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Résumé : La résistance aux antibiotiques est de plus en plus courante.
En particulier, la fraction croissante d’ Escherichia coli commensaux et
pathogènes exprimant des bêta-lactamases à spectre étendu et/ou des
carbapénémases est alarmante. E. coli est une cause majeure d’infections
courantes, telles que les infections urinaires, qui touchent plus de 150
millions de personnes dans le monde. Il est important de noter que de
nombreuses infections récidivent. Il est donc essentiel de comprendre en
profondeur la sensibilité des isolats cliniques d’E. coli aux bêtalactamines
pour proposer des traitements efficaces.
Les bactéries peuvent échapper aux traitements de différentes manières.
Les bactéries résistantes se développent et se divisent normalement en
présence d’antibiotiques. Leur caractérisation est facile à l’aide de tests
de diagnostic standard. Les bactéries tolérantes se contentent de sur-
vivre en présence d’antibiotiques et repoussent lorsque l’antibiotique est
retiré ou dégradé. Ce comportement biphasique complique la prédiction
des résultats du traitement. La résilience au traitement est notamment
observée dans la tolérance collective aux antibiotiques, où les cellules
mortes libèrent des bêta-lactamases qui dégradent l’antibiotique dans
l’environnement. Les approches standard ne sont pas adaptées pour
quantifier et comprendre le rôle de la résistance et/ou de la résilience.
Nos principaux objectifs sont de quantifier la dynamique de la mort cellu-
laire au cours de traitements répétés et d’évaluer l’impact des différentes
conditions environnementales sur la mort cellulaire. Tout d’abord, nous
avons développé de nouveaux protocoles pour résoudre les problèmes de
variabilité dans les mesures de densité optique et pour effectuer des tests

d’unités formant colonies de manière efficace. Grâce à ces techniques,
nous avons généré un vaste ensemble de données décrivant l’impact de
traitements répétés sur différents isolats cliniques. Nous avons calibré
un modèle, précédemment développé par l’équipe, de la réponse de la
population aux antibiotiques et de l’évolution de l’environnement dans le
contexte de tolérance collective aux antibiotiques. Nous avons calibré le
modèle sur l’ensemble des données et avons montré qu’il peut capturer
l’évolution temporelle de la biomasse et du nombre de cellules vivantes.
En outre, nous avons démontré qu’en utilisant ce modèle, nous pouvons
prédire le nombre de cellules vivantes à partir des mesures de la biomasse.
Dans ce travail, nous avons mis en évidence l’écart entre l’in vitro et
l’in vivo en évaluant l’effet de différentes conditions de croissance sur la
survie des cellules. Pour relever ce défi, nous avons étudié la réponse bac-
térienne dans l’urine humaine et dans le milieu de Mueller-Hinton (milieu
utilisé pour les antibiogrammes standard), ainsi que dans un milieu défini
avec différentes sources de carbone. Tout d’abord, nous avons observé
une meilleure survie dans l’urine par rapport au milieu Mueller-Hinton,
mais ce résultat variait en fonction de la souche et de la concentration
d’antibiotique. Il est intéressant de noter que les données expérimen-
tales ont montré que la concentration en nutriments n’avait pas d’effet
sur le taux de croissance, mais un effet important sur la capacité de
charge et la réponse aux antibiotiques. Grâce à l’étalonnage du modèle
et à l’analyse des valeurs des paramètres du modèle, nous avons identifié
des processus biologiques qui pourraient expliquer les différences entre le
comportement des bactéries dans différents milieux.
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Abstract: Resistance to first-line antimicrobial drugs is now com-
monly encountered. In particular, the increasing fraction of commen-
sal and pathogenic Escherichia coli expressing extended-spectrum beta-
lactamases and/or carbapenemases is alarming. E. coli is a major cause
of common infections such as urinary tract infections, affecting over 150
million people worldwide. Importantly, many infections relapse. There-
fore, an in-depth understanding of the susceptibility of E. coli clinical
isolates to beta-lactams is essential for proposing effective treatments.
Bacteria might escape treatments in many different ways. Resistant
bacteria grow and divide normally in the presence of antibiotics. Their
characterization is easy using standard diagnostic tests. Resilient bac-
teria merely survive in the presence of antibiotics and regrow when the
antibiotic is removed or degraded. This biphasic behavior complicates
the prediction of treatment outcomes. Resilience to treatment is no-
tably observed in collective antibiotic tolerance, where dead cells release
beta-lactamases degrading the antibiotic in the environment. Standard
approaches are not adapted for quantifying and understanding the role
of resistance and/or resilience.
Our main objectives are to quantify the dynamics of cell death during
repeated treatments and to quantify the impact of different growth con-
ditions on cell death. First, we developed novel protocols to address
variability issues in optical density measurements, and to perform colony

forming unit assays in an efficient manner. Using these techniques, we
generated an extensive dataset describing the impact of repeated treat-
ments on different clinical isolates. We calibrated a previously developed
in the team model of population response to antibiotic and evolution
of the environment in the context of collective antibiotic tolerance. We
calibrated the model to our dataset, and we showed that the model ac-
counts for the temporal evolution of both biomass and live cell counts.
Further, we demonstrated that using this model we can predict live cell
number from biomass measurements.
In addition, in this work we highlighted the in vitro - in vivo gap by
assessing the effect of different growth conditions on cell survival. To
address this challenge, we studied the bacterial response in human urine
and in Mueller–Hinton media (media used for standard antibiotic suscep-
tibility tests), as well as a defined media with different carbon sources.
First, we observed better survival in urine compared to Mueller-Hinton
media, but this result varied depending on the strain and the antibiotic
concentration. Interestingly, the experimental data showed that nutrient
concentration had no effect on growth rate, but a strong effect on car-
rying capacity and antibiotic response. Through model calibration and
analysis of identified model parameter values, we identified biological
processes that could explain the differences between bacterial behavior
in different media.
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Résumé en français

La résistance aux antibiotiques est un problème de santé mondiale, identifié comme pri-

oritaire par l’Organisation Mondiale de la Santé. De nombreuses infections récidivent.

Escherichia coli est une cause majeure d’infections courantes, telles que les infections

urinaires, qui touchent plus de 150 millions de personnes dans le monde. Pour traiter

ces infections, il existe plusieurs classes d’antibiotiques, définies en fonction de leur mé-

canisme d’action. La classe la plus prescrite actuellement est celle des bêtalactamines.

Ces petites molécules inactivent des protéines liées aux pénicillines, qui jouent un rôle

crucial dans la formation et le maintien de la paroi cellulaire. Cette inactivation peut en-

traîner la filamentation (élongation sans division), la perte de la forme habituelle, voire

la mort des bactéries.

Les bactéries peuvent échapper aux traitements de différentes manières. Les bac-

téries résistantes se développent et se divisent normalement en présence d’antibiotiques.

Leur caractérisation est relativement facile à réaliser à l’aide de tests de diagnostic

standard. Les bactéries tolérantes, en revanche, survivent difficilement en présence

d’antibiotiques, mais lorsqu’on retire ou dégrade l’antibiotique, elles repoussent. Ce

comportement biphasique complique la prédiction des résultats du traitement. La résilience

au traitement se manifeste notamment dans la tolérance collective aux antibiotiques,

où les cellules mortes libèrent des bêta-lactamases qui dégradent l’antibiotique dans

l’environnement. Les approches standards ne sont pas adaptées pour quantifier et com-

prendre le rôle de la résistance et/ou de la résilience.

De plus en plus d’E. coli commensaux et pathogènes expriment des bêta-lactamases

à spectre étendu. Ces bactéries provoquent des échecs de traitement et des infections

récurrentes. Il est donc essentiel de comprendre en profondeur la sensibilité des isolats
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cliniques d’E. coli aux bêtalactamines pour proposer des traitements efficaces.

Dans cette thèse, je me suis intéressée aux infections récurrentes. Plusieurs facteurs

pourraient impacter l’efficacité du traitement. Premièrement, il est crucial de compren-

dre les mécanismes de survie de la population bactérienne au traitement par bêtalac-

tamines. Deuxièmement, la réponse d’une population bactérienne aux antibiotiques est

multifactorielle et peut dépendre de son environnement. Comprendre l’influence de

l’environnement peut être un bon point de départ pour appréhender la différence entre

les conditions in vitro et in vivo. Pour cette raison, un autre objectif de ce travail est de

quantifier l’impact des différentes conditions environnementales sur la mort cellulaire.

Notre approche combine différentes méthodes de caractérisation in vitro permettant

de générer des données de haute qualité sur la densité optique (DO, 600 nm) ainsi que

des comptages respectifs des cellules vivantes (UFC) de manière efficace. Grâce à cette

approche, j’ai généré un ensemble de données riche décrivant la réponse d’une var-

iété d’isolats cliniques aux différents traitements antibiotiques dans diverses conditions

expérimentales. Afin d’améliorer l’analyse et la compréhension des mécanismes sousja-

cents, nous avons utilisé un modèle mathématique qui synthétise les connaissances sur

la réponse bactérienne aux traitements par bêtalactamines à plusieurs échelles. Nous

avons calibré ce modèle avec nos données pour obtenir les résultats intéressants, décrits

ci-dessous.

Cette thèse est divisée en sept chapitres et quatre annexes. Le premier chapitre

présente le contexte général de l’étude : il définit ce qu’est la résistance aux antibio-

tiques et décrit les principaux défis associés aux échecs de traitement. Il aborde égale-

ment l’écart entre les expériences in vitro et in vivo et les approches quantitatives de

caractérisation de la résistance aux antibiotiques. Dans ce chapitre, je détaille égale-

ment mon approche et les principales contributions de ce travail.

Le chapitre 2 décrit les développements expérimentaux que j’ai réalisés afin d’améliorer

la quantité et la qualité des données. Comme mentionné précédemment, nous nous

sommes intéressés à caractériser la réponse de divers isolats cliniques dans plusieurs

conditions environnementales et face à différents traitements. Notre approche inclut la

calibration d’un modèle mécanistique sur les données expérimentales, ce qui nécessite

une grande quantité de données de bonne qualité.
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Le premier problème que j’ai rencontré est la forte variabilité des mesures de den-

sité optique (DO). Cela inclut non seulement la variabilité entre les expériences, mais

aussi celle entre les répliquas techniques d’une même expérience. Le comportement

typique que nous observons consiste en une phase de croissance exponentielle, suivie

d’un arrêt de croissance, puis parfois d’une reprise de croissance. Au cours de certaines

expériences, nous avons observé des différences de plusieurs heures dans le temps de

repousse ou même, parfois, l’absence de repousse pour un répliqua tandis qu’elle était

présente pour l’autre. Pour étudier la cause de ces observations, nous avons effectué un

scan complet du fond de chaque puits de la plaque expérimentale à la fin de l’expérience

et découvert des motifs inhomogènes.

L’un des mécanismes connus d’adaptation des bactéries à un environnement défa-

vorable est la formation de biofilms, qui sont des agrégats de bactéries formant des

couches de protection contre les antibiotiques. J’ai utilisé le cristal violet, un marqueur

des biofilms, et j’ai confirmé la présence de ces structures. La solution que nous avons

trouvée a été d’ajouter du Tween 20 au milieu, une technique déjà utilisée pour lutter

contre les biofilms dans les bioréacteurs.

La deuxième partie du protocole expérimental qui a dû être améliorée concerne

l’estimation du nombre de cellules vivantes. Dans cette thèse, je propose une approche

où l’échantillonnage, les dilutions en série et les dépôts sur les boîtes de Petri sont réal-

isés pour les 96 conditions simultanément à l’aide d’une pipette à 96 canaux. Pour

pouvoir compter les colonies sur ces boîtes, j’ai utilisé un logiciel développé par une

autre équipe, que j’ai re-entraîné avec mes données et adapté à mon setup expérimental.

Le chapitre 3 décrit les travaux réalisés pour caractériser en détail la réponse de la

population bactérienne aux traitements antibiotiques. Je présente ici le modèle utilisé

tout au long de cette thèse. Il s’agit d’un modèle mécanistique précédemment développé

au sein de l’équipe, qui capture les différents aspects de la réponse bactérienne : la

filamentation induite par les bêtalactamines, la mort cellulaire lorsque les bactéries at-

teignent une longueur critique, la dépendance de cette longueur critique à la concen-

tration d’antibiotique, et enfin la dégradation de l’antibiotique par les bêta-lactamases

libérées par les cellules mortes dans le milieu.

En utilisant l’approche détaillée décrite précédemment, j’ai caractérisé phénotyp-

7



iquement la réponse à la cefotaxime pour une collection de 11 isolats cliniques. J’ai

ensuite réussi à calibrer le modèle sur les données de densité optique (DO) et de unités

formant colonies (UFC) ensemble, ce qui nous a permis de réconcilier les différences en-

tre l’évolution temporelle de la biomasse et le nombre de cellules vivantes, et de mieux

comprendre les mécanismes d’échec des traitements pour ces bactéries. L’analyse des

valeurs des paramètres du modèle a également permis de relier la réponse phénotypique

au contexte génétique de certaines souches.

Le chapitre 4 décrit les travaux réalisés pour tester la capacité prédictive du modèle.

L’objectif principal était de pouvoir prédire le nombre de cellules vivantes en utilisant

uniquement les données de DO. J’ai tenté d’utiliser les données de DO des expériences

décrites dans le chapitre précédent, mais cette approche n’a pas fourni de bonnes pré-

dictions de manière robuste. J’ai donc réalisé des expériences supplémentaires où j’ai

ajouté une deuxième dose d’antibiotique quelques heures après le début de l’expérience.

En utilisant l’évolution temporelle de la DO pour quatre expériences (une expérience

de traitement simple où tous les antibiotiques sont administrés au début et trois expéri-

ences de traitement répétées avec une deuxième administration), j’ai réussi à obtenir

de bonnes prédictions du nombre de cellules vivantes pour les traitements simples de

manière robuste. Dans ce chapitre, je décris également les analyses que j’ai effectuées

pour enquêter sur la valeur ajoutée des expériences avec traitements répétés. Pour aller

plus loin, nous avons testé la capacité du modèle à prédire le nombre de cellules vivantes

associé à l’effet de l’inoculum et à identifier un traitement optimal.

C’est déjà connu que les conditions dans lesquelles la susceptibilité aux antibio-

tiques est normalement testée sont très éloignées de celles des infections réelles. Plusieurs

facteurs peuvent influencer l’efficacité des traitements : l’identité de la souche, des

facteurs pharmacologiques, des facteurs humains (l’immunité locale, l’exposition an-

térieure aux antibiotiques, les infections passées) et des facteurs environnementaux.

Dans le chapitre 5, j’ai utilisé la même approche que dans le chapitre 3 pour caractériser

la réponse de la population bactérienne aux traitements de cefotaxime dans différents

milieux. Pour cette caractérisation, nous avons choisi le milieu Mueller-Hinton (MH),

le milieu standard pour les tests de susceptibilité en clinique, et l’urine humaine, milieu

choisi pour mimer les conditions des infections urinaires.
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Nous avons observé que les souches survivent mieux dans l’urine par rapport au MH

lorsqu’elles sont soumises à de faibles concentrations d’antibiotique, alors que l’inverse

est vrai : elles repoussent plus rapidement dans le MH par rapport à l’urine quand elles

sont soumises à de fortes concentrations d’antibiotique. Étant donné que les nutriments

principaux dans l’urine et dans le MH sont les acides aminés, mais qu’il existe une

quantité différente disponible, j’ai également testé certaines souches dans un milieu

défini (M9) avec différentes concentrations de casamino acids.

À partir de ces expériences, nous avons observé que le taux de croissance ne varie

pas entre les différentes concentrations de nutriments, mais qu’il y a une grande dif-

férence dans le temps de repousse. Afin de mieux comprendre les différences entre

les milieux, j’ai calibré le modèle et analysé les valeurs des paramètres. L’utilisation

d’un algorithme de réduction de dimensionnalité (PCA) a permis d’identifier une expli-

cation possible pour les différences observées : il pourrait y avoir une différence dans

le niveau de production et/ou d’activité des bêta-lactamases entre l’urine et le MH. Le

PCA a également montré que le milieu a un impact plus important sur les valeurs des

paramètres que l’identité de la souche.

Il existe plusieurs extensions possibles pour ce travail. La première serait de tester

expérimentalement l’hypothèse identifiée par l’analyse en composantes principales (PCA).

De manière plus globale, il serait très intéressant de quantifier l’impact d’autres facteurs

environnementaux, tels que le pH ou la concentration de fer. Une autre extension con-

sisterait à combiner les approches des chapitres 4 et 5 afin d’étudier la réponse aux

traitements multiples dans différents milieux. Par ailleurs, il serait fascinant de tenter

de distinguer les effets individuels des bêta-lactamases et des mutations variées. Notre

modèle pourrait également servir de base solide pour un modèle pharmacodynamique et

pharmacocinétique (PK/PD), qui pourrait un jour aider les cliniciens à améliorer leurs

méthodes de diagnostic.
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Chapter 1

Introduction

1.1 Context and motivation

Antimicrobial resistance is recognised by the World Health Organization (WHO) as one

of today’s major health problems [1]. An increasing incidence of hospital-acquired in-

fections, such as bacteremia, pneumonia and urinary tract infections (UTIs) is caused by

antibiotic resistant pathogens. These infections can be associated with an increased mor-

bidity and mortality (15% in bacteremia ) and their burden is thought to be substantial

compared to other infectious diseases [2]. Carbapenem-resistant and third-generation

cephalosporin-resistant Enterobacterales continue to be in the critical priority category

of the WHO bacterial priority pathogen list 2024 in terms of the need for new antibiotic

development [3]. This includes Escherichia coli, Klebsiella pneumoniae, and Enter-

obacter spp.

E. coli is a commensal member of the vertebrate gut microbiota and a major oppor-

tunistic pathogen [4, 5]. E. coli strains can cause intestinal and extra-intestinal infec-

tions such as UTIs, bacteremia, meningitis and diverse intra-abdominal, pulmonary and

skin infections. E. coli genome is highly plastic comprising between 3900 and 5800

genes. These genes are found in the chromosome or carried on plasmids. Phenomena

like mutations, genetic recombination and horizontal gene transfer contribute largely to

the diversity of the species. While E. coli has a high genetic diversity, it has a clonal

population structure represented by eight phylogroups: B2, G, F. D, A, B1, C and E.
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No strict phylogenetic differences separate commensal or extra-intestinal pathogenic

strains. However, while strains from the phylogroups A, B1 and E are mostly commen-

sal, strains of the phylogroups B2 and D are associated with extra-intestinal infections.

While E. coli is an intrinsically sensitive species, it has a large capacity to accumulate

genetic resistance via mutations and horizontal gene transfer.

The most commonly prescribed class of antibiotics today (about 50% of all antibi-

otic prescriptions worldwide [6]) is the β-lactam class. Based on the chemical structure

of their core scaffold, they are divided into penicillins, cephalosporins, monobactams

and carbapenems. Cephalosporins are the most widely used β-lactams and are com-

monly prescribed for both mild and severe infections, including UTIs and skin and soft

tissue infections. They are divided into four generations, the most commonly used being

second generation, narrow-spectrum antibiotics and third generation, broad-spectrum

antibiotics [7]. Combining a beta-lactam with a beta-lactamase inhibitor increases the

antibacterial action and spectrum of beta-lactams especially against beta-lactamase pro-

ducers E. coli. Lastly, carbapenems are the newest and most effective antibiotics in

this class. They are the antibiotics of last resort, reserved for serious and complicated

infections.

The mechanism of action of these penicillin-derived antibiotics is to inactivate penicillin-

binding proteins (PBPs), named after their affinity for the famous antibiotic. These pro-

teins play an important role in the formation and maintenance of the cell wall and cell

shape. During their normal life cycle, bacteria undergo several morphological transfor-

mations, each of which depends on different PBPs. For example, in E. coli, PBP3 acts

during septation and PBP2 controls cell elongation. Class A PBPs (including PBP1)

affect general morphological development. Inhibition of PBP3 can lead to inhibition of

cell division. Deletion of PBP2 can result in loss of rod shape and formation of spheri-

cal cells. Inhibition of PBP1 disrupts the peptidoglycan synthesis machinery, resulting

in loss of coordination between elongation and septation, "breaks" in the peptidoglycan

surface, or changes in cell diameter [8].

At one time, these broad-spectrum antibiotics were highly effective against gram-

negative bacilli and most enterobacteriaceae [9]. However, the extensive use of these an-

tibiotics in both medicine and agriculture exerted selective pressure on bacteria, leading

18



to the acquisition of resistance to all known β-lactams [6]. Resistance to beta-lactams

mainly through beta-lactam hydrolysis is nowadays one of the main problematic mech-

anisms of antibiotic resistance in E. coli.

There are many ways for bacteria to evade antibiotic treatment. The best-studied

phenomena is individual resistance, which allows cells to grow and divide normally

in the presence of supposedly inhibitory concentrations of antibiotics. Antibiotic re-

sistance is often mediated by acquisition of resistance genes and can emerge due to

selective pressure from the antibiotic.

In terms of resistance to β-lactam treatments, we can identify three main groups of

mechanisms: (i) modification of the antibiotic target, (ii) regulation of influx or efflux

pumps, or other membrane permeability modifications, or (iii) enzymatic degradation

of antibiotics [10]. The most prominent of the three is the expression of β-lactamases,

which are able to hydrolyse β-lactam antibiotics inside and outside the cell. Based on

peptide sequence and their active site, the β-lactamases were classified in 1980 and

divided into groups [11, 12]. For instance, the CTX-M enzyme is a class β-lactamase

(Ambler definition), that hydrolyse the antibiotic after the formation of an acyl-enzyme

intermediate. Interestingly, multiple β-lactamases encoding genes can be found together

in one bacterial strain [13].

Another form of antibiotic escape is tolerance, which allows bacteria to merely sur-

vive during treatment without necessarily being genetically resistant. This can occur

through individual adaptations such as changes in growth rate, length of lag phase or

changes in cell shape, or through population effects which can also affect bacterial re-

sponse to β-lactams [14, 15].

As well as having individual survival means, bacteria as a population can survive

antibiotic concentrations that are lethal to individual cells. This can be due to a variety

of different mechanisms, such as inter-population communication or growth inhibition.

One of the most common strategies is called Collective Antibiotic Tolerance (CAT) and

consists of the release into the environment of β-lactamases capable of degrading antibi-

otics following the death of a fraction of the population. The growth of the population

depends on its initial density: if the antibiotic is degraded to sub-lethal levels before the

entire population is eradicated, the survivors are able to rebuild the population [16].
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Nowadays, an increasing proportion of commensal and pathogenic E. coli expresses

extended spectrum β-lactamases (ESBL) and/or carbapenemases. The emergence of

ESBL-producing bacteria causing urinary tract and bloodstream infections worldwide

is one of the major epidemiological challenges [17]. Infections caused by these bacteria

are associated with delays in appropriate treatment, resulting in longer hospital stays,

increased hospital costs and even higher patient mortality [18].

Urinary tract infections (UTIs) are among the most common infections today [19].

In 2019, there were more than 400 million cases of UTI worldwide. These infections

also caused more than 200,000 deaths in the same year. About half of all women will

experience a UTI at least once in their lifetime [20]. Although more common in women,

UTIs can also affect men [21]. If left untreated, UTIs can progress to renal failure or

sepsis. E. coli is one of the major pathogens in both complicated and uncomplicated

urinary tract infections [22].

The recommended treatment is a short course of a commonly used empirical an-

tibiotic, which in the majority of cases is prescribed before bacteriological testing is

available [23]. Urinary tract infections represent a significant global health burden due

to a high rate of recurrence as a result of increasing antimicrobial resistance, which

compromises the effectiveness of treatment [22]. There is evidence of an association

between advancing age and an increased risk of bacterial resistance, but even among

young women, one in seven people treated with antibiotics is expected to return for a

repeat prescription within a month. In addition, a patient’s previous exposure to an-

tibiotics is known to increase the risk of treatment failure. Pregnancy and diabetes have

also been associated with an increased risk of treatment failure [23]. Despite their preva-

lence, UTIs are still under active investigation and the underlying mechanisms are not

fully understood [24]. Therefore, understanding the molecular mechanisms and devel-

oping alternative treatments are essential to address this global health issue [22].

Previous studies [25] have identified some of the risk factors for acquiring infec-

tion with ESBL-producing bacteria, such as previous hospitalisation or antibiotic treat-

ment in the 3 months prior to infection, especially if the antibiotic belonged to the

cephalosporin or quinolone classes. Older age, diabetes and male sex also contribute

to the acquisition of ESBL-producing bacteria. We find similar observations in another
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study [26], which shows that UTIs are more common and cause more serious compli-

cations in patients with diabetes. Previous studies [27] have also shown that in trauma

patients (those requiring intensive care unit admission and indwelling urethral catheters)

there are several significant changes in urine composition, such as increases in urinary

glucose, some amino acids, iron and norepinephrine concentration. Decreases in urea

concentration and osmotic pressure have also been reported in these patients. Changes

in the concentrations of amino acids and glucose are known to influence bacterial growth

in the urine. A decrease in urea concentration is also beneficial for bacterial prolifer-

ation because of its antibacterial effect and its effect on osmotic pressure. All these

effects were observed until at least the fifth day after the trauma and could be one of the

factors facilitating the acquisition of UTI in these patients.

Another often relapsing infection is a bloodstream infection (BSI). It can be a com-

plication of a previous infection or a primary infection. BSIs account for 40% of com-

munity and hospital-acquired sepsis and 20% of intensive care unit (ICU)-acquired sep-

sis. Standard treatment is 5-8 days of antibiotic therapy. Once again, E. coli is the

most common cause of community-acquired infections. In addition, there is a massive

spread of ESBL-producing pathogens at the origin of these infections; especially those

secondary to urinary tract infections or intra-abdominal infections [28]. BSIs are also

known to relapse, particularly those caused by E. coli. It has been found that resistant

strains are often associated with an increased risk of additional infection shortly after

the original infection and an earlier occurrence of recurrent infection. Uropathogenic E.

coli is known to be predominant in recurrent UTI BSI episodes. Other established risk

factors for BSI recurrence include age, previous illnesses and their severity, structural

abnormalities of the biliary or urinary tracts [29]. It has also been shown that previ-

ous infections caused by ESBL producers and the use of multiple antibiotics prior to

infection increase the risk of ESBL producer infections. Early identification of such

infections allows early and effective treatment and minimises overuse of carbapenems,

the antibiotics of last resort [30].

With the global and rapid spread of antibiotic resistance, there is an urgent need for

new treatments. However, there has been a noticeable decline in antibiotic discovery

over the last 20 years: only 17% of clinical trial projects reach market approval after
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12 years of development, and the median approval time is over 9 years for proposals

submitted in the 2000s. Due to the high costs of development, preclinical and clinical

studies, large pharmaceutical companies are leaving the field and most proposals come

from small companies [31, 32].

In summary, the two main challenges of treatment failure are that the mechanisms of

antibiotic resistance are not fully understood and need to be studied in more detail, and

that there is a strong dependence of infection severity and incidence on the environmen-

tal conditions in which bacteria grow. Therefore, in-depth phenotypic characterisation

of the antibiotic susceptibility of E. coli clinical isolates to β-lactams is essential to

propose effective treatments.

1.1.1 In vitro / in vivo prediction gap

Most in vitro susceptibility tests are performed in Mueller-Hinton medium [33]. It is

very rich and allows good bacterial growth, but is quite far from the conditions under

which infections usually occur. Many studies have shown significant discrepancies be-

tween in vitro and in vivo conditions in terms of antibiotic susceptibility. For example,

a study [34] showed that imipenem and ertapenem were unexpectedly effective in vivo

against isogenic carbapenemase-producing E. coli despite in vitro resistance. The rea-

sons for these paradoxical results are not fully understood. There have also been studies

on the importance of the inoculum effect for peritonitis, one of which (Godron A.-S. et

al, in preparation) has shown that there is a significant effect of initial population size

on the efficacy of cefiderocol against NDM-producing E. coli in vitro, but this phe-

nomenon is not observed in vivo. This may be related to the micro-environment of in

vivo conditions.

Murine models are valuable for understanding UTI treatments but are costly, labour

intensive and ethically problematic, which limits their systematic use. In addition, ani-

mal models may not fully replicate the human environment for disease physiology and

treatment prediction, especially since mice do not naturally suffer from UTI. There-

fore, the debate among UTI researchers about the use and accuracy of animal models

continues [21].

Bridging the gap between classical in vitro assays, which are limited in their ability
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to comprehensively elucidate bacterial activity within the host environment, and the in

vivo already interested scientific community. There are several studies aimed at develop-

ing new in vitro experimental setups. Good in vitro alternatives to animal infection mod-

els are human cell-based models such as cell mono-layers, tissue cultures or organoids,

but all these techniques are not easily accessible [21]. Another commonly used tech-

nique is the hollow fiber infection model: a two-compartment model where bacteria are

trapped in the hollow fiber cartridge while nutrients and drugs can circulate inside [35].

This setup allows systematic sampling without affecting the bacterial population, it also

allows observations of drug-drug interactions and the efficacy of combination therapies

in a closed environment. This system has proven to be very useful for pharmacokinetic

and pharmacodynamic evaluations [36, 37]. The disadvantage of this system is that the

cartridges cannot be reused after one experiment and the hollow fibre membranes are

very fragile and quite expensive.

Another in vitro experimental system is a MiniBioReactor Array [38] contained in

an anaerobic chamber, which allowed the authors to reliably mimic the gut microbiota

and study the effect of antibiotics on its diversity and on β-lactamase activity [39]. This

setup has the capacity to run up to 24 separate conditions simultaneously, and the dura-

tion of an experiment was about 2 weeks. Several other similar but simpler experimental

platforms using low volume bioreactors have been developed [40, 41]. The experimental

workflow combines evolution in a continuous culture device with sequencing of popula-

tion samples. The main application is to study the acquisition of resistance in the context

of antibiotic selective pressure created by alternating between media with and without

antibiotics for regular culture dilutions. the use of bioreactors allows manipulation of

the chemical environment and systematic sampling over time.

All of these novel experimental platforms aim to mimic in vivo conditions in order

to elucidate the environmental factors influencing treatment failure, and have proven to

be very useful in their own way. However, they all remain quite low throughput and

do not allow a wide variety of conditions to be tested. Therefore, the state of the art

consists either of high-throughput tests, that are very far from real infection conditions,

or low-throughput and experimentally demanding systems that aim to bridge the gap

between in vitro and in vivo. Our approach aims at the middle ground: using a simple
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set-up supplemented by additional systematic measurements to characterise a signifi-

cant number of conditions. We combine this method with model-based approaches for

quantitative characterisation. This combination of experiment and model would provide

a detailed view and compensate for the reduced amount of data.

1.1.2 State of the art in antibiotic resistance models

As nicely argued by Lopatkin and Collins [42], in the current era of big data and tech-

nological development, the field of predictive analytics has significantly changed the

way we experience our daily lives. In this context, it seems that we can greatly bene-

fit from the ability to predict biological outcomes from a set of known inputs. Today,

there are two major approaches in predictive biology: mathematical models that aim to

interrogate, explain and identify relevant parameter values for biological systems, and

machine learning (ML) techniques that focus on exploiting the huge amount of data col-

lected over all these years of fighting antibiotic resistance to identify trends and predict

outcomes.

In the era of big data and up-scaling, there is a tendency to collect as much generated

data as possible and use machine learning approaches to detect trends that can be used

to predict antibiotic resistance. There are several different strategies for this approach.

Some studies, such as [43], use deep learning to distinguish cells with a susceptible phe-

notype from cells with a resistant phenotype in images based on single-cell microscopy

data. Their approach was to first use deep learning to segment images of treated and

untreated cells, and then to classify segmented cells as resistant and susceptible. The

authors argue that their approach enables the assessment of susceptibility to a specific

antibiotic in a much shorter time than traditional assays based on growth analysis. The

limitation of this approach is that it requires a large number of images of cells with the

same phenotype, which is homogeneous across cells and isolates of the same pheno-

typic class, which can be complicated given the variability of bacterial behaviour and

the rapid evolution of resistance mechanisms.

Most studies using big data approaches to antimicrobial resistance focus on genomes,

trying to predict bacterial response to treatment. As sequencing, and in particular whole

genome sequencing (WGS), has become possible and widely available, more and more
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data is available on different pathogens. Pataki B. and colleagues used the genomes

of 704 E. coli combined with their respective minimal inhibitory concentration (MIC)

measurements to develop a machine learning approach to predict the MIC for a given

antibiotic based on genome-wide mutation profiles and information on acquired resis-

tance genes [44]. In this study, the authors have identified a number of biologically un-

derstandable features, such as specific mutations in DNA gyrase subunit gyrA or topoi-

somerase parC or presence of qnrS1 gene (quinolone resistance gene), that strongly

influence susceptibility and MIC level, which is consistent with previous experimental

studies. Interestingly, this approach works better for strains with high MICs (32 mg/L

and higher), but is less accurate for lower MICs. The authors also mentioned that as se-

quencing becomes more widespread and available, it may one day be easier to sequence

pathogens than to perform MIC tests. This is not the only study interested in data-driven

approaches to linking genotype and phenotype resistance. The authors of another study

analysed 234 isolates and the MIC of 11 clinically relevant antibiotics [45]. Again, most

discrepancies occurred for isolates with MICs close to the EUCAST breakpoint. Some

have developed a tool that uses WGS to predict outer membrane porin defects, which

play an important role in carbapenem resistance in Pseudomonas aeruginosa, however,

this tool covers only some of the known mutations, additional data and effort are needed

to include other variants [46].

Much effort is now being put into homogenising available datasets and linking

genomes to infection information, as well as tracking the origin of infections and their

spread [47, 48]. This has allowed some studies to find clinical application. Several

studies have presented a new ML approach for algorithmic antibiotic prescription [49,

50]. This approach consists of using combinations of pathogen genome and electronic

health record to prescribe antibiotic treatment for a new patient. The motivation for

these studies is that in many cases the prescription is made before the susceptibility of

the pathogen has been tested, leading to empirical treatments that are either ineffective

in eradicating the infection and lead to relapse, or consist of broad-spectrum antibiotics,

exposure to which promotes antibiotic selection pressure and increases the risk of a

new infection being resistant to that antibiotic. Interestingly, many UTIs originate from

the patient’s own microbiota, making the patient’s medical history valuable for person-
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alised treatment recommendations. Deep neural networks have also proved useful for

drug discovery [51].

The success and popularity of predictive biology is largely due to the rise of the

field of synthetic biology. Over the last two decades since the first publication of Tog-

gle Switch, more and more applications of synthetic biology have been developed, and

antibiotic resistance is no exception. The design of genetic elements and genetic mod-

ifications has made it possible to independently study different mechanisms that con-

tribute to antibiotic resistance. For example, Chung and colleagues [52] have studied

the mechanisms of cell lysis during β-lactam treatments that inhibit penicillin-binding

proteins (PBPs). These proteins are involved in peptidoglycan synthesis and processes

such as cell division and cell wall maintenance. It is well known that some β-lactams

target division-specific PBPs, thereby inducing filamentation (growth without division).

By measuring population dynamics and performing time-lapse microscopy on geneti-

cally engineered cells, the authors sought to address the lack of understanding of the

lysis mechanism of these filaments. Another team carried out a detailed study of cor-

relations between bacterial behaviour in different culture media and heterogeneity in

β-lactamase production, using a microfluidic chip for single-cell analysis of bacteria

with fluorescently tagged β-lactamases [53]. They observed that under poor nutritional

conditions, bacteria tend to reduce their growth rate and protein expression levels in the

presence of antibiotic stress. If conditions deteriorate further, the cells may eventually

enter a dormant state, reducing the rate of cell wall synthesis and thus escaping antibi-

otic treatment. These and other similar studies have provided a better understanding

of the subtle mechanisms of antibiotic resistance, but they require the construction of

mutant libraries, which is an experimentally demanding task and difficult to scale up to

study a wide range of mechanisms and build up a complete picture.

Kim and colleagues went further, combining single-cell microscopy analysis with

population dynamics measurements and mathematical modelling [54]. This study pro-

vided insights into antibiotic-induced filamentation and cell lysis: they showed that the

probability of cell lysis increases as the size of filamentous bacteria increases, and that

the critical length that bacteria can reach before dying decreases with increasing an-

tibiotic concentration. The authors also observed a correlation between the population
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growth rate and its lysis rate. Most importantly, this study used mathematical modelling

to link single-cell and population-level responses to antibiotic treatments and to predict

the population-level response from the single-cell level. This work required signifi-

cant experimental effort and single cell analysis, but allowed to capture and characterise

subtle mechanisms of lysis of filamentous cells, which is an important and poorly un-

derstood problem. This work demonstrates the importance of combining experimental

and modelling techniques in the study of antibiotic resistance.

In short, there are two main approaches to the study of antibiotic resistance today:

on the one hand, a very detailed, low-scale approach that requires a great deal of exper-

imental and analytical effort and allows elucidation of specific responses or resistance

mechanisms; on the other hand, a data-driven, high-throughput approach that requires

large amounts of genotype and phenotype data and allows phenotype and genotype to

be linked in a limited way without providing much information about the cellular mech-

anisms of resistance and without considering population effects. Our approach aims

at the middle ground between the two: it consists of using a mathematical model [55]

together with measures of population dynamics in response to antibiotic treatment. The

idea to use combination of simple experiments and a mathematical model was already

exploited in several studies, but did not lead to the same precision of phenomenon un-

derstanding. The utility of models in complementing experimental efforts to gain insight

into antibiotic treatment response has previously been argued by Tandar and colleagues

[56]. There are several studies that have already used similar approaches and proposed

models of population response to β-lactam treatments. Lee and colleagues, in their

study of correlations between growth rates and β-lactam-mediated lysis rate, measured

growth and killing curves for a range of bacterium-antibiotic combinations under dif-

ferent experimental conditions. In addition, they used stochastic modelling to provide

a deeper mechanistic interpretation of the observed population-level responses and link

them to single-cell dynamics. In general, biological processes are complex and diverse,

and the presence of collective antibiotic tolerance makes it even more difficult to cap-

ture the whole picture [57]. As argued by the authors of this study and also the one

of [15], a quantitative understanding of population effects and their correspondence to

single-cell dynamics is essential for the design and evaluation of future treatments, such
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as combinations of β-lactam antibiotics with β-lactamase inhibitors.

1.2 Problem statement and approach

Understanding the underlying mechanisms and overcoming the diagnostic challenges

are essential in the current fight against recurrent infections. The mechanisms of treat-

ment failure are not fully understood and can be influenced by the environment, in

particular the composition of the media. Furthermore, there is a known gap between in

vitro and in vivo conditions. Therefore, a detailed phenotypic characterisation of the an-

tibiotic response of E. coli clinical isolates to β-lactams is essential to propose effective

treatments.

In this work, I focused on β-lactamase-producing (mostly ESBL) E. coli clinical

isolates and their response to β-lactam treatments (mostly exclusively cefotaxime, a

third-generation cephalosporin). We selected 11 clinical isolates with different origins,

different genetic backgrounds and different levels of antibiotic susceptibility [58, 59].

These strains express a panel of different families of β-lactamases, including carbapen-

emases, and some express several of them simultaneously. Some of these strains also

contain gene mutations that contribute to their antibiotic susceptibility. This selection

includes strains from both human and animal infections, represents several sequence

types and ranges from highly susceptible to highly resistant to β-lactam treatments.

Our experimental approach combines different methods of in vitro characterisation

and allows us to generate high quality optical density (OD, 600 nm) data together with

the corresponding number of live cells through colony forming unit (CFU) assays per-

formed in a high throughput manner. Using this approach, I generated a rich dataset

describing the response of a variety of clinical isolates to a range of antibiotic concentra-

tions under different experimental conditions. To improve analysis and understanding of

the underlying effects, we used a mathematical model that synthesises the field’s knowl-

edge of bacterial response to β-lactam antibiotics across multiple scales. We calibrated

the model to experimental data and used the resulting parameter value sets to: 1/ provide

a consolidated view that captures the temporal evolution of both total biomass and live

cell counts; 2/ analyse the impact of the genetic background of clinical isolates on their
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response to cefotaxime treatments; 3/ study the effect of multiple antibiotic applications

on population response and predict live cell counts based on OD measurements; and last

but not least, 4/ investigate the role of environmental conditions on bacterial response to

antibiotic treatments.

1.3 Contributions

This thesis presents several methodological and theoretical contributions to the field of

antibiotic resistance.

On the methodological side, in chapter 2, section 2.2, I present variability issues

of OD measurements that I encountered while characterising clinical isolates’ response

to antibiotics, as well as experimental diagnostics of the underlying problem (biofilm

detection), and a simple solution to address this problem and significantly improve the

reproducibility of observations (addition of Tween 20 to growth media). As a result, the

proposed approach allows the generation of high quality OD data with minimal adjust-

ments and no significant impact on growth rate. This approach already existed for higher

volume experiments (bioreactor platforms) but had been overlooked for microplate ex-

periments.

Another methodological contribution was the development of a new experimental

protocol for up-scaling the CFU assay, which is presented in chapter 2, section 2.3.

Given the number of experimental conditions we wanted to test, the standard protocol

was too slow and too experimentally demanding, so I started a droplet-based protocol

using a 96-channel pipette to prepare dilutions and spot the entire 96-well plate at once.

In order to limit the use of plastic and the cost of consumables, I developed a proto-

col that included washing steps and therefore allowed the reuse of tips for all dilutions

within one time point, limiting the risk of contamination. This protocol has been ex-

perimentally validated. I also adapted for this project a counting software developed

by Vincent Aranzana-Climent and the Pharmacology of Antimicrobial Agents and An-

tibioresistance team at INSERM: I retrained the machine learning part on my images

and adapted the R code to my experimental conditions, plate types, coordinates, dilu-

tions and file naming system.
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There are some other methodological advances described in the appendices. I have

tested possible alternatives for CFU assays that would be less experimentally demand-

ing. I also contributed to the development of automated platforms in the team. This

platform combined a pipetting robot and a plate reader controlled by a computer. I

tested two applications for this platform: automated antibiotic administration based on

OD measurements and a turbidostat in a microplate with antibiotic pressure in the me-

dia. I also set up a bioreactor platform and carried out two applications of this setup:

studying the lag time and maximum growth rate in different media and observing the

inoculum effect in a bioreactor.

This work focuses on characterising the response of bacterial populations to different

antibiotic treatments in different environmental conditions. There are several important

results from this project. First, using a model-based approach, we were able to propose

a very detailed understanding of the population response to β-lactam treatment and, in

the meantime, reconcile differences between the temporal evolution of OD and CFU.

Second, we studied the population response to multiple doses of antibiotics. These con-

ceptually simple experiments gave us a lot of valuable information about cell death and

β-lactamase activity. They also allowed us for the first time to predict live cell counts

(very informative, but very experimentally demanding) from OD data (easy to gener-

ate, hard to exploit). These results improve our understanding of collective antibiotic

tolerance.

Another important result was obtained by comparing the bacterial response to an-

tibiotic treatment in different growth conditions, specifically urine and Mueller-Hinton

media (standard media for antibiotic susceptibility testing). We were able to identify in-

teresting trends in parameter values, suggesting that β-lactamase production and activity

may differ between these two media. In addition, further analysis of the model param-

eter values revealed a clear distinction between sets of parameter values corresponding

to different media. Interestingly, among our selected set of strains, strain identity had

less influence than growth conditions on the results of clustering in dimensionality re-

duction.

To obtain these results, I generated a large dataset using the methodological adjust-

ments presented in chapter 2. Further adjustments were necessary for efficient data anal-
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ysis and model calibration (more than 7500 individual calibrations on different datasets).

This required parallelizing the search for parameter values and the use of computational

clusters. Additional efforts were made to adapt the calibration protocol to different types

of datasets: 1/ to fit the model to both OD and CFU data, we developed a two-step pro-

cedure that first calibrated a subset of parameters to growth without antibiotics, and then

fixed this subset to optimal values and restarted the search for the rest of the parame-

ters; 2/ we investigated the effect of the composition of the experimental dataset on the

predictive capabilities of the model calibrated to that dataset; 3/ to test different media

in relevant manner, we had to adjust bacterial growth models.

1.4 Outline

This document is divided into 7 chapters and 4 appendices. This chapter is an intro-

ductory overview of the general threat and challenges of treatment failures, the existing

gap between in vitro and in vivo experiments and the main quantitative approaches for

antibiotic resistance characterisation. It presents the approach I used for my PhD and

the contributions I made.

Chapter 2 presents the experimental developments that have been made to generate

high quality data in an optimised way: improving OD quality by addressing the biofilm

issue and scaling up the CFU assay protocol. In this chapter I describe in detail the

experimental protocol used for data generation in the following chapters.

Chapter 3 presents our in-depth characterisation of the response of clinical isolates

to β-lactam treatments. It first introduces a model previously developed in the team and

the challenges of standard experimental methods for characterising antibiotic resistance.

We demonstrate that the model captures the temporal evolution of both OD and CFU,

despite large decorrelations between the two measures.

Chapter 4 describes how the bacterial population responds to two antibiotic appli-

cations instead of just one. We found that repeated antibiotic application experiments

reveal additional aspects of antibiotic escape to treatments and allow to better predict

the temporal evolution of live cell numbers.

Chapter 5 is dedicated to the study of the effect of growth conditions on the bacterial

31



population response to antibiotic treatments. It presents experimental results together

with model calibration results and further analysis of parameter value sets.

Chapter 6 summarises the main conclusions and discusses the potential and limita-

tions of this work.

Chapter 7 is dedicated to the description of the strains and methods used in this

project.

Annexes present work that was carried out during this thesis but was not developed

further due to specific limitations. Annex A describes attempts to replace CFU assays

as a measure of live cell number by measuring auto-fluorescence to estimate live cells

and by staining with propidium iodide to estimate the size of dead biomass. Annex B

presents an automation project linking a plate reader and a pipetting robot for automated

antibiotic administration. Annex C presents our work with the bioreactor platform.

Finally, annex D describes microscopy experiments together with image segmentation.
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Chapter 2

Experimental developments

2.1 Introduction

As mentioned in chapter 1, we are interested in characterising the population response

of ESBL-producing bacteria to β-lactam antibiotics in different media. A typical be-

haviour observed under these conditions consists of an initial growth phase, followed by

a growth arrest or crash, sometimes followed by regrowth (Figure 2.1a). This behaviour

will be discussed in much more detail in the next chapter. Our approach includes cali-

bration of a mechanistic model to experimental data. To do this we need a large amount

of high quality data. One of the problems we encountered was the high variability of

optical density measurements. This includes not only day-to-day variability, but also

variability between technical replicates during the same experiment. We are not talking

about measurement noise here, we are talking about a difference of several hours in the

time of regrowth, or even the presence of regrowth in some replicates and the absence of

regrowth in the others. Section 2.2 presents how we have addressed this issue in order

to obtain reliable data to be used for model calibration.

The second experimental challenge I faced was generating CFU data in an efficient

manner. This protocol involves making up to 6 serial dilutions of a sample and then

plating these dilutions onto agar-filled Petri dishes. My standard experiment contained

2 technical replicates of 48 different experimental conditions. Doing CFU assays in the

standard way would take a very long time and result in 6 ∗ 6 ∗ 96 = 3456 Petri dishes to
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plate and analyse by colony counting. Section 2.3 presents the protocol I have set up to

make this assay more efficient.

2.2 Addressing the issue of OD measurement variability

When performing our experiments in a 96-well microplate in M9 media with 1 g/L

glucose, we observed a lot of well-to-well variability: using the same media, the same

antibiotic and the same bacterial inoculum in the same microplate, but in different wells,

gave quite different results in terms of regrowth after antibiotic treatment. The top

panel of Figure 2.1a shows an example of such variability: lines of the same colour

correspond to the same experimental conditions. From this data, we can observe that

higher antibiotic concentration, greater difference in regrowth time between lines of the

same colour. To investigate the cause of this variability, at the end of the experiment

we performed a complete scan of the bottom of each well of the experimental plate and

discovered inhomogeneous patterns (top right panel of Figure 2.1a).

One of the known mechanisms of bacterial adaptation to an unfavourable environ-

ment is the formation of biofilms, which are aggregations of bacteria that form layers

of protection against antibiotics. Biofilm formation is a known virulence factor that

contributes to the severity and chronicity of infections. Many clinical isolates known to

cause recurrent infections are prone to form biofilms [60]. In urinary tract infections,

bacterial biofilms are responsible for approximately 60% of nosocomial and 80% of all

microbial infections [61]. Studies [62] have shown that uropathogenic E. coli can form

intracellular bacterial communities (IBCs) during the early stages of infection, shield-

ing bacteria from antibiotics. The ability of clinical isolates to form biofilms varies

significantly with their clonal types and the site of collection [60]. In addition, biofilm

formation of the same strain can be influenced by growth, nutrient and environmental

conditions [63, 64].

With this in mind, we decided to test whether biofilms were present in our setup and

whether the dynamics we were trying to model were caused by planktonic bacteria, as

we had assumed. To answer the first question, I used crystal violet staining (detailed

protocol in the Materials & Methods chapter 7.8), which showed that the patterns we
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saw on the well bottom scans were caused by biofilms (second panel of Figure 2.1a).

We tested the same strain (IB302) in three different media: M9 with either glucose, fruc-

tose or casamino acids. We observed different levels of biofilm presence in the different

media. Interestingly, the highest amount of aggregates was observed in media with fruc-

tose as the main nutrient. One would have expected to see more biofilms in media with

casamino acids because the population density at the end of the experiment was higher.

This suggests that there is some effect of this specific nutrient on the expression of genes

relevant to biofilm formation.

To answer the second question, we conducted an experiment in which we experi-

mented as usual for the first four hours, then mixed the cultures and transferred half of

the liquid to a new microplate. The experiments in this new plate and in the original

plate, both containing half of the original bacterial culture, continued in parallel. The

resulting growth dynamics are shown on the left in the second panel of Figure 2.1b.

Interestingly, we observed regrowth at all tested concentrations in the new plate, in

contrast to the initial plate. There were also fewer patterns on the well bottom scans.

This suggests that regrowth is due to collective antibiotic tolerance of free-swimming

bacteria rather than to bacteria escaping treatment in biofilms.

This problem caused a lot of variability, failed model calibrations and also forced

me to repeat each experiment many times. It was therefore crucial to find a solution to

the variability problem. The simplest idea was to use ultra-low adhesion plates instead

of our standard plates. However, for some strains (NILS64) in some media (M9 with

fructose), crystal violet staining revealed the presence of biofilms even on these coated

plates (top left panel of Figure 2.1b).

A known method to prevent biofilms is to add Tween 20 to the media [64]. We tested

different concentrations of Tween20: 0.2%, 0.1% and 0.01%. The highest concentration

tested seemed to interfere too much with growth and regrowth to the antibiotic. How-

ever, 0.1% Tween20 was sufficient to remove all aggregates from the bottom of the plate,

significantly improve the reproducibility of the results and at the same time did not af-

fect growth or regrowth. Our choice was confirmed by the literature: this concentration

is commonly used in bioreactor platforms [65] and has been shown to prevent biofilm

formation without affecting growth rate [64]. We repeated the same experiments as be-
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Figure 2.1: Addressing the issue of OD measurement variability. a. Top left: Well-to-well

variability of OD measurements. Characterisation of bacterial response to cefotaxime treat-

ments, different colours correspond to different antibiotic concentrations, same colours corre-

spond to same experimental conditions. Top right: OD scans of well bottoms. For each well, OD

was measured at 308 different positions; the darker the colour, the less dense the bacterial popu-

lation at that position. Bottom left: Testing the collective antibiotic tolerance of free-swimming

bacteria. After 4 hours of the standard experiment, half of the liquid volume was transferred to

a new plate. Experiments in both new and original plates continued in parallel. Here the OD

dynamics of the first hours are shown, followed by observation for each plate. Bottom right:

Crystal violet staining for biofilm detection. Different columns correspond to different antibiotic

concentrations. Different rows correspond to different media. Values correspond to the OD at

595 nm of the final step of the crystal violet staining. b. Top left: Crystal violet staining at the

end of the experiment in M9 with fructose in ultra low adhesion plates. Top right: OD dynamics

of bacterial response to antibiotic in original media without Tween20 (first plot), in media with

0.01% (second plot), 0.1% (third plot) or 0.2% Tween20 (fourth plot). The green square indi-

cates the chosen solution. Bottom left: Same experiment as top left of panel a, but with 0.1%

Tween20 added to the media. Bottom right: OD scans of well bottoms and results of crystal

violet staining for the 0.1% Tween20 experiment.



fore (top panel of Figure 2.1a), but this time with 0.1% Tween 20 in the media (bottom

panel of Figure 2.1b). Well-to-well variability was significantly reduced, OD scans of

well bottoms at the end of the experiment showed no patterns, and finally, crystal violet

staining confirmed the absence of biofilms.

This easy to implement solution helped to solve a long standing and very common

problem. All experiments in chapters 3 and 4 were performed in media containing

Tween20 to ensure high quality and reproducibility of OD readings.

2.3 Protocol for efficient plate-based CFU assays

Another aspect of the experimental protocol that needed improvement was the way we

performed CFU assays. As mentioned in the introduction to this chapter, my typical

experimental plate contained 2 technical replicates of 48 different conditions (for exam-

ple, 6 different strains exposed to 8 concentrations of antibiotic). To see the evolution

of the live cell count over time, we need to perform CFU assays at different times. In

the same plate, depending on the concentration, we can have a biomass close to full

grown stationary phase (109 CFU/mL) and an almost completely lysed population (103

CFU/mL), forcing us to do up to 6 serial dilutions to capture the dynamics for all an-

tibiotic concentrations. Therefore, using standard methods and using 1 agar-filled Petri

dish per dilution per condition to track dynamics for 12 hours with a 2-hour resolution

for an experiment, we would get 96 conditions x 6 time points x 6 dilutions = 3456 Petri

dishes to plate and count. This motivated me to move to a droplet-based protocol.

The new experimental protocol that I have set up (the scheme of the protocol is

shown in Figure 2.2a) consists in using a 96-channel electronic pipette (Integra Bio-

sciences MINI96) for sampling, serial dilution and spotting on agar plates. Each step

is plate-based, meaning that I take a sample from the whole plate, transfer it to a new

plate, and then dilute that plate in another plate. Spotting is also done in the same way

for the whole plate, resulting in 96 drops of bacterial culture per agar-filled plate. To

reduce plastic consumption and the cost of each experiment, I have added a washing

step between dilutions. Before starting a new dilution, the tips are washed with ethanol

and PBS (ethanol, then air-dry, then PBS). Using this protocol, it usually took me 30-45
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Figure 2.2: Presentation and validation of droplet-based CFU assay protocol. a. Graphical

representation of the protocol. An experimental plate containing bacterial culture subjected

to a series of antibiotic treatments is placed in a Tecan Spark plate reader where periodic OD

measurements are taken and the plate is shaken and incubated at 37◦C. Every two hours the

plate is removed from the plate reader for sampling and then returned to incubation and OD

measurement. This sample is diluted six times tenfold. 5 µL of each dilution is spotted onto an

agar-filled square Petri dish. The agar plates are kept at room temperature and then all incubated

at 37◦ for 10 hours, and then photographed. Images are analysed using the CFU Spot Reader

application. b. Test of spotting and dilution variability. For two strains (NILS56 and NILS64),

two different dilution protocols were performed: one as described above (in blue), the other

consisting of two thousand-fold dilutions in tubes (in green). In all four cases, the last dilution

was spotted three times on agar plates (light colours) to test spotting variability. To assess

dilution variability, we compared the mean values of all results obtained using each dilution

protocol (dark blue vs. dark green). In the table, we presented the mean value of CFU/mL for

each case, the ratio between the two means corresponding to the different dilution protocols and

estimate of the precision per dilution.

minutes to run a time point with 96 conditions, which would be unthinkable otherwise.

The next step is to count the colonies for each of the droplets produced. For this

step, I adapted image-analysis based software to my project, which I will present below.

To simplify image analysis and colony segmentation, all prepared agar plates are kept

at room temperature until the last time point and then placed in an incubator at 37◦ for

overnight incubation. This step was added to limit the variability between colony sizes

from different time points due to differences in incubation time.

To count the grown colonies and thus estimate CFU, I adapted my project "CFU

Spot Reader", a Shiny-based application [66] developed by Vincent Aranzana-Climent

and the "Pharmacology of Antimicrobial Agents and Antibioresistance" team. This

software allows to obtain the CFU/mL value for each experimental condition from raw

images of agar plates corresponding to different dilutions and different time points, and

a table specifying the experimental conditions for each position on the plate.

The pipeline consists of several steps. First, each image passes through ImageJ

Fiji [67] macros to be cropped, resized, and converted to the right format. Second,
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the image passes through pixel classification in ilastik [68], a user-friendly GUI for

machine learning algorithms, which classifies pixels into 3 classes: background, core

or edge of the bacterial colony. Next, the raw image, together with the probability map

from the pixel classification, undergoes object classification, also using ilastik. Here,

objects formed by pixels classified as core of a colony are labelled as 1 bacterial colony,

2 or 3 colonies grown together, an uncountable number of colonies stuck together or an

unknown object that is not a colony. From this step we obtain a list of detected objects

for each image, together with information about their label, position and size. We then

use R to divide the images into 96 sectors, each of which is assigned a unique coordinate.

The colonies corresponding to the objects detected in that sector are counted, taking into

account the information on dilution and experimental conditions from the filename and

the descriptive table provided at the input. The results of this step are displayed through

a graphical interface, allowing the user to manually verify all counted results.

For this project, I retrained both ilastik projects on my images by manually labelling

several images and adding a not-a-colony object. This step required 10 typical images

and several manual annotations in different segments of different images. Annotations

were added until the live classification predictions reached the proper performance. I

also adapted the R script to my project (my filename format, my type of experimental

conditions and corresponding data, my number of sectors and my way of referencing

them). In doing so, I encountered a problem of image size decorrelation between the

image in ilastik format and the image used to display the results, but this was easy to

resolve once it was finally identified.

To test the variability of spotting and dilution, I carried out the following experi-

ment: I took a bacterial culture on stationary phase, vortexed it and made two types of

dilutions. On one hand, I put 100 µL of this culture per well in a microplate and then

did six tenfold dilutions in PBS buffer using the new protocol. On the other hand, I

made two thousand fold dilutions in tubes and filled a microplate with this diluted cul-

ture, 100 µL per well. To estimate dilution variability, I compared the results of these

two different dilution protocols, taking the second as the ground truth. To test spotting

variability, the last dilution from both protocols was spotted 3 times on separate plates.

The results of this experiment are shown in figure 2.2b. By comparing the results of the
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plate replicates (results of the same colour but different colour shade) we can conclude

that the spotting variability is quite low. Comparing the mean results of the two different

dilution protocols, we can see that on average both methods give the same result (97%

accuracy when calculated per dilution), however, as expected, doing 6 dilutions with the

96-channel pipette introduces more well-to-well variability.

2.4 Conclusions

In this chapter I have presented the two modifications to the standard protocol that al-

lowed me to generate all the data presented in subsequent chapters. Although the so-

lution to the OD variability problem was finally very simple, it caused a lot of failed

experiments, unanswered questions and many hours of experimentation. Many labora-

tories around the world use plate readers to measure growth dynamics, but surprisingly

not many studies mention this problem in this setup, and even fewer use Tween to ad-

dress this issue [64]. This issue might not be encountered when working exclusively

with laboratory strains, and therefore, represents one of the challenges associated with

use of clinical biological material.

By using a 96-channel pipette and switching to a plate-based CFU protocol, I was

able to generate a lot of data that would otherwise have been impossible. However, it is

worth noting that this protocol is still demanding in terms of time and effort. A typical

experiment involving characterisation of the bacterial response by both OD and CFU

readings takes me 16 hours of experimental work and at least half a day to photograph

the plates and analyse the results.
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Chapter 3

In-depth characterization of bacterial
population response to β-lactam
treatments

3.1 Introduction

There are several ways for bacterial populations to escape antibiotic treatment [10]. This

can be done by altering the molecular targets resulting in a lack of antibiotic binding,

or by regulating β-lactam influx and efflux through mutations or expression changes in

porins. In this project, we are focusing on another important mechanism of resistance

to β-lactams, the degradation of antibiotics by enzymes called β-lactamases, which are

efficient both inside and outside the cell.

As well as having individual survival methods, bacteria as a population can survive

antibiotic concentrations that are lethal to individual cells. This can be due to a variety

of different mechanisms, such as communication between populations or growth inhibi-

tion. One of the most common strategies is called Collective Antibiotic Tolerance (CAT)

and consists of the altruistic death of part of the population accompanied by the release

into the environment of β-lactamases capable of degrading the antibiotic. The growth

of the population depends on its initial density (also known as the inoculum effect): if

the antibiotic is degraded to sub-lethal levels before the entire population is eradicated,
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the survivors are able to rebuild the population [16]. Nowadays, the increasing pro-

portion of commensal and pathogenic E. coli express extended-spectrum β-lactamases

and/or carbapenemases and exhibit an inoculum effect. Therefore, a detailed phenotypic

characterisation of the antibiotic susceptibility of clinical E. coli isolates to β-lactams is

essential to propose effective treatments.

One of the standard methods for detailed susceptibility characterisation is the CFU

assay, which allows quantification of antibiotic killing capacity. This method consists

of measuring the number of living cells after a certain time in the presence of a certain

concentration of antibiotic by plating serial dilutions of a sample on agar-filled Petri

dishes and counting the colony-forming units (CFUs) after the incubation period. Al-

though very informative, this method is time consuming and tedious. Another popular

method of characterising antibiotic response is the growth kinetics assay, which con-

sists of measuring the optical density (OD) of a bacterial culture subjected to antibiotic

treatment. This method is experimentally much simpler, but it is much less informative

because it only measures the total biomass, both living and dead, masking cell death

and filamentation, among other things. This leads to the question of whether there is a

way to reconcile the two different views of cell death.

Our experimental approach combines the two characterisation methods mentioned

above and allows us to generate high quality OD data together with the corresponding

CFUs measured in a high throughput manner. Using this approach, I generated a rich

dataset describing the response of a variety of clinical isolates to a range of antibiotic

concentrations. For better analysis and a deeper understanding of the underlying effects,

I used a mathematical model [69] that synthesises the field’s knowledge of bacterial

response to β-lactam antibiotics and encompasses multiple scales. This model allowed

us to correctly capture the temporal evolution of OD and CFU for a range of antibiotic

treatments.
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3.2 Characterization of antibiotic response of clinical

isolates

For this study, we selected 11 clinical isolates with different origins, different genetic

backgrounds and different levels of antibiotic susceptibility. These strains express a

panel of different families of β-lactamases, including carbapenemases, and some ex-

press several of them simultaneously. Some of these strains also contain gene mutations

that contribute to antibiotic susceptibility, such as mutations in genes encoding porins

(ompC, ompF), genes encoding the PBP3 protein responsible for cell division (ftsI) or

genes encoding DNA gyrase and topoisomerase subunits (gyrA and parC respectively).

This selection includes strains from both human and animal infections, represents

several sequence types and ranges from highly susceptible to highly resistant to β-lactam

treatments. A full description of the collection can be found in the Materials and meth-

ods section (7.1). As antibiotic we chose cefotaxime, a broad-spectrum third-generation

cephalosporin.

When choosing the experimental protocol, it is important to consider the decorrela-

tions between OD and CFU data. In Figure 3.1a we have shown a typical example of

the two types of data we obtained for our strains with (red line) or without (blue line)

cefotaxime present in the media, together with typical challenges of these data. We can

see that in the presence of the antibiotic, the OD increases exponentially during the first

few hours, similar to normal growth, but the number of live cells does not increase, sug-

gesting that the cells are filamenting. We also have a period where OD remains stable.

The same period in the CFU data corresponds to an initial decrease in the number of

live cells, i.e. cell lysis, and then an increase corresponding to population regrowth due

to degradation of the antibiotic in the media by β-lactamases released by the lysed cells.

After a while, the regrowth starts to be detectable by OD data and we can observe an

increase in both OD and CFU. In the case of a high concentration of antibiotic (light

pink line), degradation of the antibiotic may not be efficient enough to restart popula-

tion growth. To fully characterise the antibiotic response of our 11 clinical isolates, we

exposed them to 8 different concentrations of cefotaxime and measured the time course

of both OD and CFU.
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Our experimental characterisation protocol consists of measuring the OD dynamics

of the population response to a range of antibiotic concentrations in a Tecan Spark plate

reader. The OD readings are complemented by systematic CFU assays performed in a

droplet-based manner as previously described in the 2.3 section.

As mentioned earlier, the relationship between OD and live cell counts during β-

lactam treatment is a notoriously difficult problem due to cell filamentation and collec-

tive effects. As a result, there is a need for models that not only capture the complex

dynamics, but are also able to incorporate data from multiple observations: optical den-

sity readings and viable cell counts.

This challenge was addressed in a previous study [69] by Virgile Andreani, a former

PhD student in the team. He developed a mathematical model of the bacterial popula-

tion’s response to β-lactam treatments targeting cell segregation and cell wall mainte-

nance, incorporating all relevant processes at multiple scales. This model uses available

readouts such as temporal evolution of OD with or without temporal evolution of CFU

to reconstruct hidden dynamics. As this model is essential for the results presented in

this and subsequent chapters, a brief presentation of the model is given below. A full

description is available in the Materials & Methods chapter ( 7.6).

3.2.1 Filamentation-based model of bacterial population response
to β-lactam treatment

Modelling cell length and filamentation is needed in order to explain tolerance β-lactam

treatments [70]. However, simply considering that all the cells have the same length,

which evolves with time because of filamentation, cannot explain the complex dynamics

of cell lysis. Indeed, only the longest cells die, which creates a non-trivial feedback

on the average length of surviving cells. Hence, accounting for the heterogeneity in

cell lengths in the surviving cell population is required. Therefore, we developed a

partial differential equation (PDE) model of the temporal evolution of the distribution

of cell lengths within the population, and described with ordinary differential equations

(ODEs) other processes such as the active degradation of the antibiotic by β-lactamases

released in the medium upon cell lysis. The evolution of the cell length distribution is
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represented by a process of growth-fragmentation that relies on the assumption that cells

elongate exponentially and divide with a rate depending on their length, into possibly

more than two fragments, which is notably the case for filamented cells after removal of

the antibiotic [71]. Because some β-lactams like cefotaxime can inhibit PBP3, involved

in the septum formation [72, 73], the division rate is assumed to be a decreasing function
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Figure 3.1: Characterization of bacterial population’s response to β-lactam treatment. a.
Standard approach to quantify antibiotic effectiveness. Growth kinetics assay: this approach

consists in following optical density (OD) of liquid cultures inoculated with an isolate to be

tested and containing a certain antibiotic concentration. CFU assay: This approach consists in

following the dynamics of live cell counts through systematically taking samples, making serial

dilutions of them, plating them on agar-filled Petri dishes and after hours of incubation counting

the colonies of the Petri dishes. Resulting dynamics are drastically different. b. Description

of observed discrepancies between OD and CFU data. Bacterial response to β-lactam treat-

ment: For one clinical isolate (NILS56), growth kinetics assays together with CFU assays were

measured without antibiotic and in the presence of one medium and one high concentrations

of cefotaxime. The population response to the medium concentration (red line) can be divided

in several periods: A) OD increases and CFU stays steady; B) CFU decreases and OD stays

steady; C) CFU increases (faster than maximum growth rate) and OD stays steady; D) both

OD and CFU increase. These observations can be interpreted as following: 1) in the absence

of antibiotic (blue line) cells grow exponentially until nutrient exhaustion; 2) in the presence

of antibiotic (red line, A) cells might filament leading to exponential increase of biomass (OD)

without increase in number (CFU); 3) long filamented cells die (B); both live and dead biomass

contribute to OD; 3’) short filamented cells die at higher antibiotic concentrations (pink line);

4) β-lactamases are released by the lysed cells and degrade β-lactams in the environment; 5) if

the antibiotic has been cleared, cells might resume division (C&D); filamented cells can divide

multiple times at the restart leading to super-fast increase in live cell number. Graphical repre-

sentation of the model. Cell response: Cells elongate exponentially at a rate g that depends on

nutrients but is not affected by the antibiotic. Above a concentration k1, the antibiotic inhibits

PBP3, which deprives the cells of their capacity to divide. Cells that cannot divide filament until

they reach a critical length Lmax from where they experience a cell death with rate γ. Higher

concentrations of antibiotics, around k2, inhibit the PBP1s which fragilizes the cells and reduces

the critical length, such that cells die earlier. Population response: When the cell population is

attacked by the β-lactam treatment, cells elongate and eventually lyse, releasing β-lactamase in

the environment (blue circles) that degrade the antibiotic thus protecting the surviving cells.

of the antibiotic concentration in the medium. However, the elongation rate is only a

function of the nutrient concentration, and remains unchanged by the antibiotic, as is
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the case for most β-lactams [74]. It is known that for a given β-lactam concentration,

the time to cell lysis is inversely proportional to the growth rate [75]. This suggests

that the death mechanism can be easily modelled with a critical cell length, reachable

when cell division is blocked. Cell filaments longer than this threshold experience a

significant death rate (Figure 3.1b). This makes cell lysis a direct function not of the

antibiotic itself but of cell length, that drastically increases because of antibiotic. The

antibiotic can however, at high doses, reduce this critical length, through the inhibition

of other PBPs such as the PBP1s which have a fundamental role in the repair of wall

defects [76]. All the bacteria in this study express β-lactamases, enzymes released in the

culture medium upon cell lysis, with the ability to cleave the antibiotic molecules [77].

Although strains can express several β-lactamses with different efficiencies, the model

aggregates them into a single average one. The concentration of antibiotics as well as of

β-lactamases, are tracked by means of ODEs. The model also accounts for the excess

OD contributed by fragments of lysed cells (the dead biomass). The equations of the

corresponding PDE model are given in the methods section 7.6. To make the model

computationally tractable, we eliminated the explicit representation of the cell length

distribution n(l, t) to keep only its first moments: number of cells N and average length

L. The ODEs for these quantities involve partial moments of the cell length distribution,

which we managed to express only in terms of N and L through careful approximations.

This leads us to our first question: can the model capture the temporal evolution of

OD and CFU for a range of antibiotic treatments?

3.2.2 Can the model capture the temporal evolution of OD and CFU
for a range of antibiotic treatments?

To answer this question, I had to calibrate the model to the experimental data. Due to

the complexity of the data set, the calibration was done in two steps. First, from the

full set of model parameters, I selected a subset responsible for normal growth of a

bacterial population in the absence of antibiotics (maximum growth rate µ, maximum

division rate β, half-velocity constant of nutrients Ks, conversion factor of nutrients λ

and conversion rate between OD and CFU η). I fixed all other parameters to some initial
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Figure 3.2: Characterization of the response of clinical isolates to a range of cefotaxime
treatments. a Our approach. A 96-well plate is inoculated with the isolates to be tested, and a

range of antibiotic concentrations is applied. The OD is read by a plate-reader, that also controls

temperature and shaking. Every two hours a sample is taken for CFU assay. The data from both

OD and CFU is then fed into the model, for which numerical parameters are estimated for each

isolate. On the basis of these parameters, simulations corresponding to OD and CFU data are

generated and compared to the experimental results. b Comparison of experimental data and the

model fit. Four clinical isolates, representing a range of susceptibility to β-lactam treatment from

very susceptible (NILS12), to highly resistant (IB307), are treated with different concentrations

of cefotaxime, and optical density and live cell number are measured as described in the Methods

section. We show in points with (CFU) or without (OD) solid lines the experimental data and in

dashed lines the output of the model fitted on OD and CFU data simultaneously.



values and searched for optimal values for this selected subset of parameters using both

OD and CFU data of a growth kinetics without cefotaxime present. Secondly, I restarted

the search for optimal parameter values on OD and CFU data obtained for a range of

cefotaxime concentrations, fixing the growth parameters to the optimal values found in

the first step.

In summary, our approach to in-depth characterisation consists of exposing clinical

isolates to a range of concentrations of cefotaxime, measuring the temporal evolution

of OD using a plate-reader and the temporal evolution of CFU using a droplet-based

method, and calibrating the model to OD and CFU data (Figure 3.2a). From the col-

lection of strains mentioned above, I selected four strains that represent the collection

well: one strain has a weak β-lactamase against cefotaxime (TEM-1) and is therefore

susceptible to all tested treatments, one strain has several β-lactamases, a carbapene-

mase and a mutation in the gene encoding PBP3 and is highly resistant to cefotaxime,

and two others are between these two extremes. A good representation of these four

strains would suggest a good representation of the whole collection. On Figure 3.2b I

present the results of the characterisation of the four strains mentioned together with the

corresponding model simulations. Results for all eleven strains are shown on figure 3.3.

From the OD data for the susceptible strain, we can observe that biomass growth stops

earlier at higher antibiotic concentrations, which we do not observe for other strains.

From intermediate strains (e.g. IB302, third column) we can observe that the number of

live cells remains constant during the first hours while the biomass grows exponentially,

indicating the presence of filamentation. Another interesting observation from the same

data is that the death rate does not depend on the antibiotic concentration, but the size of

the dead biomass does. These effects are well captured by the model and are consistent

with the main assumptions of the model such as filamentation, lysis caused by reaching

a critical length and finally the dependence of the critical length on antibiotic concentra-

tion. In the case of low antibiotic concentration, given the granularity of our CFU data,

the number of dead cells is not noticeable and is masked by the onset of regrowth. This

is the case for NILS56 at 4 mg/L, IB302 at 4 or 8 mg/L and IB307 at 128 mg/L. As these

cases are prone to high variability, they are difficult to capture and the model sometimes

tends to overestimate the degree of cell lysis. Other interesting and not trivial obser-
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Figure 3.3: Comparison of experimental data and model simulations. Eleven clinical iso-

lates, representing a range of susceptibility to β-lactam treatment from very susceptible (NILS1,

11, 12), to highly resistant (IB307, IB308), are treated with different concentrations of cefo-

taxime, and optical density and live cell number are measured as described in Methods section.

We show in points with (CFU) or without (OD) solid lines the experimental data and in dashed

lines the output of the model fitted on OD and CFU data simultaneously.



vations come from looking at the first hours of regrowth. Firstly, regrowth is initially

masked by dead biomass and is therefore not detectable from the OD data, which can be

observed for IB302 at 16 mg/L, NILS56 at 16, 32 or 64 mg/L. Secondly, in some cases

(e.g. NILS56 at 8 mg/L) the number of live cells increases faster than the maximum

growth rate, which can be explained by a filamentation effect, i.e. filaments dividing

into more than 2 smaller cells. Despite their complexity and limited observability, both

phenomena are well captured by the model.

Overall, the model provides good agreement with the data for all 4 strains, thus

demonstrating its ability to quantitatively capture the temporal evolution of both OD

and CFU, despite the decorrelations between these two modes of measurement, for a

range of antibiotic treatments for a variety of clinical isolates with different levels of

cefotaxime susceptibility. Other kinetic models in the field describe only OD or only

CFUs, and often in a non-mechanistic way, for example with an artificial delay after the

start of the experiment to provoke growth arrest. To our knowledge, this model is the

first to reconcile these quantities with mechanistic arguments.

3.3 The impact of genetic background on response to

antibiotic

The non-susceptible strains presented earlier express a variety of different β-lactamases.

For each strain we selected 45 best on fitting score parameter value sets. Firstly, we

looked into parameter, which is the minimal concentration at which cells stop growing

and dividing normally and start filamenting. The higher this value, the more resistant the

strain is. On the left boxplot, three strains stand out due to high value: IB307, IB308 and

IB311. This high value means that these strains can grow and divide normally subjected

to higher concentrations of antibiotic than the other strains. This is confirmed by the

experimental data. The strain with the lowest value is NILS31, for which we observe

growth arrest even at smaller concentration of antibiotic.
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Figure 3.4: The impact of genetic background on bacterial population’s response to antibi-
otic. Top: Overview of bacterial population response to 8 cefotaxime concentration for 8 non-

susceptible strains from the collection. Bottom: Box-plot of parameter values for k1 (minimal

antibiotic concentration that stops cell division) on the left and kb ∗ Bin (antibiotic degradation

activity and production rate per cell length respectively) on the right for about 45 fits on OD and

CFU for the 8 non-susceptible strains.

Secondly, we looked into , a production of two parameters and which correspond to

β-lactamase degradation activity rate and number of enzymes produced by unit of cell

respectively. These two parameters form a structurally unidentifiable pair, for this rea-

son here we consider the product of the two parameters. Interestingly, the three strains

with highest value have the lowest values, especially IB311. This means, that these

cells can grow normally until some relatively high concentrations, however, when sub-
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jected to even higher concentrations, the β-lactamases they express are not sufficiently

efficient. In other words, these strains are individually resistant, but not very resilient as

population. For IB311, this translates into a specific phenotype: at concentrations up to

8 mg/L there is no impact of antibiotic treatment on the growth dynamics, at one spe-

cific concentration from the tested range (16 mg/L) there is the phenomenon of crash,

growth arrest and regrowth, at higher concentrations (starting from 32 mg/L) there is

crash and growth arrest, but no regrowth. This also concurs with the fact that one com-

mon attribute of all strains but this one is that they express a β-lactamase of CTX-M

class, contrary to IB311.

3.4 Can the model capture the temporal evolution of

OD for other β-lactam antibiotics?

In all the experiments described so far, we have studied the bacterial population re-

sponse to a specific β-lactam - cefotaxime. Here we were interested in characterising

the population response to other β-lactams and testing the ability of the model to capture

this. We chose two antibiotics: first, ceftriaxone, a broad-spectrum cephalosporin that

inhibits cell wall synthesis and induces filamentation; second, mecillinam, an extended-

spectrum penicillin that primarily targets PBP2 and induces the production of osmoti-

cally stable round cells [78]. Using growth parameters from previously generated pa-

rameter sets on cefotaxime data, I calibrated the model to new data. The simulations are

in perfect agreement with the experimental data corresponding to ceftriaxone treatments

(Figure 3.5), which is to be expected given that ceftriaxone is very similar to cefotaxime

in its mode of action.

However, the agreement between simulations and experiments is less perfect in the

case of mecillinam, which is understandable given that mecillinam is quite different

from the other two antibiotics and does not induce filamentation. The growth kinetics

assays show quite different responses to antibiotic treatment.

In the case of IB302, there is still a period of exponential growth followed by growth

arrest. Biomass degradation is much more pronounced and the time to regrowth is

less dependent on antibiotic concentration. Interestingly, the population treated with
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mecillinam does not fully regrow to carrying capacity.

Figure 3.5: Can the model capture the temporal evolution of OD for a range of antibiotic
treatments? Left: For two clinical isolates (IB302 – top row, NILS18 – bottom row), I mea-

sured temporal evolution of OD in response to two other β-lactams: ceftriaxone – left column,

mecillinam – right column. Experimental data is in points, simulations of the model is in dashed

lines. Right: β-lactams: (cefotaxime in blue, ceftriaxone in orange and mecillinam in green).

In the case of NILS18, the exponential growth period is much longer than for other

antibiotics and is followed by growth arrest at an OD lower than carrying capacity and

there is no regrowth. This behaviour of NILS18 was actually quite well captured by the

model, so we decided to look at the parameter values for the three antibiotics to see if

there was a possible explanation for these different dynamics.

In Figure 3.5 I have presented a box plot showing the distribution of parameter

values for the best 5-10 fits for each antibiotic (cefotaxime in blue, ceftriaxone in orange

and mecillinam in green). From the figure we can see that cefotaxime and ceftriaxone

are quite close, but in the case of mecillinam I obtained a much lower value of k1,

meaning that the effect of the antibiotic on cell wall integrity starts at low concentrations.

Interestingly, the lysis rate γ is lower and Lmax is higher, which in the model means that

death starts later and is less important. In addition, pc, the proportion of non-degradable
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biomass, is higher, meaning that less dead biomass can be degraded.

3.5 Conclusions

In this chapter I presented the model previously developed in the team. I also pre-

sented the approach I adopted and results of characterising the population response to

cefotaxime treatments for a number of clinical isolates. I also presented decorrelations

between OD readings and CFU measurements. Using this model-based approach, we

were able to reconcile the two types of measurements, fit the model to both OD and

CFU data, and obtain good agreement between simulations and experimental data for

a collection of clinical isolates with different levels of antibiotic susceptibility. This

method provides us with valuable insights and a detailed picture of collective antibiotic

resistance.

Further analysis of the model parameter values revealed differences between strains

in terms of β-lactamase activity and/or production levels, which were confirmed by

known genetic background. Finally, for two strains, I presented the results of a simi-

lar characterisation of the population response to two other antibiotics: ceftriaxone and

mecillinam. From these results we can conclude that the model is able to capture the fil-

amentous response to β-lactams, but struggles to capture the non-filamentous response.
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Chapter 4

Quantifying the impact of multiple
antibiotic applications on cell death

4.1 Introduction

Antibiotic resistance has been studied for decades. However, most in vitro studies char-

acterise the response of bacterial populations only when exposed to a single dose of

antibiotics. When faced with treatment failure, the most common alternative treatments

are combinations of two different antibiotics [79] or combinations of an antibiotic with

a β-lactamase inhibitor [22]. The two newest combination therapies against ESBL-

producing bacteria are ceftazidime-avibactam [80] and ceftolozane-tazobactam [81].

There are also some trials where the authors looked at regular antibiotic use over a

period of time. One study [82] has shown that optimised periodic treatment can reduce

the dose of antibiotics needed to fight persistent biofilm-forming bacteria. Tan and col-

leagues [83] investigated the effect of periodic antibiotic administration on the inoculum

effect. They have shown the non-linearity of bacterial response to periodic treatments.

In Chapter 3 I have shown that the model [69] is able to capture the temporal evolu-

tion of both OD and CFU for a range of clinical isolates exposed to a range of antibiotic

concentrations, which was an important result considering significant de-correlations

between the two modes of measurement during β-lactam treatments. To further chal-

lenge the model, I attempted to use only OD data, easily measurable but notoriously
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difficult to exploit, for model calibration and to test its predictive capabilities on CFU

data, requiring long and tedious experimental protocols, but the results were not fully

satisfactory.

In the previous chapter, for characterisation experiments, the total antibiotic concen-

tration was always added at the beginning (hereafter referred to as single treatment). In

order to obtain more informative data for model calibration, a second dose of antibiotic

was added several hours after the first dose at the beginning of the experiment (here-

after referred to as repeated treatment). Fitting the model to OD data from both single

and repeated treatment experiments allowed us to obtain robustly better predictions of

the temporal evolution of CFUs compared to previous attempts using single treatments

only. Further analysis of parameter values and their uncertainties showed that the inclu-

sion of repeated treatments in the calibration dataset provided additional constraints on

some of the parameters.

4.2 Prediction of the temporal evolution of CFU based

on the temporal evolution of OD

To further challenge the predictive power of the model, we tested its capacity to predict

the temporal evolution of CFU based solely on OD data (Figure 4.1a). This was also

motivated by the fact that even using plate-based protocol CFU assays (cfu) remains a

time-consuming and complicated task, especially when compared to the generation of

OD curves by an automated plate reader.

For one of the non-susceptible strains (IB302), the model was recalibrated using

only OD data, and the simulated live cell number was compared to the experimental

data (from the experiments generated for Figure 3.2). To assess the predictive qual-

ity of the model, the stochastic fit was repeated forty times, generating forty different

parameter value sets on the same dataset. For each set, the CFU prediction score was

calculated, defined as the mean square error of the logarithm of cell counts for all exper-

imental points and all concentrations of antibiotic. Statistical analysis of these generated

fits demonstrated that in all cases, it is possible to reach a parameter value set that pre-

dicts the live cell number accurately within 40 fitting attempts. However, the stochastic
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fitting algorithms employed were unable to reach this global optimum with every initial

random seed, and the average fitting score is disappointing (Figure 4.1b). Given the

time-consuming nature of fitting a model of this size, we sought to determine whether

it was possible to more consistently reach a fit that predicts cell numbers accurately

without using any cell number while fitting.

In order to increase the power of our experimental dataset, I conducted additional

experiments. Previously, the entire dose of antibiotic was administered at the start of

the experiment, this type of experiment will be referred to as single treatment. In new

experiments, I again administered a range of antibiotic concentrations at the start of the

experiment (first dose), but added a second dose at a specified later time (usually 2, 4

or 6 hours after the start), experiments I will refer to as repeated treatments. These

experiments were also performed in a 96-well plate, in M9 minimal media with glucose

and Tween 20. The second treatment was performed simultaneously on an entire column

using a multichannel electronic pipette to minimise the time spent outside the incubation

conditions.

As a new calibration dataset, we selected OD data from a single treatment experi-

ment along with 3 repeated treatment experiments. As before with single treatments, I

fitted the model to the new dataset forty times, with forty different initial random seeds

for the optimiser, and calculated CFU prediction scores. This method allowed the op-

timiser to reach the global optimum much more consistently, enabling robust and good

predictions (Figure 3.2b). The average prediction score with this method is similar to

the best prediction score with the previous method using only single treatment trials.

In Figure 4.2 I show CFU predictions simulated using four parameter value sets,

with the best fit score calibrated to single treatment and another four calibrated to single

treatment and three repeated treatment experiments. The fitting cost on the single treat-

ment experiment alone is much (5-10 times) lower than on the more complex dataset,

but the CFU prediction score is lower when repeated treatments are used for calibration.

This leads us to believe that the parameter search on single treatment experiment only

tends to overfit the OD data and overestimate the cell death and de-filamentation rate.

We observed the same for four other strains (two on Figure 4.1c, all four on Figure

4.3). Therefore, calibrating the model on only OD data for four slightly different experi-
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Figure 4.1: Prediction of the temporal evolution of CFUs based on the temporal evolution
of OD. a Our approach. A 96-well plate is inoculated with the isolates to be tested, and a range

of antibiotic concentrations is applied at the beginning (single treatment). For some experiments,

a second antibiotic dose is applied several hours later (repeated treatment). The OD is read pe-

riodically by an automated plate reader. During single treatment experiments, every two hours a

sample is taken for the CFU assay. Only the OD data is fed into the model, for which numerical

parameters are estimated for each isolate. Based on these parameters, simulations correspond-

ing to both OD and CFU data are generated and compared to the experimental results. b Can

the model predict the temporal evolution of CFU based on the temporal evolution of OD for a

range of treatments? Fitting the model on single treatment experiments: On the same calibration

dataset containing only single treatment experiments, around 40 parameter value sets are gener-

ated (by repetitive fitting with a stochastic optimiser). For each of these, a CFU prediction score

is calculated. The CFU predictions shown here were generated with the parameter set value that

yielded the median CFU prediction score. The full distribution of the 40 prediction scores is

shown on the histogram on the right in magenta. Fitting the model on both single and repeated

treatment experiments: On the same calibration dataset containing both single treatment and

three different repeated treatment experiments, around 40 parameter value sets were generated.

For each of them, a CFU prediction score is calculated, with the distribution presented on the

histogram on the right in green. The CFU predictions were simulated using the set with the

median prediction score. The experimental data is shown in points and solid lines, while the

model simulations are shown in dashed lines. The line colours correspond to different initial

concentrations of cefotaxime. c Generality of the result: Each row of plots corresponds to one

clinical isolate. The first plot in a row represents the bacterial response to different antibiotic

concentrations applied at the beginning (single treatment). The next three plots correspond to

repeated treatments: to the range of initial single treatments, a second antibiotic concentration is

administered after several hours. The last plot in the row shows the distribution of CFU predic-

tion scores of different parameter value sets that were calibrated either only on single treatment

(in magenta) or on all four experiments (in green). The plot on the left of the histogram depicts

the experimental CFU data for the single treatment (in points and solid lines) and the simulations

(in dashed lines) using the parameter value set that corresponds to the median prediction score.



Figure 4.2: Prediction of temporal evolution of CFU using parameter values with lowest fit
score. Top: Four parameter value sets, obtained by calibration on a single treatment experiment

and giving the lowest fitting score on OD, were used to simulate the temporal evolution of CFU.

Each plot on the right corresponds to simulations from one parameter value set. The title of each

plot shows the OD fit score and the CFU prediction score. Bottom: Four parameter value sets,

obtained by calibration on single and three repeated treatment experiments (shown on the left)

and yielding the lowest OD fitting score, were used to simulate the temporal evolution of CFU.

Each plot on the right corresponds to simulations from one parameter value set. The title of each

plot shows the OD fit score and the CFU prediction score.

ments, we were able to predict the temporal evolution of the number of live cells during

antibiotic treatment, a major result that has never been achieved before.

What makes repeated treatment experiments so informative that they allow the model

to make good CFU predictions? One reason is that they provide information on β-

lactamase efficiency: with a high initial dose of antibiotics, the second dose has little

effect on the time to regrowth, showing that the proportion of the population that dies
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Figure 4.3: Prediction of temporal evolution of CFU based on temporal evolution of OD.
Each series of plots corresponds to a clinical isolate. The first plot in a series represents the

bacterial response to different antibiotic concentrations applied at the beginning (single treat-

ment). The next three plots correspond to repeated treatments: a second antibiotic concentration

is added to the range of initial single treatments after several hours. The next plot shows the

experimental CFU data for the single treatment (in points and solid lines) and the simulations

(in dashed lines) using the parameter value set corresponding to the median prediction score.

The last plot in a row shows the distribution of CFU prediction scores of different parameter

value sets calibrated either on single treatment only (in magenta) or on all four experiments (in

green).



depends mainly on the initial dose, and that the amount of β-lactamases released by the

dead cells is sufficient to degrade the two doses of antibiotic. Another reason is that

they provide information on the inoculum effect: if there is no (or small) initial dose,

the second dose is the main treatment, and the later we apply it, the higher the popu-

lation density at the time of treatment, the smaller the effect of the treatment. Last but

not least, an observation that could shed some light on cell death is that no matter when

the treatment is applied, if there is an effect of this treatment, the ratio between the OD

at the moment of antibiotic administration and the OD at the moment of crash (end of

exponential increase of biomass) remains the same, which is consistent with the model’s

assumption that death is caused by critical length.

In the next section, we examined the impact of the choice of calibration data set

by comparing the results of calibration to different combinations of available repeated

treatment experiments in terms of success rate, fitting cost and CFU prediction score,

and optimal parameter value uncertainties.

4.3 Effect of repeated treatment experiments on param-

eter search efficiency

Previously we compared parameter value sets, resulting from model calibration on ei-

ther a single treatment experiment alone or together with three repeated treatment ex-

periments in terms of CFU predictivity. For Figure 4.1c and 4.3 I have chosen specific

three repeated treatment experiments for the calibration dataset: in most cases it was

the same antibiotic concentration applied at 2, 4 and 6 hours. However, for some strains

(for example IB302 shown on Figure 4.1b) I have performed more than three different

repeated treatment experiments. The logical question that arises is whether we need

three repeated treatments for good predictions or whether one or two would be suffi-

cient. Another question is what repeated treatment experiments bring to the calibration

dataset in terms of parameter value constraints.

To answer these questions, I generated different variations of the calibration dataset

containing zero, one, two or three (or more in the case of IB302) different repeated

treatment experiments. The dataset type is defined based on the number of repeated
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treatment experiments added to it. In Figure 4.4 I summarise the number of fits gener-

ated for each type of calibration dataset and the number of individual datasets of that

type. For each fit, I calculated the fit score to the OD of the calibration dataset and the

prediction score to the CFU of the individual treatment. Based on previous observations

and analyses, I set a threshold of 200 for both scores to separate good fits from moderate

or even poor fits. For a subset of strains (IB302, NILS18 and IB307) for each dataset

type I calculated the percentage of fits with a good fit score out of the total number of

fits of that type. I also calculated the percentage of fits with a good prediction score

out of the fits with a good prediction score. This data is presented in a bar chart in the

figure 4.4. From the plot we can see that adding repeated treatment trials decreases the

probability of having a good fit, but increases the probability of a fit with a good fit score

having a good prediction score. In other words, it is more difficult to fit a more complex

dataset, but if we get a good fit, it is more likely to produce good CFU predictions. To

consolidate this result, we looked at the evolution of fitting score and prediction score

as a function of the number of experiments in the calibration dataset. We observe that

the average fit score goes up when we add at least one repeated treatment experiment

and, at the same time, when we compare fits to single treatment only and fits to single

and three repeated treatment experiments, we observe that the average prediction score

is lower and, importantly, there are many separate variations of this dataset that lead to

very good prediction scores (below 190).

In order to study the influence of the calibration data set on the uncertainties of the

parameter values, I calculated the standard deviation of the optimal parameter values

for each specific dataset, further I grouped the datasets by type and calculated a mean

of these standard deviations. On the Figure 4.4 I show individual dataset standard de-

viations in scores and means for each dataset type in the solid line for a small selection

of parameters: growth rate µ, a parameter easily identifiable with a minimal amount of

data; antibiotic concentration inducing filamentation k1, an antibiotic-related parameter

important for good CFU predictions but still identifiable from a single treatment exper-

iment; and finally the product of two parameters characterising β-lactamase production

and efficiency kb ∗ Bin, difficult to identify but important for good CFU predictions.

As expected, the growth rate is well identified on all calibration datasets. Especially
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for IB302, but also for IB307, we observe that adding experiments tends to constrain

the parameter values. For NILS18, it depends a lot on which three repeated treatment

experiments we choose.

Overall, choosing a single treatment along with three repeated treatment experi-

ments as a calibration dataset is a good compromise between the complexity of the

training dataset and the constraints on cost and parameter variability.
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Figure 4.4: Impact of addition of repeated treatments to calibration dataset on parameter
identification. Top: Analysis of fit quality depending on calibration dataset type. Left: This

table represents a summary of number of generated fits for each strain and for each dataset type.

“Count” and colour of the cell correspond to total number, “var.” corresponds to number of indi-

vidual variants of this type with at least one fit. Center: For each individual dataset total number

of fits, number of fits with fitting score less than 200 and number of fits with both prediction

score and fitting score are less or equal to 200 were calculated. On this plot blue bars correspond

to average per dataset type percentage of fits with good fitting score, orange bars correspond to

average per dataset type percentage of fits with good prediction score among those with good

fitting score. Error bars represent variability between different individual datasets of the same

type. Right: This plot shows evolution of fitting and prediction scores as a function of calibra-

tion dataset type. Points represent individual parameter value sets; solid lines represent average

per dataset type. Blue colour corresponds to fitting score, orange colour corresponds to CFU

prediction score. Bottom: Analysis of parameter value constraints. For each individual dataset

for each parameter a standard deviation of value distribution was calculated, represented here in

dots. Solid lines correspond to average per dataset type. Different columns correspond to differ-

ent clinical isolates. Different rows correspond to different parameters. Here we selected three

parameters: growth rate µ (first row), a parameter easily identifiable with minimal amount of

data; antibiotic concentration inducing filamentation k1 (second row), a antibiotic-related param-

eter, important for good CFU predictions, but still identifiable from single treatment experiment;

and, finally, product of two parameter characterizing production and efficiency of β-lactamase

kb ∗ Bin (third row), hard to identify, but important for good CFU predictions.

4.4 Prediction of complex temporal evolution of CFU

for delayed treatments

In the previous sections, the temporal evolution of CFU that we attempted to predict

from OD data corresponded only to single treatment experiments. As an additional

challenge to the predictive power of the model, we attempted to predict the temporal

evolution of CFU for delayed treatments, i.e. no antibiotic treatment at the start of the

experiment and the entire antibiotic dose administered several hours later. This experi-

ment is a version of the inoculum effect under nutrient-limited conditions, as the bacte-
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rial population has time to grow to higher densities before antibiotics are administered.

If the relationship between OD and CFU data was non-trivial for single treatments, this

relationship becomes even more complex and puzzling when treatment is delayed. For

example, there is no difference in the temporal evolution of OD between treatment at

4 hours, treatment at 6 hours or normal growth without treatment, but the evolution of

live cell counts is drastically different in these cases (Figure 4.5) .

When treated at the beginning, from the OD data we observe exponential growth

for about four or five hours, then a steady period and then regrowth; from the CFU data

we observe a decrease in live cell numbers followed by regrowth (Figures 3.2 and 4.1).

If the treatment is delayed by two hours, the OD continues to grow exponentially for

another five hours, then we observe a shorter steady period and then regrowth. From

the CFU data, we observe a period of no increase in live cell numbers after treatment,

followed by regrowth. This corresponds to antibiotic-induced filamentation, followed

by a short period of cell death, compensated by de-filamentation, and finally regrowth

of the population. When treated after four hours, the time course of OD shows no effect

of antibiotic treatment, but the CFU data reflect a significant slowing of the growth rate.

This could be explained by antibiotic-induced filamentation at the beginning, followed

by regrowth under nutrient-limited conditions. Finally, the treatment after six hours of

growth does not affect the temporal evolution of the OD, nor does the treatment af-

ter four hours. On the other hand, we observed fluctuations in the number of live cells

without a significant increase after the treatment. This could be interpreted as cells start-

ing to filament after antibiotic treatment (previously shown results), but due to glucose

exhaustion there are not enough nutrients left for the population to regrow. The most

difficult observations for the model to capture correspond to simultaneous cell lysis,

antibiotic degradation and onset of regrowth, possibly accompanied by filamentation,

the timing of these events being highly sensitive to initial and environmental conditions

(Figure 3.2b).

We asked whether the parameter set fitted from OD data only (one single and three

repeated treatment experiments, Figure 4.1b) could enable accurate model predictions

for the CFUs of delayed treatment experiments.

I subjected similar bacterial populations to the same concentration of cefotaxime ad-
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Figure 4.5: Predicting complex temporal evolution of CFU for delayed treatments. The

calibration dataset is represented on the left side. Experiments corresponding to the data on the

plots on the right side are delayed treatment experiments, where no antibiotics are added at the

beginning of experiment, and the whole amount (the same for all presented plots) is administered

several hours later. Experimental data is presented in points with solid lines and simulations are

represented by dashed lines.

ministered at different times (2, 4 and 6 hours). We observed here too a good agreement

between the model predictions and the experimental data (Figure 4.5), even though the

model was only trained on OD curves.

4.5 Optimal treatment

Another challenge we tried to tackle with the model was to find an optimal treatment:

more precisely, given a total amount of antibiotic, split it into two doses: one (a0) to be

applied at the beginning, the rest to be applied later (at t1 hours), in such a way as to

minimise the OD at 24 hours. For one strain (IB311), using the same type of dataset as

for Figure 4.1, containing one single and three repeated treatment experiments, I gener-

ated 40 different fits. From these generated parameter value sets, I selected one based

on the sum of the OD fitting score and the CFU prediction score, the CFU prediction

score itself, and the accuracy of the prediction of population behaviour during complex
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antibiotic treatments. Given this parameter set, a grid optimisation was performed on a0

and t1 to find the treatment plan that minimised the OD after 24 hours (Figure 4.6a). The

predicted optimal solution was tested experimentally, as well as a number of different

treatments selected in the neighbourhood of the predicted optimal one. We found that

among these, the predicted optimal treatment was indeed the best performing of all the

treatments tested, and that all of them performed according to the model predictions.

Incidentally, this search for the treatment that gives the lowest OD at 24 hours seems

to correlate with the treatment that prevents cell regrowth for the longest time: all the

combinations tested prevented regrowth before 24 hours, while the optimal solutions

prevented regrowth even after 30 hours. Given these promising results for IB311, I

tried to do the same for another strain (NILS18). As before, using a single and three

repeated treatment experiments as a calibration data set, I generated a number of fits,

from which I selected one based on the sum of the OD fit score and the CFU prediction

score, and the CFU prediction score itself. The only way I found for the final OD to be

lower than the carrying capacity at thirty hours was to add the full dose 3 hours after

the start of the experiment. This could be explained by rapid nutrient consumption prior

to antibiotic treatment, leading to glucose depletion and insufficiency for full regrowth.

This scenario of the final OD of the delayed treatment being lower than the carrying

capacity (maximum population density when grown without antibiotics) is supported

by experimental data. On Figure 4.6b I show the available experimental data and the

results of in silico experiments for the optimal treatment, the treatment corresponding

to the experimental data and some other possible splits that end up less efficient than the

optimal one.

And what about the other strains from Figure 4.3? I tried the same optimisation task

for the remaining three isolates. For each of them, from parameter value sets generated

through calibration on single and three repeated treatment experiments as presented

earlier, I selected a set with the lowest sum of fitting and prediction scores and a mini-

mum prediction score for close total scores. For each strain I selected the highest tested

concentrations that allowed regrowth before 30 hours, the time at which we sought to

minimise OD. All found solutions are either based on active glucose consumption prior

to antibiotic treatment resulting in a lack of nutrients for full regrowth (as in the case of
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Figure 4.6: Optimization problem: Using one of the parameter value sets fitted on single and

three repeated treatment experiments, we were looking for treatment optimization: an efficient

way to split a given antibiotic concentration into two separate doses, one (a0) at the beginning

and the rest at time t1 so that OD at 24 hours is minimal. a. Left: calibration dataset and fitting

results for IB311. Center: surface of the optimization search. Right: Experimental results. Color

of lines correspond to specific treatments listed in the table on the left. Position of these treat-

ments on the optimization surface are shown by the points of corresponding color. b. Optimal

treatment through glucose exhaustion. Left: calibration dataset and fitting results for NILS18.

Center: surface of the optimization search. Right: Experimental and in silico results. Color of

lines correspond to specific treatments listed in the table below. Position of these treatments on

the optimization surface are shown by the points of corresponding color. c. Top: Summary

of the found optimal treatment for the four strains. Bottom: Simulations for each strain: the

whole antibiotic concentration administered at the beginning (blue); the optimal treatment for

this strain (orange).

NILS18), or do not delay regrowth sufficiently. On Figure 4.6c I presented simulations

for putting everything at the beginning and for the optimal treatment. This inability to

find the optimal treatment correlates with the observation, that none of the treatments

tested for the calibration datasets prevented the regrowth at 30 hours, indicating a high

efficiency of their collections of β-lactamases in degrading of cefotaxime.

Interestingly, of the five clinical isolates tested, IB311 is the only one for which

we have found a non-trivial optimal treatment. What makes it different from the oth-

ers? Looking more closely at the temporal evolution of OD in the presence of different

concentrations of cefotaxime, we observe some specific characteristics: at low concen-

trations (up to 8 mg/L) there is no effect of antibiotic treatment on growth dynamics,

at a specific concentration from the range tested (16 mg/L) there is the phenomenon

of crash, growth arrest and regrowth, at higher concentrations (from 32 mg/L) there is

crash and growth arrest but no regrowth. In terms of genotype, this strain expresses

three β-lactamases (TEM-1, OXA-181, CMY-2), but does not express a β-lactamase of

the CTX-M type, unlike the other four strains tested. The significance of these sets of

β-lactamases for the phenotype and the cefotaxime degradation capacity is discussed in

more detail in section 3.3.
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4.6 Conclusions

The approach presented in this chapter is powerful enough to predict temporal evolution

of live cell counts for single treatments, and even some delayed treatments, using only

OD data of a range of complex antibiotic treatments. This means that the model allows

to use OD - an easily accessible, but notoriously hard to exploit, observable for predict-

ing the CFUs - one that requires long and tedious experimental protocols. This major

result might help lighten the experimental load for future susceptibility characterization

of clinical isolates by decreasing the number of CFU assays required for the estimate of

the killing capacity of antibiotics and the inoculum effect.

The combination of this and the previous chapters demonstrates the importance of

the model-based approach. It has allowed us to capture the temporal evolution of both

OD and CFU data for a range of clinical isolates subjected to a range of antibiotic treat-

ments, giving us a highly detailed picture of the phenomenon. By adding experiments

to characterise the population response to two applications of antibiotics, we were able

to learn even more and as a result, predict CFU from OD in a robust and good way and

predict optimal treatment where possible. This level of understanding will hopefully

help in the fight against recurrent infections.
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Chapter 5

Quantifying the impact of growing
conditions on cell death

5.1 Introduction

There are many factors that are likely to contribute to the outcome of antibiotic treat-

ment. Some are characteristic of the bacterial strain (resistance genes, resistance mech-

anisms, adaptive capacity). Some are due to antibiotic properties, some are environ-

mental, such as pH, iron and nutrient availability at the site of infection, host immunity

or patient history. Much effort has gone into studying the effects of strain and antibiotic

properties, but the role of environmental factors is much less known and understood.

However, some studies have already shown that growing conditions play role in the cor-

relation between transcription and gene diversity and that genetic variability increase

with gene expression in poor growth conditions [84].

Meanwhile, the course of infection, its severity and the choice of treatment depend

to a large extent on the site of infection. Depending on the site of infection, nutritional

conditions vary. In the gut, for example, the main source of nutrients comes from the

mucus layer, a rich environment that provides a variety of sugars, proteins, lipids and

nucleic acids from different sources. The urinary tract is a very different environment.

Urine is a very complex medium containing a wide variety of metabolites. The main

sources of nutrients in urine are amino acids and carbohydrates. However, urine gen-
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erally contains limited amounts of some specific amino acids such as arginine, valine,

methionine, uracil, isoleucine and adenine. Iron is also present in limited concentra-

tions. The least abundant carbon source in urine is sugar, especially glucose [85]. As

mentioned in chapter 1, urine composition can also be influenced by other medical con-

ditions. It has been shown that trauma, hospitalisation and catheter use play a role in

the concentrations of urinary glucose, amino acids, iron, urea and norepinephrine [27].

It has also been shown that patients with type 2 diabetes have a lower pH than healthy

volunteers [86]. Some studies also found an increase in urinary glucose concentration

in diabetic and hypertensive patients [87].

It is well known that the composition of the medium plays an important role in

bacterial growth. It also plays a role in the response to antibiotic treatment. It has been

shown that there is a robust correlation between growth rate and β-lactam-mediated lysis

rate [57] . In another study, the authors identified an influence of medium composition

on both growth rate and hydrogen sulphide production, and subsequently on bacterial

tolerance to antibiotics such as ciprofloxacin and chloramphenicol [88]. It was also

shown that adaptation to different environments can influence antibiotic resistance and

can even be used to sensitise bacteria to some antibiotics [89].

In this chapter, we are interested in exploring the effect of environmental condi-

tions on the response of bacterial populations to antibiotics, and attempting to gain a

better understanding of the underlying behavioral differences. To this end, we char-

acterised the response of a collection of clinical isolates to cefotaxime treatments in

different media. As a first step, we selected two specific media, taking into account the

in-vitro-in-vivo gap introduced in chapter 1: Mueller-Hinton (MH) broth, a very rich

medium that is the EUCAST standard for antibiotic susceptibility testing medium [33],

and pooled urine either from healthy volunteers or purchased from BioIVT, a very com-

plex medium closer to in vivo conditions. We made some paradoxical observations that

survival in MH was better than in urine for higher concentrations of antibiotic, which

goes against the general knowledge that bacteria are more susceptible to β-lactams in

richer media. This led us to use a model-based approach to try to explain the observed

behaviour. Our approach consisted firstly of measuring both OD and CFU of bacterial

population dynamics during antibiotic treatment, and secondly of calibrating the model
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[55] to experimental data. Further analysis of the identified model parameter values re-

vealed significant differences between the two media and a possible influence of growth

conditions on β-lactamase production and/or activity. Dimensionality reduction results

suggest that the influence of the environment is higher than the genetic background of

the strain on death and regrowth in presence of cefotaxime.

5.2 Characterization of bacterial population’s response

to β-lactam treatment in different growing condi-

tions

In chapter 1 I mentioned that there is a well-known gap between in vitro tests and in

vivo conditions at the site of infection. Here we have attempted to tackle this question

without adding complexity to the experimental set-up. Our experimental approach is

to use a plate reader for incubation, shaking, temperature control and measurement of

optical density (OD), and to perform systematic sampling to estimate the number of live

cells by performing colony forming unit (CFU) assays. For this study, we selected 5

clinical isolates of different origin ([58, 59], full description in Methods section 7.1), in-

cluding two strains derived from UTIs: NILS56 and NILS64. All these strains express

one or more β-lactamases. Some of them also contain gene mutations that are likely to

contribute to antibiotic resistance. These bacteria were exposed to different concentra-

tions of cefotaxime, a third-generation broad-spectrum cephalosporin, while growing in

different media. These simple experiments allowed us to make interesting observations

(Figure 5.1). For all the strains tested, both the growth rate and the final population size

(also known as the carrying capacity) were higher in MH than in urine. This is expected

and can be explained by the fact that MH is richer in nutrients.

When subjected to antibiotic treatment, some strains show better survival in urine

compared to MH: less decrease in live cell number and earlier regrowth (left side of

figure 5.1a). It is well known that cells with a higher growth rate are more susceptible

to β-lactam treatment and our observation is in line with this.
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Figure 5.1: Characterisation of bacterial population response to β-lactam treatment in dif-
ferent media. a. Top: The outcome of antibiotic treatment of infection is multifactorial. Bottom:

Description of observed differences between media. For two clinical isolates (IB302 on the left,

IB311 on the right), growth kinetic assays were measured together with CFU assays in the ab-

sence of antibiotic and in the presence of two concentrations of cefotaxime. These experiments

were performed in two different growth conditions: urine (left) and the most commonly used

medium for susceptibility testing, Mueller-Hinton (MH) broth (right). b. Approach. For a selec-

tion of clinical isolates, growth conditions and antibiotic concentrations, the time course of both

OD and CFU was measured. These data were used for model calibration. The resulting model

parameter values were further used to quantify the effect of growth conditions on the population

response to antibiotics.
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Interestingly, however, for some strains, regrowth is faster in MH than in urine (pur-

ple line, right-hand side of Fig. 5.1a) or may be present in MH but not in urine (brown

line, same plot). A possible explanation could be that although more bacteria are killed

by the antibiotic in rich media, there are still more survivors because the total popu-

lation is larger. Given the richness of the media, more resources may be available for

regrowth. These controversial observations lead us to our main question: can we use

a model-based approach to quantify the effect of growth conditions on the response of

the bacterial population to antibiotic treatment and gain a better understanding of the

underlying differences in behaviour between these two media?

The next step in our approach (Fig. 5.1b) is to use experimental OD and CFU data

to calibrate the model [55], and to analyse the resulting model parameter values to try

to understand the differences between media.

I tested the response of the selected strains to 6-8 concentrations of cefotaxime in

both urine and MH (Fig. 5.2). For all strains, growth rate and carrying capacity were

higher in MH than in urine. For the majority of strains, bacterial survival is better in

urine than in MH at lower antibiotic concentrations: less decrease in live cell number

and earlier regrowth. This can be seen for example by comparing the responses to

32 mg/L (brown) and 64 mg/L (pink) for IB302, 8 mg/L (red) and 16 mg/L (purple)

for NILS18 and 64 mg/L (pink) for NILS64. However, for higher concentrations of

antibiotics for the same strains and for all concentrations (that cause growth changes)

for IB311 and NILS56, we observe later growth in urine compared to MH.

Crash time (growth arrest) is earlier in MH than in urine, which is consistent with

the common knowledge that faster growing bacteria are killed faster by β-lactams. This

may also explain why the decrease in the number of living cells is more important in

MH than in urine. As for two contrasted observations on regrowth, this may be related

not only to antibiotic killing capacities, but also to β-lactamase activities. At lower

concentrations in urine, the enzymes released by lysed cells are sufficient to degrade

antibiotics, and since there are fewer losses, the population regrows earlier. At higher

concentrations or for strains with weaker β-lactamases, growing in MH means greater

population loss, i.e. more β-lactamases in the media, faster degradation of the antibiotic

and earlier and faster (due to higher growth rate) regrowth.
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Figure 5.2: Characterisation of the response of the bacterial population to β-lactam treat-
ment in different media. Top: The response of three clinical isolates (IB302, IB311, NILS56)

to cefotaxime treatment was characterised in both urine and MH. Where possible, both OD and

CFU data were obtained. centre: For two strains (NILS18 and NILS64), experiments were per-

formed in five media: (from left to right) urine, M9 with 0.1% casamino acids, M9 with 0.2%

casamino acids, M9 with 0.4% casamino acids and Mueller-Hinton broth (MH). Bottom: For

the latter two strains (NILS18 on the left, NILS64 on the right) for the five media (x-axis, same

order as above) several values were extracted from the data: growth rate (first row of plots, in

black), regrowth time for different concentrations of antibiotic (same colour code as above). If

there was no regrowth, the regrowth time was set to the end of the experiment (30 hours). If

there is no effect of the antibiotic on growth, the regrowth time is set to 0. The y-axis is inverted

(fastest regrowth at the top, no regrowth at the bottom).

In urine, amino acids are the main source of nutrients. In MH there are other nu-

trients, but it contains acid casein hydrolysate, which contains amino acids from the

hydrolysis of casein. The main difference between the composition of the two media

is the amount of nutrients available. With this in mind, I tested two strains in minimal

media containing three different concentrations of casamino acids (amino acids from the

hydrolysis of casein). In this way, for the two strains experimental dataset describes the

response to cefotaxime treatment in 5 different media: urine, M9 with 0.1% of casamino

acids, M9 with 0.2% of casamino acids, M9 with 0.4% of casamino acids and MH. For

these two strains for the five media I extracted from the data growth rate and regrowth

time for a range of antibiotic concentrations. If there was no effect of the antibiotic on

growth dynamics, the time of regrowth was set to 0. If there was no regrowth, this time

was set to the duration of the experiment (30 hours). The summary of these metrics is

shown in the lower part of Figure 5.2.

The first interesting observation is that the growth rate remains the same in the min-

imal media with three different concentrations of casamino acids. The main thing that

changes is the carrying capacity. We can also observe drastic changes in the regrowth

time, which means that growth rate is not the only factor influencing the antibiotic re-

sponse as the nutrient concentration changes. Interestingly, there is almost no difference
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in regrowth time at 4 mg/L (green), but at all higher concentrations there is a signifi-

cant reduction in regrowth time. In M9 with 0.4% casamino acids there is almost no

difference in regrowth time between antibiotic concentrations.

What could cause these effects? Growth rate and crash time remain the same, which

means that the killing capacity of the antibiotic does not change significantly. Earlier

regrowth could be explained by earlier (more efficient) degradation of the antibiotic,

which would mean a higher concentration of β-lactamases released into the media. If

the antibiotic kills the same proportion of the population and the growth rate is the same,

this would translate into a correlation between amino acid/nutrient availability and the

production rate of β-lactamases.

5.3 Model-based approach to identify potential differ-

ences between the media

In an attempt to better understand the earlier observations described, I calibrated the

model [55] to the data. For each experimental condition (strain-media combination), I

tried to use either both OD and CFU data or only OD data (if the first option failed). Fits

have been repeated 20 times using stochastic optimization tools. Finally, each parameter

value set was evaluated by the corresponding OD score and CFU score, defined as the

squared distances between logarithmic values of experimental and simulated data. In

Figure 5.3 I show, for each condition, simulations generated with one of the individual

model parameter value sets. The simulations obtained are in good agreement with the

experimental data, especially considering that the model was designed to mimic the

population response to antibiotic in poor media while using sugar as the main nutrient.

More importantly, in the majority of cases, the model fits not only the OD data well, but

also the CFU data.

As a next step, I used parameter values corresponding to fits with good scores to

compare different media and try to identify possible causes for the observed differences.

First, I used box plots of the distribution of the parameter values obtained when fitting

the model on data from different media (Fig. 5.4).
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Figure 5.3: Results of model calibration. Comparison of experimental data and the model

fit. Five clinical isolates are treated with different concentrations of cefotaxime, and optical

density and live cell number are measured as described in Methods section. For two of these

strains experiments were performed in five different media (top and center). For the other three

experiments were conducted in either urine or MH. We show in points with (CFU) or without

(OD) solid lines the experimental data and in dashed lines the output of the model fitted on either

just OD data or OD and CFU data simultaneously.

85



This plot allows not only to compare means, but also to see how identifiable a partic-

ular parameter is: some parameters are tightly constrained, such as growth rate, result-

ing in a very narrow distribution of optimal values. Other parameters are more difficult

to identify and are therefore represented by larger distributions with one or sometimes

even two modes.

For simplicity’s sake, we start the analysis by comparing the median values of the

model parameters, which are marked with white dots on the corresponding distribution.

This simple test already allowed us to identify some interesting trends. There are two

parameters with noticeable differences between urine and MH for all strains: pc, the

proportion of non-degradable dead biomass, and the product of two parameters kb ∗ Bin,

where kb is the activity rate of the β-lactamase and Bin is the corresponding production

rate per unit cell length. The degradable fraction of dead biomass is higher in MH

compared to urine, which can be observed as a more pronounced decrease in OD (e.g.

grey lines in figure 5.2). This could mean that membrane integrity of dead cells is more

degraded in MH, leading to faster degradation of dead biomass. The second observation

is that the product kb ∗ Bin is higher in urine compared to MH, meaning that more β-

lactamase activity is observed per cell length. This could be due to either a higher

production rate and/or a higher activity rate, but we have no way of telling exactly which

of the two, as these two parameters suffer from structural unidentifiability and should

be analysed together. Another interesting observation is that for the majority of strains

(all except NILS56), the minimum antibiotic concentration that stops cell division k1

is higher in MH compared to urine, meaning that filamentation starts later. We also

observe that both k1 and k2 (antibiotic concentrations where filamentation and lysis start

respectively) can be influenced by changes in casamino acid concentration.

To go further, I performed a dimensionality reduction using Principal Component

Analysis (PCA) [90] from 17-dimensional space to 2 (Figure 5.4, middle panel). I

selected the 20 best fits for each strain-media combination. For the first PCA (left) I

selected fits corresponding to 5 strains in 2 media (urine and MH), for the second (right)

I selected fits corresponding to 2 strains (NILS18 and NILS64) in 5 media. Plotting the

results using different colours for the fits corresponding to different media revealed two

clusters: urine and MH. There was no clear separation of M9 with casamino acids from
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Figure 5.4: Analysis of model parameter values. The model was calibrated several times (at

least 20 times) on each experimental condition. The obtained sets of parameter values were se-

lected based on the scoring of OD data and CFU data. Top: Box plot showing parameter values

and corresponding distributions: on the x-axis are different parameters, on the y-axis are relative

values (absolute value divided by a reference value for this parameter), colours correspond to

media, rows correspond to different strains. centre: Dimensionality reduction using Principal

Component Analysis (PCA). Points correspond to individual parameter values, colours corre-

spond to media. Tables below show the parameters that contributed most to each component.

bottom: UMAP [91] visualisation.

the other two media. This clustering was also observed when using other dimensionality

reduction mechanisms such as UMAP [91] (Figure 5.4, bottom panel). In each case, the

two principal components were able to explain 15 and 12 % of the variance respectively.

Interestingly, when looking at the individual contribution of model parameters to each

component, pc and kb ∗Bin again stood out in both case studies. Another parameter with

high contributions is the degradation rate of β-lactamases (db).

In addition, the analysis of urine and MH specifically singled out three other param-

eters: β, ζ and k2 in terms of high contribution to variance. This means that there could

be a correlation between growth conditions and the division rate (β) on the one hand,

and antibiotic-induced lysis on the other: k2 is the antibiotic concentration that induces

changes in critical length (beginning of lysis) and ζ is the coefficient of dependence

of critical length on antibiotic concentration. The analysis of all media also identified

parameters related to antibiotic treatment: the maximum death rate γ and the minimum

antibiotic concentration at which cells start filamentation k1.

All these results give us food for thought for future experimental design. Interest-

ingly, we were able to classify fits corresponding to different media, but we were not

able to separate strains: only IB311 (x symbol) stands out a little. This suggests that

the role of the media is more important than the genetic background of the strains in

the observed response to the antibiotic. However, this result is biased as all our strains

express extended-spectrum β-lactamases.
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5.4 Conclusions

In this chapter I described my work on experimental characterisation of clinical isolates

in different media including urine and Mueller-Hinton media. Interestingly, impact of

growing conditions on antibiotic response varies depending not only on stain but also

on antibiotic concentration. I calibrated the model to the experimental data and used

PCA analysis to extract possible biological explanations for differences between bacte-

rial behaviour in urine and MH. One of major hypotheses that would be interesting to

test experimentally is that β-lactamase activity and/or production rates may depend on

growing conditions.

In this work we focused exclusively on nutritional quality of different media, how-

ever there are other factors that can affect antibiotic effectiveness. It would be very

valuable to extend this study to investigate role of pH, iron concentration, urea presence

and anaerobic conditions and to add other strains to the dataset.
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Chapter 6

Discussions

6.1 Thesis summary

This thesis started with an introductory overview of antibiotic resistance, treatment fail-

ures and recurrent infections. I have also provided a brief summary of the methods

commonly used to study the underlying mechanisms of treatment failure. I then pre-

sented our approach to in-depth characterisation of population response to antibiotic

treatment.

In this manuscript, I have made several methodological and theoretical contribu-

tions to the field of antimicrobial resistance. First, in chapter 2 I presented the problem

of variability in OD measurements that I had encountered. This problem led to multiple

replications of experiments and recurrent model calibration failures. Experimental di-

agnosis of the underlying problem revealed the presence of biofilms. Here, I proposed

a simple solution to address this issue and significantly improve the reproducibility of

the observations (addition of Tween 20 to the growth media). The results showed that

the proposed approach allowed the generation of high-quality OD data with minimal

adjustments and no significant effect on growth rate.

Another optimisation of the experimental protocol (chapter 2, section 2.3) was the

development of a new plate-based protocol for CFU assays using a 96-channel pipette

to prepare dilutions and spot the whole 96-well plate at once. I also adapted a counting

software developed by another team, for which I retrained the machine learning part on
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my images and adapted the R code to my project. This approach allowed us to scale

up the CFU assays and generate a large dataset, which has been analysed in subsequent

chapters.

Other methodological advances are described in annexes. However, their develop-

ments have not reached a sufficient maturity given the time frame of the PhD, there-

fore I did not use them to generate the presented earlier results. One of the method-

ological advances aimed to test alternative ways to estimate separately live and dead

biomass through autofluorescence and propidium iodide staining respectively. Another

proposed an enhancement of the plate-reader with a pipetting robot for automated an-

tibiotic administration and automated dilutions. Annex C and D show two set-ups that

significantly differ from the one used previously: a bioreactor platform, allowing higher

volumes and automated dilutions using peristaltic pumps, and a microfluidic platform,

allowing to image cells in monolayer.

This work focused on characterising the response of bacterial populations to differ-

ent antibiotic treatments in different environmental conditions. In Chapter 3 I presented

a filamentation-based model of bacterial population response to β-lactam treatments

developped previously. I also showed the extensive dataset I had generated, which in-

cluded the temporal evolution of both OD and CFU data describing the growth of 11

clinical isolates in the presence of 8 different concentrations of cefotaxime. Calibrating

the model to this data allowed us to obtain a detailed picture of collective antibiotic

tolerance that reconciled the observed decorrelations between OD and CFU data. By

further analysing the model parameter values, we were able to capture differences be-

tween strains in terms of β-lactamase type. In this chapter I have also presented the

results of similar characterisation for other β-lactam antibiotics.

In Chapter 4, I presented a study of the population response to multiple doses of an-

tibiotics. In the previous chapter, all antibiotics were given at the beginning (also called

single treatment). In this chapter, I added experiments where a second dose was given

several hours later (repeated treatment). These conceptually simple experiments gave

us a lot of valuable information about cell death and β-lactamase activity. They also

allowed us to obtain robustly good estimations of live cell counts (very informative, but

experimentally demanding) from OD data (easy to generate, hard to use) by model cal-
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ibration. This major result was observed for several clinical isolates. In this chapter, we

also explored the influence of the composition of the calibration dataset on parameter

value constraints, and confirmed high information value of repeated treatment experi-

ments for understanding enzyme-mediated antibiotic escape and for constraining model

parameter values. Finally, I have also demonstrated the unique capacities of the model

to find optimal treatments.

Finally, in Chapter 5 I compared the bacterial response to antibiotic treatment in

different growth conditions, specifically pooled human urine and Mueller-Hinton media

(standard media for antibiotic susceptibility testing). We observed several paradoxical

effects, for example, for the majority of strains the differences between the two media

depended on the antibiotic concentration: better survival in urine at low concentrations,

better survival in MH at high concentrations. We were also able to identify interesting

trends in parameter values, suggesting that β-lactamase production and activity may

differ between the two media. Further analysis revealed a clear distinction between sets

of parameter values corresponding to different media. Interestingly, strain identity had

less influence than environmental conditions on the results of dimensionality reduction.

However, this result may be biased by our strain selection, as all strains tested expressed

β-lactamases.

6.2 Discussions and Perspectives

The approach presented in this manuscript is unique in several respects. On the experi-

mental side, following OD curves in a plate reader is one of the most used and simplest

experiments for characterisation. Many people working with clinical isolates encounter

variability in OD curves and deal with this problem by repeating the experiment many

times and using the median as ground truth. However, in a number of cases, using

the median is not satisfying, for example, when there are very large differences in re-

growth time. There are very few studies that have looked at the underlying problem and

tried to address it directly. Ultra low adhesion plates are hard to find and their cost is

much higher than standard plates, besides, there are not always efficient. The solution

of adding Tween20 to the media was already known and used in larger volumes, but is
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overlooked in microplates.

The model we used is also unique. To the best of our knowledge, this is the first

model of bacterial population response to β-lactam treatments that is able to simultane-

ously record live cell counts and optical density of a cell culture subject to filamentation

and complex antibiotic treatments. Previous studies [92, 93] have avoided the filamen-

tation problem by focusing on cell count measurements or ignoring the pre-crash part

of the OD curve. This way focuses on killing capacity of antibiotic and skips escape

mechanisms of bacteria. Many studies also required experiments to include β-lactamase

inhibitors to correctly represent the phenomenon [94]. This way ignores all the enzyme-

mediated responses and the population resilience. Some studies [54] attempted to ad-

dress the filamentation problem, but used single cell profiles and microscopy data to

predict OD, which is the opposite problem, focusing on biophysics to predict popu-

lation response not considering resilience mechanisms. One of the drawbacks of the

model used in this work is the complexity with which it describes evolution of aver-

age cell length and number of live cells. A possible extension of the model would be

to use physics-informed machine learning to replace complex ODE approximations of

initial PDE model by data-driven approach constrained by biological assumptions. The

amount and diversity of data generated for this thesis should allow to train the extended

model. When trained, the model might be quicker to use with higher success rate.

Importantly, we have developed an approach that is powerful enough to predict the

temporal evolution of live cell counts for single treatments, and even some delayed

treatments, using only OD data from a series of complex antibiotic treatments. This

means that our approach allows the use of OD - an easily accessible but notoriously

difficult observable - to predict CFUs, which requires long and tedious experimental

protocols. This important result could help to reduce the experimental burden for future

susceptibility characterisation of clinical isolates by reducing the number of CFU assays

required to estimate the killing capacity of antibiotics. Moreover, the repeated treatment

experiments that allowed us to achieve this result provide us with valuable information

on the mechanisms of bacterial response to antibiotics and are simple experimental and

conceptually straightforward modifications of the standard protocol.

Another important challenge we have investigated in this manuscript is the gap be-
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tween in vitro and in vivo. Here, we used our model-based approach to characterise the

population response to antibiotic treatment in different conditions: pooled human urine

(complex media relevant for UTIs) and Mueller-Hinton broth (rich media defined by

EUCAST as standard media for MIC measurement). Understanding the differences in

bacterial behaviour between these two conditions can shed light on some of the reasons

for antibiotic failure. Even in this simple set-up, we were able to observe contradic-

tory responses depending on antibiotic concentration and strain. We were also iden-

tify biological processes that could potentially explain the paradoxical observations:

β-lactamases activity and/or production rate are influenced by change of media. In ad-

dition there might be some environmental effects on filamentation (specifically at which

concentration in starts) and on integrity of cells (specifically on how long it takes to

degrade dead cells).

There are several possible extensions of this work. In Chapter 3 we used model pa-

rameter values to study the effects of bacterial genotype on phenotype and we were able

to single out one strain, that has a different set of β-lactamases than the other strains, but

it showed a similar level of antibiotic susceptibility. Most of the strains tested express

more than one β-lactamase and possess different mutations relevant for β-lactam treat-

ment failure. An interesting experimental extension of this study would be to identify

the role of each enzyme and mutation in the population response to antibiotic treatment.

In Chapter 5 we were interested in investigating environmental factors in antibiotic

treatment failures. Through careful observation and analysis of model parameter values,

we identified possible biological explanations for the observed differences. It would be

valuable to test experimentally whether there are differences in the activity or expression

level of β-lactamases between the tested media. In this manuscript, we have focused on

the nutrient side of the environment, but there are many other factors that could influence

the population response, such as the availability of iron or other essential ions, pH, and

urea concentration. It would be interesting to use the same approach to characterise the

role of these factors on growth rate, filamentation, death and β-lactamase production and

activity. It would also be valuable to study the population response to multiple antibiotic

applications (as in Chapter 4) in different media (as in Chapter 5). This may shed more

light on the biological processes that cause differences between media. This could also
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help to predict the outcome of complex antibiotic treatments in silico.

To go even further, one could combine the techniques from chapters 4 and 5. Us-

ing our model-based approach to study population response to multiple applications

of antibiotics in many different media combined with other experimental data such as

measures of the beta-lactamase production and activity, quantification of the tempo-

ral evolution of the antibiotic concentration and systematic measures of the length of

filaments would give an unprecedentedly detailed multi-level picture of the antibiotic

escape. This would allow to understand the reason for infection relapses and to develop

optimal treatment strategies without using last resort antibiotics or expensive combina-

tions with β-lactamase inhibitors.
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Chapter 7

Materials &Methods

7.1 Strains and antibiotics

The strains used in this work have been sequenced as a part of previous studies [[58]

for IB strains, [59] for NILS strains], hence, their full genetic information is available,

and antibiotic-resistance-related genes and mutations are known. Below, Table 7.1 rep-

resents a summary of available information for each strain.

In this table ftsI is the gene coding for PBP3. A mutation in this gene can lead to

reduced susceptibility of PBP3 to β-lactams. ompC and ompF respectively code for a

precursor of the outer membrane porins C and F. Their mutations can play a role on

antibiotic susceptibility because they might prevent the entrance of antibiotic molecules

in the cell. Some also contain mutations in gyrA and parC, that do not confer resistance

to β-lactams, but rather to fluoroquinolones.

Cefotaxime was purchased from Sigma-Aldrich and dilutions were made consid-

ering the purity specified by the vendor. Cefotaxime, together with ceftriaxone and

meropenem, as well as stock solutions were kept at -20°C to limit degradation.

7.2 Growth conditions

Unless specified otherwise, all pre-cultures and cultures were performed in 0.1% glu-

cose M9 liquid medium (1 g/L glucose, 6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L
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strain origin sequence

type(ST)

β-

lactamases

relevant for antibiotic re-

sistance genes

relevant muta-

tions

NILS1 feces 69 TEM-1B aph6-Id, aph3"-Ib, aadA5,

mphA, mdfA, catA1,

sul1, sul2, tetB, dfrA17

NILS11 feces 10 TEM-1B aph3"-Ib, mdfA, sul2,

dfrA5, dfrA1

NILS12 feces 450 TEM-1B aph6-Id, aph3"-Ib, aph3’-

Ia, aac3-Iid, aadA5,

mdfA, mphA, sul1, sul2,

tetA, dfrA17

gyrA

S83L/D87N,

parC S80I

NILS18 blood 69 CTX-

M-14,

TEM-1B

aph6-Id, aph3"-Ib, mdfA,

mphA, sul2, tetB, dfrA14

gyrA S83L, parC

S80I

NILS42 urine 38 CTX-

M-14B,

TEM-1B

aph6-Id, aph3"-Ib, aadA1,

mdfA, sul2, dfrA1, dfrA5

NILS56 urine 405 CTX-M-

15

mdfA, tetA, tetB gyrA

S83L/D87N,

parE S458A,

parC S80I

NILS64 urine 131 CTX-

M-15,

TEM-1B,

OXA-1

aac6’-Ib-cr, aac3-IIa,

aadA5, mdfA, mphA,

catB3, sul1, tetA, dfrA17

gyrA

S83L/D87N,

parE I529L, parC

S80I/E84V

Table 7.1: Description of clinical isolates - NILS collection



strain origin sequence

type(ST)

β-

lactamases

relevant for antibiotic re-

sistance genes

relevant muta-

tions

IB302 uknown 410 CTX-

M-15,

TEM-1B,

OXA-1

aac(6’)Ib-cr; dfrA17;

sul2; aadA5; aac(3)-IId;

strA; sul1; strB; tet(B);

mph(A)

gyrA

S83L/D87N,

parC S80I

IB307 rectal

swap

410 TEM-1B,

CTX-M-

15,OXA-1,

NDM-5,

CMY-42

aadA2; dfrA17;

aac(6’)Ib-cr; tet(A);

erm(B); strA; tet(B);

sul1; sul2; aadA5; strB;

mph(A); qepA; dfrA12

ftsI YRIK, gyrA

S83L/D87N,

parC S80I/E84

IB308 rectal

swap

410 CTX-

M-15,

OXA-181,

CMY-42

QnrS1; sul2; mph(A);

tet(A); sul1; aadA5;

dfrA17

ftsI YRIK, gyrA

S83L/D87N,

parC S80I/E84

IB311 rectal

swap

410 TEM-1,

OXA-181,

CMY-2

QnrS1; tet(B); dfrA17;

mph(A); sul2; aadA5;

aac(3)-IId;

ftsI YRIN 349-

532, ompC

R195L, ompF -

46; C->T (OmpR

F3), gyrA

S83L/D87N,

parC S80I/E84

Table 7.2: Description of clinical isolates - IB collection



NH4Cl, 0.5 g/L NaCl, 0.24 g/L MgSO4, 0.01 g/L CaCl2), and experiments were per-

formed in 0.1% glucose M9 liquid medium with 0.1% Tween 20. The low glucose

concentration is meant to create the conditions of a carbon-related growth arrest, a sit-

uation that lends itself better to mathematical modelling. The growth arrest happens

in this medium between 0.2 and 0.3 OD600. For overnights and precultures, cells were

incubated at 37°C and at 200 rpm. Other media that were used in this work are: M9

liquid medium with 1, 2 or 4 g/L of casamino acids; urine defrozen, pooled from three

healthy volunteers and then passed through 0.22 µm filter; and finally Mueller-Hinton

Broth. For each experiment both overnight and morning pre-cultures were done in the

same media as the final experiment.

7.3 Growth curves acquisition

Overnight. A single bacterial colony was picked from an agar plate and incubated

overnight at 37°C and 200 rpm. Preculture. The overnight was vortexed and diluted

to 0.05 OD600 before a new incubation of 3 hours under the same conditions, aiming to

catch the cells in exponential phase for the beginning of the experiment. Experiment
preparation. Cells from the preculture were vortexed and diluted to 0.01 OD600. Each

well of a 96-well plate with transparent flat bottoms was filled with 190 µL of antibiotic

dilution in M9 media with Tween 20 and 10 µL of the cell suspension. Depending on

the plate configuration and the number of replicates, the dilutions were made as much as

possible in larger quantities in order to minimize errors related to small-volume pipet-

ting. Data collection. 2017 and 2021 Tecan Spark multimode plate readers were used

for all OD acquisitions. Thermo Scientific™ Nunc™ Edge 2.0 flat bottom microtiters

plates were used. OD measurements were carried out in a loop consisting of measure-

ment and incubation with shaking. The incubation periods are carried out at 37◦C and

last 300 s. Repeated treatments. Stocks of antibiotics were prepared in advance and

kept at +4◦C. Before application they were warmed up for some time at room tempera-

ture, then put into a small container. From there, using an Integra Biosciences Voyager

8-channel electronic pipette antibiotic was administered to a column of the 96 well plate

at the same time to limit the time outside of incubation conditions.
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7.4 Live cell number estimation.

Live cell number was estimated by the CFU counting method. At every time-point

the plate was removed from the plate reader, 5 µl were sampled using an Integra Bio-

sciences MINI 96 electronic pipette with 96 channels into 45 µl of PBS buffer. The

experimental plate was put back into the plate reader and the experimental program was

resumed. Each dilution step started with washing protocol for pipette tips (3 times in

ethanol, dry tips, 3 times in PBS). Next, the dilution was mixed. 5 µl were spotted in a

square Petri dish filled with lysogeny broth (LB) agar. 10 µl were transferred into 90 µl

of PBS in the next plate. All Petri dishes were kept at room temperature until the last

timepoint, when all the plates were put for incubation at 37◦C for the night. The next

day after 10-12 hours of incubation, plates were photographed on a black background.

Colonies were counted with CFU Spot Reader which is a Shiny based application, de-

veloped by Vincent Aranzana-Climent and Pharmacology of Antimicrobial Agents and

Antibioresistance team in INSERM. This protocol was presented in details in Chapter

2.

7.5 Data analysis

OD blanking. The measured OD of a well is the sum of the OD of the cell culture,

and of the OD of the well bottom. For this reason, before an experiment, the OD of a

plate filled with media is measured and a constant OD corresponding to an average OD

of the plate without bacteria was removed from each well data. Removal of aberrant
timepoints. Occasionally, an OD reading fails and returns a value much larger than

both the previous and the following ones of the same well. As this situation is highly

biologically improbable, these outliers were removed.

7.6 Model

Here is a short description of the model used in this project. To describe the temporal

evolution of the distribution of cell lengths n(l, t), a growth-fragmentation model was
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used. It relies on four main mechanisms: the cells continuously elongate with a rate g,

they divide with a rate f and when they divide, regardless of their length, they always

split into cells of sizes 1
2 to 1 (arbitrary unit), meaning that filamented cells might split

into more than 2 cells. Finally, they lyse when they reach the critical length Lm. The

following PDE describes these phenomena:

∂n
∂t
+ gl
∂n
∂l
+ gn =



0 f or0 ≤ l <
1
2

f
∞∑

i=1

22in(2il, t) f or
1
2
≤ l < 1

− f n f or1 ≤ l < Lm

−( f + γ)n f orLm ≤ l

(7.1)

The PDE is initialized with the steady state cell length distribution of an exponen-

tially growing cell population: n(l, 0) = N(0)y∞,γ=0(l) with

y∞,γ=0(l) =


f + g

f
l f /g − 2− f /g

l2+ f /g f or
1
2
≤ l < 1

f + g
f

1 − 2− f /g

l2+ f /g f or1 ≤ l
(7.2)

The interaction with the antibiotics is taken into account through the dependency

of these rates and threshold with the antibiotics concentration in the culture medium.

While the elongation rate is independent on the antibiotic concentration and just follows

Monod’s law, the division rate f and the critical length Lm are decreasing functions of

the antibiotic:

g = µ
s

Ks + s
f =

β

1 + ( a
k1

)h1
Lm = Lmax ∗

k2 + a ∗ ζ
k2 + a

(7.3)

Various concentrations are also tracked in the culture medium, such as the nutrients

s, the antibiotics a, the β-lactamases b, and the dead biomass c and cr. Their dynamics

are described with the following ODEs:
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ds
dt
= −

g
λ

∫ ∞

0
lndl

da
dt
= −kbba − daa

db
dt
= γBin

∫ ∞

Lm

lndl − dbb

dc
dt
= γ(1 − pc)

∫ ∞

Lm

lndl − dcc

dcr

dt
= γpc

∫ ∞

Lm

lndl

Finally, the optical density is proportional to the sum of the live and dead biomasses:

OD(t) = η(
∫ ∞

0
lndl + c(t) + cr(t)) (7.4)

This describes the PDE model. For computational efficiency, for calibration we used

an ODE model approximating the PDE model above:

dN
dt
= N[ f (

L
ln2
− 1) − γY>]

dL
dt
= L[g − f (

L
ln2
− 1)] − γ(L> − LY>)

ds
dt
= −

g
λ

NL g = µ
s

Ks + s
ν =
β

g
da
dt
= −kbba − daa f =

β

1 + ( a
k1

)h1

db
dt
= γBinNL> − dbb Lm = Lmax ∗

k2 + a ∗ ζ
k2 + a

dc
dt
= γ(1 − pc)NL> − dcc L0 = (1 +

µ

β
ln2

dcr

dt
= γpcNL> OD = η(NL + c(t) + cr(t))
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Y>(x =
L

L0Lm
) =



x
ν

(xν − (
x
2

)ν) f orx ≤ 1

x − 1 +
x
ν

(1 − (
x
2

)ν) f or1 ≤ x ≤ 2

1 f or2 ≤ x

L>(x =
L

L0Lm
) =



x
νln2

(xν − (
x
2

)ν) f orx ≤ 1

x
lnx
ln2
+

x
νln2

(1 − (
x
2

)ν) f or1 ≤ x ≤ 2

x f or2 ≤ x

The variables and parameters of the model are presented in the following tables (7.3

and 7.4).

Variable Unit Comment

t h Time

l 1 Cell length [au]

n(l, t) 1 Population density

s(t) g/L Concentration of nutrients

a(t) mg/L Concentration of antibiotics

b(t) mg/L Concentration of -lactamase

c(t) 1 Dead degradable biomass

cr(t) 1 Dead non-degradable biomass

Table 7.3: Variables of the model

7.7 Model fitting

Each parameter was restricted to a range of biologically plausible values. Depending on

the role of the parameter and the size of the range, a change of variable was applied or

not, to perform the search of this parameter in the linear space or in a logarithmic space.

All 17 search ranges were then brought back to the interval and it is in this space that

the parameter search was performed.
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Parameter Unit Comment

γ 1/h Death rate

β 1/h Maximal division rate

µ 1/h Maximal growth rate

Ks g/L Half-velocity constant of nutrients

λ L/g Conversion factor from nutrients

k1 mg/L Concentration of antibiotics needed to stop cell division

h1 1 Hill coefficient of this antibiotic action

k2 mg/L Concentration of antibiotics needed to stop defect repair

Bin mg/L Concentration of β-lactamase released by a cell of length 1

kb L/mg/h Activity rate of β-lactamase

da 1/h Degradation rate of antibiotics

db 1/h Degradation rate of β-lactamase

dc 1/h Degradation rate of dead biomass

pc 1 Proportion of non-degradable dead biomass

Lmax 1 Maximal viable cell length

η 1 Conversion between biomass and OD

ζ 1 Ratio between minimal cell length where lysis can occur and

maximal viable cell length

Table 7.4: Parameters of the model

The cost function computes the log-likelihood of the data assuming independent

Gaussian measurement noise on each point. This boils down to mean square deviations.

Normalizations were made such that each data point has same impact, irrespectively of

number of points per time series and of number of time series (e.g. different antibiotic

concentrations). Special care was taken when searching on mixed datasets involving

both OD measurements and cell counts, to balance the contribution of both data types.

The integration of the ODE system was done with the ’diffeqsolve’ method of diffrax

package [95] with the method ‘Tsit5’, and absolute and relative tolerances set to 10−6.

Model fitting was performed both with CMAES [96], with an initial , and Latin Hy-
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per Cube with 5000 samples and method ‘trf’, except when a local search was required.

This was notably the case for the estimation of parameter uncertainties.

7.8 Crystal violet staining

The protocol was adapted from the one proposed by Hölzl-Armstrong and colleagues

[97]. First the experimental plate is emptied and washed several times with PBS. Then

it is filled with 35 µl of crystal violet diluted to 0.1% in 10% ethanol and incubated in

the dark for 10 minutes. Then the plate is emptied again and washed with water 5 times.

After an hour of drying in the dark, the plate is filled with 100 µl of 50% ethanol in each

well and left for 10 minutes in the dark. Final step consisted in measured OD at 595

nm.

7.9 eVOLVER experiment

There are several steps to prepare an experiment in eVOLVER platfrom. The first one is

to prepare a Python script specific for the experiment, in which it is specified the mode

of experiment (turbidostat, chemostat, batch or something custom), which defines if,

when and how dilutions should be done, for which vials and with which pump. Another

step is to prepare enough media for potential dilutions. Individual glass vials are filled

with 25 mL of appropriate media. Next, pumps are connected to experimental vials

and to media bottles. Media in vials are inoculated with bacterial culture in stationary

or exponential phase. At this moment the script is launched and the experiment starts.

During each experiment OD measurements and pump logs are registered.

7.10 Microscopy experiment using CellASIC ONIX plate

First, the CellASIC plate is emptied because it arrives filled with buffer to avoid drying

up of channels. Then every inlet is filled with 300 µL of media. Cell inlets are filled

with bacterial culture at exponential phase. When fully filled, the plate is sealed and

placed under the microscope. Using CellASIC ONIX software cells are loaded into the
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chambers. Then the duration of the flow and the corresponding inlet are defined and

the experiment is launched. In [98] there is a detailed protocol of these steps. Image

acquisition and positioning is defined with Micro-Manager [99]. The experiment is

controlled by MicroMator [100]. Final images were analysed using the open-source

segmentation pipeline of DeLTA [101].
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Appendix A

Alternatives to CFU assays:
auto-fluorescence and propidium
iodide staining

As mentioned above, there are two standard ways to characterise population response to

antibiotic treatments: growth kinetic assays and CFU assays. The first is done by sys-

tematic measurement of optical density, a very simple protocol that allows to measure

total biomass (live and dead). The second gives valuable estimates of the number of live

cells, but requires the use of time-consuming and laborious protocols.

Here we are interested in exploring other ways to estimate the number of live and

dead cells. All bacteria exhibit intrinsic natural fluorescence (hereafter referred to as

auto-fluorescence or AF). There are many different structural components and metabo-

lites that contribute to this fluorescence, but flavins and NAD are responsible for most

of the cytoplasmic auto-fluorescence. This can be explained by their role in cellular

metabolism. Studies have shown that various stresses, including β-lactam treatments,

can affect AF levels [102]. This leads us to believe that auto-fluorescence measurements

could be a good complement to OD measurement and allow us to see the evolution of

live cell numbers. A disadvantage of this method is that flavins are secreted into the

environment, and what we are actually measuring is the external fluorescence of these

secreted flavins. This means that when cells stop growing and/or start dying, there
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is no decrease in fluorescence. Some studies have tried to overcome this problem by

analysing the time derivative of AF instead of the absolute values [103].

The other well-known technique that could help to separate live and dead biomass

measurements is propidium iodide (PI) staining [104, 105]. PI is a small molecule

that binds to DNA and therefore increases in fluorescence when the cell membrane is

depolarised (otherwise does not enter the cell).

We applied these two techniques to our standard plate reader experiments. Three

measurements were taken every 5 minutes: optical density (total biomass), green fluo-

rescence (auto-fluorescence) and red fluorescence (propidium iodide). Below in figure

A.1 I show the results for one strain (NILS18) exposed to 6 different concentrations of

cefotaxime while growing in two different media (M9 with 0.1% glucose on the left and

M9 with 0.1% glucose and 0.2% casamino acids on the right).

Interestingly, we observe peaks of red fluorescence at the moment of crash (growth

arrest) in the OD data. This means that at this moment a significant amount of PI was

able to enter the damaged cells and bind to the DNA, i.e. this is the moment when

the bacteria start to lyse. At high antibiotic concentrations, especially in M9 with both

glucose and casamino acids, this rise in red fluorescence is quite steep, meaning that

there are few deaths before the crash moment. This is in line with the assumptions of

the model we used for this work: cells filament until they reach a critical length at which

they lyse. This peak is even more pronounced on the time derivative plot (e.g. grey line

for M9 with glucose and casamino acids). Another interesting observation is that there

is a slow increase in red fluorescence during the stationary phase of population growth.

As for the auto-fluorescence, we can observe the regrowth, but the size of the popu-

lation and the corresponding auto-fluorescence signal are too small to be measurable in

our setup. Most of the interesting dynamics are therefore hidden by the detection limit.

An interesting observation is that during stationary phase, when OD is increasing very

slowly, there is a noticeable increase in both auto-fluorescence and dead biomass. This

means that at this stage there is a part of the population that is still growing and a part

that is dying.
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Unfortunately, auto-fluorescence did not give us the insight we were hoping for. We

decided to use the same strategy as [103] but for OD. We plotted the time derivative of
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Figure A.1: Exploring alternatives to CFU assays. a. Summary of two standard approaches

to quantifying population response to antibiotic treatment: growth kinetics assays (left) and

CFU assays (right). b. Our approach is to generate three types of readouts: optical density

(OD, total biomass), green fluorescence (auto-fluorescence) and red fluorescence (response to

propidium iodide staining, dead biomass). c Characterisation of the population response to

cefotaxime treatments for NILS18 in M9 with 0.1% glucose (left half) and in M9 with 0.1%

glucose and 0.2% casamino acids (right half). The first row corresponds to OD, the second

to green fluorescence and the third to red fluorescence. For each strain-media combination we

show the raw data (first column), the time derivative (second derivative) and the time derivative

of the difference between normal growth and growth in the presence of antibiotic.

OD, which allows us to observe the temporal evolution of live biomass. By plotting the

time derivative of the difference between normal growth and the response to antibiotic

treatment, we can determine the time of the crash (beginning of non-zero values) and

the time of the beginning of regrowth (change of sign of this derivative).

Overall, this experiment provided interesting and valuable insights and even con-

firmed some of the assumptions of the model. However, it does not allow us to easily

estimate the number of living cells and cannot replace CFU assays. For example, there

is still no way to distinguish a few filamentous cells from many non-filamentous cells.
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Appendix B

The automated platform for repeated
antibiotic applications

Plate readers offer temperature control, shaking and systematic measurements of OD

and fluorescence, which is already very valuable. However, what plate readers often

lack is an automated way to change environmental conditions based on OD readings.

As part of a large automation project in the team, we added pipetting capabilities to our

plate reader (Tecan Spark) by connecting it to a liquid handling robot (Opentrons OT-2)

(Figure B.1a, [106]). The pipetting robot was controlled via Flask, a web application

framework written in Python. As we did not have access to an API for the plate reader,

we used a ’click’-based control provided by the Python library pyautogui, software that

implements mouse movement and clicking.

In a first application, we are using the platform to maintain bacterial populations

under specific growth conditions for extended periods of time. Bacteria were exposed

to a range of sub-lethal concentrations of cefotaxime while growing in M9 media with

0.1% glucose or in M9 with 0.1% glucose and 0.2% casamino acids. When the median

of the cell population ODs reached a target value, the bacterial cultures were diluted

by a factor of 2, taking into account evaporation, using the same media with the same

concentration of antibiotic as the initial conditions (Figure B.1b left). Using this strat-

egy, we were able to keep the median OD close to the chosen target (0.05 or 0.1) for

at least 15 generations (Figure B.1b right). Interestingly, we observed better survival in
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richer media (containing both glucose and casamino acids) when treated with 1 mg/L

cefotaxime (1/2 the MIC for this strain), which is surprising since β-lactams generally

have a stronger effect on faster growing cells.

In a second application, we used this setup to test the effect of a second dose of

antibiotic on the bacterial population applied at different cell densities (Figure B.1c).

The complexity and value of this type of experiment has already been discussed in

Chapter 4. The first of the three plots represents the population response to standard

treatment when antibiotic alone is applied at the start of the experiment. The other two

plots represent the bacterial response to two applications of antibiotic: the first at the

beginning, the second when the cell density reaches 2.5*10-3 and 5*10-3 respectively.

Interestingly, we observe that the OD at crash (the point at which growth stops) appears

to be about 25 times higher than the OD at treatment, and this ratio does not depend on

the population density at the time of treatment. This suggests that antibiotic degradation

by living cells prior to crash is negligible. This also means that very few cells die before

the crash. Another interesting observation is that for the first treatment at 4 mg/L, the

time between crash and regrowth is not greatly affected by the second treatment (16

mg/L). This means that the enzymes released into the media by the dead population

from the first treatment are sufficiently efficient to degrade both 4 mg/L and 20 mg/L.

This suggests that this time lag between crash and regrowth is the time required for the

population to regrow to a detectable density.

This platform allowed us to perform conceptually simple experiments in an auto-

mated manner and provided valuable insights that are not easily observable using only

a plate reader without human interaction. A disadvantage of this system is that our

pipetting robot is not equipped with a lid lifter, and without a lid liquid cultures tend

to evaporate quite rapidly at 37◦C. For this reason, we did not use this platform for our

repeated treatment experiments in Chapter 4 .
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Figure B.1: ReacSight-based assembly of an automated platform enabling reactive control
and characterization of bacterial cultures in low-volumes. a. The platform overview. The

platform contains a plate-reader (Tecan Spark) and a liquid-handling robot (Opentrons OT-2).

The robot is used to treat cultures in the plate-reader at predefined ODs. The robot is controlled

through dedicated Python library, whereas a control API for the plate-reader is created using

the ’clicking’ Python library pyautogui. b. Impact of environment and β-lactam treatments on

growing cell populations. Left: bacterial population can be maintained in growing conditions

through renewal of the media in either OD- or time-controlled manner. It is important to con-

sider evaporation and compensate if needed. Right: cells in rich media (M9 with glucose and

casamino acids vs M9 with glucose alone) grow faster and yet resist better sub-MIC antibiotic

concentrations. c. Impact of cell density on β-lactam treatment efficacy. Left: There are multi-

ple ways for bacteria to survive antibiotic treatment. For example, when treated with β-lactams,

filamentation-based tolerance allows to increase biomass before cell death. Bacteria can also sur-

vive higher antibiotic concentrations as a population due to antibiotic degradation by enzymes

released upon cell death. The final outcome depends on what arrives first, population eradication

or antibiotic degradation. Middle: repeated antibiotic treatment can help understanding the re-

spective roles of cell death and antibiotic degradation. Right: an E. coli clinical isolate is treated

with different concentrations of cefotaxime (legend) at an initial of OD of 5*10-4, and a second

time with either 16 mg/L of CTX (red) or media alone (blue) at a user-defined OD (2.5*10-3 or

5*10-3). Because of instrument limitations, OD readouts below 10-3 are poorly reliable.



Appendix C

Application of bioreactor platform to
study antibiotic resistance

In this work we presented a lot of different experiments and a lot of different observa-

tions, all obtained in a micro-plate and a plate-reader. In Appendix A we explored alter-

natives to CFU measures, however, unfortunately there were not sufficient for estimation

of number of live cells. In Appendix B we presented an automated platform enhancing

plate-reader with pipetting robot, but this set-up had significant evaporation which lim-

ited the duration of experiments. Therefore, to get estimates of live cell number, one

needs to sample from experimental plate and perform CFU assays on that sample. In a

96-well micro-plate, the maximal usable volume is 200 µL. Due to many different fac-

tors including flat bottom shape, surface tensions and mechanism of OD measurement,

OD readout of volume less than 50-100 µL are not reliable. This limits our capacity to

sample for complementary analysis.

An interesting different set-ups that is more and more used to study antibiotic resis-

tance is a low-volume bioreactor platform [40, 41]. This platform consists in vials for

cell culture with temperature and agitation control and in situ measurements (OD and

in some cases fluorescence) and a set of peristaltic pumps. For this project, we chose

commercially available and easily modifiable platform called eVOLVER [107] (Figure

C.1a). This system contains 16 bioreactors containing up to 25 mL of bacterial culture

and 32 pumps (one set of 16 for influx, the other for efflux) that can be controlled based
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on OD and/or time.

In a first application, we used this platform to study the impact of media on bac-

terial population growth. One clinical isolate (NILS18) was grown in three different

media: M9 media with 0.1% casamino acids, 0.2% fructose or 0.4% glucose. Every 8

hours, the population was diluted to OD of 0.01. This allowed us to observe lag, ex-

ponential growth and stationary phases in the same experiment with replicates for each

experimental condition (Figure C.1b). By fitting the Baranyi deterministic compartment

model [108] to this data, we were able to estimate the duration of lag phase and the max-

imum growth rate. Out of the three tested media, lag time seems to be the longest in the

one containing fructose and the highest growth rate was observed in the one containing

glucose. Population growing in 0.1% casamino acids does not seem to reach stationary

phase in 8 hours, therefore lag time is hard to estimate.

In the second application, we used the platform to characterise bacterial population

response to antibiotic (Fgure C.1c). We aimed to reproduce experiment that we usually

do in plate-reader: subject population at very low OD (5*10-4) to a concentration of

antibiotic and follow the temporal evolution of OD for a long time. We selected two

clinical isolates (NILS18 and IB302 and tested them in two media (M9 with 0.4% glu-

cose and M9 with 0.4% fructose ). In addition, we varied the time of the antibiotic con-

centration (at the very beginning, after 1 hour or after 3 hours). This delayed treatment

allowed population to grow to higher density before dose administration, therefore, this

experiment allowed us to observe the impact of initial population density on survival,

i.e. inoculum effect. As expected, when treated at higher OD, population regrowth is

shortened. Interestingly, in most cases regrowth was slightly later in media with fructose

compared to glucose.

One issue that we encountered is that the starting OD is too low for precise measure-

ments in this set-up. This also means that no OD-based dilutions or other decisions can

be made in an automated way until population reached detectable values. For this rea-

son, we decided to test the population response to antibiotic using the low OD detection

limit (0.01) as starting OD: for this experiment we either applied antibiotic at the begin-

ning or 1 hour after, or we diluted culture to OD of 0.01 using media with antibiotic.

Due to strong inoculum effect for this strain-antibiotic combinations we observed a very
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good survival (short regrowth time) for NILS18 and no impact of antibiotic on growth

for IB302. We have also tested another antibiotic (meropenem, carbapenem class of an-

tibiotic), and in this case, observed full eradication of the population even when starting

at high initial population density.

Using a bioreactor platform allowed us to study lag time and maximum growth rate

in different media. It also allowed us to characterise bacterial population response to

antibiotics in bigger volume than in micro-plates. We were able to observe inoculum

effect. Starting at higher OD we were also able to administer antibiotic at specific

time and specific OD. However, this platform has a drawback that is very important

for our study: it has high detection limit for low OD. One possible extension of this

platform to solve this issue would be to connect this platform to the platform described

in Appendix B combining pipetting robot and plate-reader. This way low OD values

could be measured through performing systematic sampling and using plate-reader for

this samples.
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Figure C.1: Application of bioreactor platform to antibiotic resistance study. a. Overview

of the platform. b. Impact of media on population growth. Left: An E.coli clinical isolate

(NILS18) was grown in three different media: M9 with 0.2% fructose, 0.1% casamino acids

or 0.4% glucose. Bacterial populations grew for 8 hours, after that they were diluted to OD of

0.01. Right: growth curves in different media. Baranyi model was fitted to this data to obtain

estimations of lag time and maximum growth rate (presented in table below). c. Impact of

initial population density and media on population response to β-lactam treatments. Population

response to 16 mg/L of cefotaxime was characterised for two clinical isolates (NILS18, iB302)

in M9 with 0.4% glucose or 0.2% fructose. Left: Reproducing plate-reader experiments, starting

OD is at 5*10-4, antibiotic applied at different moments (at the beginning, after 1 hour or after

3 hours). Middle: Starting OD is at 0.01 (low detection limit). Antibiotic application at the

beginning, at 1 hour or at 3 hours (after diluting culture to OD of 0.01). Right: Characterisation

of population response to meropenem (carbapenem class).





Appendix D

Study of filamentation and critical
length using microscopy and image
segmentation pipelines

In this work, we focused on the population response and different ways to characterise it.

This allowed us to study antibiotic escape through the interplay between individual non-

susceptibility and resilience at the population level (e.g. collective antibiotic tolerance

or inoculum effect). In an attempt to understand individual mechanisms from observed

population dynamics, we used a model-based approach. In this chapter we have decided

to take a different approach and look at the response of individual cells to β-lactam

treatments. The standard way to do this is to use microscopy to follow the evolution of

individual bacterial cells.

To improve observability, we decided to use microfluidics, which allows us to keep

bacteria in a mono-layer and provide a continuous flow of media with nutrients and,

in some cases, antibiotics. In our experiments we used commercially available CellA-

SIC ONIX plates [98] (Figure D.1a, description of the experimental protocol in Methods

7.10). These plates contain four independent cell chambers, each with traps of six differ-

ent heights that allow bacteria to be maintained in a mono-layer. For each chamber there

are 6 independent inlets for media supply. The presence of multiple independent inlets

allows media switching during the experiment. Using this plate together with pressure
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pumps, we followed cell dynamics using either bright-field (BF) or phase-contrast mi-

croscopy.

To analyse the microscopy images, we used the software pipeline, a U-Net-based

package for segmentation and tracking of bacterial cells in mother cells or in mono-

layers [101]. DeLTA provides segmentation labels for each image. It also allows cells

to be tracked from one frame to another and cell division to be identified. It also provides

valuable length and fluorescence information for each identified cell.

When treated with β-lactams, and cefotaxime in particular, bacteria can react in dif-

ferent ways. Resistant bacteria continue to divide normally. Some cells cannot divide

due to the inhibition of PBP3 by the antibiotics, and they become filamentous. Some

cells can neither divide nor repair the cell wall due to the inhibition of PBPs, leading

to cell lysis (Figure D.1b left). To observe filamentation and estimate how long fila-

ments can grow before breaking, we grew a clinical isolate (IB302) for several hours

before switching to antibiotic-containing media (in bright field (BF) at 63x magnifica-

tion). Without antibiotics, the cells divided normally. In the presence of cefotaxime, the

cells began to form filaments. To see when the antibiotic was added to the media, we

stained the second media with propidium iodide (PI), which has a detectable level of

fluorescence even before binding to DNA.

We used DeLTA for segmentation and estimation of cell length (in pixels, Figure

D.1b right). On the raw images, we first see this cell dividing into two (frame 25 or

about 2 hours), then we start to detect red fluorescence marking antibiotic administration

at frame 67 (about 5 hours). From this moment on, the cell filaments without dividing

(frame 217 or about 18 hours). Figure D.1b shows the time course of red fluorescence

and cell length. We can clearly see the time of first cell division and the time of antibiotic

administration. The filaments at the end are about two times longer than at the time of

treatment and about six times longer than at the time of division and ’birth’ of the second

cell. The problem we encountered at this stage is that long cells are difficult to follow

because it is not always obvious whether there are several cells or one long filament.

Using a phase-contrast objective with 100x magnification, we followed another clin-

ical isolate (NILS18) exposed to 16 mg/L cefotaxime in three different media: M9 with

0.1% glucose, 20mM/L gluconate and 0.4% casamino acids. We used DeLTA for seg-
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mentation and cell length estimation. The quality of the segmentation was significantly

improved by switching to phase contract, but the problem of tracking filamentous cells

was still present. Figure D.1c shows cell length distributions for the three media (dif-

ferent columns) at the beginning of the experiment (first row) and at frame 45 (about

3-4 hours after the start of the experiment, about 2 hours after antibiotic administra-

tion). The latter distributions are accompanied by extracts from the corresponding raw

images. Interestingly, we observe much longer filaments in M9 with 0.4% casamino

acids. There was no significant difference between glucose and gluconate.

In conclusion, CellASIC ONIX plates are a very easy to use and useful tool for ob-

serving bacterial behaviour at the single cell level. This setup allowed us to confirm

the filamentation response of our clinical isolates when treated with cefotaxime. It also

allowed us to observe differences in filamentation levels between media. The DeLTA

segmentation pipeline allowed us to extract quantitative information from microscopy

images. To obtain good results with DeLTA, it is preferable to use phase contrast mi-

croscopy (compared to bright field). Long filamentous cells with possibly weak outer

membranes are difficult to track, but this problem can be solved by adding images of

filamentous cells to the training and validation datasets and retraining the model. Due

to time constraints and the fact that we were more interested in population dynamics, I

did not continue this project.
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Figure D.1: Study of filamentation in a microfluidic platform. a. Schematic of the platform,

adapted from [98]. Cells are confined in a mono-layer. There is a continuous flow of media

providing nutrients and washing out lysed cells. Commercially available CellASIC ONIX plates

were chosen for the experiments. Center: Scheme of the plate. Having several independent input

columns allows switching between different media during the experiment. One plate contains 4

independent chambers. Right: Schematic of a single chamber. Media is supplied through a sub-

set of inlets. Bacteria are trapped according to their size (6 sizes available). b. A clinical isolate

(IB302) was used to produce a mono-layer of cells. Media without antibiotic (M9 with 0.1%

glucose) was used for the first 3 hours. The same media was then used, but supplemented with

16 mg/L cefotaxime and propidium iodide. Some images from these experiments are shown in

the upper part of the panel. The images were segmented while keeping track of the cell lineages

using DeLTA). Center: Temporal evolution of the red fluorescence signal. This makes it possible

to see the moment of the media change (frame 67). Right: The temporal evolution of cell length

of segmented bacteria. c. Effect of environment on bacterial response to β-lactam treatments

A clinical isolate (NILS18) was exposed to 16 mg/L cefotaxime in 3 different media (M9 with

0.1% glucose on the left, with 20 mM/L gluconate in the middle and with 0.4% casamino acids

on the right). Cell length distributions were estimated based on microscopy image segmentation

using DeLTA. The top plots correspond to the beginning of the experiment, the bottom plots

correspond to the image taken 3.75 hours later. For each medium, a small section of the original

image is shown.
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