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The right understanding of any matter
and a misunderstanding of the same
matter do not wholly exclude each other.

Franz Kafka

La exacta comprensión de una cosa y su
mala interpretación no se excluyen
totalmente.

Franz Kafka
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Résumé xvii

Contributions and Applications to Survival Analysis
Résumé

L’analyse de survie a suscité l’intérêt de diverses disciplines, allant de la médecine et de la maintenance
prédictive à diverses applications industrielles. Sa popularité croissante peut être attribuée aux avancées
significatives en matière de puissance de calcul et à la disponibilité accrue des données. Des approches
variées ont été développées pour répondre au défi des données censurées, allant des outils statistiques
classiques aux techniques contemporaines d’apprentissage automatique. Cependant, il reste encore une
marge considérable pour l’amélioration. Cette thèse vise à introduire des approches innovantes qui four-
nissent des insights plus profonds sur les distributions de survie et à proposer de nouvelles méthodes
avec des garanties théoriques qui améliorent la précision des prédictions.
Il est notamment remarquable de constater l’absence de modèles capables de traiter les données sé-
quentielles, une configuration pertinente en raison de sa capacité à s’adapter rapidement à de nouvelles
informations et de son efficacité à gérer de grands flux de données sans nécessiter d’importantes ressources
mémoire. La première contribution de cette thèse est de proposer un cadre théorique pour la modéli-
sation des données de survie en ligne. Nous modélisons la fonction de risque comme une exponentielle
paramétrique qui dépend des covariables, et nous utilisons des algorithmes d’optimisation convexe en
ligne pour optimiser la vraisemblance de notre modèle, une approche qui est novatrice dans ce domaine.
Nous proposons un nouvel algorithme adaptatif de second ordre, SurvONS, qui assure une robustesse
dans la sélection des hyperparamètres tout en maintenant des bornes de regret rapides. De plus, nous
introduisons une approche stochastique qui améliore les propriétés de convexité pour atteindre des taux
de convergence plus rapides.
La deuxième contribution de cette thèse est de fournir une comparaison détaillée de divers modèles
de survie, incluant les modèles semi-paramétriques, paramétriques et ceux basés sur l’apprentissage
automatique. Nous étudions les caractéristiques des ensembles de données qui influencent la performance
des méthodes, et nous proposons une procédure d’agrégation qui améliore la précision et la robustesse
des prédictions. Enfin, nous appliquons les différentes approches discutées tout au long de la thèse à une
étude de cas industrielle : la prédiction de l’attrition des employés, un problème fondamental dans le
monde des affaires moderne. De plus, nous étudions l’impact des caractéristiques des employés sur les
prédictions d’attrition en utilisant l’importance des caractéristiques par permutation et les valeurs de
Shapley.

Mots clés : analyse de survie, optimisation convexe en ligne, optimisation stochastique, apprentis-
sage automatique, apprentissage en ligne

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France



xviii Résumé

Abstract

Survival analysis has attracted interest from a wide range of disciplines, spanning from medicine and
predictive maintenance to various industrial applications. Its growing popularity can be attributed to
significant advancements in computational power and the increased availability of data. Diverse ap-
proaches have been developed to address the challenge of censored data, from classical statistical tools
to contemporary machine learning techniques. However, there is still considerable room for improve-
ment. This thesis aims to introduce innovative approaches that provide deeper insights into survival
distributions and to propose new methods with theoretical guarantees that enhance prediction accuracy.
Notably, we notice the lack of models able to treat sequential data, a setting that is relevant due
to its ability to adapt quickly to new information and its efficiency in handling large data streams
without requiring significant memory resources. The first contribution of this thesis is to propose a
theoretical framework for modeling online survival data. We model the hazard function as a parametric
exponential that depends on the covariates, and we use online convex optimization algorithms to minimize
the negative log-likelihood of our model, an approach that is novel in this field. We propose a new
adaptive second-order algorithm, SurvONS, which ensures robustness in hyperparameter selection while
maintaining fast regret bounds. Additionally, we introduce a stochastic approach that enhances the
convexity properties to achieve faster convergence rates.
The second contribution of this thesis is to provide a detailed comparison of diverse survival models,
including semi-parametric, parametric, and machine learning models. We study the dataset character-
istics that influence the methods performance, and we propose an aggregation procedure that enhances
prediction accuracy and robustness. Finally, we apply the different approaches discussed throughout the
thesis to an industrial case study: predicting employee attrition, a fundamental issue in modern business.
Additionally, we study the impact of employee characteristics on attrition predictions using permutation
feature importance and Shapley values.

Keywords: survival analysis, online convex optimization, stochastic optimization, machine learning,
online learning
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Chapitre 1
Introduction

1.1 Outline of the Thesis

The main goal of this thesis is to study different aspects of survival analysis, a statistical
field that focuses on analyzing the time until an event of interest occurs. We aim to
explore the use of online convex optimization algorithms, their robustness, and convergence
guarantees in the context of censored data. Additionally, we want to study a stochastic
approach that enhances the scope of regret analysis. Furthermore, we intend to focus
on industrial applications of survival analysis tools, investigating both parametric and
machine learning methods, as well as engaging in a discussion on scoring rules.

This thesis was prepared under a CIFRE contract with Nokia Bell Labs and in collaboration
with Inria. Chapter 1 is dedicated to the introduction of the different subjects addressed in the
thesis. Initially, we briefly explain what survival analysis is, including its historical approaches,
and provide an overview of existing methods, comprising both statistical and machine learning
approaches, complemented by an example using a classical dataset. Subsequently, we introduce
scoring rules, an important domain within survival analysis. Additionally, we discuss the online
setting and illustrate the challenges of selecting learning rates. Later, we present the problem of
attrition prediction. Finally, we detail the explicit contributions of the thesis.

Chapter 2 presents the main mathematical contribution of the thesis. We introduce a detai-
led online setting for survival analysis and propose the use of online convex optimization (OCO)
techniques to estimate a parametric survival function. In the context of OCO algorithms, we
focus on the regret analysis and we identify issues with the Online Newton Step (ONS) regret
bound when selecting the last known optimal learning rate. In Section 2.4, we present a stochas-
tic setting that enables us to prove Theorem 2, which establishes logarithmic stochastic regret
bounds. Additionally, we prove Corollary 1, which guarantees the convergence of the algorithm
predictions to the optimal parameter. In the deterministic setting, we propose an aggregation
algorithm, SurvONS 1, that wisely adapts the learning rate to enhance robustness while preser-
ving fast convergence rates. This result is summarized in Theorem 3, which explicitly provides
the algorithm regret bound. More details are provided in Section 1.5.

1



2 CHAPITRE 1. Introduction

— Fernandez, C., Gaillard, P., de Vilmarest, J. and Wintenberger, O. (2024). Online learning
approach for suvival analysis. arXiv preprint arXiv :2402.05145.

In Chapter 3, we conduct a detailed comparison of parametric and machine learning me-
thods using two different scoring rules, and across three datasets. Additionally, we study the
impact of optimizing the methods hyperparameters. Our goal is to understand which factors
most significantly influence the performance of these methods, noting that they rank differently
across datasets and when changing the evaluation score. To this end, we propose an experiment
with simulated data to deepen the insights from the previous comparison. Finally, we suggest
aggregating the methods by optimizing the parameters of a convex combination such that it mi-
nimizes the integrated Brier score (see Algorithm 2). This aims to enhance robustness in model
performance and ensure consistent overall accuracy.

— Fernandez, C., Chen, C.S., Gaillard, P. and Silva, A. (2024). Experimental Comparison of
Ensemble Methods and Time-to-Event Analysis Models Through Integrated Brier Score
and Concordance Index. arXiv preprint arXiv :2403.07460.

In Chapter 4, we present an industrial application of survival analysis, focusing on the pre-
diction of employee attrition. We implement and compare multiple survival analysis methods,
including those proposed in the previous chapters. Additionally, we analyze the effect of cova-
riates on the performance of the methods using two different strategies : permutation feature
importance and Shapley values.

1.2 Background on Survival Analysis

1.2.1 Framework

We consider a group of subjects, also called individuals, and an event that occurs after a
certain period. This event could be the failure of a machine, the recurrence of a disease, customer
churn, the lifetime of a specific population, or employee attrition, among other examples. We
assume that the event occurs at most once for any given subject. Additionally, we consider an
arrival time, which could represent their admission to a hospital, the purchase date of a machine,
or an employee’s start time at a company, etc. The goal of survival analysis, and consequently
of this thesis, is to predict the length of time until the event occurs.

Let us consider a homogeneous population of individuals, an event time, which is a single
non-negative random variable T , and an arrival time, another non-negative random variable τ
such that T > τ . Each individual is associated with a given vector of characteristics x ∈ Rd of
dimension d > 0, also known as explanatory variables, which can represent different attributes
thought to influence survival. We consider each component of this vector to be a real, continuous
number. Our aim is to understand the underlying distribution of T given the joint effect of x.

This setting is widely considered as a univariate rather than a multivariate technique due to
the presence of a single response variable, the event time, despite the existence of multiple expla-
natory variables. Problems involving multivariate responses are discussed in Cox and Oakes [25].
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The distribution of event times

In order to understand and describe the distribution of T we need to consider various func-
tions. For each individual, we define the hazard function, representing the current risk of expe-
riencing the event at time t given the individual has survived until then :

h(t|x) = lim
∆→0+

P(t ⩽ T ⩽ t+∆|T ⩾ t, x)

∆
, t ⩾ 0, x ∈ Rd.

The hazard function measures at each time t, the tendency to experience the event time in the
near future, thereby capturing the underlying dynamics of survival. We use the hazard function to
study the distribution of survival times, specifically, we estimate the hazard function by assuming
either a specific parametric or non-parametric model. Let us remark that the distribution of T
also depends on τ , during this section we consider τ = 0 and therefore we omit it in the notation
of the probability law. We concentrate on modeling the hazard function, but other approaches
are also possible, such as Fleming and Harrington [40], who model the problem as a counting
stochastic process.

The hazard function is strongly related to the survival function, which represents the proba-
bility that an individual survives beyond a certain time t. More formally we define :

S(t|x) = P(T ⩾ t|x) , t ⩾ 0, x ∈ Rd,

the probability to not experience the event until time t. This function is the complement of the
distribution function F (t|x) = P(T ⩽ t|x). In some cases, we will use the survival function to
model the event time distributions. The mathematical relationship between the survival function
S(t|x) and the hazard function h(t|x) is given as follows :

h(t|x) = −∂ log(S(t|x))
∂t

, t ⩾ 0, x ∈ Rd.

This formulation allows us to deduce the hazard function when we have the survival function,
and vice versa. Another important function in probability is the density :

f(t|x) = lim
∆→0+

P(t < T < t+∆|x)
∆

t ⩾ 0, x ∈ Rd ,

which is directly related to the hazard function and the survival probability as f(t|x) = S(t|x)h(t|x).
And finally, we define the cumulative risk :

Λ(t|x) =
∫ t

0

h(s|x)ds t ⩾ 0, x ∈ Rd .

In this thesis, we assume that the survival time is continuous, suggesting that we model the
event as it can occur at any time point. However, time measurements in real-world scenarios are
discrete, often recorded in days, months, or years, requiring a time discretization for practical
applications. More details on continuous survival time can be found in Klein and Moeschberger
[81], and on discrete time in Tutz [129].
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Censorship

The main challenge of survival analysis is considering censored data. In many cases, the study
might end before all individuals experience the event, or some might withdraw before the study
concludes, leading to incomplete information. This scenario is referred to as right censoring and
right censored individuals can represent a significant percentage of the entire dataset ; discarding
them may lead to an underestimation of event times and introduce bias. In addition, there are
two other types of censorship : Left censoring, which occurs when the arrival time is not observed
for a proportion of individuals, and interval censoring, where the exact time of the event is not
known, but it is known to occur within a certain interval. Throughout this thesis, we focus
exclusively on the phenomenon of right censoring, which we will simply refer to as ‘censoring’.

We consider the censored time as a non-negative random variable C, which is independent
of T . We define U = min{T,C} the observed time, and δ = 1{T ⩽ C} the event indicator.
Survival analysis addresses the challenge of modeling the underlying dynamics of survival times
while considering censorship, i.e., the challenge of estimating the distribution of T when we only
know the realizations of U , making the problem particularly hard to solve.

1.2.2 Existing methods

Non-parametric statistical methods

One of the oldest tools for analyzing survival in homogeneous populations is the life table,
usually attributed to John Graunt [48]. This model uses a discrete-time framework, and therefore,
we consider a discretization of time into n > 0 intervals [0, a1), ..., [an−1, an). We define rt as the
number of individuals at risk at the interval [at−1, at), where ‘at risk’ means that the individuals
have already arrived at the study and have not yet experienced the event or been censored.
Additionally, we define dt as the number of individuals experiencing the event at the interval
[at−1, at), and ct as the number of individuals being censored during the interval. Let us note
that in this case, t is used both as the index of the intervals and to denote the time variable in the
hazard function. Life tables are characterized by their approach of not considering explanatory
variables in the hazard function, which means the discrete function is expressed as :

h(t) = P(T ∈ [at−1, at)|T ⩾ at−1) , t ⩾ 0.

The standard life table estimator of the hazard function is :

ĥ(t) =
dt

rt − ct/2
, t ⩾ 0,

where censoring is assumed to occur at the middle of the interval, a compromise between conside-
ring censoring at the end of the interval (ĥ(t) = dt/rt) and at the beginning (ĥ(t) = dt/(rt−ct)).
An example of this approach can be seen in Fahrmeir et al. [35] who studied the duration of
German unemployment. In addition, Lawless [85] and Greedwood [53] studied the distributional
aspects of life tables and Hastie and Loader [61] and Loader [90] proposed different smoothing
techniques.

Later, in 1958, Kaplan and Meier [76] proposed a non-parametric estimator of the survival
probability based on the usual binomial estimate that computes at each time the proportion
of survivors. This estimator assumes that time is observed on a continuous scale and it is used
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in applications to compare estimates based on grouped data. Let us consider a population of
individuals with their N ordered event times t0 < t1 < . . . < tN , which are realizations of T .
For each event time ti, there are associated ri, the number of people at risk during [ti−1, ti), and
di, the number of events at time ti. Additionally, it is important to note that not all individuals
experience the event ; however, the estimator exclusively considers the times at which an event
occurred. The Kaplan-Meier estimator is defined as follows :

Ŝ(t) =
∏

i:ti<t

(1− di/ri) , t ⩾ 0. (1.1)

We notice that this estimator uses the proportion of observed events to the number of people at
risk di/ri, similar to the life table estimator when censoring is assumed to occur at the end of
the interval. This estimator has been widely studied (see [105], [49] and [22]) and it remains a
useful tool in this field.

Covariates effect

One of the first attempt to consider different characteristics of the individuals in the modeling
of the survival function is the two-sample problem, which consists in considering two groups with
different attributes, for example, patients with some disease following two different treatments.
Example of this can be found in Mantel and Haenszel [96] and in Gehan [46], and later in its
posterior extensions from Mantel [95] and Efron [33]. The limitation of these models is that they
are restricted to the case in which there are not many possible combination of covariates. We
illustrate this issue with a real dataset in Section 1.2.3.

One way to specify the link between explanatory variables and the survival model is to
choose a parametrization of the hazard function. Generalized linear models framework offers a
wide variety of models for binary data (see McCullagh and Nelder [97], Tutz [128] and Agresti
[3]). The best known is the logit model that proposes to write the discrete hazard function as a
logistic regression :

h(t|x) = exp(θ⊤x)

1 + exp(θ⊤x)
, θ ∈ Θ, t ⩾ 0, x ∈ Rd,

where Θ ⊆ Rd is the parametric family. This model is also known as the proportional continuation
ratio model (Agresti [3]). Alternative models can be considered when describing the discrete
hazard function, such as Gompertz [51], Gumbel, Probit or exponential distributions (see Tutz
[129] for more details).

The most widely used continuous-time model was proposed by Cox [24] in 1972 and consist
on writing the hazard as a multiplication of a non-parametric baseline function that depends on
the time and an exponential function that contains the covariates effects :

h(t|x) = h0(t) exp(θ
⊤x), θ ∈ Θ, t ⩾ 0, x ∈ Rd, (1.2)

where h0 is the non-parametric baseline function. This model assumes that the ratio of the hazard
rates is proportional, a condition that may not hold in some real datasets and can be seen as
restrictive. However, its semi-parametric nature simplifies the analysis by eliminating the need to
specify the form of the baseline hazard function. This characteristic is particularly beneficial for
analyzing survival data without making prior assumptions about the distribution of event times.
The Cox model estimates the parameter θ using the partial likelihood method, which maximizes
the likelihood of the observed survival times. In addition, we remark the similarity of this model



6 CHAPITRE 1. Introduction

Tableau 1.1 – Overview of statistical methods used in survival analysis, highlighting differences
in their handling of covariates, time data types, and the specific estimators or models employed.

Method Covariates Time Estimator/model
Standard life table no discrete ĥ(t) = dt

rt−ct/2

Kaplan-Meier no continuous Ŝ(t) =
∏

i:ti<t(1− di/ri)

Logit model yes discrete h(t|x) = exp(θ⊤x)
1+exp(θ⊤x)

Cox proportional hazards yes continuous h(t|x) = h0(t) exp(θ
⊤x)

to generalized linear models (GLM). Cox proportional hazards can be seen as a semi-parametric
GLM where the exponential has the role of the link function (more details in McCullagh and
Nelder [97]).

Several extensions of the Cox model have been developed to address more complex survival
data structures. For instance, competing risks models [93] extend the Cox model to account
for scenarios where individuals can experience one of several different types of events. This
extension allows for the estimation of cause-specific hazard functions, providing a more detailed
analysis in settings where events compete to occur. Another important extension is the multistate
model [109], which generalizes the Cox model to handle transitions between multiple states over
time. This model is particularly useful in clinical settings where patients can move through various
health states, such as remission, relapse, or recovery. Both extensions retain the semi-parametric
nature of the original Cox model while allowing for more flexible and realistic modeling of complex
event structures. For more details on the Cox model and its possible extensions see Therneau
and Grambsch [126].

Many other parametric and semi-parametric approaches exist, including the Weibull Accele-
rated Failure Time (AFT) model [136], the Aalen additive model [2], the log-normal model [113],
among others. These methods will be discussed in detail in Chapter 3 and a resume table can be
found in Tableau 1.1

Machine learning approaches

Nowadays, the importance of machine learning methods is increasing due to the significant
advances in computing power and data availability. Survival analysis, traditionally reliant on
statistical models, is also embracing these advancements. By incorporating machine learning,
survival analysis can now tackle complex covariate interactions, manage high-dimensional data,
and model non-linearity more effectively.

Machine learning models, initially designed for tabular data, have been adapted to handle
censored data and to accommodate to multiple complex scenarios. The pioneering approach
by Faraggi and Simon [36] introduced the use of neural networks to model survival data. This
method served as a non-linear extension of the Cox proportional hazards model. Another popular
technique in machine learning is boosting, designed to improve the accuracy of predictions by
combining multiple weaker learners to create a strong predictive model. Examples of boosting
techniques in survival analysis include the works of Binder et al. [11] and Ridgeway [112], which
utilize Cox-type losses. Additionally, other authors, such as Baoshan et al. [94], have proposed
adaptations of XGBoost [21] to survival data.

In 2008, Ishwaran et al. introduced Random Survival Forest [72], adapting the Random Forest
method [15] for censored data. This adaptation involves using specific splitting criteria, like the
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log-rank test, to better separate survival times across different groups. Recently, deep learning
techniques like Deep Survival Analysis [111] and DeepSurv [77] have gained attention in the sur-
vival analysis community. These approaches use deep neural networks to optimize a non-linear
loss derived from the partial likelihood of the Cox proportional hazard model, incorporating
an additional regularization term. Thus, with the objective to provide personalized treatment
recommendations based on medical data. Another method is DNNSurv [142], which simplifies
survival analysis by transforming survival times into pseudo probabilities used as response va-
riables in a neural network, effectively reducing the complexity to a standard regression problem.
Additionally, DeepHit [87] emerges as a powerful tool capable of managing competing risks, a
setting in which we consider several types of events that can influence the occurrence of the other
events, without relying on the assumptions of the Cox model or any specific assumptions about
the underlying stochastic process. A review of deep learning for survival analysis was proposed
by Wiegrebe et al. [137].

Some machine learning approaches and its advantages will be discussed with details in Chap-
ter 3. For more details on machine learning techniques in the context of survival analysis see
Wang et al. [135] or Sonabend [122]. In the following section, we show an illustrative example
using a well-known dataset.

1.2.3 Illustrating covariate effects with clinical data

In Chapter 3, we use the primary biliary cirrhosis (PBC) dataset to assess the performance
of various models and to compare the effectiveness of our ensemble method. In this section, we
provide some details about the PBC dataset, which is one of the most classical examples of
survival data, made available by Therneau and Grambsch [125]. It presents the collected data of
a study on the efficacy of using D-penicillamine as a treatment for primary biliary cirrhosis. The
dataset consists of N = 276 patients with PBC, and the objective is to predict their lifetime.
By the end of the data collection period, 59, 8% of the patients were still alive, leading to a
significant percentage of censoring.

Figure 1.1 – Clinical characteristics of patients with primary biliary cirrhosis (PBC dataset).

Each individual is associated with a vector of 17 characteristics, as shown in rows in Figure
1.1. The types of characteristics vary, ranging from age and sex to multiple biological indicators.
These characteristics can be either categorical or numerical.
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Figure 1.2 – Observed time and status of patients with primary biliary cirrhosis (PBC dataset).

In Figure 1.2, we observe the target information, where ‘status’ indicates ‘true’ if the indivi-
dual has died and ‘false’ if not. Meanwhile, ‘time’ represents the duration recorded at the end
of the period, which could correspond to the time of death or the time the individual left the
hospital.
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Figure 1.3 – Survival probability estimation for the PBC dataset using the Kaplan-Meier me-
thod. The curve represents the estimated survival probabilities, with the shaded blue area around
the curve indicating the confidence interval, which highlights the precision of the estimates over
time.

Figure 1.3 illustrates the survival probability estimated by the Kaplan-Meier method (1.1).
The confidence interval shows that the survival probability prediction is more reliable at the
beginning of the observed time period. An important advantage of the Kaplan-Meier estimator
is that it does not assume any specific distribution for the event times, making it versatile and
applicable to a broad range of datasets. This estimator relies on the proportion of events at each
time point of interest, rather than on individual characteristics.
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Figure 1.4 – Kaplan-Meier estimation of the PBC dataset comparing two age groups [left] and
Kaplan-Meier estimation comparing two treatment groups [right].

To evaluate the effects of different features on the survival function, we categorize individuals
into distinct groups based on these features and estimate the survival function separately for each
group. This approach enables a targeted analysis of how specific characteristics influence survival
outcomes, similar to the methodology employed in life tables techniques. In Figure 1.4 [left], we
observe the difference in the survival function estimations between two age groups : the blue curve
represents individuals over 49 years old, while the orange curve represents those under 49 years
old. We note that older individuals consistently have a lower probability of survival compared
to younger patients. In Figure 1.4 [right], we present the difference in the survival functions for
two treatment groups. We observe that there is no consistent dominance, however, treatment 2
shows a slightly higher probability of survival compared to treatment 1 over a certain period of
time. The main disadvantages of the Kaplan-Meier estimator are that it assumes the survival
probability is homogeneous within the groups, in addition to the lack of covariate adjustment.
This suggests the need for complementary methods or more complex models in certain research
contexts.
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Figure 1.5 – Cox PH estimation of the PBC dataset comparing several individuals [left] and
Cox PH estimation comparing two age groups [right].

Figure 1.5 [left] shows the survival function predictions of the Cox proportional hazards mo-
del for 5 individuals. Notably, the survival function varies among individuals due to covariate
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dependency. This variation introduces greater analytical depth and enables personalized pre-
dictions. In addition, we remark that the Cox proportional hazards model uses the likelihood
principle for the parametric estimation and, in a second step, a non-parametric approach for the
baseline function. We show the baseline function in brown, which remains the same across all
individuals. On the right, Figure 1.5 contrasts predictions for individuals older than 49 (in blue)
with those younger than 49 (in orange). We observe that older individuals typically show a lower
survival probability, aligning with the Kaplan-Meier estimates (Figure 1.4). However, some older
individuals exhibit a higher survival probability than some younger patients, which highlights
the influence of other covariates on survival predictions. This illustrates how the interaction of
multiple characteristics significantly affects model outcomes. We show the baseline function in
brown, which remains constant across all individuals. This illustrates the multiplicative effect of
the exponential term on the survival function.

Throughout the thesis, we use three open datasets : Primary Biliary Cirrhosis (PBC), Ger-
man Breast Cancer Study Group 2 (GBCSG2) [117], and Kaggle Telecom Churn (TLCM) [71].
Particularly, in Chapter 3, we employ these datasets to compare the performance of various me-
thods, including the Cox proportional hazards model. Each dataset will be described in detail in
the corresponding chapters.

1.2.4 Scoring rules

One important question, not only in survival analysis but also in general modeling, concerns
how well the model predicts the target. In the case of regression problems, the most commonly
used score is the mean squared error (MSE), which has its roots in the work of Gauss and
Legendre [124]. A straightforward approach would be to predict the event times t̂1, . . . , t̂N of the
N individuals and compare this prediction with the real times t1, . . . , tN using the estimator of
the MSE :

1

N

N∑
i=1

(ti − t̂i)
2 .

Assessing accuracy by using time point predictions in many cases is not satisfactory [103]. A
more common approach is to consider the estimator of the survival function Ŝ(t|x), which is seen
as predictions of the event status 1{T > t}. The MSE in this case is :

E
[(
1{T > t} − Ŝ(t|x)

)2]
, t ⩾ 0, x ∈ Rd .

However, in the presence of censorship, we do not observe the realization of the event time ti
for every individual. Therefore, it is not straightforward to estimate the MSE directly. The MSE
must be estimated by carefully choosing a method for censoring adjustment. Further discussions
on the estimation of the MSE using survival data can be found in Graf et al. [52] and Gerds and
Schumacher [47].

As the MSE can be hard to estimate, the survival analysis community developed alternative
performance measures. Recent work includes that of Cwiling et al. [27], who proposed using
the restricted mean survival time (RMST) to evaluate the goodness-of-fit of survival models.
They estimate the mean squared error of an RMST estimator using inverse probability censoring
weighting. Another example is the work by Qi et al. [110], who proposed a method for estimating
the mean absolute error (MAE) based on the predictions of event times and found a way to
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evaluate the accuracy of these metrics using semi-synthetic data. Another possible approach
involves the use of statistics such as the Pearson statistic or the deviance statistic. For more
details, refer to Tutz [129].

We briefly present the performance measures that are considered throughout this thesis :
the concordance index [60], the integrated Brier score [47], the likelihood [39], and the receiver
operating characteristic (ROC) curve. Selecting an appropriate scoring rule is a non-trivial task,
requiring careful consideration of the strengths and limitations of each measure. Specifically, in
Chapter 2 we use the likelihood as a loss function to measure the regret of the algorithms. Then,
in Chapter 3, our focus will be on comparing the performance of multiple models and examining
how model rankings vary between the concordance index and integrated Brier score. Finally,
in Chapter 4, we apply this comparison, including the ROC curve, to a real industrial case. A
review of statistical methods for evaluating the performance of survival predictions can be found
in [102].

Concordance index : This score was proposed by Harrel et al. [60] and it quantifies how well
the model predicts the ordering of the event times, in other words, it measures the concordance
in between the predicted risk and the actual outcomes. This score is better for higher values. It is
a non-parametric measure, implying that it does not assume a specific distribution of the survival
times, enhancing its flexibility in various applications. However, it is insensitive to calibration, a
model could have a high concordance index but still produce poorly calibrated risk probabilities.

Integrated Brier score : The Brier score was first proposed by Brier [16] with the aim to
evaluate the accuracy of weather forecast. Later, Gerds and Schumacher [47] proposed methods
to consistently estimate the expected Brier score in survival models, contributing significantly
into formalizing this score in the survival community. The Brier Score, measures the mean squared
difference between observed outcomes and predicted probabilities at a specific time point. The
Brier score is defined as :

BS(t) =
1

N

N∑
i=1

wi

(
1{ui ⩾ t} − Ŝ(t|x)

)2
, t ⩾ 0 ,

where ui = min{ci, ti}, a realization of min{C, T}, is the observed time of individual i, and wi

denotes the weight of individual i, which is associated with censorship. For more details see on
this formula see Section C1.2. Under certain hypothesis this score is a consistent estimator of the
MSE [47]. The Integrated Brier Score is obtained by averaging the Brier Scores over a range of
time points, usually from the start of the study to the end or until a time of particular interest
b > 0 :

IBS =
1

b

∫ b

0

BS(t)dt .

This provides a summary measure of the model performance across the follow-up period. A model
has better accuracy if the integrated Brier score is lower.

Likelihood : The likelihood is a fundamental concept in statistics and statistical modeling, re-
presenting the probability of observing the data given a set of parameters for a specified model.
Specifically, if you have a statistical model that describes how your data is generated, the likeli-
hood of the model parameters given the observed data is a function that quantifies how likely it
is to observe the given data for different parameter values. We suppose that the survival function
is a function of a specified parametric family Θ ⊆ Rd, thus, we write it as S(t|xi, θ). Given f the
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density of the event time distribution T , the likelihood is :

ℓ(θ) =

N∏
i=1

f(ui|xi, θ)
δiS(ui|xi, θ)

1−δi , xi ∈ Rd ,

where δi = 1{ti ⩽ ci} is the event indicator of individual i. While likelihood itself is a measure
of fit rather than predictive accuracy, derived measures such as the log-likelihood can be used in
cross-validation settings to assess out-of-sample predictive accuracy. Models that achieve higher
log-likelihood values on validation data are considered to have better predictive accuracy.

ROC curve : The ROC curve measures the performance of a binary classifier model at varying
threshold values. It is particularly suitable in scenarios where the classification threshold is not
clear. In order to measure accuracy with the ROC curve in survival analysis, we consider the
prediction task to be the status indicator δ. We set different probability thresholds to decide the
status prediction, and for each threshold, we compute the number of false positives (FP ), true
positives (TP ), false negatives (FN), and true negatives (TN). Then, we define the false positive
rate and the true positive rate :

FPR =
FP

FP + TN
, TPR =

TP

TP + FN
.

The ROC curve shows the variation of the true positive rate against the false positive rate as
the classification threshold is varied. The faster the TPR grows with respect to the FPR, the
better. This curve can be quantitatively summarized by the Area Under the Curve (AUC). A
higher AUC value indicates better predictive accuracy. This is a very well-known score within the
industrial environment, and it has been adapted in multiple ways to handle the time-dependent
survival outcomes [67, 75].

Illustrating censorship bias

We follow the data simulation procedure outlined in Section 1.3.1, with an arrival time of
τ = 0, and we fit a Cox proportional hazards model to compare each score with its non-censored
counterpart. We simulate data 50 times, with approximately 50% censorship, and split the data,
allocating 75% for training and 25% for validation. We then compare the score values in two
scenarios within the validation set : one considering the presence of censorship and the other
with the complete information that is known from the data simulation.
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Figure 1.6 – Concordance index comparison across multiple dataset splits [left] and integrated
Brier score comparison across multiple dataset splits [right]. We use simulated data to asses the
impact of considering censorship in the validation set.

In Figure 1.6 [left], we observe the bias of the concordance index when considering censorship.
In the presence of censorship, the score is artificially higher, consistently overestimating the
accuracy of the model across the 50 data simulations. In Figure 1.6 [right], the difference is less
pronounced, but we observe that the censored case exhibits greater variance.

Figure 1.7 – Partial negative log-likelihood comparison across multiple dataset splits. We use
simulated data to asses the impact of considering censorship in the validation set.

In Figure 1.7, we observe the partial negative log-likelihood. In this context, since we are
considering the negative log-likelihood, lower values indicate higher accuracy. The likelihood
approach is limited by its requirement for a parametric model. Because the Cox proportional
hazards model is semi-parametric, we can only compute the partial log-likelihood, which corres-
ponds to the parametric component of the Cox model. Similarly to what we observe with the
concordance index, the censored case exhibits greater accuracy. However, when computing the
likelihood with complete information, the accuracy is lower. This highlights the potential bias
introduced by censorship and the importance of selecting an appropriate accuracy measure to
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assess the performance of the methods. Let us note that we do not include the ROC curve in this
analysis because, in the non-censored case due to our approach, all status values are 1, leading
to no false positives or true negatives, which makes computing the FPR impossible.

1.3 Online Convex Optimization for Survival Analysis

One important contribution of this thesis is the application of online convex optimization
techniques to estimate survival distributions, a field that has previously been unexplored. To
achieve this, we assume an exponential shape for the hazard function and that there exists θ ∈ Θ
such that :

h(t|x, τ, θ) = exp(θ⊤x)1{t ⩾ τ}, θ ∈ Θ, t ⩾ 0, x ∈ Rd, (1.3)

where τ , the arrival time, is no longer assumed to be zero. The parameter family Θ ⊆ Rd

is defined as convex and bounded, and our objective is to estimate the parameter θ. For this
purpose, we consider a sequential setting in which we have an horizon time n ⩾ 1 and a time
partition (t−1, t] for t = 1, . . . , n, that is independent of the observations. We consider a set of N
individuals, each associated with an observed time ui ∼ min{T,C}, where T and C are assumed
to be conditionally independent given τi and the covariate vector xi. Our focus is on methods
based on the maximum likelihood principle. We remark that our model (1.3) corresponds to the
parametric term of the Cox proportional hazards model (1.2).

An online convex optimization problem involves, considering at each iteration t, a loss function
ℓt : Θ → R to be minimized. The online convex optimization algorithm will choose for each t, a
parameter θt, suffer a loss of ℓt(θt) and observe the gradient ∇ℓt(θt). A general step for updating
the parameter θt ∈ Θ in an online convex optimization algorithm can be described as :

θt+1 = θt −
1

γ
Pt∇ℓt(θt), t ⩾ 1 ,

where γ is the learning rate and Pt is a preconditioning matrix, which it is used to scale the
gradient and can help in accelerating the convergence. In some cases, Pt might be the identity
matrix, simplifying the update rule. In addition, we can consider second order algorithms by
specifying Pt depending on the second derivative ∇2ℓt(θt) or an approximation of it. For a given
time horizon n, the objective of the algorithm is to minimize the regret function :

Regretn =

n∑
t=1

ℓt(θt)−min
θ∈Θ

n∑
t=1

ℓt(θ), n ⩾ 1 ,

where ℓt is a convex function. The interest of online convex optimization is to develop algorithms
that efficiently minimize cumulative loss over time, achieving near-optimal performance with as
few iterations as possible. This setting is applicable in scenarios where decisions need to be made
sequentially and adaptively, such as in stock market trading, online advertising, machine learning
model updates based on streaming data, and attrition prediction.

There are several methods developed for optimizing convex functions in an online setting,
such as Online Gradient Descent (OGD) [145], Online Newton Step (ONS) [65], Adam [79], and
AdaGrad [32], among others (see Hazan [64]). The regret bound of these algorithms is strongly
related to the curvature of the loss function. In particular, we consider the following property :
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Definition 2. (Exp-concavity) A convex function ℓ : Θ → R is µ-exp-concave if the function
p(θ) := exp(−µℓ(θ)) is concave.

The exp-concavity of loss functions allows for more aggressive learning rates that adjust more
rapidly to the observed data, while still maintaining control over the growth of cumulative regret.
This is because the additional curvature provided by exp-concavity, with respect to convexity,
helps in more accurately predicting the outcome of future decisions based on past data, thus
reducing the possibility of making large errors. In addition, it is often possible to design algorithms
that achieve logarithmic regret bounds (O(log(n))). This is significantly better than what can be
guaranteed for general convex functions, where regret bounds might be linear or sublinear (for
example O(

√
n)).

Online Newton Step, an online version of Newton-Raphson method [140], which uses second
order information to update the predicted parameters, assures a logarithmic regret bound for exp-
concave functions. More explicitly, for µ-exp-concave losses (ℓt)t⩾1 with bounded domain (Θ of
diameter D) and gradients (bounded by G). We consider a learning rate γ = 1/2min{1/GD,µ},
then the regret bound of ONS will be

Regretn ⩽
d log(2nG2γ2D2)

γ
n ⩾ 1 .

Given the fast convergence rate of ONS, we chose this algorithm to optimize the negative log-
likelihood ℓt of the exponential model (1.3), using its nice convex characteristics to estimate the
parameters of the hazard function. We observe that the choice of the learning rate proposed by
Hazan [65] is strongly related to the exp-concavity constant ; therefore, the regret bound of ONS
is highly influenced by this constant. We note that if the exp-concavity constant is small, the
learning rate will also be small, and the regret bound may become arbitrarily large. No guarantee
exists regarding the lower bound of the exp-concavity constant.

We discuss this issue and its possible solutions in detail in Chapter 2. We propose an ag-
gregation adaptive algorithm that addresses the problem of regret bound dependency on the
exp-concave property, enhancing robustness while maintaining fast regret bounds. Additionally,
we introduce a solution to bound the regret in the stochastic setting. We present an example
using simulated data in the following section.

1.3.1 Illustrating the effects of learning rate choices

In this section, we simulate data to illustrate the issue of the learning rate and how it influences
the cumulative loss of the ONS algorithm. We considered N = 2000 samples and n = 500
iterations. Then, considering d = 3, for each individual i we take a realization xi of a multivariate
random normal of dimension (N, d− 1) with parameters

η =

(
1
−2

)
, Σ =

(
1 0
0 3

)
,

and we add an intersect column that transforms xi into a matrix of dimension (N, d). The real
value for θ will be set as θ∗ = (−0.5,−0.8, 0.3). We sample the arrival times τ as a uniform
between 0 and n (denoted by U(0, n)), we set T to follow an exponential distribution of rate
exp((θ∗)⊤x), and C to follow a uniform distribution between 0 and 0.35 :

T ∼ τ + exp(exp((θ∗)⊤x)), C ∼ τ + U(0, 0.35).
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The parameters of the censored distribution were adjusted in order to have around 50% of
censorship and the other parameters of the data simulation were chosen arbitrarily. We selected
two learning rates for our experiment : a small rate, γ1 ≈ 0.03, and a larger rate, γ2 ≈ 10, to
implement the ONS algorithm. We repeat this experiment 100 times and we present the average
results within the 100 simulations.
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Figure 1.8 – Quadratic error of the parameter estimations of ONS algorithm [left] and cu-
mulative negative log-likelihood difference [right]. We show the variation of ONS results when
choosing different learning rates.

In Figure 1.8 [left], we compare the quadratic errors in the estimations made by the ONS
algorithm with learning rates γ1 (ONS 1) and γ2 (ONS 2). We note that ONS 2 exhibits a lower
estimation error compared to ONS 1, suggesting that a larger learning rate (γ2) results in more
accurate estimations. Figure 1.8 [right] highlights this findings showing the difference between
the cumulative negative log-likelihood of the estimations and the real parameters. In addition,
we observe that the cumulative error of ONS 2 seems to grow at a logarithmic scale. This Figure
illustrates how sensitive is the algorithm to the learning rate selection.

1.3.2 Stochastic setting

In Chapter 2 we use the stochastic approach proposed by Wintenberger [139], which involves
assessing stochastic risk to determine the regret of the algorithms. We consider a filtration Ft, t ⩾
1 and an Ft adapted sequence of random loss functions ℓt for t ⩾ 1. At each iteration t an algo-
rithm predicts θt and incurs the random conditional risk Lt(θt) := E[ℓ(θt)|Ft−1] = Et−1[ℓ(θt)].
For a time horizon n, the stochastic regret we aim to minimize is :

Riskn :=

n∑
t=1

Lt(θt)−min
θ∈Θ

n∑
t=1

Lt(θ), t ⩾ 1 .

In this context, we can study the stochastic regret bounds of online convex optimization algo-
rithms such as ONS. Similarly to the deterministic case, their convergence is strongly related to
the curvature of the losses. We define the stochastic counterpart of the exp-concavity property.
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Definition 4. (Stochastic exp-concavity) A sequence of random loss functions (ℓt) for t ⩾ 1 are
µ-stochastically exp-concave if

Lt(θ1) ⩽ Lt(θ2) +∇Lt(θ1)
⊤(θ1 − θ2)−

µ

2
Et−1[(∇ℓt(θ1)

⊤(θ1 − θ2))
2], ∀θ1, θ2 ∈ Θ, t ⩾ 1, a.s.

It was proved that ONS achieves logarithmic stochastic regret for a sequence of µ-stochastically
exp-concave random losses with a learning rate of µ/3 [139]. The stochastically exp-concave pro-
perty extends the range of applicable loss functions, particularly accommodating those from
the survival analysis setting, which exhibits poor exp-concavity. Moreover, this setting enhances
convexity properties, notably, the conditional risk demonstrates more favorable convex characte-
ristics compared to the initial loss functions, which allows us to demonstrate that the stochastic
exp-concavity constant is lower bounded, ensuring that the algorithm attains better theoretical
guarantees for the stochastic regret.

1.4 Application to Attrition Prediction

One important application of survival analysis in the industrial sector is predicting employee
attrition, which significantly affects the operational efficiency and strategic planning of orga-
nizations. By forecasting attrition, companies can take preventive actions to retain employees,
thereby reducing turnover expenses and retaining high-performing employees. Furthermore, it
allows companies to proactively manage their human resources, leading to enhanced financial
performance, improved employee morale, and strengthened organizational cohesion.

The problem of attrition prediction has evolved significantly over time. Initially, studies on
employee turnover were rooted in industrial psychology and management theories, focusing on
worker satisfaction and its impact on productivity, and therefore, indirectly addressing attrition
(see Herzberg [68]). As the field of organizational behavior matured, researchers began to examine
turnover more directly, linking it to organizational commitment and job stress (see Lang et al.
[84]). These studies underscored the multifaceted nature of attrition, incorporating psychological,
sociological, and environmental factors.

The advent of data science and machine learning has transformed attrition prediction in
recent decades. Advanced statistical models and algorithms now enable the analysis of large
datasets to identify patterns and predictors of turnover. Notable contributions include classical
statistical methods by Bennett et al. [9], the adaptation of machine learning techniques by Ajit
P. [4] and Frye B. et al. [45], along with survival analysis approaches by Morita, J. et al. [100]
and Jin, Z. et al. [73].

Today, attrition prediction is an interdisciplinary field, incorporating insights from human
resources, organizational psychology, data science, and economics. This evolution reflects an on-
going quest to understand and mitigate turnover, leveraging both theoretical insights and tech-
nological advancements to foster organizational resilience and employee satisfaction. We discuss
different approaches to the attrition prediction problem in Chapter 4 and we apply the survival
analysis techniques discussed throughout the thesis to a real industrial case.
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1.5 Contributions of the Thesis

The main mathematical contribution of the thesis is presented in Chapter 2 which is oriented
towards solving the issue exposed in Section 1.3. In the first place we detail the mathematical
framework that allows the use of online convex optimization algorithms to predict survival curves.
We consider a horizon time n and a time partition (t − 1, t] for t = 1, . . . , n, and under the
assumption of the exponential model detailed in equation (1.3) we give an explicit expression of
its likelihood in the sequential setting. This function is used as the loss to assess regret, and we
provide its formulation in this section so it can be cited in the theorem statement :

ℓt(θ) =

N∑
i=1

−yitθ
⊤xi(ui) + rit

∫ ui∧t

τi∨(t−1)

exp(θ⊤xi)ds , θ ∈ Θ, t = 1, . . . n, (1.4)

where we remind ui ∧ t = min{ui, t} and τi ∨ (t − 1) = max{τi, t − 1}, and we define yit :=
δi1{t − 1 < ui ⩽ t} and rit := 1{τi ⩽ t, ui > t − 1}. In this expression we explicitly observe
the contribution of censored and non-censored individuals to the likelihood. We do the following
assumption :
Assumption 1. There exists D,G > 0 such that for all t ⩾ 1 and θ ∈ Θ, ∥θ∥ ⩽ D and ∥∇ℓt(θ)∥ ⩽
G.

This assumption is crucial in the context of online convex optimization to assure algorithm
convergence, stability, and performance, and it is widely used in this field [64]. We use it to bound
the regret of our algorithm. The following property will also have a significant role in assuring
theoretical guarantees for the OCO algorithms.
Definition 5. (Directional derivative condition – DDC) We say that a function ℓ : Θ → R satisfy
the directional derivative condition for a constant γ > 0 if for any pair θ1, θ2 ∈ Θ

ℓ(θ2) ⩾ ℓ(θ1) +∇ℓ(θ1)(θ2 − θ1) +
γ

2
(∇ℓ(θ1)(θ2 − θ1))

2
. (1.5)

This condition is related to the curvature of the loss function and is weaker than the exp-
concavity property (see Definition 2), which is usually considered an alternative to strong convexity.
We previously discussed the issue of the learning rate for the ONS algorithm : when the exp-
concavity property is weak, the learning rate proposed by Hazan [65] becomes too small, leading
to large regret bounds.

1.5.1 Stochastic approach

The first solution we propose is to study the survival problem through a stochastic approach.
We model the arrival time τ as a homogeneous Poisson process with intensity λ, and for each
t ⩾ 1 we define the count variable Nt =

∑∞
i=1 1{τi ⩽ t}, which allows us to define the stochastic

loss :

ℓt(θ) :=

Nt∑
i=1

−yitθ
⊤xi + rit exp(θ

⊤xi)
(
(ui ∧ t)− (τi ∨ (t− 1))

)
, θ ∈ Θ, t ⩾ 1 . (1.6)

The stochastic nature of the losses, particularly the stochastic risk Lt, enhances the convexity
properties compared to deterministic losses. This allows us to establish a lower bound on the
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stochastic exp-concavity constant, preventing the regret from exploding. In addition, we make a
design assumption necessary to prove the strong convexity of Lt, which we include in this section
for completeness.

Assumption 2. There exist A > 0 such that E[xx⊤1{T ⩽ C}(1− T )+|τ = 0] ≽ AId.

And we prove the following theorem that states logarithmic stochastic regret for ONS.

Theorem 2. Given ϱ > 0, n ≥ 1 and the stochastic losses (ℓt)t=1,2,... from Equation (1.6), then
under Assumption 2, a bounded domain of diameter D and hyperparameter γ, the stochastic
exp-concavity constant, the ONS algorithm has logarithmic stochastic regret with probability
1− 4ϱ. Specifically, Riskn = O(log(n/ϱ)/γ), for n ≥ 1.

To prove this theorem, we need to establish a lower bound for the stochastic exp-concavity
constant. This constant is crucial as it not only helps demonstrate that the regret bound is
logarithmic, but also ensures that it does not explode. This is in contrast to Hazan’s regret bound,
where there is no guarantee regarding the smallness of the exp-concavity constant. Additionally,
we prove the following theorem that assures the convergence of the algorithm prediction to the
real parameter.

Corollary 1. Given ϱ > 0, n ≥ 1 and the stochastic losses (ℓt)t=1,2,... from Equation (1.6), we
consider θt the ONS prediction at time t and θ̄n the average prediction θ̄n = 1

n

∑n
t=1 θt. Defining

the optimal parameter

θ∗ = argmin
θ∈Θ

n∑
t=1

Lt(θ),

then, under Assumption 2, a bounded domain of diameter D and hyperparameter γ, with pro-
bability 1− 4ϱ we have :

||θ̄n − θ∗||2 ⩽ O
(
log(n/ϱ)

γn

)
, n ≥ 1.

Let us note that if we assume the exponential model from Equation (1.3), θ∗ turns out to
be the parameter of the model. In this corollary, we demonstrate convergence to this ‘real’ para-
meter, which in turn minimizes the expected value of the negative log-likelihood in a stationary
framework. Both of the stochastic results are possible thanks to the strong convexity of the risk
functions Lt, which is not the case in the deterministic setting.

1.5.2 Deterministic setting

The second solution we propose is a new aggregation algorithm, SurvONS described in Al-
gorithm 1, which adaptively selects the learning rate while maintaining control over the regret
bound. We prove that this algorithm has bounded regret in the following theorem.

Theorem 3. Let n ≥ 1, (ℓt)t=1,...,n be the sequence of losses defined in (1.4), that are assumed to
satisfy Assumption 1 and (1.5) with constants γt ∈ (0, 1/GD). Let K ⩾ 1 and Γ ∈ (0, 1/(4GD))K .
Then, Algorithm 1 with hyperparameters Γ and E = 1/(ΓD)2, satisfies the regret upper-bound :

Regretn ⩽ min
γ∈Γ

{
2 log(K) + 5d log(n)

γ
+ γG2D2nγ

}
,

where nγ :=
∑n

t=1 1{γt < γ}, γ > 0.
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The regret bound proposed in this theorem does not depend on the exp-concavity property,
contrary to Hazan’s bound. The regret remains bounded and achieves a trade-off between the
suboptimal choices of the learning rate (small constants) and the frequency at which the algorithm
selects the user-specified constant γ, rather than the optimal γt determined at iteration t. This
helps to compensate for the increase of regret.

We observe that aggregation methods improve robustness in hyperparameter selection, ho-
wever, maintaining a fast rate of convergence under this scheme is challenging. Additionally, we
find that the parametric approach in this context is difficult to fit due to the lack of a strong
convexity property in the survival loss. Finally, let us note that there are no guarantees on the
minimum number of iterations that OCO algorithms require to find an optimal solution, and
this number could potentially be large.
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Figure 1.9 – Comparison of regret bound orders (up to logarithmic factors) for multiple online
methods using simulated data.

In summary, Figure 1.9 shows the theoretical regret bounds (up to logarithmic factors) for
Online Gradient Descent (OGD) in green, ONS in blue, SurvONS in red, and the stochastic
approach in black 1. We observe the benefits of considering an average estimation of γ, which
represents the stochastic setting, and the advantages of SurvONS, both of which have lower
regret bounds. The simulation framework for this experiments is presented in Chapter 2.

1.5.3 Ensemble methods and applications

The second contribution of this thesis is the experimental comparison of various parametric
and machine learning models using two scores, with the objective of understanding which fac-
tors most significantly affect the performance of the models and the behavior of the scores. .
This comparison was conducted using three datasets : PBC [125], which was described earlier,
GBCSG2 [117], and TLCM [71]. We carried out simulation experiments and we observed that
the ranking of the methods depends primarily on the dataset and the alignment between its
distribution properties and the assumptions of the model. The results of this experiment are
detailed in Chapter 3.

1. See the codes at the GitHub repository : https://github.com/camferna/
Online-Learning-Approach-for-Survival-Analysis

https://github.com/camferna/Online-Learning-Approach-for-Survival-Analysis
https://github.com/camferna/Online-Learning-Approach-for-Survival-Analysis
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Additionally, we propose an aggregation algorithm, described in Algorithm 2, to enhance
robustness and performance. Specifically, for each method j = 1, . . . ,K = 5, we consider its
estimation of the survival probability Ŝj : R+ → [0, 1], and the ensemble estimation will be the
convex combination :

Ŝ(t|xi) =

K∑
j=1

λjŜj(t|xi) such that
K∑
j=1

λj = 1 .

where the weights λj are obtained by minimizing the integrated Brier score with an exponen-
tial gradient descent procedure. This ensemble algorithm allows us to guarantee competitive
performance regardless of the dataset.

Figure 1.10 – Box plot comparison of the ensemble method using the integrated Brier score
across multiple dataset splits on the primary biliary cirrhosis dataset.

Figure 1.10 shows the performance of the ensemble method measured by the integrated Brier
score on the PBC dataset 2. We observe that it outperforms the other methods. Additionally,
our experiments generally indicate that machine learning methods, such as DeepSurv and RSF,
perform better and adapt more effectively to varying data distributions.

1.5.4 Employee attrition prediction

Finally, in Chapter 4, we apply the methods proposed throughout the thesis to a real industrial
case : predicting employee attrition. We use a real dataset consisting of around 10000 employees
of whom 3% had left the company by the end of the study. Notably, this results in a high
percentage of censoring, which adds complexity to the analysis. We compare multiple survival
analysis methods, including SurvONS and the ensemble method from Chapter 3, and engage in
a discussion on the influence of features on model performance.

2. The code can be found in the repository : https://github.com/camferna/
Ensemble-Methods-and-Time-to-Event-Analysis-Models

https://github.com/camferna/Ensemble-Methods-and-Time-to-Event-Analysis-Models
https://github.com/camferna/Ensemble-Methods-and-Time-to-Event-Analysis-Models
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Figure 1.11 – Box plot comparison of the ensemble method using the integrated Brier score
across multiple dataset splits on the attrition dataset.

Figure 1.11 shows the performance of the ensemble method measured by the integrated Brier
score on the attrition dataset 3. We observe that it outperforms the other methods except for
gradient boosting Cox (GBC).

Future work could explore further the parameter family bounds and their impact on algorithm
performance, the integration of state-space models, and the application of continuous ranked
probability scores in survival data analysis. Additionally, expanding the aggregation methods to
incorporate time-varying weights and diverse optimization techniques could refine our approach,
especially in adapting machine learning methods for censored tabular data. These areas promise
substantial improvements in the robustness and efficacy of survival analysis techniques. While
significant strides have been made in adapting online convex optimization to censored data and
in the other aspects explored in this thesis, there is still a lot of room for improvement.

3. The attrition dataset is confidential due to data privacy agreements. Consequently, the code cannot be
publicly shared.
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Algorithm 1 SurvONS

Input : (ℓt)t=1,2,..., D > 0, n ⩾ 1, grids Γ, E
Initialization : for each γk in Γ : θ0(γk) ∈ Θ, π0,k = 1

K , θ̂0 ∈ Θ, A−1
0 = E−11d

for iteration t = 1, . . . , n do

Update : θ̂t =
K∑

k=1

πt,k θt(γk)

Observe : ∇ℓt(θ̂t) =

N∑
i=1

−yitxi(ui) + rit

∫ ui∧t

τi∨t−1

exp(θ̂Tt xi(s))xi(s)ds

∇2ℓt(θ̂t) =

N∑
i=1

rit

∫ ui∧t

τi∨t−1

exp(θ̂Tt xi(s))xi(s)xi(s)
T ds

µt =
∇ℓt(θ̂t)

T∇2ℓt(θ̂t)∇ℓt(θ̂t)

||∇ℓt(θ̂t)||4

γt = 2
− 1

µt
log(1+µt||∇ℓt(θ̂t)||D)+||∇ℓt(θ̂t)||D

(||∇ℓt(θ̂t)||D)2

for γk ∈ Γ do
Observe : γ̃t = max{γt/4, γk}

∇ℓ̂t,γ̃t(θt(γk)) = ∇ℓt(θ̂t)(1 + γ̃t∇ℓt(θ̂t)(θt(γk)− θ̂t))
Recursion :

A−1
t = A−1

t−1 −
A−1

t−1∇ℓ̂t,γ̃t(θt(γk))∇ℓ̂t,γ̃t
(θt(γk))

TA−1
t−1

1 +∇ℓ̂t,γ̃t(θt(γk))A
−1
t−1∇ℓ̂t,γ̃t(θt(γk))

T

θt+1(γk) = Projt

(
θt(γk)−

1

γk
A−1

t ∇ℓ̂t,γ̃t
(θt(γk))

)
end for
Update : πt+1,· = πt exp

(
−Γ∇ℓt(θ̂t)

T (θ̂t − θt(Γ))− Γ2(∇ℓt(θ̂t)(θ̂t − θt(Γ)))
2
)

end for
return θ̂n
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Chapitre 2
Online Learning Approach for Survival
Analysis

Abstract

We introduce an online mathematical framework for survival analysis, allowing real time
adaptation to dynamic environments and censored data. This framework enables the estimation
of event time distributions through an optimal second order online convex optimization algo-
rithm—Online Newton Step (ONS). This approach, previously unexplored, presents substantial
advantages, including explicit algorithms with non-asymptotic convergence guarantees. Moreo-
ver, we analyze the selection of ONS hyperparameters, which depends on the exp-concavity
property and has a significant influence on the regret bound. We propose a stochastic approach
that guarantees logarithmic stochastic regret for ONS. Additionally, we introduce an adaptive
aggregation method that ensures robustness in hyperparameter selection while maintaining fast
regret bounds. The findings of this paper can extend beyond the survival analysis field, and
are relevant for any case characterized by poor exp-concavity and unstable ONS. Finally, these
assertions are illustrated by simulation experiments.

2.1 Introduction

On the one hand the primary objective of survival analysis is to estimate the time until a
critical event occurs, often referred to as survival time or failure time. Examples of such events
include customer churn [91], machine failures [19], and employees’ attrition [99]. Survival analysis
is particularly suited for scenarios where the occurrence of the event may not be observed for
all individuals in the dataset. This phenomenon arises when data collection happened before the
event occurred, or individuals left the study before experiencing the event, and is called right
censoring. As neglecting the censored data is restrictive, it is essential to consider censorship in
estimating event time distributions to avoid bias and underestimation. For each individual i with

25
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event time ti, we define the survival probability function as

Si(t) = P(ti ≥ t), t ≥ 0.

On the other hand convex optimization aims to find the minimum of a convex function over
a convex set. It can be extended to an online approach in which the dataset becomes available in
sequential order and is used to update the estimations of the algorithms at each step. This setting
is suitable when the dataset is rapidly evolving over time, allowing for efficient processing of large
volumes of data. Online convex optimization is a broad field with diverse applications such as
online portfolio selection in finance, signal processing, communication, and machine learning
algorithms ; see Hazan [63] and references therein.

In this paper, we propose the application of online convex optimization algorithms to survival
analysis. The combination of these two approaches has not been explored before. Our method
offers significant advantages, including explicit algorithms with non-asymptotic convergence gua-
rantees, making it a promising tool for the survival analysis field.

Specifically, we estimate a parametric survival probability function Si using online convex
optimization algorithms : let Θ be a non-empty, convex, compact set in Rd, and ℓt the negative
log-likelihood of the individuals at risk during the interval (t − 1, t], t ≥ 1. The performance of
online convex optimization algorithms is measured with the regret

Regretn :=

n∑
t=1

ℓt(θt)−min
θ∈Θ

n∑
t=1

ℓt(θ), n ≥ 1,

which indicates how close the cumulative loss is to the optimal solution. A smaller regret implies
better performance, and our objective is to bound its growth with respect to n as slowly as
possible.

One of the most widely used algorithms in online convex optimization is the Online Newton
Step (ONS) of Hazan et al. [65], renowned for its fast regret convergence rate for exp-concave
loss functions. This second-order algorithm relies on a hyperparameter known as the learning
rate, whose optimal selection is directly dependent on the exp-concavity properties of the loss
functions. The exp-concavity constant plays a fundamental role in the theoretical regret analysis
of ONS.

We give a detailed mathematical framework for online survival analysis data and we imple-
ment the ONS method to optimize the negative log-likelihood of the exponential model. We
note that the ONS algorithm requires a careful selection of the learning rate to ensure robust
performance. However, certain choices, such as the learning rate proposed by Hazan et al. [65],
might lead to an explosive increase in regret, particularly when applied to the survival losses ℓt.
Therefore, proper selection of the learning rate is essential in our application.

We discuss various strategies for selecting the learning rate hyperparameter. The first contri-
bution involves applying the stochastic setting from Wintenberger [139] to the survival case. This
setting enhances convex properties by assessing stochastic risks rather than cumulative losses,
allowing us to attain theoretical guarantees for the stochastic regret that is strongly related
to the exp-concavity properties on average. Consequently, this provides the convergence of the
algorithm estimations to the real parameter under well-specification. Secondly, in the determi-
nistic setting, we propose to apply ONS to an auxiliary function that recursively adapts the
learning rate in response to updates in the exp-concavity constant. We introduce the algorithm
SurvONS, an aggregation procedure which ensures a logarithmic regret bound and robustness
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in hyperparameter selection over a fixed grid. This provides a new compromise in the context of
second-order algorithms : the algorithm either performs well on average (as in the case of BOA
[138]) or performs well for certain iterations (as in our case with SurvONS). It is important to
emphasize that this algorithm is applicable not only to the survival case but also to any case
where the exp-concavity properties are poor and the original versio of ONS is unstable. Finally,
we conduct experiments using simulated data to examine our algorithm’s behavior under dif-
ferent constraints. We discuss the choice of the grid, and we observe that the combination of
multiple ONS allows us to use larger grids in SurvONS than in BOA-ONS [138].

The literature in survival analysis is considerable. The approaches range from non-parametric
methods, such as the one proposed by Kaplan and Meier in 1958 [76], to semi-parametric methods
like Cox proportional hazards [24], and more recent machine learning applications. For instance,
Ishwaran proposed an adapted random forest for censored data inx [72]. Another example is
DeepSurv, which was introduced by Katzman in [77]. DeepSurv utilizes deep learning techniques
to estimate the log-risk function in the Cox model. From a theoretical perspective, Arjas and
Haara [8] proposed a dynamic setting called discrete-time logistic regression. In this model, events
are always treated in the order in which they occurred in real time. The authors provided an
asymptotic normality result for the maximum likelihood estimator of the regression coefficients.
The discrete model is a suitable choice when events are observed at discrete time points ; see
Tutz [129]. Building upon Arjas and Haara’s framework, Fahrmeir [34] introduced a state-space
approach for analyzing discrete-time survival data. This approach includes the estimation of time-
varying covariate effects achieved by maximizing posterior densities through the use of Kalman
Filter algorithms. Christoffersen [23] provided a method for discretising continuous event times
when the instantaneous hazard follows an exponential shape. In a similar setting we provide
adaptive estimators with non-asymptotic guarantees for the first time.

2.2 Background on parametric inference

2.2.1 Notation

We consider a set of N individuals denoted by i ∈ {1, . . . , N}, each associated with an arrival
time τi ⩾ 0. Such time could represent when a patient enters the hospital, a client joins the
company, or simply when an individual enrolls in the study. Every individual has a unique event
time ti, which is a positive random variable. By definition, we have ti ≥ τi almost surely (a.s). We
also define ci, which marks the cessation of observation for the individual i ; this time is referred
to as the censored time. For instance, this might be applicable in cases where the observation
period has a predetermined ending. In a more general context, ci can be a positive random
variable satisfying ci ≥ τi a.s. Given that some individuals are censored before the event occurs,
and vice versa, it is natural to define the observed time as ui := min{ti, ci}. We also define
the event indicator δi := 1{ti ⩽ ci}, which provides a way to discern whether an event has
happened or if it is censored. For each individual i ∈ {1, . . . , N}, we obseve the random variables
(ui, δi) ∈ R+ × {0, 1}. Furthermore, we suppose that both ti and ci are independent across all
individuals.

Explanatory variables are defined to give context through time to each of the individuals,
and these will be represented by left continuous functions xi : R+ → Rd. The explanatory
variables xi(t) ∈ Rd combine covariates of the individual i ∈ {1, . . . , N} at time t ≥ 0. It’s
important to note that we use the variable t to refer to time in general, while ti represents the
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specific event time of individual i. We assume that given xi, a short notation for (xi(t))t≥0, the
times ti and ci are conditionally independent. Additionally, we suppose ti follows a continuous
distribution of density f(t|xi, τi) and ci a continuous distribution of density g(t|xi, τi). We have
g(t|xi, τi) = f(t|xi, τi) = 0 for all t < τi since ti, ci ≥ τi a.s.

In addition, we suppose that g satisfies the following property :

∀t ⩾ ε > 0 : g(t|xi, τi) = g(t− ε|xi, τi − ε) .

Note that this assumption is also necessary for the density function f . However, as we will know
its specific shape, the property is inherently satisfied. Finally, we denote by Id the identity matrix
of dimension d.

2.2.2 Survival probability

The objective of survival analysis is to predict the length of time until a specified event occurs.
Consequently, it is necessary to estimate the distribution of these events. We define the survival
probability function of individual i to be the complement of the cumulative distribution, that is,
S(t|xi, τi) = 1−

∫ t

τi
f(s|xi, τi)ds, which can also be expressed as the probability of surviving up

to time t :
S(t|xi, τi) = P(ti ⩾ t|xi, τi) , t ≥ 0 .

To estimate this function, it is common to assume a particular shape for the hazard function.
The hazard function is defined as :

H(t|xi, τi) = − ∂

∂t
log(S(t|xi, τi)) , t ≥ 0 ,

which represents the instantaneous risk of the event occurring at time t. Notably, we can derive
the survival function from the hazard function :

S(t|xi, τi) = exp

(
−
∫ t

0

H(s|xi, τi)ds

)
, t ≥ 0 .

For more details on event times distributions, refer to Cox and Oakes [25].

2.2.3 Likelihood

In order to estimate the survival probability we suppose the hazard function is a function of a
specified parametric family Θ given the explanatory variables. The parameters will be determined
following the likelihood principle observing (ui, δi) ∈ R+ × {0, 1} and knowing (xi, τi). As usual
we implicitly make the assumption of non-informative censoring (see Kalbfleisch et al. [74]),
which means that the censored distribution does not involve the parameter θ.

As mentioned earlier, some models assume a specific shape for the hazard function, such as
additive, exponential, logistic or Weibull (see Cox and Oakes [25]). In this paper, we assume that
the hazard function is exponential, and we detail this assumption below.
Definition 1 (Log-linear regression model for the Hazard function). We assume that there exist
a vector θ ∈ Rd , such that the hazard function satisfies for all t ⩾ 0 and all xi : R+ → Rd,

H(t|xi, τi) := h
(
θTxi(t)

)
1{t ≥ τi} , t ≥ 0 ,
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where h : x ∈ R 7→ exp(x) is the response function.

By using this exponential model we obtain a formula to compute the negative log-likelihood
which is the function that we aim to minimize.

Proposition 1. Under the exponential model from Definition 1 and omitting additional constants,
the negative log-likelihood function ℓ : Θ → R can be written in the following way :

ℓ(θ) =

N∑
i=1

−δiθ
Txi(ui) +

∫ ui

τi

exp(θTxi(s))ds . (2.1)

We call this function the complete log-likelihood and the proof of this proposition is detailed
in Appendix B1.

2.2.4 Sequential likelihood optimization

We consider a horizon time n and a time partition (t − 1, t] with discrete time t = 1, 2, . . .
that is independent of the observations (ui, δi)1≤i≤N . In many real-life situations, data continues
to evolve ; new patients may arrive, some patients may leave, and the optimization algorithm
may need to update its estimation as new information becomes available. This is the focus of
our work : to update online convex optimization algorithms for sequential survival data.

For individual i we define yit := δi1{t − 1 < ui ⩽ t} which indicates whether an event is
observed for individual i during the interval (t − 1, t] or not. Additionally, we denote the risk
indicator as rit := 1{τi ⩽ t, ui > t− 1} for event i in the interval (t− 1, t]. Then, we define the
log-likelihood on the interval (t− 1, t] by the expression

ℓt(θ) :=

N∑
i=1

−yitθ
Txi(ui) + rit

∫ ui∧t

τi∨(t−1)

exp(θTxi(s))ds , θ ∈ Θ, t = 1, 2, . . . , (2.2)

where we remind ui ∧ t = min{ui, t} and τi ∨ (t − 1) = max{τi, t − 1}. Let us notice that,
analogous to Equation (2.1), the contribution to the log-likelihood of an individual that expe-
riences an event in the interval (t− 1, t] is given by θTxi(ui) +

∫ ui

τi∨(t−1)
exp(θTxi(s))ds, and the

contribution of an individual that is censored in the interval (t − 1, t]—either by ui = ci or by
t—is

∫ ui∧t

τi∨(t−1)
exp(θTxi(s))ds. If an individual is not yet present in the interval, i.e., τi > t, or

its observed time has passed before the beginning of the interval (ui ⩽ t− 1), its contribution to
the log-likelihood is zero.

Finally, the log-likelihood up to time n is given by :

ℓn(θ) :=

n∑
t=1

ℓt(θ), θ ∈ Θ.

It is important to notice that if n is sufficiently large, i.e., n ≥ ui for every 1 ≤ i ≤ N , and all
the events have been observed, the complete log-likelihood of Equation (2.1) corresponds to the
sum of all the interval contributions. Therefore, ℓ(θ) = ℓn(θ), θ ∈ Θ, for n sufficiently large when
N is finite.
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2.3 Online convex optimization

2.3.1 Setting

A convex optimization problem consists of approximating the minimum of a convex function
over a convex set. This problem can be extended to a recursive setting where, at each iteration t, a
convex optimization algorithm predicts the parameter θt and incurs a loss of ℓt(θt). This approach
is particularly good in situations where the data evolves over time, requiring fast adaptation and
decision making. We apply this methodology to survival analysis, introducing a novel perspective
in a field traditionally dominated by batch processed data.

The online convex optimization algorithm aims to minimize its regret at any horizon time
n ≥ 1 :

Regretn :=

n∑
t=1

ℓt(θt)−min
θ∈Θ

n∑
t=1

ℓt(θ).

In this paper, we aim to optimize the losses ℓt(θ) from Equation (2.2). To apply online convex
optimization algorithms, we must first assume that Θ ⊆ Rd is a non-empty, convex, bounded,
and closed set. Subsequently, we verify the convexity of the objective function. Here the choice
of the response function h is crucial. For h(x) = exp(x) the cost function ℓt(θ) is defined in
Equation (2.2) for every iteration t. We derive its gradient and Hessian :

∇ℓt(θ) =

N∑
i=1

−yitxi(ui) + rit

∫ ui∧t

τi∨t−1

exp(θTxi(s))xi(s)ds, (2.3)

and

∇2ℓt(θ) =

N∑
i=1

rit

∫ ui∧t

τi∨t−1

exp(θTxi(s))xi(s)xi(s)
T ds ≽ 0. (2.4)

The positive semi-definite Hessian confirms the convexity of the losses. Additionally, we formalize
the boundedness assumption.

Assumption 1 (Bounded domain and gradient). There exists D,G > 0 such that for all t =
1, 2, . . . and θ ∈ Θ, ∥θ∥ ⩽ D and ∥∇ℓt(θ)∥ ⩽ G.

One of the most ancient algorithms for online convex optimization is named "follow the leader"
(FTL), and it consists of choosing, at each iteration t, the point that optimizes the cumulative
loss up to t−1. This algorithm does not satisfy any non-trivial regret guarantee for linear losses.
However, under some modifications, like the randomized version proposed by Hannan [57], it can
achieve an O(

√
n) regret bound. Additionally, the approach from Cesa-Bianchi and Lugosi [18],

where the losses are strongly convex, achieves a logarithmic regret in the number of iterations.

In 2003, Zinkevich [145] proposed a sequential version of the gradient descent algorithm
(OGD), which satisfies a uniform regret bound of O(

√
n) for an arbitrary sequence of convex

cost functions and under the previous conditions (bounded gradients and domain). Later, Hazan
et al. [65] proved that Zinkevich’s algorithm attains a O(log(n)) regret for an arbitrary sequence
of strongly convex functions (with bounded first and second derivatives). They also introduced
an online version of the Newton-Raphson method, which they named the Online Newton Step
(ONS), and demonstrated that it also achieves logarithmic regret. More algorithms and details
can be found in Hazan [63].
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We implement the ONS algorithm to minimize the negative log-likelihood and study the
selection of its hyperparameters along with its regret bounds.

2.3.2 Exp-concavity and directional derivative condition

To ensure a logarithmic regret bound, the loss function must satisfy specific conditions. First,
we review the definition of exp-concavity.

Definition 2. (Exp-concavity) A convex function ℓ : Θ → R is µ-exp-concave iff the function
p(θ) := exp(−µℓ(θ)) is concave.

This property is fundamental in the regret analysis and replaces the strong convexity condition
required by the OGD algorithm. This means that the ONS algorithm requires a weaker hypothesis
on the losses (ℓt)t=1,2,..., to achieve logarithmic regret. Furthermore, we introduce a study based
on this weaker condition, which is essential to derive the regret bound described by Hazan [63]
in survival analysis.

Definition 3. (Directional derivative condition – DDC) We say a function ℓ : Θ → R satisfy the
directional derivative condition for a constant γ > 0 if for any pair θ1, θ2 ∈ Θ

ℓ(θ2) ⩾ ℓ(θ1) +∇ℓ(θ1)(θ2 − θ1) +
γ

2
(∇ℓ(θ1)(θ2 − θ1))

2
. (DDC)

To determine the directional derivative constant γ, we must first compute the exp-concavity
constant µ.

Lemma 1. A twice differentiable function ℓ : Θ → R is µ-exp-concave iff

∇2ℓ(θ) ≽ µ∇ℓ(θ)∇ℓ(θ)T , θ ∈ Θ. (2.5)

This holds with

µ ≤ min
θ∈Θ

∇ℓ(θ)T∇2ℓ(θ)∇ℓ(θ)

||∇ℓ(θ)||4
.

This lemma provides us a way for calculating the exp-concavity constant µ. The proof of
Lemma 1 can be found in Appendix B2. Given a µ-exp-concave function ℓ, we can also determine
its directional derivative constant γ. We have the following bound :

Lemma 2. A µ-exp-concave function ℓ : Θ → R, satisfying Assumption 1, admits a directional
derivative constant γ > 0 satisfying

γ ≤ min
θ∈Θ

− 2
µ log(1 + µ||∇ℓ(θ)||D) + ||∇ℓ(θ)||D

(||∇ℓ(θ)||D)2
.

We note that this lower bound improves upon the upper bound provided by Hazan [63] :

γ ≤ 1

2
min

{ 1

GD
,µ
}
,

and the proof of Lemma 2 can also be found in Appendix B2.
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2.3.3 Online Newton Step

The ONS algorithm is an online analogue of the Newton-Raphson method ; see Ypma [140]
for more details. The Newton-Raphson algorithm moves in the direction of the inverse of the
Hessian multiplied by the gradient. For exp-concave loss functions ℓt with t = 1, 2, . . ., we can
replace the Hessian matrix with an approximation of it :

At =

t∑
k=1

∇ℓk(θk)∇ℓk(θk)
T .

At each iteration, the algorithm updates the estimation of the parameter as follows :

θt+1 = θt −
1

γ
A−1

t ∇ℓt(θt) ,

where γ is an algorithm hyperparameter denoting the learning rate and its optimal selection
aligns with the DDC constant. This might lead to a point outside the convex set Θ and so we
need to project it back. This projection is somewhat different than the standard projection as it
is characterized by the norm defined by At instead of the Euclidean norm. The iteration step of
the algorithm is :

θt+1 = Projt

(
θt −

1

γ
A−1

t ∇ℓt(θt)
)
,

where Projt(θ
∗) ∈ argmin

θ∈Θ
(θ − θ∗)TAt(θ − θ∗).

Let us remark that ONS requires to invert a large matrix At, and in order to avoid expensive
calculations, we consider the Sherman-Morrisson formula [120] which provides a recursion for
A−1

t from A−1
0 := (1/ϵ)Id :

A−1
t = A−1

t−1 −
A−1

t−1∇ℓt(θt)∇ℓt(θt)
TA−1

t−1

1 +∇ℓt(θt)A
−1
t−1∇ℓt(θt)T

, t = 1, 2, . . . .

We formally describe the Online Newton Step algorithm 3 in Appendix B2. Hazan [63] proved
the following regret bound of ONS.

Theorem 1 (Hazan [63]). Let us consider the losses ℓt : Θ → R µ-exp-concave and satisfying
Assumption 1. Then, Algorithm 3 with hyperparameters γ = 1

2 min{ 1
GD , µ} and ϵ = (γD)−2

satisfies Regretn ⩽ γ−1d log(2nG2γ2D2) for any n ⩾ 4.

Let us remind that we want to apply ONS algorithm to the losses (ℓt)t=1,2,... described in
Equation (2.2), where we assume the exponential model defined in 1. The exp-concavity property
is fundamental in the regret analysis of ONS. We first notice that we can work under (DDC)
rather than µ-exp-concavity, focusing our work on the study of the constant γ which is the
hyperparameter of ONS, rather than on µ. Then we see that the choice of this constant is very
sensitive to variations in the gradients, which depend on the number of people at risk at each
time. If µ is small, which can happen when the gradient of the loss is small, the choice of γ =
1
2 min{ 1

GD , µ} proposed by Hazan [63] will also be small, potentially exploding the regret bound
and causing issues with the convergence. Additionally, to properly tune the hyperparameter γ
we need to know the exp-concavity constant in advance, but this constant might depend on the
gradient of the losses that are not known before running the algorithm. Adjusting γ is not trivial
and we provide some insights in the following sections.
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2.4 Stochastic setting

The first solution we propose is to use a stochastic approach to bound the regret of ONS.
We present the general stochastic setting introduced by Wintenberger [139] and apply one of
its results to the survival case. The main difficulty in sequential survival analysis is the intrinsic
time dependence in the loss functions (ℓt)t=1,2,.... Indeed, even if the individuals are iid, the
log-likelihoods ℓt are dependent because of the individuals that are at risk during consecutive
time intervals (t− 1, t] for t = 1, 2, . . ..

2.4.1 Stochastic Model

We model the arrival times τi ≥ 0 as a homogeneous Poisson process with intensity λ ; see
Kingman [80] for a reference textbook on the subject. For each t > 0, we define the count random
variable Nt :=

∑∞
i=1 1{τi ⩽ t} which represents the number of individuals that arrive before t,

and τNt
represents the arrival time of the last individual arriving before t. We assume a constant

rate λ, such that E[Nt] = λt, indicating the average number of individuals arriving at time t.
Additionally, in this section, we consider the covariate functions to be constant, i.e., xi(t) = xi

for all t > 0, and that they follow, independently, the distribution of a random variable X. In
this stochastic setting we rewrite the loss function :

ℓt(θ) =

Nt∑
i=1

−yitθ
Txi + rit exp(θ

Txi)
(
(ui ∧ t)− (τi ∨ (t− 1))

)
, (2.6)

where we replaced N by Nt in Equation (2.2). It is important to note that the derivation of this
expression is based on the assumption of the exponential model 1. Now, we want to apply ONS
to optimize this loss and study what happens with its stochastic regret.

For each iteration t = 1, 2, . . ., we consider the stochastic loss ℓt and the filtration Ft of σ-
algebras such that the predictions of the online learning algorithm θt and the past losses (ℓs)t−1

s=1

are Ft−1-measurable. To simplify notation, we use Et[·] to represent the conditional expectation
given Ft, denoted as E[·|Ft]. In this context, our objective is to minimize the stochastic regret
at any horizon time n ≥ 1 :

Riskn :=

n∑
t=1

Lt(θt)−min
θ∈Θ

n∑
t=1

Lt(θ) ,

where Lt(θt) is the conditional risk, defined as Lt(θt) := Et−1[ℓt(θt)] for t = 1, 2, . . .. Let us notice
that in our case, where the stochastic losses ℓt are defined in Equation (2.6), the σ-algebra Ft is
generated by yis, xi, τi, and uis = min{ui, s} for all i = 1, . . . , Nt−1 and s = 1, . . . , t− 1.

The main difference with the setting presented in Section 2.3 is the use of the conditional
risk Lt instead of the loss functions ℓt in the calculation of regret. This allows us to relax the
convexity conditions imposed on ℓt and instead focus on the convexity properties of Lt.

2.4.2 Stochastically Exp-Concavity

It was proved in Wintenberger [139] that the ONS algorithm achieves a O(log(n)) stochastic
regret bound under a stochastic exp-concavity condition for ℓt which is described below.
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Definition 4 (Stochastic exp-concavity). A sequence of random functions (ℓt)t=1,2,... is said to
be γ stochastically exp-concave with respect to a filtration Ft if for all θ1, θ2 ∈ Θ and t = 1, 2, . . .

Lt(θ1) ⩽ Lt(θ2) +∇Lt(θ1)
T (θ1 − θ2)−

γ

2
Et−1

[
(∇ℓt(θ1)

T (θ1 − θ2))
2
]
, a.s.

Let us note that this property corresponds to the stochastic counterpart of the directional
derivative condition (DDC). This property plays a crucial role in the proof of Theorem 7 of
Wintenberger [139], which establishes the logarithm stochastic regret bound. However, the losses
ℓt defined in (2.6) do not satisfy this property. Nevertheless, we demonstrate that the events
where this inequality is not fulfilled have a small probability and therefore, we can still bound
the stochastic regret. In addition, we need to make the following design assumption.

Assumption 2. There exist A > 0 such that E[xx⊤1{T ⩽ C}(1− T )+|τ = 0] ≽ AId.

This assumption is not trivial, and it is not always satisfied ; however, when all the individuals
experience an event and T ⩽ 1, it corresponds to a classical design. When t ≥ 1 an alternative
analyses is required.

2.4.3 Stochastic Regret

To apply Theorem 7 from Wintenberger [139], the losses need to satisfy certain hypothesis,
among which are stochastic exp-concavity and a stochastic bound on the gradients of the losses.
We prove that our losses ℓt, whose do not satisfy exactly the conditions of Theorem 7, still leads
ONS algorithm to achieve a logarithmic stochastic regret. We present the result in the following
theorem.

Theorem 2. Given ϱ > 0, n ≥ 1 and the stochastic losses (ℓt)t=1,2,... from Equation (2.6), then
under Assumption 2, a bounded domain of diameter D and hyperparameter γ, the stochastic
exp-concavity constant, the ONS algorithm has logarithmic stochastic regret with probability
1− 4ϱ. Specifically, Riskn = O(log(n/ϱ)/γ), n ≥ 1.

The proof of Theorem 2 can be found in Appendix B3 and the explicit regret bound in
Equation (B.4). To finish, we prove the following corollary.

Corollary 1. Given ϱ > 0, n ≥ 1 and the stochastic losses (ℓt)t=1,2,... from Equation (2.6), we
consider θt the ONS prediction at time t and θ̄n the average prediction θ̄n = 1

n

∑n
t=1 θt. Defining

the optimal parameter

θ∗ = argmin
θ∈Θ

n∑
t=1

Lt(θ),

then, under Assumption 2, a bounded domain of diameter D and hyperparameter γ, with pro-
bability 1− 4ϱ we have :

||θ̄n − θ∗||2 ⩽ O
(
log(n/ϱ)

γn

)
, n ≥ 1.

This corollary ensures the convergence of the algorithm predictions to the real parameter,
which is possible thanks to the strong convexity of the risk functions Lt. It is important to remark
that this does not hold in the deterministic setting. The proof can be found in Appendix B3 and
the explicit bound in Equation (B.5).
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2.5 Survival ONS algorithm

As mentioned earlier, the choice of γ has a significant influence on the algorithm’s perfor-
mance, particularly regarding the regret bound. To avoid convergence issues and address the
challenge posed by the small optimal constant proposed by Hazan [63], we propose an adaptive
setting that allows us to select the most suitable learning rate at each step while maintaining
control over the regret bound. We introduce SurvONS (Algorithm 1), a survival version of Me-
taGrad from van Erven et al. [133], that uses Bernstein Online Aggregation (BOA, introduced
in Wintenberger [138]) to aggregate multiple ONS applied to an adaptive auxiliary function.
SurvONS strategically selects larger learning rates to handle sub-optimal parameters. The key
difference between our algorithm and MetaGrad lies in the approach to updating the adaptive
learning rate. We explain this algorithm in detail throughout this section.

2.5.1 Recursive adaptation to the constants

We present first the recursive adaptation of the constants µ and γ. Lemma 1 provides a
bound for the exp-concavity constant µ, and Lemma 2 offers a bound for the directional derivative
constant γ based on µ. We aim to apply this approach to ℓ = ℓt for all t = 1, 2, . . ., and recursively
obtain µt and γt(µt) such that they satisfy the bounds of Lemma 1 and Lemma 2.

In Hazan’s approach, as described in [63], the idea is to select a universal constant µ that
renders all the functions (ℓt)t=1,2,..., µ-exp-concave. The natural choice would be to take :

µ := min
t∈{1,...,n}

µ∗
t , where µ∗

t := min
θ∈Θ

∇ℓt(θ)
⊤∇2ℓt(θ)∇ℓt(θ)

||∇ℓt(θ)||4
,

is the bound given by Lemma 1. With this configuration, we guarantee exp-concavity for
every function. However, the challenge of minimizing over the parameter set Θ in the definition
of µ∗

t might be more intricate than minimizing the loss function ℓt. In addition, we can not know
the constant in advance because ℓt is revealed at the t-th iteration only in our online setting.

To solve this problem, we define at each time t = 1, 2, . . . an adaptive estimation of the
exp-concavity constant :

µt :=
∇ℓt(θt)

⊤∇2ℓt(θt)∇ℓt(θt)

||∇ℓt(θt)||4
,

and, similarly from Lemma 2,

γt(µt) :=
− 2

µt
log(1 + µt||∇ℓt(θt)||D) + 2||∇ℓt(θt)||D

(||∇ℓt(θt)||D)2
,

where θt is the parameter predicted by the algorithm at time t. Let us notice that this choice
of µt ⩾ µ and γt(µ) ⩾ γ(µ) assures the exp-concavity and the directional derivative condition for
ℓt close to θt at time t. We sometimes refer to γt(µt) as γt when the specification is not necessary.
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2.5.2 SurvONS

Now, we have an adaptive way to choose µt and γt that preserves the exp-concavity properties
at each iteration. However, this choice might not be optimal, in some iterations the gradient ∇ℓt
can be close to zero due to the lack of individuals at risk, and this might lead to numeric
problems setting µt and γt. Thus we propose an intermediate choice of the learning rate. Given
a user specified constant γ > 0, we define for each time t = 1, 2 . . . :

γ̃t := max{γt(µt)/4, γ} ,

a value that chooses a portion of the optimal directional derivative condition constant γt/4 when
it is not too small, and the user specified constant γ when the quarter of the optimal constant
decreases under γ. This choice γ̃t is a trade off in between choosing the optimal directional
derivative condition constant and a worse constant when the optimal one is susceptible to bring
convergence problems.

In order to keep the logarithmic regret bound we cannot directly use the adaptive choice of
the constant as the algorithm’s learning rate. Instead, it was proposed by van Erven et al. [133]
to optimize an adaptive auxiliary function. Let us consider θ̂ such that ℓt(θ̂) and ∇ℓt(θ̂) have
been observed and γ > 0, we define the directional derivative function :

ℓ̂t,γ(θ) := ℓt(θ̂) +∇ℓt(θ̂)(θ − θ̂) +
γ

2

(
∇ℓt(θ̂)(θ − θ̂)

)2
, θ ∈ Θ , t = 1, 2, . . . . (2.7)

We prove that this function satisfies the directional derivative condition for a different constant
γ̂.
Lemma 3. Let γ > 0, Θ ⊆ Rd of diameter D > 0, θ̂ ∈ Θ and ℓt : Θ → R the log-likelihood
defined in Equation (2.2). Then, the function ℓ̂t,γ from (2.7) satisfies for every θ1, θ2 ∈ Θ :

ℓ̂t,γ(θ2) ⩾ ℓ̂t,γ(θ1) +∇ℓ̂t,γ(θ1)(θ2 − θ1)

+
γ

2(1 + γ̃∇ℓt(θ̂)(θ1 − θ̂))2

(
∇ℓ̂t,γ(θ1)(θ2 − θ1)

)2
,

and thus, the function ℓ̂t,γ has directional derivative constant γ̂ with γ̂ := γ

2(1+γD||ℓt(θ̂)||)2
.

The proof of Lemma 3 is presented in Appendix B4. The idea of the algorithm is to use ONS
routine to optimize the functions ℓ̂t,γ = ℓ̂t,γ̃t , i.e., the auxiliary function with γ = γ̃t, which adapt
at each step according to the current optimal γt and the algorithm predictions θt.

In addition, to obtain an algorithm that is robust for the choice of the learning rate, we
propose an aggregation procedure which applies ONS and combines it with multiple choices of the
learning rate γ. To formalize this idea, we consider a grid Γ = {γi}i=1,...,K and E = {ϵi}i=1,...,K

such that ϵi = 1
(γiD)2 for all i = 1, · · · ,K. Then, at each iteration t = 1, . . . , n, and for each

i = 1, . . . ,K, we define γ̃it = max{γt/4, γi} and we aggregate ONS applied to (ℓ̂t,γ̃it)t=1,2,....
The aggregation is held by BOA algorithm of Wintenberger [138], which is a recursive procedure
that considers exponential weights with a second order refinement. The algorithm SurvONS is
described in Algorithm 1 and it is important to notice that the difference between SurvONS and
MetaGrad is the choice of the constant γ̃.

Aggregation methods allow us to avoid bad choices of γ and therefore, the convergency issues.
Let us remind that we consider the exponential model 1. We prove that the regret of Algorithm 1
is bounded.
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Algorithm 1 SurvONS

Input : (ℓt)t=1,2,..., D > 0, n ⩾ 1, grids Γ, E
Initialization : for each γk in Γ : θ0(γk) ∈ Θ, π0,k = 1

K , θ̂0 ∈ Θ, A−1
0 = E−11d

for iteration t = 1, . . . , n do

Update : θ̂t =
K∑

k=1

πt,k θt(γk)

Observe : ∇ℓt(θ̂t) =

N∑
i=1

−yitxi(ui) + rit

∫ ui∧t

τi∨t−1

exp(θ̂Tt xi(s))xi(s)ds

∇2ℓt(θ̂t) =

N∑
i=1

rit

∫ ui∧t

τi∨t−1

exp(θ̂Tt xi(s))xi(s)xi(s)
T ds

µt =
∇ℓt(θ̂t)

T∇2ℓt(θ̂t)∇ℓt(θ̂t)

||∇ℓt(θ̂t)||4

γt = 2
− 1

µt
log(1+µt||∇ℓt(θ̂t)||D)+||∇ℓt(θ̂t)||D

(||∇ℓt(θ̂t)||D)2

for γk ∈ Γ do
Observe : γ̃t = max{γt/4, γk}

∇ℓ̂t,γ̃t
(θt(γk)) = ∇ℓt(θ̂t)(1 + γ̃t∇ℓt(θ̂t)(θt(γk)− θ̂t))

Recursion :

A−1
t = A−1

t−1 −
A−1

t−1∇ℓ̂t,γ̃t
(θt(γk))∇ℓ̂t,γ̃t

(θt(γk))
TA−1

t−1

1 +∇ℓ̂t,γ̃t
(θt(γk))A

−1
t−1∇ℓ̂t,γ̃t

(θt(γk))T

θt+1(γk) = Projt

(
θt(γk)−

1

γk
A−1

t ∇ℓ̂t,γ̃t(θt(γk))

)
end for
Update : πt+1,· = πt exp

(
−Γ∇ℓt(θ̂t)

T (θ̂t − θt(Γ))− Γ2(∇ℓt(θ̂t)(θ̂t − θt(Γ)))
2
)

end for
return θ̂n

Theorem 3. Let n ≥ 1, (ℓt)t=1,...,n be the sequence of losses defined in (2.2), that are assu-
med to satisfy Assumption 1 and (DDC) with constants γt ∈ (0, 1/GD). Let K ⩾ 1 and
Γ ∈ (0, 1/(4GD))K . Then, Algorithm 1 with hyperparameters Γ and E = 1/(ΓD)2, satisfies
the regret upper-bound :

Regretn ⩽ min
γ∈Γ

{
2 log(K) + 5d log(n)

γ
+ γG2D2nγ

}
,

where nγ :=
∑n

t=1 1{γt < γ}, γ > 0.

This theorem provides a regret bound that proposes a trade-off between the bad choices of
γ and the frequency with which the algorithm selects γ over γt, thereby compensating for the
regret increment. The proof of Theorem 3 can be found in Appendix B4. Let us notice that this
analysis is also valid for MetaGrad algorithm [133], and Theorem 3, which was developed for the
survival losses (2.2), holds equally true for any loss satisfying Assumption 1 and (DDC).
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Tableau 2.1 – Regret bound orders (up to logarithmic factors) after n iterations of different
online optimization algorithms.

OGD ONS SurvONS ONS(γ̄)

Regret bound
√
n 1

min1⩽t⩽n γt
minγ

{
1
γ + γnγ

}
1
γ̄n

Figure 2.1 – Comparison of regret bound orders (up to logarithmic factors) for multiple online
methods using simulated data.

2.5.3 Theoretical regret bounds comparison

We show in Figure 2.1 the differences between the regret bound orders, in order to illustrate
the importance of the constant adaptation γ̃t in SurvONS, and the interest of the stochastic
setting. We compare the theoretical regret bound orders of ONS [65] with the optimal hyperpa-
rameter γt, OGD [145], SurvONS 1, and ONS with an average hyperparameter γ̄t =

∑t
s=1 γs,

representing the stochastic approach. The bounds are detailed in Tableau 2.1.

In this comparison, we omit constants and logarithmic terms. We estimate γt with SurvONS,
and we use these estimations to construct the bounds. The simulation framework for this expe-
riment is detailed in Section 2.6. The graph is presented in log-log scale.

Figure 2.1 traces the regret behavior of the different algorithms (see Tableau 2.1). Without an
explicit calculation of the stochastic constant, we show the interest of considering an average case
through plotting the average constant γ̄t. We observe that although in theory, the bound of ONS
appears better than the bound of OGD (O(log(n)/γ) v/s O(

√
n)), when γt goes to 0, the bound
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of ONS is not O(log(n)), but O(log(n)/mint γt). A similar finding in logistic regression has been
made rigorous by Hazan et al. [66] with the help of lower bounds matching O(log(n)/mint γt).
In practical applications, it is essential to consider more detailed analyses that remain robust in
scenarios where mint γt goes to 0, which is what we propose with SurvONS and the stochastic
approach.

2.6 Simulation experiments

In this section we present simulation results of our method 1. We considered a number of
individuals N = 10 000 and a number of iterations n = 1000. Then we sample a multivariate
random normal of dimension (N, d− 1) with d = 4 and mean vector and covariance matrix :

η :=

0
0
0

 , Σ :=

1 0 0
0 1 0
0 0 1

 .

We add an intersect column that transforms the matrix into one of dimension (N, d). This
matrix corresponds to the covariates information {xi}Ni=1, which does not depend on time. The
real parameter θ∗ is set randomly following a N (0, Id) distribution. We sample the arrival times
τi as a uniform between 0 and n and we simulate Ti and Ci following an exponential distribution
of rate exp(θ∗Txi),

Ti ∼ τi + exp(exp(θ∗Txi)), Ci ∼ τi + exp(exp(θ∗Txi)).

For more details on the common use of exponential distributions in survival analysis we refer
to Selvin [118]. We repeat this procedure 100 times, and the results are the average curves over
the 100 data simulations. Additionally, we consider two exponential grids for the aggregation
methods of size K = 10. First, we test a random grid, consider the SurvONS predictions θt for
t = 1, . . . , n , and define :

G := max
t=1,...,n

||∇ℓt(θt)|| .

This process is repeated multiple times to ensure the stability of G estimation. Second, we choose
10 equidistant points and then we generate the grids by considering the exponential of each point,
such that :

Γ1 := (1/
√
n, . . . , 1/4GD) , Γ2 := (1/GD, . . . , 10/GD) ,

where D is adjusted a posteriori such as D := 1.1||θ∗||. Throughout this section we compare the
results of the two choices of grid Γ1 and Γ2.

We observe in Figure 2.2 the distribution of the average γt estimations that we obtained from
SurvONS. The average for Γ1 is 1.24 and 1.64 for Γ2. The similarity between both estimations
elucidates the proximity of the graphs in Figure 2.1, which is unsurprising given that the direc-
tional derivative constant is inherent to the loss function and does not depend on the algorithm
or the selected grids.

We compare SurvONS, described in Algorithm 1, with the BOA-ONS proposed by Winten-
berger [138]. Additionally, we fit several ONS and OGD with constant learning rate equal to
each γ in the grid, and then we select the one that performs better to include in the comparison.

1. See the codes at the GitHub repository : https://github.com/camferna/
Online-Learning-Approach-for-Survival-Analysis

https://github.com/camferna/Online-Learning-Approach-for-Survival-Analysis
https://github.com/camferna/Online-Learning-Approach-for-Survival-Analysis
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Figure 2.2 – Density of γt estimation obtained by Algorithm 1, with Γ1 [left] and Γ2 [right]

Figure 2.3 – Cumulative negative log-likelihood comparison of different online methods with
hyperparameters in grid Γ1 [left] and Γ2 [right]

Remark that this procedure overestimates the performances of ONS and OGD. We show the
average cumulative difference between the negative log-likelihood of the estimations and the real
parameters in Figure 2.3.

In Figure 2.3, we observe that SurvONS (in purple) does not outperform BOA-ONS (in black)
with the Γ1 grid. However, the scenario changes with the second grid, Γ2, where SurvONS proves
to be more effective than the other methods. This unexpected result arises from the fact that the
Γ1 grid falls within the theoretical limits. Nevertheless, we observe a consistent improvement in
performance for all algorithms when considering a larger grid. This discrepancy could arise from
either an overestimation of the constant G or the presence of outlier points exhibiting extremely
large gradients. Nonetheless, given the similarity in the constant γt estimation across the two
grids, shown in Figure 2.2, we recommend opting for larger grids, ranging from 4 to 40 times the
theoretical bound of 1/4GD.

In addition, Figure 2.4 presents the quadratic error, where we consider the cumulative average
of the estimations. Specifically, given a sequence of algorithm predictions (θs)ts=1, the cumulative
average is defined as θ̄t := t−1

∑t
s=1 θs. Let us remind that the curves depicted represent the

average of 100 instances obtained from simulating 100 datasets. The figure is in log-log scale.

Figure 2.4 corroborates the result of Corollary 1, which establishes the convergence of the
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Figure 2.4 – Average quadratic error comparison of different online methods with hyperpara-
meters in Γ1 [left] and Γ2 [right]

estimations θt to the real parameter θ∗ when using the ONS algorithm. The findings of Winten-
berger in [139], which demonstrate the O(log(n)) stochastic regret of BOA-ONS, together with
the insights from Figure 2.4, suggest the potential to extend a similar corollary to both BOA-
ONS and SurvONS. Furthermore, Corollary 1 can be easily extended to BOA-ONS by replacing
the application of Theorem 2 with Theorem 4 from [139].

2.7 Conclusions

In this paper, we presented a detailed mathematical framework for online survival data, ana-
lyzing the regret of Online Newton Step and its sensitivity to the learning rate. Notably, we found
that tuning this parameter is challenging, and the regret bound is highly sensitive to its adjust-
ment. Our first contributions is introducing a stochastic setting to ensure that ONS achieves
logarithmic stochastic regret in the survival context. Additionally, we proposed an adaptive
method, SurvONS, which aggregates ONS with different learning rates. Adaptive methods, com-
monly used in first-order algorithms like AdaGrad [32] or Adam [79], offer a promising avenue for
enhancing second-order algorithms. Our approach leverages adaptive strategies to improve effi-
ciency and convergence, extending its applicability beyond the online survival domain. The regret
analysis of SurvONS strategically selects larger learning rates to address sub-optimal parameters.
In conclusion, aggregation methods enhance robustness in selecting algorithm hyperparameters ;
however, achieving and maintaining fast rates remains a non-trivial task.

Finally, in the simulation experiments, we compared two grid choices. Figure 2.2 shows that
γt estimations closely align within the grids, and the second grid produces values that do not
approach zero to the same extent as the first grid. Additionally, Figure 2.3 indicates that choosing
larger values for the learning rate grid accelerates convergence, suggesting the preference for larger
grids.
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Chapitre 3
Experimental Comparison of Ensemble
Methods and Time-to-Event Analysis
Models

Abstract

Time-to-event analysis is a branch of statistics that has increased in popularity during the
last decades due to its many application fields, such as predictive maintenance, customer churn
prediction and population lifetime estimation. In this paper, we review and compare the perfor-
mance of several prediction models for time-to-event analysis. These consist of semi-parametric
and parametric statistical models, in addition to machine learning approaches. Our study is car-
ried out on three datasets and evaluated in two different scores (the integrated Brier score and
concordance index). Moreover, we show how ensemble methods, which surprisingly have not yet
been much studied in time-to-event analysis, can improve the prediction accuracy and enhance
the robustness of the prediction performance. We conclude the analysis with a simulation ex-
periment in which we evaluate the factors influencing the performance ranking of the methods
using both scores.

3.1 Introduction

Time-to-event analysis is popular in medical research for predicting the lifetime of popula-
tions. It is also widely used in many fields in order to predict the time until a certain critical event
occurs, which may be the recurrence of a disease, the customer churn in business management
and operation research, recidivism in social science and psychology, the failure of machines in
industrial engineering, etc. One of the most important characteristics of time-to-event analysis,
which makes a significant difference from classical regression problems [144], [7], is a phenome-
non known as censorship, and specifically, in this paper we treat the problem of right censorship.
Right censorship arises from the fact that a study may finish before all the samples reach the

43
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critical event or because some of the individuals have withdrawn from the study before it ends.
As a result, not all the samples may have reached their failure time during the observed period,
such that there will be a subset of them whose observed time will represent a lower bound for
the critical time.

Many different models have been proposed in order to predict survival times. One of the most
widely used ones was proposed by Cox [24] in 1972 ; this is a semi-parametric model which is
composed of an unknown baseline hazard function that depends on the time and the effect of
the covariates given by an exponential function. Extension of the Cox model can be found in
Therneau and Grambsch [126]. In addition, generalized linear models (GLMs) have also played a
crucial role in time-to-event analysis, providing a flexible framework for modeling survival data by
relating the mean of the response variable to the linear predictors through a link function (more
details in [97]). Later, other parametric techniques were proposed such as Aalen additive model
[1], Weibull AFT [136] and the log-normal model [113]. Recently, machine learning methods have
attracted much attention and many non-parametric model-based machine learning techniques for
time-to-event analysis have been proposed, such as gradient boosting Cox [112], random survival
forest [72] and survival support vector machine [107]. Later, deep neural network-based models
such as DeepSurv [77], DeepHit [87] and DNNSurv [142] have significantly advanced the field.
For more details on classical machine learning methods for time-to-event analysis, review Wang
et al. [135], and more details on deep learning-based methods, refer to Wiegrebe et al. [137]. In
this paper, we present a comparison of several of these models through two different scores, the
concordance index [60] and the integrated Brier score [47], and among different types of data sets
with the objective to study how the different models behave and compare their effectiveness.

Ensemble methods are learning algorithms that combine different models by optimizing cer-
tain weighting procedures in order to obtain a predictor that will be the combination of multiple
learners. One of the main advantages of ensemble methods is the fact that they can inherit the
good properties of each of the predictors and use them whenever it is most suitable, for example,
if we have a dataset that behaves better for a particular type of models, then the weighting
procedure will privilege this type of models and thus leads to an increment of accuracy that
is independent of the chosen dataset. Note that this can be extended to time-varying weigh-
ting by which we can also take advantage of the fact that there are some models that vary
their performance over time or over the distribution (see [10]), where we ponder differently the
methods that are better for predicting distribution tails and the ones for predicting the center
of the distributions. Ensemble methods are well known and used in many applications of data
analytics and machine learning [141]. Classical examples in time-to-event analysis include tree-
based models such as random survival forest [72] and the adaptive kernel survival estimator [20],
boosted models such as gradient boosting Cox [112] and XGBoost [21], as well as combinations
and variations of both models, like those studied by Hothorn et al. [70]. These methods aim to
combine weak learners to enhance robustness, but they are not tailored to perform aggregation
of generic models from different sources. This technique has not yet been widely explored in
time-to-event analysis. Van der Laan et al. [132] proposed a method called the "Super Learner,"
which uses cross-validation techniques to create a weighted combination of multiple learners.
This method was adapted to survival data by Golmakani and Polley [50], under the assumption
that the individual algorithms are based on proportional hazards. Additionally, Debray et al. [30]
studied model averaging and stacked regressions of existing clinical prediction models (CPM),
particularly in scenarios with limited validation data. Their study is confined to the clinical field
and aims to leverage well-known pre-trained clinical models.

The existing literature lacks clean performance comparison between time-to-event analysis
methods and how to calibrate parameters. Van Wieringen et al. [134] reviewed the performance
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of different methods applied to the particular case of gene expression data. The methods that
are able to handle this type of problem, where the number of features exceeds by far the number
of samples, are very specific and do not necessarily represent the general case of survival analysis
problems.

Contributions. The main contribution of this paper is to give a detailed comparison of
different and diverse time-to-event analysis methods using two widely used scores. The above
gives us a detailed comparative study of the time-to-event analysis models and their different
advantages and disadvantages. To this end, we compare the performance using three datasets
and we study the impact of optimizing the hyperparameters through a randomized search. We
observe that the method ranking varies across each dataset, making it challenging to select the
most appropriate model without prior knowledge. To address this issue, we propose combining
these different methods to enhance robustness across datasets. This is carried out by optimizing
the parameters of a convex combination of the methods described in Section 3.2.1, such that
the integrated Brier score is minimized. Finally, we conduct simulation experiments aimed at
deepening insights from the dataset comparison and studying the factors influencing method
performance ranking. We generate data using three different techniques under three scenarios :
increasing the number of samples, reducing the number of features, and augmenting the percen-
tage of censorship.

Paper outline. First, we present the preliminaries and definitions for our study, together with
the implemented methods : Cox proportional hazard, Gradient boosting Cox, Random survival
forest, Weibull accelerated failure time, Aalen’s additive and DeepSurv. In Section 3.3, we exhibit
our implementation of ensemble methods. In Section 3.4, we present the three datasets (Primary
biliary cirrhosis, German breast cancer and Telecom churn) used for our study. Section 3.5 shows
the comparison of the various techniques and their numerical results. Besides, we show the
performance of the ensemble method. In Section 3.6, we present the simulation experiment and
finally, Section 3.7 contains some concluding remarks.

3.2 Preliminaries

The main objective of time-to-event analysis is to estimate the distribution of survival times.
Given a set of N subjects with its respective vector of covariates of dimension d, xi = {x1

i , . . . , x
d
i } ∈

X , i ∈ {1, . . . , N}, we assume that xi follows the distribution of a random variable Xi. Let Ti

and Ci be a non-negative random variable denoting the survival and censored time, respectively.
Then, we define the observed time as Yi = min{Ti, Ci} and we will write ∆i = 1{Ti ⩽ Ci}
for the survival indicator. Under these conditions, a subject of the dataset will be described by
(xi, yi, δi) ∈ X × R × {0, 1} assumed to be a realization of the random variable (Xi, Yi,∆i). In
addition, we define the set of individuals at risk as R(t) = {i ∈ {1, . . . , N} : yi > t}. Let us
remark that we consider that all the individuals are present at time t = 0. Then, the probability
to survive at time t for subject i of the dataset is given by :

S(t|xi) = P(Ti > t|Xi = xi).

In order to estimate the survival probability, many parametric and semi-parametric models
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assume a particular shape of the hazard function, which is defined for all t > 0 as :

h(t|xi) =− ∂

∂t
log(S(t|xi))

= lim
dt→0

P(t ⩽ Ti < t+ dt|Ti ⩾ t,Xi = xi)

dt
.

We can retrieve the survival probability function by integrating the exponential of the hazard
function

S(t|xi) = exp

−
t∫

0

h(u|xi)du

 .

Each model will give us an estimator Ŝ of the survival probability S. In addition, we define
the mortality risk of an individual by a function R : X → R+, which will be used later to compute
the concordance index. The mortality risk must satisfy R(xi) > R(xj) if P(Ti < Tj) > 1/2, i.e.
if individual i has a higher mortality risk than individual j. Note that R is not uniquely defined
and only the ranking matters. Each model will define and estimate (by providing a function R̂)
the mortality risk differently and we give the details separately in Section C2. In addition, to
measure the goodness of fit of each model, we consider two scores. Concordance Index [60] is
a rank score that measures the ability of the model to correctly provide a reliable ranking of
the survival times. And secondly, the integrated Brier score [47], which measures the calibration
of the models by averaging the square distances between the observed survival status and the
predicted survival probability. We give more details about both scores in Section C1.

3.2.1 Methods and their implementation

We consider six methods in our study. These are Cox proportional hazard [24], gradient
boosting Cox [112], random survival forest [72], Weibull AFT [136], Aalen additive [1] and Deep-
Surv [77]. There exist many other methods for survival analysis, such as life tables [26], different
versions of cox regressions [12], [62], linear regressions [127], Bayesian network classifier based me-
thods [43] and support vector machine [78], see [135] for more details. Nevertheless, we choose the
six methods mentioned above because they are the most popular and widely used techniques,
they include parametric, semi-parametric and machine learning approaches, and on the other
hand, the diversity of their structure is very relevant and has a key role in ensemble methods.
Note that in our implementation and the comparative study, we adopted the methods from the
standard libraries : Scikit-survival [106], Lifelines [29] and PySurvival [41]. More details about
the methods can be found in Section C2.

3.3 Ensemble Methods

The main objective of ensemble methods is to combine the predictions of multiple estimators
in order to improve generalizability and robustness and to obtain more reliable and accurate
predictions. One has to derive effective combination rules or design powerful algorithms to boost
performance. Ensemble methods consist of both empirical [58] and theoretical [116] approaches.
It can be proved that weak learners can be boosted into strong learners through ensemble me-
thods by combining multiple estimators. Applications of ensemble methods [143] can be found
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in many fields, such as computer vision, computer security, aided medical diagnosis, credit card
fraud detection, weather forecasting, predictive maintenance, etc.

There are three reasons why it is possible to construct very good ensemble methods [31].
First, from a statistical point of view, a learner algorithm can be seen as a procedure to identify
the best hypothesis space H. When there is a small amount of data available, the algorithm may
find many spaces that fit with the same accuracy. By aggregation, ensemble methods, however,
can reduce the risk of choosing the wrong learner. Secondly, ensemble methods have computatio-
nal advantages because learning algorithms can get stuck in local optimum solutions, and even
when there is enough training data, it can still be challenging to find the best hypothesis. This
issue can be addressed by running multiple learners from different starting points. Thirdly, in
most applications of machine learning, the truth cannot be represented by any of the hypotheses
in the H space. However, by forming a weighted version of the elements of H, it is possible to
expand the space of representable functions.

In this paper, we use a gradient descent optimization algorithm to set the parameters of the
convex combination of the six methods described in Section 3.2.1. Assuming that we have K
procedures to estimate the survival probability function, let us set Ŝk as the estimator proposed
by the k-th method. We want to find the parameters λk ⩾ 0 such that

Ŝ(t|X) =

K∑
k=1

λkŜk(t|X),

minimizes the integrated Brier score provided that
∑

λk = 1. In order to do this, we optimize
the weights λk in a subset of the data D of size n. We consider the gradient vector as the descent
direction, which follows the definition of integrated Brier score (see Section C1.2), the j-partial
derivative is given by :

∂IBS(Ŝ,D)

∂λj
=

1

τn

n∑
i=1

τ∫
0

Wi(t) · 2
(
1{yi > t}

−
K∑

k=1

λkŜk(t|xi)
)
· (−Sj(t|xi)) dt. (3.1)

The gradient descent algorithm is presented in Algorithm 2.

Algorithm 2 Exponential Gradient Descent
1: Require : T number of iteration, η > 0 learning rate
2: Initialization : λ(0) = (1/K, . . . , 1/K)
3: for each iteration t = 1, . . . , T do
4: Define Zt =

∑K
k=1 λk(t) exp(−ηDfk),

5: where Dfk = ∂IBS(Ŝ,D)
∂λk

defined in (3.1).
6: Update λk(t+ 1) = λk(t) exp(−ηDfk)

Zt
for all k = 1, . . . ,K.

7: end for

Here, we consider η a constant learning rate with initial λ equitably distributed. The iteration
process is repeated until it reaches a maximum number that is set as 10000. We estimate the
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optimal aggregation weights each time when we fit the methods in a cross-validation process of
five folds. It is important to mention that using a gradient descent algorithm for optimizing the
parameters is possible thanks to the fact that the integrated Brier score function is convex, which
is not the case for the concordance index.

3.4 Datasets

We study three different datasets, whose general properties are summarized in Tableau 3.1.

Tableau 3.1 – Characteristics of the datasets used in our study.

Samples Features Censored % Censorship

PBC [125] 276 17 165 59.8 %
GBCSG2 [117] 686 8 387 56.4 %
TLCM [71] 7043 19 5174 73 %

3.4.1 Primary Biliary Cirrhosis (PBC)

Mayo Clinic Primary Biliary Cirrhosis dataset was made available by Therneau and Grambsch
[125] and it is for studying the effects of the drug D-penicillamine on the lifetime of patients with
PBC. This dataset has 276 samples and 17 covariates such as age, presence of ascites, cholesterol,
etc. There are 165 patients who did not die at the end of the study (59.8%) and that corresponds
to censored data.

3.4.2 German Breast Cancer Study Group 2 (GBCSG2)

German Breast Cancer Study Group was made available by Schumacher et al. [117] and it is
used for studying the effects of hormone treatment on breast cancer recurrence. The dataset has
686 samples and 8 covariates, such as age, hormonal therapy, menopausal status, etc. There are
387 patients who did not get cancer again (56.4%), corresponding to censored data.

3.4.3 Kaggle Telco Churn (TLCM)

Kaggle Telco Churn dataset was made available in 2008 by Kaggle and it is a sample dataset
from IBM [71]. It is used for studying the different causes of customer churn in a fictional
telecommunication enterprise. The dataset has 7043 samples and 19 features such as gender,
partner, dependents, phone service, etc. This dataset has 5174 clients who have not churned at
the end of the study (73%) and that corresponds to censored data.

3.5 Comparison Results

In the following section, we compare the six methods described in Section 3.2.1 through
concordance index and integrated Brier score, respectively. Besides, we compare their results



3.5. Comparison Results 49

with that of the deployed ensemble method. For each dataset, the scores were computed 25
different times corresponding to 25 partitions (training/validation) of the dataset. This number
was chosen arbitrarily in order to maintain a reasonable number of iterations without making
the process too computationally expensive. Results are shown by the box plots below. Note that
among Figure 3.1a to 3.4, there are some methods with their names marked with an asterisk and
their boxes colored by red, which is to indicate the implementation of a randomized search of
the parameters conducted by a cross-validation process, whereas the unmarked (and blue) cor-
responds to adjust the method with the default parameters described in Section C2. In addition,
the machine learning techniques were bolded to differentiate them from the semi-parametric and
parametric methods.

3.5.1 Concordance index comparison

(a) Box plot comparison across multiple dataset
splits using the concordance index on the primary
biliary chirrosis dataset.

(b) Box plot comparison across multiple dataset
splits using the concordance index on the German
breast cancer dataset.

Figure 3.1

Figure 3.2 – Box plot comparison across multiple dataset splits using the concordance index
on the telecom churn dataset.

Figure 3.1a shows the concordance index comparison under the PBC dataset. The methods are
shown in decreasing order of their obtained mean score. Note that the mean score value is marked
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by the red triangle in each box plot. We can observe that Weibull AFT with the randomized
search of the parameters (denoted by Weibull AFT∗) is the method that outperforms the others,
followed by random survival forest with the randomized search of the parameters (RSF∗), random
survival forest (RSF) and Cox proportional hazard with the randomized search of the parameters
(Cox PH∗). We can also see that the randomized search of the parameters works well for all the
methods (see Weibull AFT∗ vs. Weibull AFT, RSF∗ vs. RSF, Cox PH∗ vs. Cox PH, GBC∗ vs.
GBC, and Aalen∗ vs. Aalen, respectively). In particular, Weibull AFT∗ and Cox PH∗ obtain an
increment of 2.9% and 2.5% against Weibull AFT and Cox PH, respectively.

Figure 3.1b shows the concordance index comparison result under the GBCSG2 dataset. Here,
the method with the best performance is the random survival forest (RSF), followed by gradient
boosting Cox (GBC). Unlike the result under the PBC dataset, we cannot observe an increment
in the performance when implementing the randomized search of the parameters on RSF, GBC
and the other, except for Cox proportional hazard, implementing the randomized search of the
parameters (i.e., Cox PH∗) has a slight increment of 0.7%. Figure 3.2 shows the concordance
index comparison result under the TLCM dataset. We see that the Cox proportional hazard
method (both Cox PH∗ and Cox PH) outperforms the others, followed by Weibull AFT, whose
performance is close to Cox’s. In this dataset, we observe that the randomized search does not
contribute significantly to improving the performance of the methods, except for the case of
random survival forest (RSF) where there is a 2% increment by RSF∗ when compared with RSF.
Weibull AFT∗ and DeepSurv* were not considered in the graph because they underperformed
compared to the other models, and in addition, their performance value was out of the bounds
of the figure.

In general, we can observe that for the first two datasets (PBC and GBCSG2), machine
learning methods (RSF, RSF*, GBC, GBC* and DeepSurv) perform very well, while parametric
methods (Cox PH, Weibull AFT and Aalen additive) are left behind.

This is not the case for the TLCM dataset where Cox HP and Weibull AFT are leading. In
addition, we would like to remark the fact that the performance of each method, and its ranking,
depends on the dataset. Some methods will perform better for certain types of datasets than
others. This may be due to the different characteristics of the datasets, such as the number of
covariates, the percentage of censorship, and the total number of observations, together with
the assumptions about the hazard function structure and how these assumptions fit the real
distribution of each dataset.
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3.5.2 Integrated Brier score comparison

(a) Box plot comparison across multiple dataset
splits using the integrated Brier score on the pri-
mary biliary chirrosis dataset.

(b) Box plot comparison across multiple dataset
splits using the integrated Brier score on the Ger-
man breast cancer dataset.

Figure 3.3

Figure 3.4 – Box plot comparison across multiple dataset splits using the integrated Brier score
on the Telecom churn dataset.

Figure 3.3a shows the integrated Brier score comparison under the PBC dataset. In this
figure, as in the case of the concordance index, the methods are displayed in the increasing order
of performance, which in this case corresponds to decreasing integrated Brier score. Here, we
observe that DeepSurv outperforms the other methods (for the IBS score, the lower the better),
followed by DeepSurv∗ and RSF. We see that there is a clear predominance of machine learning
techniques (DeepSurv, DeepSurv*, RSF and RSF*). Similarly, for the GBCSG2 dataset, in Figure
3.3b, DeepSurv outperforms the other methods, followed by DeepSurv∗, RSF∗, and RSF. Note
that Aalen additive has a performance of 23% worse than that of RSF. In this case, we can also
say that machine learning techniques (DeepSurv, DeepSurv*, RSF and RSF*) have better results
than the other methods.

Figure 3.4 shows the integrated Brier score comparison under the TLCM dataset. Contrary
to the previous cases, Cox PH method is the lead. In Figure 3.4, we can appreciate a slight
predominance of parametric approaches (Cox PH, Cox PH* and Weibull AFT). We can see that
when the amount of censored data is larger, machine learning techniques (DeepSurv and RSF)
do not outperform the classical parametric methods.
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Finally, we would like to remark that for a given dataset the results for the concordance index
and integrated Brier score differ. This is not surprising in this case due to the nature of the two
scores, that is very different in between them. Some models can give good ranked results while
calibrating very poorly and vice-versa. Discussions about how to choose an appropriate score
have taken place in the past and there is no consensus in the community [134].

3.5.3 Ensemble methods comparison

In the following, we show the result of our deployed ensemble method. Each aggregation is
set according to Section 3.3 for optimizing the parameters of a convex combination of the six
methods (described in Section 3.2.1).

(a) Box plot comparison of the ensemble method
using the integrated Brier score across multiple da-
taset splits on the primary biliary cirrhosis dataset.

(b) Box plot comparison of the ensemble method
using the integrated Brier score across multiple da-
taset splits on the German breast cancer dataset.

Figure 3.5

Figure 3.6 – Box plot comparison of the ensemble method using the integrated Brier score
across multiple dataset splits on the Telecom churn dataset.

Figure 3.5a shows the integrated Brier score comparison result under the PBC dataset. We
observe that the ensemble method through gradient descent outperforms DeepSurv by 3%. Simi-
larly, in Figure 3.5b for the GBCSG2 dataset, we find that the ensemble method outperforms the
best predictor among the six and obtains a performance improvement of 1.6%. Finally, Figure
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3.6 shows the integrated Brier score comparison result under the TLCM dataset. The ensemble
method does not improve the performance, whereas the best estimator is the Cox PH which has
a performance of 3.8% better than that of the ensemble method.

In addition, we show the overall performance of each method by averaging the scores obtained
by each under the three datasets so as to estimate their overall performance.

Figure 3.7a shows the comparison among all the techniques, including the deployed ensemble
method. We see that, in the overall score, the ensemble method outperforms the best predictor
by 3.4%. In Figure 3.7b, we show the result obtained by averaging the best scores obtained by the
six methods (described in Section 3.2.1) in each of the three datasets (they are DeepSurv for PBC
and GBCSG2 and Cox PH for TLCM, see Figures 3.3a, 3.3b and 3.4, respectively) to obtain
a global score, which corresponds to the average of the best scores among the six algorithms
without using the ensemble method. We similarly average the second best scores obtained by the
six methods among the three datasets. Finally, this is also applied to the third best scores in the
same way. The results are labeled as “First”, “Second” and “Third” in Figure 3.7b, respectively.
We see that the ensemble method improves by 1% the performance of the ”First” score and has
shown its effectiveness.

(a) Box plot comparison across multiple dataset
splits using the integrated Brier score comparison
among the three datasets.

(b) Box plot comparison across multiple dataset
splits using the integrated Brier score overall com-
parison among the three datasets.

Figure 3.7

3.6 Simulation Experiments

To deepen the insights from Section 3.5, we conducted experimental simulations with the
goal of comparing the ranking of the methods under different dataset configurations ; thus, to
understand why some methods perform better than others. The first two methods were based on
R libraries, coxed [59] and simsurv [17], which we chose due to their user-friendly functionality.
Specifically, we appreciate coxed for its ability to easily specify the percentage of censorship,
and we value simsurv for its capability to generate data from a variety of parametric survival
distributions not limited to the Cox model. In both simulation cases we assume a particular
shape of the hazard function, Cox proportional hazards and Weibull AFT respectively. The
third method was developed by us following the logic of the truck dataset from O. Grisel and V.
Maladiere [54], with the objective of complexifying the distribution from which we sample the
data. We give a further explanation in Section 3.6.1. This method was carried out in Python. Let
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us note that we chose three different distributions to sample data, each yielding a distinct dataset.
The presented results are the averages obtained from 100 simulations. We do the comparison using
the concordance index, and a similar analysis is presented in Section 3.6.5 using the integrated
brier score.

3.6.1 Python dataset simulation

Following the truck dataset simulation from [54], we first generate a specified number of
features d for each of the N individuals. These features include normally distributed N (1, 0.3)
values, uniform U(0, 1) values and categorical features of 3 categories. Next, we define three
types of failure, as mentioned in [54] : initial assembly failure, operation failure and fatigue
failure. Although our method aims to be more general than the truck problem, we maintain
the distributions specified in the cited reference. Each type of failure is modeled by a different
Weibull curve with parameter λ. The first type of failure has a decreasing hazard with λ = 0.003,
while the other two types have hazard rates that increase, with λ = 3 and λ = 6, respectively.
The influence of the features on each of the failure types will vary in each experiment, depending
on the number of features considered. To continue, we sample events of the three types for each
individual and we choose the first one that occurs, or none if no event has taken place (censored
case). Finally, we incorporate non-informative uniform censoring, where the parameters of the
uniform distribution vary for each simulation case. The length of the uniform interval is what
provides us with control over the percentage of censorship 1.

3.6.2 Number of samples

In this section, we compare the behavior of the methods as the number of samples increases.
We consider 12 features and 50% of censorship. We vary the number of samples over a grid in
between 50 and 2000 to study the impact of the number of samples in the performance of the
different methods. The results are presented in the following figures.
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Figure 3.8

1. The codes containing all the dataset simulation can be found in the repository : https://github.com/
camferna/Ensemble-Methods-and-Time-to-Event-Analysis-Models

https://github.com/camferna/Ensemble-Methods-and-Time-to-Event-Analysis-Models
https://github.com/camferna/Ensemble-Methods-and-Time-to-Event-Analysis-Models
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Figure 3.9 – Concordance index comparison of the increasing sample size simulation with
Python.

We observe in Figures 3.8a, 3.8b, and 3.9 that the concordance index improves as the num-
ber of samples increases. Additionally, we observe in Figure 3.8a that Cox proportional hazard
consistently outperforms the other methods, regardless of the number of samples. Subsequently,
the order is not very clear, but random survival forest and gradient boosting consistently show
lower performance. In Figures 3.8b and 3.9, we observe a consistent outperformance of Cox pro-
portional hazards and Weibull AFT, closely followed by Aalen additive hazards. Random survival
forest and gradient boosting underperform compared to the other methods in both figures. In
conclusion, the ranking of the models performance appears to depend on the shape of the un-
derlying distribution used to sample the event times and not on the number of samples of the
dataset.

3.6.3 Number of features

In this section, we compare the behavior of the methods as the number of features decreases.
With a fixed 50% of censorship and 1000 samples, we start the analysis with 20 features and
progressively remove one feature at each step. The results are presented in the following figures.
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Figure 3.11 – Concordance index comparison of the decreasing number of features simulation
with Python.

We note in Figures 3.10a, 3.10b, and 3.11 that the concordance index improves as the num-
ber of features increases. This behavior align with our expectations since the initial model is
constructed with 20 features, and the subsequent removal of features results in a reduction of
information. Moreover, we observe in Figure 3.10a that, as in Figure 3.8a, Cox proportional
hazard consistently outperforms the other methods, regardless of the number of features. The
same holds for Figure 3.10b and 3.11, where the best performance is shared by Cox proportional
hazard, Weibull AFT, and Aalen additive hazards. Following the conclusion of Section 3.6.2, the
ranking of the models depends mainly on the shape of the distribution used to generate the data,
rather than on the number of features.

3.6.4 Percentage of censorship

In this section, we compare the behavior of the methods as the percentage of censorship
increases. We fix the number of samples at 1000 and the number of features at 12. The results
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are presented in the following figures.
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Figure 3.13 – Concordance index comparison of the increasing percentage of censorship simu-
lation with Python.

In Figure 3.12a, we observe a decline in performance as the percentage of censorship increases.
This is in line with the notion that higher levels of censorship result in reduced available informa-
tion, consequently leading to diminished performance. However, a contrasting pattern emerges
in Figure 3.12b and 3.13, where we actually observe an improvement in performance towards the
end of the curves. We believe that this phenomenon is attributed to a bias in the concordance
index when the percentage of censorship is high. One solution to address this issue is presented
by Uno et al. [130], where they introduced a weighted version of the score. In addition, we ob-
serve in Figure 3.12a that Cox proportional hazards outperforms the other methods, followed
by Weibull AFT and Aalen additive. This same pattern is evident in Figures 3.12b and 3.13,
where these three models lead in terms of performance. Notably, the ranking of the methods re-
mains consistent even as the percentage of censorship increases, reinforcing the conclusion from
the previous sections. The primary factor influencing the performance change of the methods is
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the congruence between the model assumptions and the actual distribution of event times, with
improved fit leading to better performance.

3.6.5 Integrated Brier score

In this section, we simulate data using three different techniques. The first set of events is
generated by sampling a Cox proportional hazards model, the second by following a Weibull
distribution, and the third involves a combination of Weibull distributions. The objective is to
compare how the ranking of the methods varies across three experiments. Thus, to understand
how different data characteristics can impact the performance of the methods. These findings
align with those presented in Section 3.6, with the distinction that we assess performance using
the integrated Brier score.

Number of samples

The first experiment consists on evaluating the performance of the models as the number of
samples increases from 50 to 2000.
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Figure 3.15 – Integrated Brier score comparison of the increasing sample size simulation with
Python.

We observe in Figures 3.14a, 3.14b, and 3.15, as discussed in Section 3.6.2, that the per-
formance improves as the number of samples increases. Furthermore, it is noteworthy that the
hierarchy of the models remains relatively stable as the number of samples increases. Specifically,
Cox proportional hazards outperforms the other methods, with DeepSurv as the second-best per-
former. This reaffirms the conclusion made in Section 3.6.2 that the models’ performance order
is independent of the sample size but instead depends on the matching between the underlying
assumptions and the dataset real distribution shape.

Number of features

The second experiment consists on evaluating the performance of the models as the number
of features decreases from 20 to 1.
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Figure 3.17 – Integrated Brier score comparison of the decreasing number of features simulation
with Python.

We observe in Figures 3.16a, 3.16b and 3.17 a slight increase in performance as the number
of features increases. The most significant change occurs with Random Survival Forest, which
exhibits very poor performance compared to the other methods when the number of features
is small but becomes competitive as the number of features increases. This is because random
survival forest relies on the diversity and richness of features to make accurate predictions. In
addition, in Figures 3.16a and 3.16b, we observe that the Aalen additive model does not align
with the trend of the other methods, as its performance worsens with an increasing number
of features. This could be due to the challenge posed by the additive linearity assumption in
capturing the true underlying relationship between covariates and survival outcomes. Finally, we
observe that the performance of the Weibull AFT model improves relatively in Figures 3.16b
and 3.17 compared to Figure 3.16a. This phenomenon occurs because both simulations, those
conducted by the simsurv library and our method implemented in python, are based on the
Weibull distribution.

Percentage of censorship

The third experiment, as presented in Section 3.6, consists on increasing the percentage of
censorship from 10% to 80%.

We observe in Figures 3.18b and 3.19 an irregular increase in IBS up to 30% and 60% of
censorship, respectively. This corresponds to the intuitive expectation that higher censorship rates
should lead to poorer performance. However, when the percentage of censorship is high, as can
also be seen across the entire curve in Figure 3.18a, we observe an improvement in performance.
This phenomenon might be attributed to the distribution of censorship. Censored individuals
contribute to the Brier score only until their observed time. Therefore, if their observed time
occurs at the beginning of the observation period, their contribution to the score is minimal.
Consequently, if there is a significant percentage of censorship, the Brier score risks being small.
Additionally, we observe that there is no significant variation in the hierarchy of the models.
In Figure 3.18a, Cox PH and DeepSurv consistently maintain the lead throughout the entire
experiment, while in Figures 3.18b and 3.19, Cox PH and Weibull AFT remain at the forefront.
This corroborates the conclusion drawn in the previous sections, where we found that the main
factor determining the ranking of performance is the underlying distribution of the data, rather
than the size of the dataset or the percentage of censorship.
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simulation with Python.

3.7 Conclusions

This paper presents an extensive analysis of different survival methods applied to three data-
sets and compared by two scoring rules. The study shows how diverse a single method’s perfor-
mance is when changing the measure of comparison and when it is applied to datasets of different
distributions, sizes and percentages of censorship. We propose a straightforward aggregation of
methods of different natures, parametric, semi-parametric and machine learning, that assume
diverse shapes of the hazard function allowing the ensemble model to gain in robustness with
respect to each single predictor. This can be observed in Figure 3.7a by the outperformance
of the assemblage measured by an overall score that is independent of the dataset. Finally, we
present simulation experiments with the objective of studying which dataset characteristics have
the most significant influence on the performance of the models. This analysis leads us to the
conclusion that the proximity of the model assumptions to the real event distribution is a de-
termining factor in performance. Further research could go in the direction of complexifying the
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combination algorithm by considering time-varying weightings and more sophisticated optimi-
zation procedures. Another direction could be to find theoretical guarantees for the integrated
Brier score of the ensemble method and possibly in a stochastic setting.



Chapitre 4
Predicting Employee Attrition with
Survival Analysis

Abstract

Predicting employee attrition presents a significant challenge for companies. By understanding
the complex interactions among factors that influence an employee’s decision to leave, companies
can mitigate future turnover and retain a valuable workforce. We propose using survival analysis
techniques to predict employee attrition. This approach is well-suited to address the high level
of right censoring, where a significant portion of employees have not left the company by the
end of the data collection period, leading classical tabular data algorithms to overestimate or
underestimate attrition times. We evaluate the performance of both parametric and machine
learning methods, comparing them using various metrics. Furthermore, we investigate the impact
of employee characteristics on attrition time distributions through two distinct approaches.

4.1 Introduction

Employee attrition is a big challenge to business continuity and growth. The ability to predict
when an employee is likely to leave can offer invaluable insights for human resource strategies,
allowing proactive measures to improve retention and maintain organizational stability. Addres-
sing this issue involves understanding the dynamics and causes of employee turnover, assessing
the impact attrition has on the organization, and identifying effective strategies to mitigate its
effects [101]. Our focus is on the initial step : comprehending the dynamics of employee attrition,
including predicting when employees are more likely to leave and identifying the most important
factors in this prediction, in order to implement preventative actions promptly.

Many approaches have been developed to study employee turnover. Bennett et al. [9] explored
the variables linked to employee dropout using hierarchical multiple regression analysis. Alao D.
and Adeyemo A.B. [5] introduced classification decision trees for predicting employee attrition.
Further contributions by Ajit P. [4] and Frye B. et al. [45] incorporated machine learning tech-
niques such as PCA, k-NN, Random Forest, and Logistic Regression to refine attrition prediction
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models. Most recently, Guerranti F. and Dimitri G.M. [55] integrated an interpretability analysis,
offering deeper insights into the predictive models.

Leveraging these varied approaches, survival analysis stands out as a branch of statistics
that aims to find the time until a certain critical event occurs, such as employee departure. An
important characteristic of survival analysis is that it addresses the problem of censoring. In
our work, we specifically focus on the issue of right censoring. Throughout this paper, we will
refer to it as censoring, however, it should be understood that we are always referring to right
censoring.

Censoring occurs when a portion of individuals has not experienced the event by the end
of the data collection period. This scenario is particularly relevant in some enterprises, where a
large number of employees have not left at the end of the data collection period, highlighting the
importance of selecting models that take censoring into account for reliable predictions.

In 1993, Morita, J. et al. [100] pioneered the use of survival analysis methods to investigate
employee turnover, setting the stage for numerous subsequent studies in this field. Notably,
Frierson, J. and Si, D. [44] proposed to use a Kaplan Meier estimator [76] to evaluate the risk
of attrition across different department groups. Furthermore, they used Cox proportional hazard
[24] to identify the individual departure probability. Later, Jin, Z. et al. [73] integrated random
forest [15] with random survival forest [72] to forecast employee attrition, demonstrating the
significant advantages of survival analysis in enhancing predictive performance.

We study the employee attrition by using diverse survival analysis techniques, from tradi-
tional models like Cox proportional hazards and Weibull AFT [89] to advanced machine lear-
ning methods including Gradient boosting [42], Gradient boosting cumulative incidence function
[54], Random Survival Forest, and DeepSurv [77]. We evaluate the performance of these mo-
dels through specific survival analysis scores, aiming to identify the most effective approach for
predicting employee turnover in a specific dataset.

4.2 Preliminaries

4.2.1 Notation

We consider a set of employees i ∈ {1, . . . , N}, each one associated to a characteristic vector
xi ∈ Rd. We define ti the attrition time of employee i, and ci its censored time, two non-negative
random variables. The time we observe is ui = min{ti, ci}, which will correspond to the attrition
time ti if the employee has left the company, and to ci if the employee is still with the company.
Additionally, we define the event indicator δi = 1{ti ⩽ ci}. The objective is to estimate the
survival probability function :

S(t|xi) = P(ti ⩾ t|xi) t ⩾ 0 .

This is commonly achieved by assuming a specific shape for the hazard function :

H(t|xi) = − ∂

∂t
log(S(t|xi)) t ⩾ 0 .

Further details on the estimation of event times distribution can be found in the work of Cox,
D.R. and Oakes, D. [25]
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4.2.2 Dataset

The dataset used in this study is confidential, and consequently, we will provide approximate
information. The data consists of the order of N = 10000 employees, of whom only around 3%
had left the company by the end of the study, resulting in a very high percentage of censoring
(97%). Each individual has 53 characteristics, including gender, age, country, salary range, among
others. These characteristics have been modified from the original data for privacy reasons, and
we will refer to them as variable 1, variable 2, etc., to maintain confidentiality. Our goal is to
identify the probability of each individual leaving, enabling timely actions to retain valuable
employees. The dataset has been anonymised for confidentiality reasons.

4.2.3 Metrics

Concordance index : We first consider the concordance index [60], which indicates how well
the model predicts the ordering of event times. To calculate the concordance index we first take
every pair in the test set such that the earlier observed time is not censored. Then we consider
only pairs (i, j) such that i < j and we also eliminate the pairs for which the times are tied unless
at least one of them has an event indicator value of 1. Next, we compute for each pair (i, j) a
score Ci,j which for ui ̸= uj is 1 if the subject with earlier time (between i and j) has higher
predicted risk (between i and j), is 0.5 if the risks are tied and 0 otherwise. For ui = uj and
δi = δj = 1 we set Ci,j = 1 if the risks are tied and 0.5 otherwise. If only one of δi or δj is 1 we
set Ci,j = 1 if the predicted risk is higher for the subject with δ = 1 and 0.5 otherwise. Finally,
we compute the concordance index as follows

1

|P|
∑

(i,j)∈P

Ci,j ,

where P represents the set of eligible pairs (i, j).

Concordance index IPCW : The concordance index becomes inaccurate when the per-
centage of censoring is high, as in our case. Therefore, it is natural to consider the concordance
index inverse probability of censoring weighting (IPCW), a weighted version of the concordance
index, proposed by Uno, H. et al. [130], which attempts to correct the bias introduced by cen-
soring. This score weights the contributions to the concordance index based on the estimated
probability of being uncensored. Let us consider Ŝ(t|xi), an estimation of the survival function,
the concordance index IPCW is computed as follows :

CIPCW =

∑
i:δi=1

∑
j:tj>ti

wiwj1{Ŝ(ti|xi) < Ŝ(tj |xj)}∑
i:δi=1

∑
j:tj>ti

wiwj

,

where wi and wj are the inverse probability of censoring weights for individuals i and j, that we
estimate using Kaplan-Meier.

Integrated Brier score (IBS) : Ultimately, recognizing that ranking scores have their
limitations, we also consider a calibration score, the integrated Brier score. This represents an
integrated version of the Brier score [16]. Let us consider Ŝ(t|xi) an estimation of the survival
function S(t|xi), we define SC(t|xi) = P(ci ⩾ t|xi) and for a given horizon time τ > 0, the
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integrated brier score will be :

IBS(Ŝ) =
1

N

N∑
i=1

∫ τ

0

Wi(t)(1{ui > t)− Ŝ(t|xi))
2 ,

where,

Wi(t) =
δi1{ui ⩽ t}
ŜC(ui|xi)

+
1{ui > t}
ŜC(t|xi)

.

It was proved by Gerds, T.A. and Schumacher, M. [47] that the IBS is a consistent estimator of
the mean square error.

We present the metrics precision, recall, and ROC curve in Appendix D1.

4.3 Score Comparison

We estimate the survival curves by splitting the dataset 25 times, allocating 75% of the data
for training and 25% for evaluating the performance metrics. As it was mentioned before, taking
censoring into account in the evaluation metrics is crucial to accurately reflect the underlying
distribution of survival times. To this end, we first consider the concordance index.
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Figure 4.1 – Box plot comparison across multiple dataset splits using the concordance index
[left] and concordance index IPCW [right] on the attrition dataset.

We observe in Figure 4.1 [left] the boxplot for the concordance index scores across the 25
splits, positioning GBC, GBCIF and RSF as the best models. Moreover, in Figure 4.1 [right] we
observe the weighted version of concordance index, designed specifically to avoid the bias of the
high censored cases. We notice a general drop of performance comparing to concordance index
values, and the increasing on the ranking of DeepSurv.
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Figure 4.2 – Box plot comparison across multiple dataset splits using the integrated Brier score
on the attrition dataset.

Figure 4.2 shows the performance using integrated Brier score (IBS) incrementing the sensiti-
vity to probability calibration. However, the outcomes align with those observed in the previous
figures. Primarily, there is a notable superiority of machine learning methods (GBC, GBCIF,
and RSF), and secondly, the ranking of the methods in relation to the concordance index is
maintained.

4.4 Features importance

In this section we aim to identify the features that most influence employee attrition. Un-
derstanding which factors contribute most to attrition allows organizations to design targeted
interventions. By addressing the root causes of turnover, companies can implement specific poli-
cies or programs to improve employee retention and allocate resources more efficiently focusing
on areas with the highest impact on employee turnover. Initially, we address this challenge by
applying permutation feature importance to identify key features impacting GBC model predic-
tions, our best performer. Subsequently, we select the most crucial features and refine the model
by conducting a randomized search to find the optimal hyperparameters. Finally, we assess fea-
ture influence on predictions using Shapley values [92].

4.4.1 Permutation feature importance

Permutation importance is a method built to assess the impact of each feature on the per-
formance of a trained model and on a given tabular dataset. It is especially valuable for models
that are non-linear or complex, and it consists of randomly shuffling the values of a single feature
to observe the effect on the score. This process disrupts the association between the feature and
the outcome, revealing the extent to which the model depends on that feature. We conducted
this study using the gradient boosting Cox model because it consistently demonstrated superior
performance across all evaluated metrics in Section 4.3. Additional information on Cox propor-
tional hazards and random survival forest is available in Appendix D2. The score chosen for this
section is the concordance index and we use the permutation feature importance implementation
from scikit-learn [104].
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Figure 4.3 – Permutation feature importance results of GBC model on the attrition dataset.

Figure 4.3 shows the boxplot of score variations resulting from 15 shufflings. We note that
variable 1 is the most significant feature, followed by variable 2 and variable 3. We define the
weight of a certain feature as its average concordance index variation and we display the ranked
weights and we observe that beyond a certain point, specifically the 14th feature in the weight
ranking, the features have null weight. Reducing the number of features used to train the model
can significantly decrease model dimensionality and complexity. We examine the variation in the
concordance index across three subsets of features to choose the minimal number of features that
do not compromise the accuracy of the model.

Tableau 4.1 – Concordance index comparison of GBC model when selecting different subsets
of features.

53 features 11 features 7 features 4 features

Concordance index 0.763 0.763 0.761 0.724

In tableau 4.1 we present the concordance index results when training GBC with varying
numbers of features. We highlight the significance of feature selection, revealing that retaining just
11 features, merely 21% of the original set, preserves the reliability while significantly reducing
the model dimensionality. This identifies the optimal subset of features for efficiently training
the GBC model.

4.4.2 Hyperparameters

In this section, we explore the combined impact of hyperparameter optimization and feature
selection on the model performance. The hyperparameters we consider include the learning rate,
which reduces the contribution of each tree, the maximum depth, limiting the number of nodes
in each tree, and the minimum sample leaf, specifying the minimum number of samples required
for a node to become a leaf.

We conducted a randomized search, a technique that randomly selects points from a pre-
defined set of hyperparameters for testing through cross-validation. In the end, we chose the
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parameters that performed best according to the concordance index.
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Figure 4.4 – Box plot comparison across multiple dataset splits of the concordance index
for the GBC model on the attrition dataset. We evaluate the impact of feature selection and
hyperparameter optimization.

Figure 4.4 shows the boxplot evaluating the concordance index across 25 dataset splits. GBC
indicates the results from Section 4.3, where no hyperparameter tuning was conducted, and the
model was trained with all features. GBC∗ denotes the model fitted after conducting a randomi-
zed search for hyperparameters using all 53 features. Lastly, GBC-PI refers to the model for which
a randomized search of hyperparameters was performed using only 11 features. By reducing the
number of features, the dimensionality of the model decreases, simplifying the optimization of hy-
perparameters. We observe in Figure 4.4 that conducting a randomized search slightly improves
the performance, and combining this with feature selection amplifies the performance increase.

4.4.3 Shapley values

In this section, we study the effect of features on the predictions of the Gradient Boosting
Cox model by using Shapley values. Lloyd Shapley introduced Shapley values within cooperative
game theory [119], aiming to allocate rewards fairly based on individual contributions to collec-
tive success. In the context of model interpretation, this involves assessing the effect of adding
or removing a feature on the model prediction across all possible feature combinations or coali-
tions. the Shapley value of a feature represents its average contribution over these combinations,
enhancing model transparency and explainability.

We consider a set of features X ⊆ Rd and the output of the model ν : 2X → R, which in this
context, represents the predicted risk of the model. The Shapley value of feature i is given by

ϕi(ν) =
∑

Y⊆X\i

|Y |!(|X | − |Y | − 1)!

|X |!
(ν(Y ∪ {i})− ν(Y )) ,

where Y denotes a subset of features excluding feature i, |Y |!(|X |−|Y |−1)!
|X |! represents the number of

permutations for which the features in Y come before feature i, and (ν(Y ∪{i})−ν(Y )) measures
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the marginal contribution of i to the subset Y . We use the SHAP library [92] to compute Shapley
values.
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Figure 4.5 – Feature importance beeswarm evaluated using Shapley values of GBC model on
the attrition dataset.

Figure 4.5 presents a beeswarm plot illustrating the features importance. As observed in
Figure 4.3, variable 1 emerges as the most significant feature for GBC predictions, followed by
variable 2 and variable 3. Each point on the plot represents a Shapley value for a feature relative
to a single prediction, with red points denoting higher feature values and blue points indicating
lower values. The horizontal position of each point reflects the impact of the feature on the
Shapley value. This indicates that higher values of variable 1 negatively affects the GBC output,
implying that individuals with higher values of variable 1 are less likely to leave the company.
Similarly, a low value of variable 2 and variable 3 positively affects the GBC predicted risk,
meaning that it increases the risk of leaving the company.
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Figure 4.6 – Feature importance heatmap evaluated using Shapley values of GBC model on
the attrition dataset.

The heatmap 4.6 presents features in rows and instances in columns, with color intensity re-
flecting the impact of each feature on model predictions. The color scale illustrates the range of
impact, allowing identification of key influencing features across the dataset. Figure 4.6 comple-
ments the results shown in Figure 4.5, highlighting that lower values of variable 1 have significant
negative impact on the model predictions, meaning individuals with lower variable 1 have a lower
probability to stay in the company. Conversely, for variable 2 and variable 3, low values have a
significant positive impact, suggesting that low values of these variable decrease the probability
of staying with the company. This approach allows us to observe how each feature influences
the model predictions. We focus on the most significant features, but further analysis of the
remaining features remains a valuable endeavor.

4.5 Ensemble methods

In [37], we propose combining multiple methods for survival analysis to enhance robustness
and accuracy. In this section, we consider the Cox proportional hazards, the Aalen additive
hazards model, gradient boosting Cox, random survival forest, and Weibull AFT. We propose
formulating the ensemble prediction as the convex combination of the predictions from each
method. Specifically, for each predictor j = 1, . . . ,K = 5, we consider its estimation of the
survival probability Ŝj : R+ → [0, 1], and the ensemble estimation will be :

Ŝ(t|xi) =

K∑
j=1

λjŜj(t|xi) such that
K∑
j=1

λj = 1 .

where the weights λj in the ensemble prediction are determined by minimizing the integrated
Brier score using exponential gradient descent with 5000 iterations.
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Figure 4.7 – Box plot comparison of the ensemble method using the integrated Brier score
across multiple dataset splits on the attrition dataset.

Figure 4.7 shows the value of the integrated Brier score of the ensemble method evaluated
across 25 dataset splits. We observe that the aggregation does not outperform the best method
(GBC), but it remains performant compared to all the other methods, highlighting the advantages
of considering multiple predictive models to enhance accuracy and reliability.

4.6 Online learning approach

In [38], we proposed to model the hazard function as an exponential using a parametric
approach. Given a parametric family Θ ⊆ Rd, we assume that there exist a vector θ ∈ Θ such
that :

H(t|xi) = exp(θ⊤xi)1{t ⩾ τi} t ⩾ 0 ,

where τi denotes the arrival time of individual i. The parameters are determined by optimizing
the negative log-likelihood of the model, specifically through online convex optimization algo-
rithms. This online setting allows for real-time model updates, accommodates large datasets by
processing data in batches, and adapts quickly to new information, possibly enhancing predictive
accuracy.
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Figure 4.8 – Cumulative negative log-likelihood comparison of online methods on the attrition
dataset.

Regrettably, the data collection occurred monthly, and we have only nine monthly obser-
vations, which limits the scope of online convex optimization. These methods require a larger
number of iterations to ensure accurate parameter estimation. In Figure 4.8, we compare the
negative log-likelihood estimation of Online Newton Step [65] (ONS), Online Gradient Descent
[145] (OGD), Online Bernstein Aggregation [138] (BOA-ONS), and Survival ONS [38] (Sur-
vONS). Figure 4.8 illustrates the absolute value of the cumulative negative log-likelihood. We
observe that BOA-ONS minimizes the negative log-likelihood more effectively than the other
models, thus suggesting better performance. Conversely, the negative log-likelihood associated
with our method, SurvONS, significantly increases. This result indicates that our model is not
optimal in the current context, and it reveals that the online setting does not offer advantages, at
least with the present configuration. Further investigation is required to understand the possible
benefits of an online setting and to compare this approach with the methods implemented in
Section 4.3, including a comprehensive evaluation of performance through multiple data splits
and the implementation of a survival score metric.

4.7 Conclusions

We observe consistent performance across the different scores, without noting any significant
differences between classical and survival scores. The ranking of the models is mostly main-
tained, reinforcing GBC as the most effective method for estimating employee attrition in this
dataset. Additionally, we evaluated the importance of features using two methods : permutation
feature importance and Shapley values, both revealing variable 1 as the most significant factor
influencing GBC predictions. Shapley values allow us to reinforce the study of feature importance
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by explicitly showing how each feature affects the model prediction. We also conducted feature
selection to choose a subset of features for training the method, thereby simplifying the optimi-
zation of hyperparameters and enhancing the method performance. Finally, we briefly present
the application of our results from [37] and [38] to the attrition dataset.



Conclusions

The central theme of this thesis was to explore different aspects of survival analysis. In a
first approach, we provided a detailed mathematical framework that enables the adaptation of
online convex optimization methods to censored data. We proposed a sequential model for esti-
mating the survival function using online convex optimization tools, which have not previously
been explored. In this context, we introduced a stochastic setting that facilitates regret analy-
sis, ensuring logarithmic bounds for the Online Newton Step. Additionally, we developed a new
algorithm that adaptively selects the learning rate to compensate for potential increases in re-
gret. We demonstrated that the regret of this algorithm is bounded and discussed grid selection
using simulation experiments. We concluded that aggregation methods enhance robustness in
hyperparameter selection, but achieving and maintaining fast rates remain a non-trivial task.
Secondly, we conducted an extensive analysis of various survival models, examining how method
performance varies with the scoring rule and dataset. We proposed a straightforward aggre-
gation method that enhances robustness compared to individual methods, achieving superior
performance across an overall score that is independent of the dataset. Moreover, we conducted
simulation experiments aimed at understanding which data characteristics most significantly in-
fluence method performance. We concluded that the alignment between the model assumptions
about the hazard function and the actual data distribution plays the most fundamental role.
Finally, we applied the multiple survival analysis approaches to a real industrial case.

In conclusion, we observed that online methods require numerous iterations to accurately
estimate parameters, which is not always feasible with real data. Additionally, the parametric
approach can be challenging to fit due to issues with the convexity of the loss functions, which,
at certain iterations, might be too flat due to the absence of individuals at risk. On the other
hand, machine learning models provide a complex non-parametric approach that better accom-
modates the varied shapes of datasets, although their results are harder to interpret. Estimating
survival curves is complex, necessitating consideration of both the temporal aspects of data and
censorship. Finally, we observed that selecting an appropriate scoring rule is not straightforward.

There are several ways to expand our work on online learning algorithms : we can study
and compare our approach with the state-space models of Fahrmeir [34] ; and we can examine
the use of continuous ranked probability scores [131] in the context of online survival data.
Additionally, we can explore the use of hybrid methods that perform many batch iterations during
the first part of the observed period, followed by online iterations. This approach is designed to
address the issue of not having enough observations to implement an online procedure effectively.
Concerning the ensemble method of Chapter 3, we can extend the analysis by complexifying the
aggregation procedure, considering online weights and diverse optimization methods. In a more
general framework, we can explore the adaptation of some machine learning methods for tabular
data to censored data ([108],[6]), and the combination of online learning with deep learning
techniques.
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Annexe A
Appendix A

This appendix is dedicated to presenting the code, in Python and R, for the different sections
of Chapter 1.

A1 Illustrating covariate effects with clinical data

The objective is to use the PBC dataset to illustrate the covariate effects in the estimation of
survival curves. We fit Kaplan-Meier and Cox proportional hazards and we compare the covariate
effects in both models. The code of this section was developed with Python.

1

2 # import libraries
3 import statsmodels.api as sm
4 import numpy as np
5 import pandas as pd
6 import matplotlib.pyplot as plt
7

8 # import the dataset with no nan values
9 df_raw = sm.datasets.get_rdataset(’pbc’, ’survival ’).data

10 df_no_nans = df_raw.dropna ()
11 df_no_nans = df_no_nans.drop(’id’, axis =1)
12 df_trans = df_no_nans[’status ’]
13 df_no_nans[’status ’]= df_no_nans[’status ’]. replace(1,False)
14 df_no_nans[’status ’]= df_no_nans[’status ’]. replace(2,True)
15 df_no_nans[’status ’]= df_no_nans[’status ’]. replace(0,False)
16

17 # identify covariates X and target y
18 from sksurv.datasets import get_x_y
19 X, y = get_x_y(df_no_nans , attr_labels =[’status ’,’time’], pos_label=True)
20

21 # plot the Kaplan -Meier estimation
22 from lifelines import KaplanMeierFitter
23

24 kmf = KaplanMeierFitter ()
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25 kmf.fit(y[’time’], y[’status ’])
26 kmf.plot()
27 plt.title(’Kaplan -Meier Estimator of the Survival Function ’, fontsize =

15)
28 plt.xlabel(’time’, fontsize = 12)
29 plt.ylabel(’probability ’, fontsize = 12)
30 plt.show()
31

32 # identify the treatment groups and plot the KM curves
33 idx1 = np.where(X[’trt’]==1.0) [0]
34 idx2 = np.where(X[’trt’]==2.0) [0]
35

36 kmf_trt1 = KaplanMeierFitter ()
37 kmf_trt2 = KaplanMeierFitter ()
38 kmf_trt1.fit(y[’time’][idx1], y[’status ’][idx1])
39 kmf_trt2.fit(y[’time’][idx2], y[’status ’][idx2])
40 kmf_trt1.plot(ci_show = False)
41 kmf_trt2.plot(ci_show= False)
42

43 plt.title(’Kaplan -Meier Estimator of the Survival Function ’, fontsize =
15)

44 plt.legend ((’treatment 1’,’treatment 2’))
45 plt.xlabel(’time’, fontsize = 12)
46 plt.ylabel(’probability ’, fontsize = 12)
47 plt.show()
48

49 # identify the age groups and plot the KM curves
50 idx1 = np.where(X[’age’] >=49.0) [0]
51 idx2 = np.where(X[’age’] <49.0) [0]
52

53 kmf_trt1 = KaplanMeierFitter ()
54 kmf_trt2 = KaplanMeierFitter ()
55 kmf_trt1.fit(y[’time’][idx1], y[’status ’][idx1])
56 kmf_trt2.fit(y[’time’][idx2], y[’status ’][idx2])
57 kmf_trt1.plot(ci_show = False)
58 kmf_trt2.plot(ci_show= False)
59

60 plt.title(’Kaplan -Meier Estimator of the Survival Function ’, fontsize =
15)

61 plt.legend ((’age >49’,’age <49’))
62 plt.xlabel(’time’, fontsize = 12)
63 plt.ylabel(’probability ’, fontsize = 12)
64 plt.show()
65

66 # preprocess the data for the cox model
67 from sklearn.compose import ColumnTransformer
68 from sklearn.preprocessing import OrdinalEncoder
69 from sklearn.preprocessing import StandardScaler
70

71 scaling_cols =[’age’,’bili’,’chol’,’albumin ’,’copper ’,’alk.phos’,’ast’,’
trig’,’platelet ’,’protime ’]

72 cat_cols =[’trt’,’edema ’,’sex’,’ascites ’,’hepato ’,’spiders ’,’stage ’]
73
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74 preprocessor = ColumnTransformer(
75 [(’cat -preprocessor ’, OrdinalEncoder (), cat_cols),
76 (’standard -scaler ’, StandardScaler (), scaling_cols)],
77 remainder=’passthrough ’, sparse_threshold =0)
78

79 # fit the cox PH model
80 from sksurv.linear_model import CoxPHSurvivalAnalysis
81

82 Xprep = preprocessor.fit_transform(X)
83 cox = CoxPHSurvivalAnalysis ()
84 cox.fit(Xprep ,y)
85 survfunc = cox.predict_survival_function(Xprep)
86

87 # baseline hazard
88 baseline_time = cox.baseline_survival_.x
89 baseline_probability = cox.baseline_survival_.y
90

91 # plot cox PH curves for random different individuals
92 import random
93

94 times = survfunc [0].x
95 ind = random.sample(range (276) ,5)
96 for i in range (5):
97 plt.plot(times , survfunc[ind[i]].y)
98

99 plt.plot(baseline_time , baseline_probability , linewidth =2.5, color = ’
brown’)

100 plt.legend ((’id 1’,’id 2’,’id 3’,’id 4’,’id 5’,’baseline ’))
101 plt.xlabel(’time’,fontsize =12)
102 plt.ylabel(’probability ’,fontsize = 12)
103 plt.title(’Cox PH Estimator of the Survival Function ’, fontsize = 15)
104 plt.show()
105

106 # plot cox PH according to the age group
107 from matplotlib.lines import Line2D
108

109 idx1 = np.where(X[’age’] >=49.0) [0]
110 idx2 = np.where(X[’age’] <49.0) [0]
111

112 custom_lines = [Line2D ([0], [0], color=’tab:blue’, lw=2),
113 Line2D ([0], [0], color=’tab:orange ’, lw=2),
114 Line2D ([0], [0], color=’brown’, lw=2)]
115

116 for i in range (5):
117 plt.plot(times , survfunc[idx1[i]].y, color = ’tab:blue’)
118 plt.plot(times , survfunc[idx2[i]].y, color = ’tab:orange ’)
119

120 plt.plot(baseline_time , baseline_probability , color = ’brown ’,linewidth
=2.5 )

121 plt.legend(custom_lines , (’age >49’,’age <49’,’baseline ’))
122 plt.xlabel(’time’,fontsize =12)
123 plt.ylabel(’probability ’,fontsize = 12)
124 plt.title(’Cox PH Estimator of the Survival Function ’, fontsize = 15)
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125 plt.show()

A2 Scoring rules

The objective is to illustrate the effect of censorship in the accuracy estimation of the Cox
proportional hazards model. This section was coded in Python. We first define all the required
functions.

1

2 from lifelines import KaplanMeierFitter
3 from scipy.integrate import trapz
4

5 # Kaplan Meier for Brier score
6 def Kaplan_Meier(y_trn , times):
7 kmf = KaplanMeierFitter ()
8 kmf.fit(y_trn[’time’], ~y_trn[’status ’])
9 return 1-kmf.cumulative_density_at_times(times).values

10

11 # Brier score
12 def brier_score (y_trn , y_val , survfunc , times , eps):
13 km_survfunc = Kaplan_Meier(y_trn , times)
14 y_time = y_val[’time’]
15 y_status = y_val[’status ’]
16 brier_vector = []
17 N_val = len(y_time)
18 for t in range(len(times)):
19 km_survfunc[t] = np.maximum(km_survfunc[t], float(eps))
20 mean = 0
21 for i in range(N_val):
22 idx = next((t for t, time in enumerate(times) if time >

y_time[i]), -1)
23 idx = idx -1 if idx >0 else idx
24 km_survfunc[idx] = np.maximum(km_survfunc[idx], float(eps))
25 mean = mean + ((( y_time[i]<= times[t])*y_status[i]*(0 -

survfunc[i][t])**2)/km_survfunc[idx]\
26 + (( y_time[i]>times[t])*(1- survfunc[i][t])**2)

/km_survfunc[t])
27 brier_vector.append(mean/N_val)
28 return brier_vector
29

30 # Brier score with no censorship weights
31 def brier_score_no (y_val ,survfunc ,times):
32 y_time = y_val[’time’]
33 brier_vector = []
34 N_val = len(y_time)
35 for t in range(len(times)):
36 mean = 0
37 for i in range(N_val):
38 idx = next((t for t, time in enumerate(times) if time >

y_time[i]), -1)
39 idx = idx -1 if idx >0 else idx
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40 mean = mean + ((( y_time[i]<= times[t])*(0 - survfunc[i][t])
**2)\

41 + (( y_time[i]>times[t])*(1- survfunc[i][t])**2)
)

42 brier_vector.append(mean/N_val)
43 return brier_vector
44

45 # integrated Brier score
46 def integrated_brier_score (y_trn , y_val , survfunc , times , esp , no=False)

:
47 if no:
48 brier_vector = brier_score_no(y_val , survfunc , times)
49 integrated = trapz(brier_vector , times)
50 else:
51 brier_vector = brier_score(y_trn , y_val , survfunc , times , esp)
52 integrated = trapz(brier_vector , times)
53 return integrated /(times[-1]-times [0])
54

55 # parameters of the data simulation
56 N = 10
57 d = 3
58 mean = [1,-2]
59 cov = [[1 ,0] ,[0 ,3]]
60 beta_real = np.array ([[-0.5, -0.8, 0.3]]).reshape(d, 1)
61

62 # function to create the data
63 from scipy.stats import multivariate_normal , expon
64

65 def create_dataset(N, seed):
66 rng = np.random.default_rng(seed)
67 Z = rng.multivariate_normal(mean=mean , cov=cov , size=N)
68 Z = np.c_[Z, np.ones(Z.shape [0])]
69 beta_real = np.array ([[-0.5, -0.8, 0.3]]).reshape(d, 1)
70

71 T = [float(expon(scale =1/np.exp(np.dot(beta_real.T, Z[i, :]))).rvs(
random_state= rng)) for i in range(N)]

72 C = rng.uniform(low=0, high =0.35, size=N)
73 hat_T = np.array ([float(min(T[i],C[i])) for i in range(N)])
74 delta = T<C
75

76 pd_Z = pd.DataFrame(Z)
77

78 data = pd.DataFrame ({’feature 1’: pd_Z[0], ’feature 2’: pd_Z[1], ’
feature 3’: pd_Z[2],’status ’: delta , ’time’: hat_T , ’real_time ’: T})

79

80 #print(f’percentage of censorship: {(N-sum(delta))*100/N}’)
81

82 return data

To continue, we define a function that, given a certain seed, creates a dataset, trains a Cox
PH model, and provides the values of the concordance index and integrated Brier score, both
considering and not considering censorship.

1
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2 from sksurv.datasets import get_x_y
3 from sksurv.linear_model import CoxPHSurvivalAnalysis
4 from sksurv.metrics import concordance_index_censored
5

6 # concordance index and integrated Brier score computation
7 def multiple_seeds(seed):
8 data_trn = create_dataset (1500, seed)
9 data_val = create_dataset (500, int(100- seed))

10

11 X_trn , y_trn = get_x_y(data_trn.drop(’real_time ’, axis = 1),
12 attr_labels =[’status ’,’time’], pos_label=True)
13 X_val , y_val = get_x_y(data_val.drop(’real_time ’, axis = 1),
14 attr_labels =[’status ’,’time’], pos_label=True)
15

16 data_val = data_val.drop(’time’,axis = 1)
17 data_val = data_val.rename(columns = {’real_time ’:’time’})
18 X_true , y_true = get_x_y(data_val , attr_labels =[’status ’,’time’],
19 pos_label=True)
20 y_true[’status ’] = [True for i in range(len(y_true))]
21

22 cox = CoxPHSurvivalAnalysis(alpha =0.001)
23 cox.fit(X_trn ,y_trn)
24

25 ci_val = concordance_index_censored(y_val[’status ’],y_val[’time’],
26 cox.predict(X_val))[0]
27 ci_true = concordance_index_censored(y_true[’status ’],y_true[’time’],
28 cox.predict(X_val))[0]
29

30 survfunc_val = cox.predict_survival_function(X_val)
31 times_val = survfunc_val [0].x
32 cox_preds_val = np.asarray ([[fn(t) for t in times_val]
33 for fn in survfunc_val ])
34

35 ibs_val = integrated_brier_score(y_trn ,y_val ,cox_preds_val ,times_val ,
36 0.0001)
37 ibs_true = integrated_brier_score(y_trn ,y_true ,cox_preds_val ,
38 times_val ,0.0001 , no = True)
39

40 return ci_val , ci_true , ibs_val , ibs_true

We apply this procedure with multiple seeds in parallel and we get the results.

1 # parallel seeds
2 from joblib import Parallel , delayed
3 x = Parallel(n_jobs =25)(delayed(multiple_seeds)(seed)
4 for seed in range (50))
5

6 # get the results
7 ci_val = [x[i][0] for i in range (50)]
8 ci_true = [x[i][1] for i in range (50)]
9 ibs_val = [x[i][2] for i in range (50)]

10 ibs_true = [x[i][3] for i in range (50)]
11

12 # plot concordance index
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13 plt.plot(ci_val)
14 plt.plot(ci_true)
15 plt.title(’Concordance Index ’, fontsize = 15)
16 plt.legend ((’censored ’,’non -censored ’))
17 plt.xlabel(’seeds’, fontsize =10)
18 plt.show()
19

20 # plot integrated Brier score
21 plt.plot(ibs_val)
22 plt.plot(ibs_true)
23 plt.title(’Integrated Brier Score’, fontsize = 15)
24 plt.legend ((’censored ’,’non -censored ’))
25 plt.xlabel(’seeds’, fontsize =10)
26 plt.show()

Now, it is remaining to compute the negative log-likelihood.

1 # partial likelihood function
2 def partial_likelihood(beta ,Z,delta ,T):
3 risk_scores = np.dot(Z, beta)
4 log_partial_likelihood = 0
5 for i, (ti, di) in enumerate(zip(T, delta)):
6 if di: # Event occurred
7 risk_set = (T >= ti)
8 log_risk_set_sum = np.log(np.sum(np.exp(risk_scores[risk_set

])))
9 log_partial_likelihood += risk_scores[i] - log_risk_set_sum

10

11 return -log_partial_likelihood
12

13 # compute the partial negative log -likelihood for a given seed
14 def multiple_seeds(seed):
15 data_trn = create_dataset (1500, seed)
16 data_val = create_dataset (500, int(100- seed))
17

18 X_trn , y_trn = get_x_y(data_trn.drop(’real_time ’, axis = 1),
attr_labels =[’status ’,’time’], pos_label=True)

19 X_val , y_val = get_x_y(data_val.drop(’real_time ’, axis = 1),
attr_labels =[’status ’,’time’], pos_label=True)

20

21 hat_T = data_val[’time’]
22 T = data_val[’real_time ’]
23 delta = data_val[’status ’]
24 Z = np.transpose ([ data_val[’feature 1’],data_val[’feature 2’],

data_val[’feature 3’]])
25

26 delta_true = [True for i in range(len(delta))]
27

28 cox = CoxPHSurvivalAnalysis(alpha =0.001)
29 cox.fit(X_trn ,y_trn)
30

31 beta = cox.coef_
32

33 like_val = partial_likelihood(beta ,Z,delta ,hat_T)



84 ANNEXE A. Appendix A

34 like_true = partial_likelihood(beta ,Z,delta_true ,T)
35

36

37 return like_val , like_true
38

39 # run many seeds in parallel
40 from joblib import Parallel , delayed
41 x = Parallel(n_jobs =50)(delayed(multiple_seeds)(seed) for seed in range

(50))
42

43 # obtain the results
44 like_val = [x[i][0] for i in range (50)]
45 like_true = [x[i][1] for i in range (50)]
46

47 # plot the likelihood
48 plt.plot(like_val)
49 plt.plot(like_true)
50 plt.title(’Partial Negative Log -Likelihood ’, fontsize = 15)
51 plt.legend ((’censored ’,’non -censored ’))
52 plt.xlabel(’seeds’, fontsize =10)
53 plt.show()

A3 Online convex optimization

The objective is to illustrate the influence of the learning rate selection in the cumulative loss
of Online Newton Step (ONS) algorithm. This section was coded in R.

1 # algorithm parameters
2 D <- 1.13
3 d <- 3
4 N <- 2*10^3
5 n_it <- 500
6 beta_real <- matrix(c(-0.5, -0.8, 0.3), d, 1)
7

8 gamma1 <- 10^{ -3/2}
9 epsilon1 <- 1/( gamma1*D)^2

10

11 gamma2 <- 10
12 epsilon2 <- 1/( gamma2*D)^2
13

14 # Monte Carlo simulations
15 M = 100
16

17 ons_beta1 <- array(0, dim = c(n_it ,d,M))
18 ons_beta2 <- array(0, dim = c(n_it ,d,M))
19 ons_like1 <- array(0, dim = c(n_it ,M))
20 ons_like2 <- array(0, dim = c(n_it ,M))
21 real_like <- array(0, dim = c(n_it ,M))
22 gamma_arr1 <- array(0, dim = c(n_it ,M))
23 gamma_arr2 <- array(0, dim = c(n_it ,M))
24
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25 for (j in 1:M) {
26 print(’iteration ’)
27 print(j)
28 X1 <- mvtnorm :: rmvnorm(N, matrix(c(1, -2), 2, 1), diag(c(1,3)))
29 X1 <- cbind(X1 ,1)
30 arrival_time = runif(N, min=0, max = n_it)
31 Time_indiv <- arrival_time + sapply (1:N, function(i) rexp(1,rate=exp(

crossprod(beta_real , X1[i,]) [1])))
32 Censor_indiv <- arrival_time + runif(N, min=0, max = .35)
33 hat_T <- sapply (1:N, function(i) {min(Time_indiv[i], Censor_indiv[i])})
34 delta <- (Time_indiv < Censor_indiv)
35

36 R <- list()
37 for (t in 1:n_it){
38 R[[t]] <- c(1)
39 }
40 for (i in 2:N) {
41 t1 <- max(1,floor(arrival_time[i]) -1)
42 t2 <- min(n_it ,floor(hat_T[i])+1)
43 for (t in t1:t2)
44 R[[t]] <- c(R[[t]], i)
45 }
46

47 #ONS
48 ons_mu1 <- ons(arrival_time ,hat_T ,delta ,X1,D,gamma1 ,n_it ,epsilon1 ,R)
49 ons_mu2 <- ons(arrival_time ,hat_T ,delta ,X1,D,gamma2 ,n_it ,epsilon2 ,R)
50

51 ons_beta1[,,j] <- ons_mu1$beta_arr
52 ons_beta2[,,j] <- ons_mu2$beta_arr
53 gamma_arr1[,j] <- ons_mu1$gamma_temp
54 gamma_arr2[,j] <- ons_mu2$gamma_temp
55

56 for (t in 1:n_it){
57 ons_like1[t,j] <- instgrad(t, arrival_time , hat_T , delta , X1,

ons_mu1$beta_arr[t,], R[[t]]) $lik
58 ons_like2[t,j] <- instgrad(t, arrival_time , hat_T , delta , X1,

ons_mu2$beta_arr[t,], R[[t]]) $lik
59 real_like[t,j] <- instgrad(t, arrival_time , hat_T , delta , X1,

beta_real [,1], R[[t]]) $lik
60 }
61 }
62

63 # average estimations
64 ons_mean1 <- array(0, dim = c(n_it ,d))
65 ons_mean2 <- array(0, dim = c(n_it ,d))
66

67 for (idx in 1:d){
68 for (t in 1:n_it){
69 ons_mean1[t,idx]<- mean(ons_beta1[t,idx ,])
70 ons_mean2[t,idx] <- mean(ons_beta2[t,idx ,])
71 }
72 }
73
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74 beta_real_arr = t(matrix(rep(as.numeric(beta_real),n_it), nrow = 3))
75

76 # error estimation plot
77 plot (1:n_it ,apply(( ons_mean1 - beta_real_arr)^2, 1, sum), type =’l’, col

= ’blue’, lwd = 2, lty =4, xlab = ’iterations ’,ylab = ’error’, log = ’
xy’, ylim = c(0.0025 ,0.98) )

78 lines (1:n_it ,apply (( ons_mean2 - beta_real_arr)^2, 1, sum),col = ’
darkgreen ’,lwd = 2 ,lty = 3)

79 title(’Estimation Error’)
80 legend(’bottomleft ’, legend=c("ONS 1",’ONS 2’), col=c(’blue’,’darkgreen ’)

, lty = c(4,3),lwd = 2, cex =0.8)
81

82 # negative log -likelihood estimation
83 like_ons_mean1 <- matrix(0,n_it ,1)
84 like_ons_mean2 <- matrix(0,n_it ,1)
85 like_real_mean <- matrix(0,n_it ,1)
86

87 for (t in 1:n_it){
88 like_real_mean[t] <- mean(real_like[t,])
89 like_ons_mean1[t]<- mean(ons_like1[t,])
90 like_ons_mean2[t] <- mean(ons_like2[t,])
91 }
92

93 plot (1:n_it , cumsum(abs(like_ons_mean1 -like_real_mean)), type = ’l’, col
= ’blue’, lwd = 2, lty=4, xlab = ’iterations ’,ylab = ’likelihood
difference ’)

94 lines (1:n_it ,cumsum(abs(like_ons_mean2 -like_real_mean)), col =’darkgreen ’
,lwd =2, lty =4)

95 title(’Cumulative Negative Log -Likelihood ’)
96 legend(’topleft ’, legend=c("ONS 1",’ONS 2’), col=c(’blue’,’darkgreen ’),

lty = c(4,3),lwd = 2, cex =0.8)
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B1 Background on parametric inference

B1.1 Proof of Proposition 1

Démonstration. We define the equivalent of the survival probability for the censored distribution

G(t|xi, τi) = P(ci ⩾ t|xi, τi) .

Given θ ∈ Θ, we write the density of ui distinguishing two cases :

P(ui ∈ [t, t+ h), δi = 1|θ, xi, τi) = P(ti ∈ [t, t+ h), ci ⩾ t|xi, τi, θ),

and
P(ui ∈ [t, t+ h), δi = 0|θ, xi, τi) = P(ci ∈ [t, t+ h), ti ⩾ t|θ, xi, τi).

By conditional independence we obtain

P(ui ∈ [t, t+ h), δi = 1|θ, xi, τi) = P(ti ∈ [t, t+ h)|θ, xi, τi)P(ci ⩾ t+ h|θ, xi, τi),

P(ui ∈ [t, t+ h), δi = 0|θ, xi, τi) = P(ci ∈ [t, t+ h)|θ, xi, τi)S(t+ h|θ, xi, τi).

When h goes to zero, it tends respectively to

G(t|θ, xi, τi)f(t|θ, xi, τi),

and
g(t|θ, xi, τi)P(ti ⩾ t|θ, xi, τi).

87
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Therefore, by the independence of the random variables (ti, ci) among the events i ∈ {1, . . . , N}
we obtain the density

f(ui,δi)1≤i≤N
((ui, δi)1≤i≤N | θ, xi, τi) =

N∏
i=1

g(ui|θ, xi, τi)
1−δiG(ui|θ, xi, τi)

δi

N∏
i=1

f(ui|θ, xi, τi)
δiS(ui|θ, xi, τi)

1−δi .

Here we use the assumption of non-informative censoring (see Kalbfleisch et al. [74]), which means
that the censored distribution does not involve the parameter θ. Then we obtain a simplified
version of the likelihood, up to a multiplicative constant

ℓ(θ) ∝
N∏
i=1

f(ui|θ, xi, τi)
δiS(ui|θ, xi, τi)

1−δi .

Omitting an additional constant, we can equivalently write the log-likelihood to be

log(ℓ(θ)) =

N∑
i=1

δi log(f(ui|θ, xi, τi)) + (1− δi) log(S(ui|θ, xi, τi)).

Let us remark that f(t|θ, xi, τi) = H(t|xi, τi)S(t|xi, τi) and from the definition of H(t|xi, τi)
we can write the log-likelihood as

log(ℓ(θ)) =

N∑
i=1

δi log(H(ui|xi, τi))−
∫ ui

τi

H(s|xi, τi)ds.

Following the exponential model of Definition 1 we replace H(t|xi, τi) in the previous equation
to get

log(ℓ(θ)) =

N∑
i=1

δiθ
Txi(ui)−

∫ ui

τi

exp(θTxi(s))ds ,

We write the negative log-likelihood :

ℓ(θ) = − log(ℓ(θ)) =

N∑
i=1

−δiθ
Txi(ui) +

∫ ui

τi

exp(θTxi(s))ds.

B2 Online Convex Optimization

B2.1 Proof of Lemma 1

Démonstration. Only the second assertion needs to be proven, the first one being Lemma 4.2.1
from Hazan [63] is already showed. To prove the second assertion we first see that Equation (2.5)
means that for all θ ∈ Θ

∇2ℓ(θ) ≽ µ∇ℓ(θ)∇ℓ(θ)⊤,
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which implies that for all vector ν ∈ Rd

ν⊤∇2ℓ(θ)ν ⩾ µ ν⊤∇ℓ(θ)∇ℓ(θ)⊤ν.

Since ∇ℓ(θ)∇ℓ(θ)⊤ is a rank one matrix and ν = ∇ℓ(θ) is an eigenvector associated to the unique
non-null eigenvalue, we can replace ν in the previous equation to get

∇ℓ(θ)⊤∇2ℓ(θ)∇ℓ(θ) ⩾ µ∇ℓ(θ)⊤∇ℓ(θ)∇ℓ(θ)⊤∇ℓ(θ).

When ∇ℓ(θ) ̸= 0 we can write

µ ⩽
∇ℓ(θ)⊤∇2ℓ(θ)∇ℓ(θ)

||∇ℓ(θ)||4
,

and as this is true for every θ ∈ Θ we have

µ ⩽ min
θ∈Θ

∇ℓ(θ)⊤∇2ℓ(θ)∇ℓ(θ)

||∇ℓ(θ)||4
.

B2.2 Proof of Lemma 2

Démonstration. The proof starts similarly than the one of Lemma 4.2.2 of Hazan [63]. We consi-
der the concave function p(θ) = exp(−µℓ(θ)). We derive that for θ1, θ2 ∈ Θ :

ℓ(θ2) ≥ ℓ(θ1)−
1

µ
log(1− µ(∇ℓ(θ1)

T (θ2 − θ1)))

≥ ℓ(θ1) +∇ℓ(θ1)
T (θ2 − θ1)

−
( 1
µ
log(1− µ(∇ℓ(θ1)

T (θ2 − θ1))) +∇ℓ(θ1)
T (θ2 − θ1)

)
.

Using the Cauchy-Schwarz inequality we upper bound |∇ℓ(θ1)
T (θ2 − θ1)| ≤ ∥∇ℓ(θ1)∥D for any

θ2 ∈ Θ. Combined with the monotonicity of the function µ−1 log(1−µz)+ z which is decreasing
for any −∥∇ℓ(θ1)∥D ≤ z ≤ ∥∇ℓ(θ1)∥D we obtain :

ℓ(θ2) ≥ ℓ(θ1) +∇ℓ(θ1)
T (θ2 − θ1)−

1

µ
log(1 + µ∥∇ℓ(θ1)∥D) + ∥∇ℓ(θ1)∥D .

By definition of the directional derivative constant, we thus can estimate :

γ ≤ min
θ1,θ2∈Θ

2

− 1

µ
log(1 + µ∥∇ℓ(θ1)∥D) + ∥∇ℓ(θ1)∥D

(∇ℓ(θ1)(θ2 − θ1))2
,

≤ min
θ1∈Θ

2

− 1

µ
log(1 + µ∥∇ℓ(θ1)∥D) + ∥∇ℓ(θ1)∥D

(∥∇ℓ(θ1)∥D)2

by another application of the Cauchy-Schwarz inequality.
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B2.3 The Online Newton Step algorithm

Algorithm 3 Online Newton Step [65]

Input : (ℓt)t=1,2,..., γ > 0, n ⩾ 1, ϵ > 0
Initialization : θ0 ∈ Θ, A−1

0 = (1/ϵ)1d

for iteration t = 1, . . . , n do
Observe : ∇ℓt(θt)
Recursion :

A−1
t = A−1

t−1 −
A−1

t−1∇ℓt(θt)∇ℓt(θt)
TA−1

t−1

1 +∇ℓt(θt)A
−1
t−1∇ℓt(θt)T

θt+1 = Projt

(
θt −

1

γ
A−1

t ∇ℓt(θt)
)

where Projt(θ
∗) ∈ argmin

θ∈Θ
(θ − θ∗)TAt(θ − θ∗).

end for
return θn

B3 Stochastic Setting

In this section we prove Theorem 2, and for this we need to recall the hypothesis of Theorem
7 from [139].

(H1) The diameter of Θ is D and the loss functions ℓt are continuously differentiable over Θ
a.s. with integrable gradients.

(H2) The random loss functions (ℓt)t=1,2,... are stochastically exp-concave 4 for some γ ⩾ 0.

(H3) The gradients (∇ℓt(θt))t=1,2,..., satisfy for G1, G2 > 0 and all k ⩾ 1, t = 1, 2, . . ., and
θ ∈ Θ :

Et−1[(∇ℓt(θt)
⊤(θt − θ))2k] ≤ k!(G1D)2(k−1)Et−1[(∇ℓt(θt)

⊤(θt − θ))2] a.s.,

Et−1[||∇ℓt(θ)||2k] ≤ k!G
2(k−1)
1 Et−1[||ℓt(θt)||2] a.s.,

Et−1[||∇ℓt(θ)||2] ≤ G2
2 a.s.

Let us notice that condition (H3) is satisfied in the bounded cases
||∇ℓt(θt)||2 ⩽ G2, t = 1, 2, . . . with G1 := G2 := G. Condition (H3) is independent on the
risk Lt(θt) = Et−1[ℓt(θt)], t = 1, 2, . . ., and thus, it does not interfere with condition (H2).
Additionally, we notice that in our setting where we consider the stochastic losses ℓt defined
in (2.6), the hypothesis (H1) is already satisfied. Now, we recall the stochastic regret bound
theorem.

Theorem 4 (Wintenberger [139]). Under (H1), (H2) with constant γ and (H3), for ϱ > 0 and
n ⩾ 1 the ONS algorithm 3 with learning rate γ/3 satisfies with probability 1−3ϱ the stochastic
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regret bound :

Riskn ⩽
3

2γ

(
1 + d log

(
1 +

2(γD)2
(
nG2

2 +G2
1 log(ϱ

−1)
)

9

))

+

(
4γ(G1D)2

9
+

18

γ

)
log(ϱ−1) .

In order to simplify notation we refer to the right-hand-side bound as B(n). In addition
we need a proposition presented in [139] that gives us a constant γ that assures the stochastic
exp-concavity of the losses.

Proposition 2 (Wintenberger [139]). If Lt is µ-strongly convex and there exists G > 0 such that

G2Id ≽ Et−1[∇ℓt(θ)∇ℓt(θ)
T ], ∀θ ∈ Θ, a.s., t = 1, 2, . . . ,

then Definition 4 holds with γ := µ/G2.

In the ideal case, we would like to prove that ℓt satisfies the conditions (H2) and (H3). To
prove (H2) we can use Proposition 2 if we find a constant such that the loss is strongly convex
and a constant that bounds the expectation of the gradients. Unfortunately, we are not able to
find this last constant a.s. but, proving a weaker version of (H3) we can define an auxiliary loss
function that satisfies all the hypothesis and allows us to prove Theorem 2.

First, we prove that with high probability there is a constant G that upper bounds the norm
of the gradients of (ℓt)t=1,2,..., this corresponds to the weaker (H3). Secondly, we prove that the
conditional risks (Lt)t=1,2,... are strongly convex for some constant µ, which consists of finding
a lower bound of ∇2Lt(θ) that does not depend on θ and t. This corresponds to only one of the
conditions of Proposition 2, necessary to prove (H2). Finally, we show how to use weak (H3)
and half of (H2) to prove Theorem 2.

B3.1 Upper bound (H3)

We want to find an upper bound for ||∇ℓt(θ)||2 and for this we first define for all t = 1, 2, . . .

Rt =

Nt∑
i=1

rit where rit = 1{τi ⩽ t, ui > t− 1} ,

and where Nt is the count function of the Poisson process defined in Section 2.4. Following, we
prove that for all t = 1, 2, . . ., Rt is upper bounded with high probability.

Lemma 4. Let ϱ > 0. Then, with probability at least 1− ϱ, for all t = 1, 2, . . ., we have

Rt ⩽ 32eDx∞(4λ+ 1 + log(2/ϱ)) .

Démonstration. Since ui = min{ci, ti} ⩽ ti we can upper bound Rt ⩽
∞∑
i=1

1{ti ⩾ t−1}1{τi ⩽ t}.

Then, we define At = {i : τi ⩽ t} and Zt =
∑
i∈At

1{ti ⩾ t− 1} and therefore, it will be enough to
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find a bound to Zt to conclude. Given a constant z > 0 and m ⩾ 1, we fix Nt ⩽ m and we first
upper bound the conditional probability

P(Zt ⩾ z|Nt = m) = P

(∑
i∈At

1{ti ⩾ t− 1} ⩾ z
∣∣∣Nt = m

)
.

Let us notice that Nt = |At|. We would like to apply the concentration inequality of Chernoff-
Hoeffding to the sum of Bernouilli random variables 1{ti ⩾ t − 1} (see Hoeffding [69]), and for
this we need to upper bound

P(ti ⩾ t− 1|i ∈ At, xi)

=

t∑
s=1

P(ti ⩾ t− 1|s− 1 ⩽ τi ⩽ s, xi)P(s− 1 ⩽ τi ⩽ s|0 ⩽ τi ⩽ t)

=
1

t

t∑
s=1

P(ti ⩾ t− 1|s− 1 ⩽ τi ⩽ s, xi) ,

where we use the uniform distribution of the Poisson process points given an interval (for more
details on Poisson processes, see Daley and Vere-Jones [28]). Then, by the definition of the
survival function (see Section 2.2) we get

P(ti ⩾ t− 1|i ∈ At, xi) ⩽
1

t

t∑
s=1

S(t− 1|s, xi) ∧ 1

=
1

t

t∑
s=1

exp
(
−(t− 1− s)eθ

∗⊤xi

)
∧ 1

⩽
1

t

t∑
s=1

exp
(
−(t− 1− s)e−Dx∞

)
∧ 1

⩽
1

t

∞∑
s=−1

exp
(
−se−Dx∞

)
∧ 1

=
2− exp(−e−Dx∞)

t (1− exp(−e−Dx∞))

⩽
4 eDx∞

t
.

In the last line we use that 1− exp(−x) ≥ x/2 for 0 ≤ x ≤ 1.

The Chernoff-Hoeffding’s inequality gives us for any sequence X1, . . . , Xm with E[Xi] ⩽ p
and any ε > 0

P

(
m∑
i=1

Xi ⩾ pm+ ε

)
⩽ exp

(
− ε2

2mp(1− p)

)
⩽ exp

(
− ε2

2mp

)
.

Applying this to the sum of the 1{ti ⩾ t − 1} with E[1{ti ⩾ t − 1}|i ∈ At] ⩽ e2+Dx∞

t given
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|At| = m and using the conditional independence of the Poisson process points, we obtain

P
(
Zt ⩾

m

t
4eDx∞ + ε

∣∣∣|At| = m
)
⩽ exp

(
− ε2t

8meDx∞

)
.

Therefore, replacing |At| by Nt

P
(
Zt ⩾

m

t
4eDx∞ + ε

∣∣∣Nt = m
)
⩽ exp

(
− ε2t

8meDx∞

)
.

We set z = m
t 4e

Dx∞ + ε with which we get ε = z − m
t 4e

Dx∞ and

P
(
Zt ⩾ z

∣∣∣Nt = m
)
⩽ exp

(
−
(
z − m

t 4e
Dx∞

)2
t

8meDx∞

)
.

If we suppose n
t 4e

Dx∞ ⩽ z
2 we obtain

P
(
Zt ⩾ z

∣∣∣Nt = m
)
⩽ exp

(
− z2t

32meDx∞

)
.

With this we found a bound for the conditional probability of Zt being bigger than a certain
constant. The next step is to bound P(Zt ⩾ z), and for this we need to upper bound the
probability of Nt being large. Let M > 0, since Nt follows a Poisson distribution of intensity
λt, we can apply a Chernoff bound argument (more details in Mitzenmacher and Upfal [98])
obtaining

P(Nt > M) ⩽

(
eλt

M

)M

e−λt for M > λt ,

and
P(Nt > M) ⩽ e−M−λt when M > e2λt .

Now, we compute

P(Zt ⩾ z) =

M∑
m=1

P(Zt ⩾ z|Nt = m)P(Nt = m) + P(Zt ⩾ z|Nt > M)P(Nt > M)

≤
M∑

m=1

exp

(
− z2t

8me2+Dx∞

)
P(Nt = m)

+ P(Zt ⩾ z|Nt > M)P(Nt > M)

⩽ exp

(
− z2t

8Me2+Dx∞

)
+ exp(−M − λt) ,

where we use the bounds we previously found for P(Zt ⩾ z|Nt = m) and P(Nt > M). Finally,
we need to choose z and M such that P(Zt ⩾ z) ⩽ ϱ/t2. Reminding the constrain M > e2λt, we
want

exp(−M − λt) ⩽
ϱ

2t2
,
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which is true if

M ⩾ log

(
2t2

ϱ

)
− λt

and then we can choose M = e2λt+ log(2t2/ϱ) that satisfies both conditions. Similarly, we want

exp

(
− z2t

32MeDx∞

)
⩽

ϱ

2t2
,

which is true if

z ⩾

√
32MeDx∞

t
log(2t2/ϱ) ,

and reminding the constrain z ⩾ 8M
t eDx∞ we choose z such that

z ⩾
8M

t
eDx∞ + 2

√
8MeDx∞

t
log(2t2/ϱ) .

Due to Young’s inequality a+ 2
√
ab ⩽ 2a+ b, we can also choose

z ⩾
16M

t
eDx∞ + log(2t2/ϱ) ,

which replacing M becomes

16

t
eDx∞(e2λt+ log(2t2/ϱ)) + log(2t2/ϱ)

= 16λeDx∞ +

(
1 +

16

t
eDx∞

)
log(2t2/ϱ)

⩽ 32eDx∞(4λ+ 1 + log(1/ϱ)) .

In conclusion, we choose z = 32eDx∞(4λ+ 1 + log(1/ϱ)) and we get

P(Zt ⩾ z) = P(Zt ⩾ 32eDx∞(4λ+ 1 + log(1/ϱ)))

⩽ exp

(
− z2t

32MeDx∞

)
+ exp(−M − λt)

⩽
ϱ

2t2
+

ϱ

2t2

=
ϱ

t2
.

Using an upper-bound over t

P(∀t = 1, 2, . . . Zt ⩾ 32eDx∞(4λ+ 1 + log(1/ϱ))) ⩽
∑

t=1,2,...

ϱ

t2
= ϱ

π2

6
≤ 2ϱ ,

which concludes the proof.

Finally, we are now ready to give the desired upper bound for ||∇ℓt(θ)||2 in the following
proposition
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Proposition 3. Let ϱ > 0. Then, with probability 1− ϱ we have

||∇ℓt(θ)||2 ⩽ G2 ∀θ ∈ Θ, t = 1, 2, . . . ,

with G := 32eDx∞(4λ+ 1 + log(2/ϱ))
(
1 + eDx∞

)
x∞.

Démonstration. Let us notice that ∇ℓt(θ) ∈ Rd and recall

∇ℓt(θ) =

Nt∑
i=1

−yitxi + rit exp(θ
⊤xi)xi (ui ∧ t− τi ∨ 0)+ .

Then, we have

||∇ℓt(θ)|| ⩽
Nt∑
i=1

||yitxi||+ ||rit exp(θ⊤xi)xi (ui ∧ t− τi ∨ (t− 1))+ || ,

noticing that yit ⩽ rit, xi ⩽ x∞, exp(θ⊤xi) ⩽ exp(Dx∞)
and (ui ∧ t− τi ∨ (t− 1))+ ⩽ 1,

||∇ℓt(θ)|| ⩽
Nt∑
i=1

||ritx∞||+ ||rit exp(Dx∞)x∞||

⩽
Nt∑
i=1

rit ·
(
1 + exp(Dx∞)

)
x∞

⩽ Rt

(
1 + exp(Dx∞)

)
x∞ ,

by definition of Rt =
∑Nt

i=1 rit. In consequence,

||∇ℓt(θ)||2 ⩽
(
32eDx∞(4λ+ 1 + log(2/ϱ))

(
1 + exp(Dx∞)

)
x∞
)2

,

with probability 1 − ϱ and where the last inequality is due to Lemma 4. This conclude the
proof.

B3.2 Strong convexity (H2)

Before showing the strong convexity let us remark that we can write S(t|xi, τi) = exp

(
−
∫ t

τi

H(s|xi, τi)ds

)
and because f(t|xi, τi) = H(t|xi, τi)S(t|xi, τi) the density of ti is given by

f(t|xi, τi) = H(t|xi, τi) exp

(
−
∫ t

τi

H(s|xi, τi)ds

)
.

Given θ∗ ∈ Θ, the real parameter and replacing by our parametric model h(t|xi, θ
∗, τi) =

exp(θ∗Txi) we have

f(t|xi, τi) := exp(θ∗Txi) exp
(
−(t− τi) exp(θ

∗Txi)
)
1{t ⩾ τi}. (B.1)
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We also denote

ℓt(θ; s, c, x, τ) :=
(
− 1{t− 1 < s ⩽ t ∧ c}θTx+ exp(θTx)

(
(c ∧ s ∧ t)− (τ ∨ (t− 1))

)
+

)
and recalling that yit = 1{t − 1 < ti ⩽ t ∧ ci}, ui = ti ∧ ci and rit = 1{τi < t, ui ⩾ t − 1}, we
have

ℓt(θ) =

Nt∑
i=1

−yitθ
Txi + rit exp(θ

Txi)
(
(ui ∧ t)− (τi ∨ (t− 1))

)
=

Nt∑
i=1

ℓt(θ; ti, ci, xi, τi) .

In addition, as (ti)i⩾1 and (ci)i⩾1 are i.i.d. we name T and C random variables that are distributed
as ti and ci, respectively. We first prove the following Lemma that gives us an explicit expression
of the risk function Lt(θ) := Et−1[ℓt(θ)], θ ∈ Θ, t = 1, 2, . . ..
Lemma 5. For every t = 1, 2, . . . and every θ ∈ Θ the risk function is given by

Lt(θ) = λE
[
(e(θ−θ∗)T x − θTx)1{T ⩽ C}(1− T )+ | τ = 0

]
+

∑
i:{ui>t−1}
i:{τi⩽t−1}

(
e(θ−θ∗)⊤xi − θ⊤xi

)
P(1{t− 1 + τi < T ⩽ τi + t ∧ C}|xi, τi, τ = 0) .

Démonstration. The expected value is

Et−1[ℓt(θ)] = Et−1

[
Nt∑
i=1

ℓt(θ; ti, ci, xi, τi)

]
,

which we separate in two terms

Et−1[ℓt(θ)] = E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)

+

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi] . (B.2)

Now, recalling that g and f respectively denote the conditional densities of ti and ci given
(τi, xi) and, because ci and ti are independent given (τi, xi), we first calculate the first term

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= E

 Nt∑
i=Nt−1

E [ℓt(θ; ti, ci, xi, τi)|xi, τi]


= E

 Nt∑
i=Nt−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, xi, τi)g(c|xi, τi)f(s|xi, τi)dsdc

 .

Now because xi are i.i.d. and independent from τi and ci, denoting by x a random variable
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with the same distribution we have

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= E

 Nt∑
i=Nt−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, x, τi)g(c|x, τi)f(s|x, τi)dsdc


which can be written as the stochastic integral

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= E

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, x, v)g(c|x, v)f(s|x, v)dsdcdN(v)

]
= λE

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, x, v)g(c|x, v)f(s|x, v)ds dc dv

]
= λE

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s+ v, c+ v, x, v)g(c+ v|x, v)f(s+ v|x, v)ds dc dv

]
= λE

[∫ t

t−1

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s+ v, c+ v, x, v)g(c|x, 0)f(s|x, 0)ds dc dv

]
= λE

[∫ ∞

−∞

∫ t

t−1

∫ ∞

−∞
ℓt(θ; s+ v, c+ v, x, v) f(s|x, 0) ds dv g(c|x, 0)dc

]
.

We do not know g(c|x, v) but we know that g(c|x, v) = g(c − ϵ|x, v − ϵ) for all ϵ ∈ R. For
instance, g(c|x, v) = g(c − v|x, 0) and, the same is satisfied for f . Then, we change the variable
v ∈ [0, t] in w = v − (t− 1) :∫ t

t−1

ℓt(θ; s+ v, c+ v, x, v) dv =

∫ 1

0

ℓ1(θ; s+ w, c+ w, x,w) dw .

We obtain

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= λE

[∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
ℓ1(θ; s+ w, c+ w, x,w)f(s|x, 0)ds dw g(c|x, 0)dc

]
.

Considering the integral on the time s∫ ∞

−∞
ℓ1(θ; s+ w, c+ w, x,w)f(s|x, 0)ds

=

∫ ∞

0

ℓ1(θ; s+ w, c+ w, x,w)eθ
∗T x exp(−seθ

∗T x)ds ,
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we obtain

−
∫ (1−w)∧c

(−w)+

θTxeθ
∗T x exp(−seθ

∗T x)ds

= −θTxP((−w)+ < T ≤ (1− w) ∧ c|τ = 0) ,

and ∫ ∞

(1−w)∧c

((c+ w) ∧ (s+ w) ∧ 1− w+)+e
θT xeθ

∗T x exp(−seθ
∗T x)ds

= eθ
T x((c+ w) ∧ 1− w+)+P(T ≥ (1− w) ∧ c|τ = 0) ,

and ∫ (1−w)∧c

(−w)+

((s+ w)− w+)e
θT xeθ

∗T x exp(−seθ
∗T x)ds

= eθ
T x
(
− ((s+ w)− w+) exp(−seθ

∗T x) |(1−w)∧c
(−w)+

+

∫ (1−w)∧c

(−w)+

exp(−seθ
∗T x)ds

)
= −eθ

T x((c+ w) ∧ 1− w+)+P(T ≥ (1− w) ∧ c|τ = 0)

+ exp((θ − θ∗)Tx)P((−w)+ < T ≤ (1− w) ∧ c|τ = 0) .

All in all we obtain∫ ∞

0

ℓ1(θ; s+ w, c+ w, x,w)eθ
∗T x exp(−seθ

∗T x)ds

= (e(θ−θ∗)T x − θTx)P((−w)+ < T ≤ (1− w) ∧ c|τ = 0) ,

thus we have

E

 Nt∑
i=Nt−1

ℓt(θ; ti, ci, xi, τi)


= λE

[
(e(θ−θ∗)T x − θTx)

∫ ∞

−∞

∫ 1

0

P((−w)+ < T ≤ (1− w) ∧ c|τ = 0)dw g(c|x, 0)dc
]

= λE
[
(e(θ−θ∗)T x − θTx)E

[ ∫ 1

0

1{(−w)+ < T ≤ (1− w) ∧ C}dw
∣∣∣x, τ = 0

]]
= λE

[
(e(θ−θ∗)T x − θTx)E

[ ∫ 1−T

0∨−T

1{T ⩽ C}dw
∣∣∣x, τ = 0

]]
= λE

[
(e(θ−θ∗)T x − θTx)E

[
1{T ⩽ C}((1− T )− 0 ∨ −T )+

∣∣∣x, τ = 0
]]

= λE
[
(e(θ−θ∗)T x − θTx)E

[
1{T ⩽ C}(1− T )+

∣∣∣x, τ = 0
]]
.
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Replacing in Equation (B.2) we have

Et−1[ℓt(θ)] = λE
[
(e(θ−θ∗)T x − θTx)E

[
1{T ⩽ C}(1− T )+

∣∣∣x, τ = 0
]]

+

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi] .

To calculate the second term, we note that we know ui if ui ⩽ t−1 and in this case ℓt(θ; ti, ci, xi, τi) =
0, therefore, we consider only the individuals i such that ui > t− 1. The sum becomes

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi]

=
∑

i:{ui>t−1}
i:{τi⩽t−1}

∫ ∞

−∞

∫ ∞

−∞
ℓt(θ; s, c, xi, τi)g(c|xi, τi)f(s|xi, τi)dsdc ,

which, following the calculations of the first term we obtain

Nt−1∑
i=1

Et−1 [ℓt(θ; ti, ci, xi, τi)|xi, τi]

=
∑

i:{ui>t−1}
i:{τi⩽t−1}

(
e(θ−θ∗)⊤xi − θ⊤xi

)
P(t− 1 + τi < T ⩽ τi + t ∧ C|x = xi, τi, τ = 0) ,

where (T,C, x, τ) is independent of (ti, ci, xi, τi) for every i ≥ 1. Let us notice that τi and xi,
which we suppose are observed at the same time as τi, are known at time t − 1. Replacing this
term in Equation (B.2) leads to

Et−1[ℓt(θ)]

= λE
[
(e(θ−θ∗)T x − θTx)1{T ⩽ C}(1− T )+ | τ = 0

]
+

∑
i:{ui>t−1}
i:{τi⩽t−1}

(
e(θ−θ∗)⊤xi − θ⊤xi

)
P(t− 1 + τi < T ⩽ τi + t ∧ C|xi, τi, τ = 0),

that finalizes the proof.

We define
J(θ) := λE

[
(e(θ−θ∗)⊤x − θTx)1{T ⩽ C}(1− T )+

∣∣∣x, τ = 0
]
, (B.3)

and we are ready to show the strong convexity of the risk function that we give in the following
proposition.
Proposition 4. The risk function satisfies

∇2Lt(θ) ≽ λe−Dx∞E[xx⊤1{T ⩽ C}(1− T )+|τ = 0], ∀θ ∈ Θ, t = 1, . . . , n .

Therefore, under Assumption 2 Lt is µ-strongly convex for µ = λe−Dx∞A.

Démonstration. Lemma 5 gives us an expression of the risk Lt =: J +Rt with Rt some random
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convex function. By convexity ∇2Lt(θ) ≽ ∇2J(θ), θ ∈ Θ, and therefore, it is enough to bound
the hessian of the first term J . We calculate

∇J(θ) = λE
[
(e(θ−θ∗)⊤x − 1)x1{T ⩽ C}(1− T )+

∣∣x, τ = 0
]

and
∇2J(θ) = λE

[
e(θ−θ∗)⊤xxx⊤1{T ⩽ C}(1− T )+

∣∣x, τ = 0
]
.

Let us notice that e(θ−θ∗)⊤x ⩾ e−Dx∞ and then

∇2J(θ) ≽ λe−Dx∞E[xx⊤1{T ⩽ C}(1− T )+|x, τ = 0] ,

which due to Assumption 2 concludes the proof.

B3.3 Proof of Theorem 2

Démonstration. First of all, we remind that Proposition 3 implies (H3) with G = G1 = G2,
but this bound for the gradients is satisfied with probability 1− ϱ instead of almost surely and
therefore we cannot claim that (H3) is always fulfilled. But there is a problem with this definition
because (H3) considers all t = 1, 2, . . . and, in order to have a Ft-measurable function we need
to define a time dependent (H3)t :

(H3)t For t+ 1 ⩾ s ⩾ 1 the gradients ∇ℓs(θs), satisfy for G > 0 and all k ⩾ 1, and θ ∈ Θ :

Es−1[(∇ℓs(θs)
⊤(θs − θ))2k] ≤ k!(GD)2(k−1)Es−1[(∇ℓs(θs)

⊤(θs − θ))2] ,

Es−1[||∇ℓs(θ)||2k] ≤ k!G2(k−1)Es−1[||ℓs(θs)||2] ,
Es−1[||∇ℓt(θ)||2] ≤ G2 .

We define Ωt = {(yis, xi, τi, ui)s⩽t such that (H3)t is satisfied} for all t = 1, 2, . . . sand we
check that Ωt is Ft-measurable. Next, for all t = 1, 2, . . . we define the auxiliary loss function

ℓ̂t(θ) = ℓt(θ)1{Ωt−1} ,

which is Ft-measurable. Let us notice that we need to define Ωt using (H3)t instead of the
inequality of Proposition 3 to preserve the past dependency and the measurability. We prove
that the function ℓ̂t satisfies the conditions (H1), (H2) and (H3).

First of all, (H1) is still verified because the indicator function does not depend on θ. Secondly,
if (H3)t is not realized then the function ℓ̂t is zero and all the bounds hold. Thirdly, if (H3)t
is realized, ℓt satisfies the inequalities of (H3) and ℓ̂t = ℓt by definition. Then the bounds in
(H3) are also true for ℓ̂t, concluding that ℓ̂t satisfies the inequalities of (H3) for all t = 1, 2, . . ..
Finally, it remains to prove (H2).

By Ft−1-measurability of Ωt−1 we calculate for θ ∈ Θ :

Et−1[∇ℓ̂t(θ)∇ℓ̂t(θ)
⊤] = 1{Ωt−1}Et−1[∇ℓt(θ)∇ℓt(θ)

⊤] .
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If (H3)t is not realized, 1{Ωt−1} = 0 and so (4) is true for any constant γ ⩾ 0. If (H3)t is
realized, 1{Ωt−1} = 1 and there exist G > 0 such that :

Et−1[∇ℓ̂t(θ)∇ℓ̂t(θ)
⊤] = Et−1[∇ℓt(θ)∇ℓt(θ)

⊤] ≼ G2Id .

This, together with the strong convexity of Proposition 4 give us the hypothesis of Proposition 2
assuring the stochastic exp-concavity for γ = λe−Dx∞A/G2 and concluding (H2). Now, we have
that ℓ̂t satisfies all the conditions of Theorem 4 assuring the logarithmic stochastic regret bound
of ONS.

To study the stochastic regret bound we need also to define for all t = 1, 2, . . . the risk function
L̂t(θ) = Et−1[ℓ̂t(θ)] and we notice that as 1{Ωt−1} is Ft−1-measurable :

L̂t(θ) = 1{Ωt−1}Et−1[ℓt(θ)] = 1{Ωt−1}Lt(θ) , θ ∈ Θ.

Now, it remains to prove that ONS has logarithmic stochastic regret also for Lt and therefore,
we calculate for every n ≥ 1, t = 1, . . . , n,
θ∗ ∈ argminθ∈Θ

∑n
t=1 Lt(θ) and θt the prediction of ONS at time t :

P

[
n∑

t=1

Lt(θt)− Lt(θ) > B(n)

]
= P

 n∑
t=1

Lt(θt)− Lt(θ
∗) > B(n),

⋂
t⩾2

Ωt−1


+ P

 n∑
t=1

Lt(θt)− Lt(θ
∗) > B(n),

⋂
t⩾2

Ωt−1

c
⩽ P

[
n∑

t=1

(Lt(θt)− Lt(θ
∗))1{Ωt−1} > B(n)

]

+ P

⋂
t⩾2

Ωt−1

c ,

where B(n) is the stochastic regret bound for L̂(θ) of Theorem 4 which we remind :

B(n) = 3

2γ

(
1 + d log

(
1 +

2(γD)2G2
(
n+ log(ϱ−1)

)
9

))

+

(
4γ(GD)2

9
+

18

γ

)
log(ϱ−1) .

Plugging in B(n) the specific values of γ, G and µ found in Propositions 2, 3, and 4, respec-
tively,

γ =
µ

G2
=

λe−Dx∞A

(32eDx∞(4λ+ 1 + log(2/ϱ))(1 + eDx∞)x∞)
2 ,
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we obtain the regret bound

Riskn ⩽
3G2eDx∞

2λA

(
1 + d log

(
1 +

2(λAD)2
(
n+ log(ϱ−1)

)
9G2e2Dx∞

))

+

(
4λAD2

9eDx∞
+

18GeDx∞

λA

)
log(ϱ−1) . (B.4)

Then, because of Theorem 4, this bound holds with probability 3ϱ and as

P

⋂
t⩾2

Ωt−1

c ⩽ ϱ ,

we have :

P

[
n∑

t=1

Lt(θt)− Lt(θ) > O(log(n/ϱ))

]
⩽ 4ϱ ,

and thus, with probability 1− 4ϱ, ONS algorithm has logarithmic stochastic regret.

B3.4 Proof of Corollary 1

Démonstration. Due to the µ-strong convexity of Lt(θ) proved in Proposition 4 we have for all
t = 1, 2, . . . :

µ||θt − θ∗||2 ⩽ ∇Lt(θ
∗)⊤(θt − θ∗) + µ||θt − θ∗||2 ⩽ Lt(θt)− Lt(θ

∗) ,

where the first inequality is true because ∇Lt(θ
∗)⊤(θt − θ∗) ⩾ 0. Then, because of Theorem 2 :

n∑
t=1

||θt − θ∗||2 ⩽
1

µ

n∑
t=1

Lt(θt)− Lt(θ
∗) ⩽

1

µ
B(n) ,

and remembering that µ = λe−Dx∞A, the bound is :

1

µ
B(n) = 3G2e2Dx∞

2λ2A2

(
1 + d log

(
1 +

2(λAD)2
(
n+ log(ϱ−1)

)
9G2e2Dx∞

))

+

(
4λAD2

9eDx∞
+

18GeDx∞

λA

)
log(ϱ−1) , (B.5)

which is O(log(n/ϱ)). We conclude the convergency of θt to θ∗ and then :

||θ̄n − θ∗||2 ⩽
1

n

n∑
t=1

||θt − θ∗||2 − 1

n

n∑
t=1

||θt − θ̄n||2 ⩽
1

µ
O(log(n/ϱ)/n) ,

concluding the convergency of θ̄n to θ∗.
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B4 Survival ONS

B4.1 Proof of Lemma 3

Démonstration. We first compute

∇ℓ̂t,γ(θ1) = ∇ℓt(θ̂) + γ
(
∇ℓt(θ̂)(θ1 − θ̂)

)
∇ℓt(θ̂)

=
(
1 + γ∇ℓt(θ̂)(θ1 − θ̂)

)
∇ℓt(θ̂) .

We need to show that there exists γ̂ > 0 such that

ℓ̂t,γ(θ2) ⩾ ℓ̂t,γ(θ1) +∇ℓ̂t,γ(θ1)(θ2 − θ1) +
γ̂

2

(
∇ℓ̂t,γ(θ1)(θ2 − θ1)

)2
and if we replace ℓ̂t,γ this inequality is equivalent to

ℓt(θ̂) +∇ℓt(θ̂)(θ2 − θ̂) +
γ

2

(
∇ℓt(θ̂)(θ2 − θ̂)

)2
⩾ ℓt(θ̂) +∇ℓt(θ̂)(θ1 − θ̂) +

γ

2

(
∇ℓt(θ̂)(θ1 − θ̂)

)2
+
(
1 + γ∇ℓt(θ̂)(θ1 − θ̂)

)
∇ℓt(θ̂)(θ2 − θ1)

+
γ̂

2

(
(1 + γ∇ℓt(θ̂)(θ1 − θ̂))∇ℓt(θ̂)(θ2 − θ1)

)2
.

Grouping, this requirement becomes

γ

2

(
∇ℓt(θ̂)(θ2 − θ̂)

)2
⩾

γ

2

(
∇ℓt(θ̂)(θ1 − θ̂)

)2
+ γ∇ℓt(θ̂)(θ1 − θ̂)∇ℓt(θ̂)(θ2 − θ1)

+
γ̂

2

(
(1 + γ∇ℓt(θ̂)(θ1 − θ̂))∇ℓt(θ̂)(θ2 − θ1)

)2
,

which is
0 ⩾

(
γ̂

2
(1 + γ∇ℓt(θ̂)(θ1 − θ̂))2 +

γ

2

)(
∇ℓt(θ̂)(θ2 − θ1)

)2
.

To satisfy this inequality we need

γ̂ ⩽
γ

(1 + γ∇ℓt(θ̂)(θ1 − θ̂))2
,

which is true for the choice γ̂ = γ

(1+γD||∇ℓt(θ̂)||)2
and this concludes the proof.

B4.2 Proof of Theorem 3

Démonstration. At each iteration t we consider θ̂t the prediction of SurvONS and θt(γ) the
prediction of ONS with γ ∈ Γ. We define the directional derivative lower bound function as in
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Equation (2.7)

ℓ̂t,γt
(θ) = ℓt(θ̂t) +∇ℓt(θ̂t)(θ − θ̂t) +

γt
2

(
∇ℓt(θ̂t)(θ − θ̂t)

)2
.

Let us notice that γ ⩽ 1
4GD and ℓ̂t,γt

(θ) ⩽ ℓt(θ) for all θ.

We take θ∗ ∈ argminθ∈Θ

∑n
t=1 ℓt(θ) and we can upper-bound the regret for any γ ∈ Γ

Regretn =

n∑
t=1

ℓt(θ̂t)− ℓt(θ
∗)

⩽
n∑

t=1

ℓ̂t,γt(θ̂t)− ℓ̂t,γt(θ
∗)

=

n∑
t=1

ℓ̂t,γt
(θ̂t)− ℓ̂t,γt

(θt(γ)) + ℓ̂t,γt
(θt(γ))− ℓ̂t,γt

(θ∗)

=

n∑
t=1

∇ℓt(θ̂t)(θ̂t − θt(γ))−
n∑

t=1

γt
2

(
∇ℓt(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

ℓ̂t,γt(θt(γ))− ℓ̂t,γt(θ
∗) .

We upper-bound the first term using the regret-bound of BOA [138] which works for γ ⩽ 1
4GD

n∑
t=1

∇ℓt(θ̂t)(θ̂t − θt(γ)) ⩽
log(K)

γ
+ 2γ

n∑
t=1

(
∇ℓ(θ̂t)(θ̂t − θt(γ))

)2
.

Therefore, the regret is bounded by

Regretn ⩽
log(K)

γ
+

n∑
t=1

(
4γ − γt

2

)(
∇ℓ(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

ℓ̂t,γt
(θt(γ))− ℓ̂t,γt

(θ∗).

We consider the surrogate losses ℓ̂t,γ̂t
for t = 1, 2, . . . and γ̂t = 4max{γ, γt/4}

ℓ̂t,γ̂t(θ) = ℓt(θ̂t) +∇ℓt(θ̂t)(θ − θ̂t) + 2max{γ, γt
4
}
(
∇ℓt(θ̂t)(θ − θ̂t)

)2
,
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and we write the last term of the regret bound

n∑
t=1

ℓ̂t,γt(θt(γ))− ℓ̂t,γt(θ
∗)

=

n∑
t=1

(
ℓ̂t(θt(γ); γ)− ℓ̂t(θ

∗; γ)
)
+

n∑
t=1

(
ℓ̂(θt(γ))− ℓ̂t(θt(γ); γ)

)
−

n∑
t=1

(
ℓ̂t(θ

∗)− ℓ̂t(θ
∗; γ)

)
=

n∑
t=1

(
ℓ̂t(θt(γ); γ)− ℓ̂t(θ

∗; γ)
)

−
n∑

t=1

(4γ − γt)+
2

(
∇ℓt(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

(4γ − γt)+
2

(
∇ℓt(θ̂t)(θ̂t − θ∗)

)2
.

We substitute this expression in the regret bound

Regretn ⩽
log(K)

γ
+

n∑
t=1

(
ℓ̂t(θt(γ); γ)− ℓ̂t(θ

∗; γ)
)

−
n∑

t=1

(γt − 4γ)+
2

(
∇ℓt(θ̂t)(θ̂t − θt(γ))

)2
+

n∑
t=1

(4γ − γt)+
2

(
∇ℓt(θ̂t)(θ̂t − θ∗)

)2
.

Now, we note that by Lemma 3 we have

ℓ̂t(θt(γ); γ)− ℓ̂t(θ
∗; γ) ⩽ ∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

− γ̂t
2

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
,

where we can write max{γ, γt/4} = γ + (γt/4− γ)+ and get

γ̂t =
4(γ + (γt/4− γ)+)

(1 + 4(γ + (γt/4− γ)+)(∇ℓt(θ̂t)(θt(γ)− θ̂t)))2
⩾ γ .

Therefore, we can apply the regret bound of ONS which yields to

n∑
t=1

ℓ̂t(θt(γ); γ)− ℓ̂t(θ
∗; γ) ⩽

5d log(n)

γ
+

γ

2

n∑
t=1

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
−

n∑
t=1

γ̂t
2

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
. (B.6)
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But, since

∇ℓ̂t(θt(γ); γ) =
(
1 + 4(γ + (γt/4− γ)+)∇ℓt(θ̂t)(θt(γ)− θ̂t)

)
∇ℓt(θ̂t) ,

we can write(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
=
(
1 + 4(γ + (γt/4− γ)+)∇ℓt(θ̂t)(θt(γ)− θ̂t)

)2 (
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
,

which yields to

γ̂t

(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
= 4(γ + (γt/4− γ)+)

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
. (B.7)

Using the assumption 4(γ + (γt/4− γ)+) ⩽ 1/GD we can also get(
∇ℓ̂t(θt(γ); γ)(θt(γ)− θ∗)

)2
⩽ 4

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
. (B.8)

Therefore, plugging (B.7) and (B.8) in (B.6) we get

n∑
t=1

ℓ̂t(θt(γ); γ)− ℓ̂t(θ
∗; γ) ⩽

5d log(n)

γ
+

4γ

2

n∑
t=1

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
− 2

n∑
t=1

(γ + (γt/4− γ)+)
(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
=

5d log(n)

γ

− 2

n∑
t=1

(γt/4− γ)+

(
∇ℓt(θ̂t)(θt(γ)− θ∗)

)2
.

Thus, the regret bound becomes

Regretn ⩽
2 log(K) + 5d log(n)

γ

− 2

n∑
t=1

(γt/4− γ)+

(
(∇ℓt(θ̂t)(θt(γ)− θ∗))2 + (∇ℓt(θ̂t)(θ̂t − θt(γ)))

2
)

+

n∑
t=1

(4γ − γt)+
2

(∇ℓt(θ̂t)(θ̂t − θ∗))2,



B4. Survival ONS 107

and as (4γ − γt)+ = 4γ + 4(γt/4− γ)+ − γt, we can regroup and get

Regretn ⩽
2 log(K) + 5d log(n)

γ

+ 2

n∑
t=1

(γt/4− γ)+

(
(∇ℓt(θ̂t)(θ̂t − θ∗))2 − (∇ℓt(θ̂t)(θt(γ)− θ∗))2

− (∇ℓt(θ̂t)(θ̂t − θt(γ)))
2
)

+

n∑
t=1

4γ − γt
2

(∇ℓt(θ̂t)(θ̂t − θ∗))2

=
2 log(K) + 5d log(n)

γ

− 4

n∑
t=1

(γt/4− γ)+

(
(∇ℓt(θ̂t)(θt(γ)− θ∗))(∇ℓt(θ̂t)(θt(γ)− θ̂t))

)
+

n∑
t=1

4γ − γt
2

(∇ℓt(θ̂t)(θ̂t − θ∗))2
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Annexe C
Appendix C

C1 Scoring Rules

C1.1 Concordance Index

The concordance index was introduced by Harrell et al. [60] and it is the most widely used
performance metric for time-to-event analysis [123]. It measures the fraction of pairs of subjects
that are correctly ordered within all the possible pairs that can be ordered. The highest (and
best) value that can be obtained is 1, which means that there is a complete agreement between
the order of the observed and predicted times. The lowest value that can be obtained is 0, which
means that all the prediction pairs are ordered backward with respect to the observed times,
while a value of 0.5 denotes a random model.

First, we take every pair in the test set such that the earlier observed time is not censored.
Then, we consider only pairs (i, j) such that i < j and we also eliminate the pairs for which the
times are tied. Next, we define a score Ci,j for each pair (i, j) such as yi ̸= yj , equal to 1 if the
subject with earlier time (between i and j) has higher predicted risk, equal to 0.5 if the risks are
tied, or equal to 0 otherwise.

Finally, given a subset of the data D of size n, we compute the concordance index as follows :

CI(Ŝ,D) =
1

|P|
∑

(i,j)∈P

Ci,j ,

where,

Ci,j =


1 if yi < yj and R̂(xi) > R̂(xj)

0.5 if R̂(xi) = R̂(xj)

0 otherwise,

and P = {(i, j) ∈ D × D : i < j, yi ̸= yj , if yi < yj , then δi = 1} is the set of all eligible pairs.
To calculate the concordance index, we use the version of scikit-survival library [106] in Python.

109
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C1.2 Integrated Brier score

We consider an approach based on the estimates of the probability functions that will be used
as predictions of the event status 1{Ti > t}. In this case, 1{Ti > t} has to be compared with
Ŝ(t|Xi), leading to the mean squared error (MSE) at time t :

MSE(Ŝ, t) = E[(1{Ti > t} − Ŝ(t|Xi))
2].

The Brier score, introduced initially to measure the inaccuracy of probabilistic weather fore-
cast by Brier [16], is an estimator of the MSE. It is important to remark that the MSE cannot
be directly computed from the dataset since we do not know the underlying distribution of Ti

but only the realizations of Yi. Let us define SC(t|Xi) = P(Ci > t|Xi) the survival censoring
distribution and the Brier score :

BS(Ŝ, t,D) =
1

n

n∑
i=1

Wi(t)(1{yi > t)− Ŝ(t|xi))
2,

where (xi, yi, δi) for 0 < i ⩽ n are points from D, and Wi is defined for all t as :

Wi(t) =
δi1{yi ⩽ t}
ŜC(yi|xi)

+
1{yi > t}
ŜC(t|xi)

.

Gerds and Schumacher [47] proved that the Brier score is a consistent estimator for the
mean square error when the estimation ŜC of SC is well specified. Let us notice that in our
implementation of the score, we use a Kaplan-Meier [76] estimator for the survival censoring
function ŜC , which does not depend on the covariates. This assumption is not always the case
for the real censoring function SC , and it can lead to misspecifications of the model (wrong
hypothesis on the probability shape) and, thus, to an estimation bias [52].

Finally, we consider over this paper the integrated Brier score :

IBS(Ŝ,D) =
1

τ

τ∫
0

BS(Ŝ, t,D)dt,

where τ is a user-specified time horizon. There exist diverse scoring rules for survival models
based on L1-loss, logarithmic loss and 1-calibration in between others (see [56] and [52] for more
details). Other approaches of the estimation of prediction errors and model misspecification can
be found in [86]. We chose the concordance index and integrated Brier score because they measure
different aspects of the models, ranking and calibration, allowing us to have a good understanding
of the performance of the methods.

C2 Implemented Methods

C2.1 Cox Proportional Hazard (Cox PH)

Cox proportional hazard is a semi-parametric method proposed by Cox [24] with the objective
of measuring the impact of each covariate/feature in the estimation of the survival probability



C2. Implemented Methods 111

function. It models the hazard function as a general linear regression of the covariates and a non-
parametric baseline function λ0(t) that depends only on time. Given a subject with a covariate
vector x = {x1, . . . , xd}, the hazard function is as follows :

h(t|x) = λ0(t) exp
(
βTx

)
,

where the parameter β = (β1, ..., βd) is estimated by maximizing the likelihood. This model is
semi-parametric in the sense that the baseline function λ0(t) does not need to be specified and it
can be chosen differently for each unique time. Cox proportional hazard is one of the most often
used methods in time-to-event analysis and has a wide range of applications [83], [88], [115]. We
use the implementation from scikit-survival library [106], where a regularization parameter α for
ridge regression penalty is used and whose default is equal to 0. The mortality risk prediction
will be determined by the log hazard ratio R(x) = βTx.

C2.2 Gradient Boosting Cox (GBC)

Gradient boosting Cox is a machine learning method that was first proposed by Breiman
[14], developed by Friedman [42] and adapted to survival models by Ridgeway [112]. The main
idea is to combine a series of base learners in an additive manner to obtain a strong overall
model. The base learners implemented in this case will be regression trees fitted at each stage
on the negative gradient of the loss function. This is an additive method in the sense that it is
constructed sequentially in a step-by-step greedy way. We can define the overall function f as
follows :

f(x) =

K∑
k=1

ρk · gk(x, θ),

where gk is used to denote the base learners and K is the number of learners. Therefore, the
objective is to maximize the log-likelihood function of Cox’s proportional hazard model by re-
placing the linear regression βTx with the additive function f(x) such that we have the following
expression for the hazard function :

h(t|x) = λ0(t) exp (f(x)) .

We use the implementation of scikit-survival [106] where we find three parameters of our interest,
the learning rate that shrinks the contribution of each tree and it is set as default by 0.1, the
maximum depth that specifies the depth to which each tree will be built and that is set equal to
3 by default, and the minimum samples leaf that determines the number of samples required to
be at a leaf node and its default is equal to 1. Similar as Cox proportional hazard the mortality
risk prediction can be interpreted as the log hazard ratio f(x).

C2.3 Random Survival Forest (RSF)

Random survival forest was proposed by Ishwaran et al. [72] as an adaptation for censored
data of the random forest method introduced by Breiman et al. [15]. It is an ensemble of tree-
based learners where each tree is built from a bootstrap sampling of the training set in order to
reduce the correlation between the trees. Also, for each node, it only evaluates the split criterion
for a random subset of features and thresholds. The quality of a split is measured by the log-rank
splitting rule [13] and then predictions are formed by aggregating predictions of the individual
trees.
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We implemented random survival forest from scikit-survival [106] and we will consider three
of its parameters. The first one is the maximum depth which is set as infinity, which means that
the nodes are expanded until no further partitioning is possible. The second one is the maximum
features number which indicates the maximum number of features to consider when looking for
the best split ; this parameter is set as the number of data features. The last parameter is the
minimum samples leaf which in this case the default value is 3. Here, the mortality risk is defined
by the ensemble mortality (see [72] for details) which corresponds to the sum of the cumulative
Hazard functions estimated by the forest.

C2.4 Weibull Accelerated Failure Time (Weibull AFT)

Weibull AFT is a parametric model that was named after Waloddi Weibull, who was the first
to promote its usefulness, particularly in the domain of strength of materials [136]. Accelerated
failure time models also assume that the effect of a covariate is to accelerate or decelerate the
life course. Given the parameters ρ and λ, the survival function of the Weibull distribution can
be given as :

S(t|x) = exp

(
−
(

t

ρ(x)

)λ
)
,

where we consider the scale parameter ρ(x) = exp
(
β0 · (βTx)

)
and λ is the parameter that

controls the concavity of the cumulative hazard, indicating acceleration or deceleration hazards.
In this case, we implement Weibull AFT from lifelines library [29] and we consider a penalizer
parameter and a ℓ1-ratio to adjust how much of the penalizer should be attributed to an ℓ1
penalty. Both of them are initially set as zero by default. Here, the mortality risk is defined by
E[Ti|xi].

C2.5 Aalen’s Additive Fitter (Aalen)

Aalen’s additive is a parametric method proposed by Aalen [1]. This model responds to the
fact that not all the covariates effects must be proportional, which is different from the assumption
of Cox proportional hazard, but some of them can have additive effects. Besides, Aalen’s additive
model allows the effects of the covariates to vary over time which is not always the case with the
other methods. The hazard function, in this case, is given as follows :

h(t|x) = β0(t) + βT (t)x,

where β(t) is an unknown parameter of dimension d that are estimated by a linear regression
(see [2]). We consider only the penalizer coefficient, which attaches an ℓ2 penalizer to the size
of the parameters during regression that improves the stability of the estimations and controls
the high correlation of the features. This penalizer is set to zero by default. Similarly as Weibull
AFT, the mortality risk is defined by E[Ti|xi].

C2.6 DeepSurv

DeepSurv is a nonlinear version of the Cox proportional hazard method proposed by Katzman
et al. [77]. DeepSurv allows the use of neural networks within the original design of Cox’s and
aims to offer more flexibility in terms of the structure of the model than Cox proportional hazard.
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DeepSurv is a multi-layer perceptron that predicts the risk of failure. The output of the network
r̂θ(x) is a single node that estimates the risk function. The loss function to minimize is the
negative log-partial likelihood of the Cox proportional hazard method :

ℓ(θ) =− 1

L

∑
i:δi=1

r̂θ(xi)− log

 ∑
j∈R(Ti)

er̂θ(xj)


+ λ||θ||2,

where λ is a ℓ2 regularization parameter and L is the number of uncensored subjects. The network
weights that minimize the loss function can be estimated by a gradient descent algorithm [114].
We use the implementation from Pysurvival [41], where we can choose the structure of the
multilayer perceptron by choosing the number of hidden units per layer. We will consider two
fully connected hidden layers and, consequently, two parameters to be set. The default number
of units is 60 for the first layer and 10 for the second. Let us note that the Pysurvival library
is now outdated. We have forked the library directly from the GitHub repository 1 (https:
//github.com/square/pysurvival). Other implementations of DeepSurv are available in the
PyCox library [82] and the R package survivalmodels [121].

1. Our forked version can be found at : https://github.com/camferna/pysurvival-wsklearn

https://github.com/square/pysurvival
https://github.com/square/pysurvival
https://github.com/camferna/pysurvival-wsklearn
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Appendix D

D1 Score Comparison

D1.1 Metrics

Precision and recall : We study the relation between precision and recall, commonly used
to evaluate the performance of classification models. We estimate the probability of leaving within
a given time horizon t = 9 months using various survival methods. Consequently, for a range of
probability thresholds, we determine whether individual i leaves in 9 months or not transforming
the estimation of the survival curves into a classification model. We compare the outputs of the
classification predictions with δi, which allows us to define :

precision =
true positives

true positives+ false positives
,

recall =
true positives

true positives+ false negatives
.

We study how precision and recall evolve across the grid of thresholds.

ROC curve : Following the previous setting, we also use the receiver operating characteristic
curve, which is a graphical plot that illustrates the variation of the recall (also known as true
positive rate) while increasing the probability of a false prediction (also known as false positive
rate). We define the false positive rate as :

FPR =
false positives

false positives+ true negatives
.

To this end, we consider a grid of thresholds and we calculate the FPR and the recall for each
point on the grid.

In order to be able to use precision and recall and ROC curves to measure the performance
of the models, we first need to transform the predictions into a classification setting. However,
this transformation may not always align with our analytical needs and can discard important
information of the survival curves.

115
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D1.2 Comparison

In this section, we compare the performance of the models using precision and recall, as
well as ROC curves. This approach requires us to frame it as a classification task, where an
individual either leaves within 9 months or stays. This setting is limiting as it does not allow for
the simultaneous evaluation of other time horizons. Diverse approaches have been proposed in
order to use ROC to evaluate the performance of survival models [67, 75] but they were out of
the scope of our study. We consider this approach in order to align with industrial applications
and to increase communication with other teams.
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Figure D.1 – Precision v/s recall [left] and ROC curve [right] comparison on the attrition
dataset.

Figure D.1 shows the average precision versus recall curves on the left, and the average ROC
curves on the right. In the precision v/s recall graph we observe a consistent outperformance
of Gradient Boosting (GBC), Gradient Boosting Cumulative Incidence Function (GBCIF), and
Random Survival Forest (RSF), highlighting the superiority of machine learning approaches. The
figure on the right supports this conclusion, and further, we notice the consistent outperformance
of GBC. This result supports the conclusions of Section 4.3.
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Figure D.2 – Box plot comparison across multiple dataset splits using the AUC value on the
attrition dataset.
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In Figure D.2 we compare performance using the AUC value (area under the ROC curve),
where a higher AUC indicates better predictive accuracy. Machine learning methods consistently
outperform others, with GBC showing the best performance across all metrics.

D2 Features Importance

D2.1 Cox proportional hazards

Following the study of Section 4.4, we present the result of permutation feature importance
for Cox proportional hazards model.

Figure D.3 – Permutation feature importance results of Cox PH model on the attrition dataset.

We observe in Figure D.3 that the most important feature is variable 5, followed by job
variable 2 and variable 6. This outcome differs from the results presented in Section 4.4.1. Such
differences can be attributed to the varying complexities with which each modeling method
captures feature interactions, as well as their underlying assumptions about data distribution. We
selected various thresholds to choose the features and compared the variance of the concordance
index when training the model with different subsets of features

Tableau D.1 – Concordance index comparison of Cox PH model when selecting different subsets
of features.

53 features 27 features 14 features 10 features

Concordance index 0.782 0.782 0.784 0.773

In Tableau D.1, we observe that selecting the 14 most important features slightly increases
the concordance index. This improvement may result from avoiding overfitting by excluding a
large number of non-relevant features, reducing potential noise, and simplifying the model, which
makes it easier to train and optimize. Additionally, this simplification allows for an enhanced
focus on the relevant features.
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In Figure D.4, we observe the impact of feature selection and hyperparameter optimization.
For the Cox proportional hazards model, we consider only one hyperparameter, which is used
for the ridge regression penalty regularization. Similar to the gradient boosting Cox model, we
note a performance advantage when selecting features and optimizing the hyperparameters.

0.70 0.72 0.74 0.76 0.78

Cox PH

Cox PH*

Cox PH-PI

Concordance Index Comparison

Figure D.4 – Box plot comparison across multiple dataset splits of the concordance index for
the Cox PH model on the attrition dataset. We evaluate the impact of feature selection and
hyperparameter optimization.

In Figure D.5, we present the beeswarm plot of the Cox proportional hazards model, which
shows the Shapley values of different features. Similar to Figure D.3, variable 5 emerges as the
most important feature for Cox PH model predictions, followed by variable 2. However, the third
place is now occupied by variable 7, likely due to the differences in the methods used to calculate
feature importance. Shapley values evaluate how each feature contributes by considering all
possible combinations, reflecting the marginal effect of each feature within the context of others.
Conversely, permutation feature importance, especially when measured using the concordance
index, evaluates feature significance based on the impact on prediction performance when the
feature values are shuffled, potentially overlooking the complex interactions between features.
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Figure D.5 – Feature importance beeswarm evaluated using Shapley values of Cox PH model
on the attrition dataset.

Additionally, we observe that a high value of variable 5 negatively impacts model predictions,
thereby decreasing the risk, which implies that employees who have higher values are more likely
to stay. Similarly to the GBC model, a high value of variable 2 reduces the risk of leaving the
company. Finally, a smaller value of variable 7 increases the probability of employees staying
with the company.

D2.2 Random survival forest

In this section, we replicate the previous study using a random survival forest. Figure D.6
displays the results of the permutation feature importance, where we identify variable 5 as the
most significant feature, followed by variable 2 and variable 1. The first two features align with the
most relevant features identified by the Cox proportional hazards model. Consequently, similar
to the previous section, we selected various subsets of features to examine the impact of feature
selection on the concordance index.
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Figure D.6 – Permutation feature importance results of RSF model on the attrition dataset.

In Tableau D.2, we note that selecting the 27 most important features slightly improves the
concordance index compared to training with the entire feature set.

Tableau D.2 – Concordance index comparison of RSF model when selecting different subsets
of features.

53 features 27 features 21 features 11 features

Concordance index 0.794 0.781 0.771 0.752

Finally, we evaluate the performance of the RSF model by optimizing the hyperparameters
through randomized search and selecting the 27 most important features. In Figure D.7, similar
to previous experiments, we observe that feature selection favors the optimization of hyperpara-
meters and, consequently, the performance of the method.
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Figure D.7 – Box plot comparison across multiple dataset splits of the concordance index
for the RSF model on the attrition dataset. We evaluate the impact of feature selection and
hyperparameter optimization.

In Figure D.8, we present the beeswarm plot of the Random Survival Forest, which illustrates
the Shapley values of the different features. We note that, consistent with Figure D.6, the three
most significant features, variable 2, variable 5, and variable 1, maintain their importance lead,
though their ranking has shifted.
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Figure D.8 – Feature importance beeswarm evaluated using Shapley values of RSF model on
the attrition dataset.

Following the trends observed in Figure 4.5 and Figure D.5, we notice that a high value of
variable 2 decreases the risk of leaving the company. Additionally, employees who have higher
values of variable 5 are less likely to leave, similar to employees with higher values of variable 1
who are also less likely to depart.

In conclusion, important features vary across models, yet feature selection consistently im-
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proves hyperparameter optimization and model performance. Additionally, the use of Shapley
values reinforces the study of feature importance, allowing us to explicitly understand how each
feature affects the model predictions.
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Contributions and Applications to Survival Analysis
Résumé

L’analyse de survie a suscité l’intérêt de diverses disciplines, allant de la médecine et de la maintenance
prédictive à diverses applications industrielles. Sa popularité croissante peut être attribuée aux avancées
significatives en matière de puissance de calcul et à la disponibilité accrue des données. Des approches
variées ont été développées pour répondre au défi des données censurées, allant des outils statistiques
classiques aux techniques contemporaines d’apprentissage automatique. Cependant, il reste encore une
marge considérable pour l’amélioration. Cette thèse vise à introduire des approches innovantes qui four-
nissent des insights plus profonds sur les distributions de survie et à proposer de nouvelles méthodes
avec des garanties théoriques qui améliorent la précision des prédictions.
Il est notamment remarquable de constater l’absence de modèles capables de traiter les données sé-
quentielles, une configuration pertinente en raison de sa capacité à s’adapter rapidement à de nouvelles
informations et de son efficacité à gérer de grands flux de données sans nécessiter d’importantes ressources
mémoire. La première contribution de cette thèse est de proposer un cadre théorique pour la modéli-
sation des données de survie en ligne. Nous modélisons la fonction de risque comme une exponentielle
paramétrique qui dépend des covariables, et nous utilisons des algorithmes d’optimisation convexe en
ligne pour optimiser la vraisemblance de notre modèle, une approche qui est novatrice dans ce domaine.
Nous proposons un nouvel algorithme adaptatif de second ordre, SurvONS, qui assure une robustesse
dans la sélection des hyperparamètres tout en maintenant des bornes de regret rapides. De plus, nous
introduisons une approche stochastique qui améliore les propriétés de convexité pour atteindre des taux
de convergence plus rapides.
La deuxième contribution de cette thèse est de fournir une comparaison détaillée de divers modèles
de survie, incluant les modèles semi-paramétriques, paramétriques et ceux basés sur l’apprentissage
automatique. Nous étudions les caractéristiques des ensembles de données qui influencent la performance
des méthodes, et nous proposons une procédure d’agrégation qui améliore la précision et la robustesse
des prédictions. Enfin, nous appliquons les différentes approches discutées tout au long de la thèse à une
étude de cas industrielle : la prédiction de l’attrition des employés, un problème fondamental dans le
monde des affaires moderne. De plus, nous étudions l’impact des caractéristiques des employés sur les
prédictions d’attrition en utilisant l’importance des caractéristiques par permutation et les valeurs de
Shapley.

Mots clés : analyse de survie, optimisation convexe en ligne, optimisation stochastique, apprentis-
sage automatique, apprentissage en ligne
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Abstract

Survival analysis has attracted interest from a wide range of disciplines, spanning from medicine and
predictive maintenance to various industrial applications. Its growing popularity can be attributed to
significant advancements in computational power and the increased availability of data. Diverse ap-
proaches have been developed to address the challenge of censored data, from classical statistical tools
to contemporary machine learning techniques. However, there is still considerable room for improve-
ment. This thesis aims to introduce innovative approaches that provide deeper insights into survival
distributions and to propose new methods with theoretical guarantees that enhance prediction accuracy.
Notably, we notice the lack of models able to treat sequential data, a setting that is relevant due
to its ability to adapt quickly to new information and its efficiency in handling large data streams
without requiring significant memory resources. The first contribution of this thesis is to propose a
theoretical framework for modeling online survival data. We model the hazard function as a parametric
exponential that depends on the covariates, and we use online convex optimization algorithms to minimize
the negative log-likelihood of our model, an approach that is novel in this field. We propose a new
adaptive second-order algorithm, SurvONS, which ensures robustness in hyperparameter selection while
maintaining fast regret bounds. Additionally, we introduce a stochastic approach that enhances the
convexity properties to achieve faster convergence rates.
The second contribution of this thesis is to provide a detailed comparison of diverse survival models,
including semi-parametric, parametric, and machine learning models. We study the dataset character-
istics that influence the methods performance, and we propose an aggregation procedure that enhances
prediction accuracy and robustness. Finally, we apply the different approaches discussed throughout the
thesis to an industrial case study: predicting employee attrition, a fundamental issue in modern business.
Additionally, we study the impact of employee characteristics on attrition predictions using permutation
feature importance and Shapley values.

Keywords: survival analysis, online convex optimization, stochastic optimization, machine learning,
online learning
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