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Résumé en français

La génération de nombres aléatoires est l’une des pierres angulaires de la cryptographie. Celle-
ci est utilisée dans la génération de clés secrètes, de nonces, ou dans l’implémentation de
contre-mesures. Pour assurer la sécurité des mécanismes cryptographiques, il est nécessaire
de disposer d’un aléa de « bonne qualité ». En particulier, il ne doit pas être possible d’obtenir
des informations sur les nombres futurs ou précédemment produits par un générateur de
nombres aléatoires (abrégé RNG).

Pour évaluer la qualité d’un RNG, plusieurs méthodologies sont envisageables selon le type
de générateur, comme par exemple l’utilisation de mesures statistiques sur les données pro-
duites par celui-ci. Ces mesures sont ensuite utilisées dans des tests d’hypothèses, aussi ap-
pelés « tests statistiques », qui ont pour vocation de rendre une décision binaire sur l’accepta-
tion ou non de l’hypothèse de test. Dans le cas de la génération d’aléa, cette hypothèse, est le
plus souvent que les données étudiées peuvent avoir été générées par un générateur idéale-
ment aléatoire. Bien que les tests statistiques soient couramment utilisés pour évaluer la qual-
ité d’un RNG cette méthodologie présente plusieurs inconvénients. Tout d’abord, l’aspect
binaire de la décision du test ne permet pas de rendre compte de l’amplitude de l’échec ou
de la réussite de celui-ci. Ensuite, selon la statistique utilisée, l’échec d’un test ne permet
pas nécessairement de remonter à la caractéristique statistique de la séquence faisant défaut.
Ceci pourrait pourtant intéresser le concepteur d’un RNG qui souhaite utiliser les tests statis-
tiques comme moyen d’affiner l’architecture ou le paramétrage de son générateur.

Dans cette thèse, nous allons donc nous pencher sur le développement de modèles statis-
tiques liés à deux caractéristiques de grande importance dans la génération d’aléa binaire : la
fréquence d’apparition des bits 0 et 1, et la corrélation entre les bits d’une séquence. A partir
de ces modèles, nous proposons ensuite deux statistiques de tests comme outils d’évaluation
plus fins de ces deux caractéristiques précises. Dans le cas de l’étude des corrélations, le test
que nous proposons s’inscrit en remplacement de l’un des tests les plus utilisés aujourd’hui,
appelé test d’autocorrélation, et présent notamment dans la batterie de tests du standard alle-
mand AIS 20/31. En effet ce dernier a pour défaut majeur de pouvoir échouer même lorsque
les bits de la séquence étudiée ne présentent pas de corrélation, défaut qui est corrigé par
notre test.

Dans la suite de la thèse, nous proposons d’appliquer notre statistique d’étude des corréla-
tions à un nouveau cas d’usage : l’attaque d’un RNG. L’attaque que nous présentons doit, si

3



RÉSUMÉ EN FRANÇAIS 4

elle est réussie, induire de la corrélation dans les données, mais celle-ci requiert un paramé-
trage relativement précis du banc d’attaque pour fonctionner. Nous montrons donc com-
ment l’application de notre statistique peut permettre d’automatiser une partie du processus
d’attaque et faciliter en ce sens le travail d’un attaquant.

Enfin, dans la dernière partie de la thèse, nous affinons davantage notre statistique d’étude
des corrélations dans le but de rendre plus précise l’étude des séquences par le biais de cette
statistique. Pour cela, nous proposons deux extensions de notre premier modèle de corréla-
tion : un modèle linéaire déjà existant, nommé « autocorrélation partielle », et un modèle
multiplicatif que nous avons développé. La statistique issue du modèle multiplicatif est plus
simple d’écriture mais bien plus complexe en temps de calcul et en mémoire que la fonc-
tion d’autocorrélation partielle. En définitive, nous préconisons donc l’usage de la fonction
d’autocorrélation partielle (qui se repose sur un usage préalable de notre première statistique
d’autocorrélation) pour évaluer la présence de corrélations au sein de données binaires.
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CHAPTER 1

Introduction

Random number generation is the cornerstone of modern cryptographic mechanisms, play-
ing a major role in the generation of secret keys, ephemeral data such as nonces, or in the
implementation of countermeasures such as the masking of sensitive data. A weakness in the
quality of the randomness produced by a generator can compromise the security of a theoret-
ically reliable cryptographic scheme, and therefore of the system on which it is based. In [60]
and [61], Nguyen and Shparlinski explain, for example, that knowledge of a few bits of succes-
sive nonces of DSA and ECDSA enables an attacker to trace back to the private signature key,
thus proving the need for nonces to be unpredictable. More recently, Ebalard and Benadjila
also demonstrated at the SSTIC conference in June 2023 [25] that some Cisco ASA equipment
using an ECDSA signature mechanism suffered from a nonce duplication, due to a weakness
in the random number generator. This duplication led to the recovery of the private keys
(CVE-2023-20107, CSCvm90511), and thus to a total compromise of the equipment’s security.
A number of similar attacks have occurred on various systems, such as the breaking of RSA
keys for SSH/SSL on OpenSSL in 2008, or the breaking of the Playstation 3 signature key in
2010 [27] (slides 122-130), as presented in the introduction to the presentation [25]. Similarly,
Elbaz-Vincent and Traoré [26, 77] analyzed hundreds of thousands of RSA X.509 certificates
[19, 81], and found several certificates which shared the same RSA moduli, potentially due to
the use of a defective random prime generator. From all those examples, it appears critical to
have methods at hand to ensure the quality of the randomness produced by a random num-
ber generator.

To assess the quality of the random numbers produced by a generator, several approaches are
possible. For a generator based on an intrinsically random physical phenomenon, the most
robust and currently preferred method ([6] §3.2.2 (3), [43] §4.5.3 (319), [67] §4.5 (613)) is to
find the stochastic model of the generator, i.e. a probabilistic model describing the consecu-
tively generated numbers, based on the physical model of the phenomenon used. From the
stochastic model we can then derive an expression for the entropy [73] of the generator, an
image of the quality of the randomness. In the rest of the manuscript, we will denote this
type of generator by the abbreviation TRNG, or PTRNG for True Random Number Generator
or Physical True Random Number Generator respectively.

In the case of a Deterministic Random Number Generator, abbreviated in this manuscript as
DRNG, which relies on a deterministic algorithm to produce sequences of numbers, it is pos-
sible to obtain an assurance on the quality of the randomness produced by formally proving
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1. INTRODUCTION 8

that the algorithm used produces uniformly random data. In most case however, this assur-
ance on the quality rely on the hypothesis that the internal state (internal variables, such as
the keys) of the algorithm is kept secret.

A third class of random number generators, called Hybrid Random Number Generators, com-
bines a TRNG and a DRNG. More specifically, a TRNG produces random inputs for a DRNG,
the latter’s role being to eliminate the potential imperfections in the randomness produced
by the TRNG.

When the stochastic model for a TRNG or the formal proof for a DRNG are not available, or
in the case of a generator that is non-deterministic but not based on a physical phenomenon,
the evaluation of the quality of the randomness must involve the use of "black-box" statistical
tests on the generated sequences. The goal of a statistical black-box test is to study the statis-
tical properties of sequences, without any prior knowledge on the generator (hence the term
black-box).

Among the batteries of statistical tests considered are those of the NIST1 in the United States
(SP 800-90 B [6]), the BSI2 in Germany (procedures A and B of AIS 20/31 [43]), which are de-
signed to compare the characteristics of sequences to those of a theoretical ideally uniform
sequence. In particular, we study the characteristics of uniformity (proportion of 0s and 1s, or
distribution of multi-bit patterns) and the independence of successive bits or patterns.

More specifically, the statistical tests proposed by AIS 20/31 and SP 800-90 B are hypothesis
tests with the following null hypothesis: "The tested sequence is likely to have been produced
by an ideal generator". Each statistical test returns a numerical value which, depending on
the deviation from the expected value for an ideally random sequence, allows for a decision
to be made about whether to accept or reject the null hypothesis.

One of the drawbacks of this test methodology is that, beyond the potential errors of type I (er-
roneous rejection of the null hypothesis) or II (erroneous acceptance of the null hypothesis),
the simple rejection of the null hypothesis does not make it possible to distinguish the char-
acteristics of the faulty tested sequence. Sometimes, as we will show later, a statistical test can
fail even though the tested sequence is not impacted by the anomaly the test aims at covering.

In addition to the evaluation of the quality of the randomness produced by a generator when
it functions properly, statistical tests can also be used to detect a failure of the generator due
to an attack, or due to aging (see [43] §4.2.2 (289)) for example. These tests, called total fail-
ure and on-line tests, aim at detecting at total loss of entropy (no randomness in the data),
or non-tolerable statistical defects which may suddenly occur during the generation process

1National Institute of Standards and Technologies
2Bundesamt für Sicherheit in der Informationstechnik
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respectively.

In France, the ANSSI3 [1] proposes a number of rules and recommendations on the evaluation
of a physical random number generator, but these are far less restrictive than their NIST or BSI
counterparts concerning the "internal" part of the generator (which produces the numbers
that are meant to be post-processed). Indeed, the French agency ([1] §2.4.2) simply imposes
the following rules, which we propose to translate as such: a "functional description"4 of the
generator must be provided and "statistical tests on the output of the physical generator must
not show any significant statistical defect in the produced randomness",5 without any restric-
tion on the tests that must be applied, or on what a "significant defect" must be defined as.
However, the ANSSI puts the stress on the necessity of having a good post-processing algo-
rithm, based on the assumption that rigorously proving the quality of a post-processing is
much easier than proving the quality of a physical source of entropy (see [1] Note in p.31 and
RègleArchGDA in §2.4.1).

In this manuscript, we will then start by taking a closer look at both deterministic and non-
deterministic random number generation methods, with a particular focus on current stan-
dards on this matter. This will be the subject of Chapter 2.

In Chapter 3, we will review the various methods to evaluate the quality of the randomness
produced by these generators. We will again discuss current standards, particularly in terms
of black-box statistical testing, and we will discuss the limits of this evaluation methodology.
We will also provide an example of stochastic modeling for a given TRNG to illustrate how
the model can be used to provide a measure of the quality of the randomness supplied by the
generator.

Chapters 4 and 5 will be devoted to the development of probabilistic models to characterize
two given statistical anomalies: the global disproportion of bits 0 and 1 in a sequence, and the
correlation between successive bits. We will thus provide a precise definition of a "statistical
defect" in a random sequence. In Chapter 6, we will observe how the two models interact with
each other. A new statistical test, introduced in Chapter 7, will then derived from the correla-
tion model, and addresses one of the problems of a standard test currently used.

In Chapter 8, we will use our newly-developed test in a different context, namely the detec-
tion of the success of an attack on a TRNG. We will see how the test can be used to observe the
impact of an attack on the statistical properties of generated sequences.

Finally, in Chapter 9, we will explore the possibility of extending our model developed in
Chapter 5 to characterize more precisely and directly the correlation phenomena between

3Agence Nationale de la Sécurité des Systèmes d’Information
4"Le générateur physique d’aléa doit disposer d’une description fonctionnelle." [1] §2.4.2, RègleArchiGVA.1
5"Des tests statistiques en sortie du générateur physique ne doivent pas faire apparaître de défauts signifi-

catifs dans l’aléa généré.", [1] §2.4.2, RègleArchiGVA.2
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bits of a given sequence.

And chapter 10 will conclude this manuscript, summarizing our key contributions, and offer-
ing some leads on how to further formalize the analysis of statistical anomalies in sequences
produced by random number generators.



CHAPTER 2

Random number generation

In this chapter, we will set the mathematical ground that we will rely on through this whole
manuscript to properly define random number generation from a theoretical standpoint.

We will then present practical implementations of random number generators, looking first at
deterministic generators, and more specifically at the current standards on generation func-
tions and the standard safety levels to which they are subject.

Next, we will look at random number generation based on physical phenomena, providing
several examples of TRNGs. These will later be used to illustrate our points, but the list we
provide is by no means exhaustive.

2.1. Probability and random variables

The following section will aim at summarizing different definitions proposed in [47]. In their
book (§2.1), the authors introduce the probability theory as being "concerned with situations
which may result in different outcomes". Mathematically, these different outcomes are points
in a space Z .

DEFINITION 2.1 (σ-field on Z ). For a given set Z , a σ-field C , on Z is a non-empty collection
of subsets of Z which is closed under complementation, and countable union.

The events we are interested in are elements of a σ-field C . This means in particular that
any countable union of events is an event, and that the complementary of an event is also an
event, which translates mathematically into:⋃

i∈I
Ci ∈C , with Ci ∈C for all i ∈ I , I ⊂N,

where ∪ is the set union symbol, and

C c =Z −C ∈C , with C ∈C .

DEFINITION 2.2 (Measurable space). The couple (Z ,C ), where C is a σ-field on Z is called a
measurable space.

DEFINITION 2.3 (Probability measure). A probability measure on C is a function µ such that
µ(;) = 0, µ(Z ) = 1 and such that, for I ⊂N and Ci , i ∈ I elements of C :

11



2.2. THEORETICAL CONCEPT OF RANDOM NUMBER GENERATION 12

µ

(⋃
i∈I

Ci

)
= ∑

i∈I
µ(Ci ), if Ci ∩C j =; for all i ̸= j .

where ∩ is the set intersection symbol.

In practice, when observing the results of random experiments, a quantifiable measurement
of the events is desirable. Such a measurement is then the result of a function T with values
in a given space T , which generates another σ-field B of sets B such that:

C = T −1(B) = {z | z ∈Z ,T (z) ∈ B},

where C ∈C .

This space T is often equal to R, and the function established in this case is called a random
variable. More precisely, a random variable is defined as follows:

DEFINITION 2.4 (Random variable). A random variable X : Z → R is a function which trans-
forms outcomes in Z into observable values x ∈R.

For A the σ-field of left-open intervals on R (intervals of the form {x | a < x É b, (a,b) ∈ (R∪
{−∞,+∞})2}), a random variable X generates a probability measure PrX over (R,A ) such that,
for an event A ∈A :

PrX (A) = Pr({z | z ∈Z , X (z) ∈ A})

where Pr is the probability measure over the outcome measurable space (Z ,C ) as previously
defined.

DEFINITION 2.5 (Probability distribution of a random variable X). For a random variable X ,
the probability measure PrX over (R,A ) described above is called the probability distribution of
X .

This formal definition of a random variable and of the underlying probability theory then en-
ables us to properly define random number generation from a theoretical standpoint.

2.2. Theoretical concept of random number generation

In [43], the authors present random numbers as "realizations of random variables".1

A random number generator can thus be presented as a system conducting successive ran-
dom experiments, with the outcome of each experiment (the drawing of a random number)
being the realization of a random variable. In this particular context, the space of observable

1[43] §2.3.1 (124).
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values is the set of possible outputs of the generator, usually equal to {0, ...,2n−1} (the set n-bit
integers) for generators used for cryptographic applications. In the rest of this section, we will
simply denote this set by V .

The random variables underlying to each successive generation of numbers can also be col-
lectively seen as a single random process {X t } which is observed at different points in time
t ∈T . The object {X t } defined as such is called a stochastic process.

More precisely, in the context of random number generation, the time space is countable,
each new number being a distinct realization of the process. We then talk of {X t } as being a
discrete stochastic process, and we denote it by {Xi }i∈N.

For a cryptographic system relying on random numbers, the random experiments conducted
by an ideal random number generator must respect a certain number of rules, as stated in
[43]. The experiments must be unpredictable, independent, and unbiased.

Unpredictable means that "the observable outcome of the experiment is (to a certain extent)
unknown before it is conducted". In other word, an observer must not be able to anticipate the
outputs of the generator with any significant advantage.

Independent means that the successive numbers must not have any influence on each other,
and in particular that no advantage can be obtained on the knowledge of the future numbers
based on the already generated ones.

And unbiased means that every number has the same probability of being generated at any
given time.

This set of rules means that the underlying stochastic process {Xi } of an ideal random num-
ber generator must also have some specific statistical properties. More precisely, the unpre-
dictability is tied to the notion of entropy2 [73]. The higher the entropy, the better the unpre-
dictability of the generated numbers. We will further discuss how the notion of entropy can
be used as a measure of the quality of the random numbers in section 3.1.

The need for independence of the random experiments means that, ideally, for any
(i1, ..., in) ∈Nn , the random variables Xi1 , ..., Xin must be independent. In other words, for any
(v1, ..., vn) ∈ V n , we must have:

Pr
(
Xi1 = v1, ..., Xin = vn

)= Pr
(
Xi1 = v1

)× ...×Pr
(
Xin = vn

)
.

Finally, using the same notations as above, the "unbiased" criteria means that, for any i ∈ N
and v ∈ V :

2"Entropy quantifies the amount of unpredictability relative to the observer." [43], §2.1.1 (72).
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Pr(Xi = v) = 1

|V | ,

where | V | is the cardinal of the set of observable values V . In this case, the random variable
Xi is said to be uniformly distributed.

In the following subsections, we will detail how random number generators are constructed in
practice, in the case of both DRNGs (based on a deterministic algorithm) and PTRNGs (based
on a physical phenomenon).

2.3. Random number generators

In his review of the history of random number generation, L’Ecuyer [45] explains that the use
of random numbers dates back to at least 5000 years ago, in the form of dices.

Much more recently, in 1947, the RAND corporation [13] built the first fully automated ran-
dom number generator, based on a random frequency pulse source, which was gated by a
constant frequency pulse source, and served to increment 5-bit counter to provide integers
between 0 and 31 at its output about once a second.

In practice, no matter the phenomenon or methodology used to produce random numbers,
random number generation is divided in an intrinsically random part, used to produce ran-
dom events and which can sometimes be external to the architecture of the generator itself,
and of a deterministic part which produces a number based on the outcomes of each suc-
cessive random event.

In the case of a dice roll for example, the random event is the roll itself, and the deterministic
part is the transformation of the physical state of the dice into a number between 1 and 6 by
reading the number of dots on the upper face once the dice stopped rolling. For the generator
of the RAND corporation, the random frequency pulse which increments the 5-bit counter is
the random part, and the deterministic part is the translation of the state of the counter into
a number between 0 and 31 around once per second.

From these two examples we can already have a glimpse of the diversity of mechanisms that
can be used to produce random numbers. In the following two sections, we will describe in
more detail two classes of random number generators: deterministic random number gen-
erators (DRNGs), and non-deterministic random number generators, particularly generators
whose random part is built around an intrinsically random physical phenomenon, i.e. the
PTRNGs.

2.4. Deterministic random number generators

The aim of deterministic random number generators (or pseudorandom number generators)
is always the same: to generate data sequentially using an deterministic algorithm, so that it
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FIGURE 1. Schematic view of a generic DRNG.

is indistinguishable from ideally random data. To do this, an initial data, often called a seed,
is instantiated using external random data called the entropy input in the SP 800-90A ([4] §7).
The seed is then introduced as input to a function whose output is uniform over all the words
in the output alphabet, in the sense that each word in the alphabet has the same probability
to be the image of a random input. Optionally, a new seed can be reinstantiated during the
course of the generation to "refresh" the randomness.

In this sense, the random part is the entropy source, and is external to the DRNG itself, and
the deterministic part is the algorithm which produces the seed and random numbers from
this seed (and from other parameters, as described for example in subsection 2.4.2). See Fig.
1 for the schematic representation of a generic DRNG.

To not compromise the unpredictability of the generated data, the seeds must ideally be im-
possible to influence, and must of course stay secret. In addition to this restriction on initial
data, additional guaranties on the security of the generators must be established. The AIS
20/31 standard [43] lists four security properties, leading to four classes of generators, achiev-
ing increasing levels of security.

2.4.1. Security properties of the AIS 20/31 standard. The first listed property is called
the forward secrecy, and states that a person with access to the set of generated numbers up
to an instant t must not be able to anticipate the data which will be generated after that in-
stant t . The set of deterministic generators verifying the forward secrecy property corresponds
to the first class of deterministic generators defined by the AIS 20/31 standard, named DRG.1
(for Deterministic Random Generator of class 1).

Another security property is the backward secrecy. For this property to be verified, a person
who has access to all the data generated after an instant t must not be able to trace back (fully
or partially) to the data generated before that instant. The generators verifying the properties
of forward and backward secrecy correspond to the DRG.2 class defined by AIS 20/31.

These two security properties can also be enhanced by assuming that, even with an access to
the internal state of the generator at an instant t in addition to the knowledge of the generated
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data, one must not be able to compute the next values (for the enhanced forward secrecy) or
the preceding values (for the enhanced backward secrecy). A DRG.2 generator which verifies
the property of enhanced backward secrecy is of class DRG.3, and a DRG.3 generator which
verifies the property of enhanced forward secrecy is of class DRG.4.

Remark : For a purely deterministic generator, by definition, the output of the generator
is completely determined by the state of the system. The enhanced forward secrecy prop-
erty can then only be verified if the seed is reinstantiated after each number generation.

2.4.2. Deterministic generator architectures recommended by the SP 800-90A stand-
ard. Considering the specific needs for uniformity of the generated data, and, depending on
the desired level of security, the difficulty of inversion without knowledge of the seed, crypto-
graphic functions appear to be good candidates for deterministic functions for randomness
generation. In this regard, the NIST, through its SP 800-90A standard [4], offers a set of recom-
mendations for algorithms for random number generation based on cryptographic functions.

More specifically, the recommended algorithms are the following: Hash_DRGB, HMAC_DRGB
and CTR_DRGB.

Specification of the Hash_DRGB: The seed V is initialized by concatenating a first output from
the entropy source with a nonce and optionally additional data. The first output C of the gen-
erator then consists of a double hash of the seed as described in Alg. 1, in which || represents
concatenation and Hash_df is a data derivation function of arbitrary length (here seedl en)
based on a hash function.

Algorithm 1 Hash_DRGB: Computation of the first output C .

Input: entropy_input, nonce, seedlen > 0, additional_string. ▷ additional_string is optional.
Output: First output C .

V = Hash_df((entr opy_i nput ||nonce||[addi t i onnal_str i ng ]), seedl en)
C = Hash_df((0x00,V ), seedl en)
r eseed_counter = 1

Seed reinstantiation is performed in the same way as the initialization, by replacing the
nonce with the previous seed V .

Finally, the random data W is generated according to the procedure described in Alg. 2, with
Hash being the hash function used by Hash_df.
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Algorithm 2 Hash_DRGB: Computation of the random data W .

Input: max_reseed_counter > 0, seedlen > 0, additional_string. ▷ additional_string is
optional.

Output: Random data W .
if reseed_counter > max_reseed_counter then

reinstantiate the seed
end if
if additional_string ̸= null then

V = (V +Hash(0x02||V ||addi t i onal _str i ng ) mod 2seedl en

end if
d at a =V ,W = null
for i = 1 to m do

w = Hash(d at a)
W =W ||w
d at a = (d at a +1) mod 2seedl en

end for
V = (V +Hash(0x03||V )+C + r eseed_counter ) mod 2seedl en

reseed_counter = reseed_counter +1

We can see that, provided the nonce and the initial data of the entropy source are kept secret,
this generator verifies the properties of forward secrecy and enhanced backward secrecy. In-
deed, hash functions are so-called one-way functions, which means that it is easy to compute
the images of the function, but it is not possible to predict with any significant advantage (in
the probabilistic sense), a preimage for a given image. In particular, even with the knowledge
of every variable of the algorithm at a given instant t , it is not possible to get back to pre-
ceding values of V , and then to the data W previously generated (Cf. steps (3) and (4) of the
generation procedure). This generator therefore satisfies the properties of forward secrecy
and enhanced backward secrecy defined by the AIS 20/31.

However, as explained in subsection 2.4.1, to verify the enhanced forward secrecy property,
the value max_r eseed_counter must be set to 1 so that the seed is reinstantiated after each
data generation. Without reinstantiation of the seed, the set of values of the algorithm’s vari-
ables may indeed be derived from the current values at a given instant.

Remark: Although not specified in the standard, to guarantee a maximum level of secu-
rity, the input data to the hash function must imperatively have an entropy greater than
the length of the data it outputs. Indeed, the entropy of the output of a hash function
(like any deterministic function) will always be at most equal to the entropy of the input.

The principle of the HMAC_DRGB is relatively similar, but a key-parameterized HMAC function is
used instead of the simple hash function of the HMAC_DRGB.
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Finally, in the case of the CTR_DRGB generator, a counter-mode block cipher algorithm (e.g.
AES-CTR) is used, also parameterized by a key and optionally some additional data.

2.4.3. Limits of deterministic random number generators. DRNGs have the advantage
of being easy to implement, even in hardware. However, their major limitation lies in the ne-
cessity of keeping secret all or part of the initial data, or in the constraint of a very frequent
reinstantiation of the seed to guarantee a maximum level of security.

In addition, the security of these generators relies on the security of the cryptographic func-
tions. By way of example, it is theoretically feasible to develop a generator based on Linear-
feedback shift registers (abbreviated in LFSR), as developed by Durga et al [24]. LFSRs are
stream encryption algorithms (which deliver encrypted bits of data continuously, by opposi-
tion to block encryption methods), and are, as such, potential candidates to build determin-
istic random number generators. Their security lies in the fact that their architecture must
remain secret. It is known, however, that LFSRs are vulnerable to attacks using the Berlekamp-
Massey algorithm [10, 56], which computes the LFSR of minimum size that has produced a
given data set. If such an attack is successful, an LFSR-based generator no longer verifies the
persistent confidentiality property, and is therefore completely compromised.

This example shows the importance of the choice of the generation function used for a DRNG,
and the safety risks that may arise in the event that this choice is not made rigorously. It also
showcases the importance of having standardized architectures that developers can rely on,
such as the ones proposed in the SP 800-90A.

Finally, all DRNGs have a theoretical limitation, which is the actual existence of one-way func-
tions, an open problem equivalent to the "P versus N P" problem [18]. Indeed, based on
[11, 80, 49, 32], the authors of [39] show that "the existence of one-way functions is necessary
and sufficient for the existence of pseudorandom generators", meaning that if one-way func-
tions do not actually exist, deterministic random number generators could not exist either.
Although this limitation goes arguably way beyond the scope of random number generators,
as the hypothesis that one-way functions exist is a requirement for the security of most cryp-
tographic systems.

2.5. Non-deterministic random number generators

Despite their performance, we have seen that DRNGs require strong constraints (notably with
regard to the secrecy of certain data) and guarantees on the security of the functions used to
obtain a guarantee on the level of security of the generator as a whole.

In the case of non-deterministic generators, it is possible to achieve a high theoretical level of
security without having to keep the internal state of the generator secret, since the phenom-
ena used in the generation process are intrinsically random. This is particularly the case for
PTRNGs, which are based on a physical phenomenon.
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FIGURE 2. Schematic view of a generic PTRNG.

For any PTRNG, the overall principle is the same: an intrinsically random physical phenome-
non, called the entropy source, is sampled to produce what is called by the AIS 20/31 standard
a raw random number (see §1.4 of [43] or the glossary of [67]). These raw random numbers
are then post-processed to correct for any statistical defect that may remain after the physical
phenomenon has been sampled. These numbers are referred to as internal random numbers,
and are ready to be delivered by the generator.

To fit our generic description of generators from subsection 2.3, the random part of a PTRNG
is the physical phenomenon and the signal it produces, as well as the sampling and digitiza-
tion of this signal,3 and the deterministic part is the post-processing on the digitized data to
produce random numbers.

Similarly to the classes for deterministic generators, the AIS 20/31 also provides a set of classes
for PTRNGs: PTG.1, PTG.2 and PTG.3. For the PTG.1 class, the prerequisites are having a total
entropy source failure test, which is triggered when the physical source no longer produces
any entropy, and on-line tests on the internal random numbers (after post-processing) which
verify that these numbers have good statistical properties. In addition, the internal numbers
must pass a battery of black-box statistical tests, named Procedure A, which we describe in
more details in subsection 3.2.5.1.

Class PTG.2 has the prerequisites of class PTG.1, but this time the on-line tests are applied to
the raw numbers, before any eventual post-processing. These on-line tests must also be cho-
sen so as to precisely test the possible statistical defects of the raw numbers. To do this, the
choice of tests must be based on a stochastic model of the entropy source (see point 290 on
page 76 of [43]). In addition, the Shannon entropy must exceed 0.997 per bit. The Procedure
B (described in subsection 3.2.5.2) is to be applied on raw random numbers, and can provide
an estimation of the entropy per bit of the tested sequence. According to the authors of the
standard, this class of generators can then be used for cryptographic applications such as key
generation, random padding or even to provide seeds for deterministic generators, such as
those introduced in subsection 2.4.2.

3In the draft of the AIS 20/31 ([67] §5.4.1, (929)), digitization mechanisms are indeed considered random
"due to (inadvertent) band-pass filtering, inherent noise, and probabilistic detection" which may "undesirably
blur even a physically perfect noise signal or introduce dependencies between samples".
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FIGURE 3. Clock jitter on a square-wave signal [68].

Finally, the prerequisites of class PTG.3 include all the prerequisites of class PTG.2, with the
addition of the requirement for a cryptographic post-processing, more specifically the use
of a class DRG.3 deterministic generator as post-processing. In other words, a class PTG.3
generator is a class PTG.2physical generator that supplies seeds to a class DRG.3deterministic
generator.

Remark: In the draft of the new version of AIS 20/31 [67], only classes PTG.2 and PTG.3
remain, the authors having considered that class PTG.1 was of no practical use. Class
PTG.2 has also been made stricter, as the Shannon entropy of internal numbers must
now exceed 0.9998 per bit. A new entropy measure, the minimum entropy or min-
entropy, is also accepted, and its value must exceed 0.98 per bit.

The ANSSI, through its guide PG-083 [1], does not offer a classification of generators based
on security levels, as presented in AIS 20/31, but does propose a number of rules and rec-
ommendations for the design of generators, based on the premise that it is difficult today to
justify the quality of a physical source of randomness, but easy to prove the robustness of a
post-processing algorithm.

In particular, ANSSI stipulates that the physical generator must have a "functional descrip-
tion" to justify it generates "true randomness", and that a cryptographic post-processing with
an internal state (a set of secret data such as keys) of at least 128 bits must be used. In this
sense, the PG-083 only authorizes physical generators equivalent to class PTG.3 of AIS 20/31.
The guide further recommends that the internal state of the cryptographic post-processing
has 256 bits.

2.5.1. Ring oscillator-based random number generators. Any partially random physi-
cal phenomenon that can sampled can be used to generate random numbers. In practice,
the most commonly used ones are phenomenon of an electronic nature, such as clock jitter
[34, 35], due, among other things, to the ease of implementing generators based on these
phenomena in processors. Clock jitter is the uncertainty that exists on the precise timing of
the rising or falling edges of an oscillating signal (see Fig. 3).

One way of taking advantage of clock jitter is to use ring oscillators, which are a sequence of
odd-numbered inverters (logic NOT gates) used to create a raw oscillating signal that can be
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FIGURE 4. Evolution of the clock jitter amplitude as a function of the signal
sampling period, log-log scale [35].

used as a clock. In an theoretical setting, the frequency of the clock signal is perfectly con-
stant, and in particular, the timings of the rising and falling edges of the signal are completely
determined by the number of inverters in the oscillator. In practice, however, the signals from
ring oscillators are affected by jitter, which causes uncertainty in these clock edge timings.

In [35], Hajimiri et al. explain that clock jitter becomes increasingly important as the number
of periods between two sampling operations increases (this number of periods is also known
as the accumulation time). The authors also explain that this clock jitter originates from two
categories of electronic noise: uncorrelated noise such as thermal noise [62] and correlated
noise such as power supply noise or flicker noise [37]. Uncorrelated noises are predominantly
present at low accumulation times and cause a linear increase in the jitter’s variance, while
correlated noises tend to appear at high accumulation times and cause a linear increase in the
jitter’s standard deviation as a function of sampling period (See Fig. 4). As the name suggests,
this correlated noise introduces correlation between the jitters affecting successive edges of
the clock signal. From the point of view of random number generation, the aim is to find the
right compromise between an accumulation time high enough to obtain a suitable amount
of jitter, but low enough to keep the proportion of uncorrelated noise higher than that of cor-
related noise.

In order to take advantage of jitter to produce random numbers, several TRNG constructions
based on ring oscillators (abbreviated RO-TRNG) have been proposed, including the Elemen-
tary RO-TRNG (ERO-TRNG) and the Multiple rings RO-TRNG (MURO-TRNG), which we will
describe in detail below. Jitter-based generators aim at sampling an oscillating signal when it
is impacted by jitter (i.e. on a rising or falling edge timing) to produce random data.
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2.5.1.1. ERO-TRNG. The Elementary RO-TRNG (ERO-TRNG) is based on two ring oscilla-
tors placed at the input of a flip-flop. One oscillator serves as a data generator, and the other
as a sampling clock. A frequency divider is often placed in front of the sampling oscillator to
increase the accumulation time. As both oscillators are affected by jitter, the overall system
is also impacted by a relative jitter, representative of the quality of the randomness supplied
by the generator. The greater the relative jitter, the greater the uncertainty on the sampled
values, and therefore the better the quality of the randomness. The architecture of the ERO-
TRNG is illustrated in figure 5.

FIGURE 5. Schematic representation of the ERO-TRNG.

2.5.1.2. MURO-TRNG. The Multiple ring RO-TRNG (MURO-TRNG) is based on the same
principle as the ERO-TRNG, but looks to palliate a problem of the latter, which is that the
accumulation time must be relatively long to produce randomness of sufficient quality. To
reduce the accumulation time needed to obtain a satisfactory randomness, several oscillators
are placed in parallel and their outputs are placed at the input of an XOR gate to serve as the
data signal at the input of the sampling flip-flop. As each data oscillator possesses its own jit-
ter independently of the others, the relative jitter at the output of the XOR gate corresponds to
the sum of the n jitters, which means that the accumulation time can be divided by the same
factor n. On the other hand, the drawback of this architecture is its increased need for electric
power and surface on the circuit board.
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FIGURE 6. Schematic representation of the MURO-TRNG.

2.5.1.3. TERO-TRNG. Finally, not all random number generators based on ring oscilla-
tors use clock jitter as a random phenomenon. For example, the Transient Effect RO-TRNG
(TERO-TRNG) is based on the phenomenon of metastability. More specifically, in this genera-
tor, two ring oscillators are placed in a loop and activated synchronously. Such a construction
(described in Fig. 7) leads to the so called metastability effect, which means that the signal
produced is unstable for a short time after activation of the two oscillators, before stabilizing.
In order to produce random numbers, the principle is therefore to sample the signal during
its unstable (and therefore unpredictable) phase.

FIGURE 7. Schematic representation of the TERO-TRNG.
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2.5.2. PLL-based random number generators. Random number generators based on
Phase-Locked Loops (PLL) also take advantage of the clock jitter to produce random num-
bers. The principle of a phase-locked loop is as follows: a base clock signal is placed at the
input of a phase comparator, which feeds a voltage-controlled oscillator (whose frequency is
controlled by the input voltage). The oscillator’s output is then reinjected to the phase com-
parator’s input to form a feedback loop that attempts to maintain the oscillating signal at the
frequency of the initial clock signal. The principle is illustrated in figure 8 [28].

FIGURE 8. Block diagram of a PLL circuit on Altera. [28].

Very similarly to the ring oscillators described above, the voltage-controlled oscillator is sub-
ject to clock jitter, which disturbs its oscillation frequency. The idea is to accumulate a certain
number of samples of this jitter-disturbed signal to produce random data. Figure 9 shows one
of the constructions used to generate random numbers in this way. The data are sampled by a
D flip-flop, and each set of KD data is passed through a XOR decimator, which sums the data
in pairs (with an exclusive-or operation) to produce a single random bit.

FIGURE 9. Randomness extraction from a PLL. [28].

This very simple architecture is similar to the ERO-TRNG, and can be made more complex
by, for example, placing several PLLs in parallel in a manner analogous to the MURO-TRNG
architecture, in order to increase the data generation throughput (Cf. [28] §3.3).
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FIGURE 10. Links between voltage applied across electrodes and cell resistivity.
[3].

2.5.3. Generators based on memory cells. Although generators based electronic phe-
nomena are widely used due to their ease of integration into existing circuits, other phenom-
ena can allow for the generation of random numbers. Memory cell oxidation phenomena,
for example, can be used to generate Physical Unclonable Functions (PUF), which serve as
unique identifiers for physical systems, but can also be derived into random number genera-
tors.

The authors of [3] and [66] propose random number generator architectures based on RRAM
(Resistive Random Access Memory) cells, which encode binary information according to the
electronic resistance of each cell. For example, a ’high resistance state’ (HRS) encodes a 0 and
a ’low resistance state’ (LRS) encodes a 1 . In the case of the two articles, the memory cells are
more precisely of the OxRAM (Oxide-based RAM) type, whose principle is as follows: mem-
ory cells consist of two metal electrodes separated by a dielectric layer. Normally, these cells
are insulating. However, when a sufficiently large potential difference is applied across the
electrodes, a conductive filament forms (SET step) between the two electrodes (in the case of
both articles, an oxygen cavity filament), and the cells become conductive. This phenomenon
can then be reversed by applying a negative potential difference to reabsorb the conductive
filament (RESET step). This cycle is summarized in Fig. 10.

In the above graph, the terms LRS and HRS denote low and high resistance states respectively,
and the terms VSET and VRESET denote SET and RESET voltages respectively.

However, these voltages, and in particular the SET voltage, are also variable for each cell and
depend, among other things, on the state of the dielectric layer, which changes with each SET
and RESET operation. To produce random data, the idea is to apply an identical voltage across
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FIGURE 11. Schematic representation of a QRNG based on a semi-reflective
mirror. [71].

the electrodes, so that around 50% of the cells are oxidized (appearance of the conductive fil-
ament). In this case, the generator produces a random matrix after each SET step, containing
around 50% of bits 1. However, the generator presented in [3] suffers from data dependencies
before post-processing (see Table II on page 7 in their article).

2.5.4. Generators based on quantum phenomena. In addition to electronic and elec-
trochemical phenomena, one of the most intrinsically random phenomenon is the quantum
behavior of elementary particles (especially photons). This is sometimes referred to as QRNG,
for Quantum Random Number Generator. One way of generating random numbers from pho-
tons (Cf. [71] §4), for example, is to use a laser to project photons onto a semi-reflective mirror,
behind which two sensors are placed (one facing the laser to capture unreflected photons, the
other at 90° to capture reflected photons, as shown in Fig. 11). One of the photonic sensors is
then used to encode a bit 0, while the other encodes a bit 1.

In the case where the mirror is perfectly semi-reflective, the proportion of bits 0 and 1 is per-
fectly balanced. However, it is very difficult in practice to obtain a reflection rate of exactly
50%. For example, for the Quantis generator from the ID Quantique company, the authors of
the white paper [71] simply announce a bias of less than 10%, meaning that the proportion of
bits 0 (and conversely of bits 1) lies between 45% and 55% before post-processing.

A second possibility for generating random numbers from photons is to use another random
property of photons, which is that, for a light source, the number of photons emitted during
a given period of time is non-deterministic (more precisely, it follows a Poisson distribution
[76]). Another generator architecture proposed by ID Quantique is based on a photo-diode
emitting photons onto a sensor array. The number of photons detected by each sensor thus
produces a random number. The authors of [71] (§4.2) then claim that the output numbers
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FIGURE 12. Schematic view of an Hybrid RNG.

of this generator already have maximal entropy, hence a perfectly random behavior, without
even the need for post-processing. To back up their claim this, they rely on a set of standard
tests, some of which will be discussed in the next section.

2.5.5. Limits of true random number generators. In this section, we have thus seen that
the means of generating random numbers are extremely diverse, due to the multiplicity of
physical phenomena that can be used, and the different possible architectures taking advan-
tage of a given phenomenon. However, these generators are not flawless either. The fact that
they rely on a physical phenomenon make them subject to the environmental conditions, or
aging, which deteriorate the quality of the phenomenon in terms of the randomness it leads
to, up to a total loss of entropy. The physical entropy source is also a target of choice for at-
tackers, as it opens up a larger variety of vulnerabilities that can be exploited to reduce the
quality of the randomness produced by the generator. We will go in more details on attacks
on TRNGs in Chapter 8. To limit the impact of a deterioration of the physical entropy source
(whether voluntary or not), choosing a good post-processing is then a good solution. The
post-processing of a TRNG can even be a DRNG in and of itself, with such generators being
called Hybrid Random Number Generators.

2.6. Hybrid Random Number Generators

As aforementioned, Hybrid Random Number Generators are the combination of a PTRNG
and a DRNG (more precisely, a DRNG based on a cryptographic function, equivalent to class
DRG.3 proposed by the AIS 20/31 [67] (192)). The DRNG then serves as a cryptographic post-
processing to the raw numbers produced by the PTRNG. It ensures that, should the physical
entropy source degrade over time, no statistical anomaly will be seen at the output of the gen-
erator.

However, as presented in the beginning of Sect. 2.5, the PTRNG part of an Hybrid Random
Number Generator is still subject to online tests, which raise an alarm when the statistical
properties of the raw random numbers degrade beyond an acceptable point. The security of
an Hybrid RNG should therefore never be equal to the sole security of its DRNG part. More
precisely, by contrast to simple TRNGs or DRNGs, the security of an hybrid RNG relies on both
the information-theoretic properties of the TRNG part (provided by the stochastic model),
and the computational security of the DRNG part (provided by the analysis of the underly-
ing cryptographic function). Hybrid RNGs then theoretically offer the highest security level
possible, and, under these circumstances, shall be used for cryptographic applications.
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2.7. Conclusion

In practice, for these different generators (deterministic, non-deterministic, or hybrid) to be
used in a cryptographic context, it is necessary to be able to offer guarantees on the quality
of the randomness they produce. These guarantees can be provided by means of a precise
modeling of the generator, or by statistical measurements on its output for example. The
aim of the following chapter will therefore be to study the different ways of ensuring that a
generator meets a certain level of quality, depending on the type of generator encountered.



CHAPTER 3

Evaluating the quality of the randomness

No matter the type of evaluation carried out on a cryptographic system, the goal is always to
ensure that an attacker will not be able to gain an advantage on the evaluated system to com-
promise its security. In the case of a random number generator, gaining an advantage would
mean being capable of anticipating, even partially, the sequence of numbers produced by the
generator. More precisely, regardless of the type of generator (physical or not, deterministic
or not), the produced numbers must be indistinguishable from ideal random numbers be-
cause, as we saw in the introduction, even partial knowledge of the generated numbers can
compromise the security of a cryptographic scheme.

As a matter of example, if strong correlations exist between bits of successive nonces in an
ECDSA scheme (meaning that some bits of future nonces can be estimated with a non-zero
probability with the knowledge of previously generated nonces), this could lay the ground-
work for an attack such as the one presented by Nguyen and Shparlinski [60, 61], or some
other variation of this attack.

It therefore appears essential to have robust methods and metrics to ensure that the genera-
tors used produce an randomness of optimum quality.

In the PG-083 guide, the ANSSI does not impose a strict roadmap on the methods of assess-
ment of the quality of the randomness produced by a generator. In the following paragraphs,
the quoted sentences are our proposed translations for the original sentences in French in the
PG-083 guide. See the different footnotes for the original phrasings.

As far as statistical tests are concerned, it simply stipulates that "statistical tests on the output
of the generator must not reveal any significant defect in the generated random numbers".1 The
authors mention the FIPS 140-2 and SP 800-22 tests; the former ones are also included in the
AIS 20/31 test battery, detailed later in this chapter. But they also explain that "any test that
appears to be relevant can be used"2 on the sequences before any post-processing.

1"Des tests statistiques en sortie du générateur physique ne doivent pas faire apparaître de défauts signifi-
catifs dans l’aléa généré.", [1] §2.4.2, RègleArchiGVA.2.

2"mais tout test paraissant pertinent peut être utilisé.", [1] §2.4.2, last point in Justification.

29
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On the post-processing, the authors of PG-083 state that the cryptographic primitive used
must be "compliant with the referential".3

The guide’s authors also mention that choices of physical source and architecture in particu-
lar must be justified by reasoning, whether "heuristic or rigorous, qualitative or quantitative".4

Here again, designers are relatively free in their approach of the proof, the key point being to
convince that "the generator does indeed produce true randomness".5.

In the case of AIS, the evaluation of random number generators is much more guided, once
again through the different safety classes. In particular, the most restrictive class on physi-
cal generators (PTG.3) requires that a stochastic model of the physical entropy source must
be provided to prove its quality. In addition, a specific statistical testing procedure must be
applied to further validate the quality of the randomness produced by the generator.
In this chapter, we will then detail these two approaches, using stochastic modeling and sta-
tistical testing, to explain their use cases and interest, as well as their limitations.

3.1. Entropy measurement

3.1.1. The notion of entropy. In [48], Leinster describes the Shannon entropy [73] as a
measure of the "information" or equivalently of the "expected surpise" gained from the ob-
servation of random events (see p.40 in [48]). As a reminder, the Shannon entropy of a prob-
ability distribution is defined as follows:

DEFINITION 3.1 (Shannon entropy [73]). For p = (p1, ..., pn), n ∈ N a probability distribution
on n random events, the Shannon entropy H of p is equal to:

H(p) =−
n∑

i=1
pi log(pi ).

Remark: Some probabilities in p can be null if we accept the convention 0× log(0) = 0.
Also, the base of the logarithm is not specified in the definition as it only adds a constant
multiplier to the value of the entropy. In the context of information theory, the base of
the logarithm is often chosen to be 2.

We know that, when pi → 1, log pi → 0, and when pi → 0, pi × log pi → 0 as well. Intuitively,
in such cases, an observer will not be surprised to see (or not see) the event j occur, and H(p)
can be seen as the expected surprise of the observation of the events described by the proba-
bility distribution p.

3"Les primitives cryptographiques employées par le retraitement algorithmique doivent être conformes au
référentiel.", §2.4.3, RègleAlgoGDA.1.

4"justifier les choix faits par un raisonnement, qu’il soit heuristique ou rigoureux, qualitatif ou quantifié.",
[1] §2.4.2, third point in Justification.

5"La forme et le type de raisonnement sont laissés libres. Son but est de convaincre [...] que le générateur
d’aléa produit bien de l’aléa vrai", [1] §2.4.2, third point in Justification.
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Alternatively, Leinster also presents the use the Shannon entropy in the description of ecolog-
ical communities, and more precisely in the description of their distribution. In sect. 2.4 of
his book, Leinster presents the notion of biological diversity, especially used in Biology, and
which serves to describe the relative abundance distribution of different species in a com-
munity. Intuitively, it is a measure of how evenly the different species are balanced in the
community, and it is formally defined as follows:

DEFINITION 3.2 (Diversity of order 1). For p= (p1, ..., pn) a distribution on n events, the diver-
sity of order 1 of p, denoted by D(p) is the geometric mean of p, i.e.:

D(p) =
(

1

p1

)p1

...

(
1

pn

)pn

= 1

pp1
1 ...ppn

n

.

Remarks: Again, with the convention that 00 = 1, some probabilities in p can be null.
Also, the terms "of order 1" relate to the average function used, here the geometric mean.
Other functions can be used, but we will not mention them in this manuscript. We
redirect the interested reader to [48] (§4.2) for the description of other mean functions,
named power means.

We then notice that D(p) = exp(ln(η)×H(p)), where η is the base of the logarithm chosen for
the entropy. In particular, when η = 2, we have D(p) = 2H(p). The notion of entropy is thus
completely equivalent to the notion of diversity.

The property of the Shannon entropy which makes it very interesting when studying the di-
versity of species is that it is null when one of the probabilities is equal to 1 (and the other are
then all equal to 0), and it is maximal when all of the probabilities are equal to 1/n, so when all
of the events (or species) are evenly distributed. More specifically, when all events are equally
likely, H(p) = log(n). See Lemma 2.2.4 in [48] for the proof.

In the context of random numbers, the notion of diversity can be directly applied to the dis-
tribution of k-bit numbers for example, each number representing a species. For an ideal
generator, each k-bit number is equally likely to appear, which mean that the diversity, or en-
tropy of the distribution of numbers is maximal. Thus, when measuring the entropy of the
distribution of k-bit numbers, any value significantly lower than k will be revealing of a dis-
proportion in the numbers, which makes the output of the generator more predictable.

While the Shannon entropy is the most wide-spread, it is not the only entropy available. In
particular, a generalization of the Shannon entropy, called the Rényi entropy exists and is
defined as follows:

DEFINITION 3.3 (Rényi entropy of parameter α [69]). For a real number α ∈R\ {1}, αÊ 0, and
a probability distribution p= (p1, ..., pn), n ∈N, the Rényi entropy of parameter α of p is equal
to:
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Hα(p) = 1

1−α log

(
n∑

i=1
pα

i

)
.

This generic entropy allows for the definition of another specific entropy which is commonly
used alongside the Shannon entropy in the evaluation of random number generators : the
min-entropy.

DEFINITION 3.4 (Min-entropy). For a probability distribution p = (p1, ..., pn), n ∈N, the min-
entropy of p is equal to:

Hmi n(p) = min
1ÉiÉn

− log
(
pi

)=− log

(
max

1ÉiÉn

(
pi

))
.

In the context of random number generation, this entropy can be seen as a measure of the
maximal deviation of the distribution of numbers to the ideally random model. As such, it
gives a lower bound on the "quality" of the randomness produced by a generator.

Often, when evaluating random number generators, the value of interest is the entropy per
bit, defined as follows:

DEFINITION 3.5 (Entropy per bit of a probability distribution). For n ∈ N, n > 0, and p =
(p1, ..., pn) a probability distribution on n events, the entropy per bit of p is equal to:

H(p)

logη(n)
,

where η is the base of the logarithm used to compute the entropy.

For example, in the case that n = 2k , k ∈ N, the probability distribution p can be seen as a
distribution on the k-bit words. And, for η= 2, the entropy per bit is expressed as H(p)/k.

The entropy per bit allows for a standardization of the value of the entropy at the output of
different generators, independently from the size of the output space of each generator. This
value can then be used to define a common threshold that every generator should aim to
attain, as we will see for example in the following subsection.

Note: In cryptography, the notion of entropy (especially the Shannon entropy) is often
used as a metric of robustness of crypto-systems against attacks such as the exhaustive
search (also called brute force) of a secrete key. As an example, in the case of secrete key
of 3 bits (b1,b2,b3), represented by the variables (B1,B2,B3), when the 3 bits are uniformly
random and independent, the Shannon entropy of the distribution of (B1,B2,B3) is equal
to 3, and an exhaustive search will take on average 23−1 = 4 tries to find the correct key.
However, if for example B2 and B3 are constrained by one another such that, b2 = b3,
then the distribution p ′ of (B1,B2,B3) is:
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p ′ = (Pr(0,0,0) ,Pr(1,0,0) ,Pr(0,1,0) ,Pr(1,1,0) ,Pr(0,0,1) ,Pr(1,0,1) ,Pr(0,1,1) ,Pr(1,1,1)) ,

=
(

1

4
,

1

4
,0,0,0,0,

1

4
,

1

4

)
,

and the entropy of p ′ is equal to:

H(p ′) =−4× 1

4
× log2

(
1

4

)
= 2.

In such a case, an exhaustive search would only need to guess the first two bits, as the bit
b3 is deduced from b2. On average, an exhaustive search then requires 2 = 2H(p ′)−1 tries
to guess these two bits.

While it is very specific, this example showcases how the entropy can be used to estimate
the robustness of systems against certain attacks (although the link between the value of
the Shannon entropy and the complexity brute force attacks is further discussed in [55],
and appears less direct for more general distributions).

3.1.2. Stochastic modeling and entropy measurement. The stochastic model of a ran-
dom number generator is a probabilistic description of the outputs of the generator, as a
function of its parameters. When evaluating a physical generator using a stochastic model,
the aim is to translate the parameters of the model into a measure of the entropy. Since the
stochastic model is based on the physical model of the phenomenon used, entropy must be
derived by estimating the parameters of this physical model. This is, for example, what Lu-
bicz et al. [7, 29] have achieved for the so-called "elementary" physical generator based on
ring oscillators, or ERO-TRNG (see subsection 2.5.1 and Fig. 5).

The authors have modeled the behavior of oscillating signals from RO1 and RO2 as a function
of various "fixed" generator parameters and the relative jitter of the two signals to formulate
the following expression for the min-entropy per bit of the generator’s output:

Hmi n = 1− 4

π2 ln(2)
×exp

(
−

D ·4π2σ2
j i t T2

T 3
1

)
,

where Hmi n is the min-entropy, T1 and T2 are the periods of the oscillators RO1 and RO2, D is
the frequency division factor of the clock signal (from RO2), and σ j i t is the amplitude of the
relative clock jitter between the signals from the two oscillators.

The developers of random number generators who can provide a stochastic modeling of their
generator can then also provide a guarantee on the quality of the randomness it produces, as
well as the set of parameters needed to get to the desired level of entropy. As a reference, in
the AIS 20/31 [43], the required Shannon entropy per bit at the output of a generator is 0.997,
and in the new draft [67], the Shannon entropy threshold has been raised to 0.9998, and a
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min-entropy threshold has been placed at 0.98.

Having an expression of the entropy as a function of the parameters of the generator and of
the physical phenomenon used also enables developers to precisely anticipate the impact of a
given parameter on the quality of the random output. Here for example, we can verify that the
amount of jitter σ j i t is important to increase the entropy (which is expected due to it being
the entropy source of the generator), but also that the larger the accumulation time, the better
the quality of the randomness (the accumulation time being represented by both D and T2).

3.1.3. Entropy estimation based on the generated data. While using the stochastic model
of a TRNG seems to be a very robust way to derive the value of the entropy of the source, other
methods exist to estimate this entropy on the data produced by the generator. Such methods
can be particularly useful when the model of the TRNG is not available.

In its standard SP 800-90B [6] (§6.3), the NIST offers a list of algorithms which can be used as
estimators the min-entropy of a generator using the data it provides. However, these estima-
tions are only correct up to a certain degree, with some algorithms providing only an upper
or lower bound on the real min-entropy of the source (especially the compression estimate
§6.3.4). Moreover, in [33], Hagerty and Draper state that the general problem of estimating
the min-entropy of a random source based on a dataset is a constrained optimization prob-
lem, in which one must find the probability distribution which minimizes (or maximizes) the
min-entropy based on the statistic that is used for the estimation. And this optimization prob-
lem is in all generality expected to be computationally difficult.

In this regard, while the estimators proposed by the NIST can serve as an indicator of the
general quality of a generator, the entropy estimates they provide should only be viewed as
indicators, and shall by no means constitute a definite proof of security for the RNG.

3.2. Statistical tests

As mentioned in the introduction, the stochastic model of a generator is not always available,
either because the evaluated generator is not based on a physical phenomenon, or because
the phenomenon has not yet been modeled. In this case, the application of black-box statis-
tical tests (without taking advantage of any knowledge about the generator) is necessary.

Remark : The existence of a stochastic model does not exclude the use of statistical tests.
For example, even in the case of the most robust class of generators (PTG.3) for which a
stochastic model is required, the authors of [43] require the application of statistical tests
as a complement.

3.2.1. Definition of a statistical test. Statistical tests are formally defined as decision pro-
cedures, which aim at deciding whether to accept or reject an hypothesis "based on the value
of a certain random variable X " (see [47], §3.1), or more specifically, based on the distribution
Pθ of said variable X (with θ the label of the distribution).
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The hypothesis of the test will often be referred to as the null hypothesis.

The set of all possible distributions of X (named P ) can then be partitioned into two classes
of distributions, H and K , meaning that H ∪K =P and H ∩K =;. H corresponds to the dis-
tributions of X for which the hypothesis is accepted, and K to those for which the hypothesis
is rejected. In practice, however, the distribution of X is inaccessible, and one must refer to
samples x to decide on whether to accept or reject the hypothesis, or equivalently, on whether
or not the distribution of X can be in H . The set of all possible values x of X is then divided
in two "complementary regions" S0 and S1, with S0 the set of values x for which the hypoth-
esis is accepted, and S1 the set of values for which it is rejected, also called the "critical region".

The random variable X is called the test statistic, a statistic being defined as follows:

DEFINITION 3.6 (Statistic). For (X ,A ) a sample space, i.e. a measurable space (see Def. 2.2)
based on a set of observable values, a statistic is a measurable transformation T from (X ,A )
into a measurable space (T ,B).

In other words, a statistic T is a random variable which transforms observable values into
other observable values, and has for distribution QT such that, for any event B ∈B:

QT (B) = P (T −1(B)),

where P is a probability measure over the sample space (X ,A ).

In the context of statistical tests applied to binary sequences, this formal definition can then
be summarized as such:

DEFINITION 3.7 (Statistical test on binary sequences). For V an arbitrary numerical set,
X : {0,1}N → V a random variable (the statistic of the test), and S0 a subset of V , a statistical
test on a binary sequence b = (bi )1ÉiÉN based on X is a boolean function TX ,S0 , which returns a
decision depending on whether or not the value of the statistic applied to the sequence belongs
to the subset S0 ⊂V :

TX ,S0 : {0,1}N −→ {true, false}
b 7−→ X (b) ∈ S0

.

If TX ,S0 (b) = tr ue, the hypothesis is accepted and the test is passed, otherwise, the hypothesis is
rejected the test is failed.

3.2.2. Type I and type II errors. This type of test is associated with type I and type II er-
rors, with respective probabilities α and β. These errors describe the case where the hypoth-
esis has been incorrectly rejected (type I), or incorrectly accepted (type II). Their significance
is summarized in Table 1, a "valid sequence" being a sequence which satisfies the statistical
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Valid sequence Non-valid sequence

Test passed 1−α β

(Type II error)

Test failed
α

(Type I error)
1−β

TABLE 1. Type I and II errors in hypothesis tests

hypothesis.

The terms α and β are defined such that:

Pθ(X ∈ S1) Éα, for all θ such that Pθ ∈ H ,

and

Pθ(X ∈ S0) Éβ, for all θ such that Pθ ∈ K ,

with H , K the classes of distributions defined in the previous subsection, Pθ the distribution
of X , and S1 =V \ S0.

These two errors and their parameters α and β (the latter commonly referred to as the power
of the test) are then used to define the set S0 of "acceptable" values for the test statistic.

3.2.3. Implementation and current standards on statistical tests. In practice, and name-
ly in the context of random number generators, statistical tests are most often designed to
confront a dataset to the hypothesis that it fits to a given distribution.

Statistical tests specifically designed for random number generators exist at least since Kendall
and Babington-Smith [42], who proposed a notion of local randomness (see [42], (21) in p.153),
along with four tests on sequences of digits (numbers in {0, ...,9}) aiming to test the hypothesis
of a locally random sequence. The local randomness is the notion that, in a finite sequence of
data, no digit should appear significantly more often than others, no pair of digits should be
preponderant either, and so on for any collection of digits of any size in the sequence.

Remark: The authors talk about the local randomness to describe the behavior that ran-
dom numbers are expected to have in a finite sequence, by opposition to the idea that
any set of digits, no matter how regular, can be viewed as a random sampling in an infi-
nite sequence.

Other statistical tests applied to random number generators were later listed by Knuth in 1969
([44] §3.3), and some are still commonly used today, sometimes slightly modified, such as the
equidistribution test or the runs test (which will be detailed later).
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More tests were subsequently carried out in batteries, such as the DieHard battery proposed
by Marsaglia [53], which was later completed by Brown into the test battery DieHarder [14,
15]. In addition to these are the TestU01 by L’Ecuyer and Simard [46], and, perhaps most
importantly, Maurer’s universal test [57] (later reinforced by Coron and Nacache [20]), which
provides an estimate of the entropy per bit of any binary information source.

Today, the design and evaluation of random number generators has been standardized, no-
tably by the NIST [4, 6, 5] in the USA and the BSI [43, 67] in Germany, both of which offer a test
battery linked to their evaluation methodology. The test battery from the BSI namely reuses
the four tests of FIPS 140-2 [63], which are themselves based on the tests from [59] (§5.4.4).
In addition to the tests in the SP 800-90 standard (notably [6] §5), NIST also offers a set of
statistical tests in the SP 800-22 standard [70].

In the majority of cases, the aim of these standard tests is to verify the hypothesis that the
bits of the sequence are the successive realizations of a strict-sense stationary discrete process
([65] §6.5.2), following a Bernoulli distribution B( 1

2 ). As a reminder, a strict-sense stationary
discrete process is defined as follows:

DEFINITION 3.8 (Strict-sense stationary discrete process). Let {Xi } be a discrete stochastic pro-
cess, i.e. an object representing the discrete evolution of a random variable X over time. We
say that {Xi } is strict-sense stationary if and only if, for all (i ,n,k) ∈ N3, the random vectors
X (i1, ..., in) (realizations of {Xi } at times i1, ..., in) and X (i1 +k, ..., in +k) have the same distri-
bution.

3.2.4. SP 800-90B standard tests. Among the statistical tests commonly used today, we
find the tests of the SP 800-90B standard ([6] §5), which are designed to confront a data se-
quence the hypothesis that the samples of the sequence are independent and identically dis-
tributed (IID). The set of tests is divided into two groups: permutation tests, which apply a
statistical measure to permutations of the tested sequence to check that the values of the sta-
tistics are normally distributed around the value obtained on the initial sequence, and com-
plementary χ2 tests.

3.2.4.1. Permutation tests. For the test of the first group, the permutation algorithm used
is the Fisher-Yates Shuffle [30] (Example 12), described in Alg. 3.

Algorithm 3 Fisher-Yates Shuffle algorithm [30]

Input: L > 0,S = (s1, ..., sL).
Output: Random permutation of S.

for i = L downto 1 do
Generate a random integer 1 É j É i .
Swap s j and si .

end for
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Remark: The Fisher-Yates algorithm require the use of a first RNG to produce the random
index j for the swap between si and s j . This RNG is expected to be of good quality, which
raises the question of how it was tested in the first place. Its own test procedure would
indeed require the use of another RNG, and we fall into an endless loop. It could also be
interesting (although not discussed in this manuscript) to evaluate the impact of the use
of a poor quality RNG in the Fischer-Yates algorithm on the rest of the test procedure.

Then, in the case of permutation tests, the procedure is the same for all tests:

(1) C0,C1 = 0.

(2) Compute the test statistic T on the base sequence.

(3) For i ∈ {1, ...,10,000} :
(a) Build a permutation of the sequence using the Fisher-Yates Shuffle algorithm.
(b) Compute the test statistic T ′ on the shuffled sequence.
(c) If T ′ > T , increment C0, if T ′ = T increment C1.

(4) If C0 +C1 É 5 or C0 Ê 9995, reject the hypothesis of an IID sequence.

One permutation test that can be applied to both binary and integer data is the test of number
of runs based on the median:

DEFINITION 3.9 (Test of number of runs based on the median). For a data sequence S =
(si )1ÉiÉL , the statistic of the number of runs based on the median is computed as such:

(1) Compute the median X of the dataset.

(2) Build a second sequence S ′ such that, for any i ∈ {1, ...,L} :

s′i =
{ −1 if si < X ,

+1 if si Ê X .

(3) The test statistic on S is the number of runs in S ′, that is to say, the number of subse-
quences of identical values in S ′.

As an example, for S = (5,27,31,4,1,12,2,68,54,13,22), the median X is equal to 13, and
the sequence S ′ is (−1,+1,+1,−1,−1,−1,−1,+1,+1,+1,+1). There are 4 runs in S ′ : (−1),
(+1,+1), (−1,−1,−1,−1), (+1,+1,+1,+1). The statistic of the number of runs based on the
median applied to S is then equal to 4.

For binary data, the runs can be computed directly on the sequence itself. The runs of num-
bers based on the median simply become runs of bits 0 and runs of bits 1.

3.2.4.2. χ2 tests. In the case of χ2 tests, one of the tests applicable to binary data is the test
of goodness-of-fit. Its goal is to verify that the distribution of bits 0 and 1 remains the same
throughout the sequence.
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DEFINITION 3.10 (Test of Goodness-of-fit for binary data). For a binary sequence S = (si )1ÉiÉL ,
the statistic of the test of Goodness-of-fit is computed as follows:

(1) Let T = 0 and p = #{si = 1, i ∈ {1, ...,L}}.

(2) Divide the sequence S into 10 subsequences Sd of equal length
⌊ L

10

⌋
.

(3) Define the number of bits 0 and 1 as being equal to e0 = (1−p)
⌊ L

10

⌋
and e1 = p

⌊ L
10

⌋
.

(4) Compute the statistic:

T =
10∑

d=1

(o(d)
0 −e0)2

e0
+ (o(d)

1 −e1)2

e1
,

where o(d)
0 and o(d)

1 are the number of bits 0 and 1 respectively in the subsequence Sd .

The test fails, and then the sequence is considered "non-homogeneous" if the value of the statis-
tic is greater than 27.887, which is the critical value at 0.001 for a χ2 distribution with 9 degrees
of freedom.

3.2.5. AIS 20/31 standard tests. There are nine AIS 20/31 tests [43], all of which (with the
exception of test T8) are hypothesis tests, with the null hypothesis being that the tested se-
quence has been produced by an ideal random number generator. The aim of these tests is
to check that the distribution of generated numbers conforms to the hypothesis of an ideally
random sequence, particularly with regard to the distribution of n-bit words (for a fixed inte-
ger n > 0) and data independence. More specifically, the tests are the following:

• Disjointness test (T0) : Verifies that no 48-bit string is repeated in a sequence of
3,145,728 = 216 ×48 bits.

• Monobit test (T1) : Measures the quantity of bits 1 to ensure that there are approxi-
mately 50% of them in the sequence.

• Poker test (T2) : χ2 test which aims at ensuring that 4-bit words are evenly dis-
tributed.

• Runs test (T3) : Aims at ensuring that the number of runs (subsequence of maximum
length of identical values) of lengths 1, 2, 3, 4, 5 and Ê 6 conforms to the hypothesis
of an ideally random sequence.

• Long run test (T4) : For 20,000 bits, a long run is defined as a run of length Ê 34. The
test ensures that no long run is present among the 20,000 bits of the sequence under
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study.

• Autocorrelation test (T5) : The test studies the correlations between successive bits
by verifying that there are not too many pairs of identical or complementary bits.

• Uniform distribution test (T6) : Verifies that the distribution of k-bit words is uni-
form in an n-bit sequence. Parameters k,n ∈N2 and a (threshold of rejection for the
test) can be adjusted. It is not a χ2, unlike test T2.

• Test for homogeneity (T7) : Aims at ensuring that the distribution of n-bit words (for
a given n > 0) stays the same through several successive independent generations of
numbers.

• Entropy estimation (T8) : Entropy measurement algorithm developed by Coron and
Naccache [20].

The two tests we will be heavily relying on throughout this manuscript are the Monobit (T1)
and Autocorrelation (T5) tests, both already present in [59]. These tests are detailed below.

DEFINITION 3.11 (Monobit test). For a binary sequence (bi ) of length N ∈N, the monobit statis-
tic M is defined as follows:

M =
N∑

i=1
bi .

In the AIS 20/31, the statistic is applied on a sequence of 20,000 bits, and the null hypothesis is
that the sequence studied comes from an ideal generator. The test is passed if M ∈ [9654,10346].

In the case of a sequence produced from an ideally random generator, including the assump-
tion of independent data, the expected value and the variance of this statistic are:

E [M ] = N

2
, and Var(M) = N

4
.

The Monobit test then allows for deviation of 3.46% from the expected value.

DEFINITION 3.12 (Autocorrelation test). For a binary sequence (bi ) of length N ∈N and an inte-
ger k É N

2 , the autocorrelation statistic of lag k, denoted by Ak , is computed along the following
equation:

Ak =
N∑

i=k
bi−k ⊕bi .

In the AIS 20/31, for a given lag k, this statistic is to be applied to sequences of 5000+ k bits,
with the restriction of having k É 5000. The null hypothesis is again that of an ideally random
generator, and the test is considered passed if Ak ∈ [2326,2674].
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In the case of a sequence generated by an ideally random generator, which is again the null
hypothesis of the test, the expected value and variance of the statistic are:

E [Ak ] = N −k

2
, and Var(Ak ) = N −k

4
.

The test then allows for a deviation of 6.96% from the ideal value.

Remark : In its original iteration in [59], the autocorrelation test also uses Ak , but the test
statistic, then denoted by X5, is defined as such:

X5 = 2×
(
Ak − N−k

2p
N −k

)
.

The idea is to normalize the statistic Ak to get a value that will be comparable to other
results, no matter the length N of the tested sequence. It is interesting to note that the
statistic X5 is the one that has been chosen as Autocorrelation statistic in the latest draft
of the AIS 20/31 [67] (§4.6.1, test T4).

3.2.5.1. Procedure A. The procedure is similar to the permutation tests in the NIST SP 800-
90B standard, in that the tests in the procedure apply both to a base sequence and to modified
versions of this base sequence. More precisely, procedure A on a generator producing n-bit
numbers runs as follows:

(1) Generate a first sequence of 3,145,728 = 216 ×48 bits, apply test T0 on it.

(2) Generate a sequence S0 of 20,000 bits, then generate a sequence of 20,000×n bits.
From this second sequence, build n subsequences (Si )1ÉiÉn of 20,000 bits such that,
for any 1 É i É n, Si is the sequence that contains the i -th bit of each of the 20,000
integers. Repeat step (2) until 257 sequences of 20,000 bits have been built.

(3) Apply tests T1 to T4 on each of the 257 sequences built in step (2).

(4) For each of the 257 sequences, apply test T5 as follows: compute the autocorrelation
statistic on the first 10,000 bits of the sequences, with lag values k varying between 1
and 5000. Identify the lag kmax for which the autocorrelation deviates the most from
the expected value of 2500, and compute the autocorrelation statistic with this same
lag parameter kmax , this time on the last 10,000 of the sequence.

3.2.5.2. Procedure B. In addition to procedure A, a second procedure, named procedure
B is applied as follows on a binary sequence of arbitrary length N Ê 2,468,480:
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(1) Apply test T6 on the first 100,000 bits of the sequence, with parameters (k,n, a) =
(1,100,000,0.025).

(2) For all remaining bits in the sequence:
(a) From the pairs of disjoint bits, build two subsequences T F0 and T F1 which re-

spectively contain the pairs for which the first bit is 0 and 1, until both subse-
quences contain n1 Ê 100,000 pairs. Compute
U0(1) = #{ j É n1|(b2 j+1,b2 j+2) ∈ T F0,b2 j+2 = 1}/n1, the number of pairs for which
the first bit is 0 and the second bit is 1, divided by the total number of pairs for
which the first bit is 0, namely n1. Similarly, compute U1(0) the number of pairs
(1,0) divided by n1. Finally, compute the value of the test statistic
S = |U0(1)+U1(0)−1|, and verify that S < 0.02.

(b) In a similar fashion, with the next bits in the input sequence, build 4 subse-
quences of disjoint triplets T Fr s , (r, s) ∈ {0,1}2 such that T Fr s contains the triplets
for which the first two bits are r and s, until every subsequence contains n2 Ê
100,000 triplets. Compute the values Ur s(0) and Ur s(1), the number of triplets
(r, s,0) and (r, s,1) divided by n2. Compare the value of U0s to the value of U1s

using the χ2 statistic defined in test T7, with a critical value α = 0.0001. We will
not detail the test T7, but as an example, for s = 0, and after simplifying the ex-
pression, computing the statistic of test T7 to compare U0s with U1s amounts to
computing the following value:(

f (000)− f (100)
)2

f (000)+ f (100)
+

(
f (001)− f (101)

)2

f (001)+ f (101)

where f (r sx) is the frequency of occurrence of the 3-bit word r sx, x ∈ {0,1}, rel-
atively to the frequency of occurrence of the 2-bit word r s.

(c) Finally, with the next bits in the input sequence, build 8 subsequences of disjoint
quadruplets T Fr st , (r, s, t ) ∈ {0,1}3, such that every quadruplet of T Fr st starts
with bits r , s and t in that order, and so that the 8 subsequences are of length
n3 Ê 100,000. For every triplet (r, s, t ) ∈ {0,1}3 compute Ur st (0) and Ur st (1) the
frequencies of occurrence of (r, s, t ,0) and (r, s, t ,1) relatively to n3. Like in the
previous step, compare the values of U0st and U1st using the χ2 statistic defined
in test T7, with a critical value α= 0.0001.

(3) Apply the test T8 (entropy test) to the rest of the bits in the sequence with parameters
L = 8, Q = 2560 and K = 256,000. The test is a success if the value of the statistic gets
over 7.976, which corresponds to an entropy per bit of 0.997.

In the case of both procedures, the method used to decide whether the procedure has suc-
ceeded or failed is the same: if none of the tests fail, the procedure is a success. If two or more
tests have failed, the procedure is a failure. If exactly one test fails, the procedure is rerun once
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on a completely new dataset (produced, of course, by the same random number generator).
If one of the tests fails again, the procedure is deemed a failure. If all tests pass on the second
attempt, the procedure is a success.

Remark: While the choice of specific data sizes for the two procedures is somewhat arbi-
trary, the reasoning behind those choices is that the size of the data must be sufficiently
big so that the relative variances of the statistics are low, but not so big that tests become
impractical. More specifically, the authors chose the data sizes such that, for an ideal
generator, procedure A passes "with probability ≈ 0.9987", and procedure B passes "with
probability ≈ 0.9998" ([43], (210) and (213) p.55-56). In this regard, the test procedures
were designed with the primary goal of not rejecting good generators.

3.2.6. Alternative approach to representing test statistics. In [51] Lubicz, takes up Yao’s
definition6 [80] of a statistical test on binary sequences as being a probabilistic algorithm tak-
ing as an input an n-bit sequence, and which returns a binary string which length is lower
than n.

In this regard, it appears that this definition only describes the statistics used for testing de-
spite the author naming it statistical tests, as there is no mention about regions of acceptance
or rejection, which is mandatory for classical statistical tests (see for instance [47]). In the
remainder of this section, we will then present Lubicz’s results as being about statistics rather
than tests.

With this definition, Lubicz proves that any finite statistic F , applied to binary sequences, can
be represented by a finite automaton [38] in the form F = (S, f , s0), where S = {s0, ..., sk } is the
finite set of states of the automaton, s0 is the initial state of the automaton, and f : S×{0,1} → S
is the transition function. To clarify the notion of transition function, f (si ,b) = s j means that
when, during the test run, we are in state si and we read bit b, we pass into state s j .

Each statistic therefore works by reading the studied sequence bit by bit, and navigating through
the states of the associated automaton using its transition function.

As an example, Lubicz explains that the Monobit statistic (Cf. Def. 3.11) can be computed
using the automaton F = ({s0, s1}, f , s0), shown in Fig. 13, which is simply the automaton rep-
resenting a binary memoryless information source [2]. To compute the value of the Monobit
statistic, all we need to do is count the number of passes through the state s1, which corre-
sponds to the number of bits 1 in the tested sequence.

Similarly, for a given k ∈N,k > 0, one can compute the autocorrelation statistic Ak of the AIS
20/31 (see Def. 3.12) with the 2k+1-state automaton

6[80] Def. 12: "A polynomial statistical test is a probabilistic algorithm M that takes only inputs of the form
(x1, x2, ..., xN k ), where each xi is an N -bit number, halts in time O(N t ), and outputs a binary string y , where t
and k are some fixed positive integers."
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FIGURE 13. Automaton representing a binary memoryless source.

FIGURE 14. Automaton representing a binary source of memory 1.

F = ({s0, ..., s2k+1−1}, f , s0) in which each state si of index i =
k∑

p=0
bp 2p model the reading of the

k +1 consecutive bits b0, ...,bk , and such that f (si ,b) = s j where b ∈ {0,1} and j =
k∑

p=1
bp 2p−1+

b × 2k . In other words from the state which index has as a binary representation the string
bk ... b1 b0, the transition function leads, upon reading the bit b, to the state which index has
as a binary representation the string b bk ... b1.

This automaton is in fact the automaton modeling a binary source of memory k [2].

As an example, for k = 1, which corresponds to the study of directly successive bits in the
sequence, the automaton is represented in Fig. 14. The statistic A1 is then computed by sum-
ming the number of passes through the states s1 and s2.
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In the general case, the statistic Ak is computed by summing the number of passages in all

states of index i =
k∑

p=0
bp 2p such that b0 ̸= bk .

Remark: To be entirely rigorous, the automaton shown in Fig. 14 would have had to
be supplemented by two additional states, modeling the reading of the first bit of the
sequence. But for the sake of clarity, we have chosen to consider that the automaton is
initialized by reading the first two bits of the sequence at the same time to place itself in
one of the 4 states depicted in the graph.

This formalism of statistics makes it possible to show, in particular, an intuitive result: the
application of a battery of statistical tests on a sequence will give a guarantee on the quality
of the randomness at least as good as applying only part of this battery.

Indeed, in terms of automata, the application of several joint statistics corresponds to passing
the sequence through the product automaton of the automata corresponding to each indi-
vidual statistic ([51], Def. 29). Lubicz then explains that isolating a statistic (or, equivalently,
several statistics) from this product automaton corresponds to applying a morphism (more
specifically a projection) to it.

Furthermore, Lubicz defines an order relation ([51], Def. 24) on statistics, such that, if there
exists a morphism from the statistic F to the statistic F ′, then F is stronger than F ′, which he
denotes by F Ê F ′. He then shows ([51], Cor. 28) that if F Ê F ′, then "any sequence that passes
the test F also passes the test F ′".

Note: To be applicable in the sense of statistical tests as we defined them in subsection
3.2.1, the notion of acceptance region needs to be added to the above corollary to be able
to compare two tests based on the statistics F and F ′.

By combining all these results, the author formally demonstrates, as announced, that a test
battery will provide at least as good a guarantee as any of its individual tests on the quality of
a sequence’s randomness.

And although this alternative vision of test statistics does not necessarily lead to the devel-
opment of specific statistics, it does provide a basis for a formalism which we shall continue
to refer to in the remainder of this manuscript as it is useful to compare statistics in particular.

3.3. Limitations of statistical tests

Although statistical tests allow for an "affordable" estimation of the quality of a random num-
ber generator through the statistical properties of the data it produces, these tests still suffer
from a number of drawbacks.
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3.3.1. No strict guarantee on the security of a tested RNG. By construction, statistical
tests only offer a binary answer on whether an RNG has acceptable statistical properties or
not, based on a limited sample of data. This result is moreover subject to false positives and
false negatives (also called Type I and II errors, see Sect. 3.2.2). In that sense, the result of
a test is only to be seen as an indicator of the general quality of a generator, with a certain
confidence level, but it cannot constitute a strict proof of the security of said generator. More
specifically, a generator cannot be deemed usable for a cryptographic application based only
on the result of a test battery.

Note: Although from a certification standpoint, statistical tests cannot provide a defi-
nite guarantee on the quality of a generator, they can lead to the detection to statistical
anomalies in the generated data. These anomalies, can then be exploited to lead to vari-
ous attacks. As an example, if statistical tests showcase that some of the bits produced by
the RNG are strongly correlated, and could thus be deduced from one another, attacks
such as the one presented by Nguyen and Shparlinski [60, 61] could be attempted.

3.3.2. Low restrictiveness of tests. To limit the risk of type I or II errors, test developers
will then adapt the range of values of the statistic for which the test is considered passed. For
example, in the case of AIS 20/31, the statistical rejection ranges of tests T1 to T5 are set to fix
the type II error (false negative) at a value of 10−6. The aim is to never reject a good-quality
generator. However, Type I error (false positive) is not discussed, and it can be argued that
the bounds of some tests might be too lax. For the Monobit (T1) test, for example, a sequence
producing 51% bits 1 would likely pass the test, which could pose a problem depending on
the desired level of security. Of course, with such binary tests, a compromise is necessary, as
it is impossible to minimize both Type I and Type II errors.

3.3.3. Redundancy of tests. A second limitation of these test batteries is the redundancy
of some of them. As we explained in subsection 3.2.6, an abundance of tests will not impair
the accuracy of the evaluation.

On the other hand, an accumulation of statistical tests can also complexify test procedures
unnecessarily by adding redundancy in the statistical characteristics that are covered by the
tests. For example, as mentioned by De Julis ([21] section 3.2.4), with the parameters rec-
ommended by procedure B of AIS 20/31 [43], the T6 test is completely redundant with the
Monobit test (T1). More precisely, in the general case, the T6 test is expressed as:

DEFINITION 3.13 (Test T6 form the AIS 20/31). For (k,n) ∈N2, a ∈ R, a Ê 0, and a sequence of
n words of k bits S = (w1, ..., wn), the statistic of test T6 is defined as:

T6(x) = #{ j ∈ {1, ...,n}|w j = x}

n
,

and the test is passed of, for all x ∈ {0,1}k , T6(x) ∈ [2−k −a,2−k +a].
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In Procedure B, the test parameters are set to k = 1 and n = 100,000. In practice, the test is
therefore used to study the proportion of bits 0 and 1 in the sequence, similarly to the Mono-
bit test (Def. 3.11) apart from the number of bits of the tested sequence, but with a more
permissive range. Indeed, the accepted deviation from the ideal value for the Monobit test is
3.46%, while the accepted deviation for the T6 test is 5%, despite the greater quantity of data
studied (and therefore the normally lower variance of the statistic). In the new version of AIS
20/31 [67] (currently under review), the T6 test has been removed.

3.3.4. Difficulty in interpreting test results. Finally, a third limitation of statistical tests
as used in current standards is the difficulty of interpreting results in certain cases. More
specifically, in a general context, the link between a test result and the statistical characteristic
it is intended to study is not straightforward. A striking example of this is the autocorrelation
test (T5) from the AIS 20/31. For a stationary process (Cf. Def. 3.8), which is the framework
for the AIS 20/31 tests, statistical autocorrelation is a well-defined notion:

DEFINITION 3.14 (Autocorrelation of a stationary discrete process {Xi }). For a stationary dis-
crete stochastic process {Xi }, the autocorrelation of lag k > 0 of {Xi }, denoted by ρk , is defined by
the following equation:

ρk = E
[
(Xi −µ)(Xi−k −µ)

]
Var(Xi )

,

where µ= E [Xi ] is the expected value of the process {Xi }.

A priori, it is reasonable to expect that the autocorrelation test will focus on the estimation of
the autocorrelation of the tested sequence. Even more so considering that, in the new draft
of the AIS 20/31, the authors specifically mention that the test suite in which the autocorrela-
tion test is used focuses on the security property PTG.2.2 ([67], (279) p.45), which deals with
dependencies only. However, it quickly becomes apparent that this test is impacted by statis-
tical anomalies other than a simple autocorrelation. Let us take, for example, the case of a se-
quence S = (si ) produced by the following rule: for N ∈N, for any 1 É i É N , Pr(Si = 1) = 0.8,
with Si the random variable representing the bits si of the sequence. The sequence is then
constructed using N independent random drawings to determine the value of successive bits
according to this rule.

For such a sequence, the expected value of the autocorrelation statistic Ak of test T5 is equal
to:

E [Ak ] =
5000+k∑

i=k
E [Si−k ⊕Si ] = 5000×2× (0.8×0.2) = 1600.

for any k ∈ {1, ...,5000}. The test is than almost guaranteed to fail.

However, for this sequence, using the notations of Def.3.14 and using the fact that
Pr(Si = 1) =µ, that the drawings of the values of Si are independent and that Si is stationary,
we also have the following equation:
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E
[
(Si −µ)(Si−k −µ)

]= (1−µ)(0−µ)×Pr(Si = 1,Si−k = 0)

+ (0−µ)(1−µ)×Pr(Si = 0,Si−k = 1)

+ (1−µ)(1−µ)×Pr(Si = 1,Si−k = 1)

+ (0−µ)(0−µ)×Pr(Si = 0,Si−k = 0) ,

= −2×µ2(1−µ)2 +2×µ2(1−µ)2,

= 0.

Then, the theoretical autocorrelation of that sequence is null, but the autocorrelation test
from the AIS 20/31 still fails.

In this sense, the result of this test may be misleading as to the statistical feature of the se-
quence that is leading to the failure, which is, in that case, a general disproportion between
bits 0 and 1, and not an autocorrelation.

Remark: The autocorrelation statistic X5 used in the new draft of the AIS 20/31 also suf-
fers from the same drawback, as it is simply a normalized version of the statistic Ak (see
[67], §4.6.1, test T4).

Although not as striking as in the case of test T6, it also appears that the autocorrelation test is
partially redundant with the Monobit test, considering that it is affected by a statistical anom-
aly that is perfectly characterized by the Monobit statistic.

This overlap in analyzed characteristics between tests could be the result of an overly super-
ficial analysis of the anomalies that the tests aim at studying. More precisely, the tests are
established empirically, with a complete modeling of their behavior in the event that they are
applied to an ideally random sequence of numbers, but without a prior characterization of
the anomalies the tests aim at covering.

In the context of an evaluation, aimed at verifying that the generator meets the announced se-
curity level, the lack of a direct link between a test failure and the statistical anomaly at cause
might not be a problem, as long as a poor quality generator has very little chance of passing
the tests. Although evaluators often look to verify a single property of the generator, linked to
its stochastic model. For example, the evaluators might know from the model that the genera-
tor suffers from a frequency anomaly, and want to verify whether it also presents a correlation
anomaly. In this event, a failure of the autocorrelation test from the AIS 20/31 might mislead
the evaluator into thinking that correlations are also present in the generated data.

From the point of view of a designer of a random number generator, having a means to trace
back to the statistical anomaly that led to a given failure is obviously very interesting, as it
could enable to identify the point(s) to be corrected in the generator’s design, which may vary
according to the type of defect encountered. Statistical anomaly characterization tools could
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even enable a TRNG designer to verify the law followed by his generator, even in the case that
this law is not the typical uniform distribution which is expected for random number genera-
tors.

As an example, in the case of TRNGs based on resistive memories (called RRAM) (see subsec-
tion 2.5.3), such as OxRAM [66, 3], a global disproportion of bits 0 and 1 may be the result
of a poor choice of decision threshold for the resistance of cells distinguishing a high resis-
tivity state from a low resistivity state. A distinction threshold that is too low could lead to a
preponderance of bits 1, for example. Autocorrelation in the generated data could, in turn,
be the result of a defective reset of the memory cells (again, see 2.5.3 for more details of how
such generators work).

In this sense, as well as enabling the rejection of poor-quality generators, it seems interest-
ing for a battery of tests to focus on the study of precisely defined statistical characteristics,
avoiding redundancies if possible in order to make the interpretation of their results more
straightforward.

3.4. Modeling statistical anomalies

The statistical features we are interested in when evaluating the quality of a random number
generator are those that distinguish it from an ideally random generator. In the remainder of
this manuscript, we will refer to these distinguishing features as statistical anomalies, since
they represent statistical phenomena that are not found in the case of an ideally random gen-
erator. These statistical anomalies are referred to as "defect in the randomness" in the PG-083
guide ([1] 2.4.2). A precise definition of some anomalies could then further guide a designer
to choose the relevant tests for the evaluation of his random number generator, depending on
which anomalies they expect their generator to be subject to.

In order to study anomalies in detail, a model in necessary to allow their characterization.
More specifically, it seems interesting to construct anomalies as perturbations of the ideal
model, to which one or more parameters have been added to account for the anomalies.

To characterize the statistical anomaly, it is necessary to design an estimator for the significant
parameters of the model, which can then be used as the basis for creating a test specifically
adapted to this anomaly. In this sense, we define the notion of optimality of a statistical test
with respect to a given anomaly:

DEFINITION 3.15 (Optimal statistical test for a given anomaly). For a given statistical anomaly,
characterized by a parameter α, let X be a statistic and TX ,S0 a statistical test associated to X .
We say that TX ,S0 is optimal for studying the anomaly characterized by the parameter α if
and only if X is an unbiased estimator of α, in other words, if:

E [X ] =α.
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In the remainder of this manuscript, we will then be applying this methodology in an attempt
to accurately characterize the two statistical anomalies that we already mentioned: the non-
uniformity of the 0 and 1 bit generation frequency, and the correlation between the bits of
the studied sequence. In particular, the model for the correlation anomaly should enable us
to solve the problem of overlap between the Monobit and Autocorrelation tests of the AIS
20/31, with the introduction of a new autocorrelation statistic. We will prove that this statistic
allows for the definition of an optimal test, and will be designed to not be impacted by a global
disproportion of bits 0 and 1 in particular.



CHAPTER 4

Frequency anomaly

Preliminary remark : In the rest of the manuscript, unless otherwise stated, the processes
considered will all be strict-sense stationary (see [65] §6.5.2, or our Def. 3.8).

Also, for the sake of conciseness of expressions, we will use the following notations to
describe the probabilities of observing specific bits in the sequence under study:

• Pr(Bi = x) = Pri (x)

• Pr
(
Bi = x,B j = y

)= Pri , j
(
x, y

)
• Pr

(
Bi = x | B j = y

)= Pri , j
(
x | y

)
where {Bi } is the stochastic process modeling the bits of the sequence.

The first anomaly we are looking to characterize in binary sequences produced by random
number generators is the disproportion between the frequency of occurrence of bits 0 and 1,
which we will call the frequency anomaly. The aim is to model the anomaly by a function of
a parameter ξ, which is symmetrical and normed (with values in ]−1,1[) such that the case
ξ= 0 represents the case where the sequence presents no anomaly.

Under these conditions, the model we have chosen is the following:

DEFINITION 4.1 (Frequency model for the bit 1). For a binary sequence (bi )1ÉiÉN , N ∈N, seen
as the successive realizations of a binary stochastic process {Bi }, we model the frequency of oc-
currence of the bit 1 as such:

Pri (1) = 1+ξ
2

,

where ξ ∈]−1,1[.

By construction, this model also enables the characterization of the frequency of occurrence
of the bit 0, as we naturally have Pri (0) = 1−ξ

2 .

It would of course be mathematically correct to consider that ξ ∈ [−1,1]. However, we will
later see that it is easier to exclude the two extreme cases of having ξ ∈ {−1,1}, and simply

51
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consider them as limit cases of our model if needed.

To characterize the frequency anomaly, we must then be able to estimate the parameter ξ
linked to the model. To this end, the most efficient estimator turns out to be the AIS 20/31
Monobit statistic (Def. 3.11). Indeed, for a sequence (bi )1ÉiÉN of realizations of the binary
process {Bi }, the expected value Monobit statistic M is:

E [M ] = E
[

N∑
i=1

Bi

]
=

N∑
i=1

E [Bi ] = N ×Pri (1) = N × 1+ξ
2

.

Thus, an interesting statistic for the evaluation of the frequency anomaly can be defined as
follows:

DEFINITION 4.2 (Statistic for the frequency anomaly). Let M be the Monobit statistic of the AIS
20/31 and N ∈N be the number of bits in the studied sequence. We define the statistic ξ̂ as:

ξ̂= 2

N
×M −1.

THEOREM 4.3. The statistic ξ̂, established in Def. 4.2, is an unbiased estimator of ξ.

PROOF. Using the expression of the expected value of the Monobit statistic M , we directly
have:

E
[
ξ̂
]= 2

N
×E [M ]−1 = ξ.

ξ̂ is therefore indeed an unbiased estimator of ξ.
□

In this sense, the statistic ξ̂ enables us to define an optimal test (Cf. Def. 3.15) for the fre-
quency anomaly as modeled above, and the Monobit test proposed by the AIS 20/31 is there-
fore almost optimal, needing just a linear transformation.

Furthermore, if we denote Bi the random variable modeling the observation of the process
{Bi } at a given time i , the variance of the statistic ξ̂ is:
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Var
(
ξ̂
)= 4

N 2
×Var(M) ,

= 4

N 2
×Var

(
N∑

i=1
Bi

)
,

= 4

N 2
×

(
N∑

i=1
Var(Bi )+2×

N∑
j=2

j−1∑
k=1

Cov(B j ,B j−k )

)
.

And, according to our model, Bi follows a Bernoulli distribution with parameter 1+ξ
2 , so:

Var(Bi ) = 1−ξ2

4

However, our model for the frequency anomaly does not enable us to characterize the covari-
ance of the pair (B j ,B j−k ), and it appears that the variance of the statistic ξ̂ is affected by the
presence of a potential autocorrelation in the sequence. Using the term ρk introduced in Def.
3.14, we can establish the following expression for the variance of the statistic ξ̂:

PROPERTY 4.4 (Variance of the statistic ξ̂). Let N ∈N be the number of bits in the tested sequence
and ρk be the autocorrelation of lag k in the sequence. Then the variance of the ξ̂ statistic is
expressed as follows:

Var
(
ξ̂
)= (1−ξ2)×

(
1

N
+ 2

N 2
×

N∑
j=2

j−1∑
k=1

ρk

)
.

PROOF. We have already established that:

Var
(
ξ̂
)= 4

N 2
×

(
N∑

i=1
Var(Bi )+2×

N∑
j=2

j−1∑
k=1

Cov(B j ,B j−k )

)
,

= 1−ξ2

N
+ 8

N 2
×

N∑
j=2

j−1∑
k=1

Cov(B j ,B j−k ).

And, by definition of the covariance:

Cov(B j ,B j−k ) = E[
(B j −E

[
B j

]
)(B j−k −E

[
B j−k

]
)
]

.

Here again, the process {B j } is stationary. We thus have E
[
B j

] = E
[
B j−k

]
, which we simply

write µ. As a reminder the autocorrelation of lag k of B j is equal to:

ρk = E
[
(Bi −µ)(Bi−k −µ)

]
Var(Bi )

,
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which means that:

Cov(B j ,B j−k ) = Var(Bi )×ρk ,

= 1−ξ2

4
×ρk .

Thus, as announced, we have:

Var
(
ξ̂
)= (1−ξ2)×

(
1

N
+ 2

N 2
×

N∑
j=2

j−1∑
k=1

ρk

)
.

□
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Correlation anomaly
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With the frequency anomaly perfectly characterized, we now bring our focus to a second in-
teresting statistical anomaly: the presence of correlation between the bits of a sequence.

For a proper analysis of this anomaly, we must find the model that best characterizes it. The
correlation is an image of the information one can gather on the future bits based on the
knowledge of previously generated data. For our model, it thus seems intuitive to make use

of the conditional probability Pri ,i−k

(
b | b

)
, where k ∈N,k > 0 and b ∈ {0,1} (b being the com-

plementary of the bit b).

Before defining a precise model based on this probability, it is interesting to note that these
models will all be linked to the model of the frequency anomaly through the following prop-
erty:
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PROPERTY 5.1 (Link between the frequency and correlation anomalies). Let {Bi } be the sta-
tionary stochastic process describing the bits of the sequence under study, and k ∈N,k > 0. We
have the following equation:

Pri (1)×Pri ,i−k (0 | 1) = Pri (0)×Pri ,i−k (1 | 0) .

PROOF. Let k ∈N,k > 0. We have, in all generality:

Pri (1) = Pri ,i−k (1 | 1)×Pri−k (1)+Pri ,i−k (1 | 0)×Pri−k (0) .

The processus {Bi } being stationary, Pri−k (1) = Pri (1) and Pri−k (0) = Pri (0). This leads to:

Pri (1)× (
1−Pri ,i−k (1 | 1)

)= Pri ,i−k (1 | 0)×Pri (0) ,

Or, as announced:

Pri (1)×Pri ,i−k (0 | 1) = Pri (0)×Pri ,i−k (1 | 0) .

□

5.1. Modeling the correlations between the bits of a sequence

Very similarly to the model we developed to characterize the frequency anomaly, our objec-
tive here is to propose a model for the correlation anomaly between bits distant of k > 0 (so
between b1 and bk+1, b2 and bk+2, and so on) as the most simple function of a parameter δk

which lives in ]−1,1[. Again, we want that the case where δk = 0 depicts the fact that the se-
quence presents no correlation, and that δk → 1 and δk →−1 depict the situation where the
bits distant of k all have the same value, or complementary values respectively.

However, as we will show later, a model of the correlations using conditional probabilities

Pri ,i−k

(
b | b

)
must take into account the frequency anomaly, and therefore be function of the

parameter ξ, in addition to our new parameter δk .

As with the model for the frequency anomaly, we wanted our model of the correlation anom-
aly to be polynomial. Taking all these constraints into account, we show that the simplest
model for describing the correlations between bits distant of k > 0 in a sequence is the follow-
ing:

DEFINITION 5.2 (Bivariate model for the correlations between bits of a sequence). For i ∈ N,
k > 0, we model the correlation between the bit of index i − k and the bit of index i by the
following set of equations:

Pri ,i−k (0 | 1) = (1−ξ)(1−δk )

2
,
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and

Pri ,i−k (1 | 0) = (1+ξ)(1−δk )

2
,

where ξ ∈]−1,1[ is the parameter of the model for the frequency anomaly defined in Def. 4.1,
and δk ∈]− 1,1[ is the parameter which describes the amplitude of the correlation anomaly
between bits distant of k > 0.

To show that this model is optimal for the characterization of the correlation anomalies, we
will first demonstrate that the model must indeed take into account the parameter ξ charac-
teristic of the frequency anomaly. Next, we will demonstrate why, in addition to needing to be
bivariate, our polynomial model must be of degree 2. Finally, we will show that, the unique
polynomial of degree 2 which satisfies our set of constraints is the one we propose in Def. 5.2.

5.1.1. The necessity to have a bivariate polynomial. First of all, in all generality, the char-
acteristic term for the transition from a bit 1 to a bit 0 does not have to be equal to the charac-
teristic term for the transition from a bit 0 to a bit 1. This means that, in general, in our model,
the conditional probabilities Pri ,i−k (0 | 1) and Pri ,i−k (1 | 0) should be functions of some pa-
rameters δk,0 and δk,1 respectively.

Secondly, it can be established that a model of the conditional probabilities with only δk,0

and δk,1 as parameters cannot properly characterize a correlation anomaly. Indeed, we want
the case δk,0 = 0 or δk,1 = 0 to represent the absence of a correlation anomaly between bits
distant of k > 0. So, in the hypothesis of a polynomial model in the only parameter δk,0 for
Pri ,i−k (0 | 1) for example, written as a function f0 : δk,0 7→ f0(δk,0), we have:

f0(0) = Pri (0) = 1−ξ
2

.

This equation must be verified for any value of ξ, so f0(0) cannot be a constant, and the hy-
pothesis of a monovariate model in δk,0 cannot be valid. The model must therefore be at least
bivariate.

5.1.2. The necessity to have a polynomial model of degree 2. In addition to the necessity
to include the characteristic term of the model for the frequency anomaly into the model for
the correlation anomaly, we can also demonstrate the polynomial of our model must be of
degree at least 2. Indeed, if we make the hypothesis of a polynomial of degree 1 in ξ and δk ,
we have, in all generality:

Pri ,i−k (0 | 1) = a0 +b0ξ+ c0δk,0,

and

Pri ,i−k (1 | 0) = a1 +b1ξ+ c1δk,1.

As a reminder, the cases δk,0 = 0 and δk,1 = 0 correspond to cases where only the frequency
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anomaly affects the sequence. We then necessarily have a0 = a1 = b1 = 1
2 and b0 =−1

2 .

Also, we recall that Prop. 5.1 links the two conditional probabilities together, and provides
here:

1+ξ
2

×
(

1−ξ
2

+ c0δk,0

)
= 1−ξ

2
×

(
1+ξ

2
+ c1δk,1

)
,

which can be simplified into:

1+ξ
2

× c0δk,0 =
1−ξ

2
× c1δk,1,

because ξ ∉ {−1,1}.

It then appears that the terms δk,0 and δk,1 are bound to one another, and the initial set of
equation can be rewritten as such:

Pri ,i−k (0 | 1) = 1−ξ
2

+ c0δk,0,

and

Pri ,i−k (1 | 0) = 1+ξ
2

+ 1+ξ
1−ξc0δk,0.

Under our set of constraints, the two equations of the model are then strongly tied together
and cannot be both polynomial of degree 1 in ξ and δk,0 or δk,1. It is therefore necessary for
the model for the correlation anomaly to be of degree at least 2.

5.1.3. Proof of the unicity of our correlation model. In an attempt, to find an expression
of our model in the form of a polynomial of degree 2, we started from its general expression,
and identified all the coefficients using the constraints we had set. We specifically want that
the model’s parameters vary within ]−1,1[, that ξ = 0 corresponds to the case where the se-
quence is subject to no frequency anomaly, and δk,0 = 0 and δk,1 = 0 correspond to the cases
where the sequence is affected by no correlation anomaly.

For the model of Pri ,i−k (0 | 1) for example, the general expression is the following:

Pri ,i−k (0 | 1) = a1δ
2
k,0 +a2ξ

2 +a3δk,0ξ+b1δk,0 +b2ξ+ c,

where (a1, a2, a3,b1,b2,c) ∈R6.

When δk,0 = 0, so in the absence of correlation, we want to retrieve the model defined in 4.1
for the frequency anomaly, which provides:
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Pri (0) = 1−ξ
2

= a2ξ
2 +b2ξ+ c.

Therefore, by identification of the coefficients, a2 = 0,b2 =−1
2 and c = 1

2 .

When ξ= 0, so in the absence of any frequency anomaly, we want to find the simplest possible
correlation model, typically a linear model, with the following constraints: δk,0 ∈ ] − 1,1[,
δk,0 = 0 depicts the case where no correlation anomaly is present, δk,0 7→ 1 the case where
bits distant from k systematically take the same value, and δk,0 7→ −1 the case where they
systematically take complementary values. More precisely, for ξ= 0, we then want to have:

Pri ,i−k (0 | 1) = 1−δk,0

2
= a1δ

2
k,0 +b1δk,0 + c,

which confirms that c = 1
2 and provides a1 = 0 and b1 =−1

2 .

Finally, to identify the last coefficient, we used a reasoning at the limits on δk,0 (which can
be done thanks to polynomials being continuous functions). More specifically, with our con-
straint that, when δk,0 → 1, bits distant of k will almost surely (in the probabilistic sense) have
the same value, we have:

lim
δk,0→1

Pri ,i−k (0 | 1) = 0 = a3ξ− 1

2
− 1

2
ξ+ 1

2
,

which provides a3 = 1
2 and further confirms the other coefficients.

We then applied the same reasoning to obtain the expression for Pri ,i−k (1 | 0) and thus end up
with the following model for the correlation anomaly:

Pri ,i−k (0 | 1) = (1−ξ)(1−δk,0)

2
,

and

Pri ,i−k (1 | 0) = (1+ξ)(1−δk,1)

2
.

Again, Prop. 5.1 forces the parametersδk,0 andδk,1 to be tied to one another. More specifically,
with the model we propose, Prop. 5.1 translates into:

1+ξ
2

× (1−ξ)(1−δk,0)

2
= 1−ξ

2
× (1+ξ)(1−δk,1)

2
,

which means that δk,0 = δk,1 as ξ ∉ {−1,1}. In the remainder of this manuscript, we will then
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simply write this common term δk .

All in all, we have then proven the existence and uniqueness of the model for the correlation
anomaly established in Def. 5.2, in the form of two polynomial equations of degree 2, which
describe the correlations through a single parameter δk , independently of the value of the
individual bits encountered.

5.2. Link between the correlation model and theoretical autocorrelation

To further validate our choice of model, it is interesting to compare it with the theoretical
autocorrelation of a stationary process. As a reminder the expression for this theoretical au-
tocorrelation of lag k > 0, denoted by ρk , already defined in defined in Def. 3.14:

ρk = E
[
(Xi −µ)(Xi−k −µ)

]
Var(Xi )

,

where {Xi } is a discrete stationary stochastic process and µ is its expected value.

In our case, the stationary discrete process is the process {Bi } which describes the bits of the
tested sequence. We then have the following theorem:

THEOREM 5.3. Let {Bi } be a stationary discrete process, with values in {0,1}, which is described
by the model established in Def. 5.2. The theoretical autocorrelation of {Bi } is then equal to:

ρk = δk

PROOF. Let Bi be the random variable describing the observation of the stochastic process
{Bi } at a given time. Since {Bi } takes values in {0,1}, this variable follows a Bernoulli distribu-
tion. According to our model for the frequency anomaly established in Def. 4.1, we then have:

Var(Bi ) = Pri (1)×Pri (0) = 1−ξ2

4
,

and

µ= E [Bi ] = Pri (1) = 1+ξ
2

.

Furthermore, we also have:

E
[
(Bi −µ)(Bi−k −µ)

]= (1−µ)(1−µ)×Pri ,i−k (1 | 1)Pri−k (1)

+ (0−µ)(1−µ)×Pri ,i−k (0 | 1)Pri−k (1)

+ (1−µ)(0−µ)×Pri ,i−k (1 | 0)Pri−k (0)

+ (0−µ)(0−µ)×Pri ,i−k (0 | 0)Pri−k (0) ,
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or, using the hypothesis of stationarity to replace Pri−k (x), x ∈ {0,1} by Pri (x), and replacing µ
by Pri (1):

E
[
(Bi −µ)(Bi−k −µ)

]= Pri (1)Pri (0)×
[

Pri (0)Pri ,i−k (1 | 1)−Pri (0)Pri ,i−k (1 | 0)

+Pri (1)Pri ,i−k (0 | 0)−Pri (1)Pri ,i−k (0 | 1)
]

,

By noticing that Pri (1)Pri (0) is exactly the expression of the variance of Bi , the expression of
ρk can then be simplified as such:

ρk = Pri (0)
[

Pri ,i−k (1 | 1)−Pri ,i−k (1 | 0)
]

+Pri (1)
[

Pri ,i−k (0 | 0)−Pri ,i−k (0 | 1)
]
,

= (
Pri (0)+Pri (1)

)[
1−Pri ,i−k (0 | 1)−Pri ,i−k (1 | 0)

]
,

= 1− (
Pri ,i−k (0 | 1)+Pri ,i−k (1 | 0)

)
.

which, according to our model established in Def. 5.2, provides as announced:

ρk = 1− (1−δk ) = δk .

□

Thus, our model for the correlation anomaly seems a even more validated by the fact that
its significant parameter is exactly equal to the theoretical autocorrelation of the process it
describes.

5.3. Constraints between the parameters of the model

We already saw thanks to Prop. 5.1 that the frequency anomaly was linked to the correlation
anomaly, and more specifically that the probabilities Pri (x) and Pri ,i−k

(
x | y

)
, (x, y) ∈ {0,1}2

are constrained by one another. Adding the constraint that these are probabilities, and there-
fore have values in [0,1], we obtain the following property on the values of ξ and δk :

PROPERTY 5.4. Let ξ and δk be the terms derived from the models defined in Def. 4.1 and 5.2.
These terms are linked by the following constraint:

max

(
−1−ξ

1+ξ ,−1+ξ
1−ξ

)
É δÉ 1.

PROOF. As a reminder, Prop. 5.1 provides the following constraint:

Pri (1)×Pri ,i−k (0 | 1) = Pri (0)×Pri ,i−k (1 | 0) .
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Pri ,i−k (0 | 1) and Pri ,i−k (1 | 0) being probabilities, both must be with values in [0,1].

Thus 0 É Pri ,i−k (0 | 1) É 1 provides:

0 É Pri ,i−k (1 | 0) É min

(
1,

1+ξ
1−ξ

)
,

and 0 É Pri ,i−k (1 | 0) É 1 provides:

0 É Pri ,i−k (0 | 1) É min

(
1,

1−ξ
1+ξ

)
.

The first inequation for example leads to:

0 É (1+ξ)(1−δk )

2
É min

(
1,

1+ξ
1−ξ

)
,

which translates into:

0 É 1−δk É min

(
2

1+ξ ,
2

1−ξ
)

,

or:

max

(
−1−ξ

1+ξ ,−1+ξ
1−ξ

)
É δk É 1.

The second inequation then provides the exact same inequation, which demonstrates the
property. □

Thus, although the models have been defined for (ξ,δk ) ∈]− 1,1[, it appears that these two
parameters cannot evolve in the whole space independently form one another, but that they
evolve in the space depicted in Fig. 15.
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FIGURE 15. Pairs (ξ,δk ) for which the model for the correlation anomaly is de-
fined

Intuitively, this constraint is natural, as δk →−1 means that bits distant from k > 0 will tend
to take complementary values. And the more this phenomenon is accentuated, the greater
the tendency for the overall proportion of 0 and 1 bits to tend towards 50%, which translates
into ξ→ 0. Conversely, δk > 0 means that bits distant from k > 0 will have tend to take on
identical values, which has no impact on the global proportion of bits 0 and 1. For example
even in the extreme case of a sequence composed of two subsequences of identical values
000000...00000011111...111111, then δk will be worth almost 1 for any k > 0, while the value
of ξ will depend entirely on where in the sequence the inversion of values takes place. This
therefore illustrates why ξ is constrained when δk is negative but not when δk is positive.

As a conclusion, we have established a model for correlations between bits distant from k > 0
in a sequence, and we have proven that the significant parameter of the model, noted δk ,
is identically equal to the theoretical autocorrelation of the stochastic process modeling the
bits of the sequence. The model we propose therefore appears to be optimal for studying
correlations, and we now need to find a statistic to estimate the value of the parameter δk in
order to establish an optimal test in the sense of our Def. 3.15.



CHAPTER 6

Overlap between the Monobit and the Autocorrelation test (AIS 20/31)

As we mentioned in subsection 3.3.4, the Autocorrelation test (T5) from the AIS 20/31 is im-
pacted by the frequency anomaly, for which we have proven that the Monobit test (T1) is
optimal, apart from one linear transformation. We now seek to formalize the interaction be-
tween the two tests.

6.1. Theoretical approach from Lubicz

In [51], Lubicz defines a notion of dependency between finite statistical tests. Again, this def-
inition appears to apply to statistics rather than tests, and in the remainder of this subsection,
we will then present Lubicz’s results as being about statistics rather than tests.

DEFINITION 6.1 (Dependency between statistics [51]). For F and F ′ two statistics, represented
by their respective automata (see subsection 3.2.6 for more details):

• If the set of states of the product automaton F ×F ′ is exactly the Cartesian product of
the states of F and F ′, then the two statistics are completely independent.

• If F ×F ′ = F , then the two statistics have maximum dependency (and there is a mor-
phism from F to F ′).

More generally, the larger the product automata of F and F ′ (so the more accessible states it
contains), the more independent the statistics.

It is then possible to show that, according to this definition, the Monobit and Autocorrelation
statistics of the AIS 20/31 have maximum dependency. In fact, taking for example, the case of
the autocorrelation between directly successive bits, studied by statistic A1, the automaton
produced by the two statistics is shown in Fig. 16.

The states are labeled with the convention ’b’ × ’x y ’, with (b, x, y) ∈ {0,1}, where ’b’ is the la-
bel of the states of the automaton of the Monobit statistic and ′x y ′ is the label of the states of
the Autocorrelation statistic (A1). As ′b′ and ′x ′ both represent the last bit read, the states for
which ’b’ ̸= ’x’ are naturally inaccessible, and it appears that the product automaton of the
two statistics is therefore exactly the automaton of the Monobit statistic.

64
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FIGURE 16. Product automaton of the automata of the Monobit and Autocor-
relation statistics.

A strictly identical reasoning can be performed to show that, for any k > 0, the automaton
produced by the Monobit and Autocorrelation (Ak ) statistics will be perfectly equal to the au-
tomaton of the Autocorrelation statistic (Ak ). Thus, the two statistics (and the tests they are
based on) have maximum dependency according to Lubicz’s definition.

Remark : By reusing the labeling introduced earlier for the states of the automata of the
Monobit and Autocorrelation (Ak ) statistics, the morphism χk to transform the automa-
ton of the Autocorrelation statistic into the automaton of the Monobit statistic is the fol-
lowing:

χk : {s0, ..., s2k+1−1} −→ {s′0, s′1}

si = ′b bk ... b′
1 7−→


s′0 = ′0′ if b = ′0′,

s′1 = ′1′ if b = ′1′.

In other words, for any k > 0, the automaton of the Autocorrelation statistic (Ak ) can be
reduced into the automaton of the Monobit statistic by gathering the states whose labels
have the same most significant bit. For example, the reduction of the automaton of the
Autocorrelation statistic (A1) is depicted in Fig. 17.

6.2. A new approach to overlap between statistical tests

Although the approach proposed by Lubicz allows for a formal demonstration of the fact that
the Monobit test and the Autocorrelation test are functionally linked (due to their statistics
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FIGURE 17. Reduction of the automaton of the Autocorrelation test (A1) into
the automaton of the Monobit test.

being fully dependent), we propose another, more practical approach of the concept of in-
teraction, or overlap, between statistical tests. Using the terms we used in our definition of a
statistical test (Def. 3.7), we define the overlap between two tests as follows:

DEFINITION 6.2 (Overlap between statistical tests). Let X , X ′ be two statistics, and TX ,S0 , TX ′,S′
0

be statistical tests defined from these statistics. We say that TX ,S0 and TX ′,S′
0

overlap with one

another if and only if E [X ] and E
[

X ′] are function of one or several common parameters.

THEOREM 6.3. The Autocorrelation test from the AIS 20/31 overlaps with the Monobit test.

PROOF. With the models of frequency and correlation anomalies as defined in Def. 4.1 and
5.2, the expectation of the Monobit statistic M for a sequence composed of N bits is equal to:

E [M ] = N × 1+ξ
2

And the expected value of the autocorrelation statistic Ak is equal to:

E [Ak ] = E
[

N∑
i=k

bi ⊕bi−k

]
where the sequence (bi )1ÉiÉN is seen as the sequence of realizations of the stochastic process
{Bi }. In this regard, the expected value of Ak is then expressed as such:

E [Ak ] = N ×
[

Pri ,i−k (0,1)+Pri ,i−k (1,0)
]

,

= N ×
[

Pri ,i−k (0 | 1)×Pri−k (1)+Pri ,i−k (1 | 0)Pri−k (0)
]

,

= N ×
[

(1−ξ)(1−δk )

2
× 1+ξ

2
+ (1+ξ)(1−δk )

2
× 1−ξ

2

]
,

= N × (1−ξ2)(1−δk )

2
.
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Thus, the expected value of the Monobit and of the Autocorrelation statistics are both func-
tions of the parameter ξ. The two tests therefore overlap.

□

This expression of the expected value of Ak also makes it possible to visualize the practical
impact of an global disproportion of bits 0 and 1 on the test, which will be less than that of a
real autocorrelation between the bits, in the sense that, at an equal amplitude, an autocorre-
lation will cause a greater deviation of the value of Ak (because ξ ∈]−1,1[).

It then seems interesting to consider the design of a statistical test that would be only im-
pacted by a correlation anomaly. Ideally, we are looking for a statistic that is an unbiased
estimator of the parameter δk , so that we can derive an optimal test (in the sense of our Def.
3.15).
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Enhanced autocorrelation statistic
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From the proof of the theorem 5.3, it appears that a new test, which would be optimal with re-
gard to the correlation anomaly can easily be designed from the expression of the conditional
probabilities established in Def. 5.2. Indeed, as a reminder, our model provides the following
equation:

1− (
Pri ,i−k (0 | 1)+Pri ,i−k (1 | 0)

)= δk .

Remark: In the latest draft of the AIS 20/31, the value 1− (
Pri ,i−k (0 | 1)+Pri ,i−k (1 | 0)

)
is used in the security functional requirement PTG.2.2 ([67], (279) p.45) with k = 1 and
k = 2, and is described as the "1-step and 2-step dependencies" respectively. And although
we proved in Th. 5.3 that this value is indeed equal to the theoretical autocorrelation of
a stationary binary-valued stochastic process, the authors of the standard chose not to
develop a statistic based on it for their autocorrelation test.

7.1. Definition of the enhanced autocorrelation statistic

Using our model for the correlation anomaly, we then propose a new statistic for the study of
correlations between the bits of a sequence.

DEFINITION 7.1 (Enhanced autocorrelation statistic). For a binary sequence (bi )1ÉiÉN , N ∈N,
seen as a sequence of realizations of the process {Bi } described by the model established in Def.
5.2, the enhanced autocorrelation statistic A ⋆

k is defined as:

A ⋆
k = 1−

(
N k

10

N1
+ N k

01

N0

)
.

where Nx is the number of occurrences of the bit x and N k
x y is the number of occurrences of the
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pair (bi−k = x,bi = y), (x, y) ∈ {0,1}2 in the sequence.

THEOREM 7.2. Let δk be the term characterizing the correlations in the model introduced in
Def. 5.2. The statistic A ⋆

k defined above is an unbiased estimator of δk .

PROOF. Let N0, N1, N k
01 and N k

10 the terms introduced in Def. 7.1, and N ∈ N, N > 0 the
length of the studied sequence. Then, by construction:

E
[
A ⋆

k

]= 1−E
[

N k
10

N1

]
−E

[
N k

01

N0

]
.

We will first prove that:

E

[
N k

10

N1

]
= Pri ,i−k (0 | 1) .

As our model is defined for ξ ∉ {−1,1}, we have 1 É N1 É N −1. Then, in all generality:

E

[
N k

10

N1

]
=

N−1∑
n1=1

n1∑
n10=1

n10

n1
Pr

(
N k

10 = n10, N1 = n1

)
,

=
N−1∑
n1=1

Pr(N1 = n1)×
n1∑

n10=1

n10

n1
Pr

(
N k

10 = n10 | N1 = n1

)
.

N k
10 represents the number of pairs (bi−k = 1,bi = 0), so Pr

(
N k

10 = n10 | N1 = n1
)

is exactly the
probability of having n10 occurrences of the bit 0 after one of the n1 bits 1. The random vari-
able N k

10 | N1 = n1 therefore follows a binomial distribution B(n1,Pri ,i−k (0 | 1)). Thus:

E

[
N k

10

N1

]
=

N−1∑
n1=1

Pr(N1 = n1)×
n1∑

n10=1

n10

n1

(
n1

n10

)
×Pri ,i−k (0 | 1)n10 (1−Pri ,i−k (0 | 1))n1−n10 ,

=
N−1∑
n1=1

Pr(N1 = n1)×
n1∑

n10=1

(
n1 −1

n10 −1

)
×Pri ,i−k (0 | 1)n10 (1−Pri ,i−k (0 | 1))n1−n10 ,

= Pri ,i−k (0 | 1)×
N−1∑
n1=1

Pr(N1 = n1),

= Pri ,i−k (0 | 1) .

With a rigorously analogous reasoning, we also prove that:

E

[
N k

01

N0

]
= Pri ,i−k (1 | 0) .

Therefore, as announced:
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E
[
A ⋆

k

]= 1−Pri ,i−k (0 | 1)−Pri ,i−k (1 | 0) ,

= δk .

□

As a reminder, δk is an image of the theoretical autocorrelation of the process {Bi } according to
our model (see Th. 5.3). Thus, just as the statistic ξ̂ made it possible to define an optimal test
for the frequency anomaly, the enhanced autocorrelation statistic A ⋆

k allows for the definition
of an optimal test (as per Def. 3.15) for the correlation anomaly as modeled in Def. 5.2.

Remark: To be coherent with the Autocorrelation test from the AIS 20/31, we could define
an enhanced autocorrelation test by applying our statistic to sequences of 20,000 bits,
and allowing for a deviation of 6.96% from the ideal value of 0. The accepted range of the
test would then be S0 = [−0.696,0.696].

Moreover, this statistic does not suffer from any overlap (as per Def. 6.2) with the Monobit
statistic, since ξ is absent from the expected value of A ⋆

k .

However, in the sense of the definition of dependency between tests proposed by Lubicz [51],
the Monobit test and a test based on our statistic A ⋆

k still present a maximal dependency. In-
deed, the automaton representing the application of the statistic A ⋆

k is the same automaton
that is used to apply the Autocorrelation statistic Ak from the AIS 20/31 (Fig. 14 for the case k
= 1). The statistic A ⋆

k is then computed by counting the number of passes in all states whose
labels’ most significant bits are 0 for N0 and 1 for N1, as well as that the number of passes in
the states for which the most and least significant bits in the labels are respectively 0 and 1 for
N k

10 and 1 and 0 for N k
01.

While a contradiction seems to appear between our definition and the definition of Lubicz,
we will see in the next section that the influence of the frequency anomaly (characterized by
the statistic ξ̂, or, equivalently, by the Monobit statistic) is actually found in the variance of
A ⋆

k .

7.2. Variance of the enhanced autocorrelation statistic

Similarly to the statistic ξ̂ established in Def. 4.2, although the expected value of A ⋆
k inde-

pendent of ξ, it appears that its variance is not. However, unlike the variance of ξ̂, there is no
analytical expression for the variance of A ⋆

k . More precisely, we have the following property:

PROPERTY 7.3 (Variance of the statistic A ⋆
k ). Let, k > 0, A ⋆

k be the enhanced autocorrelation
statistic (Def. 7.1), and N0, N1 be the random variables describing the number of bits 0 and 1 in
the tested sequence. We then have:
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Var
(
A ⋆

k

)= Pri ,i−k (0 | 1)(1−Pri ,i−k (0 | 1))×E
[

1

N1

]
+Pri ,i−k (1 | 0)(1−Pri ,i−k (1 | 0))×E

[
1

N0

]
.

PROOF. For a sequence of N bits, we have, in all generality:

Var
(
A ⋆

k

)= Var

(
N k

10

N1
+ N k

01

N0

)
,

= E
[(

N k
10

N1

)2]
+2×E

[
N k

10N k
01

N1N0

]
+E

[(
N k

01

N0

)2]
−

(
E

[
N k

10

N1
+ N k

01

N0

])2

.

We have already shown in the proof of Th. 7.2 that:

(
E

[
N k

10

N1
+ N k

01

N0

])2

= (1−δk )2 .

In a similar fashion to the proof of the previous theorem, we can find an expression of the
"product" expected value:

E

[
N k

10N k
01

N1N0

]
=

N−1∑
n1=1

P (N1 = n1)×
n1∑

n10=1

N−n1∑
n01=1

n10n01

n1(N −n1)

×
(

n1

n10

)
Pri ,i−k (0 | 1)n10 (1−Pri ,i−k (0 | 1))n1−n10

×
(

N −n1

n01

)
Pri ,i−k (1 | 0)n01 (1−Pri ,i−k (1 | 0))N−n1−n01 ,

= Pri ,i−k (0 | 1)×Pri ,i−k (1 | 0) .

= (1−ξ2)(1−δk )2

4
.

Then, we proceed similarly to find the expression of the other expected values:
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E

[(
N k

10

N1

)2]
=

N−1∑
n1=1

n1∑
n10=1

n2
10

n2
1

Pr
(
N k

10 = n10 | N1 = n1

)
×Pr(N1 = n1) ,

=
N−1∑
n1=1

Pr(N1 = n1)×
n1∑

n10=1

n2
10

n2
1

(
n1

n10

)
Pri ,i−k (0 | 1)n10 (1−Pri ,i−k (0 | 1))n1−n10 ,

=
N−1∑
n1=1

Pr(N1 = n1)×
n1∑

n10=1

n10

n1

(
n1 −1

n10 −1

)
Pri ,i−k (0 | 1)n10 (1−Pri ,i−k (0 | 1))n1−n10 ,

=
N−1∑
n1=1

Pr(N1 = n1)× Pri ,i−k (0 | 1)

n1
× ((n1 −1)Pri ,i−k (0 | 1)+1),

= Pri ,i−k (0 | 1)2 ×
N−1∑
n1=1

Pr(N1 = n1)

+Pri ,i−k (0 | 1)(1−Pri ,i−k (0 | 1))×
N−1∑
n1=1

1

n1
Pr(N1 = n1) ,

= Pri ,i−k (0 | 1)2 +Pri ,i−k (0 | 1)(1−Pri ,i−k (0 | 1))×
N−1∑
n1=1

1

n1
Pr(N1 = n1) ,

= Pri ,i−k (0 | 1)2 +Pri ,i−k (0 | 1)(1−Pri ,i−k (0 | 1))×E
[

1

N1

]
.

And:

E

[(
N k

01

N0

)2]
= Pri ,i−k (1 | 0)2 +Pri ,i−k (1 | 0)(1−Pri ,i−k (1 | 0))×

N−1∑
n0=1

1

n0
Pr(N0 = n0) ,

= Pri ,i−k (1 | 0)2 +Pri ,i−k (1 | 0)(1−Pri ,i−k (1 | 0))×E
[

1

N0

]
.

We can thus simplify the expression of the variance by noticing that:

P (0 | 1)2 +P (1 | 0)2 = (1+ξ2)(1−δk )2

2
=

(
E

[
N k

10

N1
+ N01

N0

])2

−2×E
[

N k
10N k

01

N1N0

]
,

which provides in the end:

Var
(
A ⋆

k

)= Pri ,i−k (0 | 1)(1−Pri ,i−k (0 | 1))×E
[

1

N1

]
+Pri ,i−k (1 | 0)(1−Pri ,i−k (1 | 0))×E

[
1

N0

]
.

□
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(A) Perspective view (B) Perspective view (bis)

FIGURE 18. Numerical computation of Var
(
A ⋆

k

)
, for N = 15000

In the same way that N k
10 and N k

01 follow binomial laws, the random variables N0 and N1 follow
laws B(N ,Pri (0)) and B(N ,Pri (1)) respectively, which enables us to simulate the variance of
A ⋆

k when ξ and δk vary in the space defined in Prop. 5.4. Figure 18 depicts the numerical
computation of this variance, for (ξ,δk ) ∈ [−0.95,0.95]2 and N = 15,000.

The first observation we can make is that this variance is perfectly symmetrical in ξ, which
was predictable and reinforces the idea that bits 0 and 1 are at completely interchangeable in
our model. The variance is also roughly symmetrical in δk for low values of |ξ| (namely for
ξ ∈ [−0.1,0.1]) and minimal when δk is close to −1 and 1. Thus, the larger the anomaly, the
more precise its characterization with our statistic will be.

On the other hand, the limit of the enhanced autocorrelation statistic lies in the case where ξ
is very close to either −1 or 1. When there are too many bits of identical value, it becomes dif-
ficult to distinguish a global frequency anomaly from a real correlation anomaly between bits
distant of k > 0. Mathematically, this peak in the variance is explained by Jensen’s inequation
[41]. Since the function x 7→ 1

x is convex, Jensen inequation provides:

E

[
1

N1

]
Ê 1

E [N1]
= 1

N ×Pri (1)
= 2

N × (1+ξ)
→

ξ→−1
+∞

and similarly:

E

[
1

N0

]
Ê 1

E [N0]
= 1

N ×Pri (0)
= 2

N × (1−ξ)
→

ξ→+1
+∞
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Remark : The flat areas on Fig. 18 are the pairs (ξ,δk ) for which the model is not defined.
We have chosen to set the variance to 0 in these areas to not impair the readability.

7.3. Applying the enhanced autocorrelation statistic on simulated sequences

Several simulations have been carried out on different sequences to assess the ability of the
statistic A ⋆

k provided in Def. 5.2 to characterize the presence of correlation between the bits
of the sequence.

In subsection 7.3.1, we will look at the RDRAND and RDSEED functions from Intel’s random
number generation library [40] (the latter being used to provide seeds for pseudo-random
generators). These functions have been thoroughly analyzed by Shrimpton and Terashima
[74], who proved in particular that the RDRAND function is very robust. We will use RDRAND
as a reference to test the statistic A ⋆

k , and our implementation of it, by verifying that when no
correlation anomaly is present (as should be the case with RDRAND), A ⋆

k = 0 for any k > 0.

Secondly, in subsection 7.3.2, we will study biased random sequences with known frequency
and correlation anomalies to demonstrate the usefulness of our enhanced autocorrelation
statistic compared to the AIS 20/31 autocorrelation statistic. To this end, we will compute Ak

and A ⋆
k for 1 É k É 128 on those sequences, and compare the graphs obtained with both sta-

tistics. Having access to the values of the anomaly parameters ξ and δk for each sequence we
generated also enabled us to further verify our implementation of A ⋆

k .

Finally, subsection 7.3.3 will focus on sequences generated by an implementation on an FPGA-
type reprogrammable circuit of the Elementary TRNG as defined by Fischer and Lubicz in
[29], and compute Ak and A ⋆

k for 1 É k É 128 on those sequences, similarly to subsection
7.3.2.

7.3.1. RDRAND and RDSEED. For both RDRAND and RDSEED, we generated sequences of bits
according to Alg. 4, which we implemented in C (replacing RDRAND_32() by RDSEED_32() to
generate sequences with the second function).

The processor used is a 14nm Intel Xeon E5-2630 v4 (Broadwell architecture, 5th generation).
The random data generated by RDSEED comes from a hardware entropy source (taking advan-
tage of thermal noise in silicon circuits), which feeds an AES-CBC-MAC based conditioner.
The data generated by RDRAND comes from the same system, to which an AES-CTR hardware
block is added to eliminate residual dependencies on the cryptographic block (see [40] §3.2).

7.3.1.1. RDRAND. Given the way the function is built, and from Shrimpton and Terashima’s
work, the sequences generated by RDRAND are expected to be of very good quality (in terms of
randomness), which would translate, in our case, into null dependency coefficients δk for any
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Algorithm 4 Generation of random bit sequences with RDRAND
Input: Ni nt s > 0.
Output: Sequence of 32×Ni nt s random bits.

RandSeq ← []
for 0 É i < Ni nt s do

rand_int ← RDRAND_32() ▷ RDRAND_32() returns a random 32 bits integer.
for 0 É j < 32 do

RandSeq[32× i + j ] ← rand_int % 2
rand_int = rand_int / 2 ▷ / is the integer division operator.

end for
end for

(A) Enhanced autocorrelation statistic (B) Zoomed-in view

FIGURE 19. Application of A ⋆
k to sequences generated with RDRAND, 320,000

bits

lag k > 0.

The two graphs of Fig. 19 depict the application of our statistic A ⋆
k (also implemented in C) on

a 320,000-bit sequence. Both graphs represent the amplitude of the coefficients δk for every
k > 0 between 1 and 128, the graph on the right simply being a view adjusted to the amplitude
of the different δk while the graph on the left is a fixed global view where the axis for δk varies
between −1 and 1.

As anticipated, the various coefficients δk are all almost null, which indicates that, from the
point of view of correlations, the RDRAND function is of very good quality (no significant corre-
lation) even when used in the most "basic" way of simply concatenating every output integer.
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7.3.1.2. RDSEED. As the RDSEED function has been designed to supply seeds to pseudo-
random generators, the numbers it generates do not need to be of as high quality as those
generated by RDRAND. But the study of a sequence of 320,000 bits generated by RDSEED yielded
results strictly analogous to those obtained with RDRAND, both in the shape of the graphs and
in their amplitude. It therefore appears that the randomness provided before the AES post-
processing does not show any significant correlation either.

7.3.2. Simulated sequences with known frequency and correlation anomalies. For the
following simulations, sequences of 100,000 bits were generated with a fixed frequency and
correlation anomaly between bits distant of k > 0. To do this, we used the RDRAND function to
generate sequences according to Alg. 5, also implemented in C. See Def. 5.2 for the expression

of Pr j , j−k

(
b j−k | b j−k

)
as a function of ξ and δk .

Algorithm 5 Generation of binary sequences with fixed anomaly parameters ξ and δk

Input: N > 0, N > k > 0,(ξ,δk ) ∈]−1,1[2.
Output: Sequence of N bits with anomaly characteristics ξ and δk .

RandSeq ← []
for 0 É i < k do ▷We first generate k random bits with RDRAND

RandSeq[i ] ← RDRAND({0,1}) ▷ RDRAND({0,1}) returns 0 or 1 with equal prob.
end for
for k É j < N do

decision ← RDRAND([0,1]) ▷ RDRAND([0,1]) returns a real number in [0,1] with uniform
probability.

b j−k ← RandSeq[ j −k]

if decision < Pr j , j−k

(
b j−k | b j−k

)
then

RandSeq[ j ] ← b j−k

else
RandSeq[ j ] ← b j−k

end if
end for

To illustrate that the enhanced autocorrelation statistic is at least as efficient as the autocor-
relation statistic of the AIS 20/31, and that it is not affected by a frequency anomaly, i.e. by
a simple overall disproportion of bits 0 and 1, we then generated three sequences. As a re-
minder, in the ideal case, the values of the autocorrelation statistics of AIS 20/31 Ak and our
enhanced autocorrelation statistic A ⋆

k are : Ak = N
2 and A ⋆

k = 0, for all k > 0. Any significant
deviation from these values in the graphs in Fig. 20, 21 and 22 will therefore mean that an
anomaly has been detected.

The first sequence has been generated with parameters ξ= 0.6 and δk = 0 for all k > 0, mean-
ing that it suffers from a frequency anomaly, but from no correlation anomaly. The analysis of
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(A) Autocorrelation statistic of the AIS 20/31 (B) Enhanced autocorrelation statistic

FIGURE 20. Autocorrelation statistics Ak vs A ⋆
k , N = 100,000, ξ = 0.6, δk = 0

for all k > 0

the sequence then leads to the graphs in Fig. 20.

As expected, the graphs show that when a sequence is only affected by a frequency anomaly,
the Autocorrelation test from AIS 20/31 test can fail if the anomaly is sufficiently large. For
N = 100,000, keeping an accepted deviation of 6.96% from the ideal value (see Def. 3.12),
the acceptable range for the statistic Ak is [46520,53480]. In our case, Ak is roughly equal to
32,000, so the Autocorrelation test from the AIS 20/31 fails quite significantly. On the other
hand, our enhanced autocorrelation statistic is perfectly null for every lag k > 0, apart from
the estimation errors.

We then produced a sequence affected solely by a correlation anomaly between bits distant of
k = 8. More precisely, we have generated 100,000 bits of data affected by anomalies character-
ized by δ8 = 0.6 and ξ = 0. The analysis of this sequence then leads to the two graphs shown
in Fig. 21.

When the sequence is only affected by a correlation anomaly, both statistics give identical re-
sults, apart from the inversion of the "sign" of the anomaly, which is normal in view of the
expected value of the autocorrelation statistic of the AIS 20/31 (see the proof of Th. 6.3). One
of the remarkable points, however, is the fact that although the induced correlation anomaly
acts on bits distant of k = 8, this anomaly propagates and detected between bits distant of ev-
ery k which is a multiple of 8, with an amplitude that appears to decrease exponentially with
the lag. This phenomenon is intuitively understandable, but we will demonstrate it formally
later.
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(A) Autocorrelation statistic of the AIS 20/31

e

(B) Enhanced autocorrelation statistic

FIGURE 21. Autocorrelation statistics Ak vs A ⋆
k , N = 100,000, ξ= 0, δ8 = 0.6

(A) Autocorrelation statistic of the AIS 20/31 (B) Enhanced autocorrelation statistic

FIGURE 22. Autocorrelation statistics Ak vs A ⋆
k , N = 100,000, ξ= 0.6, δ8 = 0.6

Finally, we produced a sequence affected by the two anomalies (frequency and correlation),
with characteristic parameters of ξ= 0.6 and δ8 = 0.6, which led to the graphs in Fig. 22.

As announced, when the two anomalies are present conjointly in the sequence, the autocor-
relation statistic from the AIS 20/31 is well outside the acceptable range for any lag k > 0,
and fails to correctly characterize the actual correlation anomaly for k = 8. In contrast, our
enhanced autocorrelation statistic is not impacted by the global frequency anomaly, and still
manages to perfectly characterize the correlation anomaly, judging by the almost identical
appearance of graphs 21b and 22b.
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7.3.3. Sequences generated by a TRNG implemented on FPGA. Finally, after validating
our model on simulated sequences with known anomalies, and confirming the interest of our
enhanced autocorrelation statistic compared to the statistic of the AIS 20/31, we wanted to
study the use of the statistic in the case of real data issued from a physical generator. More
precisely, we tested our statistic on an implementation of the Elementary RO-TRNG of Baudet
et al. [7], developed for the OpenTRNG Project [17] and implemented on the Xilinx Artix-
35T FPGA. The idea is to compare our results with those predicted by the model provided by
Baudet et al.

As a reminder, the architecture of the Elementary RO-TRNG is described in Fig. 5, and is based
on two ring oscillators, with an odd number of inverters Inv1 and Inv2 . In our case, we have
set the number of inverters to Inv1 = 11 and Inv2 = 7. As explained in the introduction, the
randomness produced by the Elementary RO-TRNG is based on clock jitter, which must ac-
cumulate over a certain period of time. The choice of prime numbers of inverters ensures that
the jitter will have time to accumulate before the produced sequence repeats itself. We then
made the frequency division factor D vary to verify that increasing its value does indeed lead
to an improvement in the quality of the randomness, which should translate into a reduction
in the amplitude of statistical anomalies.

The Elementary RO-TRNG implementation we use produces blocks of 214 = 16,384 bits of
data. We have therefore chosen to generate 7× 214 = 114,688 bits of data to be close to the
quantity of data used in subsection 7.3.2 and to be able to compare the results we had ob-
tained with those we obtain here.

Remark : For an unknown reason, for any parameter D , and any parameter configuration
Inv1 and Inv2 , the proportion of bits 1 was always equal to approximately 48.4%, which
leads to ξ = −0.032. Although the consistency of this anomaly may raise questions, it
appears in practice that its impact on the autocorrelation statistic of the AIS 20/31 (see
the proof of Th. 6.3) as well as on the variance of the enhanced autocorrelation statistic
(see section 7.2) is negligible.

In view of the low amplitude of the frequency anomaly in the sequences produced, the results
obtained with the statistic from the AIS 20/31 and with our enhanced statistic would be quite
similar, as seen in the previous subsection. For this analysis, we have therefore only repre-
sented the results obtained with our enhanced autocorrelation statistic.

To analyze the Elementary RO-TRNG, we made the frequency division factor D vary between
50 and 10,000. According to the model of Baudet et al. (recalled in section 3.1.2), increas-
ing the factor D should lead to a significant increase in entropy. Any anomaly that would be
present for low values of D should therefore disappear for larger values of this factor.

For low values of D , very strong correlations can be observed between successive bits, as
shown in Fig. 23. The "shape" of the correlations varies as a function of D , and we have
chosen to represent the graphs for which the correlations were the most noticeable. On the
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(A) D = 50 (B) D = 84

FIGURE 23. Enhanced autocorrelation statistic, Elementary RO-TRNG, 50 É
D É 100

(A) D = 500 (B) D = 535

FIGURE 24. Enhanced autocorrelation statistic, Elementary RO-TRNG, 500 É
D É 500

other hand, what is already observable is that increasing the factor D indeed leads to weaker
correlations, both in their amplitude and in the distance up to which they are significant.

For larger values of D , here 500 É D É 550, we find vaguely the same shapes of correlation
graphs, depicted in Fig. 24, but these correlations decrease much more rapidly. However, it
appears that for certain values of D in this range, e.g. D = 500, the amplitude of the correla-
tion anomaly is quite comparable to the one observed for 50 É D É 100.
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(A) D = 2000 (B) D = 2034

FIGURE 25. Enhanced autocorrelation statistic, Elementary RO-TRNG, 2000 É
D É 2050

For even larger values of the factor D (see Fig. 25), the autocorrelation phenomenon is prac-
tically non-existent, except for very small lags, typically k = 1 or 2. On the other hand, the
amplitude of this anomaly again remains very high for certain values of the factor D , as can
be seen in Fig. 25b.

To try to verify if this correlation anomaly ends up disappearing with the increase of D as pre-
dicted by the model of Baudet et al. , we then pushed to the range 9950 É D É 10,000. This led
to the appearance of a single peak of correlation between bits distant of k = 1 and of ampli-
tude δ1 ≈ 0.2 for any frequency division factor D in the range.

This discrepancy between the expected results and the observed graphs may be explained
by two factors. A first possible explanation is that the implementation we used suffers from a
correlation defect that was simply masked by the anomalies intrinsic to the architecture of the
TRNG, and that this defect could only appear when the expected anomalies had disappeared.
However, this hypothesis does not seem very credible, especially given that, for the interval
2000 É D É 2050 in particular, several sequences showed very little autocorrelation (see graph
25a), and in particular no significant correlation for k = 1, like the one that can be seen in Fig.
26.

A second explanation is that there is a mismatch between the model introduced in [7] and the
statistical properties of the data generated in practice, and that we have placed ourselves in a
case that the model does not account for.

In our case, the discrepancy between the model and the data may stem from the fact that
the model does not take into account correlated noises such as flicker noise. As explained
in [58] and in the introduction of this manuscript, flicker noise is pink noise (also known as
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(A) D = 9950 (B) D = 9984

FIGURE 26. Enhanced autocorrelation statistic, Elementary RO-TRNG, 9950 É
D É 10,000

1/ f noise) that prevails at low frequencies, while thermal noise (white, uncorrelated noise)
prevails at high frequencies. This means that for longer accumulation times, and therefore
for higher values of the factor D , the proportion of flicker noise to thermal noise increases.
Hajimiri et al. then effectively demonstrated in [35] (Fig. 4) that clock jitter progressively be-
comes correlated as flicker noise takes precedence over thermal noise. The stochastic model
of the ERO-TRNG having been developed for cases where the clock jitter was very small com-
pared to the sampled signal period1, this could explain why this correlation peak appears for
large values of D .

The enhanced autocorrelation statistic therefore enabled us to visualize the limits of a theo-
retical model, by comparing it with the statistical properties of real data. In this way, we were
able to demonstrate the interest of this statistic for evaluators who aim at testing the valid-
ity of a stochastic model, as well as for designers wishing to develop and verify a correlation
model for their TRNG, or to find the limiting use cases of an existing model.

1[7], §2.3: "For real physical systems, we expect the jitters to be small, that is, σ2 ≪ µ", σ2 being the variance
of the jitter, and µ the mean period of the signal.



CHAPTER 8

Application of the enhanced autocorrelation to an attack on PTRNG

So far, we have demonstrated the optimality of our enhanced autocorrelation statistic for the
characterization of bit-to-bit correlations in a binary sequence (section 7.1), then evaluated
the effectiveness of this new statistic by applying it to binary sequences for which the charac-
teristics of the anomalies were known, or from a generator whose parameters we had control
over.

As we explained earlier, an adequate statistic can allow a designer to understand the impact
of different parameterizations of his generator on the quality of the output sequences. For
example, we have been able to analyze the impact of modifying the frequency division factor
D on the quality of the numbers produced, and, in particular, on their correlation. Another
use case we will explore in this section, is the evaluation of the statistical characteristics of
the sequences produced by the generator when it is led to work outside its nominal operat-
ing parameters. In particular, it may be interesting for an attacker to have a means to verify
the success or failure of an attack by directly studying its impact on the sequence’s statistical
properties.

Considering that the most secure random number generators combine a physical entropy
source with a cryptographic post-processing (see the PTG.3 class of the AIS 20/31), the sur-
face and diversity of attacks on PTRNGs are very large. One of the most notable attacks on
TRNGs, and especially RO-based TRNGs is fault attack using extreme temperatures, ray injec-
tion, power glitches or underpowering for example [75, 54].

Another widespread attack on RO-based TRNGs is the harmonic injection or frequency in-
jection attack. As a reminder, the quality of the randomness produced by a RO-based TRNG
relies, at least, on the following two points: the amount of jitter must be sufficient, and the
signals from the ROs (data signal and sampling signal) must be desynchronized, otherwise
repeating patterns or, more generally, correlations between the data signal and the sampling
signal could appear. The goal of a harmonic injection attack is then to force the signals to
synchronize by injecting an additional signal of a given frequency into the generator, so as
to cause a coupling effect [36] between this injected signal and the generator’s useful signals.
This additional signal can be injected through various means, the most common being the
power supply [52, 79, 16], or by means of an electromagnetic probe [52, 9, 8]. If the injection
is successful, the coupling effect will force the signals to operate at a certain frequency, linked
to the injection frequency. In the context of an attack on the ERO-TRNG, the idea is to inject

83
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a frequency that is an harmonic of both the data signal and the sampling signal, in order to
synchronize both and provoke the appearance of correlations, or even pattern repetition, in
the data produced by the generator.

Remark: Often, the data and sampling oscillators operate at relatively close frequencies,
and the harmonic injection attack will then simply attempt to make them oscillate at the
same frequency.

In practice, when evaluating a real component, the frequency of the two oscillators of the
ERO-TRNG is often unknown to the evaluator. The main challenge is thus to find a frequency
that will enable this coupling effect with the oscillators. In [8], Bayon et al. performed a side
channel analysis with their electromagnetic probe to extract the characteristics of the TRNG,
in particular the frequency of its ring oscillators, before carrying out a fine-tuned injection
attack based on this knowledge on the generator.

The attack we present in this chapter is an injection attack similar to the one presented by
Bayon et al. but without the prior side channel analysis of the TRNG. The goal here is to find a
frequency band for which the attack is a success based on the characteristics of the sequences
produced by the generator, rather than based on the characteristics of the generator itself.

As mentioned earlier, in the event that the injection caused a coupling of the ring oscillators,
that we call a locking of the oscillators, we expect the output data to be correlated. To judge
the success of such an attack, we then need to be able to characterize the level of correlation of
the data in order to detect a significant deviation from the case of uncorrelated data. One way
of proceeding is to represent the data in the form of a binary matrix of pixels (often referred
to as a bitmap), so that the values of the consecutive bits can be quickly observed (see Fig. 27).

Correlation between bits of the sequence will then make black or white "stripes" appear on
the bitmap representation, which can become easily visible. On the other hand, this method
has several drawbacks. Firstly, if the correlations introduced by the attack are not very signifi-
cant, the phenomenon may be difficult to visualize on the bitmap. Secondly, if the attack in-
troduces correlations of order greater than 1 (correlations between Bi−k and Bi , for k Ê 2), the
phenomenon will also be more difficult to detect. Finally, the major drawback of this method
for real-life evaluation is that it is impossible to automate the process, since it is based on
naked-eye observation of figures.

With this in mind, the enhanced autocorrelation statistic we have developed seems perfectly
suited to achieve a more efficient detection of the success of the attack. To demonstrate this,
we attempted to attack a real ERO-TRNG1, by injecting an electromagnetic signal by means of
a probe as described in Fig. 28 and illustrated in practice by the picture in Fig. 29.

1The data produced during this attack are property of the CEA.
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FIGURE 27. Bitmap representation of binary data

FIGURE 28. Schematic view of the harmonic injection attack on the ERO-
TRNG

As the frequencies of the data and sampling oscillators were unknown, we made the frequency
of the injected signal vary between 800 and 1000 MHz in steps of 0.1 MHz, in an attempt to



8. APPLICATION OF THE ENHANCED AUTOCORRELATION TO AN ATTACK ON PTRNG 86

FIGURE 29. Bench of the harmonic injection attack on the ERO-TRNG

find the frequency band that would cause the two signals to synchronize. To automate the de-
tection of the success of the attack, we first had to find the accepted autocorrelation threshold
(the threshold for A ⋆

k which is not exceeded in the absence of correlation). To minimize the
variance of the estimation and thus limit the risk of a false detection of the locking, we chose
to place a threshold on the mean value of the first 30 terms values of A ⋆

k , rather than on the
individual values, with the hypothesis that the locking should cause correlation in bits rela-
tively close to one another.

This threshold for the mean values can be obtained by computing the variance of the statistic
A ⋆

k , or even through the computation of a signal-to-noise ratio [72], with a prior computa-
tion of the "noise" on data before the attack (expected to be completely uncorrelated). But
we chose to place it empirically at a value of 0.003, considering that the generator produces
65,536 bits of data.

Once the threshold had been decided, we generated a set of data per frequency of the injected
signal, then applied our enhanced autocorrelation statistic, which successfully provided us
with a frequency band between 890 and 926 MHz. As anticipated, the locking attack caused
significant correlations to appear between the generated bits. Figure 30 then represents the
values (A ⋆

1 + ...+A ⋆
30)/30 for different frequencies of the injected signal.
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FIGURE 30. Mean of {A ⋆
1 , ...,A ⋆

30} at different injection frequencies

Remark: In practice, the locking phenomenon occurs in a wider frequency band than
the one detected by our threshold of correlation (up to around 936 MHz). But it can be
argued that the detection with the threshold is accurate enough, with only a 22% differ-
ence between the frequency band obtained with the threshold, and the one for which the
locking is successful.

The autocorrelation phenomenon resulting from the frequency injection is thus very easily
visible in Fig 30, confirming the interest of the enhanced autocorrelation statistic in the con-
text of such an attack. Previously, on the other hand, the detection of the success of this attack
was carried out using the naked-eye visualization method described above. By observing the
bitmaps derived from the generated data for both an injection frequency for which the attack
fails and for a frequency for which it is successful (Fig. 31, zoomed on a part of the data), it
appears that the correlations are barely visible, as the two bitmaps cannot be clearly distin-
guished. The presence of correlation is depicted by the appearance of horizontal stripes, most
obvious on the lower part of the figure 31b.



8. APPLICATION OF THE ENHANCED AUTOCORRELATION TO AN ATTACK ON PTRNG 88

(A) 875.0 MHz (B) 898.4 MHz

FIGURE 31. Bitmap representation of the data after frequency injection

It therefore seems all the more interesting to have a precise and numerical method to charac-
terize correlations in an evaluation framework such as the enhanced autocorrelation statistic
we propose here, in order to be able to decide on the success of an attack, even in the event
that the impact of this attack on the statistical properties of the data is not extremely visible.

Remark: In retrospect, although in our specific context, the mean of {A⋆1 , ..., A⋆30} allows
for a clear visualization of the impact of the attack on the TRNG, it can be argued that
other metrics can also be used, and could even be more relevant. In particular, the
terms A⋆k can be positive as well as negative, and using their mean value could lead to
values compensating each other and masking a potential correlation phenomenon (see
Fig. 23 for an example of correlation "figures" which could lead to a low mean value for
{A⋆1 , ..., A⋆30} despite each individual term being of high amplitude).

To palliate this potential issue, for any new metric, we then recommend to use the
absolute values |A⋆k | or the squared values

(
A⋆k

)2 rather than the simple A⋆k , so that
every term is positive.

Moreover, other functions of the statistics |A⋆k | (or
(

A⋆k
)2) can be explored, such as the

maximum value, which could lead to more glaring but also more variable results.

Finally, the choice of the set of statistics A⋆k to use for our global metric can also be
discussed. In our case, using the first 30 terms A⋆k proved to be sufficient to visualize
the success of the attack. And although more terms could be included, it would lead to
a global decrease of the mean value (as for higher k, the terms A⋆k are expected to be
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of lower amplitude), and thus a much less visible distinction between a successful and
a failed attack. Of course, with the use of another metric such as max1ÉkÉn |A⋆k |, lags
much further than k = 30 can be considered without risk of "diluting" the information
on correlations.

To visualize the appearance of correlations following a successful attack, we then
propose the following (non-exhaustive) list of metrics:

• Mean of the n first |A⋆k |: 1
n ×

n∑
k=1

|A⋆k |, for 20 É n É 30,

• Mean of the n first
(

A⋆k
)2: 1

n ×
n∑

k=1

(
A⋆k

)2, for 20 É n É 30,

• Median of the n first |A⋆k |: med
[
{A⋆1 , ..., A⋆n }

]
, for 20 É n É 30,

• Maximum of the n first |A⋆k |: max1ÉkÉn |A⋆k |.

However, this discussion on the metrics was performed after the experimentation, and
the dataset produced during the attack was not accessible anymore. As such this list of
metrics has not been evaluated, although their application to the data from the attack is
expected to yield to similar results than those depicted in Fig. 30, in the form of a rough
Bell curve, with significant correlations detected in the range [890MHz, 926MHz].
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In subsection 7.3.2, we saw that the presence of a phenomenon of correlation between bits
distant of k > 0 invariably leads to the appearance of correlations between bits distant of all
multiples of k.

Although, from the point of view of anomaly detection, these propagated correlation phe-
nomena do not interfere with the result (as we will show later), from the point of view of
precise characterization of the anomalies, the presence of this "artificial" information could
interfere with the analysis of design defects of the generator that led to the anomaly (architec-
ture, parameterization, ...).

In this section, we will propose ways of analyzing correlation anomalies in greater details,
using new models and statistics.

9.1. Propagation of the correlation phenomena

Before proposing a new model, it is interesting to first understand where the propagated cor-
relation phenomena come from. To do this, it seems natural to study the expression of the
autocorrelation of order mk, k > 0, m > 0 as a function of the autocorrelation of order k.

As a reminder, the autocorrelation of order k is the correlation between bits distant of k and
is expressed, for a stationary discrete stochastic process {Xi }, by:

ρk = E
[
(Xi −µ)(Xi−k −µ)

]
Var(Xi )

,

and we have similarly the expression of the autocorrelation of order mk:

90
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ρmk = E
[
(Xi −µ)(Xi−mk −µ)

]
Var(Xi )

.

To make a link between the theoretical autocorrelation of lag mk, ρmk , and the term δk from
our correlation model, as we did in section 5.2, we use the following lemma:

LEMMA 9.1. With the model considered for the correlation anomaly between bits distant of
k > 0, for all m ∈N, m > 0:

Pri ,i−mk (1 | 0) =
(1+ξ)(1−δm

k )

2
,

and

Pri ,i−mk (0 | 1) =
(1−ξ)(1−δm

k )

2
.

PROOF. We will then prove this lemma by recurrence:

• For m = 1, the model for the anomaly provides by definition

Pri ,i−k (1 | 0) = (1+ξ)(1−δk )

2
,

and

Pri ,i−k (0 | 1) = (1−ξ)(1−δk )

2
.

• We now assume that the result is established for m Ê 1,

Pri ,i−mk (1 | 0) =
(1+ξ)(1−δm

k )

2
,

and

Pri ,i−mk (0 | 1) =
(1−ξ)(1−δm

k )

2
,

and thus, by stationarity, that

Pri−k,i−(m+1)k (1 | 0) =
(1+ξ)(1−δm

k )

2
,

and

Pri−k,i−(m+1)k (0 | 1) =
(1−ξ)(1−δm

k )

2
.
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We then have,

Pri ,i−(m+1)k (1 | 0) = Pri ,i−k (1 | 0)×Pri−k,i−(m+1)k (0 | 0)

+Pri ,i−k (1 | 1)×Pri−k,i−(m+1)k (1 | 0) ,

= (1+ξ)(1−δk )

2
×

(
1− (1+ξ)(1−δm

k )

2

)
+

(
1− (1−ξ)(1−δk )

2

)
× (1+ξ)(1−δm

k )

2
,

= 1+ξ
2

×
[

(1−δk )× 1−ξ+δm
k +ξδm

k

2

+ 1+ξ+δk −ξδk

2
× (1−δm

k )

]
,

= 1+ξ
2

×
[1−ξ+δm

k +ξδm
k −δk +ξδk −δm+1

k −ξδm+1
k

2

+ 1+ξ+δk −ξδk −δm
k −ξδm

k −δm+1
k +ξδm+1

k

2

]
,

= (1+ξ)(1−δm+1
k )

2
.

And we prove in a strictly analogous fashion that:

Pri ,i−(m+1)k (0 | 1) =
(1−ξ)(1−δm+1

k )

2
.

We therefore proved the lemma by recurrence. □

THEOREM 9.2 (Autocorrelation of order mk of the process {Bi }). Let {Bi } be the stationary dis-
crete stochastic process describing the generation of bits according to the model defined in 5.2.
Let (k,m) ∈N2, k > 0, m > 0. Then the self-correlation of order mk of {Bi }, denoted by ρmk , is
equal to:

ρmk = δm
k .

PROOF. Similarly to the proof of Th. 5.3, we have:
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Var(Bi ) = Pri (0)×Pri (1) = 1−ξ2

4
,

and

E
[
(Bi −µ)(Bi−mk −µ)

]= (1−µ)(1−µ)×Pri ,i−mk (1 | 1)Pri−mk (1)

+ (0−µ)(1−µ)×Pri ,i−mk (0 | 1)Pri−mk (1)

+ (1−µ)(0−µ)×Pri ,i−mk (1 | 0)Pri−mk (0)

+ (0−µ)(0−µ)×Pri ,i−mk (0 | 0)Pri−mk (0) .

With the hypothesis of stationarity, we can replace Pri−mk (x), x ∈ {0,1} by Pri (x), and µ by
Pri (1) to obtain:

E
[
(Bi −µ)(Bi−mk −µ)

]= Pri (1)Pri (0)×
[

Pri (0)Pri ,i−mk (1 | 1)−Pri (0)Pri ,i−mk (1 | 0)

+Pri (1)Pri ,i−mk (0 | 0)−Pri (1)Pri ,i−mk (0 | 1)
]

,

By simplifying the term Pri (0)×Pri (1), we get:

ρmk = Pri (0)
[

Pri ,i−mk (1 | 1)−Pri ,i−mk (1 | 0)
]

+Pri (1)
[

Pri ,i−mk (0 | 0)−Pri ,i−mk (0 | 1)
]
,

= (
Pri (0)+Pri (1)

)[
1−Pri ,i−mk (0 | 1)−Pri ,i−mk (1 | 0)

]
,

= 1− (
Pri ,i−mk (0 | 1)+Pri ,i−mk (1 | 0)

)
.

Then, using lemma 9.1, we can then replace Pri ,i−mk (0 | 1) and Pri ,i−mk (1 | 0) by their expres-
sion according to our model, to finally prove the theorem:

ρmk = 1−
( (1−ξ)(1−δm

k )

2
+ (1+ξ)(1−δm

k )

2

)
= δm

k .

□

The result of this theorem therefore implies that an autocorrelation phenomenon is always
accompanied by "harmonic" phenomena, and that the amplitude of these harmonic correla-
tions decreases exponentially (it decreases because δk ∈]−1,1[), which is perfectly visible in
Fig. 22b for example.

Remark : This result also implies that a test which did not fail due to the presence of the
original correlation phenomenon cannot fail due to the harmonic phenomena, as these
are always of lower amplitude. The goal of concealing harmonic correlation phenomena
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is therefore not to prevent unwarranted failures of a test, but simply to enable a designer
to clearly characterize the real correlation phenomena from which his generator suffers.

9.2. Extending the model for correlations

The presence of "harmonic" correlation phenomena on Fig. 21 and 22 is due to the fact that
the correlation model we have proposed only studies correlations between two bits at a time,
as does the autocorrelation statistic of the AIS 20/31. In order to solve this problem, our ob-
jective is to develop at a global model, which will take into account information from n ∈ N
preceding bits rather than from a single bit.

9.2.1. Correlation model with the knowledge of two preceding bits. To gain insight into
a general model, we started by developing a correlation model that takes into account the
information of two preceding bits. More specifically, for k > 0, we sought to develop a model
for the following probabilities:

Pri , i−k, i−2k
(
x | y, z

)
,

where (x, y, z) ∈ {0,1}3.

To do this, similarly to the methodology used to obtain the model established in Def. 5.2, we
started from the general expression of a trivariate polynomial of degree 3 and tried to identify
the set of coefficients of the polynomial.

To distinguish the parameters of our first "simple" model (Cf. Def. 5.2) from those of this
more complex one, we use the notations δ2,k and δ2,2k for the terms describing the corre-
lation between bits distant of k and 2k respectively. The parameter ξ, on the other hand,
remains unchanged, regardless of the choice of model, as it is independent of the correlation
phenomena.

9.2.1.1. Model for Pri , i−k, i−2k (0 | 1,1): In all generality, the expression of Pri ,i−k,i−2k (0 | 1,1)
as a trivariate polynomial of degree 3 is:

Pri , i−k, i−2k (0 | 1,1) = a1ξ
3 +a2δ

3
2,k +a3δ

3
2,2k +b1ξ

2δ2,k +b2ξδ
2
2,k +b3ξ

2δ2,2k +b4ξδ
2
2,k

+b5δ
2
2,kδ2,2k +b6δ2,kδ

2
2,2k + cξδ2,kδ2,2k +d1ξ

2 +d2δ
2
2,k +d3δ

2
2,2k

+e1ξδ2,k +e2ξδ2,2k +e3δ2,kδ2,2k + f1ξ+ f2δ2,k + f3δ2,2k + g ,

and we seek to find the value of the real coefficients a1, a2, a3,b1,b2,b3,b4,b5,b6,c, d1,d2,d3,
e1,e2,e3, f1, f2, f3 and g .

First of all, we want the case where δ2,2k = 0 to characterize the absence of real correlation
between bits distant of 2k, and therefore the presence of a single potential real correlation
between bits distant of k. In this sense, we want to fall back to the model established in Def.
5.2, i.e.:
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Pri , i−k, i−2k (0 | 1,1) = Pri , i−k (0 | 1) = (1−ξ)(1−δ2,k )

2
.

By identifying the polynomials, we then get a1 = a2 = b1 = b2 = d1 = d2 = 0, f1 = f2 =−1
2 , and

e1 = g = 1
2 .

Similarly, when δ2,k = 0, we want to fall back to the model of a single potential correlation
between bits distant of k, i.e.:

Pri , i−k, i−2k (0 | 1,1) = Pri , i−2k (0 | 1) = (1−ξ)(1−δ2,2k )

2
,

which then provides a3 = b3 = b4 = d3 = 0, f3 =−1
2 and e2 = 1

2 .

For the time being, the expression can thus be simplified as follows:

Pri , i−k, i−2k (0 | 1,1) = (1−ξ)(1−δ2,k −δ2,2k )

2
+b5δ

2
2,kδ2,2k +b6δ2,kδ

2
2,2k + cξδ2,kδ2,2k +e3δ2,kδ2,2k .

To find the last coefficients, we make use of the fact that δ2,k → 1 characterizes the case where
the value of the bit of index i −k is almost surely (in the probabilistic sense) equal to the value
of the bit of index i , for any i ∈N. In other words, for any value of δ2,2k ∈]−1,1[:

Pri , i−k, i−2k (0 | 1,1) →
δ2,k→1

0.

Therefore, a reasoning at the limits (polynomials being continuous functions) provides:

−1−ξ
2

δ2,2k +b5δ2,2k +b6δ
2
2,2k + cξδ2,2k +e3δ2,2k = 0,

which leads to c =−1
2 , b6 = 0 and b5 +e3 = 1

2 .

Using the same reasoning for the case where δ2,2k → 1 with δ2,k ∈]−1,1[, we get b5 = 0 and
b6 +e3 = 1

2 .

Combining the different results, we find in the end that b5 = b6 = 0 and e3 = 1
2 . We have then

identified all the coefficients of the generic polynomial.

Thus, the polynomial model that satisfies all the constraints we have set is the following:
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Pri , i−k, i−2k (0 | 1,1) = (1−ξ)(1−δ2,k )(1−δ2,2k )

2
,

= Pri , i−k (0 | 1)× (1−δ2,2k ).

9.2.1.2. Model for Pri , i−k, i−2k (1 | 0,0): For Pri , i−k, i−2k (1 | 0,0), a strictly identical reason-
ing leads to:

Pri , i−k, i−2k (1 | 0,0) = (1+ξ)(1−δ2,k )(1−δ2,2k )

2
,

= Pri , i−k (1 | 0)× (1−δ2,2k ).

9.2.1.3. Model for Pri , i−k, i−2k (0 | 0,1): To try to have an insight on the generic case, it
seems of course interesting to consider the case where the bits of index i −k and i − 2k are
different, for example when the bit of index i −k is 0 and the bit of index i −2k is 1.

Rather than trying to find the expression of the probabilities like we did in the previous two
cases, it is wiser to rather use the following property, based on the law of total probabilities,
which can be seen as an extension of Prop. 5.1:

PROPERTY 9.3. Let {Bi } be a binary-valued stationary stochastic process, (k,n) ∈N2, k > 0, n >
1. We have:

Pri , i−k, ..., i−(n−1)k, i−nk (0,1, ...,1,1) = Pri , i−k, ..., i−(n−1)k, i−nk (1,1, ...,1,0) ,

and

Pri , i−k, ..., i−(n−1)k, i−nk (1,0, ...,0,0) = Pri , i−k, ..., i−(n−1)k, i−nk (0,0, ...,0,1) .

PROOF. In all generality:

Pri , i−k, ..., i−(n−1)k, i−nk (1,1, ...,1,1)+Pri , i−k, ..., i−(n−1)k, i−nk (1,1, ...,1,0)

= Pri , i−k, ..., i−(n−1)k (1,1, ...,1) ,

or
Pri , i−k, ..., i−(n−1)k, i−nk (1 | 1, ...,1,1)×Pri−k, ..., i−(n−1)k, i−nk (1, ...,1,1)

+Pri , i−k, ..., i−(n−1)k, i−nk (1,1, ...,1,0) = Pri , i−k, ..., i−(n−1)k (1,1, ...,1) .

But, by stationarity:

Pri−k, ..., i−(n−1)k, i−nk (1, ...,1,1) = Pri , i−k, ..., i−(n−1)k (1,1, ...,1) ,
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and this provides:

(1−Pri , i−k, ..., i−(n−1)k, i−nk (1 | 1, ...,1,1))×Pri−k, ..., i−(n−1)k, i−nk (1, ...,1,1)

= Pri , i−k, ..., i−(n−1)k, i−nk (1,1, ...,1,0) ,

which, as announced, further simplifies to:

Pri , i−k, ..., i−(n−1)k, i−nk (0,1, ...,1,1) = Pri , i−k, ..., i−(n−1)k, i−nk (1,1, ...,1,0) .

The bits 0 and 1 have perfectly symmetrical roles, so the proof for the second equation is
identical and we leave it to the reader’s discretion.

□

In our case, n = 2. We thus have:

Pri , i−k, i−2k (1,0,0) = Pri , i−k, i−2k (0,0,1) ,

which can be developed into:

(1−Pri , i−k, i−2k (0 | 0,0))×Pri , i−k (0 | 0)×Pri (0)

= Pri , i−k, i−2k (0 | 0,1)×Pri , i−k (0 | 1)×Pri (1)

With the models for correlation we have obtained up to now, the equation above translates
into:

(1+ξ)(1−δ2,k )(1−δ2,2k )

2
×Pri , i−k (0 | 0)× 1−ξ

2

= Pri , i−k, i−2k (0 | 0,1)× (1−ξ)(1−δ2,k )

2
× 1+ξ

2

Then, by identifying the coefficients, we directly obtain the expression of Pri ,i−k,i−2k (0 | 0,1),
which is:

Pri , i−k, i−2k (0 | 0,1) = Pri , i−k (0 | 0)× (1−δ2,2k ),

=
(
1− (1+ξ)(1−δ2,k )

2

)
× (1−δ2,2k ).
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9.2.1.4. Model for Pri , i−k, i−2k (1 | 1,0) : Again, using the same reasoning as for the previ-
ous probability, we obtain the following expression for Pri , i−k, i−2k (1 | 1,0):

Pri , i−k, i−2k (1 | 1,0) = Pri , i−k (1 | 1)× (1−δ2,2k ),

=
(
1− (1−ξ)(1−δ2,k )

2

)
× (1−δ2,2k ).

Thus, the complete model is defined as such:

DEFINITION 9.4 (Correlation model with the knowledge of two preceding bits). For i ∈N, k >
0, we model the correlation between the bit of index i and the bits of indexes i −k and i −2k by
the following set of equations:

Pri ,i−k,i−2k (0 | 1,1) = Pri ,i−k (0 | 1)× (1−δ2,2k ),

Pri ,i−k,i−2k (1 | 0,0) = Pri ,i−k (1 | 0)× (1−δ2,2k ),

Pri ,i−k,i−2k (0 | 0,1) = Pri ,i−k (0 | 0)× (1−δ2,2k ),

Pri ,i−k,i−2k (1 | 1,0) = Pri ,i−k (1 | 1)× (1−δ2,2k ),

which can be summarized by:

Pri ,i−k,i−2k
(
x | y, x

)= Pri ,i−k,i−2k
(
x | y

)× (1−δ2,2k ),

where (x, y) ∈ {0,1}2 and x is the complementary value of the bit x.

Remark: Probabilities of the kind Pri ,i−k,i−2k
(
x | y, x

)
are also described by this model, as

we simply have:

Pri ,i−k,i−2k
(
x | y, x

)= 1−Pri ,i−k,i−2k
(
x | y, x

)
.

9.2.2. Proposal for a global model for correlations. From this definition, and especially
in view of the calculations that led to it, a conjecture about the general form for a correlation
model in the knowledge of n > 0 preceding bits seems to emerge. For the sake of simplicity,
and since we are talking about a global model here, we will set k = 1 without loss of generality.

Notation: To not impair readability we will use the following notation for conditional
probabilities with the knowledge of n preceding bits:

Pr(Bi = bi | Bi−1 = bi−1, ...,Bi−n = bi−n) = Pri→i−n (bi | bi−1, ...,bi−n) .
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DEFINITION 9.5 (Correlation model with the knowledge of n preceding bits). For i ∈N, n > 0,
we propose to model the correlation between the bit of index i and the bits of indexes i −1, i −2,
..., i −n by the following equation:

Pri→i−n

(
bi | wn−1,bi

)
= Pri→i−n+1 (bi | wn−1)× (1−δn,n)

where bi ∈ {0,1}, wn−1 = (bi−1, ...,bi−n+1) ∈ {0,1}n−1 and δn,n ∈]−1,1[.

The global model with the knowledge of n > 0 bits is then a set of 2n equations, and can be
seen as a natural extension of the model with the knowledge of n −1 preceding bits.

9.2.3. Constraints on the parameters of the model. In the same fashion that the param-
eter δk of the "simple" correlation model established in Def. 5.2 is constrained by the value
of ξ, it quickly appears that the parameter δn,n of our new model is also constrained in the
values it can take. More specifically, we have the following property:

PROPERTY 9.6 (Constraints on the value of δn,n). For all bi ∈ {0,1} and
wn−1 = (bi−1, ...,bi−n+1) ∈ {0,1}n−1, we have the following inequation:

−
Pri→i−n+1

(
bi | wn−1

)
Pri→i−n+1 (bi | wn−1)

É δn,n É 1.

PROOF. Let bi ∈ {0,1} and wn−1 = (bi−1, ...,bi−n+1) ∈ {0,1}n−1. Pri→i−n

(
bi | wn−1,bi

)
being

a probability, we have, in all generality:

0 É Pri→i−n

(
bi | wn−1,bi

)
= Pri→i−n+1 (bi | wn−1)× (1−δn,n) É 1.

This then translates into:

1− 1

Pri→i−n+1 (bi | wn−1)
É δn,n É 1,

or, as announced:

−
Pri→i−n+1

(
bi | wn−1

)
Pri→i−n+1 (bi | wn−1)

É δn,n É 1.

because 1−Pri→i−n+1 (bi | wn−1) = Pri→i−n+1

(
bi | wn−1

)
.

□
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9.2.4. Finer autocorrelation statistic. Although the model we propose does not directly
provide an explicit expression for the conditional probabilities (even though this expression
can be obtained by developing step by step), it does allow a very simple estimation of the rele-
vant parameter δn,n . Indeed, very similarly to the model for a single correlation phenomenon
between bits distant of k > 0, it is very easy to extract δn,n from the conditional probabilities
of the model. More precisely, we have the following property:

PROPERTY 9.7. For all wn−1 ∈ {0,1}n−1, we have:

Pri→i−n (0 | wn−1,1)+Pri→i−n (1 | wn−1,0) = 1−δn,n .

PROOF. Let n > 1 and wn−1 ∈ {0,1}n−1. By definition of the model:

Pri→i−n (0 | wn−1,1)+Pri→i−n (1 | wn−1,0) = [Pri→i−n (0 | wn−1)+Pri→i−n (1 | wn−1)]

× (1−δn,n),

= (1−δn,n).

□

It is then very easy to develop an unbiased estimator of δn,n , and thus allows for the definition
of an optimal test for the global correlation anomaly as described by our new model.

DEFINITION 9.8 (Finer autocorrelation statistic given wn−1). For n > 1 and wn−1 = bi−n+1, ...,bi−1 ∈
{0,1}n−1 chosen such that at least one occurrence of wn−1 is preset by a bit 0, and another by a
bit 1, we define the finer autocorrelation statistic given the observation of the (n−1)-bit word
wn−1 as follows:

F⋆
n | wn−1 = 1− N1,wn−1,0

N1,wn−1

− N0,wn−1,1

N0,wn−1

,

where (x, y) ∈ {0,1}2 and Nx,wn−1 and Nx,wn−1,y represent the number of occurrences of the words
(x,bi−n+1, ...,bi−1) and (x,bi−n+1, ...,bi−1, y) respectively.

We then have the following theorem:

THEOREM 9.9 (Expected value of F⋆
n | wn−1). For any n > 1 and wn−1 = bi−n+1, ...,bi−1 ∈

{0,1}n−1. We have:

E
[
F⋆

n | wn−1
]= δn,n .

In other words, F⋆
n | wn−1 is an unbiased estimator of δn,n .
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PROOF. Let n > 1 and wn−1 = bi−n+1, ...,bi−1 ∈ {0,1}n−1. In all generality:

E
[
F⋆

n | wn−1
]= 1−E

[
N1,wn−1,0

N1,wn−1

]
−E

[
N0,wn−1,1

N0,wn−1

]
.

Focusing on the first expectation, we have:

E

[
N1,wn−1,0

N1,wn−1

]
=

nwn−1−1∑
n1=1

n1∑
n10=0

n10

n1
×Pr

(
N1,wn−1,0 = n10, N1,wn−1 = n1

)
,

=
nwn−1−1∑

n1=1
Pr

(
N1,wn−1 = n1

) n1∑
n10=1

n10

n1
×Pr

(
N1,wn−1,0 = n10 | N1,wn−1 = n1

)
,

=
nwn−1−1∑

n1=1
Pr

(
N1,wn−1 = n1

) n1∑
n10=1

(
n1 −1

n10 −1

)
×Pri→i−n (0 | wn−1,1)n10 (1−Pri→i−n (0 | wn−1,1))n1−n10 ,

= Pri→i−n (0 | wn−1,1)×
[nwn−1−1∑

n1=1
Pr

(
N1,wn−1 = n1

)
×

n1∑
n10=1

(
n1 −1

n10 −1

)
Pri→i−n (0 | wn−1,1)n10−1 (1−Pri→i−n (0 | wn−1,1))n1−n10

︸ ︷︷ ︸
=1

]

= Pri→i−n (0 | wn−1,1) ,

= Pri→i−n+1 (0 | wn−1)× (1−δn,n).

And similarly, for the second expected value, we prove that:

E

[
N0,wn−1,1

N0,wn−1

]
= Pri→i−n+1 (1 | wn−1)× (1−δn,n).

Thus, we obtain as announced:

E
[
F⋆

n | wn−1
]= 1− [Pri→i−n (0 | wn−1)+Pri→i−n (1 | wn−1)]× (1−δn,n),

= δn,n .

□

We therefore have a statistic to estimate the relevant term in our model from the data of the
analyzed sequence. However, the main drawback of this statistic is the need to observe a given
word wn−1 ∈ {0,1}n−1 in the sequence to obtain the estimation of δn,n . To obtain an estimation
of good quality, it is desirable to have a large number of occurrences of wn−1 in the sequence,
but, on average, this number of occurrences decreases exponentially with n. More precisely,
on average, this statistic uses only N

2n−1 bits of the sequence.
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However, as this statistic is defined for all wn−1 ∈ {0,1}n−1 (as long as the word is preceded at
least once by a bit 0 and by a bit 1), it seems possible to develop another statistic which esti-
mates δn,n using all (n −1)-bit words encountered in the sequence. To this end, we propose
the following statistic:

DEFINITION 9.10 (Finer autocorrelation statistic). For n > 1, and a sequence S , we define the
finer autocorrelation statistic as:

F⋆
n = 1

N −n +1

∑
wn−1∈{0,1}n−1

wn−1∈S

Nwn−1 ×
(
1− N1,wn−1,0

N1,wn−1

− N0,wn−1,1

N0,wn−1

)
.

where N is the number of bits in the sequence S and Nwn−1 is the number of occurrences of the
word wn−1 in S .

With the statistic defined above, we have the following theorem:

THEOREM 9.11. For n ∈N,n > 1, and F⋆
n the finer autocorrelation statistic established in Def.

9.10:

E
[
F⋆

n

]= δn,n .

In other words, F⋆
n is an unbiased estimator of δn,n .

PROOF. In all generality:

E
[
F⋆

n

]= 1

N −n +1
× ∑

wn−1∈{0,1}n−1

wn−1∈S

(
E
[
Nwn−1

]−E[
Nwn−1

N1,wn−1,0

N1,wn−1

]
−E

[
Nwn−1

N0,wn−1,1

N0,wn−1

])
.

More specifically:
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E

[
Nwn−1

N1,wn−1,0

N1,wn−1

]
=

N−n+1∑
nwn−1=1

nwn−1−1∑
n1=1

n1∑
n10

nwn−1

n10

n1

×Pr
(
N1,wn−1,0 = n10, N1,wn−1 = n1, Nwn−1 = nwn−1

)
,

= Pri→i−k (0 | wn−1,1)×
N−n+1∑

nwn−1=1
nwn−1

×
nwn−1−1∑

n1=1
Pr

(
N1,wn−1 = n1, Nwn−1 = nwn−1

)
︸ ︷︷ ︸

=Pr
(
Nwn−1=nwn−1

)
,

= Pri→i−n (0 | wn−1,1)×E[
Nwn−1

]
,

= (1−δn,n)×Pri→i−n+1 (0 | wn−1)×E[
Nwn−1

]
.

And, similarly:

E

[
Nwn−1

N0,wn−1,1

N0,wn−1

]
= (1−δn,n)×Pri→i−n+1 (1 | wn−1)×E[

Nwn−1

]
.

Thus, we finally have:

E
[
F⋆

n

]= 1

N −n +1
× ∑

wn−1∈{0,1}n−1

wn−1∈S

E
[
Nwn−1

]× (1− (1−δn,n)),

= δn,n × 1

N −n +1
×E

 ∑
wn−1∈{0,1}n−1

wn−1∈S

Nwn−1

 .

And, by construction:

∑
wn−1∈{0,1}k−1

wn−1∈S

Nwn−1 = N −n +1.

Therefore, we have, as announced:

E
[
F⋆

n

]= δn,n .

□

We have thus defined above a statistic taking into account all the bits of the sequence (or more
precisely, all the (n −1)-bit words encountered), which is an unbiased estimator of δn,n and
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thus, according to our definition, enables us to define an optimal test for a fine-grained anal-
ysis of correlations.

However, this new statistic also has a major drawback, which is its cost in both memory and
computation time. Indeed, since the aim is to take advantage of all of the (n − 1)-bit words
in the analyzed sequence to estimate δn,n as precisely as possible, it is of course necessary
to store for each wn−1 ∈ {0,1}, every counter Nwn−1 , N1,wn−1 , N0,wn−1 , N1,wn−1,0 and N0,wn−1,1

used to compute F⋆
n . The memory complexity of the computation of F⋆

n is then equal to
O(2n). Also, the estimation is done by browsing once through the whole sequence of length
N to increment the aforementioned counters, before summing them as per the formula of the
statistic. This then leads to a computation time complexity of O(N 2n). In this sense, we
limited ourselves to n = 32.

Since we have limited ourselves to N = 100,000 bits of data for the sequences, in the following
subsection we will illustrate only the total statistic defined in Def. 9.10, and not the statistic
given wn−1 defined in Def. 9.8, as the number of occurrences of a specific (n−1)-bit word will
almost surely becomes zero as n increases.

9.3. Applying the fine autocorrelation statistic on simulated sequences

Once again, we sought to validate our statistic by applying it to datasets impacted by cor-
relation phenomena. More specifically, our goal was to demonstrate the interest of this new
statistic in the face of the enhanced autocorrelation statistic established in Def. 5.2, we reused
the same datasets as the ones used in subsections 7.3.2 and 7.3.3, produced according to the
algorithm 5.

In the following figures, the graphs on the right represent the computation of the statistic
F⋆

n , which depicts the estimations of the successive δn,n terms, when n varies between 1 and
32. For the index n = 1, we naturally define the value of F⋆

n as being equal to the enhanced
autocorrelation statistic for a lag 1, i.e. A ⋆

1 .

9.3.1. Simulated sequences with known frequency and correlation anomalies. First of
all, we compared the results obtained in the case where a single correlation anomaly between
bits distant of 8 affects the sequence.

As anticipated and illustrated in Fig. 32, our finer autocorrelation statistic isolates the origi-
nal correlation phenomenon (between bits distant of 8), and is perfectly null for other lags, in
particular for multiples of 8, for which harmonic phenomena were visible with the enhanced
autocorrelation statistic A ⋆

k . The amplitude of the correlation anomaly between bits distant
of 8 is, moreover, rigorously identical to that obtained with the enhanced statistic A ⋆

k , which
was also expected from our model.

We then applied our statistic F⋆
n to the dataset affected by the same correlation anomaly be-

tween bits distant of 8, as well as by a global disproportion between bits 0 and 1 of amplitude
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(A) Enhanced autocorrelation statistic (B) Finer autocorrelation statistic

FIGURE 32. Enhanced autocorrelation statistic A ⋆
k vs Finer autocorrelation

statistic F⋆
n , N = 100,000, ξ= 0, δ8 = 0.6

(A) Enhanced autocorrelation statistic (B) Finer autocorrelation statistic

FIGURE 33. Enhanced autocorrelation statistic A ⋆
k vs Finer autocorrelation

statistic F⋆
n , N = 100,000, ξ= 0.6, δ8 = 0.6

ξ= 0.6.

The result, illustrated in Fig. 33, is once again perfectly in line with our expectations, namely
in the fact that the correlation phenomenon between bits distant of 8 is once again the only
one identified by the statistic F⋆

n , and that it is in no way affected by the global disproportion
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(A) Enhanced autocorrelation statistic (B) Finer autocorrelation statistic

FIGURE 34. Enhanced autocorrelation statistic A ⋆
k vs Finer autocorrelation

statistic F⋆
n , ERO-TRNG, D = 53

of bits 0 and 1. In this sense, this new statistic does indeed seem to provide a finer analy-
sis of correlations as expected, without any loss in the quality of characterization of actual
anomalies.

9.3.2. Sequences generated by a TRNG implemented on FPGA. To evaluate the effec-
tiveness of our new statistic in a more concrete use case, we have also applied it to datasets
generated using the FPGA implementation of the ERO-TRNG, already used in subsection
7.3.3. Once again, we have deliberately chosen parameters for the generator that lead to a
randomness of poor quality in order to be able to easily visualize anomalies, our objective
being to judge the ability of our statistics to characterize them. More precisely, we took the
parameters Inv1 = 11 and Inv2 = 7, and made D vary between 50 and 100. As a reminder, the
number of bits generated for each set of parameters is N = 114,688 bits.

For D = 53, for example (see Fig. 34), although the impact of the finer autocorrelation statistic
F⋆

n in the face of the enhanced autocorrelation statistic A ⋆
k is not as obvious as in the case

of a single correlation anomaly as presented in the previous subsection, one observation we
can make is that F⋆

n seems to work as a low-pass filter. The sharp cutoff after index n = 11
would therefore indicate that the poor parameterization of the generator leads to real corre-
lations extending up to bits distant of 11, but that the rest of the anomalies observed with the
enhanced autocorrelation statistic are merely artificial information, despite their high ampli-
tude.

For D = 84 (Fig. 35), the results are very similar, with once again a "low-pass" effect of the finer
autocorrelation statistic, and real correlations phenomena present up to bits distant of 11 as
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(A) Enhanced autocorrelation statistic (B) Finer autocorrelation statistic

FIGURE 35. Enhanced autocorrelation statistic A ⋆
k vs Finer autocorrelation

statistic F⋆
n , ERO-TRNG, D = 84

(A) Enhanced autocorrelation statistic (B) Finer autocorrelation statistic

FIGURE 36. Enhanced autocorrelation statistic A ⋆
k vs Finer autocorrelation

statistic F⋆
n , ERO-TRNG, D = 55

well.

Finally, for a value of D = 55 (Fig. 36), the impact of the fine autocorrelation statistic is remark-
able. Indeed, we had already observed in subsection 7.3.3 that this parameter led to a kind of
resonance phenomenon, resulting in an extreme amplitude of the correlation between suc-
cessive bits. Application of the finer autocorrelation statistic reveals that this correlation phe-
nomenon is in fact limited to bits distant of 1, proving at the same time that the "dummy"
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example presented in subsections 7.3.2 and 9.3.1 has a practical reality.

Thus, all these simulations confirm the interest of a finer modeling of correlations, especially
from the point of view of a designer who seeks to trace back to the origin of anomalies, by
getting rid of artificial correlation information, without deteriorating the characterization of
real correlation phenomena.

However, given its computational and memory complexities, this statistic, and therefore our
finer autocorrelation model, seems to have limited practical interest, as we explained earlier.
We then explored the use of a second correlation model taking into account the influence of
n preceding bits, called the partial autocorrelation.

9.4. Partial autocorrelation function (PACF)

The partial autocorrelation is a concept formalized in particular by Yule (one of the fathers of
the theory of correlation with Pearson1), who, in 1907 [82], introduced notations that would
later enable him to theorize the analysis of correlations between the realizations of a given
process [83].

More precisely, Yule proposes to study the autocorrelation of a stochastic discrete process
{Xi } by modeling it as an autoregressive process, i.e. a process that verifies an equation like
the following:

Xi =φ1,n Xi−1 +φ2,n Xi−2 + ...+φn,n Xi−n ,

where n ∈ N,n > 0 is the order of the regression, and φ1,n ,φ2,n , ...,φn,n are the coefficients of
the autoregression of order n.

Walker [78] subsequently showed that, under the hypothesis of this model, a strictly analo-
gous equation subsists between the correlation coefficients, namely:

ρi =φ1,nρi−1 +φ2,nρi−2 + ...+φn,nρi−n ,

whereφ1,n ,φ2,n , ...,φn,n are the same coefficients found in the previous equation, and ρi is the
coefficient of theoretical autocorrelation of order i as defined at the beginning of the section
5.2.

The hypothesis of stationarity also provides the property ρ j = ρ− j , which leads to the follow-
ing set of n equations:

ρ j =φ1,nρ| j−1|+φ2,nρ| j−2|+ ...+φn,nρ| j−n|,

1In fact, Yule and Pearson engaged in a real scientific battle on the subject for many years from the end of
the nineteenth century to the middle of the twentieth century [22].
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for, j ∈ {1, ...,n}, which can also be written as the following matrix equation:
1 ρ1 · · · · · · ρn−2 ρn−1

ρ1 1 ρ1 · · · ρn−3 ρn−2
...

...
...

...
...

...
ρn−2 ρn−3 · · · · · · 1 ρ1

ρn−1 ρn−2 · · · · · · ρ1 1




φ1,n

φ2,n
...

φn−1,n

φn,n

=


ρ1

ρ2
...

ρn−1

ρn

 .

In our case, we had seen that the coefficients ρi are exactly equal to the coefficients δi that
we introduced with our simple correlation model (Def. 5.2), for which we have a very efficient
estimator. The set of Yule-Walker equations presented above thus translates into:

1 δ1 · · · · · · δn−2 δn−1

δ1 1 δ1 · · · δn−3 δn−2
...

...
...

...
...

...
δn−2 δn−3 · · · · · · 1 δ1

δn−1 δn−2 · · · · · · δ1 1




φ1,n

φ2,n
...

φn−1,n

φn,n

=


δ1

δ2
...

δn−1

δn

 .

It is interesting to note that, for j = n, the Yule-Walker equation is the following:

δn =φ1,nδn−1 +φ2,nδn−2 + ...+φn−1,nδ1 +φn,n ,

because δ0 = 1 by construction.

This equation again highlights the linear influence of δ j ,1 É j É n − 1 on δn , as described
by the model. But, above all, it illustrates the importance of the term φn,n in characterizing
the "real" correlation between bits distant of n > 0. Indeed, this term clearly appears as the
residual correlation phenomenon when we have removed the influence of all correlation phe-
nomena propagated between realizations distant of j < n, in the same way that, in our fine
correlation model (see Def. 9.5), the term (1−δn,n) was added to the influence of the other
correlation terms in the expression of conditional probabilities.

Based on this observation, and building on the work of Yule and Walker, Box and Jenkins [12]
introduced the partial autocorrelation function in 1970.

DEFINITION 9.12 (Partial autocorrelation function). Let φn,n be the n-th partial autocorrela-
tion coefficient of order n in the Yule-Walker equation as shown above. We call partial autocor-
relation function (abbreviated in PACF) the function:

PACF : N\ {0} −→ [−1,1]
n 7−→ φn,n

.
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As mentioned earlier, the authors then explain that, as modeled above, the coefficient φn,n

represents the correlation between xi and xi−n , adjusted to remove the propagation of lower-
order correlations (between xi and xi− j , 1 É j É n −1). It thus seems that this function is the
perfect tool in our case, and we then want to find a way to estimate φn,n .

From the set of n Yule-Walker matrix equations, it follows, by Cramer’s rule, that the coef-
ficient φn,n is obtained as the quotient d (n)

1 /d (n)
2 , where d (n)

1 and d (n)
2 are the following two

determinants:

d (n)
1 =

∣∣∣∣∣∣∣∣∣∣∣

1 δ1 · · · · · · δn−2 δ1

δ1 1 δ1 · · · δn−3 δ2
...

...
...

...
...

...
δn−2 δn−3 · · · · · · 1 δn−1

δn−1 δn−2 · · · · · · δ1 δn

∣∣∣∣∣∣∣∣∣∣∣
d (n)

2 =

∣∣∣∣∣∣∣∣∣∣∣

1 δ1 · · · · · · δn−2 δn−1

δ1 1 δ1 · · · δn−3 δn−2
...

...
...

...
...

...
δn−2 δn−3 · · · · · · 1 δ1

δn−1 δn−2 · · · · · · δ1 1

∣∣∣∣∣∣∣∣∣∣∣
The following theorem further convinces us of the usefulness of partial autocorrelation in our
use case:

THEOREM 9.13. For a discrete stationary stochastic process affected by a unique correlation
phenomenon between bits distant of k > 0, as described by the model established in Def. 5.2,
the partial autocorrelation function of order u > 0 is equal to:

φu,u =


δk , if u = k,

0 if u ̸= k.

PROOF. In the event that u = k, the result is immediate since, with our model, a single
correlation phenomenon between bits distant of k > 0 results in δ j = 0 for 1 É j É k −1 and

δk ̸= 0. Then, d (u)
1 is the determinant of the matrix diag(1, ...,1,δk ) and d (u)

2 is the determinant
of the identity matrix. We therefore have φu,u = δk as announced.

Similarly, in the case where u < k, d (u)
1 is the determinant of the matrix

diag(1, ...,1,δu) = diag(1, ...,1,0), so d (u)
1 = 0 and φu,u = 0.

Finally, when u > k, let m ∈ N,m > 0 and r ∈ {1, ...,k − 1} such that u = mk + r . For (i , j ) ∈
{1, ...,u}2, we denote by d (u)

1 (i , j ) the coefficient of row i and column j of the determinant

d (u)
1 . Remembering that, for j < u, d (u)

1 (i , j ) = δ|i− j | and d (u)
1 (i ,u) = δi , we have the following

relationship on the coefficients of d (u)
1 :
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d (u)
1 (u, j ) =


δ(p−m)k = δ(m−p)k , if j = pk + r where p ∈ {0, ...,m −1},

δu , if j = u,

0 otherwise,

and

d (u)
1 (u −k, j ) =


δ(p−m+1)k = δ(m−1−p)k , if j = pk + r where p ∈ {0, ...,m −1},

δu−k , if j = u,

0 otherwise,

From Th. 9.2, it follows that:

δ(m−p)k = δ
m−p
k ,

δ(m−1−p)k = δ
m−1−p
k ,

and therefore

δu =


δmk = δm
k , if u = mk,

0 otherwise,

δu−k =


δ(m−1)k = δm−1
k , if u = mk,

0 otherwise.

Thus, for all u > k and all j ∈ {1, ...,u}, it follows that d (u)
1 (u, j ) = δk × d (u)

1 (u − k, j ). Since

the determinant d (u)
1 has two proportional rows, we have d (u)

1 = 0 and therefore φu,u = 0 as
announced.

□

The partial autocorrelation function thus acts exactly like our finer autocorrelation statistic,
completely eliminating artificial correlation phenomena in the case of a single real phenom-
enon between bits distant of k > 0.

Furthermore, the computational and memory complexity is also much better. Indeed, to
compute the coefficient φn,n , the first step is to compute all the terms δ j ,1 É j É n, which
is achieved with our enhanced autocorrelation statistic (see section 7.1) with computational
complexity O(N×n) and constant memory complexity. The second step is then the com-
putation of the termφn,n which can be performed naively in computational complexity O(n3)
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Computational complexity Memory complexity

Computing δ1, ...,δn + PACF O(N n +n2) O(n2)

Finer autocorrelation statistic F⋆
n O(N +2n) O(2n)

TABLE 2. Complexity of the PACF and of the finer autocorrelation statistic

and memory complexity O(n2) (which simply corresponds to the storage of the matrices)
with the Gauss-Hordan elimination algorithm. This complexity would then naturally already
be much better than the complexity of computing the terms δn,n of our finer correlation
model. However, an even more efficient algorithm exists for computing φn,n .

Indeed, it is possible to take advantage of the structure of the two determinants, in particular
their symmetry (or quasi-symmetry for d (n)

1 ) to simplify the computation. This is the work
carried out by Levinson in 1947 [50], which was later improved by Durbin [23] to produce
the Durbin-Levinson algorithm. The algorithm is a recursive method based on the recursion
equation (7) in section 2 of [23], and enables the computation of the coefficients of an autore-
gressive model in computational complexity O(n2), with n > 1 the order of the regression.

To summarize, the computational and memory complexities of the partial autocorrelation
function and the finer autocorrelation statistic are listed in Tab. 2.

9.5. Applying the partial autocorrelation function on simulated sequences

It therefore seems that the PACF is able to solve our problematic of precise characterization of
real correlation between the bits of a sequence. We then wished to verify the behavior of this
function on the same datasets used to illustrate both the enhanced autocorrelation statistic
(see section 7.3) and the finer autocorrelation statistic (see section 9.3). The idea being to
prove the interest of this new methodology with respect to our enhanced correlation statistic
A ⋆

k , but also with respect to our finer statistic F⋆
n , we will show for each interesting dataset

the result of applying the statistics A ⋆
k and F⋆

n , and the partial autocorrelation function for
different orders n > 0.

Remark : The Durbin-Levinson algorithm is more efficient than a naive determinant
computation, but in our case, we limit our simulations to an order n = 128. We have
therefore chosen not to implement Durbin-Levinson, as it would not be necessary. In-
stead, we use the Pari/GP library [64] and the GNU MP library [31] for optimized deter-
minant computation.

9.5.1. Simulated sequences with known frequency and correlation anomalies. First of
all, we wanted to validate the result of Th. 9.13, i.e. that, in the case of a single real correlation
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(A) Enhanced autocorrelation statistic (B) Partial autocorrelation function

FIGURE 37. Enhanced autocorrelation statistic vs Partial autocorrelation func-
tion, N = 100,000, ξ= 0.6, δ8 = 0.6

phenomenon between bits distant of k > 0, the partial autocorrelation function is indeed able
to isolate this phenomenon, and is unaffected by the propagated correlation phenomena.

The application of the partial autocorrelation function to data affected by a correlation phe-
nomenon with parameterδ8 = 0.6 is then depicted in Fig. 37. The plot of the partial autocorre-
lation function (on the right) shows on the x-axis the order n > 0 of the regression considered,
and on the y-axis the value of the term φn,n , which therefore represents the "real" correlation
between bits distant of n.

As expected, the autocorrelation function is perfectly able to isolate the real correlation phe-
nomenon between bits distant of 8, and to completely obscure propagated phenomena.

It may also be noted that, for this dataset, the relatively strong overall disproportion of bits
0 and 1 we had set (ξ = 0.6) did not impinge on the characterization of the correlation phe-
nomena. This is actually logical, since the term φn,n is a function of only δ j ,1 É j É n, whose
estimations are independent from ξ (in their expected values).

9.5.2. Sequences generated by a TRNG implemented on FPGA. Once again, we wanted
to test the new methodology, that is the use of the partial autocorrelation function, on more
concrete data, i.e. the data sets generated by the FPGA implementation of the ERO-TRNG.
More precisely, we have applied the partial autocorrelation function to datasets using the
same parameters of the generator as those used in subsection 9.3.2, in order to be able to
directly compare the results with each other.
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(A) Enhanced autocorrelation statistic, D = 53

(B) PACF, D = 53 (C) Finer autocorrelation statistic, D = 53

FIGURE 38. Different autocorrelation statistics, ERO-TRNG, D = 53

It appears from the first figure (see Fig. 38), obtained with a frequency division factor D = 53,
that the use of the partial autocorrelation function leads to very similar results to those ob-
tained with our finer autocorrelation statistic for lags n É 7. On the other hand, the partial
autocorrelation function reveals correlation phenomena that our finer autocorrelation statis-
tic had almost totally eliminated, notably for lags n Ê 12 in this figure. It therefore seems that
the partial autocorrelation function is less "aggressive" than our finer autocorrelation statistic,
which can be explained by the different nature of the two models: the partial autocorrelation
function is based on a linear model, while our statistic is based on a multiplicative one (see
Def. 9.5).

For the sequence generated with the parameter D = 84 (Fig. 39), the observation is the same,
although this time the difference in the amplitude of the correlations for lags n Ê 12 is less
remarkable.
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(A) Enhanced autocorrelation statistic, D = 84

(B) PACF, D = 84 (C) Finer autocorrelation statistic, D = 84

FIGURE 39. Different autocorrelation statistics, ERO-TRNG, D = 84

Finally, for the sequence generated with the parameter D = 55 (Fig. 40), the partial autocor-
relation function is, like our fine autocorrelation statistic, perfectly able to isolate the unique
"real" phenomenon of correlation between bits distant of k = 1.

It therefore appears that, in practice, the results provided by the partial autocorrelation func-
tion are virtually identical to those provided by our finer autocorrelation statistic. In this
sense, and in light of the complexity of both methods (see Tab. 2), this function, combined
with a prior computation of the autocorrelation coefficients using our enhanced autocorrela-
tion statistic, seems to be the perfect tool for a precise and relatively inexpensive characteri-
zation of the correlation phenomena between bits in a data sequence.
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(A) Enhanced autocorrelation statistic, D = 55

(B) PACF, D = 55 (C) Finer autocorrelation statistic, D = 55

FIGURE 40. Different autocorrelation statistics, ERO-TRNG, D = 55



CHAPTER 10

Conclusion

In this manuscript, we have given an overview of random number generation methods, be
they deterministic, non-deterministic or based on physical phenomena, as well as methods
to evaluate the quality of the randomness produced by these generators. We then focused on
one of the aspects of this analysis of the quality of the randomness, which is the application
of black box tests.

In particular, we focused on one of the standard tests called the autocorrelation test of the
AIS 20/31 standard, developed by the German agency BSI but used in the whole world for the
analysis of random number generators. The aim of this test is to detect the presence of poten-
tial correlations in the generated data, which should not be present in ideally random data, as
they could make future (or past) data predictable.

To analyze this test in greater depth, we have proposed a definition of what the ANSSI guide
names (but does voluntarily not define) a "defect in the randomness", which we have chosen
to name a statistical anomaly. We have then modeled two anomalies, namely correlations
between successive bits, and the overall disproportion of bits 0 and 1 in a data sequence.

Using these two models, we then demonstrated that the autocorrelation test of the AIS 20/31
had the drawback of being impacted by anomalies for which it was supposedly not developed,
namely the global disproportion of bits 0 and 1, which is the focus of a test of its own. From
this observation, we have chosen to develop a new statistic, which would only be impacted by
an autocorrelation between the bits of a sequence. Our newly established correlation model
then enabled us to design a very simple statistic to measure the autocorrelation in a binary
sequence, that we named enhanced autocorrelation statistic. Moreover, our statistic has the
advantage of providing a detailed characterization of the correlation phenomena, and not
only their detection as the AIS 20/31 test does. In this sense, the statistic we propose enables
the definition of a relevant parametric test rather than a mere hypothesis test.

Once our test had been properly proven and developed, we explored another use for it, namely
the detection of the success of an attack on a random number generator. An attack has for
objective to modify the distribution of the output numbers, thus our test appeared to be the
perfect tool to observe the impact of the attack on the produced sequences as an image of its
success. Our results on a frequency injection attack show that, when the attack is a success,
the impact on the correlations is very visible, making it possible to distinguish the frequency
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ranges for which the generator is vulnerable. Using our test also allows for the automation of
the detection of the success of an attack, whereas the current methodology requires manually
checking the data to verify whether the attack succeeded or not.

Finally, despite the effectiveness of our model and our autocorrelation statistic, one last prob-
lem remained, which is that this statistic leads, for each correlation phenomenon, to the ap-
pearance of other "artificial" peaks of correlation. From the point of view of a designer of
random number generators in particular, it is interesting to be able to isolate the real corre-
lation phenomena, i.e. the phenomena that have a practical origin, in order to identify what
needs to be corrected more easily. To that extent, we explored the use of two, more complex,
models to characterize the correlations in a binary sequence. The first one is an extension
of our previous model, while the second, called partial autocorrelation, is an existing model,
but is based on a preliminary calculation of coefficients using our aforementioned enhanced
autocorrelation statistic. We then saw that the two complex models provide similar and con-
vincing results on the isolation of real correlation phenomena, but that partial autocorrelation
is much less expensive in both memory and computation time. Then, the methodology we
recommend to evaluate the presence of correlation in a dataset is to use the partial autocor-
relation function, with a prior computation of the correlation coefficients with our enhanced
autocorrelation statistic.

We have thus set up a methodology to precisely characterize correlations within a binary se-
quence, based on proven models, which can be used in the context of designing, testing or
attacking a random number generator as demonstrated here.

As a follow-up to this work, this methodology, and more precisely our philosophy of a prior
modeling of the statistical anomalies can serve as a groundwork to create new test procedures,
or enhance existing ones. These new procedures can then be used in a context of evaluation,
or to perform an attack as we showcased. In the case of an attack on a generator, new met-
rics based on correlation factors can be tested in conjunction with, or as a replacement of the
metric we proposed to visualize the appearance of correlations in the data. New statistical
anomalies could also be explored and modeled to create yet more tests, which would ideally
be optimal for the evaluation of a given anomaly, according to our definition of the optimality
of a test.
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