. The base rate is the proportion of positive
outcomes in a population (Table 2.2). This rate can be the same or differs across
sub-populations. For example, the base rates for diabetes disease occurrence for men
and women are typically the same. But, for another disease such as prostate cancer,
the base rates are different between men and women17.
(Un)Reliable Outcome. In scenarios where ground truth is not available, the
outcome (label) in the data is typically inferred by humans. In that case, the outcome
of the training data can or cannot be reliable as it can encode human bias. The
reliability of the outcome depends on the data collection procedure and how rigorous
the data has been checked. Scenarios like job hiring and college admission may be more
prone to unreliable outcome problems than recommender systems. A “one-size-fits-all”
ML model in disease prediction that does not take into consideration the ethnic group
of the individual may result in an unreliable outcome as well.
Presence of Explaining Variables. An explaining variable18 is correlated with the
sensitive attribute (e.g., race) legitimately. Any discrimination that can be explained
using that variable is considered legitimate and acceptable. For instance, if all the
discrepancies between male and female job hiring rates are explained by their education
levels, discrimination can be deemed legitimate and acceptable.
Emphasis on Precision vs. Recall. Precision (the complement of target population
error [68]) is defined as the fraction of positive instances among the predicted positive
instances. In other words, how precise is that prediction if the system predicts an
instance as positive? Recall (the complement of model error [68]) is defined as the
fraction of the total number of positive instances that are correctly predicted positive.
In other words, how many positive instances can the system identify? There is always a
tradeoff between precision and recall (increasing one will lead, very often, to decreasing
the other). Depending on the scenario, the fairness of the ML system may be more
sensitive to one at the expense of the other. For example, granting loans to the
maximum number of deserving applicants contributes more to fairness than making
sure that an applicant who has been granted a loan really deserves it19. However, the

17While male prostate cancer is the second most common cancer in men, female prostate cancer is
rare [71].

18Referred also as resolving variable.
19It is important to mention here that from the loan granting organization’s point of view, the

opposite is true. That is, it is more important to make sure that an applicant who has been granted a
loan really deserves it and will not default in payments because the interest payments resulting from
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opposite is true when firing employees: fairness is more sensitive to wrongly firing an
employee than the maximum number of under-performing employees.
Emphasis on False Positive vs. False Negative. Fairness can be more sensitive to
false positive misclassification (type I error) rather than false negative misclassification
(type II error) or the opposite. For example, in a criminal risk assessment scenario, it
is commonly accepted that incarcerating an innocent person (false positive) is more
serious than letting a guilty person escape (false negative).
Cost of Misclassification. Depending on the scenario at hand, the cost of misclas-
sification can be high (e.g., incarcerating an individual, firing an employee, rejecting
a college application, etc.) or mild and without consequential impact (e.g., useless
product recommendation, misleading income prediction, offensive online translation,
abusive results in online autocomplete, etc.).
Prediction Threshold is Fixed or Floating. Decisions in ML systems are typically
made based on predicted real-valued scores. In the case of a binary outcome, the
score is turned into a binary value such as {0, 1} by thresholding20. In some scenarios,
it is desirable to interpret the real-value score as the probability of being accepted
(predicted positive). The threshold used as a cutoff point where positive decisions are
demarcated from negative decisions can be fixed or floating. A fixed threshold is set
carefully and tends to be valid for different datasets and use cases. For instance, the
high-risk threshold is typically fixed in recidivism risk assessment. Practitioners can
arbitrarily select and fine-tune a floating threshold to accommodate a changing context.
Acceptance score in loan granting scenarios is an example of a floating threshold, which
can move up or down depending on the economic context.
Likelihood of Intersectionality. Intersectionality theory [61] focuses on a specific
type of bias due to the combination of sensitive factors. An individual might not
be discriminated against based on race or based on gender only, but she might be
discriminated against because of a combination of both. Black women are particularly
prone to this type of discrimination.
Likelihood of Masking. Masking is a form of intentional discrimination that allows
decision-makers with prejudicial views to mask their intentions [25]. Masking is typically
achieved by exploiting how fairness notions are defined. For example, suppose the
notion of fairness requires an equal number of candidates to be accepted from two ethnic
groups. In that case, the ML system can be designed to carefully select candidates

a loan are relatively small compared to the loan amount that could be lost. Here, we aim for fairness,
while the loan granting organization’s goal is a benefit.

20The threshold is defined by the decision makers depending on the context of interest.
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from the first group (satisfying strict requirements) while selecting randomly from the
second group just to “make the numbers”.
Sources of Bias. Bias in the ML system outcome can arise from several possible
sources at any stage in the data generation and ML pipeline. Framing sources of bias
necessitates a deep understanding of the application at hand and can typically only be
identified after a “post-mortem” analysis of the predicted outcome. However, in some
real-world scenarios, one or more sources of bias may be more likely than others. In
such cases, the suspected source of bias can be used as a criterion to select the most
appropriate notion for fairness assessment. Sources of bias can be grouped broadly
into six categories: historical, representation, measurement, aggregation, evaluation,
and deployment [227]. Historical bias arises when the data reliably collected from the
world leads to unwanted and socially unfavorable outcomes. For example, while data
reliable collected indicates that only 5% of Fortune 500 CEOs are women [266], the
resulting outcome of a prediction system based on this data is typically not wanted21.
Representation bias arises when some non-protected populations are under-represented
in the training data. Measurement bias arises when the features or label values are not
measured accurately. For example, Street Bump is an application used in Boston City
to detect when residents drive over potholes thanks to the accelerometers built into
smartphones [60]. Collecting data using this application introduces a measurement
bias due to the disparity in the distribution of smartphones according to the different
districts in the city, which are often correlated with race or income level. Aggregation
bias arises when sub-populations are aggregated while a single model is unlikely to fit
all sub-populations. For instance, the genetic risk scores derived largely on European
populations have been shown to perform very poorly in predicting osteoporotic fracture
and bone mineral density in non-European populations, particularly in the Chinese
population [143]. Evaluation bias arises when the training data differs significantly
from the testing data. For instance, several ML systems are trained using benchmark
datasets that may differ greatly from the target dataset. Deployment bias arises when
there is a disparity between the initial purpose of an ML system and the way it is
actually used. For instance, a child maltreatment ML system might be designed to
predict the risk of child abuse after two years from the reception of a referral call, while
in practice, it may be used to help social agents make decisions about an intervention.
This can lead to a bias since the decision impacts the outcome [59].

21For this reason, Google has changed their image search result for CEO to return a higher proportion
of women.
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Legal Framework. Anti-discrimination regulations in several countries, particularly
the US, distinguish between two legal frameworks: disparate treatment and disparate
impact [25]. In the disparate treatment framework, a decision is considered unfair if
it uses (directly or indirectly) the individual’s sensitive attribute information. In the
disparate impact framework, a decision is unfair if it results in an outcome that is
disproportionately disadvantageous (or beneficial) to individuals according to their
sensitive attribute information. Zafar et al. [264] formalized another fairness criterion,
namely, disparate mistreatment, according to which a decision is unfair if it results in
different misclassification rates for groups of people with different sensitive attribute
information. Note that this criterion is currently not supported by a legal framework.
ML fairness notions can be classified according to the type of fairness it evaluates. For
instance, if a plaintiff is accusing an employer of intentional discrimination, she should
consider the disparate treatment legal framework and, hence, a fairness notion that
falls in that framework.
The Existence of Regulations and Standards. In some domains, laws and
regulations might be imposed to avoid discrimination and bias. For instance, guidelines
from the U.S. Equal Employment Opportunity Commission state that a difference in
the probability of acceptance between two sub-populations exceeding 20% is illegal
[24]. Another example might be an internal organizational policy imposing diversity
among its employees.

3.3.4 Decision Diagram and Discussion

With the many fairness notions and the subtle resemblance between ML systems
scenarios, deciding which fairness notion to use is not trivial. More importantly,
selecting and using a fairness notion inappropriately in a scenario may detect unfairness
in an otherwise fair scenario or the opposite, i.e., failing to identify unfairness in an
unfair scenario.

One of the objectives of this study is to systemize the selection procedure of
fairness notions. This is achieved by identifying a set of fairness-related characteristics
(Section 3.3.3) of the scenario at hand and then using them to recommend the most
suitable fairness notion for that specific scenario. The proposed systemized selection
procedure is illustrated in the decision diagram of Fig. 3.3. The diagram is called
a “decision diagram” and not a “decision tree” for the following reasons. In typical
decision trees, every leaf corresponds to a single decision, which is a fairness notion
that should be used. However, the diagram in Fig. 3.3 is designed such that every node
indicates which notions are recommended, which notions to avoid, and which notions
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must not be used. In addition, if a notion is not mentioned along the path, it can be
safely used.

The diagram is composed of four types of nodes:

• Decision node (diamond): based on fairness-related characteristics (Sec-
tion 3.3.3).

• Recommended node (rectangle): a leaf node indicating that the fairness
notion is suitable for use given all fairness-related characteristics in the path to
that node.

• Warning node (triangle): indicates that the fairness notion(s) is/are not
recommended in the branch on the right of the node. This node can appear
between two decision nodes in the middle of the edge.

• Must-not node (circle): the fairness notion must not be used.
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To illustrate how the diagram should be interpreted, consider the recommended node
predictive parity (node 38). According to the diagram, predictive parity is recommended
in the scenario where the legal framework is the disparate impact (decision node 1),
intersectionality and/or masking are unlikely (decision node 2), there is no evidence
that representation bias is likely (decision node 2), standards do not exist (decision
node 4), ground-truth is available, or outcome Y is reliable (decision node 11), historical
and measurement biases are unlikely (decision node 11), fairness is more sensitive to
precision rather than recall (decision node 22), the prediction threshold is typically
fixed (decision node 24) and the emphasis is on FPs (false positives) rather than FNs
(false negatives) (decision node 28). In that particular scenario, equal opportunity must
not be used (must-not node 45) because fairness in this scenario is particularly sensitive
to FPs. In contrast, equal opportunity is completely insensitive to FPs. Similarly,
negative predictive parity must not be used (must-not node 46) as fairness is sensitive
to precision rather than recall. The warning node 17 along the same path indicates
that statistical parity is unsuitable in this scenario. Finally, any fairness notion for
which there is no warning node or a must-not node along the path of the scenario can
be used in this scenario. For instance, all individual fairness notions can be used.

Consider the following scenario as a concrete example of situations where predictive
parity (node 38) is recommended. When the outcome is influenced by the decision, some
statistical quantities (e.g., FN, TN, etc.) are unlikely to be observed. Consequently,
any fairness notion relying on these quantities is unsuitable in such cases. For example,
in real-world cases of loan granting, a loan application predicted to default will not
be approved. Consequently, neither negative statistics (TN nor FN) will be typically
observed. Hence, fairness notions such as equalized odds and equality of opportunity
cannot be used as they are defined in terms of TN and FN. In such cases, predictive
parity (node 38) is recommended.
Node 1. Assessing fairness is very often performed in a legal case where a plaintiff is
filing a claim against a party using an ML system. According to real-world legislation,
particularly the American anti-discrimination law, this can fall into one of the two
legal frameworks: disparate impact and disparate treatment. Suppose the plaintiff is
filing the claim under the disparate impact framework. In that case, she can prove
the liability of the defendant by using an observational group or individual fairness
notion as the goal is to show that the practices and policies used by the defendant are
facially neutral but have a disproportionately adverse impact on the protected class [25].
Suppose the plaintiff is filing a claim under the disparate treatment framework. In
that case, observational fairness notions are often not enough to prove the defendant’s
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liability, as the goal is to show that the defendant has used the sensitive attribute to
make the discriminatory decision. The recommended fairness notions, in that case, are
causality-based22 (recommended node 3) since all of them are expressed in terms of
the causal effect of the sensitive attribute on the prediction.
Node 2. As explained above, any unintentional type of bias can also be “orchestrated”
intentionally by decision-makers with prejudicial views. For instance, decision-makers
can purposefully bias the data collection step to ensure that the ML system remains
less favorable to protected classes. To reliably assess the bias in the presence of such
masking attempts, all group fairness notions should be avoided as they are defined
in terms of statistics about the different sub-populations and hence can more easily
be gamed by prejudicial decision makers. Intersectionality is similar to masking as
both lead to discrimination, which is difficult to detect using statistical measures
and consequently requires more fine-grained measures. Therefore, individual fairness
notions are recommended in the presence of both criteria (nodes 9 and 18).
Nodes 2, 323, and 11. In case one or more sources of bias are suspected ahead of
time (before assessing fairness), the information can help warn against using some
fairness notions. If representation bias is likely, the performance (accuracy) of the
ML system on under-represented categories will often be worse. Such disparity in
performance between groups may lead to unreliable fairness assessment if a group
fairness notion is used, particularly disparate mistreatment notions (grayed section
of the diagram). Individual fairness notions can assess fairness more reliably in such
cases, provided that measurement bias is not likely (node 2). Suspecting historical or
measurement bias means the features X and/or the label Y are unreliable. All group
fairness notions using the label Y (disparate mistreatment) and individual notions are
not recommended in that case. Statistical parity is recommended in such a situation.
Finally, causality-based fairness notions are recommended in the presence of either
aggregation, evaluation, or deployment bias. The reason is that the interventional and
counterfactual quantities used in the definitions of these notions go beyond correlations
and hence allow us to assess fairness more reliably in the presence of such bias. For
instance, Coston et al. [59] propose counterfactual formulations of fairness metrics to
properly account for the effect of an intervention (decision) on the outcome. Such an
effect is a type of deployment bias.
Node 4. To reduce inequality and historical discrimination against sub-populations,
particularly minorities, some states and organizations resort to equality standards

22We will focus on causality-based fairness notions and their applicability in Section 3.4.
23As node 3 involves the applicability of causality-based fairness notions, it will be thoroughly

explained in Section 3.4.
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and regulations such as the laws enforced by the US Equal Employment Opportunity
Commission [1]. In the presence of such standards, an ML system should satisfy such
standards to be deemed fair. Consequently, all that matters for fairness assessment
is the proportion of positive prediction across all groups, corresponding to statistical
parity.
Node 17. If no standards/regulations exist (node 4) and either the ground truth exists
or the outcome label Y is available (node 11), statistical parity is not recommended
(node 17) as it can lead to misleading results such as detecting unfairness in an otherwise
fair scenario or failing to identify fairness in an unfair scenario. For instance, in a
stop-and-frisk real-world scenario applied in New York City starting 1990 [28]24, the
ground truth is available as by frisking an individual, a police officer can know with
certainty the presence or no of illegal substance. In such cases, one or several disparate
mistreatment notions (nodes 30-41) are more suitable to assess fairness.
Nodes 22-47. The bulk of Fig. 3.3 is dedicated to disparate mistreatment fairness
notions and the criteria leading to each one of them. These notions define fairness
in terms of the disparity of misclassification rates among the different groups in the
population. Based on their definitions, selecting the most suitable notion to use depends
on four criteria, namely, whether the emphasis is on precision or recall (node 22),
whether the threshold is fixed or floating (nodes 23 and 24), whether the emphasis is
on FNs or FPs (nodes 26 and 28), and finally, whether the emphasis is on the positive
or negative class (node 27). As some notions focus only on FP or FN (nodes 31, 32, 38,
and 39), any notion insensitive to either FP or FN must not be used (nodes 42 - 47).

The diagram may be misleading if it is interpreted very categorically. This occurs
when a diagram user navigates it and ends up using the recommended fairness notion
without considering other important elements specific to the scenario at hand. The
diagram can also be misleading when it is unclear which branch to take in a decision
node. For example, the question in decision node 22 (emphasis on precision or recall?)
is difficult to answer categorically in several scenarios. The decision nodes 4, 21, 12,
and even 2 are typically easier to navigate but can be challenging to settle in several
scenarios. Moreover, in the presence of measurement bias, the values of some features
and even the outcome label may not be reliable, making the diagram navigation more
challenging. A potential solution would be to label one of the branches as default (to
be followed when the answer is unclear), but this can often result in a sub-optimal
decision. In summary, the diagram should be considered a guide and should never be
used to supersede important elements specific to the scenario at hand.

24Assuming the absence of measurement bias.
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Finally, Table 3.2 states explicitly the relationship between every selection criterion
and every fairness notion. The table uses four symbols, namely, recommended (✓),
warning (△! ), must-not (✗), and insensitive (−). Insensitive means that the choice of
the fairness notion is independent of the selection criterion.

3.3.5 Conclusion

With the increasingly large number of fairness notions considered in the relatively new
field of fairness in ML, selecting a suitable notion for a given ML system becomes a
non-trivial task. There are two contributing factors. First, the boundaries between
the defined notions are increasingly fuzzy. Second, applying inappropriately a fairness
notion may report discrimination in an otherwise fair scenario, or vice versa, and fail
to identify discrimination in an unfair scenario. This study addresses this problem by
identifying fairness-related characteristics of the scenario at hand and then using them
to recommend and/or discourage specific fairness notions. The main contribution of
this work is to systemize the selection process based on a decision diagram. Navigating
the diagram will result in recommending and/or discouraging using fairness notions.

One of the main objectives of this study is to bridge the gap between the real-
world use case scenarios of automated (and generally unintentional) discrimination
and the mostly technical tackling of the problem in the literature. Hence, the study
can be particularly interesting to civil rights activists, civil rights associations, anti-
discrimination law enforcement agencies, and practitioners in fields where automated
decision-making systems are increasingly used.

More generally, in real scenarios, there are still two important obstacles to addressing
the unfairness problem in automated decision systems. First, the victims of such systems
are, very often, members of minority groups with limited influence in the public sphere.
Second, automated decision systems are geared towards efficiency (typically money),
and to optimize profit, they are designed to sacrifice the outliers as tolerable collateral
damage. After all, the system benefits most of the population (employers finding ideal
candidates, banks giving loans to minimum-risk borrowers, a society with recidivists
locked in prisons, etc.).

The next section focuses on causality-based fairness notions and their applicability
in real-world scenarios.
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3.4 Applicability of Causality-Based Fairness No-
tions

The most commonly used fairness notions are observational (fairness notions presented
in Section 3.2.2) and rely on mere correlation between variables. The main problem
of correlation-based fairness notions is that they fail to detect discrimination in the
presence of statistical anomalies such as Simpson’s paradox [215]. A famous example of
Simpson’s paradox is the gender bias in 1973 Berkeley admission [33, 146]. That year,
44% of male applicants were admitted against only 34% of female applicants. While
this looks like a bias against female candidates, when the same data was analyzed by
the department, acceptance rates were approximately the same with a slight bias in
favor of female candidates. In other words, the statistical conclusion drawn from the
sub-populations differs from that of the entire population. Considering the fairness
problem from the legal and philosophical point of view reveals another limitation
of statistical fairness notions. In the disparate treatment liability framework [25],
discrimination claims require plaintiffs to demonstrate a causal connection between
the challenged decision (e.g., hiring, firing, admission) and the sensitive feature
(e.g., gender, race). It is then necessary to investigate the causal relationship between
the sensitive attribute and the decision rather than the associated relationship. Because
of these two limitations, it is now widely accepted that causality is necessary to address
the problem of fairness [146] appropriately.

Various causality-based fairness notions have been recently proposed to tackle
the fairness problem through causal inference lenses. These include total effect [181],
counterfactual fairness [136], counterfactual effects [268], interventional fairness [200],
etc. These notions differ from statistical fairness approaches in that they are not
totally based on data but consider additional knowledge about the structure of the
world in the form of a causal model (Section 2.4). This additional knowledge helps
to understand how data is generated in the first place and how changes in variables
propagate in a system. Most of these fairness notions are defined in terms of non-
observable quantities such as interventions (to simulate random experiments) and
counterfactuals (which consider other hypothetical worlds in addition to the actual
world). Such quantities cannot always be uniquely computed from observational data,
which significantly hinders the applicability of causality-based notions in practical
scenarios. Each one of the two main causal frameworks in the literature, namely,
structural causal model (SCM) with causal graphs [181] and potential outcome [110]
(both presented in Section 2.4), use a different approach to compute/estimate the



3.4 Applicability of Causality-Based Fairness Notions 79

causal quantities using observational data. The SCM framework relies mainly on the
identifiability criterion [210] to generate an expression for the causal quantity based
only on observable probabilities. If the identifiability criterion is unsatisfied, the causal
quantity can not be computed using the available observable data. In such case, as
an alternative, if the complete structure of the causal model is available, it is possible
to estimate the distribution of the latent variables U and consequently generate an
estimation of the counterfactual outcomes [136]. The potential outcome framework
approximates causal quantities using several estimation techniques (e.g., matching,
re-weighting, etc.) [100].

Given a real-world scenario, selecting which fairness notion to use is a challenging
and error-prone task, as using the wrong fairness notion may indicate unfairness in
an otherwise fair scenario or the opposite (failing to detect unfairness in an unfair
scenario). This study provides guidelines to help select a suitable causality-based
fairness notion given a specific real-world scenario. The guidelines are summarized in
a decision diagram (Fig. 3.11) that can be easily navigated using the characteristics
of the real-world scenario at hand. On the other hand, according to Pearl’s SCM
framework, computing causal quantities (interventions and counterfactuals) depends
on their identifiability. Hence, even if a fairness notion is appropriate in some setup, it
might not be applicable because of identifiability issues. Placing the various causality-
based fairness notions in Pearl’s causation ladder with the three corresponding rungs
(observation, intervention, and counterfactual) [185] (Fig 3.12) allows us to rank these
notions and indicates how difficult it is to deploy each one of them in practice.
Contributions. The main contributions of this study are (1) a guideline to help select
a suitable causality-based fairness notion given a specific real-world scenario and (2) a
ranking of the fairness notions according to Pearl’s causation ladder, indicating how
difficult it is to deploy each notion in practice.
Outline. This section starts by illustrating the need for causality through a hypothet-
ical example of teacher firing (Section 3.4.1). Section 3.4.2 examines a comprehensive
list of causality-based fairness notions. A survey on the three approaches to computing
causal quantities from observable data, namely, identifiability, estimation based on
the full causal model, and potential outcome estimation, is provided in Section 3.4.3.
The main contributions of the study, which are the suitability and applicability of
causality-based fairness notions, are described in Section 3.4.4. Finally, Section 3.4.5
concludes.
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3.4.1 The Need for Causality: an Example

Consider the hypothetical example25 of an automated system for deciding whether to
fire a teacher at the end of the academic year. Deployed teacher evaluation systems
have been suspected of bias in the past. For example, IMPACT is a teacher evaluation
system used in the city of Washington DC and has been found to be unfair against
teachers from minority groups [196, 192, 178]. Assume that the system takes as input
two features, namely, the location of the school where the teacher is working (C) and
the initial26 average level of the students in her class (A). The outcome is whether
to fire the teacher (Y ). Assume that all 3 variables are binary with the following
values: if the school is located in a high-income neighborhood, C = 1. Otherwise (the
school is located in a low-income neighborhood), C = 0. If the initial average score
for the students assigned to the teacher is high, A = 1. Otherwise (initial level is
low), A = 0. Firing a teacher corresponds to Y = 1 while retaining her corresponds to
Y = 0. The level of students in a given class can be influenced by several variables,
but in this example, assume that it is only influenced by the school’s location; students
in high-income neighborhoods are more advantaged and typically perform better in
school.

Assume now that the automated decision system is suspected to be biased by the
initial level of students assigned to the teacher. That is, it is claimed that the system
will more likely fire teachers who have been assigned classes with low-level students at
the beginning of the academic year, which is clearly unfair. In this case, the sensitive
attribute is the initial level of students assigned to the teacher (A). For concreteness,
consider the prediction system that yields the following conditional probabilities:

P[Y = 1 | A = 1, C = 0] = 0.02 P[A = 1 | C = 0] = 0.2
P[Y = 1 | A = 1, C = 1] = 0.0675 P[A = 1 | C = 1] = 0.8
P[Y = 1 | A = 0, C = 0] = 0.01 P[A = 0 | C = 0] = 0.8
P[Y = 1 | A = 0, C = 1] = 0.25 P[A = 0 | C = 1] = 0.2

and that the dataset is collected from a population where schools are located with
equal proportions in high-income and low-income neighborhoods, that is, P[C = 1] =
P[C = 0] = 0.5. Assume also that the proportion of classes with a low initial average
level of students is the same as the one with high average initial level of students, that
is, P[A = 1] = P[A = 0] = 0.5. To keep the scenario simple, assume that the level of

25Inspired by the prior convictions example in [170].
26At the beginning of the academic year.
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students A does not depend on any other feature except C and that the firing decision
Y depends only on A and C.

A simple approach to check the fairness of the firing decision Y w.r.t the sensitive
attribute A is to contrast the conditional probabilities: P[Y = 1 | A = 0] and
P[Y = 1 | A = 1] which quantify, respectively, the likelihood of firing a teacher given
that she is assigned students with an initial low level versus and the likelihood of firing
a teacher given that she is assigned students with an initial high-level class. Such
probabilities can be computed as follows:

P[Y = 1 | A = a] =
∑

c∈{0,1}
P[Y = 1 | A = a, C = c]

× P[C = c | A = a] (3.22)

Hence,

P[Y = 1 | A = 1] = 0.02× 0.2 + 0.0675× 0.8 = 0.058
P[Y = 1 | A = 0] = 0.01× 0.8 + 0.25× 0.2 = 0.058

The firing rates between teachers assigned to low-level and high-level students
appear equal, as the values are equal. Hence, no discrimination is detected27. This
conclusion is flawed because it doesn’t consider the mechanism by which the observed
data is generated. In particular, the school’s location where the teacher works influences
both the initial level of students assigned to her and the decision to fire or retain her.
The P[A|C] distribution indicates that 80% of classes in low-income neighborhoods have
students with low initial levels (P[A = 0 | C = 0] = 0.8) while 80% of classes in high-
income neighborhoods have students with high initial levels (P[A = 1 | C = 1] = 0.8).
The automated decision system is biased in this case because P[Y = 1 | A = 0, C = 1],
the probability of firing a teacher in high-income neighborhoods who is assigned a
class with a low initial level, is exceptionally high (0.25). Using simple conditional
probabilities on this collected dataset fails to appropriately account for that bias
because very few teachers in high-income neighborhoods are assigned low-level classes
in this particular dataset (P[A = 0 | C = 1] = 0.2). Generally, any statistical fairness
notion that relies solely on correlation between variables will fail to detect such bias.

The causal relationships between variables should be considered to avoid such
misleading conclusions. Fig. 3.4 illustrates the causal relations between the three
variables of the above example where the school’s location C is a confounder. Based

27This corresponds to statistical parity (Eq. (3.1)).
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on such a causal graph, a firing decision system is fair if it is as likely to fire teachers
in the following two hypothetical cases: (1) when all teachers in the population are
assigned students of low level on average, and (2) when all teachers in the population
are assigned students of high level on average. This is achieved using intervention
(do() operator)28 and allows to break the problematic dependence between A and C.
The probabilities of firing a teacher in these two hypothetical cases are expressed
as P[YA=0 = 1] = P[Y = 1 | do(A = 0)] and P[YA=1 = 1] = P[Y = 1 | do(A = 1)]
respectively. In this simple graph, and assuming no other variable is used in the
prediction, these probabilities can be computed as follows:

P[YA=a = 1] =
∑

c∈{0,1}
P[Y = 1 | A = a, C = c]× P[C = c]

Hence,

P[YA=1 = 1] = 0.02× 0.5 + 0.0675× 0.5 = 0.0437
P[YA=0 = 1] = 0.01× 0.5 + 0.25× 0.5 = 0.13

A Y

C

Fig. 3.4 Causal graph of the firing example. C: location of school, A: initial level of students,
Y: firing.

The values confirm the existence of a bias against teachers who are assigned classes
with initially low levels.

3.4.2 Causality-Based Fairness Notions

Assume that the sensitive attribute A and the outcome Y are binary variables where
A = a1 denotes the privileged group (e.g., male) and A = a0 the disadvantaged group
(e.g., female).

28Intervention and the do() operator are already explained in Section 2.4.1.
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You can refer to the simple job hiring example in Table A.11 in Appendix A.1.2 to
understand better how the various causality-based fairness notions presented in this
section are computed.

The most common non-causal fairness notion is total variation (TV), known as
statistical disparity (Eq. (4.2)), demographic disparity, or risk difference. The total
variation of A = a0 on the outcome Y = y with reference A = a1 is defined using
conditional probabilities as follows:

TVa1,a0(y) = P[y | a1]− P[y | a0] (3.23)

Intuitively, TVa1,a0(y) measures the difference between the conditional distributions of
Y when we (passively) observe A changing from a1 to a0. The main limitation of TV
is its purely statistical nature, which makes it unable to reflect the causal relationship
between A and Y ; that is, it is insensitive to the mechanism by which data is generated
and collected. Total effect (TE) [181] is the causal version of TV and is defined in
terms of experimental probabilities as follows:

TEa1,a0(y) = P[ya1 ]− P[ya0 ] (3.24)

Recall that the notation P[ya1 ] is equivalent to P[Y = y|do(A = a1)] (Section 2.4.1).
TE measures the effect of the change of A from a1 to a0 on Y = y along all the causal
paths from A to Y . Intuitively, while TV reflects the difference in proportions of Y = y

in the current cohort, TE reflects the difference in proportions of Y = y in the entire
population. For the binary outcome case, TE is equivalent to the average treatment
effect (ATE) [167] in the potential outcome framework, which is defined as follows:

ATEa1,a0 = E[Y a1 − Y a0 ] (3.25)

= 1
n

n∑
i=1

(Y a1
i − Y a0

i ) (3.26)

where n is the number of observed samples. ATE corresponds exactly to FACE in [124].
Computing exactly ATE requires the knowledge of both potential outcomes: the

observed and the counterfactual. As the latter is almost impossible to observe, the
exact computation of ATE is typically impossible. However, for the sake of illustration,
we assume the counterfactual outcome is available and show how ATE is computed.
Appendix A.1.2 shows how ATE and counterfactual outcomes can be estimated from
observable data.
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Computing the causal effect based only on the observed treatment group samples
(e.g., female applicants only) corresponds to a variant of TE called the effect of
treatment on the treated (ETT) [181] and is defined as:

ETTa1,a0(y) = P[ya1 | a0]− P[ya0 | a0] (3.27)

In the binary outcome case, ETT corresponds to the average treatment effect on the
treated ATT [167] in the potential outcome framework defined as:

ATTa1,a0 = E[Y a1|A = a0]− E[Y a0|A = a0] (3.28)

= 1
n1

∑
i:A=a0

(Y a1
i − Y a0

i ) (3.29)

where n1 is the number of samples in the treatment group. ATT is also called FACT
in [124].

Average treatment effect on the control group (ATC) [167] is the same as ATT but
focusing instead on the control group:

ATCa1,a0 = E[Y a1|A = a1]− E[Y a0|A = a1] (3.30)

= 1
n2

∑
i:A=a1

(Y a1
i − Y a0

i ) (3.31)

where n2 is the number of samples in the control group.
Conditional average treatment effect (CATE) [167] is defined similarly, but condi-

tioning on some other covariate instead of the sensitive attribute A:

CATEa1,a0(X = x) = E[Y a1|X = x]− E[Y a0 |X = x] (3.32)

= 1
nx

∑
i:X=x

(Y a1
i − Y a0

i ) (3.33)

where nx is the number of samples in the subgroup X = x.
Unlike the SCM framework, in the potential framework, it is possible to define

individual treatment effect ITE [167], which is defined for every unit i as:

ITEa1,a0(i) = Y a1
i − Y a0

i (3.34)

ATC, CATE, and ITE are defined and typically used in the potential outcome framework
but have no equivalents in the SCM framework. However, although ATC and CATE
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can be easily represented in the SCM formalism, ITE cannot be easily formalized in
the SCM framework.

The job hiring example of Tables A.11 and A.12 in Appendix A.1.2 is interesting
because it illustrates a statistical anomaly where some statistical notions such as TV
fail to appropriately account for the bias between sub-populations (e.g., female vs.
male). This simple job hiring scenario is similar to the Berkeley sex discrimination
in college admission [33] where data showed a bias for male applicants overall, but
when results were analyzed separately for each department, data showed a slight bias
in favor of female candidates. The Berkeley scenario is typically used as an example
of Simpson’s paradox [215]. In both scenarios, by considering the outcome of the
observable samples in the counterfactual setup, the above causality-based fairness
notions could appropriately assess gender (A) discrimination on the outcome (Y ). The
job hiring example illustrating the statistical anomaly can be easily modified to reflect
Simpson’s paradox [215]. We provide such data in Table A.13 in Appendix A.1.2.

All the above causality-based fairness notions fall into the framework of disparate
impact [25], which aims at ensuring the equality of outcomes among all groups (pro-
tected/treatment and unprotected/control). An alternative framework is the disparate
treatment [25] which seeks equality of treatment achievable through prohibiting the use
of the sensitive attribute in the decision process. The main idea is to split the causal
effect between the sensitive attribute A and the outcome Y into several causal pathways,
each of which is either fair, unfair, or spurious. Common fairness notions from the
disparate treatment framework include direct effect, indirect effect, and path-specific
effect [180]. An effect can be deemed fair, unfair, or spurious by an expert on the
scenario at hand. An unfair effect is called discrimination. Direct discrimination is
assessed using causal effect along the direct edge from A to Y . Indirect discrimina-
tion is measured using the causal effect along causal paths that pass through proxy
attributes29. A fair or explainable discrimination is measured using causal pathways
passing through explaining variables. The spurious effect corresponds to a pathway
starting with an incident edge into the sensitive attribute A.

Fig. 3.5 presents a causal graph of the job hiring scenario involving an explaining
variable E (e.g., education and academic degrees) and a proxy/redlining variable R

(e.g., the hobby of the candidate). Hiring discrimination due to education level is
legitimate and considered fair. In contrast, discrimination due to the hobby of the
candidate is unfair as it is a proxy for gender (the type of hobby generally indicates the

29A proxy is an attribute that cannot be objectively justified if used in the decision-making process.
It is also known as a redlining attribute.
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A Y

R

E

Fig. 3.5 Job hiring scenario where A is gender, Y : hiring decision, R: hobby of a
candidate (R = 1 for mechanical hobby, R = 0 for non-mechanical hobby), and E:
education level of the candidate (E = 1 for college degree, E = 0 for no college degree).

candidate’s gender). Direct effect can be computed by simply “blocking” all indirect
causal paths. An indirect causal path is a directed path from A to Y going through
one or several mediator variables. For example, in Fig. 3.5, there are two indirect
causal paths A → R → Y and A → E → Y . To compute the direct causal effect
(A → Y ), both indirect causal paths need to be blocked by adjusting on variables R

and E. As there are no confounders, the direct effect can be computed as:

DEa1,a0(y) = P[y | a1, R, E]− P[y | a0, R, E]
=
∑

r

∑
e

(P[y | a1, r, e]− P[y | a0, r, e])

In the presence of confounders (between A and Y , between R and Y , etc.), natural
direct effect (NDE) [180] is a more general notion that measures the direct causal effect
and is defined as:

NDEa1,a0(y) = P[ya0,Za1
]− P[ya1 ] (3.35)

Where Z is the set of mediator variables and P[ya0,Za1
] is the probability of Y = y had

A been a0 and had Z been the value it would naturally take if A = a1. That is, A is
set to a0 in the single direct path A→ Y and is set to a1 in all other indirect paths
(A→ R→ Y and A→ E → Y ). Check Appendix A.1.2 to see how NDE is computed.

Natural indirect effect (NIE) [180] measures the indirect effect of A on Y and is
defined as:

NIEa1,a0(y) = P[ya1,Za0
]− P[ya1 ] (3.36)

The problem with NIE is that it does not distinguish between the fair (explainable)
and unfair (indirect discrimination) effects. Path-specific effect [181, 51, 255] is a more
nuanced measure that characterizes the causal effect in terms of specific paths.
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Given a path set π, the π-specific effect is defined as:

PSEπ
a1,a0(y) = P[ya0|π ,a1|π ]− P[ya1 ] (3.37)

where P[ya0|π ,a1|π ] is the probability of Y = y in the counterfactual situation where the
effect of A on Y with the intervention (a0) is transmitted along π, while the effect of
A on Y without the intervention (a1) is transmitted along paths not in π (denoted by:
π). Using the job hiring example of Fig. 3.5, Eq. (3.37) can be used to assess only
unfair discrimination which is transmitted through the direct path A → Y and the
indirect path A→ R→ Y . The third path A→ E → Y transmits explainable (fair)
discrimination and hence, should not be considered.

No Unresolved Discrimination [127]. No unresolved discrimination is a fairness
notion that falls into the disparate treatment framework and focuses on the indirect
causal effects from A to Y . No unresolved discrimination is satisfied when no directed
path from A to Y is allowed, except via a resolving (explaining) variable E. A resolving
variable is any variable in a causal graph that is influenced by the sensitive attribute in a
manner accepted as non-discriminatory. Fig. 3.6 presents two alternative causal graphs
for the job hiring example. The graph at the left exhibits unresolved discrimination
along the heavy paths: A→ R→ Y and A→ Y . By contrast, the graph at the right
does not exhibit any unresolved discrimination as the effect of A on Y is justified by
the resolved variable E: A→ E → Y .

A Y

R

E
(a)

A Y

R

E
(b)

Fig. 3.6 Y exhibits unresolved discrimination in the left graph (along the heavy paths)
but not the right one.

The assumption of valid causal graph availability limits the use of no unresolved
discrimination in real scenarios. [127] provides formal proof that even with prior
knowledge of resolving variables, it is not always possible to tell, based on observational
data only, if Y satisfies no unresolved discrimination.
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No Proxy Discrimination [127]. Similarly to no unresolved discrimination, no
proxy discrimination focuses on indirect discrimination. A causal graph exhibits
potential proxy discrimination if a path exists from the protected attribute A to the
outcome Y that is blocked by a proxy/redlining variable R. It is called proxy because
it is used to decide about the outcome Y while it is a descendent of A, which is
significantly correlated with it in such a way that using the proxy in the decision has
almost the same impact as using A directly. An outcome variable Y exhibits no proxy
discrimination if the equality:

P[Y | do(R = r)] = P[Y | do(R = r′)] ∀ r, r′ ∈ dom(R) (3.38)

holds for any potential proxy R.
Fig. 3.7 shows two similar causal graphs for the same job hiring example. The causal

graph at the left presents potential proxy discrimination via the path: A→ R→ Y .
However, the graph at the right is free of proxy discrimination as the edge between A

and its proxy R has been removed due to the intervention on R (R = r).

A Y

R

E
(a)

A Y

R

E
(b)

Fig. 3.7 The graph at the left exhibits potential proxy discrimination (along the heavy
edge between A and R) but not in the right one.

Similarly to no unresolved discrimination, no proxy discrimination requires a valid
causal graph. Hence, both fairness notions depend on the correct output of the causal
discovery task (Chapter 5 introduces our work related to this problem).

X=x

Counterfactual Fairness [136]. Counterfactual fairness is a very strong fairness
notion requiring equality between the observed and counterfactual outcomes for every
individual. That is, an outcome Y is counterfactually fair if under any assignment of
values X = x and any individual in U ,

P[ya1(U) | X = x, A = a1] = P[ya0(U) | X = x, A = a1] (3.39)
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where X = V \{A, Y } is the set of all remaining variables. As the latent variable U

appears in Eq. (3.39), counterfactual fairness is an individual fairness notion. It is
satisfied if the probability distribution of the outcome Y is the same for every possible
individual in the actual and counterfactual worlds. Counterfactual fairness typically
coincides with ITE (Eq. (3.34)).

[136] could test counterfactual fairness by making a very strong assumption. That
is, they assumed the full structure of the causal model is available, including the latent
variables U . They could then estimate the P[U ] distribution using Markov chain Monte
Carlo methods and the observed data. Thanks to the estimated distribution of P[U ],
they could compute counterfactuals using Pearl’s three-step process: abduction, action,
and prediction [181]. Hence, another sample with counterfactual sensitive value is
generated for every individual in the population. Counterfactual fairness is finally
assessed by comparing the density functions of the actual and counterfactual samples.

Counterfactual Effects [268]. By conditioning on the sensitive attribute A = a,
Zhang and Bareinboim defined two variants of NDE (Eq. (3.35)) and NIE (Eq. (3.36))
which focus on the direct and indirect effect for a specific group. In addition, they
characterize a third type of effect, spurious, which considers the back-door paths
between A and Y , that is, paths with an arrow into A.

The three effects are defined as follows:

DEa1,a0(y|a) = P[ya0,Za1
|a]− P[ya1 |a] (3.40)

IEa1,a0(y|a) = P[ya1,Za0
|a]− P[ya1|a] (3.41)

SEa1,a0(y) = P[ya1|a0]− P[y|a1] (3.42)

where in Eq. (3.40) and (3.41), a can be a0 or a1. Considering the simple job hiring
example and focusing on the female group (A = 0), DE1,0(y|0) measures the change in
the probability of Y (e.g., hiring) had A been 0 (female), while mediators E and R

are kept at the level they would take had A been 1 (male). Appendix A.1.2 shows how
counterfactual effects are computed in practice.

Compared to NDE and NIE, counterfactual effects focus only on individuals of a
specific group (e.g., only female candidates) and characterize the causal effect through
spurious (back-door) paths. This spurious effect is what makes causal relations different
from mere statistical correlations. However, counterfactual indirect effect still does not
distinguish between fair and unfair direct effects.
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Counterfactual Error Rates [267]. Equalized odds (Eq. (3.3)) is an important
statistical fairness notion that requires equality of error rates (TPR and FPR) across
sub-populations. It can be re-written as follows:

ERa1,a0(ŷ|y) = P[ŷ | a1, y]− P[ŷ | a0, y] (3.43)

where ŷ denotes the prediction while y denotes the true outcome. The problem with this
statistical notion is the difficulty in identifying the causes behind the discrimination, if
any. [267] decomposes equalized odds(Eq. (3.43)) using three counterfactual measures
corresponding to the direct, indirect, and spurious effects of A on Ŷ . The three
measures are counterfactual direct error rate, counterfactual indirect error rate, and
counterfactual spurious error rate. Let ŷ = f(p̂a) be a classifier where P̂A is the set
of input features (parent variables of Ŷ ) for the classifier. The counterfactual error
rates for a sub-population a, y (with prediction ŷ ̸= y) are defined as:

ERd
a1,a0(ŷ | a, y) = P[ŷa0,y,(P̂A\A)a1,y

| a, y]− P[ŷa1,y | a, y] (3.44)

ERi
a1,a0(ŷ | a, y) = P[ŷa1,y,(P̂A\A)a0,y

| a, y]− P[ŷa1,y | a, y] (3.45)

ERs
a1,a0(ŷ | y) = P[ŷa1,y | a0, y]− P[ŷa1,y | a1, y] (3.46)

For example, the counterfactual direct error rate (Eq. (3.44)) measures the error
rate (disparity between the true and the predicted outcome) in terms of the direct
effects of the sensitive attribute A on the prediction Ŷ . In the job hiring example,
considering the female sub-population that should be hired (A = 0 and Y = 1), it
reads: for a female candidate that should be hired, how would the prediction Ŷ change
had the candidate been a female (A been 0) while keeping all the other features P̂A\A

at the level that they would attain had “she was male”, compared to the prediction Ŷ

she would receive had “she was male” and should have been hired?
Appendix A.1.2 shows how counterfactual error rates can be computed in practice.
Interestingly, the statistical equalized odds error rate (Eq. (3.43)) can be decomposed

in terms of the three above causality-based error rates:

ERa1,a0(ŷ | y) = ERd
a1,a0(ŷ | a1, y)− ERi

a0,a1(ŷ | a1, y)− ERs
a0,a1(ŷ | y) (3.47)

Individual Direct Discrimination [273]. Individual direct discrimination aims to
discover direct discrimination at the individual level. It is based on situation testing [30],
a legally grounded technique for analyzing discrimination at an individual level. It
compares the individual with similar individuals from both groups (protected and
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unprotected). That is, for an individual i in question, find the k other individuals who
are the most similar to i in the group A = a0 and k similar individuals from the group
A = a1. The first set is denoted as S+ while the second as S−. The target individual
is considered as discriminated if the difference observed between the rate of positive
decisions in S− and S+ is higher than a predefined threshold τ (typically 5%).

Causal inference is used to define the distance function d(i, i′) required to select the
elements of S− and S+. First, only attributes that are direct causes of the outcome
should considered in the computation of the distance. That is, based on the causal
graph, Q = Pa(Y )\{A} denotes the set of variables that should be used in the distance
function. Second, the function definition should consider the causal effect of each of
the selected attributes (Qk ∈ Q) on the outcome. In particular, for each variable Qk,
CE(qk, q′

k) measures the causal effect on the outcome when the value of Qk changes
from qk to q′

k and is defined as:

CE(qk, q′
k) = P[yq]− P[yq′

k
,q\{qk}] (3.48)

where P[yq] is the effect of the intervention that forces the set Q to take the set of
values q, and P[yq′

k
,q\{qk}] is the effect of the intervention that forces Qk to take the

value q′
k and other attributes in Q to take the same values as q.

The two individual fairness notions mentioned above, namely, ITE (Eq. (3.34))
and counterfactual fairness (Eq. (3.39)), rely on the counterfactual outcome to assess
fairness for every individual. Individual direct discrimination drops this requirement
and uses instead the sets S− and S+ composed of similar individuals in both groups.
Hence, it can be considered an estimation technique to circumvent counterfactual
needs. However, the distance function between two individuals d(i, i′) is unnecessarily
complex; it is defined in terms of the causal effects of every covariate X on the outcome
Y . These causal effects are re-computed each time the distance between two individuals
is needed. Matching techniques in the potential outcome framework use much simpler
distance metrics. Matching techniques are discussed in Section 3.4.3.

Non-Discrimination Criterion [274]. Non-discrimination criterion is a group
fairness notion that aims to discover and quantify direct discrimination through the
direct causal effect of A on Y . Recall that, given a causal graph G, a direct effect
of A on Y is the causal effect through the edge A → Y . The idea is to consider a
modified graph G ′ where the edge in question (A → Y ) is discarded. A block set Q

is a set of variables that blocks all causal effects from A to Y in the modified graph
G ′. Hence, A and Y are independent conditioning on Q in G ′, that is, (A ⊥ Y |Q)G′ .
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Hence, conditioning on the same variables Q, any dependence between A and Y in
G is due to the direct effect of A on Y , which indicates direct discrimination. This
discrimination can be assessed using simply the risk difference [198]:

| ∆P|q |=| P[y | a1, q]− P[y | a0, q] | (3.49)

where q is a value assignment for the block set Q and the absolute value to consider
both positive and negative discriminations. No direct discrimination can be concluded
if the risk difference is less than a threshold τ for all combinations of values of all block
sets, that is, Eq. (3.49) holds for each value assignment q of each block set Q.

NDE (Eq. (3.35)) and counterfactual direct effect (Eq (3.40)) also focus on assessing
the direct discrimination. Still, they both rely on nested counterfactual quantities
that are not observable from the data. Non-discrimination criterion circumvents this
difficulty by using block sets and considering all combinations of values of these block
sets. Similarly to individual direct discrimination, it can be considered an estimation
technique to avoid dealing with counterfactual quantities. This approach, however,
does not work in semi-Markovian models as A and Y will never be independent in G ′

((A ⊥ Y |Q)G′) because of hidden confounders.

Equality of Effort [107]. Equality of effort is a fairness notion that identifies
discrimination by assessing how much effort the disadvantaged individual/group needs
to reach a certain outcome level. A treatment variable T is selected to address the
question: “To what extent should the treatment variable T change to make the
individual (or a group of individuals) achieve a certain outcome level?”. Hence, this
notion focuses on whether the effort to reach a certain outcome level is the same for
the protected and unprotected groups. Considering the simple job hiring example, the
education level E is a good choice for the treatment variable. Two equality of effort
notions are defined based on the potential outcome framework, individual γ-Equal
effort and system γ-Equal effort. Let Y

(t)
i be the potential outcome for individual i had

T been t and E[Y (t)
i ] be the expected outcome for individual i. Situation testing [30] is

used to estimate the counterfactual potential outcome in a similar way as individual
direct discrimination (Eq. (3.48)). Let S+ and S− be the two sets of similar individuals
with A = a0 and A = a1, respectively, and E[Y (t)

S+ ] be the expected outcome under
treatment t for the subgroup of individuals S+. The minimal effort needed to achieve
γ-level of outcome variable within the subgroup S+ is defined as:

ΨS+(γ) = argmin
t∈T

{E[Y (t)
S+ ] ≥ γ} (3.50)
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Individual γ-Equal effort is satisfied for individual i if:

ΨS+(γ) = ΨS−(γ) (3.51)

System γ-Equal effort is satisfied for a sub-population (e.g., A = a1) if:

ΨD+(γ) = ΨD−(γ) (3.52)

where D+ and D− are the subsets of the entire dataset with sensitive attributes a1 and
a0, respectively. Both criteria can be used to measure the effort discrepancy between
protected and unprotected groups by considering the difference ΨX+(γ) − ΨX−(γ).
Unlike most causality-based fairness notions that intervene (do operator) on the sensitive
attribute A (ya, Y a

i , etc.), equality of effort intervenes instead on a treatment variable
T (Y (t)

i ). The main limitation of the equality of effort notion is that a single treatment
variable typically does not appropriately reflect the discrepancy between protected and
unprotected groups.

Interventional and Justifiable Fairness [200]. Interventional and justifiable
fairness is a group-level fairness that can be seen as a strong version of total effect
(Eq. (3.24)). Instead of intervening only on the sensitive attribute A, interventional
fairness intervenes on all remaining variables. Let K be a subset of V excluding A and
Y , that is, K ⊆ V − {A, Y }. A predicting algorithm is K-fair if for any assignment of
values K = k and outcome Y = y:

P[ya1,k] = P[ya0,k] (3.53)

A predicting algorithm is interventionally fair if it is K-fair for every set of variables
K. Using the job hiring example of Fig. 3.5, interventional fairness holds between
male and female groups if P[y1,Eu,Rv ] = P[y0,Eu,Rv ], ∀u, v ∈ {0, 1}. The interventional
fairness formula (Eq. (3.53)) is similar to the non-discrimination criterion formula
(Eq. (3.49)). However, while Eq. (3.49) uses simple conditioning on A and covariates,
Eq. (3.53) makes an intervention on A and all other covariates and hence works on
Markovian as well as semi-Markovian models.

Justifiable fairness is a relaxation of interventional fairness achieved by classifying the
variables as admissible (denoted as E) or inadmissible (denoted as R), which correspond,
respectively, to explainable and proxy/redlining variables as defined previously. A
predicting algorithm is justifiably fair if it is K-fair w.r.t only supersets of E, that is,
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K ⊇ E. Hence, instead of intervening on all variables, it is enough to intervene on only
admissible variables (or any superset of them). Graphically, suppose all directed paths
from the sensitive attribute A to the outcome Y go through an admissible attribute
in E. In that case, the algorithm is justifiably fair, which typically coincides with no-
unresolved discrimination. Using the job hiring example (Fig. 3.5), justifiable fairness
holds if P[y1,Eu ] = P[y0,Eu ], ∀u ∈ {0, 1}. Notice that in case E = ∅, justifiable fairness
coincides with interventional fairness. Interestingly, being based solely on interventions,
interventional and justifiable notions of fairness do not require the presence of the
underlying causal model. The only assumption is the ability to distinguish admissible
and inadmissible variables.

Individual Equalized Counterfactual odds [188]. Individual equalized coun-
terfactual odds is a stronger version of counterfactual fairness requiring, in addition,
that the factual-counterfactual pair share the same value of the outcome Y . The aim
is to have a counterfactual version of equalized odds (Eq. (3.3)). This is achieved by
conditioning both sides of Eq. (3.39) on the same outcome Y = y. A predictor satisfies
individual equalized counterfactual odds if:

P[ŷa1 | X = x, ya1 , A = a1] = P[ŷa0 | X = x, ya0 , A = a1] (3.54)

The only difference with Eq. (3.39) is the additional conditioning Y = ya1 in the LHS
and Y = ya0 in the RHS. Counterfactual error rates are the only other causality-based
fairness notions considering the outcome Y (Eq. (3.43)). However, unlike counterfactual
error rates, individual equalized counterfactual odds require intervention on Y . This
is the only fairness criterion that requires intervention on the prediction Ŷ and the
actual outcome Y .

3.4.3 Computing Causal Quantities from Observable Data

Using causality-based fairness notions is challenging for two reasons. First, only the
factual outcome can be observed among the two possible outcomes. The counterfactual
outcome is usually impossible to observe (e.g., if the gender of a candidate is female
(factual), it is impossible to observe the counterfactual outcome when the same candidate
would have been male). Second, sensitive attribute values (e.g., male and female) are
typically not randomly assigned in observational data. Hence, using observational data,
the main difficulty in applying causality-based fairness notions is to compute and/or
estimate the causal quantities (counterfactual outcomes, causal effects, counterfactual



3.4 Applicability of Causality-Based Fairness Notions 95

effects, etc.). This includes all grayed columns in the simple toy datasets used in
Appendix A.1.2 as well as all fairness notions such as ATE, ETT, counterfactual
fairness, etc. Each causal framework, namely, SCM with causal graphs and potential
outcomes, uses a different approach to compute/estimate the causal quantities using
observational data. The SCM framework relies mainly on the identifiability criterion to
generate an expression for the causal quantity based only on observable probabilities.
If the identifiability criterion is not satisfied, the causal quantity cannot be computed
using the available observable data. In such case, as an alternative, if the complete
structure of the causal model is available, it is possible to estimate the distribution of
the latent variables U and consequently generate an estimation of the counterfactual
outcomes. The potential outcome framework approximates causal quantities using
several estimation techniques (e.g., matching, re-weighting, etc.). The following
subsections illustrate the above three approaches: identifiability, estimation based on
full causal model, and potential outcome estimation techniques.

Identifiability. The identifiability of causal quantities has been extensively studied
in the literature: causal effect (intervention) identifiability [93, 231, 232, 230, 210, 108,
212, 181], counterfactual identifiability [211, 212, 209, 254], direct/indirect effects [180]
and path-specific effect identifiability [20, 209, 275, 272, 160]. This section summarizes
the main identifiability conditions related to the specific problem of discrimination
discovery (you can refer to our paper [157]30 for a more comprehensive study on
identifiability).

• Identifiability of Causal Effect (Intervention). The causal effect of a cause
variable X on an effect variable Y is computed using P[Yx] = P[Y |do(X = x)],
the distribution of Y after the intervention X = x. In a discrimination setup, the
cause is typically the sensitive attribute A. A basic case where identifiability can
be avoided altogether is when it is possible to perform experiments by intervening
on the sensitive attribute A. When this is possible, a randomized controlled trial
(RCT) (Section 1.1.3) can be used to estimate the causal effect. RCT consists
of randomly assigning subjects (e.g., individuals) to treatments (e.g., gender),
then comparing the outcome Y of all treatment groups. However, in the context
of ML fairness, RCT is often not an option as experiments can be too costly to
implement, physically impossible, or ethically not acceptable (e.g., changing the
gender of a job applicant). In Markovian models (no unobserved confounding),
the causal effect is always identifiable (Corollary 3.2.6 in [181]). The simplest

30This paper is not included in the manuscript.
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case is when there is no confounding between A and Y (Figure 3.8a). In that case,
the causal effect matches the conditional probability regardless of any mediator:

P[ya] = P[y|do(a)] = P[y|a] (3.55)

A Y

W

Z
(a) Simple Markovian
model with a collider (W )
and a mediator (Z).

A Y

C

(b) Simple Markovian
model with a confounder
(C).

A Y

C

Z
(c) Simple Markovian
model with a confounder
(C) and a mediator (Z).

Fig. 3.8 Simple Markovian causal graphs.

In presence of an observable confounder (Fig. 3.8b), P[ya] is identifiable by
adjusting on the confounder:

P[ya] =
∑
C

P[y|a, c] P[c] (3.56)

where the summation is on values c in the domain (sample space) of C denoted
as dom(C). Eq. (3.56) is called the back-door formula31. The backdoor adjusting
formula is different from the joint probability

P[y, a, c] = P[y|a, c] P[a|c] P[c]

and the conditional probability

P[y|a] =
∑
C

P[y|a, c] P[c|a]

For semi-Markovian models, identifiability of P[ya] is not guaranteed. In case it
is identifiable, Pearl [181] proposes a do-calculus composed of three rules allowing
the expression of interventional probabilities in terms of observational ones:

1. P[ya|z, w] = P[ya|z] provided that the set of variables Z blocks all backdoor
paths from W to Y after all arrows leading to A have been deleted.

31Called also adjustment formula or stratification.
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2. P[ya|z] = P[y|a, z] provided that the set of variables Z blocks all backdoor
paths from A to Y .

3. P[ya] = P[y] provided that there are no causal paths between A and Y .

do-calculus has been proven to be sound and complete in identifying interventional
distributions [108]. For example, P[ya] is identifiable in Fig. 3.9d. Appendix A.1.3
shows how this example is computed using the do-calculus rules.

As an alternative to using the do-calculus, several contributions in the identi-
fiability literature focused on defining graphical patterns and mapping them
to simple and concise intervention-free expressions [231, 232, 230, 210]. All

(a) (b) (c)

(d) (e)

Fig. 3.9 Fig. 3.9a presents the “bow” graph, Fig. 3.9b illustrates the structure of a
c-tree, Fig. 3.9c shows a semi-Markovian model where P[ya] is observable, Fig. 3.9d
presents a semi-Markovian model where P[ya] is identifiable and Fig. 3.9e illustrates a
simple example of the front-door criterion.

graphical criteria can be generalized to cases where the sensitive attribute is
not connected to any of its children through a confounding path. In such cases,
c-component factorization can be used. A c-component is a set of vertices in
the graph such that every pair of vertices are connected by a confounding edge.
The idea of c-component factorization is to decompose the identification prob-
lem into smaller sub-problems, that is, a disjoint set of c-components in order
to calculate P[ya]. For example, in Fig. 3.9c, there are three c-components:
{{W1, W2}, {A}, {Z1, Z2, Y }}. Hence, as long as no confounding path connects
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A to any of its direct children, P[ya] is identifiable. C-component factorization
is used in the ID algorithm [212], which is proven complete for causal effect
identification.

In case there is an unobservable confounding between the sensitive attribute A

and the outcome Y , all the above criteria will fail. However, P[ya] can still be
identifiable using the front-door criterion. This criterion is satisfied in Fig. 3.9e
and consists in having a mediator variable Z such that:

– there are no backdoor paths from A to Z,

– all backdoor paths from Z to Y are blocked by A.

A backdoor path from A to Z is any path starting at A with a backward edge ←
into A (e.g., A← . . . Z). If such criterion is satisfied, P[ya] can be computed as
follows:

P[ya] =
∑
Z

P[y|do(z)] P[z|do(a)]

=
∑
Z

P[y|z, a] P[a] P[z|a] (3.57)

Shpitser and Pearl [210] proved that all the unidentifiable cases of the causal
effect P[ya] boil down to a general graphical structure called the hedge criterion.
Based on this criterion, they designed a complete identifiability algorithm called
ID, which outputs the expression of P[ya] if it is identifiable or the reason for the
unidentifiability otherwise.

The simplest graph in which the causal effect between A and Y is not identifiable
is the “bow” graph (Fig. 3.9a). This simple unidentifiability criterion can be
generalized to a more complex graph called a c-tree. A c-tree is a graph that is
at the same time a tree32 and a c-component. Fig. 3.9b shows an example of a
c-tree. If the causal graph is a c-tree rooted in the outcome variable Y , P[ya] is
unidentifiable [212].

• Identifiability of Counterfactuals. Most the causality-based fairness no-
tions in the disparate treatment framework (NDE (Eq. (3.35)), path-specific
effect (Eq. (3.37)), counterfactual effects (Eq. (3.43)), etc.) are defined in terms
of counterfactual quantities. Hence, the applicability of those notions depends

32Notice that the direction of the arrows between nodes is reversed compared to the usual tree
structure.
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heavily on the identifiability of the counterfactuals composing them. In Marko-
vian, as well as semi-Markovian models, if all parameters of the causal model are
known (including P[u]), any counterfactual is identifiable and can be computed
using the three steps abduction, action, and prediction (Theorem 7.1.7 in [181]).

Let P∗ = {Px|X ⊆ V, x a value assignment of X} be the set of all interventional
distributions in a given causal model. While the identifiability of interventional
probabilities P[ya] is characterized based on observational probabilities P[v],
the identifiability of counterfactuals is characterized in terms of interventional
probabilities P∗. Then, combining the results of the identifiability of counter-
factuals with the criteria of the identifiability of causal effect (intervention), a
counterfactual can, in turn, be identified using observational probabilities P[v].

Given a causal graph G of a Markovian model and a counterfactual expression
γ = vx|e with e some arbitrary set of evidence, identifying and computing P[γ]
requires constructing a counterfactual graph which combines parallel worlds.
Every world is represented by a model Mx corresponding to each subscript in
the counterfactual expression. For example, given the causal graph in Fig. 3.4
and the counterfactual expression ya1 |a0, the resulting counterfactual graph is
shown in Fig. 3.10d. The counterfactual graph should be “reduced” by merging
together vertices that share the same causal mechanism (make-cg algorithm
in [212] automates this procedure). The resulting counterfactual graph can be
considered a typical causal graph for a larger causal model. Consequently, all
the graphical criteria listed in the identifiability of causal effects above apply
to the counterfactual graph to identify counterfactual quantities, in particular,
the c-component factorization of the counterfactual graph [211]. ID∗ and IDC∗

algorithms [212] automate the identifiability and computation of counterfactuals
based on all the above criteria. Note that ID∗ and IDC∗ output expressions
in terms of interventional probabilities P∗. Then, the ID algorithm is used to
express those interventional probabilities in terms of observational probabilities.
The simplest unidentifiable counterfactual quantity is P[ya′ , y′

a], which is called
the probability of necessity and sufficiency. The corresponding counterfactual
graph is the W-graph with the same structure as Fig. 3.10a. This simple criterion
can be generalized to the zig-zag graph (Fig. 3.10b) where the counterfactual
P[ya, w1, w2, z] is not identifiable. 9Pearl [181] proves two results about the
identifiability of counterfactuals. First, for linear causal models (i.e., the functions
F are linear), any counterfactual is experimentally (using P∗) identifiable whenever
the model parameters are identified. Second, in linear causal models, if some
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(a) (b)

(c) (d)

Fig. 3.10 Causal graphs.

of the model parameters are unknown, any counterfactual of the form E[Ya|e]
where e is some arbitrary set of evidence, is identifiable provided that E[ya] is
identifiable. Finally, there is no single necessary and sufficient criterion for the
identifiability of counterfactuals in semi-Markovian models [20]. Appendix A.1.4
provides an example of the computation of a counterfactual probability of the
teacher firing example of Fig. 3.4.

• Identifiability of Direct and Indirect Effects. In Markovian models, the
average natural direct effect NDE and the average natural indirect effect NIE are
always identifiable (from observational data) and can be computed as follows [180]:

NDEa1,a0(Y ) =
∑

s

∑
z

(
E[Y |a0, z]− E[Y |a1, z]

)
P[z|a1, s]P[s] (3.58)

NIEa1,a0(Y ) =
∑

s

∑
z

E[Y |a1, z]
(
P[z|a0, s]− P[z|a1, s]

)
P[s] (3.59)

where Z is a set of mediator variables and S is any set of variables satisfying the
back-door criterion between the sensitive variable A and the mediator variables
Z, that is, (i) no variable in S is a descendant of A and (ii) S blocks all back-door
paths between A and Z. A simpler formulation can be used in case there is no
confounding between A and Z, where the need for S is dropped altogether:

NDEa1,a0(Y ) =
∑

z

(
E[Y |a0, z]− E[Y |a1, z]

)
P[z|a1] (3.60)
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NIEa1,a0(Y ) =
∑

z

E[Y |a1, z]
(
P[z|a0]− P[z|a1]

)
(3.61)

In semi-Markovian models, NDE and NIE are not generally identifiable, even
if we have the luxury to perform any experiment using RCT, because of the
nested counterfactuals P[Ya0 , Za1 ] and P[Ya1 , Za0 ] in Eq. (3.35) and Eq. (3.36),
respectively. Nevertheless, these quantities are identifiable from experimental
data provided that there is a set of variables W which are parents of the outcome
variable Y but non-descendants of A and Z such that Ya1,z ⊥ Za1|W (reads: Ya1,z

and Za1 are independent conditional on W ).

This condition can be easily checked from the causal graph as follows: W d-
separates Y and Z in the graph formed by deleting all arrows emanating from A

and Z, denoted simply as (Y ⊥ Z|W )GAZ
.

If such a graphical condition is satisfied, NDE and NIE can be computed from
experimental quantities as follows:

NDEa1,a0(Y ) =
∑
z,w

(
E[Ya0,z|w]− E[Ya1,z|w]

)
P[Za1 = z|w] P[w] (3.62)

NIEa1,a0(Y ) =
∑
z,w

E[Ya1,z|w]
(
P[Za0 = z|w]− P[Za1 = z|w]

)
P[w] (3.63)

• Identifiability of Path-Specific Effects. The identifiability of PSEπ(a1, a0)
in Markovian models depends on whether P[y|do(a1|π, a0|π̄)] is identifiable. Avin
et al. [20] gave a single necessary and sufficient criterion for the identifiability of
P[y|do(a1|π, a0|π̄)] in Markovian models called recanting witness criterion. This
criterion holds when there is a vertex W along the causal path π that is connected
to Y through another causal path not in π. For instance, Fig. 3.10c satisfies the
recanting witness criterion when π = A → W → Z → Y with W as witness.
The corresponding graph structure is called “kite” graph. When this criterion
is satisfied, P[y|do(a1|π, a0|π̄)] is not identifiable, and consequently, PSEπ(a1, a0)
is not identifiable. Shpitser [209] generalizes this criterion to semi-Markovian
models known as recanting district criterion.

Estimation Based on Full Knowledge of the Causal Model Parameters. The
main reason behind the unidentifiability of causal quantities (causal effects, counterfac-
tuals, etc.) is the presence of unobservable variables, namely, hidden latent variables.
Some causality-based fairness notions, such as counterfactual fairness 3.39, can be
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assessed in the presence of such unobservable latent variables. However, The only
requirement is knowledge of the causal model structure (skeleton). Based on the causal
model, the latent/background variables are estimated using observable data. Then, the
predictor is trained using both observable (non-descendants of the sensitive attributes)
as well as the estimated latent variables. Such predictors tend to be fairer than typical
predictors (trained using only observable variables) since they consider hidden bias
captured by latent variables. Given the full causal model, counterfactual fairness can
be assessed by generating, for every observable data sample, a counterfactual data
sample by simply changing the sensitive attribute value (e.g., turn male into female)
and then using the three-step process (abduction, action, prediction) (Theorem 7.1.7
in [181]) to compute the outcome. The predictor is considered fair if the predicted
outcome distributions of both groups (protected and unprotected) are similar.

Potential Outcome Estimation Techniques. Causal inference in the potential
outcome framework focuses on estimating the causal effect of a treatment variable A

(e.g., the sensitive attribute) on an effect variable Y (e.g., the decision outcome).
As mentioned in Section 2.4.2, three assumptions are typically made for causal effect
estimation: SUTVA, ignorability, and positivity. In line with the potential outcome
framework literature, we focus on causal inference approaches that rely on the three
assumptions [260, 100], namely, re-weighting [110], matching [167], and stratifica-
tion [110].

• Re-Weighting: One of the main challenges of causal inference is that the
sensitive attribute is not assigned at random in the observational data. That is,
the distribution in the observed dataset does not reflect the true distribution.
Sample re-weighting methods try to overcome this discrepancy by assigning
appropriate weights to sample units in the observational data. The aim is
to generate a pseudo-population on which the distributions of the protected
(e.g., female) and unprotected (e.g., male) groups are the same as in the original
total population. This is achieved by defining a balancing score b(x) satisfying
A ⊥ x | b(x). The most common approach to balancing score is based on the
propensity score [199], which is defined as the conditional probability of the
sensitive attribute given background variables:

e(x) = P[A = 1 | X = x] (3.64)
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Propensity scores can be used to equate groups based on covariates X. In inverse
propensity weighting (IPW), the balancing score b(x) for each sample is defined
as:

b(x) = A

e(x) + 1− A

1− e(x) (3.65)

where A = 1 corresponds to the protected group and A = 0 corresponds to the
unprotected group. The IPW estimator of ATE (Eq. (3.25)) is defined as:

ˆATEIP W = 1
n

n∑
i=1

AiYi

ê(xi)
− 1

n

n∑
i=1

(1− Ai) Yi

1− ê(xi)
(3.66)

Notice that the estimation of ATE is based only on the observable outcome (no
counterfactual outcomes) and on the estimation of e(xi), that is, ê(xi). Refer to
Appendix A.1.2 for an example of how ATE is computed using the propensity
score estimation technique.

When the propensity score is estimated, the normalized version of ˆATEIP W is
preferred:

ˆATEnorm

IP W =
[

n∑
i=1

AiYi

ê(xi)

/
n∑

i=1

Ai

ê(xi)
−

n∑
i=1

(1− Ai) Yi

1− ê(xi)

/
n∑

i=1

(1− Ai)
1− ê(xi)

]
(3.67)

The correctness of the IPW estimation relies heavily on the quality of the
propensity score estimation (ê(X)). A slight misspecification of propensity scores
may lead to a significant discrepancy in the ATE estimation. In such cases, doubly
robust (DR) estimation is recommended [90]. DR combines IPW estimation
with outcome regression so that the estimation remains valid even if one of
the approaches is incorrect (but not both). Another limitation of IPW can
be observed if the propensity score e(X) = P[A | X] for some value of X is
small. In such a case, the estimation may suffer instability. To address this issue,
trimming [141] is typically used. Trimming consists of removing the samples with
a propensity score below a certain threshold.

• Matching: Matching techniques [167] focus on estimating the counterfactual
outcome of units. The idea is to estimate the counterfactual outcomes Y 1

i |A = 0
and Y 0

i |A = 1 based on the matched neighbors of unit i in the opposite group. For
example, given an observed female candidate fk, estimating the counterfactual
outcome (hiring decision) had she been a male is based on the units in the male
group that are the most comparable to fk. Hence, the first and main issue is to
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define a similarity metric between two given units (e.g., xi and xj). The most
common approach is to rely on the propensity scores of units:

D(i, j) = |e(xi)− e(xj)| (3.68)

and its logit version:

D(i, j) = |logit(e(xi))− logit(e(xj))| (3.69)

which is preferred as it has been proven to reduce the bias [225]. The second
issue is the matching algorithm: how many neighbors to consider and how these
neighbors are weighted to obtain the estimation.

• Stratification: Stratification [110] uses the same principle underlying the iden-
tifiability approach: adjusting on confounders. The aim is to split the observed
data into consistent groups so that the units in the same group can be considered
sampled from data under RCT. The two ingredients of stratification are the split-
ting of groups and then the combination of the created groups. The stratification
estimator of ATE can be defined generically as:

ˆATEstrat =
K∑

k=1
m(k)[Y 1(k)− Y 0(k)] (3.70)

where K is the number of stratification groups, m(k) is the portion of units
in group k to the total number of units N , Y 1(k) and Y (k) are the CATE
(Eq. (3.32)) for groups A = 1 and A = 0, respectively. ˆATEstrat expression has
the same structure as the back-door formula (Eq. (3.56)).

If all variables needed for the stratification are observed and the available data
is infinitely large, ATEstrat can lead to a consistent and unbiased estimator of
ATE. However, in typical datasets, stratification may result in strata with few
or no units. Consequently, some CATE estimates cannot be calculated using
the available data. Propensity score can be used to address this data sparseness
problem. The main idea is that “strata with identical propensity scores can be
combined into more coarse strata” [167]. In other words, propensity score can be
considered a single stratifying variable that usually results in larger strata. The
same idea is used in the SCM framework to address the sparseness of data when
computing identifiable expressions.
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Other estimation methods in the potential outcome framework include tree-
based methods [19], representation learning methods [29], and meta-learning
methods [134].

3.4.4 Suitability and Applicability of Causality-based Fairness
Notions

Suitability. In this section, we try to systemize the selection process by considering
the subtleties of each causality-based fairness notion and defining 6 criteria that
correspond to characteristics of the real-world scenario at hand. We check whether
each criterion holds in the scenario at hand or not. Then, these answers will be used
to recommend the most suitable causality-based fairness notion. The criteria are listed
and briefly described as follows.

• Presence of confounding: A variable that is a common cause of two or more
other variables.

• Presence of explaining variable: A variable correlated with the sensitive
attribute such that any discrimination explained using that variable is considered
legitimate and acceptable.

• Likelihood of intersectionality: A specific type of bias due to the combination
of sensitive attributes. An individual might not be discriminated against based
on race or gender only, but she might be discriminated against because of a
combination of both.

• Likelihood of masking: A form of intentional discrimination that allows
decision-makers with prejudicial views to discriminate against individuals or
groups while masking their intentions.

• Latent variables are known: Latent (background) variables are not observable.
However, they are identified in some scenarios, and their relationships with
observable variables are known.

• Ground truth or reliable outcome: the label in the training data can or
cannot be reliable. In several scenarios, the outcome is inferred by humans (job
hiring, college admission, etc.) and hence can encode bias. The most reliable
outcome is when the ground truth is available.
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Fig. 3.11 Guideline for causality-based fairness notions selection.

The diagram in Fig. 3.11 can be used as a guideline to select an appropriate causality-
based fairness notion given a real-world scenario.

Confounding variables result in backdoor paths between the sensitive attribute (A)
and the outcome (Y ). For example, the path A← C → Y in Fig. 3.8 is a backdoor
path. Backdoor paths are not causal but contribute to the association between the
A and Y . Therefore, they are the reason why it is said that “correlation is different
than causation”. In the absence of confounding, the total causal effect (TE and ATE)
coincides with the difference in conditional probabilities TV= P[y|a1]− P[y|a0], which
corresponds to statistical parity. On the other hand, if there are no explaining variables
in the model representation of the world, both direct and indirect causal paths are
discriminatory33. Consequently, assessing unfairness/bias due to the sensitive attribute
does not require considering the different causal paths (direct, indirect, and path-
specific) separately. In such cases (without confounding and explaining variables),
causal inference is unnecessary to assess fairness appropriately.

Any unintentional bias can also be “orchestrated” intentionally by decision-makers
with prejudicial views. To appropriately assess the bias in the presence of such masking
attempts, it is recommended to avoid group-based notions as they can more easily be
gamed by prejudicial decision-makers. Intersectionality is similar to masking as both
lead to discrimination, which is difficult to detect at the group level and hence requires

33Indirect causal paths all go through proxy variables.
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more fine-grained measures. Therefore, individual causality-based fairness notions
are recommended in the presence of one of those criteria. For individual notions,
in the presence of explaining variables, it is recommended to use individual direct
discrimination (Eq. (3.48)) as it is the only individual notion listed in Section 3.4.2 that
distinguishes direct from indirect discrimination. Counterfactual fairness (Eq. (3.39))
and individual equalized counterfactual odds (Eq. (3.54)) are recommended to be used
in case the latent variables are known. If the ground truth is not available or the
outcome Y is not reliable, individual equalized counterfactual odds is not recommended.

For the group causality-based fairness notions, if there are no explaining variables,
there is no need to consider the different causal paths and hence TE, ATE, or interven-
tional fairness can be safely used. In the presence of explaining variables, the remaining
causality-based fairness notions are appropriate to use with two exceptions. First,
the non-discrimination criterion is misleading if the causal model is semi-Markovian
because the variable A can remain dependent even after conditioning on all observable
variables because of the hidden confounders. Second, as counterfactual error rates
(Eq. (3.43)) are expressed in terms of the true outcome Y , they are not recommended
in case the ground truth is not available and the true outcome is not reliable.

Finally, note that ETT, ATT, and ATC are not generally used in fairness scenarios
because, typically, the bias can be observed in both directions: when considering a
disadvantaged group/individual as advantaged or the opposite. ETT is relevant when
studying the effect of a treatment medicine on patients. For example, if a patient
agrees to take the medicine and it turns out to be painful, she may be wondering about
the chances of recovery if she did not take the treatment or if she took it with a lower
dose. In this case, the opposite direction (the effect of treating an individual in the
control group) is irrelevant.

In his book, The Book of Why [185], Pearl describes a causation ladder with
three rungs: statistical observations (seeing), intervention (doing), and counterfactual
(imagining). All causality-based fairness notions defined in Pearl’s SCM framework (all
notions in Section 3.4.2 except ATE, ATT, ATC, ITE, and equality of effort) are placed
in the causation ladder, which will help us address the problem of their applicability in
real-scenarios. The causation ladder is structured so that a quantity at a certain rung
can be identified in terms of quantities at the rung just below it. Consequently, the
higher the rung, the more challenging the problem of identifiability is, and hence, the
less applicable a fairness notion is defined at that rung.

Fig. 3.12 shows the causation ladder and indicates at which rung every causality-
based fairness notion stands. TV, the only non-causal fairness notion covered in this
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study, is at rung 1. It is always applicable, provided a set of observations (dataset) is
available. No unresolved and non-discrimination criteria are placed midway between
rungs 1 and 2 as applicable, provided the causal graph is available along the dataset. The
non-discrimination criterion, however, requires the Markov property to be applicable
because causal dependence through unobservable paths cannot be blocked. It also has
an exponential complexity since it considers all combinations of values of the parent
variables of the outcome Y . A relaxation is described by the authors [274], but the
notion remains computationally intractable.

Fig. 3.12 Classification of causality-based fairness notions according to Pearl causation
ladder [185].

Applicability. Fairness notions at rung 2 (TE, No-proxy discrimination, interven-
tional and justifiable fairness, and individual direct discrimination) are applicable in any
scenario where either experiments (RCT) are possible or hypothetical interventions are
identifiable. As mentioned in Section 3.4.3, any intervention probability is identifiable
from observational data in Markovian models. Hence, these fairness notions are always
applicable to Markovian models. In semi-Markovian models, the applicability of these
rung 2 notions depends on the identifiability of the intervention terms used in their
respective definitions. For instance, for individual direct discrimination, the term in
question is CE(qk, q′

k) in Eq. (3.48).
The bulk of causality-based fairness notions are defined in terms of counterfactual

quantities and hence are placed in rung 3 of the causation ladder. In Fig. 3.12, the
counterfactual notions are ranked from top to bottom according to their degree of
applicability. For instance, counterfactual effects are placed on top of counterfactual
fairness to indicate that the former is applicable in more scenarios than the latter. In
Markovian models, the top 4 notions (ETT, NDE, NIE, and counterfactual effects)



3.4 Applicability of Causality-Based Fairness Notions 109

are always identifiable and hence applicable. That is, specific formulas are already
available to compute each counterfactual term used in their definitions.

In Markovian models, the identifiability of counterfactual fairness depends on the
identifiability of the term P[ya1 |X = x, A = a0] which is only identifiable if X does
not contain any variable which is at the same time descendant of A and ancestor of
Y , that is, X ∩ B = ∅ where B = An(Y ) ∩De(A)[254]. PSE is applicable provided
that the model is Markovian and the recanting witness criterion is not satisfied. In
semi-Markovian models, unless all model parameters are known (including P[u])34, the
identifiability of rung 3 fairness notions depends on the identifiability of counterfactuals,
which rarely hold in practice.

Finally, counterfactual error rate and individual equalized counterfactual odds are
special cases of rung 3 fairness notions as they are the only notions that condition
on the true outcome Y to assess the fairness of the prediction Ŷ (Eqs. (3.44),(3.45),
(3.46), and (3.54)). Such conditioning has an important implication on identifiability
since Y is a collider, and conditioning on a collider creates a dependence between the
previous variables [181]. This leads to unobservable confounding between the causes of
Y . Hence, even if the causal model is Markovian, applying both notions turns it into a
semi-Markovian model. Zhang and Bareinboim [267] define an identifiability criterion
for counterfactual error rate in Markovian models called the explanation criterion.

3.4.5 Conclusion

Notions of fairness inconsistent with the causal relationships in the data can lead to
misleading conclusions about bias and discrimination of the outcomes. In particular,
using causal reasoning to tackle the fairness problem in ML has at least three advantages.
First, it appropriately measures discrimination in the presence of statistical anomalies
(e.g., Simpson’s paradox). Second, it provides a natural interpretation of causal
relationships between variables supporting discrimination claims. This is particularly
important in the disparate treatment legal framework. Third, it makes it possible
to break down the dependence between the sensitive attribute and the outcome into
different paths (direct, indirect, etc.), which allows us to assess fairness more accurately
in the presence of acceptable and unacceptable discrimination.

Most of the causality-based notions of fairness examined in this study rely on the
availability of the causal graph. The issue of generating causal graphs consistent with
the observed data is a known problem in the causal inference literature. Studying it in

34In that case, it is possible to use the three steps abduction, action, and prediction [181].
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the specific context of ML fairness is a relevant direction for future work. We tried
tackling this problem in our studies in Chapter 5.

3.5 Conclusion

In this chapter, we have thoroughly examined the applicability of both statistical and
causality-based fairness notions in real-life scenarios.

First, we explored statistical fairness notions, such as statistical parity and equal
opportunity, and assessed their strengths and limitations when applied to real-world
data. While these notions provide clear and measurable criteria for fairness, we found
that their applicability can be context-dependent and sometimes challenging due to
the complexity and variability of real-life situations.

Next, we delved into causality-based fairness notions, which aim to address the
root causes of biased outcomes by leveraging causal inference techniques. These
notions, such as counterfactual fairness, offer a deeper understanding of the mechanisms
driving unfairness. Our analysis demonstrated that causality-based fairness notions are
particularly suitable in scenarios where understanding and mitigating the underlying
causes of bias is crucial. However, their application requires comprehensive data and
sophisticated modeling, which can be resource-intensive.

Overall, our investigation reveals that both statistical and causality-based fairness
notions have their respective advantages and limitations. The choice of which notion
to apply depends heavily on the specific context, available data, and the goals of the
fairness intervention.

With a solid understanding of how fairness notions can be applied, we now shift
our focus to another ethical AI principle: privacy and how it interacts with fairness.
Specifically, in the next chapter, we present our study on the impact of privacy on
fairness.



Chapter 4

Impact of Privacy on Fairness

4.1 Introduction

This chapter investigates the intricate relationship between privacy and fairness in
ML. As the adoption of ML models grows, so do concerns about their fairness and
the privacy of the data they utilize. Understanding how privacy-preserving techniques
impact fairness is crucial for developing ethical and effective AI systems.

The tension between fairness and DP is attracting increasing attention. For
instance, some research works state that DP and fairness are at odds [85, 22, 5, 45, 191].
Conversely, in other lines of research, DP and fairness results align [148, 151, 42,
202]. However, the underlying reasons for this tension remain inadequately explored.
Therefore, a clear understanding of the relationship between privacy and fairness is
highly needed. This chapter presents three of our research works as a step in that
direction.

Before delving into the three research studies, we present the generic framework
used to assess the impact of privacy on LDP, along with the notation we use in this
chapter.

Framework. Fig. 4.1 depicts the framework used in this chapter. Although the
framework is consistently applied across all three studies, each study varies in terms of
the specific attributes to which the obfuscation mechanism is applied and how it is
implemented. We assume a given decision task, such as deciding whether to release
a convict on parole or admit an applicant to a college program. We assume that we
dispose of a set of data S = (A, X, Y )train

⋃ (A, X, Y )test for building an ML model
to help with the task, and for evaluating it. Specifically, (A, X, Y )train is used for
training the model, and (A, X, Y )test to assess the fairness and utility of its predictions.
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As shown in Fig. 4.1, in order to measure the impact of the LDP mechanism L, we

Fig. 4.1 Our framework to assess the impact of LDP on the fairness of an ML model.

train two models. The baseline modelM (upper shaded box) is trained on the original
data (A, X, Y )train, and we call its prediction Ŷ . Then, we obfuscate the training
set by applying L to the A component of each sample in (A, X, Y )train. We recall
that A designates the set of sensitive attributes in the data. The resulting data set
(A′, X, Y )train is used to train (with the same classification algorithm and the same
hyper-parameters) a second model M′, whose prediction is called Ŷ ′ (lower shaded
box).

The difference between Ŷ ′ and Ŷ on the original testing data quantifies the impact of
LDP on the fairness of the model. It is important to emphasize that, in our framework,
the individual predictions, both for M and M′, are obtained by applying the models to
the original testing data (A, X, Y )test. Namely, in testing phase, Ŷ =M(A, X) and
Ŷ ′ =M(A, X) (instead of Ŷ ′ =M(A′, X)). This is because we argue that fairness
must be evaluated on the true data. Indeed, even if a model was trained on obfuscated
data, it is likely to receive the true data as input at the moment of its deployment.
And in any case, the presence of proxies may reveal the true value of the sensitive
variable anyway.

This chapter is organized as follows. First, we introduce our empirical study on
the impact of collecting multidimensional data under ε-LDP guarantees on fairness
and utility of seven state-of-the-art LDP protocols under a homogeneous encoding
when training ML binary classifier (Section 4.2). Section 4.3 extends our empirical
investigation to the impact of training a model with multiple sensitive attributes,
obfuscated under LDP guarantees, using two variants (independent and combined) of
the widely recognized k-ary randomized response mechanism. Finally, we shift our
focus to a theoretical study of the interplay between privacy and fairness (Section 4.4).
More specifically, we perform a quantitative study of how the fairness of the decisions
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made by the ML model changes under LDP for different levels of privacy and data
distributions. This study helps to identify conditions under which privacy measures
can enhance or undermine fairness, offering a deeper understanding of the inherent
trade-off between privacy and fairness.

4.2 Fairness Under Multidimensional Local Differ-
ential Privacy: Empirical Study 1

This study provides a comprehensive empirical analysis of how collecting multidi-
mensional data under ε-LDP guarantees affects the fairness and utility in ML binary
classification tasks. For fairness assessment, we employed various group fairness
metrics, including disparate impact [25], equal opportunity [101], and overall ac-
curacy [32]. The experimental evaluation encompasses seven state-of-the-art LDP
protocols, namely, Generalized Randomized Response (k-RR) [115], Binary Local
Hashing (BLH) [26], Optimal Local Hashing (OLH) [245], RAPPOR [79], Optimal
Unary Encoding (OUE) [245], Subset Selection (SS) [244, 261], and Thresholding with
Histogram Encoding (THE) [245] (All these LDP protocols have been introduced in
Section 2.3.2). To broaden the scope of our study, we conducted our experiments on
three benchmark datasets: Adult [70], ACSCoverage [70], and LSAC [250].

Moreover, since proxy variables can still introduce unintended biases and thus lead to
unfair decisions [118], we consider the setting in which each sensitive attribute (sensitive
and proxy attribute) is collected independently under ε-LDP guarantees. In other
words, applying this independent setting automatically removes the correlation between
the sensitive attributes. To this end, the privacy level ε should be divided among all
sensitive attributes to ensure ε-LDP under sequential composition (Proposition 2). Let
da be the total number of sensitive attributes, the LDP literature for multidimensional
data [12, 195, 126, 145] considers a uniform solution that collects each sensitive
attribute under ϵ

da
-LDP. In this work, we proposed a new k-based solution that

considers the varying domain size k of different sensitive attributes. More precisely, for
the i-th sensitive attribute, for i ∈ [da], we allocate εi = ε·ki∑da

i=1 ki

.
In addition, this work explores a more dynamic scenario with a variable da. These

attributes are selected randomly to underscore the generalization of our findings.
Overall, this study challenges the common belief that using DP necessarily leads to
worsened fairness in ML [22, 95]. More specifically, we show that training a classifier on
LDP-based multidimensional data slightly improved fairness results without significantly
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affecting classifier performance. We aim for this work to assist practitioners in collecting
multidimensional user data in a privacy-preserving manner. By offering insights into
the most suitable LDP protocols and privacy budget-splitting solutions, we hope to
guide practitioners in making informed decisions tailored to their specific needs.
Contributions. We conducted a comprehensive empirical analysis on the impact
of collecting (or pre-processing1) multidimensional data under ε-LDP guarantees on
fairness and utility in ML binary classification. Moreover, we compared the impact
on fairness and utility of seven state-of-the-art LDP protocols under a homogeneous
encoding (see Fig. 4.2) when training ML binary classifiers. Additionally, we proposed
a novel k-based solution for privacy budget allocation, which generally led to a better
privacy-utility-fairness trade-off in our experiments. And finally, we open-sourced our
codes in the following GitHub repository [11].
Outline. The rest of this section is organized as follows. Section 4.2.1 discusses related
work. Next, Section 4.2.2 states the problem addressed, the fairness metrics considered,
and the proposed k-based solution. Section 4.2.3 details the experimental setting
and main results. Finally, we conclude this work indicating future perspectives in
Section 4.2.4.

4.2.1 Related Work

Bagdasaryan, Poursaeed, and Shmatikov [22] studied the impact of training ε-DP deep
learning (a.k.a. gradient perturbation) models on underrepresented groups. While
maintaining the same hyperparameters as the non-private baseline model, the authors
observed a more significant drop in accuracy for the underrepresented group. Similarly,
Ganev et al. [95] observed disparities for the underrepresented group when generating ε-
DP synthetic data for training ML models while keeping the default hyperparameters of
differentially private generative models. In contrast, de Oliveira et al. [64] demonstrated
that when searching for the best hyperparameters for both non-private and ϵ-DP
models, the impact of DP on fairness is negligible. Recent works by Tran, Dinh, and
Fioretto [235], by Emelianov and Perrot [78], and by Mangold et al. [161] investigated
the reasons and contexts for this impact of central DP on fairness (discussed later in
Section 4.4). Furthermore, Ficiu, Lawrence, and Paleyes [87] go beyond by proposing
a framework to optimize a three-way objective for central DP ML models, namely, the
fairness-privacy-utility trade-off.

1While the privacy-preserving mechanisms experimented within this study are specifically designed
for a LDP setting, they can also be employed by a trusted server in a centralized DP setting.
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In this work, our objective is to investigate the extent to which training an ML
classifier on ε-LDP multidimensional data (a.k.a. input perturbation) while fixing the
same set of hyperparameters has a detrimental effect on the disparities between the
privileged (group receiving a favorable outcome) and the unprivileged (group receiving
an unfavorable outcome) groups. Regarding the LDP setting, the work of Mozannar,
Ohannessian, and Srebro [169] was the first to propose a fair classifier when obfuscating
only the sensitive attribute with ε-LDP in both training and testing sets. More recently,
the work of Chen et al. [47] considers a “semi-private” setting in which a small portion
of users share their sensitive attribute with no obfuscation, while all other users apply
an ε-LDP protocol.

While the two aforementioned research works [169, 47] answer interesting questions
by collecting a single sensitive attribute using only the RR (Eq. ( 2.4)) protocol, we
consider multiple sensitive attributes in this work, reflecting real-world data collections
more accurately. Additionally, for a more comprehensive examination, we experimented
with seven state-of-the-art ε-LDP protocols, as well as several fairness and utility metrics.
Lastly, we propose a new privacy budget splitting solution named k-based, which
generally leads to better privacy-fairness-utility trade-offs in ML binary classification
tasks than the commonly adopted uniform solution [12, 195, 126, 145].

4.2.2 Problem Setting and Methodology

Table 2.1 summarizes the notation used throughout this study. Note that in this work,
we always consider a single sensitive attribute A to obfuscate and assess fairness w.r.t.
that attribute. For LDP, we instead consider a set of sensitive attributes A where one
of these attributes, namely A, is used to evaluate fairness.

Group Fairness Metrics Considered. In this work, we focus on group fairness
metrics, which, as discussed in Section 3.2.2, evaluate the fairness of ML models across
different demographic groups defined by sensitive attributes such as race, gender, and
age. Let A be the sensitive attribute, Ŷ ∈ {0, 1} be a predictor of a binary true decision
Y ∈ {0, 1}. The metrics we use to evaluate fairness are listed below 2.

• Disparate Impact (DI) [25]. DI is defined as the ratio of the proportion of
positive predictions (Ŷ = 1) for the unprivileged group (A = 0) over the ratio

2In this work, rather than assessing fairness using equality-based metrics as originally defined,
we evaluate fairness using difference-based metrics. For example, instead of using statistical parity
(Eq. (3.1)), we use statistical disparity (SD) (Eq. (4.2)).
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of the proportion of positive predictions for the privileged group (A = 1). The
formula for DI is:

DI = P[Ŷ = 1|A = 0]
P[Ŷ = 1|A = 1]

. (4.1)

Note that a perfect DI value is equal to 1.

• Statistical Disparity (SD) [3]. Instead of the ratio, SD computes the difference
in the proportion of positive predictions for privileged and unprivileged groups
and is defined as:

SD = P[Ŷ = 1|A = 1]− P[Ŷ = 1|A = 0]. (4.2)

A perfect SD value is equal to 0.

• Equal Opportunity Difference (EOD) [101]. EOD measures the difference
in the true positive rates (i.e., recall) of the privileged and the unprivileged groups.
Formally, EOD is defined as:

EOD = P[Ŷ = 1|Y = 1, A = 1]− P[Ŷ = 1|Y = 1, A = 0]. (4.3)

A perfect EOD value is equal to 0.

• Overall Accuracy Difference (OAD) [32]. OAD measures the difference in
the overall accuracy rates between the privileged and the unprivileged groups.
Formally, OAD is defined as:

OAD = P[Ŷ = Y |A = 1]− P[Ŷ = Y |A = 0]. (4.4)

A perfect OAD value is equal to 0.

LDP Protocols Considered. All the LDP protocols presented in Section 2.3.2 are
applied in this work, namely k-RR [115], BLH [26, 245], OLH [245], RAPPOR [79],
OUE [245], SS [244, 261], and THE [245].

Considering the framework depicted in Fig. 4.1, our primary goal is to examine
the impact of training an ML classifier on S ′ = (X, A′, Y ) compared to S = (X, A, Y )
on fairness and utility, using different LDP protocols and privacy budget splitting
solutions. Specifically, we focus on the scenario where each sensitive attribute in A is
collected independently under LDP guarantees. In this case, to satisfy ε-LDP following



4.2 Fairness Under Multidimensional Local Differential Privacy: Empirical Study 1117

Proposition 2, the privacy budget ε must be split among the total number of sensitive
attributes da = |A|. The state-of-the-art [12, 195, 126, 145] solution, named uniform,
proposes to split the privacy budget ε evenly among all attributes, allocating ε

da
for

each attribute. However, as different sensitive attributes have varying domain sizes
ki, for i ∈ [da], we propose a new solution named k-based that splits the privacy
budget ε proportionally to the domain size of the attribute. In other words, for the
i-th attribute, we allocate εi = ε·ki∑da

i=1 ki

.
In addition, since each LDP protocol encodes and perturbs user data differently, we

propose to compare all LDP protocols under the same encoding when training the ML
classifier. More specifically, we used One-Hot Encoding (OHE) and Indicator Vector
Encoding (IVE) [2] as all LDP protocols from Section 2.3.2 are designed for categorical
data or discrete data with a known domain. For example, let Ω be the reported subset
of a user after using SS as LDP protocol. Following IVE, we create a binary vector
z = [b1, . . . , bk] ∈ {0, 1}k of length k, where the v-th entry is set to 1 if v ∈ Ω, and 0,
otherwise. In other words, A′ represents the subset Ω in a binary format. Fig. 4.2
illustrates the LDP encoding and perturbation at the user side and how to achieve a
“homogeneous encoding” for all the seven LDP protocols on the server side. Last, all
non-sensitive attributes X are encoded using OHE.

4.2.3 Experimental Evaluation

In this section, we present the experimental setting and the results of our experiments.
Our Research questions (RQ) are:

• RQ1. Overall, how does pre-processing multidimensional data with ε-LDP affect
the fairness and utility of ML binary classifiers with the same hyperparameters
used before and after obfuscation?

• RQ2. Which privacy budget-splitting solution has a better privacy-utility-fairness
trade-off?

• RQ3. How do different LDP protocols affect the fairness and utility of an ML
binary classifier, and which one is more suitable for the different real-world
scenarios applied?

General setting. For all experiments, we consider the following setting:

• Environment. All algorithms are implemented in Python 3 with Numpy [240],
Numba [138], and Multi-Freq-LDPy [13] libraries, and run on a local machine with
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Fig. 4.2 Overview of client-side encoding and perturbation steps for the seven different
LDP protocols applied. On the server side, there is also a post-processing step with
one-hot encoding (OHE) or indicator vector encoding (IVE), if needed.

2.50GHz Intel Core i9 and 64GB RAM. The codes we develop for all experiments
are available in a GitHub repository [11].

• ML classifier. We used the state-of-the-art3 LGBM [122] as predictor Ŷ .

• Encoding. We only use discrete and categorical attributes, which are encoded
using OHE or IVE (see Fig. 4.2), and the target is binary, i.e., Y ∈ {0, 1}.

3https://www.kaggle.com/kaggle-survey-2022.

https://www.kaggle.com/kaggle-survey-2022
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• Training and Testing Sets. We randomly select 80% as training set and the
remaining 20% as testing set. We apply LDP on the training set only. That is,
the samples in the testing set are the original samples (i.e., no LDP).

• Stability. Since LDP protocols, train/test splitting, and ML algorithms are
randomized, we report average results over 50 runs.

Datasets. Table 4.1 summarizes all datasets used in our experiments. For ease of
reproducibility, we use real-world and open datasets.

Table 4.1 Description of the datasets used in the experiments of Section 4.2.

Dataset n A A, domain size k Y

AdultG 45849 gender - gender, k = 2 income
- race, k = 5
- native country, k = 41
- age, k = 74
- hours per week, k = 96
- education, k = 16

AdultR 45849 race - race, k = 2 income
- gender, k = 2
- native country, k = 41
- age, k = 74
- hours per week, k = 96
- education, k = 16

ACSCoverage 98739 DIS - DIS, k = 2 PUBCOV
- AGEP, k = 50
- SEX, k = 2
- SCHL, k = 24
- RAC1P, k = 2
- NATIVITY, k = 2

LSAC 20427 race - race, k = 2 pass bar
- gender, k = 2
- family income, k = 5
- full time, k = 2

• Adult. This dataset contains information about individuals, including personal
attributes such as gender, age, race, marital status, education, and occupation.
The goal is to predict their income. We use 26000$ as a threshold to binarize
the target variable income of the reconstructed Adult dataset [70]. After cleaning,
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n = 45849 samples are kept. We excluded capital-gain and capital-loss and used
the remaining 10 discrete and categorical attributes. We considered A = {gender,
race, native country, age, hours per week, education} as the set of possible
sensitive attributes for LDP obfuscation. We consider two scenarios for the Adult
dataset depending on the sensitive attribute to assess fairness. Gender is the
sensitive attribute for the first scenario, while race is considered as the sensitive
attribute for the second scenario. We call the Adult dataset differently depending
on the sensitive attribute at hand:

– AdultG: With A = gender.

– AdultR: With A = race4.

• ACSCoverage5. This dataset is retrieved with the folktables [70] Python
package and the binary target PUBCO designates whether an individual is
covered by public health insurance or not. We select 2018 and the "Texas" state,
with n = 98739 samples. We removed DEAR, DEYE, DREM, and PINCP
and used the remaining 15 discrete and categorical attributes. We considered
A = {DIS, AGEP, SEX, SCHL, RAC1P, NATIVITY} as the set of sensitive
attributes for LDP obfuscation and A = DIS (i.e., disability) as the sensitive
attribute to assess fairness.

• LSAC. This dataset is from the Law School Admissions Council (LSAC) National
Bar Passage Study [250], and the binary target pass_bar indicates whether or
not a candidate has passed the bar exam. After cleaning, n = 20427 samples
are kept. We only consider as attributes gender, race, family income, full time,
undergrad GPA score (discretized to {1.5, 2.0, ..., 4.5}), and LSAT score (rounded
to the closest integer). The race attribute was binarized to {black, other}. We
considered A = {gender, race, family income, full time} as the set of sensitive
attributes for LDP obfuscation and A = race as the sensitive attribute for fairness
assessment.

Evaluated Methods. The methods we use and compare are:

• (Baseline) NonDP. This is our baseline with LGBM trained over original
data (i.e., S = (X, A, Y )). The non-sensitive X and sensitive A attributes

4We consider race as a binary attribute with the two categories: non-white and white.
5The full documentation for the description of all attributes is in https://www.census.gov/p

rograms-surveys/acs/microdata/documentation.html.

https://www.census.gov/programs-surveys/acs/microdata/documentation.html
https://www.census.gov/programs-surveys/acs/microdata/documentation.html
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are encoded with OHE. We searched for the best hyperparameters using
Bayesian optimization [31] through 100 iterations varying: max_depth ∈ [3, 50],
n_estimators ∈ [50, 2000], and learning_rate ∈ (0.01, 0.25).

• LDP Protocols. For all the four datasets of Table 4.1, we selected the number
of sensitive attributes uniformly at random with 2 ≤ da ≤ |A|6, in each of the
50 runs. We then pre-processed the sensitive attributes of the training sets
(i.e., A′ = L(A)) using each of the seven LDP protocols from Section 2.3.2
(i.e., k-RR, RAPPOR, OUE, SS, BLH, OLH, and THE). Next, we fixed the
optimized hyperparameters found for the NonDP model and trained LGBM over
S ′ = (X, A′, Y ) using these hyperparameters. To satisfy ε-LDP (Proposition 2),
we split the privacy level following the two solutions described in Section 4.2.2,
namely, the state-of-the-art uniform and our k-based solutions.

Metrics. We evaluate the performance of LGBM trained over the original data (i.e.,
NonDP baseline) and LDP-based data on privacy, utility, and fairness:

• Privacy. We vary the privacy parameter in the range of:
ε = {0.25, 0.5, 1, 2, 4, 8, 10, 20, 50}. At ε = 0.25, the ratio of probabilities is
bounded by e0.25 ≈ 1.3, giving nearly indistinguishable distributions, whereas at
ε = 50 almost no privacy is guaranteed.

• Utility. We use accuracy (acc), f1-score (f1), area under the receiver operating
characteristic curve (auc), and recall as utility metrics;

• Fairness. We use the group fairness metrics presented earlier in this section (i.e.,
DI, SD, EOD, and OAD).

Main Results.

• LDP Impact on Fairness. Fig. 4.3 (AdultG), Fig. 4.4 (AdultR), Fig. 4.5
(ACSCoverage), and Fig. 4.6 (LSAC) illustrate the privacy-fairness trade-off
for the NonDP baseline and all the seven LDP protocols, considering both the
uniform and our k-based privacy budget splitting solutions. From these Figs,
one can observe a general trend of slight improvement in fairness for all the
seven LDP protocols under both the uniform and the k-based solutions. For
instance, for the DI metric in Fig. 4.3, the NonDP data indicates a value of

6Once the total number of sensitive attributes da is established, the remaining da − 1 sensitive
attributes are selected uniformly at random.
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0.44 showing discrimination against women. Upon applying LDP protocols, DI
tends to increase to approximately 0.48 (with ϵ ≤ 2), slightly improving fairness.
Similarly, SD decreased from 0.37 to ∼ 0.34 after applying LDP protocols. Similar
trends are observed for other fairness metrics such as EOD, indicating consistent
improvements after applying LDP protocols.

The main exception occurred in Fig. 4.5 for the OAD metric, where the gap
between the privileged and the unprivileged groups was accentuated (favoring the
unprivileged group). Specifically, the OAD is −0.17 with the NonDP baseline.
After applying all the LDP protocols using either the uniform or the k-based
solutions, the gap between the privileged and the unprivileged groups increased to
−0.25. In other words, we initially observed favoritism towards the unprivileged
group (indicated by a negative value), which increased after applying LDP. It
is noteworthy that even this exception contrasts with the findings of [22, 95] in
central DP, where the underrepresented group is consistently negatively affected.

Additionally, it is noteworthy that when applying the uniform privacy budget
splitting solution (refer to the left-side in the plots), all fairness metrics demon-
strated less robustness to LDP than our k-based solution. Consequently, they
reverted to the NonDP baseline value in low privacy regimes. On the other hand,
when applying our k-based solution (refer to the right-side in the plots), all fair-
ness metrics consistently performed better across all privacy regimes, especially
for the Adult dataset, as depicted in Figs 4.3 and 4.4. For the ACSCoverage
dataset, not all fairness metrics returned to the NonDP baseline value with our
k-based solution. However, with the uniform solution, for ε ≥ 8, all fairness
metrics reverted to the NonDP baseline value. A similar behavior was noticed
for the LSAC dataset, where our k-based solution exhibited more robustness to
LDP than the uniform solution, reverting to the NonDP baseline values only
when ε ≥ 20 in contrast with ε ≥ 8 for the uniform solution.
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Fig. 4.3 Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the AdultG [70] dataset.
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Fig. 4.4 Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the AdultR [70] dataset.
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Fig. 4.5 Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the ACSCoverage [70] dataset.
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Fig. 4.6 Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the LSAC [250] dataset.
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• LDP Impact on Utility. Fig. 4.7 (AdultG), Fig. 4.8 (AdultR), Fig. 4.9 (AC-
SCoverage), and Fig. 4.10 (LSAC) illustrate the privacy-utility trade-off for the
NonDP baseline and all the seven LDP protocols, considering both the uniform
and our k-based privacy budget splitting solutions. From these Figures, one
can note that, in general, the impact of ε-LDP on utility metrics is minor. For
instance, for the Adult (see Figs 4.7 and 4.8) and LSAC (see Fig. 4.10) datasets,
only ∼ 2% of utility loss for all metrics is observed. Regarding privacy budget
splitting, for the AdultG and AdultR datasets, our k-based solution was more
robust to LDP as it only lost performance in high privacy regimes (i.e., smaller
ε values). However, the uniform solution drops performance faster, i.e., even
with ε ≤ 10. One main explanation for this behavior is the high discrepancy in
the domain size k of the sensitive attributes A and, consequently, more privacy
level ε is allocated to those attributes with high k. For this reason, the uniform
solution preserved more utility for the ACSCoverage dataset in Fig. 4.9, and both
solutions had similar results for the LSAC dataset in Fig. 4.10 due to sensitive
attributes with a small domain size k.
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Fig. 4.7 Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the AdultG [70] dataset.
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Fig. 4.8 Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the AdultR [70] dataset.
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Fig. 4.9 Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the ACSCoverage [70] dataset.
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Fig. 4.10 Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the ε-LDP
protocol, and the privacy budget splitting solution (i.e., uniform on the left-side and
our k-based on the right-side), on the LSAC [250] dataset.

• Impact of the Number of Sensitive Attributes da. Fig. 4.11 (fairness
metrics) and Fig. 4.12 (utility metrics) illustrate the privacy-utility-fairness trade-
off when varying the number of sensitive attributes da when applying the k-RR
protocol on the AdultG dataset. Naturally, as more sensitive attributes undergo
obfuscation via ε-LDP, utility experiences a decline, albeit with a positive impact
on fairness. Note that our experiments showed similar trend results for the other
LDP protocols and datasets. Indeed, averaged results considering all the number
of sensitive attributes da at once can be observed from Fig. 4.3 to Fig. 4.10.
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Fig. 4.11 Fairness metrics (y-axis) by varying the privacy guarantees (x-axis), the
number of sensitive attributes ds, and the privacy budget splitting solution (i.e.,
uniform on the left-side and our k-based on the right-side), with the k-RR protocol
on the AdultG [70] dataset.

Summary. We summarize our main findings for the three research questions formulated
at the beginning of Section 4.2.3. (RQ1) Using the same hyperparameters configuration,
ε-LDP positively affects fairness in ML (see Figs 4.3–4.6 and Fig. 4.11) while having a
negligible impact on model’s utility (see Figs 4.7–4.10 and Fig. 4.12). This contrasts
the findings of [22, 95] that state that ε-DP negatively impacts fairness under the
same hyperparameters configuration. While the aforementioned research works concern
gradient perturbation in central DP, we focused on input perturbation, i.e., randomizing
multiple sensitive attributes before training any ML algorithm, and discovered a
positive impact of ε-LDP on fairness. (RQ2) Our k-based solution consistently led
to better fairness improvement than the state-of-the-art uniform solution for all the
four datasets. Regarding utility, k-based was better than uniform when sensitive
attributes had higher domain sizes k (e.g., with the AdultG and AdultR datasets),
which coincides with real-world data collections. Naturally, when all sensitive attributes
have a binary domain, our k-based solution is equivalent to the uniform solution.
For this reason, both state-of-the-art uniform and our k-based solution led to
similar (favoring our k-based solution) privacy-utility-fairness trade-off for the LSAC
dataset (see Figs 4.6 and 4.10). (RQ3) In general, k-RR and SS presented the best
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Fig. 4.12 Utility metrics (y-axis) by varying the privacy guarantees (x-axis), the number
of sensitive attributes ds, and the privacy budget splitting solution (i.e., uniform
on the left-side and our k-based on the right-side), with the k-RR protocol on the
AdultG [70] dataset.

privacy-utility-fairness trade-off for all the four datasets. This is because k-RR has
only one perturbed output value and SS is equivalent to k-RR when ω = 1, thus,
not introducing inconsistencies for a user’s profile. The term inconsistency refers to
a user being in multiple categories in a given attribute, i.e., being both woman and
man simultaneously. This can happen with all the other LDP protocols that utilize
some specific encoding. For example, UE protocols perturb each bit independently,
and when using LH protocols, many values can hash to the same perturbed value. In
particular, since BLH hashes the input set V→ {0, 1}, it consistently presented the
worst utility results for all four datasets.

4.2.4 Conclusion

This work presented an in-depth empirical study of the impact of pre-processing
multidimensional data with seven state-of-the-art ε-LDP protocols on fairness and
utility in binary classification tasks. In our experiments, k-RR [115] and SS [244, 261]
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presented the best privacy-utility-fairness trade-off in comparison with RAPPOR [79],
OUE [245], THE [245], BLH [26], and OLH [245]. In addition, we proposed a new
privacy budget splitting solution named k-based, which generally led to better fairness
and performance results than the state-of-the-art solution that splits ε uniformly (e.g.,
as in [12, 195, 126, 145]). Overall, while previous research [22, 95] has highlighted that
central DP worsens fairness in ML under the same hyperparameter configuration, our
study finds that LDP slightly improves fairness and does not significantly impair utility.
As a perspective, we plan to investigate the impact of LDP pre-processing on different
ML algorithms, such as deep neural networks, as well as different fairness metrics.
Moreover, we plan to investigate the impact of Y distribution in a multidimensional
LDP setting in Section 4.3. We also highlight that there is still much to explore in the
area of privacy-fairness-aware ML, and this study’s empirical results can serve as a basis
for future research directions. For instance, in our work (presented later in Section 4.4),
we formally investigated the privacy-fairness trade-off on binary classification when
obfuscating the sensitive attribute A.
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4.3 Fairness Under Multidimensional Local Differ-
ential Privacy: Empirical Study 2

This work can be considered an extension of the previous work presented in Section 4.2.
In this work, we mainly focus on the well-known k-ary randomized response (k-RR)
mechanism [115] (presented in Section 2.3.2) because all the seven LDP protocols
presented similar trends in our study presented in Section 4.2. The choice of k-RR
is motivated by its optimality for distribution estimation under several information
theoretic utility functions [115], and also its design simplicity since k-RR does not
require any particular encoding [245]. Specifically, since the output space is equal to
the input space, k-RR provides optimal computational and communication costs for
users. Moreover, no decoding step is needed on the server side. It also means that
the server is free to use any post-processing coding techniques (e.g., one-hot encoding,
mean encoding, binary encoding) to improve the usefulness of the ML model.

The k-RR mechanism has traditionally been mainly employed in the one-dimensional
scenario in LDP and fairness literature [169, 48], where only one attribute is obfuscated.
However, relying solely on LDP for a single sensitive attribute might be insufficient. This
limitation stems from potential correlations that could allow attackers to reconstruct
the privatized sensitive attribute. Hence, we specifically address scenarios involving
multiple sensitive attributes, providing a more realistic representation of data collection
in real-world contexts. Nevertheless, applying k-RR to multi-dimensional sensitive data
presents greater challenges [72, 126]. For example, the naive approach of obfuscating
each sensitive attribute independently results in the loss of any dependencies between
sensitive attributes (our work presented in Section 4.2). In this study, in addition to this
independent setting, we also explore a combined setting that transforms all sensitive
attributes into a single attribute. Indeed, combined k-RR has not been extensively
studied, and its impact on fairness remains unclear, a gap in understanding that we
aim to address.
Contributions. The contributions of this study are threefold. First, we study the
impact of LDP on fairness and utility by observing the behavior of sub-populations
separately. This allows for a more complete understanding of how the fairness metrics
behave under different LDP guarantees. Second, we compare both independent and
combined settings for obfuscating multi-dimensional sensitive attributes under LDP
guarantees. Third, we study how the Y distribution impacts the privacy-fairness-utility
trade-off. The key findings of our empirical analysis are:

1. Generally, obfuscating data with LDP contributes to reducing disparity.



132 Impact of Privacy on Fairness

2. Obfuscating several sensitive attributes (multi-dimensional) reduces disparity
more efficiently than obfuscating a single attribute (one-dimensional).

3. The multi-dimensional approaches of LDP (independent vs. combined) differ in
their impact on fairness only at low privacy guarantees.

4. LDP obfuscation has, typically, a disproportionate impact on only one protected
group, and this depends heavily on the distribution of the true decision Y .

Finally, to bridge the gap with practical applications, we frame the observations as
concrete recommendations to practitioners considering both ethical concerns of privacy
and fairness in ML applications.
Outline. The rest of this section is organized as follows. Section 4.3.1 discusses related
work. Section 4.3.2 states the problem addressed in this study and provides some
preliminaries. Section 4.3.3 details the experimental setting and discusses the main
results. Finally, we conclude this work indicating future perspectives in Section 4.3.4.

4.3.1 Related Work

As this study closely relates to our work presented in Section 4.2, many of the research
studies discussed in that section’s related work also apply here. Therefore, we will
highlight how this work differs from our previous research [16]. In particular, while [16]
has only considered the independent setting for obfuscating the user’s multi-dimensional
data, for a more comprehensive examination, we considered in this study both in-
dependent and combined settings (defined below in Section 4.3.2). Another main
difference with [16] is that we analyze the impact of LDP on fairness by varying the Y

distribution.

4.3.2 Problem Setting and Methodology

Fig. 4.1 depicts the framework used in this work. Similar to the study described
in Section 4.2, this work extends the obfuscation to multiple sensitive attributes A,
rather than focusing on a single attribute. Section 4.3.3 details all the k-RR settings
considered in our experiments. Specifically, we assume there are da ≥ 2 sensitive
attributes A1, A2, . . . , Ada , where the domain of each Ai is a discrete set of finite
size ki = |dom(Ai)|. We consider two state-of-the-art settings to apply k-RR on
multi-dimensional data [126, 72]:
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• Independent k-RR (k-RR-Ind). This naive approach applies k-RR indepen-
dently on each attribute. In this study, we apply our k-based solution presented
in Section 4.2. We recall that this approach consists of splitting ε among sensitive
attributes based on their domain size.

• Combined k-RR (k-RR-Comb). This mechanism considers the Cartesian
product A1 × A2 × . . . × Ada as a single attribute and sanitizes it using k-RR
parameterized with ε-LDP, where k = k1 · k2 · . . . · kda .

Independent LDP on multi-dimensional data has been studied relatively well in the
literature [195, 12, 126]. Moreover, its impact on fairness was the topic of our study [16].
Combined LDP, on the other hand, was not studied extensively. In particular, its
impact on fairness is still unclear, a gap addressed in this study.

Group Fairness Metrics Considered. In this work, we focus on the following
statistical group fairness metrics. These metrics are used to assess the impact of LDP
on fairness.

• Statistical Disparity (SD) (Eq. 4.2).

• Equal Opportunity Difference (EOD) (Eq. 4.3).

• Predictive Equality Disparity (PED) [58] computes the difference in false
positive rates (Table 2.2) between groups and it is formally defined as:

PED = P[Ŷ = 1 | Y = 0, A = 1]− P[Ŷ = 1 | Y = 0, A = 0]. (4.5)

• Overall accuracy difference (OAD) (Eq. 4.4).

• Predictive rate disparity (PRD) [54] computes the difference in the positive
predictive value (Table 2.2). PRD is formally defined as:

PRD = P[Y = 1 | Ŷ = 1, A = 1]− P[Y = 1 | Ŷ = 1, A = 0]. (4.6)

Note that for all the fairness metrics mentioned above, the lower the values, the fairer
the results.
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4.3.3 Empirical Results and Analysis

To assess the impact of k-RR on fairness, two synthetic datasets and two real-world
fairness benchmark datasets, namely Adult and Compas, are used. For each of these
datasets, the fairness metrics presented above are applied.

General setting.

• Environment. All the experiments are implemented in Python 3. We use
Random Forest model [38] for classification with its default hyper-parameters and
we use the ten-fold cross-validation technique, both from Scikit-learn [186]. For
k-RR mechanism, we use the implementation in Multi-Freq-LDPy [13]. The codes
and datasets for all the experiments are available in a GitHub repository [153].

• Stability. Since LDP protocols, k-fold cross-validation, and ML algorithms are
randomized, we report average results over 20 runs.

Datasets. A summary of all datasets used in this study is provided in Table 4.2.

Table 4.2 Metadata of the datasets used in the experiments of this study.

Dataset n A A Y Threshold P[Y = 1]
(sensitive att.) (sensitive atts)

Synthetic 100K A - A Y τQ1 = 0.44 0.75
- C τQ2 = 0.52 0.5
- M τQ3 = 0.6 0.25

Compas 5915 race - race risk score7 τQ1 = 1 0.76
- gender τQ2 = 3 0.47
- age τQ3 = 5 0.26

Adult 32561 gender - gender income τQ1 = 10K 0.81
- age τQ2 = 27K 0.5
- race τQ3 = 50K 0.25
- marital-status
- native-country

- Synthetic Dataset: The causal model used to generate the synthetic dataset
is depicted in Figure 4.13. A, C, and M are discrete variables8, while Y is

7Unlike the synthetic and the Adult datasets, whose true decision is continuous, the true decision
of the Compas dataset is discrete (score ∈ {0, 1}). Thus, we use scores 1, 3, and 5 as thresholds for
the Y distribution to be skewed to 0, balanced, and skewed to 1, respectively.

8C and A follow Binomial distributions while M follows Multinomial distribution.
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a continuous variable that is a function of all the other variables such that:
Y = h(A, C, M). To study the impact of k-RR on fairness while varying the Y

distribution, three thresholds are set for the true decision variable Y binarisation,
resulting in three synthetic datasets differing solely by the distribution of Y . The
thresholds and the resulting Y distribution for all datasets are shown in Table 4.2.
Three scenarios are considered depending on the dataset, namely, Y distribution
skewed to 1, balanced Y distribution, and Y distribution skewed to 0.

- Benchmark Datasets:

- Compas: The Compas dataset includes data about defendants from Broward
County, Florida, during 2013 and 2014 who were subject to Compas screening.
Various information related to the defendants (e.g., race, gender, arrest date,
etc.) were gathered by ProPublica [10], and the goal is to predict the two-year
violent recidivism. Only black and white defendants assigned Compas risk scores
within 30 days of their arrest are kept for analysis, leading to 5915 individuals in
total. We consider race as the sensitive attribute. Five attributes are used in
this study: race, sex, age, priors, and risk score. We use the Compas risk score
as Y . The risk score consists of a rating of 1− 10; the higher the score, the more
likely the defendant is to re-offend. Following the same reasoning as the synthetic
datasets, we transform the risk score into a binary variable by choosing different
thresholds to study the impact of Y distribution on the privacy-fairness trade-off.
Three thresholds are used, leading to three different Y distributions: skewed to
1, almost balanced, and skewed to 0.

- Adult (already defined in Section 4.2.3): The attributes considered in this
work are age, gender, native country, education level, marital status, number of
working hours per week, and income. Y is the income of an individual. Similarly
to the other datasets, different thresholds are used to separate the positive true
decision (high income) from the negative true decision (low income). Three
thresholds are used in total, leading to three versions of the Adult dataset with
skewed income distribution to 1 (threshold = 10K), balanced income distribution
(threshold = 26K), and skewed income distribution to 0 (threshold = 50K9).

Applied Settings. Four settings (Table 4.3) are used to assess the impact of LDP on
fairness. We vary the privacy level in the range of ε = {16, 8, 5, 3, 2, 1, 0.5, 0.1}.

- noLDP (Baseline): the model is trained using the original data (without privacy).
9The 50K threshold is used in the well-known Adult dataset mostly used in the literature [73].
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(a) Causal Graph

C ∼ B(0.35),

A ∼

B(0.55) if C = 0,
B(0.75) if C = 1,

M ∼

M(0.35, 0.4, 0.25) if A = 0,
M(0.5, 0.4, 0.1) if A = 1,

Y = αA + βM + γC + Uy, Uy ∼ N (0, 1)

(b) Structural equations

Fig. 4.13 Causal model of the synthetic datasets.

- sLDP: the model is trained using an obfuscated version of the data where only
the sensitive attribute A is obfuscated using k-RR.

- combLDP: the model is trained using an obfuscated version of the data where
a set of sensitive attributes A, including the sensitive attribute A is obfuscated
using k-RR-Comb (Section 4.3.2).

- indLDP : the model is trained using an obfuscated version of the data where the
same set of sensitive attributes A is obfuscated using k-RR-Ind (Section 1.1.2).
The privacy splitting solution used in the experiments is the k-based solution [16].

Table 4.3 Settings applied in this study.

Settings applied k-RR applied to

noLDP no privacy
sLDP A

combLDP A using k-RR-Comb
indLDP A using k-RR-Ind

Main Results.

• Impact of LDP on Fairness. This set of experiments aims to study the effect
of obfuscating data through LDP on the fairness of the model trained using that
data. The experimental protocol consists of obfuscating data using either sLDP
(one-dimensional) or combLDP (multi-dimensional) while decreasing the privacy
budget ε toward more privacy requirements (small ε). Fairness is measured using
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the various group metrics of Section 4.3.2, and the experiment is repeated for
all three datasets (Synthetic, Compas, and Adult). Fig. 4.14 shows the obtained
results. To better understand how LDP impacts fairness, the plots show the
separate values for both groups: the privileged group (A = 1) in red dots and the
unprivileged group (A = 0) in blue dots. Disparity between groups is then the
difference between the two values (dots). In addition, for a better understanding
of the trade-off, disparity in the baseline case (i.e., no obfuscation – noLDP)
is shown using a gray shaded area. The following can be observed from the
empirical results.

– [Obs1] More privacy leads to less disparity. For both sLDP and combLDP,
the disparity decreases when imposing stronger privacy requirements (smaller
ε). For example, in Fig. 4.14b, SD (first row) decreases from 0.23 to 0.15
(for sLDP) and to 0 (for combLDP). The same decreasing pattern can be
observed for EOD (second row) and PED (third row). For OAD and PRD,
however, disparity either stays unaffected (Fig. 4.14c) or increases (Figs 4.14a
and 4.14b). These two fairness notions compare both groups’ accuracy and
precision (e.g., Y = Ŷ for accuracy). Hence, the behavior is expected since
imposing strong privacy guarantees typically leads to a decrease in the
accuracy and precision of the classifier for one or both protected groups.
But the drop is greater for one group than for the other. This is further
detailed when studying the impact of the true decision distribution on the
privacy-fairness-utility trade-off later in this section.
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Fig. 4.14 Impact of LDP on disparity (y-axis) by varying the privacy level ε (x-axis).
sLDP consists in obfuscating a single attribute (sensitive). combLDP consists in
obfuscating all sensitive attributes. The gray shaded area represents the disparity
results using the baseline model (noLDP). The formulas for the red and blue dots
in each plot are shown on the right of Fig. 4.14(c) where red dots correspond to the
fairness results for group A = 1 while the blue dots correspond to the fairness results
for group A = 0.

– [Obs2] Multi-dimensional LDP reduces disparity more efficiently than one-
dimensional LDP. Both sLDP and combLDP lead to a decrease in disparity
(previous observation). However, with combLDP, the reduction can be
observed with weaker privacy guarantees (higher ε). In other words, the
more attributes are obfuscated, the less privacy level ε is needed to improve
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fairness. For instance, in Fig. 4.14a, the disparity disappears at ε = 0.1 for
sLDP, but at ε = 2 for combLDP. This can be explained by the fact that
obfuscating the sensitive attribute A (equivalent to removing that attribute
from the training set when the privacy guarantees are strong enough) is
insufficient to improve fairness due to proxies correlated with that attribute.
Thus, by additionally obfuscating all attributes correlated with the sensitive
attribute, weaker privacy guarantees are required to reduce the disparity
between groups and, therefore, improve fairness.

– [Obs3] LDP has disproportionate impact on groups. In most of the plots,
one can observe that k-RR does not have an impact (or has a minor impact)
on one group but a high impact on the other group. For instance, in the
first three rows of Fig. 4.14a, the change in disparity is due to a significant
change related to only the unprivileged group (blue dots). In other words,
considering groups separately, k-RR impacts the fairness/utility of these
groups differently.

• k-RR-Ind vs. k-RR-Comb. The impact of LDP on the fairness level of the
obtained model depends on the multi-dimensional k-RR variant (Section 4.3.2)
used for obfuscation. The following experiment is performed to compare the
effects of k-RR-Ind and k-RR-Comb on the disparity between the privileged and
unprivileged groups. Benchmark datasets (Synthetic, Compas, and Adult) are
obfuscated using k-RR-Ind and k-RR-Comb while decreasing the privacy budget
ε toward more strict privacy guarantees (very small ε). The obfuscated data is
then used to train a predictor and the disparity of the model is then assessed
using the fairness metrics of Section 4.3.2. Fig. 4.15 shows the result of the
experiments.

– [Obs4] For large ε, the efficiency to reduce disparity depends on the sensitive
attributes inter-dependencies. Compas and Adult experiments illustrate the
two different behaviors. In Compas experiment (Figure 4.15b), at ε = 4,
EOD for indLDP is −0.07 but −0.27 for combLDP. Recall, from Table 4.2,
that in Compas dataset, three attributes are considered sensitive (race,
gender, and age) with relatively low inter-dependencies between them.
This explains why k-RR-Ind is more efficient in reducing disparity than
k-RR-Comb for large ε values. In the Adult experiment result (Fig. 4.15c),
k-RR-Comb is slightly more efficient than indLDP in reducing disparity.
For instance, at ε = 8, EOD is at 0.44 for indLDP but at 0.37 for combLDP.
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Fig. 4.15 Impact of combLDP and indLDP on disparity (y-axis) by varying the privacy
level ε (x-axis) and obfuscating a set of sensitive attributes. The horizontal black
line in each plot designates the fairness results when the baseline model (noLDP) is
deployed.

This can be explained by the relatively high inter-dependencies of the five
sensitive attributes (Table 4.2) considered in the Adult dataset.

– [Obs5] For small ε, combLDP and indLDP have a similar impact on
disparity. In all plots of Fig. 4.15, for strict privacy guarantees (small ε),
the disparity between sensitive groups converges to the same value whether
the obfuscation was performed with combLDP or indLDP. In other words,
by enforcing more privacy, both settings of k-RR improved fairness to the
same extent.
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• The Effect of Changing the True Decision Distribution. To assess disparity
using the group fairness metrics (Section 4.3.2), the true decision variable Y

must be binary. However, typically, the trained model predicts a continuous
numerical value representing a score as a true decision. The score value needs to
be thresholded to obtain a binary value. Consequently, the true decision variable
Y distribution will depend on the threshold value. The following experiment is
performed to study the effect of the true decision distribution on the disparity
between protected groups while obfuscating data. Three different distributions are
considered for each dataset (Synthetic, Compas, and Adult). The first distribution
is obtained by considering a threshold value (τQ1) such that all instances in the
three top quantiles have positive true decision (Y = 1). The threshold (τQ2) of
the second distribution is selected such that the two top quantiles have positive
true decision. The third threshold (τQ3) is selected such that only the instances
in the top quantile have positive true decisions. Each of the obtained datasets
is then obfuscated using sLDP, combLDP, and indLDP. Fig. 4.16 shows the
experimental results for the Adult dataset (Results for Synthetic and Compas can
be found in the appendix (Figs. B.2 and B.3). To better understand how fairness
is impacted by the distribution of the true decision, the plots track the separate
values for each protected group (dots on solid lines for the privileged group and
dots on dashed lines for the unprivileged group). The difference between the two
types of dots corresponds to the disparity. Finally, as previously mentioned, the
gray area corresponds to the disparity of the baseline model (noLDP).

– [Obs6] When enforcing privacy, which group witnesses more accuracy drop
depends on the true decision distribution. Depending on the threshold for
positive true decision (and hence the true decision distribution), the drop
in accuracy10 due to more tight privacy guarantees (smaller ε) is higher
for one group than the other. In particular, the accuracy drops more for
the unprivileged group A = 0 when the Y distribution is either skewed to 1
(τQ1) or balanced (τQ2), which corresponds to the first and second columns
in Fig. 4.16. Whereas it drops more for the privileged group A = 1 when
the Y distribution is skewed to 0 (τQ1)11.

10As this observation is about the accuracy, only the last two fairness metrics are concerned, that
is, OAD and PRD corresponding to the two lower rows of Fig. 4.16.

11Note that this observation is also confirmed in the Compas dataset (Fig. B.3) but inverted since
the privileged group in this dataset is the group A = 0. We generated a second synthetic dataset
where the group A = 0 is privileged to confirm the inverted behavior. The plots are in Appendix B.1.1.
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– [Obs7] When enforcing privacy, which group contributes more to reduce the
disparity depends on the true decision distribution. Similarly to the above
observation, the true decision distribution significantly impacts how each
group (privileged vs. unprivileged) contributes to the disparity reduction
while enforcing more privacy. In particular, the prediction rates per group
(e.g., P[Ŷ = 1|A = 1] for SD) increased more for the unprivileged group
A = 0 when the true decision distribution is skewed to 1 (τQ1 and τQ2)
but decreased more for the privileged group A = 1 when the true decision
distribution is skewed to 0 (τQ3)12.

– [Obs8] For a fair baseline model, enforcing privacy amplifies disparity.
The true decision distribution experiment exhibited an interesting behavior
illustrated clearly in the Adult dataset results (Fig. 4.16). In particular, the
disparity in the baseline predictor is relatively small for the PED metric with
true decision distribution at threshold τQ1. However, training the predictor
using obfuscated data resulted in disparity amplification. A similar behavior
is observed for OAD with τQ2.

Based on the above observations, one can conclude the following statements:
Statement 1: If A = a is the privileged group (has a majority of Y = 1) then if Y is
skewed to 1, adding noise affects more the accuracy of the unprivileged group A ̸= a

else (Y is skewed to 0) adding noise affects more the accuracy of A = a. If A = a

is the privileged group (has a majority of Y = 1) then if Y is skewed to 1, adding
noise affects more the accuracy of the unprivileged group A ̸= a else (Y is skewed to 0)
adding noise affects more the accuracy of A = a.
Statement 2: If A = a is the privileged group (has a majority of Y = 1), then if
Y is skewed to 1, adding noise increases more the predicted rates for the unprivileged
group A ̸= a else (Y is skewed to 0), adding noise decreases more the predicted rates
for group A = a. If A = a is the privileged group (has a majority of Y = 1), then if
Y is skewed to 1, adding noise increases more the predicted rates for the unprivileged
group A ̸= a else (Y is skewed to 0), adding noise decreases more the predicted rates
for group A = a.

Recommendations. Based on the observations obtained from the experimental
analysis, one can propose the following recommendations for a practitioner considering

12Again, the behavior is reversed for the Compas dataset (Fig. B.3) for the same reason as the
previous observation.
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Fig. 4.16 Impact of Y distribution on the privacy-fairness trade-off. Columns 1, 2, and
3 illustrate the results for the Adult dataset when the Y distribution is skewed to 1,
balanced, and skewed to 0, respectively. The gray shaded area represents the disparity
results using the baseline model (noLDP).

a mechanism satisfying privacy and fairness guarantees. That is a mechanism allowing
individual users to share their data while at the same time protecting their sensitive
information and guaranteeing that the obtained model is fair w.r.t sub-populations
and/or individuals.

A. LDP Data Obfuscation is an Efficient Mechanism for Reducing Disparity.
Almost all observations from the experimental analysis confirm the conclusion that LDP
obfuscation reduces disparity (Obs1, Obs2, Obs4, Obs7). The disparity reduction
is often due to one group being more sensitive to the LDP obfuscation rather than the
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other (Obs2). The only exception is when the predicted model using baseline (not
obfuscated) data is already fair. In that case, LDP may create disparity (Obs8).

B. Obfuscating Several Sensitive Attributes Allows us to Reduce Disparity
more Efficiently than a Single Attribute. Suppose a practitioner is interested
in producing a fair model but with minimal privacy enforcement. In that case, it is
recommended that she uses multi-dimensional LDP, obfuscating as many sensitive
attributes as possible (Obs2).

C. Independent and Combined Variants of Multi-Dimensional LDP are Dif-
ferent Only with Weak Privacy Guarantees. The choice of the multi-dimensional
approach of LDP (combined vs independent) matters only at low privacy guarantees
(large ε) (Obs4). In that case, the practitioner’s choice should depend on the level of
interdependency between sensitive attributes. For high interdependency, a combined
approach is more efficient in reducing disparity. For low or no interdependency, an
independent approach is more efficient. At strict privacy guarantees (low ε), however,
both approaches have a similar effect on disparity (Obs5).

D. Obfuscating Data Disproportionally Impacts Only one Group, Depending
on the True Decision Distribution. A practitioner who obfuscates individual
data with LDP should expect only one group to be significantly affected. And she can
guess which group will be more affected by studying the true decision distribution.
More precisely, if the true decision distribution is skewed towards the positive true
decision (typically Y = 1), the unprivileged group will be more affected. Otherwise (if
the true decision distribution is skewed to the negative true decision (typically Y = 0),
it is the privileged group who will be more affected (Obs7 and Obs8).

4.3.4 Conclusion

This work investigates how the accuracy and fairness of the decisions made by the model
change under LDP, in particular, the k-RR mechanism, given different levels of privacy
and different class distributions. To broaden the scope of our study, we employed various
statistical group fairness metrics. We evaluated two settings for obfuscating multi-
dimensional sensitive attributes under LDP, namely, independent and combined, on two
synthetic and two benchmark datasets to substantiate our claims. We also investigated
the impact of Y distribution on the impact of multidimensional LDP on fairness. The
experimental analysis revealed very relevant observations that we framed as concrete
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recommendations for ML practitioners aiming to guarantee both ethical privacy and
fairness concerns. To the best of our knowledge, this is the first work that studies the
effect of combined multi-dimensional LDP on fairness. In particular, we observed that
independent and combined variants of multi-dimensional LDP are different only with
weak privacy guarantees (high ε). For practitioners, the choice between the two variants
of multi-dimensional LDP should be based on the extent of interdependence among
sensitive attributes. In cases of high interdependency, employing a combined approach
proves more effective in mitigating disparity. Conversely, opting for an independent
approach is more efficient for low or negligible interdependency.

Although only associational fairness metrics are used, note that our work can be
easily extended to causality-based fairness metrics. More specifically, given the causal
graph, if some of the sensitive attributes happen to be in the back-door path13 between
the sensitive attribute A and the true decision Y , the most common causality-based
fairness metric, namely, total effect (TE) (Eq. (3.24)), might behave differently than
SD. However, TE will act precisely as SD if no sensitive attributes are in the back-door
path between the sensitive attribute A and the true decision Y . Moreover, obfuscation
might impact other causality-based fairness metrics (direct effect, indirect effect, etc.)
depending on the location of the sensitive attributes on the causal graph, provided
those metrics are identifiable [157].

13Recall that a back-door path is a path between A and Y with an edge into A.
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4.4 A Systematic and Formal Study of the Impact
of Local Differential Privacy on Fairness

The insights gained from our two empirical studies presented above highlight the
complex interplay between privacy-preserving mechanisms and fairness in real-world
applications. Despite the valuable findings, these empirical investigations revealed sev-
eral underlying theoretical questions that remained unanswered. We were motivated to
undertake a foundational study to address these gaps and build a deeper understanding.
This study aims to systematically analyze the principles that govern the relationship
between privacy and fairness, providing a theoretical framework that complements and
enhances the empirical results.

Specifically, we formally study the impact of training a model with data obfus-
cated by the randomized response (RR) mechanism (Eq. (2.4)), a fundamental LDP
protocol [115] that serves as a building block for more complex LDP mechanisms
(Section 2.3.2).
Contributions. Our main contribution consists of a theoretical analysis of how
the fairness of the prediction of an ML model is affected by the application of RR
on the training data, depending on the level of privacy and the data distribution.
In particular, we study three notions of fairness: SD (Eq. (4.2)), CSD (Eq. (4.7)),
and EOD (Eq. (4.3)), and identify the conditions under which they are improved or
reduced by RR. We then empirically validate our results by performing experiments
on synthetic data and four real datasets, Compas [10], Adult [70], German credit [73],
and LSAC [250]. Appendix B.2.1 contains all detailed proofs supporting our findings.
Outline. The rest of this section is organized as follows. Section 4.4.1 discusses related
work. Section 4.4.2 states the problem addressed in this study. Then, section 4.4.3
presents our quantitative study of how the fairness of the prediction is affected by the
application of the RR mechanism. Section 4.4.4 details the experimental setting and
discusses the main results. Finally, we conclude this work indicating future perspectives
in Section 4.4.5.

4.4.1 Related Work

This section provides additional existing research studies that explore the intriguing
relationship between DP and fairness, specifically in the context of ML.

Central Differential Privacy. Sanyal et al. [202] present theoretical and experimen-
tal evidence demonstrating that private and accurate algorithms are inherently unfair.
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They also illustrate that striving for both privacy and fairness results in inaccurate
algorithms. A more recent research paper by Emelianov and Perrot [78] on the impact
of output perturbation on individual and group fairness in binary linear classification
shows that the impact of output perturbation on individual fairness, in general, depends
on the dimension of the problem. They also derived a high probability bound on the
group fairness of the private models compared to the non-private ones. They showed
that the bound grows with the noise and depends on the non-private model’s distri-
bution of “angular margins”. Tran, Dinh, and Fioretto [235] examined the accuracy
disparities among different groups of individuals caused by output perturbation and
differentially private stochastic gradient descent. They analyzed the data and model
properties responsible for these disproportionate impacts, explored the reasons behind
the unequal effects on various groups, and proposed guidelines to mitigate these issues.

Mangold et al. in [161] perform a theoretical analysis of the impact of central DP
on fairness in classification. They prove that the difference in fairness levels between
private and non-private models diminishes at a rate of Õ

(√
p/n

)
, where n represents

the number of training records and p is the number of parameters. They also provide an
empirical study using the central model with Gaussian noise for DP and l2-regularized
logistic regression models for prediction.

Local Differential Privacy. In [169], Mozannar et al. show how to adapt non-
discriminatory learners to work with privatized attributes, giving theoretical guarantees
on performance. Our experimental analysis (discussed in Section 4.3) showed that
obfuscating several sensitive attributes instead of obfuscating only the sensitive attribute
used to assess fairness gives better results for fairness. Also, we observed that combined
LDP, compared to independent LDP, reduces the disparity more efficiently at low privacy
guarantees (high ε). Our empirical study presented in Section 4.2 also empirically
deals with the impact on the fairness of applying LDP to multiple sensitive attributes.
The analysis covers several fairness metrics and state-of-the-art LDP protocols. The
results contrast with those obtained with central DP, as they show that LDP slightly
improves fairness in learning tasks without significant loss of the model’s accuracy.

These contrasting claims, most of which are backed only by experimental results,
show that a systematic and foundational study of the relationship between privacy and
fairness is highly needed. This work is a step in that direction.
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4.4.2 Problem Setting and Methodology

Fig. 4.1 depicts the framework used in this work. Note that we solely obfuscate the
sensitive attribute A in this study. We briefly recall the privacy setting and the fairness
metrics applied in this study.

A predictor Ŷ of an outcome Y is a function of a set of variables (A, X) where X14

designates the set of non-sensitive attributes and A ∈ {0, 1} represents the sensitive
attribute. Note that X could include proxies to A, such as zip code, which could hint
to race. We assume that Ŷ and Y are binary random variables where Y = 1 (e.g.,
hiring a person) designates a positive outcome, and Y = 0 (e.g., not hiring a person)
designates a negative outcome. For the remainder of this section, we assume that we
have access to a (multi)set S = {(ai, xi, yi)}n

i=1 of n i.i.d samples from the distribution
on A×X × Y .

We recall A′ = L(A), the obfuscated version of the sensitive attribute A, where L
is a certain randomized LDP mechanism. Thus, we denote an obfuscated version of S

as S ′ = (a′
i, xi, yi)n

i=1.
The LDP mechanism we consider here is the randomized response (RR) [246, 115]

for a binary variable a ∈ {0, 1}, which is defined in Eq. (2.4).

Group Fairness Metrics Considered. In this study, we focus on the following
statistical group fairness metrics. These metrics are used to assess the impact of LDP
on fairness.

• Statistical Disparity (SD) (Eq. 4.2).

• Conditional Statistical Disparity (CSD) [58] computes the difference in
predicted acceptance rates between groups conditioning on a set of explanatory
attributes. In this work, we assume that all variables in X are (potential)
explanatory variables, and we define conditional statistical disparity for each
instance x of X as follows:

CSDx = P[Ŷ = 1 | X = x, A = 1]− P[Ŷ = 1 | X = x, A = 0]. (4.7)

Note that, in general, x represents a tuple of values since X may contain more
than one attribute.

• Equal Opportunity Difference (EOD) (Eq. (4.3)).
14X can be a vector of variables.
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4.4.3 Quantitative Analysis of the Impact of Privacy on Fair-
ness

In this section, we formally study the impact of LDP on fairness. Specifically, we
perform a quantitative study of how the fairness of the prediction is affected by applying
the RR mechanism to the sensitive values in the training data, depending on the level
ε of privacy and the data distribution.

We briefly recall our setting. In addition to the sensitive attribute A and the true
decision Y , which are binary, the data includes a set of non-sensitive attributes X with
arbitrary values. We assume that the data model is probabilistic, in the sense that the
data may contain tuples with the same values for X and A and different values for Y .
A′ = RR(A) is an obfuscated version of A obtained by applying the RR mechanism
to A, and it is also binary. The prediction of the model trained on the original data
is denoted by Ŷ , while that of the model trained on the obfuscated data, which we
will call LDP model, is Ŷ ′. Of course, Ŷ and Ŷ ′ are also binary. We assume that both
models are deterministic. Namely, on a given input (x, a),M always outputs the same
prediction. The same holds for M′, although the prediction may be different from the
one of M.

Table 4.4 shows some abbreviations and definitions we use in this study. In
particular, ∆x

a denotes the difference between the frequency of the samples with the
positive true decision (Y = 1) and those with the negative true decision (Y = 0), and
have A = a and X = x. On the other hand, Γx

a denotes the difference between the
positive and negative decision rates given A = a and X = x. ∆′x

a and Γ′x
a denote the

corresponding quantities in the obfuscated training data (i.e., on the samples with
A′ = a and X = x).

In order to reason formally about the impact of privacy on fairness, we need to
make a basic assumption about the training algorithm. Namely, we assume that the
baseline model, in correspondence of the input (x, a), predicts Ŷ = 1 if ∆x

a ≥ 0, namely
the majority of the tuples in the training set with X = x and A = a have Y = 1, and
predicts Ŷ = 0, otherwise. This assumption is quite natural, as, in general, an ML
model should opt for the prevailing decision seen in training15. We make the same
assumption for the LDP model M′ (with A replaced by A′), which is reasonable since
M and M′ are trained with the same algorithm. Formally:

15Some learning algorithms like the Nearest Neighbours actually use a generalization of this criterion
to produce the prediction.
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Table 4.4 Abbreviations and definitions used in this study. P̂ denotes the empirical
probability (frequency) on the training set.

Abbreviations

• Ŷ x
a ∈ {0, 1} : the prediction of the baseline model M on the input (x, a)

• CSDx = P[Ŷ = 1 | X = x, A = 1] − P[Ŷ = 1 | X = x, A = 0] : Conditional statistical disparity in M

• SD = P[Ŷ = 1 | A = 1] − P[Ŷ = 1 | A = 0] : statistical disparity in M

• EOD = P[Ŷ = 1 | Y = 1, A = 1] − P[Ŷ = 1 | Y = 1, A = 0] : equal opportunity difference in M

• Ŷ ′x
a ∈ {0, 1} : the prediction of the LDP model M′ on the input (x, a)

• CSD′
x = P[Ŷ ′ = 1 | X = x, A = 1] − P[Ŷ ′ = 1 | X = x, A = 0] : Conditional statistical disparity in M′

• SD′ = P[Ŷ ′ = 1 | A = 1] − P[Ŷ ′ = 1 | A = 0] : statistical disparity in M′

• EOD′ = P[Ŷ ′ = 1 | Y = 1, A = 1] − P[Ŷ ′ = 1 | Y = 1, A = 0] : equal opportunity difference in M′

Definitions

• ∆x
a = P̂[Y = 1, X = x, A = a] − P̂[Y = 0, X = x, A = a]

• Γx
a = P̂[Y = 1|X = x, A = a] − P̂[Y = 0|X = x, A = a]

• ∆′x
a = P̂[Y = 1, X = x, A′ = a] − P̂[Y = 0, X = x, A′ = a]

• Γ′x
a = P̂[Y = 1|X = x, A′ = a] − P̂[Y = 0|X = x, A′ = a]

Assumption 4.4.1 . The prediction of M (baseline model) is:

Ŷ x
a =

1 if ∆x
a ≥ 0 (or, equivalently, Γx

a ≥ 0),
0 otherwise.

Assumption 4.4.2 . The prediction of M′ (LDP model) is:

Ŷ ′x
a =

1 if ∆′x
a ≥ 0 (or, equivalently, Γ′x

a ≥ 0),
0 otherwise.

The following Lemma relates the difference between the frequencies of positive and
negative decisions in the obfuscated and original data. We recall that p = eε/(eε+1) is
the probability that the value reported by RR is the true value.

Lemma 4.4.1 . ∆′x
a = p ∆x

a + (1− p) ∆x
a .

See proof on page 239.
The following Lemma relates the LDP model’s prediction to the original data’s

statistics. It follows simply by case analysis from Lemma 4.4.1 and Assumption 4.4.2.
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Lemma 4.4.2 .

Ŷ ′x
a = 1 if


∆x

a, ∆x
a ≥ 0, or

∆x
a > 0 and ∆x

a < 0 and eε ≥ −∆x
a/∆x

a, or

∆x
a < 0 and ∆x

a > 0 and eε ≤ −∆x
a/∆x

a .

Ŷ ′x
a = 0 if


∆x

a, ∆x
a ≤ 0 and at least one of them is strictly negative, or

∆x
a > 0 and ∆x

a < 0 and eε < −∆x
a/∆x

a, or

∆x
a < 0 and ∆x

a > 0 and eε > −∆x
a/∆x

a .

Impact of LDP on Conditional Statistical Disparity. In what follows, we
analyze the effect of RR on conditional statistical disparity with respect to a specific
tuple of values x of the explaining variables. To do so, we compare CSD′

x, which
represents the conditional statistical disparity of prediction of the LDP model, with
CSDx which is the one of the baseline model. Following the principle that fairness
should be assessed on the true inputs, we define CSD′

x as:

CSD′
x = P[Ŷ ′ = 1 | X = x, A = 1]− P[Ŷ ′ = 1 | X = x, A = 0].

Namely, the conditioning is on A and not on A′. Note that, since the models are deterministic,
CSDx and CSD′

x could equivalently be defined as:

CSDx = Ŷ x
1 − Ŷ x

0 and CSD′
x = Ŷ ′x

1 − Ŷ ′x
0 .

The following theorem states the relation between CSDx and CSD′
x.

Theorem 4.4.1 Impact of LDP on CSDx.

1. if CSDx > 0 then 0 ≤ CSD′
x ≤ CSDx

2. if CSDx < 0 then CSDx ≤ CSD′
x ≤ 0

3. if CSDx = 0 then CSD′
x = CSDx = 0

See proof on page 239.
Essentially, the above theorem says that CSD′

x is always sandwiched between CSDx and 0.
Namely, if, in the baseline model, there is discrimination against one group, then obfuscating
A tends to reduce the discrimination. It never introduces discrimination against the other
group. In one extreme case, it may leave things unchanged, while, in the opposite extreme
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case, it may remove the discrimination entirely. If, in the baseline model, we have conditional
statistical parity (CSDx = 0), then obfuscating A maintains this property.

It is important to note that Theorem 4.4.1 does not depend on whether the unprivileged
group is the minority or the majority of the population.

Impact of LDP on Statistical Disparity. Using the results of CSDx, in this section,
we analyze the impact of privacy on SD by comparing SD′ and SD, where SD′ is the statistical
disparity of the prediction of the LDP model, defined as:

SD′ = P[Ŷ ′ = 1 | A = 1]− P[Ŷ ′ = 1 | A = 0]. (4.8)

Again, note that we condition on A rather than A′.
We make the following assumption that we call the uniform discrimination assumption.

Essentially, it says that if one group is discriminated against for some value x∗ of X, then
the other group cannot be discriminated against for other values x of X. This is a natural
assumption in real-life scenarios. For example, consider an ML system that tries to predict
whether to release an individual on parole, given the type of crime they have committed in
the past. If the system (or the historical data in which it is trained) discriminates against an
ethnic group in case of a minor crime, it would still discriminate against that same group
in case of a major crime, or, at most, be fair. As another example, consider granting an
application for a loan: If, for a certain amount of money requested, the applications from an
ethnic group are accepted more frequently than those from the other group, it is unlikely
that, for a different amount of money, the situation would be inverted.

Formally, the uniform discrimination assumption is stated as follows:

Assumption 4.4.3 . Uniform discrimination assumption

if ∃x∗ Γx∗
a > Γx∗

a then ∀x Γx
a ≥ Γx

a

In the remainder of this section, we differentiate between two scenarios depending on
whether X and A are independent. We will denote the case of independency by X ⊥ A, and
the case of dependency by X ̸⊥ A16.

• First scenario: X ⊥ A
We first consider the case of independency. We start by showing that we can quantita-
tively express SD in terms of the distribution of the data as follows:

16In real-life contexts, X and A are usually dependent.
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Lemma 4.4.3 Quantification of SD.

SD =


P[∆X

1 ≥ 0 ∧ ∆X
0 < 0] if ∃x Γx

1 > Γx
0

0 if ∀x Γx
1 = Γx

0

− P[∆X
1 < 0 ∧ ∆X

0 ≥ 0] if ∃x Γx
1 < Γx

0

See proof on page 240.

Analogously, we have:

Lemma 4.4.4 Quantification of SD′.

SD′ =


P[∆′X

1 ≥ 0 ∧ ∆′X
0 < 0] if ∃x Γ′x

1 > Γ′x
0

0 if ∀x Γ′x
1 = Γ′x

0

− P[∆′X
1 < 0 ∧ ∆′X

0 ≥ 0] if ∃x Γ′x
1 < Γ′x

0

See proof on page 241.

Using Lemma 4.4.1, by case analysis, the quantification of SD′ can be reformulated in
terms of the distribution in the original data, as follows.

Lemma 4.4.5 Quantification of SD′ in terms of the distribution on the
original data.

SD′ =



P

 ∆X
1 > 0 ∧ ∆X

0 < 0 ∧

eε ≥ −∆X
0 /∆X

1 ∧ eε > −∆X
1 /∆X

0

 if ∃x Γx
1 > Γx

0

0 if ∀x Γx
1 = Γx

0

−P

 ∆X
1 < 0 ∧ ∆X

0 > 0 ∧

eε > −∆X
0 /∆X

1 ∧ eε ≥ −∆X
1 /∆X

0

 if ∃x Γx
1 < Γx

0

We can now state the main result of this section: If X ⊥ A, then, like in the case of
conditional statistical disparity, we have that SD′ is always sandwiched between SD
and 0.

Theorem 4.4.2 Impact of LDP on SD. Case X ⊥ A.

1. if SD > 0 then 0 ≤ SD′ ≤ SD

2. if SD < 0 then SD ≤ SD′ ≤ 0
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3. if SD = 0 then SD′ = SD = 0

The proof follows immediately from Lemmas 4.4.3 and 4.4.5 because the values of X

that constitute the probability mass in the expression of SD′ are a subset of those that
constitute the probability mass in the expression of SD.

Discussion: Theorem 4.4.2 means that, from an unfair situation (SD > 0 or SD < 0),
obfuscating the sensitive attribute A in general advantages the unprivileged group, but
it never ends up discriminating the other group. (We will see in the next section that
this is not always the case when some proxies to the sensitive attribute A exist in the
data.)

In one extreme case, the situation does not change (SD′ = SD). By looking at the
expression quantifying SD and SD′ in Lemmas 4.4.3 and 4.4.5, we can see that this
happens when the noise we inject is small, i.e., for high values of ε, and, more precisely,
when ε satisfies ∀x ε ≥ max{ln(−∆x

0/∆x
1), ln(−∆x

1/∆x
0)}.

In the opposite extreme case, the discrimination is totally eliminated (SD′ = 0). This
last case raises when we inject enough noise, and more precisely, when ε satisfies
∀x ε < max{ln(−∆x

0/∆x
1), ln(−∆x

1/∆x
0)}.

In all the other cases, i.e., when for some x we have ε ≥ max{ln(−∆x
0/∆x

1), ln(−∆x
1/∆x

0)}
and for other x we have ε < max{ln(−∆x

0/∆x
1), ln(−∆x

1/∆x
0)}, obfuscation removes

some discrimination, but not entirely. Namely 0 < SD′ < SD if SD is positive, or
SD < SD′ < 0 if SD is negative.

Note that the extreme case in which ε is 0 is equivalent to eliminating A entirely from
the data. Hence, the takeout of this section is that the disparity between groups can
be eliminated by removing the sensitive attribute, but it is important to remember
that this is true only because there are no proxies to the sensitive attribute in the data
(X ⊥ A).

Again, we note that Theorem 4.4.2 does not depend on whether the unprivileged group
is the minority or the majority of the population.

• Second scenario: X⊥̸ A
Usually, proxy attributes to the sensitive attribute A exist in the data. In other words,
A and X are dependent (X ⊥̸ A). In this section, we study the impact of privacy on
SD when X ⊥̸ A. Theorem 4.4.3 presents the results of the impact of privacy on SD in
this scenario.

Theorem 4.4.3 Impact of LDP on SD. Case X ⊥̸ A.
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1. if ∃x Γx
1 > Γx

0 then SD′ ≤ SD

2. if ∃x Γx
1 < Γx

0 then SD ≤ SD′

3. if ∀x Γx
1 = Γx

0 then SD′ = SD

See proof on page 243.

Discussion: Theorem 4.4.3 confirms that also in the case X ̸⊥A, in general, the
unprivileged group benefits from privacy, and again, it does not depend on the privileged
group being the majority or not. This finding is validated by our experiments on both
synthetic and real-world datasets (cf. Figs 4.21 and 4.23 in Section 4.4.5).

Theorem 4.4.3 differs from Theorem 4.4.2 mainly on two points. First, SD and SD′

can have opposite signs. In other words, from a scenario where there is discrimination
against one group, for instance, the group A = 0 (SD > 0), we can have, after
obfuscation, a discrimination against the other group A = 1 (SD′ < 0). We can
even have scenarios in which, after obfuscation, the magnitude of unfairness against
the other group is higher than the original one. This result is quite surprising. We
simulated such a scenario using synthetic data (S5) and presented the results in Fig. 4.19
(Section 4.4.4).

Second, we note that in case 1 we can have SD < 0 despite the fact that ∃x Γx
1 > Γx

0
(which, by the Assumption 4.4.3, implies that ∀x Γx

1 ≥ Γx
0), and similarly for case 3.

From the proof of the above theorem, we can see that it is particularly likely to happen
when P[X = x|A = 1] ≪ P[X = x|A = 0]). This is a form of the Simpson’s paradox
called Association Reversal [184]: we have a scenario in which for all sub-populations
(i.e., for all x) there is discrimination against one group, while when considering the
whole population, the discrimination is against the other group. Note that privacy
obfuscation does not break the paradox, because also SD′ is negative.

Another form of the Simpson’s paradox called the Yule’s Association Paradox [63] can
happen when for all sub-populations, the model shows fair results (i.e., ∀x CSDx = 0),
while for the whole population, it shows unfair results (SD̸= 0). In Section 4.4.4, we
generated a synthetic dataset (S4) to illustrate such a paradox. Note that in this case,
the privacy obfuscation has no effect on fairness: all the metrics remain the same.
Indeed, if ∀x CSDx = 0, then ∀x CSD′

x = 0, and all the metrics under consideration
in this study are based on CSD′

x.

Impact of LDP on Equal Opportunity difference. In what follows, we
consider the impact of privacy on EOD (Eq. (4.3)). This notion of fairness, by contrast
to SD (Eq. (4.2)), considers, in addition to the prediction Ŷ , the true decision Y (cf.
Eq. (4.3)).
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The justification for the EOD as a notion of fairness is that Y is supposed to be reliable
and not incorporate any bias (Hardt et al. [101]). Hence, if Ŷ is consistent with Y , the
prediction should be fair as well. Furthermore, thanks to this compatibility, and in
contrast to other notions of fairness, EOD is, in general, going well along with accuracy
(although there are exceptions: [189] has shown that, for certain distributions, Equal
Opportunity implies trivial accuracy). We capture this principle in Assumption 4.4.4
here below, which states that the true decision Y is independent of the sensitive
attribute A given X.

Assumption 4.4.4 . Reliable Y . The decision Y is independent of the sensitive
attribute for any value of the explaining variable. Namely:

P[Y = 1 | X = x, A = 1] = P[Y = 1 | X = x, A = 0].

The limitation of EOD is that the “true” Y may not always be available. In its stead,
the data may contain decisions that have been made in the past (which may not
always have been fair), or decisions based on some proxy to the true Y . In any case,
Assumption 4.4.4, may not always be satisfied in the data. When it is satisfied, however,
we can obtain a strong result about the effect of privacy on EOD, similar to the one
for SD. This is expressed by the theorem below.

Theorem 4.4.4 Impact of LDP on EOD.

1. if EOD > 0 then 0 ≤ EOD′ ≤ EOD

2. if EOD < 0 then EOD ≤ EOD′ ≤ 0

3. if EOD = 0 then EOD′ = EOD = 0

See proof on page 244.

We recall that the above theorem holds under Assumption 4.4.4. On the other hand, it
is valid regardless of whether X and A are independent.

4.4.4 Experimental Results and Discussion
To validate our theoretical results, we have conducted a set of experiments on both synthetic
and real-world fairness benchmark datasets. To each of these datasets, the fairness metrics
presented in section 4.4.2 are applied to the baseline modelM (model trained on the original
samples) and to the LDP model M′ (model trained on the obfuscated samples). Then, to
assess the impact of privacy on fairness, in relation to Theorems 4.4.1, 4.4.2, 4.4.3, and
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(a) Causal Graph for S1.

X

A Y

(b) Causal Graph for S2 and S6.

X

A Y

(c) Causal Graph for S3, S4 and
S5.

Fig. 4.17 Causal graphs of the synthetic datasets.

4.4.4, the predictions of these two models are compared. Recall that the testing samples
for both M and M′ are always kept original without obfuscation. We vary the privacy
parameter ε in the {16, 8, 2, 1, 0.85, 0.5, 0.4, 0.3, 0.2, 0.1} for the synthetic datasets and in
the ε = {16, 8, 5, 4, 3, 2, 1, 0.5} for the real-world datasets. At ε = 0.1 (strong privacy), the
ratio of probabilities is bounded by ε0.1 ≈ 1.05, giving nearly indistinguishable distributions
between the two groups, whereas at ε = 16 (weak privacy), the distributions are nearly the
same as in the original data.

Data and Experiments.

• Environment. All the experiments are implemented in Python 3. We use Random
Forest model [38] for classification with its default hyper-parameters and randomly
select 80% as the training set and the remaining 20% as the testing set. For the RR
mechanism, we use the implementation in Multi-Freq-LDPy [13].

• Stability. Since LDP protocols, train/test splitting, and ML algorithms are randomized,
we report average results over 100 runs.

• Datasets. We validate our theoretical results with six synthetic datasets and four
real-world datasets.

Synthetic Datasets. The causal graphs used to generate the synthetic datasets are
depicted in Figure 4.17, and the joint empirical probabilities (frequencies) for the various
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combinations of values are shown in Table 4.5. S1 differs from all other datasets in that X and
A are independent, whereas in all other datasets, namely S2-S6, X and A are dependent. A

and Y are binary variables while X is a discrete variable. In S1, S2, and S4, X is also a binary
variable. S3 and S5 are generated to simulate the scenario where privacy shifts discrimination
between groups. S5 shows an extreme scenario where |SD′| > |SD|, while |SD′| < |SD| in S3.
And finally, S4 includes a case of Yule’s Association Paradox [63] (Section 4.4.3).

Table 4.5 Distributions of the synthetic datasets.

(a) S1.

Y = 1 X = 0 X = 1

A = 1 0.35 0.35
A = 0 0 0.15

Y = 0 X = 0 X = 1
A = 1 0 0
A = 0 0.15 0

(b) S2.

Y = 1 X = 0 X = 1

A = 1 0.28 0.38
A = 0 0 0.12

Y = 0 X = 0 X = 1
A = 1 0 0
A = 0 0.22 0

(c) S3.

Y = 1 X = 0 X = 1 X = 2

A = 1 0.03 0.17 0.03
A = 0 0 0.17 0.03

Y = 0 X = 0 X = 1 X = 2
A = 1 0.24 0.03 0
A = 0 0.1 0.2 0

(d) S4.

Y = 1 X = 0 X = 1

A = 1 0 0.4
A = 0 0.03 0.34

Y = 0 X = 0 X = 1
A = 1 0.03 0.07
A = 0 0.13 0

(e) S5.

Y = 1 X = 0 X = 1 X = 2

A = 1 0.03 0.17 0.03
A = 0 0 0.17 0.03

Y = 0 X = 0 X = 1 X = 2
A = 1 0.24 0.03 0
A = 0 0.03 0.27 0

(f) S6.

Y = 1 X = 0 X = 1 X = 2 X = 3 X = 4

A = 1 0.05 0.08 0.09 0.13 0.14
A = 0 0.02 0.03 0.06 0.03 0.04

Y = 0 X = 0 X = 1 X = 2 X = 3 X = 4
A = 1 0.04 0.02 0.01 0.06 0
A = 0 0.06 0.04 0.02 0.08 0

In the following plots, the ∞ symbol in the x-axis in each plot shows the fairness values
when the model is trained on original samples (no privacy).

Fig. 4.18 shows the obtained results for S1-S4 presented above while S5 and S6 results
are depicted in Fig. 4.19 and Fig. 4.20, respectively. For example, in S1, where some fairness
measures show fair results in the baseline model M, namely EOD and CSD1, enforcing
privacy helped maintain these fair results: SD′ = 0 and CSD′

1 = 0. However, some fairness
measures show unfair results against group A = 0 in the baseline model, namely SD, and
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Fig. 4.18 Results for the synthetic dataset S1-S4, illustrating the impact of LDP on
fairness (y-axis) for privacy level ε (x-axis). Note that in S3 we have X ⊥̸ A and
the fairness measure SD is inverted after obfuscation. Also, EOD is inverted after
obfuscation. This is because Assumption 4.4.4 is not verified in this dataset. S4
illustrates Yule’s Association Paradox, a variant of the Simpson’s paradox. The fairness
values on the original data (no privacy) are the values for ε =∞.

CSD0; thus, enforcing privacy removed discrimination when enough noise is added. In
particular, at ε = ln(−∆x

0/∆x
1) = 0.85, SD′ and CSD′

0 values started to decrease and continued
to decrease reaching full parity between groups.

As we proved theoretically in Theorem 4.4.3, and explained in Section 4.4.3, in S3 and S5
and from a scenario where SD and EOD show discrimination against the group A = 0, by
applying privacy, the discrimination became against the other group A = 1. Note that this
does not contradict Theorem 4.4.4, because S3 and S5 do not verify Assumption 4.4.417. For
S3, although this inversion of fairness conclusions (discrimination switching from one group
to another when applying privacy), the disparity after obfuscation decreased: |SD′| < |SD|
(|SD′| = 0.33 and |SD| = 0.39). However, S5 (Fig. 4.19) shows an extreme case where
the disparity between groups after obfuscation increased: |SD′| > |SD| (|SD′| = 0.46 and
|SD| = 0.39). In other words, not only has discrimination switched from one group to another
after obfuscation, but the level of unfairness has also increased.

S4 shows a case of the Yule’s Association Paradox [63], a variant of the Simpson’s paradox.
That is, the modelM shows fair results for all sub-populations: CSD0 = CSD1 = 0. However,
M shows unfair results for the whole population: SD= 0.26. As shown in Figure 4.18(d),

17We provide in Appendix B.2.2 a dataset called S7 that satisfies Assumption 4.4.4.
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Fig. 4.19 Results for the synthetic dataset S5. Note that EOD is also inverted here after
obfuscation. Again, this is because Assumption 4.4.4 is not verified in this dataset.
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Fig. 4.20 Results for the synthetic dataset S6.

the paradox stayed even under a strong privacy regime (ε = 0.1) and hence obfuscating the
sensitive attribute solely didn’t remove the paradox from the data.

To better understand how privacy impacts fairness, the plots in Fig. 4.21 show the impact
of privacy on P[Ŷ = 1 | A = a] and P[Ŷ = 1 | Y = 1, A = a] for both groups A = 1 and A = 0
while varying ε.

As mentioned in Section 4.4.3, the unprivileged group A = 0 benefits more from privacy.
In other words, when obfuscating the sensitive attribute and aligning with our Theorems 4.4.1-
4.4.4, the results of the acceptance rates and the true positive rates of the unprivileged group
tend to increase. For instance, for all the synthetic datasets, it is clear that it is group A = 0
who advantages from privacy as shown in Fig. 4.21. In other words, there is an increasing
trend of P[Ŷ = 1 | A = 0] and P[Ŷ = 1 | Y = 1, A = 0].

Real-World Datasets. We consider the following four real-world datasets:

• Compas [10]: This dataset is already presented in Section 4.3.3. We recall that race
(A = 1 for non-black individuals and A = 0 for black individuals) is considered as the
sensitive attribute, and the risk of recidivism is the true decision. In this work, Y = 1
designates a low-risk recidivism score, while Y = 0 denotes a high-risk score. The
number of priors of an individual is used as an explaining variable to compute CSDx
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Fig. 4.21 Impact of LDP on disparity (y-axis) by varying the privacy level ε (x-axis)
showing the behavior of fairness measures on groups separately when applying privacy.
For readability, only SD and EOD are illustrated. Results for the synthetic datasets
S1, S2, S3, and S5.

where X = 1 denotes a high number of priors, and X = 0 denotes a low number of
priors.

• Adult [70]: This dataset is already presented in Section 4.3.3. We recall that gender
is the sensitive attribute (A = 1 for men and A = 0 for women), and income is the
true decision where Y = 1 designates a high income while Y = 0 denotes a low income.
Education level is the attribute used as an explaining variable to compute CSDx where
X = 1 denotes a high education level, and X = 0 denotes a low education level.

• German credit [73]: This dataset includes data of 1000 individuals applying for loans.
This dataset is designed for binary classification to predict whether an individual will
default on the loan (Y = 0) or not (Y = 1) based on personal attributes such as gender,
job, credit amount, credit history, etc. We consider gender the sensitive attribute where
female applicants (A = 0) are compared to male applicants (A = 1). Credit history
is the explaining attribute used to compute CSDx where X = 1 denotes an applicant
who has duly repaid in the past while X = 0 denotes a critical account for which the
applicant has had late payments and/or defaults in the past.

• LSAC [250]: This dataset is already presented in Section 4.2.3. We recall that the
sensitive attribute is race (A = 0 for blacks and A = 1 for other ethnic groups), and the
true decision is “pass bar”, which indicates whether a candidate has successfully passed
the bar exam (Y = 1) or not (Y = 0). The explaining variable is the undergraduate
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GPA score of an applicant where X = 1 indicates a high GPA and X = 0 denotes a
low GPA.

The real-world datasets’ distributions are shown in Table 4.6.

Table 4.6 Distributions of the real-world datasets.

(a) Compas.

Y = 1 X = 0 X = 1

A = 1 0.12 0.03
A = 0 0.06 0.03

Y = 0
A = 1 0.15 0.1
A = 0 0.25 0.26

(b) Adult.

Y = 1 X = 0 X = 1

A = 1 0.06 0.53
A = 0 0.02 0.21

Y = 0
A = 1 0.03 0.06
A = 0 0.02 0.07

(c) German credit.

Y = 1 X = 0 X = 1

A = 1 0.23 0.27
A = 0 0.08 0.13

Y = 0
A = 1 0.06 0.13
A = 0 0.01 0.09

(d) LSAC.

Y = 1 X = 0 X = 1

A = 1 0.43 0.47
A = 0 0.03 0.01

Y = 0
A = 1 0.02 0.02
A = 0 0.01 0.01

Fig. 4.22 shows the results of applying privacy on the four real-world datasets. As with
the synthetic datasets and in alignment with our proofs, obfuscating the sensitive attribute
tends to improve the fairness metrics considered in this study in all the datasets except the
German credit one (we will discuss this latter case below). We believe that this is due to
the fact that the real-world datasets do not always follow the “ideal” situation represented
by our assumptions. In particular, the datasets we are considering contain other variables
besides the X that we use as an explaining variable, which can influence the prediction.

For instance, in the Compas dataset, starting from discrimination against black individuals
(A = 0), privacy reduced the disparity from SD = 0.21 to 0.15. Similarly, privacy decreased
discrimination against black individuals from SD = 0.13 to SD = 0.09 in the LSAC dataset,
and a similar decrease pattern is observed for all the other fairness measures. The Adult
dataset also shows a slight disparity decrease caused by privacy. However, starting from
a very high disparity between groups given a low level of education (CSD0 = 0.39), the
disparity is reduced to 0.22 at ε = 0.1.

Concerning the German credit dataset, the results show an unstable trend. This is because
this data set does not satisfy the uniform discrimination assumption (Assumption 4.4.3).
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Fig. 4.22 Results for the real-world datasets. The German credit dataset does not
satisfy Assumption 4.4.3, which explains its unstable behavior.

Indeed, we for X = 0, we have, for group A = 1:

Γ0
1 = P[Y = 1 | X = 0, A = 1]− P[Y = 0 | X = 0, A = 1]

= 0.23
0.29 −

0.06
0.29

≈ 0.58

while for the same X = 0, for group A = 0 we have:

Γ0
0 = P[Y = 1 | X = 0, A = 0]− P[Y = 0 | X = 0, A = 0]

= 0.08
0.09 −

0.01
0.09

≈ 0.77

Hence Γ0
1 < Γ0

0.
On the other hand, for X = 1 and group A = 1 we have:

Γ1
1 = P[Y = 1 | X = 1, A = 1]− P[Y = 0 | X = 1, A = 1]

= 0.27
0.40 −

0.13
0.40

≈ 0.35
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Fig. 4.23 Impact of LDP on disparity (y-axis) by varying the privacy level ε (x-axis)
showing the behavior of fairness measures on groups separately when applying privacy.
For readability, only SD and EOD are illustrated. Results for the real-world datasets.

while for the same X = 1, for group A = 0 we have:

Γ1
0 = P[Y = 1 | X = 1, A = 0]− P[Y = 0 | X = 1, A = 0]

= 0.13
0.22 −

0.09
0.22

≈ 0.18

Hence, Γ1
1 > Γ1

0, which means that the German credit dataset does not satisfy Assumption 4.4.3
It may also mean that the attribute “Credit history” is badly chosen as an explaining variable,
and/or that it is not the main attribute influencing the decision.

To better understand how privacy impacts fairness, the plots in Fig. 4.23 show how the
impact of privacy on P[Ŷ = 1 | A = a] and P[Ŷ = 1 | Y = 1, A = a] for both groups A = 1
and A = 0 while varying ε.

For instance, for the Adult dataset, we can observe that women’s acceptance rate (P[Ŷ =
1 | A = 0]) and true positive rate increased (P[Ŷ = 1 | Y = 1, A = 0]) from 0.91 to 0.93
and from 0.96 to 0.99, respectively. However, no change is observed for men (A = 1) even
at strong privacy (ε = 0.5). A similar behavior is observed for the LSAC dataset. For the
Compas dataset, while no change is observed for the black defendants’ (A = 0) rates, a
decrease is observed for the non-black defendants (A = 1). Similar behavior is also observed
for the German credit dataset, where a slight increase in the acceptance rate and the true
positive rate for women is observed while almost no change is observed for men.
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LDP Impact on Model Accuracy. Figs 4.24 and 4.25 illustrate the impact of LDP on
the accuracy of the model for the synthetic datasets and the real-world datasets, respectively.
From these figures, one can note that, in general, the impact of obfuscating the sensitive
attribute on model accuracy of the real-world datasets is minor. The drop in the utility is
more apparent for the synthetic datasets but remains reasonable, with a maximum drop of
0.2 in S2 when ε = 0.1.
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Fig. 4.24 Impact of LDP on the model accuracy for the synthetic datasets.
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Fig. 4.25 Impact of LDP on the model accuracy for the real-world datasets.

4.4.5 Conclusion
This study formally examines how LDP affects fairness. More specifically, we provide bounds
in terms of the joint distributions and the privacy level, delimiting the extent to which
LDP can impact the fairness of the model. Our findings show that the unprivileged group
benefits more than the privileged group when injecting enough noise into the sensitive attribute.
Furthermore, for conditional statistical disparity and for equal opportunity difference, injecting
noise, in general, improves fairness. This also holds for statistical disparity when the data
contain no proxies to the sensitive attribute. However, when the data contains proxies, in
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certain cases, by injecting enough noise, while the discrimination was originally against one
group, it may be shifted to the other group after obfuscation, and the level of unfairness
may be worse than before. Note that none of our results depend on whether the unprivileged
group is the minority or the majority. Additionally, our work focuses on the RR mechanism,
a fundamental LDP protocol [115] that serves as a building block for more complex LDP
mechanisms (e.g., [26, 245, 79]).

In future work, we aim to extend our work to more fairness measures, particularly overall
accuracy difference and others. We also believe that hiding only the sensitive attribute is
crucial but not sufficient because proxies for this attribute may exist in the data and thus
reveal sensitive information. Therefore, we plan to study formally the impact of LDP on
multidimensional data.

4.5 Conclusion
This chapter explored the multifaceted relationship between privacy and fairness in ML
through three research studies included in this dissertation. First, we presented two empirical
studies (Sections 4.2 and 4.3) investigating the effects of applying LDP mechanisms to
multidimensional data on fairness outcomes. These studies demonstrated that LDP slightly
improves fairness and does not significantly impair utility. Moreover, our experimental
analysis revealed very relevant observations that we framed as concrete recommendations for
ML practitioners aiming to guarantee both ethical privacy and fairness concerns.

Next, we complemented our empirical findings with a foundational theoretical study
(Section 4.4). This analysis delved into the underlying principles governing the interplay
between LDP-preserving techniques and fairness metrics. Based on our theoretical study, we
were able to elucidate the conditions under which the considered LDP mechanism, namely
RR, either enhances or undermines fairness, thus bridging critical gaps identified in our
empirical research.

Together, these studies contribute to a deeper understanding of the impact of LDP
on fairness, providing valuable guidelines for practitioners and researchers alike. The next
chapter shifts focus to another ethical AI principle: explainability. Specifically, we present our
work on causal discovery from a fairness perspective. Causality, particularly causal discovery,
is closely linked to explainability as it helps identify the root causes behind AI decisions
or predictions. Therefore, our work on causality can be seen as a significant contribution
to explainable AI. This upcoming chapter will first examine causal discovery approaches,
their impact on fairness, and, most importantly, how slight differences between causal models
can significantly impact fairness/discrimination conclusions (Section 5.2). Second, we will
observe how causal discovery algorithms are impacted by the type of causal structures and
the amount of injected bias in the data (Section 5.3).



Chapter 5

Causal Discovery Through the Lens
of Fairness

5.1 Introduction
In recent years, the integration of causal discovery (CD) into various fields has gained
significant attention, particularly in the context of ensuring fairness in decision-making
processes. Understanding the causal relationships within data is crucial for identifying and
mitigating bias, thereby enhancing the fairness of outcomes. This chapter delves into how
CD algorithms impact fairness conclusions, examining the nuanced interplay between causal
models and fairness assessments.

The first section explores various CD approaches and their implications for fairness in
decision-making processes. CD methods, such as structural equation modeling and causal
Bayesian networks, provide frameworks for uncovering the underlying causal structures within
data. However, we highlight how slight differences between causal models can significantly
impact conclusions regarding fairness and discrimination. By examining case studies and
experimental results, we will demonstrate how these differences arise and discuss how they
affect fairness assessments, thus emphasizing the critical role that precise causal modeling
plays in determining fairness outcomes.

The second section focuses on how different causal structures and varying data bias levels
impact the performance of CD algorithms and, consequently, fairness conclusions. We also
examine the effect of the outcome variable binarization threshold on the discovered causal
graph and, consequently, on fairness conclusions.
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5.2 Causal Discovery for Fairness
The main impediment to causal inference is the unavailability of the true causal graph which
indicates the causal relations between variables. Causal graphs can be set manually by field
experts but are often generated using experiments (also called interventions). Identifying
the causal graph is called CD or structural learning. As was stated in Section 1.1.3, RCTs
are the gold standard of CD. However, RCTs are generally not feasible for practical, ethical,
and scalability reasons. As an alternative to RCT, CD is typically done using statistical
tests on observable data. However, even assuming the availability of an oracle that returns
answers about conditional independencies in the data, a CD procedure can still be undecided
about the causal graph. A large number of CD algorithms exist in the literature. Most of
these algorithms fall into three categories: constraint-based, score-based, and procedures
that exploit semi-parametric assumptions. We introduced some of them in Section 2.4.3. In
the constraint-based category, algorithms rely mainly on the (conditional) independencies
present in the data to discover causal relations between variables, as explained in the
previous paragraph. Therefore, their efficiency depends on the reliability of the conditional
independence test procedure. Score-based algorithms rely instead on goodness-of-fit tests.
They learn causal graphs by maximizing a scoring criterion such as the Bayesian Information
Criterion (BIC) [203], which trades off accuracy (fitness of graph to the data) with complexity
(the number of parameters in the model). The most common assumptions relevant to the
third category are the linearity of the model and the non-gaussianity of the regression
residuals. As described, algorithms in the first two categories do not make strong assumptions
about the parametric form or functions of causal connections. Therefore, they can be,
theoretically, applied to many more scenarios than the third category. However, most
available implementations of constraint-based and score-based CD algorithms model variables
as multivariate Gaussian mixture, which implies linearity and Gaussianity of all continuous
variables. Causal graphs returned by algorithms in the third category are more accurate than
those of the two first categories, which are simply Markov equivalence classes.

This study studies the problem of discovering causal graphs to assess the fairness of
ML-based decision systems.
Contributions. First, we discuss relevant details about applying the CD algorithms
(that have been introduced in Section 2.4.3 ) in practice, including their assumptions, data
types, and (conditional) independence tests. Second, we carry out an experimental analysis
to illustrate the impact of the CD procedure on the structure of the causal graph and,
consequently, on fairness conclusions.
Outline. The rest of this section is organized as follows. Section 5.2.1 discusses related work.
Next, Section 5.2.2 discusses the applicability of CD algorithms in practice. Section 5.2.3
details the experimental setting and main results. Finally, we conclude this work indicating
future perspectives in Section 5.2.4.
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5.2.1 Related work
Several survey papers on CD can be found in the literature [98, 159, 220, 100, 263, 50, 174, 175].
Most of these surveys use the same classification that is used in this study, namely, constraint-
based, score-based, and those relying on additional semi-parametric assumptions. Glymour
et al. [98] review CD algorithms and their application in the biology and neurosciences fields.
In particular, they provide general guidelines for their applicability in practice. Malinsky and
Danks [159] focus more on their application for problems in Philosophy. The recent survey of
Cheng et al. [50] mainly addresses CD approaches’ evaluation procedures. Unlike existing
surveys, this study provides a detailed but concise description of the major CD algorithms
(i.e. PC, FCI, GES, and LiNGAM) and features a comparative empirical analysis. More
importantly, it tackles the CD problem in the context of fairness.

Existing causality-based fairness approaches in the literature clear up the causal graph
problem in two ways. Either they assume that the causal graph is known [170, 51, 136] or
they use the available online implementations [194, 271, 278] of existing CD algorithms [275,
254, 253, 107, 274, 258]. Both ways are akin to skipping the important step of CD from
observable data and its impact on the fairness conclusions.

This study considers major CD algorithms and illustrates the importance of the (different)
graph structures on causality-based fairness notions (introduced in Section 3.4.2).

5.2.2 Applicability of Causal Discovery Algorithms
Not all algorithms can be used to discover causal relations in a given observed data. The type
of the data variables (e.g., continuous vs. categorical), the type of the structural functions
between variables (e.g., linear vs. non-linear), and the distribution of the noise (e.g., gaussian
vs. uniform) are used to tell which algorithms can/cannot be used.

PC and FCI. PC algorithm requires three assumptions to hold: causal Markov condition
(Eq. (2.6)), causal faithfulness (Section 2.4.2), and causal sufficiency (Section 2.4.2). Initially,
PC was designed to take as input either entirely continuous or entirely discrete data. However,
current implementations allow mixed data via the Conditional Gaussian test.

Because FCI is a PC variant, the same assumptions hold for FCI, except for causal
sufficiency, which allows FCI to work in the presence of hidden confounders.

The conditional independence tests used to discover the skeleton of the graph for both
PC and FCI have an α value for rejecting the null hypothesis, which is always a hypothesis
of independence or conditional independence. For continuous variables, PC uses conditional
Pearson correlation [236] (if the functional relations are linear and the data distribution is
normal) or K-CI [270] (if no assumptions are made on the type of functions). For categorical
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variables, PC uses either a chi-square or G likelihood ratio. The default value of α is 0.01.
However, for categorical data, using a value of 0.05 is recommended1.

The PC algorithm has been proven to be efficient for sparse graphs. Most of the PC
processing time is spent in the first phase of skeleton identification. The obvious strategy is
to test all possible conditional independence relations for each pair of variables (X and Y ).
A naive implementation will go through all possible subsets of variables, that is, 2|V | subset,
where |V | is the number of variables. However, only subsets composed of adjacent variables
to X and Y must be considered in practice. Overall, the complexity of PC is O(|V |dmax)
where dmax denotes the maximal node degree in the graph [216]. The degree of a node X is
the number of nodes adjacent to X. Hence, PC’s efficiency depends heavily on the number
of variables but, most importantly, on the sparsity of the causal relations.

GES. GES makes the same assumptions as PC and FCI: causal Markov condition, faith-
fulness, and sufficiency. For the type of data, the formulation of GES is very general; hence,
it works for categorical, continuous, and mixed data. However, most of the theory about the
statistical guarantees of the algorithm assumes joint gaussianity of the continuous variables.
For instance, Chickering, in the original GES paper [52], defines GES for datasets in which
all the variables are categorical (multinomial2) or all the variables are continuous and follow
a joint Gaussian distribution. We consider the more general case of mixed data [9] because
it captures the assumptions used in both continuous and discrete cases. The conditional
Gaussian score calculates conditional Gaussian mixtures using the ratios of joint distribu-
tions. It makes the following assumptions: (A1) The continuous data were generated from
a single joint (multivariate) Gaussian mixture where each Gaussian component exists for a
particular setting of the discrete variables. (A2) The instances in the data are independent
and identically distributed (iid). (A3) All Gaussian mixtures are approximately Gaussian.

It is also crucial in practice to have enough samples when conditioning on several
categorical variables simultaneously, especially when these variables are parents of the same
variable. This and A2 are the most relevant requirements in the all-discrete case. Regarding
continuous variables, A1 implicitly implies linearity and Gaussianity of the residuals because
of the nature of each Gaussian component; this is the most relevant assumption in the
all-continuous case. It is important to mention that in the existing standard implementations
of GES, such as Tetrad’s fges[194] (written in Java), the pcalg[117, 103] library for R (written
in C++ underneath), and other Python implementations [94, 116], the predictive models are
pre-configured to linear regression for continuous variables. These assumptions may sound
too strict, but the empirical evidence of several articles shows that GES performs well even
when this assumptions do not hold exactly [9, 52, 103].

1https://cmu-phil.github.io/tetrad/manual/.
2The distribution of N i.i.d. categorical samples is multinomial.
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In terms of complexity, the runtime of the worst-case scenario is upper bounded by
O(|V |4k ·max(|V | k2, n)), where n is the number of samples, |V | is the number of variables
and k is the maximum number of parents a node can have (bounded by |V | in general). This
complexity can be decomposed as follows: (i) the algorithm visits at most |V |(|V | − 1) states
because each transition adds or removes exactly one edge; (ii) each state has at most |V |2

neighboring states because of the maximum number of edges that can be added or removed to a
DAG; (iii) computing each neighboring state takes time O(|E| ·k2) [52] where E is the number
of edges at the state (bounded by |V | ·k); and (iv) computing the BIC score difference between
the state and one of its neighbors takes O(n k) (assuming the continuous case). Therefore, the
worst-case complexity is upper bounded by O(|V |4(|V | k3 + n k)) = O(|V |4k ·max(|V | k2, n)).

Consequently, GES should preferably be used with datasets consisting of few columns
(its runtime grows with |V |5k3) and many rows (linear w.r.t. n).

LiNGAM. Unlike PC, FCI, and GES, the assumption of causal faithfulness is not required
in LiNGAM. Instead, directLiNGAM assumes that the data is continuous, the functional rela-
tions between variables are linear, and most importantly, with non-Gaussian noise terms [206].
The linearity assumption is important because the LiNGAM algorithm incapsulates and fits
a linear regression model. It is possible to apply Direct LiNGAM despite the violations in
linearity [208]. However, in such a case, the results should be interpreted cautiously, as the
algorithm can fail to identify causal connections because of under-fitting. Linearity can be
judged by simply eye-balling the pair-wise plots of the data.

The assumption of non-Gaussianity of the error terms is a crucial requirement of the
algorithm, allowing it to determine causal directions. However, it cannot be tested before
fitting the linear regression model and plotting out the error terms. An indication of the
non-Gaussian distribution of the error terms in a linear model can be suspected if the
distributions of the variables are strongly non-Gaussian. The distribution of the variables
can be checked by plotting the histograms or applying Q-Q3 tests. The exogenous variables
can be Gaussian and have non-Gaussian error terms. However, they are discovered only
after applying the model, so post-modeling testing of the compliance with the assumptions is
recommended.

Most of the processing time of directLiNGAM is spent on the computation of residuals.
The other heavy processing step is the regression to estimate the model parameters. According
to Shimizu et al. [208], the total complexity of directLiNGAM algorithm is O(sn3M2 +n4M3),
where s is the number of samples, n is the number of variables and M(≪ s) is the maximal rank
found by the low-rank decomposition used in the independence measure [208]. Alternatively,
using prior knowledge can significantly reduce the complexity of residual computation.

3Q–Q (quantile-quantile) plot is a probability plot, which allows to graphically compare two
probability distributions by plotting their quantiles against each other.
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5.2.3 Experimental Analysis
To study the impact of the CD task on fairness, we apply the different CD algorithms on
two synthetic datasets and six real-world fairness benchmark datasets. Table 5.1 provides
a summary of all datasets. We use Tetrad [194] implementation of PC, FCI, and GES
algorithms with a significance threshold (α) set to 0.01 for conditional independence testing.
Different CI tests depend on the input data type and the search algorithm. For instance,
conditional Gaussian likelihood ratio test and conditional Gaussian score are used for mixed
data. For continuous data, K-CI test and BIC score are applied. For LiNGAM, we use the
differences in Mutual Information for independence testing. Since the LiNGAM algorithm
aims to establish causal order, it is determined by collecting an ordered ascending list of
independence scores, the smallest corresponding to most exogenous variables. In the second
phase of CD, where the graph is refined by estimating connection weights, we set a threshold
(α) to 0.05 to exclude the connections with insignificant weights.

The only background knowledge we use in this study is temporal order using tiers.
Variables are split into a set of ordered tiers (tier1, tier2, . . . tiern) which imply the following
constraints. A variable in tieri can be the cause of variables in the same tier or in subsequent
tiers (i + 1 . . . n) but not of variables in previous tiers (1 . . . i− 1).

With the presence of the causal graph, several causality-based fairness notions can be
used to assess fairness [158]. Some qualitative notions can be applied by checking the
structure of the graph. For instance, to tell if there is (or not) discrimination according to
the “no unresolved discrimination” notion [127], one needs to check if there is a directed
path from the sensitive attribute A to the outcome Y which does not go through a resolving
(explaining) variable. Discrimination is concluded without further computation if such a
path exists in the graph. A similar graph structure checking is needed for the “no proxy
discrimination” [127]. For other quantitative fairness notions, the graph’s structure is needed
to distinguish between confounder, mediator, and collider variables. Quantitative fairness
notions are typically computed by adjusting on variables. Adjusting on confounders allows
the blocking of spurious/backdoor paths. Adjusting on mediators is needed for mediation
analysis (direct vs. indirect vs. path-specific discrimination). Identifying colliders, however,
allows us to avoid adjusting on them as this will introduce dependence that doesn’t exist
between variables.

We use five different causality-based fairness notions, namely, ATEIP W (Eq. (3.66)),
total effect (TE) (Eq. (3.24)), direct effect (DE) (Eq. (3.40)), indirect discrimination (ID)
(Eq. (3.41)), and explainable discrimination (ED) (Eq. (3.41)). ID and ED compute both
the indirect causal effect between the sensitive variable and the outcome. However, ID
measures the path-specific effect with a proxy/redlining variable, while ED considers the
path-specific effect with an explaining variable. Thus, while the first is discriminatory, the
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Table 5.1 Characteristics of the datasets used for the structural learning.

Dataset Sample Data type Sensitive Outcome

Synthetic data (1) 10000 continuous - -
Synthetic data (2) 10000 continuous - -
Compas 5915 mixed race recidivism
Adult 32561 mixed race income
German credit 1000 mixed sex default
Dutch census 60420 mixed sex occupation
Boston housing 506 continuous race median price
Comm. & crime 1994 continuous race violent crime rate

second is legitimate and, hence, should be removed from the causal effect estimation. The
paths package implementation [279] is used to estimate TE, DE, ID, and ED.

Computing (or estimating) discrimination using causality-based fairness notions consists
of subtracting the probability of positive (desirable) output (e.g., hiring, granting a loan,
etc.) for the unprivileged group (e.g., female) from the probability of positive output of the
privileged group (e.g., male) as expressed in Eq. (3.24)). This leads to values in the range
[−1, +1]. A value of 0 means the outcome is fair (no discrimination), a positive value indicates
a discrimination against the protected group and a negative value indicates a discrimination
in favor of the protected group.

Estimating discrimination using all the above measures requires the knowledge of the
confounder and mediator variables. However, PC, FCI, and GES algorithms can output
partially directed graphs (PDAG), which do not guarantee that a certain variable is a
confounder or mediator since some edges are left undirected. In such cases, we consider all
possible ways of directing the (typically few) undirected edges4. For instance, if there are
two undirected edges X −W and Z − Y , there are 4 ways of directing them: X →W and
Z → Y , X ← W and Z → Y , X → W and Z ← Y , and X ← W and Z ← Y . For each
combination, we compute the discrimination, and finally, we report the range of values. This
can be seen as bounding the discrimination value.

Synthetic Linear Dataset. In general, synthetic datasets are crucial for testing CD
algorithms systematically because, unlike real-world datasets, the ground truth graph is
known and indisputable. Here, we use synthetic datasets to illustrate the main differences
and characteristics of CD algorithms.

We generated two continuous linear datasets that have a very simple causal structure
but are rich enough for analyzing and discussing the algorithms. Fig. 5.1 shows the six
variables and their causal relationships. The first dataset uses Gaussian noise and the second

4As long as they don’t introduce a v-structure.
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Fig. 5.1 Scheme description of the synthetic linear datasets used. Each edge has a weight, and the
noise standard deviations are indicated in red. The value of a node is the weighted sum of the parents’
values plus the noise.

uniform noise, both centered at zero and scaled to achieve the desired standard deviation
(shown in red). For instance, values of variable X5 are generated in the first dataset as
X5 = 1.3X2 +1.2X3 +N (0, 1.3) while in the second dataset as X5 = 1.3X2 +1.2X3 +U(0, 1.3).
Note that the weights were chosen randomly.
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Fig. 5.2 Generated causal graphs for the synthetic dataset with Uniform noise.

Fig. 5.2 shows the graphs generated based on the first dataset. PC, FCI, and GES
generate the correct causal graph skeleton but fail to tell the direction of all edges. The
structure corresponds to a Markov equivalence class (CPDAG) where 4 edges are (correctly)
directed while the remaining 3 are left undirected. As expected, the constraint and score-
based algorithms could identify the directions of all edges involved in v-structures. For the
remaining edges (X1 − X2, X1 − X3, and X2 − X4), they couldn’t identify the direction
because all possible combinations of directions will lead to the same conditional independence
relations between variables5. DirectLiNGAM, however, could generate the correct skeleton
as well as the correct directions of the edges successfully. This is possible because the first
dataset satisfies exactly the assumptions for the applicability of LiNGAM. That is, functional
relations between variables are linear, values are continuous, and the noise distribution

5As long as the direction of edges do not introduce or remove a v-structure.
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is non-Gaussian (uniform). It is important to mention that, for DirectLiNGAM, finding
the correct causal structure also depends on setting the right threshold (α) for the linear
regression step. For instance, the graph in Fig. 5.2d is obtained with a threshold α = 0.05.
Using a smaller value (e.g., α = 0.03) leads to an extra false edge from X3 to X6.

We provide in Appendix C.1.1 the graphs generated from the second dataset following
the same causal structure (Fig. 5.1) but with Gaussian noise.

Compas. The Compas dataset is already presented in Section 4.3.3. Five variables are
used for structural learning, namely race, sex, age, priors, and recidivism. Age and priors are
continuous, while the remaining variables are discrete. Three tiers in the partial order for
temporal priority are used: race, sex, and age are defined in the first tier, priors are in the
second tier, and recidivism is defined in the third tier. When found to be mediators, age and
sex are considered as redlining variables, whereas priors are explaining variables. Since this
dataset includes mixed data, the conditional Gaussian likelihood ratio test is used for PC
and FCI, while the conditional Gaussian test is used for GES. For the same reason (mixed
dataset), LiNGAM is not applied. Fig. 5.3 shows the generated causal graphs for PC, FCI,
and GES. Note that, for clarity of illustration, in all subsequent causal graphs, the sensitive
feature (on the left side) and the outcome (on the right side) are distinguished from the rest
of the variables by highlighting them in bold.

race recid.

age sex

priors

(a) PC

race recid.

age sex

priors

(b) FCI

race recid.

age sex

priors

(c) GES

Fig. 5.3 Generated causal graph for the Compas dataset (recid. for recidivism.).

It is important to mention that the obtained graphs for the Compas dataset do not agree
on the direct edge from the sensitive attribute (race) to the outcome variable (recidivism).
There is such an edge according to PC and FCI but not according to GES. This is crucial to
fairness as the direct effect is always discriminatory.

Fig. 5.4 shows the different discrimination measures using the different graphs. Both
TE and ATEIP W produce positive values, which indicate discrimination against non-white
defendants.

Considering the PC CPDAG (Fig. 5.3a), the highest value of TE is obtained when there
are no confounders (the two undirected edges are directed as race→ age and race→ sex).
In such a graph, TE coincides with TV, which equals 0.125. The same high value of TE is
obtained with GES CPDAG (Fig. 5.3c) when the undirected edge is directed as race→ age.
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In such no confounding case, the presence or absence of the direct edge race → recid.

does not matter for TE. The smallest value for TE (0.050) is only obtained in FCI PAG
(Fig. 5.3b), where both age and sex variables are confounders. This implies that the total
effect goes through only two paths: race → recid. and race → priors → recid.. Such low
TE value cannot be obtained in PC nor in GES CPDAGs because the edges age → race

and sex→ race will create a new v-structure and, hence, lead to a causal graph outside the
Markov equivalence class.

The highest value (0.067) for DE is obtained in PC CPDAG when age is a mediator, but
sex is a confounder (race→ age and sex→ race). The smallest value (−0.012) is obtained
when both variables are mediators. DE is naturally zero for GES and SBCN6. ID is highest
(0.096) with PC when both age and sex are mediators (race→ age and race→ sex). This is
in line with GES as ID is highest (0.084) with the same directions of the edges (race→ age

and race→ sex). Surprisingly, when age is a confounder while sex remains a redlining, the
indirect discrimination against blacks (0.096) becomes indirect discrimination in favor of
blacks (−0.064). This is an example of Simpson’s paradox [215, 33] when conditioning on a
variable changes significantly the statistical conclusions.

When the edges are as directed as race→ age and sex→ race, both PC and GES graphs
produce the same ID value (−0.018). The case that leads to the highest discrepancy in ID
values between PC and GES is age→ race and race→ sex (age is the confounder, and sex
is a mediator). In such a setup, according to PC, ID is lowest (−0.064), while according to
GES, ID is zero as there is a redlining path between race and recidivism. It is important to
mention here that if a causal path is going through redlining and explaining variables (e.g.,
race→ sex→ priors→ recid.), it is considered part of explained discrimination. The rule
of thumb is that any path containing at least one explaining variable is considered as part
of explained discrimination7. ID is zero for FCI and SBCN for the same reason (without
redlining paths).

According to all graphs, ED values are comparable as all explained discrimination goes
through the single explaining variable (priors).

Overall, the Compas dataset shows that small variations in the graph structures can
lead to significant differences in fairness conclusions. In particular, estimating TE using
graphs generated by different CD algorithms can lead to a significant inconsistency (0.125−
0.050 = 0.075) in assessing the amplitude of the discrimination against non-white defendants.
Moreover, graphs generated by the same discovery algorithms (belong to the same Markov

6The results of SBCN (Suppes Bayes Causal Networks) [36] are excluded from the manuscript
because SBCN is a specific type of causal graph for measuring fairness but which relies on a different
interpretation of causal relationships (probabilistic causality [106]). However, you can consult the
Appendix C.1.1 for the SBCN presentation.

7This interpretation can be justified by considering the simple path race→ priors→ recid.. Such
a path is clearly part of explained discrimination as priors is an explaining variable. However, it also
contains a “redlining” variable, which is the sensitive attribute race.
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equivalence class) can lead to very different discrimination values (ID goes from a positive
discrimination of 0.096 to a negative one (−0.064) due to reversing the direction of a single
edge) which can be seen as a form of Simpson’s paradox. Finally, the threshold value to
decide about causal relations can also have important consequences on the fairness conclusion
(missing race→ recid. edge in GES and SBCN).
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Fig. 5.4 Estimation of causal effects of the Compas dataset based on PC, FCI, GES, and SBCN.

Adult. The Adult dataset is already presented in Section 4.2.3. In this work, only 7
variables are used for structural learning: age, sex, education level, marital status, work class,
and number of working hours per week. Age and number of working hours per week are
continuous, while the remaining variables are discrete. Three tiers in the partial order for
temporal priority are used: age and sex are defined in the first tier, education and marital
status in the second tier, and work class, number of working hours per week, and income are
defined in the last tier. When found to be mediators, variables age and marital status are
considered as redlining, whereas education as explaining. The causal graphs generated by
PC, FCI, and GES are shown in Fig. 5.5. As in the Compas dataset, LiNGAM cannot be
used as data is mixed as well.



178 Causal Discovery Through the Lens of Fairness

sex

age

education income

hours

marital

workclass

(a) PC

sex

age

education income

hours

marital

workclass

(b) FCI

sex

age

education income

hours

marital

workclass

(c) GES

Fig. 5.5 Generated causal graph for the Adult dataset.
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Fig. 5.6 Estimation of causal effects of the Adult dataset based on PC, FCI, GES, and SBCN.

There are two important notes about the generated graphs. First, only SBCN exhibits a
direct edge between sex and income. Second, all remaining graphs have undirected edges
(in particular, between sex and age). This leads to variability in the fairness measures
as shown in Fig. 5.6. For instance, although all TE and ATEIP W values are positive,
which indicates discrimination against females, there is some variability in the extent of
this discrimination. The highest discrimination can be seen in the GES CPDAG (Fig. 5.5c)
where sex → age (age is a mediator) yields to TE= 0.196 whereas age → sex (age is a
confounder) yields to TE = 0.157. DE is zero according to all graphs except for SBCN
since it is the only one with a direct edge between sex and income. For PC and FCI graphs
(having the same structure with two undecided edges), ID value ranges between −0.003
and 0.184 where the former is obtained with age→ sex and education→ marital and the
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latter is obtained with sex→ age and education→ marital. This is expected as sex→ age

opens an additional redlining path sex→ age→ income. In other words, having only one
redlining path sex→ marital→ income shows a very small indirect discrimination in favor
of females. Opening the other redlining path (through age) turns that into a clear indirect
discrimination against females. A possible explanation is that young married women tend
to have low incomes due to motherhood responsibilities. In contrast, older married women
pass that part of their lives and are more available for professional careers. Notice that
the lowest ID value in GES (0.119 obtained with age → sex) is significantly higher than
the lowest ID value in PC and FCI (−0.003). The reason is that in GES, there is only
one indirect (redlining and explained) path sex→ marital → recid. while in PC and FCI,
there are three different paths (sex→ marital→ income, sex→ education→ income, and
sex→ education→ marital → income). Hence, the causal effect between sex and income
in GES is only conveyed through the redlining path. In PC and FCI, the redlining path is
split between the two other explained discrimination paths.

For ED, the highest value (0.132) is obtained in PC and FCI when age is confounder (age→
sex) and marital status is a mediator between education and income (education→ marital).
The smallest value (−0.027) is obtained in GES when age is a mediator (sex → age),
which indicates a small explained discrimination in favor of females through the path
sex → age → education → income. This path is only possible as a single explaining
path in GES CPDAG. In all the graphs obtained by the other algorithms, such a path
is possible but along other explaining paths, particularly sex → education → income.
This explains why the discrimination favoring females is only observable with GES. It is
interesting to notice that in PC and FCI graphs, the explained discrimination through
sex→ education→ income is slightly positive (0.016), whereas in the GES graph, adding
another mediator sex → age → education → income yields a slightly negative explained
discrimination. As there is no overlap between the ranges of ED values in PC and FCI graphs
on the one hand and GES on the other, and that values (although small) have different signs
(positive vs. negative), the explained discrimination conclusions depend on which algorithm
is used to discover causal relations.

Compared to the Compas dataset, the mediation analysis on the Adult dataset reveals
two additional fairness-relevant observations. First, several CD algorithms can discover a
specific causal path. However, the causal effect through that path may significantly differ
depending on the presence of other causal paths that do not necessarily have the same
interpretation (redlining or explaining paths). Second, even with the same causal path (e.g.,
sex → education → income), considering a mediator (e.g., age) can reverse the type of
discrimination (e.g., sex→ age→ education→ income).

The experiments and the descriptions of the remaining datasets can be checked in
Appendix C.1.2 (for Dutch census), Appendix C.1.3 (for German credit), Appendix C.1.4
(for Boston housing), and Appendix C.1.5 (for Communities and crime).
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5.2.4 Conclusion
In this study, we provided a detailed and intuitive explanation of the major CD algorithms
in the literature. Causal relations between variables are typically identified from observable
data using CD algorithms as experiments and interventions (RCTs and A-B testing) are
difficult to carry out in discrimination scenarios (requires changing inherent attributes of
individuals such as gender or race). Constraint and score-based approaches to CD rely mainly
on conditional independence tests and, hence, typically generate PDAGs with undirected
edges. The third category relies rather on the independence between the cause variable and
the residual of the regression to decide about the direction of the edges.

The main contributions of the study are two-fold. First, we show how the subtle differences
between the CD algorithms can explain why they generate different causal graphs. Second
and foremost, we demonstrate how slight differences between causal graphs may significantly
impact fairness/discrimination conclusions.

Most causal approaches to fairness in the literature do not tackle the causal graph
generation task. With this study, we hope to raise awareness about the importance of this
step in the fairness assessment and enforcement pipeline, as any difference in the graph
structure may lead to very different fairness conclusions. A natural follow-up work after this
study is to design a new CD algorithm specifically tuned for fairness. This algorithm can
be an adaptation of an existing algorithm but geared towards accurately discovering the
sensitive attribute’s causal effect on the outcome variable along the various directed paths.
Another future direction would be to study the impact of pre-processing transformations on
the structure of the generated graph and, consequently, on the fairness conclusions.

Having explored the impact of structural learning approaches on fairness assessments, we
present in the next section our study on how CD algorithms perform when applied to biased
data, investigating their robustness and accuracy under varying conditions of data bias.
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5.3 Causal Discovery on Biased Data
In our study presented in the previous section, we showed how using a different CD algorithm
may result in different causal graphs and, most importantly, how even slight differences
between them can significantly impact fairness conclusions. This issue arises because current
CD algorithms are not well-suited for handling the mixed data types commonly used in
fairness assessments. Moreover, even simple experiments show that certain edges of the
causal graph appear only when the bias level exceeds a threshold value [36].

The evaluation for CD algorithms typically follows a transductive approach, which involves
comparing the structural difference between the discovered and ground-truth graphs. However,
since obtaining datasets with ground truth is challenging, synthetic datasets are commonly
used for benchmarking purposes [131, 205, 52]. Existing mechanisms allow the generation of
datasets according to a desired causal graph [55]. Still, they cannot control the bias level in
the generated data that can be exploited to develop and evaluate the effectiveness of bias
mitigation approaches when developing ML models.

To address this issue, we propose a mechanism to generate synthetic datasets given
causal graphs while allowing for adjustable bias levels. Our contribution is novel since it
generates data according to the roles of variables within the causal structure (such as sensitive,
confounding, mediator, and collider nodes) and facilitates examining how bias level affects
the efficacy of CD methods.

Using the proposed synthetic data generation, we could study two fairness-related aspects
of the CD procedure. First, we evaluated the reliability of CD algorithms in handling
datasets with increasing bias levels while maintaining the same ground truth causal graph.
Second, we examined the effects of different binarization thresholds for the outcome variable
on these algorithms. Binarization is critical in this context, as it converts the continuous
outcomes predicted by ML algorithms—such as job suitability or loan default risk—into
binary decisions like approve or reject. Properly implementing this conversion is crucial for
ensuring the algorithm’s outputs effectively translate into the binary choices required in
real-world scenarios [8].

The experimental analysis revealed that although some causal relations are present in the
ground truth causal graph, CD algorithms could discover them only at a relatively high level
of bias. Specifically, we demonstrate that these approaches can also suffer from instability in
the presence of bias in the model. Therefore, there is a need for further discussion on the
general pipeline used to assess fairness. In particular, tuning the degree of data bias allows
us to understand how the system’s misinterpretation depends on it. Related to outcome
values binarization, experimental analysis revealed that the direct edge (sensitive to the
outcome) is more affected by the binarization threshold in a collider structure than in a
confounder or mediator structure. This holds significant importance within the context of
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fairness, as a direct edge linking the sensitive variable to the outcome provides evidence of
direct discrimination.
Contributions. The contributions of the study presented in this section are threefold: (1) a
framework for generating synthetic datasets with a given causal graph and a desired bias
level, (2) an empirical study of the bias level’s impact on CD output, and (3) an empirical
analysis of the effect of the outcome variable binarization threshold on the discovered causal
graph.
Outline. The rest of this section is organized as follows. Section 5.3.1 discusses related work.
Next, Section 5.3.2 presents our synthetic data generation mechanism. Section 5.3.3 details
the experimental setting and main results. Finally, we conclude this section by indicating
future perspectives in Section 5.3.4.

5.3.1 Related work
Identifying bias and mitigating it in real-world datasets usually relies on the statistical

properties of the system. However, without knowledge of the underlying causal structure of
the data, it is possible that non-existent biases are recognized or new ones are introduced
through mitigation (e.g., the widely known Berkeley admissions case [33]). This section
discusses relevant literature on each field, highlighting existing gaps and current drawbacks.

Causal Data Generation. Mechanisms for creating synthetic data based on causal
frameworks are frequently used to test CD algorithms due to the lack of ground-truth
causal structures in many benchmark datasets. Typically, these approaches rely on ML
models [249, 55] or utilize existing network structures such as Erdős–Rényi or Scale-free to
sample acyclic graphs [147, 277, 172]. However, these methods focus solely on modeling
causal relations without considering fairness.

Fair Data Generation. Several studies propose synthetic data generation to ensure
fairness in datasets [112, 46, 251, 265, 257]. A common approach to generating fairer synthetic
data involves applying bias mitigation techniques during preprocessing and using GANs for
data generation. Nevertheless, these methods do not account for causal frameworks, thus
overlooking the necessity of maintaining causal relationships between variables to generate
plausible data. Moreover, the option to control data bias is not considered.

Integrated Approaches for Causality and Fairness. Van Breugel et al. [239]
present methods using various generators (one for each variable) that learn from the causal
conditionals observed in the data. At inference time, variables are synthesized topologically,
starting from the root nodes in the causal graph and sequentially synthesized, ending
at the leaf nodes. While this approach is valuable for generating fair data considering
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causal relationships, it does not allow for bias control. Another framework by Baumann et
al. [27] aims to create synthetic data with various bias types (e.g., measurement, historical,
representation, and omitted variable biases). Although this work does not explicitly reference
causal models, it does consider generation following a graph structure. The limitation is
that solely relying on a pre-defined graph structure may not accurately represent all possible
scenarios. Our approach differs since it generates specific variable values depending on the
variable’s role (mediator, confounder, collider, sensitive, etc.) in the causal graph. This
enables the generated data to include the ground truth of the causal model, which is crucial
for benchmarking CD methods. Furthermore, unlike these previous approaches [239, 27], the
proposed method allows for data generation based on a specific bias level. Controlling the
bias level in synthetic datasets has several advantages; in particular, i) it aids in developing
and evaluating bias mitigation techniques for ML models, and ii) it can be used to determine
which CD algorithm best describes the data.

More related to CD, in our study [34], we highlighted the inconsistencies of CD algo-
rithms when applied to benchmark datasets. The authors observed that state-of-the-art
CD algorithms produce different causal graphs when applied to the same dataset. Most
importantly, using causal fairness metrics [158], we observed that even slight deviations
between the discovered graphs might lead to significant differences in fairness/discrimination
conclusions. A possible explanation of these inconsistencies is that, since benchmark datasets
are naturally biased, various CD algorithms are impacted differently by the level of bias in
the data. This study is an attempt to understand better the impact of bias on CD.

5.3.2 Synthetic Data Generation

Fairness Terminology. In this work, we differentiate the terms bias and discrimination.
Bias refers to the degree of imbalance in the generated data, specifically aimed at setting
the degree to which a certain group is disadvantaged. The bias level is controlled through
an input parameter in our data generation process (further details are provided later in
this section). On the other hand, discrimination refers to the disparity between groups,
which is quantitatively assessed using several fairness metrics (more details are provided in
Section 5.3.3).

We propose a method for synthetic data generation with two primary features. First,
leveraging the ground truth causal graph, our approach inherently incorporates the causal
relationships among variables. Second, employing specific mechanisms tailored to each
causal structure allows for setting a known bias level (BL), allowing the user to determine
the extent of bias along different causal paths. We first recall the structures used because
bias propagation is contingent upon the causal structure under analysis. Then, we provide
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Fig. 5.7 Causal graphs illustrating all types of causal structures used. Notably confounders (C),
mediators (M) and colliders (W). Nodes are possibly multi-dimensional or empty.

an in-depth description of the data generation mechanism, highlighting how the bias is
propagated in the data through the different causal structures.

Causal Structures. Considering a causal graph G in which at least one node represents
a sensitive attribute, i.e., A ∈ N, and one node represents the outcome attribute, i.e., Y ∈ N,
we consider three basic causal structures, namely, confounding, collider, and mediation [181].
By convention, we denote such structures using C, W, M, respectively. Fig. 5.7 depicts
examples of causal graphs encompassing the different causal structures and types of biases.
The rationale behind examining these structures is to accommodate the various forms of
bias propagation through the causal graph while maintaining a simple and intuitive causal
model to facilitate human readability and avoid unnecessary complexities that might hide
the relevant patterns.

We also consider causal graphs incorporating various structure types simultaneously,
specifically involving mediators and confounders. This combined consideration allows us
to analyze the joint effects of these structures, providing insights into how their presence
influences the overall bias propagation. Moreover, we typically consider two variants of each
causal structure, one where the direct edge between the sensitive attribute and the outcome
(A→ Y ) is present (i.e., A ∈ PAY ) and one where it is absent (i.e., A /∈ PAY ). The direct
edge is critical when measuring discrimination because it always corresponds to unjustifiable
bias.

Data Generation. Given G as input, we model the data generation using the following
system of equations to formalize the relationships between variables. The equation of each
variable depends on the corresponding node’s role in the graph. The topological ordering of G
dictates the sequence of variable generation, ensuring adherence to both causal dependencies
and, if present, the accurate propagation of the bias along causal paths. Quantifying bias
poses a significant challenge, mainly due to the complex task of defining bias within a
mathematical framework [164]. As outlined at the beginning of this section, we denote the



5.3 Causal Discovery on Biased Data 185

term bias as advantage quantified by the gap between the distributions of the privileged and
unprivileged groups. In what follows, we formulate how the bias propagates in our proposed
data generation mechanism. For completeness, we consider different cases depending on
the various causal structures in the causal graph. More specifically, for each node in G, we
formulate the data generation based on a specific structural equation that depends on the
node’s position in G, which falls into two cases: i) the node is a root node; ii) the node is a
child node.

Root Node Case. As the aim is to investigate the impact of bias, the generation
mechanism depends on whether the node represents a sensitive attribute (A) or not (R).
This distinction is essential because the sensitive attribute is assumed to be discrete, whereas
any other root nodes could be continuous. Therefore, a root node A is distributed as a
Bernoulli Bern(pA) variable where pA controls the proportion of each sensitive group in
the data. Whereas R is distributed according to a Beta(αR, βR) variable where αR and βR

parameters that control the proportions of each value of R in the data. Formally,

A := DA, DA ∼ Bern(pA)
R := DR DR ∼ Beta(αR, βR)

Notably, a root node can be a confounder (R = C) or other types with no implications on
discrimination propagation, such as isolated nodes or other non-descendants of the sensitive
attribute (e.g., A→ Y ← R).

Child Node Case. In the general case where a node X has at least one parent, the
variable value is obtained as a combination of its parents in G plus independent noise
UX . Depending on the type of model used, this combination can be linear or nonlinear.
As mentioned above, the data generation mechanism depends on the type of each parent
node. We distinguish three types of parent nodes: a sensitive variable node (denoted AX),
confounder nodes (denoted CX), and the remaining parent nodes (neither sensitive nor
confounder, denoted NX := PAX \ {AX , CX}). The value of X is generated according to
the following equation:

X :=
|NX |∑
i=1

uiNi +
|CX |∑
i=1

viB
c
i + wABA + UX (5.1)

where u, v, and w denote the weights that reflect the strength of the impact that each parent
has on X, Ni is the value of ith parent, and UX represents a continuous independent random
variable used to introduce variability into the generated dataset. BA and Bc

i are the values
through which the bias is propagated from the sensitive variable A to the child node X,
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directly or through the confounder nodes, respectively. More formally, given a BL, BA and
Bc

i values are set as follows:

B =

λQ1 + γQ2 if A = 0

γQ1 + λQ2 otherwise
(5.2)

where λ and γ are two positive numbers such that 0 > λ ≥ γ and γ/λ = BL. Specifically,
λ and γ are two parameters our generation mechanism inputs to quantify the disparity
between privileged and non-privileged groups. Hence, BL = 1 (i.e., λ = γ) indicates a fair
outcome, BL > 1 indicates a biased outcome against group A = 0, and 0 < BL < 1 a biased
outcome against group A = 1. Note that the difference between propagating the bias directly
from the sensitive attribute to the outcome (BA) or through the confounder (Bc

i ) lies in the
type of distributions of Q1 and Q2 values. This difference in the mechanism is critical for
appropriately propagating the correct type of bias. Its significance lies in optimizing the
incorporation of confounding factors, thereby improving the overall accuracy and reliability
of the data generation process.

5.3.3 Experimental Analysis
This section presents the experimental setup, the main results related to the impact of

varying data bias, and the effect of changing the outcome distribution on CD.

Experimental settings.

• Causal Discovery Algorithms. State-of-the-art CD algorithms are primarily de-
signed for continuous data, presenting a challenge for our study involving mixed data
types. Our datasets include binary sensitive and outcome attributes alongside other
variable types. Therefore, employing algorithms explicitly tailored to handle mixed
data is imperative. This approach guarantees the accuracy and reliability of our causal
analysis across diverse data types. Accordingly, we use PC [117] from the g-castle
library [271]. Among the reasons for choosing the g-castle implementation is that it
identifies all causal relationships in the graph, typically not leaving indirect edges. To
ensure the reliability and robustness of our findings, we conduct 10 runs of each CD
approach on every synthetically generated dataset.

• Synthetic Data. We use the data generation mechanism described in Section 5.3.2 to
evaluate how datasets with known apriori bias levels impact CD experimentally. For
each experiment, we generate 5000 samples. As mentioned above, the sensitive attribute
A follows Bernoulli(pA) where pA = 0.55. Then, we set αR = 3 and βR = 3 for the Beta

distribution of R nodes. Concerning the BL, we set γ = [1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5]
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while λ = 1. For BA, we set Q1 ∼ N (0.25, 0.1) and Q2 ∼ N (0.75, 0.1), while for Bc
i we

use Q1 ∼ Uniform(C, 1) and Q2 ∼ Uniform(0, C).

• Real-World Datasets. The real-world datasets used in our experiments are: Adult,
Compas, and Communities and crime. All three datasets have already been introduced
in Section 4.2.3, Section 4.3.3, and Section C.1.5, respectively.

• Results Visualization. To provide a clear and intuitive visualization of the results, we
use the causal graphs directly, labeling each edge with either the level of discrimination
(Figs 5.8, 5.9, and 5.10) or the range of outcome thresholds (Figs 5.12, 5.11, and 5.13)
at which the CD algorithm discovers the edge. In addition, we define a standardized
way of naming the causal graphs for ease of recall and readability of the results. In
all the experiments, the estimated causal graphs are named as the causal structure in
question (e.g., M, C, W) with the number of paths as superscript and the number of
nodes as a subscript. For instance, M1

2 represents a causal graph with two mediators
on a single path, and C2

2 represents a causal graph with two confounders, each one on
a path. M1

2C1
1 implies a causal graph with one mediator path with two nodes and one

confounder path with one confounder.

• Evaluation Measures. As stated in Section 5.3.2, discrimination between groups is
quantified using selected fairness notions. We opt to use the Statistical Disparity (SD)
(Eq. (4.2)) and the Disparate Impact (DI) (Eq. (4.1)).

We validate our data generation mechanism by applying causality-based fairness notions,
namely the natural direct effect (NDE) (Eq. (3.35)) and the natural indirect effect
(NIE) (Eq. (3.36)), which quantify the direct and indirect impact of the sensitive
attribute on the outcome, respectively.

Causal Discovery Using Biased Data. In this section, we analyze how altering the
discrimination level within a dataset affects CD. The results are presented through causal
graphs, where each edge is labeled with the BL value at which the PC algorithm first discovers
that specific edge. Solid lines indicate edges in both the ground-truth graph and the one
discovered by the CD algorithm, while dashed lines represent inferred edges not present in
the ground-truth.

Fig. 5.8 illustrates the results for the mediator structures when A /∈ PAY (no A → Y

edge in the ground-truth graph). In a fair setting (BL = 1), the PC algorithm detects only
direct links between mediators and the outcome as it prioritizes immediate impact on Y . As
the data becomes more discriminatory (BL > 1), PC can uncover more complex relationships.
Specifically, at BL = 1.2, causal links between the sensitive attribute and mediators are
discovered. Despite the absence of A → Y in the ground truth, PC identifies it beyond a
certain BL. Notably, identifying A→ Y edge in terms of BL does not depend on the number
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Fig. 5.8 Mediators with A /∈ PAY using PC. The color bar shows the discrimination level; 1 indicates
edge detection under fair data. Solid lines represent inferred edges present in the ground truth, while
dashed lines indicate absent edges in the ground truth.

Fig. 5.9 Confounders and Colliders with A ∈ PAY .

of mediation paths in the causal graph. Concerning C structures (Fig. 5.9 - Left), when
BL = 1 and the link A→ Y is absent from in ground truth, PC exhibits a robust capability
in capturing the underlying causal structure. In contrast, when the ground truth includes
the A → Y edge, PC identifies it when BL ≥ 1.2. This behavior does not change even in
the presence of multiple confounders. Fig. 5.9 on the right shows the results for the W
structure when the direct edge A → Y is present in the ground-truth graph. Regardless
of the number of colliders in the graph, Y → W is inferred when the data is fair. At this
BL, in the case where two colliders are present (W2

2), PC erroneously identifies the causal
relationship between the two collider nodes. Moreover, the sensitive attribute’s causal links
are discovered when BL ≥ 1.2.

Finally, we explore causal structures incorporating multiple relationship types (i.e.,
mediators and confounders), aiming to simulate the complexity of real situations (Fig. 5.10).
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Fig. 5.10 Mediators and Confounders with A /∈ PAY .

We specifically vary the number of structures for each type across different graphs. We
observe that up to BL ≤ 1.2, the observations remain consistent with those from the structures
considered individually. However, PC erroneously identifies a dependency between the
sensitive attribute and the outcome at a higher level of discrimination (e.g., BL = 3.5). In the
case of two mediators and one confounder (M2

1C1
1), this misidentification occurs at BL = 1.8.

In summary, observing results across diverse causal structures could offer various insights.
The main observation is that when data is unbiased w.r.t. a sensitive attribute, CD methods
fail to identify some relevant edges in the causal graph. In particular, the first edge in
mediated (indirect) paths, and most importantly, the direct edge A → Y in confounder
and collider structures. As the presence/absence of the direct edge is crucial for measuring
discrimination (NDE, NIE, and PSE [158]), it is highly recommended to rely on experts
of the field (or the case study at hand) specifically when data is unbiased. Relying only
on the output of CD algorithms may produce misleading results that can have significant
implications when applied in real-world scenarios.

Impact of the Outcome Distribution on Causal Discovery. In this section,
we study the impact of binarizing the outcome Y on CD. In particular, we observe how
varying the outcome distribution by changing the threshold used for binarization affects the
estimated causal graph. As stated at the beginning of Section 5.3 and discussed later in
this section, changing the distribution of the outcome implicitly impacts the level of bias in
the data and, therefore, on the CD results. We validate our findings on both synthetic and
real-world datasets.

The causal graphs depicted in Figs 5.11, 5.12, and 5.13 represent the estimated causal
graphs by PC of the synthetic datasets when the outcome Y is not binarized.
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To examine how the distribution of the outcome affects CD, we compare the causal
graphs obtained when Y is not binary with those obtained when Y is binary across various
thresholds, ranging from 0.1 to 0.8. If the causal graphs produced when binarizing Y closely
align with the graph obtained when Y is not binarized, this indicates the robustness of the
CD algorithm to the binarization process.

The black solid and dotted edges represent the edges present and absent, respectively,
when Y is not binarized. The red dashed edge indicates that an edge is absent when Y is
not binarized and stays absent for all thresholds used to binarize Y . The intervals on some
edges represent the threshold range at which the CD algorithm discovers the edge. Thus, the
wider the range, the more robust the CD algorithm is to the binarization of the outcome. For
example, a black solid edge with an interval [0.1, 0.8] implies that the PC algorithm could
discover the edge before and after binarisation for all the chosen thresholds. However, a black
solid edge with an interval [0.3, 0.5] implies that the PC algorithm could discover the edge
before binarization and only for the thresholds ranging from 0.3 to 0.5 after binarization.

Below are the main observations depending on the causal structure studied: M, C, W.
We also study the impact of varying the Y distribution when the different causal structures
coexist (MC). Since we noticed that the BL plays a crucial role in the impact of Y distribution
on CD, we provide the results for two different BLs, namely 10 (biased data) and 1 (fair data).
These values are indicated in the title of each structure next to its name (e.g., M1

1 - BL : 10
or M1

1 - BL : 1).
Fig. 5.11 illustrates the impact of the outcome distribution on the mediator structure

(M) discovery. Firstly, notice that when data is biased (BL = 10), PC could identify much
more causal relations8 than when data is fair (BL = 1), which corroborates the findings of the
previous section. We observe that the higher the BL, the more binarization impacts the CD
algorithm9. In other words, when the data is fair (BL=1), the interval of the thresholds on all
edges is almost the full interval: [0.1, 0.8] on black edges or stays absent in all thresholds in
case of absence of the edge (dashed red edges in the causal graphs) when Y is not binarized.
However, PC becomes less robust to binarization when the data is biased. This observation
becomes more apparent when the number of mediators or the number of mediator paths
increases (M2

2 - BL : 10, M2
3 - BL : 10). For example, some edges (A→M2 in M2

2 - BL : 10)
are not discovered when the outcome is not binarized (depicted in black dashed edges in the
graphs); however, they are discovered when the outcome Y is binarized for all thresholds
range. Moreover, some edges (M2→ Y in M2

3 − BL : 10) while present in the graph when Y

is not binary, they disappeared in almost all the thresholds range after Y binarization.
8Recall that red edges mean that the causal relation was not determined when the outcome Y was

not binarized.
9Note that we run experiments with other BLs and this observation is confirmed, namely the higher

the BL, the more binarization of the outcome impacts the CD algorithm.
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B B B

B B B

Fig. 5.11 Estimated causal graphs for the mediator structure. The black solid and dotted edges
represent the edges present and absent, respectively, when Y is not binarized. The red dashed edge
indicates that an edge is absent when Y is not binarized and stays absent for all thresholds used to
binarize Y . The intervals on some edges represent the threshold range at which the CD algorithm
discovers the edge.

Regarding the confounder structure (C in Fig. 5.12), A ← C is highly impacted by Y

binarization. In other words, while absent when Y is not binarized, it appears in the full
range of thresholds when only one confounder exists (C1

1 - BL : 10). Moreover, C1→ Y is
only impacted when the data is fair (BL = 1). This happens when the number of confounders
increases (C2

2 - BL : 1).
A crucial observation of the impact of Y distribution is related to the direct edge A→ Y ,

which implies direct discrimination in a fairness context. That is, A → Y is generally
unaffected by Y binarization for both the mediator and confounder structures. However, this
is not true with the collider structure (W) where the direct edge A → Y is impacted by
binarization, and this is more apparent with high BL (W1

1 - BL : 10 and W2
2 - BL : 10).

So, in general, the impact of Y distribution affects the direct edge A→ Y when W exist
between A and Y but not when only M or only C exist between A and Y . However, combining
both M and C structures in the same graph (Fig. 5.13), the impact of Y distribution becomes
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B B B

B B B

Fig. 5.12 Estimated causal graphs for the confounder and the collider structures.

apparent in particular when BL is high. Moreover, A← C → Y and A→M → Y are highly
impacted by binarization when the data is biased in the CM structure. On the other hand,
when the data is fair (BL = 1), all the estimated causal graphs when Y is binarized coincide
with the one when Y is kept unbinarized in the mediator and the collider structures. This is
not always the case for the confounder structure.

Another notable observation is that the binarization threshold highly impacts discovering
the confounding path A← C → Y . In particular, when data is biased, discovering the edge
C → A depends on the binarization threshold, while for unbiased data, discovering the edge
C → Y depends on the binarization threshold. Identifying all confounding paths is crucial to
measure discrimination10, it is recommended to rely on experts to identify the graph correctly.
Moreover, in the presence of a collider structure or a coexistence of confounders/mediators
structures, although present when Y is not binary, the direct edge A→ Y is only identified
for a small range of threshold values when Y is binary. In the following section, we examine
the impact of the Y distribution on real data sets.

10Total effect (TE) measure appropriately adjusts on all confounders. Hence, if CD fails to identify
a node as a confounder, TE will yield misleading results as it will not adjust on confounder variables.
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B
B B B

B B B B

Fig. 5.13 Estimated causal graphs for the combined structures.

Experiments on Real-World Datasets. To validate the crucial impact of binarization
of the outcome on CD, we run our experiments on three real-world fairness benchmark datasets,
namely Adult, Compas, and Communities and crime (All datasets are already presented in
the manuscript). The causal graphs of Adult and Compas are provided in Section 5.2.3 while
that of Communities and crime is provided in Appendix C.1.5. As for the synthetic datasets,
the outcome distribution is tightly related to the BL. For instance, for the Compas dataset,
although the direct edge race→ risk_score is present when the risk score is not binary, it
disappeared in the two last thresholds 8 and 9 (high-risk scores). At these two thresholds, the
disparity between groups is almost equal to 0 (0.05 and 0.01 for threshold = 8 and threshold
= 9, respectively).

For the Adult dataset, we note that the direct edge gender → income appears only when
the threshold for binarising an individual’s income is 10K or 50K. In all the other thresholds,
no direct edge is discovered. This is crucial because, in the literature, the version of the Adult
dataset primarily used is when the income is binarized to 50K [73]. However, simply changing
the threshold used to binarize the outcome significantly impacts CD, and therefore, fairness
conclusions. The same behavior is also observed in the Communities and crime dataset
where PC is proven to be not robust to the violence rate binarization. In particular, the
impact is depicted on the direct edge race→ violence_rate, appearing in most thresholds
but disappearing in three (0.1, 0.4, and 0.6).
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Fig. 5.14 Statistical Disparity for mediators and confounders where the edge A→ Y is present in
the ground truth causal graph.

5.3.4 Conclusion
Assessing discrimination in ML automated decision systems increasingly relies on the causal
relations between variables rather than mere correlations. Causal relations are captured
through causal graphs, typically identified using CD algorithms. This study aims to study
the behavior of CD algorithms in the presence of biased data. To this end, we proposed a
mechanism that takes a causal graph and a bias level as input and generates a biased synthetic
dataset satisfying the causal structure of the graph with a desired bias level. Regarding the
impact of the bias level on CD, the main observation is that when data is unbiased w.r.t a
sensitive attribute, CD algorithms fail to identify important edges of the graph. In particular,
the first edge in mediated (indirect) paths, and most importantly, the direct edge (A→ Y ) in
confounder and collider structures. Consequently, relying on experts in the field (or the case
study at hand) is highly recommended specifically when data is unbiased. Relying only on
the output of CD algorithms may produce misleading results. The most notable observation
regarding the impact of the binarization threshold on CD is the importance of the threshold
value in discovering confounding paths.

5.4 Conclusion
In this chapter, we have explored the intricate relationship between CD and fairness, focusing
on two primary areas of investigation.

We began by examining various CD approaches and their implications for fairness.
Our analysis highlighted that even slight differences between causal models could lead



5.4 Conclusion 195

to significantly different conclusions regarding fairness and discrimination. This section
underscored the critical role of precise causal modeling in fairness assessments, demonstrating
that the choice of the CD method can profoundly influence the outcomes of such evaluations.
By presenting case studies and experimental results, we illustrated the variability in fairness
conclusions stemming from different causal interpretations, emphasizing the necessity for
careful selection and validation of CD approaches in fairness studies.

In the second section, we investigated how different types of causal structures and varying
levels of injected bias in data impact the performance of CD algorithms. Our findings revealed
that the robustness and reliability of these algorithms can be significantly affected by the
complexity of causal structures and the presence of bias.

Building on the insights gained from examining the impact of CD methods on fairness,
we plan to design a CD algorithm specifically tuned for fairness in future work.





Chapter 6

Conclusions and Future Work

6.1 Conclusions
This thesis has comprehensively explored three pivotal research areas in the domain of fairness
in algorithmic decision-making systems. Our investigations provided critical insights into the
interplay between fairness, privacy, and causal discovery, offering valuable contributions to
the field of ML and artificial intelligence. Here, we summarize the key findings from each
research work and discuss their broader implications.

1. Applicability of Statistical and Causality-Based Fairness Notions: Chapter 3

Our first study delved into the applicability of both statistical and causality-based
fairness notions across diverse application domains. We evaluated how well these
notions align with stakeholder preferences and societal norms. This work underscored
the complexity of fairness in algorithmic decision-making, revealing that different
fairness criteria can lead to varied outcomes depending on the context and stakeholder
values. In particular, we proposed two decision diagrams (one focusing more on the
statistical fairness notions and one on the causality-based fairness notions) integrating
a set of fairness-related features of real-world scenarios that can help researchers,
practitioners, and policymakers answer the question of “which notion of fairness is
most appropriate to a given real-world scenario and why?”.

Our systematic evaluation highlighted the necessity of a nuanced approach to fairness,
advocating for context-aware fairness assessments that consider the unique characteris-
tics of each application domain.

2. Impact of Local Differential Privacy (LDP) on Fairness: Chapter 4

The second research focus examined the intersection of privacy and fairness. In
particular, the impact of LDP on group fairness. Our empirical studies found that
obfuscating multi-dimensional sensitive attributes via LDP mechanisms in general,
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improves fairness. In addition, we proposed a new privacy budget splitting solution
named k-based, which generally led to better fairness and performance results than
the state-of-the-art solution that splits ε uniformly. Moreover, we observed that the
true decision distribution has an important effect on which group is more sensitive to
privacy and we summarized our findings as recommendations to guide practitioners in
adopting effective privacy-preserving practices while maintaining fairness and utility in
ML applications.

Motivated by our empirical studies, we conducted a rigorous quantitative assessment
of how different levels of privacy and data distributions influence ML model decisions.
Our findings demonstrated that while LDP can protect individual privacy, it also
has significant implications for fairness. More specifically, our findings show that the
unprivileged group benefits more than the privileged group when injecting enough noise
into the sensitive attribute. Furthermore, for conditional statistical disparity and for
equal opportunity difference, injecting noise, in general, improves fairness. This also
holds for statistical disparity when the data contain no proxies to the sensitive attribute.
However, when the data contains proxies, in certain cases, by injecting enough noise,
while the discrimination was originally against one group, it may be shifted to the
other group after obfuscation, and the level of unfairness may be worse than before.

3. Causal Discovery and Algorithmic Fairness: Chapter 5

In our third study, we explored causal discovery in relation to algorithmic fairness,
investigating how the process of uncovering causal relationships impacts the structure
of causal graphs and subsequent fairness conclusions. In particular, we demonstrated
how slight differences between causal graphs may significantly impact the conclusion on
fairness/discrimination. In addition, we proposed a novel data generation mechanism
that creates biased synthetic datasets based on causal graphs and specified bias levels.
This approach enables us to systematically analyze the influence of various causal
discovery algorithms on different causal structures and the extent of introduced bias.
Our results indicate that the choice of causal discovery method can significantly affect
the fairness of the resulting models, highlighting the importance of selecting appropriate
algorithms and understanding their implications for bias and fairness.

In conclusion, this thesis contributes to the growing body of knowledge on fairness in
machine learning and artificial intelligence, providing practical insights and methodological
advancements that pave the way for more equitable algorithmic decision-making systems.
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6.2 Future Work
The findings from these three research areas collectively advance our understanding of fairness
in algorithmic decision-making systems. They emphasize the need for a multidisciplinary
approach integrating statistical, causal, and privacy perspectives to develop fair and equitable
algorithms. Our studies also point to several key directions for future research:

1. Contextual Fairness Assessments: Future work should develop frameworks that
tailor fairness evaluations to specific application contexts, incorporating stakeholder
input and societal norms. In particular, and for a short-term future plan, we believe
that validating our proposed decision diagrams for the applicability of fairness notions
by experts in real-world contexts will enhance their credibility and help us improve
further and enrich these diagrams. As a long-term objective, we aim to create a robust,
scalable framework that integrates statistical and causality-based fairness notions into
AI systems across various sectors.

2. Relationship Between Privacy and Fairness: Investigating advanced privacy-
preserving techniques that minimize trade-offs with fairness and utility of the ML
model and exploring their applicability in real-world scenarios will be crucial. In the
short term, we plan to extend our empirical studies by investigating the impact of
LDP pre-processing on different ML algorithms, such as deep neural networks, as well
as different fairness measures. As a medium-term future work, we aim to extend our
systematic and formal study to more fairness measures, particularly overall accuracy
equality. We also believe that hiding only the sensitive attribute is crucial but not
sufficient because proxies for this attribute may exist in the data and thus reveal
sensitive information. Therefore, we plan to study formally the impact of LDP on
multidimensional data.

3. Causal Discovery and Fairness: Further research is needed to refine causal discovery
algorithms and data generation methods, ensuring reliable and fair outcomes across
diverse settings. A natural short-term follow-up work after this study is to conduct
additional experiments by testing with synthetic datasets designed to simulate real-
world biases to improve the performance of existing causal discovery algorithms. Our
medium-term objective is to design a new causal discovery algorithm specifically tuned
for fairness. This algorithm can adapt to an existing algorithm but is geared towards
accurately discovering the sensitive attribute’s causal effect on the outcome variable
along the various directed paths. Another future direction would be to study the
impact of pre-processing transformations on the structure of the generated graph and,
consequently, on the fairness conclusions.
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[34] Binkytė, R., Makhlouf, K., Pinzón, C., Zhioua, S., and Palamidessi, C. (2023). Causal
discovery for fairness. In Dieng, A., Rateike, M., Farnadi, G., Fioretto, F., Kusner, M.,
and Schrouff, J., editors, Proceedings of the Workshop on Algorithmic Fairness through the
Lens of Causality and Privacy, volume 214 of Proceedings of Machine Learning Research,
pages 7–22. PMLR.

[35] Binns, R. (2020). On the apparent conflict between individual and group fairness. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages
514–524.

[36] Bonchi, F., Hajian, S., Mishra, B., and Ramazzotti, D. (2017). Exposing the probabilistic
causal structure of discrimination. International Journal of Data Science and Analytics,
3(1):1–21.

[37] Bowen, N. K. and Guo, S. (2011). Structural equation modeling. Oxford University
Press.

[38] Breiman, L. (2001). Random forests. Machine learning, 45:5–32.

[39] Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien, S., and Drouin, A. (2020).
Differentiable causal discovery from interventional data. Advances in Neural Information
Processing Systems, 33:21865–21877.

[40] Buolamwini, J. and Gebru, T. (2018). Gender shades: Intersectional accuracy dispar-
ities in commercial gender classification. In Conference on fairness, accountability and
transparency, pages 77–91.

[41] Cai, R., Qiao, J., Zhang, K., Zhang, Z., and Hao, Z. (2018). Causal discovery from
discrete data using hidden compact representation. Advances in neural information
processing systems, 31.

[42] Carey, A. N., Bhaila, K., and Wu, X. (2023). Randomized response has no disparate
impact on model accuracy. In 2023 IEEE International Conference on Big Data (BigData),
pages 5460–5465. IEEE.



204 Bibliography

[43] Celis, D. and Rao, M. (2019). Learning facial recognition biases through vae latent
representations. In proceedings of the 1st international workshop on fairness, accountability,
and transparency in MultiMedia, pages 26–32.

[44] Chalfin, A., Danieli, O., Hillis, A., Jelveh, Z., Luca, M., Ludwig, J., and Mullainathan,
S. (2016). Productivity and selection of human capital with machine learning. American
Economic Review, 106(5):124–27.

[45] Chang, H. and Shokri, R. (2021). On the privacy risks of algorithmic fairness. In 2021
IEEE European Symposium on Security and Privacy (EuroS&P), pages 292–303. IEEE.

[46] Chaudhari, B., Chaudhary, H., Agarwal, A., Meena, K., and Bhowmik, T. (2022).
Fairgen: Fair synthetic data generation. arXiv preprint arXiv:2210.13023.

[47] Chen, C., Liang, Y., Xu, X., Xie, S., Hong, Y., and Shu, K. (2022a). On fair classification
with mostly private sensitive attributes. arXiv preprint arXiv:2207.08336.

[48] Chen, C., Liang, Y., Xu, X., Xie, S., Hong, Y., and Shu, K. (2022b). When fairness
meets privacy: Fair classification with semi-private sensitive attributes. In Workshop on
Trustworthy and Socially Responsible Machine Learning, NeurIPS 2022.

[49] Cheng, J. and Zeng, J. (2023). Shaping ai’s future? China in global AI governance.
Journal of Contemporary China, 32(143):794–810.

[50] Cheng, L., Guo, R., Moraffah, R., Sheth, P., Candan, K. S., and Liu, H. (2022).
Evaluation methods and measures for causal learning algorithms. IEEE Transactions on
Artificial Intelligence.

[51] Chiappa, S. (2019). Path-specific counterfactual fairness. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 7801–7808. PKP Publishing Services
Network.

[52] Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal
of machine learning research, 3(Nov):507–554.

[53] Chizhikova, A., Billinghurst, H., Elizabeth, M., Hossain, S., Kulkarni, A., Guibon, G.,
and Couceiro, M. (2024). Factorizing gender bias in automatic speech recognition for
mexican spanish.

[54] Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big data, 5(2):153–163.

[55] Cinquini, M., Giannotti, F., and Guidotti, R. (2021). Boosting synthetic data generation
with effective nonlinear causal discovery. In 2021 IEEE Third International Conference on
Cognitive Machine Intelligence (CogMI), pages 54–63.

[56] Compas (2020). Compas. https://www.equivant.com/northpointe-risk-need-asses
sments/.

[57] Corbett-Davies, S., Gaebler, J., Nilforoshan, H., Shroff, R., and Goel, S. (2023). The
measure and mismeasure of fairness. J. Mach. Learn. Res, 24:1–117.

[58] Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., and Huq, A. (2017). Algorithmic
decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 797–806.

https://www.equivant.com/northpointe-risk-need-assessments/
https://www.equivant.com/northpointe-risk-need-assessments/


Bibliography 205

[59] Coston, A., Mishler, A., Kennedy, E. H., and Chouldechova, A. (2020). Counterfactual
risk assessments, evaluation, and fairness. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, pages 582–593.

[60] Crawford, K. (2013). Think again: big data. why the rise of machines isn’t all it’s
cracked up to be. Foreign Policy, 10.

[61] Crenshaw, K. (1990). Mapping the margins: Intersectionality, identity politics, and
violence against women of color. Stan. L. Rev., 43:1241.

[62] Datta, A., Tschantz, M. C., and Datta, A. (2015). Automated experiments on ad privacy
settings: A tale of opacity, choice, and discrimination. Proceedings on privacy enhancing
technologies, 2015(1):92–112.

[63] David, H. A. and Edwards, A. W. F. (2001). Yule’s Paradox (“Simpson’s Paradox”),
pages 137–143. Springer New York, New York, NY.

[64] de Oliveira, A. S., Kaplan, C., Mallat, K., and Chakraborty, T. (2023). An empirical
analysis of fairness notions under differential privacy. arXiv preprint arXiv:2302.02910.

[65] Dehghan, A., Ortiz, E. G., Shu, G., and Masood, S. Z. (2017). Dager: Deep age,
gender and emotion recognition using convolutional neural network. arXiv preprint
arXiv:1702.04280.

[66] del Barrio, E., Gordaliza, P., and Loubes, J. (2020). Review of mathematical frameworks
for fairness in machine learning. stat, 1050:26.

[67] Derous, E. and Ryan, A. M. (2019). When your resume is (not) turning you down: Mod-
elling ethnic bias in resume screening. Human Resource Management Journal, 29(2):113–
130.

[68] Dieterich, W., Mendoza, C., and Brennan, T. (2016). Compas risk scales: Demonstrating
accuracy equity and predictive parity. Northpointe Inc.

[69] Ding, B., Kulkarni, J., and Yekhanin, S. (2017). Collecting telemetry data privately.
Advances in Neural Information Processing Systems, 30.

[70] Ding, F., Hardt, M., Miller, J., and Schmidt, L. (2021). Retiring adult: New datasets
for fair machine learning. Advances in Neural Information Processing Systems, 34.

[71] Dodson, M. K., Cliby, W. A., Keeney, G. L., Peterson, M. F., and Podritz, K. C. (1994).
Skene’s gland adenocarcinoma with increased serum level of prostate-specific antigen.
Gynecologic oncology, 55(2):304–307.

[72] Domingo-Ferrer, J. and Soria-Comas, J. (2022). Multi-dimensional randomized response.
IEEE Transactions on Knowledge and Data Engineering, 34(10):4933–4946.

[73] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[74] Dwork, C. (2008). Differential privacy: A survey of results. In International conference
on theory and applications of models of computation, pages 1–19. Springer.

[75] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference,
pages 214–226.



206 Bibliography

[76] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, pages 265–284. Springer
Berlin Heidelberg.

[77] Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.

[78] Emelianov, V. and Perrot, M. (2024). On the impact of output perturbation on fairness
in binary linear classification. arXiv preprint arXiv:2402.03011.

[79] Erlingsson, U., Pihur, V., and Korolova, A. (2014). RAPPOR: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1054–1067, New York, NY, USA. ACM.

[80] Esmaieeli Sikaroudi, A. M., Ghousi, R., and Sikaroudi, A. (2015). A data mining approach
to employee turnover prediction (case study: Arak automotive parts manufacturing).
Journal of Industrial and Systems Engineering, 8(4):106–121.

[81] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S.
(2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature,
542(7639):115–118.

[82] Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and
punish the poor. St. Martin’s Press.

[83] European Commission (2021). Laying down harmonised rules on artificial intelligence
(artificial intelligence act) and amending certain union legislative acts. Available online:
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
(accessed on 13 March 2024).

[84] Fabian Benitez-Quiroz, C., Srinivasan, R., and Martinez, A. M. (2016). Emotionet: An
accurate, real-time algorithm for the automatic annotation of a million facial expressions in
the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5562–5570.

[85] Farrand, T., Mireshghallah, F., Singh, S., and Trask, A. (2020). Neither private nor fair:
Impact of data imbalance on utility and fairness in differential privacy. In Proceedings of
the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, pages 15–19.

[86] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian,
S. (2015). Certifying and removing disparate impact. In proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 259–268.

[87] Ficiu, B., Lawrence, N. D., and Paleyes, A. (2023). Automated discovery of trade-
off between utility, privacy and fairness in machine learning models. arXiv preprint
arXiv:2311.15691.

[88] Forré, P. and Mooij, J. M. (2018). Constraint-based causal discovery for non-linear struc-
tural causal models with cycles and latent confounders. arXiv preprint arXiv:1807.03024.

[89] Friedler, S. A., Scheidegger, C., and Venkatasubramanian, S. (2021). The (im) possibility
of fairness: Different value systems require different mechanisms for fair decision making.
Communications of the ACM, 64(4):136–143.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206


Bibliography 207

[90] Funk, M. J., Westreich, D., Wiesen, C., Stürmer, T., Brookhart, M. A., and Davidian,
M. (2011). Doubly robust estimation of causal effects. American journal of epidemiology,
173(7):761–767.

[91] Gajane, P. and Pechenizkiy, M. (2017). On formalizing fairness in prediction with
machine learning. arXiv preprint arXiv:1710.03184.

[92] Galhotra, S., Brun, Y., and Meliou, A. (2017). Fairness testing: testing software for
discrimination. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 498–510.

[93] Galles, D. and Pearl, J. (1995). Testing identifiability of causal effects. In Proceedings
of the Eleventh conference on Uncertainty in Artificial Intelligence, pages 185–195. ACM.

[94] Gamella, J. (2021). Greedy equivalence search (GES) algorithm for causal discovery.
https://github.com/juangamella/ges. Accessed: 2022-03-16.

[95] Ganev, G., Oprisanu, B., and De Cristofaro, E. (2022). Robin hood and matthew effects:
Differential privacy has disparate impact on synthetic data. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 6944–6959. PMLR.

[96] Garg, P., Villasenor, J., and Foggo, V. (2020). Fairness metrics: A comparative analysis.
In 2020 IEEE international conference on big data (Big Data), pages 3662–3666. IEEE.

[97] Garvie, C. (2016). The perpetual line-up: Unregulated police face recognition in America.
Georgetown Law, Center on Privacy & Technology.

[98] Glymour, C., Zhang, K., and Spirtes, P. (2019). Review of causal discovery methods
based on graphical models. Frontiers in genetics, 10:524.

[99] Gordaliza, P., Del Barrio, E., Fabrice, G., and Loubes, J.-M. (2019). Obtaining fairness
using optimal transport theory. In International conference on machine learning, pages
2357–2365. PMLR.

[100] Guo, R., Cheng, L., Li, J., Hahn, P. R., and Liu, H. (2020). A survey of learning
causality with data: Problems and methods. ACM Computing Surveys (CSUR), 53(4):1–37.

[101] Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised
learning. Advances in neural information processing systems, 29.

[102] Harrison Jr, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand
for clean air. Journal of environmental economics and management, 5(1):81–102.

[103] Hauser, A. and Bühlmann, P. (2012). Characterization and greedy learning of interven-
tional Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning
Research, 13:2409–2464.

[104] Heckerman, D. (2008). A tutorial on learning with bayesian networks. Innovations in
Bayesian networks: Theory and applications, pages 33–82.

[105] Hern, A. (2016). Partnership on ai’formed by google, facebook, amazon, ibm and
microsoft. The Guardian, 28:2016.

https://github.com/juangamella/ges


208 Bibliography

[106] Hitchcock, C. (2002). Probabilistic causation. Stanford Encylopedia of Philosophy
(archive).

[107] Huan, W., Wu, Y., Zhang, L., and Wu, X. (2020). Fairness through equality of effort.
In Companion Proceedings of the Web Conference 2020, pages 743–751, USA. ACM.

[108] Huang, Y. and Valtorta, M. (2006). Identifiability in causal bayesian networks: A
sound and complete algorithm. In Proceedings of the national conference on Artificial
Intelligence, volume 21, page 1149, London. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, AAAI Press.

[109] IEEE (2016). (the ieee global initiative on ethics of autonomus and intelligent systems.
Available online: https://standards.ieee.org/industry-connections/ec/autonomous-sys
tems/ (accessed on 14 March 2024).

[110] Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and
biomedical sciences. Cambridge University Press.

[111] Jacobs, A. Z. and Wallach, H. (2021). Measurement and fairness. In Proceedings of the
2021 ACM conference on fairness, accountability, and transparency, pages 375–385.

[112] Jang, T., Zheng, F., and Wang, X. (2021). Constructing a fair classifier with generated
fair data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 7908–7916.

[113] Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender systems:
an introduction. Cambridge University Press.

[114] Johndrow, J. E., Lum, K., et al. (2019). An algorithm for removing sensitive information:
application to race-independent recidivism prediction. The Annals of Applied Statistics,
13(1):189–220.

[115] Kairouz, P., Bonawitz, K., and Ramage, D. (2016). Discrete distribution estimation
under local privacy. In International Conference on Machine Learning, pages 2436–2444.

[116] Kalainathan, D. and Goudet, O. (2019). Causal discovery toolbox: Uncover causal
relationships in python. arXiv preprint arXiv:1903.02278.

[117] Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., and Bühlmann, P. (2012).
Causal inference using graphical models with the R package pcalg. Journal of Statistical
Software, 47(11):1–26.

[118] Kallus, N., Mao, X., and Zhou, A. (2022). Assessing algorithmic fairness with unobserved
protected class using data combination. Management Science, 68(3):1959–1981.
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Appendix A

Chapter 3: Fairness Notions and
their Applicability

A.1 Examples for Fairness Notions Computation

A.1.1 Statistical Fairness Notions
Table A.1 illustrates a simple job hiring scenario. Each sample in the dataset has the following
attributes: education level (numerical), job experience (numerical), age (numerical), marital
status (categorical), gender (binary), and a label (binary). The sensitive attribute is the
applicant’s gender; that is, we are focusing on whether male and female applicants are treated
equally. Table A.1(b) presents the predicted decision (first column) and the predicted score
value (second column) for each sample. The threshold value is set to 0.5.

Statistical Parity

In the ML system of Table A.1, it means that one should not hire proportionally more
applicants from one group than the other. The calculated predicted acceptance rate of hiring
male and female applicants is 0.57 (4 out of 7) and 0.4 (2 out of 5), respectively. Thus, the
ML system of Table A.1 does not satisfy statistical parity.

Conditional Statistical Parity

Table A.2 shows two possible combination values for E. The first combination (education
level=8 and job experience=2) includes samples Female 1, Female 2, Male 4, and Male 5 for
which the prediction is clearly discriminative against women as the predicted acceptance
rates for men and women are 1 and 0.5, respectively. The second combination (education
level=12 and job experience=8) includes Female 3 and Male 6 in which the prediction is fair
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Table A.1 A simple job hiring example. Y represents the data label indicating whether
the applicant is hired (1) or rejected (0). Ŷ is the prediction which is based on the
score S. A threshold of 0.5 is used.

(a) Dataset

Gender Education
Level

Job Ex-
perience Age Marital

Status Y

Female 1 8 2 39 single 0
Female 2 8 2 26 married 1
Female 3 12 8 32 married 1
Female 4 11 3 35 single 0
Female 5 9 5 29 married 1
Male 1 11 3 34 single 1
Male 2 8 0 48 married 0
Male 3 7 3 43 single 1
Male 4 8 2 26 married 1
Male 5 8 2 41 single 0
Male 6 12 8 30 single 1
Male 7 10 2 28 married 1

(b) Prediction

Ŷ S

1 0.5
0 0.1
1 0.5
0 0.2
0 0.3
1 0.8
0 0.1
0 0.1
1 0.5
1 0.5
1 0.8
0 0.3

Table A.2 Application of conditional statistical parity by controlling on education level
and job experience.

(a) Dataset

Gender Education
Level

Job Ex-
perience Age Marital

Status Y

Female 1 8 2 39 single 0
Female 2 8 2 26 married 1
Female 3 12 8 32 married 1
Male 4 8 2 26 married 1
Male 5 8 2 41 single 0
Male 6 12 8 30 single 1

(b) Prediction

Ŷ S

1 0.5
0 0.1
1 0.5
1 0.5
1 0.5
1 0.8

(predicted acceptance rate is 1 for both applicants). Overall, the prediction is not fair as it
does not hold for one combination of values of E.
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Equalized Odds

In Table A.1, the TPR for male and female groups is 0.6 and 0.33, respectively, while the
FPR is exactly the same (0.5) for both groups. Consequently, the equalized odds does not
hold.

The scenario in Table A.3 shows an extreme case of a job hiring dataset where the male
group has a large number of false positives (Male 7− 100) while equal opportunity is satisfied.

Table A.3 An extreme job hiring scenario satisfying equal opportunity. All Male 7−100
samples are false positives (label Y is 0 and prediction Ŷ is 1).

(a) Dataset

Gender Education
Level

Job Ex-
perience Age Marital

Status Y

Female 1 8 2 39 single 1
Female 2 8 2 26 married 0
Female 3 12 8 32 married 1
Male 4 8 2 26 married 1
Male 5 8 2 41 single 0
Male 6 12 8 30 single 1
Male 7 10 5 32 married 0

. . . . . . . . . . . . . . . 0
Male 100 8 10 27 single 0

(b) Prediction

Ŷ S

1 0.5
0 0.1
0 0.3
1 0.5
0 0.2
0 0.4
1 0.8
1 . . .
1 0.7

Conditional Use Accuracy Equality

The calculated PPVs for male and female applicants in our hiring example (Table A.1) are
0.75 and 0.5, respectively. NPVs for male and female applicants are both equal to 0.33.
Overall the dataset in Table A.1 does not satisfy conditional use accuracy equality.

An example Proving Proposition 4

Table A.4 illustrates an example that satisfies overall accuracy but not conditional use
accuracy equality.

Treatment Equality

Table A.5 shows a dataset that fails to satisfy all previous notions, yet treatment equality
is satisfied. Treatment equality can be used in real-world scenarios where only the type of
misclassification rate matters for fairness.
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Table A.4 A job hiring scenario satisfying overall accuracy but not conditional use
accuracy equality.

OA = 0.625
PPV = 1
NPV = 0.25

Group 1 (Female)

Gender Y Ŷ

F1 1 1
F2 1 0
F3 1 0
F4 0 0
F5 1 1
F6 1 1
F7 1 0
F8 1 1

Group 2 (Male)

Gender Y Ŷ

M1 1 1
M2 0 1
M3 0 1
M4 0 0
M5 0 0
M6 0 0
M7 0 1
M8 1 1

OA = 0.625
PPV = 0.4
NPV = 1

Table A.5 A job hiring scenario satisfying treatment equality but not satisfying all of
the previous notions.

TPR = 0.33
FPR = 0.8
PPV = 0.2
NPV = 0.33

OA = 0.25
FN/FP = 0.5

Group 1 (Female)

Gender Y Ŷ

F1 1 1
F2 0 0
F3 0 1
F4 0 1
F5 0 1
F6 0 1
F7 1 0
F8 1 0

Group 2 (Male)

Gender Y Ŷ

M1 1 1
M2 1 1
M3 1 1
M4 1 1
M5 0 0
M6 0 1
M7 0 1
M8 1 0

TPR = 0.8
FPR = 0.66
PPV = 0.66
NPV = 0.5

OA = 0.625
FN/FP = 0.5

Total Fairness

Table A.6 shows a scenario where total fairness holds. More generally, total fairness is satisfied
in the very uncommon situation where the proportions of TPs, TNs, FPs, and FNs are the
same in all groups.

Balance

Table A.7 shows a job hiring scenario where the average score for female candidates that
should be hired (Y = 1) is 7.1 while it is 4.7 for male candidates. The scenario is not balanced
for positive class. Note that, despite the significant difference between these two average
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Table A.6 A job hiring scenario satisfying total fairness.

TPR = 0.5
FPR = 0.66
PPV = 0.33
NPV = 0.5

OA = 0.4
FN/FP = 0.5

Group 1 (Female)

Gender Y Ŷ

F1 1 1
F2 0 0
F3 0 1
F4 0 1
F5 1 0

Group 2 (Male)

Gender Y Ŷ

M1 1 1
M2 1 1
M3 0 0
M4 0 0
M5 0 1
M6 0 1
M7 0 1
M8 0 1
M9 1 0
M10 1 0

TPR = 0.5
FPR = 0.66
PPV = 0.33
NPV = 0.5

OA = 0.4
FN/FP = 0.5

values, for a score threshold value of 5, the scenario of Table A.7 satisfies both statistical
parity (Eq. 3.1) and equal opportunity (Eq. 3.4).

Table A.7 A job hiring scenario satisfying statistical parity and equal opportunity (for
a score threshold value of 5) but neither balance for positive class nor balance for
negative class.

(a) Group 1 (Fe-
male)

Gender Y S

F1 1 9
F2 1 8
F3 0 8
F4 1 4.5
F5 0 4.5
F6 0 3.5

(b) Group 2 (Male)

Gender Y S

M1 1 6.2
M2 1 6
M3 0 5.5
M4 0 1
M5 1 2
M6 0 2

Calibration

the scenario of Table A.8 does not satisfy calibration.
Table A.9 shows a job hiring scenario satisfying calibration, but not predictive parity.

Well-Calibration Table A.10 (a) is a job hiring scenario that is calibrated (the proportion
of applicants that should be hired for every score value is the same for male and female
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Table A.8 A job hiring scenario satisfying predictive parity (for any threshold smaller
than 0.7 or larger than 0.8) but not calibration.

(a) Group 1 (Female)

Gender Y S

F1 1 0.85
F2 1 0.8
F3 0 0.8
F4 1 0.7
F5 0 0.7
F6 0 0.4
F7 1 0.4
F8 0 0.4

(b) Group 2 (Male)

Gender Y S

M1 1 0.85
M2 1 0.8
M3 1 0.8
M4 0 0.7
M5 0 0.7
M6 1 0.4
M7 0 0.4
M8 0 0.4

Table A.9 A job hiring scenario satisfying calibration but not predictive parity (for any
threshold).

(a) Group 1 (Female)

Gender Y S

F1 1 0.8
F2 1 0.8
F3 1 0.7
F4 1 0.7
F5 0 0.7
F6 0 0.7
F7 0 0.3
F8 0 0.3

(b) Group 2 (Male)

Gender Y S

M1 1 0.8
M2 1 0.8
M3 1 0.7
M4 0 0.7
M5 0 0.3
M6 0 0.3

groups) but not well-calibrated (the score value does not coincide with the proportion of
applicants that should be hired). Table A.10 (b) is both calibrated and well-calibrated.
Garg et al. [96] show that the difference between calibration and well-calibration is a simple
difference in mapping. That is, “the scores of a calibrated predictor can, using a suitable
transformation, be converted to scores satisfying well-calibration”.

A.1.2 Causality-Based Fairness Notions
Table A.11 shows a simple job hiring dataset where A is the sensitive attribute corresponding
to the gender (A = 1 for male and A = 0 for female), C is a covariate corresponding to the
job type (C = 0 for flexible schedule job and C = 1 for non-flexible job schedule), and Y is
the outcome corresponding to the hiring decision (Y = 0 for not-hired and Y = 1 for hired).
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Table A.10 Calibration vs well-calibration.

(a) Calibrated but not well-calibrated

s 0.4 0.7 0.8 0.85
Female 0.33 0.5 0.6 0.6
Male 0.33 0.5 0.6 0.6

(b) Calibrated and well-calibrated

s 0.4 0.7 0.8 0.85
Female 0.4 0.7 0.8 0.85
Male 0.4 0.7 0.8 0.85

Table A.11 A job hiring example with 24 applications. A is the gender (sensitive
attribute) where A = 1: male, A = 0: female. C is the job type where C = 0: flexible
time job, C = 1: non-flexible time job. Y is the hiring decision (outcome) where Y = 0:
not-hired, Y = 0: hired.

Female applicants Male applicants
(Treatment group) (Control Group)
i A C Y i A C Y
1: 0 0 1 13: 1 0 1
2: 0 0 1 14: 1 0 0
3: 0 0 0 15: 1 0 0
4: 0 0 0 16: 1 0 0
5: 0 0 0 17: 1 1 1
6: 0 0 0 18: 1 1 1
7: 0 0 0 19: 1 1 1
8: 0 0 0 20: 1 1 1
9: 0 1 1 21: 1 1 0
10: 0 1 1 22: 1 1 0
11: 0 1 1 23: 1 1 0
12: 0 1 0 24: 1 1 0

Total Variation (TV)

In the example of Table A.11:

TV = P[Y = 1 | A = 1]− P[Y = 1 | A = 0] = 5
12 −

5
12 = 0.

So according to TV, the predicted hiring decision is fair.
Later sections will show how ATE and counterfactual outcomes can be estimated from

observable data. Table A.12 shows the same job hiring dataset but with counterfactual
outcomes.
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Table A.12 The job hiring example with counterfactual outcomes. Acf denotes the
candidate’s gender in the counterfactual world. Y cf denotes the counterfactual potential
outcome.

Female applicants Male applicants
(Treatment group) (Control Group)

i A C Y Acf Y cf i A C Y Acf Y cf

1: 0 0 1 1 1 13: 1 0 1 0 1
2: 0 0 1 1 0 14: 1 0 0 0 1
3: 0 0 0 1 1 15: 1 0 0 0 0
4: 0 0 0 1 0 16: 1 0 0 0 0
5: 0 0 0 1 0 17: 1 1 1 0 1
6: 0 0 0 1 0 18: 1 1 1 0 1
7: 0 0 0 1 0 19: 1 1 1 0 1
8: 0 0 0 1 0 20: 1 1 1 0 1
9: 0 1 1 1 1 21: 1 1 0 0 1
10: 0 1 1 1 1 22: 1 1 0 0 0
11: 0 1 1 1 0 23: 1 1 0 0 0
12: 0 1 0 1 0 24: 1 1 0 0 0

Average Total Effect (ATE)

ATE is computed by considering the average potential outcome if the gender is female A = 0,
that is, 1

n

∑n
i=1(Y 0

i ) and the same if the gender is male A = 1, 1
n

∑n
i=1(Y 1

i ). The former
(∑n

i=1(Y 0
i )) corresponds to the average of the observed outcomes (Y ) of samples 1 to 12

and counterfactual outcomes (Y cf ) of samples 13 to 24, which gives 12
24 = 1

2 . Similarly, the
average potential outcome if the gender is male corresponds to the counterfactual outcomes
of samples 13 to 24 and the observed outcomes of samples 1 to 12, which gives 9

24 = 3
8 .

Hence, ATE= 3
8 −

1
2 = −1

8 which indicates a positive bias for female.

Average Treatment Effect on the Treated (ATT)

In the example of Table A.12, ATT corresponds to the difference between the average
observable outcome (Y ) and the average counterfactual outcome (Y cf ) in samples 1 to 12,
that is, ATT= 5

12 −
4
12 = 1

12 , which confirms the positive bias for female.

Average Treatment Effect on the Control Group (ATC)

Using the example of Table A.12, ATC = 5
12 −

7
12 = −1

6 .
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Conditional Average Treatment Effect (CATE)

Using the covariate C = 0 (flexible schedule jobs) in the hiring example of Tabel A.12,
CATE(C = 0) = 3

12 −
4
12 = − 1

12 , which is again confirming hiring decisions in favor of female.

Individual Treatment Effect (ITE)

In Table A.12, ITE(i = 3) = 0− 1 = −1 which indicates a discrimination against the female
applicant i = 3.

An Example of Data Exhibiting the Simpson’s Paradox

According to the job hiring example of Tables A.11 and A.12, there exists a statistical anomaly
where some statistical notions such as TV fail to appropriately account for the bias between
sub-populations (e.g., female vs. male). Notice first that, according to the collected data,
both female and male candidates are hired at the same rate 5

12 . Notice also that if the hiring
rates are adjusted according to the job type, female candidates are hired at an equal or higher
rate for both types of jobs: for flexible schedule jobs (C = 0), the hiring rates are the same 1

4
and for non-flexible jobs (C = 1), the hiring rates are 3

4 for female and 4
8 = 1

2 for male. The
explanation for such a counter-intuitive result is that most female candidates (8 out of 12) are
applying for flexible schedule jobs (for family reasons), in which hiring is more difficult. On
the other hand, few male candidates (4 out of 12) are applying for flexible schedule jobs and
instead massively applying for the more accessible non-flexible jobs (8 out of 12 applicants).
To appropriately assess discrimination in this case, there is a need to adjust on the job type
variable C, that is, assessing discrimination for each job type separately. This simple job
hiring scenario is similar to the Berkeley sex discrimination in college admission [33] where
data showed a bias for male applicants overall, but when results were analyzed separately for
each department, data showed a slight bias in favor of female candidates.

Table A.13 shows an example with 30 observed samples. In such cohort, TV= 1
15 indicates

a discrimination against female applicants. However, all causal notions (TE = ATE = − 2
15 ,

ATT = − 2
15 , and ATC = − 2

15 , CATE(C = 0) = − 2
15 , and CATE(C = 1) = − 2

15 are
indicating a bias in favor of female.

Natural Direct Effect (NDE)

To see how NDE is computed, consider the sample dataset in Table A.14 corresponding to the
causal graph in Fig. 3.5. Similarly to the previous examples, we assume the counterfactual
values are available (grayed columns). The cohort consists of 6 female candidates and 6 male
candidates. Y cf is the counterfactual potential outcome (the gender differs from the observed
sample). E1 is the education level had the gender was male. R1 is the hobby of the candidate
had the gender was male. Y0,E1,R1 is the hiring decision had (1) the gender was female and
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Table A.13 The job hiring example with a Simpson’s paradox.

Female applicants Male applicants
(Treatment group) (Control Group)

i A C Y Acf Y cf i A C Y Acf Y cf

1: 0 0 1 0 1 16: 1 0 1 1 1
2: 0 0 1 0 1 17: 1 0 0 1 1
3: 0 0 1 0 0 18: 1 0 0 1 0
4: 0 0 0 0 0 19: 1 0 0 1 0
5: 0 0 0 0 0 20: 1 0 0 1 0
6: 0 0 0 0 0 21: 1 1 1 1 1
7: 0 0 0 0 0 22: 1 1 1 1 1
8: 0 0 0 0 0 23: 1 1 1 1 1
9: 0 0 0 0 0 24: 1 1 1 1 1
10: 0 0 0 0 0 25: 1 1 1 1 1
11: 0 1 1 0 1 26: 1 1 1 1 1
12: 0 1 1 0 1 27: 1 1 1 1 1
13: 0 1 1 0 1 28: 1 1 0 1 1
14: 0 1 1 0 0 29: 1 1 0 1 0
15: 0 1 0 0 0 30: 1 1 0 1 0

Table A.14 A job hiring scenario corresponding to the causal graph in Fig. 3.5 (Sec-
tion 3.4.2).

i A E R Y Y cf E1 R1 Y0,E1,R1 E0 R0 Y1,E0,R0 Y0,E1,R0

1: 0 1 0 1 1 1 1 1 1 0 1 1
2: 0 1 0 1 1 1 1 1 1 0 1 1
3: 0 1 1 0 1 0 1 1 1 1 1 0
4: 0 0 0 1 1 1 0 1 0 0 1 1
5: 0 0 0 0 1 0 1 0 0 0 1 1
6: 0 0 0 0 0 0 0 0 0 0 0 0
7: 1 1 1 1 1 1 1 1 1 0 1 1
8: 1 1 0 1 1 1 0 1 1 0 1 1
9: 1 1 1 1 0 1 1 0 1 1 0 0
10:1 0 1 1 1 0 1 1 1 0 1 1
11:1 0 1 0 1 0 1 1 0 0 1 0
12:1 0 1 0 0 0 1 0 0 0 1 1

(2) the education and hobby were set to the values if the candidate was male. According
to Eq. (3.35), NDE1,0(y = 1) = P[y0,E1,R1 ]− P[y1] = 8

12 −
9
12 = − 1

12 which indicates a direct
discrimination against female candidates.
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Natural Indirect Effect (NIE)

In the example of Table A.14, NIE1,0(y = 1) = P[y1,E0,R0 ]− P[y1] = 10
12 −

9
12 = 1

12

Path Specific Effect (PSE)

Given π = {A → Y, A → R → Y }, PSEπ
1,0 = P[Y0,E1,R0 ] − P[y1] = 8

12 −
9
12 = − 1

12 which
indicates a discrimination against female candidates.

Counterfactual Effects

Considering the simple job hiring example and focusing on the female group (A = 0),
DE1,0(y|1) measures the change in the probability of Y (e.g., hiring) had A been 1 (female),
while mediators E and R are kept at the level they would take had A been 1 (male).

Using the values in Table A.14, DE1,0 = P[y0,E1,R1 |0] − P[y1|0] = 4
6 −

5
6 = −1

6
which indicates a direct counterfactual discrimination against female. Similarly, IE1,0 =
P[y1,E0,R0 |0] − P[y1|0] = 5

6 −
5
6 = 0 which indicates the absence of counterfactual indirect

discrimination. SE1,0(y) reads the change in the probability of hiring Y had A been 0 (male)
for the female candidates w.r.t the probability of hiring of male candidates. Using Table A.14,
SE1,0(y) = P[y1|0]− P[y|1] = 5

6 −
4
6 = 1

6 which indicates a spurious effect in favor of female.

Counterfactual Error Rates

Table A.15 A job hiring scenario for counterfactual direct error rate ERd computa-
tion. E1,1 is a short version of EA=1,Y =1. R1,1 means RA=1,Y =1. Ŷ0,1,E1,1,R1,1 means
ŶA=0,Y =1,E1,1,R1,1 . Y1,1 means YA=1,Y =1.

i A E R Ŷ Y E1,1 R1,1 Ŷ0,1,E1,1,R1,1 Ŷ1,1
1: 0 1 0 1 1 1 0 1 1
2: 0 1 0 1 1 1 0 1 1
3: 0 1 1 0 1 0 1 1 1
4: 0 0 0 1 1 1 0 1 0
5: 0 0 0 0 1 0 0 0 0
6: 0 0 0 0 0 0 0 0 0
7: 1 1 1 1 1 1 1 1 1
8: 1 1 0 1 1 1 0 1 1
9: 1 1 1 1 0 0 1 0 1
10: 1 0 1 1 1 0 1 0 0
11: 1 0 1 0 1 0 1 1 0
12: 1 0 1 0 0 0 1 0 0

Table A.15 shows the values (observed and counterfactual) needed to compute counter-
factual direct error rate ERd for the female candidates that should be hired (A = 1 and
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Y = 1).

ERd(Ŷ = 1|A = 0, Y = 1) = P[ŶA=0,Y =1,E1,1,R1,1 |A = 0, Y = 1]
− P[ŶA=1,Y =1|A = 0, Y = 1]

where E1,1 is a short version of EA=1,Y =1 which refers to the education level of the candidate
had “she” been male and hired. R1,1 means RA=1,Y =1 and indicates the hobby of the
candidate had “she” been male and hired. ŶA=0,Y =1,E1,1,R1,1 reads the hiring decision had
the candidate was female, hired, with education E1,1, and hobby R1,1. YA=1,Y =1 reads the
hiring decision had the candidate was male and hired. Using the values in Table A.15 (rows
1 to 5 in the last two columns), ERd(Ŷ = 1|A = 0, Y = 1) = 4

5 −
3
5 = 1

5 which indicates a
higher direct error rate for the female group.

Potential Outcome Estimation Techniques

Re-weighting. Table A.16 shows the values of propensity (e(ci)) as well as balance (b(ci))
scores for each unit i in the simple job hiring example. Using Eq. (3.66), the ˆATEIP W

estimation of ATE is 0.25 indicating discrimination in favor of the female group.

Table A.16 Estimation of ATE using inverse propensity weighting (IPW) on the job
hiring example with propensity score e(ci) and balancing score b(ci).

Female applicants Male applicants
(Treatment group) (Control Group)

i A C Y e(ci) b(ci) i A C Y e(ci) b(ci)
1: 1 0 1 2/3 3/2 13: 0 0 1 2/3 3
2: 1 0 1 2/3 3/2 14: 0 0 0 2/3 3
3: 1 0 0 2/3 3/2 15: 0 0 0 2/3 3
4: 1 0 0 2/3 3/2 16: 0 0 0 2/3 3
5: 1 0 0 2/3 3/2 17: 0 1 1 1/3 3/2

6: 1 0 0 2/3 3/2 18: 0 1 1 1/3 3/2

7: 1 0 0 2/3 3/2 19: 0 1 1 1/3 3/2

8: 1 0 0 2/3 3/2 20: 0 1 1 1/3 3/2

9: 1 1 1 1/3 3 21: 0 1 0 1/3 3/2

10: 1 1 1 1/3 3 22: 0 1 0 1/3 3/2

11: 1 1 1 1/3 3 23: 0 1 0 1/3 3/2

12: 1 1 0 1/3 3 24: 0 1 0 1/3 3/2

ˆATEnorm
IP W for the same example equals 0.125, which is a perfect estimation of ATE in this

case as both values coincide (ATE = 0.125).
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A.1.3 An Example of Computing P[ya] by Applying do-calculus
P[ya] is identifiable in Fig. 3.9d. By applying the chain rule following the topological order:
W2 < A < W1 < W3 < Y , we get:

P[ya] =
∑

w1w2w3

P[y|do(a), w1, w2, w3] P[w1|do(a), w2] P[w2]

× P[w3|w2, w1, do(a)] (A.1)
=
∑

w1w2

P[y|do(a), w1, w2] P[w1|do(a), w2] P[w2] (A.2)

=
∑

w1w2

P[y|do(a), w2] P[w1|a, w2] P[w2] (A.3)

=
∑

w1w2

∑
a′

P[y|a′, w2, do(w1)] P[a′|do(w1), w2]

× P[w1|a, w2] P[w2] (A.4)
=
∑
w′

1

∑
w′

2

∑
a′

P[y|w′
1, w′

2, a′] P[a′|w′
2] P[w′

1|w′
2, a] P[w′

2] (A.5)

Note that w3 is omitted from (A.2) since it is considered latent [233]. Applying Rule 2
followed by Rule 3 to the first term in (A.2) yields P[y|do(a), w2] (A.3). Likewise, applying
Rule 2 to the second term in (A.2) leads to P[w1|a, w2]. Thus, the original problem reduces
to identifying the term P[y|do(a), w2] in (A.3). Here, we cannot apply Rule 2 to exchange
do(a) with a because GA (graph obtained by removing all emanating arrows from A) contains
a backdoor path from A to Y . Thus, to block that path, we need to condition and sum
over all values of A as shown in Eq. (A.4) (∑a′ P[y|a′, w2, do(w1)] P[a′|do(w1), w2]. Now,
applying Rule 2 to P[y|a′, w2, do(w1)] and Rule 3 to P[a′|do(w1), w2] and adding the other
terms results in the final expression in (A.5). The problem of do-calculus is the difficulty of
determining the correct order of application of the rules. Using the wrong order may hinder
the identifiability or produce a very complex expression [234].

A.1.4 Computation of the counterfactual probability of the
teacher firing example

To illustrate the computation of a counterfactual probability, consider the teacher firing
example of Fig. 3.4 and the counterfactual probability P[ya0 |a1] which reads the probability
of firing a teacher who is assigned a class with a high initial level of students (a1) had she
been assigned a class with a low initial level of students (a0). Applying make-cg algorithm
based on this counterfactual quantity produces the counterfactual graph in Fig. 3.10d, which
combines two worlds: the actual world where the teacher has normally A = a1 and the
counterfactual world where the same teacher is assigned A = a0. Both variables C are
reduced to a single variable, and Y and Ya0 are connected by an unobservable confounder.
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The counterfactual graph is composed of three c-components {C}, {A}, {Y, Ya1}. Applying
algorithm IDC∗ [212] results in:

P[ya0 |a1] =
∑

y,c Q(c) Q(a1) Q(y, ya0)
P[a1] (A.6)

where Q(v) = P[v|pa(V)] in the counterfactual graph. Hence,

P[ya0 |a1] =
∑

y,c P[c] P[a1|c] P[y, ya0 |c]
P[a1]

=
∑

c P[c] P[a1|c] P[ya0 |c]
P[a1] (A.7)

=
∑

c P[c] P[a1|c] P[y|a0, c]
P[a1] (A.8)

= 0.5× 0.2× 0.01 + 0.5× 0.8× 0.25
0.5

= 0.202

y in Eq. (A.7) is cancelled by summation while P[ya0 |c] in the same equation is transformed
into P[y|a0, c] in Eq. (A.8) using Rule 2 of the do-calculus.



Appendix B

Chapter 4: Impact of Privacy on
Fairness

B.1 Fairness Under Multidimensional Local Differ-
ential Privacy: Empirical Study 2

B.1.1 Results of the Synthetic Dataset 2
The synthetic dataset 2 follows the exact same causal model depicted in Fig. 4.13. The data
distribution is the only difference between the Synthetic datasets 1 and 2. More specifically,
synthetic data 2 differs from synthetic data 1 solely by Y distribution.
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Fig. B.1 Impact of k-RR on fairness for the Synthetic datasets 2 generated with three different
thresholds leading to different Y distributions. The gray shaded area represents the disparity results
using the baseline model (noLDP).
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B.1.2 Results of the Synthetic Dataset 1 and the Compas
Datasets
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Fig. B.2 Impact of k-RR on fairness for the synthetic dataset 1 generated with three different
thresholds leading to different Y distributions. The gray shaded area represents the disparity results
using the baseline model (noLDP).
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Fig. B.3 Impact of Y distribution on the privacy-fairness trade-off. Columns 1, 2, and 3 illustrate
the results for the Compas dataset when the Y distribution is skewed to 1, balanced, and skewed to 0,
respectively. The gray shaded area represents the disparity results using the baseline model (noLDP).
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B.2 A Systematic and Formal Study of the Impact
of Local Differential Privacy on Fairness

B.2.1 Proofs
Lemma 4.4.1 . ∆′x

a = p ∆x
a + (1− p) ∆x

a .

Proof of Lemma 4.4.1.

∆′x
a = P̂[Y = 1, X = x, A′ = a] − P̂[Y = 0, X = x, A′ = a]

= p P̂[Y = 1, X = x, A = a] + (1 − p)P̂[Y = 1, X = x, A = a] −
(

p P̂[Y = 0, X = x, A = a] + (1 − p)P̂[Y = 0, X = x, A = a]
)

= p
(
P̂[Y = 1, X = x, A = a] − P̂[Y = 0, X = x, A = a]

)
+ (1 − p)

(
P̂[Y = 1, X = x, A = a] − P̂[Y = 0, X = x, A = a]

)
= p ∆x

a + (1 − p) ∆x
a

Theorem 4.4.1 Impact of LDP on CSDx.

1. if CSDx > 0 then 0 ≤ CSD′
x ≤ CSDx

2. if CSDx < 0 then CSDx ≤ CSD′
x ≤ 0

3. if CSDx = 0 then CSD′
x = CSDx = 0

Proof of Theorem 4.4.1.

1. if CSDx > 0 then, according to Assumption 4.4.1, Ŷ1 = 1 and Ŷ0 = 0.
Hence, ∆x

1 ≥ 0 and ∆x
0 < 0.

Using Lemma 4.4.2, we have:

Ŷ ′x
1 =


1 if ∆x

1 > 0 and eε ≥ −∆x
0/∆x

1

0 if (∆x
1 > 0 and eε < −∆x

0/∆x
1) or ∆x

1 = 0

and

Ŷ ′x
0 =


1 if ∆x

1 > 0 and eε ≤ −∆x
1/∆x

0

0 if (∆x
1 > 0 and eε > −∆x

1/∆x
0) or ∆x

1 = 0

Consequently, three scenarios are possible:
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• Ŷ ′x
1 = 0 ∧ Ŷ ′x

0 = 0 if ∆x
1 = 0

or ∆x
1 > 0 and eε < −∆x

0/∆x
1 and eε > −∆x

1/∆x
0

• Ŷ ′x
1 = 1 ∧ Ŷ ′x

0 = 0 if ∆x
1 > 0 and eε ≥ −∆x

0/∆x
1 and eε > −∆x

1/∆x
0

• Ŷ ′x
1 = 1 ∧ Ŷ ′x

0 = 1 if ∆x
1 > 0 and eε ≥ −∆x

0/∆x
1 and eε ≤ −∆x

1/∆x
0

Note that the case Ŷ ′x
1 = 0 ∧ Ŷ ′x

0 = 1 is not possible. Indeed, Ŷ ′x
1 = 0 ∧ Ŷ ′x

0 = 1
implies eε < −∆x

0/∆x
1 and eε ≤ −∆x

1/∆x
0 . Note that the two fractions are one the inverse

of the other. Hence, one of them is smaller than 1, or both are 1. Therefore, we would
have eε < 1, which is not possible because ε ≥ 0.
Hence we have CSD′

x = 0 or CSD′
x = 1, i.e., 0 ≤ CSD′

x ≤ CSDx.

2. Case 2 (CSDx < 0) is analogous to case 1. That is, proving this case amounts to
replacing 0 by 1 and 1 by 0 in case 1 proof.

3. if CSDx = 0, two cases are possibles:

• Ŷ x
1 = 0∧ Ŷ x

0 = 0. This means that ∆x
1 < 0∧∆x

0 < 0. By Lemma 4.4.2, we derive
Ŷ ′x

1 = 0 ∧ Ŷ ′x
0 = 0. Hence, CSD′

x = 0.

• Ŷ x
1 = 1∧ Ŷ x

0 = 1. This means that ∆x
1 ≥ 0∧∆x

0 ≥ 0. By Lemma 4.4.2, we derive
Ŷ ′x

1 = 1 ∧ Ŷ ′x
0 = 1. Hence, CSD′

x = 0.

Lemma 4.4.3 Quantification of SD.

SD =


P[∆X

1 ≥ 0 ∧ ∆X
0 < 0] if ∃x Γx

1 > Γx
0

0 if ∀x Γx
1 = Γx

0

− P[∆X
1 < 0 ∧ ∆X

0 ≥ 0] if ∃x Γx
1 < Γx

0
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Proof of Lemma 4.4.3.

SD def= P[Ŷ = 1|A = 1]− P[Ŷ = 1|A = 0]
=
∑

x

P[Ŷ = 1, X = x|A = 1]−
∑

x

P[Ŷ = 1, X = x|A = 0]

=
∑

x

P[Ŷ = 1|X = x, A = 1] · P[X = x|A = 1]−
∑

x

P[Ŷ = 1|X = x, A = 0] · P[X = x|A = 0]

(a)=
∑

x

Ŷ x
1 P[X = x|A = 1]−

∑
x

Ŷ x
0 P[X = x|A = 0]

(b)=
∑

x

Ŷ x
1 P[X = x]−

∑
x

Ŷ x
0 P[X = x]

(c)=
∑
x:

∆x
1 ≥0

P[X = x]−
∑
x:

∆x
0 ≥0

P[X = x] (B.1)

In step (a), we replace P[Ŷ = 1|X = x, A = 1] and P[Ŷ = 1|X = x, A = 0] by their
corresponding abbreviated forms Ŷ x

1 and Ŷ x
0 . Step (b) follows from X ⊥ A. Step (c) follows

because Ŷ x
1 = 1 when ∆x

1 ≥ 0, and Ŷ x
1 = 0, otherwise. Similarly, Ŷ x

0 = 1 when ∆x
0 ≥ 0, and

Ŷ x
0 = 0, otherwise.

Then, we consider three cases:

• Case ∃x Γx
1 > Γx

0 . By Assumption 4.4.3 (uniform discrimination) we have that
∀x Γx

1 ≥ Γx
0 . Also, recall that Γx

a ≥ 0 if and only if ∆x
a ≥ 0. Therefore, in the expression

(B.1), for each x such that ∆x
0 ≥ 0, we also have ∆x

1 ≥ 0, which concludes the proof for
this case.

• Case ∀x Γx
1 = Γx

0 . We have that ∆x
0 ≥ 0 if and only if ∆x

1 ≥ 0, hence the two terms in
the expression ( B.1) are equal.

• Case ∃x Γx
1 < Γx

0 . This is the symmetric of the first case. Following the same reasoning
(with 0 and 1 exchanged), we have that, in the expression (B.1), for each x such that
∆x

1 ≥ 0, we also have ∆x
0 ≥ 0.

Lemma 4.4.4 Quantification of SD′.

SD′ =


P[∆′X

1 ≥ 0 ∧ ∆′X
0 < 0] if ∃x Γ′x

1 > Γ′x
0

0 if ∀x Γ′x
1 = Γ′x

0

− P[∆′X
1 < 0 ∧ ∆′X

0 ≥ 0] if ∃x Γ′x
1 < Γ′x

0
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Proof of Lemma 4.4.4.

SD′ def= P[Ŷ ′ = 1|A = 1]− P[Ŷ ′ = 1|A = 0]

=
∑

x

P[Ŷ ′ = 1, X = x|A = 1]−
∑

x

P[Ŷ ′ = 1, X = x|A = 0]

=
∑

x

P[Ŷ ′ = 1|X = x, A = 1] · P[X = x, A = 1]−
∑

x

P[Ŷ ′ = 1|X = x, A = 0] · P[X = x, A = 0]

=
∑

x

Ŷ ′
x

1 P[X = x|A = 1]−
∑

x

Ŷ ′
x

0 P[X = x|A = 0]

=
∑
x:

∆′x
1 ≥0

P[X = x]−
∑
x:

∆′x
0 ≥0

P[X = x]

The proof proceeds like the one in Lemma 4.4.3. We need, however, the following result, which
states that LDP obfuscation preserves uniform discrimination assumption (Assumption 4.4.3).

Lemma B.2.1 . If ∃x∗ Γ′x∗
a > Γ′x∗

a then ∀x Γ′x
a ≥ Γ′x

a

Proof
We prove the property by showing that Γ′x

a > Γ′x
a if and only if Γx

a > Γx
a, and that Γ′x

a = Γ′x
a if

and only if Γx
a = Γx

a. Then, clearly, the statement of the theorem derives from the assumption
of uniform discrimination for the original data (before obfuscation).

It is easy to see that

Γ′x
a = p∆x

a + (1− p)∆x
a

pP[X = x, A = a] + (1− p)P[X = x, A = a]

Let us prove that Γ′x
a > Γ′x

a if and only if Γx
a > Γx

a:

Γ′xa > Γ′xa
⇔

p∆x
a+(1−p)∆x

a

pP[X=x,A=a]+(1−p)P[X=x,A=a] >
p∆x

a
+(1−p)∆x

a

pP[X=x,A=a]+(1−p)P[X=x,A=a]
⇔

p2∆x
aP[X = x, A = a] + (1− p)2∆x

aP[X = x, A = a] > p2∆x
aP[X = x, A = a] + (1− p)2∆x

aP[X = x, A = a]
⇔

p2Γx
aP[A = a, X = x]P[A = a, X = x]

+
(1− p)2Γx

aP[A = a, X = x]P[A = a, X = x]

 >


p2Γx

aP[A = a, X = x]P[A = a, X = x]
+
(1− p)2Γx

aP[A = a, X = x]P[A = a, X = x]
⇔

P[A = a, X = x]P[A = a, X = x]
(
p2Γx

a + (1− p)2Γx
a

)
> P[A = a, X = x]P[A = a, X = x]

(
p2Γx

a + (1− p)2Γx
a

)
⇔

p2 (Γx
a − Γx

a) > (1− p)2 (Γx
a − Γx

a)
⇔

Γx
a > Γx

a
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The property Γ′x
a = Γ′x

a if and only if Γx
a = Γx

a can be proved similarly, just replace the “>”
symbol by “=”.

Theorem 4.4.3 Impact of LDP on SD. Case X ⊥̸ A.

1. if ∃x Γx
1 > Γx

0 then SD′ ≤ SD

2. if ∃x Γx
1 < Γx

0 then SD ≤ SD′

3. if ∀x Γx
1 = Γx

0 then SD′ = SD

Proof of Theorem 4.4.3. We prove the result for the case ∃x Γx
1 > Γx

0 , the other two cases
can be proven similarly.
Recall that:

SD =
∑
x:

∆x
1 ≥0

P[X = x|A = 1]−
∑
x:

∆x
0 ≥0

P[X = x|A = 0] Ŷ x
1 , Ŷ x

0 = 1

Since we are considering the case ∃x Γx
1 > Γx

0 , from Assumption 4.4.3 (uniform discrimination)
we derive ∀x Γx

1 ≥ Γx
0 , hence:

SD =
∑
x:

∆x
1 ,∆x

0 ≥0

P[X = x|A = 1]− P[X = x|A = 0] +
∑
x:

∆x
1 ≥0,∆x

0 <0

P[X = x|A = 1]

After obfuscation, from Lemma B.2.1 we have that ∀x Γ′x
1 > Γ′x

0 . Hence:

SD′ =
∑
x:

∆′x
1 ,∆′x

0 ≥0

P[X = x|A = 1]− P[X = x|A = 0] +
∑
x:

∆′x
1 ≥0,∆′x

0 <0

P[X = x|A = 1]

=
∑
x:

∆x
1 ,∆x

0≥0

P[X = x|A = 1]− P[X = x|A = 0] +
∑
x:

∆x
1 >0,∆x

0 <0,

−
∆x

0
∆x

1
≤eε≤−

∆x
1

∆x
0

P[X = x|A = 1]− P[X = x|A = 0]

+
∑
x:

∆x
1≥0,∆x

0 <0

eε≥−
∆x

0
∆x

1
,

eε>−
∆x

1
∆x

0

P[X = x|A = 1]

By case analysis, and similar to the proof of Theorem 4.4.2, we can conclude Theorem 4.4.3.
The main difference with Theorem 4.4.2, is that SD′ contains the additional term

∑
x:

∆x
1 >0,∆x

0 <0,

−
∆x

0
∆x

1
≤eε≤−

∆x
1

∆x
0

P[X = x|A = 1]− P[X = x|A = 0]



244 Chapter 4: Impact of Privacy on Fairness

which can be negative and large enough to cause SD′ to go below 0. Hence, SD′ and SD can
be opposite signs.

Theorem 4.4.4 Impact of LDP on EOD.

1. if EOD > 0 then 0 ≤ EOD′ ≤ EOD

2. if EOD < 0 then EOD ≤ EOD′ ≤ 0

3. if EOD = 0 then EOD′ = EOD = 0

Proof of Theorem 4.4.4.

EOD def= P[Ŷ = 1|Y = 1, A = 1] − P[Ŷ = 1|Y = 1, A = 0]

=
∑

x

P[Ŷ = 1, X = x|Y = 1, A = 1] −
∑

x

P[Ŷ = 1, X = x|Y = 1, A = 0]

=
∑

x

P[Ŷ = 1|X = x, Y = 1, A = 1] · P[X = x|Y = 1, A = 1] −
∑

x

P[Ŷ = 1|X = x, Y = 1, A = 0] · P[X = x|Y = 1, A = 0]

=
∑

x

P[Ŷ = 1, Y = 1|X = x, A = 1]
P[Y = 1|X = x, A = 1]

· P[X = x|Y = 1, A = 1] −
∑

x

P[Ŷ = 1, Y = 1|X = x, A = 0]
P[Y = 1|X = x, A = 0]

· P[X = x|Y = 1, A = 0]

(a)
=
∑

x:
∆x

1 ≥0

P[X = x|Y = 1, A = 1] −
∑

x:
∆x

0 ≥0

P[X = x|Y = 1, A = 0]

(b)
=
∑

x:
∆x

1 ≥0

P[X = x|Y = 1] −
∑

x:
∆x

0 ≥0

P[X = x|Y = 1]

(a) follows from the fact that both P[Ŷ =1,Y =1|X=x,A=1]
P[Y =1|X=x,A=1] and P[Ŷ =1,Y =1|X=x,A=0]

P[Y =1|X=x,A=0] are equal
to 1 for x : ∆x

1 ≥ 0 and x : ∆x
0 ≥ 0, respectively. And (b) follows because of the reliability

assumption 4.4.4.

Now, after obfuscation and following the same reasoning as in the proofs of Theorems 4.4.2
and 4.4.3, we have:

EOD′ =
∑
x:

∆x
1 ,∆x

0≥0

P[X = x|Y = 1]− P[X = x|Y = 1] +
∑
x:

∆x
1 >0,∆x

0 <0,

−
∆x

0
∆x

1
≤eε≤−

∆x
1

∆x
0

P[X = x|Y = 1]− P[X = x|Y = 1]

+
∑
x:

∆x
1 ,∆x

0≥0,

eε≥−
∆x

0
∆x

1
,

eε>−
∆x

1
∆x

0

P[X = x|Y = 1]− P[X = x|Y = 1]

The rest is deduced by case analysis.
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B.2.2 Results for S7
Below are the data distribution (Table B.1) and the results of the dataset S7. The data was
generated following the causal graph depicted in Fig. 4.17(c). The results of applying privacy
on fairness are illustrated in Fig. B.4. Note that in this dataset, the Assumption 4.4.4 is
satisfied.

Table B.1 Distributions of the synthetic dataset S7.

Y = 1 X = 0 X = 1 X = 2 X = 3 X = 4

A = 1 0.05 0.07 0.04 0.06 0.05
A = 0 0.05 0.07 0.04 0.06 0.05

Y = 0 X = 0 X = 1 X = 2 X = 3 X = 4
A = 1 0 0.06 0.05 0.02 0
A = 0 0.09 0.04 0.06 0.02 0.12

16 8 2 1 0.85 0.5 0.4 0.3 0.2 0.1

0.0

0.2

0.4

0.6

0.8

1.0 SD
EOD
CSD0
CSD1
CSD2
CSD3
CSD4

Fig. B.4 Results for the synthetic dataset S7.





Appendix C

Chapter 5: Causal Discovery
Through the Lens of Fairness

C.1 Additional Experiments for Section 5.2

C.1.1 Results for the Second Synthetic Dataset with Gaussian
Noise

Fig. C.1 shows the graphs generated from the second dataset following the same causal
structure (Fig. 5.1) but with Gaussian noise. PC, FCI, and GES generate the same graph
structure as the first dataset. The only additional detail is that FCI is very confident about
the X5 → X6 edge (highlighted with a thicker edge). DirectLiNGAM, however, generates a
graph with several discrepancies compared with the correct graph. Both graphs generated
by LiNGAM fail even to identify v-structures correctly. This shows that LiNGAM is not
reliable when the non-Gaussianity assumption of the noise does not hold.

X1

X2 X3

X4 X5

X6

(a) PC

X1

X2 X3

X4 X5

X6

(b) FCI

X1

X2 X3

X4 X5

X6

(c) GES

X1

X2 X3

X4 X5

X6

(d) DirectLiNGAM

Fig. C.1 Generated causal graphs for the synthetic dataset with Gaussian noise.
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SBCN. A Suppes-Bayes Causal Network (SBCN) [36] is a different type of causal graph
that is used specifically for fairness assessment purposes. SBCN deviates from the causal
graphs used above in three aspects. First, vertices in an SBCN correspond to Bernoulli
variables with binary values. For example, ⟨ Gender = female ⟩ and ⟨ Gender = male ⟩
correspond to two different vertices. Second, causal relations between vertices follow Suppes’s
definition of causality [106, 226] (different from the typical definition of causality [181]) which
requires temporal priority and probability raising. For example, a node a is a cause of a
node y (a→ y) if and only if a occurs before y (temporal priority) and the cause a raises the
probability of the effect y, that is, P[y|a] > P[y|¬a] (probability raising). Third, every edge
(causal relation) is assigned a weight corresponding to the confidence score. The weight is
simply the extent of the probability raising (W (a, y) = P[y|a]− P[y|¬a)].

Discovering the SBCN structure from the data is a hybrid approach using constraint-based
as well as score-based ideas.

Measuring fairness/discrimination using the generated SBCN is based on random walks.
That is, based on the weighted edges between vertices, it is possible to measure several types of
fairness notions (e.g., group and individual discrimination, direct and indirect discrimination,
etc.). For instance, group discrimination is measured using a number n of random walks
that begin from a node v (e.g., ⟨gender = female⟩) and reach the node corresponding to the
negative decision (e.g., ⟨decision = not hired⟩). This corresponds to the discrimination score
ds−:

ds−(v) = rwv→δ−

n
(C.1)

where δ− ∈ V represents the node of the negative decision (e.g., not hired) and rwv→δ−

represents the number of random walks starting at vertex v and reaching δ− earlier than δ+

(node of the positive decision e.g. hired). Note that the choice of a path in a random walk is
based on the weights of the out-goings edges. Being at node x, the probability of moving to
node y rather than another neighbor node is:

p(x, y) = W (x, y)∑
z∈outgoing(x) W (x, z) (C.2)

outgoing(x) represents the set of outgoing edges from x. In case a random walk reaches
a node with no outgoing edges before attaining the decision node, it is restarted from the
starting node.

SBCN is used similarly to compute favoritism (positive discrimination), indirect, genuine,
individual, and sub-group discrimination.
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C.1.2 Results for the Dutch Census Dataset
The Dutch Census dataset consists of 60, 420 tuples where the sensitive attribute is the sex of
an individual and the outcome is her occupation (job). Six attributes are used for structural
learning, namely age, sex, economic status, education, marital status, and occupation. Age
is continuous, while the remaining variables are discrete. Three tiers in the partial order
for temporal priority are used: age and sex are defined in the first tier, education is in the
second tier, and marital status, economic status, and occupation are defined in the third tier.
When found to be mediators, only education considered explaining variable. The rest (age,
employment status, and marital status) are considered redlining variables.

sex occ.

age emp.

education marital
(a) PC

sex occ.

age emp.

education marital
(b) FCI

sex occ.

age emp.

education marital
(c) GES

Fig. C.2 Generated causal graph for the Dutch census dataset. Occ. stands for occupation and emp.
stands for whether an individual is employed or not.

The obtained graph in Fig. C.2 shows that PC and FCI produce very similar structures,
which are significantly different from the GES graph. In particular, the status− occupation,
marital−occupation, and status−marital edges are undirected in PC and FCI, but directed
in GES. This has a significant consequence on the set of possible causal paths between the
sensitive attribute and the outcome.

As shown in Fig. C.3, total effect measures (as high as 0.3 obtained when age is a
confounder age→ sex)) indicate a significant discrimination against females. The highest
variability is observed for DE values. When age is a confounder and employment status and
marital status variables are mediators, PC and FCI graphs exhibit 6 causal paths

For PC and FCI, there are in total 17 causal paths between sex and occupation, whereas
in GES, there are only 4.
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Note that the edge emp. −marital should be left unoriented as orienting it in either
way will create a collider. The edges emp.− occ. and marital.− occ. should be oriented as
emp.→ occ. and marital.→ occ. for the same reason (i.e.; not creating colliders).
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Fig. C.3 Estimation of causal effects of the Dutch census dataset based on PC, FCI, GES, and
SBCN.

As shown in Figure C.3, all measures (except ID) are negative and hence indicate a
discrimination against female individuals. In particular, total effect values are around −0.3
according to all graphs. According to PC and FCI graphs, there is a high variability in the value
of ED depending on whether age variable is a confounder or a mediator (redlining) and whether
status and marital variables are mediators or colliders. For instance, if age is a confounder
and status and marital are mediators, apart from the direct causal link (sex→ occupation),
there will be only one causal path, namely, sex→ education→ occupation, and hence the
DE will be at its lowest (−0.25). The only measure that might return positive values is ID for
PC and FCI where there are 7 possible indirect causal paths going through redlining variables.
The total indirect discrimination can be slightly positive, indicating a discrimination in
favor of females. If taken separately, such values are misleading because they should be
considered along with direct discrimination (DE). For GES, there is only one possible indirect
discrimination path (sex→ age→ occupation) and two possible explaining discrimination
paths (sex→ education→ occuptation and sex→ age→ education→ occupation).

C.1.3 Results for the German Credit Dataset
The German credit dataset1 contains data of 1000 individuals applying for loans. The
variables used for causal graph generation are sex, age, credit amount, employment length,
and default. Age and credit amount are continuous, while the remaining variables are discrete.
This dataset is designed for binary classification to predict whether an individual will default
on the loan (1) or not (0). We consider sex as a sensitive feature where female applicants
are compared to male applicants. Three tiers in the partial order for temporal priority are

1https://archive-beta.ics.uci.edu/ml/datasets/statlog+german+credit+data
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used: age and sex are defined in the first tier, credit amount and employment length in the
second tier, and default is defined in the third tier. If found as a mediator, the age variable
is considered as redlining.

sex default

age employment

credit
(a) PC

sex default

age employment

credit
(b) FCI

sex default

age employment

credit
(c) GES

Fig. C.4 Generated causal graph for the German credit dataset.

Compared to previous datasets, German credit leads to sparser causal graphs (Fig.s C.4).
The most extreme case is GES, which could not identify any dependence between sex and
default variables. Besides, no algorithm could detect a direct dependence between sex and
default variables. Interestingly, all graphs (except GES) show a causal relation from credit
amount to default, with FCI very confident about it. Discrimination values in Fig. C.5
show that all discrimination measures are either zero or slightly positive, indicating small
discrimination against females. For GES, all causal effects are equal to zero due to the
absence of any causal path from sex to default. The range of TE and ATEIP W values for PC
is relatively wide. The lowest value (0.021) is obtained when age is a confounder (age→ sex).
The highest value (0.074) is obtained when age is a mediator (redlining). In total, there are
4 possible causal paths from sex to default, according to PC. There is only one causal path
for FCI: sex→ credit→ default. Therefore, ID is different than zero in PC since the same
path is the only possible indirect discrimination, and ED is different than zero in FCI.

C.1.4 Results for the Boston Housing Dataset
The Boston housing dataset holds the statistics on 506 cases of Boston areas including diverse
variables used to predict median real estate value in the district. The data has a sensitive
predictor variable - the proportion of black people living in the area. The data is collected by
the U.S Census Service and can be found in StatLib archive 2 and was originally published

2http://lib.stat.cmu.edu/datasets/boston
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Fig. C.5 Estimation of causal effects of the German credit dataset based on PC, FCI, GES, and
SBCN.

by Harrison et al. [102]. The dataset has been used extensively to benchmark machine
learning algorithms, however its use for fairness in machine learning is very limited3. The
dataset originally contains 14 variables, but only 7 are used for empirical experiments. We
removed two variables because of missing values and another 5 to avoid multicollinearity
and simplify the graphs. All the variables in the data are continuous, mostly following
non-Gaussian distribution (as found by the quantiles tests (QQ)). By contrast to the above
datasets, LiNGAM is applied along with all the other search algorithms since the data is
totally continuous.

race value

crime industry

rooms distance
teachers

(a) PC

race value

crime industry

rooms distance
teachers

(b) FCI

race value

crime industry

rooms distance
teachers
(c) GES

race value

crime industry

rooms distance
teachers

(d) Direct LiNGAM

Fig. C.6 Generated causal graph for the Boston Housing dataset.

3To the best of our knowledge, it has been only used to illustrate fairness preprocessing tools in
SciKitLearn https://scikit-fairness.readthedocs.io/en/latest/fairness_boston_housing.html
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Fig. C.7 Estimation of causal effects of the Boston housing dataset based on PC, FCI, GES, and
SBCN.

The generated graphs are shown in Fig. C.6. The direct effect appears in all graphs. The
number of causal paths between race and value varies greatly between graphs. These are 13,
6, 2, 3, and 3 according to PC, FCI, GES, and LiNGAM, respectively. For instance, the two
possible paths according to GES are race→ value and race→ distance→ industry → value.
The most notable feature of the discrimination values in Fig. C.7 is that ID is zero according
to all graphs. This is due to the fact that all mediator variables are explaining; crime rate,
distance to employment centers, number of rooms in houses, etc. These can be clearly used to
justify discrimination legitimately. All measures return either zero or some slightly positive
values, which, surprisingly, indicate a slight (≤ 0.08) discrimination in favor of areas with
higher proportions of black individuals.

C.1.5 Results for the Communities and Crime Dataset
The communities and crime dataset4 contains data relevant to per capita violent crime rates
in several communities in the United States, and the outcome is this crime rate. The variables
used for causal graph generation are continuous: race, age, poverty rate, unemployment
rate, divorce rate, and violent crime rate. Race is considered a sensitive variable. Three
tiers are used: race, age, and poverty rate, which are defined in the first tier. Divorce and
unemployment rates are defined in the second tier and violent crime rate in the last tier.
No variable can be considered as explaining; hence, we treat them as redlining if found as
mediators.

4https://archive.ics.uci.edu/ml/datasets/communities+and+crime
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(d) DirectLiNGAM

Fig. C.8 Generated causal graph for the communities and crime census dataset. Vio. stands for
violence.
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Fig. C.9 Estimation of causal effects of the communities and crime dataset based on PC, FCI, GES,
and SBCN.

Fig. C.8 shows the generated graphs. The direct edge between race and violence is
identified by all algorithms. PC and FCI generated graphs differ only in the direction of the
unemployment-divorce edge. The numbers of causal paths possible in all graphs are similar
with the striking exception of LiNGAM. These numbers are 7, 9, 9, and 9 for PC, FCI, and
GES, respectively, but only 1 (the direct path race→ violence) for LiNGAM. This can be a
strong indicator that the dataset does not satisfy the LiNGAM assumption. In particular, the
non-Gaussianity of the noise terms. Fig. C.9 shows the values of the discrimination measures.
Both measures of total effect indicate significant discrimination (almost 0.4) against blacks.
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TE ranges from 0.303 when age is a confounder and 0.394 when age is a mediator. There are
no confounders according to LiNGAM and SBCN graphs, hence, TE coincides with total
variation (Eq. (3.23)). DE values are comparable except for LiNGAM. In the latter, since
the direct edge is the only causal path between race and violence, DE also coincides with TE,
and all indirect effects (ID and ED) are equal to zero. The high variability in ID values is
directly linked to the role of the age variable (whether it is a confounder or a mediator). ED
is zero according to all graphs since there are no explaining variables.

It is important to mention that despite the flawed graph returned by LiNGAM, the total
effect is similar to the values computed based on other graphs because all discrimination
is considered direct, and hence, the indirect discrimination is zero. This does not reflect
the correct mediation analysis; the other more reliable graphs were returned. In other
words, the total effect value according to LiNGAM is correct, but the direct and indirect
discrimination values are flawed. More generally, in case of the absence of confounding
between the sensitive attribute and the outcome variable, a flawed causal model does not
impact the reliability of the total effect as the latter coincides with total variation, which can
be computed independently of the causal graph. However, splitting the causal effect between
direct, indirect, and explained types of discrimination depends heavily on the mediation
structure of the graph.
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