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Abstract: As the Internet of Things (IoT) ex-
pands with more connected devices and com-
plex communications, the demand for precise,
energy-efficient localization technologies has in-
tensified. Traditional machine learning and ar-
tificial intelligence (AI) techniques provide high
accuracy in radio-frequency (RF) localization
but often at the cost of greater complexity
and power usage. To address these challenges,
this thesis explores the potential of neuromor-
phic computing, inspired by brain functional-
ity, to enable energy-efficient AI-based RF lo-
calization. It introduces an end-to-end ana-
log spike-based neuromorphic system (RF Neu-
roAS), with a simplified version fully imple-
mented in BiCMOS 55 nm technology. RF Neu-
roAS is designed to identify source positions
within a 360-degree range on a two-dimensional
plane, maintaining high resolution (10 or 1 de-
gree) even in noisy conditions. The core of
this system, an analog-based spiking neural net-
work (A-SNN), was trained and tested on a
simulated dataset (SimLocRF) from MATLAB

and an experimental dataset (MeasLocRF) from
anechoic chamber measurements, both devel-
oped in this thesis. The learning algorithms
for A-SNN were developed through two ap-
proaches: software-based deep learning (DL)
and bio-plausible spike-timing-dependent plas-
ticity (STDP). RF NeuroAS achieves a local-
ization accuracy of 97.1% with SimLocRF and
90.7% with MeasLoc at a 10-degree resolution,
maintaining high performance with low power
consumption in the nanowatt range. The sim-
plified RF NeuroAS consumes just over 1.1 nW
and operates within a 30 dB dynamic range.
A-SNN learning, via DL and STDP, demon-
strated performance on XOR and MNIST prob-
lems. DL depends on the non-linearity of post-
layout transfer functions of A-SNN’s neurons
and synapses, while STDP depends on the ran-
dom noise in analog neuron circuits. These find-
ings highlight advancements in energy-efficient
IoT through neuromorphic computing, promis-
ing low-power smart edge IoT breakthroughs in-
spired by brain mechanisms.



Titre: Calcul Neuromorphique à Base de Spikes Analogiques pour des Applications IoT Intelli-
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Résumé: Avec l’expansion de l’Internet des
objets (IoT) et l’augmentation des appareils
connectés et des communications complexes, la
demande de technologies de localisation pré-
cises et économes en énergie s’est intensifiée.
Les techniques traditionnelles de machine learn-
ing et d’intelligence artificielle (IA) offrent une
haute précision dans la localisation par ra-
diofréquence (RF), mais au prix d’une com-
plexité accrue et d’une consommation d’énergie
élevée. Pour relever ces défis, cette thèse ex-
plore le potentiel de l’informatique neuromor-
phique, inspirée par les mécanismes du cerveau,
pour permettre une localisation RF basée sur
l’IA et économe en énergie. Elle présente
un système neuromorphique analogique à base
d’impulsions (RF NeuroAS), avec une version
simplifiée entièrement implémentée en technolo-
gie BiCMOS 55 nm. Ce système identifie les
positions des sources dans une plage de 360
degrés sur un plan bidimensionnel, en main-
tenant une haute résolution (10 ou 1 degré)
même dans des conditions bruyantes. Le cœur
de ce système, un réseau de neurones à impul-
sions basé sur l’analogique (A-SNN), a été formé
et testé sur des données simulées (SimLocRF)
à partir de MATLAB et des données expéri-

mentales (MeasLocRF) provenant de mesures en
chambre anéchoïque, tous deux développés dans
cette thèse. Les algorithmes d’apprentissage
pour l’A-SNN ont été développés selon deux
approches: l’apprentissage profond (DL) et la
plasticité dépendante du temps des impulsions
(STDP) bio-plausible. RF NeuroAS atteint une
précision de localisation de 97,1% avec Sim-
LocRF et de 90,7% avec MeasLoc à une réso-
lution de 10 degrés, tout en maintenant une
haute performance avec une faible consomma-
tion d’énergie de l’ordre du nanowatt. Le RF
NeuroAS simplifié consomme seulement 1.1 nW
et fonctionne dans une plage dynamique de
30 dB. L’apprentissage de l’A-SNN, via DL et
STDP, a démontré des performances sur les
problèmes XOR et MNIST. Le DL dépend de
la non-linéarité des fonctions de transfert post-
layout des neurones et des synapses de l’A-
SNN, tandis que le STDP dépend du bruit aléa-
toire dans les circuits neuronaux analogiques.
Ces résultats marquent des avancées dans les
applications IoT économes en énergie grâce à
l’informatique neuromorphique, promettant des
percées dans l’IoT intelligent à faible consom-
mation d’énergie inspirées par les mécanismes
du cerveau.
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Chapter 1

Introduction

1.1 . Context and Motivation

Imagine a world where machines communicate seamlessly, factories operate independently,
and intelligent systems anticipate our needs before we even express them. Imagine vehicles that
autonomously navigate bustling city streets, and robotic arms perform complex surgeries with
unparalleled precision. Imagine a watch that does more than just count minutes, it counts your
steps, monitors your health, handles your payments, and keeps you updated with notifications.
Imagine a virtual assistant so intuitive it feels human, one that handles your daily tasks and
engages in any conversation you need with deep understanding. This vision, which once seemed
like science fiction, is now becoming a reality thanks to the monumental advances of the 21st
century in the fourth industrial revolution, Industry 4.0, fueled by the Internet of Things (IoT)
and Artificial Intelligence (AI).

From the spark of the first electric light by Thomas Edison in 1879 to the transistor’s inven-
tion by Bardeen, Brattain, and Shockley in 1947, the trajectory of human advancement has been
marked by significant electrical innovations. Alan Turing’s theoretical formulation of the digital
computer during WWII in the 1940s laid the foundation for modern computing. This was rev-
olutionized by John von Neumann’s architecture in 1945, which reshaped computer design and
established its role as a fundamental component of contemporary technology. The development
of the Internet in the 1960s, followed by Tim Berners-Lee’s creation of the World Wide Web
in 1989, revolutionized global communication and information sharing. Despite these advance-
ments, devices remained constrained by their inability to communicate autonomously, heavily
relying on human intervention for control and data interpretation. However, the advent of IoT in
the late 20th century marked a significant paradigm shift. IoT enabled devices to interconnect,
facilitating autonomous communication and data sharing without human intervention [1]. This
interconnectivity has reshaped daily life by enhancing efficiency, and functionality across various
domains, from smart homes and wearables to industrial automation and healthcare [2].

Building on advancements in AI and cloud computing, cloud-based AI enables centralized
data processing within the IoT framework. This integration significantly enhances the IoT land-
scape and broadens its applications, as everyday objects become increasingly connected to the
Internet, leading to a proliferation of devices and sensors [3]. However, this rapid expansion
places substantial pressure on cloud computing resources due to the enormous volumes of data
processed [4]. This situation underscores the limitations of centralized cloud systems, particularly
concerning latency and bandwidth constraints. To keep pushing the boundaries and support the
rapid expansion of IoT, edge AI emerges as a solution by bringing AI processing closer to the
data source, rather than being relayed to the cloud [5, 6]. This approach reduces latency and
bandwidth demands, lowers energy requirements for data transmission, and enhances privacy
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and security within the interconnected world.
In the context of Industry 4.0, the current trend in AI is centered on Deep Neural Networks

(DNNs) to address complex problems with high performance, extending AI’s application across
various domains [7]. These AI models comprise networks with multiple densely connected lay-
ers, using deep learning techniques, primarily the backpropagation algorithm, which requires
extensive parameter tuning. Training these advanced AI models necessitates large datasets and
significant computational resources, typically on classical computing systems based on the von
Neumann architecture. As AI capabilities expand, the associated challenges also increase. The
computational demands of AI are growing at a rate that outpaces Moore’s Law, with capabilities
approximately doubling every five to six months [8]. This rapid growth results in high power
consumption, inefficiencies of the von Neumann architecture, and extensive storage requirements
for large data centers [9, 10].

To address these challenges, the AI field is shifting towards more energy-efficient solutions. A
notable development is edge AI, which enhances power efficiency by processing data directly at
the edge, reducing the need for frequent data transfers. However, edge AI requires hardware be-
yond the capabilities of traditional front-end sensing equipment, currently limited by low-capacity
computing resources. This shift necessitates the development of specialized hardware, efficient
algorithms for resource-constrained devices, and innovative neural network designs leveraging
the low power characteristics of edge devices [11]. These goals can be achieved through neu-
romorphic computing, which draws inspiration from the brain, the most intricate and powerful
system known, to develop more energy-efficient AI solutions.

Neuromorphic computing has emerged as a promising approach to manage the computational
demands of AI and deep learning, as well as meeting the energy efficiency needs of IoT appli-
cations. By emulating the human brain’s efficient, adaptive, and rapid processing capabilities,
neuromorphic computing is prioritized for several reasons. Neuromorphic systems achieve high
energy efficiency and reduced latency by performing computations in memory, diverging from
conventional von Neumann architectures [12]. These systems excel in parallel processing and
real-time operations by simulating biological neural networks through event-driven computation
[13]. Specifically, they rely on Spiking Neural Networks (SNNs), which activate neurons only
when necessary, thus optimizing efficiency.

In recent years, hardware implementations of neuromorphic computing have advanced sig-
nificantly, with developments spanning digital, analog, and mixed-signal platforms using both
traditional CMOS and emerging technologies. Most common implementations have focused on
replicating human sensory functions [14, 15], such as vision and auditory recognition, thus di-
verging from the specific needs of IoT applications. IoT devices operate differently in their sensor
functions, including device localization, pressure, and temperature detection. This gap under-
scores the critical need for neuromorphic systems specifically designed to address the requirements
of IoT applications. Moreover, few neuromorphic implementations are designed as complete end-
to-end systems, often lacking integral pre-processing procedures and requiring digitization. For
these reasons, including AI challenges and neuromorphic promising solutions, this thesis is moti-
vated to explore the potential of neuromorphic computing to meet the energy efficiency demands
of IoT applications, with a particular focus on Radio Frequency (RF) localization.
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1.2 . Thesis Contributions

This thesis has a multidisciplinary contribution, connecting microelectronics, electromag-
netism, and artificial intelligence. It focuses on addressing the need for low-power smart IoT
applications through an analog spike-based neuromorphic approach. The primary application
targeted by this thesis is the RF localization of an IoT transmitter with precision comparable to
existing AI-based solutions, while being significantly more energy-efficient and environmentally
friendly. This is a critical issue, as the demand for energy-efficient and precise solutions in smart
IoT intensifies. The main contributions of this thesis can be summarized as follows:

• Design of an end-to-end RF neuromorphic system (RF NeuroAS): This system
uses an analog spike-based approach to emulate brain-like capabilities in addressing RF
localization challenges. It identifies IoT transmitter positions within a 360-degree range
on a two-dimensional plane, maintaining high resolution (10 or 1 degree) even in noisy
conditions. This work includes the RF environment setup, data extraction involving the
generation of datasets, pre-processing, and analog-based spiking neural network design.
Scientific communications, highlighting this contribution, are available in [16] and [17].

• Implementation of a fully analog circuit design for a streamlined version of the
RF NeuroAS system, using BiCMOS 55 nm technology. This validates the feasibility of
hardware-based RF NeuroAS solutions for localization, proving ultra-low power consump-
tion in post-layout simulations. Scientific communications, highlighting this contribution,
are available in [18], [19], and [20].

• Feasibility study of learning techniques on analog-based spiking neural net-
works, considering the physical design constraints, the random noise, and the process
variability of neuron and synapse components. The learning techniques explored include
deep learning and spike-timing-dependent plasticity. Scientific communications, highlight-
ing this contribution, are available in [21], [22], [23],[24], [25], and [26].

The following manuscript is organized as follows. Chapter 2 provides an overview of the
development and evolution of AI, deep learning, and neuromorphic computing in the literature,
and outlines AI-based research efforts in the field of localization. Chapter 3 thoroughly presents
the RF NeuroAS system and each of its components. Chapter 4 details the feasibility analysis
of learning techniques from a theoretical perspective. Chapter 5 presents the detailed results
derived in this thesis, corresponding to the performance of the RF NeuroAS and the feasibility
results. Finally, thesis conclusions and perspective challenges of future works are drawn.
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Chapter 2

State of the Art

2.1 . The Need of Localization for Internet of Things

The Internet of Things (IoT) marks a revolutionary shift, redefining traditional lifestyles with
advanced technology [2]. Originally introduced by Kevin Ashton, the term Internet of Things
was meant to increase the utility of radio frequency identification into broader connectivity
through the Internet [1]. However, IoT has evolved to extend beyond its initial scope, linking
the Internet with the physical world through an expansive network of connected devices and
sensors. As of now, billions of these devices populate the globe, with forecasts from IoT Analytics
predicting that by 2027, the number of IoT connections will exceed 29 billion [3]. This expansive
growth supports a wide array of applications, impacting various sectors such as healthcare,
transportation, wearables, home automation, industrial operations, and agriculture.

“The problem is people have limited time, attention, and accuracy. And that’s a big deal [...]
The Internet of Things has the potential to change the world, just as the Internet did. Maybe

even more so.”
— Kevin Ashton

In the ever-evolving realm of IoT, localization and tracking have become essential, finding
widespread use in sectors like sonar, radar, seismic, mobile communications, and Wireless Sensor
Networks (WSN) [30]. Furthermore, the demand for precise localization is becoming increas-
ingly critical to boost efficiency, security, and functionality across various industries. In security
applications, accurate localization is essential for identifying the source of unauthorized or rogue
signals, thereby protecting system integrity [31]. In urban planning, precise localization facil-
itates the seamless coordination of extensive sensor and actuator networks, ensuring efficient
operation. Additionally, in the healthcare sector, precise localization plays a key role in effective
resource management, shortening response times, and improving patient care [32], [33].

As the number of IoT devices increases, they operate in environments crowded with over-
lapping signals. Effective source localization simplifies this complexity by reducing signal inter-
ference and boosting the reliability of wireless communications. Moreover, localization allows
devices to determine their geographical position from their signals, which is essential for opti-
mizing network logistics and managing resources efficiently [34]. These enhancements not only
improve service quality but also extend device lifespan by reducing energy consumption through
efficient signal processing.

Localization within WSN-based IoT applications is a thoroughly researched topic, with var-
ious approaches and measurement techniques proposed in the literature. These methods span
multiple technologies, and their classifications are detailed in Fig. 2.1.
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Figure 2.1: Overview of localization strategies in IoT: This diagram categorizes the different
approaches, measurement techniques, and technologies used for localization [30].

2.1.1 . Approaches for localization

As illustrated in Fig. 2.1, three principal approaches to localization are used: centralized,
distributive, and iterative.

Centralized Localization means that IoT devices, such as sensors and nodes, collect envi-
ronmental data and transmit it to a central server for processing. Centralized localization takes
advantage of cloud computing platforms [4], which offer powerful processing capabilities to man-
age complex algorithms and large datasets from many devices. While this approach enhances
processing capabilities and analytical depth, it also introduces significant challenges. These in-
clude increased network traffic, higher latency from extensive data transmission, and rising costs
as the network expands, all of which can be detrimental in time-sensitive applications.

Distributed Localization means that devices communicate directly with their neighboring
devices to exchange information and determine their positions without relying on a central server.
The primary advantage of distributed localization is its efficiency in environments with limited
connectivity to a central server, reducing network congestion and speeding up decision-making
processes. This method enables data processing directly at the edge, closely aligning with edge
computing [4]. This alignment addresses the limitations of cloud computing in scenarios that
require real-time data processing and low-latency applications.

Iterative Localization means that the location estimation is refined through repeated
computations, enhancing accuracy with continuous feedback and corrections. This method is
precise, adaptable, and aligns well with both cloud and edge computing. Cloud environments
manage the heavy computational loads, while edge computing supports real-time, low-latency
processing. However, its complexity and high processing demands pose challenges in practical
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implementation [30].

2.1.2 . Measurement Techniques
As shown in Fig. 2.1, localization relies on various measurement techniques, broadly classified

into four types: angle measurement, distance measurement, area measurement, and hopcount
measurement. Here are some examples of interest:

Angle of Arrival (AoA) technique falls under angle measurement and is based on the
triangulation method [34]. It uses arrays of antennas to precisely determine the direction from
which a signal is received. While AoA offers high precision, it often requires regular calibration
of the antenna arrays, leading to higher costs.

Time of Arrival (ToA) and Time difference of arrival (TDoA) techniques, categorized
under distance measurement, rely on the timing of signal arrivals to determine location [30]. ToA
calculates the travel time of a signal from a transmitter to a receiver, measuring distance based
on the signal’s known speed. TDoA compares the arrival times of the same signal at different
receivers to pinpoint the signal source’s location. Both methods offer high accuracy under ideal
conditions but necessitate precise synchronization between transmitters and receivers, making
them complex and potentially costly.

Received Signal Strength (RSS), classified under distance measurement, estimates a
device’s location based on the power levels of received signals [35]. By measuring signal strength,
which decreases with distance, RSS can infer how far away a source is from the receiver. While
RSS is sensitive to interference, it is a straightforward and cost-effective method that does not
require complex hardware or high computational resources.

2.1.3 . Technologies of localization
Several technologies have been developed for localization in various IoT applications, whether

in indoor or outdoor environments. Here are the prominent ones:
Global Positioning System (GPS) is the most recognized satellite navigation system,

providing accurate location and time information worldwide when there is an unobstructed line
of sight to its satellites. It is extensively used in IoT applications such as vehicle telematics,
smartphones, personal wearables, and emergency response systems [31]. However, GPS signals
are significantly weakened or blocked by roofs, walls, and other structures, making it ineffective
for indoor environments [30].

Radiofrequency (RF) Systems, including Wi-Fi, Bluetooth, and Ultra-Wideband (UWB),
are essential for indoor localization where GPS signals are weak [31]. These technologies oper-
ate on different parts of the RF spectrum. Wi-Fi typically uses 2.4 GHz and 5 GHz bands,
while Bluetooth operates in the 2.4 GHz band. Wi-Fi and Bluetooth can be used for local-
ization through techniques such as RSS triangulation and fingerprinting, which measure the
signal strength from multiple access points to estimate a device’s location. UWB spans a much
wider spectrum, typically between 3.1 and 10.6 GHz, allowing for precise location tracking with
minimal interference. They are cost-effective and ubiquitous, offering easy integration, but are
susceptible to interference from physical obstructions and electronic devices.

Infrared (IR) systems use IR light to detect objects and determine their location by
measuring the reflection of IR beams from a known emitter. IR technology is commonly used in
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controlled indoor environments such as smart homes and industrial automation systems where
precise short-range detection is needed [36]. IR systems are limited by the requirement for a
line-of-sight between the emitter and receiver, which can be easily obstructed.

Ultrasonic systems use sound waves at frequencies above the human hearing range to mea-
sure distances and map environments [35]. It is extensively used in robotics for navigation and
obstacle avoidance, as well as in automotive applications for parking assistance systems. While
ultrasonic localization is highly effective in detecting objects in cluttered environments where
visual methods are insufficient, its accuracy can be compromised by environmental changes.
Fluctuations in temperature and humidity affect the speed of sound, thereby impacting localiza-
tion precision.

2.1.4 . Localization Algorithms
Extensive research in the field of localization for modern IoT applications has charted the

progression from traditional to more sophisticated techniques and algorithms. Among the con-
ventional algorithms, linear least squares (LLS) and maximum likelihood estimation (MLE) stand
out for their accuracy in precise position estimation [37], [38]. LLS effectively uses RSS values
to estimate positions by minimizing the discrepancies between the measured signal strengths
and those projected from assumed locations. It provides especially beneficial in settings where a
distinct correlation between signal strength and distance is evident, such as indoor networks.

On the other hand, MLE estimates parameters that maximize the likelihood of the observed
measurements in the model. It uses various measures such as RSS, ToA, or AoA, and is renowned
for its precision in handling complex environments prone to multipath interference. However, de-
spite their effectiveness, both methods come with performance limitations and present significant
implementation challenges.

The rapid growth of machine learning and artificial intelligence (AI) across various sectors
facilitates their integration with IoT, significantly boosting the intelligence and performance of
IoT devices [39]. Incorporating these advanced techniques in localization represents a major
improvement over traditional methods. This enhancement enriches localization approaches con-
nected with both cloud and edge computing, enabling better support for IoT applications through
advanced analytics, enhanced decision-making, and more efficient resource management.

Additionally, the capacity of neural networks to learn and adapt from vast datasets greatly
increases the accuracy and efficiency of localization efforts, paving the way for more autonomous
and intelligent IoT systems. Before delving into the advancements of AI-based localization,
the next Sec. 2.2 will introduce the basics of artificial intelligence, including neural network
architectures and learning mechanisms.
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2.2 . Artificial Intelligence and Deep Learning: The Heart of Industry 4.0

2.2.1 . Brief History of Artificial Intelligence

The fascination with creating intelligent systems has been shared by scientists, artists, and
philosophers for centuries. In the mid-20th century, British mathematician Turing posed a
profound question: "Can machines think?", which sparked initial interest in what would later
become known as artificial intelligence (AI) [40]. The term "artificial intelligence" itself was
officially coined by McCarthy six years after Turing’s query. Since then, the field of AI has
experienced cycles of intense enthusiasm and periods of disillusionment, often triggered by the
limitations of expert systems and the high costs associated with AI research.

The advancement of machine learning in the 1990s, driven by improved algorithms and more
powerful computers, led to significant progress [41]. This era encouraged AI researchers to
concentrate on learning-based and probabilistic methodologies and spurred renewed interest in
neural networks. These developments marked a pivotal shift at the start of the 21st century, as
AI transitioned from traditional machine learning to a focus on neural networks [42].

Following initial progress, the introduction of convolutional neural networks (CNNs) [43] and
deep learning [7], coupled with advancements in data storage and the rise of big data, have
significantly enhanced AI’s capabilities. This progress has been demonstrated in AI’s ability to
solve complex tasks and achieve breakthroughs in speech recognition, visual recognition, and
handwritten text recognition.

Now, in the 2020s, AI has begun to profoundly reshape society and stands as the cornerstone
of Industry 4.0, serving as a transformative force across all facets of life. Its integration into
various sectors not only enhances operational efficiencies but also fosters innovation, particularly
in healthcare, smart manufacturing, and autonomous systems, redefining the potential of human-

Figure 2.2: Schematic representation of the hierarchical relationship between artificial intelli-
gence, machine learning, and neural networks.
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machine collaboration.
As illustrated in Fig. 2.2, the field of AI covers a broad spectrum of technologies and method-

ologies. At its core, AI branches into machine learning, with further specializations into neural
networks. Deep neural networks are a predominant subset of neural networks and represent a
critical area of AI advancement, significantly enhancing the capabilities of intelligent systems.
Spiking neural networks, another distinct subset inspired by biological processes, have recently
gained attention for their energy efficiency in intelligent devices. Next sections will explore the
evolution from initial to advanced neural networks (Sec. 2.2.2), focus on deep learning (Sec.
2.2.4), delve into the training process (Sec. 2.2.3), and discuss related challenges (Sec. 2.2.5).

2.2.2 . Evolution of Neural Networks
First Neural Networks
McCulloch-Pitts Neuron — The concept of a neural network was first introduced in 1943

when McCulloch and Pitts proposed a highly simplified model of the brain’s neurons [42]. Their
model represented neurons as binary units that emit a single output based on multiple inputs.
According to this model, the McCulloch-Pitts neuron receives inputs, and fires (outputs a 1) if
the sum of the inputs exceeds a predefined threshold, or remains inactive (outputs a 0) if this
sum does not exceed this threshold. This fixed threshold underpins the "all-or-nothing" response
characteristic of their model, which is defined by the following equation

y = Θ(
∑
i

wixi − threshold), (2.1)

where Θ is the step function, wi are weights (commonly set to +1 for excitatory and -1 for
inhibitory), xi are the binary inputs, and threshold is a predetermined threshold value. Their
work formed the basis for later developments in artificial neural networks and computational
neuroscience. However, the original McCulloch-Pitts model suggests fixed weights, meaning that
the connections between neurons did not change, preventing any learning or adaptation. It was
static, designed to execute specific logical operations like AND, OR, and NOT, but lacked the
capability to learn from data.

Rosenblatts Perceptron — Rosenblatt proposed the perceptron in 1958, a significant
advancement that featured adjustable weights and the concept of learning, elements absent in
the McCulloch-Pitts model. Initially developed for pattern recognition studies, the perceptron
was among the first algorithms capable of learning weights from labeled training data and making
decisions by simulating a single layer of neurons. The perceptron learning rule is defined as follows
[44]

wi ← wi + η(t− y)xi, (2.2)

where wi is the learnable weight, η is the learning rate, t is the desired output, y is the calculated
output, and xi are the inputs. This learning rule is iteratively applied to all weights within the
network, and it effectively guides the perceptron towards minimizing the prediction errors, thus
learning from the training data. This capability marked a significant advancement as it allowed
the model to learn optimal weight configurations for data classification, establishing it as an
early example of supervised learning. This leads to the formulation of the perceptron neuron
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Figure 2.3: Timeline of neural network development: from early concepts to modern deep learn-
ing.

model as follows
y = Θ(

∑
i

wixi + b). (2.3)

In this model, b is the bias, adjusting the threshold at which the perceptron fires, adding an
element of flexibility compared to the original McCulloch-Pitts model. Rosenblatt demonstrated
the convergence of the learning algorithm in a simple single-layer perceptron through iterative
weight adjustments to achieve the desired results. According to the perceptron convergence
theorem, the model can only solve linearly separable tasks. Minsky and Papert’s work in 1969
highlighted this limitation, notably demonstrating the perceptron’s inability to solve the non-
linear XOR problem [45].

Multi-layered Perceptrons — The limitations of single-layer perceptrons underscored
the need for more complex architectures, leading to the development of multi-layer perceptrons
(MLP). Recognized as feedforward neural networks, MLPs consist of multiple layers of neurons,
with continuous-valued activation functions to effectuate non-linear transformations of inputs
[46]. Each neuron in one layer is fully connected to all neurons in the subsequent layer, ensuring
unidirectional data flow from the input to the output layer. Initially, training MLPs relied on
heuristic adjustments or rudimentary learning rules, which struggled with the complexities of
non-linearities and layered structures. Consequently, their practical applications were initially
constrained by the absence of effective training methodologies for multi-layered networks [47].

The introduction of Backpropagation Learning
Backpropagation, introduced in 1986 by Rumelhart, Hinton, and Williams, revolutionized

the training of MLPs by enabling effective weight updates across multi-layer fully connected
networks [48]. This technique, short for "backward propagation of errors," applies the chain rule
of calculus within an optimization algorithm to efficiently calculate the gradient of a loss function
with respect to all network weights. Primarily aimed at minimizing the loss function (described
in Sec. 2.2.3), backpropagation quantifies the discrepancy between the network’s actual output
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and the target output. It then adjusts the weights to gradually reduce this loss, facilitating
iterative learning from the data.

Advanced Neural Networks
Since the advent of backpropagation learning, neural networks have evolved significantly

in the 1980s. In 1989, Yann LeCun’s groundbreaking work on convolutional neural networks
(CNNs) enhanced the ability of neural networks to process spatial data hierarchies [43], [49],
establishing CNNs as a cornerstone architecture for image and video processing tasks. In contrast
to feedforward networks like MLPs and CNNs, where data flows linearly from input to output,
recurrent neural networks (RNNs), introduced in 1997, effectively manage sequential data [50].
They allow outputs from previous steps to influence the current state, making them ideal for
tasks such as language modeling and speech recognition. The field reached a further milestone
in 2017 with the introduction of transformers [51], which revolutionized sequence processing
through self-attention mechanisms that assess the relevance of different inputs regardless of their
sequential order.

Deep Neural Networks
The term "deep" began to be widely used to describe neural networks as they evolved to

effectively learn complex patterns through multiple hidden layers [7]. These networks, known as
deep neural networks (DNNs), now include a variety of complex architectures designed for diverse
applications. Some DNNs use a straightforward feedforward data flow, while others, known as
non-feedforward networks, incorporate cycles or loops in their structure.

Apart from transformers, which use a distinct mathematical model, the most common neuron
model used in DNNs is

y = f(

n∑
i

wixi + b), (2.4)

where f is a non linear activation function, wi re the learnable weights that can be positive or
negative real numbers, associated with inputs xi, and b is the bias term. The bias allows for an
adjustment of the activation function, improving the network’s capability to accurately fit the
data.

2.2.3 . Training the Network
Training Process
The objective of training a neural network is to minimize the error between the predicted

outputs and the actual target values. In the training process, the available dataset is divided
into three subsets: training, validation, and test sets. The training set updates the model’s
weights and biases iteratively using the backpropagation algorithm or its advanced variants.
The validation set aids in tuning hyperparameters (described below) and mitigating overfitting
by assessing the model’s performance on unseen data during training. After training, the test set
evaluates the final performance of the model. Throughout the training phase, data encoded as
input signals is processed from the input neurons through successive layers to the output layer.
Key elements of the training include selecting suitable hyperparameters, activation functions,
loss functions, and optimization algorithms to improve model robustness.
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Hyperparameters
Hyperparameters are variables that are not learned from the training process itself but are

set prior to training [52]. They are optimized using the validation set to achieve the best perfor-
mance, including settings such as learning rate, batch size, number of epochs, dropout rate, and
optimizer, detailed in Tab. 2.1.

Hyperparameter Objective
Learning Rate Controls the speed of weight updates during training.
Batch Size Defines the number of samples used to process the model

at once.
Number of Epochs Defines the number of times the entire training dataset

is passed through the network.
Dropout Rate Prevents overfitting by adding constraints during train-

ing.
Optimizer Governs how the network updates its weights based on

gradients.

Table 2.1: Key Hyperparameters and Their Objectives

During each training epoch, the model involves iterative adjustments to its weights and
biases to reduce the loss function, which quantifies the difference between the network’s predicted
outputs and the actual target values. These adjustments, essential for enhancing model accuracy,
are driven by optimizers such as Stochastic Gradient Descent (SGD) and Adaptive Moment
Estimation (Adam) [52]. These optimizers use gradients computed during backpropagation to
strategically update model parameters and reduce loss. SGD updates the model parameters by
calculating the gradient of the loss function for each mini-batch of data and adjusting parameters
in the reverse direction of the gradient. Adam, on the other hand, adjusts the learning rate for
each parameter using the running averages of the gradients and their squared values, promoting
faster convergence and better performance in complex scenarios [53].

Alongside the hyperparameters used for training, the choice of the loss function is crucial as
it evaluates how closely the model’s predictions match actual values [54]. For regression, Mean
Squared Error (MSE) and Mean Absolute Error (MAE) effectively measure the discrepancies
between predictions and actual outcomes. In binary classification, Binary Cross-Entropy is
prevalent as it measures the accuracy of probability predictions for two categories. For multi-class
classification, Categorical Cross-Entropy assesses the alignment between predicted probabilities
and one-hot encoded true labels.
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Activation Functions
Several non-linear activation functions have been adopted and played a critical role in en-

hancing the training and testing performance of DNNs, enabling them to learn faster and reduce
gradient problems [55]. The commonly utilized activation functions, as depicted in Fig. 2.4,
are standard logistic function (sigmoid), Hyperbolic Tangent (Tanh), and Rectified Linear Unit
(ReLU). Each function is selected based on the specific requirements and characteristics of the
task being addressed.

The sigmoid function is often used in binary classification models to generate probabilities
between 0 and 1 [56, 57, 58, 59], while softmax is preferred for multi-class classification [60, 61, 62].
The Tanh function, with outputs ranging from -1 to 1 and being zero-centered, is frequently used
in RNNs to help maintain balanced gradient flow [63, 64, 65]. The ReLU function is commonly
used in CNNs for its computational efficiency, which significantly accelerates the training process
[66], [67].

Sigmoid Hyperbolic Tangent Rectifier Linear Unit

ReLU 𝑥 = max 0, 𝑥tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

σ 𝑥 =
1

1 + 𝑒−𝑥

Figure 2.4: Common activation functions in neural networks: Sigmoid, Hyperbolic Tangent, and
Rectified Linear Unit

Training Platforms
A variety of platforms are available for neural network training. TensorFlow [68, 69], de-

veloped by Google, and PyTorch [70], created by Facebook, stand out as popular open-source
frameworks due to their robustness and flexibility. Keras [71], which operates on top of Tensor-
Flow, simplifies model building with its user-friendly Application Programming Interface (API).
Additionally, cloud-based solutions such as Google Colab [72], Amazon SageMaker [73], and
Microsoft Azure Machine Learning [74] offer scalable resources for large-scale training, making
them accessible for both beginners and professionals.

2.2.4 . Deep Learning: Today’s Dominant Trend

Deep learning has profoundly transformed the field of AI, especially with the advancement
of DNNs, broadening the scope and complexity of addressable problems. This transformative
era kicked off in 2006 when Hinton’s team demonstrated that deep networks could be effectively
trained using a pre-training strategy [75]. The subsequent incorporation of graphical processing
units (GPUs) and distributed computing further accelerated this revolution [76], [77], providing
the necessary computational power and access to extensive datasets. As a result, deep learning
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architectures for CNNs [79] and RNNs [78], have significantly broadened the applications and
challenges that neural networks can tackle.

One of the most transformative applications of deep learning has been in image recognition,
highlighted by the introduction of AlexNet in 2012 by Hinton’s team [80]. By using CNNs and
GPU acceleration, AlexNet significantly enhanced performance in the ImageNet challenge, a
large-scale repository of annotated images. This breakthrough led to the rapid adoption of deep
learning across the field of computer vision, establishing new standards for image recognition
tasks. In the realm of strategic games, AlphaGo was developed by Google’s DeepMind in 2016
[81], which is an intelligent program capable of mastering the complex board game Go. Al-
phaGo’s victory over world champion Lee Sedol in 2016 marked a significant milestone for deep
reinforcement learning, illustrating its potential to solve problems requiring complex strategic
thinking. This achievement underscored deep learning’s ability to not only match but surpass
human expertise in high-dimensional problems.

The field of natural language processing has seen substantial progress with the introduction
of the ChatGPT series by OpenAI. GPT-3, launched in 2020, emerged as an advanced language
model distinguished by its remarkable capabilities in tasks such as text generation and question
answering, facilitated by few-shot learning [82]. In 2023, the release of GPT-4 marked further
advancements, leveraging an expanded transformer architecture with more parameters and re-
fined training techniques to improve upon its predecessor’s capabilities [83]. By 2024, GPT-4
Optimized (GPT-4o) was developed to boost efficiency and performance, particularly suited
for real-time applications and environments with limited resources [84]. These developments
illustrate the rapid evolution of deep learning, increasingly hinting at the emergence of general
artificial intelligence capabilities in the 21st century.

2.2.5 . The challenges of AI and Deep Learning
The rapid advancement of AI and the growth of deep learning technologies come with sig-

nificant challenges. The drive to capture increasingly complex data patterns and enhance per-
formance on demanding tasks has led to more complex neural network architectures. These
networks often feature an exponential growth in the number and size of parameters. Training
these expansive models requires vast amounts of data and computational resources, which poses
considerable impacts due to high energy consumption [9, 10, 85]. Moreover, while employing
software and algorithmic strategies like feature selection and pruning can reduce the model’s
parameter count and power usage, these methods typically come at the expense of diminished
accuracy [86], [87].

An example of the high costs associated with advanced AI models is ChatGPT-4, which
boasts a trillion parameters and consumes substantial energy measured in MWh during training
[82]. This training typically takes place on powerful cloud servers, using extensive computing
resources to manage its vast parameter set. In contrast, even deep networks models designed for
edge devices, which aim for efficiency, still maintain a large number of parameters but manage
to keep a moderate power consumption. For instance, Google’s MobileNet, optimized for real-
time processing on resource-constrained devices, is designed for tasks like image classification and
object detection [88]. MobileNet uses CNNs and comprises approximately 4.2 million parameters,
demonstrating a balance between capability and efficiency suitable for edge computing.
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Figure 2.5: Comparative overview of computing paradigms: traditional Von Neumann architec-
ture versus neuromorphic computing

Currently, DNNs are trained on classical computers that operate under the von Neumann
architecture (shown in Fig. 2.5), characterized by a distinct separation between memory and
processing units [91]. The primary processing units used are the Central Processing Unit (CPU)
and the Graphics Processing Unit (GPU). The computational needs of deep learning are diverse,
involving various operations that necessitate specialized hardware capabilities. At the core of
deep learning processes, tasks like matrix multiplications and vector additions are predominantly
performed on GPUs, which are suited for parallel processing [89]. CPUs, on the other hand, man-
age data loading, preprocessing, and input/output operations during training. Additionally, the
storage of large datasets and extensive model parameters, such as weights and biases, highlights
the critical role of memory in deep learning computations [90].

Von Neuman Bottleneck
The computational demands of AI, particularly deep learning, are increasing at a rate that

surpasses Moore’s Law, with capabilities doubling roughly every 5 to 6 months [8]. Contemporary
AI models require vast data and extensive parameter tuning for training, often surpassing the
memory capabilities of even advanced GPUs like the NVIDIA A100 GPU, launched in 2020 for AI
applications [90], [92]. Additionally, the frequent data transfers between memory and processors,
a challenge known as the von Neumann bottleneck shown in Fig. 2.5, lead to substantial energy
use and latency [93]. This issue is especially pronounced during training, when model parameters
are continuously read from and written back to memory for gradient computations.

The high power consumption, the inherent inefficiencies of the von Neumann architecture,
and many other problems have become increasingly apparent, which paves the way to new
trends, such as the neuromorphic computing and the edge AI. Neuromorphic computing is the
alternative promising of the von Neuman bottleneck as it mimics the brain’s neural architecture
by integrating memory and processing units, enabling parallel and event-driven computation
[13], [11]. Edge AI, on the other hand, mitigates AI problems by processing data locally on
devices [5], [6], reducing the need for frequent data transfers between the device and cloud-based
servers. It leverages specialized AI hardware, such as AI accelerators with integrated memory, to
achieve improved computational efficiency. The most benefit from all that is to enable the energy-
efficient Edge AI which opens the question of: What if we benefit from both by implementing
neuromorphic computing on Edge AI applications?
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2.3 . Neuromorphic Computing: Towards Brain-Inspired AI

The concept of neuromorphic computing was first introduced by Carver Mead in the 1980s
[94]. Mead described systems that mimic biological neural systems using mixed analog-digital
implementations as “neuromorphic” [95]. Over the years, neuromorphic systems have evolved
from traditional digital approaches, drawing inspiration from the structure and function of the
human brain, particularly neurons and synapses. Recently, neuromorphic architectures have
gained significant attention as potential solutions for addressing the computational complexity
of AI and deep learning, and for meeting the demands for enhanced energy efficiency in large-
scale edge devices within the IoT landscape. The advantages offered by neuromorphic computing,
making it a promising solution for overcoming current AI limitations, include [11, 12, 13, 96, 97]:

Energy Efficiency — Neuromorphic systems are designed to replicate the human brain’s
neural architecture, renowned for its exceptional energy efficiency in handling complex computa-
tions. Information can be encoded based on the timing, magnitude, and shape of neural spikes,
enhancing computational efficiency.

Reduced Latency — Unlike the von Neumann architecture, where data must be transferred
back and forth between memory and the CPU, neuromorphic systems often use in-memory
computing. This reduces latency and power consumption by performing computations directly
where data is stored [98]. This is crucial for applications where timing and quick responses are
critical, such as in neuromorphic sensors and edge computing devices.

Highly Parallel Operation — While parallel von Neumann architectures have existed,
neuromorphic systems excel in performing simultaneous computations using simple processing
components (neurons and synapses).

Real-time Processing — By mimicking the computation of biological neural systems,
neuromorphic systems leverage event-driven computation (spikes), meaning they compute only
when data is available and use temporally sparse activity for extremely efficient computation.

Adoption of the Spiking Neural Networks — Neuromorphic systems are specifically
engineered to implement Spiking Neural Networks (SNNs), the third generation of artificial
neural networks. SNNs were developed to provide a more biologically accurate model of how
real neurons in the human brain operate, adopting bio-inspired learning mechanisms. Unlike
traditional artificial neural networks like DNNs, which process data continuously, SNNs operate
on a bio-inspired, event-driven basis, using time-based information. This enhances efficiency by
activating neurons only as needed. Implementing SNNs on neuromorphic hardware is beneficial,
as the hardware can be designed to operate in an event-driven or asynchronous manner, aligning
well with the temporal dynamics of spiking neurons and synapses.

These advantages suggest that neuromorphic computing could address some of the criti-
cal challenges faced by traditional AI, particularly in terms of power consumption, speed, and
adaptability to real-world environments [99]. Moreover, these advantages translate into further
benefits such as scalability, allowing neuromorphic systems to expand without significant in-
creases in power or space requirements. The small footprint, facilitated by integrated processing
and memory, makes these systems ideal for space-constrained environments. Additionally, the in-
herent stochastic nature of spiking neurons introduces randomness into computations, enhancing
robustness and reliability.
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The neuromorphic computing field draws from a diverse array of disciplines, including mate-
rials science, neuroscience, electrical and computer engineering, and computer science. Materials
scientists innovate by creating new substances that replicate the functionality of biological neural
systems for use in neuromorphic devices. Neuroscientists contribute by applying their research
to enhance computational models and emulate biological neural systems with neuromorphic
technology. Electrical and computer engineers are involved in designing devices, using various
circuit technologies to develop cutting-edge systems. Meanwhile, computer scientists craft net-
work models and algorithms that are inspired by both biological processes and machine learning
principles, producing software that supports the real-world deployment of neuromorphic com-
puting systems. Neuromorphic systems have captured significant interest from both industry
and academia:

In industry — Recent advancements in neuromorphic hardware like IBM’s TrueNorth
and Intel’s Loihi 1 and 2 highlight the potential for highly efficient computing. IBM’s TrueNorth
[100, 101], unveiled in 2014 at the IBM Almaden Research Center, boasts a million programmable
neurons and 256 million programmable synapses. It excels in efficient pattern recognition and
sensory processing, consuming only 70 milliwatts of power. Intel’s Loihi 1 [102] debuted in 2017,
succeeded by Loihi 2 [103] in 2021. The Loihi 2 is part of the Hala system, introduced in 2022,
which stands as one of the largest neuromorphic platforms globally, featuring 1.15 billion neurons
and enhancing AI performance with superior energy efficiency.

In academic research — The European Union’s Human Brain Project has funded the de-
velopment of the BrainScaleS-2 and SpiNNaker neuromorphic systems. Developed at Heidelberg
University in Germany, BrainScaleS-2 builds on its predecessor launched in 2013, using ana-
log electronic circuits to accelerate neural simulations and achieve high computational efficiency
[104], [105]. SpiNNaker [106], designed at the University of Manchester in the UK by Professor
Steve Furber, was introduced in 2014. It uses a million ARM processors to simulate large-scale
neural networks in real time. The advanced SpiNNaker 2, introduced in 2024, is equipped with
152 ARM-based cores per chip, capable of scaling to emulate 5 billion neurons [107]. This system
enhances energy efficiency and performance, meeting the needs of hybrid AI models.

2.3.1 . Inspiration from Brain Functionality
The human brain, with its intricate structure and exceptional capabilities, serves as an in-

spiring model for advancing artificial intelligence, computing technologies, and efficient hardware
development [108]. Notably characterized by its adaptability in learning, decision-making, and
pattern recognition, the brain enhances daily interactions with the world and solves problems
through intuitive and dynamic responses. Beyond handling routine tasks, the brain’s capacity
for self-improvement and adaptation in response to new stimuli underscores a level of sophisti-
cation that AI aspires to replicate. Despite its densely packed, complex structure and ability to
handle intricate tasks, the brain stands out for its energy efficiency, consuming only about 20
watts of power [109]. Therefore, taking inspiration from the brain continues to push the bound-
aries of what AI can achieve for creating more advanced, low power autonomous systems that
can learn from their environments and continuously enhance their performance without human
intervention.
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A .Basic Neural Units of the Brain

The human brain contains about 50 to 100 billion neurons, along with an even larger number
of glial cells that provide support and protection for these neurons [110, 111, 112]. Each neuron
can form connections with up to 10,000 other neurons, resulting in over 100 trillion synapses
that enable signal transmission across the brain.

Neurons
Neurons, the fundamental cellular units of the brain’s nervous system, are central to its

function [113], [114]. Each neuron, as illustrated in Fig. 2.6(a), has a cell body called the
soma, which contains the nucleus and serves as the metabolic center, where proteins and some
neurotransmitters are synthesized. The neuron has distinct input and output sections. Inputs

(a)

(b)

Figure 2.6: Simplified structure of a neuron from [115], (b) Graph of an action potential depicting
changes in membrane voltage over time from [116].
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are managed by dendrites, branching extensions from the soma that receive signals from other
neurons. These inputs are integrated in the soma, and if sufficient depolarization occurs, it
triggers electrical impulses. Outputs are managed by the axon, a long, slender projection that
transmits electrical impulses away from the neuron’s cell body. The axon may be insulated by
a myelin sheath, which enhances the speed of signal transmission. The axon hillock, located at
the junction between the axon and the cell body, plays a crucial role in initiating the neuron’s
signal. This signal, known as an action potential or spike, is illustrated in Fig. 2.6(b).

This graph illustrates the stages of an action potential in a neuron [117]. At the resting
state, the neuron maintains a negative membrane potential, around -70 mV, which is the differ-
ence between the electric potential inside the cell and its surroundings. This state is characterized
by a higher concentration of potassium ions (K+) inside the cell and sodium ions (Na+) outside.
When the neuron receives a sufficient stimulus, the membrane potential reaches a threshold that
triggers an action potential. This causes a rapid influx of Na+ ions as voltage-gated sodium
channels open, resulting in a sharp rise in membrane potential (depolarization).

Following this, the sodium channels close and potassium channels open, allowing K+ ions to
flow out of the neuron, bringing the membrane potential back toward the negative resting level
(repolarization). The voltage-gated potassium channels close slowly, causing a brief period
of hyperpolarization where the membrane potential becomes more negative than the resting
potential. Eventually, the potassium channels close, and the neuron returns to its resting po-
tential, reset by the sodium-potassium pump and other ion channels that restore the initial ion
concentration gradient. After an action potential, the neuron enters a refractory period during
which it is less likely to fire another action potential. This period allows the neuron to reset
before it can generate another action potential.

For any given neuron, the amplitude, duration, and shape of an action potential remain
constant once it is triggered. Variability in response to stimulus strength is primarily reflected
in the rate or timing of firing. Neurons can exhibit a wide range of spiking behaviors, which will
be explored in the next section.

Synapses
As shown in Fig. 2.6(a), neurons connect via synapses, which are junctions where the axon

tip of the presynaptic neuron (transmitting neuron) meets a dendrite or the cell body of a post-
synaptic neuron (receiving neuron) [118]. Figure 2.7 illustrates that the axon terminal of the
presynaptic neuron contains synaptic vesicles filled with neurotransmitters. When an action
potential reaches the axon terminal, it triggers voltage-gated calcium channels to open, allow-
ing Ca2+ ions to flow in. This influx of calcium causes the synaptic vesicles to fuse with the
presynaptic membrane and release neurotransmitters into the synaptic cleft [119, 120]. These
neurotransmitters then bind to receptors on the postsynaptic density of the dendrite of the re-
ceiving neuron, initiating a response. Recent developments in neuroscience provide evidence that
synapses are not merely interfacing elements for transmitting signals between neurons but also
play a crucial computational role in biological neural networks. Whether a synapse is excitatory
or inhibitory depends on the type of neurotransmitter released and the nature of the receptors on
the postsynaptic neuron. Excitatory neurotransmitters increase the likelihood of firing an action
potential in the postsynaptic neuron, while inhibitory neurotransmitters decrease this likelihood.
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Figure 2.7: Synapse diagram showing neurotransmitter release, synaptic cleft passage, and re-
ceptor binding on the postsynaptic neuron, from [121]

B .Neuron Models
The study of neuronal models has been pivotal in advancing the understanding of biological

neural mechanisms and the development of computational architectures for SNNs and neuro-
morphic systems. Neurons in the mammalian cortex exhibit inherently spiking behavior, a
fundamental aspect that distinguishes them from artificial neurons. According to [122], neurons
can exhibit different firing behaviors, also known as neuro-computational features. Over the
years, a variety of spiking neuron models have been proposed in scientific literature, varying
in complexity, the number of neuro-computational features, and the biological inspiration they
offer. Among the most notable, shown in Fig. 2.8, are:

Leaky Integrate-and-Fire Model (LIF), introduced in 1907, is one of the earliest models
of neuronal behavior [123]. It provides an abstraction of a biological neuron, simplifying the
neuron’s membrane potential dynamics using a single differential equation. This model can
represent three neuro-computational features [122]. Despite its simplicity, it effectively captures
the essential behavior of a neuron: integrating inputs, exhibiting membrane leakiness (the passive
movement of ions through the neuron’s membrane), and generating action potentials or spikes
once the membrane potential reaches a specific threshold.

dVm

dt
=

1

Cm
(Isyn − gL(Vm − Vrest)) , (2.5)

where Vm is the membrane voltage; Cm is the membrane capacitance; Isyn is the synaptic current
applied to the neuron; gL is the leak conductance; and Vrest is the resting membrane potential,
the voltage of the neuron when it is not excited.

Hodgkin-Huxley Model is a cornerstone in computational neuroscience, developed in
the 1950s [124]. It uses a set of four differential equations and ten parameters to describe
the changes in the conductances of Na and K channels over time, and their effects on the
membrane potential. Although it is the most biologically accurate neuron model, it is also
complex and computationally intensive. This model can capture up to 17 neuro-computational
features, making it one of the most versatile models available [122].
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FitzHugh-Nagumo Model, introduced in 1962, the FitzHugh-Nagumo model was designed
to simplify the complexities of the Hodgkin-Huxley model [125], [126]. While it is less biologically
inspired and captures fewer firing patterns [122], it retains the essential characteristics of action
potential generation and propagation. This streamlined model uses a pair of nonlinear differential
equations to achieve its simplicity [127].

Morris-Lecar Model (ML), introduced in 1981, is highly regarded in the computational
neuroscience community for its biophysically meaningful and measurable parameters [128]. It
can represent 13 neuro-computational features, according [122]. The ML model, specifically
designed to simulate the electrical properties of muscle fibers in barnacle giant neurons, uses
calcium (Ca) for depolarization instead of Na (typically used in human brain neurons). The
ML model achieves a balance between simplicity and biological accuracy through two coupled
first-order differential equations [129]. The first equation (2.6) describes changes in membrane
potential, incorporating the instantaneous activation of Ca ion conductance, while the second
equation (2.7) addresses the activation dynamics of K ion conductance.

dVm

dt
=

1

Cm
(Isyn −GCamss(Vm)(Vm − VCa)−GKn(Vm − VK)−GL(Vm − VL)) , (2.6)

dn

dt
= λ(Vm) (nss(Vm)− n) , (2.7)

where

mss(Vm) =
1

2

(
1 + tanh

(
Vm − V1

V2

))
,

nss(Vm) =
1

2

(
1 + tanh

(
Vm − V3

V4

))
,

λ(Vm) = λ0 cosh

(
Vm − V3

2V4

)
,

(2.8)

where Vm is the membrane voltage of the neuron; Cm is its membrane capacitance; Isyn is the
synaptic current applied to the neuron; GCa, GK , and GL are the maximal conductances for
the Ca, K, and leak channels, respectively; VCa, VK , and VL are the reversal potentials for the
Ca, K, and leak channels; mss and nss are the Ca and K gating variables; λ is the rate of
change for the K channel; and V1, V2, V3, and V4 are adjustable parameters used to calibrate
the steady-state and time constants of the model.

Izhikevich Model, introduced in 2003, provides a computationally efficient method for
modeling spiking neurons [130]. It captures a wide range of neuro-computational features (ap-
proximately 20 [122]) while maintaining a lower level of biological inspiration compared to models
like Hodgkin-Huxley or Morris-Lecar. The model is characterized by a system of only two dif-
ferential equations

dVm

dt
= 0.04V 2

m + 5Vm + 140− Um + Isyn, (2.9)

dUm

dt
= a(bVm − Um)), (2.10)
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where Vm is the membrane potential; Um is the membrane recovery variable, which influences
the firing rate by accounting for the activation of K currents and inactivation of Na currents;
a is the time scale of the recovery; and b is the sensitivity of the recovery to the subthreshold
fluctuations of the membrane. After a spike reaches its maximum, Vm and Um are reset to the
resting values c and Um + d , respectively.

3

18

21
11

13

Figure 2.8: Comparison of neuron models based on biological inspiration and complexity, with
bubble sizes (and numbers inside) representing the number of neuro-computational features.
Inspired by [122] and [13].

2.3.2 . Neuromorphic Hardware
Neuromorphic computing seeks to replicate the brain’s exceptional learning efficiency and

low energy consumption. Central to this field is the development of SNNs, where neurons com-
municate through discrete spikes, closely mimicking the behavior of biological neurons. This
discipline focuses on understanding and emulating the brain’s event-driven dynamics, are fun-
damentally different from the static architectures commonly used in deep learning. Developing
SNNs requires extensive research into energy-efficient hardware (discussed in this section) and
bio-inspired learning algorithms (covered in the next section).

Standard CMOS or Emerging Technology?
Neuromorphic hardware primarily comprises two components: neurons and synapses. Some

devices and circuits use silicon-based CMOS (Complementary Metal-Oxide-Semiconductor) tech-
nology, which has been the industry standard for decades. Others push the boundaries to explore
beyond silicon-based CMOS to explore emerging technologies [131], [132]. This thesis focuses
on devices based on fully analog CMOS technology for designing neurons and synapses, chosen
for their high reliability, low cost, and efficiency [13], [133]. However, the following provides an
overview of the most prominent emerging devices developed for neuromorphic computing and
their limitations:

Memristors or memory resistors, are passive devices that control the flow of electrical
current in a circuit while retaining a memory of past voltages or currents [134], [159]. They
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come in two types: non-volatile and volatile. Non-volatile memristors retain their resistance
without power, mimicking biological synapses and long-term potentiation, making them ideal
for stable synaptic models. Volatile memristors, however, reset their resistance when power is
off, resembling the transient behaviors of neurons.

Spintronics or spin transport electronics, use the spin of electrons in addition to their charge
to perform computations. In neuromorphic computing, spintronic devices offer the potential for
low-power operation and high-density integration. [136], [137] These devices mimic the function
of neurons and synapses through magneto-electric phenomena, such as spin-transfer torque and
spin-orbit torque, enabling non-volatile memory and state-dependent behavior [138].

Despite their promise, practical implementations of emerging devices face significant chal-
lenges due to their higher cost, limited compatibility with existing CMOS technology, and vari-
abilities that lead to inconsistencies. These issues can result in drift and aging, further compli-
cating their use.

A .Electronic Spiking Neuron (eNeuron)
Spiking neurons implemented in CMOS technology have recently become highly popular in

research, emerging as a preferred choice for the development of hardware-based neuromorphic
computing. This focus is driven by their ability to emulate neural behavior directly in hardware,
enabling event-driven computation. Additionally, they offer significant improvements in energy
efficiency over general-purpose computer simulations and advance real-time, large-scale neural
emulations. Developers can choose analog, digital, or mixed-signal approaches for CMOS neuron
design [139], [140]. This thesis specifically focuses on fully analog CMOS neuron (eNeuron) cir-
cuits due to their natural, continuous emulation of biological processes, superior power efficiency,
and real-time signal processing capabilities [13]. These benefits make analog circuits ideal for
creating compact, efficient, and effective neuromorphic systems.

Current neuron circuit designs primarily use the Izhikevich, Morris-Lecar (ML), or Leaky
Integrate-and-Fire (LIF) models (described in Sec. 2.3.1). These models are preferred for hard-
ware implementations due to their balance of biological accuracy and computational simplicity.
Unlike the complex Hodgkin-Huxley model, which requires extensive computational resources
for its nonlinear equations, the Izhikevich and ML models simplify neuronal dynamics, making
them more feasible for CMOS integration. Additionally, the LIF model, resembling a basic RC
circuit, is ideal for large-scale simulations where minimizing power consumption and minimizing
chip dimensions are crucial.

This thesis focuses on the neuro-computational behavior known as Class 1 excitable firing
patterns, as identified in the mammalian cortex and detailed in [122]. These patterns can be
implemented using the Izhikevich, LIF, or ML models. Class 1 excitability is characterized by
a neuron’s ability to modulate its spiking rate based on the strength of the input it receives;
as input strength increases, so does the neuron’s firing rate [141], [142]. This firing pattern is
particularly relevant for applications requiring the encoding of a wide range of stimulus intensities
with high precision, which is common in sensory processing systems such as vision and hearing.

The literature highlights the wide variety of performance metrics for eNeurons, including
the neuron model, technology used, occupied area, spiking rate, power consumption, and energy
efficiency. Each of these factors is critical: (1) the neuron model determines the fidelity
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and complexity of the emulated neural behavior, (2) the technology impacts integration,
scalability, and system compatibility, (3) the area occupied influences the potential for large-
scale implementations, (4) the spiking rate dictates the responsiveness and operational speed of
the circuits, (5) the power consumption is pivotal for using these neurons in resource-intensive
SNNs, and (6) the energy efficiency ensures minimal energy use during spike generation and
propagation. Table 2.2 presents a comparison of eNeurons in the state-of-the-art.

In 2006, Giacomo Indiveri and his team introduced a significant progress with their publica-
tion of a LIF eNeuron [143]. This eNeuron featured capabilities for spike-frequency adaptation,
adjustable refractory periods, and modifiable voltage thresholds. However, the design was com-
plex, using 22 transistors and a capacitor, which resulted in a relatively high power consumption
of up to 100 microwatts. Indiveri’s research continues to evolve, with efforts to make the neuron
circuits more compact and improve their spike timing learning capabilites [144], [145]. His work
also aims to achieve success with large-scale network integrations on chips and to diversify the
firing patterns of neurons. At the same time, efforts to implement circuits for the Izhikevich
neuron model, introduced in 2003, have developed to showcase various firing patterns in fully
analog circuits [130]. Later, the focus shifted towards maintaining low power consumption and
high energy efficiency to support large-scale networks [146, 147, 148, 149, 150, 151, 152].

In 2017, the pioneering work of Sourpikopoulos and his team introduced ultra-low power
biomimetic and simplified eNeurons based on the biologically meaningful ML model [153]. Their
success in implementing the ML model involved the configuration of transistors to operate in deep
subthreshold conditions, with a supply voltage below 200 mV, to accurately handle the non-linear
gating variables that control the currents. The biomimetic version achieved remarkable energy
efficiency at 78.3 fJ/spike, significantly lower than Indiveri’s less biologically oriented LIF neuron,
which has 900 pJ/spike. This achievement was attributed to the minimal supply voltage allowing
for low drain-source voltage and deep subthreshold operation. Furthermore, the simplified version
of the eNeuron, shown in Fig. 2.9(a) as s-ML eNeuron, greatly increased energy efficiency to 4
fJ/spike. This improvement was made possible by reducing the membrane capacitance, which

Table 2.2: Summary of State-of-the-Art eNeurons and their characteristics.

Ref eNeuron CMOS Core area Spike Energy Efficiency Nb Trans
Model Tech. (nm) (µm2) Rate (Hz) (fJ/spike) / Nb Capa

[143] LIF 350 2,573 200 900 22/1
[153] Bio. ML 65 200 1.2× 103 78.3 8/2

Simp. ML 65 35 25× 103 4 6/2
[155] LIF 65 31 15.6× 103 2 5/1
[156] ML 55 98.61 400× 103 1.95 8/2
[149] Izhikevich 180 472 NA 58.5 12/2
[157] LIF 28 32 343× 103 1.2 8/2
[150] Izhikevich 65 1050 NA 40.1 19/2
[158] ML 45 3.91 6× 103 NA 6/0
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(a) (b)

(c) (d)

(e)

Figure 2.9: Redesigned eNeurons circuits in BiCMOS 55 nm technology: (a) simplified ML (s-
ML) from [153], (b) Axon Hillock LIF (AH-LIF) from [155], (c) biomimetic ML (b-ML) from
[156], (d) typical LIF (t-LIF) from [157], and (e) parasitic-capacitance based ML (p-ML) from
[158].

enhances the charging and discharging rate of the membrane, thereby increasing the spike rate
and enhancing overall energy efficiency measured by power consumption per spike rate.

In 2019, Danneville and his team [155] introduced a simplified version of the LIF model
known as Axon Hillock [154], and is shown in Fig. 2.9(b) as AH-LIF eNeuron. They achieved
an energy efficiency of 2 fJ/spike, prioritizing a low maximum firing rate and exceptionally
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low power consumption, measured at just 30 pA. This was achieved by eliminating membrane
capacitance and incorporating only a minimal feedback capacitance. Simultaneously, Ferreira
and his team [156] developed a biomimetic version of the ML model, shown in Fig. 2.9(c) as b-
ML eNeuron. They reach an energy efficiency of 1.95 fJ /spike, representing a 97% improvement
over Sourpikopoulos’s earlier work. Their success stemmed largely from efforts to minimize
substrate leakage and reduce the silicon area in the circuit layout.

In 2022, Besrour and his team [157] developed a LIF eNeuron, shown in Fig. 2.9(d) as typical
LIF (t-LIF) eNeuron. It achieves just 1.2 fJ/spike and maintains a small footprint suitable for
integration into large-scale neuromorphic circuits. They accomplished this using the advanced
TSMC 28 nm technology, a significant upgrade from other eNeurons. More recently, in 2023,
Takaloo introduced an ML eNeuron in a capacitance-free circuit, relying only on parasitic capac-
itances [158]. It is shown in Fig. 2.9(e) as parasitic-capacitance based ML (p-ML). Therefore,
this design reduces the circuit area dramatically by 87% compared to the Sourikopoulos version.

All the circuits presented in Fig. 2.9 share a similar design principle centered around the
eNeuron’s membrane node, which typically includes a membrane capacitance Cm and two tran-
sistors, MPNa and MNK . These two transistors mimic the activity of ions that enter or leave the
neuron membrane, functioning as electronic charge pumps regulated by feedback loops to create
a series of inverters for Potassium (K) and Sodium (Na) ions. Synaptic current Isyn charges Cm

through MPNa (pull-up) and discharges it through MNK (pull-down), causing a significant but
brief change in the membrane potential , which triggers the neuron to spike. In the AH-LIF and
p-ML eNeurons, Cm corresponds to the feedback capacitance Cf and the parasitic capacitances,
respectively.

All the circuits presented in Fig. 2.9 have been redesigned in this thesis for in-depth analysis
developed in the subsequent Chap. 3 and Chap. 4. The redesigns were made using the same
BiCMOS 55 nm technology (detailed in Appendix C) to ensure that the results are not skewed
by technology improvements. The layouts of these circuits are also shown in the Appendix D.

B .Electronic Synapse (eSynapse)

eSynapses play a crucial role in SNNs by linking eNeurons through diverse pre- and post-
synaptic signals. They adjust their strengths (synaptic weights) based on neuronal spiking
activities, a process known as synaptic plasticity, which is vital for learning and memory. While
extensive research exists on eNeurons, there is fewer studies focusing on analog CMOS synapse
designs. Currently, the predominant focus in synaptic research has shifted towards emerging
technologies, notably memristors, which are preferred due to their inherent ability to mimic
biological synaptic plasticity [159], [160].

State-of-the-art eSynapses typically respond to either the spike rate or the spike timing of
pre- and post-eNeurons, adjusting their weights accordingly. These eSynapses can be excitatory
or inhibitory, thereby increasing or decreasing the firing probability of the post-synaptic eNeuron.
Among various designs, the work of Indiveri and his team stands out; they have been pioneering
eSynapse development since 2006 [143], [161], focusing on synapses that support spike-timing-
dependent plasticity (STDP) learning, a bio-inspired learning detailed in Sec. 2.3.3. In 2017,
their team introduced a novel approach that uses arrays of current mirrors to represent synaptic
weights through the gains of these current mirrors [162]. This sparked interest in developing
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spike-time-based eSynapses that support STDP, leading to various circuit designs capable of
adjusting synaptic weights based on different pre- and post-synaptic scenarios [163].

In 2021, Danneville and his team proposed an ultra-low-power eSynapse designed for both
excitation and inhibition based on spike-rate detection, using 65 nm technology [164]. This de-
sign features transistors operating in the subthreshold region for minimal power consumption,
often in the nW range. It employs an RC integrator to capture spike rate information by varying
output voltage based on the charge and discharge cycles of incoming pre-eNeuron spikes. The
eSynapse then uses two inverters to extend spiking signal duration and a cascode transconduc-
tance amplifier to generate synaptic current. By 2022, a fully spike-time-based eSynapse was
developed using 28 nm technology, achieving nW-range power consumption and enhancing STDP
capabilities under experimental conditions and variations in process, voltage, and temperature
(PVT) [152].

A spike-rate-based eSynapse was proposed in 2022 [24], as shown in Fig. 2.10. This design
comprises an RC filter, a transconductance amplifier, and a current mirror. The RC filter, made
up of a diode-connected transistor and a capacitor, extracts the spike rate from the pre-eNeuron
input spikes. This rate is then converted into an excitatory current by the transconductance
amplifier, which is modulated by the synaptic weight set by the PMOS current mirror gain. This
eSynapse draws inspiration from cutting-edge research: plasticity is given through the current
mirror architecture, where the current mirror gain is a synaptic weighted bias signal [162]; ultra-
low power consumption is achieved by using RC and transconductance components [164]. This
excitatory eSynapse was integrated into this thesis work, achieving a low power consumption (≈
0.4 nW) and a compact area. It was designed using BiCMOS 55nm technology, with the layout
and appropriate component sizes detailed in Appendix D.

Figure 2.10: Redesigned eSynapse circuit in BiCMOS 55 nm technology from [24].
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2.3.3 . Neuromorphic Learning Algorithms

To develop effective neuromorphic learning algorithms, it is essential to emulate the biological
learning processes observed in the brain. Learning in the brain is a complex and multifaceted
process, continuing to be a dynamic field of research. Most scientists believe that the brain
encodes information through specific mechanisms such as the precise timing, rate, and patterns
of spikes across extensive neuronal groups. However, the exact algorithms underlying learning
in the brain remain not fully understood.

A learning algorithm is considered bio-plausible based on several key criteria, with its bio-
plausibility increasing as more criteria are met [12]. First, it should be local, meaning that
synaptic weight updates rely solely on the information accessible to a neuron, reflecting the de-
centralized information processing in biological systems. Second, it should use similar operations
or circuitry for both the inference and learning phases, facilitating efficient implementation on
neuromorphic hardware. Third, it should support sparse coding and be robust to noise, mirror-
ing the brain’s ability to represent information efficiently using only a small number of active
neurons at any given time.

Another important criterion is the type of learning. Learning algorithms are traditionally
classified into two main categories: supervised learning and unsupervised learning, with addi-
tional categories emerging [165], [166]. The comparison between these categories, their roles, and
their degree of biological plausibility is presented in Tab. 2.3. Supervised learning algorithms
require labeled data, using known input-output pairs to train a model for making predictions
or decisions [167]. In contrast, unsupervised learning does not use target labels; instead, it au-
tonomously identifies patterns and structures in the data [168]. Semi-supervised learning is a
hybrid approach that uses a small amount of labeled data alongside a larger set of unlabeled
data, making it useful in scenarios where acquiring labeled data is costly or impractical [169].
Self-supervised learning generates its own training labels from the input data, allowing models to
learn patterns and features without external annotations [170]. Reinforcement learning operates

Table 2.3: Comparison of Learning Types

Learning Type Label Data Degree of
Requirement Requirement Bio-Plausibility

Supervised Labeled High volume of
data

Low - Does not closely mimic
natural learning processes

Unsupervised Unlabeled Any volume Medium - Mimics discovery and
adaptation without guidance

Semi-
supervised

Partially labeled Mixed (mostly
unlabeled)

Medium - Reflects mixed learn-
ing scenarios in nature

Self-
supervised

Self-generated
labels

Any volume High - Closely mimics human
learning by self-exploration

Reinforcement No labels,
reward-based

Interaction data High - Very similar to how or-
ganisms learn from consequences
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differently, focusing on learning optimal behaviors through trial and error in an environment,
using rewards to shape an agent’s strategy [171]. The more a learning algorithm avoids reliance
on labeled data, the closer it aligns with biological learning processes, where labeling is not
typically present.

There have been various attempts to adapt deep learning, particularly the supervised back-
propagation algorithm, to train deep SNNs directly [172]. Deep learning, heavily influenced by
statistical learning theory, primarily uses rate-based neurons that perform continuous non-linear
mappings of inputs, often interpreted as firing rates [173], [174]. However, it faces several chal-
lenges when applied to in-hardware learning on neuromorphic processors: (a) weight updates
are not solely based on locally available information, (b) spiking neuron activities are non-
differentiable, (c) errors propagate as real values, and (d) synchronous updates are biologically
implausible.

To address these issues, advanced learning algorithms have been proposed that draw in-
spiration from both the biological plausibility of computational neuroscience and the practical
effectiveness of deep learning. The bio-plausible learning algorithms are either in a rate or
spike-based approaches, where the difference relies on how the synapses adjust their weights
[175]. Rate-based learning algorithms uses the average firing rates of neurons to adjust synaptic
weights, offering noise robustness and straightforward implementation, which is well-supported
by existing software frameworks. Conversely, spike-based or temporal learning algorithms adjust
weights based on the precise timing of spikes, allowing for more efficient encoding of complex
information, though with increased complexity and hardware demands.

The following examples are the predominant biologically plausible learning algorithms:
Hebbian Learning is summarized by the phrase “neurons that fire together, wire together”,

and is introduced by Donald Hebb in 1949 [176]. It is a fundamental principle of synaptic
plasticity where the strength of a synaptic connection depends on the simultaneous activity of
connected neurons. It is often modeled in a rate-based framework, where the strength of synaptic
connections increases with high levels of concurrent neuronal activity over time. This dynamic
underlies the formation of memory and learning pathways, mirroring the way organisms learn
from repeated experiences and stimuli.

Spike-Timing-Dependent Plasticity (STDP) is a prominent spike-based learning algo-
rithm that emerged from experimental neuroscience research in the late 1990s and early 2000s
[177], [178]. It is considered a key mechanism for synaptic learning and adaptation, providing a
biologically plausible rule for SNNs. STDP is a form of Hebbian learning that specifically consid-
ers the precise timing of spikes. This rule is often summarized by the maxim “fire together, wire
together; fire out of sync, lose your link”. In STDP, synaptic weight changes depend on the rela-
tive timing of pre-synaptic and post-synaptic spikes. As shown in Fig. 2.11, if the pre-synaptic
neuron fires just before the post-synaptic neuron, the synaptic weight increases. Conversely, if
the pre-synaptic neuron fires just after the post-synaptic neuron, the synaptic weight decreases.
The weight change function, ∆wsyn, can be expressed as follows

∆wsyn(∆Ts) =

w+e
−∆Ts

τ+ if ∆Ts > 0

w−e
∆Ts
τ− if ∆Ts < 0

(2.11)
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Potentiation

Depression

Figure 2.11: Curve shape of the synaptic weight update ∆wsyn in STDP.

where ∆Ts = tpost - tpre represents the time difference between the postsynaptic spike at tpost and
the presynaptic spike at tpre; w+ and w− are the maximum and minimum values of ∆wsyn; and
τ+ and τ− are the time windows that determine the weight update rate for long-term potentiation
and long-term depression, respectively.

Equilibrium Propagation (EqProp) is introduced by Benjamin Scellier and Yoshua Ben-
gio in 2017. It combines energy-based model dynamics with neural network learning through two
distinct phases [179]. It is modeled as a rate-based learning approach, primarily using continuous
neural activation values instead of discrete spikes to compute changes in the network’s state. In
the free phase, the network naturally settles into a low-energy equilibrium state, similar to the
resting state in biological systems. During the nudged phase, a slight perturbation is applied
to the output neurons, subtly shifting this equilibrium. The gradient for weight adjustments is
calculated from the state differences between these phases, based on local synaptic activities. As
a result, EqProp updates synaptic weights using locally available information, eliminating the
need for backpropagated error signals from the output to the input layers.

Triplet STDP is an advanced algorithm introduced in 2006 [180]. It refines synaptic ad-
justments by considering the timing of spike triplets instead of just pairs. Triplet STDP captures
the complex and subtle dynamics of synaptic changes in natural neural networks, reflecting the
influence of higher-order spike patterns on synaptic plasticity.

EqSpike or Equilibrium Spike, was proposed in 2021 as an extension of the principles of
EqProp to SNNs [181]. This algorithm integrates the dynamics of spiking neurons with the
energy-based framework of EqProp in a spike-based model. The key advantage of EqSpike is its
local computation in both space and time; each neuron uses only its own state and those of its
direct connections, eliminating the need to store values during learning.

Training Platforms
Training platforms for SNNs play a pivotal role in the simulation and analysis of these

biologically-inspired computational models. Prominent platforms include Brian2, which offers
a flexible and user-friendly Python-based interface for simulating SNNs with custom neuron
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and synapse models [182]. Another key platform is NEST (Neural Simulation Technology Ini-
tiative) designed for large-scale brain simulations and known for its scalability and efficiency
[184]. Additionally, SpiNNaker, a specialized hardware platform, supports large-scale, real-time
neural simulations of SNNs with high parallelism and energy efficiency [185]. The snnTorch
significantly enhances the training of SNNs by offering a platform that integrates smoothly with
existing PyTorch workflow [186].

2.3.4 . Advancements in Analog-based SNN Applications
Hardware implementations of neuromorphic computing have seen significant growth in recent

years, spanning digital, analog, and mixed-signal platforms [139], [140]. The prevalence of digital
platforms in deploying SNNs can largely be attributed to their ease of use and exceptional flexi-
bility. Common digital platforms include Field-Programmable Gate Arrays (FPGAs) and several
well-known digital Application-Specific Integrated Circuits (ASICs) such as TrueNorth, Loihi2,
and SpiNNaker [12]. Despite the dominance of digital platforms in SNN implementations, analog
integrated circuits have consistently been considered prime candidates for neuromorphic systems
for several reasons. Initially, the term "neuromorphic" specifically referred to analog designs,
highlighting the natural alignment between analog circuits and biological neural processes [154].
Analog systems share key characteristics with biological systems, such as charge conservation,
amplification, thresholding, and integration [13]. Moreover, the asynchronous operation of ana-
log circuitry aligns perfectly with the inherent functionality of spiking neural networks, making it
well-suited to handle noise and unreliability in signal processing. Additionally, analog circuits can
efficiently operate in subthreshold mode, significantly enhancing power efficiency. Given these
advantages, analog-based SNNs have been successfully demonstrated in various applications,
showcasing their readiness for practical deployment.

Analog-based SNN implementations have been shown in mimicking brain sensory functions
[14], [15], even brain’s attentional mechanisms [187]. Analog-based SNNs can enhance visual
patterns recognitions as they process visual information in a manner akin to the human retina,
providing fast response times and low power consumption [188], [189]. Moreover, analog-based
SNNs appeared greatly for audio signal processing, as by processing auditory signals in a way
that mirrors the biological processes in the human auditory system [190], [191]. These devices can
offer a more natural listening experience, improving speech recognition in noisy environments.
Implementations were developped in the robotics and biomedical fields, where analog-based SNNs
could reflex the highly precision in decision making [192], [193], [194]. They offer promising
solutions for treating neurological diseases by providing efficient and adaptive signal processing
[195], [196]. Analog SNNs are capable of real-time adaptation to physiological signals, making
them well-suited for advanced applications such as prosthetic devices [197], cochlear implants,
and neural interfaces.

Recent advancements also highlight the use of FPGAs and SoCs to implement SNNs by
modeling the behaviors of neurons and synapses along with bio-plausible learning mechanisms.
These implementations have demonstrated high accuracy and energy efficiency in various tasks,
including image recognition [198] and communication systems [199], [200], [201] where low latency
and power consumption are crucial. In addition to the development of efficient neuromorphic
models and chips, there has been intensive work on ensuring their testing and reliability for
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fault detection and manufacturing [202]. These advancements collectively push the boundaries
of what neuromorphic computing can achieve, paving the way for its applications. The focus on
energy efficiency, real-time processing, and robustness ensures that these systems can meet the
demands of future technological challenges.

2.4 . Neural Networks for RF Localization

As highlighted in previous Sec. 2.2 and Sec. 2.3, Artificial Intelligence has transformed a
variety of applications through the adoption of neural networks. These range from minimally
bio-inspired deep neural networks to highly bio-inspired spiking neural networks. In the realm
of RF localization, neural networks have significantly changed the ways in which signal data are
interpreted and used for positioning and tracking. Moreover, neural networks, with their ability
to model complex relationships and learn from vast amounts of data, offer significant advantages
over traditional localization techniques. This section presents the prominant works of state of
the art in RF localization using both DNNs (in Sec. 2.4.1) and SNNs (in Sec. 2.4.2). This
discussion is especially relevant as this thesis addresses the RF localization problem through
efficient AI-based solution.

Localization, as discussed in Fig. 2.1, can be achieved through various technologies and
measurement techniques. This section will explore these methods, with a particular focus on
RF localization using the RSS technique, as adopted in this thesis. RF sensing is chosen for its
suitability in indoor environments and easiness of integration. The RSS method is preferred due
to its low cost and low power requirements, making it an ideal choice for efficient localization.

2.4.1 . Deep Neural Networks for Localization
Given the constraints of conventional localization techniques discussed in Sec. 2.1, deep learn-

ing has gained significant interest in recent years for addressing complex localization problems.
This shift has driven the development of extensive datasets and specialized network architectures
for localization. Here are some deep networks examples implemented for localization, demon-
strating their prominent performance:

In 2016, a feed-forward network was proposed for RSS-based indoor localization, achieving
over 96% accuracy [203]. This approach treats localization as a classification problem in deep
learning. It has since been widely adopted for its applicability to various forms of localization,
whether for objects or sources, by mapping potential positions similarly to image classification.
In 2019, a CNN was developed for indoor localization using Wi-Fi fingerprinting, one of the most
practical methods for localizing mobile users in multi-building, multi-floor environments [204].
This framework uses dropout layers to prevent overfitting and achieves a high accuracy rate of
94%.

In 2019, a real-time CNN was proposed for sound source localization using Direction of
Arrival (DoA) estimation [205]. It used an Android smartphone and its two built-in microphones,
performing effectively under noisy conditions with low latency. At a signal-to-noise ratio (SNR) of
0 dB, the model achieved 90% accuracy with simulated data and 88% accuracy with real recorded
data. In 2022, a parallel CNN-based real-time sound localization system using microphone arrays
was introduced [206]. At 0 dB SNR, it achieved 91% accuracy and a DoA angle error of 7 degrees.

55



Additionally, a hybrid TDoA-RSS localization algorithm was developed to address multipath
fading challenges in two-dimensional space with two base stations [207]. By incorporating both
signal amplitude (RSS) and propagation delay time (TDoA) measurements, it achieved minimal
deviation error but in a complex model.

In contrast to classification-based approaches, a long short-term memory (LSTM) recurrent
neural network was proposed in 2019 to create a regression model between fingerprints and loca-
tions for tracking moving targets [208]. This method focuses on enhancing RSS-based localization
to overcome the time bottleneck and computational limitations of CPU processing. In 2021, a
combined CNN-LSTM network for RSS-based localization was presented in [209]. The system’s
performance was evaluated by the average error, measured as the Euclidean distance between
the estimated and actual source locations. Experimental results demonstrated that the fusion
neural network achieved an average location error of 0.03 meters, representing at least an 11.4%
improvement over using CNN and LSTM methods independently.

Despite significant progress in achieving high accuracy, deep networks used for localization
still face many challenges. These networks often require digital signal processing and involve
complex architectures with extensive tuning parameters. Moreover, they are computationally
intensive, difficult to integrate into hardware, and result in significant power consumption [9],
[10]. All these limitations, discussed in Sec. 2.2.5, can be addressed by neuromorphic computing
and its core component, SNNs, offering bio-inspired and highly efficient localization solutions.

2.4.2 . Spiking Neural Networks for Localization
SNNs are designed to emulate the brain’s efficient, adaptive, and rapid processing capabil-

ities, making them ideal for implementing complex neural network architectures and learning
algorithms across various applications, as detailed in Sec. 2.3. Most research in neuromorphic
computing has been geared towards emulating human sensory functions and developing energy-
efficient neuromorphic processors. To maximize the benefits of existing neuromorphic systems,
they should be integrated directly with event-driven sensors, as currently, few are complete end-
to-end systems. Furthermore, few studies have focused on implementing applications beneficial
for IoT sensory functions, such as pressure, temperature, ID detection, or device localization,
which differ significantly from human sensory functions. Here are some works on spike-based
neuromorphic systems dedicated to localization that could be pertinent for edge AI applications
in IoT.

In 2022, Moro et al. have proposed in [210] an end-to-end neuromorphic system for ultra-
sonic object localization, using LIF neurons and resistive memory (RRAM)-based computational
maps. This bio-inspired system mimics the auditory localization capabilities of barn owls by mea-
suring time differences in ultrasonic wave propagation using two transducer sensors. The system
achieves an angular resolution of 4 degrees and consumes just hundreds of nanowatts. However,
its operation in the hundreds of kHz range makes it unsuitable for indoor RF localization.

In 2023, new architectures have introduced for RF signal classification [211] and drone identifi-
cation [212], achieving accuracies above 90% while consuming power in the milliwatt range. These
designs incorporate emerging spintronics technologies to develop nanoscale, fast, and energy-
efficient neuromorphic components (neurons and synapses). Despite their advancements, these
technologies face challenges such as higher costs and limited reliability and compatibility com-
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pared to traditional CMOS technologies. Currently, the potential of analog CMOS-based SNNs
for RF localization has not been thoroughly explored in state-of-the-art research.

2.5 . Conclusion

As the IoT continues to expand, with an ever-increasing number of connected devices and
progressively complex communications, the demand for precise and energy-efficient localization
technologies becomes more critical. Significant advancements in artificial intelligence and deep
learning have partly met this need by revolutionizing localization and outperforming conventional
technologies. This chapter provided an overview of the development and evolution of AI and
deep learning over the years. It detailed how deep neural networks managed complex problems
through nonlinear functionalities and training on large datasets. It also addressed the challenges
posed by their computational demands, which approximately doubled every 5 to 6 months. The
chapter then introduced neuromorphic computing as a bio-inspired alternative, highlighting its
advantages over traditional AI. The discussion included an in-depth look at the functionality of
biological neurons and synapses, various neuron models, and the current advancements in analog-
based spiking neurons and synapses, along with bio-inspired learning algorithms. Lastly, the
chapter outlined AI-based research efforts in the field of localization, highlighting the identified
gaps. These gaps will be addressed in the subsequent Chap. 3.
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Chapter 3

Towards Efficient RF Localization: An Analog
Spike-Based Neuromorphic Approach

As the world becomes increasingly interconnected, the ability to locate devices underpins key
functions critical to the IoT ecosystem. Efficient RF localization is essential, driving the need
for precise and energy-saving solutions. Recent literature showcases significant advancements in
highly precise RF localization, propelled by the adoption of advanced techniques like artificial in-
telligence (AI) and machine learning [209]. However, current approaches still face numerous chal-
lenges such as complex architectures, extensive tuning requirements, and computation-intensive
processes [10].

This chapter presents the RF NeuroAS, a radiofrequency neuromorphic system using an ana-
log spike-based approach to emulate brain-like capabilities in addressing RF localization chal-
lenges. RF NeuroAS exploits the potential of neuromorphic computing through spiking neural
networks, to perform complex operations with minimal energy consumption. Concurrently, it
incorporates the strengths of CMOS analog technology, known for its low-cost and low-power
consumption. The primary aim of RF NeuroAS is to identify the location of a mobile source on
a two-dimensional (2D) plane, achieving high precision and energy efficiency.

Figure 3.1 depicts the RF NeuroAS architecture, divided into four key components: RF
environment setup, data extraction, neuromorphic pre-processing, and analog spiking neural

Figure 3.1: System-level architecture of RF NeuroAS for source localization, including four
stages: RF environment setup, data extraction, neuromorphic pre-processing, and analog spiking
neural network. Outputs include the position of the source, given as angle θs and distance ds.
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network. Initially, Sec. 3.1 outlines the arrangement of source and receiver antennas within the
RF field, enabling accurate source identification by coordinates angle θs and distance ds. Then,
Sec. 3.2 delves into data extraction from the RF environment, leading to the creation of both
simulated and measured datasets. Subsequently, Sec. 3.3 details the design and functionality of
the neuromorphic pre-processing circuit. Moreover, Sec. 3.4 explores the analog-based spiking
neural network, incorporating the functions of analog spiking neurons (eNeurons) and synapses
(eSynapses). RF NeuroAS accurately determines the source’s coordinates with a 10-degree
angular resolution. A refined version of RF NeuroAS is introduced, designed for enhanced
precision in source localization while maintaining low power consumption, achieving a 1-degree
angular resolution. Further details are available in Appendix A. Finally, Sec. 3.5 presents
a simplified version of the RF NeuroAS system, fully designed on an analog circuit layout to
validate the feasibility of hardware RF NeuroAS solutions. The code used to run the simulated
and measured datasets, as well as the neural network training, is available in [28].

3.1 . RF Environment Setup

The RF configuration plays a critical role in defining the mobile source’s path, the requisite
number of receivers, their locations, and other vital parameters within the RF environment.
Figure 3.2 illustrates this setup on a 2D plane, marking the positions of both the source and
receivers. In this scenario, the source is a mobile point that can assume any position denoted by
red crosses, situated across three concentric circles. These circles denote three distinct distances
(ds) from the origin to the source, specified as 0.1, 0.23, or 0.5 meters. Moreover, they afford
complete 360-degree coverage, enabling the source’s angle relative to the origin (θs) to range
from 0 to 360 degrees in increments of 10 degrees.

Regarding the receivers, there are four, each one stationed at predetermined locations marked
by blue squares in Fig. 3.2. They occupy the midpoint of each plane boundary to offer full

Origin Point
Source Point
Receiver Point

!!

!"!#

!$

Figure 3.2: A 2D spatial configuration map of the source and receivers. The black dot marks
the origin of the plane; red crosses denote the potential positions of the RF source, while blue
squares indicate the established locations of the four receivers.
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coverage and to improve localization accuracy within the 2D layout. Specifically, Receiver 1 is
situated to the right, Receiver 2 at the top, Receiver 3 on the left, and Receiver 4 at the bottom,
each maintaining an equal distance (dr) from the origin at 1 meter. Accordingly, the fundamental
parameters settings applied to this environment are presented in Tab. 3.1.

Table 3.1: Main parameters configuration used in the RF environment

Parameters Values

Operating Frequency [GHz] 2.4
Wavelength [cm] 12.5
Transmitted Power [dBm] 10
Antenna Gain [dB] 1.5
Receiver-Origin Distance [m] 1
Source-Origin Distance [m] 0.1, 0.3, 0.5
Source Angle [degrees] 0-360
SNR [dB] 0, 10, 20

3.2 . Data Extraction

In the data extraction stage of RF NeuroAS, RF data are collected for different source
locations and under various noise conditions. This data is used to organize a dataset vital for
analyzing source localization scenarios. Specifically, this dataset plays a crucial role in evaluating
the decision-making capabilities of the RF NeuroAS system. It is used for data pre-processing
in the third stage and evaluating the neural network in the fourth stage of the system, as shown
in Fig. 3.1. To enhance the learning robustness and performance of RF NeuroAS, two distinct
datasets have been developed. The first, a simulated dataset, is generated in MATLAB to model
scenarios with the principles of electromagnetic theory. The second, an empirical dataset, is
obtained from actual measurements of the RF experimental setup.

The dataset’s framework is presented in Fig. 3.3, and it is split into features and labels. Data
samples, structured in the rows, capture various source positions (SP ) identified by instances of
source angle (θs) and distance (ds). To enrich data diversity, each receiver is subject to random
noise on 200 different iterations of each source position. The feature columns record the signal
power PRF from the four receivers (R1 to R4). For labeling, a classification method is adopted to
simplify the neural network structure outlined in Sec. 3.4. This method assigns labels based on
the source’s region, angle within that region, and distance from the origin. In this case, the entire
360-degree range is divided into four regions labeled as rs1 to rs4, and each covering 90 degrees
(nr = 90). Within the predicted region, the specific angle is then categorized into one of nine
possible classes (as1 to as9), corresponding to a 10-degree increment. Hence, the source’s angle
θs is calculated by rs × nr + as. The source’s distance is designated as one of three pre-defined
categories (ds1 to ds3). This classification model aims to predict the source’s location by learning
from the patterns between the received power features and the corresponding source labels.

61



Figure 3.3: Dataset structure for RF source localization. Features comprise power levels from
receivers R1 to R4 for different source positions SP , and labels are classified by three attributes:
the source’s region rs, its angle within the region as, and its distance from the origin ds. The
source’s angle θs is subsequently computed.

3.2.1 . Simulated Dataset
This dataset, named from this point as SimLocRF, simulates a situation in which a source

radiates electromagnetic waves in a free space environment. Both the source and receivers are
co-polarized antennas, positioned as illustrated in Fig. 3.2. Features are derived by applying the
Friis equation to determine the power available at the output terminal of a receiver antenna Ri,
described as [213]

PRF
i = PT +GT +GRi − PLi, (3.1)

where PRF
i is the received power at receiver Ri; PT is the power delivered to the source antenna

at its input terminal; GT represents the gain of the source antenna towards the receiver antenna,
whereas GRi is the gain of the receiver antenna towards the source antenna; PLi denotes the
path loss, which is the decrease in power density as the electromagnetic wave travels from source
to receiver Ri. The path loss PLi can be expressed as

PLi = 20log10(di) + 20log10(fRF )− 20log10
c

4π
, (3.2)

where di is the distance between the transmitter and receiver Ri; fRF is the operating frequency
of the RF signal (2.4 GHz here); c stands for the speed of light, i.e. 3 × 108 meters per second.

The simulated dataset contains 72,000 samples, generated with white Gaussian noise at three
different SNR levels (0, 10, and 20 dB) to improve model performance and enrich data variability.
A MATLAB-based framework used to generate the simulated dataset is available in Appendix
B, with the corresponding code in [28].

3.2.2 . Experimental Dataset
The main purpose of the experimental dataset, named from this point as MeasLocRF, is to

offer insights into how signals travel and are captured by the receivers. Using measurement data
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helps to evaluate the neural network’s effectiveness in practical scenarios, beyond theoretical-
based predictions. RF parameters are collected from the experimental setup, creating a dataset
that aligns with the simulated dataset’s format. MeasLocRF is extracted from setups where
both source and receivers are positioned within an anechoic chamber to minimize reflections
and external interference, as depicted in Fig. 3.5. This dataset, containing 3,000 samples that
capture varied angular positions of the source, is processed in MATLAB to incorporate the three
levels of noise, adding further diversity to the dataset. The measured dataset is available in [28].

Figure 3.4: Schematic overview of the RF experimental setup: a computer, through GPIB,
controls a motorized rotation platform for precise angular positioning, and interfaces with a
vector network analyzer (VNA) which is connected to the antennas in the anechoic chamber via
SMA cables.

Figure 3.4 displays the components of the experimental setup: an anechoic chamber for a
controlled antenna environment, a motorized rotation platform for precise antenna orientation,
an Agilent Technologies Vector Network Analyzer (VNA) model E5071B for conducting mea-
surements, and dedicated software scripts for environment setup and parameter configuration.
High-quality RF cables were used in the measurements, with a constant 10 dB total loss being
accounted for to ensure accurate results.

The position of the mobile source is determined via commands from a rotation interface
that controls the high-precision motorized platform. RF parameters are configured and gathered
through the VNA, which is interfaced with the MATLAB script-driven computer and connected
to the antennas within the anechoic chamber. This configuration guarantees synchronized data
collection and allows for accurate measurement of antenna characteristics, including radiation
patterns and signal propagation, across different source orientations.
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Figure 3.5 depicts the antenna arrangement within the anechoic chamber, designed to ensure
a reflection-free environment for RF testing. As per the RF environment setup specified in
Fig. 3.2, the source antenna is mounted on a wooden support attached to a motorized rotation
platform. This setup is arranged to adjust the antenna’s distance (ds) from a fixed point, referred
to as the origin, and to rotate it through a full circle in steps of 10 degrees, covering every angle
(θs) from 0 to 360 degrees. In parallel, the receiver antenna is sequentially placed at each of the
four designated locations, mounted on a plastic support and equally distanced from the origin by
a radius (dr), providing uniform measurements in all directions. Both wood and plastic supports
are chosen for their non-interfering properties with RF signals.

Figure 3.5: Anechoic chamber configuration: source and receiver antennas mounted on supports
with the motorized rotation platform for antenna orientation. Here, the source is positioned at
θs = 180◦.

Both transmission and reception leverage identical bow-tie antennas, depicted in Fig. 3.6.
Characterized by their efficient dipole design, these antennas span 0.035 meters in length and
0.015 meters in width, ensuring omnidirectional signal radiation with a gain of 1.5 dB. The se-
lection of bow-tie antennas is driven by their wide bandwidth and frequency flexibility, ensuring
they perform effectively within the critical range of 2.15 GHz to 2.45 GHz. Furthermore, they
are equipped with a 50 Ω impedance, conforming to standard RF system requirements. Within
this setup, the source transmits RF signals at 2.4 GHz at a consistent power level of 10 dBm,
captured by all four receivers in diverse orientations. To simulate diverse environmental condi-
tions, transmissions and receptions are tested under various noise levels with a signal-to-noise
ratio (SNR) set to 0, 10, or 20 dB.
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Figure 3.6: Bow-tie dipole antenna used for both transmitter and receiver.

3.3 . Neuromorphic Pre-Processing

The neuromorphic pre-processing, also defined as neuromorphic-enhanced wake-up radio
(NWR), is the third stage of the RF NeuroAS system. Within the scope of this system, NWR’s
key function is to convert RF signals into spike trains. The rate of these spikes, or the spiking
frequency (fspike), correlates with the RF signal’s power level, which is determined by the dataset
features from the previous stage of the RF NeuroAS system. This rate serves as the input for the
next stage of the system, the analog spiking neural network. Furthermore, the NWR can detect
and decode bit patterns from the RF signal modulated using On-Off Keying (OOK), with these
bits being determined based on the associated spiking frequency.

As depicted in Fig. 3.1, the NWR consists of an envelope detector equipped with a matching
network, a transconductance eSynapse, and a biomimetic eNeuron. The RF signal VRF is cap-
tured and demodulated by the envelope detector into VED signal. This latter is then transformed
into synaptic current by the transconductance eSynapse. This current activates the eNeuron,
triggering it to produce spikes (or action potentials) at a frequency fspike. Within this work,
NWR incorporates two types of eNeurons for comparison: the Morris-Lecar (ML) eNeuron from
[156], which closely simulates biological neuron behavior as discussed in Sec. 2.3.2, and the
Leaky Integrate-and-Fire (LIF) eNeuron from [155], which offers a simplified, less biologically
detailed model, also described in Sec. 2.3.2. The performance differences between the ML-based
and LIF-based NWR approaches are explored to assess their effectiveness. For the RF NeuroAS
system, the ML-based NWR is selected to maintain biomimetic fidelity.

The neuromorphic pre-processing circuit is fully designed using Cadence Virtuoso, a leading
software for design kits. This design uses the BiCMOS 55 nm technology from STMicroelectron-
ics, a cost-effective RF solution featuring low-power, low-threshold MOS transistors suited for
microwave applications. A detailed description of this technology is presented in Appendix C.
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(a)

(b)

Figure 3.7: Circuit level of the neuromorphic pre-processing stage (NWR) composed of an enve-
lope detector, a transconductance eSynapse, and an eNeuron (ML or LIF) (a) ML-based NWR
(VDD = 100 mV and VSS = -100 mV), and (b) LIF-based NWR (VDD = 200 mV and VSS = 0
mV).

3.3.1 . Circuit-Level Design

Figure 3.7 presents the circuit-level design of the NWR stage within the RF NeuroAS system.
The circuit of the ML-based NWR is depicted in Fig. 3.7(a), while the LIF-based NWR circuit
is shown in Fig. 3.7(b). All transistors in these circuits are operating in the subthreshold
region offering two significant benefits. Firstly, this operation region enables ultra-low power
consumption due to the use of very low supply voltages (in the order of hundreds of millivolts)
(See Appendix C). Secondly, in the eNeuron circuit, the requirement for a non-linear functions
model is efficiently met when transistors operate in the subthreshold region [153]. The ML-based
NWR operates within supply voltages of VSS = -100 mV and VDD = 100 mV, while the LIF-based
NWR operates between VSS = 0 V and VDD = 200 mV, according to the specific requirements
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of the respective eNeuron models.

A .Envelope Detector
The envelope detector component includes a matching network, the envelope detector itself,

and a low-pass filter for both circuit configurations (ML-based and LIF-based NWR). It is opti-
mized for ultra-low power consumption within the neuromorphic pre-processing stage. For this
purpose, a passive circuit featuring a metallic resistance (Rm = 50 Ω) with minimal parasitic
capacitance is used to achieve low-cost on-chip impedance matching. However, this circuit may
lead to an increased input noise, which could potentially affect the envelope detector’s sensitivity
to weak signals. Despite this, the eNeuron’s design can compensate for this drawback, as it has
been proven that the eNeuron is robust to external noise, outlined later in Sec. 4.2.

Conventionally, the RF envelope detector converts the incoming RF signal (VRF ) into a
baseband output (VED) that mirrors the envelope of the original signal. The main characteristic
of the envelope detector is its conversion gain (CGED), which is determined by the ratio of the
demodulated output signal to the RF input signal. The literature outlines three well-known
envelope detector designs: common drain, common source, and common gate. The NWR uses
a common gate transistor configuration (MCG), for its capacity to reach the highest conversion
gain, followed by a low pass filter.

In the analysis of small signals using a common gate configuration, the conversion gain of
the envelope detector is defined as

CGED =
VED

VRF
=

ioro
VRF

=
IDroVRF

4ϕ2
T

, (3.3)

where ro is the intrinsic output impedance; io is the demodulated output current represented by
the second-order term of Taylor series expansion as

io =

(
∂2ID
∂V 2

S

)
V 2
S

2
. (3.4)

The drain current ID is expressed in the weak inversion region as

ID = IS · e(VG−VT0)/ηϕT (e−VS/ϕT − e−VD/ϕT ), (3.5)

where IS is the specific current; VT0 is the bias-independent threshold voltage for VS = 0; η is the
subthreshold slope factor (η ≈ 1.34 for the 55nm BiCMOS technology, as presented in Appendix
C); ϕT is the thermal voltage (kT/q ≈ 26 mV at 27 ◦C); and VG, VS , VD are the voltages at the
gate, source, and drain of the transistor, respectively.

To design the common gate transistor, it is important to analyze its conversion gain relative to
its operating region. One may design the common gate by identifying the operating region where
the conversion gain reaches its optimum. Figure 3.8 presents the variations of the conversion
gain of the envelope detector against the corresponding gm/ID of the common gate transistor.
This figure features two distinct curves: a blue line that indicates the theoretical conversion gain
calculated from (3.3), and orange star markers that reflect the conversion gain results obtained
from periodic steady state (PSS) simulations. The analysis reveals the peak conversion gain,
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CGED, at gm/ID ≈ 26 1/V , suggesting an operation in the weak inversion region (see Appendix
C for details about the gm/ID ratio and the operating region of a transistor). Based on this
result, MCG is designed to operate on this specified region, using an external bias voltage Vbias

= 300 mV, with dimensions L = 60 nm and W = 130 nm.
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Figure 3.8: Conversion gain of the envelope detector relative to gm/ID in a common gate tran-
sistor configuration; the blue line represents theoretical values calculated in (3.3), while the red
line shows PSS simulations result.

A low-pass filter follows the envelope detector to eliminate high-frequency components, con-
sisting of a capacitance CLP,ED and a diode-connected transistor MLP,ED. To minimize the
silicon footprint, the selected capacitance is the smallest varicap-based available in the BiCMOS
55 nm technology. As shown in Fig. 3.7(b), the LIF-based NWR design incorporates an ad-
ditional diode-connected transistor Mc in cascode with MLP,ED. The reason behind that is to
maintain the stability of the demodulated voltage, since the supply voltages implemented for both
circuits, ML-based NWR and LIF-based NWR, are not the same. The component dimensions
are detailed in Appendix D.

B .Transconductance eSynapse
The transconductance eSynapse serves as a bridge connecting the RF components to the

neural elements within the NWR stage of the RF NeuroAS system. It converts the demodulated
voltage (VED) at the output of the envelope detector into a synaptic excitatory current (Itrans),
with a higher output impedance. This current stimulates the subsequent eNeuron differently,
based on various power levels of the RF input signals. As shown in Fig. 3.7, it is composed
of two current mirrors, one NMOS and one PMOS (M1 to M4). However, the sizing of its
components varies depending on whether the NWR is ML-based or LIF-based, with specific
dimensions detailed in Appendix D.
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C .eNeuron

As the NWR stage includes two types of eNeurons, ML and LIF, their effects on system
performance vary, especially regarding silicon area, power consumption, dynamic range, and
sensitivity to signal detection. Here is a brief description of each eNeuron circuit. Details on the
eNeurons sizing are presented in Appendix D.

ML eNeuron, redesigned from [156], operates at a high-firing rate to enhance the dynamic
range of the system. A detailed description of the model and equations related to this biomimetic
eNeuron are provided in Sec. 2.3.2. Figure 3.7(a) illustrates its design at the transistor level.
Briefly, when an input synaptic current is applied, the membrane capacitance Cm is charged
through MPNa and discharged through MNK . This leads to a large yet brief change in membrane
potential Vm, which is referred to as action potentials (spikes). This process, facilitated by
MPNa and MNK transistors, emulates the natural ion exchange of Na and K across neuronal
cell membranes during brain activity. Additionally, a negative feedback loop is established by
two cascaded inverters, MP2/MN2 and MP3/M3, with MNK , while a positive feedback loop is
created by inverter MP1/MN1 with MPNa.

LIF eNeuron, redesigned from [155], features high energy efficiency with a considerable
firing rate. A detailed description of the model and equations related to this simplified eNeuron
are provided in Sec. 2.3.2. Figure 3.7(b) illustrates its design at the transistor level. The de-
sign uses parasitic capacitances as the eNeuron’s membrane capacitance, which can achieve low
power consumption with low silicon area. Briefly, once an input synaptic current is delivered, it
is integrated by the feedback capacitance Cf (charging mechanism), causing a gradual increase
in the membrane voltage Vm of the eNeuron. Once Vm hits a certain threshold level, the in-
verters (MN1/MP1, and MN2/MP2) are activated, and output volatge Vout rises then to VDD.
Concurrently, Cf discharges through MN3 (discharging mechanism), reducing Vm and causing
the inverters to switch again, which brings Vout back down to VSS .

3.4 . Analog Spiking Neural Network

Following the neuromorphic pre-processing stage, as depicted in Fig. 3.1, the final stage
of the RF NeuroAS system introduces the analog spiking neural network (A-SNN). Its initial
objective is to accurately predict the position of the source in the plane, specifying its coordinates
(θs and ds) with 10-degree angular resolution. Additionally, the second objective is to develop
a neural network that integrates the functional properties and design constraints of the analog
spiking eNeurons from a physical format into a software model. This critical step is essential for
the complete hardware design of the A-SNN, promising enhancements in both speed and energy
efficiency.

3.4.1 . Neural Network Structure

Figure 3.9 depicts the neural network’s structure, which includes an input layer (i), three
hidden layers (h1, h2, h3), and an output layer (o) of ML eNeurons. This eNeuron type is selected
for its biomimetic behavior and its broad dynamic range that enhances learning accuracy [23].
The input layer of the network consists of four eNeurons from the neuromorphic pre-processing
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Figure 3.9: Illustration of the analog spiking neural network (A-SNN) for 10-degree angular
resolution, composed of an input layer, three hidden layers, and an output layer.

stage, each providing pre-processed data from one of the four receivers. All three hidden layers
feature a fully connected design, meaning each neuron in one layer connects to every neuron in
the next. The depth and the number of nodes are minimized, due to the requirements for low
power usage and hardware compatibility. Consequently, each hidden layer consists of merely 12
neurons.

The output layer (o) of this neural network structure accurately identifies the source’s location
in terms of angle and distance. For distance prediction, output neurons D1-D3 categorize the
three specific distance classes from the origin, as previously established in Sec. 3.1. For angle
prediction, a classification approach is also used, typically requiring one output neuron per
category. Given the RF configuration scenario, where the source moves on a 360-degree trajectory
with 10-degree increments, this requires 36 neurons to accurately represent each possible angular
position.

To streamline the network and decrease the number of neurons in each layer, an alternative
classification approach is introduced, as explained in Sec. 3.2. This method divides the entire
360-degree space into four regions, labeled as rs1-rs4. Through output neurons RG1-RG4, the
network determines the correct region for the source’s location, as shown in Fig. 3.9. Following
this, the network uses 9 output neurons A1-A9 to classify the angle within the chosen region into
one of nine categories, as1-as9, maintaining a 10-degree resolution. For precise angle prediction,
the network uses a concatenation of input features and output regions.
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3.4.2 . Learning Technique

Training and testing the neural network requires several elements: the choice of the platform,
the neuron model, the activation function, the datasets, and the hyperparameters. The A-
SNN, within the RF NeuroAS system, is trained and tested through a specific deep learning
software technique, using the TensorFlow machine learning framework [68]. It uses the same
backpropagation learning technique as traditional ANN training within TensorFlow [7]. Besides,
it adopts an innovative analog-based deep learning strategy to incorporate the eNeuron model
and its analog properties into the training process and weight adjustments. This technique is
thoroughly described in Sec. 4.1, where the feasibility analysis and the synthesis framework
essential for the design of the A-SNN are explored. Deep learning was chosen over bio-plausible
learning for the A-SNN within the RF NeuroAS system due to its superior performance, as
demonstrated in Chap. 4 and Chap. 5.

Although Sec. 4.1 provides an extensive description of the developed technique, here is a
brief overview of the methodology applied to the A-SNN stage of the RF NeuroAS system. In
the A-SNN, the ML eNeuron follows a spiking-rate-based model common in sensory processing
systems, as it modulates its spiking rate based on the strength of the input it receives. As the
input strength increases, so does the firing rate of the eNeuron. The spiking-rate-based model was
preferred over the spiking-time-based model because the latter is more affected by the random
noise of transistors, as demonstrated later in Sec. 4.2.

To train and test the A-SNN in TensorFlow, it is essential to develop a custom activation
function that takes into consideration the eNeuron model. This activation function is extracted
from the post-layout transfer function of the ML eNeuron relative to its dynamic range. It is
denoted as h and defined for an eNeuron eNi as follows

fspikei = h(Isyni) = h(
n∑

k=1

g(fspikek)) = h(
n∑

k=1

wsynki
· fspikek + b1). (3.6)

Here, the output spike rate fspikei of eNi is obtained from its input synaptic current Isyni through
the function h. The input current Isyni is the sum of incoming synaptic currents, where each
one is given by the transfer function g(fspikek) of an eSynapse, that links an eNeuron eNi to a
previous eNeuron eNk (∀ k ∈ [1, n]) having spike rate fspikek . In this case, this transfer function
of eSynapse is simplified to a linear expression, relating synaptic weights wsynki

and spike rates
fspikek from preceding connected eNeurons.

To consider the post-layout activation function in the TensorFlow training procedure, it
must be modeled by an appropriate equation that conforms to the properties of an activation
function (the non-linearity, the differentiability, and the smooth gradient) [55]. Results for three
proposed fits for the post-layout activation function are shown in Sec. 5.1.4. The following study
will demonstrate why the polynomial fit is the best option for the activation function model.

Regardless of whether analog characteristics are taken into account, the training and testing
phases use the “SimLocRF” and “MeasLocRF” datasets, as outlined in Sec. 3.2. These datasets
are crucial for source localization within the specific scenario considered for the RF NeuroAS
system.
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3.4.3 . Hyperparameters
The adaptive moment estimation (Adam) optimizer is a good candidate for the neural net-

work training phase, with the sigmoid activation function. If one considers analog spike charac-
teristics and post-layout activation function during the training phase, then the Adam optimizer
can lead to a training drop due to the unbounded increase of gradients during weight updates.
Thus, the stochastic gradient descent (SGD) optimizer is chosen for the A-SNN training.

Given that the source localization relies on a classification problem, the categorical cross-
entropy is identified as the suitable loss function. The learning rate is set at 0.01, with the
training phase requiring 100 epochs and a batch size of 32, determined after several training
sessions to find the optimal choices. The hyperparameters for the A-SNN configuration are
listed in Tab. 3.2.

Table 3.2: Hyperparameters used for training the A-SNN with a 10-degree resolution

Hyperparameters Configuration

Optimizer SGD
Loss Function Categorical cross-entropy
Learning rate 0.01
Epoch number 100
Batch size 32

3.4.4 . Performance Evaluation
To evaluate the system performance in the RF source localization problem, accuracy (ACC)

serves as a widely adopted metric, especially suitable for classification tasks in neural networks.
Accuracy is defined as

ACC = Nc/Nf × 100, (3.7)

where Nc represents the count of accurate predictions; Nf denotes the total count of test samples.
Given that the system achieves a 10-degree resolution, the normalized angle error (NAE) is

used as an additional performance metric. NAE measures the mean deviation between actual
and predicted angles, adjusted for the system’s resolution. It is calculated as follows

NAE =
1

Nf ×RE
·
Nf∑
i=1

|θsi − θ̂si |, (3.8)

where the error is adjusted based on the system’s resolution (RE), set as 10 degrees in this
scenario. The actual angle θs is calculated as rs×nr + as, where rs represents the actual region;
nr is the count of regional range; as indicates the exact angle within that region. For the setup
within the RF NeuroAS system, the space is divided into four regions (rs = 0, 1, 2, 3), with each
region covering 90 degrees (nr = 90). Further details on these configurations are provided in Sec.
3.2. Concurrently, θ̂s is the angle estimated by the A-SNN, formulated as r̂s × nr + âs, where r̂s
is the predicted region; âs is the predicted angle within that r̂s.
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3.5 . Simplified RF NeuroAS System: A Fully Analog Circuit Design

A streamlined version of the RF NeuroAS system is designed entirely on an analog cir-
cuit to demonstrate the practicality of hardware-based RF NeuroAS implementations. Unlike
conventional source localization methods that rely on complex signal processing and artificial
intelligence algorithms, requiring extensive computational resources, this simplified RF NeuroAS
system presents an innovative alternative. It introduces an energy-efficient solution with reduced
computational complexity, based on the neuromorphic approach. This setup enables real-time
detection of RF sources with significantly reduced power consumption.

Figure 3.10 depicts the architecture of the simplified RF NeuroAS system, designed in the
BiCMOS SiGe 55 nm technology. Similar to the RF NeuroAS system depicted in Fig. 3.1,
the simplified version comprises an RF environment setup, neuromorphic pre-processing, and
neuromorphic computing stages. The simplification of the RF NeuroAS system involves three
key modifications:

1. To reduce the complexity of the design, the configuration of the simplified RF NeuroAS
system features a mobile source positioned solely on the positive part of the 2D plane and
uses two receivers instead of four.

2. The neuromorphic pre-processing stage adopts a LIF-based NWR configuration (illustrated
previously in Fig. 3.7(b)), chosen for the LIF eNeuron’s advantages in power efficiency
and smaller footprint compared to the ML eNeuron.

Figure 3.10: Illustration of the simplified RF NeuroAS system proposed in a fully analog circuit
design. It focuses on RF source localization through a spike rate-based mechanism using data
from two receivers. It is mainly composed of neuromorphic pre-processing and neuromorphic
computing stages.
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3. Replacing the multi-layered deep neural network in the neuromorphic computing stage,
this simplified version features a two-layer spiking neural network, incorporating three LIF
eNeurons and two bifunctional eSynapses (one excitatory and one inhibitory).

3.5.1 . Simplified RF NeuroAS Functionality
The objective of the simplified RF NeuroAS system is to identify the position of the mobile

source, determined by an angle θs and a distance ds from the origin of the plane. As depicted in
Fig. 3.10, the system uses a spike rate-based approach to deduce the source position. Here’s an
outline of how the system operates.

Initially, two distinct 2.4 GHz signals, SRF
1 and SRF

2 , are transmitted from the source and
captured by receivers R1 and R2. These signals are then processed by the neuromorphic pre-
processing stage, which converts the RF signals into spiking frequencies. In this stage, the
envelope detector demodulates the RF signal, and subsequently, the transconductance eSynapse
converts this signal into a current that activates the LIF eNeuron. The LIF eNeuron produces
spikes in the time domain, with a spiking frequency that varies according to the input power of
the received RF signal. As a result, each neuromorphic pre-processing stage outputs a spiking
frequency, fspike

1 and fspike
2 , which correlate with the respective input powers, PRF

1 and PRF
2 , of

the RF signals.
Following this, fspike

1 is converted into an excitation current Iexc by a bifunctional eSynapse
acting as an excitatory element. Thus, it increases the spiking frequency fspike

3 of the LIF
eNeuron in the output layer. Conversely, fspike

2 is converted into an inhibition current Iinh by a
bifunctional eSynapse acting as an inhibitory element. Thus, it decreases the spiking frequency
fspike
3 of the subsequent LIF eNeuron. This LIF eNeuron then processes the sum of both currents

and produces an fspike
3 that mirrors the difference between the two received input power levels

(∆PRF = PRF
2 - PRF

1 ).
This relationship, along with the established correlation between ∆PRF and the angle of the

source θs detailed later in Sec. 3.5.2, facilitates the connection between f spike
3 and θs. Ultimately,

the simplified RF NeuroAS system determines the position of the source, denoted by θs, using
the spike rate fspike

3 at a resolution of 1 kHz. This resolution is selected according to the spike
observation window, which is established at 1 ms.

3.5.2 . Simplified RF NeuroAS Setup
The RF environment setup for the simplified RF NeuroAS system resembles the complete

system (shown in Fig. 3.2), but it uses a mobile source restricted to the positive half of the plane
and only two receivers. The distance ds between the source and the origin varies among three
specific distances: 0.1, 0.5, and 1 meter. The source angle θs, formed by the source and the
horizontal axis of the plane, ranges from 0 to π. The receivers are positioned as two fixed points
on the horizontal axis of the plane, equidistant (dr = 0.07 meters) from the origin. Receiver R1

is located on the positive side of the horizontal axis at a distance d1 from the source, whereas
receiver R2 lies on the negative side at a distance d2 from the source.

Just like in the complete RF NeuroAS system, the antennas are assumed to operate in a free
space environment, with the power at each receiver determined using (3.1) and (3.2). In the
context of the simplified RF NeuroAS system’s configuration, and following these equations, the
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relationship between the source angle θs (in degrees) and the difference in input powers ∆PRF

(in dB) is established as follows

∆PRF = PRF
2 − PRF

1 = 10 log10

(
d2s + d2r − 2dsdr cos θs
d2s + d2r + 2dsdr cos θs

)
. (3.9)

If the source lies on the vertical axis (θs = π/2), the distance to both receivers is identical
(d1 = d2), resulting in equal power levels received by each (PRF

1 = PRF
2 ). When the source is

on the positive side of the horizontal axis (θs = 0), R1 is nearer to the source compared to R2,
leading to R1 receiving a higher input power than R2 (∆PRF is negative). The opposite occurs
when the source is on the negative side of the horizontal axis (θs =π), leading to R2 receiving a
higher input power than R1 (∆PRF is positive).

With the system’s resolution set at a spiking frequency of 1 kHz, the simplified RF NeuroAS
can detect a minimum power difference ∆PRF of 1 dB. Consequently, this requirement imposes
a specific limitation on the system’s configuration, necessitating that d1 must not exceed 1.12 x
d2, following (3.9).

3.5.3 . Bifunctional eSynapse

Excitatory and inhibitory synapses are among the most common types in the brain. In spike
rate-based neural networks, a synapse typically conveys the spiking membrane voltage from a
pre-neuron and generates a current to a post-neuron. When the synapse acts as a current source
(excitatory), it injects a positive excitation current into the post-neuron, leading to an increased
spiking frequency. Conversely, the synapse serves as a current sink (inhibitory) by supplying a
negative inhibition current to the post-neuron, causing a reduction in the post-neuron’s spiking
frequency.

The bifunctional eSynapse is illustrated in Fig. 3.11, featuring both excitation and inhibition.

Figure 3.11: Circuit level of the bifunctional eSynapse in the simplified RF NeuroAS system,
featuring dual functions: excitatory and inhibitory (VDD = 200 mV and VSS = 0 V).
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This eSynapse consists of an RC filter, a transconductance component, and two sets of current
mirrors. The RC filter is composed of a diode-connected transistor MLP,S and a capacitor CLP,S

and captures spike rate information from the output voltage (Vout) of the pre-neuron. This
information is then converted into a current by the transconductance transistor MT,S . Excitatory
action is generated by a PMOS current mirror, comprising MPS1 and MPS2, which outputs the
synaptic current Iexc via MPS3. On the other hand, inhibition occurs through an NMOS current
mirror with MNS1 and MNS2, which produces the inhibited current Iinh.

In the simplified RF NeuroAS system, as depicted in Fig. 3.10, each eSynapse neglects either
its excitatory or inhibitory capability, which might result in increased power consumption without
a benefit in this specific application. Nevertheless, such eSynapse with dual functionality may
be useful for a larger neural network, where a single eNeuron connects to several others through
eSynapses that fulfill both excitatory and inhibitory functions.

3.6 . Conclusion

Chapter 3 introduced an innovative analog spike-based neuromorphic system (RF NeuroAS)
designed for precise and energy-efficient RF source localization. It outlined the RF environment
setup of the system, the process of data extraction involving the generation of both simulated and
measured datasets, the pre-processing, and the design of the neural network. This neural network
elaborated the training and testing phases with these datasets on the TensorFlow platform,
and incorporated the analog functions of spiking eNeurons. A comprehensive discussion on the
analog spiking neural network, its feasibility, and its learning methodology will be detailed in the
following Chap. 4. Chapter 3 concluded with the presentation of a fully analog circuit design for
a streamlined version of the RF NeuroAS system, using BiCMOS 55 nm technology. The results
that validate the proposal from Chap. 3 are presented in Chap. 5.
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Chapter 4

Feasibility Study of Analog Spiking Neural Networks:
From Spiking eNeurons to Learning Techniques

In the previous Chap. 3, an RF analog spike-based neuromorphic system (RF NeuroAS)
was proposed and designed for accurate and energy-efficient RF source localization in low-power
IoT devices. A crucial component of this system is the analog spiking neural network (A-
SNN), which consists of interconnected layers of CMOS analog spiking neurons (eNeurons) and
synapses (eSynapses). The adoption of A-SNN, including eNeurons and eSynapses, aims to
enhance the energy efficiency of the RF NeuroAS system by leveraging spike coding behavior
and analog circuit design. Recent research focus has led to highly optimized eNeurons and
eSynapses circuits [145, 153, 155], with lower interest presented in global network properties.
However, implementing the A-SNN requires a comprehensive examination of the hardware design
feasibility of such a network. Like any neural network, the A-SNN necessitates an appropriate
learning technique that considers the models and functions of its main components (eNeurons
and eSynapses), and adjusts its algorithm accordingly for effective training and testing.

Since the 90s, with the emergence of Industry 4.0 and the Internet of Things (IoT), deep
learning has been a promising learning technique in cutting-edge research, dominating software-
based neural networks and artificial intelligence. More details on this learning method can be
found in Sec. 2.2. As outlined in Sec. 2.2.2, deep neural networks (DNNs) are architectures
with multiple hidden layers that use deep learning techniques to address complex tasks and
demonstrate advanced processing capabilities. These networks are trained and tested using
software frameworks like TensorFlow, known for their flexibility and extensive library support
[68]. However, their reliance on cloud computing and the von Neumann architecture makes them
energy-intensive and introduces challenges in hardware integration, complicating their use in
low-power devices.

Within recent advancements in AI, neuromorphic computing has appeared as an exciting
alternative to von Neumann architecture, providing edge computing solutions optimized for ultra-
low-power applications. Spiking neural networks (SNNs) stand as the most prevalent models in
neuromorphic computing by enhancing energy efficiency through spike coding, as detailed in
Sec. 2.3. Numerous hardware implementations for SNNs, particularly on digital processors,
are reported in the literature and typically trained and tested using Brian 2 simulator [182].
A widely used learning method for SNNs is the biologically inspired time-based learning
technique. Spike-timing-dependent plasticity (STDP) stands out as a prominent example within
this approach. Further information on this learning technique is provided in Sec. 2.3.3.

To the best of knowledge, no detailed studies have been conducted on the feasibility of analog
spiking neural networks or on suitable learning techniques for eNeurons and eSynapses models.
This chapter is dedicated to explore the feasibility of A-SNN, from its fundamental components to
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potential learning tools. It assesses both deep learning and time-based learning techniques
on A-SNN to identify an effective learning approach for neural networks designed on analog
integrated circuits. Initially, Sec. 4.1 focuses on the application of deep learning technique to
A-SNN to bridge the gap between hardware and software AI. Subsequently, Sec. 4.2 addresses
the application of time-based learning to A-SNN, particularly focusing on the STDP rule, to
bridge the gap between hardware AI and biological neural systems.

4.1 . Deep Learning Approach for A-SNN

Deep learning stands out in software AI research, primarily leading to the development
of deep neural networks (DNNs). DNNs are known for their robust performance and ability
to tackle complex challenges, as they rely on non-linear functions and multiple hidden layers
[46, 214, 215]. Their straightforward layered architecture, connecting neurons only to those in
subsequent layers, simplifies their structure compared to alternative network models. On the
other hand, neural networks based on analog spiking eNeurons, referred here as A-SNNs, gain
attention for their remarkable energy efficiency. A-SNN, like DNN, relies on non-linear eNeuron
models that align with standards set by software AI research. This raises the pivotal question
of whether deep learning techniques, which have proven effective for DNNs, are applicable and
effective on A-SNNs. Addressing this question is essential to implement an A-SNN that fully
benefits from both the strengths of deep learning and the energy efficiency offered by analog
spike behavior.

This section aims to investigate the feasibility and the synthesis of A-SNN with deep learning,
by conducting a comparative analysis between DNN and A-SNN under the application of deep
learning technique. Initially, it explores the fundamental components of both DNN and A-SNN,
highlighting various eNeuron and eSynapse models examined in this study (Sec. 4.1.1). It then
conducts a feasibility analysis of applying deep learning to A-SNN, focusing on their unique
transfer functions and capabilities compared to DNNs (Sec. 4.1.2). Following this, the section
presents a synthesis framework for integrating deep learning into A-SNN (Sec. 4.1.3). This
framework is showcased through solving the MNIST problem (Sec. 4.1.4), as a demonstration of
A-SNN’s performance when applying deep learning technique.

4.1.1 . Neuron Models Compared: DNN and A-SNN
Figure 4.1 illustrates the neuron models used in DNN and A-SNN for the deep learning pur-

pose, depicted in Fig. 4.1(a) and 4.1(b) respectively. In the context of a DNN, the neuron model,
often called an artificial neuron or node, serves as a basic computational unit that simplifies the
principal functions of a biological neuron. As shown in Fig. 4.1(a), an artificial neuron, labeled as
ai, performs mathematical functions on inputs from the neurons in the previous layer, labeled a1,
ak to an. These inputs are adjusted by a set of synaptic weight parameters w1i, wki through wni,
abstracting the role of biological synapses. The neuron then calculates a weighted input sum,
denoted as zi, which is then processed through a non-linear activation function, f , to generate
an output, xi. The straightforward design of the artificial neuron contributes to its dominance
in software-based neural networks. Detailed equations for this neuron model are discussed later,
in Sec. 4.1.2.
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(a)

(b)

Figure 4.1: Illustration of (a) the artificial neuron model used in a deep neural network (DNN)
and (b) the spike-rate-based eNeuron model within an analog spiking neural network (A-SNN),
with deep learning technique being applied to each.

In the context of A-SNN, the neuron model diverges from the artificial neuron of DNNs,
functioning not as a basic node but as an analog spiking neuron (eNeuron) that closely emulates
biological neuron behaviors. Unlike the continuous output of artificial neurons, eNeurons generate
discrete spikes upon reaching a specific membrane potential threshold.

For the purpose of studying deep learning applicability in A-SNN, eNeurons process informa-
tion through the rate of spike occurrences, not the timing of individual spikes. This means that
the information processing relies on the rate at which spikes occur in response to input currents.
The reason behind that is to derive from the transfer function of the spike-rate-based eNeuron
model — which connects input current to output spike rate — the non-linear function crucial
for deep learning. As illustrated in Fig. 4.1(b), an eNeuron eNi receives the synaptic currents
sum from preceding layer eNeurons (eN1, eNk to eNn) via eSynapses (eS1i, eSki to eSni). These
eSynapses adjust their weights, labeled as wsyn1i , wsynki

to wsynni , to translate spike frequencies
fspike1 , fspikek to fspiken into synaptic currents isyn1i , isynki

to isynni . Consequently, the eNeuron
eNi, activated by its synaptic input, generates spikes at fspikei through the activation function
h. More details on this eNeuron model’s equations are provided in Sec. 4.1.2.

The eNeuron relies on spike-rate-based model, proposed in Fig. 4.1(b). The study of deep
learning applicability within A-SNN incorporates three distinct types of eNeurons. The types
explored are the biomimetic Morris Lecar (b-ML) eNeuron redesigned from [156], known for its
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biological accuracy, alongside its simplified version (s-ML) redesigned from [153], and the Axon
Hillock-based Leaky Integrate and Fire (AH-LIF) eNeuron redesigned from [155], which offers a
less biologically detailed approach. Details on their circuit designs and the spiking mechanism
equations are outlined in Sec. 2.3.2, with a comparative analysis of energy efficiency, spiking
frequency range, and size presented in Tab. 2.2. Additionally, these types differ in their transfer
functions, which define the relationship between input currents and the resulting output spike
rates. In this context of applying deep learning within A-SNN, where spike rate is the principal
form of information, these diverse transfer functions lead to different learning performance of
A-SNN.

The eSynapse selected for the deep learning analysis of A-SNN is the excitatory eSynapse
detailed in Sec. 2.3.2. This choice aligns with the spike-rate-based eNeuron model used for this
study, prioritizing spike rate over spike timing for weight adjustments. Essentially, it comprises
an RC filter and a transconductance to extract the rate of the input set of spikes from an eNeuron
and convert it into an excitatory current. This current is then adjusted by the weight of this
eSynapse, determined by the gain in its current mirror design. This relation, mapping input
spike rate to output synaptic current, defines the transfer function of the excitatory eSynapse.
The transfer function equations for both the eNeuron and eSynapse in spike-rate-based models
are fundamental for the deep learning feasibility study on A-SNN, detailed in the next Sec. 4.1.2.

4.1.2 . Deep Learning Feasibility Analysis Compared: DNN and A-SNN
A .Analysis on DNN

An example architecture of the DNN is depicted in Fig. 4.2, illustrating L layers of intercon-
nected artificial neurons modeled as shown in Fig. 4.1(a). Within this structure, each neuron
is connected only to the neurons in the subsequent layer. In the construction of a DNN, each
neuron ai within a given layer is characterized by an input zi and an output xi. This output is
determined by the formula xi = fi(zi), where fi represents the activation function assigned to
the neuron ai. Thus, the generic expression for DNNs can be obtained as follows

xi = fi(zi) = fi(

n∑
k=1

zki) = fi(

n∑
k=1

wki · xk + b1), (4.1)

where zi denotes the sum of products of the inputs xk from previous layer neurons ak (∀; k ∈ [1, n])
and their corresponding weights wki, and b1 represents a constant bias term.

Extending this relationship to a layer-wide perspective, let’s consider a pth layer (∀ p ∈ [1, L]),
comprising n neurons. The input vector Zp is considered as the collective inputs to this layer,
which are the inputs for its n neurons. Similarly, the output vector Xp is considered as the
collective outputs from these neurons. Based on these definitions, the input Zp for layer p is
determined by applying a linear combination to the output Xp−1 of the previous layer, expressed
as Zp = Wp ·Xp−1. Here, Wp denotes the weight matrix that links the pth layer with the (p−1)th

layer. Consequently, the output Xp of layer p is derived from its input Zp via the activation
function Fp(Zp). The formulations for Zp and Xp are detailed below

Zp = (zp1, zp2, . . . , zpn)
T = Wp ·Xp−1,

Xp = (xp1, xp2, . . . , xpn)
T = (fp1(zp1), fp2(zp2), . . . , fpn(zpn))

T = Fp(Zp). (4.2)
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Figure 4.2: Illustration of a deep neural network (DNN), showing layered connectivity using the
neuron model defined in Fig. 4.1(a).

Combining the aformentioned equations for the input and output vectors, Zp and Xp at the
pth layer, reveals a fundamental relationship as Xp = Fp(Wp ·Xp−1). The activation function, Fp,
commonly represents a non-linear activation function, typically chosen among sigmoid, tangent
hyperbolic (tanh), or rectified linear unit (ReLU) functions [55]. The non-linearity properties
of Fp are pivotal to the deep learning capabilities of the network, comprising multiple hidden
layers. It is this non-linear nature of the activation function that enables the network with the
capacity to learn and represent complex, non-linear patterns.

When the activation function Fp of the pth layer is linear, it indicates that the activation
function of each neuron is linear, effectively scaling its input. This operation across a pth layer
of n neurons can be represented by a diagonal matrix Fp = diag(fp1, fp2, . . . , fpn), where fpk
denotes the linear activation function of the kth neuron in the pth layer. Thus, the output of
the pth layer (Xp) can be formulated as the result of the matrix product Xp = Fp ·Wp ·Xp−1.
Given linear activations, the output of the final layer (XL) can be represented as a single linear
equation from the initial input I1, expressed as

XL =

L∏
p=1

FpWp · I1. (4.3)

This property underscores the fact that a network composed entirely of linear activations,
regardless of its depth (i.e. the number of layers L), can ultimately be simplified to a single
linear function from input to output. This effect arises because the composition of multiple
linear functions is itself a linear function. Consequently, the network could be equivalently
represented by just an input and an output layer, effectively negating the potential benefits of
the deep learning technique.
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Figure 4.3: Illustration of an analog spiking neural network (A-SNN), showing layered connec-
tivity using the eNeuron model defined in Fig. 4.1(b).

B .Analysis on A-SNN

Figure 4.3 illustrates an architecture of the A-SNN with L interconnected layers of eNeurons
modeled as shown in Fig. 4.1(b). Each eNeuron eNi processes an incoming synaptic current
isyni and emits spikes at a rate fspikei , reflecting the intensity of isyni . This relationship between
the input current and the output rate is captured by fspikei = hi(isyni), with hi representing the
transfer function of eNi. In this network structure, eNi is linked to n preceding layer eNeurons
eNk (∀; k ∈ [1, n]) through eSynapses eSki. These eSynapses convert the spiking rate fspikek
from eNk into a synaptic current isynki

directed towards eNi. The conversion of the spiking rate
into synaptic current by eSki is described by isynki

= gki(fspikek), where gki denotes the transfer
function of eSki. Accordingly, the total input current isyni for eNeuron eNi is the sum of synaptic
currents from connected eNeurons, expressed as isyni =

∑n
k=1 isynki

=
∑n

k=1 gki(fspikek). Thus,
the generic expression for A-SNNs, where eNeurons and eSynapses are based on the spike-rate
model, is obtained as follows

fspikei = hi(isyni) = hi(
n∑

k=1

isynki
) = hi(

n∑
k=1

gki(fspikek)). (4.4)

Extending this relationship to a layer-wide perspective, let’s consider a pth layer (∀ p ∈
[1, L]), comprising n eNeurons. The input vector Isynp represents the synaptic inputs to this
layer, feeding into its n eNeurons, and the output vector Fspikep represents the collective spiking
responses from these neurons. For this layer, and based on the aforementioned definitions, the
input vector can be expressed as Isynp = Gp(Fspike(p−1)

), with Gp is the vector of cumulative
transfer functions of eSynapses at the pth layer, and Fspike(p−1)

is the output vector of the (p −
1)th layer. Consequently, the output Fspikep of pth layer is derived from its input as Fspikep =

Hp(Isynp), where Hp is the vector representing the transfer functions of eNeurons within this
layer.
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The formulations for Isynp and Fspikep are detailed below

Isynp = (isynp,1 , isynp,2 , . . . , isynp,n)
T ,

= (

n∑
k=1

gp,k1(fspike(p−1),k
),

n∑
k=1

gp,k2(fspike(p−1),k
), . . . ,

n∑
k=1

gp,kn(fspike(p−1),k
))T ,

= Gp(Fspike(p−1)
).

Fspikep = (fspikep,1 , fspikep,2 , . . . , fspikep,n)
T ,

= (hp1(isynp,1), (hp2(isynp,2), . . . , hpn(isynp,n))
T ,

= Hp(Isynp).

(4.5)

Combining (4.2) with the input and output vectors, Isynp and Fspikep , at the pth layer uncovers
a key formula Fspikep = Hp(Gp(Fspike(p−1)

)). When either or both transfer functions of eNeurons
and eSynapses exhibit non-linearity, the corresponding vector functions Hp and Gp also become
non-linear. Under such conditions, mirroring the analysis conducted for DNNs in Sec. 4.1.2.A,
deep learning becomes feasible for A-SNNs equipped with numerous hidden layers. This non-
linearity opens up opportunities to benefit from the deep learning technique, enabling the network
A-SNN to address complex problems.

Conversely, if the transfer functions of both eNeurons and eSynapses are linear, then the
functions Hp and Gp for any layer p are linear as well. In this scenario, the Hp for a layer
of n eNeurons can be depicted by a diagonal matrix as Hp = diag(hp1, hp2, . . . , hpn), with hpk
representing the linear transfer function of the kth eNeuron (∀ k ∈ [1, n]) in the pth layer.
Additionally, Gp can be described as a linear combination applied to the output Fspike(p−1)

from
the preceding layer, formulated as Gp = Wsynp · Fspike(p−1)

, where Wsynp denotes the synaptic
weight matrix between layers (p− 1) and p. Consequently, the output spiking frequency Fspikep

of a pth hidden-layer can be obtained from the matrix product Fspikep = Hp ·Wsynp · Fspike(p−1)
.

Under linear functions, the output FspikeL of the final layer L simplifies to a single linear
mapping from the initial input Isyn1 , as follows

FspikeL =
L∏

p=1

HpWsynp · Isyn1 . (4.6)

This characteristic observed in A-SNNs with linear transfer functions, as detailed in (4.6),
mirrors that of DNNs with linear activation functions, noted in (4.3). It highlights that an
A-SNN, when composed of linear transfer functions across its eNeurons and eSynapses, effec-
tively functions as a network with only two layers. Since deep learning fundamentally requires
non-linear functions within networks that include hidden layers, this structure negates the ap-
plicability of the deep learning technique. Results of this feasibility study, considering different
transfer functions for eNeurons and eSynapses, are elaborated in Sec. 5.2.1.A.

83



4.1.3 . A-SNN Synthesis with Deep Learning
Deep learning application in A-SNN becomes viable when either or both eNeurons and eSy-

napses demonstrate non-linear behavior. This scenario necessitates a structured framework for
A-SNN synthesis with deep learning, as shown in Alg. 4.1, with the corresponding code available
in [28]. This framework involves training and testing A-SNN in TensorFlow, taking into account
physical constraints and neuromorphic-circuits characteristics. The synthesis of A-SNN through
deep learning includes several key steps, as follows:

The Activation Function plays a critical role in training networks via deep learning on
TensorFlow, linking the neuron’s input sum to its output. It performs typically non-linear
relationship for deep learning purposes, as highlighted in Sec. 4.1.2. Thus, one should identify
the activation function appropriate for the A-SNN learning based on its main characteristics.
In traditional DNNs, the activation function is represented by f in the generic expression (4.1).
It includes sigmoid, tanh, or ReLU, all recognized for their non-linearity. By comparing the
formulations of DNNs and A-SNNs from (4.1) and (4.4), one can deduce the suitable activation
function for A-SNN. This deduction is based on analyzing the eNeuron’s h and the eSynapse’s
g transfer functions, derived from post-layout simulation results. These functions display non-
linear characteristics over their entire operational range, which leads to two potential methods for
determining A-SNN’s activation function in the context of deep learning: the simplified approach
and the standard approach. In both approaches, the activation function requires normalization
to enhance training effectiveness within the TensorFlow framework [68].
The Simplified Approach involves the non-linear transfer function of the eNeuron and the
linear transfer function of the eSynapse within a restricted dynamic range. Under this scenario,
the generic expression of A-SNN, as defined in (4.4), simplifies to

fspikei = hi(

n∑
k=1

gki(fspikek)) = hi(

n∑
k=1

wsynki
fspikek + b2). (4.7)

Here, the transfer function gki of eSynapse is linear, relying on synaptic weights wsynki
and spik-

ing rates fspikek from preceding eNeurons, with b2 as a constant bias term. Synaptic weights
wsynki

are given from the current mirror gain ratio (W/L)1
(W/L)2

, obtained from MP1 and MP2 tran-
sistors in the eSynapse circuit illustrated in Fig. 2.10 (see Sec. 2.3.2). This formula aligns with
the expression (4.1) of DNN, allowing the transfer function hi of eNeuron to directly provide the
activation function for A-SNN learning. This simplified approach for the activation function was
used for the A-SNN stage of the RF NeuroAS system.
The Standard Approach assumes that both eNeurons and eSynapses possess non-linear trans-
fer functions. Under such conditions, simplifying the A-SNN’s generic formula (4.4), to identify
an appropriate activation function for A-SNN synthesis with deep learning becomes infeasible.
To address this challenge, an alternative strategy redefines the generic expression of A-SNN.
It focuses on the output of an eSynapse eSij linking an eNeuron eNi from the pth layer to an
eNeuron eNj in the (p+1)th layer. This focus diverges from examining the output of eNi linked
with prior layer eNeurons eNk from (p − 1)th layer. Thus, the revised generic expression (4.4)
for A-SNN is presented as

isynij = gij(fspikei) = gij(hi(isyni)), (4.8)
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where isynij denotes the synaptic current from the eSynapse eSij ; isyni is the aggregated synaptic
currents fed into eNi, computed as

∑n
k=1 isynki

. When considering an ideal current mirror in the
circuit, the function gij is modeled as the product of a non-linear function gnij and a constant
current gain, leading to

isynij = gnij (hi(isyni)) ·
(W/L)1
(W/L)2

. (4.9)

Accordingly, the activation function for A-SNN learning emerges from the relationship gnij (hi).
The activation function for A-SNN’s deep learning is obtained from the transfer functions of
eNeurons and eSynapses to incorporate the analog features. However, this activation function is
not directly available in TensorFlow. It requires a compatible fitting from post-layout simulation
results to effectively train and test the A-SNN within TensorFlow.

The Activation Function Fit depends on the approach being used. When the simplified
activation function is considered, the most appropriate fit can be a high-order polynomial fit
(greater than 12). Details results of this fit, used in the A-SNN stage of the RF NeuroAS
system, are shown in Sec. 5.1.4. When the standard activation function is used, two fits are
considered. For the training stage, a sigmoid fit is suggested as the activation function with a
generalized logistic function [216]. The sigmoid fit provides a differentiable and closely aligned fit
that supports gradient descent learning algorithms and enhances the network convergence. For
the testing stage, either a sigmoid or polynomial fit may be applied to closely match the activation
function of A-SNN. The high-order polynomial fit can more accurately represent the activation
function across its entire dynamic range, especially around zero. However, the requirement for a
high-order polynomial fit makes it less suitable for training due to the lack of derivability around
zero, leading to discontinuity. This derivability is mandatory for standard learning optimizers like
SGD and Adam. Detailed results of both fits, considering various eNeuron types, are discussed
in Sec. 5.2.1.A.

Concerning the Weight Extraction, after completing the offline training of A-SNN with
the selected activation function model (i.e. the fit model), the trained weights of the network
are fixed for subsequent testing. This testing can take place either through TensorFlow, using
the established weights, or directly within the A-SNN’s hardware setup. For on-chip testing,
the trained weights are particularly applied in the dimensions of transistors within the current
mirror of the eSynapse, as detailed in Sec. 4.1.1. However, translating these numerical weights
to circuit parameters can introduce accuracy losses due to inherent quantization in analog de-
sign. Besides, the transistor sizing in current mirrors can potentially lead to mismatches due to
process variability, resulting in imprecisions in the synaptic weights of the eSynapse circuit. To
accurately consider on-chip testing conditions within the software framework (via Tensorflow),
it is crucial to model these variations and incorporate them. Therefore, during software testing
of A-SNN in TensorFlow, trained synaptic weights are represented as statistical variables ad-
hering to a normal distribution. Here w̄syn represents the mean synaptic weight refined during
the training phase, with a standard deviation calculated as σwsyn=0.01 × w̄syn. This statistical
representation of synaptic weights in software testing aims to account for the variances that
hardware weight implementation might introduce, ensuring a precise evaluation of A-SNN with
real-world performance capabilities.
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Algorithm 4.1 A-SNN Synthesis Framework with Deep Learning
1: 1. Network Structure for the MNIST problem
2: Structure = [ ▷ Structure could be adjusted for any other problem
3: locally_connected7x7(filters=1, kernel=(4,4), strides=(4,4))
4: locally_connected3x3x3(filters=3, kernel=(2,2), strides=(2,2))
5: dense(outputs=10)]
6: 2. Load post-layout (PLS) transfer function of eNeuron and eSynapse
7: transfer_functions = load_PLSresults(model_eNeuron, model_eSynapse)
8: 3. Activation Function Identification
9: activation_function = (

10: transfer_functions,
11: approach: simplified or standard,
12: dynamic_range_restriction: True/False,
13: normalization
14: fitting: sigmoid_fit or polynomial_fit )
15: 4. Network Model for Training and Testing
16: model_training = (Structure, activation_function, MNIST_train_data)
17: model_testing = (Structure, activation_function, MNIST_test_data)
18: 5. Network Model Training on MNIST dataset
19: for epoch = 1 to 100 do
20: accuracy_training, tensor_weight= learning(model_training, epoch)
21: end for
22: 5. Weight Extraction
23: if accuracy_training ≥ 0.9 then
24: trained_weight = tensor_weight
25: else if epoch == 100 then
26: trained_weight = tensor_weight
27: end if
28: 6. Process Variability Consideration
29: w̄ = trained_weight
30: σw = 0.01* trained_weight
31: statistic_weight = normal_distribution(w̄, σw)
32: 7. Network Model Testing on MNIST dataset
33: accuracy_testing = testing(model_testing , statistic_weight)

4.1.4 . A-SNN in solving MNIST Problem: Handwritten Digit Recognition

To assess the capabilities of A-SNN with deep learning, the MNIST problem is addressed,
which is a benchmark for recognizing and classifying handwritten digits. This challenge stands
for the MNIST dataset, which is a compilation from the Modified National Institute of Standards
and Technology [49]. The MNIST dataset contains a large set of 28x28 pixel grayscale images
of handwritten digits, from 0 through 9, used for training and testing the neural network. This
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Figure 4.4: Representation of the A-SNN architecture for handwritten digit recognition, using
MNIST dataset.

dataset is pivotal for training and evaluating neural networks ability to accurately classify each
image into its corresponding digit class. For this purpose, A-SNN is trained with 60,000 images
from the MNIST dataset and tested against a separate set of 10,000 images. This process is
facilitated through TensorFlow, utilizing the adaptive moment estimation (Adam) optimizer to
enhance the performance and the scalability of the network [53].

The structure of A-SNN dedicated for the MNIST problem, illustrated in Fig. 4.4, incor-
porates 86 eNeurons and 1238 eSynapses across two hidden layers. This network processes a
28x28 pixel grayscale image representing a handwritten digit (ranging from 0 to 9), leading to
an output layer of 10 eNeurons, each corresponding to one of the ten digit categories. The first
hidden layer consists of 49 (7x7) eNeurons and is locally connected to the input layer, implying
that the eNeurons in this layer target only specific regions of the input image. It identifies local
characteristics of the image through a convolution operation with a 4x4 kernel, using a single
filter and a stride of 2x2. This approach progressively applies the kernel across different sections
of the image, effectively reducing the original 28x28 image to a 7x7 layer, thereby streamlining
the data for deeper analysis while preserving essential details.

The second hidden layer comprises 27 (3x3x3) eNeurons and is locally connected to the first
hidden layer through a 2x2 kernel, using three filters and a stride of 2x2. This configuration
further refines the extraction of relevant information, optimizing network complexity for efficient
processing. The second hidden layer is then connected densely to the output layer, ensuring every
eNeuron in the second hidden layer links to all eNeurons in the output layer. This connectivity
facilitates a robust synthesis of processed information, leading to accurate digit classification.

The framework for the synthesis of A-SNN, applying deep learning to solve the MNIST
problem, is detailed in Alg. 4.1. This synthesis of A-SNN, for training and testing, follows the
steps outlined in Sec. 4.1.3. Therefore, it adopts the standard approach for activation function
identification, and uses the sigmoid fitting for training and polynomial fitting for testing, followed
by the application of the weight extraction technique. Concerning the key elements of A-SNN, it
incorporates the three distinct eNeuron types along with the excitatory eSynapse, as discussed
in Sec. 4.1.1. This diversity allows for an evaluation of the A-SNN’s efficacy in addressing the
MNIST problem across eNeurons ranging from less to more biologically plausible.
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4.2 . Time Learning (STDP) Approach for A-SNN

One of the primary obstacles in implementing deep learning for A-SNN (as developed in
previous Sec. 4.1) is its lack of biological plausibility. This issue poses significant challenges for
its integration with neuromorphic processors, as elaborated in Sec. 2.3.3. Among the prominent
categories of bio-inspired learning that could be both efficient and accurate on neuromorphic
hardware is STDP. This section introduces the application of STDP, which is a method that
adjusts synaptic weights based on the timing of spikes between pre and post eNeurons within
the A-SNN.

To explore the potential of STDP with A-SNN, the section begins with the development
of an eNeuron model suitable for STDP learning using the Brian 2 Simulator (Sec. 4.2.1).
Subsequently, it conducts an in-depth noise analysis of the eNeuron to establish an accurate and
complete model, crucial for understanding the impact of noise on spike timing (Sec. 4.2.2). This
analysis addresses the feasibility of STDP for A-SNN, given that precise spike timing is critical
for this time-based learning method. Following this, the section outlines a synthesis framework
developed for A-SNN based on this time-based learning technique (Sec. 4.2.3). Lastly, this
framework is showcased through solving the XOR and MNIST problems (Sec. 4.2.4), as a
demonstration of A-SNN’s performance when applying the bio-plausible STDP learning.

4.2.1 . Neuron Model in A-SNN

As the purpose is to study the applicability of STDP learning within the A-SNN, the eNeuron
model is designed to encode and process information based on the timing of individual discrete
spikes. To this end, the spike-time-based eNeuron model is adopted, focusing on its discrete
spike behavior and precise timing rather than the continuous spike rate transfer functions used
for deep learning application in A-SNN. Figure 4.5 illustrates the configuration of an eNeuron
within the A-SNN, labeled eNi, linked to three other eNeurons — eN1, eN2, and eN3 — via

Figure 4.5: Structure of an A-SNN composed of an eNeuron connected to three other eNeurons
through eSynapses. Information is processed through discrete spikes.
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synapses eSi1, eSi2, and eSi3. This setup processes information through discrete spikes over
time, with synaptic weights adjusted accordingly. Following this, a detailed description of the
eNeuron and eSynapse models used in this scenario is provided.

A .eNeuron

To incorporate the eNeuron into an A-SNN for training via STDP learning on the Brian2
simulator platform, a comprehensive and precise model of this eNeuron is necessary. Various
models are discussed in the literature and detailed in Sec. 2.3.2, ranging from less to more
biologically inspired, as depicted in Fig. 2.8. These models feature a spectrum of mathematical
complexity, from simple to more intricate equations. However, these eNeuron models are abstract
and do not consider physical constraints and process variability. To develop an accurate model
of the eNeuron, it is essential to consider the post-layout simulation behavior of the designed
circuit. Consequently, four different eNeurons have been redesigned from state-of-the-art models;
these include two based on the Morris-Lecar (ML) model: the biomimetic ML (b-ML) model
from [156], and the parasitic capacitance-based ML (p-ML) from [158], along with two based on
the Leaky Integrate-and-Fire (LIF) model: the typical (t-LIF) from [157], and the axon hillock-
based (AH-LIF) from [155]. These circuits were redesigned using BiCMOS 55 nm technology, as
previously shown in Fig. 2.9, with layouts and corresponding sizes detailed in Appendix D.

To accurately model the eNeuron behavior derived from analog circuit design, three principal
properties should be extracted from the post-layout simulations and incorporated into the model:

1- Dynamics of potential membrane behavior over time. Understanding the spiking
behavior is crucial, as it reflects the changes in membrane potential over time, as shown in Fig.
2.6(b). The spiking behavior, also known as action potential, includes several stages such as
depolarization, repolarization, hyperpolarization, and resting potentials. Important parameters
to be included in the model encompass the resting potential, where the eNeuron remains at rest
in the absence of stimuli; the threshold voltage that triggers a spike in response to a stimulus; the
timing of spike generation; the leakage time which describes how quickly the membrane potential
decays towards the resting state due to leakage.

2- Firing rate response over input excitation. The eNeuron circuit is designed to
generate a series of spikes at varying rates for various input strengths depending on the circuit
parameters. It is vital to account for the transfer function of the eNeuron, which describes how
the firing rate response is influenced by different synaptic current values.

3- Random noise from the transistors in analog circuit. To get a fully accurate model
of the eNeuron circuit, the random noise from the transistors within the analog circuit must be
included. This aspect is particularly important for STDP learning applications, where noise can
cause variations in spike timing, a critical factor for adjusting synaptic weights through STDP.
Details regarding the noise property will be provided in Sec. 4.2.2, and subsequently integrated
into the eNeuron model.

In this thesis, b-ML eNeuron is modeled following the three properties, instead of relying on
ML model (shown in (2.6), (2.7), (2.8)) that do not consider the physical constraints of analog
circuits. This model stands out for its flexibility, allowing for easy adaptation to other eNeu-
ron types while maintaining low computational demands and high precision in fitting eNeuron
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properties. The dynamics of the spike is presented as

dVm

dt
=

(Vrest − Vm)

τleak
+ Isyn ·

Rm

τm
. (4.10)

It describes the evolution of the membrane potential Vm of the b-ML eNeuron, influenced by
two main components: the leakage current and the synaptic input current. The first term
((Vrest−Vm)/τleak) represents the leaky behavior of the b-ML eNeuron, driving Vm back towards
the resting potential Vrest over time, in the absence of input current. This term models the
natural tendency of the eNeuron’s membrane to resist changes in potential and return to a
baseline state due to the leak channels, ensuring stability and preventing runaway excitation.
The time constant τleak indicates how quickly the eNeuron’s membrane potential returns to rest.
Post-layout simulations show that the b-ML eNeuron circuit exhibits different τleak values for
varying magnitudes of input currents. A constant value of τleak, equal to the mean over the
entire range of current, is selected.

The second term (Isyn ·Rm/τm) accounts for the input-driven current through the eNeuron’s
membrane, enabling the eNeuron to process and respond to environmental information. This
term reflects the direct influence of external current Isyn on driving the membrane potential
away from Vrest, potentially towards the threshold for firing an action potential. The membrane
time constant τm (typically Rm ·Cm) represents how quickly the eNeuron’s membrane potential
responds to input currents, encompassing both the charging and discharging dynamics. Here,
the eNeuron model in (4.10) closely resembles the simple equation of the LIF model in (2.5).

To perfectly model the spike shape of the b-ML eNeuron, a precise control over the dynamics
of Vm during its rise and fall phases is necessary. This can be achieved through a variable
membrane resistance Rm, which changes in a non-linear piecewise manner based on the membrane
potential as described by

Rm =
n∑

i=1

(if (Vm ≤ Vi and Vm > Vi−1) then Ri else 0) . (4.11)

In this approach, Rm is set to different values Ri depending on Vm relative to a series of voltage
thresholds Vi−1 and Vi. This segmentation divides the range of membrane potential Vm into
different segments, each associated with a distinct resistance value Ri.

This extension into the model provided by (4.11) enhances the fidelity of the b-ML eNeuron
model over the simple LIF model by reflecting the activation and inactivation of ion channels
occurring as the ML eNeuron depolarizes or hyperpolarizes. The proposed model (4.10), (4.11) is
a physical-informed version of the typical ML model (2.6), (2.7), (2.8), while maintaining similar
behavior and avoiding the need for numerous constants. A finer segmentation of Rm allows more
precise adjustments to small changes in Vm, better reflecting the nonlinear properties of the ML
eNeuron. However, while finer segmentation can increase the precision and realism of the model,
it also increases its complexity.

Equations (4.10) and (4.11) address the first property of the b-ML eNeuron, identified as the
spike shape over time. To consider the second property of the eNeuron model — its transfer
function given by the firing rate response over input current — the synaptic current Isyn in (4.10)
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is replaced by
I ′syn = δ(Isyn) · feNeuron(Isyn), (4.12)

where feNeuron(Isyn) is the interpolation function derived from the post-layout simulations results
of the nonlinear b-ML eNeuron transfer function. The coefficient δ(Isyn) adjusts the interpolated
function affected by the leakage term. Additionally, the current I ′syn is limited to 15 nA to prevent
transistors from operating out of the deep-subthreshold region. The results of the b-ML eNeuron
model and its accuracy are discussed in Sec. 5.2.2.A.

B .eSynapse
In the architecture of A-SNN, eSynapses play a critical role in connecting eNeurons, serv-

ing as the fundamental conduits for learning, particularly through STDP. To effectively support
STDP learning, synaptic adjustments are made based on the precise timing of spikes. Thus,
eSynapses must finely tune synaptic weights in response to temporal spike patterns. For this
purpose, the conductance-based model is considered for eSynapses, providing a biologically in-
spired representation of synaptic functionality [198].

Unlike current-based eSynapses, which simply add a fixed current to the eNeuron, conductance-
based eSynapses capture the dynamic time-varying nature of synaptic efficacy driven by varia-
tions in synaptic conductance. In a conductance-based eSynapse, which can be excitatory (l = e)
or inhibitory (l = i), the synaptic current Isyn directly affects the membrane potential of the
postsynaptic eNeuron and is calculated as follows

Isyn,l = γl · gl · (Esyn,l − Vm), l ∈ {e, i} (4.13)

where γl is a scaling factor differentiating the impact of excitatory and inhibitory synapses on
the total postsynaptic current; gl is the synaptic conductance; Esyn,l is the equilibrium potential
of the eSynapse; and Vm is the membrane potential of the postsynaptic eNeuron.

The excitatory eSnapse has its equilibrium potential Esyn,e set above the resting membrane
potential to promote depolarization of the postsynaptic eNeuron. This depolarization leads to
a positive increase in synaptic current Isyn,e that increases the likelihood of the eNeuron firing.
Conversely, for an inhibitory eSynapse, Esyn,i is typically close to or below the resting membrane
potential, causing hyperpolarization of the postsynaptic eNeuron. This hyperpolarization leads
to a negative increase in synaptic current Isyn,i that reduces the likelihood of the eNeuron firing.

These variations in synaptic current (either a positive increase in Isyn,e or a negative in-
crease in Isyn,i) are driven by changes in synaptic conductance over time. For both cases, the
conductance (ge or gi) increases by an amount corresponding to the synaptic weight and then
exponentially decays over time toward zero, as described by

dge
dt

= −ge
τe

, (4.14)

dgi
dt

= −gi
τi

, (4.15)

where τe and τi are the decay constants for excitatory and inhibitory conductances, respectively,
determining how quickly each conductance returns to baseline. This conductance-based eSynapse
model has proven feasible in analog circuits, effectively supporting the dynamic adjustment of
synaptic weights necessary for STDP learning [152].
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4.2.2 . Noise Analytical Tools

The eNeuron model, given by (4.10), (4.11), and (4.12) from the previous section, accurately
captures the spike shape and firing rate properties of the eNeuron circuit. To enhance the model’s
precision with physical-informed parameters from eNeuron analog circuitry, it is crucial to incor-
porate its random noise. In this context, two types of noise are typically encountered: external
noise from input signals and intrinsic noise from transistors. The eNeuron model demonstrates
robustness against external noise by averaging the input synaptic currents. Therefore, this study
focuses solely on the random noise caused by transistors, which is critical for achieving a more
accurate representation of the eNeuron’s functionality in analog circuits.

Figure 4.6 illustrates the noise model for the standard membrane node circuit, common to all
considered eNeuron types (b-ML, p-ML, t-LIF, and AH-LIF). The membrane node of the eNeuron
primarily consists of two transistors, MPNa and MNK , alongside a membrane capacitance Cm.
In the p-ML eNeuron circuit, which exclusively uses transistors, Cm is assumed to represent the
total parasitic capacitances at the membrane level of the eNeuron. Transistors MPNa and MNK

simulate the dynamics of ion flows in and out of the eNeuron membrane, acting like electronic
charge pumps. These are regulated by positive and negative feedback loops, forming a network
of inverters that correspond to the activities of Potassium (K) and Sodium (Na) ions. For the
purposes of noise analysis, the circuit is simplified by omitting these feedback loops and instead
using Vb1 and Vb2 to represent the feedback voltages.

When the eNeuron receives a synaptic current Isyn from the eSynapse transistor MPsyn,
the membrane capacitance Cm is charged through MPsyn and MPNa (pull-up) and discharged
through MNK (pull-down). This process results in a rapid and significant fluctuation in the
membrane potential Vm, prompting the eNeuron to generate a spike. To achieve this nonlinear
functionality in eNeurons, whether using ML or LIF models, while also reducing power con-

Figure 4.6: Noise model of an eNeuron membrane node connected to one eSynapse
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sumption, the transistors are biased in the deep-subthreshold region. In this biasing setup, with
low synaptic currents in the pA range, carrier diffusion becomes the dominant mechanism in
the channel current, leading to significant variation of the current that flows across Vm. Under
subthreshold region, the shot noise causes variations in the arrival time of individual electrons
and holes at Vm. Shot noise is predominant over other types of noise, such as thermal noise, in
this operation region [218]. Consequently, this study focuses on shot noise within the random
noise model of the eNeuron and examines its impact on spike timing.

To effectively incorporate the noise of the eNeuron circuit into the eNeuron model, a thorough
investigation of the noise characteristics is essential. This involves several key steps: (A) defining
the expression of noise in spike timing, (B) understanding the type of noise distribution involved,
(C) modeling its standard deviation from circuit parameters, and (D) assessing how the noise
could impact the applicability of STDP.

A .Noise-Driven Temporal Deviation

As previously mentioned, shot noise impacts the timing of spike occurrence, potentially
causing deviations from the expected timing. It is essential to accurately identify these noise-
driven temporal deviations, particularly for time-dependent learning mechanisms like STDP,
since they can influence the proper adjustment of synaptic weights. Figure 4.7 contrasts the
spike timing of an ideal eNeuron, where noise is ignored, with that of a real eNeuron, where
noise is taken into account. It highlights trise, the moment when the membrane potential just
exceeds the threshold voltage, and T , the interval between consecutive spikes. In the ideal
eNeuron, spikes occur consistently, such that a kth spike is produced at rise time trise,ik = trise,i1
+ k · Ti, where trise,i1 is the ideal rise time of the first spike, and Ti represents the consistently
recurring ideal period. However, in a real eNeuron, the rise time and periods are inconsistent.
The rise time for each spike varies, leading to spikes occurring earlier (e.g., trise,n1 < trise,i1) or
later (e.g., trise,n2 > trise,i2) than in the ideal model. These variations lead to irregular periods

-100

-50

0

50

Figure 4.7: Comparison of spike timing and voltage response in ideal and noisy eNeurons. Left
panel: spike intervals and rise times. Right panel: membrane potentials over time with a noise-
free transient simulation in blue and trans-noise simulations in red and green.
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(Tn1, Tn2, etc., not equal to the ideal period Ti). The graph in Fig. 4.7, through post-layout
simulation results, illustrates how spike timing can shift due to noise: either to the left (trise,n
- trisei < 0, depicted in red) or to the right (trise,n - trise,i > 0, shown in green) relative to the
ideal regular spike timing (plotted in blue).

There are two ways to account for this noise-driven temporal deviation: noise-driven period
deviation and noise-driven rise deviation. Noise-driven period deviation (∆Tn = Tn - Ti) refers
to variations in the intervals between consecutive spikes. Noise-driven rise deviation (∆trise,n
= trise,n - trise,i) pertains to deviations in the time it takes for a spike to reach its threshold.
Given the goal of applying the STDP learning — where synaptic weights are adjusted based on
the exact timing of spikes between pre and post eNeurons — it becomes imperative to focus
on the noise-driven rise deviation. This focus better accounts for deviations in spike occurrence
timing rather than inter-spike intervals. Consequently, throughout this work, the identified noise
parameter will be the noise-driven rise deviation, emphasizing its role in modeling the eNeuron
for STDP learning.

B .Distribution of Noise-driven Rise Deviation
Noise in electronic circuits is a random phenomenon, and accurately modeling it requires a

thorough understanding of its distribution. Figure 4.8 illustrates the post-layout distribution
of noise-driven rise deviation in two scenarios: a capacitance-free eNeuron circuit (e.g., p-ML
eNeuron, shown in Fig. 4.8(a)) and an eNeuron with inherent membrane capacitance (e.g., b-ML
eNeuron, shown in Fig. 4.8(b)). Both eNeurons are stimulated with the same 25 pA synaptic
current. The multiple plots in the figure represent the distributions of noise-driven rise deviation
at various spike indices over time. For each spike occurrence (from k = 1 to n), the noise-driven
rise deviation in both eNeurons follows a Gaussian distribution, though with different means and
standard deviations. To model these means and standard deviations for any eNeuron at any
spike occurrence, one should analyze the set of noise-driven rise deviation distributions across
all spike occurrences.

Overall spike occurrences, as depicted in Fig. 4.8, the noise-driven rise deviation for both
types of eNeurons exhibits a Gaussian random walk distribution [219]. This indicates that while
each spike’s timing noise follows a Gaussian distribution, the cumulative effect scales with the
spike index k, aligning with a stochastic process typically used to model such random components.
The mean of the noise-driven rise deviation distribution varies between the capacitance-free and
capacitive eNeurons. The capacitance-free eNeuron demonstrates a random walk with a mean
of zero, implying that for any spike index, the average noise-driven rise deviation is centered
around zero (see Fig. 4.8(a)). However, for the capacitive eNeuron, the mean is not zero across
spike occurrences (see Fig. 4.8(b)). According to the definition of a random walk [219], in cases
where the mean is not zero, this mean varies linearly. It can be estimated as

µ(∆Trise,n) = k × µ1(∆Trise,n), (4.16)

where k is the spike index of occurrence and µ1(∆Trise,n) is the mean of the first spike occurrence
(when k = 1). This means that the capacitive eNeuron exhibits an accumulated average noise-
driven rise deviation over each spike occurrence, a typical result for any eNeuron with a membrane
capacitance. This is likely due to the charging and discharging of the membrane capacitance over
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Figure 4.8: Distribution of noise-driven rise deviation in eNeurons: (a) p-ML eNeuron, (b) b-
ML eNeuron before zero-mean adjustment, and (c) b-ML eNeuron after zero-mean adjustment,
illustrating noise characteristics across multiple samples.

time, which linearly integrates the noise average into the spike generation process. This linear
offset can be easily corrected to obtain the adjusted distribution of noise shown in Fig. 4.8(c)
for the capacitive eNeuron.

Considering the random walk for both capacitance-free and capacitive eNeurons (Fig. 4.8(a)
and Fig. 4.8(c), respectively), this distribution is characterized by a zero mean and a standard
deviation that exhibits nonlinear cumulative variability over given spike occurrences [219]. This
deviation can be estimated as

σ(∆Trise,n) =
√
k × σ1(∆Trise,n), (4.17)

where k is the spike index, and σ1(∆Trise,n) is the standard deviation at the first spike. This
nonlinear deviation likely results from the nonlinear accumulation of noise in the feedback inverter
loops of the eNeuron circuit over spike occurrences.
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To fully model the noise-driven rise deviation as a Gaussian random walk distribution (0,√
k · σ1(∆Trise,n)), obtaining σ1(∆Trise,n) is crucial. It is the standard deviation of the random

noise at the first spike, setting the stage for modeling the accumulation of this noise with each
spike occurrence.

C .Noise Model
As discussed in the previous section, accurately modeling noise in an eNeuron requires de-

termining the standard deviation of noise at the first spike occurrence, denoted as σ1(∆Trise,n).
Abidi has proposed tools to analyze random noise contributions in ring oscillators [220]. He
demonstrated that such noise can cause variations in switching timing. Referring to this work,
and given that spiking eNeuron circuits operate on similar oscillation principles, insights from
Abidi’s noise jitter analysis were used for this purpose. The value of σ1(∆Trise,n) varies based on
the circuit design (refer to Fig. 4.8(a) and Fig. 4.8(c), which show different orders of noise-driven
rise deviation values) and the applied synaptic input current.

As illustrated in Fig. 4.6, the noise-driven rise deviation originates from three current noise
sources, leading to two primary noise events. One event occurs in the pull-up branch where the
synaptic current from the PMOS transistor MPsyn and the drain current from MPNa increase
Vm as charges accumulate in Cm. The other event occurs in the pull-down branch, driven by the
drain current of the NMOS transistor MNK , which reduces Vm as charges leave Cm. These two
events are assumed to be uncorrelated, resulting in combined propagation delays expressed by

σ2
1(∆Trise,n) = σ2

tdN
+ σ2

tdP
, (4.18)

where σ2
tdN

and σ2
tdP

are the noise sources from the two propagation delays of the pull-up and
pull-down branches, respectively.

Before the discharge phase starts, PMOS pull-up transistors introduce initial noise into the
capacitance Cm. The resulting mean square voltage noise and the associated noise-driven rise
deviation are calculated as follows

V 2
n =

∫
SVn(f)df = SIn .

∫
Z2
out(f)df , (4.19)

σ2
tdN1

=
V 2
n

(ID/Cm)2
, (4.20)

where SVn(f) and SIn are the spectral densities of the integrated voltage noise and current noise,
respectively. In this case, SIn refers to the shot noise, given as SIn = 2 q ID [218]. The output
impedance Zout(f) of the eNeuron circuit consists of the parallel combination of Cm and the
total output resistances of the transistors.

In addition to σ2
tdN

, during the discharge phase, the capacitance Cm integrates noise into
current over the duration tdN in the transistor MNK . Thus, the appropriate variation caused
by this noise source is

σ2
tdN2

=
q.tdN
ID

, (4.21)

where q is the electronic charge and ID is the drain current of the transistor MNk. In this
context, all currents flowing into the eNeuron membrane are considered in the same order of
magnitude, i.e. ID and Isyn are supposed to be very close.
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Using (4.18) and the total noise σ2
tdN1

+ σ2
tdN2

integrated during the pull-down process, the
variance of noise-driven rise deviation in the eNeuron circuit can be expressed as

σ2
1(∆Trise,n) =

q

Isyn

(
1

fspike
+

rds.Cm

π

)
, (4.22)

where rds is the output resistance of the transistors, and fspike is the spiking frequency defined
over a specific time window. Given that the dynamic behavior of the eNeuron resembles that of
an oscillator with a periodic waveform, fspike is calculated as (tdN + 2 · tdP )−1.

The phase noise is directly linked to this noise expression as [220]

L(∆f) = σ2
1(∆Trise,n) · f3

spike, (4.23)

where ∆f is the frequency offset relative to the spiking frequency of the eNeuron.
Consequently, the noise-driven rise deviation model for any considered eNeuron circuit is

represented by a Gaussian random walk distribution, with a mean of 0 and a standard deviation
of
√
k ·σ1(∆Trise,n), where σ1(∆Trise,n) is calculated from (4.22). This noise model is dependent

on circuit parameters Cm, fspike, and rds, as well as the external input current Isyn. All detailed
results for the noise model can be found in Sec. 5.2.2.A.

D .How Does Noise Affect the Applicability of STDP?

Given the noise model of the eNeuron circuit, it is crucial to evaluate whether STDP can
be effectively applied in A-SNNs that use these eNeurons. Two variables are critical for this
analysis:

1. ∆Ts represents the time difference between spikes of the pre and post-synaptic eNeurons.
This interval is crucial for updating synaptic weights in STDP, as detailed in (2.11).

2. ∆Trise,n has been previously defined as the deviation in spike rise timing due to shot noise
from transistors.

As illustrated in Fig. 4.9, noise can cause deviations in the spike occurrence times of the post-
eNeuron, shifting from T1 to T2 or T4, with similar shifts possible for the pre-eNeuron (not shown
for simplicity). If ∆Trise,n is significantly smaller than ∆Ts, it does not affect the STDP weight
adjustment. However, if ∆Trise,n is on the same order as ∆Ts, it could significantly impact STDP.
For example, if a pre-synaptic spike shortly precedes a post-synaptic spike (∆Ts is positive and
small), the synaptic weight should substantially increase according to STDP rules (Fig. 2.11).
However, if ∆Trise,n of the pre-synaptic eNeuron exceeds ∆Ts, the pre-synaptic spike might
occur after the post-synaptic spike. Consequently, ∆Ts could shift to a slightly negative value,
reducing the synaptic weight. This incorrect adjustment could adversely affect the accuracy of
STDP learning. Post-layout simulations are conducted to determine the magnitude of ∆Trise,n

and evaluate the feasibility of implementing STDP in A-SNNs. Results of this feasibility analysis
are presented in Sec. 5.2.2.B.

97



Figure 4.9: Impact of noise on STDP: Timing diagram showing pre-eNeuron spike at T1 and
potential post-eNeuron spikes at T2 and T4 due to noise (∆Trise,n). ∆Ts represents the critical
interval for STDP weight adjustments, illustrating how noise can shift spike timing and affect
learning outcomes.

4.2.3 . A-SNN Synthesis with STDP Learning

To effectively implement STDP learning within an A-SNN, a structured framework is essen-
tial, which is outlined in Alg. 4.2, with the corresponding code available in [29]. It systematically
organizes both the training and testing phases of the A-SNN within the Brian 2 simulator, taking
into consideration the specific properties of eNeurons and the selection of learning parameters.
The synthesis of A-SNN through STDP learning involves several key steps, outlined as follows.

Incorporation of eNeuron Model — Initially, the primary focus in the development of
the A-SNN should be the eNeuron model. A thorough consideration of the eNeuron’s properties
within the model is crucial for an in-depth understanding of how these characteristics influence
the learning process. In pursuit of simulating the A-SNN using a biologically inspired learning
mechanism, the STDP, the b-ML eNeuron circuit has been selected due to its highly bio-inspired
behavior compared to other eNeurons under study. The complete model of the b-ML circuit,
previously detailed in Sec. 4.2.1 and Sec. 4.2.2, is implemented in Brian 2 simulator. This
implementation accounts for several critical features: the spike shape as described in (4.10) and
(4.11), the firing rate response to synaptic input from (4.12), and the noise distribution from
(4.17) and (4.22). The flexibility of this model allows it to be adapted for use with other, less
biologically inspired eNeuron circuits.

In addition to the eNeuron model, the conductance-based eSynapse model is also imple-
mented, following (4.13), (4.14), and (4.15). Once the eNeuron and eSynapse models are inte-
grated into the Brian 2 simulator, the architecture of the A-SNN can be designed with varying
numbers of layers, eNeurons, and excitatory/inhibitory eSynapses, configured to address the spe-
cific complexity and requirements of the given problem. These correspond to the steps 1, 2, and
3 of Alg. 4.2.

Concerning the scenarios of noise in step 2 of Alg. 4.2, each accounting for noise in the
eNeuron model differently, with details on the noise model provided in Sec. 4.2.2. Scenario 1
incorporates the eNeuron model with a constant standard deviation (SD) for its random noise.
This scenario does not the Gaussian walk distribution of the noise over spike occurrences, which
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leads to a non-linear accumulation of its standard deviation over time. Here, the standard
deviation considered is the average calculated across all spike occurrences. Scenario 2 involves
simulations with the complete eNeuron model, where the full noise model is considered. This
includes the Gaussian walk distribution of the noise and its variable standard deviation over
spike occurrences. In Scenario 3, simulations are conducted using the eNeuron model without
considering its noise from the analog circuit. Scenarios 3.1 and 3.2 reintroduce the noise model
from Scenarios 1 and 2 only in the testing phase, respectively, enabling the assessment of the
impact of random noise on post-trained A-SNN.

Input Encoding — The first layer of eNeurons receives external information and feeds it
into the A-SNN. In this setup, input data, such as sensory stimuli, are encoded into the spiking
activity of neurons through rate coding. This means that the strength of the input is translated
into the firing rate of input neurons, with each eNeuron spiking at a rate that corresponds to the
encoded information. For example, a more intense stimulus would lead to a higher firing rate in
certain input eNeurons, while a less intense stimulus would result in a lower firing rate. Rate
coding is preferred over the well-known temporal coding despite the latter’s speed and energy
efficiency. The rate coding offers greater resilience to noise by averaging out fluctuations, as
demonstrated in results in Sec. 5.2.2.B. These specific spike rates are calculated based on (4.12)
of the eNeuron model, which maps the firing rate response to the input excitation. The input
encoding corresponds to step 4 of Alg. 4.2.

Unsupervised Learning with STDP — To authentically follow a bio-inspired approach
for training the A-SNN using STDP, unsupervised learning is used (see details in Sec. 2.3.3).
Unlike supervised learning, which relies on data tagged with correct answers, unsupervised learn-
ing focuses on identifying patterns without any pre-existing labels. The unsupervised learning
strategy adopted is influenced by Diehl and Cook’s 2015 framework [198], which uses STDP for
training SNNs. However, their implementation focuses on a simple LIF model and does not ac-
count for the circuit properties or the effects of random noise from transistors, which are crucial
for a more comprehensive neuromorphic system. The learning process is structured into three
distinct phases: training, labeling, and testing, corresponding to step 5 of Alg. 4.2.

During the training process, the network uses STDP to adjust synaptic weights based on the
timing of spikes between eNeurons. This phase operates without supervision, target labels, or
error correction guidance directly from the input data. The network self-organizes according to
the input patterns it receives, without supervision or reinforcement. Following training, a labeling
process assigns meaningful labels to the eNeurons in the output layer. This step is crucial for
evaluating the network’s performance in tasks requiring categorization or classification. During
labeling, the activity of each eNeuron in the output layer is monitored as the network is exposed
to the same inputs used during training. Each eNeuron is then labeled post hoc, based on the
input type that most frequently causes it to fire. Finally, the network’s performance is evaluated
during the testing phase. In this phase, new inputs are presented to the network, and the
response of the output neurons is observed. The response of the neurons is checked against the
labels assigned during the labeling phase. These three functions are repeatedly executed for a
specified number of iterations, as detailed in step 6 of Alg. 4.2.
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Algorithm 4.2 A-SNN Synthesis Framework for Unsupervised STDP
Learning
1: 1. PLS activation function of eNeuron
2: activation_function = load_PLSresults(ML_eNeuron)
3: 2. Definition of eNeuron and synapses
4: MLeNeuron = [activation_function,
5: Rm: segmentation(nb=3),
6: dynamic_range_restriction: 15nA,
7: noise: Scenario 1 or 2 or 3 ];
8: synapses = [conductance_based,
9: type: exci or inhi];

10: 3. Network Structure for the MNIST problem
11: SNN = [ #Network can be adjusted for any problem
12: Input_layer(nb=784,type=MLeNeurons)
13: Output_layer(nb=1225,type=MLeNeurons)
14: fully_connect(Input_layer,Output_layer, synapses = exci & Inhi)
15: Lateral_connect(Output_layer,Output_layer, synapses = Inhi)];
16: 4. Encoding input data #from pixel to current value
17: train,test_data = load_MNIST()*3nA/255
18: 5. Network Model for Learning
19: training = (SNN,train_data,time=120µs, learning=STDP,weight_normalization)
20: labeling = (SNN,train_data)
21: testing = (SNN,test_data)
22: 6. Network Model Training on MNIST dataset
23: for epoch = 0 to max_epoch do
24: accuracy = learning(SNN, epoch)
25: if accuracy ≥ accuracy_min then
26: break;
27: end if
28: end for
29: final_accuracy,weights = testing()
30: if noise == 3 then
31: accuracy_noise = testing(noise=1,2)
32: end if

In the framework, the dataset includes both features and labels, even though the training
algorithm is unsupervised. This is essential for the testing phase, which requires correctly labeled
data to compare against the network’s output and determine the accuracy. Additionally, the
framework incorporates a boolean setting to enable or disable the random noise of transistors
within the eNeuron model. This feature allows for performance comparisons under various
conditions and helps quantify the impact of eNeuron circuit noise on STDP training.
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4.2.4 . A-SNN in solving XOR and MNIST Problems Using Unsupervised
STDP

To evaluate the effectiveness of the A-SNN using unsupervised STDP, as outlined in the
framework detailed in previous Sec. 4.2.3, two classification challenges are undertaken. The first
challenge is the XOR problem, short for exclusive OR, which is a logical operation that outputs
true only when the inputs differ from one another, either one input is true and the other is false,
or vice versa. It is traditionally used as a fundamental test of a computational model’s ability
to handle non-linearity. The second challenge is the MNIST problem, described in Sec. 4.1.4, a
standard benchmark in the field of machine learning for recognizing and classifying handwritten
digits. It involves the MNIST dataset that comprises 70,000 images of digits ranging from 0 to
9, with each image having a resolution of 28x28 pixels.

Figure 4.10 illustrates the A-SNN architecture, which consists of an input layer and an output
layer, designed to address either the XOR or MNIST problem. The eNeurons in the input
layer are fully connected to those in the output layer through both excitatory and inhibitory
eSynapses. All eNeurons are based on the b-ML eNeuron circuit model, and all eSynapses
follow the conductance-based model. Lateral inhibition is implemented in the final layer through
inhibitory eSynapses, connecting each eNeuron to all other eNeurons in the same layer. This
“winner-takes-all” mechanism allows activated neurons to suppress the activity of their neighbors.
It enhances contrast and sharpness in the network’s output, emphasizing the most relevant signals
and improving feature discrimination and noise reduction. The number of eNeurons in both layers
varies with the complexity of the problem: for the XOR problem, 2 input neurons and 13 output
neurons are used, while for the MNIST problem, 784 input neurons and 1225 output neurons are
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Figure 4.10: A-SNN architecture for XOR or MNIST problems, illustrating the input and output
layers of eNeurons connected by excitatory (blue), inhibitory (red), and lateral inhibitory (green)
eSynapses.
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employed.
In the framework, input encoding uses a rate-code approach, with the following specifics for

feeding inputs into the network: For the XOR problem, two possible logical values, 0 and 1,
are presented to the network. A logical value of 0 corresponds to a low power input current of
0.3 nA, which triggers a spike rate of 215 kHz in the input eNeuron layer. A logical value of
1 triggers a higher input current of 2 nA, resulting in a spike rate of 540 kHz. These specific
spike rates are calculated based on (4.12) from the eNeuron model, which maps the firing rate
response to the input excitation. For the MNIST problem, a grayscale image is presented to the
network, where each pixel’s value ranges from 0 (black) to 255 (white), with intermediate values
depicting varying shades of gray. The intensity of each pixel is translated into a current that
varies from 0 to 3 nA, driving eNeuron spike rates between 0 and 610 kHz.

The accuracy performance results of the A-SNN using the unsupervised STDP framework
for both the XOR and MNIST problems are detailed in Sec. 5.2.2.C. This analysis compares the
different scenarios of noise consideration, detailed in Sec. 4.2.3.

4.3 . Conclusion

This chapter examined the learning processes in A-SNNs, which consist of eNeurons and
eSynapses, requiring a thorough analysis that incorporates the models and circuit design con-
straints of these components. It covered two distinct learning techniques suitable for A-SNNs:
one inspired by software-based deep neural networks and another based on temporally-driven
STDP learning from biological neural mechanisms. Each method included a feasibility study
and a synthesis framework, validated by case studies such as the MNIST and XOR problems.
For deep learning in A-SNNs, the applicability depended on the nonlinearity and dynamic range
of the spike-rate-based eNeuron’s transfer function. Training was performed on the TensorFlow
platform, using activation functions derived from the post-layout transfer functions of eNeurons
and eSynapses. In contrast, STDP learning in A-SNNs was influenced by the random noise
from transistors in the spike-time-based eNeuron circuits, which could cause variability in spike
timings. The training for this approach was conducted using the Brian 2 simulator, highlighting
the unique challenges each learning paradigm presented. The results validating the feasibility
and synthesis of each technique for the A-SNN proposed in this chapter are detailed in Chap. 5.
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Chapter 5

Results and Discussion

To tackle the challenges of RF localization within the Internet of Things (IoT), Chap. 3
introduced the analog spike-based neuromorphic system (RF NeuroAS). This system pinpoints
the location of a mobile source on a two-dimensional plane, offering high precision and en-
ergy efficiency. The RF NeuroAS system comprises four key stages: the RF configuration of
transmitter and receiver placements, data extraction for signal capture and dataset creation,
neuromorphic pre-processing, and an analog-based spiking neural network (A-SNN). The struc-
ture of the A-SNN is designed to boost the efficiency of the RF NeuroAS, by featuring a network
of interconnected layers of CMOS analog spiking neurons (eNeurons) and synapses (eSynapses).
Therefore, a thorough investigation into the feasibility of learning techniques within the A-SNN
is required, taking into account the design and functionality of its primary components to ensure
effective learning.

Following this, Chap. 4 conducted an in-depth examination of two distinct learning tech-
niques for the A-SNN, ranging from deep learning inspired by software-based deep neural net-
works (Sec. 4.1) to temporal learning derived from biological neural mechanisms (Sec. 4.2). This
chapter aims to present performance insights derived from this thesis, highlighting the effective-
ness of the RF NeuroAS in achieving energy-efficient source localization (discussed in Sec. 5.1)
and the practical outcomes of employing learning techniques within the A-SNN (explored in Sec.
5.2).

5.1 . The Efficacy of RF Neuromorphic Localization

This section details the results of the RF NeuroAS system, which was presented in Chap. 3,
delving into the outcomes associated with each stage of the system. Section 5.1.1 focuses on the
RF configuration, where it delves into the antenna specifications for transmitters and receivers
within the setup. Section 5.1.2 then examines the results of data extraction, where the behavior
of features across various source positions and noise levels is analyzed, providing insights into
the robustness and sensitivity of the data acquisition process.

Following this, Sec. 5.1.3 examines the neuromorphic pre-processing stage, highlighting its
performance in terms of converting received power to spike rate and detecting bit patterns,
which are critical for effective signal processing. Section 5.1.4 then assesses the performance
of the analog spiking neural network stage, focusing on its accuracy in source detection. This
evaluation underscores the efficacy of the neuromorphic approach in RF localization. Finally,
Sec. 5.1.5 discusses the post-layout simulation results for a simplified version of the RF NeuroAS
system, previously introduced in Sec. 3.5. This version is designed as a fully analog circuit using
BiCMOS 55 nm technology, demonstrating the RF NeuroAS system’s implementation efficiency.
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5.1.1 . RF Configuration Evaluation
The RF configuration setup, described in Sec. 3.1 and shown in Fig. 3.2, outlines the place-

ment of the mobile transmitter and four stationary receivers used in the RF NeuroAS system.
These elements are strategically positioned on a 2D plane to optimize source identification by
the RF NeuroAS system, using coordinates specified by angle θs and distance ds from the origin
with a resolution of 10 degrees. This arrangement is experimentally implemented in an anechoic
chamber, and measurements are conducted using dipole bow-tie antennas for both transmission
and reception, as detailed in Sec. 3.2.2. Understanding the characteristics of these antennas is
crucial for interpreting the experimental results obtained from the anechoic chamber and com-
paring them with simulated results. The performance of the antenna is depicted through its
measured return loss and its radiation pattern, illustrated in Fig. 5.1 and Fig. 5.2, respectively.

Return loss is defined as the measure of power that is reflected back from the antenna due
to an impedance mismatch, represented as the ratio of reflected power to incident power and
expressed in decibels (dB). A return loss value below -10 dB is typically considered favorable,
indicating that less than 10% of the power is reflected, thereby enhancing the efficiency of power
transmission and reception. The return loss of the antenna used in the experimental setup,
denoted as S11, is plotted across the frequency range from 2 to 2.5 GHz as shown in Fig. 5.1.
This plot demonstrates effective antenna matching, with the return loss consistently below -10 dB
between 2.15 and 2.4 GHz. Furthermore, the minimum return loss occurs around 2.25 GHz, where
it falls below -25 dB, indicating a very low level of reflected power. These results verify that the
antenna operates effectively across this frequency range, perfectly aligning with the operational
objectives of the RF NeuroAS system, which is designed to function at an operational frequency
of 2.4 GHz.

2.0 2.1 2.2 2.3 2.4 2.5
Frequency [GHz]

25

20

15

10

5

0

S1
1 

[d
B

]

Figure 5.1: Measured return loss (S11) in dB of the bow-tie dipole antenna, spanning the fre-
quency range of 2 GHz to 2.5 GHz.

The radiation pattern of an antenna describes how it distributes energy into space, crucially
indicating its directional characteristics and signal strength. Figure 5.2(a) illustrates the E-
plane radiation pattern of the antenna. This pattern quantifies radiation intensity in dBi, as the
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antenna completes a full 360-degree vertical rotation. It features two pronounced main lobes,
which demonstrate strong signal strength in specific directions and highlight the antenna’s ability
to direct energy precisely. Moreover, the clear distinction and orientation of these lobes illustrate
the bidirectional radiation pattern characteristic of dipole antennas, crucial for high-precision
applications such as source localization.

Figure 5.2(b) displays the H-plane radiation pattern of the antenna. It captures the distribu-
tion of radiation intensity in dBi during a full 360-degree horizontal sweep. This pattern reveals
a nearly uniform radiation across all directions, indicative of the near-omnidirectional radiation
typical of dipole antennas. Such uniformity is critical as it provides consistent coverage essential
when the source rotates in a 2D plane and transmits signals to the four receivers. Therefore, this
uniform radiation pattern ensures reliable signal reception from every direction, a point further
discussed in Sec. 5.1.2.

0°

45°

90°

135°

180°

225°

270°

315°

5
10

15

(a)

0°

45°

90°

135°

180°

225°

270°

315°

5
10

15

(b)

Figure 5.2: Measured radiation patterns of the dipole bow-tie antenna at 2.4 GHz: (a) E-plane
(electric field) radiation pattern, illustrating bidirectional characteristics, (b) H-plane (magnetic
field) radiation pattern, demonstrating a near-omnidirectional distribution.
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5.1.2 . Feature Extraction: Simulated vs. Experimental Datasets

After configuring the RF setup for the source and receivers, data is collected at varying source
locations and under different noise conditions, as outlined in Sec. 3.2. This data, organized into
features and labels as depicted in Fig. 3.3, is used to create a simulated dataset in Matlab
(Sec. 3.2.1), and an experimental dataset obtained from measurements in the anechoic chamber
(Sec. 3.2.2). Figure 5.3 illustrates the power patterns received by the four receivers, spanning
the complete range of source angles from 0 to 360 degrees. Figure 5.3(a) presents these patterns
from the SimLocRF dataset, while Fig. 5.3(b) presents the patterns from the MesLocRF dataset.
In both scenarios, the source is placed 0.5 meters from the origin and transmits a signal of 10
dBm in an environment with a high signal-to-noise ratio (SNR) of 20 dB.

The received power from the SimLocRF dataset, shown in Fig. 5.3(a), shows a smooth
curve ranging between -20 to -29 dBm across the full 360-degree source rotation. This variation
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Figure 5.3: Illustration of the received power (in dBm) at the four receivers as a function of the
source angle, ranging from 0 to 360 degrees with 10-degree increments. Panel (a) shows data
from SimLocRF, while panel (b) presents data from the MeasLocRF.
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remains within the sensitivity and dynamic range set by the subsequent neuromorphic prepro-
cessing stage of the RF NeuroAS system, as detailed later in Sec. 5.1.3. The periodic change in
signal strength reflects the controlled conditions of MATLAB simulations, corresponding with
the source’s changing positions relative to the four receivers. On the other hand, the received
power from the MeasLocRF dataset depicted in Fig. 5.3(b) fluctuates between -20 and -31 dBm
as the source rotates. These irregularities arise from imperfections in the anechoic chamber, such

(a)

(b)

Figure 5.4: Variation in (a) mean and (b) standard deviation of received power at Receiver 1,
plotted against SNR (in dB) and source angle (in degrees). Data obtained from the SimLocRF
dataset.
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as the material properties and the effects of practical equipment elements like RF cables, sup-
ports, and anechoic foams. Although the antennas are designed to be omnidirectional, variations
in their radiation patterns are evident as the source rotates, as demonstrated in Fig. 5.2(b).
Despite these variances, the fundamental shape of the power distribution in the experimental
dataset aligns closely with the simulated data.

Figure 5.4 depicts the variation in received power, from the SimLocRF dataset, at Receiver
1 across source angles from 0 to 360 degrees and SNR levels from 0 to 40 dB. Figure 5.4(a)
illustrates the average received power impacted by noise levels, while Fig. 5.4(b) shows its
standard deviation. The average power is the lowest when the source is furthest from Receiver
1 and increases as the source moves closer. Additionally, an increase in SNR corresponds with
a reduction in the average received power, indicating sensitivity to noise levels. The standard
deviation of received power remains relatively stable across various source angles, suggesting
consistent signal variability. However, as the noise in the environment increases, indicated by a
lower SNR, the variability in received power also intensifies.

5.1.3 . Neuromorphic Pre-Processing Performance
The neuromorphic pre-processing, also referred to as neuromorphic-enhanced wake-up ra-

dio (NWR), constitutes the third stage of the RF NeuroAS system (see Fig. 3.1 and Fig. 3.7
for details). NWR operates as a spike-rate encoding system that converts received RF signals
into spike trains at a specific rate fspike. This allows for the correlation of spike rates (fspike)
with received power (PRF ) and the identification of bit patterns from OOK-modulated RF sig-
nals, associating them with spike rates. These capabilities of NWR are demonstrated in Sec.
5.1.3.A and Sec. 5.1.3.B, respectively. The circuit design, which includes an envelope detector,
a transconductance eSynapse, and an ML or LIF eNeuron, is thoroughly described in Sec. 3.3.
Circuit Layouts for both ML-based and LIF-based NWR, which were developed using BiCMOS
SiGe 55 nm technology from ST Microelectronics, are included in Appendix D. The ML-based
NWR occupies a silicon area of 9.8 × 25.09 µm2 and consumes 1.2 nW of power at a supply
voltage of 200 mV, while the LIF-based NWR uses a 9.03 × 10.52 µm2 of area and consumes
only 0.25 nW of power at the same voltage.

A .Spike Rate and Received Power Correlations
To evaluate the NWR’s ability to correlate spike rates with received power, it is essential

to determine the minimum detectable signal, defined by the sensitivity of the envelope detector
integrated within the NWR. The power of the minimum detectable signal (Pmds) can be expressed
in dBm as [221]

Pmds = NFtot + 10logB − 174 + SNRmin, (5.1)

where NFtot represents the total noise figure of the circuit, B is the bandwidth of the envelope
detector, and SNRmin minimum signal-to-noise ratio necessary for reliable detection by the OOK
modulation. For this analysis, SNRmin = −12 dB and B = 10 MHz are considered. Figure
5.5 shows the Pmds for both the ML-based NWR (blue line) and the LIF-based NWR (red
line), as derived from (5.1). The sensitivity of the envelope detector is determined by where the
received power (PRF , black line) intersects the Pmds. In this setup, the ML-based NWR shows a
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sensitivity of -29 dBm, while the LIF-based NWR exhibits a sensitivity of -25 dBm. Thus, these
sensitivity levels establish the dynamic range limits of the NWR, which will be explored further
in Sec. 5.1.3.C
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Figure 5.5: Sensitivity of the envelope detector within the ML-based and LIF-based NWRs:
the black line is the PRF and its cross with the blue and red lines are Pmds for both NWRs,
respectively.

Figure 5.6 demonstrates the relationship between the received power and the output of each
stage in the NWR, comparing both ML-based (blue line) and LIF-based (red line) configurations.
Specifically, Figure 5.6(a) shows that the voltage at the envelope detector output, VED, increases
exponentially with received power PRF . Figure 5.6(b) depicts a decreasing trend between the
synaptic current Itrans at the transconductance eSynapse output and PRF . This decreasing
relationship is achieved through the use of two complementary current mirrors in the eSynapse
design, with the reason for this approach detailed in Sec. 5.1.3.B.

Figure 5.6(c) maps the correlation between fspike and PRF . For the ML-based NWR, fspike
decreases from 249 to 19 kHz as PRF increases from -29 dBm to 0 dBm, remaining constant at
249 kHz below -29 dBm. Conversely, for the LIF-based NWR, fspike drops from 65 kHz to 0.12
kHz as PRF increases from -25 dBm to 0 dBm, and stabilizes at 65 kHz below -25 dBm. The
limited dynamic range is evidenced by the obtained Pmds values (-29 dBm for ML-based and -25
dBm for LIF-based NWR), as depicted in Fig. 5.5. Additionally, spiking rates vary according
to the type of eNeuron used; ML eNeurons demonstrate higher firing rates compared to LIF
eNeurons, as shown in Tab. 2.2.

B .Bit Patterns Identification
To verify the ability of the NWR to identify bit patterns in RF signals, an example of an

OOK-modulated RF signal is generated at the NWR’s input. Figure 5.7 showcases this signal,
focusing on the first three bits, "010", and also displays the outputs from each stage of the ML
and LIF-based NWRs, from the envelope detector through the transconductance eSynapse to the
final ML and LIF eNeuron stages. These results are derived from an average of eight transient
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Figure 5.6: Post-layout simulation results showing the relationship between PRF and the output
of each stage in the NWR: (a) VED in mV, (b) Itrans in pA, and (c) fspike in kHz. Results for
both ML-based and LIF-based NWRs are in blue and red lines, respectively.

noise post-layout simulations. As depicted in Fig. 5.7, the input OOK RF signal operates at a
frequency of 2.4 GHz, a data rate of 1 kbps, and a power level of PRF = -10 dBm, displaying
the sequence "010" over a 3 ms window. In this signal, the bit ’0’ corresponds to zero voltage,
while the bit ’1’ is an RF sinusoidal signal with an amplitude of VRF = -90 mV.

The RF signal is demodulated by the envelope detector, producing two distinct voltage levels
corresponding to different bits: a consistently low, near-zero voltage for bit ’0’ (VED = 6 µV for
both types of NWR, regardless of the received power PRF ), and a variable voltage for bit ’1’
(VED = -44 mV for ML-based NWR and VED = -50 mV for LIF-based NWR at PRF = -10 dBm,
fluctuating with PRF as shown earlier in Fig. 5.6(a)). The increased VED for the LIF-based
NWR compared to the ML-based NWR for bit ’1’ is due to an additional transistor Mc in the
LIF-based design, which enhances the voltage gain. Given that the demodulated voltage for
bit ’0’ remains constant across all received power levels, it is converted into a steady synaptic
current by the transconductance eSynapse (Itrans = 382 pA for ML-based NWR and Itrans =
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Figure 5.7: Transient noise post-layout simulation results showing the response of each stage of
ML-based and LIF-based NWRs for an OOK-modulated RF signal at its first three bits "010",
with a PRF = -10 dBm. An inset is added for VRF , Vm,ML, and Vout,LIF to clarify the sinusoidal
and spiking behaviors.

86 pA for LIF-based NWR). Conversely, for bit ’1’, the transconductance eSynapse excites the
post-eNeuron differently, as it generates an average current value that varies with PRF , as shown
in Fig. 5.6(b). In the example shown in Fig. 5.7, at PRF = -10 dBm, Itrans is 109 pA for
ML-based NWR and 56 pA for LIF-based NWR.

Finally, the spiking behavior of the membrane voltage at the output of both ML and LIF
eNeurons is illustrated in Fig. 5.7. The spiking frequency, fspike, is determined by counting
the number of spikes over a given time period (in this context, the duration of a bit is 1 ms).
For bit ‘0’ and at any PRF , both ML and LIF eNeurons exhibit a constant fspike due to the
steady synaptic current; fspike is 250 kHz for ML-based NWR and 65 kHz for LIF-based NWR.
However, for bit ’1’, fspike increases as PRF decreases, a relationship that is illustrated in Fig.
5.6(c) and results from the decreasing relationship between Itrans and PRF , as explained in Sec.
5.1.3.A. This design choice allows fspike for bit ’1’ to reach a high, saturated level at the minimum
detectable signal (Pmds), which aligns with the fspike observed for bit ’0’. This configuration is
intended to optimize the energy efficiency (measured in fJ/spike) of the eNeuron when handling
bit ’0’ scenarios, where the input voltage is zero.
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C .Performance Metrics

The performance of the neuromorphic pre-processing varies depending on whether it is an
ML-based or LIF-based configuration. To determine the most suitable type for the RF NeuroAS
system, several performance metrics need to be considered.

Minimum Detectable Signal (Pmds) — State-of-the-art envelope detectors aim for nar-
rowband matching to obtain low-noise performance, achieving a Pmds of approximately -50 dBm
for high data rate designs [225]. Additionally, while lower Pmds values are achievable, they typ-
ically require higher µW-range power consumption. The ML-based NWR attains a Pmds of -29
dBm at a total power of 1.2 nW, whereas the LIF-based NWR reaches -25 dBm at just 0.24
nW, both at a 1 kbps data rate. To enhance the Pmds, implementing an off-chip narrowband
matching network rather than metallic resistance matching could be advantageous, as detailed
in Sec. 3.3.1.A.

Additionally, the performance of the NWR is assessed by displaying spiking trains within a
1 ms observation window per bit (data rate = 1 kbps). For higher data rates, the observation
window could be reduced to 0.1 ms (data rate = 10 kbps) or even to 0.01 ms (data rate = 100
kbps), without any drawback on power consumption Prms. This is not the case of the state-of-
the-art where a low Prms and a high Pmds are achieved but only for low data rates [223], [224].
Table 5.1 summarizes a comparison of the performance of envelope detectors across different
technologies, operating frequencies, power consumption, and energy efficiency (in pJ/bit).

Dynamic Range — The ML-based NWR has an fspike for bit ’1’ that decreases as input
power ranges from -29 dBm to 0 dBm, then remains constant at lower power levels and matches
that of bit ’0’ (fspike = 250 kHz). Similarly, the LIF-based NWR shows an fspike that decreases
for bit ’1’ between -25 dBm and 0 dBm, and then stabilizes at the same rate as for bit ’0’ (fspike
= 65 kHz). With a system resolution of 1 kHz, the ML-based NWR is validated up to a PRF of
-29 dBm, while the LIF-based NWR is validated up to a PRF of -25 dBm, corresponding to the
Pmds for each configuration. Consequently, the LIF-based NWR exhibits a narrower dynamic
range (25 dB) compared to the dynamic range of the ML-based NWR (29 dB).

Temperature Variation — To assess the robustness of the NWR against temperature
variations, Fig. 5.8(a) illustrates the changes in fspike of the ML-based NWR across a temper-
ature range of 0 to 60 degrees for bit ’1’ signals at PRF = -29 dBm (= Pmds), 0 dBm, and for
bit ’0’. Similarly, Fig. 5.8(b) displays the temperature-related variations in spiking frequency
for the LIF-based NWR for bit ’1’ signals at PRF = -25 dBm (= Pmds), 0 dBm, and for bit
’0’. These figures demonstrate that, within this temperature range, the NWR system maintains
consistent Pmds in both configurations, by preserving the differential between fspike for bit ‘0’
and fspike for bit ‘1’ when PRF = Pmds.

Monte Carlo Simulations — The distributions of the spiking frequency (fspike) for both
ML-based and LIF-based NWRs are shown in Fig. 5.9(a) and Fig. 5.9(b) respectively. These
graphs represent the outcomes of 500 iterations of transient post-layout simulations for a bit ’1’
RF input signal with the lowest power level (PRF = Pmds = -29 dBm for the ML-based NWR and
-25 dBm for the LIF-based NWR). At these power levels, the ML-based NWR exhibits a fspike of
249 kHz, whereas the LIF-based NWR shows a fspike of 64 kHz, as detailed in Sec. 5.1.3.B. The
frequency distributions in both configurations seem to adhere to a Poisson distribution, with the
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highest probabilities aligning with the expected range of spiking frequencies.
Regarding performance, the ML-based NWR achieves a better Pmds, offering a higher dy-

namic range but at a greater power consumption compared to the LIF-based NWR. Consequently,
the ML-based NWR was selected for the RF NeuroAS system due to its biological plausibility
and its enhanced dynamic range, which improves the accuracy of the subsequent neural network
stage.

Table 5.1: Envelope Detector Performance Comparison

Ref [222] [223] [224] [225] [226] This Work

Techn. (nm) 180 65 180 180 130 55
fR (GHz) 2.4 0.434 0.113 2.4 0.9 2.4
Prms (nW) 120 0.42 4.5 2400 5 1.2a, 0.25b
Pmds (dBm) -48.5 -79.2 -69 -50 -26 -29a, -25b
Eeff (pJ/bit) 48 4.2 15 22.5 5 1.2a, 0.25b

aML-based NWR, bLIF-based NWR

0 10 20 30 40 50 60
0

200

400

600

800

(a)

0 10 20 30 40 50 60
0

50

100

150

200

250

(b)

Figure 5.8: The variation of the spiking rate at the output of (a) ML-based NWR and (b) LIF-
based NWR, in function of the temperature. Three cases are considered: a bit ’1’ signal with
PRF = Pmds, PRF = 0 dBm, and a bit ’0’ signal.
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Figure 5.9: The distribution of the spiking frequency at the output of (a) ML-based NWR and
(b) LIF-based NWR, for a bit ’1’ signal with PRF = Pmds. Results are obtained for 500 iterations
of transient PLS.

5.1.4 . Analog Spiking Neural Network Performance

The analog-based spiking neural network (A-SNN) represents the final component of the RF
NeuroAS system, shown in Fig. 3.9 and detailed in Sec. 3.4. Its core function is to identify the
source position accurately, characterized by its parameters rs, θs, and ds, which are elaborated
upon in Sec. 3.2. For deep learning capabilities, the A-SNN uses a fitted activation function
obtained from the post-layout transfer function of ML eNeurons, as detailed in Sec. 3.4.2.
Therefore, the A-SNN is trained and tested on the SimLocRF and MeasLocRF datasets, using
a specialized methodology designed for deep learning that accounts for analog characteristics, as
described in Sec. 4.1.3. To assess the functionality of the A-SNN, Sec. 5.1.4.A first validates the
A-SNN setup by examining the suitability of the fitted activation function and evaluating the
training process across different noise levels. Following this, Sec. 5.1.4.B examines the precision
of the A-SNN in source localization at 10-degree resolution.

A .Neural Network Setup

Figure 5.10 depicts three potential fits for the post-layout activation function: a piecewise
polynomial fit of 2nd order (represented by an orange dashed line), a polynomial fit of 12th order
(shown as a green dashed line), and a sigmoid fit (illustrated with a red dashed line). The
accuracy of these models is assessed using the R-squared (R2) metric, which quantifies the fit
quality. The R2 values achieved are 0.998 for the piecewise polynomial, 0.997 for the polynomial,
and 0.981 for the sigmoid fit.

The piecewise polynomial fit, with its highest R2 score, or an interpolation function, could be
preferable. However, they require adjustments for smooth transitions, especially at the boundary
point of 0, where the derivative tends to infinity, resulting in a discontinuity of the function. The
sigmoid fit, though simpler and more suitable for classification tasks, achieves an acceptable fit.
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Figure 5.10: Post-layout activation function, with three fitted models: piecewise polynomial,
polynomial, and sigmoid functions.

Despite the complexity of a 12th order equation, the polynomial fit offers a high R2 score. This
study opts for the polynomial fit based on multiple training sessions of the A-SNN, where it
consistently resulted in the highest accuracy.

Figure 5.11 shows the progression of accuracy for the A-SNN using two different activation
functions: the fitted post-layout activation function (blue line) and the standard sigmoid ac-
tivation function (orange line). The graph shows the accuracy trends over 100 epochs during
both the training (solid lines) and validation (dashed lines) phases. Both activation functions
allow the A-SNN to surpass 96% accuracy after 100 epochs, but the improvement in accuracy
with the fitted function is noticeably slower. This slower rate of progression is likely due to
the increased complexity in optimizing weights when simulating analog behaviors with the fitted
function. The model plots for the fitted activation function, derived from the transfer functions
of various eNeurons and described in Sec. 4.1.3, are thoroughly presented later in Sec. 5.2.1.

The A-SNN is initially trained using subsets from either the SimLocRF or MeasLocRF
datasets and later evaluated on unseen subsets. Both training and testing are conducted across
various noise levels (SNR = 0, 10, or 20 dB). Proper training is essential for the network to
perform effectively on unseen data, necessitating an analysis of various noise levels to determine
the optimal one for robust neural network training. Table 5.2 illustrates the changes in angular
accuracy from (3.7) of the A-SNN across different training and testing scenarios, categorized by
SNR levels. The network is trained with datasets characterized by three distinct SNR setups:
(a) a combined SNR incorporating 20, 10, and 0 dB, (b) an exclusive SNR of 20 dB, and (c)
an exclusive SNR of 0 dB. Following training, the network is tested against unseen data at SNR
levels of 20, 10, and 0 dB.
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Figure 5.11: Accuracy progression for the A-SNN trained using the 12th order polynomial fitted
activation function (blue line) and a sigmoid activation function (orange line). Solid lines repre-
sent training accuracies, while dashed lines indicate validation accuracies over 100 epochs.

Results from Tab. 5.2 show that training with either the combined SNR dataset or the 20 dB
SNR dataset leads to high accuracy in tests at 20 and 10 dB, but significantly lower accuracy at 0
dB (67.2% and 49.2%, respectively). However, training the network with a dataset at 0 dB SNR
consistently yields high accuracy (over 90%) across all testing scenarios. This demonstrates that
training with noisier data considerably improves the network’s ability to handle various testing
conditions. This relates to the eNeuron’s capacity to mitigate external noise, which is defined at
various SNR levels in the dataset. As a result, the A-SNN was purposefully trained using the
dataset at an SNR of 0 dB to enhance its overall robustness.

Table 5.2: Angle Accuracy (%) for Different Training and Testing SNR Levels (dB)

Training SNR (dB) Testing SNR (dB)
20 dB 10 dB 0 dB

20, 10, 0 97.6% 94.2% 67.2%
20 98.4% 92.7% 49.6%
0 97.1% 95.6% 90.5%

B .Performance Metrics
The network’s performance is assessed using accuracy and normalized angle error from (3.7)

and (3.8), respectively. The A-SNN determines the source position by its distance from the
origin (ds), region on the plane (rs), and angle (θs) with a 10-degree resolution. Three scenarios
are used to evaluate network performance: (a) both training and testing are conducted using
the SimLocRF dataset from MATLAB, (b) both phases are performed with the MeasLocRF
dataset from anechoic chamber measurements, and (c) training is done on SimLocRF data, and
testing on MeasLocRF data. When using either SimLocRF or MeasLocRF, 70% of the data is
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allocated for the training and validation phase, while the remaining 30% is used for testing. The
performance is reported as the average of evaluations over 20 tests, using the statistical trained
weights, as described in Alg. 4.1

Distance and region accuracies across three different SNR levels (0, 10, and 20 dB) are
depicted for each scenario in Fig. 5.12(a) and Fig. 5.12(b), respectively. Distance accuracy
remains high (above 97%) across all SNR levels due to the network’s ability to distinguish among
three distance options (ds = 0.1 m, 0.3 m, 0.5 m). Similarly, region accuracy consistently exceeds
96%, given four possible outcomes, across all scenarios and SNR levels.

Regarding the angular detection of the source, as shown in Fig. 5.12(c), its accuracy tends
to decrease with lower SNR levels, indicative of noisier conditions. The network reaches its peak
angular accuracy of 96.7% when it is trained and tested using the SimLocRF dataset, benefiting
from the structured and symmetrical nature of MATLAB-generated data, as detailed in Sec.
3.2.1. The angle accuracy drops when training and testing occur with the MeasLocRF dataset,
which includes more variability due to the experimental setup. However, it still remains relatively
acceptable with the lowest recorded accuracy at 86.5% for 0 dB SNR. In cases where the network
is trained on SimLocRF data and then tested on new, unseen MeasLocRF data, accuracy declines
further. However, it remains within acceptable bounds, with the lowest point at 80.4% for 0 dB
SNR. Despite these challenges, the results confirm the neural network’s capacity to effectively
localize the source even when exposed to new and varied datasets.

Figure 5.13 presents the normalized angle error (NAE) results for the A-SNN across three
different scenarios at various SNR levels. At a 20 dB SNR, the lowest NAE values recorded (0.05,
0.07, and 0.12 for the first, second, and third scenarios respectively) demonstrate high precision
in angle estimation. Furthermore, even at the challenging 0 dB SNR level, the highest NAE

values are 0.11, 0.15, and 0.22 for the respective scenarios, maintaining the 10-degree resolution
of the network.

Given that each neuromorphic pre-processing unit consumes 1.2 nW, the ML eNeuron con-
sumes 0.9 nW, and the eSynapse consumes 0.4 nW [24], the RF NeuroAS system’s power con-
sumption can be estimated. Following the methodology outlined in [23], the RF NeuroAS system,
comprised of 4 preprocessing units, 56 ML eNeurons, and 444 eSynapses, consumes only 233 nW
of power. These results demonstrate the system’s robustness in performance and its ability to
maintain a simple, low-power architecture, well-suited for efficient RF localization.
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Figure 5.12: Performance of the A-SNN at 10-degree resolution in terms of (a) distance accuracy
(%), (b) region accuracy, and (c) angle accuracy (%) of the source position, for three different
scenarios of training and testing, and for three SNR levels.
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Figure 5.13: Performance of the A-SNN at 10-degree resolution in terms of the normalized angle
error (in degrees) of the source position, for three different scenarios of training and testing, and
for three SNR levels.

5.1.5 . Simplified RF NeuroAS System: Post-Layout Results
The simplified version of the RF NeuroAS system is fully implemented in an analog circuit

using BiCMOS 55 nm technology (see details in Sec. 3.5). Its layout, shown in Appendix D,
occupies 18.3 x 20.3 µm2, consumes only 1.1 nW from a 200 mV power supply, and achieves a
dynamic range of 30 dB. This system is capable of determining the position of a source located
in the positive half of the plane, with possible angles θs ranging from 0 to π and distances ds of
0.1, 0.5, or 1 meter. As previously presented in Fig. 3.10, the simplified RF NeuroAS system
includes two stages of neuromorphic pre-processing (NWRs), each linked to a receiver, and a
neuromorphic computing unit that calculates the output spike rate corresponding to the source’s
position.

Figure 5.14 illustrates the post-layout variations in output spiking rate (Fig. 5.14(a)) and
energy efficiency (Fig. 5.14(b)) according to different source positions, which are determined by
their angle θs and distance ds. As depicted in Fig. 5.14(a), if the source is close to the receivers
(e.g., ds = 0.1 m), then fspike fluctuates between 92 and 119 kHz. Conversely, if the source is
farther from the receivers (e.g., ds = 1 m), then fspike shows a narrower variation, ranging from
100 to 108 kHz. Given that the system’s resolution is set at 1 kHz for an observation window of
1 ms, the range of spike rates impacts the angular resolution the system can detect. Here, the
angular resolution is 5, 12, and 20 degrees for distances of ds = 0.1, 0.5, and 1 m, respectively.
This illustrates that the angular resolution diminishes as the spike rate range narrows, indicative
of the source being further away. Extending the observation window of the spiking behavior can
improve the system’s resolution, thereby enhancing angular resolution.

Figure 5.14(b) illustrates the energy efficiency of the simplified RF NeuroAS system, calcu-
lated using Walden’s figure-of-merit [227], as defined by the equation in fJ/conv

Eeff =
Prms

fspike
3 · 2N

, (5.2)

119



where Prms is the total power consumption of the system and N is the full-scale dynamic range.
The energy efficiency ranges from a minimum of only 0.7 fJ/conv when the source is far from
the receivers to a maximum of 0.2 fJ/conv when the source is close to either receiver R1 or R2.

(a)

(b)

Figure 5.14: Post-layout variations in (a) output spike rate and (b) energy efficiency of the
simplified RF NeuroAS, according to source positions determined by θs and ds.
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5.2 . Advancements in Learning Techniques for Analog Spiking Neural Net-
works

The analog spiking neural network (A-SNN) primarily comprises eNeurons and eSynapses,
leveraging spike coding in an analog circuit design for high energy efficiency. A comprehensive
feasibility study and synthesis of the A-SNN are presented in Chap. 4 to guarantee its proper
implementation and effective usage. Within this study, two learning techniques are evaluated
for the A-SNN: deep learning (Sec. 4.1) and time learning (Sec. 4.2). The results from applying
these techniques to the A-SNN are presented in Sec. 5.2.1 and Sec. 5.2.2, respectively.

5.2.1 . Deep Learning Impact on A-SNN

This section details the results of applying deep learning technique to the A-SNN. Section
5.2.1.A discusses the outcomes of the feasibility analysis conducted in Sec. 4.1.2, which tested
deep learning on the theoretical model of the A-SNN. These results determine the feasibility
of deep learning based on the transfer functions of various eNeuron types used within the A-
SNN. When deep learning proves feasible for the A-SNN, a synthesis framework is outlined in Sec.
4.1.3, which requires appropriate fits for its activation function. Section 5.2.1.B then presents the
results of fitting activation functions specifically for the A-SNN using deep learning, taking into
account the various eNeuron types. Finally, Sec. 5.2.1.C highlights the A-SNN’s performance in
solving the MNIST problem, described in Sec. 4.1.4, by incorporating the deep learning synthesis
framework.

A .Feasibility Results

The feasibility study detailed in Sec. 4.1.2 determines that deep learning can be applied to
the A-SNN if either or both the eNeurons and eSynapses exhibit non-linear transfer functions.
Accordingly, the transfer functions linking the output spike rate to the input synaptic current for
eNeurons, and the output synaptic current to the input spike rate for eSynapses, are illustrated
in Fig. 5.15. These results are obtained from post-layout simulations conducted using the BSIM4
model. The tested eNeurons include the b-ML (Fig. 5.15(a)), the s-ML (Fig. 5.15(b)), and the
AH-LIF (Fig. 5.15(c)) eNeurons, along with the excitatory eSynapse (Fig. 5.15(d)), all of which
are described in the spike rate-based model in Sec. 4.1.1. The linearity of these transfer functions
is assessed using the least mean squares r2 method from MATLAB tools. If a precise linear fit
is established for any of the eNeurons or eSynapse under test, they are deemed unsuitable for
use in deep learning applications. Alongside the transfer functions, the energy efficiency of the
eNeurons, calculated as Eeff = Prms/ fspike (in fJ/spike), is highlighted in blue.

eNeurons Results — The transfer functions and energy efficiency of the eNeurons are
obtained from a synaptic current Isyn sweep ranging from 0 to 1 nA. As depicted in Fig. 5.15,
each eNeuron type exhibits a unique dynamic range of spike rate (fspike) response, characterized
by saturation (as observed in b-ML and s-ML eNeurons) or a drop (as in the AH-LIF eNeuron)
at certain Isyn levels. For Isyn > 200 pA, b-ML and s-ML eNeurons (shown in Fig. 5.15(a) and
Fig. 5.15(b)) demonstrate high energy efficiency and satisfactory linear fits for their transfer
functions ( r2 = 0.99), highlighted by a dashed red line. However, at Isyn < 200 pA, these
eNeurons exhibit lower energy efficiency and non-linear transfer function characteristics. These
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Figure 5.15: Post-layout transfer functions of (a) b-ML, (b) s-ML, (c) AH-LIF eNeurons, and
(d) excitatory eSynapse (in black line). The linear fits of the transfer functions are presented in
dashed red lines, and the energy efficiency (in fJ/spike) in the blue line.

observations illustrate a trade-off between energy efficiency and the potential for deep learning
when using b-ML and s-ML eNeuron types. Design choices affect the operational scope and
performance: using the full rate range of eNeurons results in lower energy efficiency, but enables
the application of deep learning techniques. Conversely, restricting to higher fspike ranges yields
high energy efficiency and linear activation function, which limits the system to basic neural
network functionalities unless non-linear transfer functions from eSynapses are considered.

The AH-LIF eNeuron, depicted in Fig. 5.15(c), displays a narrower dynamic range compared
to b-ML and s-ML eNeurons and lacks a satisfactory linear fit for its transfer function. It
maintains high energy efficiency across its range, peaking at only 1.5 fJ/spike. Therefore, using
AH-LIF eNeurons offers the benefits of non-linearity, suitable for deep learning, and high energy
efficiency. However, this comes at the expense of a reduced dynamic range, which may limit the
performance of A-SNNs that use AH-LIF eNeurons, as further discussed in Sec. 5.2.1.C.

eSynapse Results — The transfer function of the eSynapse is determined through a spike
rate sweep of the pre-synaptic eNeuron, ranging from 0 to 450 kHz, which represents the widest
dynamic range achieved by the b-ML eNeuron. As depicted in Fig. 5.15(d), the output current of
the eSynapse increases non-linearly with the input frequency. Within the range where eNeurons
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exhibit a fspike > 170 kHz and demonstrate high Eeff , a linear fit for the eSynapse’s transfer
function can be achieved with an r2 > 0.99. This linear fit limits the potential for deep learning.
This indicates that deep learning and energy efficiency are often mutually exclusive in an A-SNN
that incorporates these specific eNeurons and eSynapses.

B .Activation Function Fit Results for Synthesis

For synthesizing A-SNNs using deep learning, their activation functions are derived from
the post-layout transfer functions of eNeurons and eSynapses, as explained in Sec. 4.1.3. These
activation functions require fitted models for use in TensorFlow for training and testing purposes.
Two suitable fitted models are identified: sigmoid and polynomial fits. Figure 5.16 presents the
fitting results for the standard activation function of the A-SNN, featuring the b-ML eNeuron
(Fig. 5.16(a)), the s-ML eNeuron (Fig. 5.16(b)), and the AH-LIF eNeuron (Fig. 5.16(c)).
The figure displays the normalized results, represented in arbitrary units (a.u.): the post-layout
activation function in a solid black line, the sigmoid fit in a dashed blue line, and the polynomial
fit in a dashed red line. A green vertical bar in the figure indicates a restriction to high energy
efficiency by limiting the dynamic range of the activation function when Isyn exceeds 200 pA.
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Figure 5.16: Post-layout fitting results for the standard activation function of the A-SNN, using
(a) b-ML, (b) s-ML, and (c) AH-LIF eNeurons. A green vertical bar represents the dynamic
range restriction.
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This approach, discussed in Sec. 5.2.1.A, involves applying a threshold of x ≥ 0.2 a.u. for both
polynomial and sigmoid fit models.

The sigmoid fit, derived from the generalized logistic function [216], is used to fit the post-
layout activation function with a moderate and differentiable curve. It achieves a high precision
of r2 ≥ 0.985 with the b-ML eNeuron and r2 ≥ 0.995 with the s-ML eNeuron, but an unsuitable
r2 ≥ 0.158 with the AH-LIF eNeuron. This latter is due to discrepancies when x ≥ 0.8 a.u.,
necessitating a limitation on the used range. The polynomial fit applied to the post-layout
activation function features a complex 12th order. Across the three eNeuron types, it closely
matches the behavior (r2 ≥ 0.999), accurately capturing variations and maintaining consistency
in static regions. However, this precise fit may pose training challenges due to abrupt changes
in slope near 0. In fact, stochastic gradient descent optimizers (like Adam) use the function’s
derivative for training, and such discontinuities reduce the convergence of the training algorithm.

Therefore, for training the A-SNN with any of the three eNeuron types, the sigmoid fit is
recommended due to its high precision and differentiability at all points. For testing the A-SNN,
both sigmoid and polynomial fits are suitable options; however, the polynomial fit is preferred
for its closer alignment with the A-SNN’s activation function behavior. Regarding the need for
higher Eeff , restricting the input to the activation functions decreases the level of non-linearity,
which may affect the A-SNN’s accuracy.

C .Performance on MNIST Problem
The performance of the A-SNN was assessed using the MNIST problem, incorporating the

three possible eNeuron types and the excitatory eSynapse. The multi-layered structure of the
A-SNN is elaborated in Sec. 4.1.4, which adopts the synthesis framework outlined in Sec. 4.1.3.
The training and the testing of the A-SNN are performed with all eNeuron types. Here, two
scenarios are considered: one using the full input range and another using a restricted range for
significantly higher Eeff , indicated by a green vertical bar in Fig. 5.16.

In both scenarios, the A-SNN is trained for 100 epochs using the sigmoid fit model of its post-
layout activation function, with results detailed in Sec. 5.2.1.B. After training, synaptic weights
are set as statistical variables, taking into account the process variability and the current-mirror
mismatch in the eSynapse. The trained A-SNN, incorporating these weights, is then tested using
the polynomial fit model of the activation function to precisely evaluate the A-SNN’s performance
considering realistic variations in circuit parameters.

Figure 5.17 shows the accuracy results for the A-SNN in solving the MNIST problem with
the three eNeuron types: b-ML eNeuron in Fig. 5.17(a), s-ML eNeuron in Fig. 5.17(b), and
AH-LIF eNeuron in Fig. 5.17(c). The figure shows training performance over epochs with a blue
dashed line for the non-restricted input and a green dashed line for the restricted input. Testing
performance is marked with red dots for the non-restricted case and green dots for the restricted
case, including error bars to illustrate the distribution of the accuracy.

Considering the A-SNN designed with b-ML eNeurons, Fig. 5.17(a) illustrates that in the
non-restricted scenario, the training accuracy rapidly improves up to epoch 40 and then gradually
rises to 0.85. The testing accuracy experiences a slight decrease of only 3% compared to training
accuracy, as the sigmoid and polynomial fits are closely aligned in this scenario. Conversely,
restricted training shows more erratic improvement up to an accuracy of 0.7, with significant
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Figure 5.17: Accuracy results for the A-SNN in solving the MNIST problem, designed with (a) b-
ML, (b) s-ML, and (c) AH-LIF eNeurons. Restricted and non-restricted scenarios are considered
for both training and testing.

drops during testing, averaging a loss of 0.52 and a standard deviation of 0.12.
For the A-SNN designed with s-ML eNeurons, as shown in Fig. 5.17(b), both non-restricted

and restricted scenarios exhibit substantial training accuracy improvements up to epoch 40,
reaching 0.9 by epoch 100. In this type of A-SNN, the restriction has minimal impact on the
non-linearity of the activation function, as discussed in Sec. 5.2.1.B. The testing accuracy falls
by 7% in the non-restricted scenario to 0.83, and by over 16% in the restricted case to 0.74.

In the design of A-SNN using AH-LIF eNeurons, as shown in Fig. 5.17(c), the non-restricted
scenario shows rapid training improvement until epoch 20, achieving an accuracy of 0.89, which
then decreases during testing by 12%. For the restricted case, training performance is erratic,
only reaching an accuracy lower than 50% by epoch 100. This lack of convergence likely results
from the limited dynamic range and an unsuitable fitting model (see details in Sec. 5.2.1.B).

This analysis demonstrates the trade-off between deep learning and energy efficiency, as
outlined in Sec. 5.2.1.A, where achieving higher energy efficiency results in a drop in accuracy
due to limitations in deep learning capabilities. To maintain high accuracy in the A-SNN while
ensuring high energy efficiency, it is essential to select the suitable eNeuron model and the
appropriate fitting model.
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5.2.2 . STDP Learning Impact on A-SNN
This section outlines the application of STDP learning to the A-SNN and details the out-

comes. Section 5.2.2.A presents the biomimetic ML (b-ML) eNeuron model results from Sec.
4.2.1, focusing on spike shape and firing rate properties, and from Sec. 4.2.2 for the noise prop-
erty. Section 5.2.2.B presents the post-layout simulations results that examine the impact of
noise on spike timing across various eNeuron circuits. These findings assess the viability of STDP
learning in A-SNNs that include these eNeurons. Section 5.2.2.C discusses the performance of
the A-SNN in solving XOR and MNIST problems, as described in Sec. 4.2.3.

A .eNeuron Model Results
This section presents the validation results for the b-ML eNeuron model. Although the model

is adaptable to other types of eNeurons, the focus here is on this specific eNeuron because it
was used for training the A-SNN with STDP due to its high biological plausibility. The b-ML
eNeuron model is characterized by three main properties: spike shape, firing rate response, and
noise-driven rise deviation, as described in equations (4.10), (4.11), (4.12), (4.16), (4.17), and
(4.22), respectively.

Figure 5.18(a) illustrates the spike shape fitting for the b-ML eNeuron, using different levels
of segmentation (details in Sec. 4.2.1 and (4.11)): one (orange plot), two (yellow plot), and
three (green plot), compared with the post-layout (PLS) spike shape (blue plot). This figure
demonstrates that increasing the segmentation fineness enhances the model’s accuracy, reducing
the error from 102.2% to 7%. For ongoing work on solving XOR and MNIST problems, the model
with three segmentations was selected due to its acceptable error margin in approximating the
actual spike shape of the b-ML eNeuron. Further refinement in segmentation could reduce the
error margin to negligible levels, although it would also increase the computational time when
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Figure 5.18: (a) Action potentials of b-ML eNeuron, showing post-layout spike response and
model fits, (b) Firing rate response of b-ML eNeuron versus Brian2 model across input currents.
Correlation and models errors are highlighted.
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Figure 5.19: (a) Mean noise-driven rise deviation of b-ML eNeuron plotted against spike index,
post-layout in blue and estimated in red, (b) Standard deviation of noise-driven rise deviation
with post-layout values in blue, estimated in red dashed, and analytical in yellow.

implementing this model in learning A-SNN. Figure 5.18(b) shows the fit of the transfer function
of the b-ML eNeuron circuit, defined by its firing rate response to varying synaptic input currents
from 0 to 10 nA. The post-layout transfer function is depicted in blue, while the model’s fit is
shown in green. The fitting function, using interpolation, achieves a near-perfect approximation
of the eNeuron’s transfer function, with an error rate of r = 0.99.

The random noise in the b-ML eNeuron circuit leads to a noise-driven rise deviation that
follows a Gaussian random walk distribution across spike events, as depicted in Fig. 4.8(b). The
average noise-driven rise deviation, defined in (4.16), demonstrates a linear increase correspond-
ing to spike occurrences. Figure 5.19(a) confirms this trend, displaying the post-layout mean
of the noise-driven rise deviation in blue and the estimated mean in red. This average linearly
accumulates noise, facilitating adjustments to achieve a zero-mean distribution, as depicted in
Fig. 4.8(c).

Regarding the standard deviation of the noise-driven rise deviation, it exhibits a nonlinear
increase with each spike. Figure 5.19(b) illustrates this non-linear accumulation with the post-
layout standard deviation shown in blue. The estimated equation for this deviation, defined in
(4.17), closely matches the post-layout simulations results, as indicated in the red dashed line.
The standard deviation of the noise accumulates incrementally, beginning with the initial spike’s
standard deviation from (4.22). The analytical expression for the standard deviation, shown
in yellow, incorporates this initial value and well matches the observed data. These findings
affirm the accuracy of the noise model for the eNeuron, and support its integration into A-SNN
synthesis with unsupervised STDP learning.
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Table 5.3: Integrated Noise Summary in eNeurons

eNeuron Device V 2
n (V) % of Total

Noise
b-ML MNK 0.165 53.42

MPNa 0.102 19.63
p-ML MNK 0.58 60.65

MPNa 0.34 21.94
AH-LIF MNK 0.22 57.7
t-LIF MNK 0.38 26.7

MPsyn 0.35 23.32

B .Noise-driven Rise Deviation Magnitudes

This section discusses the post-layout noise-driven rise deviation results for four eNeurons:
b-ML, p-ML, AH-LIF, and t-LIF, noted for their low power consumption (see Sec. 2.3.2). It is
crucial to analyze how the random noise in these circuits affects spike timings, which are essential
for synaptic weight adjustments during STDP. The eNeuron layouts with their component sizes
are detailed in Appendix D. Consistent technology (BiCMOS 55nm) across all eNeurons ensures
a fair comparison. Table 5.3 summarizes the integrated noise across the eNeurons, indicating
the main noise contributors are the transistors MNk, MPNa, and MPsyn (modeled in Fig. 4.6).
The noise observed in these components is shot noise, validating the hypotheses discussed in Sec.
4.2.2.

Figure 5.20(a) shows the standard deviation of noise-driven rise deviation for the four eNeu-
rons across spike occurrences. These results are derived from 1k-points post-layout trans-noise
simulations over a 1 ms window, with each eNeuron stimulated by the same synaptic current
(Isyn = 50 pA). The graph reveals varying spike timing deviations among the eNeurons, which
increase with successive spikes. The b-ML eNeuron (orange line) and AH-MIF eNeuron (blue
line) show substantial deviations, reaching up to 3 µs. In contrast, the p-ML eNeuron (green
line) and t-LIF eNeuron (red line) maintain deviations below 1 µs up to the 30th spike. The
lower deviation in the p-ML eNeuron is attributed to its transistor-only design, minimizing prop-
agation delays from current noise in capacitances. As shown in (4.22), deviation magnitude also
depends on the eNeuron’s firing frequency. The AH-LIF eNeuron exhibits fewer spikes over time,
leading to the highest deviation [155]. Despite variations, all eNeurons exhibit deviations in spike
timing that meet or exceed ∆Ts, crucial for synaptic weight updates in STDP.

Figure 5.20(b) shows the phase noise versus offset frequency for a fspike of 40 kHz. Results
are from post-layout Virtuoso Spectre PNOISE simulations. Each eNeuron is excited with a
different Isyn to achieve the same spiking frequency. As the offset frequency increases, phase
fluctuations and noise increase. According to (4.23), phase noise L(∆f) is inversely proportional
to Isyn and directly proportional to Cm. The b-ML eNeuron shows the highest phase noise due
to its large Cm. The p-ML eNeuron, despite lacking Cm, exhibits significant phase noise due to
low Isyn. AH-LIF and t-LIF eNeurons have lower phase noise, as they are excited by higher Isyn.

The distribution of noise-driven rise deviation in spike timing for the four eNeurons at the
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Figure 5.20: (a) Standard deviation of noise-driven rise deviation across spike occurrences for
b-ML, p-ML, AH-LIF, and t-LIF eNeurons, showing variations that increase with successive
spikes, (b) Phase noise versus offset frequency for the same eNeurons.

first and 10th spike occurrences is shown in Fig. 5.21 and Fig. 5.22, respectively. Each eNeuron
is excited by different Isyn to achieve fspike = 40 kHz. These results are based on 1k iterations
of post-layout trans-noise simulations. At the 10th spike, the AH-LIF eNeuron has the lowest
variation coefficient (76%), while the p-ML eNeuron has the highest (445%), due to its low Isyn.
According to (4.22), rise deviation increases as Isyn decreases. At the 10th spike, rise deviation
variations are higher than at the first spike, due to cumulative standard deviation as shown in
Fig. 5.19(b). For all eNeurons, noise-driven rise deviation ∆Trise,n is significant compared to
∆Ts required for STDP synaptic weight updates. Therefore, ∆Trise,n distributions indicate that
spike timing becomes a random variable influenced by noise, leading to random synaptic weight
updates in A-SNNs trained with STDP.

The distribution of fspike for the four eNeurons, shown in Fig. 5.23, is based on 1k iterations
of post-layout trans-noise simulations. This analysis is crucial to determine whether the effect
of the noise on spike timing is averaged out over time in the firing rate. The AH-LIF eNeuron
exhibited the most stable fspike with a coefficient of variation of 0.2%, while the b-ML and t-LIF
eNeurons showed a slight variation of 0.5%. In contrast, the p-ML eNeuron had a high variation
of 6% due to the absence of Cm in its design, making fspike dependent on random parasitic
capacitances in the layout, which worsens with process variability.

This study shows that the noise affects the spike timing of low-power eNeurons with high
fspike, leading to potential random updates in synaptic weights. Consequently, A-SNNs using
STDP learning with these eNeurons may experience random accuracy degradation. However,
fspike is less affected by this noise as it averages out over multiple spikes in a time window. The
next section highlights the impact of noise on STDP learning for XOR and MNIST problems.
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Figure 5.21: Distribution of ∆Trise,n in first spike timing for 1k iterations of post-layout trans-
noise for (a) b-ML eNeuron, (b) p-ML eNeuron, (c) AH-LIF eneuron and (d) t-LIF eNeuron.
Each eNeuron is excited by different Isyn to achieve fspike = 40 kHz.

130



-10 0 10 20
0

50

100

150

200

250

300

350

(a)

-100 -50 0 50 100
0

50

100

150

200

250

300

(b)

-4 -2 0 2 4 6
0

50

100

150

200

250

300

(c)

-10 0 10 20 30
0

50

100

150

200

250

300

(d)

Figure 5.22: Distribution of ∆Trise,n in 10th spike timing for 1k iterations of post-layout trans-
noise for (a) b-ML eNeuron, (b) p-ML eNeuron, (c) AH-LIF eNeuron and (d) t-LIF eNeuron.
Each eNeuron is excited by different Isyn to achieve fspike = 40 kHz.
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Figure 5.23: Distribution of fspike for 1k iterations of post-layout trans-noise for (a) b-ML
eNeuron, (b) p-ML eNeuron, (c) AH-LIF eNeuron and (d) t-LIF eNeuron. Each eNeuron is
excited by different Isyn to achieve fspike = 40 kHz.

C .Performance on XOR and MNIST Problems

The A-SNN is trained and tested according to Alg. 4.2, considering various scenarios of noise
incorporation as detailed in Sec. 4.2.3. Two problems were addressed and thoroughly explained
in Sec. 4.2.4: the XOR and the MNIST problems.

XOR Problem
Figure 5.24 presents the training and testing performance of the A-SNN across 100 epochs,

with accuracy averaged over multiple simulations. The training data is composed of a list of
the four binary input pairs ([0,0], [0,1], [1,0], [1,1]), which are presented in a random order,
and repeated 10 times during each epoch. The figure contrasts the training accuracy of scenarios
involving noiseless eNeurons (blue line, Scenario 1) with those where random noise is present (red
and green lines, representing Scenario 2 and Scenario 3, respectively), demonstrating that noise
during training leads to poor convergence and low accuracy. The boxplots on the right assess
testing accuracy under different testing scenarios: replacing noiseless eNeurons with those having
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Figure 5.24: Training and testing accuracy of the A-SNN over 100 epochs, for XOR problem and
for different scenarios of noise incorporation in the eNeuron model.

a simplified model of random noise (yellow boxplot, Scenario 3.1) results in better accuracy than
with a complete model of random noise (pink boxplot, Scenario 3.2). Despite the presence of
noise, the network can perform clustering, separating inputs [0,1] and [1,0] from [0,0] and [1,1]
during training. By extending the training period beyond the initial XOR problem, the network
achieves clustering of all four unique inputs, thereby enabling it to resolve various two-input logic
gates simply by reassigning the labels of the output neurons.

Figure 5.25 provides a 3D visualization of the XOR problem as resolved by a trained A-SNN.
Each of the plots, labeled (a) through (e), demonstrates how the network interprets varying
combinations of binary inputs, which are finely segmented into 10 slices ranging from 0 to 1.
The X-input and Y-input axes correspond to the binary inputs [x, y] that feed the two input
neurons of the A-SNN. The z-input represents the averaged predictions of the network across
numerous simulations. The color gradient on this axis, from blue to yellow, visually encodes the
prediction values, where blue indicates a prediction closer to 0 and yellow closer to 1.

Figure 5.25(c) illustrates the network’s behavior under Scenario 3, where the network has
successfully learned the XOR problem without noise, showing a clear separation between the
classes. Figures 5.25(d) and 5.25(e) correspond to Scenarios 3.1 and 3.2, respectively. These
plots show the effects of introducing simplified and more complex random noise models during
the testing phase, affecting the clarity and definition of the predictive surface. Figures 5.25(a) and
5.25(b) reflect Scenarios 1 and 2, where the network was exposed to noise during the training
phase, leading to less effective learning outcomes as evidenced by the less defined predictive
surfaces.
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Figure 5.25: 3D visualization of XOR problem resolution by a trained A-SNN, with inputs [x,
y] mapped on the X and Y axes and predictions color-coded from blue (0) to yellow (1) on the
Z-axis, for (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 3.1, and (e) Scenario 3.2.

MNIST Problem
Figure 5.26 illustrates the training and testing accuracy of A-SNN as it processes 10,000

MNIST images across different scenarios. As shown, Scenario 3 demonstrates the most rapid
learning, achieving a peak accuracy of 50.6%. However, this scenario’s learning plateaus after
processing a few thousand samples, indicating a limitation in further improving its accuracy
with additional training data. Scenario 1, using a simplified noise model, shows a slightly slower
but steady increase in learning, achieving an average accuracy nearly equivalent to Scenario
3 at 49.9%. In contrast, Scenario 2, which applies a complete noise model, demonstrates a
poorer performance. This suggests that the full noise model may be disruptive, avoiding the
network’s effective training. The boxplots on the right provide further insights into testing
accuracy variations. Notably, there is a more significant accuracy drop in Scenario 3.2, with
an average decrease of 4.5% (indicated by the pink boxplot), compared to a minor 0.2% drop
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Figure 5.26: Training and testing accuracy of the A-SNN for MNIST problem for different
scenarios of noise incorporation in the eNeuron model.

in Scenario 3.1 (shown by the yellow boxplot). This highlights the impact of different noise
considerations on the network’s robustness in testing phases.

To validate the accuracy results from Fig. 5.26, Fig. 5.27(a) shows the distribution of 1,225
neurons labeled by digit, for each scenario. Scenario 2 (shown in red) has all neurons labeled
identically, resulting in repetitive predictions and low accuracy (10%). In contrast, Scenarios 1
(shown green) and 3 (shown blue) present a more diverse labeling, indicating multiple neurons
achieving peak firing rates for each digit. Figure 5.27(b) presents the receptive fields of three
labeled neurons per digit per scenario, reflecting the patterns learned by the network. The color
bar represents the activation level of neurons, ranging from dark blue (0) for minimal activation
to yellow (1) for maximum activation. Consistent with the labeling distribution, Scenarios 1 and
3 feature neurons labeled for each digit, although some inaccuracies are noted, such as neurons
labeled as ‘4’ showing shapes like ‘9’. These inconsistencies explain why the SNNs perform better
than random guessing (10%) but do not achieve a robust accuracy. Scenario 2 does not respond
to any label except for label 1, and its response is incorrect, showing ‘0’.

The results from the XOR and MNIST problems underscore the significant impact of noise
on the performance of the A-SNN with unsupervised STDP learning. The impact is most pro-
nounced in Scenario 2, where the noise model is fully realized through accumulation over spike
occurrences. In contrast, Scenario 1, which simplifies noise to an average value at each spike
occurrence, shows a lesser impact. When noise is introduced only during the testing phase, as
in Scenario 3.1 (simplified noise model) and Scenario 3.2 (complete noise model), the accuracy
drop due to random noise remains below 5% in both cases. These results suggest that the drop
in accuracy in Scenarios 1 and 2 is likely caused by the training not converging properly. These
findings support the implementation of efficient learning methods that can achieve high accuracy,
with minimal accuracy degradation due to noise.
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Figure 5.27: (a) Label distribution of neurons across scenarios, (b) receptive fields of labeled
neurons for MNIST problem.
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5.3 . Conclusion

This chapter provided a comprehensive overview of the performance and operational results
obtained from this thesis. It focused on the efficacy of the end-to-end RF NeuroAS system
introduced in Chap. 3, showcasing its capability for energy-efficient source localization. For
a 10-degree angular resolution, the system achieved a localization accuracy of 96.7% using the
SimLocRF dataset and 93.9% with the MeasLocRF dataset, derived from anechoic chamber
measurements. Despite varying signal-to-noise ratios, it maintained high accuracies with a low
power consumption of 233 nW. Post-layout simulations of the neuromorphic pre-processing stage
of the RF NeuroAS system demonstrated its high effectiveness in converting received power to
spike rate and in identifying bit patterns. It achieved a 30 dB dynamic range and displayed
robustness across temperature variations. A simplified version of the RF NeuroAS system,
implemented in an analog circuit, consistently used just over 1.1 nW, tested across angular
resolutions of 5, 12, and 20 degrees.

Subsequently, the chapter examined the integration of deep learning and STDP, both in-
troduced in Chap. 4 into the A-SNN, a fundamental element of the RF NeuroAS system. For
deep learning, performance evaluations of the A-SNN using the MNIST problem showed vari-
able accuracies influenced by the eNeuron transfer functions. A maximum accuracy of 90% in
training and 83% in testing was achieved when using ML eNeurons. Moreover, high energy ef-
ficiency in eNeurons often led to decreased accuracy, reflecting the inherent constraints of deep
learning methods. Meanwhile, STDP learning, applied to both the XOR and MNIST problems,
demonstrated accuracies that depended critically on the eNeuron circuit noise management. Pre-
liminary results demonstrated that the A-SNN with either simplified or omitted random noise
modeling performed better than those with full noise modeling. However, if random noise was
neglected during the training phase, the reintroduction of noise modeling in the testing phase
caused an average accuracy drop of only 0.2% for the simplified model of random noise and 4.5%
for the whole model.
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Chapter 6

Conclusion and Perspectives

6.1 . Thesis Conclusions

The rapid growth of the Internet of Things (IoT) necessitates advanced edge AI-based solu-
tions that reduce energy requirements for data transmission, enhance privacy, and make devices
more intelligent and autonomous [5, 6]. This evolution requires the development of specialized
hardware, efficient algorithms for resource-constrained devices, and innovative neural networks
that operate at the edge. Neuromorphic computing, inspired by brain functionality, offers a
promising approach to address these needs [11, 12]. Many studies have focused on developing new
neuromorphic hardware to overcome the limitations of traditional von Neumann architectures.
Other studies have concentrated on bio-plausible algorithms to enhance learning efficiency, while
additional efforts aim to evolve neural network models from abstract continuous neuron represen-
tations to spiking asynchronous models. These diverse advancements are primarily demonstrated
in applications aimed at mimicking human sensory functions, thus diverging from typical IoT re-
quirements. Moreover, few neuromorphic implementations are designed as complete end-to-end
systems, often lacking integral pre-processing procedures and requiring digitization. This gap
highlights the need for more focus on neuromorphic implementations to leverage its potential for
IoT requirements.

This thesis explored the potential of neuromorphic computing to meet the energy efficiency
demands of IoT applications, with a particular focus on Radio Frequency (RF) localization. It
introduced an end-to-end analog spike-based neuromorphic system (RF NeuroAS) designed for
precise and energy-efficient AI-based RF localization. This system was designed to identify source
positions within a full 360-degree range on a two-dimensional plane, maintaining a resolution of 1
or 10 degrees, even under noisy conditions. It primarily included a neuromorphic pre-processing
stage, followed by an analog-based spiking neural network (A-SNN). The neuromorphic pre-
processing stage was implemented in an analog circuit that translated RF signals into spike trains,
where the frequency of these spikes correlated with the power of the RF signal. Subsequently,
A-SNN was trained and tested using the TensorFlow platform, supported by two datasets for
localization developed specifically for this thesis: SimLocRF, derived from MATLAB simulations,
and MeasLocRF, obtained from measurements in an anechoic chamber.

This thesis included an in-depth examination of the learning process for the A-SNN, which
was a network comprising analog spiking neurons and synaptic models. The primary goal of
this study was to develop an adaptable learning strategy for the A-SNN that accounts for the
post-layout transfer functions of the eNeuron physical design, the intrinsic random noise from
transistors, and the process variability characteristics during weight adjustments. Two learn-
ing methods for the A-SNN were explored: software-based deep learning (DL) and biologically
plausible spike-timing-dependent plasticity (STDP). For both methods, a theoretical analysis
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assessed the feasibility of each approach for the A-SNN. Subsequently, a synthesis was developed
and validated using the MNIST and XOR problems.

The results affirmed the efficacy of the RF NeuroAS system in RF localization and validated
the analyses of the learning techniques used. For a resolution of 10 degrees and at a 20 dB
signal-to-noise ratio (SNR), the RF NeuroAS achieved a localization accuracy of 96.7% with
the SimLocRF dataset and approximately 93.9% with the MeasLocRF dataset. The accuracy
degraded with decreasing SNR, but the system maintained a low power consumption in the
range of nanowatts. A simplified version of the RF NeuroAS, fully implemented in BiCMOS 55
nm technology, demonstrated an ultra-low power consumption of 1.1 nW for a dynamic range
of 30 dB. The learning of the A-SNN via DL showed a dependency on the non-linearity of the
transfer function and the dynamic range of the A-SNN’s neuron model, which could influence
the activation function. For the MNIST problem, learning via DL achieved an accuracy of 90%
in training and 83% in testing. The learning of the A-SNN via STDP showed a dependency
on the random noise of the circuit, potentially affecting spike timing. Simulations for the XOR
and MNIST problems showed a strong impact when noise was present during training. However,
when noise was introduced only during the testing phase, the accuracy drop was less than 5%.

6.2 . Perspectives

6.2.1 . Full Implementation of RF NeuroAS System for Localization
The RF NeuroAS system, mainly composed of the neuromorphic pre-processing and the A-

SNN, made its proof on RF source localization at the system level [16]. It took into consideration
the post-layout simulation results from the neuromorphic preprocessing, which had already been
fully implemented and validated at the layout level. However, it only considered the post-
layout simulation results for the individual neuron and synapse circuits of the A-SNN, without
addressing the constraints that arose when the A-SNN was fully implemented with all neuronal
and synaptic connections at the layout level. Only a simplified version of the RF NeuroAS,
featuring a smaller A-SNN, was implemented in an analog circuit and validated through post-
layout simulation results.

The next step will be to fully implement the RF NeuroAS system, starting from the schematic
design and progressing to the layout and eventual fabrication. This effort will build on the work
submitted in [25], where a complete analog neural network is implemented at the layout level.
This study highlighted the tools needed for connecting synapses and neurons at the physical
level and provided the detailed synthesis of training and testing for such implementations. It
presented post-layout simulation results of the network, which was trained using TensorFlow
and deep learning techniques and tested at the layout level. The approach was validated on a
simple problem of determining whether a point lies inside a circle. Future work might extend
this approach, featured in [25], by developing a more complex analog neural network for tackling
more advanced RF localization problems as mentioned in [16]. This perspective would allow for
an advanced evaluation of the RF NeuroAS system’s capabilities and its application in energy-
efficient RF source localization.
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6.2.2 . Considering an Advanced RF Environment for Localization

In this thesis, the RF NeuroAS system identified source positions within a specific 2D plane
configuration, where the source occupied a position within a circle defined by angle θs and radius
ds from the origin. The RF environment was considered a free-space scenario, specifically in an
anechoic chamber, meaning that interferences and reflections were not taken into consideration.
Moreover, the RF NeuroAS system relied on detecting power levels (i.e. RSS detection) as the
key information from received signals.

Future works will push the boundaries to advanced scenarios, such as considering configura-
tions where sources are located in a 3D plane or identifying trajectories other than the circular
path considered in this thesis, or including multi-path scenarios. These advanced considerations
in the RF environment will require several adaptations. Firstly, the datasets generated (Sim-
LocRF in MATLAB and MeasLocRF from anechoic chamber measurements) will need to be
adapted to handle these advanced scenarios. This will involve using new data from real-world
scenarios beyond anechoic-chamber measurements. The process will start by placing objects
in the anechoic chamber to consider a few reflections and will progress to obtaining data di-
rectly from real-world environments outside the chamber. Secondly, the RF NeuroAS system
will need to be extended to a more complex version to handle these advanced scenarios. This
might involve adding more receivers to capture additional data, developing a higher-performance
pre-processing stage to achieve a higher dynamic range, and creating a more complex neural net-
work with additional hidden layers and optimized hyperparameters. Finally, an advanced type of
detection will be needed rather than the simple RSS detection, which leads to reduced accuracy
in multi-path scenarios, where power levels are significantly affected by interference. Therefore,
other measurement techniques, such as time of arrival, angle of arrival, or the methods described
in Sec. 2.1.2, shall be considered.

6.2.3 . Intrinsic Random Noise Impact on STDP Learning

The feasibility of unsupervised STDP for the A-SNN was thoroughly examined in this thesis
(see details in Sec. 4.2 and related papers [21], [22]), aiming to establish a biologically inspired
learning method suitable for A-SNN. It examined how random noise from transistors in analog
circuits influences spike timings, which are crucial for STDP-based weight adjustments. The
results for both XOR and MNIST problems indicated a significant impact when noise was present
during network training, raising the question of whether this noise can be adjusted or even
leveraged beneficially for learning. It is recognized that biological neural networks employ noise
to improve learning efficiency, suggesting a potentially beneficial role for noise in computational
models such as SNNs. Consequently, future work could develop a new methodology inspired
by biological techniques to improve the learning capabilities of STDP, particularly in addressing
noise within A-SNNs [231]. Additionally, this methodology could draw from advanced techniques
developed in current research to either mitigate noise [232] or transform it into a resource for
computation and learning [233], [234].

Additionally, this work on STDP learning with A-SNN primarily focused on the post-layout
results of the neuron circuit, while using a mathematical model of the synapse. An analog
circuit implementation of a synapse adaptable for STDP learning has already been demonstrated
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in [152]. The next step could involve incorporating both components—the neuron and the
synapse—into the learning framework of the A-SNN using STDP, fully accounting for electrical
constraints, particularly noise.
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Résumé Étendue en Français
1 . Introduction

Imaginez un monde où les machines communiquent sans heurt, où les usines fonctionnent de
manière autonome et où les systèmes intelligents anticipent nos besoins avant même que nous les
exprimions. Imaginez des véhicules qui naviguent de manière autonome dans les rues animées des
villes, et des bras robotiques qui effectuent des chirurgies complexes avec une précision inégalée.
Imaginez une montre qui fait bien plus que compter les minutes — elle compte vos pas, surveille
votre santé, gère vos paiements et vous tient au courant avec des notifications. Imaginez un
assistant virtuel si intuitif qu’il semble humain, capable de gérer vos tâches quotidiennes et de
participer à toute conversation avec une compréhension approfondie. Cette vision, qui semblait
relever de la science-fiction, est en train de devenir une réalité grâce aux avancées monumentales
du 21ème siècle dans la quatrième révolution industrielle, l’Industrie 4.0, alimentée par l’Internet
des objets (IoT) et l’intelligence artificielle (IA).

L’IoT représente un changement révolutionnaire, redéfinissant les modes de vie traditionnels
grâce à la technologie avancée. À ce jour, des milliards de ces dispositifs peuplent le globe, et
selon les prévisions de IoT Analytics, le nombre de connexions IoT dépassera les 29 milliards d’ici
2027. Cette croissance considérable soutient un large éventail d’applications, impactant divers
secteurs tels que la santé, les transports, les dispositifs portables, l’automatisation domestique,
les opérations industrielles et l’agriculture. Capitalisant sur les avancées de l’intelligence artifi-
cielle (IA) et du cloud computing, l’IA basée sur le cloud centralise le traitement des données
dans l’écosystème IoT, élargissant ses applications grâce à l’augmentation des objets connectés.
Toutefois, cette croissance rapide exerce une pression sur les capacités du cloud, soulignant ses
limites en termes de latence et de bande passante. Pour y remédier, l’IA de périphérie est utilisée
pour traiter les données plus près de leur source, réduisant la latence, les besoins énergétiques,
et améliorant la sécurité et la confidentialité.

Dans le cadre de l’Industrie 4.0, la tendance actuelle en IA se concentre sur les réseaux de
neurones profonds (DNN) pour résoudre des problèmes complexes avec de hautes performances,
élargissant ainsi les applications de l’IA dans divers domaines. Ces modèles d’IA se composent
de réseaux à couches multiples et densément connectées, utilisant principalement l’algorithme
de rétropropagation qui requiert un ajustement précis des paramètres. Leur formation néces-
site de grands ensembles de données et d’importantes ressources informatiques. À mesure que
les capacités de l’IA s’étendent, les défis associés augmentent également, notamment en termes
de demandes computationnelles qui surpassent la loi de Moore, entraînant une consommation
énergétique élevée et des besoins accrus en stockage. Pour relever ces défis, le domaine de
l’IA se tourne vers des solutions plus écoénergétiques, telles que l’IA en périphérie, qui opti-
mise l’efficacité énergétique en traitant les données directement à la source, réduisant ainsi les
transferts fréquents de données. Cependant, cette approche nécessite un matériel spécialisé et
des conceptions de réseaux neuronaux innovantes adaptées aux ressources limitées des appareils
de périphérie. Une solution prometteuse réside dans le calcul neuromorphique, inspiré par le
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cerveau, pour développer des solutions d’IA plus efficaces et économes en énergie.
Le calcul neuromorphique est apparu comme une approche prometteuse pour gérer les de-

mandes computationnelles de l’IA et de l’apprentissage profond, tout en répondant aux besoins
d’efficacité énergétique des applications IoT. En imitant les capacités de traitement efficaces,
adaptatives et rapides du cerveau humain, le calcul neuromorphique est priorisé pour plusieurs
raisons. Les systèmes neuromorphiques atteignent une haute efficacité énergétique et une la-
tence réduite en effectuant des calculs en mémoire, se détachant des architectures von Neumann
conventionnelles. Ces systèmes excellent dans le traitement parallèle et les opérations en temps
réel en simulant les réseaux neuronaux biologiques par le biais de calculs pilotés par événements.
Spécifiquement, ils s’appuient sur les réseaux de neurones à impulsions (SNNs), qui activent les
neurones uniquement lorsque cela est nécessaire, optimisant ainsi l’efficacité et s’alignant sur les
dynamiques temporelles des neurones à impulsions.

Au cours des dernières années, les implémentations matérielles du calcul neuromorphique
ont considérablement progressé, avec des développements couvrant les plateformes numériques,
analogiques et mixtes utilisant à la fois les technologies CMOS traditionnelles et émergentes.
Les implémentations les plus courantes se sont concentrées sur la réplication des fonctions sen-
sorielles humaines, telles que la reconnaissance visuelle et auditive, divergeant ainsi des besoins
spécifiques des applications IoT. Les dispositifs IoT fonctionnent différemment dans leurs fonc-
tions de capteurs, incluant la localisation des dispositifs, la détection de la pression et de la
température. Cet écart souligne le besoin critique de systèmes neuromorphiques spécialement
conçus pour répondre aux exigences uniques des applications IoT.

2 . Contributions de la thèse

Cette thèse est multidisciplinaire, reliant la microélectronique, l’électromagnétisme et l’in-
telligence artificielle. Elle vise à répondre au besoin d’applications IoT intelligentes à faible
puissance via une approche neuromorphique analogique basée sur des impulsions. L’application
principale ciblée par cette thèse est la localisation en fréquence radio (RF) d’un émetteur IoT avec
une précision comparable aux solutions basées sur l’IA, tout en étant nettement plus écoénergé-
tique et respectueuse de l’environnement. C’est une application critique, alors que la demande
pour des solutions écoénergétiques et précises dans l’IoT intelligent s’intensifie. Les principales
contributions de cette thèse peuvent se résumer comme suit :

• Conception d’un système neuromorphique RF complet (RF NeuroAS): Ce sys-
tème utilise une approche basée sur des impulsions analogiques pour émuler les capacités
cérébrales dans l’adressage des défis de localisation RF. Il identifie les positions des émet-
teurs IoT dans une plage de 360 degrés sur un plan bidimensionnel, maintenant une haute
résolution (10 ou 1 degré) même dans des conditions bruyantes. Ce travail comprend la
configuration de l’environnement RF, l’extraction de données impliquant la génération de
jeux de données, le prétraitement et la conception de réseaux neuronaux. Les commu-
nications scientifiques mettant en avant cette contribution sont disponibles dans [16] et
[17].
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• Implémentation d’un design de circuit entièrement analogique pour une version
simplifiée du système RF NeuroAS, utilisant la technologie BiCMOS 55 nm. Cela
valide la faisabilité des solutions RF NeuroAS basées sur le matériel pour la localisation,
prouvant une consommation d’énergie ultra-faible dans les simulations post-layout. Les
communications scientifiques mettant en avant cette contribution sont disponibles dans
[18], [19], et [20].

• Étude de faisabilité des techniques d’apprentissage sur des réseaux neuronaux à
impulsions basés sur l’analogique, en considérant les modèles et les contraintes de con-
ception de circuits des composants neurones et synapses. Les techniques d’apprentissage
explorées incluent l’apprentissage profond et la plasticité dépendante du temps de l’im-
pulsion. Les communications scientifiques mettant en avant cette contribution sont dispon-
ibles dans [21], [22], [23],[24], [25], et [26].

Le Chapitre 2 offre un aperçu du développement et de l’évolution de l’IA, de l’apprentissage
profond et du calcul neuromorphique dans la littérature, et décrit les efforts de recherche basés
sur l’IA dans le domaine de la localisation. Le Chapitre 3 présente en détail le système RF
NeuroAS et chacun de ses composants, tandis que le Chapitre 4 détaille l’analyse de faisabilité
des techniques d’apprentissage d’un point de vue théorique. Le Chapitre 5 présente les résultats
détaillés obtenus dans cette thèse, correspondant aux performances du RF NeuroAS et aux
résultats de faisabilité.

3 . Vers une localisation RF efficace : Une approche neuromorphique
analogique basée sur des impulsions

Ce chapitre présente un système neuromorphique analogique complet (RF NeuroAS) conçu
pour une localisation RF précise et écoénergétique basée sur l’IA. Ce système est conçu pour
identifier les positions sources dans une plage complète de 360 degrés sur un plan bidimensionnel,
avec une résolution de 10 degrés, même dans des conditions bruyantes. Une version raffinée du
RF NeuroAS est introduite, conçue pour une précision accrue dans la localisation des sources
tout en maintenant une faible consommation d’énergie, atteignant une résolution angulaire de 1
degré. Des détails supplémentaires sont disponibles dans l’Annexe A.

Figure 6.1 illustre l’architecture du RF NeuroAS, divisée en quatre composants clés : la con-
figuration de l’environnement RF, l’extraction des données, le prétraitement neuromorphique et
le réseau neuronal analogique à impulsions. La première étape organise l’arrangement des an-
tennes sources et réceptrices dans le champ RF, permettant une identification précise de la source
par l’angle de coordonnées θs et la distance ds. La deuxième étape se penche sur l’extraction des
données de l’environnement RF, menant à la création de deux bases de données analytiques et ex-
périmentaux pour la localisation : SimLocRF, dérivé des simulations MATLAB, et MeasLocRF,
obtenu à partir de mesures dans une chambre anéchoïque. La troisième étape est le prétraite-
ment neuromorphique, mis en œuvre dans un circuit analogique qui traduit les signaux RF en
trains d’impulsions, où la fréquence de ces impulsions est corrélée à la puissance du signal RF. La
dernière étape est le réseau neuronal à impulsions basé sur l’analogique (A-SNN), incorporant les
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Figure 6.1: Architecture au niveau système de RF NeuroAS pour la localisation de source,
comprenant quatre étapes : configuration de l’environnement RF, extraction des données, pré-
traitement neuromorphique, et réseau neuronal analogique à impulsions. Les sorties incluent la
position de la source, donnée sous forme d’angle θs et de distance ds.

fonctions des neurones à impulsions analogiques (eNeurons) et des synapses (eSynapses). A-SNN
est formé et testé en utilisant la plateforme TensorFlow, avec les deux bases de données.

4 . Étude de faisabilité des réseaux neuronaux à impulsions analogiques :
Des eNeurons à impulsion aux techniques d’apprentissage

Ce chapitre comprend une étude approfondie du processus d’apprentissage pour le A-SNN,
qui est un réseau composé de neurones à impulsions analogiques (eNeurons) et de synapses.
L’objectif principal de cette étude était de développer une stratégie d’apprentissage adaptable
pour l’A-SNN, qui tienne compte des fonctions de transfert post-layout de la conception physique
de l’eNeuron, du bruit aléatoire intrinsèque des transistors et des caractéristiques de variabilité
du processus lors des ajustements de poids. Deux méthodes d’apprentissage pour le A-SNN ont
été explorées : l’apprentissage profond (DL) et la plasticité dépendante du temps de l’impulsion
(STDP) biologiquement plausible.

4.1 . Approche d’apprentissage profond pour A-SNN

Avant de développer un cadre de synthèse pour le A-SNN, une étude de faisabilité a été menée
pour examiner si l’apprentissage profond pouvait être appliqué ou non sur A-SNN. L’applicabilité
de l’apprentissage profond suggère une comparaison entre les propriétés du DNN et du A-SNN,
principalement sur la structure et les caractéristiques de la fonction d’activation. En considérant
un DNN, si le réseau est entièrement composé d’activations linéaires, quel que soit sa profondeur
(c’est-à-dire le nombre de couches), il peut finalement être simplifié à une seule fonction linéaire
de l’entrée à la sortie. Par conséquent, le réseau pourrait être équivalamment représenté par
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juste une couche d’entrée et une couche de sortie, annulant effectivement les avantages potentiels
de la technique d’apprentissage profond. En se basant sur cette propriété, l’étude de faisabilité
se penche sur l’expression analytique de la sortie du A-SNN, et prouve que : chaque fois que
l’eNeuron et l’eSynapse au sein du A-SNN ont des fonctions de transfert linéaires, cela conduit à
un réseau composé uniquement de fonctions d’activation linéaires et donc l’apprentissage profond
n’est pas faisable.

Par conséquent, pour l’applicabilité de l’apprentissage profond sur A-SNN, la plage appro-
priée où l’eNeuron et l’eSynapse ont de la non-linéarité dans leurs fonctions de transfert a été
examinée. Le cadre de synthèse a été développé dans Algo. 4.1 en impliquant l’entraînement
et le test du A-SNN dans TensorFlow, en tenant compte des contraintes et caractéristiques du
circuit. La synthèse du A-SNN à travers l’apprentissage profond comprend plusieurs étapes clés,
comme suit.

1- Considérer le modèle eNeuron et eSynapse. Cela est réalisé en chargeant les fonc-
tions de transfert des circuits eNeurons et eSynapses à partir des simulations post-layout et
identifier en fonction d’elles la fonction d’activation du A-SNN, utilisée pendant le processus
d’apprentissage profond.

2- Considérer la variabilité du processus lors des ajustements de poids. Cela
est réalisé en considérant un poids synaptique variable pour la phase de test du A-SNN, où
la moyenne est le poids synaptique obtenu après la phase d’entraînement. La représentation
statistique des poids synaptiques vise à tenir compte des variances que le matériel pourrait
introduire en raison de la variabilité du processus (mismatchs), assurant une évaluation précise
du A-SNN.

Ce cadre est illustré à travers la résolution du problème MNIST, comme démonstration
des performances du A-SNN lors de l’application de la technique d’apprentissage profond. Il
comprend l’applicabilité de DL suivant trois différents A-SNN : un avec l’eNeuron biomimé-
tique (b-ML eNeuron), un avec une version simplifiée biomimétique (s-ML eNeuron), et un avec
l’eNeuron le moins biomimétique (AH-LIF eNeuron).

4.2 . Approche de l’apprentissage temporel (STDP) pour A-SNN
Pour explorer le potentiel de la STDP avec A-SNN, un modèle complet d’eNeuron doit

être considéré pour la synthèse. Trois propriétés principales doivent être extraites des simula-
tions post-layout et intégrées dans le modèle : son comportement d’impulsion dans le temps, sa
fréquence d’impulsions en fonction de l’excitation d’entrée, et la variabilité du bruit inhérent des
transistors au sein du circuit analogique. Cette dernière est particulièrement importante pour
les applications d’apprentissage STDP, où le bruit peut causer des variations dans le timing des
impulsions, un facteur crucial pour ajuster les poids synaptiques par STDP. Ainsi, une analyse
approfondie du bruit de l’eNeuron est menée pour modéliser ce bruit et estimer son ampleur dans
le circuit ainsi que son impact sur le timing des impulsions. Il est identifié par une distribution
de Gaussian random walk sur les occurrences des impulsions dans le temps, avec un écart-type
dépendant des paramètres du circuit, du courant synaptique d’entrée, et du taux d’impulsions.

Suite à cela, un cadre de synthèse est développé pour A-SNN basé sur cette technique
d’apprentissage temporel, présenté dans Algo. 4.2. Il organise les phases d’entraînement et de
test du A-SNN au sein du simulateur Brian 2, par une technique STDP non supervisée. Ce cadre
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est démontré à travers la résolution des problèmes XOR et MNIST, comme une démonstration
des performances du A-SNN lors de l’application de l’apprentissage STDP bio-plausible.

5 . Résultats

Ce chapitre vise à présenter les résultats de performance dérivées de cette thèse, soulignant
l’efficacité du RF NeuroAS pour réaliser une localisation de source écoénergétique et les résultats
pratiques de l’utilisation des techniques d’apprentissage au sein du A-SNN.

5.1 . Performance de RF NeuroAS

Cette section présente les résultats du système RF NeuroAS, en commençant par la validation
des caractéristiques des bases de données utilisés pour son apprentissage, et en présentant ensuite
sa performance dans la localisation de sources RF. Figure 6.2 illustre les motifs de puissance reçus
par les quatre récepteurs sur une gamme complète de 360 degrés, obtenus à partir de la base
de données SimLocRF (Fig. 6.2(a)) et la base de données MeasLocRF (Fig. 6.2(b)). Dans les
deux cas, la source est positionnée à 0,5 mètre de l’origine et émet un signal de 10 dBm dans un
environnement SNR de 20 dB. Les données simulées dans la Fig. 6.2(a) présentent une courbe
cohérente de puissance reçue de -20 à -29 dBm tout au long de la rotation de la source, dans la
plage dynamique correspondante de l’étape de prétraitement neuromorphique. Inversement, les
données expérimentales dans la Fig. 6.2(b) montrent des fluctuations de -20 à -31 dBm en raison
des irrégularités de la chambre anéchoïque, telles que les propriétés des matériaux, l’équipement
pratique et les variations des motifs d’antenne.

Figure 6.3 montre la précision angulaire (Fig. 6.3(a)) et l’erreur angulaire (Fig. 6.3(b))
à travers trois scénarios d’entraînement et de test et à trois niveaux de SNR différents. Lors
de l’utilisation des bases de données SimLocRF ou MeasLocRF, 70% des données sont allouées
pour la phase d’entraînement et de validation, tandis que les 30% restants sont utilisés pour
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Figure 6.2: Illustration de la puissance reçue (en dBm) aux quatre récepteurs en fonction de
l’angle de la source, variant de 0 à 360 degrés par incréments de 10 degrés. Le panneau (a)
montre les données de SimLocRF, tandis que le panneau (b) présente les données de MeasLocRF.
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Figure 6.3: Performance du A-SNN à une résolution de 10 degrés en termes de (a) précision
angulaire (en%) et (b) erreur angulaire normalisée (en degrés) de la position de la source, pour
trois scénarios différents de formation et de test, et pour trois niveaux de SNR.

les tests. La précision angulaire la plus élevée, 96.7%, est obtenue lorsque le réseau est formé
et testé avec la base de données SimLocRF dans l’environnement le moins bruyant (SNR = 20
dB). L’exactitude tend à diminuer avec la baisse du SNR et lors du passage à la base de données
MeasLocRF, car les fluctuations augmentent. La précision la plus basse, 80.4%, se produit dans
l’environnement le plus bruyant à 0 dB SNR, en particulier lorsque le réseau est formé avec des
données SimLocRF et testé sur de nouvelles données MeasLocRF non vues.

L’erreur angulaire est calculée par 1/(Nf×RE)·
∑Nf

i=1 |θsi−θ̂si|, où θsi et θ̂si sont les angles de
source réels et prédits, respectivement, à travers Nf échantillons de test, et RE est la résolution
fixée à 10 degrés. À un SNR de 20 dB, les valeurs de NAE les plus basses enregistrées — 0.02,
0.07, et 0.12 pour les premier, deuxième et troisième scénarios respectivement — démontrent
une haute précision dans l’estimation angulaire. De plus, même au niveau de SNR difficile de 0
dB, les valeurs de NAE les plus élevées de 0.11, 0.15, et 0.22 pour les scénarios respectifs restent
dans une fourchette acceptable.

Selon la méthodologie d’estimation de la consommation d’énergie, le système RF NeuroAS,
composé de 60 eNeurons ML et de 492 eSynapses, consomme seulement 255 nW de puissance. Ces
résultats démontrent la robustesse du réseau neuronal en termes de performance et sa capacité à
maintenir une architecture simple et à faible puissance, bien adaptée à la localisation RF efficace.
De plus, une version simplifiée du RF NeuroAS, avec un réseau plus petit entièrement implémenté
en technologie BiCMOS 55 nm, a démontré une consommation d’énergie ultra-faible de 1.1 nW
pour une gamme dynamique de 30 dB.

5.2 . Avancées dans les techniques d’apprentissage pour les réseaux neuronaux
à impulsions analogiques

L’apprentissage du A-SNN via DL montre une dépendance à la non-linéarité de la fonction
de transfert et à la gamme dynamique du modèle de neurone du A-SNN, qui pourrait influencer
la fonction d’activation. L’apprentissage via DL est validé à travers le problème MNIST, en
utilisant A-SNN avec différents types d’eNeurons. Figure 6.4 illustre la précision du A-SNN
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Figure 6.4: Résultats de précision pour le A-SNN dans la résolution du problème MNIST,
en utilisant le eNeuron s-ML. Les scénarios restreints et non restreints sont considérés pour
l’entraînement et le test.

pendant les phases d’entraînement et de test pour le problème MNIST, utilisant l’eNeuron s-
ML, et pour deux scénarios : un non restreint où toute la gamme de la fonction de transfert de
l’eNeuron est prise en compte, et l’autre restreint où seule une partie de la gamme dynamique est
prise en compte pour une efficacité énergétique élevée. Les scénarios non restreints et restreints
montrent des améliorations substantielles de la précision de l’entraînement jusqu’à l’époque 40,
atteignant 0.9 à l’époque 100. Pour le scénario non restreint, l’apprentissage via DL a atteint
une précision de 90% en entraînement et 83% en test. La précision des tests chute de 16% dans
le cas restreint à 0.74.

L’apprentissage via STDP a montré une dépendance au bruit aléatoire du circuit, affectant
potentiellement le timing des impulsions. Figure 6.5 illustre la précision de l’A-SNN pendant et
après l’entraînement, lorsqu’il traite 10 000 images MNIST dans différents scénarios. Comme
montré, le scénario 3 (modèle sans bruit de l’eNeuron) démontre l’apprentissage le plus rapide,
atteignant une précision maximale de 50.6%. Le scénario 1, utilisant un modèle de bruit simplifié,
montre une augmentation de l’apprentissage légèrement plus lente mais régulière, atteignant une
précision moyenne presque équivalente à celle du scénario 3, soit 49.9%. En revanche, le scénario
2, qui applique un modèle de bruit complet, montre une performance inférieure. Cela suggère
que le modèle de bruit complet peut être perturbateur, empêchant un entraînement efficace du
réseau. Les boxplots à droite fournissent des informations supplémentaires sur les variations de
précision après l’entraînement. Il est notable qu’il y a une baisse de précision plus significative
dans le scénario 3.2 (modèle de bruit complexe uniquement en phase de test), avec une diminution
moyenne de 4.5% (indiquée par le boxplot rose), par rapport à une baisse mineure de 0.2% dans
le scénario 3.1 (modèle de bruit simplifié uniquement en phase de test) (montrée par le boxplot
jaune). Cela souligne l’impact des différentes considérations de bruit sur la robustesse du réseau
en phases de test.
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Figure 6.5: Résultats de précision pour le A-SNN dans la résolution du problème MNIST,
en utilisant le eNeuron s-ML. Les scénarios restreints et non restreints sont considérés pour
l’entraînement et le test.

6 . Conclusion

La croissance rapide de l’Internet des Objets (IoT) nécessite des solutions avancées basées
sur l’IA en périphérie qui réduisent les besoins énergétiques pour la transmission des données,
améliorent la confidentialité et rendent les dispositifs plus intelligents et autonomes. Le neuro-
morphisme, inspirée par les fonctionnalités du cerveau, propose une approche prometteuse pour
répondre à ces besoins. Cette thèse explore le potentiel du neuromorphique pour satisfaire les
demandes d’efficacité énergétique des applications IoT, avec un focus particulier sur la localisa-
tion par fréquence radio (RF). Elle introduit un système neuromorphique analogique complet,
RF NeuroAS, conçu pour une localisation RF précise et économe en énergie. Ce système est
capable d’identifier des positions sources dans une gamme complète de 360 degrés sur un plan
bidimensionnel, avec une résolution de 1 ou 10 degrés, même dans des conditions bruyantes.
La thèse examine également en profondeur le processus d’apprentissage pour le réseau neuronal
analogique, un élément clé de RF NeuroAS. Deux méthodes d’apprentissage pour le A-SNN ont
été explorées: l’apprentissage via le deep learning (DL) et la plasticité dépendante du temps des
impulsions (STDP). Les résultats démontrent la robustesse du RF NeuroAS en termes de perfor-
mance et sa capacité à maintenir une architecture simple et à faible puissance, bien adaptée à la
localisation RF efficace. De plus, les résultats confirment l’efficacité de l’apprentissage via le DL
et la STDP, tout en mettant en évidence les contraintes et les limitations associées. Ces résultats
marquent des avancées dans les applications IoT économes en énergie grâce au neuromorphique,
promettant des percées dans l’IoT intelligent à faible consommation d’énergie inspirées par les
mécanismes du cerveau.

151



152



Appendices

153



154



Appendix A

RF NeuroAS System with 1-degree Angular Resolution

1 . System Architecture

The RF NeuroAS, an analog spiking-rate neuromorphic system designed for efficient RF
source localization, is discussed in detail in Chap. 3. This system can pinpoint the source
positions with a 10-degree angular resolution. An enhanced version of the RF NeuroAS sys-
tem, featuring a refined 1-degree resolution, is presented in this appendix. Like its 10-degree
counterpart, this system also employs received signal strength (RSS) detection and spiking-rate
computing, thus bypassing the need for signal digitization. The system-level architecture of the
RF NeuroAS, optimized for 1-degree resolution source localization, is depicted in Fig. A.1. It
includes four principal stages: setting up the RF configuration for transmitter and receiver place-
ment, extracting data for signal capture and dataset generation, neuromorphic pre-processing to
transform RF signals into spike trains, and an analog spiking-rate neural network (A-SNN) to
estimate source positions.

The RF configuration setup for the 1-degree resolution RF NeuroAS system mirrors that of
the 10-degree version, extensively outlined in Sec. 3.1. This setup includes one mobile source
and four stationary receivers arranged on a 2D plane. The source’s position is determined by
coordinates, defined by a distance (ds) and an angle (θs) from the origin of the plane, with
the distance being either 0.1, 0.3, or 0.5 meters and the angle ranging from 0 to 360 degrees
in 1-degree increments. Receivers are strategically placed at the midpoint of each boundary of
the plane to maximize coverage and enhance localization accuracy within the 2D configuration.
Following this setup, signals are collected from various source positions under different noise
conditions to create two critical datasets. These datasets are essential for evaluating the decision-
making efficiency of the RF NeuroAS system. The first, SimLocRF, is a simulated dataset
generated in MATLAB, and the second, MeasLocRF, consists of empirical data obtained through
measurements, both created using the methodology described in Sec. 3.2. The third stage of the
system, the neuromorphic pre-processing stage,is identical to that used in the 10-degree system
and detailed in Sec. 3.3, converting the RF signals from these datasets into spike trains using
eNeurons.

The final stage,the A-SNN, marks the primary distinction between the two versions of the
RF NeuroAS system, featuring here a more complex structure to achieve higher resolution.
As illustrated in Fig. A.1, the network integrates four ML eNeurons from the neuromorphic
pre-processing stage as its input layer. It includes three densely connected hidden layers, each
composed of only 8 eNeurons, culminating in an output layer. These ML eNeurons are chosen for
their biomimetic properties and broad dynamic range, which boost learning efficiency [23]. The

155



Figure A.1: System-level architecture of RF NeuroAS for 1-degree angular resolution in source
localization, including four stages: RF configuration setup, data extraction, neuromorphic pre-
processing, and the analog spiking neural network. The final outputs are the source’s position,
specified by distance ds and angle θs.

A-SNN uses a classification model to pinpoint source coordinates, starting with the identification
of the distance ds using three eNeurons D1-D3. For angle detection, the network innovatively uses
fewer eNeurons for greater efficiency. Instead of allocating 360 eNeurons to cover the 360 possible
angles, it first determines the correct region rs on the plane , where the source is in the plane,
through output eNeurons RG1-RG8. The specific angle within that region as is then identified
using 45 eNeurons (A1-A45), achieving 1-degree resolution while conserving eNeuron resources.
The source angle θs is computed as rs × nr + as, where nr, set at 45 degrees, denotes the range
of each region. The system further refines angle prediction through a concatenation of input
features from the input layer and the identified output regions. The learning process of the A-
SNN is conducted via deep learning techniques, throughly described in Sec. 3.4.2. This approach
integrates the analog characteristics of eNeurons and eSynapses within the TensorFlow platform,
using their spiking rate post-layout transfer functions as activation functions. The network
undergoes training and testing on the SimLocRF and MeasLocRF datasets within TensorFlow.

2 . Results

This section details the outcomes from the RF NeuroAS system configured for 1-degree
angular resolution. Initially, it reviews the validation of dataset features used in system training,
followed by the examination of its performance in RF source localization. Figure A.2 displays the
power patterns captured by the four receivers over a complete 360-degree span, obtained from the
SimLocRF dataset (Fig. A.2(a)) and the MeasLocRF dataset (Fig. A.2(b)). In both scenarios,
the source, located 0.5 meters away from the origin, emits a 10 dBm signal in a setting with a
20 dB SNR. The power patterns from the simulated data in Fig. A.2(a) show a stable curve
ranging from -20 to -29 dBm as the source rotates, which aligns with the dynamic range defined
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Figure A.2: Illustration of received power (in dBm) versus source sngle (0 to 360 Degrees) for
four receivers: Panel (a) shows data from the SimLocRF dataset, and Panel (b) shows data from
the MeasLocRF dataset.

by the neuromorphic pre-processing stage, as explained in Sec. 5.1.3. In contrast, the empirical
data in Fig. A.2(b) reveal variations in received power between -20 and -31 dBm, attributable
to inconsistencies in the anechoic chamber, such as variations in material properties, equipment
performance, and antenna patterns.

Figure A.3 illustrates the angle accuracy (Fig. A.3(a)) and angle error (Fig. A.3(b)) under
three different training and testing scenarios and at three distinct SNR levels. The datasets
SimLocRF and MeasLocRF are partitioned such that 70% of the data is used for training and
validation, with the remaining 30% designated for testing. Accuracy for both distance and
region identification remains high (above 90%) due to the limited number of classes involved.
The highest angle accuracy of 93.5% is achieved with the SimLocRF dataset in a low-noise
environment (SNR = 20 dB). Angle accuracy decreases with lower SNR and when using the
MeasLocRF dataset due to increased data variability. The minimum accuracy observed is 70%,
which occurs in the noisiest setting (0 dB SNR) when training on SimLocRF data and testing
on unseen MeasLocRF data.

157



20100
SNR [dB]

0

20

40

60

80

100

A
ng

le
 A

cc
ur

ac
y 

[%
]

93.589.9
82.0 86.4

79.675.2
80.7

73.870.0

SimLocRF for train & test
MeasLocRF for train & test
SimLocRF for train & MeasLocRF for test

(a)

20100
SNR [dB]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

A
ng

le
 E

rr
or

 [d
eg

re
es

]

0.1

0.3
0.6

0.4

0.8
1.0

0.6

1.2

1.5

SimLocRF for train & test
MeasLocRF for train & test
SimLocRF for train & MeasLocRF for test

(b)
Figure A.3: Performance of the A-SNN (1-degree resolution) in source positioning: Panel (a)
details angle accuracy (%) and Panel (b) shows angle error (degrees) across three training and
testing scenarios and three SNR levels.

Angle error is quantified by the formula
∑Nf

i=1 |θsi − θ̂si|, where θsi and θ̂si represent the
actual and predicted source angles, respectively, across Nf test samples. As depicted in Fig.
A.3(b), angle error typically remains below 1 degree in most cases, confirming the network’s
capability to maintain 1-degree angular resolution. In more challenging scenarios, such as in
0 dB SNR or when exclusively using the MeasLocRF dataset for testing, the angle error may
slightly exceed 1 degree, indicating a drop in system resolution.

According to the power consumption estimation method described in [23], the RF NeuroAS
system, which consists of 84 ML eNeurons and 788 eSynapses, consumes only 403 nW of power.
This consumption is double that of the 10-degree resolution system as detailed in Sec. 5.1.4.
These findings underscore the neural network’s effectiveness in maintaining a low-power, efficient
architecture suitable for precise RF localization.
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Appendix B

Software Frameworks

Algorithm B.1 SimLocRF Dataset Generation in MATLAB, detailed
in Sec. 3.2 - Part 1
1: 1. Initialize Parameters
2: 1.1. RF Environment Parameters
3: parameters.f ▷ Operating frequency
4: parameters.c ▷ Speed of light
5: parameters.lambda ▷ Wavelength
6: parameters.Pt ▷ Transmit power
7: parameters.Gt, parameters.Gr ▷ Transmit and Receive antenna gain
8: 1.2. RF Configuration Parameters
9: parameters.num_antennas ▷ Number of antennas

10: parameters.num_angles ▷ Number of angles
11: parameters.d_s, parameters.theta_s ▷ Source coordinates
12: parameters.d_r, parameters.theta_r ▷ Receivers coordinates
13: 1.3. Data Resolution and Quality Parameters
14: parameters.snr_level ▷ Signal-to-Noise ratio
15: parameters.resolution ▷ Angular resolution 1, 10 in degrees
16: parameters.num_instances_per_angle ▷ Data points per angle
17: 2. Generate Dataset
18: [features, labels] = generateDataset(parameters)
19: 2.1.1. Generate Features as Powers
20: features_Powers = zeros(num_angles * num_instances_per_angle,

num_antennas)
21: i = 1:parameters.num_angles
22: n = 1:parameters.num_instances_per_angle
23: j = 1:length(received_Power) ▷ received_Power from Friis equation
24: received_Signal = generateSignal(received_Power, f)
25: noisy_received_Signal = addNoise(received_Signal, snr_level)

▷ Add noise from AWGN function
26: noisy_received_Power = mean((noisy_received_Signal)2)
27: features_Powers[instance] = watts2dbm(noisy_received_Power)
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Algorithm B.1 SimLocRF Dataset Generation in MATLAB, detailed
in Sec. 3.2 - Part 2
29: 2.1.2. Generate Features as Spiking Frequencies from Pre-Processing Stage
30: [Power, spiking_Frequency] = loadPostLayoutData()

▷ Load Data from pre-processing (NWR) Stage
31: features_Frequencies = interp1(Power, spiking_Frequency,

features_Powers) ▷ Interpolate Features
32: 2.2. Generate labels
33: labels = zeros(parameters.num_angles * parameters.num_instances_per_angle,

parameters.num_labels)
▷ Assigns two labels: angle and distance (distances omitted here for simplicity,

values discussed in thesis = 0.1, 0.3, 0.5 m)
34: for i = 1 to parameters.num_angles
35: for n = 1 to parameters.num_instances_per_angle
36: 2.2.1. Identify Region Index and Angle Index within Region
37: region_index = floor(theta_s[i] / parameters.region_range)

▷ Range of angles per region given by: parameters.region_range =
parameters.num_angles / parameters.num_regions

38: angle_within_region = rem(theta_s[i] , parameters.region_range)
39: angle_within_region_index = floor(angle_within_region /

parameters.resolution)
40: if (region_index >= parameters.num_regions) then
41: region_index = 0 ▷ Adjust for angle wrap-around
42: 2.2.2. Assign Label
43: labels[i * n, :] = [region_index, angle_within_region_index]
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Appendix C

BiCMOS SiGe 55 nm Technology

The BiCMOS SiGe 55 nm technology from ST Microelectronics (B55) offers low-threshold
voltage, low power MOS transistors, referred to as nlvtlp and plvtlp [228]. These transistors have
a high ION/IOFF ratio of approximately 150k, making them ideal for microwave applications,
including self-oscillation frequencies (fmax) exceeding 110 GHz. Additionally, B55 technology
allows for the integration of high-quality passive components such as inductors, transmission
lines, and varactors, with quality factors greater than 10. The technology includes 8 metal levels
and a top copper metal layer that is 3 µm thick. It provides mature BSIM4 and PSP models
that account for process variability and temperature variations from -40°C to 175°C, based on
silicon measurements. For parameter extraction in B55, designers need to analyze models that
fit transistor characteristics in either strong inversion (SI), moderate inversion (MI), or weak
inversion regions (also named subthreshold region) (WI). Since this thesis focuses on designing
circuits in the subthreshold region for low power consumption, this appendix will concentrate on
the analysis within this region.

1 . Parameters Extraction

In this section, parameter extraction follows the methodology presented in [229], which is
inspired by the gm/ID-based procedure outlined in [230]. This approach relies on the applied
basic (long channel) compact model (ACM). In the ACM model, the drain current of a transistor
is expressed as the sum of two currents: the forward and reverse currents, as follows

ID = IF − IR = IS(if − ir), (C.1)

where IS is the specific current, and if and ir are the forward and reverse inversion coefficients
respectively. IS is given by

IS = µ · n · C ′
ox

ϕ2
T

2

W

L
, (C.2)

where µ is the mobility, n is the slope factor, C ′ox is the oxide capacitance per unit area, ϕT is
the thermal voltage (kT/q ≈ 26 mV at 27 ◦C), and W/L is the aspect ratio.

The relationship between the terminal voltages VG, VS , VD (all referenced to the bulk) and
the inversion coefficients is

VP − VS(D)

ϕt
=

√
1 + if(r) − 2 + ln

(√
1 + if(r) − 1

)
, (C.3)
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where the pinch-off voltage VP can be approximated by VP ≈ (VG-VT )/n, with VT being the
threshold voltage at VS = 0. The ratio gm/ID can be expressed as

gm
ID

=
2

nϕt

(√
1 + if +

√
1 + ir

) . (C.4)
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Figure C.1: Plot illustrating the variation of gm/ID (transconductance-to-current ratio) and ID
(drain current) as functions of VGB (gate-to-bulk voltage), used for parameters extraction.

Based on these equations and the plots of gm/ID and ID with respect to VGB (see Fig.
C.1), the parameters to be extracted are n, VT , and IS using transistor voltages as: VSB = 0,
VDB = ϕT /2, and sweeping VGB.

• From (gm/ID)max = 1/nϕT , where if > 0 and ir > 0, (gm/ID)max is equal to 1/nϕT .

• Using (C.3), for VSB = 0 and VGB = VT (which implies VP = 0), if = 3 is obtained.

• Using (C.3), for VDS = ϕT /2, VSB = 0, and VGB = VT , ir = 2.12 is obtained.

• For these values of if and ir, gm/ID = 0.531/ nϕT from (C.4) and ID = 0.88IS from (C.1).

• Extract the parameters:

– n = 1/ (ϕT ((gm/ID)max) = 1.33,

– VT such that gm/ID (VGB = VT ) = 0.531/nϕT is determined, VT = 0.37 V.

– IS = ID (VGB = VT ) /0.88 = 1.5 x 10−7 A.
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2 . Transistor Performance

In this thesis, the circuit designs use low-threshold voltage, low power NMOS and PMOS
transistors referred to as “nlvtlp” and “plvtlp”, respectively. The performance characteristics of
these transistors are depicted in Fig. C.2: the transition frequency (fT ) and the transconductance
efficiency (gm/ID), both as functions of the drain-to-source current density (JDS).

The transition frequency (fT ), shown in Fig. C.2(a), represents the frequency at which the
current gain of a transistor drops to one, a crucial parameter for high-frequency applications. For
both nlvtlp and plvtlp transistors, fT increases with JDS initially, indicating enhanced perfor-
mance at higher currents due to improved carrier transport. However, beyond a certain current
density, fT begins to decline, likely due to parasitic effects and other high-current phenomena
that degrade the transistors’ performance. Notably, the nlvtlp transistor exhibits a higher peak
frequency, suggesting superior performance in high-frequency applications compared to the plvtlp
transistor.

Figure C.2(b) illustrates the transconductance efficiency (gm/ID), a key parameter for low-
power and analog applications, as it measures the efficiency of converting input voltage signals
into output current. Both transistor types show a decrease in gm/ID with increasing JDS , in-
dicating reduced efficiency at higher current densities, likely due to increased scattering and
thermal effects. It is important to note that when the gm/ID ratio exceeds 25 V −1, the transis-
tor is typically operating in the subthreshold region. In this region, the transistor operates below
the threshold voltage, resulting in high transconductance efficiency due to the exponential rela-
tionship between the gate voltage and the drain current. This high gm/ID ratio is advantageous
for ultra-low power applications, as it allows for significant current generation with minimal gate
drive voltage.

These performance characteristics highlight the advantages of the nmvtlp and plvtlp transis-
tors in high-speed and low-power applications within the technology used, suitable for this thesis
objective.
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Figure C.2: B55 characteristics extraction for low-threshold voltage, low power NMOS (nlvtlp)
and PMOS (plvtlp) transistors, being (a) the transition frequency fT and (b) the gm/ID versus
the drain-to-source current density JDS .
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Appendix D

Layouts and Components Size

1 . Simplified RF NeuroAS System

Figure D.1: Layout of Simplified RF NeuroAS system, depicted in Fig. 3.10, with dimensions
18.3 × 20.24 µm2.
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1.1 . ML and LIF-based NWR Systems
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Figure D.2: Layout of (a) ML-based and (b) LIF-based NWR systems, with circuits shown in
Fig. 3.7(a) and Fig. 3.7(b) respectively, occupying areas of 9.8 × 25.09 µm2 and 9.03 × 10.52
µm2, respectively.
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Table D.1: Sizing of transistors in W×L (nm) and of capaci-
tances in number of cells × unity capacitance (fF) for the Sim-
plified RF NeuroAS system, and ML and LIF-based NWRs.

Envelope Detector and Transconductance eSynapse

MCG 135×60 Mc 135×60
CLP,ED 1×8.5 MLP,ED 135×60
M1 405×60 M2

* 135×60
M3

* 135×60 M4
* 135×60

Morris-Lecar (ML) eNeuron

MP1 135×60 MN1 200×60
MP2 1200×60 MN2 135×60
MP3 200×60 MN3 135×60
MPNa 800×60 MNK 1500×60
Cm 1×9.83 CK 1×5.53

Leaky Integrate-and-Fire (LIF) eNeuron

MP1 135×60 MN1 135×60
MP2 135×60 MN2 135×60
Cf 1×5.038 MN3 135×60

Bifunctional eSynapse

MLP,S 500×3000 CLP,S 1×11.9
MT,S 135×60 MPS1 135×60
MNS1 135×60 MPS2 135×60
MNS2 135×60 MPS3 135×60

* Width of the transistor multiplied by 3 for LIF-based NWR
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2 . eNeurons

(a) (b)

(c) (d) (e)

Figure D.3: Layouts of eNeurons under test: (a) s-ML using 8.2 × 7.5 µm2 [153], (b) b-ML using
5.7 × 17.3 µm2 [156], (c) p-ML using g 2.3 × 2.7 µm2 [158], (d) AH-LIF using 6.6 × 4.3 µm2

[155], and t-LIF using 6.5 × 7.8 µm2 [157]. Circuit designs are illustrated in Fig. 2.9.
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Table D.2: Sizing of transistors in W×L (nm) and of capacitances (fF) for the eNeurons

AH-LIF eNeuron

MP1, MN1, MP2, MN2, MN3 135× 65
Cf 5.0

s-ML eNeuron

MP1, MN1, MP2, MN2, MPNa, MNK 135× 65
Cm 4.0 CK 8.0

b-ML eNeuron

MP1 135× 60 MN1 200× 60
MP2 1200× 60 MN2 135× 60
MP3 200× 60 MN3 135× 60
MPNa 800× 60 MNK 2000× 60
Cm 5.5 CK 9.8

p-ML eNeuron

MP1, MN1, MP2, MN2, MPNa, MNK 135× 65

t-LIF eNeuron

MP1, MN1, MP2, MN2, MPNa, MNK 135× 65
Cm 5.5 Cres 9.8
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3 . Excitatory eSynapse

Figure D.4: Layout of Excitatory eSynapse, with circuit shown in Fig. 2.10, occupying 6.6 × 7.5
µm2.

Table D.3: Sizing of transistors in W×L (nm) and of capacitances (fF) for the Excitatory
eSynapse

Excitatory eSynapse

MPR 500× 3000 MN1 135× 480
MP1 270× 60 MP2 324× 60
C 11.9
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