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Summary

As global greenhouse gas emissions exacerbate the climate change challenge,
there is growing urgency to understand the socio-economic impacts of climate change
and the role of human ability to adapt to it. This dissertation comprises four essays
on the economics of climate, studying a new channel of climate impacts through pro-
duction networks and sectoral interlinkages, the determinants of individual climate
beliefs, and their role, together with cognitive biases, in adaptive behavior, and the
drivers of individual climate concern and pro-environment voting behavior.

In the first chapter, Sectoral impact and propagation of weather shocks, I examine
the heterogeneous effect of weather shocks on sectoral economic production across
the world and then trace their propagation across sectors, countries, and over time.
In contrast with previous studies that study the response of local economic activity
to local weather shocks, this chapter introduces the role of input-output sectoral in-
terlinkages as a transmission mechanism of weather shocks in a production network
model. Using a six-sector global dataset from 1975 to 2020, I document that agri-
culture is the most harmed sector by a range of weather shocks. Most importantly,
I find that sectors at later stages of the supply chain, though non-responsive to local
weather, suffer from substantial and persistent losses over time due to domestic and
foreign heat shocks in agriculture that propagate downstream. Using counterfactual
scenarios, I show a substantial underestimation of the economic cost of temperature
increases accounting for shocks across trade partners since 2000 and I characterize
global losses depending on the sectoral centrality in the production network.

In the second chapter, Adapting to climate change accounting for individual be-
liefs, I use a longitudinal survey of rural households in Bangladesh combined with
weather data and I formalize a theoretical framework to examine how climate beliefs
differentially influence individuals’ responsiveness to dryness in the use of irrigation.
The empirical analysis shows that farmers’ inaccurate priors asymmetrically drive
irrigation response to dryness shocks and farmers respond to changes in beliefs by ir-
rigating more only in drier areas. I also explore different mechanisms through which
cognitive factors may affect adaptive decisions, by comparing the severity, timing,
and frequency of self-reported droughts with recorded meteorological events. In a
counterfactual analysis with beliefs based on meteorological conditions, I quantify
the belief gap derived in the theoretical framework and monetize the losses induced
by inaccurate beliefs, documenting the welfare implications.

The third chapter, Drought exposure and accuracy: Motivated reasoning in cli-
mate change beliefs1, is based on the rural household survey in Bangladesh combined
with a meteorological measure of dryness to examine the belief formation process

1Published in Zappalà, G. (2023). Environmental and Resource Economics, 85, 649–672. Online
version accessible here: https://doi.org/10.1007/s10640-023-00779-1

1

https://doi.org/10.1007/s10640-023-00779-1


of individuals about droughts and test whether individuals exhibit directional mo-
tivated reasoning when interpreting them. First, I analyze how long-term averages
and short-term deviations in dryness exposure determine belief formation and the
recollection of drought events. Then, using exposure to meteorological dryness as
an instrumental variable, I document that individual prior beliefs lead to a distorted
interpretation of droughts that is biased towards their priors, providing suggestive
evidence of the presence of confirmation bias as a directional motivated reasoning
mechanism.

The fourth chapter, Climate-induced migration and environmental values, ex-
plores a new determinant of individual climate concern, examining whether the
upsurge in weather-driven migration flows has spurred a greater concern for climate
change in the European Union host countries between 2000 and 2019. I find that
weather-induced asylum demands raise individual concern about climate change
among citizens in the destination countries, in particular among young generations
and right-wing individuals. These changes in stated preferences, however, do not
translate into changes in voting behavior, as there is no effect of climate-induced
migration flows on Green party votes in the European Parliament elections. A set
of co-existing alternative mechanisms behind these findings suggest that the results
are driven by the drop-out of traditional Green voters, changes in preferences for
individuals below the voting age, as well as no changes in the pro-environmental
policy manifesto of political parties.

DISCIPLINE: Economics

KEYWORDS: Adaptation; Beliefs; Climate change; Climate concern; Climate
damages; Climate impacts; Weather shocks
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Résumé

Alors que les émissions mondiales de gaz à effet de serre exacerbent le défi
du changement climatique, il est de plus en plus urgent de comprendre les effets
socio-économiques du changement climatique et le rôle de la capacité humaine à
s’y adapter. Cette thèse comprend quatre essais sur l’économie du climat, étudiant
un nouveau canal des effets climatiques à travers les interconnexions sectorielles,
les déterminants des croyances climatiques individuelles et leur rôle, ainsi que les
biais cognitifs, dans le comportement adaptatif, et les moteurs des préoccupations
climatiques individuelles et du comportement de vote en faveur de l’environnement.

Dans le premier chapitre, Sectoral impact and propagation of weather shocks,
j’examine l’effet hétérogène des chocs météorologiques sur la production économique
sectorielle à travers le monde, puis je retrace leur propagation entre les secteurs, les
pays et dans le temps. Contrairement aux études précédentes qui étudient la réac-
tion de l’activité économique locale aux chocs météorologiques locaux, ce chapitre
introduit le rôle des liens sectoriels d’entrée-sortie en tant que mécanisme de trans-
mission des chocs météorologiques dans un modèle de réseau de production. À
l’aide d’un ensemble de données mondiales portant sur six secteurs, de 1975 à 2020,
je montre que l’agriculture est le secteur le plus touché par une série de chocs
météorologiques. Plus important encore, je constate que les secteurs situés à des
stades ultérieurs de la chaîne d’approvisionnement, bien qu’ils ne réagissent pas aux
conditions météorologiques locales, subissent des pertes substantielles et persistantes
au fil du temps en raison des chocs thermiques dans l’agriculture qui se propagent en
aval. En utilisant des scénarios contrefactuels, je montre une sous-estimation sub-
stantielle du coût économique des augmentations de température en tenant compte
des chocs sur les partenaires commerciaux depuis 2000 et je caractérise les pertes
globales en fonction de l’importance sectorielle dans le réseau de production.

Dans le deuxième chapitre, Adapting to climate change accounting for individ-
ual beliefs, j’utilise une enquête longitudinale sur les ménages ruraux au Bangladesh
combinée à des données météorologiques et je formalise un cadre théorique pour
examiner comment les croyances climatiques influencent de manière différentielle la
réactivité des individus à la sécheresse dans l’utilisation de l’irrigation. L’analyse em-
pirique montre que les croyances influencent l’irrigation uniquement dans les zones
plus sèches, avec des réponses hétérogènes selon les saisons de croissance et les types
d’irrigation. J’explore également les différents mécanismes par lesquels les facteurs
cognitifs peuvent affecter les décisions d’adaptation, en comparant l’intensité, le mo-
ment et la fréquence des sécheresses autodéclarées avec les événements météorologiques
enregistrés. Dans une analyse contrefactuelle avec des croyances basées sur les con-
ditions météorologiques, je montre que les agriculteurs sous-utilisent l’irrigation et
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subissent des pertes monétaires substantielles en raison des croyances inexactes ob-
servées, générant un belief gap.

Le troisième chapitre, Drought exposure and accuracy: Motivated reasoning in
climate change beliefs1, est basée sur la même enquête auprès des ménages ruraux
combinée à une mesure météorologique de la sécheresse afin d’examiner le proces-
sus de formation des croyances des individus sur les sécheresses et de tester si les
individus font preuve d’un raisonnement directionnel motivé lorsqu’ils les interprè-
tent. Tout d’abord, j’analyse comment les moyennes à long terme et les écarts à
court terme dans l’exposition à la sécheresse déterminent la formation des croyances
et le souvenir des événements de sécheresse. Ensuite, en utilisant l’exposition à la
sécheresse météorologique comme variable instrumentale, je démontre que les croy-
ances des individus conduisent à une interprétation déformée des sécheresses qui est
biaisée par rapport à leurs croyances antérieures, suggérant la présence d’un biais
de confirmation en tant que mécanisme de raisonnement motivé.

Le quatrième chapitre, Climate-induced migration and environmental values, ex-
plore un nouveau déterminant de l’inquiétude individuelle face au climat, en ex-
aminant si les flux migratoires induits par les conditions météorologiques a suscité
une plus grande préoccupation climatique dans les pays d’accueil de l’Union eu-
ropéenne entre 2000 et 2019. Je constate que les demandes d’asile liées aux con-
ditions météorologiques augmentent les préoccupations individuelles concernant le
changement climatique parmi les citoyens des pays de destination, en particulier
parmi les jeunes générations et les individus de droite. Ces changements dans les
préférences déclarées ne se traduisent cependant pas par des changements dans le
comportement électoral, car il n’y a pas d’effet des flux migratoires induits par le
climat sur les votes du parti des Verts aux élections du Parlement européen. Une
série de mécanismes alternatifs coexistants derrière ces résultats suggèrent que les
résultats sont dus à l’abandon des électeurs verts traditionnels, aux changements
dans les préférences des personnes n’ayant pas l’âge de voter, ainsi qu’à l’absence de
changements dans les manifestes politiques pro-environnementaux des partis poli-
tiques.

DISCIPLINE: Sciences Économiques

MOTS-CLEFS: Adaptation ; Croyances ; Changement climatique ; Préoccupa-
tions climatiques ; Dommages climatiques ; Impacts climatiques ; Chocs météorologiques

1Publié dans Zappalà, G. (2023). Environmental and Resource Economics, 85, 649–672. Version
en ligne accessible ici: https://doi.org/10.1007/s10640-023-00779-1

4

https://doi.org/10.1007/s10640-023-00779-1


General Introduction

Climate and Society

Climate and society have shared an indissoluble relationship since ancient times.
The interplay between climate and human societies has shaped the course of his-
tory, influencing the beliefs and actions of individuals and communities across the
globe. Global environmental changes have characterized various historical eras, as
exogenous historical processes to which societies were exposed and were forced to
rethink their livelihoods and lifestyle.

The main structural transformations of society followed epochal climatic changes.
Humans are children of the Ice Age: it was only when the intense cold of the
last ice age began to ease, more than 10,000 years ago, that cultivation began,
and urbanization followed (Behringer, 2010). As paradoxical as it may seem, the
warming of the climate contributed to the creation of humankind. Similar major
transformations followed, emphasizing the innate human ability to adapt: from a
nomadic to a sedentary life; from hunting to agriculture and animal husbandry; from
barters and material exchanges to an interconnected world with fragmented global
supply chains comprising trade and financial interlinkages.

In the short run, global greenhouse gas emissions continue to rise as world per
capita income increases. In light of this tight intricate relationship, anthropogenic
climate change and the increasingly rapid pace of changes in weather fluctuations
and in the frequency, intensity, duration, timing, and spatial distribution of extreme
weather events pose one of the most urgent and cumbersome challenges for human
society and ecosystems (IPCC, 2021). If, on the one hand, income increases will be
beneficial for billions of people in the developing world, on the other hand, given the
current technologies, emissions will exacerbate the climate change challenge, which
will make adaptation even more important to guarantee future improvements in
people’s standard of living.
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While a number of efforts are being made to reach international environmental
agreements and reduce greenhouse gas emissions, given that the repercussions of
extreme weather events on society are already tangible, attention is turning from
mitigation to adaptation and coping strategies for individuals, firms, governments,
and, in general, human society, to understand how we can change our lives as the
climate change challenge becomes more severe.

The connection between environmental change and human well-being has long
intrigued economists and other social scientists. However, it is only in recent times
that research on this relationship has grown exponentially. This can be attributed to
the growing significance of climate change as a major policy concern, advancements
in statistical and econometric tools for causal inference for non-experimental studies,
and progress in computer science and climatology, which have enhanced our ability to
parameterize the elements associated with climatic variations that are most pertinent
to the socio-economic outcomes under scrutiny. Answering these questions takes
on an extremely policy-relevant connotation to design more stringent and targeted
mitigation and adaptation policies and garner public climate awareness and support
for climate policies.

Integrating Climate into Economics

To price the global climate externality, climate economists have directed their efforts
toward estimating the external damages. Traditionally, climate damages have been
calculated using theoretical-numerical Integrated Assessment Models (IAMs). The
original efforts in the development of a climate-economy model incorporating the
economy’s greenhouse gas emissions, the carbon cycle, and a climate change dam-
age function into an economic growth model led to the recognition of the Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred Nobel in 2018 (Nordhaus,
1992). The results of these models are then converted into policy-relevant monetary
figures using the Social Cost of Carbon (SCC), which represents the net present value
of the future marginal damages caused by emitting one additional tonne of carbon
today (Waldhoff et al., 2014; Nordhaus, 1993a,b). To bridge the economic and the
natural systems, these models use theoretical “damage functions” that describe how
global mean temperature translates into economic and social costs (Revesz et al.,
2014). Although serving the purpose of combining the economic and natural do-
mains into a single framework, the results of the calculations from these models
heavily rely on modeling assumptions that often do not reflect well the dynamics of
climate change (Pindyck, 2013; Weitzman, 2010). Despite efforts in advancing cli-
mate dynamics and embedding state-of-the-art climate science into economic models
(Dietz et al., 2021), recent models still hinge on simplified climate damage functions
that assume increases in global mean surface temperature from pre-industrial lev-
els as a reasonable sufficient statistic for damages through a non-linear (quadratic)

6



relationship and omitting any other weather variation, cumulative effects or effects
depending on the speed of changes (Barrage and Nordhaus, 2023). These models
- and the resulting SCC estimates - assume that the temperature increases always
have the same effect, thus assuming adaptation does not take place. Moreover, they
do not account for heterogeneous unequal impacts across space.

As opposed to theoretical and numerical exercises, there has been more recent
interest in statistical approaches that use historical data and estimate the relation-
ship in real-world settings. Climate science has enormously progressed in refining
our understanding of long-run historical climate variations, short-run weather fore-
casts, and climate prediction models. Such data and models can help answer a
variety of questions with important implications for the economy, both in terms of
our understanding of the historical relationship between society and climate, and of
how it can help shape the future. The combination of data sets from the physical
and social sciences combined with recent methodological advancements in causal in-
ference has contributed to providing data-driven estimates of highly policy-relevant
relationships between human well-being and climatic changes.

Measuring Climate Impacts

Early studies estimating the economic damages associated with climate change used
cross-sectional variation in climate (occurring at one point in time) to estimate the
marginal economic effect of long-run changes in the distribution of temperature
and rainfall (Mendelsohn et al., 1994). Nevertheless, the “credibility revolution” in
empirical economics (Angrist and Pischke, 2010) has rapidly permeated the research
field of environmental economics and spurred the birth of a research area on its own
often defined as “climate econometrics” (Hsiang, 2016). This emerging literature
uses weather data, that vary over both space and time, to estimate the effects of
interannual variation on economic and social outcomes while accounting for cross-
sectional unobserved omitted variables, for which it is not possible to control for
using cross-sectional data (Deschênes and Greenstone, 2007; Schlenker and Roberts,
2009). This plethora of new studies driven by the credibility revolution has made use
of better-quality data and econometric techniques to uncover causal links between
changes in the climate and a wide range of social outcomes (see Dell et al. (2014)
and Carleton and Hsiang (2016) for reviews). Such studies rely on observational
data to obtain climate damage functions and fill the methodological gap left by the
impossibility of randomly allocating climate to two sample populations identical in
every other way.

A comprehensive description of the potential channels of climate impacts is cru-
cial for formulating an optimal climate policy. The empirical estimation of the social
and economic impacts of climate can be broadly grouped into two main strands. On
the one hand, bottom-up approaches focus on sector-specific market and non-market
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damages representing different sectors of the economy, including human health, eco-
nomic conditions, and social interactions. In this strand of the literature, there
is evidence of the impact of temperature variations on many domains, including
mortality (Heutel et al., 2021; Barreca et al., 2015), agriculture and crop yields (De-
schênes and Greenstone, 2007; Schlenker and Roberts, 2009), electricity consumption
(Wenz et al., 2017; Auffhammer et al., 2017), labor productivity (Graff Zivin and
Neidell, 2014; Graff Zivin et al., 2018), human capital (Fishman et al., 2019), con-
flicts (Hsiang et al., 2011; Hsiang and Jina, 2014), crime (Ranson, 2014), mental
health (Obradovich et al., 2018), sleep (Minor et al., 2022; Obradovich et al., 2017),
profanity and hatred (Stechemesser et al., 2021; Baylis, 2020). On the other hand,
top-down approaches consider aggregate measures of economic production, such as
GDP or regional economic production, and their response to temperature variations
(Dell et al., 2012; Burke et al., 2015b; Kalkuhl and Wenz, 2020; Acevedo et al.,
2020; Kahn et al., 2021). While the former approach has the advantage of pro-
viding accurate sector-specific response functions to weather fluctuations, the latter
should theoretically capture all market impacts of climate change. Both approaches,
however, share certain limitations, which I detail below.

First and foremost, empirical climate impact studies rely on a well-defined frame-
work to study the effect of climate with restrictive assumptions (Hsiang, 2016;
Deryugina and Hsiang, 2017). This dissertation (in Chapters 1, 2 and 3) provides
some theoretical and empirical arguments on the restrictiveness of certain assump-
tions, that rely on perfect information, and complete rationality (Arrow and Debreu,
1954). Most importantly, there have long been concerns that the effect of interan-
nual weather variation on economic outcomes cannot be used to identify the effect
of climate change. The response to short-run weather fluctuations is fundamen-
tally different from the response to permanent changes in climate. Individuals and
firms may respond differently to permanent changes in the expected distribution of
weather (i.e., the climate) than to short-term unexpected variations in weather. The
impact of weather fluctuations would be a good proxy for the effect of a permanent
change in the climate only if adaptation was not important.

Second, the number of fields on which climate has an effect is very large, and
any aggregation of sector-specific estimates may be incomplete and only provide
partial measures of the SCC. A variety of market and non-market responses are
yet unexplored. Likewise, although the empirical designs and novel data sources
allow researchers to explore various weather shocks, most of the literature has so far
focused on the impact of temperature and recent work has started investigating more
in-depth the effect of rainfall (Kotz et al., 2022), cyclones (Hsiang and Jina, 2014),
floods (Gandhi et al., 2022; Kocornik-Mina et al., 2020), water runoff (Russ, 2020),
and wildfires (Heft-Neal et al., 2023). Yet, climate change affects the moments of the
distribution of several weather events, whose impact on many social and economic
outcomes is still understudied.
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Third, partial estimates do not account for interactions between sectors and
regions. Spatial and sectoral interactions can cause double-counting when aggre-
gating sectors and one should account for the covariance of impacts across sectors
to obtain the distribution of aggregate damages. More importantly, these interac-
tions may distort the efficient allocation of resources for sector-specific government
intervention policies. As opposed to theoretical and numerical models for climate
damages, empirical sector-specific studies do not address the feedback between the
economy and climate. Such limitation applies to population and goods flows (Cruz
and Rossi-Hansberg, 2023; Costinot et al., 2016) and endogenous sectoral realloca-
tion (Nath, 2020), which are not usually accounted for in reduced-form empirical
studies and are studied only in spatial general equilibrium settings. Chapter 1 of this
dissertation provides empirical evidence of the importance to account for sectoral
interlinkages even in a reduced-form top-down approach.

Last, climate impact studies leverage short-run variations in weather variables
to identify the effect on economic and social outcomes. It is yet unclear how the
welfare economics of climate change would change as a function of unprecedented
physical events and potential climatic irreversibilities, such as tipping points.

More recently, in an effort to reconstruct dose-response functions with global
coverage, in a number of studies, the Climate Impact Lab empirically estimates
partial market and non-market climate damages allowing for local non-linearities and
accounting for adaptation costs and benefits in various sectors, including mortality
(Carleton et al., 2022), energy and electricity demand (Rode et al., 2021), labor
supply and disamenity (Rode et al., 2022), agriculture and crop yields (Hultgren
et al., 2022). Combining these sector-specific estimates can inform a more accurate
and data-driven derivation of the SCC (Nath et al., 2022).

While all these studies have strong internal validity given the rigorous attention
to the identification strategy in the empirical design, there are questions regarding
how suitable the impacts of idiosyncratic weather shocks are for informing the future
impacts of changes in climate which, among other things, are spatially correlated,
and not always perfectly observable by individuals. The chapters comprising this
dissertation extensively rely on this recent empirical literature. Nevertheless, this
research deviates from previous work both in the types of questions addressed as
well as along several methodological dimensions.

Understanding Climate and Forming Expectations

An ongoing debate in economics explores how people understand and interpret past
events and how they form expectations over the likelihood of future events. The
neo-classical rational expectations school hypothesizes that individuals use all avail-
able information in forming their beliefs and converge to a true posterior. Such
assumptions have been widely disputed in the field of behavioral economics arguing
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that people are prone to cognitive mistakes. These innovations have been so impor-
tant that they led to the recognition of the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel in 2002 (Kahneman and Tversky, 1979) and
in 2017 (Thaler, 2015). Blending economics with psychology, more realistic models
of human behavior have integrated new psychological traits, including behavioral
anomalies, bounded rationality, and cognitive biases (Kahneman and Tversky, 1973,
1982).

While theoretical and empirical work in psychology and behavioral economics
suggests that these assumptions are often unjustified, implicit economic models in
climate economics still assume that agents are perfectly informed and have unbiased
beliefs that meteorological conditions can fully account for. To clarify the role of
beliefs and expectations, I summarize the underlying conceptual framework that
guides the climate impact and adaptation models (Hsiang, 2016).

Climate C is defined as the high-dimensional vector of parameters that describe
the joint probability distribution of possible weather conditions that can be expected
to occur over a specific interval of time. Weather realizations c are a random vector
drawn from the climate distribution. A social or economic outcome of interest Y
is affected by climate in two ways. First, the climate directly influences what real-
izations of weather c actually occur, affecting the population. Second, individuals’
beliefs over the structure of C may be altered by a change in climate, affecting their
actions and resulting outcomes. Respectively, these two channels are defined as the
direct and belief effects. Individuals take actions b based on their beliefs, such that
the relationship between the outcome and climate can be modeled as

Y = f(b(C); c(C)) (1)

This framework assumes that agents have perfect information about the climate
they inhabit and thus the belief effect captures adaptation as the optimizing behavior
of the agent. If one considers a simple maximization problem of a representative
individual (or firm), for instance on expected profits π, this would be written as

maxbE(π) = E[f(b, c) − g(b)] (2)

where b is the vector of actions that the individual can take, and c is the vector of
stochastic weather conditions, given a well-behaved twice continuously differentiable
and concave function f(·), normalized output price to one, and a cost function
g(·) convex in actions. From the solution of this optimization problem, it follows
that adaptation is the behavioral response of individuals in actions to expected
changes in weather conditions E[c]. Expectations about the long-run climate inform
costly investments to protect against increasing exposure to adverse conditions. This
sketched framework shows how important it is to understand how individuals form
expectations about climate to measure adaptation and thus accurately quantify
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climate impacts. Lack of awareness about changing climate conditions hinders our
ability to adapt accordingly.

A few recent studies have advanced our understanding of individuals’ and firms’
expectations regarding the impact of weather and climate on their adaptation de-
cisions. Weather realizations only provide a noisy signal of the climate state. Ob-
serving repeated evidence in the form of repeated weather realizations can lead the
individual to update their beliefs about the underlying climate distribution, which
then leads them to reoptimize investments and actions to maximize welfare under
the new climate distribution. The adjustment rate of individuals through adaptive
responses is thus constrained by inferring changes in the underlying climate dis-
tribution through weather signals (Kelly et al., 2005) and the cost and the rate of
adjustment depend on the accuracy of beliefs about the state of the climate distribu-
tion. Adjustment costs do not depend on the learning process only as long as agents
acquire knowledge from weather conditions and adjust their expectations regarding
the climate distribution (Moore, 2017).

A smaller number still of studies rely on observational data on individual climate
beliefs. One of the few exceptions finds that Indian farmers are averse to ambiguity
and change planting dates in response to changes in the onset of the monsoon, partic-
ularly so in villages that have experienced greater changes to the rainfall distribution
recently (Kala, 2017). Shrader (2023) finds large benefits of forecasts in adaptation
to El Niño-Southern Oscillation (ENSO) variation for albacore tuna harvesters in
the North Pacific US. Chapter 3 in this dissertation explores individual-level changes
in beliefs over time to understand the climate belief formation process and cognitive
biases in a setting where timely adaptation is extremely important.

Lastly, other work has looked at how expectations about climate change are
priced in the market, in particular, real estate markets and municipal bonds cap-
italize sea level rise (Bernstein et al., 2019), while temperatures are capitalized in
weather derivatives (Schlenker and Taylor, 2021) and land markets (Severen et al.,
2018). These studies suggest that individuals - at least partially - recognize the
non-stationarity of climate. Using past observations of weather to estimate the cli-
mate distribution may result in a biased estimate of climate change impacts since
these forward-looking outcomes already capture expectations of future climate dam-
ages. Ideally, one would use individuals’ beliefs about the weather distribution to
measure climate impacts (Kolstad and Moore, 2020). Chapter 2 demonstrates the
importance to account for individual beliefs. Moving forward, climate economics can
benefit immensely from leveraging the progress made in the design of surveys to elicit
otherwise invisible factors such as perceptions, knowledge and beliefs, attitudes, and
reasoning (Stantcheva, 2022).
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Adapting to Climate Change

Climate losses could be avoided, in theory, if populations fully adapted to the chang-
ing dimensions of their climate. Individual choice, markets, and technological in-
novation can help shield us from climate risk (see Kahn (2016) for a review). Yet,
climate conditions continue to play an important role in shaping modern society due
to persistent adaptation gaps (Carleton and Hsiang, 2016). A number of different
dimensions of adaptation gaps have been examined to understand why populations
differ so much in adaptive behavior across geographical and temporal contexts. The
adaptation gaps include weak incentives to adapt (Annan and Schlenker, 2015),
limited access to credit (Burgess et al., 2014), limited market competition (Kochhar
and Song, 2023), limited information about benefits (Hornbeck, 2012), access to
technologies (Olmstead and Rhode, 2011), trade barriers (Nath, 2020), and institu-
tional constraints (Ospital, 2023). An approach to detect adaptation is the explicit
measurement of outcomes that are themselves thought to be adaptations, such as
investing in irrigation after a drought, as studied in Chapter 2. An alternative ap-
proach measuring adaptation implicitly can be obtained by observing the response
functions that link climate to social and economic outcomes. Populations that adapt
more will have a flatter damage function.

Different methodologies exist to implicitly measure climate change adaptation,
each with its own advantages and disadvantages (Massetti and Mendelsohn, 2018).
Studying climate adaptation requires confronting the “frequency-identification” trade-
off (Hsiang and Burke, 2014). On the one hand, using high-dimensional fixed effects
to account for unobserved omitted variables enhances the internal validity and allays
concerns about the endogeneity of the residual short-run variation in weather. On
the other hand, using cross-sectional variation allows to estimate the long-run equi-
librium response to climate change which accounts for adaptation. High-frequency
shocks used in the first case are more likely to be unexpected and exogenous and
thus measure impacts net of adaptation, whereas low-frequency shocks are more
likely to shift beliefs and expectations and account for adaptive responses. Short-
run and long-run elasticities are equal only under certain assumptions (Lemoine,
2021). In between these two extremes of approaches, a few recent methodological
advancements have proposed the combination of both short- and long-run variation
in panel data in order to improve estimates of climate change damages (see Kolstad
and Moore (2020) for a review).

The first approach entails the estimation of the heterogeneous marginal effect of
weather as a function of climate, which implies a nonlinear response function. Two
co-existing methods have been adopted to estimate these heterogeneous marginal
effects. Both methods require panel data to exploit both interannual weather vari-
ability across multiple locations and climate differences across locations. The first
methodology uses non-linear panel models and conditions the marginal effect of
weather to vary with climate across locations (Heutel et al., 2021). If adaptation
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changes the marginal response to short-run weather variations, then these adap-
tation margins are captured in the panel estimates. Other relevant dimensions of
adaptation, such as income, can be used in a symmetric manner (Carleton et al.,
2022). The second methodology is a multistage model that first estimates the short-
run elasticity to weather for each location and then models the coefficient on weather
as a function of climate (Auffhammer, 2022).

A second approach uses long-run changes in weather conditions - so-called “long
differences” - to exploit variation in long-term temperature and precipitation trends.
Exploiting longer-term climate fluctuations provides a better estimate of how agents
will respond to climate change (Burke and Emerick, 2016; Liu et al., 2023) and
comparing long-term with short-term elasticities to weather can provide evidence
on adaptation. An attenuated impact of extreme temperatures when moving from
an annual panel specification to a long difference would provide suggestive evidence
of adaptation. While partially accounting for adaptation, this approach relies on
across-location variation in weather conditions and locations warming more may be
systematically different from locations that warm less.

A third approach is to use the differences in the impacts between slow-moving
changes in temperature and short-run shocks estimated in the same equation to
quantify the extent of adaptation, as recently shown to quantify the impact of tem-
perature changes on atmospheric ozone concentration to detect adaptation (Bento
et al., 2023). This approach, similar in spirit to partitioning variation exercises
(Mérel and Gammans, 2021), which jointly estimate the effects of both long- and
short-run variation, shares typical problems on the ability to measure long-term cli-
mate and differentiate it from unexpected exogenous shorter-run variation. Given
the non-stationarity of climate, this is particularly difficult when individuals’ beliefs
are not observed as usually is the case. Chapter 2 discusses this issue more in detail
and showcases the consequences of not accounting for beliefs.

In a fourth and last approach, climate economics has applied recent advances in
machine learning techniques to identify which weather variables are quantitatively
important in determining economic outcomes, rather than relying on particular func-
tional forms or weather variables. This approach has already been implemented to
estimate how weather shocks impact crop yields (Hultgren et al., 2022) and GDP
(Akyapi et al., 2022). The methodology has the benefit of not relying on the re-
searcher to specify ex-ante the correct functional form of the relationship between
weather and the outcomes and could be applied in the future to many other settings.

Climate Concern and Support for Climate Policies

Accurate quantification of climate impacts plays a crucial role in formulating to-
day’s policies and facilitating an effective approach to adaptation, which necessitates
strategic planning and timely investments. In order for the markets to internalize
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these costs and potential benefits through public policy measures and traditional
policy instruments, such as carbon taxes or tradable emission allowances, it is es-
sential to accurately estimate them.

Many young people are deeply concerned about climate change. Inspired by
environmental activists and global climate demonstrations, they seek to hold elected
officials accountable for their slow carbon mitigation efforts. One optimistic scenario
is that as new generations continue to emphasize more and more the climate change
challenge, a political shift could occur over time (Kahn, 2021).

Despite this growing concern in numerous countries regarding climate change and
people’s willingness to take action (Dechezleprêtre et al., 2022; Douenne and Fabre,
2020), the climate policy agenda is struggling to move forward and disagreements
regarding the methods to address the issue continue to exist. Only a limited number
of governments worldwide have implemented a carbon price. The difficulty lies
in designing a policy proposal that effectively prices carbon emissions while also
protecting the real incomes of individuals working in the fossil fuel sector, those
with assets tied to fossil fuel use, and those who rely on fossil fuels for their daily
lives. These individuals would experience short-term losses from the introduction of
carbon pricing incentives and have thus resisted the implementation of these policies
(Douenne and Fabre, 2022).

Advancing climate policy agendas requires public awareness and support for
parties proposing pro-environment policy platforms. For this reason, it is crucial
to understand the drivers of climate concern and attitudes. In spite of a growing
literature that examines the role of socio-demographic correlates, such as gender,
age, education, or political orientation (Dechezleprêtre et al., 2022; Czarnek et al.,
2021; Duijndam and van Beukering, 2021) and the role of personal experience of local
extreme events (Hazlett and Mildenberger, 2020; Hoffmann et al., 2022), the effect
of socio-economic climate impacts on climate concern is still unexplored. Chapter 4
provides new evidence in this regard testing for the role of climate-induced migration.

Outline of the dissertation

The four essays in this dissertation propose new perspectives to advance our under-
standing of climate impacts on economic and social outcomes. Instead of estimating
the reduced-form impact of weather variations, the essays focus on understanding
the channels and mechanisms through which climate change could have an effect so
as to better inform and implement policy to mitigate and adapt to future impacts.
The dissertation focuses on the channels through which weather affects economic
outcomes (through global supply chains, inaccurate beliefs, and cognitive biases)
to provide insights into how climate change could affect economic outcomes in the
future. Furthermore, this dissertation turns the attention towards the role that the
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social and economic consequences of climate change have on individual climate con-
cern and public support for climate policies, diverting from previous research that
only focuses on the role of individual socio-demographic characteristics or climate-
related hazards.

To address the research questions in the chapters, the dissertation applies var-
ious reduced-form econometric methods guided by economic theory and combines
multiple sources of variation to a wide range of observational data sets, including
individual small- and large-scale surveys, national accounts, input-output matrices,
gridded climate data, structured text data, and geolocalized satellite data.

Below, I provide a brief summary of each essay and the particular data settings
and methodologies which allow me to explore questions on climate change adapta-
tion, beliefs, impacts, and concern.

Chapter 1: Sectoral impact and propagation of weather shocks

The first chapter, Sectoral impact and propagation of weather shocks, introduces the
importance of global supply chains and the role of input-output sectoral interlink-
ages as a transmission mechanism of weather shocks in a production network model.
The chapter sets out to explore how sectoral economic activity over the world is
heterogeneously affected by local weather shocks, as well as indirectly by distant
weather shocks through supply chain networks. Exploiting input-output sectoral
interlinkages, I construct a measure of domestic and foreign exposure to weather
shocks, distinguishing between upstream and downstream propagation, and esti-
mate both the effect of local direct and linkage indirect effect of weather on the
economic activity of sectors all over the world between 1975 and 2020. First, I find
that agriculture is the most harmed sector by a range of weather shocks, including
hot and cold days, droughts, and cyclones. Second, I document that production in
sectors at later stages of the supply chain (construction; mining and manufacturing;
wholesale and retail trade; transport; other activities), although not significantly af-
fected by local weather fluctuations, is strongly damaged by hot-temperature shocks
that hit the agricultural sector and propagate downstream through the supply chain,
inducing persistent losses over time. Using counterfactual scenarios, I show that the
average global annual economic cost of temperature increases accounting for shocks
across trade partners since 2000 is 0.33% of GVA, much larger than the 0.1% loss
obtained by omitting sectoral interlinkages. I also characterize global losses in dif-
ferent scenarios and document a strong positive gradient with the importance of the
countries in the production network. These results suggest that localized weather-
related productivity shocks can have significant economic effects across countries
and over time, and if we fail to account for the interconnectedness of sectors we
may substantially underestimate the consequences of short-run weather and future
climate change on economic activity.
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Contributions

The main contribution of this chapter is to unveil a new channel of the impact of
weather shocks on the economy. The growing climate impact literature has so far
only studied the effect of local weather shocks on local economic activity (Dell et al.,
2012; Kalkuhl and Wenz, 2020; Burke et al., 2015b). This paper sets out a simple
conceptual framework for the importance of accounting for sectoral interlinkages.
Neglecting the interconnections among sectors while weather shocks are spatially
correlated leads to violations of common identifying assumptions, by violating the
stable unit treatment value assumption. In contrast to previous papers examining
the transmission of shocks on the economy (Barrot and Sauvagnat, 2016; Carvalho
et al., 2021; Boehm et al., 2019), the empirical analysis conducted in this chapter
has a global coverage of sectors over 45 years instead of using firm-level micro-data
and exploits interannual variations in the number of days above country-specific
percentiles of temperature and precipitation distributions instead of natural disaster
events. This chapter also adds to the climate impact literature with a top-down
approach using measures of economic activity, by providing new evidence on the
heterogeneous impacts of a variety of weather shocks on sectoral economic activity,
using the most sectorally disaggregated comprehensive data.

Chapter 2: Adapting to climate change accounting for individual
beliefs

The second chapter, Adapting to climate change accounting for individual beliefs,
relaxes one of the key assumptions in the climate impact and adaptation literature
that relies on perfect information and optimal beliefs. I introduce a theoretical
framework of inattention to characterize a behavioral friction driving the wedge be-
tween expected profits for a rational farmer and a behavioral farmer with inaccurate
beliefs, deriving the conditions under which beliefs differentially influence the re-
sponsiveness to meteorological changes. Using a panel survey of rural households
in Bangladesh combined with a meteorological measure of dryness, I empirically
test the implications and find heterogeneous responses in the use of irrigation as
a function of beliefs, which drive more irrigation only in drier locations. Farmers’
inaccurate priors asymmetrically drive irrigation response to dryness shocks. I also
explore various alternative cognitive channels and provide evidence of salience, re-
call errors, and overreaction driving irrigation decisions. In a counterfactual analysis
where I compare observed beliefs with beliefs based on meteorological conditions, I
document that farmers underuse irrigation and incur substantial financial losses as
a result of inaccurate beliefs, generating a belief gap.
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Contributions

This chapter contributes to the climate impact and adaptation literature in several
ways. It theoretically shows the importance of accounting for individual beliefs and
allowing for inaccuracy in beliefs. There is a large number of adaptation gaps (Car-
leton and Hsiang, 2016), including financial and technological constraints, that may
prevent individuals from optimally adjusting their input use in response to changes
in weather. The conventional climate impact and adaptation models, however, as-
sume that agents are rational and hold beliefs that optimally adjust in response
to weather signals (Hsiang, 2016; Deryugina and Hsiang, 2017). This chapter for
the first time uses panel data on individual-level beliefs about climate to explore
the differential effect of exposure to dryness on irrigation use by individual beliefs.
By focusing on Bangladesh, one of the countries most exposed to climate risk, this
chapter sheds light on a critical new angle of determinants of climate adaptation
that has never been studied before.

Chapter 3: Drought exposure and accuracy: Motivated reasoning in
climate change beliefs

The third chapter, Drought exposure and accuracy: Motivated reasoning in climate
change beliefs, uses the same panel data of rural households in Bangladesh to study
more closely the determinants and the climate belief formation process. Once the
importance of climate beliefs for adaptation is demonstrated, this chapter further
investigates the determinants of them and whether individuals exhibit cognitive
biases. Studying the effect of long-term average drought exposure and short-term
deviations on drought beliefs, I find that beliefs are based on long-run exposure and
do not systematically differ by short-run deviations. To explore how individuals
interpret past droughts, I adopt an instrumental variable approach and investigate
whether individual beliefs lead to asymmetric distortion of objective information.
The results show that individuals recollect and overweight evidence tilted towards
their prior beliefs. Holding beliefs that droughts have increased has a strong positive
effect on the probability and extent of overestimating the number of droughts. These
results provide evidence of confirmation bias as a directional motivated reasoning
mechanism.

Contributions

This chapter makes several contributions to the climate impacts and adaptation lit-
erature. It is the first paper that provides empirical evidence on the determinants
of climate beliefs in a developing country, focusing on slow-onset environmental
changes. This is particularly important in Bangladesh, where climate change aware-
ness has been low (Rzepa and Ray, 2020). The only other paper that studies climate
belief formation does not exploit within-individual variation in beliefs and is set in
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the US (Deryugina, 2013). The chapter also contributes to the understanding of
cognitive biases associated with climate change beliefs, previously only theoretically
formulated (Druckman and McGrath, 2019), and specifically, it tests the confirma-
tion bias hypothesis in a developing country context. By employing an instrumental
variable approach to address endogeneity concerns, the chapter establishes a causal
relationship between beliefs and the distortion of information from weather events.
The findings of this chapter emphasize the need to account for behavioral factors
and cognitive biases in climate change belief formation to design effective adaptation
policies.

Chapter 4: Climate-induced migration and environmental values

The fourth chapter, Climate-induced migration and environmental values, is devoted
to studying the determinants of climate concern and pro-environment voting behav-
ior. The paper investigates the relationship between weather-induced asylum ap-
plications, individual climate concern, and voting behavior for Green parties in the
European Union. It introduces weather-induced migration from non-OECD coun-
tries as a novel determinant of climate concern and examines its impact on public
attitudes and electoral choices. Using data from 2000 to 2019, the chapter employs
an instrumental variable approach exploiting exogenous variations in weather to
estimate the causal effect of weather-induced asylum demands. The results reveal
that weather-induced asylum applications heighten concern about climate change as
a political priority among individuals. However, these changes in climate concern
do not translate into changes in voting behavior for Green parties in the European
Parliament elections, indicating a disconnect between stated preferences and actual
electoral choices.

Contributions

The main contribution of this chapter relates to the analysis of the determinants
of climate concerns. There is a growing literature that examines the role of socio-
economic drivers, such as gender, education, political orientation (see Drews and
van den Bergh (2016) for a review), and the impact of direct experiencing extreme
events (Hazlett and Mildenberger, 2020; Hoffmann et al., 2022). This chapter ex-
pands the understanding of climate concern by considering weather-induced migra-
tion as an influential factor. This novel determinant highlights the role of distant
weather anomalies through exposure to migration inflows in shaping climate con-
cern. The chapter demonstrates that weather-induced asylum applications increase
individual climate concern, particularly among right-wing voters. This finding un-
derscores the complex relationship between climate change, migration, and political
ideologies, in contrast with previous findings on right-wing ideology, that for in-
stance moderates the effects of education on climate beliefs (Czarnek et al., 2021).
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The chapter examines the gap between climate concern and voting behavior, reveal-
ing that the increased concern does not lead to changes in support for Green parties
in European Parliament elections. This highlights the importance of considering
other factors, such as the dropout of traditional Green voters and preferences among
individuals below the voting age. By estimating the impact of weather variations
on asylum demands in the European Union, this chapter contributes to the under-
standing of the relationship between climate and migration (Missirian and Schlenker,
2017b; Abel et al., 2019; Cai et al., 2016; Cattaneo and Peri, 2016). Overall, the
paper enhances our understanding of the drivers of climate concern and sheds light
on the complexities of translating concern into meaningful political climate action.
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Introduction Générale

Climat et société

Le climat et la société partagent une relation indissoluble depuis l’Antiquité. L’inter-
action entre le climat et les sociétés humaines a façonné le cours de l’histoire, in-
fluençant les croyances et les actions des individus et des communautés à travers
le monde. Les changements environnementaux mondiaux ont caractérisé diverses
époques, en tant que processus historiques exogènes auxquels les sociétés ont été
exposées et ont été forcées de repenser leurs moyens de subsistance et leur mode de
vie.

Les principales transformations structurelles de la société ont suivi les change-
ments climatiques de l’époque. L’homme est l’enfant de la période glaciaire: ce n’est
que lorsque le froid intense de la dernière période glaciaire a commencé à s’atténuer
que l’agriculture a débuté, et l’urbanisation a suivi (Behringer, 2010). Aussi para-
doxal que cela puisse paraître, le réchauffement du climat a contribué à la création de
l’humanité. Des transformations majeures similaires ont suivi, soulignant la capacité
innée de l’homme à s’adapter: d’une vie nomade à une vie sédentaire ; de la chasse à
l’agriculture et à l’élevage; de trocs et échanges matériels à un monde interconnecté
avec des chaînes d’approvisionnement mondiales fragmentées comprenant des liens
commerciaux et financiers.

À court terme, les émissions mondiales de gaz à effet de serre continuent d’augmen-
ter à mesure que le revenu mondial par habitant s’accroît. À la lumière de cette
relation étroite et complexe, le changement climatique anthropique et le rythme de
plus en plus rapide des changements dans les fluctuations météorologiques et dans la
fréquence, l’intensité, la durée, la temporalité et la distribution spatiale des événe-
ments météorologiques extrêmes constituent l’un des défis les plus urgents et les plus
difficiles à relever pour la société humaine et les écosystèmes (IPCC, 2021). Si, d’une
part, l’augmentation des revenus sera bénéfique pour des milliards de personnes dans
les pays en développement, d’autre part, compte tenu des technologies actuelles, les
émissions exacerberont le défi du changement climatique, ce qui rendra l’adaptation
encore plus importante pour garantir les améliorations futures du niveau de vie des
populations.
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Alors qu’un certain nombre d’efforts sont déployés pour parvenir à des accords
internationaux sur l’environnement et réduire les émissions de gaz à effet de serre,
étant donné que les répercussions des phénomènes météorologiques extrêmes sur la
société sont déjà tangibles, l’attention se tourne de l’atténuation vers l’adaptation
et les stratégies de survie pour les individus, les entreprises, les gouvernements et,
en général, la société humaine, afin de comprendre comment nous pouvons changer
nos vies à mesure que le défi du changement climatique s’aggrave.

Le lien entre les changements environnementaux et le bien-être humain intrigue
depuis longtemps les économistes et autres chercheurs en sciences sociales. Toute-
fois, ce n’est que récemment que la recherche a connu une croissance exponentielle
dans l’étude de cette relation. Cela peut être attribué à l’importance croissante du
changement climatique en tant que préoccupation politique majeure, aux progrès
des outils statistiques et économétriques pour l’inférence causale dans les études
non expérimentales, et aux progrès de l’informatique et de la climatologie, qui ont
amélioré notre capacité à attribuer les dommages aux variations climatiques. La
réponse à ces questions revêt une connotation extrêmement pertinente pour con-
cevoir des politiques d’atténuation et d’adaptation plus strictes et plus ciblées et
pour sensibiliser le public au changement climatique et obtenir son soutien pour les
politiques climatiques.

Intégrer le climat dans l’économie

Pour évaluer l’externalité climatique mondiale, les économistes du climat ont concen-
tré leurs efforts sur l’estimation des dommages de cette externalité. Traditionnelle-
ment, les dommages climatiques ont été calculés de modèles théoriques et numériques
d’évaluation intégrée (IAMs). Les efforts initiaux de développement d’un modèle
climat-économie incorporant les émissions de gaz à effet de serre de l’économie, le
cycle du carbone et une fonction de dommages liés au changement climatique dans
un modèle de croissance économique ont conduit à la reconnaissance du prix de la
Banque de Suède en sciences économiques en mémoire d’Alfred Nobel en 2018 (Nord-
haus, 1992). Les résultats de ces modèles sont ensuite convertis en chiffres moné-
taires pertinents pour les politiques à l’aide du coût social du carbone (SCC), qui
représente la valeur actuelle nette des dommages futurs causés par l’émission d’une
tonne supplémentaire de CO2 (Waldhoff et al., 2014; Nordhaus, 1993a,b). Pour faire
le lien entre les systèmes économiques et naturels, ces modèles utilisent des fonctions
de dommages théoriques qui décrivent comment la température moyenne mondiale
se traduit en coûts économiques et sociaux (Revesz et al., 2014). Bien qu’ils ser-
vent à combiner les domaines économiques et naturels dans un cadre unique, les
résultats des calculs de ces modèles reposent fortement sur des hypothèses de mod-
élisation qui ne reflètent souvent pas bien la dynamique du changement climatique
(Pindyck, 2013; Weitzman, 2010). Malgré les efforts déployés pour faire progresser la
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dynamique du climat et intégrer la science climatique dans les modèles économiques
(Dietz et al., 2021), les modèles récents s’appuient toujours sur des fonctions sim-
plifiées de dommages climatiques qui supposent que l’augmentation de la tempéra-
ture moyenne à la surface du globe par rapport aux niveaux préindustriels est une
statistique suffisante raisonnable pour les dommages par une relation non linéaire
(quadratique) et en omettant toute autre variante météorologique, les effets cumu-
latifs ou les effets dépendant de la vitesse des changements (Barrage and Nordhaus,
2023). Ces modèles - et les estimations du SCC qui en résultent - supposent que les
augmentations de température ont toujours le même effet, ce qui suppose qu’il n’y
a pas d’adaptation. En outre, ils ne tiennent pas compte des impacts hétérogènes
et inégaux dans l’espace.

Par opposition aux exercices théoriques et numériques, l’intérêt s’est porté plus
récemment sur les approches statistiques qui utilisent des données historiques et
estiment la relation dans des contextes réels. La science du climat a énormément
progressé dans la compréhension des variations climatiques historiques à long terme,
des prévisions météorologiques à court terme et des modèles de prévision climatique.
Ces données et modèles peuvent aider à répondre à toute une série de questions ayant
des implications importantes pour l’économie, à la fois en termes de compréhension
de la relation historique entre la société et le climat, et de la manière dont cette
relation peut évoluer à l’avenir. La combinaison d’ensembles de données provenant
des sciences physiques et sociales et des progrès méthodologiques récents en matière
d’inference causale a contribué à fournir des estimations basées sur des données de
relations hautement pertinentes pour les politiques entre le bien-être humain et les
changements climatiques.

Mesurer les impacts climatiques

Les premières études estimant les dommages économiques associés au changement
climatique ont utilisé la variation transversale du climat (se produisant à un mo-
ment donné) pour estimer l’effet économique marginal des changements à long
terme dans la distribution des températures et des précipitations (Mendelsohn et al.,
1994). Néanmoins, la “credibility revolution” en économie empirique (Angrist and
Pischke, 2010) a rapidement imprégné le domaine de recherche de l’économie de
l’environnement et stimulé la naissance d’un domaine de recherche à part entière
souvent défini comme “climate econometrics” (Hsiang, 2016). Cette littérature émer-
gente utilise des données météorologiques, qui varient dans l’espace et dans le temps,
pour estimer les effets de la variation interannuelle des conditions météorologiques
sur les résultats économiques et sociaux tout en tenant compte des variables omises,
pour lesquelles il n’est pas possible de contrôler à l’aide de données transversales
(Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009). De nombreuses
études entraînées par la “credibility revolution” ont utilisé des données de meilleure
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qualité et des techniques économétriques pour découvrir des liens de causalité entre
les changements climatiques et un large éventail de résultats sociaux (voir Dell et al.
(2014) et Carleton and Hsiang (2016) pour des revues de cette littérature). Ces
études s’appuient sur des données observationnelles pour obtenir des fonctions de
dommages climatiques et combler le vide méthodologique laissé par l’impossibilité
d’attribuer d’une façon aléatoire le climat à deux échantillons de population iden-
tiques en tous points.

Une description complète des canaux potentiels des effets climatiques est cruciale
pour formuler une politique climatique optimale. L’estimation empirique des effets
socio-économiques du climat peut être divisée en deux grandes catégories. D’une
part, les approches “bottom-up” se concentrent sur les dommages marchands et non
marchands spécifiques à un secteur, représentant différents secteurs de l’économie,
y compris la santé humaine, les conditions économiques et les interactions sociales.
Dans ce contexte, il existe des quantifications de l’impact des variations de tempéra-
ture dans de nombreux domaines, notamment la mortalité (Heutel et al., 2021; Bar-
reca et al., 2015), l’agriculture et le rendement des cultures (Deschênes and Green-
stone, 2007; Schlenker and Roberts, 2009), la consommation d’électricité (Wenz
et al., 2017; Auffhammer et al., 2017), la productivité du travail (Graff Zivin and
Neidell, 2014; Graff Zivin et al., 2018), le capital humain (Fishman et al., 2019),
les conflits (Hsiang et al., 2011; Hsiang and Jina, 2014), la criminalité (Ranson,
2014), la santé mentale (Obradovich et al., 2018), le sommeil (Minor et al., 2022;
Obradovich et al., 2017), la profanité et la haine (Stechemesser et al., 2021; Baylis,
2020). D’autre part, les approches “top-down” considèrent des mesures agrégées de
la production économique, telles que le PIB ou la production économique régionale,
et leur réponse aux variations de température (Dell et al., 2012; Burke et al., 2015b;
Kalkuhl and Wenz, 2020; Acevedo et al., 2020; Kahn et al., 2021). Si la première
approche présente l’avantage de fournir des fonctions de réponse précises et spéci-
fiques au secteur aux fluctuations météorologiques, la seconde devrait théoriquement
rendre compte de tous les effets du changement climatique sur le marché. Les deux
approches présentent toutefois certaines limites, que je détaille ci-dessous.

Tout d’abord, les études empiriques sur les effets du climat s’appuient sur un
cadre bien défini pour étudier ces effets avec des hypothèses restrictives (Hsiang,
2016; Deryugina and Hsiang, 2017). Cette thèse (dans les chapitres 1, 2 and 3) four-
nit des arguments théoriques et empiriques sur le caractère restrictif de certaines
hypothèses, qui reposent sur une information parfaite et une rationalité complète
(Arrow and Debreu, 1954). Plus important encore, on craint depuis longtemps que
l’effet des variations météorologiques interannuelles sur les résultats économiques ne
puisse être utilisé pour identifier l’effet du changement climatique. La réaction aux
fluctuations météorologiques à court terme est fondamentalement différente de la
réaction aux changements climatiques permanents. Les individus et les entreprises
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réagiraient différemment à des changements permanents dans la distribution at-
tendue des conditions météorologiques (c’est-à-dire le climat) qu’à des variations
météorologiques inattendues à court terme. Ce n’est que si l’adaptation n’était pas
importante que l’effet des fluctuations météorologiques serait une bonne approxima-
tion de l’effet d’un changement permanent du climat.

Deuxièmement, de nombreux domaines sont touchés par les effets du climat, et
toute agrégation d’estimations sectorielles peut être incomplète et ne fournir que
des mesures partielles du SCC. Différentes réponses marchandes et non marchan-
des n’ont pas encore été étudiées. De même, bien que les modèles empiriques et
les nouvelles sources de données permettent aux chercheurs d’explorer divers chocs
météorologiques, la plupart des études ont jusqu’à présent été axées sur les effets de la
temperature et des travaux récents ont commencé à étudier plus en profondeur l’effet
des précipitations (Kotz et al., 2022), des cyclones (Hsiang and Jina, 2014), des inon-
dations (Gandhi et al., 2022; Kocornik-Mina et al., 2020), du ruissellement de l’eau
(Russ, 2020), et les incendies de forêt (Heft-Neal et al., 2023). Le changement clima-
tique affecte les moments de la distribution de plusieurs événements météorologiques,
dont l’impact sur de nombreux autres résultats sociaux et économiques est encore
peu étudié.

Troisièmement, les estimations partielles ne tiennent pas compte des interactions
entre les secteurs et les régions. Les interactions spatiales et sectorielles peuvent en-
traîner un double comptage lors de l’agrégation des secteurs et il faut tenir compte
de la covariance des impacts entre les secteurs pour obtenir la distribution des dom-
mages agrégés. Plus important encore, ces interactions peuvent fausser l’allocation
efficace des ressources pour les politiques d’intervention gouvernementale spécifiques
au secteur. Contrairement aux modèles théoriques et numériques des dommages
climatiques, les études empiriques sectorielles n’abordent pas le “feedback” entre
l’économie et le climat. Cette limitation s’applique aux flux de population et de
marchandises (Cruz and Rossi-Hansberg, 2023; Costinot et al., 2016) et à la réal-
location sectorielle endogène (Nath, 2020), qui ne sont généralement pas pris en
compte dans les études empiriques de forme réduite et qui ne sont étudiées que dans
le cadre de l’équilibre général spatial. Le chapitre 1 de cette thèse fournit une es-
timation empirique de l’importance de prendre en compte les liens sectoriels même
dans une approche descendante de forme réduite.

Enfin, les études des effets socio-économiques du climat exploitent les variations
à court terme des variables météorologiques pour identifier l’effet sur les résultats
économiques et sociaux. On ne sait pas encore très bien comment l’économie du bien-
être liée au changement climatique évoluerait en fonction d’événements physiques
sans précédent et d’irréversibilités climatiques potentielles, telles que les points de
basculement.

Plus récemment, dans un effort pour reconstruire les fonctions dose-réponse avec
une couverture mondiale, dans un certain nombre d’études, le Climate Impact Lab
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fait des estimations des dommages climatiques partiels marchands et non marchands
en tenant compte des non-linéarités locales et en comptabilisant les coûts et avan-
tages de l’adaptation dans divers domaines, y compris la mortalité (Carleton et al.,
2022), la demande d’énergie et d’électricité (Rode et al., 2021), l’offre de travail
(Rode et al., 2022), l’agriculture et les rendements des cultures (Hultgren et al.,
2022). La combinaison de ces estimations sectorielles peut permettre d’obtenir une
dérivation plus précise et fondée sur des données du SCC (Nath et al., 2022).

Bien que toutes ces études aient une forte validité interne en raison de l’attention
rigoureuse portée à la stratégie d’identification dans l’analyse empirique, des ques-
tions se posent quant à la pertinence des effets des chocs météorologiques idiosyn-
crasiques pour informer des impacts futurs des changements climatiques qui, entre
autres, sont corrélés dans l’espace et ne sont pas toujours parfaitement observables
par les individus. Les chapitres de cette thèse s’appuient largement sur cette littéra-
ture empirique récente. Néanmoins, la thèse s’écarte des travaux antérieurs à la fois
par le type de questions abordées et par plusieurs dimensions méthodologiques.

Comprendre le climat et former des espérances

Un débat permanent en économie porte sur la manière dont les gens comprennent
et interprètent les événements passés et sur la manière dont ils forment des attentes
quant à la probabilité d’événements futurs. L’école néoclassique des anticipations
rationnelles émet l’hypothèse que les individus utilisent toutes les informations dont
ils disposent pour évaluer la probabilité d’un événement futur. Les gens ont ten-
dance à utiliser les informations dont ils disposent pour former leurs croyances et à
converger vers un vrai postérieur. Ces hypothèses ont été largement contestées dans
le domaine de l’économie comportementale, qui soutient que les gens sont enclins à
commettre des erreurs cognitives. Ces innovations ont été si importantes qu’elles ont
conduit à l’attribution du prix de la Banque de Suède en sciences économiques en
mémoire d’Alfred Nobel en 2002 (Kahneman and Tversky, 1979) et en 2017 (Thaler,
2015). En associant l’économie à la psychologie, des modèles plus réalistes du com-
portement humain ont intégré de nouveaux traits psychologiques, notamment les
anomalies comportementales, la rationalité limitée et les biais cognitifs (Kahneman
and Tversky, 1973, 1982).

Alors que les travaux théoriques et empiriques en psychologie et en économie
comportementale suggèrent que ces hypothèses sont souvent injustifiées, les modèles
économiques en économie du climat supposent toujours que les agents sont par-
faitement informés et ont des croyances impartiales expliquées entièrement par les
conditions météorologiques. Pour clarifier le rôle des croyances et des attentes, je ré-
sume le cadre conceptuel sous-jacent qui guide les modèles d’impact et d’adaptation
climatiques (Hsiang, 2016).
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Le climat C est défini comme le vecteur à haute dimension des paramètres qui
décrivent la distribution de probabilité conjointe des conditions météorologiques pos-
sibles susceptibles de se produire au cours d’un intervalle de temps spécifique. Les
réalisations météorologiques c sont un vecteur aléatoire tiré de la distribution cli-
matique. Un “outcome” socio-économique d’intérêt Y est influencé par le climat
de deux manières. Premièrement, le climat influe directement sur les conditions
météorologiques c qui se produisent réellement et qui affectent la population. Deux-
ièmement, les croyances des individus sur la structure du C peuvent être modifiées
par un changement du climat, affectant leurs actions et les résultats qui en dé-
coulent. Ces deux canaux sont respectivement définis comme l’effet direct et l’effet
des croyances. Les individus agissent en fonction de leurs croyances b, de sorte que
la relation entre le résultat et le climat peut être modélisée comme suit

Y = f(b(C); c(C)) (3)

Ce cadre suppose que les agents disposent d’informations parfaites sur le cli-
mat dans lequel ils vivent et que l’effet de croyance reflète l’adaptation en tant
que comportement d’optimisation de l’agent. Si l’on considère un simple problème
de maximisation d’un individu (ou d’une entreprise) représentatif, par exemple les
bénéfices attendus π, cela s’écrirait comme suit

maxbE(π) = E[f(b, c) − g(b)] (4)

où b est le vecteur des actions que l’individu peut entreprendre, et c est le vecteur
des conditions météorologiques stochastiques, compte tenu d’une fonction f(·) deux
fois continuellement différentiable et concave, d’un prix de production normalisé
à un, et d’une fonction de coût g(·) convexe dans les actions. De la solution de ce
problème d’optimisation, il découle que l’adaptation est la réponse comportementale
des individus aux changements attendus des conditions météorologiques E[c]. Les
attentes concernant le climat à long terme sont à l’origine d’investissements coûteux
visant à se protéger contre une exposition croissante à des conditions défavorables.
Ce cadre théorique montre à quel point il est important de comprendre comment
les individus forment leurs attentes à l’égard du climat pour mesurer l’adaptation et
donc quantifier avec précision les effets du climat. La méconnaissance de l’évolution
des conditions climatiques entrave notre capacité à nous adapter en conséquence.

Seules quelques études ont permis de mieux comprendre les attentes des individus
et des entreprises concernant les effets des conditions météorologiques et climatiques
sur leurs décisions d’adaptation. Les réalisations météorologiques ne fournissent
qu’un signal bruyant de l’état du climat. L’observation de preuves répétées sous la
forme de réalisations météorologiques répétées peut conduire l’individu à mettre à
jour ses croyances sur la distribution climatique sous-jacente, ce qui l’amène ensuite
à réoptimiser ses investissements et ses actions afin de maximiser le bien-être dans
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le cadre de la nouvelle distribution climatique. Le taux d’ajustement des individus
par le biais de réponses adaptatives est donc limité par l’inférence de changements
dans la distribution climatique sous-jacente par le biais de signaux météorologiques
(Kelly et al., 2005) le coût et le taux d’ajustement dépendent de l’exactitude des
croyances sur l’état de la distribution climatique. Les coûts d’ajustement ne dépen-
dent pas uniquement du processus d’apprentissage tant que les agents acquièrent
des connaissances à partir des conditions météorologiques et ajustent leurs attentes
concernant la distribution du climat (Moore, 2017).

Un nombre encore plus restreint d’études s’appuient sur des données d’observation
concernant les croyances individuelles en matière de climat. Kala (2017), notam-
ment, montre que les agriculteurs indiens sont réticents à l’ambiguïté et modifient les
dates de plantation en réponse aux changements dans l’arrivée de la mousson, en par-
ticulier dans les villages qui ont connu récemment des changements plus importants
dans la répartition des précipitations. Shrader (2023) constate que les prévisions
sont très bénéfiques pour l’adaptation aux variations d’El Niño et de l’oscillation
australe (ENSO) des pêcheurs de thon blanc dans le Pacifique Nord des États-Unis.
Le chapitre 3 de cette thèse explore les changements de croyances au niveau indi-
viduel au fil du temps afin de comprendre le processus de formation des croyances
climatiques et les biais cognitifs dans un contexte où l’adaptation en temps opportun
est extrêmement importante.

Enfin, d’autres travaux ont examiné la manière dont les attentes concernant les
changements climatiques sont intégrées dans les prix du marché, en particulier, le
marché immobilier et les obligations municipales capitalisent l’élévation du niveau
de la mer (Bernstein et al., 2019), tandis que les températures sont intégrées dans
les produits dérivés météorologiques (Schlenker and Taylor, 2021) et les marchés
fonciers (Severen et al., 2018). Ces études suggèrent que les individus reconnaissent
- au moins partiellement - le caractère non stationnaire du climat et que l’utilisation
des observations météorologiques passées pour estimer la distribution du climat peut
entraîner une estimation biaisée des impacts du changement climatique, car ces
résultats prospectifs reflètent déjà les attentes concernant les dommages climatiques
futurs. L’ idéal serait d’utiliser les croyances des individus sur la distribution des
conditions météorologiques pour mesurer le climat (Kolstad and Moore, 2020). Le
chapitre 2 montre qu’il est important de les prendre en compte. Pour aller de l’avant,
l’économie du climat peut bénéficier des progrès réalisés dans la conception des
enquêtes afin de mesurer des facteurs autrement invisibles tels que les perceptions, les
connaissances et les croyances, les attitudes et le raisonnement (Stantcheva, 2022).

Adaptation au changement climatique

Les pertes climatiques pourraient être évitées, en théorie, si les populations s’adaptaient
pleinement aux dimensions changeantes de leur climat. Les choix individuels, les
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marchés et l’innovation technologique peuvent contribuer à nous protéger des risques
climatiques (voir Kahn (2016) pour une revue de la littérature). Pourtant, les con-
ditions climatiques continuent de jouer un rôle important dans le façonnement de
la société moderne en raison des adaptation gaps (Carleton and Hsiang, 2016). Un
certain nombre de dimensions différentes des écarts d’adaptation ont été examinées
pour comprendre pourquoi les populations ont des comportements d’adaptation si
différents selon les contextes géographiques et temporels. Les adaptation gaps com-
prennent de faibles incitations à s’adapter (Annan and Schlenker, 2015), un ac-
cès limité au crédit (Burgess et al., 2014), une concurrence limitée sur le marché
(Kochhar and Song, 2023), des informations limitées sur les avantages (Hornbeck,
2012), l’accès aux technologies (Olmstead and Rhode, 2011), des barrières commer-
ciales (Nath, 2020), et des contraintes institutionnelles (Ospital, 2023). Une ap-
proche pour détecter l’adaptation est la mesure explicite des résultats qui sont eux-
mêmes considérés comme des adaptations, tels que l’investissement dans l’irrigation
après une sécheresse, comme étudié au chapitre 2. Une autre approche pour mesurer
l’adaptation de manière implicite peut être obtenue en observant les fonctions de
réponse qui relient le climat aux résultats socio-économiques. Les populations les
mieux adaptées auront une fonction de dommage “plus plate”.

Il existe différentes méthodologies pour mesurer implicitement l’adaptation au
changement climatique, chacune ayant ses propres avantages et inconvénients (Mas-
setti and Mendelsohn, 2018). L’étude de l’adaptation au climat nécessite de faire
face à l’arbitrage “fréquence-identification” (Hsiang and Burke, 2014). D’une part,
l’utilisation d’effets fixes à haute dimension pour tenir compte des variables omises
non observées renforce la validité interne et dissipe les inquiétudes concernant l’endo-
généité de la variation résiduelle à court terme des conditions météorologiques.
D’autre part, l’utilisation de la variation transversale permet d’estimer la réaction
d’équilibre à long terme au changement climatique, qui tient compte de l’adaptation.
Les chocs à haute fréquence utilisés dans le premier cas sont plus susceptibles d’être
inattendus et exogènes et mesurent donc les effets nets de l’adaptation, tandis que
les chocs à basse fréquence sont plus susceptibles de modifier les croyances et les
attentes et de tenir compte des réactions d’adaptation. Les élasticités à court et
à long terme ne sont égales que sous certaines hypothèses (Lemoine, 2021). Entre
ces deux extrêmes des approches, quelques avancées méthodologiques récentes ont
proposé de combiner les variations à court et à long terme dans les données de panel
afin d’améliorer les estimations des dommages liés au changement climatique (voir
Kolstad and Moore (2020) pour une revue de la littérature).

La première approche implique l’estimation de l’effet marginal hétérogène des
conditions météorologiques en fonction du climat, ce qui implique une fonction de
réponse non linéaire. Deux méthodes coexistantes ont été adoptées pour estimer
ces effets marginaux hétérogènes. Les deux méthodes nécessitent des données de
panel pour exploiter à la fois la variabilité météorologique interannuelle sur plusieurs
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sites et les différences climatiques entre les sites. La première méthode utilise
des modèles de panel non linéaires et conditionne l’effet marginal des conditions
météorologiques à une variation du climat entre les différents sites (Heutel et al.,
2021). Si l’adaptation modifie la réponse marginale aux variations météorologiques
à court terme, alors ces marges d’adaptation sont prises en compte dans les esti-
mations du panel. D’autres dimensions pertinentes de l’adaptation, telles que le
revenu, peuvent être utilisées de manière symétrique (Carleton et al., 2022). La sec-
onde méthodologie est un modèle à plusieurs étapes qui estime d’abord l’élasticité
à court terme aux conditions météorologiques pour chaque lieu, puis modélise le co-
efficient des conditions météorologiques en fonction du climat (Auffhammer, 2022).

Une deuxième approche utilise les changements à long terme des conditions
météorologiques - ce que l’on appelle les “long differences” - pour exploiter les varia-
tions des tendances à long terme des températures et des précipitations. L’exploita-
tion des fluctuations climatiques à long terme permet de mieux estimer la manière
dont les agents réagiront au changement climatique (Burke and Emerick, 2016; Liu
et al., 2023) et la comparaison des élasticités à long terme et à court terme par
rapport aux conditions météorologiques peut fournir des preuves de l’adaptation.
Un impact atténué des températures extrêmes lorsque l’on passe d’une spécifica-
tion de panel annuel à une différence longue fournirait des preuves suggestives de
l’adaptation. Bien qu’elle prenne partiellement en compte l’adaptation, cette ap-
proche repose sur la variation des conditions météorologiques d’un lieu à l’autre et
les lieux qui se réchauffent plus peuvent être systématiquement différents des lieux
qui se réchauffent moins.

Une troisième approche consiste à utiliser les différences d’effet entre les change-
ments de température à évolution lente et les chocs à court terme estimés dans
la même équation pour quantifier l’ampleur de l’adaptation, comme cela a été dé-
montré récemment pour quantifier l’impact des changements de température sur
la concentration d’ozone atmosphérique afin de détecter l’adaptation (Bento et al.,
2023). Cette approche, similaire dans l’esprit aux exercices de partitionnement de
variation (Mérel and Gammans, 2021), qui estiment conjointement les effets des
variations à long et à court terme, partagent des problèmes typiques liés à la capac-
ité de mesurer le climat à long terme et de le différencier des variations exogènes
inattendues à court terme. Étant donné la non-stationnarité du climat, cela est
particulièrement difficile lorsque les croyances des individus ne sont pas observées,
comme c’est généralement le cas. Le chapitre 2 aborde cette question plus en détail
et montre les conséquences de l’omission des croyances.

Dans une quatrième et dernière approche, l’économie du climat a emprunté les
progrès récents des techniques d’apprentissage automatique (machine learning) pour
identifier les variables météorologiques qui sont quantitativement importantes pour
déterminer les résultats économiques, plutôt que de s’appuyer sur des formes fonc-
tionnelles ou des variables météorologiques particulières. Cette approche a déjà été
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mise en œuvre pour estimer l’impact des chocs météorologiques sur les rendements
des cultures (Hultgren et al., 2022) et le PIB (Akyapi et al., 2022). La méthodologie
a l’avantage de ne pas dépendre du chercheur pour spécifier ex ante la forme fonc-
tionnelle correcte de la relation entre les conditions météorologiques et les résultats
et pourrait être appliquée à l’avenir à de nombreux autres contextes.

Préoccupations climatiques et soutien aux politiques cli-
matiques

La quantification précise des effets climatiques joue un rôle crucial dans la formu-
lation des politiques actuelles et facilite une approche efficace de l’adaptation, qui
nécessite une planification stratégique et des investissements opportuns. Pour que
les marchés internalisent ces coûts et avantages potentiels par le biais de mesures de
politique publique et d’instruments économiques traditionnels, tels que les taxes sur
le carbone ou les systèmes de permis d’émissions négociables, il est essentiel de les
estimer avec précision.

De nombreux jeunes sont profondément préoccupés par le changement clima-
tique. Inspirés par les militants écologistes et les manifestations mondiales en faveur
du climat, ils cherchent à responsabiliser les élus quant à la lenteur de leurs efforts
de réduction des émissions de carbone. Un scénario optimiste veut que les nouvelles
générations continuent à mettre de plus en plus l’accent sur le défi du changement
climatique et qu’un changement politique se produise au fil du temps (Kahn, 2021).

Malgré la préoccupation croissante de nombreux pays à l’égard du changement
climatique et leur volonté d’agir (Dechezleprêtre et al., 2022; Douenne and Fabre,
2020), l’agenda de la politique climatique peine à avancer et les désaccords sur les
méthodes à employer pour résoudre le problème persistent. Seul un nombre limité
de gouvernements dans le monde a mis en place un prix sur le carbone. La diffi-
culté réside dans la conception d’une proposition politique qui fixe efficacement le
prix des émissions de carbone tout en protégeant les revenus réels des personnes
travaillant dans le secteur des combustibles fossiles, de celles dont les actifs sont liés
à l’utilisation des combustibles fossiles et de celles qui dépendent des combustibles
fossiles pour leur vie quotidienne. Ces personnes subiraient des pertes à court terme
suite à l’introduction d’incitations à la tarification du carbone et se sont donc op-
posées à la mise en œuvre de ces politiques (Douenne and Fabre, 2022).

Pour faire avancer les programmes de politique climatique, il faut sensibiliser le
public et soutenir les partis qui proposent des plates-formes politiques favorables à
l’environnement. C’est pourquoi il est essentiel de comprendre les facteurs qui déter-
minent les préoccupations et les attitudes à l’égard du climat. Malgré une littérature
de plus en plus abondante qui examine le rôle des corrélats sociodémographiques, tels
que le sexe, l’âge, l’éducation ou l’orientation politique (Dechezleprêtre et al., 2022;
Czarnek et al., 2021; Duijndam and van Beukering, 2021) et le rôle de l’expérience
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personnelle des événements extrêmes locaux (Hazlett and Mildenberger, 2020; Hoff-
mann et al., 2022), l’effet des impacts socio-économiques du climat sur les préoccu-
pations climatiques est encore inexploré. Le chapitre 4 apporte de nouvelles preuves
à cet égard en testant le rôle des migrations induites par le climat.

L’objet de cette thèse

Les quatre chapitres de cette thèse proposent de nouvelles perspectives pour faire
progresser notre compréhension des effets du climat sur les résultats socio-économiques.
Au lieu d’estimer l’impact de forme réduite des variations météorologiques, les
chapitres se concentrent sur la compréhension des canaux et des mécanismes par
lesquels le changement climatique pourrait avoir un effet afin de mieux informer et
mettre en œuvre des politiques visant à atténuer les effets futurs et à s’y adapter.
Cette thèse se concentre sur les canaux par lesquels les conditions météorologiques
affectent les résultats économiques (par les chaînes d’approvisionnement mondiales,
des croyances inexactes et des biais cognitifs) afin de donner un aperçu de la manière
dont le changement climatique pourrait affecter les résultats économiques à l’avenir.
En outre, cette thèse s’intéresse au rôle que les conséquences socio-économiques du
changement climatique ont sur les préoccupations climatiques individuelles et le sou-
tien du public aux politiques climatiques, contrairement aux recherches précédentes
qui se concentrent uniquement sur le rôle des caractéristiques sociodémographiques
individuelles ou des conditions météorologiques liés au climat.

Pour répondre aux questions de recherche posées dans les chapitres, la thèse
applique diverses méthodes économétriques à forme réduite guidées par la théorie
économique et combine de multiples sources de variation à un large éventail d’ensembles
de données d’observation, y compris des enquêtes individuelles à petite et grande
échelle, des comptes nationaux, des matrices d’entrées-sorties, des données clima-
tiques maillées, des données textuelles structurées et des données satellitaires géolo-
calisées.

Ci-dessous, je présente un bref résumé de chaque article et des paramètres de
données et méthodologies particuliers qui me permettent d’explorer les questions rel-
atives à l’adaptation, aux croyances, aux impacts et aux préoccupations concernant
le changement climatique.

Chapitre 1: Sectoral impact and propagation of weather shocks

Le premier chapitre, Sectoral impact and propagation of weather shocks, présente
l’importance des chaînes d’approvisionnement mondiales et le rôle des interconnex-
ions sectorielles entrées-sorties en tant que mécanisme de transmission des chocs
météorologiques dans un modèle de réseau de production. Le chapitre vise à explorer
la manière dont la production économique sectorielle dans le monde est affectée de
manière hétérogène par les chocs météorologiques locaux, ainsi qu’indirectement par
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les chocs météorologiques lointains à travers les réseaux de chaînes d’approvisionne-
ment. En exploitant les liens sectoriels entrée-sortie, je construis une mesure de
l’exposition nationale et étrangère aux chocs météorologiques, en distinguant la
propagation en amont et en aval, et je quantifie l’effet direct local et l’effet indi-
rect des liens entrée-sortie des chocs météorologiques sur l’activité économique des
secteurs dans le monde entier entre 1975 et 2020. Premièrement, je constate que
l’agriculture est le secteur le plus touché par une série de chocs météorologiques,
notamment les journées chaudes et froides, les sécheresses et les cyclones. Deux-
ièmement, je constate que la production des secteurs situés en aval de la chaîne
d’approvisionnement (construction, industrie minière et manufacturière, commerce
de gros et de détail, transports, autres activités), bien qu’elle ne soit pas affectée de
manière significative par les fluctuations météorologiques locales, est fortement en-
dommagée par les chocs thermiques qui frappent le secteur agricole et se propagent
en aval de la chaîne d’approvisionnement, entraînant des pertes persistantes au fil
du temps. À l’aide de scénarios contrefactuels, je montre que le coût économique
annuel mondial moyen des hausses de température tenant compte des chocs entre
partenaires commerciaux depuis 2000 est de 0.33% de la valeur ajoutée brute, soit
beaucoup plus que la perte de 0.1% obtenue en omettant les liens sectoriels. Je
caractérise également les pertes globales dans différents scénarios et documente un
fort gradient positif avec l’importance des secteurs dans le réseau de production.
Ces résultats suggèrent que les chocs de productivité localisés liés aux conditions
météorologiques peuvent se propager avec des effets économiques significatifs dans
les pays et dans le temps, et que si nous ne tenons pas compte de l’interconnexion
des secteurs, nous risquons de sous-estimer considérablement les conséquences des
conditions météorologiques à court terme et du changement climatique futur de la
production économique.

Contributions

La principale contribution de ce chapitre est de dévoiler un nouveau canal de l’impact
des chocs météorologiques sur l’économie. La littérature croissante sur l’impact du
climat n’a jusqu’à présent étudié que l’effet des chocs météorologiques locaux sur
l’activité économique locale (Dell et al., 2012; Kalkuhl and Wenz, 2020; Burke et al.,
2015b). Le chapitre définit un cadre conceptuel simple pour démontrer l’importance
de la prise en compte des interconnexions sectorielles. Négliger les interconnexions
entre les secteurs alors que les chocs météorologiques sont corrélés dans l’espace con-
duit à des violations des hypothèses d’identification courantes, en violant l’hypothèse
d’une valeur de traitement unitaire stable. Contrairement aux articles précédents
qui examinent la transmission des chocs sur l’économie (Barrot and Sauvagnat,
2016; Carvalho et al., 2021; Boehm et al., 2019), l’analyse empirique menée dans
ce chapitre a une couverture mondiale des secteurs sur 45 ans au lieu d’utiliser des
micro-données au niveau de l’entreprise et exploite les variations interannuelles du
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nombre de jours au-dessus des percentiles spécifiques au pays des distributions de
température et de précipitations au lieu des événements de catastrophe naturelle.
Ce chapitre enrichit également la littérature sur l’impact du climat avec une ap-
proche descendante utilisant des mesures de l’activité économique, en fournissant de
nouvelles preuves sur les impacts hétérogènes d’une variété de chocs météorologiques
sur la production économique sectorielle, en utilisant les données complètes les plus
désagrégées au niveau sectoriel sur la production économique.

Chapitre 2: Adapting to climate change accounting for individual
beliefs

Le deuxième chapitre, Adapting to climate change accounting for individual be-
liefs, assouplit l’une des hypothèses clés de la littérature sur l’impact du climat
et l’adaptation, qui repose sur une information parfaite et des croyances optimales.
J’introduis un cadre théorique d’inattention pour caractériser une friction comporte-
mentale qui creuse un fossé entre les bénéfices attendus pour un agriculteur rationnel
et un agriculteur comportemental ayant des croyances inexactes, en dérivant les con-
ditions dans lesquelles les croyances influencent de manière différentielle la réactivité
aux changements météorologiques. À l’aide d’une enquête sur les ménages ruraux au
Bangladesh et d’une mesure météorologique de la sécheresse, je teste empiriquement
les implications et trouve des réponses hétérogènes dans l’utilisation de l’irrigation
en fonction des croyances, qui conduisent à une irrigation plus importante unique-
ment dans les endroits les plus secs. Les agriculteurs ayant des croyances inexactes
réagissent différemment au même choc de sécheresse en fonction de leurs croyances
antérieures. J’explore également divers canaux cognitifs alternatifs et apporte la
preuve que la saillance, les erreurs de mémoire et les réactions excessives influencent
les décisions en matière d’irrigation. Dans une analyse contrefactuelle où je compare
les croyances observées avec les croyances basées sur les conditions météorologiques,
je montre que les agriculteurs sous-utilisent l’irrigation et subissent des pertes finan-
cières substantielles en raison de croyances inexactes, générant un belief gap.

Contributions

Ce chapitre contribue à la littérature sur l’impact du climat et l’adaptation à
plusieurs égards. Il montre théoriquement l’importance de prendre en compte les
croyances individuelles et de permettre l’inexactitude des croyances. Il existe un
grand nombre de adaptation gaps (Carleton and Hsiang, 2016), notamment des con-
traintes financières et technologiques, qui peuvent empêcher les individus de s’ajuster
de manière optimale en réponse aux changements météorologiques. Les modèles clas-
siques d’impact et d’adaptation au climat supposent toutefois que les agents sont
rationnels et ont des croyances qui s’ajustent de manière optimale en réponse aux
signaux météorologiques (Hsiang, 2016; Deryugina and Hsiang, 2017). Ce chapitre
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utilise pour la première fois des données de panel sur les croyances individuelles con-
cernant le climat pour explorer l’effet différentiel de l’exposition à la sécheresse sur
l’utilisation de l’irrigation en fonction des croyances individuelles. En se concentrant
sur le Bangladesh, l’un des pays les plus exposés au risque climatique, ce chapitre
met en lumière un nouvel angle critique des déterminants de l’adaptation au climat
qui n’a jamais été étudié auparavant.

Chapitre 3: Drought exposure and accuracy: Motivated reasoning
in climate change beliefs

Le troisième chapitre, intitulé Drought exposure and accuracy: Motivated reasoning
in climate change beliefs, utilise les mêmes données de panel de ménages ruraux
au Bangladesh pour étudier les déterminants et le processus de formation des croy-
ances climatiques. Une fois démontrée l’importance des croyances climatiques pour
l’adaptation, ce chapitre étudie en profondeur les déterminants de ces croyances et
cherche à savoir si les individus présentent des biais cognitifs. En étudiant l’effet de
l’exposition moyenne à la sécheresse sur le long terme et des écarts à court terme
sur les croyances relatives à la sécheresse, je constate que les croyances sont basées
sur l’exposition à long terme et ne diffèrent pas systématiquement en fonction des
écarts à court terme. Pour étudier la manière dont les individus interprètent les
sécheresses passées, j’adopte une approche de variable instrumentale et j’étudie si
les croyances individuelles conduisent à une distorsion asymétrique de l’information
objective. Les résultats montrent que les individus se souviennent et surpondèrent
les preuves qui penchent en faveur de leurs croyances antérieures. Le fait de croire
que les sécheresses ont augmenté a un effet positif important sur la probabilité et
l’ampleur de la surestimation du nombre de sécheresses. Ces résultats prouvent que
les individus présentent le biais de confirmation comme mécanisme de raisonnement
motivé.

Contributions

Ce chapitre apporte plusieurs contributions à la littérature sur les impacts cli-
matiques et l’adaptation. Il s’agit de la première étude sur données empiriques
des déterminants des crouyances climatiques dans un pays en développement, en
se concentrant sur les sécheresses. Cet aspect est particulièrement important au
Bangladesh, où la sensibilisation au changement climatique est faible (Rzepa and
Ray, 2020). Le seul autre article qui étudie la formation des croyances climatiques
n’exploite pas la variation intra-individuelle des croyances et utilise des données des
Etats-Unis (Deryugina, 2013). Ce chapitre contribue également à la compréhension
des biais cognitifs associés aux croyances en matière de changement climatique, qui
n’étaient jusqu’à présent formulés que de manière théorique (Druckman and Mc-
Grath, 2019), et plus particulièrement, il teste l’hypothèse du biais de confirmation
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dans le contexte d’un pays en voie de développement. En utilisant une approche
de variable instrumentale pour répondre aux problèmes d’endogénéité, le chapitre
établit une relation de cause à effet entre les croyances et la distorsion des infor-
mations provenant des événements météorologiques. Les résultats de ce chapitre
soulignent la nécessité de prendre en compte les facteurs comportementaux et les
biais cognitifs dans la formation des croyances sur le changement climatique afin
d’élaborer des politiques d’adaptation efficaces.

Chapitre 4: Climate-induced migration and environmental values

Le quatrième chapitre, Climate-induced migration and environmental values, porte
sur l’étude des déterminants des préoccupations climatiques et du comportement
électoral en faveur de l’environnement. L’article étudie la relation entre les deman-
des d’asile induites par les conditions météorologiques, les préoccupations clima-
tiques individuelles et le comportement de vote pour les partis verts dans l’Union
européenne. Il présente la migration induite par les conditions météorologiques
en provenance de pays non membres de l’OCDE comme un nouveau déterminant
des préoccupations climatiques et examine son impact sur les attitudes du pub-
lic et les choix électoraux. Sur la base de données allant de 2000 à 2019, l’étude
utilise une approche de variable instrumentale exploitant les variations exogènes du
climat pour estimer l’effet causal des demandes d’asile induites par les conditions
météorologiques. Les résultats suggèrent que les demandes d’asile induites par les
conditions météorologiques renforcent la préoccupation des individus à l’égard du
changement climatique en tant que priorité politique. Cependant, ces changements
dans les préoccupations climatiques ne se traduisent pas par des changements dans
le comportement électoral des partis verts aux élections du Parlement européen, ce
qui indique une déconnexion entre les préférences déclarées et les choix électoraux
réels.

Contributions

La principale contribution de ce chapitre concerne l’analyse des déterminants des
préoccupations climatiques. Une littérature de plus en plus abondante examine le
rôle des facteurs socio-économiques, tels que le sexe, l’éducation, l’orientation poli-
tique (voir Drews and van den Bergh (2016) pour une revue de la littérature), et
l’impact de l’expérience directe d’événements extrêmes (Hazlett and Mildenberger,
2020; Hoffmann et al., 2022). Le présent chapitre élargit la compréhension des
préoccupations climatiques en considérant la migration induite par les conditions
météorologiques comme un facteur influent. Ce nouveau déterminant met en évi-
dence le rôle des anomalies météorologiques à distance, par le biais de l’exposition
aux flux migratoires, dans la formation de la préoccupation climatique. Le chapitre
démontre que les demandes d’asile induites par les conditions météorologiques aug-
mentent la préoccupation individuelle à l’égard du climat, en particulier chez les
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électeurs de droite. Ce résultat met en évidence la relation complexe entre le change-
ment climatique, la migration et les idéologies politiques, contrairement aux résul-
tats précédents sur l’idéologie de droite, qui modèrent par exemple les effets de
l’éducation sur les convictions climatiques (Czarnek et al., 2021). Le chapitre exam-
ine l’écart entre les préoccupations climatiques et le comportement électoral, révélant
que les préoccupations accrues n’entraînent pas de changements dans le soutien aux
partis verts lors des élections au Parlement européen. Cela souligne l’importance de
prendre en compte d’autres facteurs, tels que l’abandon des électeurs verts tradition-
nels et les préférences des personnes n’ayant pas atteint l’âge de voter. En estimant
l’impact des variations météorologiques sur les demandes d’asile dans l’Union eu-
ropéenne, ce chapitre contribue à la compréhension de la relation entre le climat
et la migration (Missirian and Schlenker, 2017b; Abel et al., 2019; Cai et al., 2016;
Cattaneo and Peri, 2016). Dans l’ensemble, ce chapitre nous permet de mieux com-
prendre les moteurs des préoccupations climatiques et met en lumière la complexité
de la traduction de la préoccupation climatique en actions politiques significatives
en faveur du climat.
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Chapter 1

Sectoral impact and
propagation of weather shocks

Despite the intensification of international trade and the fragmentation of pro-
duction processes, local weather shocks have only been shown to damage local eco-
nomic activity. This paper introduces the role of input-output sectoral interlinkages
as a transmission mechanism of weather shocks in a production network model and
tests the empirical implications using a six-sector global dataset from 1975 to 2020.
First, I document that agriculture is the most harmed sector by a range of weather
shocks, including hot and cold days, droughts, and cyclones. Second, I find that
sectors at later stages of the supply chain, though non-responsive to local weather,
suffer from substantial and persistent losses over time due to domestic and foreign
heat shocks in agriculture that propagate downstream. Using counterfactual sce-
narios, I show a substantial underestimation of the economic cost of temperature
increases accounting for shocks across trade partners since 2000 and I characterize
global losses depending on the sectoral centrality in the production network.

Keywords: Climate change, sectoral shocks, spillovers, weather shocks
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1.1 Introduction

There is a large and urgent demand for data-driven estimates of climate dam-
ages to properly account for the benefits of additional climate change mitigation
efforts (Newell et al., 2021). Despite recent methodological advancements to esti-
mate the relationship between climatic conditions and economic outcomes (Hsiang,
2016; Auffhammer, 2018), previous empirical studies investigate the responses of
local aggregate measures of economic activity to isolated local weather shocks (see
Kolstad and Moore (2020) for a review). In an increasingly interconnected world
with international trade and supply-chain relations in production networks, the po-
tential transmission of non-local weather shocks is a crucial mechanism for accurate
quantification of climate damages. On the one hand, the openness to international
trade and the fragmentation of production processes can help increase diversifica-
tion in the supply chain and lower volatility (Caselli et al., 2020; Nath, 2020), on
the other hand, however, it can increase exposure to shocks with effects rippling
through the supply chain (di Giovanni and Levchenko, 2009).

This paper examines how weather shocks heterogeneously affect annual sec-
toral economic activity and traces their propagation in international production
networks over time by using cross-country global sector-level data combined with
high-resolution weather data and input-output sectoral interlinkages. To show the
importance of weather shocks hitting other sectors and affecting sectoral production
through sectoral interlinkages, I formalize a model of production networks (Carvalho
and Tahbaz-Salehi, 2019; Acemoglu et al., 2016a), which provides intuition behind
the potential bias of estimates based on local response function estimations to lo-
cal weather shocks. Neglecting the interconnections among sectors while weather
shocks are spatially correlated leads to contraventions of common identifying as-
sumptions, by violating the stable unit treatment value assumption. Consequently,
partial equilibrium estimates of the relationship between weather and economic out-
comes become biased. In this paper, I highlight a new mechanism in the climate
impact literature adding real-world features omitted in previous reduced-form at-
tempts to quantify the economic cost of climate change.

The empirical analysis is conducted in two steps. First, I estimate the sector-
specific response in the growth rate of per capita gross value added to weather
shocks in a pooled multi-country sample of sectoral production across 183 countries
between 1975 and 2020 for six sectors.1 The effect of weather shocks on produc-
tion is identified using plausibly exogenous year-to-year variation in the distribution
of daily temperature and precipitation (Deschênes and Greenstone, 2011; Carleton
et al., 2022), or in monthly dryness and wind speed to measure respectively droughts

1Agriculture, hunting, forestry, and fishing; Mining, manufacturing and utilities; Construction;
Wholesale, retail trade, restaurants, and hotels; Transport, storage, and communication; Other
activities (including government and financial sector).

38



and cyclones. Second, I analyze how weather shocks hitting customer/supplier sec-
tors domestically and abroad propagate through input-output interlinkages and af-
fect sectoral economic production. I construct downstream and upstream, domes-
tic and foreign network shocks using the global input-output tables from EORA26
(Kanemoto et al., 2011) combined with a vector of weather shocks.

In line with previous findings (Dell et al., 2012; Acevedo et al., 2020), I docu-
ment that agriculture is the most harmed sector. In particular, using daily average
temperature, I find that heat shocks, defined as an additional day above the 95th

percentile of the country-specific daily temperature distribution, reduce the agricul-
tural growth rate by 16% of its sample mean. Using a measure of dryness from
the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano
et al., 2010), I document a negative and substantial effect of droughts and dry-
ness conditions on agricultural production. In contrast, drier weather, measured as
the number of days below the 5th percentile of the country-specific daily precipita-
tion distribution or dryness conditions, exhibits a positive influence on productivity
within the construction sector, and the transport, storage, and communication sec-
tors. These sectors encompass operational tasks conducted in exposed “interface”
areas (Cachon et al., 2012), which exhibit heightened responsiveness to variations
in precipitation.

In the second part of the paper, I investigate whether sectors are affected by
shocks on trade partners due to their propagation via supply chain interlinkages. I
document that domestic and foreign heat shocks, respectively measured as weather
shocks weighted by the relative importance of sectoral interlinkages within the same
country and abroad, have a strong negative effect on several sectors’ output, notably
construction; other activities; transport, storage, and communication; wholesale, re-
tail trade, restaurants and hotels. The magnitude of the indirect effect is substantial
and comparable to the direct effect of weather shocks on agricultural production. I
further examine the mechanisms of the propagation effect and detect heat shocks in
the agricultural sector as the main channel of downstream propagation to customer
sectors. Results are stronger when accounting for the full propagation using the
Leontief inverse matrix. Using local projections (Jordà, 2005), I find that the effect
of network shocks is persistent over time, dampening sectoral growth up to five years
after the shock.

Finally, I use the estimated parameters from the reduced-form specification as
the basis of two counterfactual analyses. First, I quantify the contribution of input-
output interlinkages between sectors to the average annual output loss due to recent
warming from 2000 onwards. I consider a counterfactual world with no input-output
linkages and with linearly trended daily temperatures from their baseline climate
in 1970-2000. Accounting for network shocks, recent warming is responsible for an
average annual output loss of 0.33%, compared to a 0.1% average loss when omitting
spillovers. In a second exercise, I obtain the average annual cost conditional on an
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additional hot day in a specific sub-region or a country. Average annual global costs
are at their highest when heat shocks occur in countries with many supply chain
interlinkages in the production networks, such as China, Brazil, France, India, and
the United States.

Altogether, these findings provide evidence of the role of input-output sectoral
interlinkages as an important mechanism for the propagation and amplification of
weather shocks. They also highlight a substantial underestimation when omitting
sectoral linkages and underline the importance of this channel as a component of
the total economic impact of climate change.2

This paper contributes to the climate economics literature by providing jointly
estimated sector-specific response functions to weather shocks across the world from
1975 through 2020. Several cross-country studies have employed aggregate mea-
sures of economic activity such as national or regional GDP per capita (Akyapi
et al., 2022; Burke et al., 2015b; Kalkuhl and Wenz, 2020; Kahn et al., 2021; Burke
and Tanutama, 2019; Kotz et al., 2021) to measure the impact of temperature fluc-
tuations. Previous articles often use a coarse sectoral tripartition of the economy
into agriculture, manufacturing, and services to study the channels of the impact,
finding that agricultural production is the most damaged and industrial and service
output are sheltered (Dell et al., 2012; Acevedo et al., 2020). At a finer level of sector
disaggregation, previous work has focused on the impact of tropical cyclones in the
Caribbean and Central America area (Hsiang, 2010), worldwide (Kunze, 2021), and
of seasonal temperature variations in Europe (Linsenmeier, 2021).

Furthermore, this paper introduces a new mechanism in the climate impact lit-
erature. Previous studies examine economic losses as a function of local weather
shocks, assuming that production depends only on local weather and holding con-
ditions in other locations fixed (Miller et al., 2021). Besides spatial correlation as
a channel for the global nature of climate change (Dingel et al., 2021), shocks can
also propagate through production networks across geographically distant countries
(Wenz and Willner, 2022). The existing literature has investigated how input-output
interlinkages amplify and propagate economic shocks across US firms (Giroud and
Mueller, 2019; Cravino and Levchenko, 2017) or sectors (Acemoglu et al., 2016b,a),
and across countries (Das et al., 2022). Theoretical studies and simulations show
how natural disasters can spread depending on the network structure (Henriet et al.,
2012; Shughrue et al., 2020). Recent empirical studies examine the propagation of
natural disasters within the US (Barrot and Sauvagnat, 2016) or after a localized
single natural disaster such as the 2011 Japan earthquake or Hurricane Sandy in the
US (Carvalho et al., 2021; Boehm et al., 2019; Kashiwagi et al., 2021). Pankratz and
Schiller (2021) show that temperature shocks and flood events in supplier locations
reduce customer firms’ performance. Studies at the firm level do not justify whether

2For example, Kahn et al. (2021) show that an average increase in temperature by 0.01ºC is
associated with a 0.02% decrease in the annual growth rate of global economic output (see Tol
(2022) for a complete meta-analysis of the economic impact of climate change).
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idiosyncratic weather shocks have an important role in explaining macroeconomic
fluctuations, which should wash out once aggregated across units (Lucas, 1977).
Feng and Li (2021) study international spillovers of climate damage and risks on
stock market valuation but use natural disaster data based on reported damages,
while Kunze (2021) considers endogenous network sectoral interlinkages and finds
limited indirect effects of tropical cyclones due to stickiness in the production pro-
cesses. This paper contributes to the macroeconomic literature on the propagation
of shocks by studying weather shocks in the supply chain through sectoral inter-
linkages. The findings can have substantial implications to quantify the economic
damages of climate and compute the social cost of carbon, exploring a new channel
of transmission of weather shocks that can amplify their effects on the economy.

The remainder of the paper is structured as follows. Section 1.2 lays out a
conceptual framework of the importance of input-output sectoral interlinkages for
the empirical estimation of weather shocks. Section 4.2 describes the data used in the
empirical analysis. Section 1.4 introduces the empirical approach. Section 1.5 shows
and summarizes the sectoral impact of weather shocks. Section 1.6 contains the
main empirical results of the propagation of weather shocks through the economy,
which I then use as the basis of counterfactual analyses in Section 1.7. Section 2.8
concludes.

1.2 Conceptual framework

1.2.1 Local economic response to local weather shocks

This section briefly discusses the conceptual framework underlying the estimates
based on local economic response functions to local weather shocks. The majority
of the reduced-form climate impact literature motivates productivity specifications
with a partial equilibrium model of production (Burke et al., 2015b; Kahn et al.,
2021; Dell et al., 2012; Kalkuhl and Wenz, 2020). Regardless of the level of spatial
disaggregation of the analysis - firm, grid cell, region, or country - production pos-
sibilities for each unit i = 1, .., n are usually described by the following neoclassical
homogeneous of degree one production function:

Yit = F (Zit, Lit,Ki) (1.1)

I consider each unit i to be a sector-country and define it as a market. Each mar-
ket has aggregate total factor productivity Zit = zi · exp(f(Tit, βi)) that comprises
unit-specific exogenous non-weather base productivity determinants and a vector of
market-specific temperature effects3, Lit is labor (inelastically supplied by workers

3For illustrative simplicity, here I consider a simplified example with univariate climate, where
productivity only depends on temperature without loss of generality, but one can include a matrix
of weather variables and study Jacobian matrices instead of first-order derivatives.
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so that total population can be used as synonym), and Ki is capital.4 At each time
t, in a simple constant returns-to-scale Cobb-Douglas version of the model with
λ ∈ [0, 1] the output elasticity of capital, the production function is written as

Yit = ziexp(f(Tit, βi))Kλ
i L

1−λ
it (1.2)

Taking the log of both sides and rearranging in terms of output per worker, one
obtains:

log Yit

Lit
= 1

1 − λ
[log zi + f(Tit, βi)] + λ

1 − λ
log

(
Ki

Yit

)
(1.3)

In a reduced-form fixed effects econometric specification, regressing output per
capita on a function of temperature and the unit- and period-specific fixed effects
that absorb zi would estimate the effect of temperature β̂ under the assumption that
the residual variation in temperature is not correlated with the error term and unit-
specific capital-to-output ratio is constant. Without spatially correlated patterns in
temperature shocks and where production linkages between sectors and countries
are negligible, β̂ would then identify the effect of temperature on production.

1.2.2 Weather shocks in a production network model

Idiosyncratic micro shocks can propagate through input-output production networks
and impose substantial fluctuations at the aggregate level (Carvalho et al., 2021;
Acemoglu et al., 2012). In this section, I present a simple model of production
networks based on Carvalho and Tahbaz-Salehi (2019); Acemoglu et al. (2016a) and
originally introduced by Leontief (1941) to theoretically found the empirical analysis
of heat shocks propagating through the economy by altering input prices/quantities
or demand for intermediate inputs. This approach captures additional real-world
features missing in previous reduced-form attempts to quantify the economic costs
of climate change.

Sectors intensively use intermediate inputs produced by other domestic and for-
eign sectors. I consider a two-tier Cobb-Douglas model of production networks with
each sector’s production function with constant returns to scale (ωi +

∑n
j ωij = 1),

such that:

Yit = Zit[Kλ
i , L

1−λ
it ]ωi

n∏
j

x
ωij
ijt (1.4)

where xijt is the quantity of intermediate inputs produced by market j used by
market i. As before, I assume that, for each i, ωi ∈ (0, 1], and ωij ∈ [0, 1] for all j,

4In this framework, I consider Hicks-neutral productivity shocks and abstract from other po-
tential channels of the impact of temperature on production, which could affect effective units of
labor input (Nath, 2020) and capital equipment and its effective utilization (Zhang et al., 2018). In
this case, estimates of Equation 1.1 would compound these three channels which cannot be further
disentangled.
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where ωij can be equal to zero if the output of market j is not used as an input by
market i. The larger ωij , the more important sector j is as a supplier of intermediate
inputs to sector i. Equation (1.1) is a simplified case in which input-output loops are
removed and the shares of intermediate inputs in production are set equal to zero
across all markets, such that ωij = 0, for each i,j. Equation (1.4) allows for a rich
input-output structure, since the intensity with which each sector’s output is used
as an intermediate input by other sectors varies across all sector pairs. In particular,
input-output linkages between various markets can be summarized by the matrix
Ω = [ωij ], the direct requirements matrix defined as the first-degree input-output
matrix, with some abuse of terminology (Carvalho and Tahbaz-Salehi, 2019). From
the sectoral input-output interlinkages, one can also compute the Leontief inverse
matrix as L = ( I − Ω)−1, whose (i, j) elements are the importance of sector j as
a direct and indirect input supplier to sector i.

Accounting for intermediate inputs sourced from multiple sectors introduces the
concept of market access. This is a multilateral term, in which production in market
i is a function of all market j’s productivities, and therefore all markets’ temperature
distributions (Rudik et al., 2022). Since inputs are sourced from various markets,
temperature shocks to other markets can propagate across sectors and national
borders and affect production in market i. From the Cobb-Douglas production
technology assumed, it follows that a sector’s expenditure on various inputs as a
fraction of its output is invariant to the shocks and is thus exogenous in the model
(Carvalho and Tahbaz-Salehi, 2019).5

1.3 Data

This section provides a summary of the main data sources used to empirically test
the hypothesis that weather shocks affect sectoral production and propagate through
input-output interlinkages. To do so, the three major data sets are sector-level eco-
nomic production (Section 1.3.1), weather data (Section 1.3.2), and sectoral inter-
linkages (Section 1.3.3).

1.3.1 Sectoral production data

The sectoral economic production data come from the Economic Statistics Branch
of the United Nations Statistical Division (UNSD, 2022). The National Accounts
Main Aggregates database provides the Gross Value Added (GVA) by type of eco-
nomic activity following the International Standard Industrial Classification (ISIC

5Carvalho et al. (2021) study a more complex case with production functions with a nested
constant elasticity of substitution (CES) structure and show the propagation of shocks through two
distinct channels using a first-order approximation in the elasticities of substitution between various
intermediate inputs or between the intermediates and primary factors of production different from
one.
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rev. 3.1). It contains information from 1970 through 2020 for 205 countries.6 GVA
is measured in constant 2015 USD. The data set categorizes sectors into six broad
groups (with the respective ISIC code in parentheses), which provides the most
comprehensive data set of global economic production disaggregated by sector with
the longest time horizon: agriculture, hunting, forestry, and fishing (A-B); mining,
manufacturing and utilities (C-E); construction (F); wholesale, retail trade, restau-
rants, and hotels (G–H); transport, storage, and communication (I); other activities
(J–P).7 The latter encompasses, among others, the financial sector, real estate, pub-
lic administration, education and health. Table A1 presents summary statistics for
sectoral production. Although unbalanced, the sector-country panel dataset covers
all countries in the world for most of the 46 years in the analysis.8

1.3.2 Weather data

I combine three main sources of weather data that use geophysical climatic infor-
mation to construct measures of weather fluctuations and extreme weather events.
Section 1.3.2 describes temperature and precipitation data. Appendix A.3 describes
additional weather data used to construct measures of dryness, wetness and cyclones.

Temperature and precipitation

I use temperature and precipitation data from the global reanalysis ERA-5 dataset
compiled by the European Centre for Medium-Range Weather Forecasts (ECMWF)
(Copernicus Climate Change Service, 2023). Reanalysis data combine model data
with observations from across the world into a globally complete and consistent
dataset using the laws of physics and rely on information from weather stations,
satellites and sondes, removing biases in measurement and creating a coherent,
long-term record of past weather (see Auffhammer et al. (2013) for a discussion
of reanalysis weather data). ERA-5 is available on a 0.25◦ ×0.25◦ resolution grid (≈
28km at the Equator) from 1950 to the present. The original temporal frequency is
hourly, but I aggregate it into daily data for the empirical analysis.

Following the standard methodology in the climate impact literature (Hsiang,
2016), I compute any nonlinear transformation of temperature and precipitation
at the grid cell level before averaging values across space using grid-level weights

6The sample of countries is larger than the number of recognized sovereign states since it also
includes quasi-autonomous countries such as Curaçao or Puerto Rico. Since the input-output data
used as part of the analysis do not contain information on these countries, the final sample does
not consider these countries. The final sample of countries and their frequency is reported in Table
A2.

7The original data are available for seven sectors, since GVA in manufacturing (ISIC D) is also
provided standalone. I depart from previous articles using these data (Kunze, 2021; Hsiang, 2010)
and consider mining, manufacturing and utilities (ISIC C-E) as one single sector, since it is not
possible to obtain a separate measure of GVA sectoral production in mining and utilities (ISIC C
& E) from manufacturing (ISIC D) because value added across sectors is not additive.

8On average, information for each sector-country tuple is available for 44 years. Most of the
sectors are covered for the entire time period except for recent geopolitical changes.
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and accounting for fractional grid cells that partially fall within a country, and
lastly summing or averaging days in coarser time intervals. This procedure main-
tains weather variability that would be otherwise lost when averaging over an entire
country. To have a measure of weather exposure for the average individual in a
country and to avoid giving excessive importance to weather in areas with little
economic contribution to sectoral production, I aggregate grid-cell level information
using time-invariant population weights from the 2000 Landscan dataset (Bright and
Coleman, 2001). When constructing measures for the agricultural sector, I weigh
grid-cell data by the proportion of each grid cell under cropland in 2000, using the
Global Agricultural Lands dataset (Ramankutty et al., 2010). To construct sector-
specific weather shocks for certain countries, I rely on Eurostat data on GVA by
industry (NACE Rev. 2) at the sub-national level for 34 European countries9 and
take a weighted average of grid cell-level weather shocks by the average sectoral
economic production in the first available five years (no earlier than 1995) for each
sub-national administrative unit.

1.3.3 Sectoral interlinkages

Crucial to the analysis is the identification of domestic and foreign sectoral interlink-
ages. I use Input-Output (IO) data from EORA26 (Lenzen et al., 2012; Kanemoto
et al., 2011) to analyze how idiosyncratic weather shocks propagate through the econ-
omy. This data set contains information on 26 sectors for 189 countries from 1970
to 2021 and has the widest geographic coverage in terms of intersectoral linkages.10

I retain information on the first available five years of the IO matrix (1970-1974)
and examine the propagation of weather shocks through a pre-determined constant
input-output network that does not endogenously respond to the shock itself.11 I ag-
gregate the 26 sectors to match the six sectors described in Section 1.3.1 as reported
in Table A3.

Construction of network shocks

To account for propagation, I construct a measure of network shocks that hit other
sectors and propagate through input-output interlinkages. I use sector-country level

9I use NUTS-3 level information from 31 countries (Albania, Austria, Belgium, Bulgaria, Croatia,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy,
Latvia, Lithuania, Malta, Netherland, Norway, Poland, Portugal, Republic of North Macedonia,
Romania, Serbia, Slovakia, Slovenia, Sweden, Türkiye, Serbia, Spain) and NUTS-2 level for three
other countries (Cyprus, Luxembourg, Montenegro).

10This data set contains, to the best of my knowledge, the richest information in terms of geo-
graphic, temporal and sectoral information on input-output interlinkages. However, the data set
presents a few limitations since some data are estimated and not measured and it is slightly less
accurate than the full EORA MRIO due to the aggregation of sectors from the higher sectoral detail
of Eora to the lower detail of EORA26, and to the conversion of Supply/Use tables to IO tables,
which involves both a net information loss and the introduction of some new assumptions.

11Kunze (2021) shows a small and negligible shift of sectoral interlinkages after tropical cyclones.
I also test for this assumption in Appendix Section A.4 and find little and no statistically significant
effect of heat shocks on sectoral interlinkages.
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information in the first available five years of the IO matrix (1970-1974) to smooth
annual variation and construct a weighting scheme that accounts for the importance
of a sector depending on its geographic location and position in the supply chain.
In robustness checks, I consider the propagation of weather shocks in a time-varying
production network constructed using the first five-year average input-output inter-
linkages for each decade (see Appendix Section A.5 for details).

First, I distinguish between shocks originating in the same country, domestic, and
those originating in others, foreign. Second, I classify network shocks into down-
stream and upstream depending on whether they hit sectors that are respectively
suppliers or customers of the sector of interest. From the perspective of the sector
of interest, downstream shocks originate in supplier sectors and propagate down-
stream. In contrast, upstream shocks hit customer sectors and travel upstream to
the sector of interest. A prediction of the conceptual framework in Section 1.2 is that
the supply-side shocks propagate downstream, whereas demand-side shocks propa-
gate upstream (Carvalho and Tahbaz-Salehi, 2019; Acemoglu et al., 2016a). Given
the level of aggregation of sectors, all six sectors are included in both upstream
and downstream weights. Figure A1 shows the average upstream and downstream
weights of each sector across countries.

In addition to the local own shock hitting sector i in country c, there are four
different types of network shocks depending on the supply chain position and ge-
ographic location: downstream domestic (DnD), upstream domestic (UpD), down-
stream foreign (DnF), and upstream foreign (UpF), constructed as follows:

ShockDnD
i,c,t =

∑
j ̸=i

ωi,c,j,cShockOwn
j,c,t (1.5)

ShockUpD
i,c,t =

∑
j ̸=i

ω̂i,c,j,cShockOwn
j,c,t (1.6)

ShockDnF
i,c,t =

∑
j

∑
k ̸=c

ωi,c,j,kShockOwn
j,k,t (1.7)

ShockUpF
i,c,t =

∑
j

∑
k ̸=c

ω̂i,c,j,kShockOwn
j,k,t (1.8)

where ShockOwn
j,k,t is a weather shock hitting sector j in country k in year t.12 I

take a weighted average of the shocks hitting all sectors that sector i has a link-
age with by constructing the weights from the inter-country IO tables described in
Section 1.3.3. Based on previous approaches to model network shocks (Acemoglu
et al., 2016a,b; Das et al., 2022), I construct weights differently for upstream and
downstream shocks. From the perspective of sector i in country c, for downstream
shocks, I construct weights as

12Except for the agricultural sector all over the world and for all sectors in 33 European countries,
weather shocks are not sector-specific, as detailed in Section 1.3.2.
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ωi,c,j,k =
inputjk→ic∑

lf∈Θic
inputic→lf

(1.9)

i.e., the ratio of the inputs that sector i (in country c) uses that are produced by
sector j (in country k) over the total inputs supplied to its set of customer sector-
countries Θic. These weights represent downstream propagation since they reflect
how much input from sector-country jk is needed to produce one unit of output
of sector-country ic (Acemoglu et al., 2016a). In a similar manner, the weights
associated with measures of upstream shocks are constructed as

ω̂i,c,j,k =
inputic→jk∑

lf∈Θic
inputic→lf

(1.10)

i.e., the ratio of the inputs of sector i (in country c) to each sector j (in country k)
over the total inputs supplied to its set of customers Θic. These represent upstream
weights since they reflect the importance of each customer for the sector-country of
interest ic.

As a first step in the analysis, I consider network shocks only based on the geo-
graphic location (domestic or foreign) of partners. In this case, I take an unweighted
average of upstream and downstream weights to obtain a measure of the average
relative importance of each sector-country (ωicjk).

1.4 Empirical Approach

The empirical analysis is conducted in two steps. First, I estimate the sector-specific
response in per capita GVA growth rate to weather shocks. Second, I analyze how
weather shocks hitting customer/supplier sectors domestically and abroad affect
sectoral economic production.

1.4.1 Local economic sector-specific response to local weather shocks

I estimate the sector-specific output-weather relationship using a pooled sample
of sectoral GVA per capita growth rates across 183 countries over 45 years. The
effect of temperature and precipitation on production is identified using year-to-
year variation in the distribution of daily weather, following, inter alia, Deschênes
and Greenstone (2011); Carleton et al. (2022). Specifically, the baseline specification
is written as

∆ log(GV A)ict = fi(W(i)ct) + αic + µit + εict (1.11)

where I regress the growth rate of GVA per capita in sector i in country c

in year t (approximated by the first difference in logarithms) on a sector-specific
function of weather variables W in country c in year t. I include country-sector fixed
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effects to account for unobserved heterogeneity that influences countries’ average
sectoral growth rates, such as history, culture, or topography and time-invariant
sectoral compositions of national output (Burke et al., 2015b), and sector-year fixed
effect to capture year-specific worldwide shocks, such as El Niño events or global
recessions, and to specific sectors (e.g. agricultural commodity price shocks). For
instance, differences in country sizes do not pose a problem in the identification
strategy. I do not include any other traditional time-varying determinants of sectoral
production - such as investments or capital stocks - since they are endogenous to
weather variations and may thus introduce bias in the estimates (Dell et al., 2014).
Standard errors are clustered at the country level to account for spatial correlation
of the error terms across sectors in the same country over time.

Equation (1.11) relies on usual identifying assumptions in the climate impact
literature (Hsiang, 2016), by exploiting plausibly exogenous within-country varia-
tion in changes in weather fluctuations, orthogonal to changes in sectoral economic
production and to weather in spatial units different than i. This approach uses
random weather shocks as identifying variation, which differ from climate change
(Mendelsohn and Massetti, 2017). Short-run and long-run elasticities to weather
fluctuations are the same only under certain assumptions (Lemoine, 2021), there-
fore one should be cautious in extrapolating long-term impacts from the estimated
short-term responses.

From the beginning of the reduced-form approaches to the output-weather rela-
tion (Dell et al., 2012), temperature has been used in levels to estimate its impact
on economic growth (Burke et al., 2015b; Henseler and Schumacher, 2019; Acevedo
et al., 2020). Since the GVA growth rate is stationary and temperature fluctuations
in levels are non-stationary, studying the relationship between these two variables
would reintroduce trends in the specification (for a deeper discussion, see Tol (2022)
and Appendix Section A.6). For this reason, when I use temperature in levels, I con-
sider it in first-differenced changes (see Appendix Section A.7) (Akyapi et al., 2022;
Newell et al., 2021; Letta and Tol, 2019).13 Although the use of changes in weather
variables already de-trends the variables in the model, I test for the robustness of the
model in alternative specifications including country-specific linear (and quadratic)
time trends to allow for non-linear evolution of underlying country characteristics,
such as demographic transitions and institutional changes. In additional robustness
checks, I also account for dynamics and serial correlation in the dependent variable
by including the lagged dependent variable among the regressors.

Using first-differenced weather changes, however, does not inform how atyp-
ical the weather realization was with respect to individual expectations since it
neglects any information provided by the levels and assumes that individuals ra-
tionally update their beliefs annually, implicitly assuming an instantaneous model

13I reject the null hypothesis of non-stationary series for all first-differenced economic and weather
variables performing the Im-Pesaran-Shin (Im et al., 2003) panel unit root test. Results are reported
in Table A5.
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of adaptation. On the one hand, introducing both temperature levels and changes
simultaneously would not resolve the trend problem surrounding the output growth
specifications adopted in the literature (Kalkuhl and Wenz, 2020). On the other
hand, weather realizations above or below certain absolute thresholds (e.g., 30◦C)
and binned response functions may not be globally informative since only a subset
of countries experiences such levels, driving the variation and raising concerns on
potential endogeneity (Osberghaus and Schenker, 2022).

For this reason, I rely on the fact that people’s climate beliefs reflect long-run
climatic conditions (Zappalà, 2023b), and adaptive responses could reduce the im-
pact of weather fluctuations on production if societies can anticipate them based
on their expectations (Shrader, 2023). I consider country-specific temperature and
precipitation distributions and compute the annual number of days that belongs to
the pth-percentile of the country-specific temperature and precipitation daily dis-
tribution over the fifty-year period (where p ∈ {1; 5; 10; 90; 95; 99}). These events
should be interpreted as abnormally cold and hot, or dry and wet, respectively, for
the bottom and top percentile of the distribution of temperature and precipitation.
Using this methodology, the measure is evenly distributed across countries, and any
abnormal realization is compared to the country-specific climatic norm. Country-
specific time-invariant thresholds account for the influence of long-run adaptation
to climatic conditions on the effects of certain weather realizations. This approach
considers an implicit model of adaptation assuming that societies adapt using as a
baseline a fifty-year time-invariant climate norm. This methodology is consistent
with previous results that condition the temperature-production response function
on long-run average temperature (Rode et al., 2021; Carleton et al., 2022).

1.4.2 Propagation of weather shocks

Sectoral output can incur losses from climate change through different channels
(Carleton and Hsiang, 2016). For instance, weather is an input in crop production
and can directly harm agriculture (Schlenker and Roberts, 2009; Acevedo et al.,
2020; Hultgren et al., 2022). Other sectors can experience losses due to reductions
in labor supply and productivity (Graff Zivin and Neidell, 2014; Graff Zivin et al.,
2018; Rode et al., 2022), total factor productivity (Zhang et al., 2018; Letta and Tol,
2019), or damages to assets and infrastructure (Hsiang and Jina, 2014; Bakkensen
and Barrage, 2018; Fankhauser and Tol, 2005). In this section, I design an econo-
metric specification that examines a new impact channel of weather shocks rippling
through the supply chain via sectoral interlinkages. To examine the importance of
network shocks relative to own shocks on sectoral activity, I estimate the following
econometric specification

∆ log(GV A)ict = γiShock
Own
ct +

∑
J

γJ
i Shock

J
ct + αic + µit + ηict (1.12)
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where I expand Equation (1.11) with shocks in partner sectors J by geographic lo-
cation and supply chain position. I begin by including domestic and foreign weather
shocks weighted by the average interdependence of sector i with other sectors in
the same country c and other countries (i.e., J ∈ {D; F}). Then, I also disentangle
upstream and downstream weather shocks (i.e., J ∈ {DnD; UpD; DnF; UpF}).

This approach aims at quantifying the impact on sectoral production of trade-
induced exposure to weather shocks in other sectors. Weather shocks elsewhere
affect sectoral market access which could improve or deteriorate depending on mar-
ket forces and trade relationships with other sectors. Although this paper does not
formally pin down the channel through which weather shocks affect supplier produc-
tion functions and customer demand (e.g., infrastructure or facility damages, labor
productivity losses, capital equipment efficiency), this approach uncovers the role
of the propagation channel for quantifying sectoral weather shocks. By only con-
sidering the direct impact of weather shocks on a given sector, one is omitting the
amplification and transmission of such shocks due to the intersectoral reliance. A
negligible or null direct effect of weather shocks on a given sector may be amplified
by weather shocks hitting other sectors with strong commercial interlinkages.

A typical panel fixed effects model would study the effect of weather variations
in a given location while weather elsewhere is fixed. Climate change, however, is
expected to alter atmospheric conditions across the world (Dingel et al., 2021). For
this reason, the estimates obtained in Equation (1.11) of the effect of local weather
variations on local economic production may be biased when omitting trade linkages
across observational units while weather shocks are spatially correlated by violating
the stable unit treatment value assumption (SUTVA). Spatial considerations are of
first-order relevance because the economy and climate are linked across space, which
results in violations of common identifying assumptions with first-order effects. One
approach to address this concern is to use economic primitives as the outcome of
the regression, such as productivity or the share of expenditure on goods from other
markets over own expenditures. This approach eliminates the multilateral trade
effects and correlated spatial patterns in temperature shocks (Rudik et al., 2022). By
comparison, the use of local economic production measures such as GDP, value added
in productivity, or other proxies including nighttime lights suffers from bias induced
by spatial considerations through the multilateral trade effects and correlated spatial
patterns in temperature.

The direction of the bias is ex-ante ambiguous since it depends on market forces,
the network structure of the trade relationship and on the supply chain position of
the treated trade partners (Acemoglu et al., 2016a). Most importantly, differently
from other sectoral shocks previously studied (Atalay, 2017), weather shocks can
a priori be either demand- or supply-side shocks. On the one hand, they can in-
duce changes in input demands by customer sectors. In this case, weather-induced
demand shocks would propagate upstream and affect suppliers of the sectors hit.
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At the same time, network weather shocks can have a positive effect on sectoral
production through improvements in market access, due to the lower productivity
of its competitors. On the other hand, an adverse weather shock can reduce the
production of a sector (Nath, 2020; Graff Zivin et al., 2018), and induce an increase
in the price. This effect would ripple down to downstream customer sectors to use
the input less intensively and thus reduce their own production. Through these two
mechanisms, non-local weather shocks can impact sectoral production creating pow-
erful propagation. Omitting market access from the estimating equation will bias the
estimate of the effect of own temperature which will also capture the market access
effect. The simplified conceptual framework with a Cobb-Douglas production func-
tion facilitates the study of the two mechanisms at play where downstream effects
emerge only in the case of supply-side shocks and upstream effects from demand-side
shocks.

1.5 Sectoral impact of weather shocks

I first explore the extent to which local abnormal temperature and precipitation real-
izations affect sectoral economic production. In Appendix Section A.7, I present the
results using alternative measures of temperature and precipitation and in Appendix
Section A.8, I discuss the sector-specific impact of droughts and cyclones.

1.5.1 Abnormal weather realizations

I exploit within-sector year-to-year fluctuations in changes in temperature and pre-
cipitation to identify their causal effect on economic sectoral production. Differently
than previous cross-country empirical evidence on the channels of the impact of
weather shocks on sectoral outcomes (Acevedo et al., 2020; Dell et al., 2012; Kunze,
2021), I estimate a pooled, multi-country, sector-specific response function as de-
tailed in Equation (1.11). This model allows me to jointly estimate responses of
sectoral economic production to weather shocks and compare the different response
functions. I estimate the effect of an increase in the number of days of abnormal
weather realizations in a year both for temperature and precipitations. The identi-
fication strategy relies on the estimation of the impact of increases in the number of
abnormally cold and hot, dry and wet days using days in the rest of the distribution
as the baseline category.

Figure 1.1 shows the (standardized) coefficients associated with the number of
days above the 95th and below the 5th percentile of the fifty-year daily temperature
and precipitation distribution. Figure 1.1a confirms findings consistent with the
prior literature that agriculture is the sector that is most harmed by heat shocks.
An additional day above the 95th percentile of the daily temperature distribution
in the sample reduces the agricultural growth rate by 0.03 percentage points (16%
of its sample mean). Cold temperature shocks have a similar effects on agriculture,
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harming crops that cannot grow below a certain temperature. An additional day
below the 5th percentile reduces the agricultural growth rate by 8% of its sample
mean. Most of the other sectors seem not to respond to temperature shocks, neither
hot nor cold, and estimates are very similar in magnitude, providing little evidence
of asymmetry in the relationship between sectoral production and abnormal realiza-
tions of temperature from its historical norm.

Conversely, wet precipitation shocks do not affect sectoral production (Figure
1.1b) except for a positive effect of an additional day of precipitations above the
95th percentile on agricultural production. There are two potential explanations
behind these findings, coherent with prior literature. First, excessive and insuffi-
cient precipitation may not be adequate indicators of water availability (Russ, 2020;
Proctor et al., 2022). Second, precipitation as a weather phenomenon exhibits con-
siderable spatial variation and aggregation at the country level may mask too much
meaningful variation that could explain the null and noisy estimates associated with
precipitation variables. To partially address the first concern, in Section A.8, I
further explore sector-specific responses to a measure of dryness that accounts for
potential evapotranspiration and provides a more complete picture of the water
availability cycle. The second concern cannot be overcome due to the lack of data
availability of sectoral production at finer administrative levels across the whole
world. Previous sub-national studies show for aggregate measures of economic ac-
tivity in Europe (Holtermann, 2020) and across the world (Damania et al., 2020;
Kotz et al., 2022) that precipitation anomalies reduce economic growth. Future
data collection efforts should be steered towards globally comprehensive measures
of disaggregated sectoral production at finer geographic levels.

The baseline results are robust to how “abnormal” is defined, whether I use the
top/bottom first or tenth percentile of the daily distribution (Figures A7 and A8
replicate the same exercise using the 1st and 99th, and 10th and 90th percentile). Re-
sults are also robust to estimating the baseline equation in a balanced panel (Figure
A9a), excluding large countries (i.e., Brazil, China, India, Russia, US) that may suf-
fer from aggregation bias in cross-country analysis (Figure A9b) and controlling for
lagged growth rate and including linear and quadratic country-specific time trends
or sub-region by year fixed effects (Figure A9c).
Time-varying climate norms. Instead of fixing the weather distribution to the
fifty-year period, one can construct measures of temperature and precipitation rela-
tive to their time-varying historical norms. Following Kahn et al. (2021), I construct
time-varying country-specific distributions over the preceding m years for each t,
where m ∈ {20; 30; 40}. I exploit the temporal horizon of the weather data that
start from 1950. The official World Meteorological Organization definition of cli-
mate (i.e., norm) corresponds to thirty years (Arguez et al., 2012), but I check for
robustness considering other time spans. Different lengths of historical norms imply
different belief formation and adaptation processes (the longer the time span of the
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Figure 1.1: Abnormal weather realizations on sectoral production

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the
country-average number of days above the 95th and below the 5th percentile
of the daily distribution in temperature (Panel (a)) and in precipitation
(Panel (b)). All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed
effects. Bins represent the 90% confidence intervals around point estimates.

Standard errors are clustered at the country level.

historical norm, the slower individuals update their beliefs and treat the new distri-
bution as the new norm). Smaller climate damage for shorter time spans over which
the distribution is computed would provide suggestive evidence on the rate of speed
of adaptation (Kahn et al., 2021). In all three cases, I consider data starting from
1990 to compare estimates across time-varying historical norms with different time
spans from the same sample.

Figure A10 shows the coefficients associated with abnormal temperature and
precipitation realizations with respect to a time-varying country-specific daily dis-
tribution. Results are very similar to baseline estimates, showing that agriculture is
negatively affected by hot temperature shocks. Assuming different speeds of change
for the historical climate distribution (20-, 30- or 40-year) does not significantly alter
the point estimates. The negative effect of heat shocks on agricultural production
is persistent, suggesting that adaptation has not entirely offset climate damages.
There is some suggestive evidence of adaptation to abnormally cold shocks with the
point estimate that is not significant using a 40-year climate norm and increases in
magnitude and becomes statistically significant as one increases the speed of adap-
tion and belief formation up to 20 years. One cannot reject the hypothesis that
adaptation has not taken place in other sectors (transport, storage and communi-
cation; other activities), where output losses are mitigated, and sometimes become
gains, for faster time-varying climate norms. Results are similar and robust to the
use of the 1st and 99th, and 10th and 90th percentile (Figures A11 and A12).
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1.6 Propagation of weather shocks

In this section, I investigate the propagation of weather shocks across the economy
through input-output networks. I focus on abnormal weather realizations as a shock.
Appendix Section A.9 discusses the propagation of extreme drought prevalence and
tropical cyclones as two additional weather shocks.

1.6.1 Abnormal weather realizations

I consider the number of days above the 95th percentile of the country-specific tem-
perature daily distribution and estimate Equation (1.12) including an average of the
heat shocks in domestic and foreign trade partners weighted by the input-output
interlinkages at the baseline with each specific sector.
Domestic and foreign shocks. Figure 1.2 displays the standardized estimated
coefficients associated with own and network heat shocks decomposed into domestic
and foreign with the vertical error bars indicating 95% confidence intervals based
on clustered standard errors at the level of the country. The coefficient on the
direct heat shock is negative and significant only for agriculture, replicating the
results in Section 1.5. Domestic shocks have a significant negative and sizable ef-
fect on economic production in the sectors of construction, transport, storage and
communication, and wholesale, retail trade, restaurants, and hotels. The effect of
domestic heat shocks on mining, manufacturing and utilities, and other activities
is also negatively but imprecisely estimated. In particular, the magnitude of the
effect of domestic network shocks is substantially large for the construction sector,
which relies heavily on various inputs from agriculture (e.g., timber, bamboo, straw
and hay, natural fibers, plant-based binders, soil and gravel, biofuels, geotextiles)
and produces investment goods, more vulnerable to climate change than e.g. the
retail sector, which primarily produces consumption services (Casey et al., 2021).
Foreign shocks also have a negative significant effect on sectoral production of other
activities and wholesale, retail, restaurants and hotels. These results indicate that
heat shocks propagate to other sectors which are usually non-responsive to direct
weather shocks.

These findings have two consequences in the interpretation of previous results.
First, sector-specific estimates that account only for the direct impact of weather
shocks may be biased since shocks propagating from other sectors are omitted. This
result underlines the importance of separately capturing direct and indirect effects
and the statistical significance of coefficients on foreign network weather shocks
suggests that also geographically distant weather realizations matter through trade
interlinkages. Second, until now, the climate impact literature has focused on sector-
specific impacts (Carleton and Hsiang, 2016) and identified agriculture as the most
affected sector. Nevertheless, accounting for input-output interlinkages shows that
weather shocks are amplified in the economy and indirectly affect other sectors,
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too. In terms of magnitude, the effect of domestic network shocks on the other
sectors is comparable with the direct damage estimated on agriculture. This implies
that recent estimates on the economy have been largely underestimated due to the
propagation of shocks across sectors.14

Figure 1.2: Domestic and foreign heat shocks on sectoral produc-
tion

Notes: Bars represent the (standardized) sector-specific coefficients associ-
ated with direct shocks and domestic and foreign shocks, using the average
number of days above the 95th percentile of the daily temperature distri-
bution. Domestic shocks are constructed as the average weather shock in
the other sectors in the same country as the sector of interest weighted by
the average of upstream and downstream interdependence with each sec-
tor. Symmetrically, foreign shocks are constructed as the average weather
shock in the other sectors in all the other countries weighted by the average
of upstream and downstream interdependence with each sector. All sector-
specific coefficients are estimated jointly in a stacked regression model fully
saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th per-
centile and sector-specific responses to precipitation realizations below the
5th and above the 95th percentile. Bins represent the 95% confidence in-

tervals with standard errors clustered at the country-level.

Dry network shocks. An additional result from the sectoral analysis in Section
1.5 shows that sectors mostly relying on “interface” areas benefit from extremely
drier conditions. I further explore the robustness of these results when accounting

14A potential worry about firms within a sector endogenously selecting trade partners based on
their location and their exposure to weather shocks would not be a threat to the identification of
the transmission of shocks, since it would bias the results against finding any effect.
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for days below the 5th percentile of the precipitation distribution for each country-
sector in the trade network. Figure A14 shows the estimates associated with dry
direct, domestic and foreign shocks. When accounting for drier conditions elsewhere
in the production network, the sectors of construction and transport, storage and
communication show a net overall negative effect, raising further concerns about the
validity of naive local weather-local output regressions.
Agricultural channel. To explore the consequences of sector-specific heat shocks
and test the hypothesis that shocks in agriculture ripple through the supply chain,
I estimate Equation 1.12 accounting only for heat shocks in the agricultural sector.
Figure A16 reports the estimated coefficients. The coefficients on domestic heat
shocks in all sectors (except mining, manufacturing and utilities) are largely negative
and significant suggesting that heat shocks affecting the agricultural sector lower
economic output in other sectors within the same country. Estimates of foreign
agricultural heat shocks are negative but often imprecisely estimated.

Although the analysis underlines the importance of trade interlinkages as a trans-
mission channel of weather shocks, identifying this mechanism is still subject to a
fundamental challenge posed by spatial correlation due to the global nature of the
phenomenon altering weather conditions everywhere (Dingel et al., 2021). To ad-
dress this potential concern, I estimate a more conservative specification accounting
for fixed effects at time-varying coarser spatial levels than the unit of observation
(Deschênes and Meng, 2018). Figure A17 shows the estimated coefficients in a re-
gression that additionally controls for subregion-by-year and continent-by-year fixed
effects.15 This approach identifies weather variation that is local to the unit of
observation and uncorrelated with weather elsewhere within the same subregion/-
continent, suggesting that network effects persist and are due to trade interlinkages
and not spatially correlated shocks. The strong negative effect of domestic shocks
is robust to the inclusion of these additional fixed effects.

Exposure shares do not account for own trade, therefore the total sum of trade
interlinkages varies across observations. To account for incomplete shares, I interact
period fixed effects with the sum of exposure shares (Borusyak et al., 2022). The
effects are robust to this specification (Figure A18a). Results are also robust to
estimating the equation in a balanced panel (Figure A18b), excluding large countries
(i.e., Brazil, China, India, Russia, US) (Figure A18c), using different cut-offs to
compute percentiles of abnormal weather realizations (Figures A18d and A18e) and
using a decadal time-varying production network (Figure A18f).
Upstream and downstream shocks. Shocks in trade partner locations can
propagate differently from different stages of the supply chain (Acemoglu et al.,
2016a; Das et al., 2022). I decompose domestic and foreign agricultural shocks into

15Subregions divide the world into 17 zones: Australia and New Zealand, Central Asia, Eastern
Asia, Eastern Europe, Latin America and the Caribbean, Melanesia, Northern Africa, Northern
America, Northern Europe, Polynesia, South-eastern Asia, Southern Asia, Southern Europe, Sub-
Saharan Africa, Western Asia, Western Europe.

56



upstream and downstream as detailed in Section 1.3.3. Since temperature and pre-
cipitation are direct inputs to crop production and thus agricultural output, heat
shocks can be interpreted as weather-induced supply shocks, and from the conceptual
framework, it follows that such shocks should propagate downstream to customer
sectors. Figure 1.3 displays the five coefficients on network shocks and local shocks
for each sector. All five sectors have negative coefficients associated with both foreign
and domestic downstream, indicating that heat shocks in the agricultural sector are
amplified by market reactions that slow down downstream production (Wenz and
Levermann, 2016).
Beyond first-degree sectoral interlinkages. The analysis so far has relied on
the transmission of weather shocks from first-degree sectoral interlinkages in the pro-
duction network. To account for the full transmission of shocks over the network,
one can use the input-output analysis, initiated by Leontief (1941). From the input-
output coefficients ω, I obtain the Leontief inverse matrix, which summarizes the
sector-specific technical coefficients of the shock propagation through a power series
representation of the Leontief inverse (Leontief, 1970). By taking the inner product
of agricultural heat shocks and the Leontief inverse matrix, I obtain a sector-specific
shock that takes full inter-sectoral relations into account. I estimate a specification
including the agricultural heat shocks weighted by the Leontief-derived downstream
coefficients and report the coefficients in Figure 1.4. Both domestic and foreign agri-
cultural heat shocks are strongly negative and statistically significant, with domes-
tic shocks larger in magnitude. The results suggest that downstream propagation of
heat-induced productivity shocks in the agricultural sector has quantitatively sizable
effects on the rest of the economy.
Time persistence of network shocks. While the results show that domestic and
foreign shocks, particularly those originating from agriculture, matter for sectoral
economic output, the estimates focus only on short-run, contemporaneous impacts.
It remains an open question whether the shocks have persistent effects on the level
or on the growth rate of GVA per capita. There is a long-standing debate on the
“growth-vs-level” effect of weather shocks and extreme weather events (see Tol (2022)
for a review). With the exception of persistent growth effects on aggregate output
in Kahn et al. (2021), recent evidence has consistently documented level effects of
temperature (Akyapi et al., 2022; Newell et al., 2021; Kalkuhl and Wenz, 2020). I
examine longer-run effects of local and network agricultural heat shocks estimating
a set of local projections (Jordà, 2005) to obtain impulse response functions. Local
projections are more robust to misspecification of the data-generating process and
to lag length by not imposing dynamic restrictions as in autoregressive distributed
lag models. The set of estimating equations is written as

∆log (GVA)ict+h = γi,hShock
Own
ict +γD

i,hShock
D +γF

i,hShock
F +αic+µct+εh

ict (1.13)
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Figure 1.3: Network abnormally hot temperature shocks and sec-
toral production

Notes: Bars represent the (standardized) sector-specific coefficients associ-
ated with direct shocks and domestic and foreign shocks distinguished be-
tween upstream and downstream, using the average number of days above
the 95th percentile of the daily temperature distribution. Domestic up-
stream (resp. downstream) shocks are constructed as the average weather
shock in the other sectors in the same country as the sector of interest
weighted by the upstream (resp. downstream) interdependence with each
sector. Symmetrically, foreign upstream (resp. downstream) shocks are
constructed as the average weather shock in other sectors abroad weighted
by the upstream (resp. downstream) interdependence with each sector.
The figure reports only the coefficients associated with agriculture, other
activities and wholesale, retail trade, restaurants and hotel, the specifica-
tion jointly estimates all sector-specific coefficients in a stacked regression
model fully saturated with country-sector and sector-year fixed effects and
accounting for sector-specific responses to temperature realizations below
the 5th percentile and sector-specific responses to precipitation realizations
below the 5th and above the 95th percentile. Bins represent the 90% con-

fidence intervals with standard errors clustered at the country level.

where I project the cumulative growth rate of sectoral per capita GVA between
horizons t− 1 and t+ h (h ∈ {0; 5} indexes the time horizon measured in intervals
of up to five years) on direct and network shocks accounting for dynamics.

First, I estimate local projections on the total gross value added at the country
level. Figure A19 shows the impulse response functions for a standardized domestic
(Panel a) and foreign (Panel b) heat shock. Both domestic and foreign heat shocks

58



Figure 1.4: Sector-specific response to agriculture heat shock in a
Leontief matrix

Notes: Bars represent the (standardized) sector-specific coefficients asso-
ciated with direct shocks and domestic and foreign downstream shocks in
the agricultural sector, using the average number of days above the 95th

percentile of the daily temperature distribution weighted by the Leontief in-
verse matrix obtained from the downstream sectoral interlinkages obtained
as in Section 1.3.3. The specification jointly estimates all sector-specific co-
efficients in a stacked regression model fully saturated with country-sector,
country-year, sector-year, and region-year fixed effects and accounting for
sector-specific responses to temperature realizations below the 5th per-
centile and sector-specific responses to precipitation realizations below the
5th and above the 95th percentile. Bins represent the 90% confidence in-

tervals with standard errors clustered at the country level.

have a small, noisy effect on total value-added levels that is statistically not distin-
guishable from zero. Using aggregate measures of country-level value added shows
that the effect of network heat shock is not persistent.

Figure 1.5 displays the sector-specific impulse response functions for a standard-
ized domestic heat shock obtained from the estimation of a stacked, multi-country,
sector-specific regression that also includes direct and foreign shocks. Results show
that the sectoral aggregation masks substantially heterogeneous effects. Domestic
agricultural heat shocks have negative persistent effects in the sectors of construc-
tion; other activities; transport, storage and communication; and wholesale, retail
trade, restaurants and hotels.

Figures A20 and A21 display the impulse response functions using own direct
and foreign shocks. First, direct shocks do not have a persistent effect on sectoral
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production. Agriculture is the only sector that is harmed, whereas the others ap-
pear relatively inelastic to abnormally hot temperature shocks (with the exception
of transport, storage and communication, in which the negative effect of weather
shocks manifests only after four years). The negative significant effect on agricul-
ture lasts only one year and dissipates thereafter, confirming no visible long-run
growth effects, but only a temporary effect on agricultural GVA levels. Second, the
estimates on foreign shocks are small in magnitude and not distinguishable from
zero, except in the case of other activities, which is strongly negatively affected by
foreign agricultural heat shocks. The stickiness of the production processes at the
sectoral and geographic level of aggregation of the analysis may explain the persis-
tence of network heat shocks (Kunze (2021) and Appendix Section A.4). Allowing
for a decadal time-varying production network shows robust persistent growth ef-
fect of domestic and foreign agricultural heat shocks (Figure A22). Agricultural heat
shocks spill over other sectors also when accounting for continent-sector-year fixed
effects (Figure A23) and for continent-sector linear trends (Figure A24), to control
for spurious correlation between differential regional trends in warming and sectoral
economic performance.

1.7 Counterfactual analysis: Cost of recent warming

To assess the economic importance of the propagation of weather shocks through
production networks, I perform two counterfactual analyses. First, I compare the
differential sectoral output losses/benefits as a result of recent historical warming.
Prior research quantifies and projects the impact of temperature increases assum-
ing a counterfactual with no further warming (e.g., Burke et al., 2015b; Burke and
Tanutama, 2019; Kalkuhl and Wenz, 2020). To account for adaptive adjustments
to changes in climate, I simulate how much slower or faster each sector would have
grown over the 2001-2020 period, compared to a counterfactual in which daily tem-
perature linearly evolves from its 1970-2000 long-run average, omitting and account-
ing for temperature shocks in a slowly evolving production network (see Appendix
Section A.10 for additional details).

Omitting shocks in sector partners substantially underestimates the losses due to
recent warming (Figure A27). The average annual GVA per capita loss across sectors
considering only sector-specific local shocks is 0.02% (-0.08% median, IQR [-0.29,
0.09]), whereas accounting for network shocks it is 0.32% (0.15% median, IQR [-0.13,
0.73]). Damages are particularly larger in those sectors that appear sheltered from
local shocks (other activities; transport, storage and communications), while there is
larger heterogeneity in relative losses in construction and wholesale, retail, hotel and
restaurants: larger damages in Sub-Saharan Africa, Latin America and South-East
Asia are offset by modest benefits in Northern Europe and the Middle East. Using
each country’s baseline average sectoral breakdown of total GVA between 1996 and
2000, I aggregate sector-specific damages to obtain the total national average relative
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Figure 1.5: Local projections of domestic agricultural heat shocks
on sectoral production

Notes: Panels show the sector-specific impulse response function of sectoral
per capita GVA growth rate to a 1 SD increase in the domestic agricul-
tural heat shocks estimated in a stacked regression model fully saturated
with country-sector and sector-year fixed effects and accounting for sector-
specific responses to direct and foreign abnormally hot temperature shocks,
to abnormally cold temperature shocks (below the 5th percentile) and to
precipitation realizations below the 5th and above the 95th percentile. Hori-
zon 0 is the year of the shock. Shaded areas represent the 90% confidence

intervals with standard errors clustered at the country level.

losses. Accounting for indirect heat shocks, country-level damages are substantial
(0.33% mean, 0.26% median, IQR [0.06, 0.53]) and largely underestimated when
omitting heat shock propagation (0.10% mean, 0.05% median, IQR [0.00, 0.17])
(Figure 1.6).

In a second exercise, I quantify the macroeconomic impact of an increase in
one abnormally hot day in a specific sub-region or country from 2000 onwards.
Figure 1.7 reports the average annual global losses. The highest average loss (≈ 185
million 2015US$) is recorded if each agricultural sector in the world experiences an
additional hot day. Large losses are also recorded if Sub-Saharan Africa, Eastern
Europe, Eastern Asia or Latin America and the Caribbean suffer an additional
hot day. These regions, if experiencing additional heat, induce larger losses on
average due to larger relative damages on local economic production. An alternative
mechanism could be explained by a scale effect since these regions have the largest
number of countries contemporaneously shocked. For this reason, on the right-hand
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Figure 1.6: Average annual per capita GVA losses (%) due to recent
warming

Notes: The figure shows the average annual losses (in red) and gains (in
blue) in per capita GVA (%) compared to a counterfactual daily tempera-
ture evolved linearly from the trend estimated over the period 1970-2000.
Sector-specific damages are weighted by the average sectoral share of total
GVA between 1996 and 2000. The world map above only accounts for
sector-specific direct heat and cold shocks defined as the number of days
above the 95th and below the 5th percentile of the temperature distribu-
tion. The world map below accounts for shocks in other partner sectors
using sector-specific semi-elasticities from bootstrapping 1000 times the
underlying panel estimates of Equation (1.12), where indirect shocks are
constructed with a time-varying production network that uses the first five-
year average input-output interlinkages for each decade. Sector-specific
losses are reported in Figure A27, Table A13 reports the sector-specific
losses significant at 95% level estimated with 1000 bootstrap replications

with replacement.

side of the Figure, I also report average annual global losses if one single country
experiences an additional hot day. Results show that the importance of the country
in the production networks substantially matters for losses induced by heat shocks.
On average, global losses are at the highest for an additional hot day in China (≈
80 million 2015US$) and in other countries such as Brazil (≈ 12 million 2015US$),
France (≈ 14 million 2015US$), India (≈ 10 million 2015US$), and the United States
(≈ 5 million 2015US$). These losses are sizable considering they represent global
averages for one abnormally hot day in each of these countries, where hot days have
substantially increased over the sample period. For example, the decadal average
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number of hot days in China in the 1970s was 11.8 and reached 29.5 in the 2010s.
Similarly, the number of hot days in Brazil increased from 6.3 to 42.4 and from 7.9
to 30.3 in the US in the same time period.

Figure 1.7: Average annual global losses due to an additional ab-
normally hot day in a specific sub-region (left) or country (right)

Notes: The figure shows the average annual global losses in 2015$ million
by perturbing the production network with an additional abnormally hot
day in the sub-region (resp. country) reported in the x-axis (y-axis), using
sector-specific semi-elasticities from Equation (1.12), where indirect shocks
are constructed with a time-varying production network that uses the first
five-year average input-output interlinkages for each decade. Global aver-
ages only consider country-specific losses significant at the 95% level using

1000 bootstrap replications with replacement.

1.8 Conclusion

Recent studies in the climate impact literature have pushed forward the frontier
for a timely, accurate and local measure of climate damages across sectors. The
findings can have substantial implications for an adequate quantification of the total
economic impact of climate change. This paper contributes to this effort by shedding
light on a new potential component of climate damages, arising from the propagation
of weather shocks through production networks across sectors and countries, and
over time. Complementing firm-level evidence on the spillover effects of natural
disaster shocks, I find that the amplification mechanism persists when aggregating
units at the sector level and generates substantial fluctuations in sectoral production.
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Accounting for the local effect of weather shocks on sectoral economic output is not
sufficient for an accurate measure of total economic damages.

Sectors unresponsive to local weather suffer economic losses due to the inter-
dependence of their production process with other domestic or foreign sectors that
are hit by weather shocks. In particular, sectors at later stages of the supply chain,
such as construction; transport, storage and communication; wholesale, retail trade,
restaurants and hotels and other activities are negatively impacted by heat shocks
in other sectors, with a loss comparable in magnitude to the direct impact on agri-
culture. I also find a strong negative persistent effect of domestic agricultural heat
shocks in certain sectors’ output (construction; other activities; transport, storage
and communication; wholesale, retail trade, restaurants and hotels) up to five years
after the shock. In light of the negative and persistent impact of network shocks,
these findings suggest that climate damages may be larger than indicated by stan-
dard empirical approaches and integrated assessment models.

The findings point to the structure of sectoral production network linkages as a
key driver of aggregate fluctuations induced by weather shocks. In particular, they
indicate that even if most sectors with the exception of agriculture are sheltered
from weather fluctuations, the potential propagation of shocks over the economy’s
production network can impact them, thus resulting in movements in macroeconomic
aggregates. In particular, using counterfactual simulations based on my empirical
estimates, I show that the omission of input-output linkages as a mechanism for the
propagation and amplification of shocks may lead to substantial underestimation of
the effect of recent warming around the world and global losses are sizable even for
just a single country being shocked in isolation, suggesting that countries that are
more central in the production network can induce larger global losses if hit by heat
shocks.

Several important issues remain open to future research. First, the analysis
provides modest but suggestive evidence on the role of adaptation of countries to
enhance their resilience to climate damages, in particular, that the effect of weather
shocks depends on income. However, the analysis does not explicitly model adaptive
investments, technological change, or other sector-specific adaptive responses (e.g.
irrigation, sea-walls...) that may heterogeneously affect the response functions and
lower climate damage. Accounting for other adaptive margins may also differentially
drive the propagation of shocks in countries that are more sheltered from weather
shocks.

Second, the analysis is conducted at a spatial level that may yet mask substantial
variation both in economic responses and local weather fluctuations. High spatial
resolution particularly matters for estimating the effect of precipitation on economic
output (Kotz et al., 2022). Replicating the analysis on disaggregated sector-level
sub-national data could show new estimates on sector-specific elasticities to weather
fluctuations and shed new light on within-country regional propagation of weather
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shocks across sectors.
Third, the transmission of weather shocks is studied through the relative impor-

tance of trade partners in input-output interlinkages. As previously shown (Barrot
and Sauvagnat, 2016), the input specificity and elasticity of substitution are key
drivers of the transmission of firm-level shocks. Weather shocks can differentially
propagate in supply chains that differ by industry supplier competitiveness, input
concentration, and supplier diversification (Pankratz and Schiller, 2021). These
channels have only been documented at the firm level and such additional layers
of heterogeneity could shed light on the exact channel of transmission of weather
shocks through the economy.

Fourth, sectoral reallocation is increasingly acknowledged and studied as a poten-
tial adaptive margin to climate change (Nath, 2020; Desmet and Rossi-Hansberg,
2015). The analysis has focused on the propagation of weather shocks in a pre-
determined or slowly evolving production network. Adjustments in trade patterns
from the substitution of affected sectors with sectors in unaffected places as a re-
sponse to idiosyncratic weather shocks seem a promising avenue for future research.

Last, the analysis is mostly silent about decision-makers’ climate beliefs and
expectation formation processes. Despite the use of implicit models of adaptation
accounting for climate as the most important factor, adaptive behavior reflects in-
dividual perceptions of climate change more than actual meteorological conditions,
with inaccurate beliefs explaining substantial economic losses due to inadequate
adaptation (Zappalà, 2023a). Similarly, expectations also matter in accounting for
adaptation costs and benefits (Carleton et al., 2022; Shrader, 2023). Future research
should focus on accounting for heterogeneous beliefs and expectations in production
networks and supply-chain relationships.
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Chapter 2

Adapting to climate change
accounting for individual beliefs

Mounting evidence that the climate is changing requires a better understanding
of how individuals adapt. Despite extensive research on various adaptation gaps, in-
cluding financial and technological constraints, the adaptive decision-making process
still relies on perfect information and optimal climate beliefs assumptions. Combin-
ing a survey of rural households in Bangladesh with a meteorological measure of
dryness, this paper studies the role of individual beliefs about droughts on irri-
gation use. A theoretical framework introduces how beliefs differentially influence
responsiveness to dryness. The empirical analysis reveals an asymmetric response to
dryness shocks conditional on prior belief accuracy and a reinforcing effect of beliefs
in drier areas, with heterogeneous responses by growing season and irrigation tech-
nique. I explore three cognitive mechanisms, exploiting the intensity and frequency
of drought events and comparing self-reported and objective records. A counter-
factual analysis with beliefs based on meteorological records shows that farmers
underuse irrigation and incur substantial monetary losses as a result of inaccurate
beliefs, generating a belief gap.

Keywords: Adaptation, agriculture, beliefs, climate change, drought, irrigation
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2.1 Introduction

Human-induced warming and climate-related extremes have slowed the growth of
agricultural productivity over the past decades in mid- and low-latitudes (IPCC,
2022). The projected changes in climate threaten agricultural productivity and the
communities whose economic livelihood depends on it (Ortiz-Bobea et al., 2021).
Despite ongoing efforts, current adaptive measures in crop production have proven
insufficient in mitigating the adverse consequences of climate change (IPCC, 2022).
To address this challenge, recent studies emphasize the critical importance of quan-
tifying and evaluating adaptation responses in light of changing climatic condi-
tions (Auffhammer and Schlenker, 2014; Auffhammer, 2018; Carleton et al., 2022;
Auffhammer, 2022; Hultgren et al., 2022). Nevertheless, prevailing implicit models
of adaptation assume that agents adjust their practices based on unobserved opti-
mal beliefs, accounted for using meteorological conditions (Hsiang, 2016; Deryugina
and Hsiang, 2017). Misconceptions about climate change and inaccurate assessment
of weather events can prevent individuals from responding to changes in the en-
vironment, leading to inadequate or counterproductive adaptation measures that
exacerbate the impacts of climate change. Unobserved differences in beliefs can in-
fluence adaptive behavior and their omission may lead to biased estimates of the
effect of weather fluctuations (Bento et al., 2023).

This paper provides evidence on farmers’ heterogeneous adaptive responses to
dryness exposure in Bangladesh accounting for individual beliefs of increase in
droughts and sheds light on other cognitive mechanisms underpinning their adaptive
decisions. Bangladesh is one of the most vulnerable least developed countries and
was ranked 7th on the Global Climate Risk Index 2021 of the most affected coun-
tries since 2000 (Eckstein et al., 2021). I combine a two-wave rural household survey
that contains information on individual beliefs and on their recall of the intensity
and frequency of drought events with a meteorological local measure of exposure to
dryness, the Standardized Precipitation Evapotranspiration Index (SPEI).

To introduce the role of individual beliefs as opposed to meteorological condi-
tions in the individual decision-making process, I formalize a theoretical framework
of behavioral inattention and action (Gabaix, 2019). I consider a profit-maximizing
farmer and relax the perfect information assumption by which agents observe long-
run climate and year-to-year fluctuations and make decisions based on them. Draw-
ing on suggestive evidence of inaccurate beliefs about past climatic conditions in the
sample, I introduce a behavioral friction driving the wedge between expected profits
for a rational farmer and a behavioral farmer with inaccurate beliefs and character-
ize the conditions under which beliefs differentially influence farmers’ responsiveness
to dryness exposure. When testing the model empirically, adaptation refers to farm-
ers’ use of irrigation, where I exploit within-farmer variation in irrigation use and
beliefs of increase in droughts to estimate the irrigation-belief relationship allowing
the response function to vary with long-run dryness exposure.
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The baseline results show that farmers’ drought beliefs differentially influence
responsiveness to dryness exposure in the use of irrigation. The effect is positive in
drier areas and is heterogeneous across growing seasons, driving responses only in the
monsoon season. For instance, for a farmer exposed to conditions one-half standard
deviation drier than the historical average, beliefs are associated with an increase of
around 28 percentage points in the share of irrigated land (≈ 57% at the mean). In
contrast, in villages that are not drier in the period considered with respect to the
historical average, beliefs are associated with a reduction in irrigated land. I rule
out potential concerns about reverse causality and farmer responses through other
coping mechanisms explaining this result and also show that inaccurate priors asym-
metrically drive irrigation response to dryness shocks. When individuals assume a
fixed climate distribution although meteorological records indicate drier conditions,
they reduce irrigation use, consistent with the hypothesis of lack of adaptation to
a bad random realization from a fixed distribution. Moreover, the baseline find-
ings are driven by older farmers and farmers with formal education, which proxy
for the importance of learning about agricultural technologies, the effectiveness of
adaptive behavioral responses, and knowledge of the relationship between dryness
and irrigation.

The results do not rule out alternative channels, such as salience and recall
errors, that may affect irrigation decisions. I test for such mechanisms by exploiting
the intensity and frequency of droughts and comparing self-reported experiences
and meteorological records. First, I examine whether the timing of past droughts
influences irrigation decisions. I use the self-reported year of the most severe drought
to test whether more recent shocks have a stronger effect on adaptive decisions. I
find that only self-reported one-year lagged drought events have a strong effect,
providing suggestive evidence about salient events (Gallagher, 2014). Second, I
compare the self-reported year with the meteorological record of the most severe
drought. Inaccurate farmers who misjudge the year make potentially sub-optimal
irrigation decisions, reducing the share of irrigated land. Third, I examine the role of
accurate recollection in the frequency of past drought events, comparing the number
of self-reported and meteorological droughts. I document that the adaptive response
depends on the accuracy of recollection: overestimating droughts is associated with
a higher share of irrigated land.

The main findings indicate that beliefs differentially drive individual adaptive
responses to dryness conditions, but do not shed light on the welfare consequences.
Using estimates from the literature on the returns to irrigation, I compute the wel-
fare cost as a result of the belief gap generated by observed and accurate beliefs
constructed from meteorological records. The median monetary loss amounts to
$102 in the monsoon and $23 in the winter season, respectively around 26% and 4%
of the total production value. Farmers are more accurate in the winter dry season
and thus incur lower losses. The reason for this may be attributed to the climatic

68



conditions during winter, which require higher use of irrigation. The projected in-
crease in the frequency and intensity of droughts and in the variability of rainfall
in the monsoon season due to climate change may thus exacerbate farmer losses
in that season as a result of misperceived climatic changes (Alamgir et al., 2015;
Habiba et al., 2011).

This paper firstly relates to the climate adaptation literature in the agricultural
sector (Burke and Emerick, 2016; Moore et al., 2017; Blakeslee et al., 2020; Chen and
Gong, 2021). Various adaptive responses have been studied in developing countries,
including crop diversity (Auffhammer and Carleton, 2018), crop insurance (Falco
et al., 2014), land adjustments (Aragón et al., 2021), irrigation investment (Taraz,
2017; Taylor, 2021), pesticide and fertilizer use (Jagnani et al., 2021) and soil and
water conservation practices (Tambet and Stopnitzky, 2021). Climate impact stud-
ies assume perfect information and full rationality of the agents and abstract from
any heterogeneity in individual beliefs and understanding of climatic changes (Hult-
gren et al., 2022). Among the various “adaptation gaps” studied (Carleton and
Hsiang, 2016), farmers may not adapt because they do not realize that the climate
is changing. Limited adaptation has thus far only been conjectured to be affected
by a difficulty in learning about climate change and cognitive factors (Bento et al.,
2023; Burke and Emerick, 2016).1 Previous studies have focused on beliefs about
other agricultural inputs (Michelson et al., 2021; Gars and Ward, 2019; Maertens,
2017; Campenhout, 2021). The sole exception introducing climate beliefs is Kala
(2017), who studies farmers’ learning models in India, however, inferring beliefs
from actions. To the best of my knowledge, this is the first paper that accounts for
observable individual climate beliefs in an analysis of on-farm adaptive actions to
weather changes.

The paper also relates to a number of studies on the relationship between farm-
ers’ perceptions of climate change and adaptation strategies (Ricart et al., 2022).
The articles cover restricted geographical zones and provide results based on cross-
sectional surveys.2 This strand of literature does not unravel perceptions of different
aspects of climatic changes nor it compares self-reported experiences with weather

1Bento et al. (2023) document a higher degree of adaptation in US counties with higher beliefs
in climate change, whereas Burke and Emerick (2016) find in the same context that expectations
about climate change, proxied by political beliefs, have a minimal effect on farmers’ responsiveness
to extreme heat.

2Studies are mainly based in Africa (Elum et al., 2017; Debela et al., 2015; Mertz et al., 2009b;
Martey and Kuwornu, 2021; Ado et al., 2019; Silvestri et al., 2012; Fosu-Mensah et al., 2012; Brüssow
et al., 2019) and in South-Asia (Aftab et al., 2021; Khanal et al., 2018; Waibel et al., 2018; Le Dang
et al., 2014; Singh et al., 2018).
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data.3 Here, I isolate the role of cognitive factors by comparing beliefs with me-
teorological measures of dryness. By exploiting the intensive margin in irrigation
use, I quantify the role of beliefs, accounting for time-invariant individual-specific
unobserved heterogeneity such as risk attitudes, that may otherwise confound the
effect on behavioral responses.

Lastly, the paper is related to the role of subjective expectations in developing
countries (Delavande et al., 2011). A growing literature studies expectations about
climate change and their impact on various outcomes (Alem and Colmer, 2022; Giné
et al., 2015; Shrader, 2023; Bakkensen and Barrage, 2022). Expectations about
climate are inconsistent with the predictions from rational expectations (Cameron,
2005) and individuals over-adjust their expectations of climate in response to recent,
local, and extreme weather events, indicating that more attention should be paid
to availability heuristics4 (Marx et al., 2007; Konisky et al., 2016; Lee et al., 2018).
Through expectations, agents make decisions requiring forward-looking inference on
climate based on past weather fluctuations (Ji and Cobourn, 2021) and information
shocks (Gibson and Mullins, 2020). Inaccuracy and mistakes in the expectation
formation process may cause short-run economic losses due to sub-optimal decisions
based on misjudgment and the disproportionate influence of recent realizations of
drought events.

The remainder of the paper is organized as follows. Section 2.2 defines the
background and the context. Section 2.3 describes the data used in the empirical
analysis. Section 2.4 defines the conceptual framework and the empirical approach
used to test the implications. Section 2.5 presents and discusses the main results.
Section 2.6 quantifies the monetized losses due to inaccurate beliefs. Section 2.7
investigates three key mechanisms of the role of cognitive factors and section 2.8
concludes.

2.2 Background

Context. Bangladesh has a tropical monsoon climate with considerable variations
in rainfall and temperatures across the country and over the year. The growing
season extends over twelve months and can be divided into three overlapping seasons.
These seasons are articulated following the production of three different types of rice,

3Some articles study perceptions as drivers of adaptation in a two-step approach implement-
ing Heckman’s selection model (Deressa et al., 2011) since surveys often ask adaptation questions
conditional on respondents perceiving a change in climate, assuming that perception is a necessary
condition for adaptation. This approach is criticized in Munro (2020, p.1099): “[...] it might be
sensible in surveys dealing with perception and adaptation to always ask the adaptation question
even when respondents do not report [...] changes in climate”. In the survey used here, adaptation
is measured from the land management module, which is not conditional on the perception module.
Furthermore, all the studies use binary self-reported adaptation decisions, potentially subject to
recall bias or “yeah saying” (Choi and Pak, 2005).

4The availability bias emerges when “[...] people assess the frequency of a class or the probability
of an event by the ease with which instances or occurrences can be brought to mind” (Kahneman
and Tversky, 1982).
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which is the staple and main crop both in terms of cropped area and production in
Bangladesh (FAO, 2014). The crop rice calendar determines three different growing
seasons with different weather characteristics. During Kharif 1, the pre-monsoon
season that goes from April to July with variable rainfall and high temperatures,
the Aus rice is grown. Kharif 2 is the monsoon season spanning from July to
November and it is characterized by heavy rain and floods. About 80% of the total
rainfall occurs during this season and Aman rice is the major crop. Boro rice is
cultivated during Rabi, the winter dry season from December to April, with low
or minimal rainfall and low temperatures (Paul and Rashid, 2016). Hereinafter,
growing seasons are defined by the variety of rice that is grown.
Water resources and irrigation. In Bangladesh, rural households are subject
to a considerable disparity in water availability between the monsoon and the dry
season and across the country. The spatial and temporal heterogeneity is going
to be exacerbated by projected climatic changes. For this reason, irrigation is a
precondition for enhancing agricultural production and buffering the risk created by
climate variability (Bell et al., 2015).

The main sources of irrigation in Bangladesh are surface water and groundwa-
ter. The latter has a predominant role since farmers can irrigate on demand rather
than wait for their turn to access surface water (Bryan et al., 2018), and, in partic-
ular in the winter dry season, during which surface water is practically unavailable
(Shahid and Hazarika, 2010). The most widely adopted irrigation technologies in
Bangladesh include shallow tube wells (STWs), deep tube wells (DTWs), and low
lift pumps (LLPs) (FAO, 2014). The first two use groundwater and operate either
with electricity or diesel. The STWs operate with a pumping unit that has a mo-
torized suction mode with centrifugal pumps and are generally 40-60 meters deep
and have a relatively small command area (Mondal and Saleh, 2003). The DTWs
operate on power force mode with submersible pumps in the wells, have a larger
command area, can reach 100 meters in depth and water is supplied through buried
pipes (Zahid and Ahmed, 2006). The LLPs use surface water and have centrifugal
pumps mounted on a floating platform drawing water from rivers, creeks, and ponds
(Majumder and Rahman, 2011).

Adequate irrigation application and operation mode of irrigation wells can in-
crease rice yields and productivity in Bangladesh (Bell et al., 2015; Mainuddin et al.,
2020). Although irrigation pump types are not found to significantly impact the av-
erage rice yield, except when the groundwater level falls below the suction limit
preventing farmers from using the STW (Mainuddin et al., 2021), timely applica-
tion of adequate irrigation water is extremely important since rice is very sensitive to
water deficits (Doorenbos and Kassam, 1979). In 2008, the national irrigation cov-
erage amounted to more than 5 million hectares, with groundwater covering almost
80% of the total irrigated area. In particular, STWs and DTWs comprised more
than 78% of the total irrigated area (FAO, 2014). There are more than 165,000
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DTWs in Bangladesh, most often government-owned due to high installation costs,
with connection costs borne by farmers (Winston et al., 2013). Focusing on STW
and DTW groundwater irrigation technologies guarantees a comprehensive coverage
of the adaptive responses related to irrigation in Bangladesh.
Irrigation price. There are different water pricing systems in Bangladesh. The
most widely implemented include a share of the crop as water charge, a land area-
based fixed water charge, and a two-part tariff comprising diesel/electricity charge
paid by farmer plus a land area-based fixed charge. The main energy source for
lifting water is electricity, followed by diesel (Zahid and Ahmed, 2006). Many small
farmers do not own their pumps and they can either rent from pump owners or buy
water from the pump owners to irrigate their crops using a seasonal contract and
not paying labor costs (Chowdhury, 2013). Nevertheless, pump ownership does not
have a significant effect on production, and farmers who rent irrigation water do not
perform worse than pump owners, suggesting that informal markets in groundwater
irrigation may facilitate access and equity for irrigating farmers in Bangladesh (Bell
et al., 2015).

2.3 Data

This paper explores the determinants of adaptive behavior accounting for individual
beliefs. Ideally, this would require eliciting subjective probabilistic beliefs (Dela-
vande, 2014) of weather realizations and comparing them to meteorological measures
to examine consequences on individual behavioral responses and welfare over time.
Future data collection efforts should head in this direction. In this paper, I rely on
a survey designed by the International Food Policy Research Institute, with infor-
mation on individual beliefs and I combine it with a unidimensional meteorological
measure of dryness using the SPEI. This section (with complementary information
in the Data Appendix D.2) describes the relevant variables for the empirical analysis
and presents summary statistics.

2.3.1 Rural Household Data

Rural household data are obtained from the Bangladesh Climate Change Adaptation
Survey (BCCAS), which consists of a two-wave survey designed by the International
Food Policy Research Institute (2014a). Data are collected for 800 households in 40
randomly selected unions in Bangladesh.5 For each union, 20 agricultural households
were randomly drawn from a single village in each union.

5Unions are the smallest rural administrative and local government unit in Bangladesh. The
administrative structure is: Division ⊃ District (Zila) ⊃ Sub-district (Upazila) ⊃ Union. There
are 5,158 unions with an average size of approximately 10–20 km2. The 40 unions are selected
to represent proportionally the seven agro-ecological zones (Barind Tract, Beel and Haor Basins,
Floodplain, Himalayan Piedmont Plain, Modhupur Tract, Northern and Eastern Hills and Tidal
Floodplains) as reported in Table B1.
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The first wave of the survey was conducted in January 2011, and it covers data
from the production year between December 2009 and December 2010. The first
wave has been previously used to examine the impact of climatic shocks on agri-
cultural income and adaptation strategies, although omitting individual beliefs (De-
laporte and Maurel, 2018). A follow-up second wave of the survey was conducted
in September 2012, and it covers data from the production year between Septem-
ber 2011 and August 2012 (International Food Policy Research Institute, 2014b). A
timeline of the survey waves with respect to the three growing seasons in Bangladesh
is reported in Figure B1.
Descriptive statistics. Table B5 presents key descriptive statistics of the house-
holds and their agricultural characteristics by survey wave. There is only one re-
spondent for each household interviewed, who is the head of the household.6 Around
96% of the households (766 out of 800) were reinterviewed in the second wave.7 Since
the focus is on self-reported individual beliefs, the final sample includes only those
households who have been surveyed in both waves, did not move between the two
waves and whose respondent was the same in both waves. Using this approach,
I account for unobserved heterogeneity at the respondent level, allaying concerns
about any bias in the coefficients associated with self-reported subjective measures.
The resulting final estimation sample is a balanced panel of 714 individuals. The
geographical distributions of the households in the final estimation sample across
agro-ecological zones (AEZs) and by union are reported respectively in Tables B2
and C1. To further ascertain the absence of selection bias due to attrition in the
second wave, I compare means for major outcomes and control variables in the first
wave for attritors and non-attritors. Table C3 displays the differences in means,
that are never statistically significant, except for the head of the household being
a farmer.8 To allay concerns about attrition, I also reproduce the baseline results
using inverse probability weighting (IPW) and find comparable estimates (Table
B28).
Agricultural production. Households mainly rely on the production and cul-
tivation of rice. Table B7 provides descriptive statistics on the average share of
cultivated land for each crop. The three types of rice, Aus, Aman and Boro make
up around 80% of the total cropped area for each household, with Aman and Boro
corresponding to more than 70% of cultivated land. Similar figures are obtained
when weighting the crop shares by the total agricultural production, as reported in

6A household is a group of people who live together and take food from the same pot. It counts
as a member anyone who has lived in the household for at least six months, and at least half of
each week. People who do not share blood relations with the head of the household are considered
members if they “have stayed in the household at least 3 months of the past 6 months and take
food from the same pot” (International Food Policy Research Institute, 2014a).

7The remaining 34 households could not be interviewed because they migrated (15 households)
or nobody was at home at the time of the survey.

8Key results are robust to the exclusion of the variable that is used as a control in the main
specifications.
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Table B8.9 Given substantial differences in climatic conditions, rice varieties, and
water needs across seasons, in the empirical analysis I distinguish irrigation decisions
in the monsoon and in the winter seasons, respectively Aman and Boro (Taraz, 2017;
Carleton, 2017; Chakravorty et al., 2023).
Irrigation use. To study how cultivated land is allocated to irrigation status, I use
the survey module on land use. This module provides information on the irrigation
status of each plot by growing season, and by irrigation technique. First, I pool all
plots of own operated cultivated land in Aman and Boro and distinguish between
the average share of land left rainfed and under irrigation over the agricultural
production year. Then, I consider the most largely implemented irrigation types in
the survey, which correspond to the most widely adopted in Bangladesh, namely
STW and DTW (see Section 2.2).10 Table B9 reports descriptive statistics for
irrigation use over the production year.

There is considerable variation in the irrigation use within plots across seasons,
where around 56% of the plots change irrigation status between the monsoon and
non-monsoon seasons (Bell et al., 2015). Table B10 displays the summary statistics
for all available irrigation methods by growing season. In the Aman season, most of
the cultivated land is left rainfed (on average more than 75%), and the most largely
adopted irrigation technology is STW which covers more than 15% of the cultivated
land. In the Boro season, households rely much less on surface water: on average,
the share of rainfed cultivated land plummets to 26%, the STW covers on average
more than 40% of the cultivated land and DTW covers more than 10%. Table B11
reports summary statistics on the five most widely adopted methods: rainfed and
STW irrigated land in Aman, and rainfed, STW and DTW irrigated land in Boro.
Individual beliefs. Most importantly, the survey contains questions on individ-
ual beliefs about different aspects of climate change over the previous twenty years:
increases in droughts, increases in erratic rainfall, and decreases in precipitations.
For each question, I construct a dichotomous variable (Table B12). Since it is not
possible to ascertain that changes in beliefs are driven by quasi-random variation,
I compare the two sub-samples of respondents about increases in droughts by ob-
servable characteristics (Table B13, Panel A). Significant differences exist between
the two groups in agricultural advisory services (receiving advice from extension
agents) and in beliefs of increases in erratic rainfall and decreases in precipitation.
Although differences in levels are not problematic for estimation since I include in-
dividual fixed effects in every specification, differences in beliefs persist also in the
average changes between waves (Table B13, Panel B). I thus control for these vari-
ables in every specification in the empirical analysis. Despite the relatively short
time span between the two waves (less than two years), there is considerable het-
erogeneity across waves in respondents’ beliefs. In Appendix Section B.3, I examine

9This information is available only for the first wave.
10The share of cultivated land is constructed from the sum of all own operated cultivated plots’

surfaces divided by the total own operated cultivated land of a household.
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whether changes in individual beliefs are explained by an information channel or a
social learning channel, ruling out both mechanisms.
Self-reported experience of droughts. Individuals are also asked a series of
questions about their memories of weather events in recent years. They report the
number of droughts that adversely affected their properties and productivity in the
five years before the first wave and between the first and second waves. I construct
the variable self-reported # droughts, used to compute a measure of accuracy of
recollection of droughts, explained below. Individuals are also asked to report the
year, over the same period as in the previous question, in which they were most badly
affected by droughts. To maintain symmetry between the two waves, I construct two
non-mutually exclusive dichotomous variables, Droughtt−1 and Droughtt−2, that take
value one if the worst drought event has occurred respectively one and two years
before the irrigation decision recorded in the survey. Table D1 reports the exact
wording and formulation of each question used to construct the main variables.

2.3.2 Dryness and Drought Event Measures

Dryness exposure. To compare individual beliefs and objective exposure to dry-
ness, I use a meteorological measure, the Standardized Precipitation Evapotran-
spiration Index (SPEI) (Vicente-Serrano et al., 2010), which provides information
about drought conditions at the global scale, with a 0.5◦ spatial resolution (≈ 55km
at the Equator), at a monthly time resolution.11 The SPEI is a measure of dryness
based on water balance derived as the difference between precipitation and potential
evapotranspiration. It is based on monthly precipitation and potential evapotran-
spiration from the Climatic Research Unit of the University of East Anglia (CRU
TS version 4.03). This index captures deviation in dryness relative to the average
observed between 1901 and 2018. A value of zero indicates the median amount (half
of the historical amounts are below the median, and half are above the median),
and the index is negative for dry conditions, and positive for wet conditions. For
instance, a value of SPEI equal to -1 can be interpreted as the difference between
precipitation and potential evapotranspiration one standard deviation lower than
the historical average for a given grid cell. Since the analysis exploits inter-seasonal
variation in dryness conditions and to avoid accounting for water balance accumu-
lation in other seasons, I use the SPEI-1, which is based on the accumulating deficit
of water balance over one month.

The SPEI presents specific advantages. It provides a unidimensional measure
of climatic conditions considering the joint effects of precipitation, potential evapo-
transpiration and temperature. The SPEI has been used in the conflict (Harari and

11I construct union-level measures overlaying the gridded SPEI database to the map of
Bangladesh. The raster is aggregated spatially to the monthly union means. In the computa-
tion of the union-level averages, the grid cells’ values are weighted by the fraction of the surface
covered by the union. Figure B2 displays the surveyed unions (in purple) and overlays the raster
data of the SPEI database in September 2012.
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La Ferrara, 2018; Almer et al., 2017) and agricultural (Albert et al., 2021) litera-
ture, and specifically in Bangladesh (Miah et al., 2017; Abdullah and Rahman, 2015;
Mohsenipour et al., 2018). Despite the recurrent and devastating nature of droughts
(Mondol et al., 2021; Shahid and Hazarika, 2010; Shahid and Behrawan, 2008), pre-
vious research has mainly focused on the effect of floods in Bangladesh (Guiteras
et al., 2015; Gray and Mueller, 2012; Chen et al., 2017). Nevertheless, droughts are
the most frequent and widespread extreme weather event in Bangladesh (Alamgir
et al., 2015).

I derive continuous measures of exposure to dryness at the union level over the
entire production year and by growing season for the two types of rice (Aman and
Boro), defined as the time interval between the planting and harvesting dates (Sacks
et al., 2010). To facilitate the interpretation, all the continuous measures constructed
from the SPEI are taken in the additive inverse form, SPEI × (-1), such that higher
values are associated with higher dryness.

As common in the climate impact literature, I account for both the long-run
average and the short-term deviation in exposure (Hsiang, 2016; Auffhammer, 2022;
Albert et al., 2021). Considering long-run exposure is essential in situations that
consider expectation formation and adaptation decision-making. Agents infer devi-
ations from the average exposure, used as a reference point and upon which beliefs
are built. I build a long-run exposure to dryness by taking the average of the
monthly SPEI realizations over the previous 20 years for the production year and
within each growing season. These measures should be interpreted as the “objective
counterfactual” of beliefs of increases in droughts in the past 20 years. In an OLS
regression of beliefs on long-run average exposure to dryness and short-term devia-
tion, the coefficient on long-run exposure is 16.23 (s.e.=2.47, p-value<0.001). Using
seasonal measures, the coefficient on Aman long-run dryness is 6.38 (s.e.=0.91, p-
value<0.001) and on Boro is -1.69 (s.e.=2.74) (Full results reported in Table B19).
Households that are differently exposed to severe droughts may consider droughts
of the same magnitude in different ways (Guiteras et al., 2015). To account for this,
I also consider short-term deviation as the difference between the average SPEI in
the year or growing season preceding the production year and the long-run average
SPEI.
Drought events. To obtain a measure of farmers’ interpretation of droughts,
I compare the self-reported to the meteorological number of drought events. The
climatology literature defines a drought event as the period of consecutive time points
in which the SPEI index is below certain thresholds (Spinoni et al., 2014). The SPEI
values can be categorized in 5 classes of droughts: i) non-drought (SPEI > −0.5); ii)
mild droughts (−1 < SPEI ≤ −0.5); iii) moderate droughts (−1.5 < SPEI ≤ −1);
iv) severe droughts (−2 < SPEI ≤ −1.5); v) extreme droughts (SPEI ≤ −2) (Paulo
et al., 2012; McKee et al., 1993). Since the SPEI is normally distributed, each of
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the five classes respectively accounts for about 69.1%, 15%, 9.2%, 4.4%, and 2.3%
of the set of historical available values for each grid cell.
Overestimation. Following this classification, I match all the households in each
union with the number of extreme droughts in the five years before the first wave of
the survey (between 2006 and 2010) and between the first and the second wave (2011
and 2012).12 Droughts have substantial impacts on agriculture when the SPEI is
below -1.5, i.e., if the drought is at least severe (Zargar et al., 2011). Following this
approach, I create an individual-specific measure of overestimation of past drought
events:

∆type
it = self-reported # droughtsit − objective # droughtstype

ut (2.1)

that compares the self-reported number of drought events by individual i in
union u in survey wave t and the objective number of drought events in union
u over the same time period (where type ∈ {moderate; severe; extreme}). These
wave-specific measures of accuracy infer whether respondents overestimate or un-
derestimate the number of drought events that they have experienced. A positive
value indicates that individuals overestimated the number of drought events (Zap-
palà, 2023b). Table B15 displays summary statistics of the measures of exposure to
dryness and of the number of drought events recorded using the SPEI. Table B16
provides descriptive statistics of the main regressors used in the empirical analysis
combining self-reported information from the BCCAS and meteorological measures.
I also conduct a test in the balance of the covariates included in the main specifi-
cation by regressing each of them on long-run dryness conditions. Table B17 shows
that dryness does not affect any other characteristics of farmers in the sample such
as cultivated land, household size, asset ownership. This suggests that changes in
climatic conditions are driving changes in adaptive actions only through changes in
the individual understanding of these events and beliefs.

2.4 Research design

2.4.1 Theoretical Framework

Climate influences outcomes through two pathways: actual weather realizations and
beliefs about climate. Hsiang (2016) defines these channels respectively as “direct”
and “belief” effect and shows that the marginal effects of climate and weather are
locally equivalent for optimal beliefs (Deryugina and Hsiang, 2017). Most of the
literature studying adaptation only includes measures of climatic conditions and
weather fluctuations (Aragón et al., 2021; Taraz, 2017; Auffhammer and Carleton,
2018), assuming perfect information and abstracting from any heterogeneity in indi-
vidual beliefs and understanding of climatic changes (Bento et al., 2023; Burke and

12I also employ other cutoffs to define the number of droughts, including moderate and severe
drought events, to test for the robustness of the results.
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Emerick, 2016). In this section, I consider a model of adaptation and extend it with
new insights from a behavioral perspective where individual climate beliefs do not
necessarily coincide with meteorological records.

Consider a farmer who maximizes expected profits by producing a univariate
output at time t with output price normalized to one and choosing a single in-
put, irrigation use a, with an associated price c.13 The input enters a production
function, F (a,w), twice continuously differentiable and concave, where the other
input is weather, w, drawn from a Gaussian distribution N (µt, σ

2). I consider a
unidimensional weather measure summarized by dryness, that embeds the relevant
climatic aspects for farmers (temperature, precipitation, potential evapotranspira-
tion).14 Following Shrader (2023), the production function is multiplicatively sep-
arable in terms of weather and input. At the beginning of each period, a rational
farmer chooses the optimal level of input ar = argmaxaEt−1(πt) that maximizes
expected profits15:

maxaE(π) = E(w)F (a) − c(a) (2.2)

Because of the presence of costs associated with the use of irrigation (e.g. main-
tenance and pumping costs, digging channels to reach other plots, renting tubewells,
contractual arrangements with equipment owners), the farmer chooses input a be-
fore weather in period t is realized and commits to the choice ex-ante, so that current
weather does not affect the decision.16 This canonical setting assumes that private
individual beliefs are always equal to or sufficient for the public information about
the weather (Kelly et al., 2005; Moore, 2017).

I relax this assumption by considering a simple model of deterministic behavioral
inattention and action (Gabaix, 2019). A farmer has been exposed to a sequence
of weather realizations over the previous twenty years {wt−20, ..., wt−1} and forms
beliefs Eb(w) about the underlying climate distribution from which weather realiza-
tions are randomly drawn. Beliefs can either be accurate - and coincide with E(w)
- or inaccurate.

A behavioral farmer replaces the maximization problem in (2.2) with an “attention-
augmented” production function (Gabaix, 2019) that is characterized by the degree
of attention, i.e., the farmer’s subjective model of the world. The behavioral farmer
selects the input level, ab, that maximizes expected profit:

13This setting can be generalized to a farmer using k different irrigation techniques, such that
a = {a1, ..., ak}, each of them with an associated price c = {c1, ..., ck}. For simplicity, I ignore
credit constraints.

14One could include a vector of weather variables where derivatives would be replaced by Jacobian
matrices.

15Subscripts on an expectation operator denote the information set on which the expectation is
conditioned (showcased here and then omitted for brevity).

16This assumption is empirically tested in Table B20, where I consider the baseline specification
and regress the share of irrigated land on contemporaneous seasonal deviations in the SPEI and
find a null effect.
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maxaEs(π) = Es(w)F (a) − c(a) (2.3)

where subjectively perceived Es(w) is a convex combination of the expected
weather realization using the history of past weather conditions and the farmer’s
beliefs about the climate distribution, parametrized by the weight γ:

Es(w) := γE(w) + (1 − γ)Eb(w) (2.4)

The chosen input of the behavioral farmer ab is affected by the degree of inac-
curacy of beliefs with respect to expected weather realizations and by the extent
to which she weighs beliefs. In other words, farmers are making a decision based
on a combination weighted by γ of what has happened and their interpretation of
that. Equation (2.4) allows for individuals exposed to the same weather realiza-
tions to have different beliefs, considering realizations drawn from different climate
distributions, and thus react differently.

Although the data used in the empirical analysis do not contain information on
forward-looking beliefs about changes in droughts, previous studies find a strong
significant correlation between past- and forward-looking beliefs about the weather
and climatic events (Bakkensen and Barrage, 2022). In a non-stationary climate with
scientific uncertainty, accurate expectations of future weather are not necessarily
formed from long-run averages. Nevertheless, those that believe that droughts have
increased take weather realizations as a signal of the future path of weather - which
differs from those believing that the climate distribution is fixed.

The behavioral friction in the model drives the wedge between expected profits
for a rational farmer and for a behavioral farmer with inaccurate beliefs, allowing
for agents’ subjective state of the world and objective meteorological conditions to
differ. When γ = 1, the farmer behaves as a rational agent (Es(w) = E(w)) and
beliefs do not differentially influence inputs use. When γ ∈ [0, 1), beliefs matter
and the farmer may be losing profit by ignoring information up to the point γ = 0,
where the farmer “does not think about” E(w) and replaces the subjective model of
the world only with her beliefs (Gabaix, 2019).

To fix ideas, take F (a) = aα, where α ∈ (0, 1) and a linear cost function. As-
suming interior solutions for the non-negativity constraint in the input choice, the
behavioral farmer maximizes expected profits and chooses ab:

ab =
[
αEs(w)

c

] 1
1−α

(2.5)

Using the implicit function theorem, it follows that, if γ ̸= 0, for a shift to drier
conditions (increase in E(w)), the farmer uses more irrigation. A similar result fol-
lows from the comparative statics with respect to individual beliefs. Beliefs that
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droughts have increased are associated with an increase in irrigation use. Never-
theless, when there are no changes in climatic conditions, a farmer who believes
droughts have increased may substitute irrigation through other adaptive margins,
whose subjective opportunity costs have decreased. Which of the two forces prevails
is an empirical question that is discussed in Section 2.5.

The parameter of interest is the differential role of beliefs for changes in weather
conditions. Adaptive decisions depend not only on meteorological changes but also
on changes in their beliefs. The differential effect of beliefs Eb(w) on ab is

∂2ab

∂Eb(w)∂E(w)
[
c,Eb(w),E(w), α, γ

]
=

(
α

1−α

)
·
(

α
c

) 1
1−α · (1 − γ) · γ · (Es(w))

2α−1
1−α

1 − α
> 0

(2.6)
The testable implication that follows from this model is that beliefs matter for

the adaptive decision, i.e., Equation (2.6) is different from zero. The sign is unam-
biguous: farmers differentially respond to changes in weather conditions depending
on their beliefs by increasing their use of irrigation, as long as γ ∈ (0, 1). The in-
tuition behind this result is that in places where weather conditions are becoming
drier, changes in beliefs are associated with increases in the use of irrigation.

The parameter γ relates to farmers’ behavioral preferences (and to some extent
heuristics/biases), attention, confidence in their own beliefs, and information shar-
ing. This causes departure from the neoclassical setting that only considers expected
weather and convergence to a correct adjusted posterior, from any prior inaccurate
belief. Considering comparative statics with γ, I obtain:

∂ab

∂γ

[
c,Eb(w),E(w), α, γ

]
=
(

α
c

) 1
1−α

(
E(w) − Eb(w)

)
[Es(w)]

α
1−α

1 − α
(2.7)

The direction of changes in input adjustment is ambiguous as it depends on
E(w) − Eb(w), i.e., the inaccuracy of beliefs with respect to the average weather
realization. If E(w) −Eb(w) >0, i.e., weather conditions have been on average drier
than the farmer believes, then ∂ab

∂γ > 0. For inaccurate farmers who underestimate
shifts in the climate distribution, giving more weight to the objective meteorological
conditions (increasing γ) would increase the input use. If the farmer is accurate,
E(w) = Eb(w), then the inattention parameter γ does not affect irrigation decisions.
Why do beliefs about climate matter for short-run behavioral responses?
Climate change is imperfectly observed by individuals, resulting in differences be-
tween beliefs about climate and its true state. Belief-related adjustment costs
arise if the observer would have acted differently in response to the actual cli-
mate distribution relative to the climate distribution that they believe (Moore,
2017). These adjustment costs are the difference in expected profits given the irri-
gation options that would have been chosen with full information about the climate
state (E(w) = Eb(w)). A necessary and sufficient condition for the existence of
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belief-related adjustment costs is that beliefs about the climate are inaccurate (i.e.,
Eb(w) ̸= E(w)). This assumption appears to empirically hold in Table B14, where I
compare observed beliefs with changes to dryness conditions in a two-way frequency
table. I categorize the continuous measure of long-run dryness conditions into a
binary variable, whose values correspond to the beliefs that individuals would have
had based on meteorological conditions.

Consider a farmer with beliefs that droughts have increased over the past twenty
years and another farmer who does not perceive droughts to have increased. The
former interprets weather realizations in the past twenty years as a shift in the
distribution. In contrast, the latter interprets weather realizations as draws from
a fixed climate distribution. For this reason, unlike short-run weather fluctuations
and associated beliefs, which only allow for marginal behavior adjustments, different
climate beliefs will drive different behavioral responses which can also lead to non-
marginal changes in input use.17

Although beliefs shape heterogeneously individual responses to changes in weather
conditions (Bento et al., 2023), identifying their effect is challenging since they are
seldom observed. Previous research has so far assumed that agents are rational and
have beliefs that optimally adjust (Hsiang, 2016; Deryugina and Hsiang, 2017). In
Section 2.4.2, I develop an empirical model to quantify the differential role of beliefs
for changes in weather conditions, consistent with Equation (2.6).
Profit loss due to inaccurate beliefs. A rational farmer and a behavioral farmer
with inaccurate beliefs with respect to climatic conditions will make different irriga-
tion decisions. If the farmer is not accurate, the optimal irrigation choice is Equation
(2.5). If the farmer has accurate beliefs, the optimal use of irrigation is

ar(E(w), α, c) =
[
αE(w)
c

] 1
1−α

(2.8)

The expected profit loss due to inaccurate beliefs is

E(π(ar)) − E(π(ab) =
[
E(w)

1
1−α − Es(w)

1
1−α

]
·
[
α

α
1−α − α

1
1−α

]
· c− α

1−α (2.9)

In Section 2.6, I provide a back-of-the-envelope calculation of the monetary loss
due to inaccurate beliefs combining estimates from the literature with the results
obtained in the empirical analysis.

17To draw a parallel to another adaptive response outside of agriculture, consider two individuals
exposed to the same meteorological conditions and who have observed extremely hot summers. One
believes that these are a consequence of a shift in climate distribution, and the other does not. In
this setting, the former will ex-ante commit to investing in coping mechanisms for the next summer,
e.g. air conditioning, whereas the latter will not.

81



2.4.2 Empirical Approach

Following the theoretical framework, the baseline empirical approach explores the
differential role of beliefs on irrigation, accounting for exposure to dryness. The
econometric specification is

a
(k)
it = β1bit + β2bit × wu + β3w̃ut−1 +X ′

itθ + λi + µt + εit (2.10)

where a(k)
it is the share of irrigated land for individual i in year t. I initially pool

the average share of irrigated land under any irrigation method across the Aman
and Boro seasons and consider the most widely adopted irrigation techniques k (∈
{STW, DTW}). In Section 2.5.2, I explore the effect for season-specific irrigation
decisions.

I estimate the belief-adaptation relationship allowing the response function to
vary with long-run exposure to dryness wu. The main explanatory variables are bit,
a binary variable indicating whether the individual believes droughts increased over
the previous twenty years, wu, the average long-run excess dryness over the twenty
years before the first wave of the survey relative to the historical average, w̃ut−1, the
one-year lagged deviation.

The direction of the association between beliefs and irrigation measured by β1 is
ambiguous: on the one hand, irrigation may increase if farmers perceive an increase
in dryness and enhance their input use to mitigate the economic consequences of
future dryness conditions; on the other hand, irrigation may decrease if farmers ex-
hibit decreasing absolute risk aversion and by perceiving an increase in dryness they
decide to engage in precautionary savings, e.g. decrease consumption expenditure
(Alem and Colmer, 2022), reduce input use or engage in other adaptive margins.

The main coefficient of interest is β2, which accounts for heterogeneous short-
run behavioral responses to exposure to dryness accounting for individual beliefs.
The estimation of this coefficient represents a testable hypothesis of a behavioral
farmer who responds differently depending on individual beliefs, against the null
hypothesis that beliefs do not matter for adaptive responsiveness. An estimated
coefficient that is not statistically different from zero would suggest that the second-
order cross partial derivative in Equation (2.6) is equal to zero, i.e., γ = 1, and
adaptation is only a function of objective weather conditions, as previously assumed
in the literature (Shrader, 2023).

Many factors may compromise the identification of β1 and β2 in Equation (2.10).
Those factors can be grouped into three potential sources of endogeneity, respectively
reverse causality, unobserved heterogeneity, and measurement error. Below, I discuss
my primary identification strategy and discuss each of these potential sources of bias.

Equation (2.10) includes a vector λ of individual fixed effects, accounting for
all time-invariant factors that differ between individuals, including unobservable
characteristics that could not be accounted for in a cross-sectional empirical design,
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such as risk preferences and household-specific irrigation costs. I also include a
vector µ of year fixed effects, which control for unobserved shocks common to all
individuals in a given year. Therefore, identification comes from within-individual
variation, conditional on the year fixed effects.18 Since I cannot completely rule out
the possibility that there is unobserved heterogeneity in Equation (2.10) that varies
systematically across individuals and over time, I also include in the specification
time-varying individual-specific covariates that may contemporaneously change as a
result of climatic changes and affect irrigation, and test for their balance between
farmers who differ by drought beliefs (Table B13) and examine whether dryness
affects any characteristics of farmers (Table B17).19 Any threats to identification
applies to the coefficients β1 and β2. The β3 coefficient on short-run deviations
w̃ut−1 can be interpreted causally as within-union weather realizations are plausibly
exogenous (Hsiang, 2016).

Equation (2.10) includes an interaction term between drought beliefs bit with
cross-sectional variation in long-run excess dryness conditions wu to estimate the
differential responsiveness to beliefs. The estimated model does not include the
uninteracted term for long-run dryness, wu, because it is collinear with the fixed
effects, which shuts down the possibility to influence irrigation decisions regardless
of individual beliefs. In a robustness test, I exploit time-series variation in long-run
dryness strengthening the plausibility of exogeneity of the interaction term, once the
main effect of the endogenous variable is accounted for (Angrist and Krueger, 1999;
Nizalova and Murtazashvili, 2016; Bun and Harrison, 2019).20

Another potential concern may be reverse causality. Farmers who do not perceive
changes in droughts and did not increase their share of irrigated land may suffer
greater damage to their agricultural production as a result of changes in weather
conditions. Consequently, they change their drought beliefs as a result of larger
damages. Reverse causality may also occur if increasing the use of irrigation prevents
individuals from updating drought beliefs. In both cases, the estimated coefficient
associated with beliefs would be negative. I empirically test for reverse causality in
Section 2.5.2.

Lastly, in the case of measurement error, it may be that drought beliefs are over-
reported. Although systematic measurement error is a threat to the identification

18Union fixed effects are superfluous in this setting since all individuals in the estimation sample
never change place of residence.

19Most importantly, information plays a prominent role in technology adoption decisions (Suri,
2011). I include controls for the primary occupation of the respondent is a farmer and if the
respondent receives extension advice as proxy variables that determine the farmer’s human capital
(Koundouri et al., 2006). Additional covariates include if the household has access to electricity,
ownership status of STW or DTW pumps, shares of soil type of cultivated land and total hectares
of land holdings as a measure of the wealth of the household, beliefs of erratic rainfall and decreases
in precipitation.

20For an empirical application with exogenous weather variables interacted with potentially en-
dogenous fractions of area insured, see Annan and Schlenker (2015).
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of β1 and β2, the estimated relationship between the beliefs and use of irrigation
would suffer from attenuation bias, biasing the estimates toward zero.

I estimate standard errors allowing for both cross-sectional spatial correlation
and location-specific serial correlation. Using clustered standard errors at the union
level would underestimate the standard errors since in five cases the boundaries of
more than one sampled union fall within the same grid cell of the meteorological data
and unions’ borders lay across different grid cells (Figure B2). I impose a two-year
constraint, compatible with the temporal distance between the two survey waves, on
the temporal decay for the Newey-West/Bartlett kernel. In the spatial dimension,
I retain a radius of 200 km with a Bartlett (triangular) kernel: close to the average
distance between union centroids and around four times the spatial resolution of the
SPEI to allow for correlated shocks across grid cells. The estimates are robust when
changing either the spatial or temporal cutoff, or both.21 Inference is also largely
unchanged when standard errors are clustered at the grid cell level.22,23

2.5 Results

This section presents and discusses the key findings from estimating Equation (2.10).
First, I consider the average share of irrigated cultivated land and then I decompose
the share of irrigated cultivated land between the most adopted irrigation techniques
(STWs and DTWs) averaged over the two growing seasons. In Section 2.5.2, I
investigate season-specific irrigation decisions distinguishing between irrigated land
in Aman and in Boro separately and using season-specific exposure measures. In
Section 2.5.3, I explore heterogeneity along socio-demographic characteristics.

2.5.1 Individual beliefs and irrigation use

Table 2.1 displays the estimates of the coefficients on beliefs and the interaction
with long-run exposure to dryness on the average share of land irrigated over the
two main growing seasons.24 In column (1), I estimate Equation (2.10) excluding
the interaction term between beliefs and long-run dryness. The partial correlation

21Tables B29 and B30 display the baseline results when changing the spatial cutoff to 100, 400
or 800 km and the temporal autocorrelation cutoff to 5, 10, and 999 years.

22Baseline results clustering standard errors at the grid cell-level are displayed in Tables B31
and B32. Seemingly Unrelated Regressions (SUR) (Zellner, 1962) does not suit the setting since
each equation contains exactly the same set of regressors (Kruskal, 1960). The correction using
bootstrap iteration, which would provide robust estimates of standard errors to heteroskedasticity
and cluster-correlation structures (Freedman and Peters, 1984), is not feasible due to the small size
of the estimation sample.

23The estimation of Driscoll and Kraay standard errors, adjusted for heteroskedasticity and au-
tocorrelation and robust to general forms of spatial and temporal dependence, is based on large T
asymptotics (Driscoll and Kraay, 1998). With T fixed and N large, as it is the case here, there
is not sufficient information in the time dimension relative to the cross-section dimension for this
approach to work (Vogelsang, 2012; Hoechle, 2007)

24Results are robust and estimates more precise when including the irrigation and meteorological
records in Aus.
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between the share of irrigated land and drought beliefs conditional on individual
and year-fixed effects and individual controls is negative and statistically significant
at conventional levels.

When I also include the interaction term (column 2), beliefs are still negatively
associated with the share of irrigated cultivated land, with the effect larger in size.
For a farmer exposed to dryness conditions that do not differ from the historical
average, drought beliefs reduce irrigated land. This case never occurs in the data.
In all unions in the sample (except for Khalilnagar, Laskar and Rudaghara) the
environment was drier than the historical average in the twenty years before the first
wave. There are four potential interpretations behind this finding. First, irrigation
is a costly action, and farmers, although they believe in a change in the climate
distribution, reduce the use of irrigation in non-dry periods. Second, the result may
be explained by a depletion of groundwater supplies. Although it cannot be fully
ruled out, behavioral responses as a result of short-run changes in beliefs between the
two waves are unlikely to be explained by groundwater resources depletion which
occurs over a longer time horizon (Taraz, 2017; Scanlon et al., 2012). Third, it
may lend support to the hypothesis of substitution between irrigation and other
coping mechanisms, whose opportunity cost may be lower for a perceived change in
dryness conditions. Finally, it may raise concerns about reverse causality between
behavioral responses and beliefs. The two last hypotheses are discussed in detail
and empirically tested below.

The interaction term between beliefs and long-run dryness is positive, statisti-
cally significant, and around ten-fold larger than the uninteracted coefficient. For
instance, under a long-run exposure to meteorological conditions one standard de-
viation drier than the historical average, beliefs are associated with an increase by
around 65 percentage points (p.p.) in the share of irrigated land. This effect, which
may seem extremely large in magnitude, is computed for a twenty-year average ex-
posure much larger than the mean in the sample (0.07). The effect of beliefs on
the share of irrigated cultivated land is positive for households exposed to at least
a long-term average one-tenth of SD drier than the historical average, roughly the
seventieth percentile across unions.

The key finding is that two individuals exposed to the same conditions of dryness,
but with heterogeneous beliefs, choose different levels of irrigation, ceteris paribus.
People’s responsiveness to a change in climate depends on their underlying beliefs,
questioning previous assumptions on rational agents and internalized information
set to form beliefs on climatic conditions (Deryugina and Hsiang, 2017). There are
two potential sources that explain the heterogeneity in beliefs for given climatic
conditions. On the one hand, people may have different definitions of droughts and
behaviorally respond in an internally consistent way regardless of meteorological
conditions. On the other hand, heterogeneity may be in farmers’ beliefs about a
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definition of drought. Since the empirical approach exploits within-individual varia-
tion in beliefs over two years, it is unlikely, although not impossible, that individuals
change their mental definitions of droughts. Moreover, the negative sign associated
with the uninteracted term seems to rule out the hypothesis of an internally consis-
tent behavior of farmers for an individual-specific definition of droughts.

Columns (3) and (4) display the estimates of Equation (2.10) for the share of
cultivated land under the most widely adopted irrigation techniques across growing
seasons, respectively STW and DTW. The estimates show that irrigation decisions
are driven by changes in the use of STWs, that account for around 60% of the
irrigated land, with noisy and imprecisely estimated association between beliefs and
share of cultivated land irrigated with DTW (column 4). DTWs are mainly used in
the Boro dry season when stored water in shallow aquifers does not meet farmers’
needs, whereas the average share of land equipped with this technology is negligible
in the Aman monsoon season. In this period of the year, precipitation is abundant
and replenishes shallow aquifers so farmers prefer using STWs.

Table 2.1: Individual beliefs and irrigation use. OLS estimates.

Dependent variable: Share of cultivated land Irrigated STW DTW

(1) (2) (3) (4)

Belief increase in drought (β1) -0.0340∗∗ -0.0470∗∗∗ -0.0340∗ 0.00386
(0.0145) (0.0146) (0.0178) (0.0117)

Belief increase in drought × Long-run dryness (β2) 0.649∗∗ 0.725∗∗ -0.377
(0.291) (0.359) (0.238)

Controls X X X X
Fixed Effects X X X X

Mean Outcome 0.489 0.489 0.299 0.068
SD Outcome 0.327 0.327 0.354 0.191
N 1428 1428 1428 1428

Notes: Table reports the OLS estimates of a regression where the outcome variable is the average share of cultivated
land across the two main growing seasons under any irrigation status (columns 1-2), irrigated with STW (column 3)
and with DTW (column 4). Standard errors are computed adjusting for temporal and spatial correlation using the
methods developed by Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a
distance cutoff of 200 kilometers for spatial correlation. Controls: seasonal year-to-year deviation in excess dryness
relative to seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives
extension advice, access to electricity, perception of decrease in precipitation, perception of more erratic rainfall,
hectares of total land holdings; ownership status of STW and DTW, the share of cultivated land of i) clay; ii) loam;
iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual, Year. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

Additional results. In Table B21, I provide results for the belief-adaptation re-
lationship using alternative samples. In columns (1) and (2), I address the fact that
changes in irrigation may be explained by investment, which could have been lim-
ited by financial constraints. Although informal markets in groundwater irrigation
in Bangladesh are equitable and accessible (Bell et al., 2015), farmers who believe
droughts increased may not respond differently under drier conditions because of
liquidity constraints. To rule out this channel, I exclude those farmers who did not
irrigate any plot in the first wave and thus may have had to invest in irrigation
in the second wave (column 1) and find similar estimates to the baseline results,
with the interaction term larger in magnitude. The results are similar also when
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excluding farmers who may have not irrigated in any of the two waves because of
other constraints than changes in beliefs or weather conditions (column 2).

I also estimate the baseline specification excluding farmers who did not harvest
Aman or Boro rice in the first wave (column 3). Although I cannot entirely rule
out the potential adaptive margin of changes in crop choice, this channel would
underestimate the belief-adaptation relationship, assuming that farmers exposed to
drier conditions and perceiving an increase in drought would grow more drought-
tolerant crops that need less irrigation. I also test that the effect does not depend
on ownership of the irrigation system, excluding the small share of farmers who own
either STW or DTW pumps (column 4). Results are very close in magnitude to the
baseline estimates, providing suggestive evidence that ownership does not play a role
and informal markets for irrigation are easily accessible and efficient in Bangladesh
(Bell et al., 2015). Finally, I also exclude farmers in the sole union (Piprul) in which
no extreme drought event over the previous twenty years was recorded (column 5).
The absence of such events does not rule out the occurrence of milder drought events
or periods of drier conditions which may be used as climatic conditions for farmers
to form their beliefs about droughts.

Irrigation can also be a function of increased uncertainty in production due to
more erratic rainfall patterns (Koundouri et al., 2006; Falco et al., 2014), with risk-
averse farmers having a higher probability of technology adoption (Groom et al.,
2008; Bozzola, 2014). To account for this mechanism, I construct measures of sea-
sonal and interannual variability in water balance using the average seasonal intra-
annual standard deviation in monthly water balance and the interannual standard
deviation of seasonal average monthly water balance. The interaction term between
a meteorological measure of water balance variability and drought beliefs on irriga-
tion use is positive but imprecisely estimated. The magnitude of the effect is smaller
than the interaction term between beliefs and average dryness, whose magnitude is
not impacted by the additional regressor and is slightly larger than the baseline
estimates (Table B22).
Other adaptive margins. Farmers adjust their use of irrigation as a result of
their beliefs of increases in droughts if they have been exposed historically to drier
conditions. The negative coefficient of the uninteracted term of beliefs may suggest
that farmers respond to their beliefs through other coping mechanisms that have
become relatively cheaper compared to adjusting irrigation use. For this reason, I
study other adaptive margins previously documented in the literature, in particular
sales and consumption of livestock25 (Rosenzweig and Wolpin, 1993) and working
in non-agricultural activities or changing use of labor both hired or self-employed in
agricultural activities (Colmer, 2021; Aragón et al., 2021). In Table B23, I report the
estimates from the baseline specification with other coping mechanisms as outcome
variables. The first set of outcomes focuses on livestock as a buffer and I find

25The definition of livestock adopted here includes cattle, chicken, pigs, and sheep.
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no evidence that farmers’ beliefs differentially change farmers’ sale or consumption
behavior as a response to the long-run dryness conditions. Similar results hold when
focusing on a binary indicator of the head of the household having an off-farm job26

and when looking at the number of agricultural workers, crop farmers or members
of the households self-employed in agricultural activities. These results seem to rule
out the hypothesis that farmers use more than one adaptation strategy and only
adjust their use of irrigation in response to dry conditions.
Heterogenous prior beliefs. To avoid relying on potentially endogenous changes
in beliefs between the two waves, I design an alternative specification that considers
baseline prior beliefs in the first wave. I compare these to a dichotomous measure
that distinguishes long-run dryness conditions between drier and wetter than the
historical average and construct a binary variable (Inaccurate priors) that is equal
to one if stated beliefs on drought increase differ from meteorological conditions.
I interact this variable with short-run variations in dryness conditions to estimate
heterogeneous responses in irrigation to dryness shocks conditional on the inaccuracy
of prior beliefs. The expected response in irrigation use may differ by the direction of
inaccuracy. In a second exercise, I distinguish between individuals who believe that
droughts increased when meteorological records do not support such a hypothesis
(Positive inaccurate priors) and individuals who do not believe in such change in the
distribution of droughts when records indicate drier conditions (Negative inaccurate
priors).

Table 2.2 displays the results. Columns (1) and (2) show that a shock in dryness
conditions increases irrigation use, however, much less so for individuals who have
inaccurate prior beliefs about changes in climatic conditions. The response is asym-
metric in the type of inaccuracy. Compared to accurate individuals, individuals who
do not believe in drought increase although records indicate drier conditions reduce
the share of irrigated land (columns 3-4), consistent with the hypothesis that they
interpret the shock as a random realization from a fixed climate distribution and
thus do not adapt. Conversely, drought beliefs when meteorological records do not
record an increase do not substantially alter the irrigation response to a dryness
shock, although the point estimate is positive.

2.5.2 Unbundling the effect by growing season

Since prior work has shown the differential effect of climatic conditions in the wet and
dry seasons on irrigation and other adaptation strategies (Taraz, 2017; Auffhammer
and Carleton, 2018), I test for heterogeneity across the two main growing seasons,
Aman and Boro. The results are reported in Table 2.3. In columns (1) and (2),
I show the estimates in the Aman monsoon season, respectively for the share of

26The definition of off-farm occupation includes business/trading, rickshaw/van puller, tailor, pot-
ter, cobbler, handcrafts, small and cottage industry, mechanic, plumber, doctor, engineer, lawyer,
religious.
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Table 2.2: Heterogeneous response in irrigation use to short-run shocks by inaccurate beliefs. OLS
estimates.

Dependent variable: Share of cultivated land Irrigated STW Irrigated STW

(1) (2) (3) (4)

Short-run dryness shock 0.136∗∗ 0.298∗∗ 0.141∗∗∗ 0.309∗∗

(0.0578) (0.122) (0.0543) (0.135)

Inaccurate priors × Short-run dryness -0.0750∗∗ -0.0836∗∗

(0.0331) (0.0411)

Positive inaccurate priors × Short-run dryness 0.0110 0.101∗

(0.0908) (0.0602)

Negative inaccurate priors × Short-run dryness -0.0935∗∗ -0.124∗∗

(0.0382) (0.0517)

Controls X X X X
Fixed Effects X X X X

Mean Outcome 0.489 0.299 0.489 0.299
SD Outcome 0.327 0.354 0.327 0.354
N 1428 1428 1428 1428

Notes: Table reports the OLS estimates of a regression where the outcome variable is the average share of
cultivated land across the two main growing seasons under any irrigation status (columns 1-3), irrigated with STW
(column 2-4). “Inaccurate priors” is a binary variable equal to one if “Belief increase in drought” and the binary
version of “Long-run dryness” differ and equal to zero when they are equal. “Negative inaccuracy” is a binary
variable equal to one if “Belief increase in drought” is equal to zero and the binary version of “Long-run dryness”
is equal to one, and zero otherwise. “Positive inaccuracy” is a binary variable equal to one if “Belief increase
in drought” is equal to one and the binary version of “Long-run dryness” is equal to zero, and zero otherwise.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by
Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200
kilometers for spatial correlation. Controls: main occupation of the respondent is farmer, the household receives
extension advice, access to electricity, hectares of total land holdings; ownership status of STW and DTW, the
share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual,
Year. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

rainfed cultivated land and the share of cultivated land irrigated with STW. In
columns (3)-(5), I consider the share of rainfed, STW irrigated and DTW irrigated
land in the Boro season.27

In the Aman season, drought beliefs are positively and statistically significantly
associated with the share of rainfed cultivated land, but the marginal effect of beliefs
is moderated by the coefficient of the interaction term between beliefs and long-run
exposure (column 1). Likewise, the coefficient on beliefs on the share of STW-
irrigated land is negative and statistically significant (column 2). The coefficient of
the interaction term is positive, statistically significant, and around ten times larger
than the uninteracted term. During the Aman season, for a long-run dryness one
standard deviation drier than the historical average, beliefs are associated with a
decrease by around 46 p.p. in the share of rainfed land and an increase in the share
of land under STW irrigation by around 39 p.p..

Beliefs are never statistically different from zero when considering irrigation de-
cisions in Boro (columns 3 to 5). These findings uncover substantial heterogeneity
across growing seasons behind the results in Table 2.1. Without excessive speculation

27The use of DTW irrigation in the monsoon season is negligible (the average fraction of land
irrigated with DTW is 0.01), explaining the asymmetry in the outcomes of interest across the two
main growing seasons.
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over these results, the Boro season is dry and irrigation is already often implemented
(the average share of cultivated land left rainfed is around 50 p.p. lower than in the
Aman season and the average total share of irrigated land is more than 50%). For
this reason, changes in beliefs may play a minor role in the adaptive decision. The
lack of information on growing season-specific beliefs hinders further investigation
of this result, which is left for future research. Moreover, the heterogeneity in the
results across growing seasons is not driven by systematic differences in financial
liquidity constraints across seasons (Bell et al., 2015).

Table 2.3: Individual beliefs and irrigation use by growing season. OLS estimates.

Growing Season: Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Belief increase in drought (β1) 0.0871∗∗ -0.0498∗ 0.0229 -0.0234 0.0188
(0.0361) (0.0246) (0.0233) (0.0298) (0.0287)

Belief increase in drought × Long-run dryness (β2) -0.545∗ 0.437∗ 0.275 0.0254 -0.296
(0.279) (0.233) (0.338) (0.391) (0.290)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.763 0.163 0.260 0.435 0.112
SD Outcome 0.405 0.348 0.411 0.470 0.300
N 1428 1428 1428 1428 1428
adj. R2 0.560 0.572 0.750 0.669 0.583

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and
based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation.
Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: Seasonal year-to-year deviation in excess dryness relative to
seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives extension advice,
access to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings;
ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam. Fixed
Effects: Individual, Year.

Time-varying long-run dryness. I test for the robustness of the annual and
seasonal results using a different source of variation, constructing a time-varying
measure of long-run dryness as the average monthly SPEI in the twenty years pre-
ceding the survey wave. I exploit wave-to-wave within-union fluctuations in the
SPEI realizations and include both the uninteracted term and its interaction with
beliefs. Given the two-year time interval between the two waves, the variation in
this approach relies on climate changes that occurred over shorter time periods than
twenty years. The use of 20-year averages may thus introduce attenuation bias
(Bareille and Chakir, 2023). Tables B33 and B34 report the results with the coef-
ficients on beliefs and the interaction term close, but smaller, in magnitude to the
main results both for annual and seasonal estimates.
Outcome variable. I also test that the results are robust to the use of a different
outcome variable for the irrigation status. This alternative outcome measures the
total hectares of cultivated land under each irrigation status by growing season.
Results are reported in Table B35. The interaction term is negative and statistically
significant on the rainfed cultivated land in both Aman and Boro seasons (columns
1 and 3). Consistent with the baseline results, the effect of the interaction term
on the surface of land under STW irrigation in Aman is positive, although not
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precisely estimated. Since the distribution of the share of cultivated land under each
irrigation status has two mass points at zero and one (Figure B4), I also estimate a
linear probability model using a binary version of the outcome variable taking value
one if the share of cultivated land rainfed or irrigated is strictly positive, and zero
otherwise and find comparable estimates (Table B36).
Reverse causality. Past irrigation decisions may determine the future beliefs of
droughts (Niles and Mueller, 2016). Leaving more land rainfed may increase the
probability of experiencing damages induced by drought. By attributing the cause
of the damage to droughts, individuals may be more likely to report having perceived
an increase in these weather events as a result of their past actions. Symmetrically,
irrigating a larger share of cultivated land would decrease drought damages and
lower the probability of updating drought beliefs. To allay the concerns on reverse
causality, I regress drought beliefs in the second wave of the survey and the change
in beliefs between the two waves on the share of irrigated cultivated land in the
first wave, in a cross-sectional setting. Reassuringly, the estimates of the irrigation
statuses are never statistically significant and very close to zero in magnitude (Table
B37).

2.5.3 Unbundling the effect by socio-demographic characteristics

Tables 2.1 and 2.3 show that the farmers’ responsiveness on average differs by beliefs
over the agricultural production year and by growing season. The estimates may be
heterogeneous across different characteristics of the respondents. I split the sample
between individuals below and above the median age, respectively 18-44 and 45+,
and using the median number of years of education, distinguishing between those
with no formal education and those with at least one year.

Starting from annual-level analysis, the coefficients associated with beliefs and
with the interaction term are statistically significant only among individuals above
the median age (Table B25). A similar result holds also when considering the STW
irrigation technique (columns 3-4). This result indicates a learning channel through
which older individuals with a larger information set of weather realizations un-
dertake adaptation strategies aligned with their beliefs depending on the degree of
exposure to meteorological conditions and provide suggestive evidence against the
presence of “status quo bias” (Samuelson and Zeckhauser, 1988).

The sub-sample analysis by years of education yields similar findings. Higher ed-
ucation attainment may explain learning about agricultural technologies, effective-
ness of the adaptation strategies and knowledge of the relationship between dryness
and irrigation use (Feder et al., 1985). Unfortunately, this information is not directly
observed. The heterogeneous effect in the educated and non-educated sub-samples
provides some evidence that educational attainment affects subsequent adaptation
(Table B26). Beliefs are not statistically significant in any specification in the sub-
sample of individuals with no formal education. In the sample of individuals with
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at least one year of formal education, the marginal effect of beliefs on irrigated land
is positive for a lower average level of long-run exposure to dryness. Overall, these
findings may be indicative of the importance of formal education among farmers.

I replicate the same analysis for the irrigation decisions in Aman. Table B27
shows the results of the sub-sample analysis by age and education. On the one hand,
there is no substantial heterogeneity by age with estimates that are qualitatively
similar both in the sample below and above the median age. On the other hand, the
learning channel through educational attainment persists also in the growing season
results, providing further evidence of the importance of formal education among
farmers.

2.6 Welfare loss due to inaccurate beliefs

In this section, I use the season-specific baseline results to monetize the loss in prof-
its generated by inaccurate beliefs using estimates of returns to irrigation. Given
seasonal heterogeneity in the use of irrigation, I consider the predicted hectares of
cultivated land under STW irrigation in each growing season as a function of ob-
served beliefs28 and compare them with predicted hectares as a function of accurate
beliefs, b∗, defined as a binary variable equal to one if the seasonal long-run exposure
to dryness is strictly above zero (indicating a drier environment than historical av-
erages), and zero otherwise.29 Table B14 shows the two-way frequency distribution
between observed and accurate beliefs in the two growing seasons, where around
54% of the respondents have accurate beliefs over the years, 44% in Aman and
around 68% in Boro. These results seem to indicate that dryness conditions dur-
ing the winter season most closely match droughts belief formations. I compute a
difference-in-difference counterfactual in irrigation use between the two survey waves
and between observed and accurate beliefs based on meteorological records:

∆âseason
i =

2∑
t=1

[âseason
it (b∗, w,X) − âseason

it (b, w,X)] (2.11)

where season ∈ {Aman;Boro}. ∆âAman is centered at -0.086 ha (SD = 0.047,
interquartile range is [-0.097, -0.08]) and ∆âBoro is centered at -0.014 ha (SD = 0.015,
IQR is [-0.025, -0.007]). These results indicate that farmers irrigate less land than
they would have, had their beliefs been based on meteorological records, particularly
in the Aman monsoon season.

Figure 2.1 shows the semiparametric relationship between irrigation and long-
run dryness, plotting a local smooth regression line of the predicted hectares of land

28Estimates refer to columns 2 and 4 in Table B35.
29I refer to beliefs constructed from meteorological records as “accurate” without any normative

implication on how beliefs ought to be formed. I adopt this approach to translate farmer beliefs
into hydro-meteorological physically based metrics matching the wording and time horizon of the
survey questions.
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irrigated in each growing season using accurate and observed beliefs on long-run
exposure to dryness. Irrigation as predicted by observed beliefs is underutilized, with
a belief gap that widens for drier conditions. During Boro, there are no statistically
significant differences in the predicted use of irrigation for accurate and observed
beliefs under wet conditions. Nevertheless, a belief gap emerges as Boro winter
becomes drier. Below, I monetize the difference in the use of irrigation due to the
belief gap, using estimates of returns to irrigation in similar contexts in the literature.

Figure 2.1: Semiparametric relationship between irrigation and
long-run dryness for observed and accurate beliefs

Notes: Each line shows a local linear regression (Epanechnikov kernel) of
hectares of land irrigated with STW predicted from estimating Equation
(2.10) and long-run exposure to dryness. The green solid line uses observed
self-reported farmer beliefs b. The red, dashed line uses accurate beliefs
b∗, where accurate beliefs are equal to one if the seasonal long-run dryness
exposure is strictly above zero, and zero otherwise. Shaded areas show

95% confidence intervals.

There is growing evidence on the returns to irrigation that uses quasi-experimental
variation in groundwater irrigation, exploiting variation in slope characteristics of
river basins (Duflo and Pande, 2007), aquifer characteristics (Sekhri, 2014), or well-
failures (Jacoby, 2017) in South Asia; and spatial discontinuities in Rwanda (Jones
et al., 2022). Irrigation has substantially contributed to increases in agricultural pro-
ductivity in Bangladesh (Hossain et al., 2005; Ahmed and Sampath, 1992; Haque,
1975) and has been shown as a determining factor in agricultural success (Bell et al.,
2015). To the best of my knowledge, there is no systematic estimate of the returns to
tube well irrigation on agricultural outcomes in Bangladesh. I provide an estimate
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of the monetary loss due to inaccurate beliefs using different estimates that consider
settings plausibly similar to the one adopted in my analysis. Table B24 summa-
rizes the estimates found in the literature reporting the geographical and temporal
context, the crop production, and the irrigation technology considered.

As a baseline, I use the findings in Haque (1975), which provides quantitative
estimates of the effect of using STW irrigation compared to non-irrigated farms
in Bangladesh by growing seasons. Using Equation (2.11), the median loss due to
inaccurate beliefs is 214.16kg in Aman rice production and 49.07kg in Boro rice
production. To monetize the value loss due to inaccurate beliefs, I use the most
recent price at which the government procures Aman and Boro rice, equal to 40
Taka/kg30 (Daily Sun, 2021; The Business Standard, 2022). The median monetized
value loss is $102.80 in Aman (IQR [$95.63, $115.98]) and $23.55 in Boro (IQR
[$12.11, $42.06]).31 To understand the magnitude of this loss, the median household
production in the first wave of the survey was 800kg of Aman rice and 1260kg of Boro
rice. The difference in average net cost per cropped hectare between STW-irrigated
and non-irrigated crops is 121.08 Taka/ha (Haque, 1975). The median monetized
net loss due to inaccurate beliefs is around 26.5% of the total production value of
Aman rice and 3.9% of the total production of Boro.

Using returns to irrigation from other geographical contexts and for other crops,
I obtain lower monetary losses, but comparable (Bhandari, 2001; Mandal and Singh,
2004). Such differences underline some potential caveats to these welfare calcula-
tions. First, I assume that rice productivity has remained constant over time, in
spite of evidence showing increasing long-term production trends for Aman and Boro
rice (Parvin and Rahman, 2009; Al Mamun et al., 2021). Second, the welfare calcu-
lations only account for an average measure of net costs between STW-irrigated and
non-irrigated crops, rather old (Haque, 1975), and that therefore does not account
for technological change and improvements that may have increased the irrigation
technology efficiency. Third, returns to irrigation estimates are not conditional on
increases in dryness, suggesting that the estimates may represent a lower bound
(Mohsenipour et al., 2018).32

30In 2022 USD, 1 Taka ≈ 0.012 $.
31Similar monetary losses in Boro are obtained using the returns to irrigation in Parvin and

Rahman (2009).
32Other estimates from recent studies of returns to irrigation that identify plausibly causal ef-

fects provide monetized losses smaller in magnitude, however, they present substantially different
geographical settings, crops produced and irrigation technology (Sekhri, 2014; Jones et al., 2022).
More recent estimates on the returns to irrigation (Duflo and Pande, 2007; Fishman, 2018) cannot
be used for this exercise, respectively due to a lack of information on summary statistics of the
sample and since the direct effect of irrigation is not reported.
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2.7 Cognitive mechanisms

Individual heterogeneity in beliefs explains different short-run behavioral responses
to the same exposure to droughts. These findings are consistent with a model of be-
havioral inattention and action with individual asymmetric interpretation of weather
conditions. This underlines the importance of accounting for both the average level
of exposure and most importantly individual knowledge about it. There are other
potential channels, however, that may explain short-run behavioral responses. In
this section, I address three potential cognitive mechanisms consistent with the base-
line results that may play a role in individual behavioral responses.

Agents adopt cognitive heuristics when assessing future uncertain events, ex-
hibiting availability bias (Gallagher, 2014), recall errors (Guiteras et al., 2015) or
motivated reasoning (Druckman and McGrath, 2019; Zappalà, 2023b). Here, I ex-
ploit the intensity and frequency of drought events, comparing self-reported and
meteorological records. In Section 2.7.1, I investigate whether the timing of self-
reported drought events affects irrigation decisions. Overweighting recent weather
realizations could result in potentially sub-optimal irrigation decisions, when eval-
uated ex-post because of imperfect foresight (Ji and Cobourn, 2021). In Section
2.7.2, I test if recall errors in the timing of droughts leads to potentially sub-optimal
irrigation decisions. The third mechanism in Section 2.7.3 explores whether the
respondents’ recollection of the frequency of droughts matters for irrigation.

2.7.1 Salience

This section investigates whether the timing of past drought events shapes indi-
vidual behavioral responses. The literature on cognitive heuristics and expectation
formation has introduced the “recency bias” in models of agents’ learning (Kala,
2017). According to this heuristic, individuals assign higher probabilities to events
that have happened recently, compared to remembering events that occurred a long
time ago, and react to them (Kunreuther and Slovic, 1978; Kahneman and Tversky,
1973; Camerer and Loewenstein, 2011).

This phenomenon has been documented using different empirical evidence, in
particular with respect to flood risks (Gallagher, 2014; Bakkensen et al., 2019),
climate change through temperature anomalies (Deryugina, 2013; Li et al., 2011),
short-term weather fluctuations (Ji and Cobourn, 2021), and financial markets (Mal-
mendier and Nagel, 2011). In my context, experiencing a particularly harmful
drought may lead agents to overreact and make adaptive decisions, without neces-
sarily changing their long-lasting underlying beliefs on the frequency of these events.
I consider the self-reported year of the most harmful drought and include in Equa-
tion (2.10) two non-mutually exclusive event time indicators described in Section
2.3.1 (“Self-reported experience of drought”).
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Table 2.4 displays the results. The coefficient associated with the self-reported
measure of the most harmful drought in the year before the irrigation decision is
negative and statistically significant for the share of rainfed cultivated land (column
1) and positive for the share of cultivated land under STW irrigation status (col-
umn 2) in the Aman season. These results are consistent with the hypothesis of
overreaction to salient drought events in adaptive decisions.

Similar results are obtained for Boro. One-year lagged drought has a positive
and statistically significant effect on the share of cultivated land with DTW (col-
umn 5). Droughtt−1 has a negative and statistically significant effect on the share
of cultivated land irrigated with STW (column 4). This result is specific to the
winter dry season. Groundwater droughts occur when groundwater recharge or dis-
charge deviate from normal, and the groundwater heads in an aquifer fall below a
critical level over a certain period of time resulting in several adverse effects. Dur-
ing the peak water demand in the months of March and April, groundwater levels
can fall below the suction limit making it difficult for the farmers to pump water
using the STW (Mainuddin et al., 2021; Shahid and Hazarika, 2010). Groundwa-
ter droughts usually affect shallow aquifers and are caused by low precipitation in
combination with high evapotranspiration, which leads to low groundwater recharge
of underground aquifers (Adhikary et al., 2013). Unfortunately, the survey does
not disentangle which type of droughts (whether meteorological or groundwater) is
reported by the respondent, but the occurrence of a groundwater drought affecting
the water recharge of shallow aquifers may explain the negative effect of one-year
lagged droughts on the share of land irrigated with STW.

The behavioral response to being hit by drought does not last more than one
year. Droughtt−2 is never statistically different from zero in any of the estimated
equations, strengthening the hypothesis that agents respond by changing adaptive
behavior in the year after they experienced the most harmful drought, without
adjusting permanently.

I also test for salience using an objective measure of drought events obtained
from the SPEI. I construct two different measures, respectively whether an extreme
drought event occurred during the previous growing season and whether this event
was the most harmful (i.e., the lowest value of SPEI) over the same time interval
covered by the survey questions.33 These results provide further evidence on the
effect of salient drought events driving reactions in irrigation in the following year
(Table B38). An individual in a union hit by an extreme drought event in the
previous year increases the share of land under DTW irrigation by 6.1 p.p. (column
3) and decreases the share of rainfed land by 9.4 p.p. (column 1) during Boro, ceteris
paribus. As previously found, a drought event in the Boro season negatively drives
the allocation of land irrigated using STWs. When considering the most harmful

33Since all the drought events recorded have occurred during the Boro season, I run the regressions
only considering the outcomes and weather variables in this growing season.
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objective drought events, results are qualitatively similar and the estimates larger
in magnitude (columns 4-6).

Table 2.4: Self-reported timing of the most harmful drought and irrigation use

Growing Season: Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Droughtt−1 -0.0804∗∗ 0.0507∗ 0.0174 -0.0829∗∗ 0.0462
(0.0355) (0.0273) (0.0250) (0.0328) (0.0282)

Droughtt−2 0.0284 -0.100 -0.0318 -0.00403 0.0243
(0.0955) (0.0681) (0.0945) (0.152) (0.0285)

Belief increase in drought 0.0960∗∗∗ -0.0563∗∗∗ 0.0284 -0.0134 0.00398
(0.0275) (0.0187) (0.0174) (0.0238) (0.0175)

Belief increase in drought × Long-run dryness -0.666∗∗∗ 0.536∗∗∗ 0.253 0.114 -0.346
(0.251) (0.206) (0.263) (0.312) (0.211)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.763 0.163 0.260 0.435 0.112
SD Outcome 0.405 0.348 0.411 0.470 0.300
N 1428 1428 1428 1428 1428
adj. R2 0.562 0.574 0.749 0.671 0.584

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020)
and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial
correlation. Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: seasonal year-to-year deviation in excess
dryness relative to seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives
extension advice, access to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of
total land holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam;
v) sandy-loam. Fixed Effects: Individual, Year.

2.7.2 Recall error

The use of self-reported measures might cast some doubts due to recall errors and
reference dependence (Guiteras et al., 2015). A subjective measure of salient events
may not shed light on the mechanisms underlying overreaction to such events. Re-
sults in the previous section show that behavioral responses are qualitatively similar
using self-reported and meteorological records for drought events, but do not com-
pare the two.

This section proposes an empirical test of recall error, by comparing the self-
reported and objectively recorded years of the most extreme drought event. I con-
struct an indicator variable that takes value one if individuals do not self-report the
most harmful drought event in t−1 when the minimum SPEI was recorded, and zero
otherwise to test whether inaccuracy about previous year’s droughts leads farmers
to reduce irrigated cultivated land.

Recall errors appear to affect farmers’ behavioral responses in a potentially sub-
optimal manner (Table 2.5). Being inaccurate is associated with a 8.5 p.p. increase
in the share of rainfed cultivated land in the Aman season (column 1) and with a
5.4 p.p. decrease in the share of cultivated land under STW irrigation (column 2).
In the Boro season, inaccuracy is associated with a 6.2 p.p. decrease in the share of
cultivated land under DTW irrigation (column 5), a 4.4 p.p. decrease in the share of
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rainfed cultivated land (column 3), and a 11.3 p.p. increase in the share of land under
STW irrigation (column 4). The rationale behind the effects in the Boro season can
be explained by a groundwater drought in the winter season that prevents shallow
aquifers to be recharged. Under these conditions, increasing the share of irrigated
land with STWs and reducing the use of DTWs would be potentially sub-optimal.

Table 2.5: Recall error in the timing of harmful droughts and irrigation status

Growing Season: Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Inaccuracy 0.0847∗∗ -0.0535∗∗ -0.0439∗ 0.113∗∗∗ -0.0618∗

(0.0421) (0.0239) (0.0231) (0.0399) (0.0340)

Belief increase in drought 0.101∗∗∗ -0.0588∗∗∗ 0.0155 -0.0111 -0.00605
(0.0283) (0.0200) (0.0171) (0.0249) (0.0172)

Belief increase in drought × Long-run dryness -0.670∗∗∗ 0.555∗∗ 0.00692 0.558 -0.639∗∗

(0.249) (0.224) (0.328) (0.404) (0.290)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.760 0.166 0.256 0.441 0.113
SD Outcome 0.406 0.351 0.409 0.470 0.301
N 1392 1392 1392 1392 1392
adj. R2 0.562 0.573 0.751 0.673 0.587

Notes: The sample includes individuals whose self-reported year of the most harmful drought coincides with the meteoro-
logical drought recorded the year before the irrigation decision is taken and those that did not self-report a drought event
objectively recorded. I exclude the sample of individuals who self-reported a drought event when it did not occur. The
outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons. Standard
errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and based
on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation.
Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: seasonal year-to-year deviation in excess dryness relative
to seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives extension
advice, access to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land
holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v)
sandy-loam. Fixed Effects: Individual, Year.

2.7.3 Overestimation

I now explore whether their frequency drives adaptive behavior (Spinoni et al., 2014)
and test how the accuracy in the recollection of the number of droughts may drive
irrigation decisions. I use the measure of overestimation ∆ (Equation (3.1)) that
considers the distance between the self-reported and the meteorological number of
extreme drought events. Due to its left-skewed distribution for objective extreme
drought events (Figure C3), I limit the analysis to the subsample of individuals who
are either accurate (∆ = 0) or overestimate the number of drought events (∆ > 0).
I expand the baseline specification in Equation (2.10) with either a binary vari-
able, Overestimation, distinguishing accurate farmers from those who overestimate
droughts, or the count variable ∆, measuring the extent of overestimation.

Table 2.6 shows that overestimating the number of drought events is associated
with an increase in the share of irrigated land and a decrease in the share of rainfed
cultivated land. Panel A reports the coefficient associated with a binary variable of
overestimation. Overestimating droughts is associated with a 6 p.p. decrease in the
share of rainfed cultivated land (column 1) and with a 4.3 p.p. increase in the share
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of cultivated land under STW irrigation (column 2) in the Aman season. Similarly
to previous findings, in the Boro season, the experience of drought events has a
negative effect on the share of cultivated land under STW irrigation (column 4) and
a positive effect on the share of cultivated land under DTW (column 5). Individuals
reduce land irrigated with STWs since droughts in the winter dry season also affect
water recharge of shallow aquifers and rely on water extraction from deep aquifers
using DTWs.

Results in Panel B show the results when exploiting the extent to which farmers
overestimate and lend further support to the argument that the accuracy of recol-
lecting drought events drives irrigation decisions, although imprecisely estimated in
Aman. During Boro, an increase in the difference between self-reported and objec-
tive droughts by one event reduces the share of cultivated land irrigated with STW
by 2.6 p.p. (column 4) and increases the share of land irrigated with DTW by 3.2
p.p. (column 5). This result suggests that farmers tend to substitute land left rain-
fed and irrigated with STW with irrigation using DTW, lending further support to
the hypothesis of groundwater drought events.

Table 2.6: Overestimating drought frequency and irrigation status

Growing Season: Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Panel A: Binary variable
Overestimation -0.0599∗∗ 0.0429∗∗ 0.0167 -0.0938∗∗∗ 0.0639∗∗

(0.0259) (0.0190) (0.0178) (0.0312) (0.0282)

Panel B: Count variable
∆ Droughts -0.0269 0.0148 -0.000543 -0.0265∗∗ 0.0317∗∗∗

(0.0170) (0.0136) (0.00741) (0.0134) (0.0103)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.748 0.171 0.236 0.445 0.124
SD Outcome 0.413 0.355 0.396 0.471 0.312
N 1286 1286 1286 1286 1286
adj. R2 0.590 0.627 0.693 0.661 0.596

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020)
and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial
correlation. Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: Seasonal year-to-year deviation in excess
dryness relative to seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives
extension advice, access to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of
total land holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam;
v) sandy-loam. Fixed Effects: Individual, Year.

I test for the robustness of the results by altering the cutoffs and altering
the construction of ∆ and including moderate (−1.5 < SPEI ≤ −1) or severe
(−2 < SPEI ≤ −1.5) droughts. The results are qualitatively similar with the es-
timates smaller in magnitude (Table B39). By relaxing the cutoff for recording a
drought, the number of objective drought events increases, and ∆ would be smaller
by construction, potentially biasing these estimates downwards.

Finally, to further test that results are not driven by an arbitrary measure of
objective drought events, I use another dataset that provides a measure of drought
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events, the EM-DAT database (EM-DAT, 2022). This dataset contains information
on the occurrence and effects of natural disasters (see Section B.6.4). Previous
studies have already discussed the limits of EM-DAT as measures of extreme events
(Cavallo et al., 2013; Felbermayr and Gröschl, 2014; Noy, 2009). For this reason,
results should be interpreted with caution (Table B40).

2.8 Discussion and Conclusion

Scientific estimates have shown that climate change may have severe impacts on
agricultural-related activities (IPCC, 2022). Droughts have been described as “one
of the world’s most widespread climate disasters affecting agricultural production”
(Geng et al., 2016). Farmers’ profits depend on the weather and the decisions they
make in response. In particular, their adaptive responses hinge upon their ability
to understand and predict the weather conditions they face. Therefore, it is critical
to understand farmers’ adaptive behavior and their decision-making processes. The
literature has investigated various “adaptation gaps” (Carleton and Hsiang, 2016),
for instance, weak incentives to adapt (Annan and Schlenker, 2015), limited access
to credit (Burgess et al., 2014), limited information about benefits (Hornbeck, 2012)
and access to technologies (Olmstead and Rhode, 2011). Despite recent advance-
ments in the quantification of climate impacts on a series of outcomes accounting
for adaptation (e.g., Carleton et al., 2022; Hultgren et al., 2022; Rode et al., 2021),
perfect information has so far been assumed, neglecting the role of inaccurate beliefs
about climate change and limited rationality (Deryugina and Hsiang, 2017).

In this paper, I develop a theoretical framework allowing for differences between
individual climate beliefs and long-run climatic conditions. This framework adapts
a behavioral inattention model à la Gabaix (2019) to the context of climate change
beliefs and introduces a behavioral friction in a standard farmer profit-maximization
problem. The model’s implications show under which circumstances beliefs affect the
decision-making process and how they differentially shape farmers’ responsiveness to
dryness exposure. I test this model on data on the beliefs of individual farmers and
irrigation use combined with a meteorological measure of dryness in Bangladesh.

In a fixed-effect panel analysis, I find, consistent with the conceptual framework,
that as long as individual beliefs do not coincide with objective climatic conditions,
they heterogeneously drive farmers’ behavioral responses to dryness. In particular,
farmers who believe that droughts have increased significantly expand land under
irrigation after a period of dryness. The effect is stronger for more severe weather
conditions and is heterogeneous across growing seasons, driving decisions only in
the monsoon season. In terms of cognitive mechanisms, I document that only self-
reported one-year lagged drought events have a strong statistically significant effect
on the use of irrigation, highlighting the role of salience, and that recall error can
lead to potentially sub-optimal decisions, increasing the share of land left rainfed.
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On the contrary, overestimating the frequency of past drought events leads to a
behavioral response of increasing irrigated land.

In a counterfactual welfare analysis, I use the baseline estimates to quantify the
monetary loss due to inaccurate beliefs. Comparing the predicted use of irrigation
as a function of observed beliefs and beliefs based on meteorological records, I find
that farmers systematically underuse irrigation compared to the benchmark case
if their beliefs were constructed from meteorological records. This result provides
evidence of a belief gap, that widens for drier climatic conditions. Using estimates of
returns to irrigation from the literature, I find that the median monetized loss due
to inaccurate beliefs is around $103 in the monsoon season and $23 in the winter
season, respectively around 26.5% and 4% of the median total seasonal production
value. With the estimated changes in climatic conditions, the monetary losses are
projected to exacerbate particularly during the monsoon season in light of more
erratic and less frequent precipitations.

While the analysis suggests that heterogeneous beliefs differentially shape the
responsiveness to dryness conditions, the study has some limitations. First and
foremost, in spite of the suite of robustness checks conducted, there remains a possi-
bility that my findings might be spurious. Nevertheless, to the best of my knowledge,
this is the first paper that accounts for the incomplete rationality of decision-makers
in climate adaptive responses. Second, it is difficult to determine the exact path-
way through which these effects work since self-reported measures of drought and
beliefs are not measured within each growing season, during which weather condi-
tions in Bangladesh have been shown to differ substantially. Although past work has
highlighted the limits of self-reported data in understanding the impacts of extreme
events (Guiteras et al., 2015), it is crucial to understand how people’s beliefs and
exposure to a changing climate characterize differential behavioral responses. The
combined use of meteorological records and more precise individual beliefs would
help to better understand the mechanisms behind the behavioral responses of rural
households and shed light on the cognitive factors at stake. This is a promising
avenue for future research.

By addressing questions of beliefs and adaptation strategies, these findings have
important implications for the debate on public awareness and adaptation to climate
change in developing countries, providing empirical evidence to inform environmen-
tal and agricultural policies. The results can help identify the most vulnerable rural
households and inform adaptation policies targeting regions with a high degree of
exposure to dryness with informational campaigns and providing effective and timely
drought communication.
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Chapter 3

Drought exposure and accuracy:
Motivated reasoning in climate
change beliefs

The lack of stringent policies to avert climate change has increased the impor-
tance of effective and timely adaptation. Adequate adaptation is particularly im-
portant for agricultural communities in developing countries, which may most suffer
the consequences of climate change. Evidence is still scarce on how people in the
most vulnerable areas form climate change beliefs and whether such beliefs exhibit
cognitive biases. Using survey data from rural households in Bangladesh together
with a meteorological measure of excess dryness relative to historical averages, I
study the effect of long-term average drought exposure and short-term deviations
on beliefs about drought frequency and the interpretation of drought events. To
explore how individuals interpret past droughts, I use an instrumental variable ap-
proach and investigate whether individual beliefs lead to asymmetric distortion of
objective information. The results show that individuals recollect and overweight
evidence tilted towards their prior beliefs, providing evidence of confirmation bias
as a directional motivated reasoning mechanism. The findings highlight the need
for models that account for behavioral factors and cognitive biases in the study of
climate change beliefs for effective communication and adaptation policies.

Keywords: Beliefs, Climate change, Droughts, Expectation formation, Moti-
vated reasoning

JEL Classification: D10, D80, Q12, Q51, Q54

The material from this chapter was published in the Environmental and Resource Eco-
nomics in May, 2023. The online version can be accessed here: https://doi.org/10.1007/
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3.1 Introduction

Climate change threatens to alter the frequency, timing, duration, intensity and
spatial distribution of extreme weather events, including droughts (IPCC, 2021).
Despite broad scientific consensus that human activities are causing climate change
(Oreskes, 2004), there is ample disagreement among the general public in the beliefs
about climate change and its causes (Lee et al., 2015a). The inertia of policies to
avert significant climate change has increased the importance of adaptation. Ef-
fective adaptation is particularly important in developing countries and rural ar-
eas (Mertz et al., 2009a). The relationship between meteorological conditions and
agricultural yields has been extensively empirically documented (Auffhammer and
Schlenker, 2014; Carleton and Hsiang, 2016; Hultgren et al., 2022) with implicit mod-
els of adaptation that assume agents react to objectively interpreted new information
conditional on prior beliefs, fully accounted for by meteorological conditions. Un-
derstanding the determinants of beliefs and the existence of cognitive biases among
the most vulnerable communities, whose activities heavily rely on natural resources
and climate, is of paramount importance since it may have direct implications for
adaptive behavioral responses (Zappalà, 2023a).

This paper studies the effect of drought exposure on beliefs about climate change
and investigates whether individuals adopt directional motivated reasoning, accord-
ing to which they tend to overweight evidence that confirms their prior beliefs. I
combine a two-wave survey of rural households in Bangladesh with a meteorologi-
cal measure of dryness at the union-level1, the Standardized Precipitation Evapo-
transpiration Index (SPEI) (Vicente-Serrano et al., 2010). First, I document how
long-term average exposure to dryness and short-term deviations affect individu-
als’ beliefs about drought frequency and their accuracy in interpreting these events.
To define accuracy, I compute the deviation between the self-reported number of
droughts and meteorological events measured using climatological cut-offs (McKee
et al., 1993; Paulo et al., 2012). A positive difference indicates overestimation in
the recollection of droughts. Second, I examine the potential cognitive heuristics
adopted in the interpretation of droughts. I test whether individuals asymmetri-
cally distort objective information overweighting evidence that confirms their prior
beliefs, showing evidence of confirmation bias (Rabin and Schrag, 1999; Kahneman
and Tversky, 1982). To identify the causal effect of prior beliefs on how information
from drought events is distorted, I adopt an instrumental variable approach using as
instrument the twenty-year long-term average exposure to dryness, which exploits
quasi-random variation in the SPEI realizations within unions over time. The ex-
ogeneity of the instrument relies on the assumption that accounting for time- and
individual-specific unobserved heterogeneity, deviations in meteorological conditions

1Unions are the smallest rural administrative and local government unit in Bangladesh. Ad-
ministrative units are structured as follows: Division ⊃ District (Zila) ⊃ Sub-district (Upazila) ⊃
Union. There are 5,158 unions, that have an average size of approximately 10–20 km2.
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of dryness do not affect the accuracy of recollecting drought events via other chan-
nels than beliefs. To assess the validity of this assumption, I perform several checks
ruling out other channels such as adaptation, recent deviations in terms of dryness,
and information.

The analysis yields two main findings. First, twenty-year long-term average ex-
posure to dryness predicts beliefs of increase in droughts and the interpretation of
drought events, whereas short-term deviations in exposure do not matter. Individ-
uals form beliefs based on exposure to their average climatic conditions and be-
liefs about slow-onset environmental changes are inelastic to short-term deviations.
Second, I document that individuals overestimate the number of drought events
when they believe that droughts have increased. This result shows that individuals
adopt directional motivated reasoning, with the interpretation of droughts biased
towards their priors. This finding differs from objective processing of information in
a Bayesian setting, where individual prior beliefs do not affect the interpretation of
information (Druckman and McGrath, 2019).

The paper makes several contributions to the literature. First, it relates to the
branch analysing the determinants of climate change beliefs, widely investigated
in developed countries and identified in political orientation, education, and per-
sonal experience of weather shocks (e.g., Carlsson et al., 2021; Czarnek et al., 2021;
Poortinga et al., 2019; Hoffmann et al., 2022).2 A growing attention has been devoted
to individuals whose economic livelihood depends on climate, including farmers or
fishers. Most evidence is based on US data (Gramig et al., 2013; Rejesus et al., 2013;
Arbuckle et al., 2013a,b), whereas it is yet understudied the formation process in
developing countries. Understanding climate change awareness in Bangladesh is of
paramount importance, where, according to the 2007-2008 Gallup World Poll repre-
sentative survey, more than 65% of respondents had never heard of climate change,
in contrast with the low levels (below 10%) of climate change skepticism in high-
income countries (Lee et al., 2015a). More than a decade later, in the 2019 Gallup
World Risk Poll, more than one-third of the population in Bangladesh was still
unable to provide an answer to the potential effects of climate change (Rzepa and
Ray, 2020). The paper provides empirical evidence of the determinants of beliefs on
the consequences of climate change in a developing country, focusing on slow-onset
environmental changes. Importantly, I exploit the unique longitudinal dimension
of the survey to account for individual-specific unobserved heterogeneity and study
within-individual changes in beliefs.

Second, this paper relates to the strand of literature that investigates cognitive
heuristics associated with climate change beliefs, including anchoring, availability,
representativeness or motivated reasoning (Joireman et al., 2010; Li et al., 2011;

2A more exhaustive list includes Hansen et al. (2012); Carlton et al. (2016); Howe et al. (2014);
McCright et al. (2014); Moore et al. (2019); Weber (2010); Beattie et al. (2019); Konisky et al.
(2016); Kaufmann et al. (2017).
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Zaval et al., 2014). This paper contributes to this literature testing the confirma-
tion bias hypothesis. Individuals exhibit confirmation bias as a form of directional
motivated reasoning if they misread the new evidence as supportive of existing hy-
potheses, interpreting information and overweighting evidence that confirms their
beliefs (Fryer et al., 2019; Agnew et al., 2018b; Faia et al., 2021). Notwithstand-
ing previous theoretical discussions of directional motivated reasoning mechanisms
(Druckman and McGrath, 2019) and other cognitive biases (Zhao and Luo, 2021)
in climate change beliefs, former empirical studies have focused on other types of
cognitive biases, including availability bias (Gallagher, 2014), representativeness and
spreading activation (Deryugina, 2013) in the US. The sole exception in rural com-
munities in developing countries finds recency bias among Indian farmers (Kala,
2017).

The literature on motivated reasoning has concluded that prior climate beliefs in-
fluence the interpretation of environmental changes (Goebbert et al., 2012; Zanocco
et al., 2018). Previous empirical studies testing motivated reasoning neglect poten-
tial endogeneity concerns between the interpretation of evidence and beliefs (Howe
and Leiserowitz, 2013; Myers et al., 2013; Shao, 2016). I build on studies of mo-
tivated reasoning in climate change beliefs (Weber, 1997; Osberghaus and Fugger,
2022; Stahlmann-Brown and Walsh, 2022) to estimate the effect of beliefs on the
interpretation of weather events in a developing country. In Bangladesh, where cli-
mate change awareness is particularly low (Lee et al., 2015a; Rzepa and Ray, 2020)
and drought vulnerability extremely high (Shahid, 2011), examining the drivers of
the interpretation of droughts and the presence of cognitive biases is fundamental.
This is, to the best of my knowledge, the first study that tests whether individu-
als display directional motivated reasoning in a developing country, identifying the
causal effect of beliefs on how information from weather events is distorted in a
quasi-experimental setting.

The remainder of the paper is organized as follows. Section 3.2 describes the data
used in the empirical analysis. Section 3.3 defines the conceptual framework for the
propositions that I test empirically. Section 3.4 presents the empirical approach.
Section 3.5 discusses the results and their robustness. Section 3.6 concludes.

3.2 Data

I combine data from two main sources to measure beliefs and self-reported inci-
dence of drought events at the individual level on the one hand, and meteorological
measures of exposure to dryness and occurrence of drought events computed at the
union level, on the other.
Beliefs about droughts and self-reported drought events. I measure in-
dividual beliefs and self-reported frequency of drought events from the Bangladesh
Climate Change Adaptation Survey (BCCAS). The data consist of a two-wave survey
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by the International Food Policy Research Institute (2014a), collecting information
from 800 agricultural households in 40 randomly selected unions in Bangladesh (Ta-
ble C1). The first wave was conducted in January 2011 and previously analysed
in Delaporte and Maurel (2018). A follow-up wave (International Food Policy Re-
search Institute, 2014b) was conducted in September 2012. More than 97%, i.e.,
766 out of 800 households, were reinterviewed in the second wave.3 I construct a
binary variable, Belief of Increase in Droughts, or simply Belief, equal to one if the
respondent answers “Longer periods of droughts” to the question “Have you noticed
any changes in climate over the last 20 years? If yes, please specify what changes
you have noticed.”

Prior to being asked about their beliefs, individuals are asked a series of questions
about their memories of weather events in recent years, as in Weber (1997). I
construct the variable self-reported # droughts using the question in the first wave
“In the last five years, have the household’s properties and productivity been affected
by droughts? How many times did it occur?”. The same question in the second
wave asks respondents to report the number of droughts since the last interview.
This variable is then used to measure the accuracy of recollection of drought events
as explained below. Table C2 reports the exact wording and formulation of each
question in the two waves.4 Although the survey does not provide a formal definition
of droughts and does not record differently the intensity of perceived weather events,
different interpretation of droughts by different respondents does not pose a challenge
to the validity of the empirical analysis that exploits within-individual variation in
beliefs over time.5

Dryness exposure. To construct a measure of exposure to dryness, I use a clima-
tological measure, the Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al., 2010), which provides information about drought conditions
at the global scale, with a 0.5◦ spatial resolution (≈ 55km at the Equator) and a
monthly time resolution. The SPEI-1 compares the amount of precipitation and
potential evapotranspiration to obtain a measure of drought based on water balance
accumulated over one month and is constructed using data from the Climatic Re-
search Unit of the University of East Anglia (CRU TS version 4.03). The index is a
standardized probability measuring the deviation in dryness relative to the average
observed during the available 1901-2018 time period in each grid cell. A value of
zero indicates the median amount (half of the historical amounts are below the me-
dian, and half are above the median), and the index is negative for dry, and positive
for wet conditions. For instance, a value equal to -1 indicates that the difference

3The remaining 34 households could not be interviewed because they migrated (15 households)
or were not at home at the time of the survey.

4From the BCCAS, I also collect individual and union characteristics from the community ques-
tionnaire that I use in subsequent robustness exercises.

5The underlying assumption is that individuals do not differentially change their internal defi-
nition of droughts between the two survey waves.
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between precipitation and potential evapotranspiration is one standard deviation
lower than the historical average for a given grid cell.

I build two measures of exposure to dryness at the union level to account for
long-term average and short-term deviation (Guiteras et al., 2015; Hsiang and Jina,
2014; Bento et al., 2023).6 I construct union-level SPEI monthly realizations as
a weighted average of the union surface over each grid cell. Figure C1 displays
the relationship between the union boundaries and the SPEI gridded dataset. The
long-term exposure is the average of the monthly SPEI across the previous twenty
years, indicating whether this period was relatively drier or wetter than the historical
average for each union. This measure is constructed as the “objective counterfactual”
of the individual beliefs that droughts have increased in the previous twenty years.
Beliefs are assumed to be formed from the long-term average exposure in the union
of residence.7

I construct a short-term deviation measure from the long-term average, as the
difference between the average SPEI monthly realizations over the previous five years
and the twenty-year long-term average, for the first wave, and the difference between
the average SPEI monthly realizations between the two waves and the twenty-year
long-term average, for the second wave.8

Drought events. To have a measure of individual accuracy of recollection of
droughts, I compare the self-reported number with the objectively recorded number
of drought events. The climatology literature defines a drought event as the period of
consecutive time points in which the SPEI is below certain thresholds (Spinoni et al.,
2014). Specifically, there are five classes of droughts: i) non-drought (SPEI > −0.5);
ii) mild droughts (−1 < SPEI ≤ −0.5); iii) moderate droughts (−1.5 < SPEI ≤ −1);
iv) severe droughts (−2 < SPEI ≤ −1.5); v) extreme droughts (SPEI ≤ −2) (Paulo
et al., 2012; McKee et al., 1993). Since the SPEI is normally distributed, each of
the five classes respectively accounts for about 69.1%, 15%, 9.2%, 4.4% and 2.3% of
the set of historical values for each grid cell.

Based on this classification, I compute for each union the number of extreme
drought events that have occurred in the five years before the first wave of the
survey and between the first and the second wave.9 To test the robustness of the
results, I employ other cut-offs to define the objective number of droughts, including
moderate (SPEI ≤ −1) and severe (SPEI ≤ −1.5) droughts. Figure C2 shows the

6For ease of interpretation of the coefficients in the empirical analysis, these measures are taken
in their additive inverse form, meaning that higher values are associated with drier conditions.

7Since the survey does not provide information on the place of residence of the respondents over
the twenty years before the first wave, I assume they have not moved and have been exposed to the
union-average dryness conditions.

8This methodology is adopted in order to create a continuous measure of wave-specific variation
in exposure to dryness that matches the time period covered by the self-reported number of drought
events in the BCCAS.

9The choice of the time periods mirrors the time period covered by the survey questions on the
number of drought events experienced.
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timeline of the survey compared to the construction of the measures of dryness and
drought events.

Following this approach, I create a measure of accuracy of recollection of past
drought events:

∆type
it = self-reported # droughtsit − objective # droughtstype

ut (3.1)

where ∆type
it (type ∈ {moderate; severe; extreme}) measures the deviation be-

tween the self-reported number of droughts by individual i in survey wave t with the
number of droughts recorded using the SPEI in union u over the same time period.
These wave-specific measures of interpretation infer whether respondents overesti-
mate or underestimate the number of drought events that they have experienced.
For instance, a positive value shows that individuals overestimated the number of
drought events. By matching households with objectively recorded drought events at
the union level, I measure asymmetric changes in the recollection of drought events
for individuals that faced the same course of events and have been exposed to the
same set of objective information. I acknowledge that meteorological data are not
necessarily the “truth”, but I use them to study a systematic pattern to individual
interpretation of drought events as a function of their beliefs.10

Descriptive statistics. The final sample is composed of 714 individuals. Since
the focus is on personal experience, the sample includes only households who have
been surveyed in both waves and did not move, and for which the respondent was the
same. This setting accounts for individual-level unobserved heterogeneity (including
different interpretation of the questions) and allays concerns about the biasedness
of the coefficients associated with self-reported subjective measures. Table C3 tests
for differences in means for the main variables between the sample of attritors and
non-attritors in the first wave and finds no statistically significant differences.

Tables C4 and C5 provide, respectively, summary statistics on self-reported vari-
ables and objective measures of drought exposure. On average, half of the sample
believes that droughts have increased over the past twenty years. All unions have
experienced at least one moderate drought event in both time periods considered
in the first and second waves. Although between the two waves only one extreme
drought event is recorded in Chaklarhat, in the northwest region of Bangladesh, an

10Despite the recurrent and devastating nature of droughts, previous studies in Bangladesh have
more often focused on floods (Guiteras et al., 2015; Gray and Mueller, 2012; Chen et al., 2017). In
spite of data availability on individual beliefs and personal experience of floods in the survey, I fo-
cus on droughts since there exist meteorological measures both of exposure to dryness and drought
events. Rainfall measures have been shown to be weak proxies for flood exposure, and flood extent
is nowadays commonly measured using remote-sensing data from the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) (Guiteras et al., 2015; Chen et al., 2017). Nevertheless, dif-
ferently from drought event recording, to the best of my knowledge, there is no classification for
the meteorological number of flood events.
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area historically prone to drought events (Alamgir et al., 2015), the share of indi-
viduals believing that droughts have increased is 46 percentage points higher in the
second wave.

Table C4 shows that respondents on average underestimate the number of droughts
when the accuracy measure ∆ includes moderate and severe droughts. On the con-
trary, ∆ is on average positive, but close to zero, using only meteorological extreme
drought events. Figure C3 displays the frequency distribution of ∆ with the three
cut-offs for the objective measure. A large share of respondents underestimates
droughts with moderate (98.6%) and severe cut-offs (68.6%). There may thus be
a systematic upward bias when including these two types of drought events as ob-
jective counterfactual of the self-reported number of droughts to construct ∆. This
would translate into a downward bias in ∆. Therefore, I construct ∆ only including
extreme droughts. In this case, most of the respondents (65%) are accurate (∆ = 0)
and the distribution is right-skewed with more than 25% of the respondents overes-
timating. Generally, droughts are shown to have substantial impacts on agriculture
when the SPEI is below -1.5, i.e., if the drought is at least severe (Zargar et al.,
2011). Hence, extreme drought events may be a valid objective counterfactual for
the self-reported droughts, although I test for the robustness of the results including
moderate and severe droughts.

3.3 Conceptual Framework

This section describes a conceptual framework, whose objective is two-fold. First,
it models the relationship between objective exposure to dryness and self-reported
individual beliefs and the way individuals recollect drought events. Second, it sets
as a benchmark the Bayesian updating framework in the context of drought events,
defining how a Bayesian updater would interpret new information as independent
from her prior belief and use both available evidence and prior belief to form a
posterior. This is used in comparison to an agent who adopts directional motivated
reasoning and interprets evidence as tilted towards her prior beliefs.

3.3.1 Objective Exposure, Beliefs and Accuracy

In the climate impact literature, an outcome of interest y is related to the envi-
ronmental exposure E, whose functional form f is ex-ante unknown and requires
accurate data in order to be unbiased and precisely estimated. The use of accurate
data is even more relevant for extreme weather events, where self-reported survey
data have been predominantly used in the literature, despite potentially subject to
endogeneity concerns (Guiteras et al., 2015). The baseline equation is

y = f(E) + ε (3.2)
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where y represents the outcome of interest, in this case, the belief of increase in
droughts and the interpretation of drought events, and E represents dryness expo-
sure. The use of objectively measured right-hand side variables allays the concern
about the presence of correlated measurement error between the explanatory and
the outcome variable. Self-reported environmental exposure E would provide little
information about the relationship of interest between beliefs and exposure to dry-
ness. For example, poorer households may be more exposed to droughts but less
able to assess damages accurately.

Individuals may form their beliefs of increase in droughts using their long-term
average exposure to dryness as a reference point to judge deviations from the av-
erage. In this case, a household frequently exposed to larger droughts and one not
frequently exposed would consider a drought of the same magnitude differently. For
this reason, a priori, it is uncertain whether beliefs and the recollection of drought
events depend on the average conditions of exposure to dryness, deviations from the
average, or both. Low-exposure households may be more likely to change their be-
liefs if they experience a larger drought, whereas households with a larger long-term
average exposure to excess dryness may have a more inelastic reaction to deviations
from the mean. The following proposition formulates a first initial prediction about
the relationship between drought exposure and beliefs.

Proposition 1: Exposure to excess dryness positively affects the belief of in-
crease in droughts and the recollection of drought events, i.e. ∂y/∂E = ∂f(E)/∂E ≥
0.

3.3.2 Bayesian Framework

Bayes’ rule is commonly used for modeling the belief updating process. In a Bayesian
updating framework, new information is embodied into prior beliefs to reach an
updated posterior belief. Using the standard law of large numbers, a Bayesian
updater who forms beliefs conditional on the full sequence of signals would form
with probability equal to one a posterior belief of the correct state of nature.

Consider an agent with a prior belief π(µ), where π denotes the function of
belief µ as the probability distribution regarding the true state π(µ) ∼ N (µ̂0, σ̂0

2),
with µ̂0, the agent’s best guess about the true state of the world, and σ̂0

2, the
individual’s uncertainty around her guess, where a ̂ denotes anything related to
perceptions (Druckman and McGrath, 2019). In this study, the individual belief
about an increase in droughts in the past twenty years π(µ) includes her estimate
of the increase in droughts µ̂0 and the confidence in that estimate σ̂0

2.
Bayesian updating occurs when new information, x, is provided to the individual

as a draw from the distribution N (µ, σ̂x
2), centered at the true state of the world

µ and with variance in the individual perception of the credibility of the new infor-
mation, σ̂x

2. Agents embody the new information and form an updated posterior
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belief, π(µ|x). Here, new information x corresponds to the number of drought events
in the union of residence of households.

Druckman and McGrath (2019) discuss the accuracy-driven motivated reasoning
in climate change preference formation in the Bayesian framework. Individuals
aim at arriving at a correct conclusion, evaluating new information x to maximize
the likelihood that the posterior belief is an accurate estimate of the true state of
nature. Therefore, the evaluation of x is independent of the individual’s prior belief
π(µ). The individual’s prior belief π(µ) does not affect the interpretation of the new
information x̂, here the self-reported number of drought events.

Estimating every component of Bayes’ formula and the posterior belief is not
feasible in this empirical setting due to the lack of available data. Nevertheless, this
theoretical result is used to compare how an accuracy-motivated Bayesian agent
would differ from an agent that displays directional motivated reasoning. In the
latter case, the individual belief would distort the interpretation of new evidence
and bias it towards it.

3.3.3 Directional Motivated Reasoning

In psychology, a “heuristic” is a simplified model for making inferences. Individuals
who apply cognitive heuristics may not use all available information or may over-
simplify such information when processing it. These cognitive biases are departures
from Bayesian updating and some of them have already been documented in the
context of climate change belief formation (Gallagher, 2014; Deryugina, 2013; Fryer
et al., 2019). Druckman and McGrath (2019) summarize three mechanisms of direc-
tional motivated reasoning in climate change preference formation. Under motivated
reasoning, the interpretation of personal experience of climatic changes stems from
prior beliefs rather than from impartially detecting changes in their local environ-
ment (Palm et al., 2017). The first and foremost mechanism is the confirmation bias
(Lodge and Taber, 2013).

Individuals subject to confirmation bias are motivated to maintain their prior
belief π(µ) after elaborating new information and thus they seek out information
that confirms their prior belief. The distribution from which the individual draws
the new information x is no longer N (µ, σ̂x

2) but N (µ̂0, σ̂′
x

2
), centered at the mean

of the individual’s prior beliefs and not at the true state of the world. The individual
belief π(µ) thus affects the perceived new information x̂, the self-reported number
of drought events.

The interpretation of the information is accurate if x̂ − x = 0. Using Equa-
tion (3.1), individuals are accurate if self-reported and objective number of drought
events coincide, i.e. ∆ = 0. Following Fryer et al. (2019), the functional form of the
confirmation bias and distortion of information relates the interpretation of objective
information x compared to the perceived information x̂, as a function of the prior
belief µ. Under confirmation bias, the interpretation of information is distorted in
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the direction of individual beliefs for a given objective information x. This implica-
tion is formulated in the form of the following proposition.

Proposition 2: Individuals display directional motivated reasoning and are
subject to confirmation bias if the prior belief µ affects and distorts the interpretation
of the information x. Under directional motivated reasoning, the interpretation of
drought events measured as the deviation between the self-reported and recorded
number of droughts is a function of individual beliefs of increase in droughts µ:

x̂− x = π(µ) (3.3)

3.4 Empirical Approach

3.4.1 Objective Exposure, Beliefs and Accuracy

I first examine the effect of objective exposure to dryness on the belief of increase in
droughts and on how individuals self-report drought events compared to the objec-
tively recorded number. The probability of overestimating the number of droughts
is defined as a dummy equal to one if the self-reported number is greater than the
number of objectively recorded extreme drought events with the SPEI (i.e., ∆ > 0),
and zero otherwise. Afterward, I shift the focus to the extent of overestimation,
using the ∆ measure that takes negative values if individuals underestimate, null if
they are accurate and positive if they overestimate the number of drought events.

I employ an OLS regression in a panel setting using individual-specific and year-
specific fixed effects. I estimate beliefs of increase in droughts over the previous
twenty years and interpretation of droughts as a function of the long-term average
exposure, the deviation from long-term average, and their interaction to account for
the heterogeneous effect of deviations. This functional form f(E) is adopted since
individuals perceive exposure relative to their average environment and use it as
a reference point to judge deviations from that average. The full specification is
written as:

yit = β1LT Exposureut+β2Deviationut+β3LT Exposureut×Deviationut+αi+λt+εit

(3.4)
where yit is the belief of increase in drought or the interpretation of drought

events for individual i in survey wave t. The coefficients on all weather variables
can be interpreted causally since within-union realizations of weather are plausibly
exogenous (Carleton and Hsiang, 2016; Auffhammer and Carleton, 2018). I exploit
within-individual variation by accounting for time-invariant individual-specific and
year-specific characteristics to identify the effect of drought exposure. Individual-
specific fixed effects absorb the effect of all time-invariant factors that differ between
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individuals, including unobservable characteristics that could not be accounted for
in a cross-sectional empirical design, such as personality traits, gender, location,
education level, interpretation of droughts (Hsiang, 2016). Similarly, λt controls for
unobserved shocks common to all individuals in a given year.

In five cases out of the 40 sampled unions, the 0.5◦ grid cells of the SPEI data
embed more than one union. Standard errors clustered at the union-level would be
underestimated. For this reason, I cluster standard errors at the grid cell level to ac-
count for correlation and heteroskedasticity across unions, and a fortiori individuals,
within the same cell.11

3.4.2 Directional Motivated Reasoning

To examine whether individuals exhibit confirmation bias, I formulate a new spec-
ification that relates beliefs of increase in droughts to their interpretation. This
approach empirically tests Equation (3.3): individuals who display directional moti-
vated reasoning distort the interpretation of new information as a function of their
beliefs. Figure C4 provides stylized evidence of this mechanism. The frequency
distribution of the measure ∆ for individuals holding beliefs that droughts have in-
creased is more left-skewed than for individuals who do not hold such beliefs. The
t-test of a difference in means between the two samples is -11.26: ∆ has an aver-
age of -0.12 among the non-believers, and an average of 0.47 among the believers,
implying a statistical difference between the two samples (p-value < 0.001). This
is confirmed by a Kolmogorov-Smirnov test conducted under the null hypothesis of
equal distribution of ∆ by beliefs, which I fail to accept (p-value < 0.001).

I design an econometric specification that uses as outcome both the probability
and the extent to which individuals overestimate. The baseline equation writes

Overestimationit = γBeliefit + βDeviationut + αi + λt + uit (3.5)

where Beliefit is the binary variable indicating whether individual i in survey
wave t believes that droughts have increased over the past twenty years. Deviationut

refers to the short-term deviation in dryness from the LT Exposure and αi and λt

are individual and year fixed effects. Standard errors are clustered at the grid cell
level.

Even when accounting for the fixed effects, the OLS regression may yield biased
estimates of the effect of beliefs on accuracy for several reasons. First, individuals
may alter their long-lasting beliefs after receiving new information and therefore be-
liefs could change as a consequence of the interpretation of drought events. Equation
(3.5) may be subject to simultaneity bias and the estimates of the effect of beliefs
on the interpretation of drought events would be biased downwards. Second, the

11Union, or grid-cell, fixed effects are superfluous since all individuals in the estimation sample
never change place of residence and therefore union-specific unobserved heterogeneity is taken into
account by individual-specific fixed effects.
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estimate of the coefficient may also be biased because of classical measurement error.
This would lead to an attenuation bias and thus γ̂ would again be biased towards
zero. The errors in measurement of the belief may be correlated with the noise uit,
which represents other unobservable determinants of outcomes, for example, poorer
households might be more exposed to droughts but less able to assess damages ac-
curately. Finally, other omitted time-varying individual-specific characteristics such
as risk perceptions may be simultaneously correlated with changes in individuals’
beliefs about droughts and in the recollection of drought events.

To address the concerns on endogeneity, I adopt an instrumental variable ap-
proach using as an instrument the average long-term exposure to dryness over the
previous twenty years. This variable complies with the two restrictions for a valid
instrument. The variable is relevant as shown from the estimation of Equation (3.4)
(Table 3.1, column 3). A household frequently exposed to large extreme weather
events and one not frequently exposed may differently interpret an event of the same
magnitude (Guiteras et al., 2015). Average long-term exposure is expected to satisfy
the exclusion restriction, by determining individuals’ interpretation of past drought
events only through their beliefs about these events. The validity of the instrument
and the identifying assumption is discussed below. Testing whether the interpreta-
tion of new information is tilted towards the beliefs provides evidence of confirmation
bias if the estimated coefficient γ̂ is positive and statistically significant.

Identifying Assumption and Instrument Validity

In an OLS regression, the identification of the effect of beliefs on individuals’ inter-
pretation of drought events is threatened by reverse causality, omitted variable bias
and classical measurement error. To address these and similar concerns, I adopt an
instrumental variable approach and use the twenty-year long-term average exposure
to dryness as an instrument for beliefs of increase in droughts. The instrumental
variable approach strengthens the causality argument under the exclusion restriction
that exposure to dryness does not affect the accuracy of recollecting drought events
via other channels besides beliefs.

The variation underlying the instrument, relative changes in long-term exposure
to excess dryness, is plausibly as good as random and hence likely exogenous to
within-individual variation over time. By retaining only variation in beliefs gener-
ated by the quasi-experimental variation in long-term dryness, this approach exploits
the rational component of changes in beliefs estimated from variation in dryness
exposure. If individuals did not exhibit confirmation bias, using an instrumental
variable approach, beliefs should have a null effect on the interpretation of weather
events.

There are three major concerns that may violate the exclusion restriction. In
what follows, I describe additional tests that assuage concerns on its validity. First,
variation in the instrument may have an indirect effect on self-reported evidence
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through the omitted variable of subjective well-being and mood (Mellon, 2021).
According to the empirical evidence on self-reported life satisfaction (Maddison and
Rehdanz, 2011), the estimates of beliefs on recollection of droughts may be downward
biased. Droughts have a negative effect on happiness (Sekulova and van den Bergh,
2013; Keshavarz and Karami, 2012) and life satisfaction (Carroll et al., 2009), which
could positively affect the overestimation of past weather events (Forgas et al., 2009)
and thus threaten the exclusion restriction. Nevertheless, studies using an individual
fixed-effect empirical setting (Feddersen et al., 2016) do not detect a relationship
between climate and self-reported life satisfaction and find an effect close to zero.
These findings allay potential concerns about the validity of the instrument.

Second, objective drought exposure may affect the individual’s recollection of
past drought events through past adaptation. This concern would arise if past envi-
ronmental conditions affected past actions, which would in turn impose “historical
restraints” on current actions (Lemoine, 2021). Households that adapted due to
changes in dryness might experience fewer droughts, and thus underestimate them,
than if they had not adapted. For this reason, this potential channel would bias
downwards the 2SLS estimates. In order to allay the potential concern about the
validity of the instrument, the econometric specification includes a history of tran-
sient shocks proxied by the short-term deviation from the long-term exposure to
dryness. This should reduce the bias introduced by historical restraints. In Sec-
tion 3.5, additional robustness checks show that the adaptation channel does not
threaten the identification of the effect of beliefs.

Finally, the instrument may be positively correlated with the propensity of indi-
viduals to seek weather information and listen to weather forecasts. The literature
exploring this channel uses internet search activity data to examine if local short-run
weather fluctuations cause people to seek information about climate change, find-
ing that they have an effect on search behavior (Choi et al., 2020), but not always
consistent with the projected impacts of climate change (Lang, 2014). The main
difference between the previous findings and my design stands in the use of a long-
term average in place of short-term fluctuations. The use of long-term exposure to
dryness should allay the concern on its potential correlation with seeking informa-
tion on climate change. Furthermore, if this channel existed, seeking and receiving
more weather information would be negatively correlated with the recollection of
drought events. A more informed individual would be able to reduce the distance
between the self-reported and objective number of droughts. Therefore, this channel
would underestimate the effect of beliefs on the overestimation of drought events.
The survey does not contain explicit information on the individual use of weather
information, however, in Section 3.5, I discuss additional robustness checks that
assuage concerns about the validity of the instrument. Table C6 shows the correla-
tions between the instrument and the additional controls included in the robustness
exercises. Out of the ten estimates, I find that only one is statistically significant at
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the 10% level, which is consistent with sampling variation given the multiple tests
carried out, thus strengthening the exogeneity hypothesis of the instrument.

3.5 Results

3.5.1 Objective Exposure, Beliefs and Accuracy

Table 3.1 displays the results for the effect of objective exposure to dryness on
beliefs and recollection of drought events. Columns (1) and (2) separately investigate
whether short-term deviations and long-term exposure predict self-reported beliefs
and the measure of accuracy. Column (3) includes them both, and in column (4) I
include their interaction, as in Equation (3.4).

When considering the belief of increase in droughts, both the long-term average
exposure (column 1) and the short-term deviation from the reference environment
(column 2) have a positive statistically significant effect. The effect of long-term
average exposure is more than ten times larger than the effect of short-term devia-
tions. A one standard deviation (SD) increase in long-term exposure is associated
with approximately a 1.2 SD increase in the probability of believing that droughts
have increased over the previous twenty years (15.13×0.04/0.5).12 In contrast, a one
SD increase in deviations from the average drought exposure increases the proba-
bility of believing in an increase in droughts by around 0.14 SD (0.729×0.10/0.5).
When considering the effect of both LT Exposure and Deviation in column (3) and
including their interaction (column 4), only the coefficient associated with long-term
exposure is statistically significant.

When regressing the probability of overestimating the number of drought events
and the extent of overestimation on the full specification, the effect of short-term de-
viation and of the interaction term are not statistically different from zero (columns
8 and 12). Long-term exposure continues to have a sizeable positive and statis-
tically significant effect on individuals’ overestimation of drought events across all
specifications.

The findings suggest that objective exposure matters for climate change belief
formation in Bangladesh. Long-term average exposure to dryness predicts beliefs
about increases in droughts and overestimation of past droughts, whereas deviations
from local average conditions do not matter. On the one hand, these results differ
from previous findings that show that, although in a different geographical context,
recent, local weather anomalies matter for the formation of climate change beliefs
in the United States (Konisky et al., 2016; Kaufmann et al., 2017). On the other
hand, these findings add empirical evidence to the result that the experience of a
single drought event may not be enough to alter climate change beliefs and what
matters is the average dryness condition in the long-term (Carlton et al., 2016). To

12Respondents’ median age is 45. Baseline results are robust if excluding individuals below 30
years old (around 7% of the sample).

116



corroborate this hypothesis, I regress beliefs on long-term average exposure and the
average number of drought events experienced over the five years before the first
wave and between the two waves including different types of droughts (moderate,
severe, extreme). Table C7 shows that beliefs are only explained by long-term
average exposure.

The results are robust to different estimation methods, using a logit method for
the belief of increase in droughts and the probability of overestimating drought events
(Table C8) and a Poisson method for the extent of overestimation (Table C9). The
results are not specific to the cut-off used to compute the objective number of drought
events. I re-estimate Equation (3.4) including moderate and severe drought events
(Tables C10 and C11). Long-term exposure to dryness has a positive and statistically
significant effect on the extent of overestimating drought events (Column 8). The
coefficient is larger in magnitude when including also moderate droughts, smaller
when considering severe droughts, but still larger than in the baseline specification
in Table 3.1 that only records extreme droughts. An increase in long-term exposure
makes the environment more drought-prone, affecting in primis the probability of
a moderate drought event and thus increasing the probability of overestimating
droughts.

Three additional tests check the robustness of the results to other measures of
drought exposure. First, results are robust to measuring dryness and meteorological
droughts using different time scales of the SPEI. Different time scales define the
period considered over which water deficits accumulate. I replicate the baseline
results using the SPEI-4, SPEI-6 and SPEI-12 that, respectively, account for water
deficits accumulated in the previous four, six and twelve months (Table C12). I
also rescale the SPEI monthly realizations relative to each respondent’s specific
lifetime exposure to dryness conditions. To do so, I compute the individual-specific
lifetime mean and standard deviation of dryness conditions using the SPEI and then
normalize the SPEI monthly realizations used to construct long-term exposure and
short-term deviations. This approach allows for the same SPEI realization in a given
union to have different standardized probabilities with respect to each individual’s
lifetime exposure. Table C13 shows that results for different SPEI time scales are
robust, providing suggestive evidence that individuals perceive exposure and form
beliefs relative to their average environment based on their lifetime exposure. Figure
C5 shows that individuals’ beliefs are relatively inelastic to short-term deviations
and beliefs depend on the relative long-term average exposure compared to their
lifetime experience. Finally, instead of obtaining union-specific values of SPEI based
on zonal statistics, I interpolate gridded data based on the inverse squared distance
from the union centroids using as distance cut-offs 40, 80 and 120 km. Baseline
results hold constructing dryness measures based on this approach (Table C14).

I also restrict the focus to the respondents who (weakly) overestimate the num-
ber of past drought events (Table C15). The sample size drops down to around 100
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observations when considering those who overestimate severe drought events, there-
fore while the precision of the estimates deteriorates, the coefficients on deviations
are never statistically significant and the coefficients on long-term exposure remain
fairly stable across the estimations.

3.5.2 Directional Motivated Reasoning

Next, I shift the focus to the relationship between beliefs and interpretation of
drought events. I test the hypothesis that individuals adopt directional motivated
reasoning and are subject to confirmation bias. Under this hypothesis, individuals’
interpretation of drought events would be biased towards their prior beliefs, such that
holding beliefs that droughts have increased has a positive effect on the probability
and extent of overestimating the number of droughts.

Since only beliefs of increase in droughts are recorded in the survey, I only focus
on the overestimation of the number of past drought events. Further research should
explore whether directional motivated reasoning is displayed also by individuals who
hold beliefs about a decrease in droughts, leading to a biased underestimation of
drought events.

Panel A of Table 3.2 reports the OLS (columns 1 and 2) and 2SLS (columns 3
and 4) estimates of Equation (3.5) using as outcome the indicator that individuals
overestimated the number of droughts (∆ > 0) (columns 1 and 3), and the extent to
which individuals overestimated droughts (∆) (columns 2 and 4). Panel B reports
the first stage estimates of the instrumental variable approach. The coefficient as-
sociated with Belief is positive and strongly statistically significant in both the OLS
and 2SLS specifications. Consistent with Proposition 2, the belief of an increase in
droughts increases the likelihood of overestimating drought occurrence by about 80
p.p. (column 3). When exploiting the extent of overestimation, beliefs have a posi-
tive and statistically significant effect, increasing the overestimation by four (column
4).

The magnitude of the 2SLS coefficient associated with Belief is significantly larger
than the OLS estimate both in the probability and extent of overestimation. One
potential explanation is that the OLS estimates suffer from reverse causality and
attenuation bias due to measurement error.13 A second possibility is that the 2SLS
estimation identifies a local average treatment effect (LATE) for individuals that
were more exposed to variation in excess dryness and thus more likely to update
their beliefs about increases in droughts and overestimate their number.

13In an OLS setting undermined by reverse causality, the coefficient associated with beliefs would
be biased downwards, and under the classical error-in-variables assumption, OLS estimates would
suffer from attenuation bias due to measurement error. As shown in Panel B of Table 3.2, long-
term average exposure to dryness has a positive, significant effect on belief and the Kleibergen-Paap
(K-P) Wald F-statistic for weak identification is 21.736, higher than any critical value reported by
Stock and Yogo (2005).
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Table 3.2: Directional motivated reasoning. OLS and 2SLS estimates.

OLS 2SLS

(1) (2) (3) (4)

Panel A: Probability Extent Probability Extent

Belief 0.166∗∗∗ 0.368∗∗∗ 0.797∗∗∗ 4.049∗∗

(0.0491) (0.115) (0.232) (1.541)
Deviation 0.248 -0.326 -0.213 -3.010∗∗

(0.211) (0.997) (0.335) (1.421)

F-stat 21.736 21.736

Panel B: Belief of Increase in Droughts

LT Exposure 14.60∗∗∗ 14.60∗∗∗

(3.135) (3.135)

Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 1428 1428 1428 1428

Notes: The sample includes the 714 individuals surveyed in both survey waves. The
dependent variable is a dummy equal to 1 if the individual overestimated the number
of drought events, i.e. ∆ > 0 (columns 1-3) and the measure of overestimation ∆
(columns 2-4). The measure ∆ is constructed as explained in Equation (3.1), by taking
the difference between the self-reported number of drought events in the survey and the
number of drought events recorded using the (non-consecutive) monthly realizations of
the SPEI below -2 for extreme events over the same time period. The table reports
the OLS estimates of Equation (3.5) in columns (1) and (2) and the 2SLS estimates in
columns (3) and (4) in Panel A. Panel B reports the first stage associated with 2SLS
regressions, controlling for Deviation. The main regressor of interest is Belief, which is
instrumented with the LT Exposure in columns (3) and (4). All regressions control for
individual and year fixed effects. F-stat refers to the K-P F-stat for weak instruments.
Robust standard errors, clustered at the grid cell level, in parentheses. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

These results provide suggestive evidence that individuals adopt directional mo-
tivated reasoning when interpreting drought events. The information is distorted,
and changes in the perception of information for a given objective information set are
driven by individual beliefs. Figure 3.1 plots the cumulative distribution functions
of the predicted values of the extent of overestimation from Equation (3.5) for the
two belief types. The gap between the two distributions shows that individuals with
prior beliefs that droughts have increased exhibit confirmation bias and overestimate
the number of drought events.

Same number of recorded droughts. Using objectively recorded droughts, all
individuals within the same grid cell are exposed to the same set of objective infor-
mation (the households in the sample do not change place of residence across the
two waves). Any variation in the interpretation of droughts stems from asymmetric
changes in beliefs. To corroborate this hypothesis, I restrict the sample to the unions
that experienced the same objective number of drought events. This setting is simi-
lar to an experiment in which all participants are given the same objective evidence
(with the clear difference that in this setting the evidence cannot be controlled by
the experimenter).
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Figure 3.1: Differential cumulative distribution functions of pre-
dicted overestimation of droughts

Notes: Figure shows the cumulative distribution function (CDF) for the
extent of overestimation predicted from Equation (3.5) using a 2SLS ap-
proach. The dashed green line shows the CDF for individuals in the es-
timation sample that did not report that droughts have increased. The
solid red line shows the CDF for individuals in the estimation sample with
a belief that droughts have increased. The extent of overestimation ∆ is
computed as explained in Equation (3.1): I use the cut-off for extreme
drought events (SPEI ≤ -2) to compute the number of objective drought
events in a given union and subtract it from the number of self-reported

drought events over the same time period.

Since there is substantial heterogeneity across unions in the number of extreme
droughts experienced, this analysis can only be performed for the unions that have
not experienced any extreme drought event.14 With this restriction, all households
in the sub-sample did not face any drought in the years before each survey wave, and
any residual asymmetric variation in interpretation is explained by changes in indi-
vidual beliefs (accounting for short-term deviation in excess dryness and individual-
specific and year-specific fixed effects). The marginal effect of believing in an increase
in drought increases the probability of overestimating droughts by 95 p.p. (Table
C16). This result demonstrates that individuals with prior beliefs of increases in
droughts, although not recently exposed to extreme droughts, will distort their in-
terpretation and overestimate them.
Measures of drought exposure. I also test for the robustness of the results using
different SPEI time scales to construct drought exposure based on different periods
over which water deficits accumulate. Table C17 shows similar 2SLS estimates using

14Since the SPEI values are normally distributed, extreme drought events (SPEI ≤ −2) account
for about 2.3% of all available historical values. On average, such SPEI values would then be
recorded once every 44 months, explaining why no extreme droughts is the only case that brings
together several unions.
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the SPEI-4, SPEI-6 and SPEI-12. I also normalize the SPEI to individual-specific
lifetime exposure to dryness conditions and obtain a robust positive effect of beliefs
on the probability and the extent of overestimating droughts across different SPEI
temporal scales (Table C18). Finally, the results are robust to the construction of
drought exposure based on the interpolation of gridded data weighted by the inverse
squared distance from the union centroids using as distance cut-offs 40, 80 and 120
km (Table C19).
Drought cut-offs. The findings are robust to different drought cut-offs to con-
struct ∆ (Table C20). The effect of beliefs is larger including moderate droughts
(14.03, column 3) and severe droughts (6.92, column 4), compared to the effect on
recollection of extreme droughts (4.05, column 4 in Table 3.2). This result suggests
that the more ambiguous the signal, the more the evidence is open to interpretation.
This situation creates room for the learner to adopt directional motivated reasoning
and interpret ambiguous new information as a reinforcement of prior beliefs (Agnew
et al., 2018b,a). I also limit the analysis to the sub-sample of individuals who over-
estimate droughts using the cut-offs of severe and extreme droughts (Table C21).
Using extreme drought events, the OLS and 2SLS coefficients are positive, suggest-
ing that individuals distort their interpretation of information due to their beliefs
and exhibit directional motivated reasoning.
Historical restraints. As discussed in Section 3.4.2, a potential threat to the
validity of the instrument concerns individuals exposed to more harmful conditions
of dryness who may be more prone to adapt. Past weather affects past actions
(i.e., adaptation), imposing historical restraints on current actions (i.e., interpreting
drought events). The inclusion of short-term deviations from long-term average
exposure in the baseline specification as a measure of transient shock is a first way
to allay the concerns about this potential threat (Lemoine, 2021). Below, I discuss
two additional robustness checks to deal with this concern.
Short-term deviations. First, I vary the definition of short-term deviations and
include one-year and two-year lagged annual deviation measures from the long-term
average exposure to dryness and I also extend the time horizon up to five years.
Using a longer history of transient shocks reduces the bias introduced by historical
restraints (Lemoine, 2021). The coefficient associated with belief is consistently
statistically significant across all specifications and larger in magnitude than in the
baseline estimates (Table C22).
Adaptation. Second, I account for different measures at the union-level that proxy
for variations in the cost of adaptation(Tables C23 and C24).15 I include measures
of the presence of different types of banks (state-owned Krishi bank, Commercial
bank, Grameen bank, or any of the three) that could affect adaptation by relaxing
households’ financial constraints (columns 1-4). Similarly, I include an indicator of

15I use the community questionnaire that asks questions regarding each village. Table C2 reports
the exact wording and formulation of each question in the two waves.
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the presence of agricultural extension or a block officer (column 5), which may alter
the weather information set of households. I also account for access to electricity
(column 6), which could facilitate the use of electricity-dependent irrigation tech-
niques, and for the presence of a shop for fertilizers or pesticides (column 7), which
may influence the input use in agricultural production. The coefficients on beliefs
are consistently positive, with no considerable variations in magnitude. When in-
cluding all controls in column (8), the estimates are larger in magnitude, suggesting
that the baseline estimates could be underestimating the effect of beliefs.
Weather information. As explained in Section 3.4.2, the validity of the instru-
ment may be threatened if individuals more exposed to dryness are more likely to
seek weather information. This channel would downward bias the effect of beliefs
since more informed individuals would be more accurate. Although the survey does
not contain detailed information on the propensity of individuals to listen to weather
forecasts, I use data on the type of information on agricultural practices that could
relate to droughts received from extension agents and whether individuals receive
information from other sources besides the extension worker, in particular TV, ra-
dio or newspapers.16 When controlling for these variables, the 2SLS estimates of
beliefs are positive, statistically significant and always larger in magnitude than the
baseline estimates, suggesting that baseline estimates could be underestimating the
true causal effect of beliefs (Table C25).

3.6 Discussion and Conclusion

Despite scientific consensus, beliefs about climate change and its causes vary widely
across individuals, and awareness is still very low in the developing world (Lee et al.,
2015a). Understanding the determinants of beliefs and any potential biases that in-
dividuals may exhibit is essential for the design of more effective policies to help
them adapt (Lemos et al., 2019). Particularly so for agricultural communities in de-
veloping countries, heavily exposed to the consequences of climate change and whose
misinterpretation of weather signals may be considerably harmful. It is critical to
understand if individuals misinterpret weather shocks because they lack information
or because, instead of striving for accuracy, they pursue directional goals. Individu-
als may engage in motivated reasoning mechanisms when interpreting weather events
and exhibit confirmation bias.

This paper studies the effect of dryness exposure on beliefs of increase in droughts
and examines whether individuals adopt directional motivated reasoning in the in-
terpretation of drought events. First, I investigate how long-term average exposure

16I use the household questionnaire (module M) to construct different versions of a dummy
variable of receiving information on soil and water conservation, crop protection, new crop varieties
and crop utilization and a binary variable on the sources of information among which TV, radio
and newspapers. Table C2 reports the exact wording and formulation of each question in the two
waves.
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to dryness and short-term deviations affect beliefs and the accuracy of recollecting
them, finding that only long-term average conditions matter. This result suggests
that beliefs are longstanding, and hence shaped only by long-term conditions rather
than short-term deviations and that one single drought event may not be enough
to alter climate change beliefs. Second, I document that individuals engage in a
form of directional motivated reasoning, adding the first empirical evidence in a
developing country. Using an instrumental variable approach to tackle endogeneity
concerns, I find that individuals distort the perception of information due to their
beliefs. This result, robust to different specifications, provides suggestive evidence
that individuals are subject to confirmation bias: they recollect and overweight ev-
idence tilted towards their prior beliefs. From a normative perspective, individuals
exhibiting motivated reasoning when it comes to slow-onset environmental changes
suggest that policies should target individuals’ beliefs to avert ignoring information
countering prior beliefs.

Despite recent advancements in accurate estimates of climate impacts accounting
for adaptation benefits and costs across sectors (Carleton et al., 2022; Hultgren et al.,
2022; Rode et al., 2021; Auffhammer, 2022), the underlying conceptual framework
still relies on perfectly informed and rational agents with unbiased beliefs measured
by meteorological conditions (Deryugina and Hsiang, 2017). This paper empirically
shows for the first time that climate beliefs can exhibit directional motivated reason-
ing, in support of previous theoretical arguments diverging from Bayesian agents,
with asymmetric distortion of objective information as a result of climate beliefs
(Druckman and McGrath, 2019). Integrating features of incomplete rationality of
decision-makers and individual distortion of weather signals based on prior beliefs
can have substantial consequences on climate impact estimates accounting for indi-
vidual endogenous choices of adaptation.

These findings shed light on a cognitive bias that distorts the mental repre-
sentation of climate change and may subsequently lead to erroneous interpretation
of climate change consequences and prevent or facilitate behavioral responses (Zap-
palà, 2023a). Drought frequency in Bangladesh is projected to increase in the future,
particularly in regions historically considered less prone to droughts (Mohsenipour
et al., 2018). Since beliefs are formed on long-run exposure rather than short-term
deviations and drive the interpretation of weather events as a result of motivated
reasoning, if individuals do not update them, they may not put in place timely adap-
tation to avert climate damage. Understanding how household beliefs about climate
impact and cognitive biases impact adaptive decisions remain interesting questions
for future work.

Against this background, it is essential to identify the nature of the bias to pro-
pose adequate debiasing tools for effective policies. A solution proposed by Zhao and
Luo (2021) involves forward-looking techniques generating arguments for forward-
looking options. Accurate information on historical and projected changes in climate
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may shape individuals’ beliefs on climate change consequences and foster behavioral
responses to put in place timely adaptation. Further work should focus on the role
of information interventions exogenously varying the information set, and assessing
how these affect beliefs and influence cognitive biases.

A limitation of this study opens avenues for future research. The data do not al-
low to test for the presence of directional motivated reasoning and confirmation bias
among those who believe that droughts have decreased over time. Testing whether
this prior belief, commonly associated with climate change deniers’ or climate skep-
tics’ position, leads to biased interpretation of weather events underestimating them,
would be of particular interest.
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Chapter 4

Climate-induced migration and
environmental values

Climate concern as a political priority is crucial for gaining broad public support
for climate policies. The drivers of climate attitudes have so far been identified in
socio-economic and political factors and direct experience of weather shocks. This
paper introduces international migration induced by weather variations as a novel
determinant of climate concern. The empirical analysis leverages exogenous vari-
ation in weather in non-OECD origin countries to construct a gravity-predicted
instrument for asylum demands and study their effect on individual climate con-
cern and voting behavior for Green parties in the European Union between 2000
and 2019. Results show that weather-induced asylum applications heighten concern
about climate change as a political priority. Changes in stated preferences, however,
do not translate into changes in voting behavior, as there is no effect on Green party
votes in the European Parliament elections. These findings are consistent with a
drop-out of traditional Green voters, changes in preferences for individuals below
the voting age, as well as no changes in the pro-environmental policy manifesto of
political parties.

Keywords: Asylum seekers, climate change, climate concern, gravity model,
migration, political ideology

JEL Classification: D72, F22, J15, Q54, P16
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4.1 Introduction

Climate mitigation ambitions are not yet supported by adequate policy measures
that are lagging behind. Advancing and implementing green policies requires public
climate awareness in the first place. For this reason, the study of the drivers of
public concern about climate change as a political priority is of utmost importance
in addressing the pressing challenge of climate action. Previous literature has pre-
dominantly focused on socio-political determinants (Poortinga et al., 2019) and the
direct experience of extreme weather events as the main factors influencing climate
concern (Hazlett and Mildenberger, 2020; Hoffmann et al., 2022). Growing global
climate awareness is also accompanied by an increasingly accurate understanding of
the consequences of climate change, including larger migration flows (Dechezleprêtre
et al., 2022). Recent surveys in the European Union suggest respondents see climate
change as causing increasing migration inflows in their country (Figure 4.1). Despite
growing attention to the effects of economic migration in host countries (Alesina
and Tabellini, 2023), the political implications of climate-induced migration remain
largely unknown. The indirect exposure to weather anomalies through the rise in
migration inflows may reduce the psychological and social distance to such events,
fostering greater concern for the underlying cause: climate change.

This paper studies the effect of recent waves of weather-induced asylum seekers
in the European Union (EU) on individual climate concern and voting behavior for
Green parties from 2000 to 2019. I combine non-OECD outflows of asylum seekers
with high-resolution climatological data and several cross-country data sets on in-
dividual attitudes, political party agenda, and electoral outcomes. Using data from
the Eurobarometer, I analyze the implications of weather-induced asylum demands
on individuals’ concern about climate change as a political priority. Then, I exam-
ine if changes in stated preferences translate into changes in revealed preferences
by examining how pro-environment voting behavior is affected by weather-induced
asylum applications.

To estimate the causal effect of weather-induced asylum demands, I adopt an
instrumental variable approach, constructing a measure of weather-driven asylum
seekers from a gravity model leveraging plausibly exogenous variation in weather
(Bosetti et al., 2020). I recover an asymmetric U-shaped relationship between tem-
perature and asylum applications and use the estimated semi-elasticities on non-
linear functions of temperature and precipitation, holding fixed origin-destination
and time-specific characteristics and accounting for multilateral resistance to predict
bilateral flows. I then aggregate them to obtain an instrument for actual asylum
demands and overcome the potential measurement error in inferring the weather-
driven portion of asylum seekers. The time-varying instrument makes it possible
to control for unobserved country-, time-, and cohort-specific factors potentially
correlated with changes in both asylum demands and climate concern.
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Figure 4.1: Survey evidence on climate-migration nexus awareness

Notes: The figure plots the frequency of responses by country to the sur-
vey question “Do you think climate change influences migration in your

country?” in the European Investment Bank Climate Survey in 2019.

Starting from the survey-level analysis, I find that weather-induced asylum ap-
plications increase individual concern about climate change as a political priority.
The interaction with asylum seekers considerably varies across birth cohorts and
climate change has a differential degree of concern across age categories, as doc-
umented by previous surveys (Figure D1, Thompson (2021); Marris (2019)) and
recent climate-related school-strikes and demonstrations initiated by younger gener-
ations (Bowman, 2020; Kenis, 2021). Exploiting birth-cohort variation in exposure
to weather-induced asylum seekers, and accounting for country-specific age trends, I
document that individuals who grew up when their country was receiving more asy-
lum applications were, at the time of the survey, more concerned by climate change,
finding evidence that environmental values are shaped during the “formative age”,
between 16 and 24 years (Krosnick and Alwin, 1989). In my preferred specification,
a 50% increase in weather-induced asylum applications (approximately equivalent
to the inter-quartile range in the sample) increases an individual’s climate concern
by 19% of the sample mean. This is similar to the difference in climate concern
between Cyprus and Germany, or that between Hungary and France.

I propose and test for alternative mechanisms behind these results. First, I show
that the effect is driven by younger, female individuals who have less trust in national
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institutions and more in supra-national ones. Second, I provide descriptive evidence
on the relationship between past asylum demands and awareness of the climate-
migration nexus in host countries. Third, I rule out the hypothesis that news and
media coverage are inflating the effect of weather-induced asylum demands by using
data from Google searches. I find no correlation between the predicted measure
of weather-induced asylum demands and public attention through online searches
and conclude that weather-induced asylum demands are a central driver of climate
concern as a political priority and that online searches cannot explain the findings.
Last, I test for two alternative underlying psychological mechanisms. On the one
hand, asylum demands can reduce the geographical distance of weather anomalies
induced by climatic changes and influence climate change perceptions as a global
problem; on the other hand, climate-induced migration inflows can be perceived as
an additional social cost and a “threat” (Baldwin, 2013) increasing climate concern as
a political priority to support further climate action. This empirical finding supports
the theoretical result of the role of climate-induced migration in enhancing incentives
of host regions to fight climate change documented in Alsina-Pujols (2023). I find
that weather-induced asylum applications do not affect any other climate-related
attitudes and instead also spur migration concern as a political priority and drive
climate concern mostly among right-wing and less-educated individuals, providing
suggestive evidence in support of the latter mechanism.

This effect is not translated into changes in revealed preferences as measured
by Green party votes in European Parliament elections. At the country level, I
document that Green parties in countries more exposed to weather-induced asylum
demands between two electoral rounds do not gather larger consensus and if any-
thing, the consensus reduces in response to such flows. I propose several co-existing
explanations. First, weather-induced asylum applications do not affect any other
party vote shares but decrease electoral turnout, suggesting that the dropout of tra-
ditional Green voters of voting polls may partially explain the results. Second, only
individuals below the voting age and not yet eligible to vote are more likely to report
climate change as an important theme for the electoral campaign for the European
Parliament elections, which could explain the gap between stated and revealed pref-
erences at the voting booths. Finally, I examine changes in the supply side of the
political process as measured by the pro-environment policy platforms of the par-
ties. Exploiting within-party variation in environmental policy platforms from the
Manifesto Project Database, I find no effect of weather-induced asylum applications.
This result provides a complementary mechanism for which a lack of supply shifts
in the pro-environment policy platform may explain why the rising stated climate
concern in response to weather-induced asylum demands did not translate into more
pro-environment voting behavior.

This paper contributes to the literature investigating the determinants of cli-
mate change perceptions and concern. Various studies focus on the importance of
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socio-demographic and economic determinants such as political ideology, education,
unemployment, and gender (Carlsson et al., 2021; Hornsey et al., 2016; Czarnek
et al., 2021; Duijndam and van Beukering, 2021; Dechezleprêtre et al., 2022), and
experience of recent, local and extreme weather events (Konisky et al., 2016; Deryug-
ina, 2013; Hoffmann et al., 2022; Bergquist and Warshaw, 2019). Recent work
has also studied the relationship between climate protests and climate concern and
pro-environment voting behavior in Germany (Valentim, 2023; Fabel et al., 2022).
This paper identifies a new channel for the formation of concerns about climate -
weather-induced asylum demands - that reduce the geographical and social distance
associated with weather fluctuations induced by changes in climate. Contrary to
Deryugina and Shurchkov (2016), which provides experimental evidence that infor-
mation provision on the scientific consensus on climate change does not impact the
belief that policy action is warranted, I document an increase in climate concern
as a political priority in response to higher exposure to weather-induced asylum
demands.

There is a growing body of work on the relationship between immigration, polit-
ical attitudes, and voting behavior (Alesina and Tabellini, 2023). Previous research
has studied economic immigration and right-wing (anti-immigration) voting in dif-
ferent European countries, such as Austria (Halla et al., 2017; Steinmayr, 2021),
Denmark (Harmon, 2018), France (Edo et al., 2019), Germany (Otto and Stein-
hardt, 2014), Italy (Barone et al., 2016; Campo et al., 2021), Switzerland (Brunner
and Kuhn, 2018) and across Europe (Moriconi et al., 2019). Natives’ reactions have
also been studied through political ideology and preferences for redistribution in
Sweden (Dahlberg et al., 2012) and across Europe (Alesina et al., 2021; Moriconi
et al., 2022). Recent experimental studies have examined attitudes towards climate
migrants in Denmark (Hedegaard, 2022), Germany (Helbling, 2020) and the US
(Arias and Blair, 2022), finding a more favorable opinion than for economic mi-
grants, although this paper finds that climate migration spurs greater concern for
climate change as a political priority. This paper takes a cross-country perspective to
study the political effects of climate-induced migration in an observational setting.

From a methodological standpoint, this paper ties to the literature on the rela-
tionship between climate change and international migration. Previous surveys have
reviewed this relationship and the underlying mechanisms (Millock, 2015; Hoffmann
et al., 2021; Beine and Jeusette, 2021), that has ambiguous findings: positive in
certain cases (Cai et al., 2016; Backhaus et al., 2015; Marchiori et al., 2012; Coniglio
and Pesce, 2015), null in others (Beine and Parsons, 2015), or conditional on income
(Cattaneo and Peri, 2016). Concerning asylum seekers, Missirian and Schlenker
(2017b) find that temperature fluctuations affect asylum applications in a nonlin-
ear fashion, Abel et al. (2019) document that drought severity and induced armed
conflict are important drivers. This paper complements these works by estimating a
bilateral gravity model for asylum applications that leverages weather fluctuations
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as a push and pull factor and accounts for multilateral resistance to construct a
predicted climate-driven measure of asylum demands.

The remainder of this paper is structured as follows. Section 4.2 describes the
data. Section 4.3 explains the empirical strategy and the construction of the in-
strument. Section 4.4 presents the results for the effect of weather-induced asylum
demands on individual climate concern. Section 4.5 examines the effect on Green
party votes in European Parliament elections and explores alternative mechanisms
behind the findings. Section 4.6 concludes.

4.2 Data

I combine data from multiple sources including asylum applications at the coun-
try level in the European Union over the period 2000-2019, climatic gridded data,
individual attitudes towards climate, Google Trends data on daily searches about
migration and climate change, national party political agendas, and the electoral
outcomes in the European Parliament elections. This section (with complementary
information in the Data Appendix D.2) describes and summarizes the main data
sources.

4.2.1 Asylum applications

Bilateral data on asylum applications are sourced from the United Nations High
Commissioner for Human Rights. Despite the relatively small size of this facet of
migration, around ten percent of the overall migration flows, asylum seekers have
already received substantial attention in academia (Hatton, 2020; Missirian and
Schlenker, 2017a) and in the policy debate (Byravan and Rajan, 2017; Wennersten
and Robbins, 2017).

Around 13,400,000 asylum applications were registered in European Union (EU)
countries between 2000 and 2019, of which around 12,950,000 are from non-OECD
countries (D2). Following Missirian and Schlenker (2017b), I consider annual asy-
lum applications from each source country outside the OECD to any EU member
state. Figure D3 shows the aggregated outflows of asylum applicants from their
origin country over the twenty years considered, whereas Figure D4 displays the dis-
tribution of the asylum applicants across the EU member countries over the same
time period. Additional details on the data can be found in Appendix Section D.2.1.

The motivation behind the use of asylum demands as a measure of human
migration induced by climate is two-fold. First, asylum-seeking can be linked to
climate-related migration more directly than regular migration which is driven by
various other push and pull factors. More importantly, weather-induced conflicts
in developing countries spill over to developed countries through asylum applica-
tions (Missirian and Schlenker, 2017b) and increases in asylum demands have been
associated with climate change through drought increases (Abel et al., 2019) and
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conflict (Burke et al., 2015a; Hsiang et al., 2011). Second, whilst refugee flows are
also likely to be driven by climate-induced conflict, they are endogenous to a host
country’s specific policy in granting refugee status. Moreover, asylum procedures
are long and differ across host countries and more than two years can range between
application and formal status registration (Campo et al., 2021). Asylum demands
are therefore preferred since actual stock and refugee figures can be strongly affected
by country-specific political actions. Additional details on the asylum application
process can be found in Appendix Section D.2.1.

4.2.2 Weather data

I gather temperature and precipitation data from two sources. The main source is the
global reanalysis ERA-5 dataset by the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Copernicus Climate Change Service, 2023), which combines
model data with observations from across the world into a globally complete and
consistent dataset using information from weather stations, satellites, sondes, and
re-analysis. ERA-5 is available on a 0.25◦ × 0.25◦ resolution grid (≈ 28km at the
Equator) from 1950 to the present. The original temporal frequency is hourly, but
I aggregate it into daily data for the empirical analysis.

To maintain weather variability, I compute nonlinear transformations at the grid
cell level before averaging values across space using grid-level weights and accounting
for fractional grid cells that partially fall within a country (Hsiang, 2016). Spatial
aggregation at the country level is conducted in three ways. First, I simply average
all grid cells in a country over the entire year. Second, I use population count in each
grid cell as time-invariant weights from the gridded UN-WPP adjusted population
count from the Gridded Population of the World (GPW) dataset, v4.11 for the year
2000. Third, since a large share of the population in most origin countries works in
agriculture and given that weather is a direct input to the production function of
this sector, I construct weather exposure for the maize growing area (Missirian and
Schlenker, 2017b), with maize being the staple commodity accounting for the largest
share of humans’ caloric intake and grown around the world. I use the gridded data
set by Monfreda et al. (2008) to construct the fraction of each climate grid in a
country that grows maize (Figure D5 shows the fraction of each grid cell devoted to
maize cultivation around the world). I use crop-specific growing season dates from
Sacks et al. (2010) to compute the country-specific period of the year in which maize
is grown.1

1The data set gives the start and end dates of the maize growing season. When I use daily
weather data, I construct measures from the median planting date to the median harvest date.
When I use monthly weather data, I define the growing season to start on the first of the month of
the median planting date and to end on the last of the month of the median harvest date (Missirian
and Schlenker, 2017b). If the crop is grown more than once a year, I focus on the first season.
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For a sensitivity check, I also use the gridded Climatic Research Unit of the
University of East Anglia (CRU) data with a 0.5◦ spatial resolution (≈ 55km at the
Equator) and a monthly temporal resolution as in Missirian and Schlenker (2017b).

Previous research shows that agricultural productivity is the main pathway link-
ing temperature and migration (Cattaneo and Peri, 2016; Cai et al., 2016; Missirian
and Schlenker, 2017b; Bohra-Mishra et al., 2017; Feng et al., 2012; Marchiori et al.,
2012; Falco et al., 2019). It could be that higher temperatures have other disruptive
effects in countries besides agriculture, e.g. increased conflicts, wars, and effects on
health and fertility, which in turn would increase emigration rates. Nevertheless,
only certain of these reasons are valid for filing an asylum application (UN, 1951).
Although it is beyond the scope of this paper to pin down the exact mechanisms
through which weather fluctuations drive outflows in asylum demands, I provide evi-
dence that the agricultural productivity channel through seasonal weather engender-
ing higher “output conflict” (McGuirk and Burke, 2020) can be a valid mechanism
for inducing spikes in asylum applications by leading to changes in acceptance rates
(see Appendix Section D.4.4).

4.2.3 Individual climate concern

I use the Eurobarometer surveys as the main source for individual stated climate
concern across the European Union. The relevant surveys for the scope of the anal-
ysis regard those Eurobarometer Standard and Special editions that contain ques-
tions on individual perceptions, awareness, and attitudes towards climate change.2

Each Eurobarometer survey typically involves 25,000-30,000 respondents from all
EU member states. I select two main questions on the individual concern about
climate change as a political priority. The two variables, labeled respectively CC
EU Election and CC Pol Priority, measure in a binary fashion whether individu-
als consider climate change important in the electoral campaign for the European
Parliament elections and whether climate change is a priority for European Parlia-
ment deliberations. The exact formulation and temporal coverage of the questions
used as an outcome, and their summary statistics, are reported in Table D1. Since
the interest is in the effect of asylum seeker flows on natives’ awareness of climate
change, I restrict the sample to native-born individuals, i.e., born in their current
EU country of residence.

4.2.4 Electoral outcomes

I collect data on electoral votes for European Parliament (EP) elections from Schraff
et al. (2022). The data cover 28 countries at the NUTS-2 level and contain infor-
mation for six EP election rounds spanning 25 years from 1994 to 2019. From the

2The surveys also contain information on socio-demographic characteristics of the respondents
that are included as controls in the analysis, such as gender, age, education, employment status,
and political orientation.
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list of parties, I classify parties as Green on the basis of their party family clas-
sification in the Manifesto Project electoral program database (Merz et al., 2016)
and their membership in the European Green Party, a federation of political par-
ties supporting Green politics across Europe, that forms the G-EFA parliamentary
group in the European Parliament. On the basis of this information, I compute the
national Green vote share as a fraction of valid votes for Green parties in each coun-
try per election round in the four European Parliament elections held after 2000,
respectively in 2004, 2009, 2014 and 2019.3

Environmental values in the European political arena date back to the late-
20th century, following the rise of environmental awareness and the development of
new social movements. In particular, starting in 1984, Green parties agreed on a
common platform for the European Parliament elections, and the first Green Mem-
bers of the European Parliament were elected. They have faced different destinies
throughout Europe, accumulating electoral successes mainly in Germany, Belgium,
Finland, and France, whereas in other European countries, especially in Central and
Eastern Europe, their political relevance is more limited. Since then, Green parties
have become a more or less permanent feature on the political scene and they are
growing in visibility (Richardson and Rootes, 2006). Despite the variety of electoral
mandates, Green parties share the closeness to any environmental, ecological, and
climate-related matter, whose salience is here posited to have increased due to the
upsurge in weather-induced asylum applications.

I use European Parliament elections since voters are more willing than in national
elections to support small parties and properly reveal their electoral preferences
(Pearson and Rüdig, 2020). Being “second-order elections” (Reif and Schmitt, 1980),
voters have a lower level of strategies or utilitarian voting and are more likely to
“vote with the heart” (Hix and Marsh, 2007). For this reason, vote shares in these
elections provide a more accurate snapshot of the revealed preferences of voters
(Hoffmann et al., 2022).

4.2.5 Party political agenda

The Manifesto Project Database (MPD) (Merz et al., 2016) contains detailed in-
formation on the platforms (i.e., “manifestos”) of political parties in Europe and
elsewhere by using a content analysis of their electoral manifestos. Specifically,
based on these manifestos, it categorizes 56 different political positions relating to
economic, social, foreign policies, and, most importantly, the environment. It also
contains vote shares for each party in every legislative election. I retrieve information
for 622 European political parties available for elections between 2000 and 2019.

3Two new member states of the European Union, Romania, and Bulgaria, held elections to
the European Parliament in 2007 for the Parliament’s mandate 2004-2009, while Croatia entered
the European Union on 1 July 2013 and, as a new member state of the European Union, it held
European Parliament elections for the first time in 2013, with the elected member serving the
remainder of the Parliament’s 2009–2014.
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Based on MPD data, I measure preferences on environmentalism as the share
of quasi-sentences that positively referred to policies in favour of protecting the
environment, fighting climate change and other green policies, for instance: general
preservation of natural resources, preservation of countryside forests, protection of
national parks, animal rights. This topic includes a great variance of policies that
have the unified goal of environmental protection. Table D2 reports the number and
years of the European Parliament elections for each country and the number of years
of national elections covered by the MPD. Table D3 provides additional information
on the exact wording of each topic covered in the manifesto used in the analysis.

4.3 Empirical Approach

In this section, I present the baseline empirical approach adopted to estimate the
effect of asylum applications on environmental values. In Section 4.3.1, I examine
potential changes in individual stated concern about climate using survey data. I
investigate this channel by exploiting within-country variation over time and addi-
tional mechanisms leveraging within-country between cohort variation in exposure
to asylum seeker flows. Section 4.3.2 explains in detail the instrumental variable
approach adopted to strengthen the causal identification of the effect driven by the
weather-induced portion of asylum demands.

4.3.1 Individual-level analysis

I start by focusing on the demand side of the environmental political process. I
use citizens’ stated preferences as an initial measure of voters’ demand (Calderon
et al., 2023). The objective is to estimate the effect of weather-induced asylum
demands on citizens’ concern about climate change as a political priority in the EU
destination countries. By increasing the salience of migration as a consequence of
weather fluctuations, higher exposure to weather-induced asylum seekers may foster
greater concern about climate change among natives, in turn spurring the demand
for climate change policies and attention to the issue. I test this hypothesis with
individual-level regressions of the form:

Yi = β1 log
(

S∑
τ=s

AsyAppd,t−τ

)
+X ′

iγ +Z ′
dtδ+µd +κt−b +ζrt +θd ×age+εibdrt (4.1)

where Yi is a vector of climate-related policy preferences as described in Ta-
ble D1 of individual i belonging to birth-cohort b in country d in region r in year
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of interview t.4 The main explanatory variable is
∑S

τ=sAsyAppd,t−τ , that is, the
sum of all non-OECD asylum applications in country d over various time intervals,
to let diffusion mechanisms unfold and to account for the average length of the
electoral mandates in the country. The baseline specification accounts for asylum
demands over the previous five years; in Appendix D.3.2, I replicate the analysis
using other time frames. As the distribution of asylum demands is right-skewed,
I always consider logs and estimate relative impacts to allow for concavity in the
response and interpret the coefficients as semi-elasticities. I control for a set of in-
dividual covariates X ′

i, capturing socio-economic characteristics (gender, education,
political orientation, and employment status), potentially correlated with climate
change preference formation (Nowakowski and Oswald, 2020). Z ′

dt captures second-
order polynomial measures of annual temperature and total precipitation since local
weather conditions drive environmental preferences (Hoffmann et al., 2022).

I also include destination country fixed effects (µd) to partial out country ideol-
ogy at birth and anything specific to a certain country of residence that could be
unobserved heterogeneity in climate change beliefs (e.g. political, cultural). I add
age-specific κt−b fixed effects to partial out unobserved age-specific determinants of
preferences and attitudes (e.g. preferences specific to life-cycle)5, and I include re-
gion by survey-year fixed effects (ζrt) that absorb not only time-varying changes in
the overall ability of foreigners to migrate and international shocks but also region-
specific events in the year of the interview. Finally, I account for interactions of
country dummies with linear age trends (θd × age) to help rule out the possibil-
ity that results are driven by country-specific cohort effects. Standard errors are
clustered at the country level.

4.3.2 Instrument for asylum applications

In an OLS estimation of Equation (4.1), the coefficient β1 would produce a measure
of the partial correlation between asylum applications and the outcome of interest
that may be biased for several reasons. Unobservable characteristics affecting citi-
zens’ environmental values (captured in the term εibdrt) and correlated with asylum
demands would generate such bias. For instance, if asylum seekers are attracted
to countries where the attitudes of citizens are more favorable to immigration, and
these attitudes are correlated with climate attitudes or voting behavior towards
pro-immigration parties, then a spurious correlation could arise. Similarly, social,
economic, and demographic changes attracting asylum seekers and changing indi-
vidual attitudes would also induce bias.

4Regions are defined following the UN M49 nomenclature: Eastern Europe (Bulgaria, Hun-
gary, Poland, Romania, Slovakia); Northern Europe (Denmark, Estonia, Finland, Ireland, Latvia,
Lithuania, Sweden, United Kingdom); Southern Europe (Croatia, Greece, Italy, Malta, Portugal,
Slovenia, Spain); Western Asia (Cyprus); Western Europe (Austria, Belgium, France, Germany,
Luxembourg, Netherlands).

5I conduct robustness tests including birth year fixed effects instead of age fixed effects since
they are not perfectly collinear in a repeated cross-section. This approach does not alter my results.
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To address these concerns, in the following section, I explain the construction
of an instrument that leverages plausibly exogenous variation in weather in origin
countries, measured as a high-order polynomial of temperature and precipitation,
accounting for origin-, dyad- and time-specific unobservable characteristics (Bosetti
et al., 2020).

Gravity equation and predicting weather-induced flows

I propose an identification strategy exploiting plausibly exogenous variation in weather
to construct a predicted measure of asylum seeker flows, using it as an instrumental
variable in a 2SLS estimation strategy. I adopt a “gravity” approach that predicts
asylum applications based on nonlinear effects of variations in temperature and pre-
cipitations in origin countries (Bosetti et al., 2020; Beine et al., 2016).

Gravity models are frequently used in the migration literature to predict the
geography-driven portion of migrant flows and estimate the causal impact of migra-
tion on receiving countries’ economic performance (Ortega and Peri, 2014; Alesina
et al., 2016; Docquier et al., 2016) and probabilities of conflict (Bosetti et al., 2020).
I predict bilateral migration using an OLS estimator following Frankel and Romer
(1999) for the canonical log-transformation of the gravity equation.6 The bilateral
gravity equation is written as:

log (AsyAppodt) =f(Wot;BILod;α) + θod + µdt + χrt + uodt (4.2)

where the dependent variable log (AsyAppodt) is the natural logarithm of the
asylum applications from non-OECD origin-country o to EU destination-country d
in year t (Missirian and Schlenker, 2017b). To obtain bilateral time-varying vari-
ation in weather at the origin, I introduce interaction terms between weather Wot

and bilateral geographic characteristics BILod. I allow for heterogeneous effects of
weather by common border, common official language, common colonial history, and
the natural logarithm of bilateral (geodesic) distance between the two capital cities
(Cattaneo and Peri, 2016; Beine and Parsons, 2017; Bosetti et al., 2020).

In the baseline specification, I only consider contemporaneous weather and use
a fourth-order polynomial of daily average temperatures, summed across the maize
growing season, which provides sufficient flexibility to capture important nonlinear-
ities (Carleton et al., 2022). Analogous to temperature, I construct a second-order
polynomial of season-total precipitation over the maize growing season. I include

6A more common approach in the gravity estimation in trade and migration uses the Poisson
Pseudo Maximum Likelihood (PPML) estimator, which reduces concerns of potential inconsistency
in the estimation of multiplicative models in log-linearized form, and addresses the issue that OLS
estimates may be biased due to many zeros in bilateral flows (Silva and Tenreyro, 2006). I do not
adopt this estimation method for two reasons. First, the asylum application data do not contain
zeros. Second, most importantly PPML always requires including origin-time fixed effects to control
for the resistance term (Beine et al., 2016). By including such dummies, it would not be possible
to identify origin-time effects such as the identifying weather variation used in Equation 4.2.
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origin-destination fixed effects (θod) - which absorb the levels of the bilateral geo-
graphic characteristics - destination-by-year fixed effects (ψdt) and region-of-origin-
by-year fixed effects (χrt).7 In a set of robustness checks, I explore the sensitivity
of the results to alternative definitions of temperature and alternative functional
forms, including lower-order polynomials and binned daily average temperatures.
Additional robustness checks also include up to four lags of the weather variables to
allow for delayed effects. Standard errors are clustered by origin country-year.

One of the major challenges for the estimation of a gravity equation relates to
the so-called multilateral resistance term to migration, defined as the confounding
influence that the attractiveness of alternative destinations exerts on the bilateral
migration rate (Bertoli and Moraga, 2013). Omitting this term can generate biases
in the estimation of the coefficients of the determinants of migration, by ignoring
the influence of alternative destinations (Beine et al., 2016). This is particularly
important since weather fluctuations can be positively correlated between origins
and alternative destinations, both over time and space. Therefore, when ignoring
this, the origin terms Wot would pick up both their own effect and the effect of
alternative destinations.

Several strategies have been proposed to account for the multilateral resistance
term. Bertoli and Moraga (2013); Bertoli et al. (2016) show that under some data-
demanding conditions, the resistance term conforms with the common correlated
effects (CCE) estimator proposed by Pesaran (2006) and implemented in a climate
migration regression in Mullins and Bharadwaj (2021). Against this backdrop, I
adopt two different approaches that account for the multilateral resistance term
both non-parametrically and parametrically. First, the baseline specification con-
trols for destination-by-year fixed effects (ψdt) and region-of-origin-by-year fixed
effects to capture regional trends (χrt). Destination-by-year dummies completely
account for time-varying multilateral resistances in receiving countries (Feenstra,
2015), the most important aspect in the context of international migration (Beine
and Parsons, 2015). Region-of-origin-by-year dummies control for the multilateral
resistance to migration that is induced by time-varying heterogeneity in the pref-
erence for migration from a specific region of origin while ensuring estimation of
origin by time variation. Therefore, the regression only exploits exogenous year-to-
year variation in weather in origin countries to predict the flow of asylum seekers
and does not rely on baseline difference (e.g., different forms of government might
result in a different average number of refugees fleeing a country) to obtain causal
estimates of the relationship analyzed.

Second, in Appendix Section D.4.1 I detail the construction of a parametric
control of multilateral resistance MRodt that I include in additional robustness

7Following the UN M49 nomenclature, the world is divided into 17 regions: Australia and New
Zealand, Central Asia, Eastern Asia, Eastern Europe, Latin America and the Caribbean, Melanesia,
Micronesia, Northern Africa, Northern America, Northern Europe, Polynesia, South-Eastern Asia,
Southern Asia, Southern Europe, Sub-Saharan Africa, Western Asia, Western Europe.

138



checks. This measure of multilateral resistance is, for each destination-origin country
pair, the average of all the other destinations’ weather variables weighted by the
marginal propensity to apply for asylum in each destination country, constructed
as the ratio of asylum applications over the total asylum applications in the first
available year in the sample. These additional regressors account for changes in
the attractiveness of alternative destinations weighted by the propensity to migrate
to such alternative destinations (Mayda, 2010). Since these proxy variables do not
entirely capture the factors affecting changes in attractiveness and cannot be justified
theoretically, the inclusion of these parametric controls is to be interpreted only as
a robustness test on the stability of the estimates associated with origin weather
variation (Head and Mayer, 2014).

The vector of estimated parameters α̂’s from Equation (4.2) is used to con-
struct an instrument for the total asylum applications at the destination country-
year level. In particular, I define Xodt as the matrix of temperature and precip-
itation variables, including all interactions with bilateral characteristics, the re-
sulting weather-induced asylum seeker inflows predicted for country d in year t is
ÂsyAppdt =

∑
o exp (α̂Xodt). To test for the robustness of the results, I construct

alternative instruments. In Appendix Section D.4.2, I estimate a regression that
does not account for destination-by-year unobservable heterogeneity but includes
destination-specific weather as a measure of pull factor. In Appendix Section D.4.3,
I estimate host country-specific response functions to weather variations in origin
countries, which also accounts in an alternative way for multilateral resistance.

The predictors are based on a fixed-effects gravity regression, however, they do
not include the estimated fixed effects (Ortega and Peri, 2014). Hence, the instru-
ment is obtained only from the estimated semi-elasticities to weather fluctuations.
This may potentially reduce the predictive power, however, it increases the confi-
dence in isolating the variation in asylum applications solely induced by changes in
temperature and precipitation. For this reason, I interpret the finding as the effect
of weather-induced asylum applications, as I will refer to them throughout the rest
of the paper.8

Identifying assumption and instrument validity

The instrument relies on the variation solely induced by deviations in temperature
and precipitation in non-OECD origin countries and it is thus free from reverse
causality and exogenous to any single EU destination country, and within countries,

8Given the constructed nature of the instrumental variable, previous literature adjusts the 2SLS
standard errors by applying a correction that takes into consideration information drawn from the
first-step gravity equation (Frankel and Romer, 1999; Irwin and Terviö, 2002; Feyrer, 2009, 2019).
I do not apply any correction, since the correction is necessary only in the case of a generated
regressor, whereas in the case of a generated instrument, the 2SLS standard errors and test statistics
are asymptotically valid (Bosetti et al., 2020; Wooldridge, 2010).
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to any specific age cohort or national party. The time-varying nature of the in-
strument allows me to account for destination country-specific factors and shocks
common to all destination countries that may be correlated with migration flows
and environmental preferences.

A potential violation of the exclusion restriction for the predicted weather-
induced asylum seeker flows as a valid instrument could arise if origin-country
weather variations were correlated with environmental preferences through chan-
nels other than their effect on asylum applications. The key identifying assumption
is that only asylum applications are directly affected by the predicted measure of
weather-driven asylum applications, conditional on the fixed effects.

A first concern for the credibility of this assumption is that weather anomalies
driving asylum demands are spatially correlated. In the individual-level analysis,
this concern would arise if, relative to other birth cohorts in the same country, or
relative to individuals in the same birth cohorts in other destination countries, co-
horts more exposed to asylum applications because of weather fluctuations had also
experienced local weather shocks that influenced their preferences. For this reason,
all specifications always include both linear and quadratic terms of temperature and
precipitation in the destination country. Weather changes are an important fac-
tor explaining people’s awareness of climate change, although previous studies show
that only local weather conditions and direct personal experience of climate-related
events matter for individual beliefs about climate change (Bergquist and Warshaw,
2019; Lujala et al., 2015; Lee et al., 2018; Hoffmann et al., 2022; Deryugina, 2013;
Hazlett and Mildenberger, 2020; Lee et al., 2015b).

A second concern for the validity of the instrument is that individual climate
preferences lie on differential trends as a function of baseline bilateral networks,
which may make certain destination countries more likely to change their environ-
mental values due to weather fluctuations in more salient origin countries. To allay
this concern, I use gradual climatic conditions in the gravity equation and not nat-
ural disaster measures such as droughts or floods that may affect the outcome of
interest through other channels than the inflows of asylum seekers in the country.
The gravity equation also includes time-varying destination-country fixed effects,
which absorb the long-run effects of climate on the destination country through
colonization history, disease environment, geographical accessibility, as well as the
country’s institutions.

I also conduct an empirical test by constructing a measure of country-level ex-
posure to temperature and precipitation fluctuations via past migration links. For
this, I assume that destination countries that in the past received a higher share of
asylum applications from certain origin countries are more likely to receive migrants
from these origins when weather fluctuations occur there. I exploit the network
channel, according to which migrants tend to choose destinations previously chosen
by migrants from their same origin country (Mahajan and Yang, 2020; Card, 2001).
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I use the average share of asylum applications from origin country o to destination
country d over the average number of asylum applications in destination d in the
2000-2005 baseline period to construct a destination-year level weighted measure of
exposure to weather shocks in origin countries via migration links. I then regress the
individual-level outcomes on this shift-share measure of exposure to weather fluc-
tuations in origin countries. A statistically significant effect would undermine the
validity of the instrumental variable approach by indicating that individuals change
their environmental preferences as a function of weather fluctuations in origin coun-
tries via the baseline propensity to receive asylum seekers from such countries instead
of annual fluctuations in weather-induced migration flows. Figure D10 allays such
concern finding a null effect of indirect exposure to weather fluctuations. In addi-
tional robustness checks, I also include such measures as a control in the baseline
specification (Table D8).

A third concern is posed by weather shocks in origins that could increase higher
salience of climate change in media and affect environmental attitudes. To account
for this channel, I gather data from Google searches (see Data Appendix Section
D.2.3) and use them to test for the correlation between Google searches about cli-
mate and migration and the actual asylum demands and include these as additional
controls in the baseline estimating equation (see Section 4.4.2 for further details).

A fourth and final concern is that even if one could observe the reason for the
asylum application, climate change and weather-related reasons do not apply to the
refugee criteria of the 1951 Convention (UN, 1951). People may have a valid claim
for refugee status for reasons indirectly affected by climate change (e.g., through
disputes, armed conflict, and violence), but would not list climate as a direct cause
of asylum application. For this reason, despite being widely used, the term “cli-
mate refugee” is not endorsed by institutional bodies, that deem more accurate the
use of “persons displaced in the context of disasters and climate change” (UNHCR,
2021). I ascertain that spikes in additional demands induced by weather anoma-
lies are valid for asylum and are thus not due to economic reasons (Missirian and
Schlenker, 2017b). I examine the relationship between the number of accepted ap-
plications per year and the application anomalies driven by weather fluctuations and
find that weather-induced spikes lead to higher acceptance rates, providing sugges-
tive evidence that application anomalies induced by weather fluctuations classify as
valid demands for asylum and are thus recognized as refugees by host countries (see
Appendix Section D.4.4 for additional details).

Zero stage - Gravity results

Table D4 displays the estimates of the coefficients in the gravity model in Equa-
tion (4.2) using the sample of non-OECD countries as the origin and the sample of
EU27 + UK as destination countries. I report the estimates using three different
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measures of temperature and precipitation: unweighted average annual weather (col-
umn 1), weather weighted by maize area during the maize growing season (column
2), weather weighted by the population during the maize growing season (column
3).

To understand the response of international migration to weather variations, I
also consider a model without interaction terms with bilateral controls (Tabular re-
sults in Table D5). Figure D6 shows a robust asymmetric U-shaped relationship
between temperature in the origin and asylum applications, with effects compared
to a day at 20◦C. The effect is strongly positive and statistically significant only
for an additional day hotter than 25◦C compared to a 20◦C day. Conversely, total
precipitation is not an important predictor for migration, consistent with previous
findings (Cai et al., 2016). I also include up to three lags of the weather vari-
ables to account for delayed increases in asylum demands as a result of past weather
fluctuations or forward migration displacement. The contemporaneous effect of tem-
perature persists with the inclusion of up to three lags and asylum demands show
a similar response function to past temperature fluctuations (Table D6). Similar
estimates are also obtained when including weather conditions in the destination
country as a pull factor (Table D7). Appendix Section D.4.1 discusses the results of
the specification that controls for the multilateral weather parametrically.

I also explore a non-parametric version of the effect of weather using binned
daily average temperatures over the maize growing season. Figures D7 and D8
report the coefficients associated with the 5◦C and 3◦C bins across the temperature
distribution interval. In particular, the positive effect of days with temperatures
above 30◦C on asylum demands is robust to such alternative specifications. Results
are similar when replicating the analysis using monthly averages of temperature and
precipitation from CRU weather data (Figure D9).

Figure D11 displays the conditional correlation between the aggregated inflows
of asylum seekers in EU destination countries and the predicted weather-induced
portion of inflows obtained in the four alternative instruments that, respectively,
use origin weather and bilateral characteristics; include the parametric multilateral
resistance; include origin and destination weather; obtain destination-specific effects
of origin weather.

I visually inspect the variation underlying the instrument by plotting its average
annual change in Figure D12. The largest asylum demands induced by weather fluc-
tuations come from Sub-Saharan Africa, the Middle East, and partly Latin America.
At the same time, there is substantial variation within the same region, and the in-
strument predicts lower levels for a number of countries in Central America and
South-East Asia. In the presence of heterogeneous treatment effects, the 2SLS esti-
mates identify the impact of asylum demands in destination countries coming from
source countries due to exogenous changes in weather, therefore estimating a local
average treatment effect (LATE) on the “compliers” (Imbens and Angrist, 1994) in
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host countries.

4.4 Individual environmental preferences

4.4.1 Main results

Table 4.1 displays the main results for the effect of weather-induced asylum applica-
tions on individual climate concern as a political priority. I report the OLS estimates
of Equation (4.1) in columns (1) and (3), and the 2SLS estimates in columns (2)
and (4), respectively for the two main survey outcomes.

The OLS estimates reveal a small and, respectively, negative and positive, but
never statistically significant correlation between asylum applications and prefer-
ences related to climate. Turning to the 2SLS estimates, the Kleibergen-Paap F-
stats confirm the validity of the instrument. In contrast with the OLS estimates,
the 2SLS coefficients always indicate that weather-induced asylum applications have
a strong, positive, and statistically significant effect on individual concern about
climate change as a political priority. Country-by-age linear trends absorb country-
specific trends in beliefs and rule out the possibility that country-specific cohort
effects drive the results.

The magnitude of the 2SLS coefficients for the effects of asylum applications
is substantially larger than that of the OLS ones by an order of magnitude. One
potential explanation is that OLS estimates suffer from attenuation bias due to mea-
surement error in asylum applications and do not capture the effect of the weather-
driven portion of asylum seekers. As speculated above, another possibility is that the
estimation strategy identifies a local average treatment effect (LATE) for countries
that experienced larger inflows of asylum seekers as a result of weather fluctuations
and whose citizens were more likely to update their preferences for climate change.
The effect is modest in size but not negligibly small. According to the coefficient
reported in columns (2) and (4), doubling the country’s weather-induced asylum
applications in the five years before the survey increases the probability of reporting
climate change as an important theme for the electoral campaigns of the European
Parliament elections by 2.3 percentage points (p.p.) and by 4.3 p.p. the probability
of reporting climate change as a political priority for the European Parliament de-
liberations. In the latter case, such a magnitude is similar to the difference between
Cyprus’s and Germany’s country averages. With respect to the mean, that is a 33%
increase in the preference for climate as a priority for EP elections and a 41% in-
crease in the preference for climate as a priority over EP deliberations. To put this
into context, comparing the effect to the partial correlation of socio-demographic
characteristics, the effect of experiencing a doubling in asylum demands over five
years on climate as a priority for EP elections is over seven times larger than the
effect of being employed and twice the effect of being left-wing leaning.9

9Table D32 replicates Table 4.1 reporting coefficients on all individual controls.
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Table 4.1: Weather-induced asylum applications and individuals’ environmental values

Dep. variable CC EU Election (Mean: 0.068) CC Pol Priority (Mean: .106)

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

log(Asylum Applications) -0.00147 0.0226∗∗ 0.00746 0.0431∗∗

(0.00384) (0.0106) (0.00651) (0.0207)

Weather Controls X X X X
Individual Controls X X X X
Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Statistic 21.566 26.241
N 106614 106614 130068 130068
Number of countries 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they
are interviewed. The dependent variable in columns 1-2 is a dummy equal to 1 if the respondent reports climate
change as a theme that the European Parliament should give priority to when deliberating. The dependent
variable in columns 3-4 is a dummy equal to 1 if the respondent reports climate change as a theme that should
be discussed as a matter of priority during the electoral campaign for the next European Parliament elections
(see Table D1 for exact wording and additional details on the construction of the variable). Asylum Applications
is the sum of the asylum applications in a given country in the five years preceding the survey year, as defined in
Equation 4.1. Columns (2) and (4) report the 2SLS estimates using the predicted asylum applications constructed
from the gravity-predicted asylum application flows as described in Equation (4.2) in the text. All columns control
for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no
education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared five-year average
temperature and total precipitation, linear and squared annual temperature and total precipitation), and country,
survey year, age, region-by-survey-year fixed effects and country by age linear trends. Robust standard errors,
clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments.
Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Summary of robustness checks. In Appendix D.3.2, I test for the robustness of
the findings. First, I account for the average weather conditions in origin countries
weighted by the baseline propensity to receive migrants from those countries and
find robust and stronger estimates, suggesting that actual migration flows induced by
weather fluctuations increase the salience of climate change, inducing updates in in-
dividual concern about the issue (Table D8). Second, I replicate the analysis includ-
ing additional fixed effects (Table D9). Third, I consider alternative gravity-derived
instruments including only using origin weather fluctuations, destination-specific ef-
fects of temperature in origin countries and constructed using bilateral geographic
controls (Table D10). Fourth, I consider alternative time windows over which expo-
sure to asylum applications is defined (Table D11). Fifth, I use alternative regressors
considering only the instrumented contemporaneous asylum demands and the mea-
sure of weather-induced asylum anomalies constructed in Appendix Section D.4.4
(Table D12). Sixth, results are virtually unchanged when dropping one country at
a time from the estimation sample (Figure D19). Seventh, weather-induced asylum
applications do not affect concern on any other topic or theme not related to climate,
such as terrorism, Euro as a single currency, food safety, or economic growth (Table
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D13, see Table D1 for the exact wording). Eighth, results are unchanged and esti-
mates are more precise if I exclude the origin countries with the largest number of
asylum seekers (Afghanistan, Iraq, Russian Federation, Serbia, Syria) (Table D14).
Ninth, I consider only respondents interviewed before 2015 to exclude the period of
the 2015-2016 migration crisis and contemporaneous record-breaking El Niño and
find similar results, although with a weaker first stage (Table D15). Finally, I test
for the presence of pre-trends, finding no correlation between past climate concern
at the country level and leads in actual and predicted asylum demands (Table D16).

4.4.2 Mechanisms

Heterogeneity. The results presented above show that higher exposure to weather-
induced asylum applications increases citizens’ concern about climate as a political
priority. Nevertheless, these effects can be heterogeneous across individual charac-
teristics. To explore this issue, I perform a sub-sample analysis.

First, individuals differentially interact with asylum seekers depending on their
age, and preferences are more malleable after exposure to events during certain
periods of life (this hypothesis is further explored in Section 4.4.3). Dividing the
estimation sample by age terciles, younger individuals are more strongly affected by
exposure to higher weather-induced flows. For instance, the effect on the importance
of climate for the European Parliament electoral campaigns is not significant for
individuals aged above 60 years and is largest in magnitude for individuals between
18 and 40 years old. Similarly, weather-induced asylum applications have a strong
positive and statistically significant effect on the probability of reporting climate
change as a priority for European Parliament deliberations only for respondents
between 18 and 40 years old and between 41 and 59 years old (Table D33). Sub-
sample analysis by gender reveals that the effect is substantially driven by females
(Table D34).

Finally, political ideologies and preferences may also play a role in determining
how individuals form climate preferences as a response to climate-induced migration
flows. Since climate concern is surveyed as a political priority at the supra-national
political level, the effect of asylum seekers may vary by attitudes toward EU’s legit-
imacy. I test for heterogeneous effects on the subsamples of individuals who trust,
respectively, the national government, the national parliament, the European Par-
liament, and the European Union. Overall, there is suggestive evidence that the
effect of weather-induced asylum applications on climate concern is driven by indi-
viduals who have less (respectively, more) trust in national (resp. supra-national)
institutions (Figure D16).
Channels. In this sub-section, I further explore different channels that may ex-
plain the mechanisms at play behind the estimated effect. There are two main
puzzles to solve. First, one may wonder about the extent to which asylum demands
are informative about shifts in weather distributions in origin countries and how
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individuals in destination countries are aware of climate as the driver of refugees
seeking asylum in their country - while migrants are unable to state climate change
as a reason to apply for asylum. Although descriptively, using a survey conducted
in 2019, Figure D17 provides suggestive evidence of a strong positive correlation
between the five-year cumulative asylum demands received in a country and the
share of respondents that thinks that climate change is already influencing migra-
tion in their country (p-value <0.0001). Combined with leveraging only variation
in weather conditions in the origin countries to explain changes in asylum demands,
this first piece of descriptive evidence strengthens the link between awareness of the
climate-migration nexus and the actual flows of migrants in the country.

Second, one may wonder about the reasons behind the changes in individual atti-
tudes toward climate change as a function of weather-induced asylum applications.
One major threat to the validity of the instrumental variable approach concerns
changes in public attention to the climate-migration nexus. To account for this
channel, I use data from Google searches. I leverage these data in two ways. First,
I run a horse race between instrumented weather-induced asylum demands and av-
erage Google searches for “climate change”, “climate protests”, “migration”, and
“refugee” in each country in the baseline specification to ascertain that the instru-
mental variable approach captures the media channel. The estimates are comparable
and slightly larger in magnitude than the baseline estimates in the case of climate
change as a political priority (Table D35). Second, I test for correlation between
actual and predicted flows and the Google Trends measures. I find a small positive
but imprecisely estimated partial correlation between asylum demands and “climate
change” searches and a negative correlation with all other searches, significant only
in the case of “climate protests” (Table D36). Although I cannot fully rule out that
non-migration forces might have independent effects, this analysis provides support
for the hypothesis that weather-induced asylum demands are a central driver of cli-
mate concern as a political priority and public attention through Google searches
cannot explain the findings. To further allay concerns on media coverage mostly
explaining the results, I split the sample between EU destination countries above
and below the median number of asylum demands received in the time interval and
document a positive and significant effect only among countries that receive a larger
number of asylum demands, with estimates for countries below the median small
and imprecisely estimated (Table D37).

There are two main alternative underlying psychological mechanisms that can
explain the effect. On the one hand, weather-induced asylum applications may
increase the salience of the drivers of migration flows and reduce the psychological
distance to climatic changes (McDonald et al., 2015). Psychological distance refers
to the belief that climate change hits geographically distant areas and affects other
social groups (Spence et al., 2012). Through this channel, the effect could then be
explained by an increase in underlying concern about climate change as a global
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problem. On the other hand, individuals in destination countries may see such
migration flows as tangible consequences of inaction in climate mitigation efforts and
thus update their beliefs about the importance of climate as a political priority in
response to increases in asylum demands. In this case, the effect may be explained
by changes in attitudes toward migration and by changes in preferences only by
specific subsets of the population.

To test for the first hypothesis, I consider two other survey outcomes related
to climate change and more specifically to the perception of climate change as a
global problem (see Table D1 for the exact wording of the survey questions). Esti-
mating the baseline specification on these survey outcomes, I find a small effect not
distinguishable from zero of weather-induced asylum demands, providing suggestive
evidence of the absence of such a mechanism (Table D38). I test the second alterna-
tive hypothesis in two ways. First, I examine the effect of weather-induced asylum
applications on the individual concern about migration as a political priority, in a
symmetric manner to the questions asked on climate change (see Table D1 for the
exact wording). I find a small and significant effect only on the question of migra-
tion as a priority for EP deliberations, suggesting that asylum demands, if anything,
also increase the salience of migration (Table D39). Individuals update their concern
about climate change as a response to higher costs induced by receiving additional
asylum demands, which increase incentives to fight climate change, in line with the
hypothesis of climate-induced migration in a “threat” frame (Baldwin, 2013). A
final piece of evidence in support of this hypothesis comes in a sub-sample analysis
by individual political orientation and education. In contrast with previous findings
(Duijndam and van Beukering, 2021; Lee et al., 2015b), the effect is positive and
statistically significant for both survey outcomes only among right-wing individuals
(Table D40) and individuals without tertiary education (Table D41). Combined
with previous heterogeneity findings, these results reveal new dynamics on diverse
coalition compositions around climate concern (Bush and Clayton, 2023; Gaikwad
et al., 2022).

4.4.3 Exposure during the formative age

Climate change is a particularly important concern for children and young people
(Thompson, 2021; Nature, 2021). Recent school strikes and student-led demonstra-
tions illustrate this phenomenon (Ojala, 2012; Bowman, 2020; Kenis, 2021). Building
on the heterogeneous effect of weather-induced asylum applications by age docu-
mented in the previous section, I further investigate whether the effect is stronger
for individuals exposed to such flows during their formative age.

A large strand of the literature in social psychology posits the impressionable
years hypothesis, according to which core attitudes, beliefs, and values are formed
mostly during a period of great mental plasticity in late adolescence and early adult-
hood, defined as the formative age, between 16 and 24 years of age, and past this
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critical age, they change slowly (Krosnick and Alwin, 1989; Cutler, 1974; Sears, 1975;
Greenstein, 1965).

This hypothesis has already been tested on early life experiences of economic re-
cessions and preferences for redistribution (Carreri and Teso, 2023), job preferences
(Cotofan et al., 2023) and attitudes towards migration (Cotofan et al., 2021), expo-
sure to trade with democracies and attitudes towards democracy (Magistretti and
Tabellini, 2023), exposure to disasters and support for environmental public action
(Falco and Corbi, 2023), exposure to the 1968 movement and political preferences
(Barone et al., 2022) and epidemic exposure and confidence in political institutions
(Aksoy et al., 2020).

For individuals belonging to birth cohort b in country d, I define exposure to
asylum applications as:

exposurebd =
8∑

s=0
(AsyApp)d,b+16+s

where AsyApp is country d’s asylum applications received during the impres-
sionable years (from the age of 16 to the age of 24).10 Figure D14 shows the av-
erage exposure to observed and predicted asylum flows by country-cohort during
the formative age, while Figure D15 shows the density distribution of asylum seeker
flows exposure during the formative age. Such an approach allows me to construct
exposure to asylum applications for the entire 2000-2019 period of available data
since respondents interviewed in the same year and in the same country can have
a different exposure history due to variation in their birth cohort.11 The estimated
specification is

Yi = β1 log (exposurebdt)+X ′
iγ +Z ′

bdtδ +µd + ζrt +κt−b + ξb +θd ×age+εibdt (4.3)

where Yi is the same vector of outcomes as in Section 4.3.1. The main explanatory
variable is exposurebdt, in logs to allow for concavity in the response. I also control
for a set of individual covariates X ′

i, capturing individual socio-economic characteris-
tics (gender, education, political orientation and employment status). Z ′

bdt accounts
for objective local weather conditions (average temperature and precipitation over
the period of exposure). I include a wide set of fixed effects (country, region-by-year,
age, birth-cohort, country-age linear trends) so that β1 is estimated from changes
across birth cohorts within a country, as compared to changes across the same age
groups in other countries, in a given year of interview. Standard errors are clustered
at the country level.

10For the subset of individuals who are too young, I use all available years over the 9-year formative
age window.

11Since the data availability for asylum seeker flows in Europe starts from 2000, I limit myself
to the birth cohorts whose impressionable years are in the 21st century (i.e., individuals born after
1984 and whose year of age 16 is after 2000).

148



Results in Table 4.2 show the OLS and 2SLS estimates of Equation (4.3). The
2SLS estimates indicate that being exposed to more weather-induced asylum ap-
plications over the impressionable years has a positive and statistically significant
effect on the probability of reporting climate change as a priority for the electoral
campaign in the European Parliament elections (column 2) and a priority that the
European Parliament should deliberate about (column 4).

Table 4.2: Formative age exposure to weather-induced asylum seeker flows and environmental values

Dep. variable CC EU Election (Mean: 0.079) CC EU Pol Priority (Mean: 0.099)

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

log(Exposure16−24) 0.00203 0.0235∗∗ 0.0165∗∗ 0.0390∗∗

(0.00455) (0.00959) (0.00775) (0.0180)

Weather Controls X X X X
Individual Controls X X X X
Country FE X X X X
Year FE X X X X
Age FE X X X X
Birth-cohort FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Statistic 26.020 46.347
N 17554 17554 21661 21661
Number of countries 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are
interviewed and whose formative age (between 16 and 24 years) occurs in the time period in which asylum applications
data are available (i.e., after 2000). The dependent variable is a dummy equal to 1 if the respondent reports climate
change as a theme that should be discussed as a matter of priority during the electoral campaign for the next European
Parliament elections (columns 1 and 3, see Table D1 for exact wording and additional details on the construction of
the variable). In columns (2) and (4) the dependent variable is a dummy equal to 1 if the respondent reports climate
change as a theme that the European Parliament should give priority to when deliberating (see Table D1 for exact
wording and additional details on the construction of the variable). Columns (1) and (3) report the OLS estimates
using the (log) of the sum of asylum applications in a given country in the time period in which the individual was
between 16 and 24 years old (until the year of the interview if younger than 24 years old). Columns (2) and (4) report
the 2SLS estimates where the (log) of exposure to asylum applications is instrumented with the symmetric version
constructed from the gravity-predicted asylum application flows as described in Equation (4.2) in the text. Robust
standard errors, clustered at the country level, in parentheses. Individual controls: Gender, Education (Up to 15
years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing oriented. Weather Controls:
Exposure to average temperature and precipitation over the same time period in which exposure to asylum applications
is measured. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

To formalize the intuition that the formation of climate-related political prefer-
ences occurs during the formative age, I investigate the effect of weather-induced
asylum seekers over different age categories. I decompose the sample of respon-
dents into different age brackets to estimate the heterogeneous age effect.12 Figure
4.2 presents the 2SLS coefficients associated with exposure in each age window for
eight different age categories in which the sample has been split (Tabular results
in Table D17). Exposure to weather-induced asylum seeker flows does not appear
to be substantially driving climate concern as a political priority in other than the

12To define age categories, I first consider the range of the impressionable years assumed before,
i.e., from 16 to 24, and then each category is a 9-year age window.
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formative age windows, although individuals exposed to higher flows during ages
25-33 and 34-42 are also positively affected only in concern about climate change in
EP deliberations.

In terms of magnitude, a 50% increase in exposure during the formative age
(approximately equivalent to the interquartile range) increases the probability of
reporting climate change as a priority in the electoral campaigns for the European
Parliament elections by 15% of the sample mean and of stating climate change as a
priority in the political arena by 19% of the sample mean. The latter is similar to
the difference between Cyprus and Germany, or that between Hungary and France.
Overall, these results seem to provide suggestive evidence that exposure to weather-
induced asylum seeker flows during late teenage and early adulthood drives concern
about climate change as a political priority debate even later in life. Results are ro-
bust to the use of alternative instruments (Table D18) and to alternative definitions
of the formative age window (Table D19).

Figure 4.2: 2SLS coefficients of weather-induced asylum seeker
flows exposure by age window

Notes: The figure plots the 2SLS coefficients estimated regressing the sur-
vey response on the total asylum applications experienced during a specific
age window of the individual. The point estimates are reported in Table

D17. Bins represent the 95% confidence interval.
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4.5 From stated to revealed preferences

4.5.1 Green party votes in European Parliament elections

Empirical approach

To what extent do these effects on climate concern translate into political choices?
In this section, I move from stated individual climate concern in survey responses
to revealed preferences in the form of voting behavior. I focus on Green party
votes in European Parliament elections since the use of proportional rules for the
allocation of seats in the European Parliament should limit the extent to which
voters engage in strategic voting and they should reveal their preferences more than
in national elections (Pearson and Rüdig, 2020; Hoffmann et al., 2022). I examine
how asylum applications induced by weather variations affect destination country
electoral outcomes in the EP elections. I estimate the following specification

ydt = β1 log
(

s∑
τ=1

AsyAppd,t−τ

)
+X ′

dtγ + αd + λt + εdt (4.4)

where ydt is the Green party vote share in European Parliament elections. The
main explanatory variable,

∑s
τ=1AsyAppd,t−τ , is the sum of all asylum demands

in country d during the previous electoral mandate of the European Parliament
and it is instrumented with its predicted counterpart that leverages origin weather
conditions. The matrix X ′

dt includes the wide set of country-level covariates. Pre-
vious research has shown that Green voters are proportionally younger (Franklin
and Rüdig, 1992) and with a higher level of education (Knutsen, 2004). Support
for Green parties is also higher among employed people (Knutsen, 2005) and has a
strong link with GDP per capita (Pearson and Rüdig, 2020). The equation controls
for the population share of 18-23 year-olds, the unemployment rate, the percentage
of the population with tertiary education, and the (log) GDP per capita (Moriconi
et al., 2019), and electoral turnout to account for the low and declining turnout in
European Parliament elections (Van der Eijk and Van Egmond, 2007). I account for
second-order polynomials of temperature and precipitation since local weather ex-
plains party vote shares (Bassi, 2019; Baccini and Leemann, 2021; Hoffmann et al.,
2022), and to allay concerns on the validity of the instrumental variable approach. I
also include year- and country-specific fixed effects and regional linear time trends to
capture potential unobserved heterogeneity at each of these levels. Standard errors
are clustered at the country level.

Main results

Table 4.3 displays the OLS (column 1) and 2SLS estimates (columns 2 to 4) of the
effect of asylum demands on Green party vote shares in EP elections. In both cases,
the estimates are negative but largely imprecise and not statistically significant at
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any conventional level, with the 2SLS estimates quantitatively larger than the OLS
ones. Although the sample size is very small (N=65), the instrumental variable
approach preserves its relevance with the F-stat well above conventional thresholds.
To further ascertain the validity of the approach, I check whether the actual or
predicted flows of asylum applications induced by weather fluctuations are associated
with the Green party vote shares in earlier elections. In both cases, the estimates
are very close to zero and imprecisely estimated (Table D20). Overall, the results
indicate that Green parties in countries more exposed to weather-induced asylum
demands between one electoral round and the following one do not gain in vote
share and, instead, their share of votes is lower in response to such flows. Results
are robust to the use of alternative instruments (Table D21).

Table 4.3: Weather-induced asylum applications and Green party votes in European
Parliament elections

Dep. variable % Green Party in EP elections (Mean: 9.84)

OLS 2SLS 2SLS 2SLS
(1) (2) (3) (4)

Log(Asylum Applications) -0.323 -1.609 -2.392 -4.022
(1.398) (1.711) (1.695) (2.254)

Weather Controls X X X X
Country Controls X X X
Country FE X X X X
Year FE X X X X
Regional linear time trends X

F-Statistic 12.657 23.060 20.882
N 65 65 65 65
Number of countries 20 20 20 20

Notes: The table reports the OLS (columns 1) and 2SLS (columns 2 to 4) coefficients on
(log) of total asylum applications in the five years preceding the European Parliament elec-
tions. The dependent variable is the share of votes of Green parties in European Parliament
elections after 2000 in a EU country. In columns (3) to (6), the (log) of total asylum appli-
cations in the five years preceding the elections is instrumented with the gravity-predicted
(log) of total asylum applications described in Equation (4.2) in the text. Robust standard
errors, clustered at the country level, in parentheses. Country Controls: (log) GDP per
capita, % tertiary education, unemployment rate, population rate between 18 and 23 years
old, voter turnout. Weather Controls: Linear and squared average temperature and total
precipitation in the country. All columns control for country and year-fixed effects. Column
5 adds region-by-year fixed effects and column 6 accounts for regional linear time trends. F-
statistic refers to the Kleibergen-Paap F-statistic for weak instruments. Significance levels:
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Mechanisms

To gain further insight into the findings by which higher exposure to weather-induced
asylum applications increases individual climate concern but does not translate into
Green party votes in EP elections, I evaluate and test for various possible mech-
anisms, which are by no means mutually exclusive: anti-immigration party votes,
electoral turnout, changes in not-yet-eligible voters’ concern and parties’ environ-
mental agenda.
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Anti-immigration parties. A first potential explanation is that voters do not
distinguish between weather-induced asylum seekers and migrants for economic
conditions. Electoral preferences may have been shifted towards populist anti-
immigrant nationalist parties, as found in national contexts as a result of economic
migration, rather than increasing the salience of environmental-related issues. More-
over, Green party votes reflect political support for climate action in a simplified
manner and may not capture all relevant aspects of pro-environment voting de-
cisions. Another explanation is that votes may have been directed to other pro-
environmental parties than Green parties. Some countries may have more solid
Green parties, whereas in other countries longer-term party attachment may pre-
vent climate concern from turning into Green voting. I examine whether any other
political groups’ electoral outcomes respond to weather-induced asylum demands.
The effect is imprecisely estimated for all parties, except for nationalist party votes
that are negatively affected by higher exposure to weather-induced asylum demands
at the 90% significance level. An opposite positive effect of a similar magnitude,
though imprecise, is found in socialist and any other left-wing party votes (Table
D22). Overall, the results do not provide evidence in support of this hypothesis.
Turnout dropout. A second hypothesis is that Green party votes decreased as a
result of weather-induced asylum applications because traditional voters of the Green
parties did not vote in the European Parliament elections. The low participation
rate and turnout in the European Parliament elections may explain this finding
(Bhatti and Hansen, 2012). To test this mechanism, I check the effect of weather-
induced asylum applications on voter turnout in European Parliament elections.
The 2SLS estimates of weather-induced asylum applications on electoral turnout
are negative and statistically significant (Table D23). Therefore, this mechanism
cannot be entirely ruled out, and Green party votes may not have been affected
by weather-induced asylum applications, due to an exit, at least partially, of the
traditional Green voters from the electoral turnout.
Changes in preferences of young voters. An alternative explanation builds
on the heterogeneous effect of exposure to weather-induced asylum application on
climate concern by age category. Previous results show that what matters most
is exposure during late adolescence and early adulthood. Younger generations are
generally more supportive of Green parties (Lichtin et al., 2023). Changes in climate-
related preferences in this age category may not be enough to drive overall shifts
in voting behavior at the national level. To further investigate this hypothesis, I
split the sample of individuals for which the exposure in the formative age can be
observed, distinguishing between those below and above the voting age.13 Figure
D18 shows the results for the two survey outcomes used in Section 4.4 (Tabular

13The voting age is a minimum age established by law that a person must attain before they
become eligible to vote in a public election. This is set at 18 years for most of the countries in the
sample, except for Austria after 2007, Malta after 2018 which set their voting age to 16 years, and
Greece after 2017, setting it to 17 years.
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results in Table 4.4). Respondents below the voting age are more likely to report
climate change as an important theme for the electoral campaign for the European
Parliament elections, whereas the effect is not statistically significant for respondents
above the voting age. Conversely, exposure has a positive and statistically significant
effect on climate change as a priority for European Parliament deliberations only
for respondents above the voting age but not for those below. This result may
indicate that the increase in concern for climate change and its importance as part
of the political agenda in the European Parliament electoral campaigns is driven
by individuals not yet eligible to vote and thus explain the gap between states and
revealed preferences in voting behavior for Green parties.

Table 4.4: Weather-induced asylum applications and environmental values.
Heterogeneity by eligibility to vote. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.0340∗∗ 0.0147 0.0378 0.0431∗∗

(0.0132) (0.00904) (0.0382) (0.0176)

Voting Age Below Above Below Above

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 32.155 20.089 48.265 30.174
N 2412 16979 2999 20815

Notes: The sample is restricted to survey respondents that have the same nationality
as the country in which they are interviewed and below the age of thirty years old.
Odd columns report estimates on the sub-sample of individuals interviewed below
the age eligible to vote in national and European elections; even columns report the
estimates on the sub-sample of individuals interviewed above the age eligible to vote
in the elections. The dependent variable is a dummy equal to 1 if the respondent
reports climate change as a theme that should be discussed as a matter of priority
during the electoral campaign for the next European Parliament elections (columns 1
and 2, see Table D1 for exact wording and additional details on the construction of the
variable). In columns (3) and (4) the dependent variable is a dummy equal to 1 if the
respondent reports climate change as a theme that the European Parliament should
give priority to when deliberating (see Table D1 for exact wording and additional
details on the construction of the variable). All columns report the 2SLS estimates
where the (log) of asylum applications is instrumented with the gravity-predicted (log)
of asylum applications described in Equation (4.2) in the text. All columns control for
individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years
or older; still studying; no education), Unemployed, Left-wing oriented) and country-
level covariates (Linear and squared average temperature and total precipitation in
the country), and country, survey year, age, region-by-survey-year fixed effects and
country by age linear trends. Robust standard errors, clustered at the country level, in
parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Parties’ environmental agenda. A final mechanism concerns changes on the
supply side of the environmental political process defined as the environmental
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agenda of political parties (Guiso et al., 2017). For this purpose, I use informa-
tion on parties’ political agenda from the Manifesto Project Database (MPD) to
measure the degree of environmentalism of each party in national elections and ex-
ploit within-party variation in the environmental political agenda across elections
(see Appendix Section D.4.6 for additional details). I find that weather-induced
asylum applications do not affect the environmental agenda of political parties in
national elections across a variety of specifications (Table 4.5). The 2SLS estimates
are negative, but small and not statistically significant, while the instrument satisfies
the relevance condition.

Table 4.5: Weather-induced asylum applications and environmental agenda of
parties.

Party’s Environmentalism (Mean=0)

(1) (2) (3) (4)
OLS 2SLS 2SLS 2SLS

log(Asylum Applications) -0.0739∗∗ -0.0254 -0.154 -0.158
(0.0359) (0.103) (0.112) (0.116)

Weights Votes Votes

Votes Above 5%

Right-left ideological index X X X X

Country Controls X X X X
Weather Controls X X X X
Country FE X X X X
Year FE X X X X
Party FE X X X X

F-Stat 32.570 28.076 27.312
N 641 641 634 469
adj. R2 0.723 0.082 0.120 0.115

Notes: The analysis is over a sample of parties that are running in multiple elections.
The table reports the coefficients associated with (log) of the sum of asylum applications
in the period between one election year and the other. The dependent variable is the
(normalized) share of quasi-sentences that positively referred to the environment in
each party’s manifesto in the national elections. Column (1) reports the OLS estimates,
and columns (2) to (4) display the 2SLS estimates where (log) of asylum applications
is instrumented with the gravity-predicted (log) of asylum applications described in
Equation (4.2) in the text. Robust standard errors, clustered at the country level, in
parentheses. All columns control for the normalized right-left ideological index provided
in the MPD. Country controls: averages between two elections of (log) GDP per capita,
% tertiary education, unemployment rate, population rate between 18 and 23 years old,
and in the year of the elections. Weather controls: averages between two elections of
linear and squared temperature and precipitation and in the year of the elections. All
columns control for country, year, and party fixed effects. Columns (3) and (4) weigh
each party’s observation by the vote gained in the national elections. Column (4) only
considers parties that gained at least 5% of the votes. F-statistic refers to the K-P F-
statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In the baseline specification, each party running in multiple elections has the
same weight. Nevertheless, small parties do not have the same influence on the
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political system as large parties, and may change their positions more easily. When
I weigh each party by the percentage of votes gained in the elections, I find no
significant effect. Results are also robust to considering parties that gained at least
5% of votes, to rule out entry/exit or mergers and splits of small parties and potential
measurement error in their agendas. Similar results are found using alternative
instruments (Table D26), while I find a larger and significant negative effect on
party environmentalism when only including larger parties that gained at least 10,
15, or 20% of votes in the elections (Table D27). I also examine the presence of
heterogeneous effects by party family masked in the average treatment effect but
find small and largely imprecise estimates across the seven party families (Table
D28). These findings suggest that weather-induced asylum applications have not
shifted parties toward a greener environmental agenda and provide one explanation
for the rising climate concern in response to climate-induced inflows did not translate
into more environmental-related voting behaviors.

Moriconi et al. (2019) show that inflows of less-educated immigrants induce Eu-
ropean parties to endorse platforms less favorable to social welfare. To investigate
whether asylum demands drive similar mechanisms, I consider alternative dimen-
sions of the manifesto of parties, including attitudes towards refugees, Europe, and
multiculturalism (see Table D3 for the exact definition). I find a negligible negative
effect that is not statistically significant across all outcomes (Table D29) in response
to higher asylum applications.
Environmentalism in national elections. Building on these findings, in the
last test, I construct a measure of environmentalism at the election-country level
obtained as the average percentage of environmentalism in each party’s manifesto
weighted by its vote share in a given election, and then transform it into a z-score
with a mean of zero and a standard deviation of one (Peri et al., 2020). Once
again, the 2SLS estimates on weather-induced asylum demands, although positive,
are not statistically significant (Table 4.6). Similar null results are obtained when
using alternative instruments (Table D24). I also examine if weather-induced asylum
demands explain changes in other dimensions of the political agenda of parties but
find small and imprecise estimates (Table D25).

4.6 Conclusions

Understanding the drivers of changes in public climate concern and support for
Green parties is essential to identify the mechanisms to promote climate action
and induce transformations toward a greener more sustainable society. Several
studies examine the role of socio-economic determinants (see Drews and van den
Bergh (2016) for a review) and direct experience of extreme events (Hazlett and
Mildenberger, 2020; Hoffmann et al., 2022). A growing literature has documented
the political effects of economic migration in host countries (Alesina and Tabellini,
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Table 4.6: Weather-induced asylum applications and environmentalism in national
elections

Dep. variable National Elections Environmentalism Index

OLS 2SLS 2SLS 2SLS
(1) (2) (3) (4)

Log(Asylum Applications) -0.0729 0.215 0.232 0.371
(0.107) (0.260) (0.343) (0.501)

Weather Controls X X X X
Country Controls X X X
Country FE X X X X
Year FE X X X X
Regional linear time trends X

F-Statistic 22.366 16.030 13.664
N 119 119 119 119
Number of countries 27 27 27 27

Notes: The table reports the OLS (column 1) and 2SLS (columns 2 to 4) coefficients on
(log) of total asylum applications in the years between one national election round and
the other. The dependent variable is the normalized index of environmentalism of national
elections where the share of quasi-sentences that positively referred to the environment in
each party’s manifesto is weighted by its vote share in the national elections. In columns
2 to 4, the (log) of asylum applications is instrumented with the gravity-predicted (log)
of asylum applications described in Equation (4.2) in the text. Robust standard errors,
clustered at the country level, in parentheses. Country Controls: (log) GDP per capita,
% tertiary education, unemployment rate, population rate between 18 and 23 years old.
Weather Controls: Linear and squared average temperature and total precipitation in the
country. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels:
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

2023). Fluctuations in temperature as a result of climatic changes have increased
the outflows of asylum seekers from non-OECD countries into the European Union
(Missirian and Schlenker, 2017a), possibly altering the individual concern for climate
change and leading to eventual changes in electoral voting behavior.

In this paper, I examine the effect of weather-induced asylum applications on
citizens’ climate concern and pro-environment voting behavior, exploiting exogenous
variation in the annual asylum seeker flows generated by weather fluctuations from
non-OECD origin countries to the European Union.

I find that exposure to weather-induced asylum applicants increases public cli-
mate concern and individuals who grew up when their country received more weather-
induced asylum demands are more concerned about climate at the time of the survey,
providing support to the formative age hypothesis. The effect of weather-induced
asylum applications on climate concern appears to be driven by right-wing voters
and to induce joint concern about climate and migration as political priorities rather
than increasing public perception of climate change as a world problem. These find-
ings are not mirrored in voting behavior for Green parties in European Parliament
elections, which do not respond to larger inflows of weather-induced asylum seek-
ers. Three main co-existing mechanisms behind the results involve a drop out of
traditional Green voters of the electoral turnout, a change in public concern mostly
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driven by individuals who are not yet eligible to vote, and a lack of change in the
pro-environmental policy manifesto of political parties. These findings suggest that
a rise in concern for climate-related issues could contribute to achieving a trans-
formation by catalyzing public support for climate action that, however, has not
translated yet into concrete policy proposals by parties.

The results suggest several directions for further research. First, the goal of this
paper is to provide first evidence and assess the effects of weather-induced asylum
application exposure in an international context, aggregating across countries and
different types of interactions and time periods (e.g., periods where asylum demands
are more or less salient, periods where temperature fluctuations and weather anoma-
lies are more pronounced). However, several aspects of heterogeneity may deserve
closer attention, including country-specific case studies both within Europe and in
the United States, the world’s largest migration destination country. Changes in
attitudes and voting behavior may depend on the conditions under which contact
occurs and on the characteristics of both immigrants and natives, including the type
of climatic push factor, a specific origin place, and other features. Finally, a nar-
rower geographical focus could help analyze in more detail the relationship between
actual climate-migration flows and the salience of the phenomenon using its media
coverage. Traditional media channels including articles in national newspapers can
increase awareness of the issue and its potential impacts, as well as shape percep-
tions of migrants and the reasons for their migration, which could in turn influence
policy.

158



Bibliography

Abdullah, H. M. and Rahman, M. M. (2015). Initiating rain water harvest technol-
ogy for climate change induced drought resilient agriculture: scopes and challenges
in Bangladesh. Journal of Agriculture and Environment for International Devel-
opment, 109(2):189–208.

Abel, G. J., Brottrager, M., Crespo Cuaresma, J., and Muttarak, R. (2019). Climate,
conflict and forced migration. Global Environmental Change, 54:239–249.

Acemoglu, D., Akcigit, U., and Kerr, W. (2016a). Networks and the macroeconomy:
An empirical exploration. NBER Macroeconomics Annual, 30(1):273–335.

Acemoglu, D., Autor, D., Dorn, D., Hanson, G. H., and Price, B. (2016b). Import
competition and the great US employment sag of the 2000s. Journal of Labor
Economics, 34(S1):S141–S198.

Acemoglu, D., Carvalho, V. M., Ozdaglar, A., and Tahbaz-Salehi, A. (2012). The
network origins of aggregate fluctuations. Econometrica, 80(5):1977–2016.

Acevedo, S., Mrkaic, M., Novta, N., Pugacheva, E., and Topalova, P. (2020). The
effects of weather shocks on economic activity: What are the channels of impact?
Journal of Macroeconomics, 65:103207.

Adhikary, S. K., Das, S., Saha, G., and Chaki, T. (2013). Groundwater drought
assessment for Barind irrigation project in Northwestern Bangladesh. In MOD-
SIM2013, 20th International Congress on Modelling and Simulation. Modelling
and Simulation Society of Australia and New Zealand, December 2013, pages
2917–2923. Modelling and Simulation Society of Australia and New Zealand.

Ado, A. M., Leshan, J., Savadogo, P., Bo, L., and Shah, A. A. (2019). Farmers’
awareness and perception of climate change impacts: Case study of Aguie district
in Niger. Environment, Development and Sustainability, 21(6):2963–2977.

Aftab, A., Ahmed, A., and Scarpa, R. (2021). Farm households’ perception of
weather change and flood adaptations in northern Pakistan. Ecological Economics,
182:106882.

Agnew, J. R., Bateman, H., Eckert, C., Iskhakov, F., Louviere, J. J., and Thorp,
S. (2018a). First impressions matter: An experimental investigation of online
financial advice. Management Science, 64(1):288–307.

159



Agnew, J. R., Bateman, H., Eckert, C., Iskhakov, F., Louviere, J. J., and Thorp, S.
(2018b). Learning and confirmation bias: Measuring the impact of first impres-
sions and ambiguous signals. Wharton Pension Research Council Working Paper,
15.

Ahmed, A. U. and Sampath, R. K. (1992). Effects of irrigation-induced techno-
logical change in Bangladesh rice production. American Journal of Agricultural
Economics, 74(1):144–157.

Aksoy, C. G., Eichengreen, B., and Saka, O. (2020). The political scar of epidemics.
NBER Working Paper 27401, National Bureau of Economic Research.

Akyapi, B., Bellon, M., and Massetti, E. (2022). Estimating macro-fiscal effects
of climate shocks from billions of geospatial weather observations. IMF Working
Papers, 2022(156).

Al Mamun, M. A., Nihad, S. A. I., Sarkar, M. A. R., Aziz, M. A., Qayum, M. A.,
Ahmed, R., Rahman, N. M. F., Hossain, M. I., and Kabir, M. S. (2021). Growth
and trend analysis of area, production and yield of rice: A scenario of rice security
in Bangladesh. PloS one, 16(12):e0261128.

Alamgir, M., Shahid, S., Hazarika, M. K., Nashrrullah, S., Harun, S. B., and Sham-
sudin, S. (2015). Analysis of meteorological drought pattern during different
climatic and cropping seasons in Bangladesh. Journal of the American Water
Resources Association, 51(3):794–806.

Albert, C., Bustos, P., and Ponticelli, J. (2021). The effects of climate change on
labor and capital reallocation. NBER Working Papers 28995, National Bureau of
Economic Research.

Alem, Y. and Colmer, J. (2022). Blame it on the rain: Rainfall variability, consump-
tion smoothing, and subjective well-being in rural Ethiopia. American Journal of
Agricultural Economics, 104(3):905–920.

Alesina, A., Harnoss, J., and Rapoport, H. (2016). Birthplace diversity and economic
prosperity. Journal of Economic Growth, 21(2):101–138.

Alesina, A., Murard, E., and Rapoport, H. (2021). Immigration and preferences for
redistribution in Europe. Journal of Economic Geography, 21(6):925–954.

Alesina, A. and Tabellini, M. (2023). The Political Effects of Immigration: Culture
or Economics? Journal of Economic Literature. Forthcoming.

Almer, C., Laurent-Lucchetti, J., and Oechslin, M. (2017). Water scarcity and riot-
ing: Disaggregated evidence from Sub-Saharan Africa. Journal of Environmental
Economics and Management, 86:193–209.

160



Alsina-Pujols, M. (2023). Warming with borders: climate refugees and carbon pric-
ing. Mimeo.

Anderson, J. E. and Van Wincoop, E. (2003). Gravity with gravitas: A solution to
the border puzzle. American Economic Review, 93(1):170–192.

Angrist, J. D. and Krueger, A. B. (1999). Empirical strategies in labor economics.
In Handbook of Labor Economics, volume 3. Elsevier.

Angrist, J. D. and Pischke, J.-S. (2010). The credibility revolution in empirical
economics: How better research design is taking the con out of econometrics.
Journal of Economic Perspectives, 24(2):3–30.

Annan, F. and Schlenker, W. (2015). Federal crop insurance and the disincentive to
adapt to extreme heat. American Economic Review, 105(5):262–66.

Aragón, F. M., Oteiza, F., and Rud, J. P. (2021). Climate change and agriculture:
Subsistence farmers’ response to extreme heat. American Economic Journal: Eco-
nomic Policy, 13(1):1–35.

Arbuckle, J. G., Morton, L. W., and Hobbs, J. (2013a). Farmer beliefs and concerns
about climate change and attitudes toward adaptation and mitigation: Evidence
from Iowa. Climatic Change, 118(3):551–563.

Arbuckle, J. G., Prokopy, L. S., Haigh, T., Hobbs, J., Knoot, T., Knutson, C.,
Loy, A., Mase, A. S., McGuire, J., Morton, L. W., Tyndall, J., and Widhalm, M.
(2013b). Climate change beliefs, concerns, and attitudes toward adaptation and
mitigation among farmers in the Midwestern United States. Climatic Change,
117(4):943–950.

Arguez, A., Durre, I., Applequist, S., Vose, R. S., Squires, M. F., Yin, X., Heim,
R. R., and Owen, T. W. (2012). NOAA’s 1981–2010 US climate normals: an
overview. Bulletin of the American Meteorological Society, 93(11):1687–1697.

Arias, S. B. and Blair, C. W. (2022). Changing tides: Public attitudes on climate
migration. The Journal of Politics, 84(1):560–567.

Arrow, K. J. and Debreu, G. (1954). Existence of an equilibrium for a competitive
economy. Econometrica: Journal of the Econometric Society, pages 265–290.

Atalay, E. (2017). How important are sectoral shocks? American Economic Journal:
Macroeconomics, 9(4):254–280.

Auffhammer, M. (2018). Quantifying economic damages from climate change. Jour-
nal of Economic Perspectives, 32(4):33–52.

161



Auffhammer, M. (2022). Climate adaptive response estimation: Short and long run
impacts of climate change on residential electricity and natural gas consumption.
Journal of Environmental Economics and Management, 114:102669.

Auffhammer, M., Baylis, P., and Hausman, C. H. (2017). Climate change is pro-
jected to have severe impacts on the frequency and intensity of peak electricity
demand across the united states. Proceedings of the National Academy of Sciences,
114(8):1886–1891.

Auffhammer, M. and Carleton, T. (2018). Regional crop diversity and weather
shocks in India. Asian Development Review, 35(2):113–130.

Auffhammer, M., Hsiang, S., Schlenker, W., and Sobel, A. (2013). Using weather
data and climate model output in economic analyses of climate change. Review
of Environmental Economics and Policy, 7(2):181–198.

Auffhammer, M. and Schlenker, W. (2014). Empirical studies on agricultural impacts
and adaptation. Energy Economics, 46:555–561.

Baccini, L. and Leemann, L. (2021). Do natural disasters help the environment?
How voters respond and what that means. Political Science Research and Methods,
9(3):468–484.

Backhaus, A., Martinez-Zarzoso, I., and Muris, C. (2015). Do climate variations
explain bilateral migration? A gravity model analysis. IZA Journal of Migration,
4(1):1–15.

Bakkensen, L. and Barrage, L. (2018). Climate shocks, cyclones, and economic
growth: bridging the micro-macro gap. NBER Working Papers 24893, National
Bureau of Economic Research.

Bakkensen, L. A. and Barrage, L. (2022). Going underwater? Flood risk belief
heterogeneity and coastal home price dynamics. The Review of Financial Studies,
35(8):3666–3709.

Bakkensen, L. A., Ding, X., and Ma, L. (2019). Flood risk and salience: New
evidence from the Sunshine State. Southern Economic Journal, 85(4):1132–1158.

Baldwin, A. (2013). Racialisation and the figure of the climate-change migrant.
Environment and Planning A, 45(6):1474–1490.

Bareille, F. and Chakir, R. (2023). The impact of climate change on agriculture: A
repeat-ricardian analysis. Journal of Environmental Economics and Management,
119:102822.

Barone, G., de Blasio, G., and Poy, S. (2022). The legacy of 1968 student protests
on political preferences. Economics Letters, 210:110198.

162



Barone, G., D’Ignazio, A., de Blasio, G., and Naticchioni, P. (2016). Mr. Rossi,
Mr. Hu and politics. The role of immigration in shaping natives’ voting behavior.
Journal of Public Economics, 136:1–13.

Barrage, L. and Nordhaus, W. D. (2023). Policies, projections, and the social cost
of carbon: Results from the DICE-2023 Model. NBER Working Papers 31112,
National Bureau of Economic Research.

Barreca, A., Clay, K., Deschênes, O., Greenstone, M., and Shapiro, J. S. (2015).
Convergence in adaptation to climate change: Evidence from high temperatures
and mortality, 1900–2004. American Economic Review, 105(5):247–251.

Barrot, J.-N. and Sauvagnat, J. (2016). Input specificity and the propagation of
idiosyncratic shocks in production networks. The Quarterly Journal of Economics,
131(3):1543–1592.

Bassi, A. (2019). Weather, risk, and voting: An experimental analysis of the effect
of weather on vote choice. Journal of Experimental Political Science, 6(1):17–32.

Battiston, G. (2020). Rescue on Stage: Border Enforcement and Public Attention in
the Mediterranean Sea. Marco Fanno Working Papers 292, University of Padova.

Baylis, P. (2020). Temperature and temperament: Evidence from twitter. Journal
of Public Economics, 184:104161.

Beattie, G., Han, Y., and La Nauze, A. (2019). Conservation spillovers: The effect of
rooftop solar on climate change beliefs. Environmental and Resource Economics,
74(3):1425–1451.

Behringer, W. (2010). A cultural history of climate. Polity.

Beine, M., Bertoli, S., and Fernández-Huertas Moraga, J. (2016). A practition-
ers’ guide to gravity models of international migration. The World Economy,
39(4):496–512.

Beine, M. and Jeusette, L. (2021). A meta-analysis of the literature on climate
change and migration. Journal of Demographic Economics, 87(3):293–344.

Beine, M. and Parsons, C. (2015). Climatic Factors as Determinants of International
Migration. The Scandinavian Journal of Economics, 117(2):723–767.

Beine, M. and Parsons, C. R. (2017). Climatic Factors as Determinants of Interna-
tional Migration: Redux. CESifo Economic Studies, 63(4):386–402.

Bell, A. R., Bryan, E., Ringler, C., and Ahmed, A. (2015). Rice productivity in
Bangladesh: What are the benefits of irrigation? Land Use Policy, 48:1–12.

163



Bento, A., Miller, N. S., Mookerjee, M., and Severnini, E. R. (2023). A unify-
ing approach to measuring climate change impacts and adaptation. Journal of
Environmental Economics and Management, 121:102843.

Bergquist, P. and Warshaw, C. (2019). Does global warming increase public concern
about climate change? The Journal of Politics, 81(2):686–691.

Bernstein, A., Gustafson, M. T., and Lewis, R. (2019). Disaster on the horizon: The
price effect of sea level rise. Journal of Financial Economics, 134(2):253–272.

Bertoli, S., Brücker, H., and Moraga, J. F.-H. (2016). The European crisis and
migration to Germany. Regional Science and Urban Economics, 60:61–72.

Bertoli, S. and Moraga, J. F.-H. (2013). Multilateral resistance to migration. Journal
of Development Economics, 102:79–100.

Bhandari, H. N. (2001). Impact of shallow tubewell irrigation on crop production
in the Terai region of Nepal. Philippine Agricultural Scientist, 84(1):102–113.

Bhatti, Y. and Hansen, K. M. (2012). The effect of generation and age on turnout
to the European Parliament–How turnout will continue to decline in the future.
Electoral Studies, 31(2):262–272.

Blakeslee, D., Fishman, R., and Srinivasan, V. (2020). Way down in the hole:
Adaptation to long-term water loss in rural India. American Economic Review,
110(1):200–224.

Boehm, C. E., Flaaen, A., and Pandalai-Nayar, N. (2019). Input linkages and the
transmission of shocks: Firm-level evidence from the 2011 Tōhoku earthquake.
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Appendix to Chapter 1:
Sectoral impact and
propagation of weather shocks
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A.1 Additional figures

Figure A1: Average upstream and downstream weights across coun-
tries

(a) Upstream (b) Downstream

Notes: The figure shows the average upstream and downstream weights
across countries by sector. Upstream and downstream weights are con-

structed from the perspective of Source sectors on the x-axis.
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Figure A2: Countries in the sample by climatic zone

Notes: The map represents the countries in the sample divided by cli-
matic zones, defined as terciles of the average annual temperature from
1970 through 2020. The classification is implemented in order to compute

heterogeneous treatment effects as reported in Figure A6.

196



Figure A3: Sectoral interlinkages’ response to heat shocks

(a) Average weights (b) Upstream weights

(c) Downstream weights

Notes: The figure shows the (standardized) coefficients associated with
the response of bilateral sectoral interlinkages to heat shocks (measured as
the number of days above the 95th percentile of the temperature distribu-
tion) in the period between 1970 and 2019. All sector-specific coefficients
are estimated jointly in a stacked regression model fully saturated with
country-sector and origin-destination bilateral sector, destination sector-
country-year fixed effects. Bins represent the 90% confidence intervals

with standard errors clustered at the country-level.
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Figure A4: Sector-specific impact of positive annual temperature
and precipitation changes

Notes: The figure shows the OLS coefficients associated with the response
of sectoral GVA per capita growth rate to an indicator variable that takes
value one if the sum of average daily temperature and precipitation is
larger than the previous year’s. The regression controls for lagged sectoral
GVA growth rate, country-sector, sector-year fixed effects. Bins represent
the 90% confidence intervals around point estimates. Standard errors are

clustered at the country level.
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Figure A5: Sector-specific impact of annual temperature and pre-
cipitation changes

Notes: The figure shows the OLS coefficients associated with the response
of sectoral GVA per capita growth rate to changes in the annual sum
of average daily temperature. The regression controls for lagged sectoral
GVA growth rate, country-sector, sector-year fixed effects. Bins represent
the 90% confidence intervals around point estimates. Standard errors are

clustered at the country level.

199



Figure A6: Heterogeneity in the GVA response to changes in tem-
perature distribution

(a) Income groups (b) Climate terciles

Notes: The figure shows the (standardized) coefficients associated with
the response of sectoral GVA per capita growth rate to an increase in
the sum of average daily temperature in different sub-samples split by
income groups according to the World Economic Outlook (IMF, 2022)
and by climate split into terciles using the long-run average temperature.
All sector-specific coefficients are estimated jointly in a stacked regression
model fully saturated with country-sector and sector-year fixed effects.
Bins represent the 90% confidence intervals with standard errors clustered

at the country-level.
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Figure A7: Abnormal weather realizations using 1st and 99th per-
centiles

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the
country-average number of days above the 99th and below the 1st percentile
of the daily distribution in temperature (Panel (a)) and in precipitation
(Panel (b)). All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed
effects. Bins represent the 90% confidence intervals with standard errors

clustered at the country-level.
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Figure A8: Abnormal weather realizations using 10th and 90th per-
centiles

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the
country-average number of days above the 90th and below the 10th per-
centile of the daily distribution in temperature (Panel (a)) and in precip-
itation (Panel (b)). All sector-specific coefficients are estimated jointly in
a stacked regression model fully saturated with country-sector and sector-
year fixed effects. Bins represent the 90% confidence intervals with stan-

dard errors clustered at the country-level.
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Figure A9: Robustness: Abnormal temperature realizations

(a) Balanced panel (b) Excluding “large” countries

(c) Heat shocks - Additional controls and FE

Notes: The figure shows the (standardized) regression estimates for the
country-average number of days above the 95th and below the 5th percentile
of the daily distribution in temperature using a sector-country balanced
panel (Panel (a)), excluding large countries (Brazil, China, India, Russia,
US) (Panel (b)), and for days above the 95th percentile including lagged
growth rate, country-specific linear and quadratic trends and subregion-by-
year fixed effects (Panel (c)). All sector-specific coefficients are estimated
jointly in a stacked regression model fully saturated with country-sector
and sector-year fixed effects. Bins represent the 90% confidence intervals

around point estimates.
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Figure A10: Abnormal weather realizations from time-varying cli-
mate norms using 5th and 95th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the
number of days above the 90th and below the 10th percentile of the daily
distribution in temperature (Panels (a-c-e)) and in precipitation (Panels
(b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and
40-year). The estimation sample starts from 1990. All sector-specific coef-
ficients are estimated jointly in a stacked regression model fully saturated
with country-sector and sector-year fixed effects. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Figure A11: Abnormal weather realizations from time-varying cli-
mate norms using 10th and 90th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the
number of days above the 90th and below the 10th percentile of the daily
distribution in temperature (Panels (a-c-e)) and in precipitation (Panels
(b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and
40-year). The estimation sample starts from 1990. All sector-specific coef-
ficients are estimated jointly in a stacked regression model fully saturated
with country-sector and sector-year fixed effects. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Figure A12: Abnormal weather realizations from time-varying cli-
mate norms using 1st and 99th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the
number of days above the 99th and below the 1st percentile of the daily
distribution in temperature (Panels (a-c-e)) and in precipitation (Panels
(b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and
40-year). The estimation sample starts from 1990. All sector-specific coef-
ficients are estimated jointly in a stacked regression model fully saturated
with country-sector and sector-year fixed effects. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Figure A13: Extreme drought and wetness prevalence and sectoral
production

Notes: The figure shows the (standardized) coefficients from a stacked
multi-sector regression model where changes in dryness and wetness vari-
ables are sector-specific. All sector-specific coefficients are estimated jointly
in a stacked regression model fully saturated with country-sector and
sector-year fixed effects. Bins represent the 90% confidence intervals with

standard errors clustered at the country-level.
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Figure A14: Domestic and foreign dry shocks on sectoral produc-
tion

Notes: Bars represent the (standardized) sector-specific coefficients associ-
ated with direct shocks and domestic and foreign shocks, using the average
number of days below the 5th percentile of the daily precipitation distri-
bution. Domestic shocks are constructed as the average weather shock in
the other sectors in the same country as the sector of interest weighted by
the average of upstream and downstream interdependence with each sec-
tor. Symmetrically, foreign shocks are constructed as the average weather
shock in the other sectors in all the other countries weighted by the average
of upstream and downstream interdependence with each sector. All sector-
specific coefficients are estimated jointly in a stacked regression model fully
saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th and
above the 95th percentile and sector-specific responses to precipitation re-
alizations above the 95th percentile. Bins represent the 90% confidence

intervals with standard errors clustered at the country-level.
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Figure A15: Tropical cyclone intensity and sectoral production

Notes: The figure shows the (standardized) sector-specific coefficients from
a stacked multi-sector regression model where the main regressor is mea-
sured as first-differenced damage intensity measure of tropical cyclones
constructed from wind speed from Kunze (2021). All sector-specific co-
efficients are estimated jointly in a stacked regression model fully satu-
rated with country-sector and sector-year fixed effects and controlling for
country-specific linear time trends. Bins represent the 90% confidence in-

tervals with standard errors clustered at the country-level.
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Figure A16: Domestic and foreign agricultural heat shocks on other
sectors’ production

Notes: Bars represent the (standardized) sector-specific coefficients asso-
ciated with direct shocks and domestic and foreign shocks, using the av-
erage number of days above the 95th percentile of the daily temperature
distribution. Domestic shocks are constructed as the average heat shock
in agriculture in the same country as the sector of interest weighted by
the average of upstream and downstream interdependence with each sec-
tor. Symmetrically, foreign shocks are constructed as the average weather
shock in agriculture in all the other countries weighted by the average of
upstream and downstream interdependence with each sector. All sector-
specific coefficients are estimated jointly in a stacked regression model fully
saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th per-
centile and sector-specific responses to precipitation realizations below the
5th and above the 95th percentile. Bins represent the 95% confidence in-

tervals with standard errors clustered at the country-level.
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Figure A17: Robustness: Spatial correlation

(a) Subregion-by-year FE (b) Continent-by-year FE

Notes: The figure shows the (standardized) sector-specific coefficients as-
sociated with direct shocks and domestic and foreign shocks, using the
average number of days above the 95th percentile of the daily tempera-
ture distribution. Domestic shocks are constructed as the average weather
shock in agriculture in the same country as the sector of interest weighted
by the average of upstream and downstream interdependence with each sec-
tor. Symmetrically, foreign shocks are constructed as the average weather
shock in agriculture in all the other countries weighted by the average of
upstream and downstream interdependence with each sector. All sector-
specific coefficients are estimated jointly in a stacked regression model fully
saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th per-
centile and sector-specific responses to precipitation realizations below the
5th and above the 95th percentile. Panel (a) shows the estimates in a
regression that additionally accounts for subregion-by-year fixed effects,
Panel (b) shows the estimates in a regression that additionally accounts
for continent-by-year fixed effects. Bins represent the 90% confidence in-

tervals around point estimates.
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Figure A18: Robustness: Domestic and foreign agricultural heat
shocks

(a) Accounting for incomplete shares (b) Balanced panel

(c) Excluding “large” countries (d) Using 90th percentile

(e) Using 99th percentile (f) Time-varying production network

Notes: The figure shows the (standardized) sector-specific coefficients asso-
ciated with direct shocks and domestic and foreign agricultural heat shocks,
Panel (a) shows the estimates controlling for sector-year FE interacted
with the sum of exposure shares. Panel (b) uses sector-country balanced
panel, Panel (c) excludes large countries (Brazil, China, India, Russia, US),
Panel (d) and panel (e) respectively used the 90th and the 99th percentile
to construct heat shocks. Panel (f) uses a decadal time-varying production
network constructed using the average of the first five-year input-output
interlinkages for each decade. Bins represent the 90% confidence intervals

around point estimates.
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Figure A19: Local projections of domestic and foreign heat shocks
on total value added

(a) Domestic heat shock (b) Foreign heat shock

Notes: Panels show the impulse response function of per capita total value
added growth rate to a 1 SD increase in heat shocks estimated in a stacked
regression model with country and year fixed effects and accounting for
abnormally cold temperature shocks (below the 5th percentile) and precip-
itation realizations below the 5th and above the 95th percentile. Horizon 0
is the year of the shock. Shaded areas represent the 90% confidence inter-
vals with standard errors clustered at the country level. Panel (a) shows
the estimates for domestic shocks, and Panel (b) shows the estimates for

foreign shocks.
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Figure A20: Local projections of direct heat shocks on sectoral
production

Notes: Panels show the sector-specific impulse response function of sec-
toral per capita GVA growth rate to a 1 SD increase in the abnormally
hot temperature shocks estimated in a stacked regression model fully sat-
urated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to domestic and foreign abnormally hot tem-
perature shocks, to abnormally cold temperature shocks (below the 5th

percentile) and to precipitation realizations below the 5th and above the
95th percentile. Horizon 0 is the year of the shock. Shaded areas represent
the 90% confidence intervals with standard errors clustered at the country-

level.
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Figure A21: Local projections of foreign agricultural heat shocks
on sectoral production

Notes: Panels show the sector-specific impulse response function of sectoral
per capita GVA growth rate to a 1 SD increase in the foreign abnormally
hot temperature shocks estimated in a stacked regression model fully sat-
urated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to direct and domestic abnormally hot tem-
perature shocks, to abnormally cold temperature shocks (below the 5th

percentile) and to precipitation realizations below the 5th and above the
95th percentile. Horizon 0 is the year of the shock. Shaded areas represent
the 90% confidence intervals with standard errors clustered at the country-

level.
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Figure A22: Local projections of domestic and foreign agricultural
heat shocks on sectoral production. Time-varying production net-

works.

(a) Domestic

(b) Foreign

Notes: Panels show the sector-specific impulse response function of sec-
toral per capita GVA growth rate to a 1 SD increase in the foreign ab-
normally hot temperature shocks estimated in a stacked regression model
fully saturated with country-sector and region-sector-year fixed effects and
accounting for sector-specific responses to direct and domestic abnormally
hot temperature shocks, to abnormally cold temperature shocks (below the
5th percentile) and to precipitation realizations below the 5th and above
the 95th percentile. Horizon 0 is the year of the shock. Network shocks
are constructed using as weights the first five-year average input-output
interlinkages for each decade. Shaded areas represent the 90% confidence

intervals with standard errors clustered at the country-level.
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Figure A23: Local projections of domestic and foreign agricultural
heat shocks on sectoral production. Continent-sector-year FE.

(a) Domestic

(b) Foreign

Notes: Panels show the sector-specific impulse response function of sec-
toral per capita GVA growth rate to a 1 SD increase in the foreign abnor-
mally hot temperature shocks estimated in a stacked regression model fully
saturated with country-sector and continent-sector-year fixed effects and
accounting for sector-specific responses to direct and domestic abnormally
hot temperature shocks, to abnormally cold temperature shocks (below the
5th percentile) and to precipitation realizations below the 5th and above
the 95th percentile. Horizon 0 is the year of the shock. Shaded areas rep-
resent the 90% confidence intervals with standard errors clustered at the

country-level.

217



Figure A24: Local projections of domestic and foreign agricultural
heat shocks on sectoral production. Continent-sector linear trends.

(a) Domestic

(b) Foreign

Notes: Panels show the sector-specific impulse response function of sectoral
per capita GVA growth rate to a 1 SD increase in the foreign abnormally
hot temperature shocks estimated in a stacked regression model fully sat-
urated with country-sector and continent-sector linear annual trends and
accounting for sector-specific responses to direct and domestic abnormally
hot temperature shocks, to abnormally cold temperature shocks (below the
5th percentile) and to precipitation realizations below the 5th and above
the 95th percentile. Horizon 0 is the year of the shock. Shaded areas rep-
resent the 90% confidence intervals with standard errors clustered at the

country-level.
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Figure A25: Domestic and foreign drought shocks and sectoral
production

Notes: Bars represent the (standardized) sector-specific coefficients asso-
ciated with direct shocks and domestic and foreign shocks, using changes
in extreme drought prevalence. Domestic shocks are constructed as the
average shock in the other sectors in the same country as the sector of
interest weighted by the average of upstream and downstream interdepen-
dence with each sector. Symmetrically, foreign shocks are constructed as
the average shock in the other sectors in all the other countries weighted
by the average of upstream and downstream interdependence with each
sector. All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed
effects. Bins represent the 90% confidence intervals with standard errors

clustered at the country-level.
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Figure A26: Domestic and foreign cyclones shocks and sectoral
production

Notes: Bars represent the (standardized) sector-specific coefficients asso-
ciated with direct shocks and domestic and foreign shocks, using the cubic
wind speed measure by Kunze (2021). Domestic shocks are constructed as
the average shock in the other sectors in the same country as the sector
of interest weighted by the average of upstream and downstream interde-
pendence with each sector. Symmetrically, foreign shocks are constructed
as the average weather shock in the other sectors in all the other countries
weighted by the average of upstream and downstream interdependence
with each sector. All sector-specific coefficients are estimated jointly in a
stacked regression model fully saturated with country-sector and sector-
year fixed effects. Bins represent the 90% confidence intervals with stan-

dard errors clustered at the country-level.
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Figure A27: Average annual relative sectoral GVA pc losses (%)
due to recent warming

(a) Local sectoral direct shocks (b) Accounting for indirect shocks

Notes: The figure shows average annual losses (in red) and gains (in blue)
in sectoral per capita GVA due to abnormally hot and cold temperature
shocks in the 2001-2020 period compared to a counterfactual in which
shocks evolved linearly from their 1970-2000 averages. The two panels
compare the average annual relative loss (% of per capita GVA) using
sector-specific local heat and cold shock estimates (Panel a) and account-
ing for semi-elasticities to shocks in other partner sectors (Panel b). Av-
erages are obtained from 1000 bootstrap estimations of Equation (1.12),
where indirect shocks are constructed with a time-varying production net-
work that uses the first five-year average input-output interlinkages for
each decade. In Panel a), only estimates for Agriculture are statistically
significant at 95% level. Table A13 reports the estimated average losses
significant at the 95% level for each country-sector when including indirect
heat and cold shocks. Summary statistics on direct losses only considering
95% significant estimates: mean is 1.08%, median is 1.09%, IQR is [1.00%,
1.18%]. Summary statistics on losses accounting for indirect shocks only
considering 95% significant estimates: mean is 1.29%, median is 1.21%,

IQR is [1.04%, 1.44%].

221



A.2 Additional tables

Table A1: Summary statistics on sectoral GVA growth rate

N mean SD min max

Log GVA per capita 47,289 6.166 1.789 -2.880 11.534
GVA per capita growth rate 47,289 0.014 0.121 -3.299 2.572

Sector
Agriculture, hunting, forestry, fishing (ISIC A-B) 7,860 0.002 0.104 -1.691 0.745
Mining, Manufacturing, Utilities (ISIC C-E) 7,900 0.013 0.170 -3.299 2.572
Construction (ISIC F) 7,906 0.010 0.128 -3.169 2.430
Wholesale, retail trade, restaurants and hotels (ISIC G-H) 7,906 0.018 0.087 -1.513 1.261
Transport, storage and communication (ISIC I) 7,857 0.026 0.112 -2.514 2.030
Other Activities (ISIC J-P) 7,860 0.015 0.110 -1.639 1.502

Number of countries 183
Number of sectors 6
Number of years per country-sector 44.220 5.235 12 46
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Table A2: Countries and year-sectors in final sample

Country Number of years-sectors Country Number of years-sectors Country Number of years-sectors
Afghanistan 276 French Polynesia 276 Nigeria 276
Albania 276 Gabon 276 North Korea 184
Algeria 276 Gambia 276 North Macedonia 180
Andorra 276 Georgia 180 Norway 276
Angola 276 Germany 276 Oman 276
Antigua and Barbuda 276 Ghana 276 Pakistan 276
Argentina 276 Greece 276 Palestine 180
Armenia 180 Greenland 276 Panama 276
Aruba 276 Grenada 276 Papua New Guinea 276
Australia 276 Guatemala 276 Paraguay 276
Austria 276 Guinea 276 Peru 276
Azerbaijan 180 Guyana 276 Philippines 276
Bahamas 296 Haiti 276 Poland 276
Bahrain 276 Honduras 276 Portugal 276
Bangladesh 276 Hungary 276 Qatar 276
Barbados 276 Iceland 276 Republic of the Congo 276
Belarus 180 India 276 Romania 276
Belgium 276 Indonesia 276 Russia 180
Belize 276 Iran 276 Rwanda 276
Benin 276 Iraq 276 Samoa 276
Bermuda 276 Ireland 276 San Marino 276
Bhutan 276 Israel 276 Saudi Arabia 276
Bolivia 276 Italy 276 Senegal 276
Bosnia and Herzegovina 180 Jamaica 276 Serbia 180
Botswana 276 Japan 276 Seychelles 276
Brazil 276 Jordan 276 Sierra Leone 276
British Virgin Islands 276 Kazakhstan 180 Singapore 276
Brunei 276 Kenya 276 Slovakia 180
Bulgaria 276 Kuwait 276 Slovenia 180
Burkina Faso 276 Kyrgyzstan 180 Somalia 276
Burundi 276 Laos 276 South Africa 276
Cabo Verde 276 Latvia 180 South Korea 276
Cambodia 276 Lebanon 276 South Sudan 72
Cameroon 276 Lesotho 276 Spain 276
Canada 276 Liberia 276 Sri Lanka 276
Cayman Islands 276 Libya 276 Sudan 72
Central African Republic 276 Liechtenstein 276 Suriname 276
Chad 276 Lithuania 180 Swaziland 276
Chile 276 Luxembourg 276 Sweden 276
China 276 Madagascar 276 Switzerland 276
Colombia 276 Malawi 276 Syria 276
Comoros 276 Malaysia 276 São Tomé and Príncipe 276
Costa Rica 276 Maldives 297 Tajikistan 178
Croatia 180 Mali 276 Tanzania 276
Cuba 276 Malta 276 Thailand 276
Cyprus 276 Mauritania 276 Togo 276
Czechia 180 Mauritius 276 Trinidad and Tobago 276
Côte d’Ivoire 276 Moldova 180 Tunisia 276
Democratic Republic of the Congo 276 Monaco 230 Turkey 276
Denmark 276 Mongolia 276 Turkmenistan 180
Djibouti 276 Montenegro 180 Uganda 276
Dominican Republic 276 Morocco 276 Ukraine 180
Ecuador 276 Mozambique 276 United Arab Emirates 276
Egypt 276 Myanmar 276 United Kingdom 276
El Salvador 276 México 276 United States 276
Equatorial Guinea 276 Namibia 276 Uruguay 276
Eritrea 126 Nepal 276 Uzbekistan 180
Estonia 180 Netherlands 276 Vanuatu 276
Ethiopia 180 New Caledonia 276 Venezuela 276
Fiji 276 New Zealand 276 Vietnam 276
Finland 276 Nicaragua 276 Yemen 186
France 276 Niger 276 Zambia 276

Zimbabwe 276

Total 47,289
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Table A3: Mapping between EORA26 sectors and UNSD industries

EORA26 Sector UNSD industry
Agriculture Agriculture, hunting, forestry, fishing (ISIC A-B)
Fishing Agriculture, hunting, forestry, fishing (ISIC A-B)
Mining and Quarrying Mining, Manufacturing, Utilities (ISIC C-E)
Electricity, Gas and Water Mining, Manufacturing, Utilities (ISIC C-E)
Food & Beverages Mining, Manufacturing, Utilities (ISIC C-E)
Textiles and Wearing Apparel Mining, Manufacturing, Utilities (ISIC C-E)
Wood and Paper Mining, Manufacturing, Utilities (ISIC C-E)
Petroleum, Chemical and Non-Metallic Mineral Products Mining, Manufacturing, Utilities (ISIC C-E)
Metal Products Mining, Manufacturing, Utilities (ISIC C-E)
Electrical and Machinery Mining, Manufacturing, Utilities (ISIC C-E)
Transport Equipment Mining, Manufacturing, Utilities (ISIC C-E)
Other Manufacturing Mining, Manufacturing, Utilities (ISIC C-E)
Recycling Mining, Manufacturing, Utilities (ISIC C-E)
Construction Construction (ISIC F)
Maintenance and Repair Construction (ISIC F)
Wholesale Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Retail Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Hotels and Restaurants Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Transport Transport, storage and communication (ISIC I)
Post and Telecommunications Transport, storage and communication (ISIC I)
Financial Intermediation and Business Activities Other Activities (ISIC J-P)
Public Administration Other Activities (ISIC J-P)
Education, Health and Other Services Other Activities (ISIC J-P)
Private Households Other Activities (ISIC J-P)
Others Other Activities (ISIC J-P)
Re-export & Re-import Other Activities (ISIC J-P)

Notes: Author’s classification based on Kunze (2021) and adapted to six UNSD sectors.
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Table A4: Classification of countries by income group

Group Countries
Advanced Economies Australia, Austria, Belgium, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland,

France, Germany, Greece, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia,
Lithuania, Luxembourg, Malta, Netherlands, New Zealand, Norway, Portugal,

Puerto Rico, San Marino, Singapore, Slovak Republic, Slovenia,
Spain, Sweden, Switzerland, United Kingdom, United States

Emerging Market Economies Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia,
Azerbaijan, The Bahamas, Bahrain, Barbados, Belarus, Belize, Bosnia and Herzegovina,

Botswana, Brazil, Bulgaria, Cabo Verde, Chile, China, Colombia,
Costa Rica, Croatia, Dominica, Dominican Republic, Ecuador,

Egypt, El Salvador, Equatorial Guinea, Fiji, Gabon, Georgia, Grenada,
Guatemala, Guyana, Hungary, India, Indonesia, Iran, Iraq, Jamaica,

Jordan, Kazakhstan, Kuwait, Lebanon, Libya, Malaysia, Maldives, Marshall Islands,
Mauritius, Mexico, Montenegro, Morocco, Namibia, Nauru, North Macedonia, Oman,

Pakistan, Palau, Panama, Paraguay, Peru, Philippines, Poland, Qatar, Romania, Russia,
Samoa, Saudi Arabia, Serbia, Seychelles, South Africa, Sri Lanka, St. Kitts and Nevis,

St. Lucia, St. Vincent and the Grenadines, Suriname, Swaziland, Syria, Thailand,
Timor-Leste, Tonga, Trinidad and Tobago, Tunisia, Turkey,

Turkmenistan, Tuvalu, Ukraine, United Arab Emirates, Uruguay, Vanuatu, Venezuela

Low-Income Developing Countries Afghanistan, Bangladesh, Benin, Bhutan, Bolivia, Burkina Faso,
Burundi, Cambodia, Cameroon, Central African Republic, Chad, Comoros,

Democratic Republic of the Congo, Republic of Congo,Côte d’Ivoire, Djibouti, Eritrea,
Ethiopia, The Gambia, Guinea, Guinea-Bissau, Haiti,Honduras, Kenya, Kiribati,

Kyrgyz Republic, Lao P.D.R., Lesotho, Liberia, Madagascar, Malawi, Mali,
Mauritania, Moldova, Mongolia, Mozambique, Myanmar, Nepal,
Nicaragua, Niger, Nigeria, Papua New Guinea, Rwanda, Senegal,

Sierra Leone, Solomon Islands, Somalia, South Sudan, Sudan, São Tomé and Príncipe,
Tajikistan, Tanzania, Togo, Uganda, Uzbekistan, Vietnam, Yemen,

Zambia, Zimbabwe
Notes: Author’s classification based on IMF World Economic Outlook (IMF, 2022).
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Table A5: Im-Pesaran-Shin unit-root test for main variables

Statistic p-value

GVA growth rate -6.072 0.000
Abnormally dry precipitation shock (p1) -6.782 0.000
Abnormally dry precipitation shock (p5) -6.464 0.000
Abnormally dry precipitation shock (p10) -6.456 0.000
Abnormally wet precipitation shock (p90) -6.571 0.000
Abnormally wet precipitation shock (p95) -6.600 0.000
Abnormally wet precipitation shock (p99) -6.832 0.000
Abnormally cold temperature shock (p1) -6.541 0.000
Abnormally cold temperature shock (p5) -6.134 0.000
Abnormally cold temperature shock (p10) -6.128 0.000
Abnormally hot temperature shock (p90) -6.156 0.000
Abnormally hot temperature shock (p95) -6.258 0.000
Abnormally hot temperature shock (p99) -6.575 0.000

Notes: Null hypothesis of the unit-root test by Im et al. (2003) is that all
panels contain unit roots against the alternative hypothesis that some panels
are stationary. In performing the test, I do not include lags and remove cross-
sectional means and include a time trend in the estimated equation. The test
on the growth rate is performed on a balanced sector-country-year panel,
whereas the test on weather variables is performed on a balanced country-
year panel using population-weighted weather variables.
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Table A6: Summary statistics on temperature and precipitation variables

N mean SD min max

Temperature and precipitation
Positive difference in daily temperature sum {0;1} 8,572 0.524 0.499 0 1
Positive difference in daily precipitation sum {0;1} 8,572 0.497 0.500 0 1

Changes in daily temperature sum (∆◦C) 8,572 9.556 197.755 -1594.597 1704.612
Changes in daily precipitation sum (∆ m) 8,572 0.0008 0.010 -0.092 0.095

Temperature above 95th percentile (days/year) 8,572 18.986 16.5 0 152
Temperature below 5th percentile (days/year) 8,572 17.870 14.185 0 156
Precipitation above 95th percentile (days/year) 8,572 18.244 6.613 1 78
Precipitation below 5th percentile (days/year) 8,572 15.633 10.182 0 86

Temperature above 90th percentile (days/year) 8,548 37.487 23.610 0 222
Temperature below 10th percentile (days/year) 8,548 35.907 21.023 0 210
Precipitation above 90th percentile (days/year) 8,548 36.458 9.907 7 111
Precipitation below 10th percentile (days/year) 8,548 32.390 16.367 0 114

Temperature above 99th percentile (days/year) 8,548 3.851 6.145 0 94
Temperature below 1th percentile (days/year) 8,548 3.563 4.892 0 54
Precipitation above 99th percentile (days/year) 8,548 3.659 2.539 0 29
Precipitation below 1th percentile (days/year) 8,548 2.474 3.187 0 32

Notes: Summary statistics are computed using country-year observations. Where ∆ is indicated in parentheses, variables
are in first-difference, measuring changes in weather conditions from the previous year.
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Table A7: Annual (binary) changes in temperature and precipita-
tion on sectoral GVA.

GVA per capita growth rate

(1) (2) (3)
Temperature

Agriculture, hunting, forestry, fishing -0.00676∗∗ -0.00726∗∗ -0.00773∗∗

(0.00297) (0.00305) (0.00300)

Construction 0.000787 0.000861 0.000352
(0.00401) (0.00403) (0.00403)

Mining, Manufacturing, Utilities 0.00229 0.00205 0.00162
(0.00251) (0.00253) (0.00256)

Other Activities 0.000665 0.000697 0.000157
(0.00183) (0.00184) (0.00183)

Transport, storage and communication 0.00410 0.00423 0.00370
(0.00266) (0.00271) (0.00272)

Wholesale, retail trade, restaurants and hotels 0.00284 0.00266 0.00220
(0.00260) (0.00264) (0.00266)

Precipitation
Agriculture, hunting, forestry, fishing 0.0117∗∗∗ 0.0122∗∗∗ 0.0117∗∗∗

(0.00291) (0.00299) (0.00293)

Construction -0.00378 -0.00349 -0.00380
(0.00337) (0.00331) (0.00332)

Mining, Manufacturing, Utilities -0.000347 0.000191 -0.000257
(0.00278) (0.00285) (0.00285)

Other Activities -0.000128 -0.00000690 -0.000466
(0.00171) (0.00177) (0.00175)

Transport, storage and communication -0.00514∗∗ -0.00460∗ -0.00505∗∗

(0.00233) (0.00240) (0.00238)

Wholesale, retail trade, restaurants and hotels -0.000100 0.000159 -0.000298
(0.00209) (0.00212) (0.00213)

GVA growth ratet−1 0.0618∗∗ 0.0399
(0.0264) (0.0257)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 51273 50162 50162
adj. R2 0.043 0.046 0.060

Notes: The table reports the sector-specific coefficients associated with a binary variable equal to one if
the annual temperature (resp. precipitation) is higher than the previous year. Standard errors are clustered
at the country level. A graphical representation of the coefficients in column (2) is reported in Figure A4.
Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8: Annual changes in temperature and precipitation on
sectoral GVA.

GVA per capita growth rate

(1) (2) (3)
Temperature Changes

Agriculture, hunting, forestry, fishing -0.0351∗∗ -0.0383∗∗ -0.0379∗∗

(0.0144) (0.0149) (0.0149)

Construction 0.0402∗∗∗ 0.0360∗∗ 0.0362∗∗

(0.0153) (0.0157) (0.0155)

Mining, Manufacturing, Utilities 0.0220∗ 0.0189 0.0193
(0.0112) (0.0119) (0.0118)

Other Activities 0.00974 0.00980 0.0101
(0.00950) (0.00978) (0.00973)

Transport, storage and communication 0.0230∗ 0.0200 0.0205
(0.0124) (0.0127) (0.0126)

Wholesale, retail trade, restaurants and hotels 0.0217 0.0197 0.0201
(0.0135) (0.0137) (0.0137)

Precipitation Changes
Agriculture, hunting, forestry, fishing 0.0405∗∗∗ 0.0417∗∗∗ 0.0409∗∗∗

(0.0114) (0.0119) (0.0117)

Construction -0.00187 0.00110 0.000722
(0.0129) (0.0129) (0.0129)

Mining, Manufacturing, Utilities 0.0130 0.0148 0.0147
(0.0103) (0.0106) (0.0106)

Other Activities 0.00275 0.00302 0.00277
(0.00532) (0.00549) (0.00545)

Transport, storage and communication -0.00857 -0.00713 -0.00744
(0.00821) (0.00867) (0.00851)

Wholesale, retail trade, restaurants and hotels -0.00305 -0.00207 -0.00255
(0.00839) (0.00846) (0.00836)

GVA growth ratet−1 0.0616∗∗ 0.0400
(0.0264) (0.0257)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 50223 49133 49133
adj. R2 0.044 0.047 0.060

Notes: The table reports the (standardized) sector-specific coefficients associated with changes in an-
nual temperature and precipitation distributions from the previous year’s. Standard errors are clustered
at the country-level. A graphical representation of the coefficients in column (2) is reported in Figure
A5. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A9: Heterogeneous effects of annual changes in temperature
and precipitation by income groups.

GVA per capita growth rate

(1) (2) (3)

Temperature
Advanced Economies
Agriculture 0.0272 0.0287∗ 0.0284∗

(0.0176) (0.0153) (0.0151)
Construction 0.0668∗∗∗ 0.0653∗∗∗ 0.0651∗∗∗

(0.0198) (0.0170) (0.0167)
Mining, Manufacturing, Utilities 0.0153∗∗ 0.0176∗∗ 0.0180∗∗

(0.00689) (0.00886) (0.00856)
Other Activities 0.00399 0.00168 0.00196

(0.00624) (0.00571) (0.00588)
Transport, storage and communication 0.00634 0.00756 0.00818

(0.0104) (0.0106) (0.0108)
Wholesale, retail trade, restaurants and hotels 0.0223∗∗∗ 0.0176∗∗ 0.0177∗∗

(0.00844) (0.00720) (0.00716)

Emerging Economies
Agriculture -0.0804∗∗∗ -0.0844∗∗∗ -0.0845∗∗∗

(0.0191) (0.0202) (0.0202)
Construction 0.0482 0.0506 0.0501

(0.0317) (0.0331) (0.0328)
Mining, Manufacturing, Utilities 0.0339 0.0306 0.0298

(0.0220) (0.0230) (0.0228)
Other Activities 0.0295 0.0309 0.0301

(0.0206) (0.0213) (0.0212)
Transport, storage and communication 0.0440∗ 0.0395 0.0389

(0.0254) (0.0261) (0.0260)
Wholesale, retail trade, restaurants and hotels 0.0325 0.0325 0.0319

(0.0284) (0.0284) (0.0285)
Low-Income Developing Countries
Agriculture -0.0762∗∗ -0.0888∗∗ -0.0852∗∗

(0.0354) (0.0380) (0.0384)
Construction 0.0240 -0.00530 -0.00178

(0.0338) (0.0314) (0.0315)
Mining, Manufacturing, Utilities 0.0305 0.0164 0.0203

(0.0288) (0.0330) (0.0331)
Other Activities -0.00853 -0.00845 -0.00471

(0.0199) (0.0188) (0.0189)
Transport, storage and communication 0.00991 -0.00175 0.00231

(0.0206) (0.0204) (0.0200)
Wholesale, retail trade, restaurants and hotels -0.0119 -0.0172 -0.0128

(0.0331) (0.0350) (0.0347)

Precipitation
Advanced Economies
Agriculture 0.0650 0.0608 0.0605

(0.0446) (0.0450) (0.0442)
Construction 0.0139 0.00437 0.00500

(0.0212) (0.0203) (0.0200)
Mining, Manufacturing, Utilities 0.0107 0.0179 0.0173

(0.0158) (0.0166) (0.0163)
Other Activities -0.00760 -0.0148∗ -0.0143∗

(0.00644) (0.00756) (0.00739)
Transport, storage and communication -0.0101 -0.0133 -0.0130

(0.0134) (0.0143) (0.0137)
Wholesale, retail trade, restaurants and hotels -0.00675 -0.0141 -0.0138

(0.0133) (0.0126) (0.0123)
Emerging Economies
Agriculture 0.0225∗ 0.0222∗ 0.0217

(0.0132) (0.0133) (0.0132)
Construction -0.0121 -0.00820 -0.00856

(0.0196) (0.0190) (0.0188)
Mining, Manufacturing, Utilities 0.00487 0.00631 0.00593

(0.00768) (0.00791) (0.00788)
Other Activities 0.0120 0.0126∗ 0.0124

(0.00758) (0.00762) (0.00751)
Transport, storage and communication -0.00251 -0.00151 -0.00166

(0.00680) (0.00675) (0.00664)
Wholesale, retail trade, restaurants and hotels 0.00435 0.00520 0.00505

(0.00955) (0.00969) (0.00945)
Low-Income Developing Countries
Agriculture 0.0466∗∗ 0.0488∗∗ 0.0477∗∗

(0.0195) (0.0204) (0.0203)
Construction 0.0233 0.0234 0.0236

(0.0293) (0.0301) (0.0301)
Mining, Manufacturing, Utilities -0.0111 -0.00924 -0.00957

(0.0144) (0.0151) (0.0149)
Other Activities -0.0177 -0.0153 -0.0222

(0.0272) (0.0273) (0.0276)
Transport, storage and communication -0.00977 -0.00897 -0.00955

(0.0241) (0.0255) (0.0251)
Wholesale, retail trade, restaurants and hotels -0.0260 -0.0237 -0.0247

(0.0216) (0.0216) (0.0215)
GVA growth ratet−1 0.0566∗∗ 0.0344

(0.0280) (0.0272)
Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 46243 45235 45235
adj. R2 0.047 0.050 0.064

Notes: The table reports the (standardized) income group-sector-specific coefficients associated with
changes in annual sum of daily temperature and precipitation. A graphical representation of the co-
efficients associated with temperature is reported in Figure A6a. Standard errors are clustered at the
country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A10: Heterogeneous effect of annual changes in temperature
and precipitation by climate terciles.

GVA per capita growth rate

(1) (2) (3)

Temperature
Cold Climate
Agriculture -0.0105 -0.0128 -0.0138

(0.0173) (0.0176) (0.0176)
Construction 0.0769∗∗∗ 0.0680∗∗∗ 0.0675∗∗∗

(0.0196) (0.0194) (0.0193)
Mining, Manufacturing, Utilities 0.0193 0.0174 0.0169

(0.0128) (0.0140) (0.0138)
Other Activities 0.0167 0.0170 0.0166

(0.0126) (0.0127) (0.0126)
Transport, storage and communication 0.0210 0.0160 0.0157

(0.0147) (0.0148) (0.0147)
Wholesale, retail trade, restaurants and hotels 0.0392∗∗ 0.0353∗∗ 0.0351∗∗

(0.0172) (0.0174) (0.0174)

Temperate Climate
Agriculture -0.101∗∗∗ -0.103∗∗∗ -0.0998∗∗∗

(0.0312) (0.0319) (0.0321)
Construction -0.0162 -0.0108 -0.00972

(0.0364) (0.0376) (0.0371)
Mining, Manufacturing, Utilities 0.0357 0.0315 0.0330

(0.0259) (0.0263) (0.0263)
Other Activities 0.00961 0.00898 0.00997

(0.0179) (0.0183) (0.0186)
Transport, storage and communication 0.0488∗ 0.0509∗ 0.0520∗

(0.0283) (0.0291) (0.0291)
Wholesale, retail trade, restaurants and hotels 0.0135 0.0166 0.0173

(0.0295) (0.0287) (0.0290)
Hot Climate
Agriculture -0.0413 -0.0501 -0.0470

(0.0396) (0.0428) (0.0425)
Construction -0.0491 -0.0471 -0.0438

(0.0321) (0.0323) (0.0321)
Mining, Manufacturing, Utilities 0.0112 0.00361 0.00781

(0.0308) (0.0320) (0.0319)
Other Activities -0.0260 -0.0274 -0.0242

(0.0184) (0.0195) (0.0194)
Transport, storage and communication -0.0125 -0.0157 -0.0118

(0.0203) (0.0207) (0.0203)
Wholesale, retail trade, restaurants and hotels -0.0555∗∗ -0.0585∗∗ -0.0552∗∗

(0.0235) (0.0234) (0.0234)

Precipitation
Cold Climate
Agriculture 0.0389∗ 0.0395∗ 0.0405∗∗

(0.0205) (0.0207) (0.0205)
Construction -0.00982 -0.00897 -0.00710

(0.0179) (0.0177) (0.0176)
Mining, Manufacturing, Utilities 0.0179 0.0213 0.0234∗

(0.0137) (0.0131) (0.0131)
Other Activities 0.00360 -0.000150 0.00119

(0.00786) (0.00783) (0.00775)
Transport, storage and communication -0.00287 0.000371 0.00132

(0.0151) (0.0157) (0.0151)
Wholesale, retail trade, restaurants and hotels -0.0134 -0.0154 -0.0146

(0.0139) (0.0136) (0.0134)
Temperate Climate
Agriculture 0.0417∗ 0.0428∗ 0.0411∗

(0.0216) (0.0224) (0.0222)
Construction 0.00512 0.00888 0.00813

(0.0180) (0.0173) (0.0174)
Mining, Manufacturing, Utilities 0.0151 0.0170 0.0163

(0.0156) (0.0158) (0.0159)
Other Activities 0.0114 0.0127 0.0118

(0.00801) (0.00808) (0.00808)
Transport, storage and communication 0.0113 0.0131 0.0122

(0.0104) (0.0108) (0.0108)
Wholesale, retail trade, restaurants and hotels 0.0208∗ 0.0218∗ 0.0211∗

(0.0122) (0.0127) (0.0125)
Hot Climate
Agriculture 0.0271∗ 0.0279∗ 0.0277∗

(0.0156) (0.0164) (0.0162)
Construction -0.0193 -0.0146 -0.0154

(0.0248) (0.0251) (0.0249)
Mining, Manufacturing, Utilities 0.00861 0.00897 0.00857

(0.0209) (0.0218) (0.0218)
Other Activities -0.00974 -0.00862 -0.00881

(0.0101) (0.0106) (0.0105)
Transport, storage and communication -0.0319∗∗ -0.0314∗ -0.0313∗

(0.0153) (0.0163) (0.0159)
Wholesale, retail trade, restaurants and hotels -0.0296∗ -0.0268∗ -0.0274∗

(0.0154) (0.0155) (0.0154)
GVA growth ratet−1 0.0620∗∗ 0.0404

(0.0264) (0.0258)
Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 50223 49133 49133
adj. R2 0.044 0.047 0.060

Notes: The table reports the (standardized) climate tercile-sector-specific coefficients associated with
binary variables indicating positive changes in annual sum of daily temperature and precipitation. A
graphical representation of the coefficients associated with temperature is reported in Figure A6a. Stan-
dard errors are clustered at the country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A11: Dryness and wetness shocks and sectoral GVA.

Average dryness Extreme drought prevalence Extreme wetness prevalence
(1) (2) (3)

Agriculture, hunting, forestry, fishing -0.119∗∗∗ -0.0733∗∗∗ -0.00346
(0.0197) (0.0126) (0.0116)

Construction 0.0184 0.0281∗∗ -0.00293
(0.0156) (0.0135) (0.0133)

Mining, Manufacturing, Utilities 0.000256 0.00354 0.00218
(0.0162) (0.0102) (0.00818)

Other Activities 0.00204 -0.000846 0.00545
(0.00813) (0.00459) (0.00474)

Transport, storage and communication 0.0184 0.0143 -0.00588
(0.0119) (0.00916) (0.00785)

Wholesale, retail trade, restaurants and hotels 0.00414 -0.00304 0.00900
(0.0117) (0.00846) (0.00869)

GVA growth ratet−1 0.0687∗∗ 0.0605∗∗ 0.0605∗∗

(0.0282) (0.0263) (0.0263)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓

N 35911 49578 49578
adj. R2 0.049 0.047 0.046

Notes: The table reports the (standardized) sector-specific coefficients associated with the three measures in first difference constructed from the SPEI
database. A graphical representation of the coefficients is reported in Figure A13. Column (1) uses a measure of average dryness (as the average of monthly
negative realizations of SPEI in each country), column (2) uses extreme drought prevalence as the maximum share of grid-months with extreme drought
conditions (SPEI<-2); column (3) uses extreme wetness as the maximum share of grid-months with extreme wetness conditions (SPEI>2) in a country in
a year. Standard errors are clustered at the country-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A12: Tropical cyclones and sectoral GVA.

GVA per capita growth rate

(1) (2) (3)

Agriculture, hunting, forestry, fishing -0.0288∗∗ -0.0297∗∗ -0.0315∗∗∗

(0.0125) (0.0126) (0.0119)

Construction -0.00735 -0.00749 -0.00717
(0.00642) (0.00648) (0.00651)

Mining, Manufacturing, Utilities -0.000445 -0.000488 0.000405
(0.00723) (0.00737) (0.00767)

Other Activities -0.00500∗ -0.00504∗ -0.00603∗∗

(0.00278) (0.00282) (0.00289)

Transport, storage and communication -0.00101 -0.00107 -0.000670
(0.00404) (0.00410) (0.00376)

Wholesale, retail trade, restaurants and hotels -0.00444 -0.00463 -0.00412
(0.00641) (0.00637) (0.00657)

GVA growth ratet−1 0.0262 0.0417
(0.0259) (0.0264)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓ ✓
Country quadratic time trends ✓

N 44167 44167 44167
adj. R2 0.053 0.053 0.053

Notes: The table reports the sector-specific (standardized) coefficients associated with the changes in
wind speed as constructed in Kunze (2021). A graphical representation of the coefficients estimated in
column (1) is reported in Figure A15. Standard errors are clustered at the country-level. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Tropical cyclones data are available until 2015.
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Table A13: Sector-country damages (% loss GVA per capita) sig-
nificant at 95% level

Country Sector Average loss 95% CI Country Sector Average loss 95% CI Country Sector Average loss 95% CI
Afghanistan Agriculture 1,25 [ 0,74 ; 1,78 ] Japan Agriculture 0,82 [ 0,40 ; 1,26 ] Ukraine Agriculture 1,21 [ 0,58 ; 1,86 ]
Albania Agriculture 1,39 [ 0,81 ; 1,97 ] Jordan Agriculture 1,12 [ 0,53 ; 1,73 ] Uruguay Agriculture 1,39 [ 0,77 ; 2,02 ]
Algeria Agriculture 1,37 [ 0,81 ; 1,96 ] Kenya Agriculture 0,99 [ 0,41 ; 1,58 ] Uzbekistan Agriculture 1,81 [ 0,71 ; 2,84 ]
Andorra Agriculture 1,35 [ 0,80 ; 1,94 ] Kuwait Agriculture 1,11 [ 0,53 ; 1,71 ] Vanuatu Agriculture 1,35 [ 0,81 ; 1,93 ]
Angola Agriculture 1,74 [ 0,99 ; 2,50 ] Kyrgyzstan Agriculture 0,91 [ 0,43 ; 1,41 ] Venezuela Agriculture 1,85 [ 0,94 ; 2,75 ]
Antigua Agriculture 1,62 [ 0,93 ; 2,32 ] Laos Agriculture 1,12 [ 0,54 ; 1,72 ] Viet Nam Agriculture 2,03 [ 0,93 ; 3,12 ]
Argentina Agriculture 1,30 [ 0,76 ; 1,88 ] Latvia Agriculture 1,03 [ 0,49 ; 1,59 ] Yemen Agriculture 1,53 [ 0,81 ; 2,24 ]
Armenia Agriculture 1,19 [ 0,67 ; 1,72 ] Lebanon Agriculture 1,13 [ 0,54 ; 1,73 ] Zambia Agriculture 1,34 [ 0,79 ; 1,91 ]
Aruba Agriculture 1,31 [ 0,68 ; 1,95 ] Lesotho Agriculture 1,09 [ 0,52 ; 1,68 ] Zimbabwe Agriculture 1,17 [ 0,68 ; 1,68 ]
Australia Agriculture 1,27 [ 0,75 ; 1,82 ] Liberia Agriculture 1,03 [ 0,49 ; 1,59 ] Afghanistan Construction 1,65 [ 0,26 ; 2,97 ]
Austria Agriculture 1,33 [ 0,79 ; 1,92 ] Libya Agriculture 1,07 [ 0,51 ; 1,63 ] Albania Construction 1,59 [ 0,07 ; 3,04 ]
Azerbaijan Agriculture 1,11 [ 0,61 ; 1,61 ] Liechtenstein Agriculture 1,08 [ 0,52 ; 1,66 ] Angola Construction 2,30 [ 0,61 ; 3,77 ]
Bahamas Agriculture 1,70 [ 1,00 ; 2,45 ] Lithuania Agriculture 1,06 [ 0,50 ; 1,64 ] Antigua Construction 1,49 [ 0,13 ; 2,74 ]
Bahrain Agriculture 1,45 [ 0,85 ; 2,09 ] Luxembourg Agriculture 1,00 [ 0,47 ; 1,55 ] Armenia Construction 2,08 [ 0,53 ; 3,52 ]
Bangladesh Agriculture 1,28 [ 0,74 ; 1,84 ] Madagascar Agriculture 1,26 [ 0,56 ; 1,94 ] Aruba Construction 3,69 [ 1,44 ; 5,73 ]
Barbados Agriculture 1,71 [ 0,96 ; 2,46 ] Malawi Agriculture 1,06 [ 0,52 ; 1,62 ] Austria Construction 1,70 [ 0,26 ; 3,07 ]
Belarus Agriculture 1,20 [ 0,64 ; 1,78 ] Malaysia Agriculture 1,16 [ 0,47 ; 1,86 ] Azerbaijan Construction 1,32 [ 0,08 ; 2,51 ]
Belgium Agriculture 1,20 [ 0,71 ; 1,71 ] Maldives Agriculture 1,01 [ 0,43 ; 1,60 ] Bahrain Construction 1,98 [ 0,46 ; 3,39 ]
Belize Agriculture 1,69 [ 1,00 ; 2,41 ] Mali Agriculture 1,09 [ 0,52 ; 1,68 ] Bangladesh Construction 1,49 [ 0,09 ; 2,83 ]
Benin Agriculture 1,34 [ 0,78 ; 1,91 ] Malta Agriculture -0,11 [ -0,18 ; -0,04 ] Barbados Construction 1,92 [ 0,38 ; 3,25 ]
Bermuda Agriculture 1,58 [ 0,91 ; 2,28 ] Mauritania Agriculture 1,03 [ 0,50 ; 1,58 ] Belgium Construction 1,25 [ 0,02 ; 2,41 ]
Bhutan Agriculture 1,63 [ 0,94 ; 2,34 ] Mauritius Agriculture 0,96 [ 0,36 ; 1,55 ] Benin Construction 1,77 [ 0,43 ; 2,94 ]
Bolivia Agriculture 1,78 [ 1,01 ; 2,56 ] Mexico Agriculture 1,17 [ 0,56 ; 1,80 ] Bhutan Construction 2,67 [ 0,79 ; 4,41 ]
Bosnia and Herzegovina Agriculture 1,43 [ 0,85 ; 2,05 ] Moldova Agriculture 1,23 [ 0,59 ; 1,88 ] Bosnia and Herzegovina Construction 1,38 [ 0,04 ; 2,67 ]
Botswana Agriculture 1,30 [ 0,77 ; 1,87 ] Mongolia Agriculture 1,21 [ 0,57 ; 1,86 ] Brazil Construction 1,39 [ 0,07 ; 2,63 ]
Brazil Agriculture 1,66 [ 0,95 ; 2,39 ] Montenegro Agriculture 1,22 [ 0,58 ; 1,86 ] Brunei Construction 2,16 [ 0,62 ; 3,50 ]
British Virgin Islands Agriculture 1,62 [ 0,95 ; 2,31 ] Morocco Agriculture 1,01 [ 0,48 ; 1,55 ] Bulgaria Construction 1,43 [ 0,02 ; 2,77 ]
Brunei Agriculture 1,57 [ 0,90 ; 2,26 ] Mozambique Agriculture 1,04 [ 0,50 ; 1,61 ] Burundi Construction 1,47 [ 0,22 ; 2,58 ]
Bulgaria Agriculture 1,27 [ 0,69 ; 1,88 ] Myanmar Agriculture 0,62 [ 0,29 ; 0,96 ] Cambodia Construction 1,61 [ 0,33 ; 2,74 ]
Burkina Faso Agriculture 1,25 [ 0,70 ; 1,80 ] Namibia Agriculture 1,16 [ 0,55 ; 1,79 ] Cameroon Construction 2,02 [ 0,51 ; 3,32 ]
Burundi Agriculture 1,39 [ 0,80 ; 2,00 ] Nepal Agriculture 0,98 [ 0,46 ; 1,52 ] Cape Verde Construction 1,44 [ 0,07 ; 2,73 ]
Cambodia Agriculture 1,21 [ 0,71 ; 1,72 ] Netherlands Agriculture 1,00 [ 0,48 ; 1,53 ] Cayman Islands Construction 1,76 [ 0,19 ; 3,25 ]
Cameroon Agriculture 1,39 [ 0,79 ; 2,00 ] New Caledonia Agriculture 1,03 [ 0,50 ; 1,58 ] Central African Republic Construction 1,54 [ 0,24 ; 2,66 ]
Canada Agriculture 1,00 [ 0,58 ; 1,45 ] New Zealand Agriculture 0,89 [ 0,41 ; 1,38 ] Chad Construction 1,45 [ 0,03 ; 2,81 ]
Cape Verde Agriculture 1,65 [ 0,94 ; 2,37 ] Nicaragua Agriculture 0,91 [ 0,40 ; 1,41 ] Colombia Construction 1,60 [ 0,16 ; 2,88 ]
Cayman Islands Agriculture 1,75 [ 1,01 ; 2,51 ] Niger Agriculture 1,12 [ 0,54 ; 1,72 ] Congo Construction 2,14 [ 0,56 ; 3,52 ]
Central African Republic Agriculture 1,45 [ 0,86 ; 2,06 ] Nigeria Agriculture 1,18 [ 0,56 ; 1,81 ] Costa Rica Construction 1,31 [ 0,17 ; 2,38 ]
Chad Agriculture 1,52 [ 0,87 ; 2,20 ] North Korea Agriculture 0,53 [ 0,19 ; 0,87 ] France Construction 1,28 [ 0,01 ; 2,50 ]
Chile Agriculture 1,30 [ 0,76 ; 1,86 ] Norway Agriculture 0,91 [ 0,43 ; 1,39 ] French Polynesia Construction 1,61 [ 0,29 ; 2,81 ]
China Agriculture 0,84 [ 0,44 ; 1,26 ] Oman Agriculture 1,23 [ 0,56 ; 1,90 ] Gabon Construction 2,17 [ 0,64 ; 3,55 ]
Colombia Agriculture 1,60 [ 0,87 ; 2,34 ] Pakistan Agriculture 0,86 [ 0,40 ; 1,32 ] Gambia Construction 1,37 [ 0,10 ; 2,60 ]
Congo Agriculture 1,50 [ 0,85 ; 2,17 ] Panama Agriculture 1,00 [ 0,43 ; 1,59 ] Russia Construction 1,40 [ 0,07 ; 2,67 ]
Costa Rica Agriculture 0,89 [ 0,45 ; 1,32 ] Papua New Guinea Agriculture 1,35 [ 0,57 ; 2,12 ] Rwanda Construction 2,20 [ 0,60 ; 3,58 ]
Cote dIvoire Agriculture 1,01 [ 0,43 ; 1,58 ] Paraguay Agriculture 1,07 [ 0,50 ; 1,64 ] Saudi Arabia Construction 2,15 [ 0,44 ; 3,65 ]
Croatia Agriculture 1,15 [ 0,55 ; 1,76 ] Peru Agriculture 0,92 [ 0,39 ; 1,45 ] Senegal Construction 1,17 [ 0,03 ; 2,27 ]
Cuba Agriculture 1,24 [ 0,60 ; 1,90 ] Philippines Agriculture 1,14 [ 0,48 ; 1,81 ] Serbia Construction 1,42 [ 0,06 ; 2,72 ]
Cyprus Agriculture 1,09 [ 0,52 ; 1,68 ] Poland Agriculture 1,13 [ 0,54 ; 1,73 ] Slovakia Construction 1,45 [ 0,07 ; 2,77 ]
Czech Republic Agriculture 1,09 [ 0,52 ; 1,67 ] Portugal Agriculture 1,00 [ 0,47 ; 1,55 ] Slovenia Construction 2,01 [ 0,43 ; 3,48 ]
DR Congo Agriculture 1,18 [ 0,50 ; 1,88 ] Qatar Agriculture 1,19 [ 0,56 ; 1,84 ] Somalia Construction 1,57 [ 0,17 ; 2,92 ]
Denmark Agriculture 1,01 [ 0,48 ; 1,54 ] Romania Agriculture 1,44 [ 0,86 ; 2,07 ] Spain Construction 2,00 [ 0,14 ; 3,72 ]
Djibouti Agriculture 1,14 [ 0,54 ; 1,74 ] Russia Agriculture 1,38 [ 0,82 ; 1,99 ] Venezuela Construction 2,02 [ 0,46 ; 3,37 ]
Dominican Republic Agriculture 1,22 [ 0,54 ; 1,88 ] Rwanda Agriculture 1,75 [ 0,95 ; 2,53 ] Aruba Mining, manufacturing, utilities 1,62 [ 0,55 ; 3,38 ]
Ecuador Agriculture 1,29 [ 0,56 ; 2,01 ] San Marino Agriculture 1,41 [ 0,83 ; 2,03 ] Colombia Mining, manufacturing, utilities 2,30 [ 0,89 ; 4,62 ]
Egypt Agriculture 1,21 [ 0,55 ; 1,86 ] Sao Tome and Principe Agriculture 1,10 [ 0,66 ; 1,58 ] Spain Mining, manufacturing, utilities 1,09 [ 0,09 ; 2,34 ]
El Salvador Agriculture 1,17 [ 0,56 ; 1,80 ] Saudi Arabia Agriculture 1,82 [ 1,04 ; 2,63 ] Aruba Other activities 1,32 [ 0,27 ; 2,48 ]
Eritrea Agriculture 1,15 [ 0,55 ; 1,76 ] Senegal Agriculture 1,16 [ 0,69 ; 1,67 ] Australia Other activities 0,57 [ 0,05 ; 1,09 ]
Estonia Agriculture 0,99 [ 0,47 ; 1,52 ] Serbia Agriculture 1,25 [ 0,71 ; 1,80 ] Bermuda Other activities 0,72 [ 0,10 ; 1,37 ]
Ethiopia Agriculture 1,09 [ 0,46 ; 1,72 ] Seychelles Agriculture 1,43 [ 0,82 ; 2,06 ] Cayman Islands Other activities 0,73 [ 0,07 ; 1,42 ]
Fiji Agriculture 1,16 [ 0,56 ; 1,78 ] Sierra Leone Agriculture 1,17 [ 0,69 ; 1,68 ] Colombia Other activities 1,36 [ 0,22 ; 2,60 ]
Finland Agriculture 0,94 [ 0,44 ; 1,45 ] Singapore Agriculture 1,23 [ 0,55 ; 1,90 ] France Other activities 0,56 [ 0,04 ; 1,06 ]
France Agriculture 1,31 [ 0,77 ; 1,87 ] Slovakia Agriculture 1,33 [ 0,77 ; 1,89 ] Germany Other activities 0,57 [ 0,08 ; 1,14 ]
French Polynesia Agriculture 1,38 [ 0,81 ; 1,97 ] Slovenia Agriculture 1,40 [ 0,83 ; 2,01 ] Spain Other activities 1,48 [ 0,77 ; 2,65 ]
Gabon Agriculture 1,28 [ 0,60 ; 1,95 ] Somalia Agriculture 1,47 [ 0,82 ; 2,13 ] Aruba Transport, storage, communications 2,02 [ 0,58 ; 3,42 ]
Gambia Agriculture 1,41 [ 0,80 ; 2,04 ] South Africa Agriculture 1,39 [ 0,83 ; 2,00 ] Australia Transport, storage, communications 0,69 [ 0,00 ; 1,35 ]
Gaza Strip Agriculture 1,22 [ 0,56 ; 1,88 ] South Korea Agriculture 0,80 [ 0,37 ; 1,24 ] Bolivia Transport, storage, communications 0,96 [ 0,03 ; 1,86 ]
Georgia Agriculture 1,14 [ 0,56 ; 1,74 ] Spain Agriculture 1,21 [ 0,41 ; 1,94 ] Russia Transport, storage, communications 0,77 [ 0,01 ; 1,49 ]
Germany Agriculture 1,05 [ 0,51 ; 1,61 ] Sri Lanka Agriculture 0,90 [ 0,43 ; 1,38 ] Singapore Transport, storage, communications 1,71 [ 0,48 ; 2,94 ]
Ghana Agriculture 1,05 [ 0,45 ; 1,65 ] Suriname Agriculture 1,05 [ 0,44 ; 1,66 ] Uzbekistan Transport, storage, communications 1,06 [ 0,22 ; 1,86 ]
Greece Agriculture 1,22 [ 0,59 ; 1,87 ] Swaziland Agriculture 0,91 [ 0,43 ; 1,40 ] Viet Nam Transport, storage, communications 0,91 [ 0,07 ; 1,73 ]
Greenland Agriculture 1,09 [ 0,47 ; 1,70 ] Sweden Agriculture 0,96 [ 0,46 ; 1,47 ] Yemen Transport, storage, communications 0,98 [ 0,03 ; 1,90 ]
Guatemala Agriculture 1,19 [ 0,55 ; 1,83 ] Switzerland Agriculture 1,10 [ 0,52 ; 1,68 ] Aruba Wholesale, retail, hotel, restaurant 4,51 [ 2,23 ; 6,90 ]
Guinea Agriculture 0,92 [ 0,43 ; 1,42 ] Syria Agriculture 1,16 [ 0,55 ; 1,79 ] Australia Wholesale, retail, hotel, restaurant 1,37 [ 0,57 ; 2,17 ]
Guyana Agriculture 1,10 [ 0,47 ; 1,75 ] TFYR Macedonia Agriculture 1,15 [ 0,55 ; 1,76 ] Bahamas Wholesale, retail, hotel, restaurant 1,19 [ 0,30 ; 2,07 ]
Haiti Agriculture 1,13 [ 0,51 ; 1,74 ] Tajikistan Agriculture 0,98 [ 0,47 ; 1,52 ] Bahrain Wholesale, retail, hotel, restaurant 0,79 [ 0,09 ; 1,47 ]
Honduras Agriculture 1,09 [ 0,52 ; 1,66 ] Tanzania Agriculture 1,29 [ 0,56 ; 2,01 ] Belgium Wholesale, retail, hotel, restaurant 0,83 [ 0,16 ; 1,49 ]
Hungary Agriculture 1,08 [ 0,51 ; 1,66 ] Thailand Agriculture 0,90 [ 0,43 ; 1,38 ] Bermuda Wholesale, retail, hotel, restaurant 0,85 [ 0,10 ; 1,58 ]
Iceland Agriculture 1,08 [ 0,47 ; 1,69 ] Togo Agriculture 0,99 [ 0,43 ; 1,55 ] Brazil Wholesale, retail, hotel, restaurant 0,81 [ 0,09 ; 1,51 ]
India Agriculture 0,93 [ 0,45 ; 1,42 ] Trinidad and Tobago Agriculture 1,24 [ 0,50 ; 1,98 ] Burkina Faso Wholesale, retail, hotel, restaurant 0,76 [ 0,07 ; 1,42 ]
Indonesia Agriculture 1,22 [ 0,44 ; 2,00 ] Tunisia Agriculture 1,12 [ 0,54 ; 1,72 ] Russia Wholesale, retail, hotel, restaurant 1,08 [ 0,33 ; 1,84 ]
Iran Agriculture 1,01 [ 0,46 ; 1,55 ] Turkey Agriculture 1,19 [ 0,57 ; 1,83 ] Saudi Arabia Wholesale, retail, hotel, restaurant 0,84 [ 0,01 ; 1,61 ]
Iraq Agriculture 0,91 [ 0,44 ; 1,40 ] Turkmenistan Agriculture 0,91 [ 0,43 ; 1,40 ] Sierra Leone Wholesale, retail, hotel, restaurant 1,92 [ 0,93 ; 2,92 ]
Ireland Agriculture 0,87 [ 0,40 ; 1,34 ] UAE Agriculture 1,24 [ 0,62 ; 1,88 ] Singapore Wholesale, retail, hotel, restaurant 1,33 [ 0,51 ; 2,14 ]
Israel Agriculture 1,22 [ 0,56 ; 1,88 ] UK Agriculture 1,01 [ 0,51 ; 1,52 ] Spain Wholesale, retail, hotel, restaurant 1,21 [ 0,29 ; 2,80 ]
Italy Agriculture 1,21 [ 0,58 ; 1,85 ] USA Agriculture 1,04 [ 0,50 ; 1,58 ] Viet Nam Wholesale, retail, hotel, restaurant 0,93 [ 0,17 ; 1,66 ]
Jamaica Agriculture 1,23 [ 0,53 ; 1,94 ] Uganda Agriculture 1,04 [ 0,44 ; 1,64 ]

Notes: The table reports the average loss for each sector as a % loss in GVA per capita relative to the observed production between 2001 and 2020, accounting for own, domestic and foreign heat and cold shocks. 95% confidence intervals are obtained from 1000 estimates from bootstrapping
Equation 1.12, where indirect shocks are constructed with a time-varying production network that uses the first five-year average input-output interlinkages for each decade.

234



A.3 Additional weather data

A.3.1 Dryness and wetness

To introduce a measure of dryness and wetness, I use the Standardized Precipitation
Evapotranspiration Index (SPEI), a climatological index used by climate scientists
to measure dry and wet periods that combines temperature variability, precipitation
and potential evapotranspiration to estimate cumulative deviations in soil moisture
from normal conditions. This index compares the amount of precipitation in a given
area with its evapotranspiration needs, which are a function of temperature. This
measure is considered superior to indices that only use information on rainfall to
predict droughts caused by climate change.

Vicente-Serrano et al. (2010) show that the effects of increasing temperatures on
droughts predicted by global climate models can be clearly seen in the SPEI, whereas
indices based only on precipitation data such as the Standardized Precipitation
Index (SPI) do not reflect expected changes in drought conditions. The SPEI also
outperforms another drought index, the Palmer Drought Severity Index (PDSI)
(Palmer, 1965), which lacks the multiscalar character essential for assessing drought
in relation to different hydrological systems. By combining the sensitivity of PDSI to
changes in evaporation demand, caused by temperature fluctuations and trends, with
the multitemporal nature of the SPI, the SPEI is the most accurate climatological
measure of dryness and wetness (Vicente-Serrano et al., 2012). To allow for water
deficit accumulation over the entire year, I use the SPEI-12, the version of SPEI
computed at a 12 months time scale.

The SPEI is constructed using monthly precipitation and potential evapotran-
spiration from the Climatic Research Unit of the University of East Anglia and it
is normally distributed within each grid cell with 0.5◦ × 0.5◦ resolution (around 56
km at the Equator). Negative values represent conditions drier than the historical
average, whereas positive values represent conditions wetter than the historical av-
erage. For example, a value of SPEI equal to -1 can be interpreted as the difference
between rain and potential evapotranspiration needs being one standard deviation
lower than the historical average for a given grid cell.

I construct two types of measures of dryness and wetness. First, I take a weighted
average of the negative monthly values in each country and obtain the average annual
dryness with respect to historical conditions. Second, to capture extreme conditions
during a year I build two variables measuring the share of total grid-months subject
to extreme droughts (with SPEI below -2) (Paulo et al., 2012; McKee et al., 1993),
and to periods with extreme wetness (with SPEI above 2). For each year, I consider
the share of affected grid-cells in the month where the share is at its maximum
(Akyapi et al., 2022).
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A.3.2 Tropical cyclones

The last type of extreme weather event I consider is tropical cyclones. The mea-
sure of tropical cyclones is taken from Kunze (2021), who uses meteorological data
on wind speeds to obtain a measure of damage of tropical cyclones as previously
introduced in the literature (Hsiang, 2010; Bakkensen and Barrage, 2018; Hsiang
and Jina, 2014). The annual measure of tropical cyclones at the country level is
a non-linear function of wind speed which includes the cube of wind speed when
wind speed is above a 92 km/h threshold, where wind speed is computed accounting
for the maximum sustained wind speed, the forward speed, the distance from the
storm center and the radius of the maximum wind (see Kunze (2021) for additional
methodological details).
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A.4 Sectoral interlinkages’ response to heat shocks

One of the main assumptions in the theoretical framework in Section 1.2 and the
derived empirical approach in Section 1.3.3 is that weather shocks affect economic
production via spillovers in a pre-determined exogenous production network that
does not adjust in response to weather shocks. This assumption has been shown to
hold empirically, reflecting the non-responsiveness of sectoral interlinkages to tropi-
cal cyclones exposure mostly due to the stickiness of production processes (Kunze,
2021). I empirically test this assumption by exploiting the time-varying nature of the
sectoral interlinkages between 1970 and 2019. I estimate the following specification

weighticjkt = fi(Wct) + αic + µij + λjkt + εicjkt (A.1)

where the dependent variable weighticjkt ∈ {ω; ω̂;ω}, respectively the down-
stream, upstream and average interlinkage between sector i in country c and sector
j in country k in year t. The objective is to exploit inter-annual variation in weather
conditions in the origin sector-country ic to test for within bilateral sector ij changes
in interlinkages across countries. Given the level of aggregation of the sectors, the
major concern on the endogenous adjustment of the production network regards the
potential substitution of inputs across trade partners for a given sector. For this
reason, the specification accounts for sector-country ic, origin-destination sector ij,
and destination sector-country-year jkt fixed effects, where the latter accounts for
changes in weather conditions in the destination country. Figure A3 reports the
sector-specific coefficients associated with heat shocks on the three measures of sec-
toral interlinkages, displaying a small and not statistically significant effect across
sectors and suggesting that the production network does not endogenously adapt to
heat shocks.
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A.5 Time-varying production network

Production linkages have intensified over time with more fragmented global sup-
ply chains and intensive use of intermediate inputs produced in other domestic and
foreign industries. In subsequent robustness checks, I relax the assumption that
weather shocks affect economic production via spillovers in a pre-determined ex-
ogenous production network. To allow for slow-moving adjustments, I construct
decade-specific time-varying production network. I retain the average of the first
five-year input-output sectoral interlinkages for each decade τ (e.g., 1970-1974 aver-
age for shocks between 1975 and 1984; 1980-1984 average for shocks between 1985
and 1994), such that the downstream weights are constructed as

ωi,c,j,k,τ =
inputjkτ→icτ∑

lf∈Θic
inputicτ→lfτ

(A.2)

and upstream weights are constructed as

ω̂i,c,j,k,τ =
inputicτ→jkτ∑

lf∈Θ̂ic
inputicτ→lfτ

(A.3)

From this, the construction of network shocks follows as detailed in Section 1.3.3.
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A.6 Reduced-form approach to the climate-economy re-
lationship

Kahn et al. (2021) review the three main approaches that study the climate-economy
relationship in reduced form in the literature (Dell et al., 2012; Burke et al., 2015b;
Kalkuhl and Wenz, 2020), highlighting the restrictive assumptions that each of these
models requires to study the effect of temperature on output growth. In this Ap-
pendix section, I report an extension of these approaches discussed in Newell et al.
(2021) and discuss the assumptions that it relies on. In an attempt to deal with the
non-stationarity issue of trended temperatures and allow for the non-linear effect of
temperature changes, one could include higher-order polynomials of first-differenced
temperature as main regressors (as in Ortiz-Bobea et al. (2021)). Without loss of
generality, the estimating equation considering only a second-order polynomial of
differenced temperature is written as

∆yit = αi + δt + λ∆Tit + ψ∆[T 2
it] + εit (A.4)

which uses the growth rate of log-differences of real GDP per capita of country i
in year t as the dependent variable, the main regressors are the linear and quadratic
differenced temperature, where the latter term is the change in temperature-squared
(different from the squared change in temperature), ai is the country-specific fixed
effect and δt is the time-specific fixed effect. As in Kahn et al. (2021) and motivated
by historical evidence, I assume that

Tit = aTi + bTit+ νTi;t (A.5)

where, in line with historical evidence, bTi > 0, and E(νTi;t) = 0 and E(ν2
Ti;t

) =
σ2

Ti
. Substituting Equation (A.5) in Equation (A.4) and taking expectations yields

E(∆yit) = E(δt) + αi + bTi [λ+ 2ψaTi ] + 2ψb2
Tit (A.6)

To ensure that E(∆yit) is not trended, there are some restrictions to impose.
First, since δt is unobserved, one can set E(δt) = 0 (Kahn et al., 2021), and then
require that 2ψb2

Ti
t = 0 for all i. Therefore, this approach does not resolve the

trend problem around the output growth-climate specifications, introducing a trend
in the mean output growth, which is not supported empirically. An alternative
approach would be to include region-year rt fixed effects in Equation (A.4), such
that it becomes

∆yirt = αir + δrt + λ∆Tirt + ψ∆[T 2
irt] + εirt (A.7)

with Tirt = aTi,r + bTi,r t+ νTi;rt , where the shock νTi;rt for country i in region r

in year t has zero mean and finite variance. Taking expectations as above, to have
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that E(∆yirt) is stationary, one would require no trend in temperature bT i;r = 0, or
exact cancellation of quadratic trends in temperature at the regional level with the
region-year fixed effects, i.e. δrt + ψb

2
T rt = 0, for all r, where b2

T r = 1
n

∑nr
i=1 b

2
Ti,r

.
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A.7 Changes in temperature and precipitation distri-
bution

To provide additional evidence on the heterogeneous sectoral response to weather
shocks, I consider first-differenced weather changes. First, I construct a binary
measure of annual changes in temperature and precipitation distribution either larger
or smaller than the previous year. Then, I consider how much daily temperatures and
precipitation are larger/smaller than the previous year. Table A6 shows summary
statistics for the measures of temperature and precipitation.

Figure A4 displays the 12 estimated coefficients from the same pooled regression
using a binary measure of weather shock indicating whether first-differenced annual
changes in daily average temperature and total precipitation are positive or negative.
Consistent with prior literature (e.g., Acevedo et al. (2020)), I uncover substantial
heterogeneity across sectors in the multicountry sample. The agricultural sector re-
sponds the most to both temperature and precipitation fluctuations. In particular,
if the daily average temperature is larger than in the previous year, the agricultural
GVA growth rate decreases by 0.7 percentage points (point estimates are reported in
Table A7), which translates into a 284% decrease with respect to the sample average
(0.002). The effect is large but comparable to previous estimates on the effect of
heat waves and tropical cyclones on agricultural growth rates (Miller et al., 2021;
Kunze, 2021). In contrast, agriculture benefits from more precipitation, as docu-
mented in prior literature (Deschênes and Greenstone, 2007; Schlenker and Roberts,
2009; Cunado and Ferreira, 2014). The only other sector that responds elastically to
variations in annual temperature and precipitation distribution is transport, storage
and communication, which marginally benefits from hotter (15% increase of sam-
ple mean) and drier (17% increase of sample mean) conditions that, for instance,
facilitate transportation and storage and service communication.

I further investigate the effect of changes in the average daily temperature and
precipitation distribution with the variables standardized to facilitate comparison.
Figure A5 shows the estimated coefficients (see Table A8 for tabular results). As
previously documented, agriculture reacts negatively to hot temperature shocks but
benefits from more precipitation. In particular, a 0.01◦C daily increase with respect
to the previous year’s temperature (around 30% of the sample mean) is associated
with a decrease in the agricultural per capita growth rate by 3% of the sample
mean. Surprisingly, all the other sectors respond positively to increases in the av-
erage daily temperatures, although a few sectors’ responses are estimated with less
precision (other activities; transport, storage and communication; wholesale, retail
trade, restaurants and hotels). In contrast, production in other sectors does not re-
spond to changes in precipitation, except for the transportation sector which benefits
from drier conditions.
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Heterogeneity across adaptation potential. Until now, results referred to the
average treatment effect for each sector across countries. One may however expect
the marginal effect of changes in the temperature distribution to differ as a result
of factors that influence the adaptation potential of countries, namely climate and
income. First, a hotter climate may differentially incentivize governments and indi-
viduals to invest in adaptive behavior as returns to adaptation would be relatively
higher for more frequent temperature changes. Second, richer countries have less
binding budget constraints and wider adaptation capacity to cope with weather
fluctuations. Omitting income and climate differences while allowing for heteroge-
neous marginal effects of temperature can lead to biased estimates by attributing
part of the response to income or climate effects.

To model heterogeneity in the temperature-production relationship accounting
for adaptation, I consider income groups as defined by the World Economic Outlook
(IMF, 2022) and average temperature over fifty years (i.e., long-run climate). These
two factors account for differential adaptation potential (Kahn et al., 2021; Acevedo
et al., 2020; Carleton et al., 2022). First, I augment the baseline specification with
an interaction term distinguishing between advanced economies, emerging market
economies, and low-income developing countries. Second, I include an interaction
term that splits the sample of countries in terciles depending on the average long-
run temperature in the fifty years for countries with cold, temperate and hot climate
(Figure A2 shows the sample composition). I obtain sector-specific response func-
tions that are also income group- and climate-specific allowing for these adaptation
margins to influence the shape of the output-temperature relationship. Since neither
climate terciles nor income groups have quasi-experimental variation as opposed to
weather, the heterogeneous results are interpreted as associational (Carleton et al.,
2022).

Figure A6 graphically presents the results for the coefficient associated with an-
nual changes in the average daily temperature distribution interacted with income
groups (Panel a) and with climate terciles (Panel b). Tabular results are reported in
Table A9 and A10. As conjectured, results are consistent with the hypothesis that
income is protective (Figure A6a). Advanced economies are not harmed by increases
in the temperature distribution. Importantly, agriculture production is sheltered in
advanced economies to the extent that the coefficient is positive and statistically sig-
nificant. Some other sectors (construction; mining, manufacturing, utilities; trans-
port, storage and communication; wholesale, retail trade, restaurants and hotels)
also benefit from temperature increases among the richest countries. Neverthe-
less, the effect of temperature increases on agriculture remains strongly negative for
emerging market economies and low-income developing countries. Moreover, these
two income groups do not appear to benefit from increases in temperatures in other
sectors, with low-income developing countries’ estimates that are always smaller in
magnitude than for emerging market economies.
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Very similar estimates are obtained exploring the climate adaptive margin. Fig-
ure A6b shows a persistent and negative effect of increases in temperature on agri-
cultural production across different climates (smaller in magnitude in absolute value
in the cold climate countries and imprecisely estimated in the hot climate countries).
Increases in temperature harm other sectors in hot climate countries (construction;
other activities; wholesale, retail trade, restaurants and hotels), whereas they benefit
production in both the industrial and services sectors (construction; mining, man-
ufacturing, utilities; other activities; wholesale, retail trade, restaurants and hotels)
in cold climate countries.
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A.8 Sectoral impact of extreme weather events

The set of results in Section 1.5 has shown that consistent with prior literature,
agriculture is the most directly harmed sector by temperature and, to a lesser ex-
tent, precipitation fluctuations and anomalies. In this section, I investigate whether
similar results hold when using measures of extreme weather events for droughts
and cyclones.

A.8.1 Dryness and wetness

First, I study the effect of changes in average dryness conditions as the first-differenced
average of monthly negative values of the SPEI in a country in a year. Next, I focus
on the changes in the prevalence of extreme dryness and wetness conditions, using
the annual maximum share of grid-months with extreme drought (SPEI<-2) and
extreme wetness (SPEI>2) conditions in a country. Figure A13 shows the (stan-
dardized) sector-specific coefficients obtained from a multi-country, sector-specific
response function for the three different measures of dryness and wetness. Tabular
results are reported in Table A11. As previously documented, I find a strong nega-
tive effect of dry conditions on agriculture. In particular, a 1 SD increase in changes
in average dryness conditions is associated with a 75% decrease in the agricultural
growth rate with respect to its sample mean. All other sectors are not significantly
affected.

Moving to measures of extreme drought and wetness prevalence, the results are
consistent with previous findings. Agriculture’s growth rate is largely negatively
affected by changes in extreme drought prevalence. In other sectors, where pre-
cipitation can negatively affect the productivity of workers and the operation of
machinery and infrastructure, the effect varies. The construction sector’s growth
rate benefits from positive changes in droughts, and so does the transport, storage
and communication sector, although imprecisely estimated, whereas all the other
sectors are not affected. These findings confirm that sectors that rely on roads,
building construction and storage infrastructure may benefit from relatively drier
conditions than historical averages with no excessive water surplus. The negative,
although imprecisely estimated, coefficient associated with extreme wetness preva-
lence on production in the transport sector corroborates this hypothesis. These
sectors are characterized by “interface” areas, such as loading and unloading areas
(Cachon et al., 2012), which are more subject to weather variations and difficult to
be protected with shelters (Colacito et al., 2019). In all the other sectors, extreme
wetness conditions do not have any statistically significant effect, as previously doc-
umented using wet precipitation shocks.
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A.8.2 Tropical cyclones

Tropical cyclones are the only extreme weather event on which there is previous
evidence of their impact on sectoral growth worldwide (Kunze, 2021). I replicate
and extend Kunze (2021)’s analysis estimating a pooled stacked multi-sector regres-
sion with jointly estimated sector-specific coefficients instead of separate regressions,
which allows me to directly compare the coefficients estimated in the same model
and identify the effect of tropical cyclones.1 As in previous estimations, I do not
allow for a relationship between the GVA sector and the level of intensity in tropical
cyclones as measured by wind speed, and instead, consider changes.

Figure A15 presents the sector-specific (standardized) coefficients associated with
changes in tropical cyclone intensity. Tabular results are displayed in Table A12.
Tropical cyclones have the largest negative effect on agriculture. A 1 SD increase
in changes in tropical cyclone intensity is associated with a drop by 2.8 percent-
age points in the annual growth rate of agriculture (comparable to a 2.62 decrease
documented in Kunze (2021)). Results differ, however, for the other sectors. Most
importantly, I document that changes in wind speed have a strong negative effect
on other activities, suggesting that this sector contracts production in response to
positive changes in cyclone intensity. I also do not recover a significant negative
effect on the wholesale, retail trade, restaurants and hotel sector but I find a small
effect indistinguishable from zero. Although similar results are found in the analysis
of the effect of tropical cyclones in the agricultural sector (Hsiang, 2010; Loayza
et al., 2012), the contraction in economic production in the other activities sector,
which includes the financial and government sectors, is a new result, suggesting a
negative effect on the economy overall in the short-run.

1My analysis also differs in the definition of the sectors since I do not account for the manufac-
turing sector separately as explained in Section 1.3.1.
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A.9 Propagation of extreme weather events

A.9.1 Droughts

I consider changes in drought shocks hitting trade partners domestically and abroad.
Dryness conditions have been shown to directly harm agriculture and marginally
benefit sectors that would be less productive under wetter conditions than the his-
torical average, such as transportation and construction. The structure of Figure
A25 is identical to that of examining abnormal temperature shocks. The results are
also similar. For example, agriculture is the only sector that is directly harmed by
drought shocks, with a sizeable negative effect of 0.09 p.p. (sample mean is 0.002)
associated with a 1 SD increase in the dryness conditions in the country. Con-
versely, own drought shocks strongly benefit economic production in other sectors
(construction; mining, manufacturing and utilities; and transport, storage and com-
munication sectors) improving the precision of the positive estimates obtained when
omitting network shocks. Industries in the tertiary sector at later stages of the value
chain, such as wholesale, retail trade, restaurants and hotel, and other activities, are
virtually not impacted at all by their own drought shocks, with a coefficient very
close to zero.

Focusing on network shocks, domestic shocks have a strong negative effect only
on economic production in mining, manufacturing and utilities, whereas their neg-
ative effect on construction; transport, storage and communication; and wholesale,
retail trade, restaurants and hotels are imprecisely estimated. Conversely, foreign
shocks have a sizable negative effect on other activities and wholesale, retail trade,
restaurants and hotels suggesting strong propagation of drought shocks through the
economy and across countries in later stages of the supply chain. Peculiar and
outstanding is the case of the mining, manufacturing and utilities sector which is
strongly harmed by domestic drought shocks, with a magnitude comparable to the
coefficient associated with direct shocks, suggesting that the net effect of drought
shocks in a country on this sector is not as positive as own shocks alone indicated.
Accounting for both domestic and foreign network shocks sheds light on the true
overall sectoral damage due to drought shocks accounting for shocks hitting other
partner sectors.

A.9.2 Tropical cyclones

I consider the propagation of tropical cyclones’ intensity as measured by wind speed.
This shock has been shown in Section A.8.2 to have the widest impact across sectors,
damaging agriculture and other activities. Since cyclones are extreme weather events
that may also have a direct impact on capital stock destruction, trade linkages may
either amplify or mitigate the aggregate damage suffered by sectors.

Figure A26 decomposes the network shocks by geographic location into foreign
and domestic, besides including the sector-specific direct shock. Agriculture remains
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the only sector directly harmed by tropical cyclones. Both domestic and foreign
shocks have strong negative effects on construction; mining, manufacturing and
utilities; transport, storage and communication; other activities; wholesale, retail
trade, restaurants and hotels sectors.
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A.10 Computing the economic cost of the propagation
of recent warming

To understand the differential cost of propagation of recent warming, I use the
estimates of the effect of own, domestic, and foreign heat and cold shocks to simulate
how much slower or faster each sector would have grown annually over the 2001-
2020 period, compared to a scenario under which daily temperature evolves linearly
based on its historical trend of 1970-2000. To do so, I estimate country-specific
regressions of the type Tdmct = αc + λdm + βct + εdmct on the 1970-2000 sample,
where Tdmct is the average temperature in day d in month m in year t in country
c. I obtain country-specific historical trends in daily temperature exploiting within
day-month variation between 1970 and 2000 and use β̂c to construct a counterfactual
daily temperature T̃dmct between 2001 and 2020 that is then used to compute the
counterfactual number of cold and hot days. I assume that the trend is linear and
that such a trend does not affect the volatility of temperature shocks, which most
likely results in an underestimation of the adverse effects of abnormal temperatures.

I then average these effects over the 2001-2020 period to obtain a sector-specific
relative measure of estimated losses in value added. I finally compare the estimated
losses in value added omitting and accounting for the transmission of shocks across
countries through trade interlinkages. This computation does not necessarily repre-
sent the differential impact of recent anthropogenic warming accounting for network
shocks and is instead agnostic to the cause of recent warming (Burke and Tanutama,
2019).

First, I compute the annual cost/benefit of annual warming in 2001-2020 com-
pared to a counterfactual temperature which evolves linearly from the estimated
trend over the period 1970-2000, and distinguish between omitting and accounting
for weather shocks in trade partners:

gdirect
ict = γ̂95

i (T 95
ict − T̃ 95

ict) + γ̂5
i (T 5

ict − T̃ 5
ict) (A.8)

gspillover
ict = (γ̂95

i T 95
ict + γ̂D,95

i T 95,D
ict + γ̂F,95

i T 95,F
ict + γ̂5

i T
5
ict + γ̂D,5

i T 5,D
ict + γ̂F,5

i T 5,F
ict )

− (γ̂95
i T̃ 95

ict + γ̂D,95
i T̃ 95,D

ict + γ̂F,95
i T̃ 95,F

ict + γ̂5
i T̃

5
ict + γ̂D,5

i T̃ 5,D
ict + γ̂F,5

i T̃ 5,F
ict )

(A.9)
where T 95

ict is the observed number of days above 95th percentile in sector i in
country c in year t, T̃ 95

ict is the counterfactual predicted number had the 1970-2000
average evolved linearly, T 95,J

ict is the weighted average number of days above 95th

percentile in trade partners J (where J ∈ {Foreign, Domestic}) from the perspective
of sector i in country c in year t. γ̂95

i ’s are the sector-specific estimates for the effect
of own, domestic and foreign heat shocks on the sectoral growth rate (symmetrically
for γ̂5

i ) obtained from bootstrapping 1000 times the underlying panel estimates from
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Equation (1.12) where indirect shocks are constructed with a time-varying produc-
tion network that uses the first five-year average input-output interlinkages for each
decade. I compute sector i’s counterfactual value added levels in year t omitting
and accounting for indirect shocks

Ŷ p
ict = Yict−1 + yict + gp

ict (A.10)

where hatted term indicates a counterfactual, Y is the (log) GVA per capita,
y is the observed growth rate and p ∈ {direct, spillover}. I can then compute the
average relative loss in GVA for sector i in country c over the 2001-2020 period as

%LOSSp
ic = 1

T

2020∑
t=2001

eŶ p
ict − eYict

eYict
(A.11)

to obtain a measure of the average cost of recent warming at the sector level
omitting and accounting for the propagation of heat shocks (reported in Figure
A27).

The aggregated average loss in GVA across sectors for country c is

%LOSSp
c =

∑
s

%λicLOSSp
ic (A.12)

where λic is the baseline five-year average share of total GVA of sector i in
country c between 1996 and 2000. The country-level losses omitting and accounting
for indirect heat shocks are reported in Figure 1.6.
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Appendix B

Appendix to Chapter 2:
Adapting to climate change
accounting for individual beliefs
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B.1 Additional figures

Figure B1: Timeline of BCCAS survey waves and growing seasons
in Bangladesh

July 2008 Nov 2008 Dec 2008 April 2009 May 2009 July 2009 15 Dec 2009 14 Dec 2010 January 2011

Aman
Boro

Aus Production year
Survey Wave 1

July 2010 Nov 2010 Dec 2010 April 2011 May 2011 July 2011 1 September 2011 31 Aug 2012 September 2012

Aman
Boro

Aus Production year
Survey Wave 2

Notes: Each timeline shows the relative time interval of the growing sea-
sons for each survey wave based on Sacks et al. (2010) and the period to
which the information on irrigation decisions refer in the BCCAS (Inter-
national Food Policy Research Institute, 2014a,b). Since the SPEI data
has a monthly time resolution, I define each growing season to start on
the first of the month of the average planting date and to end on the last
of the month of the average harvest date as in Missirian and Schlenker
(2017a). The exact dates of each growing season in Sacks et al. (2010) are:
Aus: 14th April - 25th July, Aman: 5th July - 28th November, Boro: 19th

December - 8th May.
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Figure B2: Map of Bangladesh with surveyed unions and SPEI
gridded data

Notes: Map of Bangladesh with regional boundaries. The map plots the
administrative boundaries of the 40 surveyed unions in purple. The admin-
istrative layer (from GADM (2021)) is overlaid to the raster SPEI gridded
data from Vicente-Serrano et al. (2010) with 0.5 degree resolution (≈ 55
km at the Equator) with September 2012 values, where colors range from
red to green, with red being negative values and blue being positive, re-
spectively from a drier to a wetter environment. In five cases, there are two
unions within the same grid cell, thus sharing the same SPEI values. The
five cases are Adabaria and Arpangashia; Char Darbesh and Char Jabbar;
Dakatia and Kakrajan; Kushmail and Naogaon. In one case, there are
three unions within the same grid cell: Kalilnagar, Laskar and Rudaghara.
The remaining 28 unions are uniquely matched with SPEI grid cell values.
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Figure B3: Frequency distribution of ∆ using moderate, severe and
extreme drought cut-offs

Notes: Author’s computation using SPEI, BCCAS and cut-offs from Mc-
Kee et al. (1993) and Paulo et al. (2012). I use the cut-offs for moderate
(SPEI ≤ -1), severe (SPEI ≤ -1.5) and extreme drought events (SPEI ≤ -2)
to compute the number of objective drought events in a given union and
subtract it from the number of self-reported drought events in the BCCAS
over the same time period as in Equation (3.1) in the main text. When
using moderate or severe drought events as ’objective counterfactual’ of
the self-reported number of droughts, there is systematic underestimation

of the frequency of droughts among individuals.
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Figure B4: Frequency distribution of the share of cultivated land
rainfed and irrigated in Aman and Boro seasons

Notes: The sample includes the 1428 observations across the two waves for
the 714 individuals interviewed. Each graph plots the binned frequency
distribution (using 5 bins) of the share of cultivated land that is left rainfed,
irrigated with STW and with DTW in Aman and Boro growing seasons.
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B.2 Data Appendix

Table B1: Number of unions and households drawn by agroecolog-
ical zone covered in the survey

Agroecological zone Unions Households

Barind Tract 4 80
Beel and Haor Basin 5 100
Floodplain 10 200
Himalayan Piedmont Plain 5 100
Modhupur Tract 4 80
Northern and Eastern Hills 5 100
Tidal Floodplain 7 140

Total 40 800

Table B2: Number of unions and households per AEZ covered in
the estimation sample

Agroecological zone Union Households

Barind Tract 4 71
Beel and Haor Basin 5 89
Floodplain 10 181
Himalayan Piedmont Plain 5 89
Modhupur Tract 4 75
Northern and Eastern Hills 5 92
Tidal Floodplain 7 117

Total 40 714
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Table B4: BCCAS main variables’ definition and construction

VARIABLE SURVEY
QUES-
TION
CODE

WAVE SURVEY QUESTION

Belief increase in
drought (0/1)

L.11 1 Have you noticed any changes in climate over the last
20 years? If yes, please specify what changes you have
noticed (1 if “Longer periods of droughts” and 0 other-
wise)

Belief increase in
drought (0/1)

Q.04-Q.07 2 Have you noticed any long term changes in rainfall vari-
ability over the last 20 years? If yes, what changes
have you noticed? (1 if “Longer periods of droughts”
and 0 otherwise) Have you noticed any changes in cli-
mate over the last 20 years? If yes, please specify
what changes you have noticed (1 if “Longer periods
of droughts” and 0 otherwise)

Droughtt−1 (0/1) L.02 1 In the last five years, have the HH’s properties and
productivity been affected by droughts? In which years
most badly affected? (1 if “2009”, 0 otherwise)

Droughtt−1 (0/1) L.02 2 Since the last survey interview have the HH’s properties
and productivity been affected by droughts? In which
years most badly affected? (1 if “2011”, 0 otherwise)

Droughtt−2 (0/1) L.02 1 In the last five years, have the HH’s properties and
productivity been affected by droughts? In which years
most badly affected? (1 if “2008”, 0 otherwise)

Droughtt−2 (0/1) L.02 2 Since the last survey interview have the HH’s properties
and productivity been affected by droughts? In which
years most badly affected? (1 if “2010”, 0 otherwise)

self-reported #
droughts

L.03 1 In the last five years, have the HH’s properties and pro-
ductivity been affected by droughts? How many times
did it occur in these two years?

self-reported #
droughts

L.03 2 Since the last survey interview have the HH’s properties
and productivity been affected by droughts? How many
times did it occur in these two years?

Notes: The variable self-reported # droughts is used to compute the variable ∆, subtracting the objective # droughts,
being the recorded number of (non-consecutive) monthly realizations of the SPEI below a certain cut-off (-1 for moderate,
-1.5 for severe and -2 for extreme events) over the same time period as the survey question, as explained in the main text
in Equation (3.1).
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Table B5: Summary statistics of BCCAS estimation sample by
survey wave

Mean SD

2011 2012 2011 2012

A. Respondent characteristics
Age 46 47.9 13.5 13.5
Male 0.945 0.945 0.227 0.227
Completed years of education by head of household 3.49 3.49 4.19 4.21
Farmer 0.718 0.644 0.45 0.479

B. Household characteristics
Household size 5.05 5.46 2.21 2.46
Number of agricultural workers in household 0.113 0.105 0.396 0.384
At least 1 HH member is self-employed in HH farming activities 0.745 0.71 0.436 0.454
Receives information from extension agents 0.176 0.359 0.381 0.48
Household with electricity 0.47 0.56 0.50 0.49

C. Agricultural characteristics
Total land holdings (in hectares) 0.68 0.793 1.3 1.3
Total cultivated land (in hectares) 0.56 0.69 1.2 1.27

Share of clay cultivated land 0.039 0.0293 0.183 0.158
Share of loam cultivated land 0.252 0.171 0.422 0.358
Share of sandy cultivated land 0.0283 0.0219 0.15 0.131
Share of clay-loam cultivated land 0.468 0.505 0.486 0.481
Share of sandy-loam cultivated land 0.213 0.272 0.395 0.425

Ownership of Shallow Tube Wells (STWs) 0.102 0.103 0.303 0.305
Ownership of Deep Tube Wells (DTWs) 0.013 0.014 0.112 0.112
Observations 714 714

Notes: The sample includes the 714 individuals interviewed in both survey waves in January 2011 and September
2012. Shares of soil type are weighted by the total size of the cultivated plots as reported by the household.
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Table B6: T-tests for differences in means for attritors versus non-
attritors

Non Attritors (N=714) Attritors (N=86) Difference

Mean SD Mean SD Mean p-value

Head of household is a farmer 0.718 0.016 0.617 0.052 0.102 (0.0491)
Household with electricity 0.469 0.018 0.406 0.053 0.062 (0.275)
Receives information from extension agents 0.176 0.014 0.139 0.0375 0.037 (0.392)
Belief increase in drought 0.252 0.016 0.290 0.049 -0.038 (0.439)
∆ Droughts 0.102 0.047 0.314 0.143 -0.211 (0.144)
Droughtt−1 0.038 0.007 0.034 0.019 0.002 (0.228)
Droughtt−2 0.014 0.004 0 0 0.014 (0.424)

Total area land holdings in hectares 0.680 0.048 0.505 0.045 0.175 (0.216)

Share of clay cultivated land 0.038 0.006 0.024 0.014 0.014 (0.479)
Share of loam cultivated land 0.248 0.015 0.187 0.041 0.241 (0.201)
Share of sandy cultivated land 0.027 0.005 0.054 0.023 -0.026 (0.142)
Share of clay-loam cultivated land 0.462 0.018 0.526 0.053 -0.064 (0.247)
Share of sandy-loam cultivated land 0.210 0.014 0.183 0.041 0.026 (0.557)

Ownership of Shallow Tube Wells (STWs) 0.154 0.013 0.117 0.035 0.037 (0.819)
Ownership of Deep Tube Wells (DTWs) 0.052 0.008 0.035 0.020 0.017 (0.124)

Share of irrigated cultivated land 0.511 0.012 0.501 0.039 0.010 (0.536)
Share of STW irrigated land 0.317 0.013 0.288 0.038 0.029 (0.464)
Share of DTW irrigated land 0.056 0.006 0.058 0.019 -0.002 (0.641)

Share of rainfed cultivated land in Aman 0.741 0.015 0.706 0.048 0.034 (0.956)
Share of STW irrigated land in Aman 0.178 0.013 0.162 0.037 0.016 (0.802)
Share of rainfed cultivated land in Boro 0.281 0.015 0.295 0.048 -0.013 (0.306)
Share of STW irrigated land in Boro 0.457 0.017 0.413 0.051 0.043 (0.319)
Share of DTW irrigated land in Boro 0.089 0.009 0.082 0.028 0.006 (0.505)

Notes: The table compares the differences in means between the final estimation sample of non-attritors (N=714) and the sample
of attritors that have not been interviewed in the second wave because they migrated, they were not at home at the time of the
survey or the respondent changed from the first wave. Shares of soil type and irrigated land are weighted by the total size of the
cultivated land as reported by the household.
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Table B7: Summary statistics of area-weighted agricultural plot
utilization

N Mean SD Min Max
Aus 714 0.09 0.17 0.00 0.86
Aman 714 0.37 0.27 0.00 1.00
Boro 714 0.34 0.32 0.00 1.00
Potato 714 0.01 0.05 0.00 0.58
Wheat 714 0.01 0.05 0.00 0.58
Jute 714 0.02 0.08 0.00 0.77
Chili 714 0.01 0.05 0.00 0.50
Eggplant 714 0.01 0.07 0.00 1.00
Other 714 0.14 0.15 0.00 1.00
Observations 714

Notes: Proportion of cultivated crop over total agricultural
plot utilization weighted by planted area. Data refer only
to survey wave 1, since the module is absent in survey wave
2.
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Table B8: Summary statistics of production-weighted rice types

N Mean SD Min Max
Aus 714 0.07 0.14 0.00 1.00
Aman 714 0.31 0.27 0.00 1.00
Boro 714 0.35 0.33 0.00 1.00

Local Aus 714 0.01 0.07 0.00 0.86
Local Improved Variety (LIV) Aus 714 0.01 0.05 0.00 0.50
High Yield Variety (HYV) Aus 714 0.05 0.12 0.00 1.00
HYV Transplanted Aus 714 0.01 0.07 0.00 1.00
Local Aman 714 0.05 0.15 0.00 1.00
LIV Transplanted Aman 714 0.01 0.09 0.00 1.00
HYV Transplanted Aman 714 0.24 0.26 0.00 1.00
Hybrid Aman 714 0.01 0.08 0.00 1.00
HYV Boro 714 0.27 0.32 0.00 1.00
Hybrid Boro 714 0.06 0.20 0.00 1.00
Observations 714

Notes: Share of rice production weighted by the total agricultural production of the
household. Three different types of rice depending on the growing season: aus, aman
and boro. Data refer only to survey wave 1, since the module is absent in survey
wave 2.
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Table B9: Summary statistics on shares of cultivated land by irri-
gation status

N Mean SD Min Max

Panel A. Survey Wave 1 (2011)
Share of irrigated cultivated land 714 0.49 0.34 0.00 1.00
Share of STW irrigated cultivated land 714 0.32 0.36 0.00 1.00
Share of DTW irrigated cultivated land 714 0.06 0.17 0.00 1.00

Panel B. Survey Wave 2 (2012)
Share of irrigated cultivated land 714 0.49 0.31 0.00 1.00
Share of STW irrigated cultivated land 714 0.28 0.37 0.00 1.00
Share of DTW irrigated cultivated land 714 0.08 0.21 0.00 1.00

Panel C. Changes
Share of irrigated cultivated land 714 -0.01 0.26 -1.00 1.00
Share of STW irrigated cultivated land 714 -0.04 0.29 -1.00 1.00
Share of DTW irrigated cultivated land 714 0.02 0.17 -1.00 1.00

Panel D. Total
Share of irrigated cultivated land 1428 0.49 0.33 0.00 1.00
Share of STW irrigated cultivated land 1428 0.30 0.35 0.00 1.00
Share of DTW irrigated cultivated land 1428 0.07 0.19 0.00 1.00

Observations 1428

Notes: Share of cultivated land under each irrigation status across Aman and Boro, weighted by the
size of the cultivated land reported by the households in the survey. The percentage is constructed
by using Module C “Roster of land and water bodies owned or under operation” and considering only
the plots of cultivated / arable land type and own operated. The module asks to report the irrigation
status of each plot for each growing season. STW: Shallow Tube Well; DTW: Deep Tube Well. Panel
A shows the summary statistics for survey wave 1 conducted in January 2011, Panel B for survey
wave 2 conducted in September 2012, Panel C reports changes for each of the variables across the
two survey waves and Panel D displays the values across the two waves.
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Table B10: Summary statistics on shares of cultivated land by
irrigation status by growing season

N Mean SD Min Max
Aus

Share of rainfed cultivated land 1428 0.79 0.39 0.00 1.00
Share of traditional method irrigated cultivated land 1428 0.01 0.01 0.00 0.35
Share of LLP irrigated cultivated land 1428 0.02 0.14 0.00 1.00
Share of STW irrigated cultivated land 1428 0.13 0.32 0.00 1.00
Share of DTW irrigated cultivated land 1428 0.01 0.10 0.00 1.00
Share of irrigated cultivated land using other methods 1428 0.03 0.15 0.00 1.00

Aman
Share of rainfed cultivated land 1428 0.76 0.40 0.00 1.00
Share of traditional method irrigated cultivated land 1428 0.01 0.04 0.00 1.00
Share of treadle pump irrigated cultivated land 1428 0.01 0.01 0.00 0.46
Share of LLP irrigated cultivated land 1428 0.02 0.12 0.00 1.00
Share of STW irrigated cultivated land 1428 0.16 0.35 0.00 1.00
Share of DTW irrigated cultivated land 1428 0.02 0.14 0.00 1.00
Share of irrigated cultivated land using other methods 1428 0.01 0.10 0.00 1.00

Boro
Share of rainfed cultivated land 1428 0.26 0.41 0.00 1.00
Share of traditional method irrigated cultivated land 1428 0.01 0.08 0.00 1.00
Share of rower pump irrigated cultivated land 1428 0.01 0.03 0.00 1.00
Share of LLP irrigated cultivated land 1428 0.10 0.28 0.00 1.00
Share of STW irrigated cultivated land 1428 0.43 0.47 0.00 1.00
Share of DTW irrigated cultivated land 1428 0.11 0.30 0.00 1.00
Share of irrigated cultivated land using other methods 1428 0.07 0.24 0.00 1.00

Observations 1428

Notes: Share of cultivated land under each irrigation status during each growing season weighted by the size of the
cultivated land reported by the households in the survey. The percentage is constructed by using Module C “Roster
of land and water bodies owned or under operation” and considering only the plots of cultivated / arable land type
and own operated. The module asks to report the irrigation status of each plot for each growing season. LLP: Low
Lift Pump; STW: Shallow Tube Well; DTW: Deep Tube Well. Aus refers to the pre-monsoon growing season, Aman
refers to the monsoon growing season, Boro refers to the winter growing season.
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Table B11: Summary statistics on share of cultivated land under
main irrigation statuses by growing season

N Mean SD Min Max

Panel A. Survey Wave 1 (2011)
Aman

Share of rainfed cultivated land 714 0.74 0.42 0 1
Share of STW irrigated cultivated land 714 0.18 0.36 0 1

Boro
Share of rainfed cultivated land 714 0.28 0.42 0 1
Share of STW irrigated cultivated land 714 0.46 0.47 0 1
Share of DTW irrigated cultivated land 714 0.09 0.27 0 1

Panel B. Survey Wave 2 (2012)
Aman

Share of rainfed cultivated land 714 0.78 0.39 0 1
Share of STW irrigated cultivated land 714 0.15 0.33 0 1

Boro
Share of rainfed cultivated land 714 0.24 0.40 0 1
Share of STW irrigated cultivated land 714 0.41 0.47 0 1
Share of DTW irrigated cultivated land 714 0.13 0.33 0 1

Panel C. Changes
Aman

Share of rainfed cultivated land 714 0.04 0.39 -1 1
Share of STW irrigated cultivated land 714 -0.03 0.33 -1 1

Boro
Share of rainfed cultivated land 714 -0.04 0.29 -1 1
Share of STW irrigated cultivated land 714 -0.04 0.39 -1 1
Share of DTW irrigated cultivated land 714 0.04 0.27 -1 1

Panel D. Total
Aman

Share of rainfed cultivated land 1428 0.78 0.39 0 1
Share of STW irrigated cultivated land 1428 0.15 0.33 0 1

Boro
Share of rainfed cultivated land 1428 0.24 0.40 0 1
Share of STW irrigated cultivated land 1428 0.41 0.47 0 1
Share of DTW irrigated cultivated land 1428 0.13 0.33 0 1

Notes: Share of cultivated land under each irrigation status during each growing season weighted
by the size of the cultivated land reported by the households in the survey. The percentage is
constructed by using Module C “Roster of land and water bodies owned or under operation” and
considering only the plots of cultivated / arable land type and own operated. The module asks to
report the irrigation status of each plot for each growing season. LLP: Low Lift Pump; STW: Shallow
Tube Well; DTW: Deep Tube Well. Aus refers to the pre-monsoon growing season, Aman refers to
the monsoon growing season, Boro refers to the winter growing season. Panel A shows the summary
statistics for survey wave 1 conducted in January 2011, Panel B for survey wave 2 conducted in
September 2012, Panel C reports changes for each of the variables across the two survey waves and
Panel D displays the values across the two waves.
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Table B12: Summary statistics on individual beliefs of climate
change

N Mean SD

Panel A. Survey Wave 1 (2011)
Belief increase in drought 714 0.25 0.43
Belief increase in erratic rainfall 714 0.27 0.44
Belief decrease in precipitations 714 0.22 0.41

Panel B. Survey Wave 2 (2012)
Belief increase in drought 714 0.71 0.45
Belief increase in erratic rainfall 714 0.86 0.34
Belief decrease in precipitations 714 0.88 0.32

Panel C. Changes
Belief increase in drought 714 0.46 0.62
Belief increase in erratic rainfall 714 0.59 0.59
Belief decrease in precipitations 714 0.66 0.53

Panel D. Total
Belief increase in drought 1428 0.48 0.49
Belief increase in erratic rainfall 1428 0.57 0.50
Belief decrease in precipitations 1428 0.55 0.50

Observations 1428

Notes: Panel A shows the summary statistics for survey wave 1 conducted
in January 2011, Panel B for survey wave 2 conducted in September 2012,
Panel C reports changes for each of the variables across the two survey
waves and Panel D displays the values across the two waves.
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Table B13: Balance test. Farmer characteristics by beliefs of in-
crease in drought.

Perception increase in drought

No Yes p-value

Panel A: Farmer characteristics
Farmer 0.703 0.657 0.061
Receives information from extension agents 0.206 0.334 <0.001
Household with electricity 0.497 0.537 0.127
Ownership of Shallow Tube Wells (STWs) 0.100 0.106 0.718
Ownership of Deep Tube Wells (DTWs) 0.009 0.017 0.191
Perception increase in erratic rainfall 0.391 0.762 <0.001
Perception decrease in precipitations 0.352 0.767 <0.001
Land holdings (in hectares) 0.688 0.789 0.144
Share of clay cultivated land 0.034 0.033 0.884
Share of loam cultivated land 0.197 0.220 0.261
Share of sandy cultivated land 0.029 0.020 0.196
Share of clay-loam cultivated land 0.476 0.482 0.800
Share of sandy-loam cultivated land 0.252 0.224 0.190
Number of individuals 739 689

Panel B: Wave 1 - Wave 2 changes in farmer characteristics
Farmer -0.058 -0.080 0.566
Receives information from extension agents 0.180 0.183 0.960
Household with electricity 0.131 0.078 0.0875
Ownership of Shallow Tube Wells (STWs) -0.01 0.006 0.221
Ownership of Deep Tube Wells (DTWs) -0.005 0.004 0.344
Perception increase in erratic rainfall 0.458 0.644 <0.001
Perception decrease in precipitations 0.507 0.717 <0.001
Land holdings (in hectares) 0.136 0.103 0.278
Share of clay cultivated land -0.003 -0.012 0.525
Share of loam cultivated land -0.120 -0.064 0.033
Share of sandy cultivated land -0.007 -0.006 0.926
Share of clay-loam cultivated land 0.038 0.032 0.869
Share of sandy-loam cultivated land 0.098 0.040 0.048
Number of individuals 205 509

Notes: The table compares the differences in means between the group of respondents who did and did not perceive an
increase in droughts, across the two waves in Panel A, and in the second wave in Panel B comparing changes in farmer
characteristics between the two waves. p-value column shows the p-values of the hypotheses that the mean outcomes of the
groups by beliefs of increase in droughts are equal.

266



Table B14: Two-way frequency table observed and accurate beliefs

Accurate beliefs Accurate beliefs in Aman Accurate beliefs in Boro

Belief increase drought No (0) Yes (1) No (0) Yes (1) No (0) Yes (1)

No (0) 194 545 74 665 459 280
13.59% 38.17% 5.18% 46.57% 32.14% 19.61%

Yes (1) 117 572 136 553 179 510
8.19% 40.06% 9.52% 38.73% 12.54% 35.71%

Notes: The table shows the two-way frequency and relative percentages for Belief increase drought (b) in rows and Accurate
beliefs (b∗) over the year, in Aman and in Boro, in columns. Accurate belief (b∗) is equal to one if (seasonal) long-run
exposure is strictly above zero (i.e., environment relatively drier than historical averages), and zero otherwise.
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Table B15: Summary statistics of SPEI meteorological measures

N Mean SD Min Max

Panel A. Survey Wave 1 (2011)
A. Exposure Measures

Long-run dryness 34 0.07 0.04 -0.01 0.15
Deviation 34 0.04 0.04 -0.03 0.15
Aman Long-run dryness 34 0.09 0.06 -0.05 0.20
Boro Long-run dryness 34 -0.01 0.04 -0.08 0.10
Aman Deviation 34 0.27 0.14 -0.10 0.48
Boro Deviation 34 0.42 0.11 0.23 0.68

B. Number of Drought Events
# Moderate Droughts 34 8.20 3.02 3 13
# Severe Droughts 34 2.44 2.01 0 7
# Extreme Droughts 34 0.47 0.89 0 3

Panel B. Survey Wave 2 (2012)
A. Exposure Measures

Long-run dryness 34 0.11 0.04 0.03 0.16
Deviation 34 -0.06 0.10 -0.38 0.05
Aman Long-run dryness 34 0.09 0.07 -0.04 0.22
Boro Long-run dryness 34 0.04 0.05 -0.02 0.18
Aman Deviation 34 0.22 0.21 -0.61 0.51
Boro Deviation 34 -0.09 0.14 -0.41 0.24

B. Number of Drought Events
# Moderate Droughts 34 3.18 1.09 1 6
# Severe Droughts 34 1.09 0.71 0 3
# Extreme Droughts 34 0.03 0.17 0 1

Panel C. Changes
A. Exposure Measures

Long-run dryness 34 0.03 0.01 0.01 0.05
Deviation 34 -0.10 0.12 -0.52 0.03
Aman Long-run dryness 34 0.01 0.02 -0.05 0.04
Boro Long-run dryness 34 0.05 0.01 0.02 0.08
Aman Deviation 34 -0.05 0.28 -1.09 0.32
Boro Deviation 34 -0.51 0.21 -0.99 -0.20

B. Number of Drought Events
# Moderate Droughts 34 -5.03 2.78 -10 0
# Severe Droughts 34 -1.35 1.72 -5 2
# Extreme Droughts 34 -0.44 0.82 -2 0

Panel D. Total
A. Exposure Measures

Long-run dryness 68 0.09 0.04 -0.01 0.16
Deviation 68 -0.01 0.09 -0.38 0.15
Aman Long-run dryness 68 0.09 0.06 -0.05 0.22
Boro Long-run dryness 68 0.01 0.05 -0.08 0.18
Aman Deviation 68 0.25 0.18 -0.61 0.50
Boro Deviation 68 0.16 0.29 -0.41 0.68

B. Number of Drought Events
# Moderate Droughts 68 5.69 3.39 1 13
# Severe Droughts 68 1.76 1.65 0 7
# Extreme Droughts 68 0.25 0.68 0 3

Notes: The sample includes the 34 grid cells that uniquely match the 40 sampled unions
as explained in Figure B2.
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Table B16: Summary statistics of main regressors using SPEI and BCCAS

N Mean SD Min Max

Panel A. Survey Wave 1 (2011)
Droughtt−1 714 0.04 0.19 0 1
Droughtt−2 714 0.01 0.12 0 1
Inaccuracy 714 0.98 0.14 0 1
Overestimation (Moderate) 714 0.00 0.00 0 0
Overestimation (Severe) 714 0.03 0.18 0 1
Overestimation (Extreme) 714 0.15 0.35 0 1
∆ Droughts (Moderate) 714 -7.83 2.92 -13 0
∆ Droughts (Severe) 714 -2.13 1.94 -7 3
∆ Droughts (Extreme) 714 -0.12 1.11 -3 4

Panel B. Survey Wave 2 (2012)
Droughtt−1 714 0.24 0.42 0 1
Droughtt−2 714 0.01 0.05 0 1
Inaccuracy 714 0.80 0.40 0 1
Overestimation (Moderate) 714 0.01 0.09 0 1
Overestimation (Severe) 714 0.11 0.32 0 1
Overestimation (Extreme) 714 0.36 0.48 0 1
∆ Droughts (Moderate) 714 -2.74 1.35 -6 9
∆ Droughts (Severe) 714 -0.59 1.08 -3 11
∆ Droughts (Extreme) 714 0.45 0.84 -1 11

Panel C. Total
Droughtt−1 1428 0.14 0.34 0 1
Droughtt−2 1428 0.01 0.09 0 1
Inaccuracy 1428 0.89 0.31 0 1
Overestimation (Moderate) 1428 0.00 0.06 0 1
Overestimation (Severe) 1428 0.07 0.26 0 1
Overestimation (Extreme) 1428 0.25 0.44 0 1
∆ Droughts (Moderate) 1428 -5.29 3.41 -13 9
∆ Droughts (Severe) 1428 -1.36 1.75 -7 11
∆ Droughts (Extreme) 1428 0.16 1.03 -3 11

Notes: The sample includes the 714 individuals interviewed in both survey waves in
January 2011 and September 2012. Inaccuracy is a dummy variable that takes value one if
individuals do not report to have been hit by the most harmful drought the year preceding
the survey (Droughtt−1 = 0) and the minimum SPEI monthly realization was recorded in
the same year. The variable ∆ is constructed as explained in Equation (3.1) in the main
text, by taking the difference between the self-reported number of drought events in the
survey and the number of drought events recorded using the (non-consecutive) monthly
realizations of the SPEI below a certain cut-off (-1 for moderate, -1.5 for severe and -2
for extreme events) over the same time period. Overestimation is a dummy variable that
takes value one if ∆ is strictly positive. Panel A shows the summary statistics for survey
wave 1 conducted in January 2011, Panel B for survey wave 2 conducted in September
2012, Panel C displays the values across the two waves.
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Table B17: Balance in covariates. Long-run dryness on farmer’s
characteristics.

Long-run dryness

Standard
Covariate Estimate errors

Farmer 0.621 (2.094)
Receives information from extension agents -0.729 (1.699)
Household size -2.519 (2.953)
Household with electricity -0.731 (1.481)
Ownership of Shallow Tube Wells (STWs) 0.195 (0.564)
Ownership of Deep Tube Wells (DTWs) -0.906 (0.579)
Perception increase in erratic rainfall 11.18 (3.393)
Perception decrease in precipitations 5.392 (2.631)
Land holdings (in hectares) -0.660 (1.305)
Share of clay cultivated land -1.001 (0.706)
Share of loam cultivated land 1.014 (1.531)
Share of sandy cultivated land -0.408 (0.444)
Share of clay-loam cultivated land -1.137 (1.742)
Share of sandy-loam cultivated land 2.474 (1.542)

Notes: The panel presents point estimates and standard errors for 14 regressions of
a covariate (listed at the left) on long-run dryness. I use a time-varying measure of
long-run dryness to account for changes between the two waves. All estimates are
based on OLS regressions with individual and year fixed effects. Standard errors
are computed adjusting for temporal and spatial correlation using the methods
developed by Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use
a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation.
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B.3 Why do people change their beliefs?
Table B12 shows substantial heterogeneity across waves in the self-reported beliefs of changes in
climatic conditions. Most notably, around 52% of the respondents did not report a perceived
increase in droughts in the first wave and reported it in the second wave, while only around 7%
had an opposite reporting pattern. This is even more relevant since only one union in the sample
(Chaklarhat) recorded an extreme drought event between the two waves, in which 30% of the
respondents changes beliefs and reported a perceived increase in droughts and 60% did not change
their beliefs across the two waves. A potential explanation of this result is that individuals have
their own definition of droughts. This would not pose a problem to the analysis so long as this is
time-invariant, which is plausible given the temporal proximity of the two waves.

I examine whether belief updates come from informational or social channels. First, I com-
pare the variance in beliefs across unions between the two waves to investigate a potential local
convergence or divergence phenomenon of beliefs update. The average variance is 0.178 in the first
wave and 0.171 in the second wave, providing evidence that there is slight convergence in beliefs
within each union, although the difference is not statistically significant at any conventional level.
Another possibility is that beliefs can be influenced by the land management strategies designed to
adapt to unfavorable conditions (Niles and Mueller, 2016), up to the point that reverse causality
may undermine this study. This possibility is explored and ruled out in Section 2.5.2.

Another potential channel of belief update is the role of social learning (Conley and Udry, 2010).
Farmers compare neighbors’ productivity to theirs and update their beliefs to align with the input
adjustments of those who were successful in the previous period. I test this hypothesis by regressing
the differences between the deviations from the union’s averages in beliefs over the two waves on the
differences between the deviations from the union’s averages in the share of irrigated land. Under
the assumption that irrigation has positive returns on productivity (Bell et al., 2015), a negative
and statistical significant coefficient on the double difference (over time and from union’s average)
of use of irrigation would provide evidence of the social learning channel for beliefs update. Table
B18 displays the coefficients on the double difference of use of irrigation that are never statistically
different from zero, ruling out the social learning channel.
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B.4 Additional Tables

Table B18: Social learning channel of belief update

Dependent variable: ∆∆Belief increase drought

(1) (2) (3) (4) (5) (6)

∆∆ Irrigation 0.138 -0.0326 -0.0576
(0.110) (0.0591) (0.0707)

∆t−1 Irrigation 0.00295 -0.163 -0.130
(0.136) (0.0996) (0.0965)

Season Annual Aman Boro Annual Aman Boro

N 714 714 714 714 714 714

Notes: Each column refers to an OLS specification where the sample is a cross-section of 714 rural
households’ respondents. The outcome variable is the difference between the deviation from the
union’s average in beliefs of increases in drought over the two survey waves (formally, perceptionit −
perceptionut − (perceptionit−1 − perceptionut−1). The main regressors of interest are the differences
in deviations from the union’s average in the share of irrigated cultivated land. All regressions control
for main occupation of the respondent is farmer, the household receives extension advice, access to
electricity, hectares of total land holdings, weighted share of cultivated land of i) clay; ii) loam; iii)
sandy; iv) clay-loam; v) sandy-loam by hectares; union fixed effects. Robust standard errors, clustered
at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B19: Individual beliefs and long-run exposure to
dryness

Dependent variable: Belief increase drought

(1) (2) (3)

Long-run dryness 16.23∗∗∗ 6.383∗∗∗ -1.691
(2.475) (0.914) (2.740)

Deviation -0.431∗ -0.0193 0.192
(0.222) (0.0761) (0.163)

Season Annual Aman Boro

Fixed Effects X X X

N 1428 1428 1428

Notes: Each column refers to an OLS specification where the
outcome variable is the binary variable on beliefs of increases
in droughts. The main regressors of interest are the annual or
seasonal (Aman in col.2 and Boro in col.3) twenty-year aver-
age dryness and short-run deviations from the year prior to the
production year. All regressions control for individual and year
fixed effects. Standard errors are computed adjusting for tem-
poral and spatial correlation using the methods developed by
Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I
use a 2-year time lag and a distance cutoff of 200 kilometers for
spatial correlation. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table B20: Ex-ante input decision. Contemporaneous weather realizations
and irrigation decisions.

Aman Boro

Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Deviationt 0.0867 -0.0691 0.00204 -0.0180 0.0157
(0.0734) (0.0703) (0.0480) (0.0390) (0.0237)

Controls X X X X X
Fixed Effects X X X X X

N 1428 1428 1428 1428 1428
adj. R2 0.560 0.573 0.749 0.665 0.588

Notes: The outcome variable is the share of land under each irrigation status
or left rainfed in Aman or Boro growing seasons. Standard errors are computed
adjusting for temporal and spatial correlation using the methods developed by
Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time
lag and a distance cutoff of 200 kilometers for spatial correlation. The specification
controls for beliefs of increases in droughts, the interaction term with long-run
dryness and the set of controls as in baseline specification (2.10): seasonal year-to-
year deviation in excess dryness relative to seasonal twenty-year long-run dryness,
main occupation of the respondent is farmer, the household receives extension
advice, access to electricity, perception of decrease in precipitation, perception of
more erratic rainfall, hectares of total land holdings; ownership status of STW
and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam;
v) sandy-loam. Fixed Effects: Individual, Year. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table B21: Sub-sample analysis.

Dependent variable: Share of irrigated cultivated land

(1) (2) (3) (4) (5)

Belief increase drought -0.0759∗∗∗ -0.101∗∗∗ -0.0746∗∗∗ -0.0875∗∗∗ -0.0785∗∗∗

(0.0210) (0.0245) (0.0243) (0.0235) (0.0218)

Belief increase in drought × Long-run dryness 0.835∗∗∗ 0.872∗∗∗ 0.543∗ 0.757∗∗ 0.722∗∗

(0.243) (0.305) (0.288) (0.295) (0.292)

Sub-sample Irrigated land ̸= 0 Irrigated land Aman & Boro No STW/DTW At least one
in wave 1 ̸= 0 producers owners extreme drought

Mean Outcome 0.548 0.576 0.488 0.474 0.474
SD Outcome 0.296 0.276 0.323 0.332 0.334
N 1278 1212 1330 1270 1390
adj. R2 0.563 0.502 0.695 0.716 0.700

Notes: The outcome variable is the average share of cultivated land in Aman or Boro growing seasons. Column (1) estimates the regression excluding farmers with
share of irrigated land equal to zero in the first wave. Column (2) excludes farmers that never irrigate. Column (3) includes only farmers self-reporting the quantity
of Aman and Boro rice produced in the first wave. Column (4) excludes farmers owning STWs or DTWs. Column (5) excludes unions where no drought occurred over
the twenty years. Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and based on Hsiang
(2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation. All specifications include individual and year fixed
effects, and the same controls as in the baseline regression in Table 2.1. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B22: Individual beliefs and irrigation use accounting for water balance variability.

Dependent variable: Share of cultivated land Irrigated STW Irrigated STW

(1) (2) (3) (4)

Belief increase in drought -0.172 -0.465∗∗ -0.139 -0.440
(0.149) (0.184) (0.400) (0.530)

Belief increase in drought × Long-run dryness 0.724∗∗∗ 0.982∗∗ 0.599∗ 0.507∗∗

(0.262) (0.445) (0.360) (0.217)

Belief increase in drought × Seasonal variability 0.222 0.763∗∗

(0.229) (0.314)

Belief increase in drought × Interannual variability 0.102 0.449
(0.450) (0.589)

Controls X X X X
Fixed Effects X X X X

Mean Outcome 0.489 0.299 0.489 0.299
SD Outcome 0.327 0.354 0.327 0.354
N 1428 1428 1428 1428

Notes: Table reports the OLS estimates of a regression where the outcome variable is the average share of cultivated
land across the two main growing seasons under any irrigation status (columns 1-3), irrigated with STW (columns
2-4). Seasonal variability is computed using the average intra-annual standard deviation in monthly water balance
in Aman and Boro over the twenty years prior to the first wave of the survey. Interannual variability is computed as
the between-year standard deviation of the seasonal average monthly water balance over the twenty years prior to
the first wave of the survey. Standard errors are computed adjusting for temporal and spatial correlation using the
methods developed by Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a
distance cutoff of 200 kilometers for spatial correlation. Controls: seasonal year-to-year deviation in excess dryness
relative to seasonal twenty-year long-run dryness, seasonal year-to-year variability in excess dryness relative to
seasonal twenty-year long-run variability in dryness, main occupation of the respondent is farmer, the household
receives extension advice, access to electricity, perception of decrease in precipitation, perception of more erratic
rainfall, hectares of total land holdings; ownership status of STW and DTW, the share of cultivated land of i) clay;
ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual, Year. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table B23: Other adaptation responses to beliefs and dryness

Livestock buffer Off-farm work Domestic labor in HH

Dependent variable Value Livestock Sold Consumed Has off-farm # agricultural # crop # self-employed in
Sold livestock livestock job workers farmers agricultural activities
(1) (2) (3) (4) (5) (6) (7)

Belief increase drought 13644.1 -0.00841 0.0933 -0.0277 0.0350 0.0101 -0.00217
(9901.2) (0.0577) (0.0699) (0.0249) (0.0295) (0.0456) (0.0498)

Belief increase in drought × Long-run dryness -210060.1 -0.215 -0.996 0.589 -0.780 -0.442 -0.00172
(159026.5) (0.700) (0.800) (0.385) (0.571) (0.515) (0.612)

Mean Outcome 9418.782 0.500 0.627 0.141 0.109 0.835 0.939
N 1428 1428 1428 1428 1428 1428 1428
adj. R2 0.086 0.176 0.139 0.681 0.487 0.737 0.705

Notes: Each column refers to an OLS specification on the sample of 714 individuals. All specifications include individual and year fixed effects, and the same controls as in the baseline
regression in Table 2.1. Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and based on Hsiang (2010) and Conley
(1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation. Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The outcome in column 1 is measured
in Taka. Regressions in columns 2, 3, and 4 have a binary outcome variable.
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B.5 Heterogeneity by socio-demographic characteristics
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B.6 Robustness Checks

B.6.1 Individual beliefs and adaptive decisions

Table B28: Individual beliefs and irrigation use. OLS estimates with inverse probability weights
for attrition.

Dependent variable: Share of cultivated land Irrigated STW DTW
(1) (2) (3)

Belief increase in drought (β1) -0.0370∗∗∗ -0.0303∗∗ 0.00971
(0.0120) (0.0146) (0.0109)

Belief increase in drought × Long-run dryness (β2) 0.739∗∗ 0.813∗ -0.487∗

(0.308) (0.436) (0.282)

Controls X X X
Fixed Effects X X X

Mean Outcome 0.489 0.299 0.068
SD Outcome 0.327 0.354 0.191
N 1428 1428 1428

Notes: Table reports the OLS estimates of a regression where the outcome variable is the average share
of cultivated land across the two main growing seasons under any irrigation status (columns 1), irrigated
with STW (column 3) and with DTW (column 4). Observations are weighted by the inverse probability
weight for attrition, obtained from the estimation of a logit regression to obtain the probability of attrition
based on all the covariates in the regression. Standard errors are computed adjusting for temporal and
spatial correlation using the methods developed by Fetzer (2020) and based on Hsiang (2010) and Conley
(1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation. Controls:
seasonal year-to-year deviation in excess dryness relative to seasonal twenty-year long-run dryness, main
occupation of the respondent is farmer, the household receives extension advice, access to electricity,
perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings;
ownership status of STW and DTW, the share of cultivated land of i) clay; ii) loam; iii) sandy; iv)
clay-loam; v) sandy-loam. Fixed Effects: Individual, Year. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table B29: Baseline results. Spatial and temporal cutoffs for standard errors adjustment.

Dependent variable: Share of cultivated land Irrigated STW DTW
(1) (2) (3)

Panel A: 100 km and 2-year cutoffs
Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190

(0.0278) (0.0285) (0.0221)

Belief increase in drought × Long-run dryness (β2) 0.600∗∗ 0.543∗∗ -0.260
(0.267) (0.261) (0.195)

Panel B: 200 km and 5-year cutoffs
Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190

(0.0258) (0.0305) (0.0187)

Belief increase in drought × Long-run dryness (β2) 0.600∗∗ 0.543∗ -0.260
(0.271) (0.286) (0.189)

Panel C: 400 km and 2-year cutoffs
Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190

(0.0200) (0.0264) (0.0149)

Belief increase in drought × Long-run dryness (β2) 0.600∗∗∗ 0.543∗∗ -0.260
(0.220) (0.271) (0.183)

Panel D: 400 km and 5-year cutoffs
Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190

(0.0217) (0.0279) (0.0160)

Belief increase in drought × Long-run dryness (β2) 0.600∗∗ 0.543∗ -0.260
(0.237) (0.284) (0.167)

Panel E: 800 km and 5-year cutoffs
Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190

(0.0205) (0.0243) (0.0144)

Belief increase in drought × Long-run dryness (β2) 0.600∗∗∗ 0.543∗∗ -0.260
(0.221) (0.243) (0.161)

Panel F: 800 km and 999-year cutoffs
Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190

(0.0222) (0.0259) (0.0155)

Belief increase in drought × Long-run dryness (β2) 0.600∗∗ 0.543∗∗ -0.260
(0.237) (0.257) (0.159)

N 1428 1428 1428

Notes: The outcome variable is the average share of cultivated land across the two main growing seasons
under any irrigation status (column 1), irrigated with STW (column 2) and with DTW (column 3).
Spatial and temporal cutoffs are varying and reported in the heading of each panel. Significance levels:
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All regressions control for 20-year long-run average exposure to
dryness, seasonal year-to-year deviation in excess dryness relative to long-run average, main occupation
of the respondent is farmer, the household receives extension advice, access to electricity, perception
of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings, weighted
share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam by hectares; individual
and year fixed effects.
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Table B30: Baseline results by growing season. Spatial and temporal cutoffs for standard errors adjustment.

Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Panel A: 100 km and 2-year cutoffs
Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗ 0.0229 -0.0234 0.0188

(0.0296) (0.0203) (0.0201) (0.0232) (0.0214)

Belief increase in drought × Long-run dryness (β2) -0.545∗∗ 0.437∗∗ 0.275 0.0254 -0.296
(0.276) (0.219) (0.306) (0.333) (0.220)

Panel B: 200 km and 5-year cutoffs
Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗ 0.0229 -0.0234 0.0188

(0.0280) (0.0202) (0.0176) (0.0237) (0.0194)

Belief increase in drought × Long-run dryness (β2) -0.545∗ 0.437∗ 0.275 0.0254 -0.296
(0.285) (0.243) (0.285) (0.318) (0.215)

Panel C: 400 km and 2-year cutoffs
Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗∗ 0.0229 -0.0234 0.0188

(0.0225) (0.0168) (0.0142) (0.0177) (0.0158)

Belief increase in drought × Long-run dryness (β2) -0.545∗∗ 0.437∗∗ 0.275 0.0254 -0.296
(0.234) (0.203) (0.229) (0.269) (0.189)

Panel D: 400 km and 5-year cutoffs
Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗∗ 0.0229 -0.0234 0.0188

(0.0243) (0.0184) (0.0152) (0.0190) (0.0168)

Belief increase in drought × Long-run dryness (β2) -0.545∗∗ 0.437∗∗ 0.275 0.0254 -0.296
(0.245) (0.212) (0.250) (0.286) (0.204)

Panel E: 800 km and 5-year cutoffs
Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗∗ 0.0229 -0.0234 0.0188

(0.0224) (0.0176) (0.0139) (0.0172) (0.0150)

Belief increase in drought × Long-run dryness (β2) -0.545∗∗∗ 0.437∗∗ 0.275 0.0254 -0.296
(0.208) (0.176) (0.236) (0.247) (0.191)

Panel F: 800 km and 999-year cutoffs
Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗∗ 0.0229 -0.0234 0.0188

(0.0241) (0.0191) (0.0150) (0.0185) (0.0161)

Belief increase in drought × Long-run dryness (β2) -0.545∗∗ 0.437∗∗ 0.275 0.0254 -0.296
(0.220) (0.185) (0.256) (0.265) (0.206)

N 1428 1428 1428 1428 1428

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and
based on Hsiang (2010) and Conley (1999). Spatial and temporal cutoffs are varying and reported in the heading of each panel.
Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All regressions control for 20-year long-run seasonal average exposure
to dryness, seasonal year-to-year deviation in excess dryness relative to long-run average, main occupation of the respondent is
farmer, the household receives extension advice, access to electricity, perception of decrease in precipitation, perception of more
erratic rainfall, hectares of total land holdings, weighted share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v)
sandy-loam by hectares; individual and year fixed effects.
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Table B31: Baseline results. Clustered standard errors at the grid cell-level.

Dependent variable: Share of cultivated land Irrigated STW DTW
(1) (2) (3)

Belief increase in drought (β1) -0.0470∗∗∗ -0.0340∗ 0.00386
(0.0140) (0.0175) (0.0113)

Belief increase in drought × Long-run dryness (β2) 0.649∗∗ 0.725∗∗ -0.377
(0.288) (0.352) (0.228)

Controls X X X
Fixed Effects X X X

Mean Outcome 0.489 0.299 0.068
SD Outcome 0.327 0.354 0.191
N 1428 1428 1428
adj. R2 0.699 0.689 0.601

Notes: The outcome variable is the average share of cultivated land across the two main growing
seasons under any irrigation status (column 1), irrigated with STW (column 2) and with DTW (column
3). Standard errors are clustered at the grid cell-level. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01. Controls: year-to-year deviation in excess dryness relative to twenty-year long-run average,
main occupation of the respondent is farmer, the household receives extension advice, access to electricity,
perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings;
ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam;
v) sandy-loam. Fixed Effects: Individual, Year.
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Table B32: Baseline results by growing season. Clustered standard errors at the grid cell-level.

Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Belief increase in drought (β1) 0.0871∗∗ -0.0498∗ 0.0229 -0.0234 0.0188
(0.0359) (0.0243) (0.0231) (0.0296) (0.0266)

Belief increase in drought × Long-run dryness (β2) -0.545∗ 0.437∗ 0.275 0.0254 -0.296
(0.272) (0.228) (0.329) (0.384) (0.287)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.763 0.163 0.260 0.435 0.112
SD Outcome 0.405 0.348 0.411 0.470 0.300
N 1428 1428 1428 1428 1428
adj. R2 0.560 0.572 0.750 0.669 0.583

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are clustered at the grid cell-level. Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: Seasonal
year-to-year deviation in excess dryness relative to seasonal twenty-year long-run dryness, main occupation of the respondent
is farmer, the household receives extension advice, access to electricity, perception of decrease in precipitation, perception of
more erratic rainfall, hectares of total land holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii)
loam; iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual, Year.
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Table B33: Individual beliefs and irrigation status. Time-varying long-run dryness.

Dependent variable: Share of cultivated land Irrigated STW DTW
(1) (2) (3)

Belief increase in drought (β1) -0.0821∗∗∗ -0.0626∗∗ 0.0190
(0.0244) (0.0292) (0.0178)

Long-run dryness (β2) -1.971∗ -1.018 -0.406
(1.038) (1.458) (0.905)

Belief increase in drought × Long-run dryness (β3) 0.600∗∗ 0.543∗∗ -0.260
(0.257) (0.273) (0.183)

Controls X X X
Fixed Effects X X X

Mean Outcome 0.489 0.299 0.068
SD Outcome 0.327 0.354 0.191
N 1428 1428 1428
adj. R2 0.698 0.682 0.593

Notes: The outcome variable is the average share of cultivated land across the two main growing seasons
under any irrigation status (column 1), irrigated with STW (column 2) and with DTW (column 3).
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed
by Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance
cutoff of 200 kilometers for spatial correlation. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p <
0.01. Controls: year-to-year deviation in excess dryness relative to twenty-year long-run average, main
occupation of the respondent is farmer, the household receives extension advice, access to electricity,
perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings;
ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam;
v) sandy-loam. Fixed Effects: Individual, Year.
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Table B34: Individual beliefs and irrigation status by growing season. Time-varying long-run dryness.

Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Belief increase in drought (β1) 0.0871∗∗∗ -0.0498∗∗∗ 0.0229 -0.0234 0.0188
(0.0265) (0.0188) (0.0167) (0.0227) (0.0185)

Long-run dryness (β2) -0.634 0.539 0.551 2.761∗∗ -0.561
(0.823) (0.732) (1.977) (1.216) (0.834)

Belief increase in drought × Long-run dryness (β3) -0.545∗∗ 0.437∗ 0.275 0.0254 -0.296
(0.276) (0.236) (0.267) (0.303) (0.200)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.763 0.163 0.260 0.435 0.112
SD Outcome 0.405 0.348 0.411 0.470 0.300
N 1428 1428 1428 1428 1428
adj. R2 0.560 0.572 0.750 0.669 0.583

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and
based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation.
Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: seasonal year-to-year deviation in excess dryness relative to
seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives extension advice, access
to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings; ownership
status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects:
Individual, Year.
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Table B35: Baseline results by growing season. Hectares of culti-
vated land as the outcome variable.

Aman Boro

Dependent variable: Hectares of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

Belief increase in drought (β1) 0.0908∗∗ -0.0340∗∗ 0.0131 -0.0105 0.0260∗∗∗

(0.0374) (0.0142) (0.0191) (0.0143) (0.00973)

Belief increase in drought × Long-run dryness (β2) -0.785∗∗ 0.227∗ -0.300 0.271 -0.242
(0.394) (0.138) (0.268) (0.220) (0.167)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.502 0.080 0.185 0.257 0.050
SD Outcome 1.230 0.227 0.479 1.122 0.184
N 1428 1428 1428 1428 1428
adj. R2 0.968 0.652 0.812 0.973 0.498

Notes: The outcome variable is the total hectares of cultivated land under each irrigation status or left rainfed in Aman or Boro
growing seasons. Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by
Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for
spatial correlation. Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: Seasonal year-to-year deviation in excess
dryness relative to seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives
extension advice, access to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of total
land holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v)
sandy-loam. Fixed Effects: Individual, Year.
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Table B36: Baseline results by growing season. Extensive margin
of irrigation status as outcome.

Aman Boro

(1) (2) (3) (4) (5)
Rainfed STW Rainfed STW DTW

Belief increase in drought (β1) 0.0885∗∗∗ -0.0694∗∗∗ -0.00844 -0.0166 0.00666
(0.0314) (0.0221) (0.0222) (0.0254) (0.0181)

Belief increase in drought × Long-run dryness (β2) -0.877∗∗ 0.610∗∗∗ -0.863 0.259 -0.591
(0.353) (0.228) (0.571) (0.443) (0.476)

Controls X X X X X
Fixed Effects X X X X X

Mean Outcome 0.819 0.204 0.363 0.496 0.135
SD OUtcome 0.385 0.403 0.481 0.500 0.342
N 1428 1428 1428 1428 1428
adj. R2 0.456 0.582 0.621 0.641 0.618

Notes: The outcome variable is a dummy variable that takes value one if the share of cultivated land under each irrigation status
or rainfed is strictly positive and zero otherwise. Standard errors are computed adjusting for temporal and spatial correlation
using the methods developed by Fetzer (2020) and based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a
distance cutoff of 200 kilometers for spatial correlation. Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: Seasonal
year-to-year deviation in excess dryness relative to seasonal twenty-year long-run dryness, main occupation of the respondent is
farmer, the household receives extension advice, access to electricity, perception of decrease in precipitation, perception of more
erratic rainfall, hectares of total land holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam;
iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual, Year.
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Table B37: Reverse Causality: Irrigation status and individual be-
liefs

Belief increase in drought in wave 2 ∆ Belief increase in drought

(1) (2) (3) (4) (5) (6)

Avg share of irrigated land in wave 1 0.0283 -0.00667
(0.0973) (0.137)

Avg share of irrigated land in Aman in wave 1 0.00228 -0.0518
(0.0452) (0.0760)

Avg share of irrigated land in Boro in wave 1 0.0399 0.0806
(0.111) (0.143)

N 714 714 714 714 714 714
adj. R2 0.152 0.152 0.153 0.112 0.113 0.113

Notes: The table estimates the potential reverse causality of past adaptation decisions on future beliefs. Each column refers to an OLS
specification where the sample is a cross-section of 714 rural households’ respondents. The dependent variable is the dichotomous variable on
the perceived increase in drought measured in the second wave of the survey in columns 1-3 and the difference between perceived increase in
drought in wave 2 and wave 1 in columns 4-6. The main regressors of interest are the share of irrigated cultivated land in the first wave. All
regressions control for: main occupation of the respondent is farmer, the household receives extension advice, access to electricity, perception
of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings, age, gender and years of education of the
respondent, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam, weighted by hectares. All regressions also
control for union fixed effects. Robust standard errors, clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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B.6.2 Salience

Table B38: Salience of objective drought events and irrigation sta-
tus in Boro

Objective Drought Most Harmful Objective Drought

Dependent variable: Share of cultivated land Rainfed STW DTW Rainfed STW DTW
(1) (2) (3) (4) (5) (6)

Obj Droughtt−1 -0.0942∗∗ -0.0550∗ 0.0614∗∗ 0.00724 -0.134∗∗∗ 0.122∗∗∗

(0.0436) (0.0335) (0.0278) (0.0205) (0.0313) (0.0266)

Belief increase in drought 0.0192 -0.0256 0.0212 0.0221 -0.00916 0.00583
(0.0172) (0.0227) (0.0183) (0.0160) (0.0221) (0.0180)

Belief increase in drought × Long-run dryness 0.311 0.0465 -0.320 0.266 0.203 -0.457∗

(0.258) (0.310) (0.199) (0.266) (0.263) (0.235)

Controls X X X X X X
Fixed Effects X X X X X X

N 1428 1428 1428 1428 1428 1428
adj. R2 0.751 0.669 0.584 0.750 0.679 0.604

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in the Boro growing season. Standard errors
are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and based on Hsiang (2010)
and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation. Significance levels: ∗p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01. Controls: 20-year long-run seasonal average exposure to dryness, Seasonal year-to-year deviation in excess dryness
relative to seasonal twenty-year long-run dryness, main occupation of the respondent is farmer, the household receives extension advice,
access to electricity, perception of decrease in precipitation, perception of more erratic rainfall, hectares of total land holdings; ownership
status of STW and DTW, share of cultivated land of i) clay; ii) loam; iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual,
Year.

293



B.6.3 Overestimation
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B.6.4 Alternative data source for drought events
In Section 2.7.3, I examine the role of overestimating drought events in the irrigation decisions of
farmers. To test for the robustness of the results, I also use another source of objective drought
events to compute the objective counterfactual of the number of droughts that occurred. I use the
EM-DAT (2022) database collected by the Centre for Research on the Epidemiology of Disasters
(CRED) at the Catholic University of Louvain. The EM-DAT database has worldwide coverage
and contains data on the occurrence and effects of natural disasters from 1900 to the present. A
disaster is defined by the CRED as a natural event that overwhelms local capacity, necessitating
a request for external assistance. The database includes information on the locations within the
country that have been hit by natural disasters. In order to be recorded in the EM-DAT database,
a disaster needs to satisfy at least one of the following criteria: i) 10 or more people are reported
to have been killed; ii) 100 people have been reported affected; iii) a state of emergency is declared;
iv) international assistance is called for.

The use of this source for objective records of extreme events might be problematic due to the
potential threshold and accounting biases in loss information that the database could suffer from
(Gall et al., 2009). Nevertheless, the use of loss information is out of the scope of this research, which
is limited to analyzing the number of drought events recorded. Limits in the use of EM-DAT records
as objective measures have been discussed in the literature (Noy, 2009; Felbermayr and Gröschl,
2014; Cavallo et al., 2013). Given the threshold conditions that the disaster needs to satisfy to be
recorded, potential measurement error in the data would bias downward the information from the
database.

I adopt the same methodology used in Section 2.3.2 to compute the objectively recorded number
of drought events that have occurred in the five years before the first wave of the survey (between
2006 and 2010) and between the first and the second wave (2011 and 2012). Following this approach,
round-specific measures of accuracy are created by comparing the number of self-reported drought
events by the household and the recorded number of drought events as reported by EM-DAT:

∆ Droughtit = self-reported #it − objective # droughtsut (B1)

These round-specific measures of accuracy infer whether respondents overestimate or underes-
timate the number of drought events that they have experienced.
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Table B40: Extent of overestimation of drought frequency using EM-DAT objective drought records.

Aman Boro

Dependent variable: Share of cultivated land Rainfed STW Rainfed STW DTW
(1) (2) (3) (4) (5)

∆ Drought -0.00435 0.00211 0.00943 -0.0155 0.0155∗∗

(0.0156) (0.0149) (0.00838) (0.00943) (0.00730)

Belief increase in drought 0.0885∗∗∗ -0.0505∗∗ 0.0202 -0.0191 0.0144
(0.0289) (0.0209) (0.0178) (0.0235) (0.0183)

Belief increase in drought × Long-run dryness -0.550∗∗ 0.440∗ 0.296 -0.00877 -0.262
(0.277) (0.238) (0.269) (0.308) (0.199)

Controls X X X X X
Fixed Effects X X X X X

N 1428 1428 1428 1428 1428
adj. R2 0.559 0.572 0.397 0.750 0.669

Notes: The outcome variable is the share of land under each irrigation status or left rainfed in Aman or Boro growing seasons.
Standard errors are computed adjusting for temporal and spatial correlation using the methods developed by Fetzer (2020) and
based on Hsiang (2010) and Conley (1999). I use a 2-year time lag and a distance cutoff of 200 kilometers for spatial correlation.
Significance levels: ∗p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Controls: 20-year long-run seasonal average exposure to dryness, seasonal
year-to-year deviation in excess dryness relative to seasonal twenty-year long-run dryness, main occupation of the respondent is
farmer, the household receives extension advice, access to electricity, perception of decrease in precipitation, perception of more
erratic rainfall, hectares of total land holdings; ownership status of STW and DTW, share of cultivated land of i) clay; ii) loam;
iii) sandy; iv) clay-loam; v) sandy-loam. Fixed Effects: Individual, Year.
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Appendix C

Appendix to Chapter 3:
Drought exposure and accuracy:
Motivated reasoning in climate
change beliefs
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C.1 Additional figures

Figure C1: Bangladesh map with surveyed unions and SPEI grid
cell data

Notes: The map plots the administrative boundaries of the 40 surveyed
unions in purple and the regional boundaries of Bangladesh. The admin-
istrative layer (from GADM (2021)) is overlaid to the raster SPEI gridded
data from Vicente-Serrano et al. (2010) with 0.5 degree resolution (≈ 55
km at the Equator) with September 2012 values, where colors range from
red to blue, respectively from a drier to a wetter environment. In five cases,
there are two unions within the same grid cell, thus sharing the same SPEI
values. The five cases are Adabaria and Arpangashia; Char Darbesh and
Char Jabbar; Dakatia and Kakrajan; Kushmail and Naogaon. In one case,
there are three unions within the same grid cell: Kalilnagar, Laskar and
Rudaghara. The remaining 28 unions are uniquely matched with SPEI

grid cells.
.
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Figure C2: Timeline of BCCAS survey waves and dryness and
drought events variables

January 1991 January 2006 December 2010 January 2011

Long-term exposure (SP EIJan1991−Dec2010)

- Deviation (SP EIJan2006−Dec2010 − SP EIJan1991−Dec2010)
- Objective # droughts

Survey Wave 1

January 1993 January 2011 August 2012 September 2012

Long-term exposure (SP EISep1993−Dec2012)

- Deviation (SP EIJan2011−Aug2012 − SP EISep1993−Aug2012)
- Objective # droughts

Survey Wave 2

Notes: The timelines display the time horizon of the variables of exposure
to dryness for each survey wave, respectively conducted in January 2011
and September 2012. Long-term exposure is the average monthly SPEI
(×(−1)) over the twenty years preceding each survey wave. Deviation is the
difference between the average monthly SPEI in the five (resp. two) years
before the first (resp. second) wave and long-term exposure (×(−1)). The
number of objective droughts (Objective # droughts) is computed over the
same time horizon covered by self-reported # droughts in each survey wave,
and it records the number of (non-consecutive) SPEI monthly realizations
below a certain cut-off (-1 for moderate, -1.5 for severe, -2 for extreme).
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Figure C3: Frequency distribution of ∆ for moderate, severe and
extreme droughts

Notes: Author’s computation using SPEI, BCCAS and cut-offs from Mc-
Kee et al. (1993) and Paulo et al. (2012). I use the cut-offs for moderate
(SPEI ≤ -1), severe (SPEI ≤ -1.5) and extreme drought events (SPEI ≤ -2)
to compute the number of objective drought events in a given union and
subtract it from the number of self-reported drought events in the BCCAS
over the same time period as in Equation (3.1). When using moderate
or severe drought events as ’objective counterfactual’ of the self-reported
number of droughts, there is systematic underestimation of the frequency

of droughts among individuals.
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Figure C4: Frequency distribution of overestimation for extreme
droughts by belief of increase in droughts

Notes: Author’s computation using SPEI, BCCAS and cut-offs from Mc-
Kee et al. (1993) and Paulo et al. (2012). I use the cut-off for extreme
drought events (SPEI ≤ -2) to compute the number of objective drought
events in a given union and subtract it from the number of self-reported
drought events in the BCCAS over the same time period, as explained
in Equation (3.1). The grey bars show the frequency distribution of the
measure ∆ for individuals who did not hold a belief that droughts have
increased over the past twenty years, the red-border bars display the fre-
quency distribution of the measure ∆ for individuals who reported that

droughts have increased over the past twenty years.
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Figure C5: Interaction between long-term drought exposure and
deviations relative to lifetime

Notes: The figure shows the predicted marginal effects of deviations from
long-term average exposure at different values of long-term average expo-
sure, respectively -0.1 (in green) and 0.1 (in red). Positive values indicate
drier conditions than the individuals’ lifetime exposure and negative values
wetter conditions. The estimates are obtained from a logit regression that
determines the probability of reporting a belief of increase in droughts as a
function of long-term average exposure, the short-term deviation from the
average and their interaction using the SPEI-1 rescaled to each individual’s
specific lifetime exposure and year- and individual-specific fixed effects.

.
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C.1.1 Data

304



T
ab

le
C

1:
U

ni
on

s
an

d
nu

m
be

r
of

ho
us

eh
ol

ds
in

th
e

B
C

C
A

S
sa

m
pl

e

D
iv

isi
on

D
ist

ric
t

U
pa

zi
la

U
ni

on
N

um
be

r
of

ho
us

eh
ol

ds
D

iv
isi

on
D

ist
ric

t
U

pa
zi

la
U

ni
on

N
um

be
r

of
ho

us
eh

ol
ds

B
ar

isa
l

B
ar

gu
na

A
m

ta
li

A
rp

an
ga

sh
ia

15
K

hu
ln

a
Je

ss
or

e
B

ag
he

r
Pa

ra
Ja

m
di

a
20

B
ar

isa
l

B
ar

isa
l

M
eh

en
di

ga
nj

G
ob

in
da

pu
r

14
K

hu
ln

a
M

eh
er

pu
r

G
an

gn
i

K
az

ip
ur

17
B

ar
isa

l
Pa

tu
ak

ha
li

B
au

ph
al

A
da

ba
ria

15
K

hu
ln

a
K

hu
ln

a
Pa

ik
ga

ch
ha

La
sk

ar
17

C
hi

tt
ag

on
g

C
ha

nd
pu

r
M

at
la

b
U

tt
ar

Sa
du

lla
pu

r
19

K
hu

ln
a

Sa
tk

hi
ra

Ta
la

K
ha

lil
na

ga
r

19
C

hi
tt

ag
on

g
C

hi
tt

ag
on

g
B

an
sh

kh
al

i
C

ha
m

ba
l

19
R

aj
sh

ah
i

B
og

ra
Sa

ria
ka

nd
i

K
am

al
pu

r
17

C
hi

tt
ag

on
g

C
hi

tt
ag

on
g

Lo
ha

ga
ra

C
ha

ra
m

ba
19

R
aj

sh
ah

i
Jo

yp
ur

ha
t

K
he

tla
l

M
am

ud
pu

r
18

C
hi

tt
ag

on
g

C
om

ill
a

C
ha

ud
da

gr
am

Ja
ga

nn
at

h
D

ig
hi

19
R

aj
sh

ah
i

N
ao

ga
on

A
tr

ai
Pa

nc
hu

pu
r

18
C

hi
tt

ag
on

g
C

om
ill

a
M

ur
ad

na
ga

r
Pu

rb
a

Pu
rb

ad
ha

ir
17

R
aj

sh
ah

i
N

ao
ga

on
N

ia
m

at
pu

r
B

ha
bi

ch
a

15
C

hi
tt

ag
on

g
Fe

ni
So

na
ga

zi
C

ha
r

D
ar

be
sh

18
R

aj
sh

ah
i

N
at

or
e

N
at

or
e

Sa
da

r
Pi

pr
ul

19
C

hi
tt

ag
on

g
La

ks
hm

ip
ur

R
oy

pu
r

C
ha

r
M

oh
an

a
18

R
aj

sh
ah

i
Pa

bn
a

Pa
bn

a
Sa

da
r

G
ay

es
hp

ur
16

C
hi

tt
ag

on
g

N
oa

kh
al

i
Su

ba
rn

ac
ha

r
C

ha
r

Ja
bb

ar
20

R
aj

sh
ah

i
Si

ra
jg

an
j

Ta
ra

sh
D

es
hi

gr
am

18
D

ha
ka

Ja
m

al
pu

r
B

ak
sh

ig
an

j
B

at
ta

jo
re

15
R

an
gp

ur
D

in
aj

pu
r

G
ho

ra
gh

at
G

ho
ra

gh
at

20
D

ha
ka

M
ym

en
sin

gh
B

ha
lu

ka
D

ak
at

ia
18

R
an

gp
ur

Pa
nc

ha
ga

rh
Pa

nc
ha

ga
rh

Sa
da

r
C

ha
kl

ar
ha

t
20

D
ha

ka
M

ym
en

sin
gh

Fu
lb

ar
ia

K
us

hm
ai

l
20

R
an

gp
ur

R
an

gp
ur

Ta
ra

ga
nj

Ek
ar

ch
al

i
20

D
ha

ka
M

ym
en

sin
gh

Fu
lb

ar
ia

N
ao

ga
on

17
Sy

lh
et

H
ab

ig
an

j
C

hu
na

ru
gh

at
D

eo
rg

ac
hh

20
D

ha
ka

N
ar

ay
an

ga
nj

N
ar

ay
an

ga
nj

Sa
da

r
Si

dd
irg

an
jP

au
ra

sh
av

a
17

Sy
lh

et
H

ab
ig

an
j

H
ab

ig
an

jS
ad

ar
N

iz
am

pu
r

18
D

ha
ka

N
ar

sin
gd

i
M

an
oh

ar
di

G
ot

as
hi

a
19

Sy
lh

et
M

au
lv

ib
az

ar
Ju

ri
Pa

sc
hi

m
Ju

ri
17

D
ha

ka
N

et
ra

ko
na

K
al

m
ak

an
da

N
az

irp
ur

17
Sy

lh
et

M
au

lv
ib

az
ar

K
ul

au
ra

K
ar

m
ad

ha
18

D
ha

ka
Ta

ng
ai

l
Sa

kh
ip

ur
K

ak
ra

ja
n

20
Sy

lh
et

M
au

lv
ib

az
ar

M
au

lv
iB

az
ar

Sa
da

r
K

am
al

pu
r

18
K

hu
ln

a
K

hu
ln

a
D

um
ur

ia
R

ud
ag

ha
ra

17
Sy

lh
et

Sy
lh

et
K

an
ai

gh
at

Pa
sc

hi
m

La
ks

hm
ip

R
as

ad
16

305



Table C2: Survey variables’ definition and construction

VARIABLE SURVEY
QUESTION
CODE

WAVE SURVEY QUESTION SOURCE

Belief of increase in droughts
(0/1)

L.11 1 Have you noticed any changes in climate over the
last 20 years? If yes, please specify what changes
you have noticed (1 if “Longer periods of droughts”
and 0 otherwise)

BCCAS Household
Questionnaire

Belief of increase in droughts
(0/1)

Q.04-Q.07 2 Have you noticed any long term changes in rainfall
variability over the last 20 years? If yes, what
changes have you noticed? (1 if “Longer periods
of droughts” and 0 otherwise) Have you noticed
any changes in climate over the last 20 years? If
yes, please specify what changes you have noticed
(1 if “Longer periods of droughts” and 0 otherwise)

BCCAS Household
Questionnaire

self-reported # droughts L.03 1 In the last five years, have the HH’s properties
and productivity been affected by droughts? How
many times did it occur in last 5 years?

BCCAS Household
Questionnaire

self-reported # droughts L.03 2 Since the last survey interview have the HH’s prop-
erties and productivity been affected by droughts?
How many times did it occur in these two years?

BCCAS Household
Questionnaire

Information on soil and water
conservation and crop protec-
tion

M.06 1 & 2 “Does the information you receive from extension
agents meet your needs? What type of information
is provided?” (1 if “Information on soil and water
conservation” or “Information on crop protection”,
0 otherwsise)

BCCAS Household
Questionnaire

Information on soil and water
conservation, crop protection
and new crop varieties

M.06 1 & 2 “Does the information you receive from extension
agents meet your needs? What type of informa-
tion is provided?” (1 if “Information on soil and
water conservation” or “Information on crop pro-
tection” or “Information on new crop varieties”, 0
otherwsise)

BCCAS Household
Questionnaire

Information on soil and water
conservation, crop protection,
new crop varieties and crop uti-
lization

M.06 1 & 2 “Does the information you receive from extension
agents meet your needs? What type of informa-
tion is provided?” (1 if “Information on soil and
water conservation” or “Information on crop pro-
tection” or “Information on new crop varieties” or
“Information on crop utilization”, 0 otherwsise)

BCCAS Household
Questionnaire

Information from TV/Ra-
dio/Newsletter

M.08 1 & 2 “Do you receive information from sources besides
the extension worker? If yes, what are those
sources?” (1 if "Radio", "Television" or "Newslet-
ter", and 0 otherwise)

BCCAS Household
Questionnaire

Krishi Bank C.01 (Question
ID 11)

1 & 2 “Do you have a Bangladesh Krishi Bank in this
village?” (Yes/No)

BCCAS Commu-
nity Questionnaire

Commercial Bank C.01 (Question
ID 12)

1 & 2 “Do you have a Commercial bank in this village?”
(Yes/No)

BCCAS Commu-
nity Questionnaire

Grameen Bank C.01 (Question
ID 13)

1 & 2 “Do you have a Grameen Bank in this village?”
(Yes/No)

BCCAS Commu-
nity Questionnaire

Agriculture extension officer C.01 (Question
ID 20)

1 & 2 “Do you have an agriculture extension offi-
cer/Block supervisor in this village?” (Yes/No)

BCCAS Commu-
nity Questionnaire

Access to electricity C.01 (Question
ID 21)

1 & 2 “Do you have access to electricity in this village?”
(Yes/No)

BCCAS Commu-
nity Questionnaire

Shop for pesticides and/or fer-
tilizer

C.01 (Question
ID 19)

1 & 2 “Do you have a Shop for pesticides and/or fertilizer
in this village?” (Yes/No)

BCCAS Commu-
nity Questionnaire

Notes: The variable self-reported # droughts is used to compute the variable ∆, subtracting the objective # droughts, being
the recorded number of (non-consecutive) monthly realizations of the SPEI below a certain cut-off (-1 for moderate, -1.5 for
severe and -2 for extreme events) over the same time period as the survey question, as explained in Equation (3.1).
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C.2 Tables

C.2.1 Descriptive Statistics

Table C3: T-tests for differences in means for attritors versus non-
attritors

Non Attritors (N=714) Attritors (N=96) Difference

Mean SD Mean SD Mean t-test

Panel A. Subjective measures
Belief of increase in droughts 0.252 0.016 0.290 0.049 -0.038 (-0.77)
∆ Drought (Moderate) -7.834 0.109 -7.360 0.338 -0.474 (-1.41)
∆ Drought (Severe) -2.127 0.072 -1.953 0.200 -0.174 (-0.79)
∆ Drought (Extreme) -0.125 0.041 0.023 0.140 -0.148 (-1.14)

Panel B. Objective exposure measures
LT Exposure 0.070 0.001 0.061 0.004 0.009 (2.08)
Deviation 0.041 0.001 0.040 0.003 0.001 (0.26)

Panel C. Objective number of droughts
# Moderate Droughts (SPEI≤ −1) 8.110 0.106 7.779 0.321 0.331 (1.01)
# Severe Droughts (SPEI≤ −1.5) 2.403 0.071 2.372 0.190 0.031 (0.14)
# Extreme Droughts (SPEI≤ −2) 0.400 0.031 0.395 0.086 0.005 (0.05)

Notes: The sample compares the means in the estimation sample of the 714 individuals interviewed in both survey waves
in January 2011 and September 2012 and the 96 individuals who have not been reinterviewed in the second wave (because
they migrated, they were not at home in the moment of the survey or the respondent changed from wave 1). The variable ∆
is constructed as explained in Equation (3.1), by taking the difference between the self-reported number of drought events in
the survey and the number of drought events recorded using the (non-consecutive) monthly realizations of the SPEI below
a certain cut-off (-1 for moderate, -1.5 for severe and -2 for extreme events) over the same time period. LT Exposure is the
average SPEI over the previous twenty years (× (-1)), Deviation is the difference between the average monthly SPEI in the
five (resp. two) years before the first (resp. second) wave and LT Exposure (×(−1)). Panel A shows the summary statistics
for subjective variables that use information from the BCCAS. Panel B and C report values computed using the SPEI. The
values in Panels B and C differ from those in Panel A in Table C5 since they are computed at the individual level and not
at the grid cell level. The average LT Exposure is the only variable statistically different at the 5% level in the estimation
sample of non-attritors from the sample of attritors. However, this result should not raise concern on the validity of the
findings since the difference is negligible, less than one percent of SD, and the sample of non attritors has an average LT
Exposure higher than the one of the sample of attritors.
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Table C4: Summary statistics of subjective measures

N Mean SD Min Max

Panel A. Survey Wave 1 (2011)
Belief of increase in droughts 714 0.25 0.43 0 1
∆ Drought (Moderate) 714 -7.83 2.92 -13 0
∆ Drought (Severe) 714 -2.13 1.94 -7 3
∆ Drought (Extreme) 714 -0.12 1.11 -3 4

Panel B. Survey Wave 2 (2012)
Belief of increase in droughts 714 0.71 0.45 0 1
∆ Drought (Moderate) 714 -2.74 1.35 -6 9
∆ Drought (Severe) 714 -0.59 1.08 -3 11
∆ Drought (Extreme) 714 0.45 0.84 -1 11

Panel C. Changes
Belief of increase in droughts 714 0.46 0.62 -1 1
∆ Drought (Moderate) 714 5.09 2.95 -3 14
∆ Drought (Severe) 714 1.53 2.02 -4 12
∆ Drought (Extreme) 714 0.57 1.35 -4 11

Panel D. Total
Belief of increase in droughts 1428 0.48 0.50 0 1
∆ Drought (Moderate) 1428 -5.29 3.41 -13 9
∆ Drought (Severe) 1428 -1.36 1.75 -7 11
∆ Drought (Extreme) 1428 0.16 1.03 -3 11

Notes: The sample includes the 714 individuals interviewed in both survey waves in
January 2011 and September 2012. The variable ∆ is constructed as explained in Equation
(3.1), by taking the difference between the self-reported number of drought events in the
survey and the number of drought events recorded using the (non-consecutive) monthly
realizations of the SPEI below a certain cut-off (-1 for moderate, -1.5 for severe and -2
for extreme events) over the same time period. Panel A shows the summary statistics
for survey wave 1 conducted in January 2011, Panel B for survey wave 2 conducted in
September 2012, Panel C reports changes for each of the variables across the two survey
waves and Panel D displays the values across the two waves.
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Table C5: Summary statistics of objective measures

N Mean SD Min Max

Panel A. Survey Wave 1 (2011)
A. Exposure measures
LT Exposure 34 0.07 0.04 -0.01 0.15
Deviation 34 0.04 0.03 -0.03 0.15
LT Exposure x Deviation 34 0.01 0.01 -0.01 0.02

B. Objective number of droughts
# Moderate Droughts (SPEI≤ −1) 34 8.20 3.02 3 13
# Severe Droughts (SPEI≤ −1.5) 34 2.44 2.02 0 7
# Extreme Droughts (SPEI≤ −2) 34 0.47 0.89 0 3

Panel B. Survey Wave 2 (2012)
A. Exposure measures
LT Exposure 34 0.10 0.04 0.03 0.15
Deviation 34 -0.09 0.11 -0.44 0.06
LT Exposure x Deviation 34 0.01 0.01 -0.07 0.01

B. Objective number of droughts
# Moderate Droughts (SPEI≤ −1) 34 3.23 1.10 1 6
# Severe Droughts (SPEI≤ −1.5) 34 1.15 0.74 0 3
# Extreme Droughts (SPEI≤ −2) 34 0.03 0.17 0 1

Panel C. Changes
A. Exposure measures
LT Exposure 34 0.03 0.01 -0.01 0.05
Deviation 34 -0.13 0.12 -0.57 0.04
LT Exposure x Deviation 34 -0.01 0.02 -0.09 0.01

B. Objective number of droughts
# Moderate Droughts (SPEI≤ −1) 34 -4.97 2.68 -10 0
# Severe Droughts (SPEI≤ −1.5) 34 -1.29 1.64 -5 2
# Extreme Droughts (SPEI≤ −2) 34 -0.44 0.82 -2 0

Panel D. Total
A. Exposure measures
LT Exposure 68 0.09 0.04 -0.01 0.16
Deviation 68 -0.02 0.10 -0.43 0.15
LT Exposure x Deviation 68 0.01 0.01 -0.07 0.02

B. Objective number of droughts
# Moderate Droughts (SPEI≤ −1) 68 5.72 3.37 1 13
# Severe Droughts (SPEI≤ −1.5) 68 1.79 1.64 0 7
# Extreme Droughts (SPEI≤ −2) 68 0.25 0.67 0 3

Notes: Statistics computed at the grid-cell level. LT Exposure is the average SPEI
over the previous twenty years (× (-1)), Deviation is the difference between the average
monthly SPEI in the five (resp. two) years before the first (resp. second) wave and
LT Exposure (×(−1)). The number of drought events is computed using the classi-
fication of drought events in the literature (Paulo et al., 2012; McKee et al., 1993):
moderate/severe/extreme droughts include all (non-consecutive) monthly realizations
in the previous five years for survey wave 1 and between January 2011 and September
2012 for survey wave 2 in which the SPEI ≤ −1/-1.5/2. Panel A shows the summary
statistics for survey wave 1 conducted in January 2011, Panel B for survey wave 2
conducted in September 2012, Panel C reports changes for each of the variables across
the two survey waves and Panel D displays the values across the two waves.
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C.2.2 Robustness Checks
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Table C7: Objective exposure, beliefs and average number of droughts.

Belief of Increase in Droughts

(1) (2) (3) (4) (5) (6)

LT Exposure 13.13∗∗∗ 14.52∗∗∗ 11.74∗∗∗ 11.11∗∗∗ 13.85∗∗∗ 13.86∗∗∗

(1.855) (3.101) (1.955) (2.300) (2.140) (2.262)
# Drought Events -0.0306 0.0159 -0.205∗∗∗ -0.253∗ 0.0704 0.0564

(0.0356) (0.114) (0.0583) (0.144) (0.186) (0.866)
LT Exposure × # Drought Events -0.465 0.516 0.153

(0.958) (1.285) (8.969)

Drought type Moderate Severe Extreme

Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

N 1428 1428 1428 1428 1428 1428
adj. R2 0.278 0.277 0.286 0.285 0.277 0.276

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy
equal to 1 if the individual believes that droughts have increased in the past twenty years. All regressions control for
individual and year fixed effects. LT Exposure is the average monthly SPEI over the previous twenty years (× (-1)), #
Drought Events is the average number of drought events recorded in the five years before the first wave and between
the two survey wave. Columns 1-2 include at least moderate droughts (SPEI<-1), columns 3-4 include at least severe
droughts (SPEI<-1.5) and columns 5-6 include only extreme droughts (SPEI<-2). Robust standard errors, clustered at
the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C8: Objective exposure, beliefs and probability of overestimation. Logit estimates.

Belief of Increase in Droughts Probability of Overestimation

(1) (2) (3) (4) (5) (6) (7) (8)

LT Exposure 84.79∗∗∗ 84.54∗∗∗ 82.14∗∗∗ 50.10∗∗∗ 49.40∗∗∗ 48.30∗∗∗

(6.736) (7.640) (8.581) (5.724) (7.480) (7.910)
Deviation -9.277∗∗∗ -0.0596 -2.111 -7.322∗∗∗ -0.212 -1.784

(2.101) (0.781) (3.321) (2.121) (1.458) (4.112)
LT Exposure × Deviation 14.91 12.62

(23.31) (29.87)
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

N 846 846 846 846 540 540 540 540

Notes: The table displays the coefficients obtained by the estimation of Equation (3.4) using Logit. The sample includes in columns
(1)-(4) (resp., columns 5-8) the 423 individuals (resp., 270) for which there is variation in the outcome once conditioning on individual
and year fixed effects. The dependent variable is a dummy equal to 1 if the individual believes that droughts have increased in the past
twenty years (columns 1-4), a dummy equal to 1 if the individual overestimated the number of drought events, i.e. ∆ > 0 (columns
5-8). All regressions control for individual and year fixed effects. The measure ∆ is constructed as explained in Equation (3.1), by
taking the difference between the self-reported number of drought events in the survey and the number of drought events recorded using
the (non-consecutive) monthly realizations of the SPEI below -2 for extreme events over the same time period. LT Exposure is the
average monthly SPEI over the previous twenty years (× (-1)), Deviation is the difference between the average monthly SPEI in the five
(resp. two) years before the first (resp. second) wave and LT Exposure (×(−1)). Bootstrapped standard errors with 500 replications in
parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

313



Table C9: Objective exposure and extent of overestimation. Poisson esti-
mates.

Extent of Overestimation

(1) (2) (3) (4)

LT Exposure 16.16∗∗∗ 14.88∗∗∗ 13.62∗∗∗

(3.442) (5.002) (4.999)
Deviation -2.458∗∗ -0.512 -3.083

(1.197) (1.212) (3.804)
LT Exposure × Deviation 22.41

(29.38)
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 534 534 534 534

Notes: The table displays the coefficients obtained by the estimation of Equation
(3.4) using Poisson estimation method, where the dependent variable is the variable
∆ excluding the 142 individuals with negative values (i.e., who underestimated the
number of droughts). The sample also excludes 752 observations because of only one
observation over time and because of no variation in the outcome once conditioning
on individual and year fixed effects. The measure ∆ is constructed as explained
in Equation (3.1), by taking the difference between the self-reported number of
drought events in the survey and the number of drought events recorded using the
(non-consecutive) monthly realizations of the SPEI below -2 for extreme events
over the same time period. LT Exposure is the average monthly SPEI over the
previous twenty years (× (-1)), Deviation is the difference between the average
monthly SPEI in the five (resp. two) years before the first (resp. second) wave
and LT Exposure (×(−1)). Bootstrapped standard errors with 500 replications in
parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C10: Objective exposure and overestimation of drought events using moderate objective droughts.

Probability of Overestimation Extent of Overestimation

(1) (2) (3) (4) (5) (6) (7) (8)

LT Exposure 0.467∗ 0.539 0.610 131.9∗∗ 204.9∗∗∗ 181.7∗∗∗

(0.273) (0.440) (0.472) (49.82) (43.05) (43.30)
Deviation 0.0147 -0.00960 -0.0564 -0.554 -9.789∗∗∗ 5.435

(0.0218) (0.0336) (0.0736) (2.770) (1.920) (6.161)
LT Exposure × Deviation 0.317 -103.2∗∗

(0.331) (40.64)
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

N 1428 1428 1428 1428 1428 1428 1428 1428
adj. R2 0.003 0.001 0.002 0.001 0.716 0.642 0.760 0.777

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy equal to 1 if
the individual overestimated the number of drought events, i.e. ∆ > 0 (columns 1-4) and the measure of overestimation ∆ (columns
5-8). All regressions control for individual and year fixed effects. The measure ∆ is constructed as explained in Equation (3.1), by
taking the difference between the self-reported number of drought events in the survey and the number of moderate drought events
recorded using the (non-consecutive) monthly realizations of the SPEI below -1 for moderate events over the same time period.
LT Exposure is the average monthly SPEI over the previous twenty years (× (-1)), Deviation is the difference between the average
monthly SPEI in the five (resp. two) years before the first (resp. second) wave and LT Exposure (×(−1)). Robust standard errors,
clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C11: Objective exposure and overestimation of drought events using severe objective droughts.

Probability of Overestimation Extent of Overestimation

(1) (2) (3) (4) (5) (6) (7) (8)

LT Exposure 6.510∗∗∗ 4.302 3.673 87.93∗∗ 101.0∗∗∗ 92.47∗∗

(1.947) (2.721) (2.812) (32.83) (33.46) (35.31)
Deviation 0.490∗∗∗ 0.296 0.709∗ 2.798 -1.756 3.865

(0.162) (0.223) (0.416) (1.988) (1.558) (4.519)
LT Exposure × Deviation -2.797 -38.10

(2.070) (30.81)
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

N 1428 1428 1428 1428 1428 1428 1428 1428
adj. R2 0.015 0.013 0.021 0.021 0.491 0.387 0.496 0.504

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy equal to
1 if the individual overestimated the number of drought events, i.e. ∆ > 0 (columns 1-4) and the measure of overestimation
∆ (columns 5-8). All regressions control for individual and year fixed effects. The measure ∆ is constructed as explained in
Equation (3.1), by taking the difference between the self-reported number of drought events in the survey and the number of
severe drought events recorded using the (non-consecutive) monthly realizations of the SPEI below -1.5 for severe events over the
same time period. LT Exposure is the average monthly SPEI over the previous twenty years (× (-1)), Deviation is the difference
between the average monthly SPEI in the five (resp. two) years before the first (resp. second) wave and LT Exposure (×(−1)).
Robust standard errors, clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C12: Objective exposure, beliefs and overestimation of drought events using other SPEI time scales

Overestimation Overestimation Overestimation

Belief Probability Extent Belief Probability Extent Belief Probability Extent

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LT Exposure 9.661∗∗∗ 8.793∗∗∗ 37.65∗ 6.168∗∗∗ 5.781∗∗∗ 15.98∗∗ 3.078∗∗∗ 3.302∗∗∗ 6.173∗∗∗

(1.907) (2.781) (20.17) (1.196) (1.526) (7.062) (0.602) (0.607) (2.210)
Deviation -0.119 -0.458 -1.665 0.00369 -0.652∗∗ -2.427∗ -0.109 -0.333∗∗∗ -1.012∗

(0.257) (0.309) (2.046) (0.146) (0.259) (1.268) (0.0926) (0.0950) (0.500)
LT Exposure × Deviation 0.109 1.244 5.315 0.00950 1.260∗ 4.073 0.108 0.337 -0.979

(0.682) (1.057) (8.317) (0.359) (0.631) (3.364) (0.325) (0.251) (1.839)

SPEI Temporal Scale 4 months 6 months 12 months

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 1428 1428 1428 1428 1428 1428 1428 1428 1428
adj. R2 0.290 0.185 0.492 0.287 0.184 0.337 0.274 0.194 0.221

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy equal to 1 if the individual believes
that droughts have increased in the past twenty years (columns 1-4-7), a dummy equal to 1 if the individual overestimated the number of drought events,
i.e. ∆ > 0 (columns 2-5-8) and the measure of overestimation ∆ (columns 3-6-9). All regressions control for individual and year fixed effects. The measures
of dryness and drought events are constructed using different time scales over which water deficits accumulate, respectively 4 months (columns 1 to 3), 6
months (columns 4 to 6) and 12 months (columns 7 to 9). The measure ∆ is constructed as explained in Equation (3.1), by taking the difference between
the self-reported number of drought events in the survey and the number of drought events recorded using the (non-consecutive) monthly realizations of the
SPEI below -2 for extreme events over the same time period. LT Exposure is the average monthly SPEI over the previous twenty years (× (-1)), Deviation
is the difference between the average monthly SPEI in the five (resp. two) years before the first (resp. second) wave and LT Exposure (×(−1)). Robust
standard errors, clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C14: Objective exposure, beliefs and overestimation of drought events using SPEI interpolated values

Overestimation Overestimation Overestimation

Belief Probability Extent Belief Probability Extent Belief Probability Extent

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LT Exposure 16.93∗∗∗ 12.49∗∗∗ 61.98∗∗∗ 16.49∗∗∗ 13.97∗∗∗ 62.95∗∗ 17.18∗∗∗ 13.87∗∗∗ 73.97∗∗∗

(3.943) (3.775) (21.02) (4.049) (4.164) (24.83) (4.331) (4.617) (21.75)
Deviation -0.505 -0.828 -3.361 -0.295 -1.184 -4.857∗ -0.314 -1.215 -5.948∗∗

(0.765) (0.702) (2.458) (0.875) (0.838) (2.721) (0.951) (0.935) (2.543)
LT Exposure × Deviation 3.319 4.608 2.919 2.230 6.748 12.60 2.509 7.296 19.55

(4.062) (3.511) (15.72) (4.930) (4.626) (17.43) (5.497) (5.222) (15.65)

Distance cut-off 40 km 80 km 120 km

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 1428 1428 1428 1428 1428 1428 1428 1428 1428
adj. R2 0.279 0.146 0.257 0.278 0.149 0.224 0.277 0.146 0.229

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy equal to 1 if the individual believes
that droughts have increased in the past twenty years (columns 1-4-7), a dummy equal to 1 if the individual overestimated the number of drought events,
i.e. ∆ > 0 (columns 2-5-8) and the measure of overestimation ∆ (columns 3-6-9). All regressions control for individual and year fixed effects. The measures
of dryness and drought events are constructed by interpolating the gridded SPEI values using the inverse squared distance between each grid and the union
centroids, considering all data points within the radius of 40 km (columns 1 to 3), 80 km (columns 4 to 6) and 120 km (columns 7 to 9). The measure ∆
is constructed as explained in Equation (3.1), by taking the difference between the self-reported number of drought events in the survey and the number of
drought events recorded using the (non-consecutive) monthly realizations of the SPEI below -2 for extreme events over the same time period. LT Exposure
is the average monthly SPEI over the previous twenty years (× (-1)), Deviation is the difference between the average monthly SPEI in the five (resp. two)
years before the first (resp. second) wave and LT Exposure (×(−1)). Robust standard errors, clustered at the grid cell level, in parentheses. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C15: Objective exposure, beliefs and overestimation. Subsample of individuals with ∆ ≥ 0

Probability of Overestimation Extent of Overestimation

Severe Drought Extreme Drought Severe Drought Extreme Drought
(1) (2) (3) (4)

LT Exposure 6.393 14.73∗∗∗ 14.20 14.02
(17.46) (4.536) (30.50) (9.089)

Deviation -1.731 -0.856 -1.514 -0.919
(1.656) (0.531) (2.756) (1.332)

LT Exposure × Deviation 9.119 4.355∗ 6.907 4.964
(7.517) (2.480) (11.97) (6.725)

Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 102 1166 102 1166
adj. R2 0.057 0.143 0.032 0.067

Notes: The sample includes the 51 (resp., 583) individuals surveyed in both survey waves who were either accurate (∆ = 0)
or overestimated (∆ > 0) the number of drought events. Because of the distribution of the measure ∆ for moderate droughts
(see Figure C3), this can only be done when constructing the measure ∆ with the objective number of severe (SPEI≤ −1.5)
or extreme (SPEI≤ −2) drought events. The dependent variable is a dummy equal to 1 if the individual overestimated the
number of drought events, i.e. ∆ > 0 (columns 1-2) and the measure of overestimation ∆ (columns 3-4). All regressions
control for individual and year fixed effects. LT Exposure is the average monthly SPEI over the previous twenty years (×
(-1)), Deviation is the difference between the average monthly SPEI in the five (resp. two) years before the first (resp.
second) wave and LT Exposure (×(−1)). Robust standard errors, clustered at the grid cell level, in parentheses. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C16: Directional motivated reasoning. Subsample with same
number of recorded droughts.

OLS 2SLS

(1) (2) (3) (4)
Probability Extent Probability Extent

Belief 0.190∗∗∗ 0.270∗∗ 0.950∗∗ 1.029
(0.0528) (0.101) (0.359) (0.610)

Deviation 0.232 0.163 -0.295 -0.364
(0.198) (0.376) (0.377) (0.633)

F-stat 13.986 13.986

FIRST STAGE: Belief of Increase in Droughts

LT Exposure 18.40∗∗∗ 18.40∗∗∗

(4.92) (4.92)

Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 1142 1142 1142 1142

Notes: The sample includes the 571 individuals surveyed in both survey waves
in unions where no extreme drought event (SPEI≤-2) was recorded both in
the five years before the first wave and between the two waves. The dependent
variable is a dummy equal to 1 if the individual overestimated the number of
drought events, i.e. ∆ > 0 (columns 1-3) and the measure of overestimation ∆
(columns 2-4). The measure ∆ is constructed as explained in Equation (3.1), by
taking the difference between the self-reported number of drought events in the
survey and the number of drought events recorded using the (non-consecutive)
monthly realizations of the SPEI below -2 for extreme events over the same
time period (in this case always equal to zero by construction). The table
reports the OLS estimates of Equation (3.5) in columns (1) and (2) and the
2SLS estimates in columns (3) and (4) in Panel A. Panel B reports the first
stage associated with 2SLS regressions, controlling for Deviation. The main
regressor of interest is Belief, which is instrumented with the LT Exposure
in columns (3) and (4). All regressions control for individual and year fixed
effects. F-stat refers to the K-P F-stat for weak instruments. Robust standard
errors, clustered at the grid cell level, in parentheses. Significance levels: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C17: Directional motivated reasoning. 2SLS Results using SPEI-4, SPEI-6 and SPEI-12.

Overestimation

(1) (2) (3) (4) (5) (6)
Probability Extent Probability Extent Probability Extent

Belief 0.904∗∗∗ 3.872∗ 1.005∗∗∗ 2.811∗∗∗ 1.100∗∗∗ 1.860∗∗

(0.318) (2.174) (0.343) (1.022) (0.347) (0.705)
Deviation -0.0609 0.0320 -0.338∗∗ -1.406∗∗ -0.157∗∗ -1.112∗∗∗

(0.173) (1.010) (0.149) (0.585) (0.0676) (0.249)

F-stat 26.156 26.156 27.928 27.928 27.216 27.216

SPEI Temporal Scale 4 months 6 months 12 months

FIRST STAGE: Belief of Increase in Droughts

LT Exposure 9.655∗∗∗ 9.655∗∗∗ 6.171∗∗∗ 6.171∗∗∗ 3.119∗∗∗ 3.119∗∗∗

(1.888) (1.888) (1.168) (1.168) (0.598) (0.598)

Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 1428 1428 1428 1428 1428 1428

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy
equal to 1 if the individual overestimated the number of drought events, i.e. ∆ > 0 (columns 1-3-5) and the measure
of overestimation ∆ (columns 2-4-6). The measures of dryness and drought events are constructed using different
time scales over which water deficits accumulate, respectively 4 months (columns 1-2), 6 months (columns 3-4) and
12 months (columns 5-6). The measure ∆ is constructed as explained in Equation (3.1), by taking the difference
between the self-reported number of drought events in the survey and the number of drought events recorded using
the (non-consecutive) monthly realizations of the SPEI below -2 for extreme events over the same time period. The
table reports the OLS estimates of Equation (3.5) in columns (1) and (2) and the 2SLS estimates in columns (3) and
(4) in Panel A. Panel B reports the first stage associated with 2SLS regressions, controlling for Deviation. The main
regressor of interest is Belief, which is instrumented with the LT Exposure in columns (3) and (4). All regressions
control for individual and year fixed effects. F-stat refers to the K-P F-stat for weak instruments. Robust standard
errors, clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C18: Directional motivated reasoning. 2SLS estimates using relative life exposure with SPEI-1, SPEI-4, SPEI-6 and SPEI-12.

Overestimation

(1) (2) (3) (4) (5) (6) (7) (8)
Probability Extent Probability Extent Probability Extent Probability Extent

Belief 0.966∗∗∗ 4.082∗∗ 1.289∗∗ 4.354∗∗∗ 1.529∗∗∗ 4.596∗∗∗ 1.199∗∗∗ 2.037∗∗∗

(0.347) (1.655) (0.501) (1.387) (0.472) (1.443) (0.362) (0.594)
Deviation -0.430 -3.182∗ -0.282 0.139 -0.544∗∗ -1.823∗∗ -0.141∗ -0.622∗∗∗

(0.405) (1.589) (0.325) (0.845) (0.230) (0.745) (0.0781) (0.176)

F-stat 9.447 9.447 11.358 11.358 18.278 18.278 27.150 27.150

SPEI Temporal Scale 1 month 4 months 6 months 12 months

FIRST STAGE: Belief of Increase in Droughts

LT Exposure 9.908∗∗∗ 9.908∗∗∗ 6.012∗∗∗ 6.012∗∗∗ 5.043∗∗∗ 5.043∗∗∗ 3.183∗∗∗ 3.183∗∗∗

(3.224) (3.224) (1.784) (1.784) (1.180) (1.180) (0.611) (0.611)

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 1428 1428 1428 1428 1428 1428 1428 1428

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy equal to 1 if the individual
overestimated the number of drought events, i.e. ∆ > 0 (columns 1-3-5-7) and the measure of overestimation ∆ (columns 2-4-6-8). The measures
of dryness and drought events are constructed using different time scales over which water deficits accumulate, respectively 1 month (columns
1-2), 4 months (columns 3-4), 6 months (columns 5-6) and 12 months (columns 7-8). The monthly realizations of SPEI have been rescaled to
the lifetime exposure for each individual. The measure ∆ is constructed as explained in Equation (3.1), by taking the difference between the
self-reported number of drought events in the survey and the number of drought events recorded using the (non-consecutive) monthly realizations
of the SPEI below -2 for extreme events over the same time period. The table reports the OLS estimates of Equation (3.5) in columns (1) and
(2) and the 2SLS estimates in columns (3) and (4) in Panel A. Panel B reports the first stage associated with 2SLS regressions, controlling for
Deviation. The main regressor of interest is Belief, which is instrumented with the LT Exposure in columns (3) and (4). All regressions control
for individual and year fixed effects. F-stat refers to the K-P F-stat for weak instruments. Robust standard errors, clustered at the grid cell
level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C19: Directional motivated reasoning. 2SLS Results using SPEI interpolated values

Overestimation

(1) (2) (3) (4) (5) (6)
Probability Extent Probability Extent Probability Extent

Belief 0.700∗∗∗ 3.824∗∗ 0.761∗∗∗ 3.745∗∗ 0.710∗∗∗ 4.145∗∗

(0.223) (1.509) (0.237) (1.679) (0.230) (1.583)
Deviation -0.134 -2.887∗∗ -0.205 -3.119∗∗ -0.170 -3.281∗∗

(0.334) (1.367) (0.345) (1.453) (0.350) (1.531)

F-stat 20.538 20.538 18.482 18.482 17.403 17.403

Distance cut-off 40 km 80 km 120 km

FIRST STAGE: Belief of Increase in Droughts

LT Exposure 15.99∗∗∗ 15.99∗∗∗ 15.86∗∗∗ 15.86∗∗∗ 16.42∗∗∗ 16.42∗∗∗

(3.529) (3.529) (3.690) (3.690) (3.935) (3.935)

Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 1428 1428 1428 1428 1428 1428

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable
is a dummy equal to 1 if the individual overestimated the number of drought events, i.e. ∆ > 0 (columns
1-3-5) and the measure of overestimation ∆ (columns 2-4-6). The measures of dryness and drought events
are constructed by interpolating the gridded SPEI values using the inverse squared distance between each
grid and the union centroids, considering all data points within the radius of 40 km (columns 1-2), 80 km
(columns 3-4) and 120 km (columns 5-6). The measure ∆ is constructed as explained in Equation (3.1), by
taking the difference between the self-reported number of drought events in the survey and the number of
drought events recorded using the (non-consecutive) monthly realizations of the SPEI below -2 for extreme
events over the same time period. The table reports the OLS estimates of Equation (3.5) in columns (1) and
(2) and the 2SLS estimates in columns (3) and (4) in Panel A. Panel B reports the first stage associated with
2SLS regressions, controlling for Deviation. The main regressor of interest is Belief, which is instrumented
with the LT Exposure in columns (3) and (4). All regressions control for individual and year fixed effects.
F-stat refers to the K-P F-stat for weak instruments. Robust standard errors, clustered at the grid cell level,
in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

324



Table C20: Directional motivated reasoning using different cut-offs of objective drought events

Probability of Overestimation Extent of Overestimation

Moderate Drought Severe Drought Moderate Drought Severe Drought
(1) (2) (3) (4)

Panel A: OLS

Belief -0.00538 0.0491∗ 0.818∗∗∗ 0.602∗∗∗

(0.00321) (0.0287) (0.264) (0.173)
Deviation 0.0186 0.454∗∗∗ -1.150 2.359

(0.0224) (0.165) (2.703) (1.954)

Panel B: 2SLS

Belief 0.0369 0.295 14.03∗∗∗ 6.919∗∗∗

(0.0335) (0.179) (3.727) (2.408)
Deviation -0.0122 0.275 -10.79∗∗∗ -2.248

(0.0380) (0.237) (3.783) (2.065)
F-stat 21.736 21.736 21.736 21.736

Panel C: First Stage. Dependent Variable is Belief of Increase in Droughts

LT Exposure 14.60∗∗∗ 14.60∗∗∗ 14.60∗∗∗ 14.60∗∗∗

(3.131) (3.131) (3.131) (3.131)

Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 1428 1428 1428 1428

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a
dummy equal to 1 if the individual overestimated the number of drought events, i.e. ∆ > 0 (columns 1-2) and
the measure of overestimation ∆ (columns 3-4). The measure ∆ is constructed as explained in Equation (3.1),
by taking the difference between the self-reported number of drought events in the survey and the number of
droughts recorded using the (non-consecutive) monthly realizations of the SPEI below -1 (resp., -1.5) for moderate
(resp., severe) drought events over the same time period. The table reports the OLS estimates of Equation (3.5)
in Panel A and the 2SLS estimates in Panel B. Panel C reports the first stage associated with 2SLS regressions,
controlling for Deviation. The main regressor of interest is Belief, which is instrumented with the LT Exposure
in the 2SLS specifications. All regressions control for individual and year fixed effects. F-stat refers to the K-P
F-stat for weak instruments. Robust standard errors, clustered at the grid cell level, in parentheses. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C21: Directional motivated reasoning. Subsample of individuals with ∆ ≥ 0.

Probability of Overestimation Extent of Overestimation

Severe Drought Extreme Drought Severe Drought Extreme Drought
(1) (2) (3) (4)

Panel A: OLS

Belief -0.00898 0.179∗∗∗ 0.0784 0.258∗∗

(0.115) (0.0527) (0.136) (0.0996)
Deviation -0.00702 0.236 0.110 0.172

(0.212) (0.195) (0.357) (0.371)

Panel B: 2SLS

Belief 0.105 0.845∗∗ 0.979 0.788
(1.571) (0.377) (2.310) (0.627)

Deviation -0.0984 -0.225 -0.614 -0.195
(1.203) (0.385) (1.740) (0.652)

F-stat 0.539 11.536 0.539 11.536

Panel C: First Stage. Dependent Variable is Belief of Increase in Droughts

LT Exposure 10.40 15.83∗∗∗ 10.40 15.83∗∗∗

(14.17) (4.662) (14.17) (4.662)

Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 102 1166 102 1166

Notes: The sample includes the 51 (resp., 583) individuals surveyed in both survey waves who were either
accurate (∆ = 0) or overestimated (∆ > 0) the number of drought events. Because of the distribution of the
measure ∆ for moderate droughts (see Figure C3), this can only be done when constructing the measure ∆
with the objective number of severe (SPEI≤ −1.5) or extreme (SPEI≤ −2) drought events. The dependent
variable is a dummy equal to 1 if the individual overestimated the number of drought events, i.e. ∆ > 0
(columns 1-2) and the measure of overestimation ∆ (columns 3-4). The table reports the OLS estimates of
Equation (3.5) in Panel A and the 2SLS estimates in Panel B. Panel C reports the first stage associated with
2SLS regressions, controlling for Deviation. The main regressor of interest is Belief, which is instrumented
with the LT Exposure in the 2SLS specifications. All regressions control for individual and year fixed effects.
F-stat refers to the K-P F-stat for weak instruments. Robust standard errors, clustered at the grid cell level,
in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C22: Directional motivated reasoning. History of transient shocks

OLS 2SLS

Probability Extent Probability Extent

(1) (2) (3) (4) (5) (6) (7) (8)

Belief 0.160∗∗∗ 0.165∗∗∗ 0.298∗∗∗ 0.302∗∗∗ 0.775∗∗∗ 1.418∗∗ 2.764∗∗ 4.253∗∗

(0.0496) (0.0510) (0.104) (0.103) (0.253) (0.530) (1.295) (1.668)
Deviationt−1 0.309∗∗∗ 0.486∗ 2.072∗∗∗ 1.895∗∗ 0.0561 0.473 1.057∗ 1.853∗

(0.0918) (0.255) (0.373) (0.827) (0.140) (0.296) (0.611) (0.981)
Deviationt−2 -0.264 -0.105 -3.365∗∗∗ -2.961∗∗∗ -0.449∗ -0.540 -4.108∗∗∗ -4.332∗∗∗

(0.276) (0.330) (0.644) (0.626) (0.244) (0.380) (0.982) (1.207)
Deviationt−3 -0.0216 -0.383 1.343 3.916

(0.506) (2.467) (0.992) (3.336)
Deviationt−4 -0.573 -1.931∗∗ -1.081∗ -3.531∗∗

(0.380) (0.773) (0.606) (1.511)
Deviationt−5 1.258∗ 0.855 1.116 0.407

(0.743) (2.062) (1.184) (3.660)
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

F-stat 14.832 10.307 14.832 10.307
N 1428 1428 1428 1428 1428 1428 1428 1428

Notes: The sample includes the 714 individuals surveyed in both survey waves. The dependent variable is a dummy equal
to 1 if the individual overestimated the number of drought events, i.e. ∆ > 0 (columns 1-2 and 5-6) and the measure
of overestimation ∆ (columns 3-4 and 7-8). The measure ∆ is constructed as explained in Equation (3.1), by taking the
difference between the self-reported number of drought events in the survey and the number of drought events recorded
using the (non-consecutive) monthly realizations of the SPEI below -2 for extreme events over the same time period. The
table reports the OLS estimates of Equation (3.5) in columns (1)-(4) and the 2SLS estimates in columns (5)-(8). LT
Exposure is the average monthly SPEI over the previous twenty years (× (-1)). Deviationt−τ is the difference between the
average monthly SPEI in t − τ years before each survey wave and LT Exposure (×(−1)). The main regressor of interest
is Belief, which is instrumented with the LT Exposure in columns (5)-(8). All regressions control for individual and year
fixed effects. F-stat refers to the K-P F-stat for weak instruments. Robust standard errors, clustered at the grid cell level,
in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

327



Table C23: Directional motivated reasoning. Variations in adaptation strategies. 2SLS estimates.

Probability of Overestimation

(1) (2) (3) (4) (5) (6) (7) (8)

Belief 0.778∗∗∗ 0.776∗∗∗ 0.746∗∗∗ 0.750∗∗∗ 0.840∗∗∗ 0.756∗∗∗ 0.833∗∗∗ 0.842∗∗∗

(0.234) (0.232) (0.228) (0.238) (0.250) (0.231) (0.252) (0.269)
Deviation -0.190 -0.185 -0.124 -0.142 -0.189 -0.182 -0.227 -0.136

(0.342) (0.342) (0.334) (0.347) (0.349) (0.327) (0.340) (0.357)
Krishi Bank -0.104 -0.00869

(0.149) (0.169)
Commercial Bank -0.0949∗ 0.548∗∗∗

(0.0515) (0.169)
Grameen Bank -0.323∗∗ -0.600∗∗∗

(0.149) (0.102)
Any Bank -0.212

(0.126)
Agriculture extension officer -0.0640 -0.107∗

(0.0562) (0.0628)
Access to electricity 0.0788 0.0597

(0.0994) (0.0963)
Shop for pesticides and/or fertilizer -0.0309 0.0209

(0.0948) (0.118)
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

F-stat 22.010 22.145 22.858 22.447 22.244 20.688 20.309 20.677
N 1428 1428 1428 1428 1428 1428 1428 1428

Notes: The table reports the 2SLS estimates of Equation (3.5) using as dependent variable a dummy equal to 1 if the individual overestimated the
number of drought events, i.e. ∆ > 0. The sample includes the 714 individuals surveyed in both survey waves. The measure ∆ is constructed as
explained in Equation (3.1), by taking the difference between the self-reported number of drought events in the survey and the number of drought
events recorded using the (non-consecutive) monthly realizations of the SPEI below -2 for extreme events over the same time period. The main
regressor of interest is Belief, which is instrumented with the LT Exposure. Each regression controls for a specific margin of adaptation (see Table
C2 for the definition of each variable). Any Bank is a dummy variable equal to 1 if at least one of Krishi Bank, Commercial Bank or Grameen
Bank is equal to one. All regressions control for individual and year fixed effects. F-stat refers to the K-P F-stat for weak instruments. Robust
standard errors, clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C24: Directional motivated reasoning. Variations in adaptation strategies. 2SLS estimates.

Extent of Overestimation

(1) (2) (3) (4) (5) (6) (7) (8)

Belief 3.947∗∗ 3.927∗∗ 3.918∗∗ 3.907∗∗ 4.076∗∗ 4.013∗∗ 4.381∗∗∗ 4.271∗∗

(1.503) (1.504) (1.474) (1.473) (1.545) (1.594) (1.582) (1.590)
Deviation -2.891∗∗ -2.853∗ -2.785∗ -2.797∗ -2.995∗∗ -2.984∗ -3.140∗∗ -3.010∗

(1.410) (1.406) (1.373) (1.392) (1.447) (1.476) (1.464) (1.525)
Krishi Bank -0.548 -0.498

(0.534) (0.640)
Commercial Bank -0.537∗∗∗ 1.041∗

(0.192) (0.578)
Grameen Bank -0.824∗∗∗ -1.106∗∗∗

(0.209) (0.249)
Any Bank -0.642∗∗

(0.271)
Agriculture extension officer -0.0398 0.0473

(0.257) (0.264)
Access to electricity 0.0679 0.132

(0.487) (0.495)
Shop for pesticides and/or fertilizer -0.288 -0.308

(0.410) (0.494)
Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

F-stat 22.010 22.145 22.858 22.447 22.244 20.688 20.309 20.677
N 1428 1428 1428 1428 1428 1428 1428 1428

Notes: The table reports the 2SLS estimates of Equation (3.5) using as dependent variable the measure ∆. The sample includes the 714 individuals
surveyed in both survey waves. ∆ is constructed as explained in Equation (3.1), by taking the difference between the self-reported number of
drought events in the survey and the number of drought events recorded using the (non-consecutive) monthly realizations of the SPEI below -2 for
extreme events over the same time period. The main regressor of interest is Belief, which is instrumented with the LT Exposure. Each regression
controls for a specific margin of adaptation (see Table C2 for the definition of each variable). Any Bank is a dummy variable equal to 1 if at least
one of Krishi Bank, Commercial Bank or Grameen Bank is equal to one. All regressions control for individual and year fixed effects. F-stat refers
to the K-P F-stat for weak instruments. Robust standard errors, clustered at the grid cell level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Appendix D

Appendix to Chapter 4:
Climate-induced migration and
environmental values
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D.1 Additional Figures

Figure D1: Climate-migration nexus awareness by birth-decade

Notes: The graph shows average deviations from overall country means
among respondents who belong to 10-year cohorts born in the 1940s and
onwards using a binary version of the question “Do you think climate
change influences migration in your country?” in the European Investment
Bank Climate Survey in 2019, coded as value 1 if individuals answers
“Yes, it’s already happening now” to the survey question in the European

Investment Bank Climate Survey in 2019.
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Figure D2: Asylum Applications in EU between 2000 and 2019

Notes: UNHCR (2020). Author’s computation. Cumulative annual asylum
demands in EU27+UK countries from 2000 to 2019.
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Figure D3: Asylum applications (in 1000s) from non-OECD coun-
tries between 2000 and 2019

Notes: The map shows total asylum applications (in thousands) from non-
OECD countries between 2000 and 2019.

334



Figure D4: Asylum applications (in 1000s) in EU27 + UK between
2000 and 2019

Notes: The map shows total asylum applications (in thousands) in
EU27+UK countries between 2000 and 2019.
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Figure D5: Maize Harvest Area Fraction

Notes: The figure displays the fraction of each grid cell in Monfreda et al.
(2008) used to harvest maize and used as a weighting scheme to construct
season-specific measures of climate variables giving relatively more impor-

tance to cells where maize is grown.
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Figure D6: Response of asylum applications to the EU with respect
to the temperature over the maize growing season

Notes: The figure represents a predicted asylum applications-temperature
response function for the applications coming from non-OECD countries in
the EU. Regression estimates are from a fourth-order polynomial in daily
average temperature over the maize growing season weighted by maize
area in each grid cell. The response function is estimated in a regression
model that controls for a quadratic function in season-total precipitation,
multilateral weather, as well as destination-by-year, region-of-origin-by-
year, and dyad-specific fixed effects. See Table D5 (column 2) for point
estimates. Shaded areas are the associated 95% confidence interval using

clustered standard errors at the origin country-year level.
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Figure D7: Response of asylum applications to 5◦C binned daily
temperature over the maize growing season

Notes: The figure represents a predicted asylum applications-temperature
response function for the applications coming from non-OECD countries
in the EU. Regression estimates are from binned daily average tempera-
ture over the maize growing season with bins 5◦C wide weighted by maize
area in each grid cell. The response function is estimated in a regression
model that controls for a quadratic function in season-total precipitation,
as well as destination-by-year, region-of-origin-by-year, and dyad-specific
fixed effects. Shaded areas are the associated 95% confidence interval using

clustered standard errors at the origin country-year level.
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Figure D8: Response of asylum applications to the 3◦C binned
daily temperature over the maize growing season

Notes: The figure represents a predicted asylum applications-temperature
response function for the applications coming from non-OECD countries in
the EU. Regression estimates are from binned daily average temperature
over the maize growing season with bins 3◦C wide weighted by maize area
in each grid cell. The response function is estimated in a regression model
that controls for a quadratic function in season-total precipitation, as well
as origin-, destination-by-year, region-of-origin-by-year, and dyad-specific

fixed effects.
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Figure D9: Response of asylum applications to the EU with respect
to the annual average temperature over the maize growing season

using CRU data

Notes: The quadratic response function is shown as a solid brown line. The
y-axis indicates the relative impact of changing temperatures on asylum
applications. The model controls for a quadratic function in season-total
precipitation using CRU data as in Missirian and Schlenker (2017b), as

well as origin-, -by-year, dyad-specific fixed effects.
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Figure D10: Effect of migration-weighted exposure to weather
shocks in origin countries on Climate Change (CC) concern

(a) “CC important in electoral campaigns
for EP elections” (b) “CC is a priority for EP deliberations”

Notes: The figure shows the predicted individual preference-temperature
response function (normalized at 20◦ C) using a baseline migration-
weighted exposure measure of weather fluctuations in asylum application
origin countries. Each origin country’s weather realizations is weighted by
the average number of asylum applications from the origin country to the
destination country over the total average number of asylum applications
of the destination country in the baseline 2000-2005 period. Regressions es-
timates are from a fourth-order polynomial in season average temperature
and total precipitation fully saturated with country-, year-, age-, region-
by-year and country-by-age linear trends. Shaded areas are the associated

95% confidence interval.
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Figure D11: Observed and predicted log weather-induced asylum
applications. Predicted measure constructed by estimating the Equa-

tion in the label.

(a) Equation (4.2) (b) Equation (D.2)

(c) Equation (D.3) (d) Equation (D.4)

Notes: The vertical axis shows the observed logarithm of flows of asy-
lum applications. The horizontal axis shows the logarithm of predicted
weather-induced flows of asylum applications in EU obtained by estimat-
ing different gravity equations as reported in the title. Each point in the
scatterplot represents the residuals of the two variables for each country-
year observation, after filtering out country and year fixed effects. Standard
errors are clustered at the country level. The green line refers to the slope
of the regression of the actual (log) of asylum applications on the predicted

weather-driven counterpart.
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Figure D12: Average Change in Predicted Weather-Induced Asy-
lum Applications

Notes: The figure plots the deciles of the average annual change in the log
of predicted weather-induced asylum demands in EU member countries for

the non-OECD countries from the estimation of Equation (4.2).
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Figure D13: Annual average attention (measured with Google
Trends) for climate change, climate protests, migration and refugee

by country

Notes: The figure plots the average annual searches for “climate change”,
“climate protests”, “migration”, “refugee” from Google Trends. Additional
details on the construction of the four indices can be found in Appendix

Section D.2.3.
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Figure D14: Country-cohort exposure to observed and predicted
flows during formative age
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Figure D15: Density distribution of observed asylum flows during
formative age in the estimation sample
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Figure D16: Heterogeneous effect of asylum applications on climate
concern for EU Elections by trust in institutions

Notes: The figure plots the 2SLS coefficients (with corresponding 95% con-
fidence intervals) for the effects of the log of five-year asylum applications
on the survey response to the question “Climate change is important in the
electoral campaign for European Parliament elections”, after controlling for
individual covariates (gender; education level; unemployment status; left-
wing orientation) and country-level covariates (linear and squared average
temperature and precipitation) and country-, age-, region-by-year fixed
effects and country-age linear trends. Orange (resp., blue) bars refer to
individuals who reported no trust (resp. trust) in the institution reported
on the x-axis. Standard errors are clustered at the country level. Since
the question is not asked across all survey waves, I cannot control for this
variable in the baseline specification and only test this for the outcome

variable CC EU Election.
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Figure D17: Asylum demands and climate-migration nexus aware-
ness

Notes: The figure plots the share of respondents that answered “Yes, it’s
already happening now” to the statement “Do you think climate change
influences migration in your country?” in the European Investment Bank
Climate Survey in 2019 against the cumulative asylum applications re-

ceived in the country over the period five years (in logs).
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Figure D18: 2SLS coefficients of weather-induced asylum seeker
flows exposure by eligibility to vote

Notes: The figure plots the 2SLS coefficients estimated regressing the sur-
vey response on the total asylum applications experienced during the for-
mative age period in the sample of individuals interviewed above or below
the voting age threshold in the country. The point estimates are reported

in Table 4.4. Bins represent the 95% confidence interval.
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D.2 Data Appendix

D.2.1 Asylum applications data
The applications generally refer to the number of applicants or persons, rather than the number of
applications or families. Only those persons who have officially filed a formal request for asylum are
included. Other refugees who, for whatever reason, are either unwilling or unable to file an asylum
request, and illegal immigrants are not included. The UNHCR data lists the year an application
was filed, which allows for a clear temporal link on the intention to migrate, even if asylum is
granted with a delay. The UNHCR also provides, at the same spatial and temporal resolution, the
number of decisions. A decision corresponds to the closure of an application because the refugee
status has been either granted (“recognized”), denied (“rejected”), denied but the applicant is given
a complementary form of protection (“other decision”), or not determined before the application
got closed for administrative reasons (“otherwise closed”) (Missirian and Schlenker, 2017a).

Asylum application process

The asylum application process can substantially differ across European countries, however, there
are certain common characteristics that they share which are described in what follows. Individuals
fleeing their country have the right to ask for protection in a European country they have entered if
they are afraid to return to the country of their current residence because their life or that of their
family members is in danger. To register the request for asylum, individuals usually contact the
national Police upon their arrival and, if needed, can ask to be hosted in a reception center, and
have the right to be welcomed in a special center, have a temporary residence permit, and remain
on the national territory waiting for their application to be examined. As long as their status
as asylum seekers last, individuals cannot leave the national territory. Labor market integration
of refugees differs across countries with lasting negative consequences of delayed entry into the
destination country labor market due to employment restrictions while waiting for asylum (Fasani
et al., 2021). In Denmark since 2013, refugees can work before asylum adjudication (Foged et al.,
2022); in Italy, two months after the compilation of the application form at the Immigration Office
of the Police, asylum seekers have the right to work regularly (Campo et al., 2021). Other countries,
such as Germany in 2017, grant asylum seekers access to training and employment program during
the pre-asylum phase (Fasani et al., 2021).

D.2.2 Additional covariates
I retrieve variables on geographic time-invariant bilateral characteristics that are included in the
estimation of the gravity equation. The geographic controls come from the BACI dataset and
provided by CEPII (Head and Mayer, 2014). In particular, I include variables on whether countries
have a common border, a common official language, a common colonial history and a variable
measuring the natural logarithm of bilateral (geodesic) distance between capitals (Abel et al.,
2019; Beine and Parsons, 2015; Bosetti et al., 2020). The use of these time-invariant dyad-specific
covariates provides an alternative specification to the gravity equation with bilateral fixed effects.

In the country-level specification, I include time-varying country-level covariates to account for
potential confounders of the determinants of voting behavior that are also correlated with changes
in asylum seeker inflows. Immigration may be driving per capita income levels in the destination
country (Felbermayr et al., 2010), which has also been found to be associated with higher support for
Green parties (Pearson and Rüdig, 2020). For this reason, I retrieve GDP and population data from
the Penn World Table, version 10.0. In particular, I use Output-side real GDP at chained PPPs (in
millions 2017 US$) and population in the country in millions. I also obtain yearly unemployment
rate data from the World Bank indicator on total unemployment (as a percentage of total labor force
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based on International Labor Organization estimates), tertiary-level educational attainment (in the
percentage of the total population) from Eurostat and the percentage of population between 18 and
23 years old from the United Nations Department of Economics and Social Affairs1 as proxies of
institutional determinants of migrants’ decision of destination countries and as explanatory factors
of the support for Green parties.

D.2.3 Google Trends Data
Google Trends data consist of the volume of daily searches by word, or list of words, in a given
country, over time in all languages. I leverage these data to measure public attention to migration,
refugees, and climate change. I collect the volume of searches for several keywords to construct a
measure of relative attention to the following topics (keywords in parentheses) “climate change”
(climate change, drought*, flood*, heat wave*, global warming, storm*), “climate protests” (cli-
mate protest*, climate strike*, Fridays for future), “migration” (migration, migrants) and “refugee”
(refugee*, asylum seeker*). Search trends are computed based on a random sample of the total
searches on Google, and this might produce measurement error issues. To diminish such worries,
I draw the time series three times and take an average. I then construct the four indices as an
unweighted average of the searches of each keyword. Figure D13 plots the evolution of Google
searches about the four indices by destination country. Each line represents the annual average of
Google searches over time. Before averaging, the value is normalized, assigning 100 to the weekly
maximum. Google searches strongly correlate with news articles (Battiston, 2020). Ideally, one
would gather data from news articles to compare the two and include them in the estimating equa-
tion. This channel would be particularly relevant since newspapers’ language and sentiment largely
respond to readers’ demands (Gentzkow and Shapiro, 2010). Given the wide cross-national scope of
this analysis, it is difficult and beyond the aim of this paper to construct a comprehensive dataset of
EU member states’ newspaper coverage of climate and migration issues. This is left as a promising
avenue for future research.

1Source: https://population.un.org/wpp/Download/Standard/Interpolated/
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D.2.4 Additional tables

Table D1: Eurobarometer Outcome Variables Definition

VARIABLE DESCRIPTION MEAN
(SD)

SURVEY
WAVES [Sample
Size]

SOURCE

CC EU Election (0-
1)

Which of the following themes should be discussed as
a matter of priority during the electoral campaign for
the next European Parliament elections? (Combating
climate change and protecting the environment)

0.06
(0.24)

2008; 2009; 2018
[106,614]

Eurobarometer

CC EU Pol Prior-
ity (0-1)

The EP makes decisions on European legislation which
directly impacts every citizen’s life. In your opinion
which of the following should be given priority by the
European Parliament? (Combating climate change and
protecting the environment)

0.107
(0.31)

2008; 2009; 2012;
2013; 2014; 2018
[130,068]

Eurobarometer

CC World Problem
(0-1)

In your opinion, which of the following do you con-
sider to be the most serious problem currently facing the
world as a whole? (Global Warming / Climate Change)

0.37
(0.48)

2008; 2009; 2011;
2013; 2015; 2017;
2019 [116,879]

Eurobarometer

CC Seriousness (1-
10)

How serious a problem do you think climate change is at
this moment? Please use a scale from 1 to 10, ’1’ would
mean that it is “not at all a serious problem” and ’10’
would mean that “it is a problem extremely serious”.

7.57
(2.14)

2008; 2009; 2011;
2013; 2015; 2017;
2019 [164,779]

Eurobarometer

Migration EU Elec-
tion (0-1)

Which of the following themes should be discussed as a
matter of priority during the electoral campaign for the
next European Parliament elections? (Migration)

0.08
(0.27)

2008; 2009; 2018
[106,613]

Eurobarometer

Migration EU Pol
Priority (0-1)

The EP makes decisions on European legislation which
directly impacts every citizen’s life. In your opinion
which of the following should be given priority by the
European Parliament? (Migration)

0.08
(0.28)

2008; 2009; 2012;
2013; 2014; 2018
[130,067]

Eurobarometer

Economic growth
EU Election (0-1)

Which of the following themes should be discussed as a
matter of priority during the electoral campaign for the
next EP elections? (Economy and growth)

0.16
(0.37)

2008; 2009; 2018
[106,614]

Eurobarometer

Euro single cur-
rency EU Election
(0-1)

Which of the following themes should be discussed as a
matter of priority during the electoral campaign for the
next EP elections? (Euro as single currency)

0.03
(0.16)

2008; 2009; 2018
[53,799]

Eurobarometer

Terrorism EU Elec-
tion (0-1)

Which of the following themes should be discussed as a
matter of priority during the electoral campaign for the
next EP elections? (Fight against terrorism)

0.06
(0.23)

2008; 2009; 2018
[106,614]

Eurobarometer

Food safety EU
Election (0-1)

Which of the following themes should be discussed as
a matter of priority during the electoral campaign for
the next EP elections? (Consumer protection and food
safety)

0.05
(0.21)

2008; 2009; 2018
[106,614]

Eurobarometer

Terrorism EU Pol
Priority (0-1)

The EP makes decisions on European legislation which
directly impacts every citizen’s life. In your opinion
which of the following should be given priority by the
EP? (Fight against terrorism)

0.11
(0.31)

2008; 2009; 2012;
2013; 2014; 2018
[130,068]

Eurobarometer

Notes: The survey waves used include Eurobarometer 69.2 (2008), 71.1 (2009), 78.2 (2012), 79.5
(2013),82.5 (2014), 83.4 (2015), 87.1 (2017), 90.1 (2018).
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Table D2: European Parliament elections and National elections
by country and year in the estimation sample

COUNTRY # European
Parliament
Elections

Years with Green party
votes

# National
Elections

Years

Austria 4 2004; 2009; 2014; 2019 4 2006; 2013; 2017; 2019

Belgium 4 2004; 2009; 2014; 2019 4 2003; 2007; 2010; 2019

Bulgaria 0 5 2001; 2005; 2013; 2014; 2017

Croatia 0 4 2007; 2011; 2015; 2016

Cyprus 0 0

Czech Republic 3 2004; 2009; 2014 5 2002; 2006; 2010; 2013 ; 2017

Denmark 3 2009; 2014; 2019 6 2001; 2005; 2007; 2011; 2015; 2019

Estonia 2 2009; 2019 4 2003; 2007; 2011; 2015

Finland 4 2004; 2009; 2014; 2019 5 2003; 2007; 2011; 2015; 2019

France 4 2004; 2009; 2014; 2019 4 2002; 2007; 2012; 2017

Germany 4 2004; 2009; 2014; 2019 4 2002; 2009; 2013; 2017

Greece 3 2004; 2009; 2019 4 2004; 2009; 2012; 2015

Hungary 2 2014; 2019 4 2002; 2006; 2010; 2014

Ireland 4 2004; 2009; 2014; 2019 3 2002; 2007; 2011

Italy 0 2 2008; 2018

Latvia 0 6 2002; 2006; 2010; 2011; 2014; 2018

Lithuania 2 2014; 2019 0

Luxembourg 4 2004; 2009; 2014; 2019 2 2009; 2013

Malta 4 2004; 2009; 2014 0

Netherlands 4 2004; 2009; 2014; 2019 6 2002; 2003; 2006; 2010; 2012; 2017

Poland 0 2 2001; 2005

Portugal 2 2014; 2019 4 2009; 2011; 2015; 2019

Romania 0 2 2012; 2016

Slovakia 0 5 2002; 2006; 2010; 2012; 2016

Slovenia 2 2004; 2019 4 2004; 2008; 2011; 2018

Spain 3 2009; 2014; 2019 6 2004; 2008; 2011; 2015; 2016; 2019

Sweden 4 2004; 2009; 2014; 2019 5 2002; 2006; 2010; 2014; 2018

United Kingdom 4 2004; 2009; 2014; 2019 5 2001; 2005; 2010; 2015; 2019
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Table D3: Manifesto Outcome Variables Definition

VARIABLE DESCRIPTION MANIFESTO
VARI-
ABLE

SOURCE

Environmentalism Environmental Protection. General policies in favour of protecting the
environment, fighting climate change, and other “green” policies. For
instance: General preservation of natural resources; Preservation of
countryside, forests, etc.; Protection of national parks; Animal rights.
May include a great variance of policies that have the unified goal of
environmental protection.

per501 Manifesto
Project
Dataset

Europe + Favourable mentions of European Community/Union in general. May
include the: - Desirability of the manifesto country joining (or remain-
ing a member);- Desirability of expanding the European Communi-
ty/Union; - Desirability of increasing the ECs/EUs competences; -
Desirability of expanding the competences of the European Parlia-
ment.

per108 Manifesto
Project
Dataset

Europe - European Community/Union: Negative. Negative references to the
European Community/Union. May include: Opposition to specific
European policies which are preferred by European authorities; Op-
position to the net-contribution of the manifesto country to the EU
budget.

per110 Manifesto
Project
Dataset

Multiculturalism + Multiculturalism: Positive. Favourable mentions of cultural diver-
sity and cultural plurality within domestic societies. May include the
preservation of autonomy of religious, linguistic heritages within the
country including special educational provisions

per607 Manifesto
Project
Dataset

Multiculturalism - Multiculturalism: Negative. The enforcement or encouragement of
cultural integration. Appeals for cultural homogeneity in society

per608 Manifesto
Project
Dataset

Refugees + Favourable mentions of, or need for, assistance to people who left
their homes because of the war (for instance, on the territory of ex-
Yugoslavia) or were forcibly displaced.

per706_2 Manifesto
Project
Dataset

Cultural Autonomy + Cultural Autonomy: Positive. Favourable mentions of cultural auton-
omy

per607_1 Manifesto
Project
Dataset
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D.3 Robustness Checks

D.3.1 Robustness Checks for Gravity Equation
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Table D4: Gravity model for asylum applications in non-OECD origin countries & EU destination countries with dyadic controls

(1) (2) (3)
Log Asylum Applications Log Asylum Applications Log Asylum Applications

Temperature -1.436∗ -1.782∗∗ -1.803∗

(0.759) (0.885) (0.912)
Temperature2 0.0824∗∗ 0.0411 0.0440

(0.0414) (0.0321) (0.0312)
Temperature3 0.000838 0.00167 0.00189

(0.00133) (0.00191) (0.00217)
Temperature4 -0.0000331 -0.0000313 -0.0000432

(0.0000381) (0.0000424) (0.0000421)
Temperature * Contiguity 0.803∗∗∗ 0.438 0.407

(0.220) (0.283) (0.302)
Temperature * Common Language -0.0391 0.188 0.403

(0.245) (0.366) (0.356)
Temperature * Common Colonial History 0.690∗∗∗ 0.427∗∗ 0.398∗

(0.232) (0.202) (0.214)
Temperature* Log(distance) 0.192∗∗ 0.212∗ 0.217∗

(0.0927) (0.108) (0.110)
Temperature2 * Contiguity 0.0135 0.0222∗ 0.0161

(0.0101) (0.0127) (0.0116)
Temperature2 * Common Language -0.0148 -0.00947 -0.0386

(0.0198) (0.0435) (0.0400)
Temperature2 * Common Colonial History -0.0129 -0.00911 -0.00710

(0.00950) (0.00954) (0.00962)
Temperature2 * Log(distance) -0.0107∗∗ -0.00532 -0.00568

(0.00499) (0.00391) (0.00377)
Temperature3* Contiguity 0.0000449 -0.0000907 -0.000164

(0.000237) (0.000813) (0.000845)
Temperature3* Common Language 0.00109 0.000372 0.00165

(0.00143) (0.00193) (0.00179)
Temperature3* Common Colonial History -0.00105∗ -0.000375 -0.000279

(0.000573) (0.000474) (0.000563)
Temperature3* Log(distance) -0.000131 -0.000205 -0.000236

(0.000155) (0.000221) (0.000250)
Temperature4 * Contiguity -0.0000167 -0.0000253 -0.0000149

(0.0000113) (0.0000216) (0.0000214)
Temperature4 * Common Language -0.0000160 -0.00000441 -0.0000220

(0.0000260) (0.0000276) (0.0000261)
Temperature4 * Common Colonial History 0.0000290∗ 0.0000122 0.00000904

(0.0000160) (0.00000875) (0.0000119)
Temperature4 * Log(distance) 0.00000527 0.00000436 0.00000582

(0.00000469) (0.00000507) (0.00000498)
Precipitation 13.96 57.91 28.07

(61.82) (58.40) (53.17)
Precipitation2 1322.5 -31071.0 -13403.8

(42959.9) (55904.3) (46178.8)
Precipitation * Contiguity 19.86 11.38 7.539

(23.97) (50.60) (49.79)
Precipitation * Common Language 2.262 8.100 9.380

(5.220) (6.195) (5.725)
Precipitation * Common Colonial History 10.02 2.529 -4.058

(15.02) (21.68) (19.06)
Precipitation* Log(distance) -1.665 -6.851 -3.423

(6.900) (6.530) (6.008)
Precipitation2 * Contiguity 30550.1 15682.9 24834.9

(20185.6) (46456.1) (47742.0)
Precipitation2 * Common Language -984.3 -2068.1 -3416.1

(2459.8) (3198.1) (2768.5)
Precipitation2 * Common Colonial History 490.4 1716.9 3725.7

(5056.8) (7668.4) (6566.9)
Precipitation2 * Log(distance) -233.0 3414.2 1481.8

(4802.8) (6220.4) (5181.1)

Weather Annual Maize GS over maize area Maize GS over pop density

Country-pair FE X X X
Destination-year FE X X X
Region of origin-by-year FE X X X

Number of country pairs 2084 2084 2084
Number of origin countries 141 141 141
Destination Sample EU27 + UK EU27 + UK EU27 + UK

Mean Outcome 3.733 3.733 3.733
Dep Var SD 1.858 1.858 1.858
N 25951 25951 25951
adj. R2 0.796 0.796 0.796

Notes: Standard errors are clustered by origin country-year. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Column (1) uses annual weather,
column (2) uses weather weighted by maize area over maize-growing season, column (3) uses weather weighted by population over maize-growing season.
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Table D5: Gravity model for asylum applications without bilateral controls interactions.

(Log) Asylum Applications

(1) (2) (3)

Temperature origin 0.121 -0.0905 -0.0806
(0.0988) (0.0747) (0.0771)

Temperature origin2 -0.00453 -0.000517 -0.000177
(0.00316) (0.00219) (0.00220)

Temperature origin3 -0.000194∗∗ 0.0000301 0.00000463
(0.0000856) (0.0000766) (0.0000851)

Temperature origin4 0.00000852∗∗∗ 0.00000287 0.00000281
(0.00000293) (0.00000212) (0.00000221)

Precipitation origin 0.581 3.096 1.875
(3.515) (4.675) (4.491)

Precipitation origin2 -820.6 -2278.6 -1302.9
(1452.4) (1853.8) (1690.7)

Weather Annual Maize GS over maize area Maize GS over pop density

Country-pair FE X X X
Destination-by-year FE X X X
Region of origin-by-year FE X X X

Number of country pairs 2138 2138 2138
Number of origin countries 145 145 145
Destination Sample EU27 + UK EU27 + UK EU27 + UK

Mean Outcome 3.751 3.751 3.751
SD Outcome 1.873 1.873 1.873
N 26533 26533 26533
adj. R2 0.798 0.799 0.799

Notes: The table reports the coefficients associated with the weather variables in origin country in Equation (4.2) in the
text. The sample is restricted to non-OECD 145 origin countries and to EU27 member countries + UK as destinations.
Standard errors are clustered by origin country-year. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Column (1)
uses annual weather, column (2) uses weather weighted by maize area over maize growing season, column (3) uses weather
weighted by population over maize growing season. The estimated fixed effects are not used in building the predictors for
asylum applications. All regressions control for country-pair, destination-by-year, and region-of-origin-by-year fixed effects.
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Table D6: Gravity model for asylum applications with lags of weather

(Log) Asylum Applications

(1) (2) (3) (4)

Temperature origin -0.0905 -0.0745 -0.118 -0.136∗

(0.0747) (0.0739) (0.0747) (0.0739)
Temperature origin2 -0.000517 -0.000805 0.000291 0.000464

(0.00219) (0.00218) (0.00221) (0.00221)
Temperature origin3 0.0000301 0.0000431 0.000118 0.000158∗

(0.0000766) (0.0000777) (0.0000886) (0.0000908)
Temperature origin4 0.00000287 0.00000269 0.000000433 -0.000000152

(0.00000212) (0.00000207) (0.00000223) (0.00000228)
Precipitation origin 3.096 7.652 6.963 4.693

(4.675) (5.198) (5.393) (5.505)
Precipitation origin2 -2278.6 -3691.6∗ -2861.5 -2162.3

(1853.8) (2056.9) (2013.5) (2023.6)
L1.Temperature origin -0.0879 -0.0901 -0.121

(0.0806) (0.0777) (0.0774)
L1.Temperature origin2 0.000103 0.000468 0.00248

(0.00231) (0.00230) (0.00230)
L1.Temperature origin3 0.0000770 0.0000886 0.000136

(0.0000795) (0.0000813) (0.0000937)
L1.Temperature origin4 0.00000113 0.000000591 -0.00000161

(0.00000213) (0.00000214) (0.00000224)
L1.Precipitation origin 8.156 10.55∗ 9.637∗

(5.079) (5.418) (5.559)
L1.Precipitation origin2 -3606.5∗ -4332.6∗∗ -3174.5

(1972.5) (2056.5) (2094.9)
L2.Temperature origin -0.126 -0.125

(0.0890) (0.0882)
L2.Temperature origin2 0.00446∗ 0.00574∗∗

(0.00252) (0.00247)
L2.Temperature origin3 0.000164∗ 0.000166∗

(0.0000985) (0.0000994)
L2.Temperature origin4 -0.00000413 -0.00000511∗∗

(0.00000260) (0.00000254)
L2.Precipitation origin 7.458 8.168

(5.287) (5.654)
L2.Precipitation origin2 -3135.3 -2986.7

(2063.5) (2165.7)
L3.Temperature origin -0.249∗∗∗

(0.0961)
L3.Temperature origin2 0.00612∗∗

(0.00258)
L3.Temperature origin3 0.000308∗∗∗

(0.000100)
L3.Temperature origin4 -0.00000725∗∗∗

(0.00000261)
L3.Precipitation origin 7.050

(5.717)
L3.Precipitation origin2 -2574.3

(2190.6)

Country-pair FE X X X X
Destination-by-year FE X X X X
Region of origin-by-year FE X X X X

Mean Outcome 3.751 4.029 4.175 4.276
SD Outcome 1.873 1.844 1.828 1.820
N 26533 21890 19109 16942
adj. R2 0.799 0.799 0.805 0.811

Notes: The table reports the coefficients associated with the weather variables in origin country in Equation
(4.2) in the text. The sample is restricted to non-OECD 145 origin countries and to EU27 member countries
+ UK as destinations. Standard errors are clustered by origin country-year. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01. All regressions use weather weighted by maize area over maize growing season with
different lags of weather. All regressions control for country-pair, -by-year, and region-of-origin-by-year fixed
effects.
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Table D7: Gravity model for asylum applications with destination weather

(Log) Asylum Applications

(1) (2) (3)

Temperature origin -1.650∗∗ -2.036∗∗∗ -2.102∗∗∗

(0.657) (0.603) (0.615)
Temperature origin2 0.0793∗∗ 0.0448 0.0470

(0.0316) (0.0289) (0.0293)
Temperature origin3 0.000990 0.00206 0.00237

(0.00119) (0.00183) (0.00188)
Temperature origin4 -0.0000350 -0.0000445 -0.0000578

(0.0000328) (0.0000366) (0.0000352)
Precipitation origin -16.45 18.63 -9.071

(55.75) (66.72) (63.21)
Precipitation origin2 28112.6 4645.8 22074.1

(36210.8) (48527.1) (41935.2)
Temperature destination -0.0564∗∗ -0.0467∗∗ -0.0472∗∗

(0.0231) (0.0229) (0.0228)
Temperature destination2 0.00391∗∗∗ 0.00395∗∗∗ 0.00395∗∗∗

(0.000889) (0.000879) (0.000880)
Precipitation destination 6.303∗ 6.304∗ 6.292∗

(3.814) (3.803) (3.804)
Precipitation destination2 1034.1 1160.2 1241.9

(4398.2) (4393.4) (4396.6)

Weather Annual Maize GS over maize area Maize GS over pop density

Country-pair FE X X X
Region of origin-by-year FE X X X

Mean Outcome 3.748 3.748 3.748
SD Outcome 1.873 1.873 1.873
N 25957 25957 25957
adj. R2 0.749 0.749 0.749

Notes: The table reports the coefficients associated with the weather variables in the origin country in Equation (4.2) in
the text. The sample is restricted to non-OECD 141 origin countries and to EU27 member countries + UK as destinations.
Standard errors are clustered by origin country-year. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.3.2 Robustness Checks for Individual Level Analysis

Table D8: Weather-induced asylum applications and individuals’ environmental values. Accounting for
shift-share weather in origin countries.

Dep. variable CC EU Election (Mean: 0.068) CC Pol Priority (Mean: .106)

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

log(Asylum Applications) 0.00209 0.0313∗∗ 0.0147∗ 0.0532∗∗

(0.00463) (0.0138) (0.00825) (0.0214)

Weighted weather in origin X X X X

Weather Controls X X X X
Individual Controls X X X X
Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Statistic 16.931 39.206
N 106614 106614 130068 130068
Number of countries 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which
they are interviewed. The dependent variable in columns 1-2 is a dummy equal to 1 if the respondent reports
climate change as a theme that the European Parliament should give priority to when deliberating. The dependent
variable in columns 3-4 is a dummy equal to 1 if the respondent reports climate change as a theme that should
be discussed as a matter of priority during the electoral campaign for the next European Parliament elections
(see Table D1 for exact wording and additional details on the construction of the variable). Asylum Applications
are the cumulative asylum applications in a country in the five years preceding the survey year, as defined in
Equation 4.1. Columns (2) and (4) report the 2SLS estimates using the predicted asylum applications constructed
from the gravity-predicted asylum application flows as described in Equation (4.2) in the text. All columns
control for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still
studying; no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared five-
year average temperature and total precipitation, linear and squared annual temperature and total precipitation).
All columns control for a fourth-order polynomial of seasonal temperature and a second-order polynomial of total
precipitation in all origin countries of asylum demands weighted by baseline propensity to migrate to that host
country. All columns include country, age, region-by-survey-year fixed effects, and country-by-age linear trends.
Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for
weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D9: Weather-induced asylum applications and individuals’ environmental values. 2SLS estimates.
Alternative Specifications.

Dep. variable CC EU Election (Mean: 0.068) CC Pol Priority (Mean: 0.106)

(1) (2) (3) (4) (5) (6)

log(Asylum Applications) 0.0217∗∗ 0.0222∗∗ 0.0232∗∗ 0.0427∗∗ 0.0432∗∗ 0.0476∗∗

(0.0102) (0.0104) (0.0108) (0.0202) (0.0208) (0.0218)

Weather Controls X X X X X X
Individual Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X
Region-by-year FE X X X X X X
Country-by-age FE X X
Birth cohort FE X X
Country-by-birth cohort FE X X X X
Country-age linear trends X X X X

F-Statistic 21.341 21.367 21.427 27.410 27.317 27.438
N 106547 106613 106542 130010 130067 130004
Number of countries 28 28 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they
are interviewed. The dependent variable in columns 1-3 is a dummy equal to 1 if the respondent reports climate
change as a theme that the European Parliament should give priority to when deliberating. The dependent variable
in columns 4-6 is a dummy equal to 1 if the respondent reports climate change as a theme that should be discussed
as a matter of priority during the electoral campaign for the next European Parliament elections (see Table D1 for
exact wording and additional details on the construction of the variable). Asylum Applications is the sum of the
asylum applications in a given country in the five years preceding the survey year, as defined in Equation 4.1. All
columns report the 2SLS estimates using the predicted asylum applications constructed from the gravity-predicted
asylum application flows as described in Equation (4.2) in the text. All columns control for individual characteristics
(Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-
wing oriented) and country-level covariates (Linear and squared five-year average temperature and total precipitation,
linear and squared annual temperature and total precipitation). Robust standard errors, clustered at the country
level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table D10: Weather-induced asylum applications and individuals’ environmental values. 2SLS estimates. Alternative Instruments.

Dep. variable CC EU Election (Mean: 0.068) CC Pol Priority (Mean: 0.106)

(1) (2) (3) (4) (5) (6)

log(Asylum Applications) 0.0205∗∗ 0.0134∗ 0.0181∗ 0.0417∗ 0.0458∗∗ 0.0495∗∗

(0.00972) (0.00788) (0.00893) (0.0203) (0.0197) (0.0200)

Weather Controls X X X X X X
Individual Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X
Age FE X X X X X X
Region-by-year FE X X X X X X
Country-age linear trends X X X X X X

Instrument w/ MR Destination-weather Destination-specific w/ MR Destination-weather Destination-specific

F-Statistic 22.384 20.107 19.944 27.810 26.549 28.592
N 106614 106614 106614 130068 130068 130068
Number of countries 28 28 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are interviewed. The dependent variable in columns
1-3 is a dummy equal to 1 if the respondent reports climate change as a theme that the European Parliament should give priority to when deliberating. The dependent
variable in columns 4-6 is a dummy equal to 1 if the respondent reports climate change as a theme that should be discussed as a matter of priority during the electoral
campaign for the next European Parliament elections (see Table D1 for exact wording and additional details on the construction of the variable). Asylum Applications
is the sum of the asylum applications in a given country in the five years preceding the survey year, as defined in Equation 4.1. Each column uses a different instrument
for predicted weather-induced asylum applications, constructed from the predicted values in the estimation of Equation (D.2), (D.3) and (D.4). All columns control
for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing oriented) and
country-level covariates (Linear and squared five-year average temperature and total precipitation, linear and squared annual temperature and total precipitation), and
country, age, region-by-survey-year fixed effects and country by age linear trends. Robust standard errors, clustered at the country level, in parentheses. F-statistic
refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D11: Weather-induced asylum applications and individuals’ environmental values. 2SLS estimates. Alternative time windows.

Dep. variable CC EU Election (Mean: 0.068) CC Pol Priority (Mean: 0.106)

(1) (2) (3) (4) (5) (6) (7) (8)

log(Asylum Applications) 0.0226∗∗ 0.0209∗∗ 0.0154∗ 0.0174∗∗ 0.0431∗∗ 0.0383∗ 0.0369∗ 0.0359∗

(0.0106) (0.00993) (0.00798) (0.00807) (0.0207) (0.0212) (0.0196) (0.0188)

Weather Controls X X X X X X X X
Individual Controls X X X X X X X X
Country FE X X X X X X X X
Year FE X X X X X X X X
Age FE X X X X X X X X
Region-by-year FE X X X X X X X X
Country-age linear trends X X X X X X X X

Window exposure 5 years 4 years 4 years 5 years 5 years 4 years 4 years 5 years
(excl. contemp.) (excl. contemp.) (excl. contemp.) (excl. contemp.)

F-Statistic 22.106 17.934 20.835 26.397 27.252 28.695 31.225 31.223
N 106614 106614 106614 106614 130068 130068 130068 130068
Number of countries 28 28 28 28 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are interviewed. The dependent variable in columns 1-3 is
a dummy equal to 1 if the respondent reports climate change as a theme that the European Parliament should give priority to when deliberating. The dependent variable in
columns 4-6 is a dummy equal to 1 if the respondent reports climate change as a theme that should be discussed as a matter of priority during the electoral campaign for the
next European Parliament elections (see Table D1 for exact wording and additional details on the construction of the variable). Asylum Applications is the sum of the asylum
applications in a given country in the five years preceding the survey year, as defined in Equation 4.1. The 2SLS estimates are obtained using the predicted asylum applications
constructed from the gravity-predicted asylum application flows as described in Equation (4.2) in the text. All columns control for individual characteristics (Gender, Education
(Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared five-year average
temperature and total precipitation, linear and squared annual temperature and total precipitation), and country, age, region-by-survey-year fixed effects and country by age
linear trends. Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

363



Table D12: Weather-induced asylum applications and individuals’ environmental values. 2SLS estimates.
Alternative treatments.

Dep. variable CC EU Election CC Pol Priority CC EU Election CC Pol Priority
(1) (2) (3) (4)

Asylum Applications 0.0151∗ 0.0213∗ 0.0244∗∗∗ 0.0204∗∗

(0.00776) (0.0120) (0.00629) (0.00927)

Weather Controls X X X X
Individual Controls X X X X
Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

Regressor log annual flow weather-induced asylum anomaly

F-Statistic 29.737 11.569
N 106614 130068 106614 130068
Number of countries 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are
interviewed. The dependent variable in columns 1-2 is a dummy equal to 1 if the respondent reports climate change as
a theme that the European Parliament should give priority to when deliberating. The dependent variable in columns
3-4 is a dummy equal to 1 if the respondent reports climate change as a theme that should be discussed as a matter
of priority during the electoral campaign for the next European Parliament elections (see Table D1 for exact wording
and additional details on the construction of the variable). The first two columns report the 2SLS estimates where
Asylum Applications is the log of asylum applications in a given country in the survey year and is instrumented using the
predicted asylum applications constructed from the gravity-predicted asylum application flows as described in Equation
(4.2) in the text. Columns 3-4 report the OLS estimates where Asylum Applications is the measure of weather-induced
asylum application spikes ndt constructed in Appendix Section D.4.4. All columns control for individual characteristics
(Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing
oriented) and country-level covariates (Linear and squared five-year average temperature and total precipitation, linear
and squared annual temperature and total precipitation), and country, age, region-by-survey-year fixed effects and country
by age linear trends. Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to the K-P
F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure D19: 2SLS estimate of weather-induced asylum applications
on climate concern as a political priority leaving out one country

Notes: This figure reports the 2SLS coefficient estimates of the effect of
weather-induced asylum applications on CC EU Pol Priority when each
country in the y-axis is excluded once at a time from the estimation sample.

The whiskers indicate the 90% standard error confidence intervals.
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Table D13: Weather-induced asylum applications and individual concern on other topics. 2SLS estimates.

Dep. variable Economic growth EU Election Euro EU Election Terrorism EU Election Food safety EU Election Terrorism Pol Priority
(1) (2) (3) (4) (5)

log(Asylum Applications) -0.00226 -0.0458 -0.00383 -0.0193 0.0126
(0.0165) (0.0814) (0.00804) (0.0130) (0.0153)

Weather Controls X X X X X
Individual Controls X X X X X
Country FE X X X X X
Year FE X X X X X
Age FE X X X X X
Region-by-year FE X X X X X
Country-age linear trends X X X X X

F-Statistic 14.434 9.437 14.434 14.434 21.434
N 106614 53799 106614 106614 130068
Number of countries 28 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are interviewed. The dependent variable is a dummy equal to 1 if the
respondent reports economic growth (in col. 1), euro single currency (col. 2), terrorism (col. 3) and food safety (col. 4) as a theme that the European Parliament should give priority to
when deliberating. The dependent variable in column 5 is a dummy equal to 1 if the respondent reports terrorism as a theme that should be discussed as a matter of priority during the
electoral campaign for the next European Parliament elections (see Table D1 for exact wording). The estimates refer to the 2SLS coefficients obtained using the predicted asylum applications
constructed from the gravity-predicted asylum application flows as described in Equation (4.2) in the text. All columns control for individual characteristics (Gender, Education (Up to
15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared five-year average temperature and
total precipitation, linear and squared annual temperature and total precipitation), and country, age, region-by-survey-year fixed effects and country by age linear trends. Robust standard
errors, clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D14: Weather-induced asylum applications and environmental values. No
top-5 countries of origin for asylum seekers. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) -0.000120 0.0160∗ 0.0145∗ 0.0507∗∗∗

(0.00437) (0.00854) (0.00760) (0.0178)

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 23.737 22.552
N 106614 106614 130068 130068

Notes: The sample is restricted to survey respondents that have the same nationality as
the country in which they are interviewed. The dependent variable is a dummy equal to 1
if the respondent reports climate change as a theme that should be discussed as a matter of
priority during the electoral campaign for the next European Parliament elections (columns
1 and 2, see Table D1 for exact wording and additional details on the construction of the
variable). In columns (3) and (4) the dependent variable is a dummy equal to 1 if the
respondent reports climate change as a theme that the European Parliament should give
priority to when deliberating (see Table D1 for exact wording and additional details on
the construction of the variable). Asylum demands do not account for the top-5 countries
of origin for asylum seekers in the sample (Afghanistan, Iraq, Russian Federation, Serbia,
Syria). All columns report the 2SLS estimates where the (log) of asylum applications is
instrumented with the gravity-predicted (log) of asylum applications described in Equation
(4.2) in the text. All columns control for individual characteristics (Gender, Education
(Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed,
Left-wing oriented) and country-level covariates (Linear and squared five-year average
temperature and total precipitation, linear and squared annual temperature and total
precipitation), and country, age, region-by-survey-year fixed effects and country by age
linear trends. Robust standard errors, clustered at the country level, in parentheses. F-
statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D15: Weather-induced asylum applications and environmental values.
Before 2015. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.0715∗∗ 0.459∗ 0.0143 0.0551∗

(0.0305) (0.272) (0.00847) (0.0323)

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 11.711 10.114
N 53799 53799 103700 103700

Notes: The sample is restricted to survey respondents that have the same nationality
as the country in which they are interviewed before 2015. The dependent variable
is a dummy equal to 1 if the respondent reports climate change as a theme that
should be discussed as a matter of priority during the electoral campaign for the
next European Parliament elections (columns 1 and 2, see Table D1 for exact word-
ing and additional details on the construction of the variable). In columns (3) and
(4) the dependent variable is a dummy equal to 1 if the respondent reports climate
change as a theme that the European Parliament should give priority to when delib-
erating (see Table D1 for exact wording and additional details on the construction
of the variable). All columns report the 2SLS estimates where the (log) of asylum
applications is instrumented with the gravity-predicted (log) of asylum applications
described in Equation (4.2) in the text. All columns control for individual charac-
teristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still
studying; no education), Unemployed, Left-wing oriented) and country-level covari-
ates (Linear and squared five-year average temperature and total precipitation, linear
and squared annual temperature and total precipitation), and country, age, region-
by-survey-year fixed effects and country by age linear trends. Robust standard errors,
clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic
for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D16: Country average climate concern and leads of actual and predicted asylum demands.

Dep. variable Asy Applications 5-year Asy Applications Predicted Asy Applications

(1) (2) (3) (4) (5) (6)

CC EU Election -2.045 0.132 -2.498
(3.103) (4.075) (2.382)

CC EU Pol Priority 1.483 1.659 1.005
(1.282) (1.224) (0.674)

Weather Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X

N 83 164 83 164 83 164
adj. R2 0.883 0.872 0.903 0.930 0.962 0.973

Notes: All estimates are obtained from country-level regressions. The main regressors are country-average responses
for CC EU Election and CC EU Pol Priority. The first two columns use one-year ahead asylum applications, columns
3 and 4 use five-year ahead cumulative asylum applications, and columns 5 and 6 use the one-year ahead predicted
weather-induced asylum applications. The predicted measure of weather-induced asylum applications is constructed
from the estimation of Equation (D.4). All columns control for linear and squared five-year average temperature
and total precipitation, linear and squared annual temperature and total precipitation, and country, and survey year
fixed effects. Robust standard errors, clustered at the country level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table D17: 2SLS Estimates: Exposure to weather-induced asylum demands by age range.

(1) (2)
CC EU Election (Mean: 0.079) CC EU Pol Priority (Mean: 0.099)

Log(Exposure16−24) 0.0235∗∗ 0.0390∗∗

(0.00959) (0.0180)
F-statistic 48.091 54.376
N 17554 21661

Log(Exposure25−33) 0.00990 0.0409∗∗∗

(0.00635) (0.0139)
F-statistic 41.019 37.483
N 21324 26359

Log(Exposure34−42) 0.00889 0.0403∗∗

(0.00661) (0.0150)
F-statistic 41.939 40.211
N 24389 30320

Log(Exposure43−51) 0.00815 0.0209
(0.00673) (0.0135)

F-statistic 38.166 36.681
N 25698 31544

Log(Exposure52−60) 0.00605 0.0167
(0.00792) (0.0145)

F-statistic 40.667 37.419
N 27558 33144

Log(Exposure61−69) 0.00971 0.0286∗∗

(0.00573) (0.0131)
F-statistic 34.782 35.594
N 24344 29936

Log(Exposure70−78) 0.00484 0.00553
(0.00740) (0.0255)

F-statistic 28.925 22.865
N 15234 18158

Log(Exposure79+) 0.0120 0.0304
(0.0376) (0.0352)

F-statistic 21.008 22.046
N 5269 6315

Weather Controls X X
Individual Controls X X
Country FE X X
Year FE X X
Age FE X X
Birth-cohort FE X X
Region-by-year FE X X
Country-age linear trends X X

Notes: Each cell reports the 2SLS estimate of the coefficient associated with the (log) exposure to asylum applications
as the (log) of the cumulative asylum applications in the country in a given age range of an individual. The sample
is restricted to survey respondents that have the same nationality as the country in which they are interviewed and
whose exposure period occurs in the time period in which asylum application data are available (i.e., after 2000).
The dependent variable is a dummy equal to 1 if the respondent reports climate change as a theme that should be
discussed as a matter of priority during the electoral campaign for the next European Parliament elections (columns
1 and 3, see Table D1 for exact wording and additional details on the construction of the variable). In columns (2)
and (4) the dependent variable is a dummy equal to 1 if the respondent reports climate change as a theme that the
European Parliament should give priority to when deliberating (see Table D1 for exact wording and additional details
on the construction of the variable). The 2SLS estimates use the predicted asylum applications constructed from
the gravity-predicted asylum application flows as described in Equation (4.2) in the text. Robust standard errors,
clustered at the country level, in parentheses. Individual controls: Gender, Education (Up to 15 years; 16-19 years; 20
years or older; still studying; no education), Unemployed, Left-wing oriented. Weather Controls: Exposure to average
temperature and precipitation over the same time period in which exposure to asylum applications is measured and
contemporaneous linear and quadratic terms of temperature and precipitation. F-statistic refers to the K-P F-statistic
for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D18: Formative age exposure to weather-induced asylum applications and individuals’ environmental values. 2SLS estimates. Alternative
Instruments.

Dep. variable CC EU Election (Mean: 0.079) CC Pol Priority (Mean: 0.099)

(1) (2) (3) (4) (5) (6)

log(Asylum Applications) 0.0213∗∗ 0.0222∗∗∗ 0.0260∗∗ 0.0379∗∗ 0.0386∗∗ 0.0497∗∗∗

(0.00905) (0.00799) (0.0104) (0.0177) (0.0153) (0.0177)

Weather Controls X X X X X X
Individual Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X
Age FE X X X X X X
Birth-cohort FE X X X X X X
Region-by-year FE X X X X X X
Country-age linear trends X X X X X X

Instrument w/ MR Destination-weather Destination-specific w/ MR Destination-weather Destination-specific

F-Statistic 47.711 3.310 53.500 51.456 2.848 42.149
N 17554 17554 17554 21661 21661 21661
Number of countries 28 28 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are interviewed. The dependent variable in columns
1-3 is a dummy equal to 1 if the respondent reports climate change as a theme that the European Parliament should give priority to when deliberating. The dependent
variable in columns 4-6 is a dummy equal to 1 if the respondent reports climate change as a theme that should be discussed as a matter of priority during the electoral
campaign for the next European Parliament elections (see Table D1 for exact wording and additional details on the construction of the variable). Asylum Applications
is the sum of the asylum applications in a given country in the five years preceding the survey year, as defined in Equation 4.1. Each column uses a different instrument
for predicted weather-induced asylum applications, constructed from the predicted values in the estimation of Equation (D.2), (D.3) and (D.4). All columns control
for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing oriented) and
country-level covariates (Linear and squared five-year average temperature and total precipitation, linear and squared annual temperature and total precipitation),
and country, survey year, age, birth-year, region-by-survey-year fixed effects and country by age linear trends. Robust standard errors, clustered at the country level,
in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D19: Exposure to weather-induced asylum applications and individuals’ environmental values. 2SLS estimates. Alternative definitions for formative age.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

log(Asylum Applications) 0.0235∗∗ 0.0379∗∗ 0.0130∗ 0.0123∗ 0.01097 0.01196∗ 0.0383∗∗ 0.0461∗ 0.0282∗ 0.0286∗ 0.0307∗∗ 0.0303∗∗

(0.00959) (0.0160) (0.00721) (0.00750) (0.00772) (0.00716) (0.0153) (0.0261) (0.0147) (0.0148) (0.0138) (0.0129)

Weather Controls X X X X X X X X X X X X
Individual Controls X X X X X X X X X X X X
Country FE X X X X X X X X X X X X
Year FE X X X X X X X X X X X X
Age FE X X X X X X X X X X X X
Birth-cohort FE X X X X X X X X X X X X
Region-by-year FE X X X X X X X X X X X X
Country-age linear trends X X X X X X X X X X X X

Formative age 16-24 16-25 17-24 17-25 18-24 18-25 16-24 16-25 17-24 17-25 18-24 18-25

F-Statistic 26.020 20.808 27.368 27.073 29.487 29.414 46.347 33.767 45.758 44.988 43.767 44.128
N 17554 9542 18230 18230 18704 18704 21661 11915 22384 22384 22956 22956
Number of countries 28 28 28 28 28 28 28 28 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are interviewed. The dependent variable in columns 1-6 is a dummy equal
to 1 if the respondent reports climate change as a theme that the European Parliament should give priority to when deliberating. The dependent variable in columns 7-12 is a dummy equal
to 1 if the respondent reports climate change as a theme that should be discussed as a matter of priority during the electoral campaign for the next European Parliament elections (see Table
D1 for exact wording and additional details on the construction of the variable). Asylum Applications is the sum of the asylum applications in a given country in the five years preceding the
survey year, as defined in Equation 4.1. The 2SLS estimates use the predicted asylum applications constructed from the gravity-predicted asylum application flows as described in Equation
(4.2) in the text. All columns control for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-wing
oriented) and country-level covariates (Linear and squared five-year average temperature and total precipitation, linear and squared annual temperature and total precipitation), and country,
survey year, age, birth-year, region-by-survey-year fixed effects and country by age linear trends. Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to the
K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.3.3 Robustness Checks for Country Level Analysis

Table D20: Green party votes and leads of actual and predicted asylum demands

Dep. variable Actual asylum demands Predicted asylum demands
(1) (2)

% EP Green Party votes 0.0454 -0.00227
(0.0300) (0.00860)

Country Controls X X
Weather Controls X X
Country FE X X
Year FE X X

N 42 42
adj. R2 0.957 0.999

Notes: The table reports the OLS estimates associated with the % of Green party votes in EP
elections on the leads of actual and predicted weather-induced asylum demands in logarithm as
constructed in Equation (D.3). Robust standard errors, clustered at the country level, in parenthe-
ses. Country Controls: (log) GDP per capita, % tertiary education, unemployment rate, population
rate between 18 and 23 years old. Weather Controls: Linear and squared average temperature and
total precipitation in the country. All columns account for country- and year-specific fixed effects.
F-statistic refers to the Kleibergen-Paap F-statistic for weak instruments. Significance levels: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D21: Weather-induced asylum applications and Green party votes in European Parliament elec-
tions. 2SLS estimates. Alternative instruments.

Dep. variable % Green Party votes in EP elections (Mean: 9.84)

2SLS 2SLS 2SLS 2SLS
(1) (2) (3) (4)

Log(Asylum Applications) -2.952 -2.733 -3.255 -3.670
(1.745) (1.751) (2.083) (2.371)

Instrument w/out MR w/ MR Destination-weather Destination-specific

Country Controls X X X X
Weather Controls X X X X
Country FE X X X X
Year FE X X X X

F-Statistic 18.779 16.925 14.819 16.805
N 65 65 65 65
Number of countries 20 20 20 20

Notes: The table reports the 2SLS coefficients on (log) of total asylum applications in the five years preceding
the European Parliament elections. The dependent variable is the share of votes of Green parties in European
Parliament elections after 2000 in an EU country. Respectively, in each column, asylum demands are instrumented
with its predicted counterpart as described in Equations (4.2), (D.2), (D.3) and (D.4). Country Controls: (log)
GDP per capita, % tertiary education, unemployment rate, population rate between 18 and 23 years old between
the two election rounds and in the year of the elections, voter turnout. Weather Controls: Linear and squared
average temperature and total precipitation in the country between the two election rounds and in the year of the
elections. All columns control for country- and year-specific fixed effects. Robust standard errors, clustered at the
country level, in parentheses. F-statistic refers to the Kleibergen-Paap F-statistic for weak instrument. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D22: Weather-induced asylum applications and other parties’ votes in EP elections. 2SLS estimates. Other parties.

Dep. variable: % votes Socialist/Left Social democrats Liberal Christian democrats Conservative Nationalist

(1) (2) (3) (4) (5) (6)

log(Asylum Applications) 4.399 -1.287 -0.884 -0.447 2.434 -4.895∗∗

(2.840) (1.617) (3.839) (2.807) (2.376) (2.059)

Country Controls X X X X X X
Weather Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X

N 67 99 83 65 73 84
F-stat 15.273 16.410 25.556 10.922 13.949 22.641
Number of countries 20 27 24 18 20 25

Notes: The table reports the 2SLS coefficients on (log) of total asylum applications in the five years preceding the European Parliament elections.
The dependent variable is the share of votes of other parties by party family as classified in the Manifesto database in European Parliament elections
after 2000 in an EU country. The (log) of total asylum applications in the five years preceding the elections is instrumented with the gravity-
predicted (log) of total asylum applications described in Equation (4.2) in the text. Country Controls: (log) GDP per capita, % tertiary education,
unemployment rate, population rate between 18 and 23 years old between the two election rounds and in the year of the elections, voter turnout.
Weather Controls: Linear and squared average temperature and total precipitation in the country between the two election rounds and in the year
of the elections. All countries control for country-specific, year-specific fixed effects. Robust standard errors, clustered at the country level, in
parentheses. F-statistic refers to the Kleibergen-Paap F-statistic for weak instrument. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D23: Weather-induced asylum applications and electoral turnout
in EP elections

Dep. variable % Voter Turnout (Mean: 46.134)

OLS 2SLS 2SLS 2SLS
(1) (2) (3) (4)

Log(Asylum Applications) 1.097 -3.785 -2.428∗ -3.256∗

(1.617) (3.061) (1.360) (1.912)

Country Controls X X X X
Weather Controls X X X X
Country FE X X X
Year FE X X X X
Regional linear time trends X

F-Statistic 9.468 15.536 11.083
N 65 65 65 65
Number of countries 28 28 28 28

Notes: The table reports the OLS (column 1) and 2SLS (columns 2 to 4) co-
efficients on (log) of total asylum applications in the five years preceding the
European Parliament elections. The dependent variable is the share of electoral
turnout in European Parliament elections after 2000 in an EU country. The (log)
of total asylum applications in the five years preceding the elections is instru-
mented with the gravity-predicted (log) of total asylum applications described in
Equation (4.2) in the text. The sample is the same as in baseline results using
Green party votes. Country Controls: (log) GDP per capita, % tertiary educa-
tion, unemployment rate, population rate between 18 and 23 years old between
the two election rounds and in the year of the elections, voter turnout. Weather
Controls: Linear and squared average temperature and total precipitation in the
country between the two election rounds and in the year of the elections. All
countries control for country-specific, year-specific fixed effects. Robust standard
errors, clustered at the country level, in parentheses. F-statistic refers to the
Kleibergen-Paap F-statistic for weak instrument. Significance levels: ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D24: Weather-induced asylum applications and environmentalism in national elections. 2SLS
Estimates. Alternative instruments.

Dep. variable National Elections Environmentalism Index

(1) (2) (3) (4)

log(Asylum Applications) 0.232 0.193 0.602 0.300
(0.343) (0.252) (0.806) (0.381)

Instrument w/out MR w/ MR Destination-weather Destination-specific

Country Controls X X X X
Weather Controls X X X X
Country FE X X X X
Year FE X X X X

N 119 119 119 119
F-Stat 16.030 24.236 12.467 13.813

Notes: The dependent variable is the normalized index of environmentalism of national elections where the share
of quasi-sentences that positively referred to the environment in each party’s manifesto is weighted by its vote
share in the national elections. The table reports the coefficients associated with (log) of the sum of asylum
applications in the period between one election year and the other. Respectively, in each column, asylum demands
are instrumented with its predicted counterpart as described in Equations (4.2), (D.2), (D.3) and (D.4). All
columns control for the normalized right-left ideological index provided in the MPD. Country controls: averages
between two elections of (log) GDP per capita, % tertiary education, unemployment rate, population rate between
18 and 23 years old, and in the year of the elections. Weather controls: averages between two elections of linear
and squared temperature and precipitation and in the year of the elections. All columns control for country, year,
and party fixed effects. Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to
the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D25: Weather-induced asylum applications and other dimensions of national elections. 2SLS Estimates.

Europe + Europe - Multiculturalism + Multiculturalism - Refugees + Cultural Autonomy +
(1) (2) (3) (4) (5) (6)

log(Asylum Applications) 0.226 0.0865 -0.232 0.156 -0.186 0.287
(0.182) (0.174) (0.160) (0.343) (0.150) (0.353)

Country Controls X X X X X X
Weather Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X

F-Stat 16.030 16.030 16.030 16.030 16.030 16.030
N 119 119 119 119 119 119

Notes: The dependent variable is the normalized index of each topic of national elections where the share of quasi-sentences that referred to each topic as
described in Table D3 in each party’s manifesto is weighted by its vote share in the national elections. The table reports the coefficients associated with (log) of
the sum of asylum applications in the period between one election year and the other, obtained using an instrumental variable approach, where the instrument
is constructed using the predicted values in Equations (D.3), Country controls: averages between two elections of (log) GDP per capita, % tertiary education,
unemployment rate, population rate between 18 and 23 years old, and in the year of the elections. Weather controls: averages between two elections of linear
and squared temperature and precipitation and in the year of the elections. Robust standard errors, clustered at the country level, in parentheses. F-statistic
refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.3.4 Robustness Checks for Party Level Analysis

Table D26: Weather-induced asylum applications and environmental agenda of parties. 2SLS estimates.
Alternative instruments.

Party’s Standardized Environmentalism

(1) (2) (3) (4)

Panel A: Unweighted
log(Asylum Applications) -0.119 -0.123 -0.103 0.523

(0.107) (0.105) (0.0842) (0.975)

F-Stat 51.412 61.676 57.782 10.524

Panel B: Weighted by votes
log(Asylum Applications) -0.194∗ -0.194∗ -0.0989 -0.404

(0.111) (0.103) (0.0738) (0.876)

F-Stat 40.407 48.326 58.945 0.362

Instrument w/out MR w/ MR Destination-weather Destination-specific

Right-left ideological index X X X X

Country Controls X X X X
Weather Controls X X X X
Country FE X X X X
Year FE X X X X
Party FE X X X X

N 520 520 520 520

Notes: The analysis is over a sample of parties that are running in multiple elections. The table reports the
coefficients associated with (log) of the sum of asylum applications in the period between one election year and
the other. The dependent variable is the (normalized) share of quasi-sentences that positively referred to the
environment in each party’s manifesto in the national elections. All columns report the 2SLS estimates where
(log) of asylum applications is instrumented with the gravity-predicted (log) of asylum applications respectively
described in Equations (4.2), (D.2), (D.3) and (D.4). All columns control for the normalized right-left ideological
index provided in the MPD. Country controls: averages between two elections of (log) GDP per capita, % tertiary
education, unemployment rate, population rate between 18 and 23 years old, and in the year of the elections. Weather
controls: averages between two elections of linear and squared temperature and precipitation and in the year of the
elections. All columns control for country, year, and party fixed effects. Panel B weighs each party’s observation
by the vote gained in the national elections. Robust standard errors, clustered at the country level, in parentheses.
F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D27: Weather-induced asylum applications and environmental agenda of par-
ties. 2SLS estimates. Alternative vote cutoffs.

Party’s Standardized Environmentalism

(1) (2) (3) (4)

Panel A: Unweighted
log(Asylum Applications) -0.0583 -0.334∗∗ -0.365∗∗ -0.347∗∗

(0.108) (0.145) (0.165) (0.153)

F-Stat 32.421 25.869 20.066 15.168

Panel B: Weighted by party votes
log(Asylum Applications) -0.158 -0.274∗ -0.314∗ -0.297∗

(0.116) (0.147) (0.160) (0.148)

F-Stat 27.312 23.909 19.597 14.649

Votes above 5% 10% 15% 20%

Right-left ideological index X X X X
Country Controls X X X X
Weather Controls X X X X
Country FE X X X X
Year FE X X X X
Party FE X X X X

N 469 293 210 170

Notes: The analysis is over a sample of parties that are running in multiple elections. The
table reports the coefficients associated with (log) of the sum of asylum applications in the
period between one election year and the other. The dependent variable is the (normalized)
share of quasi-sentences that positively referred to the environment in each party’s manifesto
in the national elections. All columns report the 2SLS estimates where (log) of asylum appli-
cations is instrumented with the gravity-predicted (log) of asylum applications respectively
described in Equations (D.3). Panel B weighs each party’s observation by the vote gained
in the national elections. Column (1) only considers parties that gained at least 5% of the
votes, column (2) only considers parties that gained at least 10% of the votes, column (3)
only considers parties that gained at least 15% of the votes, column (4) only considers par-
ties that gained at least 20% of the votes. All columns control for the normalized right-left
ideological index provided in the MPD. Country controls: averages between two elections of
(log) GDP per capita, % tertiary education, unemployment rate, population rate between 18
and 23 years old, and in the year of the elections. Weather controls: averages between two
elections of linear and squared temperature and precipitation and in the year of the elections.
All columns control for country, year, and party fixed effects. Robust standard errors, clus-
tered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak
instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D28: Weather-induced asylum applications and environmental agenda by party family. 2SLS Estimates.

Green/Ecologist Socialist/Left Social democrats Liberal Christian democrats Conservative Nationalist
(1) (2) (3) (4) (5) (6) (7)

Panel A: Unweighted
log(Asylum Applications) -3.200 -0.542 -0.274 -0.0154 0.872 0.353 -0.0183

(2.885) (2.005) (0.171) (0.149) (1.104) (0.206) (0.0777)
F-Stat 1.289 2.491 25.802 47.751 2.713 10.025 46.526

Panel B: Weighted by party votes
log(Asylum Applications) -3.498 4.474 -0.355∗∗ 0.0478 -5.050 0.440 -0.0829

(3.845) (14.88) (0.155) (0.156) (24.31) (0.293) (0.0916)
F-Stat 1.605 2.080 34.013 64.349 2.060 5.542 50.383

Right-left ideological index X X X X X X X

Country Controls X X X X X X X
Weather Controls X X X X X X X
Country FE X X X X X X X
Year FE X X X X X X X
Party FE X X X X X X X

N 52 73 105 84 72 66 68

Notes: The analysis is over a sample of parties that are running in multiple elections. The table reports the coefficients associated with (log) of the sum of asylum applications
in the period between one election year and the other. The dependent variable is the (normalized) share of quasi-sentences that positively referred to the environment in each
party’s manifesto in the national elections. Each column only considers the parties belonging to a specific party family as defined by the Manifesto database. The coefficients
reported are the 2SLS estimates where (log) of asylum applications is instrumented with the gravity-predicted (log) of asylum applications described in Equation (4.2) in the text.
All columns control for the normalized right-left ideological index provided in the MPD. Country controls: averages between two elections of (log) GDP per capita, % tertiary
education, unemployment rate, population rate between 18 and 23 years old, and in the year of the elections. Weather controls: averages between two elections of linear and squared
temperature and precipitation and in the year of the elections. All columns control for country, year, and party fixed effects. Panel B weighs each party’s observation by the vote
gained in the national elections. Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D29: Weather-induced asylum applications and other dimensions of parties’ manifestos. 2SLS Estimates.

Europe + Europe - Multiculturalism + Multiculturalism - Refugees + Cultural Autonomy +
(1) (2) (3) (4) (5) (6)

Panel A: Unweighted
log(Asylum Applications) -0.269 0.0538 0.0161 -0.0953 -0.0899 -0.164

(0.314) (0.103) (0.172) (0.0791) (0.0886) (0.159)
F-Stat 51.412 51.412 51.412 51.412 51.412 51.412

Panel B: Weighted by party votes
log(Asylum Applications) -0.0494 0.0756 -0.0217 -0.135 0.000911 -0.000171

(0.181) (0.0803) (0.0829) (0.0894) (0.000963) (0.00318)
F-Stat 40.407 40.407 40.407 40.407 40.407 40.407

Right-left ideological index X X X X X X

Country Controls X X X X X X
Weather Controls X X X X X X
Country FE X X X X X X
Year FE X X X X X X
Party FE X X X X X X

N 520 520 520 520 520 520

Notes: The analysis is over a sample of parties that are running in multiple elections. The table reports the coefficients associated with (log) of the sum of asylum
applications in the period between one election year and the other. The dependent variable is the (normalized) share of quasi-sentences that refers to each dimension
as described in Table D3 in each party’s manifesto in the national elections. The coefficients reported are the 2SLS estimates where the (log) of asylum applications
is instrumented with the gravity-predicted (log) of asylum applications described in Equation (4.2) in the text. Robust standard errors, clustered at the country level,
in parentheses. All columns control for the normalized right-left ideological index provided in the MPD. Country controls: averages between two elections of (log)
GDP per capita, % tertiary education, unemployment rate, population rate between 18 and 23 years old, and in the year of the elections. Weather controls: averages
between two elections of linear and squared temperature and precipitation and in the year of the elections. All columns control for country, year, and party fixed
effects. Panel B weighs each party’s observation by the vote gained in the national elections. Robust standard errors, clustered at the country level, in parentheses.
F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.4 Additional Results

D.4.1 Parametric multilateral resistance term
The confounding influence that the attractiveness of alternative destinations exerts on the bilateral
migration rate, known as the multilateral resistance term, can generate biases in the estimation
of the push and pull factors of migration in a gravity equation. In an alternative specification of
the baseline estimating gravity equation (Equation (4.2)), I account for multilateral resistance in
two ways. Since the equation is estimated using OLS and not PPML, the use of fixed effects is
not enough to account for outward and inward multilateral resistance indexes (Fally, 2015). For
this reason, I also account for “inward” multilateral resistance term to migration (Anderson and
Van Wincoop, 2003) parametrically.2 The parametric version of the multilateral resistance term
is constructed for each of the six weather vectors W (fourth-order polynomial of temperature and
second-order polynomial of precipitation) as follows:

MRodt =
∑
k ̸=d

ωokWkt (D.1)

where ωok is the ratio of asylum applications from origin country o to destination country k over
the total asylum applications received by country k in the first available year. This weighting scheme
accounts for the relative propensity to apply for asylum in each country k among the EU27+UK
set of destination countries. The weighted average of weather conditions across the k destination
countries except for d accounts for changes in the attractiveness of alternative destinations that
would otherwise be inflated in Wot. The six dyad-specific time-varying regressors are included
in the estimating equation in the multilateral resistance term MRodt. This approach also allows
me to account for costs of migration common to all asylum seekers within a particular bilateral
link comprising both a time-invariant component, captured by the fixed effects, and a time-varying
component as a function of networks and weather conditions in other destinations. The resulting
estimating equation is written as

log (AsyAppodt) =f(Wot;BILod;α) + g(MRodt;β) + θod + µdt + χrt + uodt (D.2)

Table D30 displays the coefficients associated with the uninteracted origin temperature and
precipitation from Equation (4.2) respectively omitting and accounting for the multilateral resis-
tance term both non-parametrically, with the additional suite of fixed effects, and parametrically,
with the MRodt matrix. Both temperature and precipitation estimates substantially vary across
the four specifications, suggesting that accounting also parametrically for multilateral resistance
changes the semi-elasticity of migration to origin weather.

D.4.2 Gravity equation accounting for weather in host countries
To introduce an additional bilateral source of variation in the predicted values of asylum demands, I
include as regressors a measure of pull factors, measured as linear and squared terms of temperature
and precipitation in the destination country. The econometric specification is written as

log (AsyAppodt) = f(Wot, BILod, α) + g(Wdt, β) + θod + χrt + uodt (D.3)

2Since the objective of the gravity equation is to estimate the impact of weather fluctuations on
asylum seeker outflows, the “outward” multilateral resistance term that captures alternative source
countries’ conditions is not necessary for this context.
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Table D30: Gravity model for asylum applications accounting for multilateral resistance

(Log) Asylum Applications

(1) (2) (3) (4)

Temperature origin -2.055∗∗ -1.782∗∗ -2.133∗∗ -1.925∗∗

(0.601) (0.634) (0.602) (0.634)

Temperature origin2 0.0456 0.0411 0.0478 0.0434
(0.0289) (0.0293) (0.0290) (0.0294)

Temperature origin3 0.00208 0.00167 0.00214 0.00181
(0.00184) (0.00190) (0.00184) (0.00191)

Temperature origin4 -0.0000445 -0.0000313 -0.0000471 -0.0000355
(0.0000366) (0.0000392) (0.0000366) (0.0000393)

Precipitation origin 20.07 57.91 26.15 63.51
(66.69) (69.39) (67.09) (69.81)

Precipitation origin2 5016.9 -31071.0 4780.5 -32224.7
(48460.4) (51003.8) (48429.6) (50950.6)

Multilateral weather X X
p-value (Multilateral weather = 0) 0.000 0.000

Country-pair FE X X X X
Origin FE X X X X
Year FE X X
Destination FE X X
Destination-by-year FE X X
Region of origin-by-year FE X X

Number of country pairs 2084 2084 2084 2084
Number of origin countries 141 141 141 141
Destination Sample EU27 + UK EU27 + UK EU27 + UK EU27 + UK

Mean Outcome 3.733 3.733 3.733 3.733
SD Outcome 1.858 1.858 1.858 1.858
N 25951 25951 25951 25951
adj. R2 0.747 0.796 0.748 0.796

Notes: The estimated equation always uses origin-specific seasonal temperature and precipitation. Robust standard
errors, clustered at the origin-year level, in parentheses. Interaction terms between all weather variables and bilateral
controls are included in the regression but not displayed. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

where I account for a second-order polynomial of daily average temperatures and daily precip-
itation in the destination country. This alternative specification does not account for destination-
by-year fixed effects, collinear with the pull factors. Predicted values of asylym demands are then
constructed as ÂsyAppdt =

∑
o̸=d exp

(
α̂MXodt + β̂MWdt

)
. Table D7 displays the results for the

three different alternative measures of temperature and precipitation.

D.4.3 Destination-specific response function to weather fluctua-
tions

To account for the fact that weather deviations in the origin country have differential effects for
each destination country, I estimate destination-specific response functions. I estimate the following
equation in a pooled sample of origin-specific asylum demands to the EU27 + UK destination
countries.

log (AsyAppodt) = f(Wot, αd) + θod + ψdt + χrt + uodt (D.4)
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where I use the same vector of origin weather Wot including a fourth-order polynomial of daily
average temperatures, summed across the maize growing season and a second-order polynomial
of daily precipitation across the growing season and estimate destination-specific functions of this
vector. This alternative specification serves two purposes. First, by estimating destination-specific
responses to weather fluctuations in origin countries, the predicted values obtained leveraging only
weather variation are time-varying and pair-specific. Second, the equation now accounts for multi-
lateral resistance in an alternative manner by allowing the effect of push factors to be different across
destinations while controlling for time-varying destination-specific effects. Figure D20 displays the
destination-specific response functions to season-total temperature in origin countries.

Figure D20: Destination-specific response functions to temperature
in origin countries over maize growing season

Notes: The figure plots the predicted asylum applications-temperature
response function for each destination country for the applications com-
ing from non-OECD countries in the EU27+UK. Regression estimates are
from a fourth-order polynomial in daily average temperature over the maize
growing season weighted by maize area in each grid cell. The response func-
tion is estimated in a regression model that controls for a quadratic func-
tion in season-total precipitation, as well as destination-by-year, region-of-
origin-by-year, dyad-specific fixed effects. The solid black line reports the
pooled average response function as displayed in Figure D6 and its associ-
ated 95% confidence interval using country-year clustered standard errors.

D.4.4 Weather-induced anomalies in asylum applications lead to
higher acceptance rate

Weather anomalies and climate change are not valid criteria for asylum applications (UN, 1951).
There are two main channels through which weather fluctuations can increase asylum demands.
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On the one hand, asylum applications can increase due to economic reasons, on the other one, they
can increase due to conflict or persecution, for instance, as a result of crop failures or tightening
of natural resource constraints. Only in the latter case, asylum applications could be deemed valid
by the host countries. I test whether application decisions respond positively to weather-induced
asylum demands, providing an indirect test of the validity of weather-induced asylum applications
as in Missirian and Schlenker (2017b).

I compute anomalies in weather-induced asylum demands as the predicted change in the number
of applications from an origin country to a destination country as explained by deviations in the
weather variables from their respective sample averages. The weather-induced application anomaly
from origin o to destination d in year t is

nodt = eWotα̂+θ̂od+π̂t+λ̂o+µ̂d+ψ̂dt+χ̂rt+ σ̂2
u
2 − eWotα̂+θ̂od+π̂t+λ̂o+µ̂d+ψ̂dt+χ̂rt+ σ̂2

u
2 (D.5)

where the parameters are the coefficients from the baseline gravity in Equation (4.2) of log
asylum applications on weather, and σ̂2

u is the predicted variance of the error term from the same
regression. Then, I examine asylum decisions (acceptances) dodt in the following two years.

dodt =
2∑
τ=0

γ nod(t−τ) + θod + πt + λo + µd + ψdt + χrt + νodt (D.6)

Table D31 displays the coefficients on how weather-induced asylum anomalies translate into
additional acceptances accounting for up to two-year lagged application anomalies. Accounting for
both recognized refugee status and complementary protections granted (column 2), contempora-
neous and one-year lagged anomalies are positive and statistically significant and the sum of the
three coefficients is 45.23 (p-value: 0.001) for the baseline fourth-order polynomial model in tem-
perature. These findings suggest that weather-induced shocks to applications are deemed valid by
host countries at a much higher rate. Similar to findings in Missirian and Schlenker (2017b) in a
unilaterally-specified equation estimated on a sample until 2014, I find that weather shocks induce
people to flee and be recognized as needing international protection through refugee status.
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Table D31: Weather-induced asylum application anomalies and acceptance

(1) (2)

nodt 31.80∗ 36.25∗∗

(18.59) (17.73)

nodt−1 12.22∗∗∗ 18.90∗∗∗

(3.148) (3.742)

nodt−2 1.207 7.947
(5.624) (6.327)

Outcome Recognized decisions Recognized decisions &
Complementary Protection

p-value (γ1 + γ2 + γ3 = 0) 0.024 0.001
F-Stat (γ1 + γ2 + γ3 = 0) 5.076 10.822
Mean Outcome 150.547 513.577
Average acceptance rate 0.061 0.326
N 19125 19125
adj. R2 0.362 0.442

Notes: The estimated equation includes origin-, destination-, origin-destination, year-, region-of-
origin-by-year, destination-by-year fixed effects. Robust standard errors, clustered at the origin-
destination pair level, in parentheses. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.4.5 Additional individual level results

Table D32: Weather-induced asylum applications and environmental values. All controls.

Dep. variable CC EU Election (Mean: 0.068) CC Pol Priority (Mean: 0.106)

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

log(Asylum Applications) -0.00147 0.0226∗∗ 0.00746 0.0431∗∗

(0.00384) (0.0106) (0.00651) (0.0207)
Male -0.0119∗∗∗ -0.0118∗∗∗ -0.00795∗∗ -0.00777∗∗

(0.00395) (0.00395) (0.00367) (0.00363)
Education categories (baseline: Up to 15 years)

Between 16 and 19 years 0.0126∗∗∗ 0.0124∗∗∗ 0.00752∗∗ 0.00717∗∗

(0.00225) (0.00221) (0.00274) (0.00278)
20 years or older 0.0377∗∗∗ 0.0378∗∗∗ 0.0193∗∗∗ 0.0193∗∗∗

(0.00451) (0.00451) (0.00404) (0.00403)
Still studying 0.0483∗∗∗ 0.0478∗∗∗ 0.0299∗∗∗ 0.0293∗∗∗

(0.00693) (0.00691) (0.00757) (0.00770)
No education -0.0159 -0.0160 -0.0323∗∗∗ -0.0309∗∗∗

(0.00978) (0.00994) (0.0110) (0.0106)
Unemployed -0.00673∗ -0.00592∗ -0.00812∗∗ -0.00735∗∗

(0.00331) (0.00314) (0.00346) (0.00352)
Left Political Orientation 0.0343∗∗∗ 0.0342∗∗∗ 0.0234∗∗∗ 0.0232∗∗∗

(0.00943) (0.00943) (0.00770) (0.00768)

Weather controls X X X X
Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X
F-Statistic 21.566 26.241
N 106614 106614 130068 130068
Number of countries 28 28 28 28

Notes: The table replicates Table 4.1 reporting all individual controls included in the regressions. The 2SLS estimates use the predicted
asylum applications constructed from the gravity-predicted asylum application flows as described in Equation (4.2) in the text. Robust
standard errors, clustered at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

388



Table D33: Weather-induced asylum applications and environmental values. Heterogeneity by age.
2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4) (5) (6)

log(Asylum Applications) 0.0264∗∗ 0.0233∗ 0.0181 0.0514∗∗ 0.0374∗∗ 0.0386
(0.0108) (0.0118) (0.0124) (0.0209) (0.0169) (0.0264)

Sample 14-40 41-59 60+ 14-40 41-59 60+

Country FE X X X X X X
Year FE X X X X X X
Age FE X X X X X X
Region-by-year FE X X X X X X
Country-age linear trends X X X X X X

F-Stat 15.657 13.808 13.840 24.611 20.910 19.226
N 35938 36455 34221 44395 44428 41245

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which
they are interviewed. The dependent variable is a dummy equal to 1 if the respondent reports climate change
as a theme that should be discussed as a matter of priority during the electoral campaign for the next European
Parliament elections (columns 1 and 2, see Table D1 for exact wording and additional details on the construction
of the variable). In columns (3) and (4) the dependent variable is a dummy equal to 1 if the respondent reports
climate change as a theme that the European Parliament should give priority to when deliberating (see Table
D1 for exact wording and additional details on the construction of the variable). All columns report the
2SLS estimates where the (log) of asylum applications is instrumented with the gravity-predicted (log) of
asylum applications described in Equation (4.2) in the text. All columns control for individual characteristics
(Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed,
Left-wing oriented) and country-level covariates (Linear and squared five-year average temperature and total
precipitation, linear and squared annual temperature and total precipitation), and country, age, region-by-
survey-year fixed effects and country by age linear trends. Robust standard errors, clustered at the country
level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D34: Weather-induced asylum applications and environmental values.
Heterogeneity by gender. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.0160∗ 0.0137 0.0454∗∗ 0.0400
(0.00916) (0.00819) (0.0183) (0.0241)

Sample Female Male Female Male

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 20.414 21.154 27.587 21.963
N 58446 48168 70963 59103

Notes: The sample is restricted to survey respondents that have the same nationality
as the country in which they are interviewed. The dependent variable is a dummy equal
to 1 if the respondent reports climate change as a theme that should be discussed as
a matter of priority during the electoral campaign for the next European Parliament
elections (columns 1 and 2, see Table D1 for exact wording and additional details on
the construction of the variable). In columns (3) and (4) the dependent variable is a
dummy equal to 1 if the respondent reports climate change as a theme that the European
Parliament should give priority to when deliberating (see Table D1 for exact wording
and additional details on the construction of the variable). All columns report the
2SLS estimates where the (log) of asylum applications is instrumented with the gravity-
predicted (log) of asylum applications described in Equation (4.2) in the text. All
columns control for individual characteristics (Gender, Education (Up to 15 years; 16-19
years; 20 years or older; still studying; no education), Unemployed, Left-wing oriented)
and country-level covariates (Linear and squared five-year average temperature and
total precipitation, linear and squared annual temperature and total precipitation),
and country, age, region-by-survey-year fixed effects and country by age linear trends.
Robust standard errors, clustered at the country level, in parentheses. F-statistic refers
to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table D35: Weather-induced asylum applications, environmental values, and Google
Trends. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.0181∗ 0.0162∗ 0.0454∗∗ 0.0417∗∗∗

(0.00934) (0.00890) (0.0191) (0.0142)

Google Trends “Climate change” 0.00209∗ 0.00282∗∗ -0.00243 0.000430
(0.00102) (0.00125) (0.00266) (0.00227)

Google Trends “Climate protests” -0.000550 0.000628 0.0243∗∗ 0.0185∗∗

(0.00441) (0.00488) (0.00943) (0.00835)

Google Trends “Migration” 0.00187 -0.00345∗

(0.00137) (0.00202)

Google Trends “Refugee” -0.00198 -0.00118
(0.00278) (0.00310)

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 23.481 26.961 29.272 43.920
N 106614 106614 130068 130068

Notes: The sample is restricted to survey respondents that have the same nationality as the country
in which they are interviewed. The dependent variable is a dummy equal to 1 if the respondent
reports climate change as a theme that should be discussed as a matter of priority during the
electoral campaign for the next European Parliament elections (columns 1 and 2, see Table D1 for
exact wording and additional details on the construction of the variable). In columns (3) and (4)
the dependent variable is a dummy equal to 1 if the respondent reports climate change as a theme
that the European Parliament should give priority to when deliberating (see Table D1 for exact
wording and additional details on the construction of the variable). All columns report the 2SLS
estimates where the (log) of asylum applications is instrumented with the gravity-predicted (log)
of asylum applications described in Equation (4.2) in the text. All columns control for individual
characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying;
no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared
five-year average temperature and total precipitation, linear and squared annual temperature and
total precipitation), and country, age, region-by-survey-year fixed effects and country by age linear
trends. Robust standard errors, clustered at the country level, in parentheses. F-statistic refers to
the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

391



Table D36: Asylum applications and Google Trends. OLS and 2SLS estimates.

Google Trends for Climate change Climate protests Migration Refugee

(1) (2) (3) (4) (5) (6) (7) (8)

log(Predicted Asylum Applications) 0.333 -0.705∗∗ -1.037 -0.624
(0.381) (0.308) (0.690) (0.738)

log(Asylum Applications) 0.372 -0.786∗ -1.157 -0.696
(0.415) (0.433) (0.826) (0.966)

Country FE X X X X X X X X
Year FE X X X X X X X X

Outcome Mean 11.15 2.38 23.92 9.36
Outcome SD 5.96 3.82 18.32 9.36

F-Stat 17.318 17.318 17.318
N 444 444 444 444 444 444 444 444

Notes: Country-level estimates regressing annual average Google Searches for “Climate change” (columns 1-2), “Climate protests”
(columns 3-4), “Migration” (columns 5-6), “Refugee” (columns 7-8) on the instrument (odd columns) and the actual flows instrumented
with the instrument (even columns). The gravity-predicted (log) of asylum applications is obtained from the predicted values from
Equation (D.3) in the text. All columns control for country and survey year fixed effects. Robust standard errors, clustered at the
country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table D37: Weather-induced asylum applications and environmental values. Heterogeneity by destination
country. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.00807 0.0193∗ 0.0213 0.0515∗

(0.00585) (0.0115) (0.0167) (0.0301)

Destination country sub-sample Below median Above median Below median Above median

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 13.865 11.286 14.272 12.929
N 49384 57228 59095 70972

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are
interviewed. The dependent variable is a dummy equal to 1 if the respondent reports climate change as a theme that
should be discussed as a matter of priority during the electoral campaign for the next European Parliament elections
(columns 1 and 2, see Table D1 for exact wording and additional details on the construction of the variable). In columns
(3) and (4) the dependent variable is a dummy equal to 1 if the respondent reports climate change as a theme that the
European Parliament should give priority to when deliberating (see Table D1 for exact wording and additional details
on the construction of the variable). Odd columns report the estimates in the sub-sample of countries below the median
number of asylum demands received, even columns report the estimates in the sub-sample of countries above the median
number of asylum demands received ( Austria, Belgium, Denmark, France, Germany, Greece, Hungary, Ireland, Italy,
Netherlands, Poland, Spain, Sweden, United Kingdom). All columns report the 2SLS estimates where the (log) of asylum
applications is instrumented with the gravity-predicted (log) of asylum applications described in Equation (4.2) in the
text. All columns control for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or
older; still studying; no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared
five-year average temperature and total precipitation, linear and squared annual temperature and total precipitation),
and country, age, region-by-survey-year fixed effects and country by age linear trends. Robust standard errors, clustered
at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D38: Weather-induced asylum applications and perception of climate change as a global problem

Dep. variable CC World Problem (Mean: 0.37) CC Seriousness(1-10) (Mean: 7.57)

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

log(Asylum Applications) 0.00646 0.00108 0.0239 -0.129
(0.00666) (0.0113) (0.0451) (0.110)

Weather Controls X X X X
Individual Controls X X X X
Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Statistic 20.995 21.172
N 116879 116879 116110 116110
Number of countries 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are
interviewed. The dependent variable in columns 1-2 is a dummy equal to 1 if the respondent reports climate change
or global warming as the most serious problem the world is currently facing as a whole. The dependent variable in
columns 3-4 is a categorical variable ranging from 1 to 10 that indicates the level of seriousness of climate change as a
world problem perceived by the respondent (see Table D1 for exact wording and additional details on the construction of
the variable). Asylum Applications is the sum of the asylum applications in a given country in the five years preceding
the survey year, as defined in Equation 4.1. Columns (2) and (4) report the 2SLS estimates where the (log) of asylum
applications is instrumented with the gravity-predicted (log) of asylum applications described in Equation (4.2) in the
text. All columns control for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or
older; still studying; no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared
five-year average temperature and total precipitation, linear and squared annual temperature and total precipitation),
and country, age, region-by-survey-year fixed effects and country by age linear trends. Robust standard errors, clustered
at the country level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels: ∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D39: Weather-induced asylum applications and migration as political priority

Dep. variable Migration EU Election (Mean: 0.078) Migration Pol Priority (Mean: .085)

OLS 2SLS OLS 2SLS
(1) (2) (3) (4)

log(Asylum Applications) 0.0135 0.00585 0.0126 0.0383∗∗

(0.00999) (0.0163) (0.00853) (0.0162)

Weather Controls X X X X
Individual Controls X X X X
Country FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Statistic 14.434 21.434
N 106613 106614 130067 130068
Number of countries 28 28 28 28

Notes: The sample is restricted to survey respondents that have the same nationality as the country in which they are interviewed.
The dependent variable in columns 1-2 is a dummy equal to 1 if the respondent reports migration as a theme that the European
Parliament should give priority to when deliberating. The dependent variable in columns 3-4 is a dummy equal to 1 if the
respondent reports migration as a theme that should be discussed as a matter of priority during the electoral campaign for the
next European Parliament elections (see Table D1 for exact wording and additional details on the construction of the variable).
Asylum Applications is the sum of the asylum applications in a given country in the five years preceding the survey year, as
defined in Equation 4.1. Columns (2) and (4) report the 2SLS estimates using the predicted asylum applications from the
gravity equation with bilateral fixed effects using destination-specific coefficients of weather fluctuations in origin countries. All
columns control for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20 years or older; still studying;
no education), Unemployed, Left-wing oriented) and country-level covariates (Linear and squared five-year average temperature
and total precipitation, linear and squared annual temperature and total precipitation), and country, age, region-by-survey-year
fixed effects and country by age linear trends. Robust standard errors, clustered at the country level, in parentheses. F-statistic
refers to the K-P F-statistic for weak instruments. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D40: Weather-induced asylum applications and environmental values. Hetero-
geneity by political orientation. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.0250∗∗ 0.0191 0.0444∗∗ 0.0326
(0.0100) (0.0174) (0.0187) (0.0327)

Sample Right-wing Left-wing Right-wing Left-wing

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 24.332 16.237 25.334 11.061
N 79947 26666 97464 32604

Notes: The sample is restricted to survey respondents that have the same nationality as the
country in which they are interviewed. The dependent variable is a dummy equal to 1 if
the respondent reports climate change as a theme that should be discussed as a matter of
priority during the electoral campaign for the next European Parliament elections (columns
1 and 2, see Table D1 for exact wording and additional details on the construction of the
variable). In columns (3) and (4) the dependent variable is a dummy equal to 1 if the respondent
reports climate change as a theme that the European Parliament should give priority to when
deliberating (see Table D1 for exact wording and additional details on the construction of the
variable). All columns report the 2SLS estimates where the (log) of asylum applications is
instrumented with the gravity-predicted (log) of asylum applications described in Equation
(4.2) in the text. All columns control for individual characteristics (Gender, Education (Up
to 15 years; 16-19 years; 20 years or older; still studying; no education), Unemployed, Left-
wing oriented) and country-level covariates (Linear and squared annual average temperature
and total precipitation in the country; Population), and country, survey year, birth-year and
country by year of birth fixed effects. Robust standard errors, clustered at the country level, in
parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance levels:
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table D41: Weather-induced asylum applications and environmental values. Hetero-
geneity by education. 2SLS estimates.

Dep. variable CC EU Election CC Pol Priority

(1) (2) (3) (4)

log(Asylum Applications) 0.0174∗ 0.0103 0.0334∗∗ 0.0633
(0.00901) (0.0107) (0.0142) (0.0386)

Sample Non Tertiary Tertiary Non Tertiary Tertiary

Country FE X X X X
Year FE X X X X
Age FE X X X X
Region-by-year FE X X X X
Country-age linear trends X X X X

F-Stat 14.028 16.635 22.434 23.388
N 73229 33382 89513 40555

Notes: The sample is restricted to survey respondents that have the same nationality as the
country in which they are interviewed. The dependent variable is a dummy equal to 1 if the
respondent reports climate change as a theme that should be discussed as a matter of priority
during the electoral campaign for the next European Parliament elections (columns 1 and 2, see
Table D1 for exact wording and additional details on the construction of the variable). In columns
(3) and (4) the dependent variable is a dummy equal to 1 if the respondent reports climate
change as a theme that the European Parliament should give priority to when deliberating (see
Table D1 for exact wording and additional details on the construction of the variable). All
columns report the 2SLS estimates where the (log) of asylum applications is instrumented with
the gravity-predicted (log) of asylum applications described in Equation (4.2) in the text. All
columns control for individual characteristics (Gender, Education (Up to 15 years; 16-19 years; 20
years or older; still studying; no education), Unemployed, Left-wing oriented) and country-level
covariates (Linear and squared five-year average temperature and total precipitation, linear and
squared annual temperature and total precipitation), and country, age, region-by-survey-year
fixed effects and country by age linear trends. Robust standard errors, clustered at the country
level, in parentheses. F-statistic refers to the K-P F-statistic for weak instruments. Significance
levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D.4.6 Party-level empirical approach
In Section 4.5.1, I explore the aspects of the supply side and the political dynamics of the party
system, by investigating whether changes in asylum applications have determined a shift in the
supply side of the climate-related political process. I use the information on parties’ political agenda
related to the environment from the Manifesto Project Database (MPD) to measure the degree of
environmentalism of each party in national elections. Using a similar approach to Moriconi et al.
(2019), I exploit within-party variation in the environmental political agenda across elections. The
econometric specification writes as follows:

environmentalismpdt = β1 log

(
s∑

τ=1

AsyAppd,t−τ

)
+X ′

dtγ + Z′
ptδ + αp + µd + λt + εpdt (D.7)

where environmentalismpdt is the normalized share with mean equal to 0 and standard devia-
tion equal to 1 of quasi-sentences that positively referred to policies in favor of protecting the envi-
ronment and fighting climate change in the political manifesto of party p in country d in election year
t. The main variable of interest is

∑s

τ=1 AsyAppd,t−τ , which is the cumulative number of asylum
applications between one election and the other. In X ′

dt, I include country-level socio-economic and
environmental characteristics averaged over the period between two consecutive elections in a coun-
try that may confound the effect of migration flows on electoral outcomes. The use of party-specific
fixed effects αp and country-specific fixed effects µd identifies the effect of asylum applications on
the political agendas only through changes within parties over time. Any time-invariant feature of
countries and parties will not affect identification, since it will be filtered out by these fixed effects.
Election-year fixed effects (λt) capture common trends over time. Standard errors are clustered at
the country level. The inclusion of party- and country-fixed effects guarantees the identification of
the effect of weather-induced asylum seeker flows on parties’ environmental preferences only through
changes in agendas for parties that were present in at least two elections. This approach captures
changes in the agendas of existing parties in response to changes in weather-induced flows, rather
than the entry or exit of new parties.
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